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Abstract

This thesis is interested in the robotization of operations in logistics warehouses, fo-

cusing on transport operations from reception area to storage area and vice versa. The

transport operations are performed by reconfigurable poly-robots which consist of ele-

mentary robots that can be assembled in different ways over time to adapt to the loads

to be transported. Each poly-robot configuration has its own transportation capacity.

After each transportation, poly-robots can be reconfigured to adapt to the load type. We

first consider the fleet sizing problem which consists in determining the optimal number

of elementary robots required to transport a set of loads within a specified time frame.

We formulate several variants of this problem as integer linear programs. We study

the computational complexity of this problem and provide a polynomial heuristic algo-

rithm. We show how reconfigurability can allow to diminish the number of required

elementary robots. Finally, we also study the problem of scheduling such a fleet with

the objective to minimize the time to execute all transportation tasks.
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Résumé en français

Optimisation d’une flotte de robots

reconfigurables dans un entrepôt logistique

La thèse s’intéresse à un système industriel comportant plusieurs entités robotiques de

différentes natures. On considère plus particulièrement la robotisation des opérations

dans les entrepôts logistiques, en se focalisant sur les opérations de transport (transfert

de la zone de réception vers la zone de stockage et vice-versa).

Robotisation des entrepôts

Il existe de nombreux entrepôts où des tâches laborieuses et répétitives sont effec-

tuées manuellement : chargement et déchargement des camions, contrôle, déplacement

des charges, préparation des commandes, emballage, etc. Il est prévu que 1,5 million

d’emplois soient remplacés par des robots entre 2016 et 2026 dans la zone euro et que

les coûts de manutention soient réduits de 20 à 40% [Roland Berger, 2016]. Les raisons

principales de la robotisation des entrepôts sont : la difficulté de recruter des personnels

pour le transport de charges, notamment des opérateurs caristes détenant le certificat

d’aptitude à la conduite en sécurité [INRS, 2023]; le faible taux de fidélité des opérateurs

contractuels sur des métiers de manutention jugés pénibles et peu motivants; le besoin

d’augmenter la productivité des entrepôts, dans un contexte économique où le coût du

m² d’entrepôt augmente chaque année fortement. De plus, étant donné la réduction des

coûts de mise en place et d’entretien des robots, il n’est pas surprenant que les entrepôts

logistiques soient de plus en plus robotisés. Ainsi, l’utilisation de robots dans les en-
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trepôts devient courante et nous nous posons la question de l’intérêt de la coopération

des robots.

Coopération et reconfiguration

Les avantages de la coopération sont démontrés dans le monde animal [Dugatkin, 1997].

La coopération peut être de différents types : l’exécution d’une tâche par plusieurs sub-

ordonnés sous la direction d’un leader ou l’exécution d’une même tâche avec le même

niveau de responsabilité [Theraulaz et al., 2002; Fourcassié et al., 2010]. L’approche

coopérative peut être appliquée non seulement dans la nature, mais dans l’industrie [Le

et al., 2010]. Des robots coopératifs capables de travailler en parallèle sur une même

tâche ouvrent de larges perspectives [Noreils, 1992]. Dans l’industrie, la coopération

peut être définie comme l’exécution conjointe d’une tâche [Jung et al., 1998]. Tuci et al.

[2018] constatent qu’il y a coopération si la tâche ne peut être exécutée séquentiellement

par un seul robot et nécessite une coordination des actions et une communication entre

robots. Dans cette thèse, nous utilisons cette dernière définition.

Le second aspect de cette étude est la reconfigurabilité des robots. On définit la recon-

figurabilité comme l‘aptitude de robots élémentaires à être attachés ou détachés les uns

les autres, par un opérateur ou de façon autonome, pour modifier la configuration du

robot résultant. La principale différence avec les robots coopératifs est que les robots

coopératifs restent dans leur configuration tout au long de l’horizon du temps, tandis

que la configuration des robots reconfigurables peut être modifiée au cours du temps.

Les robots reconfigurables et coopératifs offrent des solutions prometteuses pour répon-

dre aux demandes en optimisant le transport des charges au sein d’un entrepôt.

Collaboration industrielle

Ce travail, inspiré par la thèse de Chebab [2018], est le fruit d’une collaboration de

recherche avec la startup MecaBotiX. Chebab [2018] a travaillé sur la conception de

nouvelles structures de robots mobiles modulaires qui coopèrent afin de réaliser des

tâches liées à la gestion et au transport de caisses. La société MecaBotiX s’occupe de

la conception et la vente de robots, notamment des robots M3-Cooper qui sont des

Robots Manipulateurs Mobiles Modulaires Coopératifs. Ils sont capables de s’agréger

en grappe pour constituer un poly-robot adapté à la charge à déplacer. Ils peuvent
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s’adapter au type de produit (taille/masse) et naviguer en autonomie dans des environ-

nements tels que des entrepôts, des sites de production ou des chantiers. La figure 1

montre deux exemples de poly-robots M3-Cooper transportant des charges. Le mono-

bot de la figure 1a peut transporter une caisse tandis que le quadri-bot de la figure 1b

peut transporter une palette. Les robots permettent de décharger les opérateurs des

tâches pénibles à faible valeur ajoutée et de les re-déployer sur les tâches complexes :

contrôle qualité, préparation de commande. Ils permettent aussi des créations d’emploi

dans la supervision et la maintenance robotique.

(a) Mono-bot (b) Quadri-bot

Figure 1: Exemples de poly-robots reconfigurables M3-Cooper [MecaBotiX, 2023]

Problématique

Dans ce travail, nous examinons le transport des charges par des robots reconfigurables,

nommés poly-robots, constitués de robots élémentaires. Un robot élémentaire ne peut

pas être divisé en plusieurs robots. Un poly-robot est un groupe de robots élémentaires

qui sont agrégés afin d’effectuer conjointement une tâche comme un seul robot. Après

chaque transport, les poly-robots peuvent être reconfigurés pour s’adapter au type de

charge. La capacité du poly-robot dépend de la configuration et du type de charge. On

note p-bot une configuration avec p robots élémentaires. Notez qu’un 1-bot est un mono-

bot qui travaille seul. L’objectif, dans un premier temps, est de déterminer le nombre de

robots élémentaires nécessaires pour déplacer un ensemble de charges dans un horizon

de temps spécifié au coût minimum. Dans un second temps, le but est de minimiser le

temps de transport de toutes les charges avec un nombre de robots élémentaires donné.
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Organisation du manuscrit et contributions

Le chapitre 1 présente le contexte dans lequel s’inscrit la thèse. Il s’agit tout d’abord de

présenter les entrepôts et l’automatisation du stockage et du transport. En outre, une

attention est portée aux systèmes multi-robots, plus précisément aux systèmes coopérat-

ifs et reconfigurables. Une revue de la littérature est donnée pour le problème de di-

mensionnement d’une flotte. Dans le cadre des véhicules autonomes, le problème de

dimensionnement d’une flotte n’a été considéré ni pour les robots coopératifs ni pour

les robots reconfigurables. Les chapitres suivants de cette thèse comblent ce vide.

Dans le chapitre 2, nous considérons le transport de charges identiques par des robots

coopératifs et non coopératifs ayant une capacité supérieure à un. Un cadre mathé-

matique déterministe est développé pour le dimensionnement d’une flotte de robots

identiques, nommés 1-bots, qui ont la possibilité de coopérer. Un ensemble de p 1-bots

qui coopèrent sur une tâche donnée constitue un p-bot. Lorsque la coopération n’est

pas autorisée, nous obtenons une expression sous forme analytique pour le nombre op-

timal de 1-bots. Lorsque la coopération est autorisée et la reconfiguration interdite, nous

formulons le problème de dimensionnement de la flotte par un programme mathéma-

tique sous la forme d’un PLNE (programme linéaire en nombres entiers). Notre modèle

mathématique permet de déterminer le nombre de robots à coopérer pour un coût de

transport minimal. Dans le cas où la capacité de p 1-bots est inférieure à la capacité d’un

seul p-bot, nous conclurons que l’utilisation soit exclusive de p-bots, soit d’un mélange

de p-bots et de 1-bots, entraîne une diminution des coûts. Dans l’autre cas, il est optimal

d’utiliser exclusivement des 1-bots.

Dans le chapitre 3, nous considérons la possibilité de reconfigurer les robots pour un

transport des charges hétérogènes. Deux PLNEs sont écrits pour comparer le coût d’une

flotte de robots avec possibilité de reconfiguration et sans cette possibilité. Ensuite, nous

étudions un cas particulier avec deux types de charges et deux configurations autorisées

(1-bot et p-bot avec p > 1). Pour ce cas particulier, des expressions de forme analytique

sont dérivées pour le nombre minimum de robots élémentaires avec ou sans reconfig-

uration. Un deuxième cas particulier avec des capacités unitaires est également étudié.

Pour ce cas, nous dérivons des expressions de forme analytique pour le nombre min-

imum de robots jusqu’à trois types de charge avec reconfiguration, et pour n’importe

quel nombre de types de charge sans reconfiguration. Enfin, nous comparons les straté-
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gies avec ou sans reconfiguration. Nous montrons que la reconfigurabilité peut diviser

le nombre minimum de robots élémentaires jusqu’à un facteur K (avec K le nombre de

types de charge). Pour les deux cas particuliers, nous montrons que le gain en nombre

de robots est limité mais peut être significatif pour les petites flottes. Enfin, dans une

variante où la demande est par période de temps et non sur tout l’horizon temporel,

nous montrons que le gain en nombre de robots peut être très important.

Dans le chapitre 4, nous montrons que le problème est fortement NP-difficile. Dans trois

cas particuliers (une seule période, un seul type de charge ou une seule configuration),

le problème peut être résolu en temps polynomial avec des algorithmes de program-

mation dynamique appropriés. Nous dérivons ensuite de nos résultats théoriques un

algorithme heuristique efficace pour le cas général. Une étude numérique montre que

l’algorithme heuristique peut être appliqué avec succès même pour de grandes instances

et a de bonnes performances sur les instances testées.

Dans le dernier chapitre 5, nous considérons le problème d’ordonnancement pour une

flotte donnée. L’objectif est de minimiser le temps de transport de toutes les charges.

Nous proposons une formulation mathématique du problème qui peut être résolue avec

un solveur d’optimisation linéaire. Nous montrons que la reconfigurabilité peut réduire

considérablement la durée du transport lorsque les zones de dépôt des charges sont

situées à différents endroits.
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2 Chapter 1. Introduction and state of the art

This first chapter introduces the reader to the context of the problem and everything that

surrounds this thesis. First, we present how warehouses work, then we talk about their

automation. Finally, we focus on the core of this thesis: the latest concepts of coopera-

tive reconfigurable robots and the fleet problems. The chapter provides an overview of

the current status of the subject of warehouses and the importance of the issue of ware-

house automation, which has seen rapid progress recently. Despite the convenience and

benefits of automated storage and retrieval systems, they remain expensive and fixed.

Robotic systems can be quickly adapted to customer needs and variable flows of prod-

ucts to transport, and cooperation between them promises great prospects. However,

in the context of autonomous vehicles, the fleet sizing problem has not been considered

either for cooperative robots or for reconfigurable ones. This dissertation fill this gap.

1.1 Warehouses

With the increasing development of e-commerce, the number of warehouses is increas-

ing every year. For example, Figure 2 shows that the number of warehouses in the U.S.

increased by 31% between 2007 and 2020, representing 4587 new warehouses.

Figure 2: Total number of warehouses in the United States 2007-2020 according to

Statista [Mazareanu, 2021]

1.1.1 Definition and functions

According to van Geest et al. [2021], a warehouse is a building intended to store goods

for commercial purposes. The main functions include receiving, storage, order prepara-
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tion and dispatching. Each function corresponds to an area in the warehouse (in orange

in Figure 3). Loads (such as pallets, boxes, etc.) are transported between the four zones.

Receiving and dispatching are the warehouse’s interfaces to the outside world for in-

bound and outbound material flow, respectively. Incoming goods are unloaded from

transporting vehicles (truck, wagons, planes, ships...) and then stored in the storage

area.

Different storage strategies can be used such as random storage or storage based on the

physical characteristics of the goods (storage on pallets, in boxes, etc.). The warehouses

are composed of a storage area which can be made up of two parts: the reserve area,

where the products are stored in the most economical way (bulk storage area) and the

gripping area where the products are stored for easy retrieval by an order picker. As the

stock in the gripping area is depleted, new products are then transferred from reserve

storage to the gripping area [Cormier and Gunn, 1992].

The verification and supply of goods are considered separate functions from reception

by the company Mecalux. Mecalux [2016] define the objective of a warehouse as being

the regulation of the differences between the input flows (what is received from suppli-

ers, production plants, etc.) and those of output (the products sent in manufacturing

centers, at points of sale, etc.).

(a) Receipt (b) Storage

(c) Order picking (d) Dispatch

Figure 3: Main functions of a warehouse [VecturaLogistique, 2021]
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A complete overview of characterization of warehouses along the views processes, re-

sources and organization is provided in Rouwenhorst et al. [2000].

1.1.2 Storage units

According to Rouwenhorst et al. [2000], the storage unit is a volume in which products

can be stored. Examples of storage units are containers, pallets and boxes (cardboard

boxes or plastic boxes).

Boxes or bins are generally made of cardboard or plastic (Figure 4). They preserve the

integrity of the product and protect it.

(a) Cardboard boxes (b) Plastic boxes

Figure 4: Cardboards and plastic boxes stored on pallets [Free3D, 2023]

The standardization of the storage units allows, on the one hand, to simplify the loading

of the pallets in trucks whose dimensions are also standardized, and on the other hand,

to put on the pallets a multiple of the number of standard boxes (Figure 5).

Figure 5: Boxes on pallets [Mecalux, 2016]

"A pallet is a rigid horizontal platform, of minimum height compatible with handling by means
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of pallet trucks and/or forklifts or other suitable equipment, used as a support for the gather-

ing, loading, storage, handling, stacking, transporting or displaying of goods and loads" [ISO

445:2013, 2013]. The first standardization of pallets was proposed with dimensions (see

Figure 6) of:

- 1200mm x 800mm x 144mm;

- 1200mm x 1000mm x 144mm.

Figure 6: Dimensions of pallets [Mecalux, 2016]

The International Organization for Standardization (ISO) proposes 6 different standard

dimensions of pallets depending on the country. In Europe, the UNE-EN 13698-1 stan-

dard specifies the manufacturing characteristics of these supports under the names of

europallet or EPAL with the dimensions of 1200 x 800 mm. An europallet weighs about

25 kg and can support loads of up to 1500 kg. To note that the pallet height, which is de-

fined by the user, depends on the masses and the strength of the stored boxes. It rarely

exceed 2,5 m in height (pallets are often filmed) to limit the risks of pallets warping in

curves during road transport.

A container is built for intermodal freight transport, meaning these containers can be

used across different modes of transport – from ship to rail to truck – without unloading

and reloading their cargo [Lewandowski, 2016]. The containers of 8 feet (2,44 m) wide,

and of either 20 or 40 feet (6,10 or 12,19 m) standard length, are defined by ISO standard

[ISO 6346:1995, 1995]. In a 20 feet container, it’s possible place up to 11 EPAL pallets

(see Figure 7a) on the ground, in a 40 feet - up to 24 EPAL pallets (see Figure 7b).
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(a) 20 feet

(b) 40 feet

Figure 7: Container loading plan with EURO pallets [MouvBOX, 2023]

The Table 1 provides a summary of the capacity of containers and pallets described

above.

EPAL

Container of 20 feet 11

Container of 40 feet 24

(a) Containers

Box

0,8x0,6 m

Box

0,4x0,6 m

Box

0,4x0,3 m
EPAL 2 4 8

(b) EURO Palettes

Table 1: Capacity of containers and pallets

1.1.3 Shelving

A distinction is made between single and multiple depth storage systems. For simple

storage systems, a shelf depth is a pallet length (Figure 8). Storage capacity can be

doubled by using double-depth racks (Figure 9). The double depth saves space by

eliminating the aisle that initially separated the racks. On the other hand, only the

access to the first pallet is direct. To be able to reach the second pallet, the first one has

to be extracted.

Regarding the dimensions of the shelves: the depth of the shelf is generally equal to the
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(a) Single depth [Mecalux, 2016]
(b) Industrial example Groupe HBF

Figure 8: Single depth configuration

(a) Double depth [Mecalux, 2016]

RACKING / SHELVING / FLOORS / CONVEYORS / SAFETY / SERVICES / CONTACT / MORE

DOUBLE DEEP PALLET RACKING
SWoUing SalleWV WZo deeS foU beWWeU caSaciW\

DRXbOe DeeS PaOOeW RacNiQg iV Whe beVW cRPSURPiVe beWZeeQ a VeOecWiYe aQd 
high-deQViW\ SaOOeW UacNiQg V\VWeP.

B\ VWRUiQg SaOOeWV WZR deeS, higheU VWRUage deQViW\ caQ be achieYed, ZhiOe 
RSeUaWRUV aUe VWiOO abOe WR acceVV VWRcN eaViO\ aQd UeOaWiYeO\ TXicNO\.

DRXbOe DeeS PaOOeW RacNiQg iV XVed iQ cRQMXQcWiRQ ZiWh VSeciaO fRUNOifWV, RfWeQ 
fiWWed ZiWh a SaQWRgUaSh PechaQiVP VSeciaOO\ deVigQed WR Ueach Whe VecRQd SaOOeW 
ORcaWiRQ.

SYbQMX a QYMcO 
ERUYMV]
NaPe *

CRPSaQ\ *

IQdXVWU\
POeaVe VeOecW...

PhRQe QXPbeU *

EPaiO AddUeVV *

SXbXUb/SRVW cRde *

EQTXiU\ *

 &$//� 1800 985 268¨

(b) Industrial example COLBY

Figure 9: Double depth configuration

length of the EPAL. It means EPALs are inserted along the long side of the pallet; the

width of the shelf is a multiple of the width of the pallet (2, 3, 4, 5 spaces). To note that

the height of the racks is 2 m, 6 m or 12-13 m, rarely more.

The aisles are generally 3,5 m wide to allow a forklift to make a quarter turn in order to

position its fork in front of the shelving. Aisles can be one-way or two-way. An aisle of

3,5 m can be two-way (enough for the crossing of two 1, 5m wide vehicles).

1.2 Warehouse Automation

Despite the rapid growth of progress, there are still many manual warehouses where all

manual tasks are performed by humans: unloading trucks, content checking, horizontal

and vertical transfers, unit picking, order preparation, packaging. These are the very

laborious and repetitive tasks, so it is not surprising that logistics warehouses are not

attractive for human workers and get increasingly robotized.

Roland Berger [2016] anticipates that 1,5 million jobs will be replaced by robots between

2016 and 2026 in the Eurozone and that handling costs will be reduced by 20 to 40% in

the same time thanks to robotic solutions. Companies decide to buy a robot by com-

https://groupehbf.com/
https://www.colby.com.au/double-deep-racking
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paring the cost of its use with that of an operator, knowing that a machine is generally

amortized over 3 years. Figure 10 shows the evolution of the hourly cost for robots and

human operators. We see that robots are becoming more and more affordable. A recent

study [Barosz et al., 2020] confirms the interest of automated systems compared to op-

erators in a certain number of situations as well as the efficiency of the use of automated

systems compared to operators.

Figure 10: The hourly cost of robots and human operators in France in €/hour [Roland

Berger, 2016]

1.2.1 Automated storage

Automated storage systems have the greatest capacity, storage density and, therefore,

require high investments. The principle of operation is as follows: loads arrive, the

system chooses the location to store the load, an automated system grips the load and

transports it to an empty slot in the storage space.

Existing classifications are rather based on machine elements (carousel, shuttles, etc.)

than on mechanical or geometric properties. We distinguish three systems (Figure 11):

carousel, VLM (Vertical Lift Module) and AS/RS (Automated Storage and Retrieval Sys-

tem). Automated storage systems could be classified by storage thickness. For example,

VLM and carousels belong to the category of single thickness systems whereas AS/RS

sometimes allow storage in multiple thicknesses.



1.2. Warehouse Automation 9

Figure 11: Types of automatic storage

Automated Storage and Retrieval System

An automated storage and retrieval system typically consists of racks serviced by cranes

traversing the aisles between the racks. An AS/RS is able to handle loads without

operator intervention, so the system is fully automated [Roodbergen and Vis, 2009].

AS/RS can use pallets or boxes [SSI Schaefer, 2023].

There is a wide variety of load recovery instruments. To do this, cranes, shuttles and

robots are used, individually and in combination:

• Cranes

Cranes can move in the same plane, horizontally and vertically, usually simultane-

ously. Note that two cranes can move on the same horizontal rail to serve different

parts of the stock. The vertical movements can be done in parallel without prob-

lem. Figure 13a shows the system proposed by RINAC, in which such a crane is

represented in orange. The capacity of systems with cranes is limited, as only one

crane can move horizontally at a time. This led to a new generation of grips, the

shuttles.

• Shuttles

A shuttle is a mobile platform that moves inside the AS/RS. The shuttle system

uses elevators to move the shuttles between levels, in turn the shuttles can move

on rails along the X and Y axes. In Figure 13b, orange shuttles can be seen over the

entire grid used by Vanderlande. A similar method is used in systems with robots

that can also, among other things, move on the floor outside the storage system.
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• Robots

A robot is a machine that senses, decides and acts autonomously. A robot must

have sensors necessary to obtain information about its environment [Bekey, 2005].

We give two examples of the use of robots with gripping systems.

The first example of a system with robots that got a lot of attention is SqUID made

by BionicHIVE (Figure 12a). The SqUID consists of a synchronized autonomous

robotic fleet. The robots move vertically and horizontally in tracks attached to

racks, which can cause traffic jams. The SqUID is only fixed on a single rack, which

facilitates the installation but exposes to a mechanical weakness of the guides.

Exotec’s Skypod robots (Figure 12b) move horizontally on the ground and hoist

themselves vertically by resting on the racks located on either side of the aisle. This

double support avoids lifting the cantilever load (robustness) but imposes a good

parallelism of the slides, which requires a flat and rigid slab [EXOTEC, 2023].

An integrated control system and intelligent real-time data analysis allow the al-

gorithmic engine to dynamically learn from problems created in a warehouse and

apply resolutions to all warehouses in the network.

(a) SqUID [BionicHIVE, 2023] (b) Skypod [EXOTEC, 2023]

Figure 12: Robots

Another example are RAFT (Right Angle Fast Transfer) robots with VTU (Verti-

cal transfer units). RAFT robots move in the same way as shuttles on the X and Y

axes, and VTUs allow them to move in height (Figure 13c). Such systems are some-

times referred to as AVS/RS (Autonomous Vehicle Storage and Retrieval System)

[Lenoble, 2017].

Another category is RCSR systems (Robot-Based Compact Storage and Retrieval

https://www.youtube.com/watch?v=EUOz-csu6gE
https://www.exotec.com/system/robots/
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Systems), robots work only at the highest level and are suitable to take the load

without moving in height. AutoStore, developed by Hatteland (Figure 13d), is the

first implementation of the RCSR system [Azadeh et al., 2017].

(a) System with a crane (source: RINAC) (b) System with shuttles (source: Vanderlande)

(c) RAFT system with robots and VTU (source: SRSI) (d) RCSR system (source: Hatteland)

Figure 13: Examples of AS/RS

Vertical lift module

The vertical lift modules consist of two columns of trays with a mechanical inserter/extractor

positioned in the center (Figure 14). The inserter/removal moves up and down between

stored trays, automatically locating and retrieving them as needed, like an elevator with

doors that open both front and back [Kardex, 2021a].

VLMs are generally used in groups of several machines to perform entries or exits from

a tray of a given VLM during the collection of articles on another VLM [Lenoble, 2017].

Carousel

Carousels are automated storage and retrieval systems in which shelves are linked to-

gether and rotate in a closed loop. The rotation is either horizontal or vertical. In this

system, the picker has a fixed location in front of the system and the system transports

the items to the picker [Azadeh et al., 2017].

https://www.youtube.com/watch?v=YYdgLAlogpY
https://www.youtube.com/watch?v=Szt20xNxB5M
https://www.youtube.com/watch?v=0BSWxYBRhmY
https://www.youtube.com/watch?v=b3X3r5UVtEM
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Figure 14: VLM [Lenoble, 2017]

The vertical carousel modules are a series of supports attached to fixed locations to a

chain drive (Figure 15a). The movement is powered by a motor, which sends the carriers

in a vertical loop around a track in both forward and reverse directions - similar to a

Ferris wheel. Goods are stored or retrieved through an ergonomic access opening with

a work counter [Kardex, 2021b].

(a) Vertical
(b) Horizontal

Figure 15: Carousels [Kardex, 2023]

The horizontal carousel modules consist of an oval rail supporting rotating bins with

shelves (Figure 15b). A motor located inside the oval track propels the transporters

around the track horizontally, stopping at a pre-determined access point for cargo stor-

age or retrieval [Kardex, 2021b].

Carousels are effective in increasing storage density and facilitating access to products,

often stored in boxes. On the other hand, the mass of the carousel limits the acceler-

ations. The space between the links of the chain is constant. Care must also be taken

to balance the system. VLMs allow varying storage heights and have fewer balancing

issues. In both cases, access to the product is at a single point in the system, often on
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the ground, and there is a variable waiting time before recovery.

Despite all the advantages of automated systems, they are still expensive to install and

once installed they are stationary, which is a major drawback in often reconfigurable

warehouses.

1.2.2 Automated transport

For transporting loads in warehouses, different types of automated vehicles are used.

Several terms are used to designate these vehicles: Automated Guided Vehicle (AGV),

Autonomous Mobile Vehicle (AMV) and Autonomous Mobile Robot (AMR), Mobile

Robot and Mobile Manipulator Robot. Some of these terms are interchangeable. For

clarity, we will divide vehicles into three categories:

Automated Guided Vehicle

AGVs are vehicles guided on a predefined path, often optical or magnetic strips stuck

to the ground. These vehicles generally stop when they encounter an obstacle on the

road. According to Digani [2016], AGVs are used for transporting loads from one ware-

house area to another (Figure 16) and consist of the following elements: a localization

system (usually laser systems or magnetic systems), a safety system (proximity sensors

or bumpers to avoid collisions) and a communication system (most of the type between

AGVs and a supervision station, sometimes between AGVs).

Figure 16: AGVs used for automated goods transport in a warehouse [Cardarelli et al.,

2017]
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Mobile robots

A mobile robot has a certain degree of autonomy greater than an AGV. The concepts of

AMV and AMR therefore fall into this category. A complete overview of the last decade

of these technologies can be found in [Oyekanlu et al., 2020]. AMVs are similar to AGVs

but in addition have the ability to avoid obstacles: in the event of an obstacle in its

path, an AMR is able to propose a bypass strategy to finish its task [Andersson, 2022].

An AMR is also often considered an advanced AGV. For example, Andersson [2022]

considers that a main function of an AMR is to bring a load (pallet, box, etc.) from a

storage area to a picking station, to deposit its load and return to storage. The author

considers an AMR only as a basis for transport. At the same time, robots that are able

to lift a load (a pallet, a trolley, a roll, a shelf, etc.) and move it, have their name: turtle

robots or MRFS (Mobile Robot Fulfillment Systems) which move loads carrying it on

their backs. These robots are respectively used in an RMFS (Robotic Mobile Fulfillment

System), which according to Azadeh et al. [2017], has three main components:

• Robot Drive Units: these robots receive instructions from the central computer to

transport inventory shelves to the workstation for restocking or picking. Nowa-

days, there are also decentralized controlled systems.

• Inventory Shelves: the shelves are mobile industrial shelves that hold stored items.

The small shelves are used for weights up to 450 kg and the large shelves are used

for weights up to 1300 kg.

• Workstation: ergonomically designed areas where human workers perform shelf

restocking, picking, and packing functions.

RMFS was patented by KIVA Systems Inc. [Mountz et al., 2008], which was later ac-

quired by Amazon in 2012 and renamed AmazonRobotics.

Figure 17 shows a RFMS, where a robot brought products to a worker. This system

allows mobility in the plan but is limited in height and mass of shelves.

Another example of a mobile robot, described by Urru et al. [2018], is the SOTO manu-

factured by Magazino (Figure 18a). The SOTO is a mobile robot that performs industrial

material supply: the robot enables efficient automated driving supply.
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Figure 17: RMFS [Amazon Robotics, 2023]

In this category of mobile robots, we can also include automated carts. For example, Ba-

lyo automates forklifts so that they are able to move without an operator: The TRUCKY

robotic pallet truck based on a manual pallet truck (Figure 18b). It is capable of carrying

two pallets at a time, and up to 3000 kg, it can perform platform loading and unloading,

long-distance transfer and stock line pick-up /drop-off.

(a) SOTO [MAGAZINO, 2023] (b) TRUCKY [BALYO, 2023]

Figure 18: Examples of mobile robots

Mobile manipulator robot

A mobile manipulator robot consists of a mobile base supporting one or more robotic

arms. A fixed base manipulator arm has a certain working space in which its accuracy
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and speed can be characterized [Gifford, 2006]. The development timeline of mobile

manipulator robots is shown in Figure 19.

Figure 19: Development timeline of mobile manipulator robots [Oyekanlu et al., 2020]

Robots are increasingly used for Small Load Carriers (SLC) [Urru et al., 2018]. In this

regard, Urru et al. [2018] considers these new means of transport highlighting their most

important characteristics:

• Navigation in a dynamic environment;

• Transport of a set of SLC;

• SLC handling (full-empty SLC exchange);
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• Great maneuverability.

Figure 20 shows an example of AMADEUS (Autonomous Manipulator Device for Strength-

ening Manufacturing in Europe) robot. The platform is a combination of an AGV with

an application-specific configuration and a robotic manipulator.

already existing production plants. In fact, in this early phase of 
market penetration main selling points of the new technologies 
developed (presented later in the state of the art section) are the 
fast deployment with low impact on the layout and the safe 
integration with other logistic systems. Under this circumstances 
it is reasonable to investigate the implementation of this new 
logistic systems in facilities where group technologies, layout, 
pick-up and delivery points have already been defined and are 
considered to be not modifiable. 

III. STATE OF THE ART 
In the following chapter, an overview on technologies and 

existing methods for the fleet dimensioning is provided.  

A. Technologies 
As already mentioned in the introduction, new technologies 

aiming at taking over the task of SLCs material supply have been 
developed in the last few years, following the robot-to-goods 
principle [5]. For instance, the AMADEUS by Fraunhofer IPA 
[2] and the SOTO by MAGAZINO [3]. The most important 
characteristics of these new means of transport are the 
following:  

• Navigation in dynamic environment  

• Transportation of a set of SLCs 

• Handling of the SLC (full-empty SLC exchange)  

• High maneuverability 
These two technologies are hereafter briefly introduced and 

analyzed. 

1) AMADEUS 
Autonomous Manipulator Device for Strengthening 

Manufacturing in Europe (AMADEUS) was a project started in 
2009, funded by the German Federal Ministry of Education and 
Research (BMBF).  The goal of the project was to develop a new 
robotic solution for intralogistics applications. The demonstrator 
(Fig. 1), presented at the MOTEK 2011, reproduces exactly the 
scenario of SLC supply to the point of use in the production plant 
[2]. The new platform is a combination of an AGV with an 
application specific set-up and a robotic manipulator.  

 
Fig. 1. AMADEUS demonstrator in industrial scenario, by Fraunhofer 

Fig. 2. SOTO, by Magazino 

Moreover, the whole system is controlled by a 
manufacturing execution system (MES) which can be integrated 
into an already existing MES minimizing the impact on current 
processes. The point of strength of this platform is the modular 
approach: all components are standard, commercially available 
and already approved for industrial use. As can be seen in Fig. 
1, the platform has a small buffer which could accommodate up 
to 8 SLCs with dimensions 200 x 300mm. The 6 axes light 
weight robot-arm equipped on the AGV has a payload of about 
6 kg. For this reason, this demonstrator is suitable for the 
transportation of light material. 

2) SOTO 
The SOTO by Magazino (Fig. 2) [3] is a robotic system 

developed for the task of SLCs supply to the point of use in the 
facility. It is an autonomous robot able to easily adapt itself to 
the specific industrial environment and interact with it. 
Moreover, a logistic system based on the SOTO can be gradually 
integrated while other logistic processes are running; therefore, 
line supply and production are not affected during the 
implementation process. The ad-hoc developed kinematic 
ensures high reliability in handling the SLCs and the maximum 
payload of 15 kg enlarges the applicability to a wide range of 
industrial scenarios. The adaptable gripper allows the system to 
handle different kind of SLCs, up to 600x400x400mm.  The 
transportation capacity of the SOTO varies with the dimension 
of the SLC and ranges from 4 up to 12 SLC. 

B. Planning Methods 
During the past years, efforts have been made to develop 

planning methods and optimize logistics system based on well-
established technologies such as AGVs and tugger trains. In this 
chapter an overview on the existing planning methods is given 
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Figure 20: AMADEUS demonstrator in the industrial scenario, by Fraunhofer [Urru

et al., 2018]

1.3 Multi-robot systems

A system composed of more than one robot is called a Multi-Robot System (MRS) [Gau-

tam and Mohan, 2012]. According to Yan et al. [2013], multi-robot environments can be

cooperative or competitive.

We speak of cooperative behavior when robots interact with each other in common

interests. For example, search and rescue of people [Balakirsky et al., 2007] or transport

of loads [Yan et al., 2012]. One of the first papers on cooperation between robots was

done by Alami et al. [1998]. The authors considered the autonomous coordination of

the robots for transporting goods. The central station only sends high level missions. It

is then up to the robots to refine, plan and coordinate route sections and crossings use,

as well as trajectories in open areas.

The competitive environment means that the robot only works in its own interest. A

typical example is the game of chess. A mixture of cooperative and competitive envi-
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ronments can be found in the robot soccer league, where we see cooperation within a

team and competition between teams [RoboCup, 2021].

1.3.1 Cooperation

Cooperative robots capable of working in parallel on the same task open wide perspec-

tives [Noreils, 1992]. Cooperation can be defined as the joint performance of a task [Jung

et al., 1998]. For Tuci et al. [2018], there is cooperation if the task cannot be performed

sequentially by a single robot and requires coordination of actions and communication

between robots. Communication is explicit when the robots communicate directly with

each other, and implicit when they communicate through an object which is, for exam-

ple, transported.

There is different connection modes, for example, a large load can be transported by

several small robots connected to the load (co-manipulation mode) or one robot can

transport the load while connecting to another robot to increase stability (connection

mode) [Chebab, 2018] as illustrated in Figure 21.

(a) co-manipulation mode (b) connection mode

Figure 21: Different modes of cooperation Chebab [2018]

Whatever the connection mode, there is coordination between robots, that is to say an

exchange of information in order to be able to carry out a task together. Coordination

is the basic process allowing robots to collaborate with each other [Farinelli et al., 2004].

Different methods and algorithms are developed so that the robot can take into account

the actions of other robots in the system, for example, Majcherczyk [2020] focus on how

to enable the exchange of information for robots to gain better knowledge of the global

state by building a collective semantic map from aggregated information. Coordination

can also include a teamwork strategy that allows a set of robots to solve the problem of

movement between a starting point and an objective through a safe path [Chaves Osorio,

2021] or the movement of a load from its arrival location to the unloading point, when
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the location of the load is not known at advance [Nath and Niyogi, 2021].

Concerning the cooperation for the transport of objects, three categories of cooperation

can be distinguish [Tuci et al., 2018]:

• Pushing-only strategy: robots are not physically attached to the object, and trans-

port is achieved by pushing the object. This method can be used when robots

cannot pull an object. Kube and Zhang [1993] has done pioneering work in this

area, demonstrating the ability to move an object without direct communication

between robots. A more complex model with obstacles is presented by Wang and

De Silva [2006].

• Grasping strategy: robots are physically attached to the object, and transport can

be achieved by pushing or pulling (or both) the object. This strategy assumes that

the robots are equipped with a gripping tool. Algorithms have been developed to

find the position of the robots to ensure maximum stability of the robots carrying

the load [Sasaki et al., 1995; Hichri et al., 2016].

• Caging strategy: robots surround the object and block it during transport, unlike

the pushing-only strategy. It is essential to position the robots correctly according

to the shape and size of the object, so that the object does not escape from the cage

[Campos and Kumar, 2004].

A complete review of cooperative MRS can be found in Rizk et al. [2019].

1.3.2 Reconfiguration

A reconfigurable robotic system is an assembly of modules that can attach and detach

from each other to modify and adapt to different tasks and environments [Bojinov et al.,

2000]. The ability of individual modules or robots to be connected in different ways to

perform the required task offers promising potential [Arai et al., 2002]. Stoy et al. [2010]

define three categories of self-reconfigurable robots based on the number of modules:

pack robots, herd robots and swarm robots. Pack robots are composed of several modules,

usually in the range of tens, and require strict coordination due to the fact that the

individual modules play a crucial role in the robot’s overall performance. Herd robots

are composed of a large number of modules, usually in the range of hundreds, and
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global coordination of these modules is challenging. They are better managed as a

collection of groups since the actions of individual modules are still significant but not as

critical to the overall performance of the robot. Eventually, swarm robots are comprised

of countless modules. Here, each module is controlled locally since the impact of an

individual module on the overall behavior of the robot is minimal.

Several prototypes of reconfigurable robotic systems have been developed. The reader

is referred to Jahanshahi et al. [2017] or Seo et al. [2019] for a survey on this topic.

For instance, systems using multiple modules can create different forms to perform

different tasks: it could turn into a snake to reach into narrow places, into a hexapod

to carry a load or it may split into many smaller robots to perform a task in parallel

[Castano et al., 2000; Yim et al., 2000]. The self-reconfigurable robots can also be used

as conveyors. The spherical shape of the ATRON modules enables them to function

as wheels, facilitating the construction of surfaces that have the capability to transport

items [Østergaard et al., 2006; Brandt et al., 2007]. Shen et al. [2006] demonstrate a

solution based on SuperBot modules that can perform multimodal locomotions such as

snake, caterpillar, insect, spider, rolling track, H-walker, etc. Chebab [2018] focuses on

the design of new architectures of modular mobile manipulators that can cooperate with

each other to perform tasks in industrial or service contexts concerning the handling

and transport of boxes. Another application of reconfigurable robots can be found in

Mars exploration, where tasks such as transportation or building construction have to

be performed with limited resources [Irawan et al., 2019]. A survey of modular system

for multifunctional applications in space exploration is presented by Post et al. [2021].

In commercial products, there are several examples of technical solutions for coopera-

tive and reconfigurable robots (Figure 22). JNOVtech robots connect directly to the load

(Figure 22a) and MecaBotiX robots (Figure 22b) can connect to each other and /or to

the load. Another example of robot cooperation is presented by the Strothmann Round-

Track, mobile platforms that cooperatively move big loads on rails (Figure 22c).
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(a) JNOVtech

(b) MecaBotiX

(c) Strothmann RoundTrack

Figure 22: Robot technical solutions

1.4 Fleet management

A warehouse of a manufacturing company today is characterized by dynamic produc-

tion processes governed by the demands of a rapidly changing global economy, such

as the increasing number of product variants, customization of products and respon-

siveness to changing market conditions [Urru et al., 2018]. In order to be competitive,

companies are forced to seek the advantageous solutions, specially for vehicle fleet man-

agement. Fleets of vehicles require solving several problems related to both the internal

management of this fleet and global issues such as determining the required number of

vehicles. Rjeb [2022] identifies several of the fleet management problems:

1. Scheduling problem

A scheduling problem consists in assigning tasks (e.g. production or transporta-

tion) to resources (e.g. machines or vehicles) with the goal to minimize one or

more objectives (e.g. makespan that is the time to complete all transportation

https://www.jnovtech.com/applications/intralogistique
https://www.mecabotix.com/
https://strothmann.com/en/systems/automated-guided-vehicles/
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tasks) [Pinedo, 2012]. Job shop problem is often considered. This problem consists

in multiple jobs which are processed on several machines. Each job contains of a

sequence of tasks, which must be performed in a given order, and each task must

be processed on a specific machine. The job-shop scheduling problem with one

mobile robot is investigated by [Hurink and Knust, 2005; Caumond et al., 2009]

while the problem with several mobile robots has been tackled by [Deroussi et al.,

2008; Lacomme et al., 2013; Baruwa and Piera, 2016; Fontes and Homayouni, 2019;

Yao et al., 2023]. Most of the job-shop scheduling problems with mobile robots

are NP-hard. Hence the exact approaches, such as Mixed Integer Linear Program-

ming (MILP), work only for small instances [Caumond et al., 2009; Fontes and

Homayouni, 2019; Yao et al., 2023]. Approximate solution methods have also been

considered to tackle larger instances [Deroussi et al., 2008; Lacomme et al., 2013;

Baruwa and Piera, 2016]. We refer the reader to Yao et al. [2023] for a detailed

review of these works.

2. Vehicle routing problem (VRP)

A VRP consists in determining the optimal route to minimize the cost of transport.

Numerous articles define the limits of the problem formulation in different ways.

According to Golden et al. [1984], the problem involves a predetermined number

of vehicles, with the same capacity. A key assumption is that fixed (or acquisition)

costs have already been incurred and only variable (or routing) costs need to be

explicitly considered. The objective is to minimize the total transport cost which

is a function of the total distance traveled by the fleet of vehicles. In the article of

Bodin and Golden [1981], this problem is defined more broadly and, in addition to

the above objective, it can have objectives such as: minimizing the sum of fixed and

variable costs or minimizing the number of vehicles required. Sitek and Wikarek

[2019] describe various versions of the problem. A large amount of literature has

recently been devoted to the environmentally friendly type of vehicles. A complete

review of the literature on this topic can be found in Asghari et al. [2021].

3. Fleet sizing problem (FSP)

Determining the appropriate fleet size, which refers to the number of vehicles to

acquire or lease in order to meet demand, often takes precedence and heavily in-
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fluences the routing decision [Golden et al., 1984]. The optimal number of vehicles

is considered for various objective functions. Most of the time, the objective is to

minimize the number of robots required to achieve a set of transportation jobs in a

time interval. Several works consider more elaborate objective functions. Beaujon

and Turnquist [1991] maximize the total profit (difference between revenues and

total transportation costs, including penalty costs for unmet demand). Etezadi and

Beasley [1983] minimize the cost of a fleet of purchased or leased vehicles. Sinriech

and Tanchoco [1992] minimize the cost by applying penalties if performance is not

achieved in terms of quality of service. Many articles on the topic of FSP in a road

freight transportation are given by Żak et al. [2011].

In what follows, we focus on the fleet sizing problem. This problem is the main one

in this dissertation and that is why special attention is paid to it. First of all, we will

discuss this problem in the general context of transport systems. Then, the fleet sizing

problem for autonomous vehicles is considered. In this area, attention is paid to auto-

mated guided vehicles (AGVs) and autonomous mobile robot (AMRs). However, there

is a noticeable lack of articles in the literature on the topic of FSP for cooperative and

reconfigurable robots. This is a new topic that will be supplemented by this dissertation.

1.5 Fleet sizing

One of the most challenging issues in fleet management is a fleet sizing problem. The

main focus of the fleet sizing problem (FSP) is to align supply and demand. It involves

determining the appropriate number of vehicles in the fleet to achieve two goals: ensur-

ing the complete fulfillment of the incoming transportation orders and preventing high

fixed costs associated with fleet underutilization [Żak et al., 2011].

1.5.1 Transportation systems

The fleet sizing problem in transportation systems consists in determining the optimal

number of vehicles for the transport of goods. This is a key logistics problem which

concerns all means of transport (air, sea, road, inside warehouses, ...). Baykasoğlu et al.

[2019] provides a review of fleet planning problems (including fleet sizing) in transporta-

tion systems. In road transportation, the problem involves tanks and rail cars [Sha and

Srinivasan, 2016; Milenković and Bojović, 2013; Cheon et al., 2012], trucks [Mohtasham
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et al., 2021; Amjath et al., 2022], vehicles [Rahimi-Vahed et al., 2015; Koç et al., 2014;

Kumar et al., 2018] and electric buses [Manzolli et al., 2022]. The issue is not only the

composition of the fleet but also the choice of the route [Hoff et al., 2010]. For maritime

transport, the question of determining the route can be less relevant due to the fact

that the route between the point of departure and destination is connected by a straight

line, except when there are areas on the way that need to be bypassed or bad weather

condition [Romero et al., 2013].

The maritime fleet sizing problem considered by Pantuso et al. [2014] is related to our

study. The authors give an example of an objective function and constraints specific to

the maritime fleet problem:

min ∑
v

CF
v yv + ∑

v
∑

r
CV

vryvxvr

subject to :

∑
r

Zvrxvr − Zyv ≤ 0, ∀v ∈ V

∑
v

∑
r

Qv Airxvr ≥ Di ∀t, ∀i ∈ N

yv ∈N, xvr ∈N ∀i, ∀v, ∀r

• yv represents the number of ships of type v ∈ V

• xvr represents the number of times route r is sailed by ships of type v

• Air is equal to 1 if route r calls port i, and is equal to 0 otherwise

• CF
v represents the cost of including a ship of type v in the fleet

• CV
vr represents the cost of sailing route r with ships of type v

• Zvr is the time consumed every time a ship of type v sails route r

• Z represents the total amount of time available for each ship within the planning

horizon

• Qv is the capacity of a ship of type v

• Di is the demand of port i
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The objective function includes two terms, the first of which is responsible for the price

of the fleet, and the second for the the price of the distance traveled. We can see a similar

objective function in Chapter 2, where the type of robot would correspond to the type

of ship. The constraint on the demands is also similar. As for the constraint on the time,

in our case, a time horizon is given for which it is necessary to transport all loads, in the

case of the model described above, an allotted time is given for each type of ship.

1.5.2 Autonomous vehicles

A particular development over the last decade has taken place for AGVs and AMRs

[Oyekanlu et al., 2020], especially in logistics warehouses and industrial production

[Andersson, 2022]. Different questions arise when operating a fleet of robots, such as

the design of the warehouse architecture [van Geest et al., 2021], trajectory planning with

obstacle and collision avoidance [Cardarelli et al., 2017; Lee et al., 2019], service policy

[He et al., 2018] and battery charging [Zou et al., 2018]. Due to the fact that autonomous

vehicles are expensive, it is crucial to determine the correct type and number of vehicles,

which is what we focus on in this section.

We begin the study of this issue by a consideration of sizing methods. Ganesharajah

et al. [1998] identify two sizing methods: simulation and analytical method. Simulation

can simulate reality with great accuracy and produce the fewest errors, but at an early

stage of work it can be difficult to build a model that accurately characterizes the basic

properties and necessary parameters. And then an analytical model can be interesting,

which makes it possible to obtain an optimal solution and can quickly run through a

large number of parameters. Error in performance estimates using analytical models is

generally acceptable for the conceptualization phase. The analytical methods is divided

into deterministic and stochastic. Vis [2006] highlights in deterministic approach linear

programming models that can be utilized prior to the actual operation to estimate the

required number of vehicles, but stochastic models, such as queueing networks, aim to

incorporate external influences. On one hand, analytical models tend to underestimate

the required number of vehicles compared to simulation results. On the other hand,

simulation requires a lot of details and hardly copes with large fleets, that’s why the

literature on the sizing of a fleet of robots is largely devoted to analytical approaches

(with stochastic models [Koo et al., 2004; Arifin and Egbelu, 2000] or with deterministic
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models [Egbelu, 1987; Rjeb et al., 2021a]).

This dissertation considers an analytical approach, namely deterministic, which is why

special attention, in what follows, is paid to deterministic models. The work of Egbelu

[1987] proposes four analytical approaches to estimate the number of robots, giving

examples for each of them. The author proposes to consider adding dispatching rules

and then simulate his models with varying incoming material flow. These models are

optimistic according to the author. Rjeb et al. [2021b] refine the results of Egbelu [1987]

in the case of homogeneous loads by providing an analytical formula for the optimal

number of robots. In the case of heterogeneous loads, the authors formulate the problem

as a bin packing problem.

Lee and Murray [2019] investigate a new approach for warehouse order picking. The

article focuses on two types of commercially available mobile robots: pickers, capable

of grasping items from shelves, and transporters, designed to deliver items from the

warehouse to the packing station. The authors determine the optimal combination of

picker and transport robots that surpasses the performance of traditional human-based

picking operations. Lyu et al. [2019] simultaneously consider the optimal number of

AGVs, the shortest transportation time, a path planning problem and a conflict-free

routing problem. To study these problems simultaneously, they propose a genetic algo-

rithm combined with the Dijkstra algorithm that is based on a time window. Aziez et al.

[2022] focus on the optimization of the number and types of carts and AGVs required to

fulfill daily requests in a hospital while optimizing AGVs routes and adhering to time

constraints. Each request necessitates specific types of carts, which are transported by

the AGVs. The authors present a mathematical formulation and propose a matheuris-

tic approach. This matheuristic leverages a dynamic reoptimization of routes as new

requests arrive.

Complete reviews on AGV design/control and on AMR planning/control for intralo-

gistics can be found respectively in reviews in Vis [2006] and Fragapane et al. [2021].

1.6 Research questions

The thesis is in the context of intralogistic of an industrial system comprising several

robotic entities, which are mobile and cooperative. The goal is to transport loads from
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one zone of warehouse to another zone by reconfigurable robots. A robot is a ma-

chine that has a function and can control itself autonomously to perform its function.

The reconfigurable robots, named poly-robots, consist of elementary robots that are ag-

gregated in order to jointly perform a task as a single robot. An elementary robot is

abbreviated as bot and cannot be split into several robots. Each poly-robot configuration

has its own transport capacity. The capacity of the poly-robot depends on the config-

uration and the type of load. We denote by p-bot a configuration with p elementary

robots. Note that a 1-bot is a mono-bot that works alone. The time horizon to transport

all loads is divided into T periods. At the beginning of each period, the poly-robots are

located in the loading area and can be reconfigured. For example, a 3-bot and a 2-bot,

i.e. 5 elementary robots, can turn into a 4-bot and a 1-bot. This example is illustrated in

Figure 23.

Figure 23: Reconfiguration from a 3-bot and a 2-bot into a 4-bot and a 1-bot (Ri denotes

the i-th elementary robot)

Figure 24 shows two examples of M3-Cooper poly-robots of MecaBotiX carrying loads.

The mono-bot in Figure 24a can carry a box while the quadri-bot in Figure 24b can carry

a pallet.

(a) Mono-bot (1-bot) (b) Quadri-bot (4-bot)

Figure 24: Examples of reconfigurable poly-robots M3-Cooper [MecaBotiX, 2023]
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The issue is to find out the optimal number of elementary robots and in which configu-

ration, which type of load and in which period of time the loads should be transported

to minimize the transportation cost or time.

1.7 Organization of the manuscript

The first chapter has presented the context of the thesis and given an overview of exist-

ing automated solutions in warehouses, in particular cooperative mobile robots and the

state of the art of the fleet problems.

The second chapter treats the transport of identical loads by a fleet of non-cooperative

and cooperative robots.

The third chapter deals with the sizing of a fleet of reconfigurable robots for the trans-

port of heterogeneous loads. This chapter also compares the number of elementary

robots in the cases with and without reconfiguration.

The fourth chapter studies the complexity of the problem and provides a heuristic algo-

rithm with a numerical experiment.

The fifth chapter gives an extension of the problem, posing the question of makespan

minimisation of a given fleet.

At the end we sum up the results and look at further ways of plot development.
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Chapter 2

Transport of homogeneous loads
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In this chapter, we are interested in the sizing of a fleet of non-cooperative and cooper-

ative robots for the transport of standardized loads that are all identical and referred as

"homogeneous loads". We consider the problem of determining the number of robots

necessary to transport a set of homogeneous loads in a given time interval from a zone

A to a zone B, at minimum cost. The cost is function of the number of robots and of the

distance travelled by robots. The operations are divided into several phases: loading,

loaded travel forth, unloading, empty travel back and battery charging.

To our knowledge, this chapter is the first scientific work to focus on the sizing of a

fleet of cooperative robots. The results obtained in this chapter have been published in

[Chaikovskaia et al., 2021].

2.1 Non-cooperative robots

In this first part, we consider the sizing of a fleet of non-cooperative robots and extend

the results of Rjeb et al. [2021b] by adding the concept of transport capacity.

2.1.1 Assumptions and notations

The following notations are used:

• d: round trip distance from A to B to A

• τ: cycle time of the round trip, including loading/unloading time

• vl : travelling speed of a loaded robot

• ve: travelling speed of a empty robot

• tl : loading time

• tu: unloading time

• tb: average immobilization duration for a single robot, due to battery recharge,

maintenance, failure

• c: robot capacity

• D: total distance traveled by all the robots
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• α: fixed cost per unit of time of a robot

• β: cost per meter traveled by a robot

• γ: fixed cost per unit of time, independent of the number of robots

• N: number of robots for loads transportation

• n: number of transported loads

• r: number of round trips for a robot

• T: planning horizon

We consider a fleet of N identical mobile robots which must transport a set of n identical

loads from zone A to zone B, as shown in Figure 25.

Robot capacity is denoted c. The capacity of a robot is related to the size and mass of

the loads and the number of loads that a robot can carry simultaneously.

Figure 25: Transport of identical loads by a fleet of homogeneous robots

The cycle time τ represents the sum of the loaded travel time (d/2vl where vl is the

travelling speed of a loaded robot), the empty travel time (d/2ve where ve is the dis-

placement speed of an empty robot), the loading time (tl)and the unloading time (tu):

τ = tl +
d

2vl
+ tu +

d
2ve

(2.1)
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Over the time interval [0, T], the robot is immobilized during tb (battery recharge, main-

tenance, failure, etc.). The remaining available time is then (T − tb).

The cost per unit of time of a fleet of N > 0 robots traveling a total distance D over [0, T]

is

f (N) = αN +
βD
T

+ γ (2.2)

where α represents the fixed cost of a robot per unit of time (cost related to maintenance,

purchase or rental), β the cost per meter traveled by one robot and γ the cost per unit of

time independent of the number of robots (e.g. hardware and software infrastructure).

Note that the total distance traveled D is directly related to the number of loads n to be

transported. It takes r =
n
c

round trips to transport the n loads. Then D = dr and the

cost function is

f (N, r) = αN +
βd
T

r + γ. (2.3)

The objective is to determine the number of required robots, N∗, to transport the set of

n loads over time interval [0, T] at minimum cost, considering A as the starting point of

the robots. This simple problem is equivalent to determining the minimum number of

round trips and robots allowing all loads to be transported over the time interval. To

have feasible solutions, we assume that T − tb ≥ τ.

The following assumptions are also made:

• The robot storage place is located at point A. There is no waiting to load in A or

to unload in B (the loads are available immediately to be loaded and the robots do

not hinder each other).

• The problem of traffic jams for robots is not taken into account. These different

elements could nevertheless be taken into account by introducing an efficiency

coefficient, as proposed in Egbelu [1987].

2.1.2 Minimal number of robots (finite horizon)

One robot can make at most
⌊

T − tb

τ

⌋
round trips over the time interval [0, T] where

⌊x⌋ denotes the greatest integer less than or equal to x. Thus N robots with capacity c

can carry at most Nc
⌊

T − tb

τ

⌋
loads over the time interval.
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To transport the n loads, it is therefore necessary that Nc
⌊

T − tb

τ

⌋
≥ n and therefore

that N ⩾
n

c ⌊(T − tb)/τ⌋ .

The number of robots being an integer, the minimum number of robots to transport n

loads during the time interval [0, T] is then

N∗ =
⌈

n
c ⌊(T − tb)/τ⌋

⌉
(2.4)

The minimum number of round trips for robots to transport n loads is

r∗ =
⌈n

c

⌉
, (2.5)

where ⌈x⌉ is the least integer greater than or equal to x.

The minimum cost is then

f ∗ = f (N∗, r∗) = αN∗ +
βd
T

r∗ + γ (2.6)

= α

⌈
n

c ⌊(T − tb)/τ⌋

⌉
+

βd
T

⌈n
c

⌉
+ γ (2.7)

Consider the following example: n = 5, c = 2, τ = 0.4, tb = 0, T = 1, α = 10, βd = 2, γ =

1. Then N∗ = 2, f ∗ = 27 and a possible scheduling is represented as a Gantt diagram in

Figure 26.

Figure 26: Gantt diagram for optimal transport of 5 loads

2.1.3 Minimal number of robots (infinite horizon)

We are also interested in the limit case where the time horizon T tends to infinity. This

allows, on the one hand, to avoid side effects (if horizon T is not a multiple of cycle time

τ) and, on the other hand, to model a fleet of vehicles operating permanently.

We denote by µ = c/τ the maximum flow rate of loads per robot (maximum number of

loads that a robot can carry per unit of time), by λ = n/T the demand flow of loads to

transport and by δ = tb/T the immobilization rate.
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Theorem 2.1.1. If T tends to infinity, keeping λ and δ constant, then:

N∗ =
⌈

λ

µ(1− δ)

⌉
(2.8)

f ∗ = α

⌈
λ

µ(1− δ)

⌉
+ βd

λ

c
+ γ (2.9)

Proof. Using the fact that x − 1 < ⌊x⌋ ≤ x, we can limit the optimal number of robots

obtained in (2.4):

⌈
n

c T−tb
τ

⌉
≤ N∗ <

 n

c
(

T−tb
τ − 1

)
 (2.10)

⇔


n
T

c
τ

(
1− tb

T

)
 ≤ N∗ <


n
T

c
τ

(
1− tb

T

)
− c

T

 (2.11)

Using the notations λ, µ, δ, this frame is re-written⌈
λ

µ(1− δ)

⌉
≤ N∗ <

⌈
λ

µ
(
1− δ− c

T

)⌉ (2.12)

If we tend T to infinity, keeping λ and δ constant, we get

N∗
n
T→λ, tb

T→δ
−−−−−−−−−→

T→+∞

⌈
λ

µ(1− δ)

⌉
(2.13)

Similarly, we have the framing

n
cT
≤ 1

T

⌈n
c

⌉
<

1
T

(n
c
+ 1
)

(2.14)

and

1
T

⌈n
c

⌉ n
T→λ

−−−−−−→
T→+∞

λ

c
(2.15)

Then

f ∗
n
T→λ, tb

T→δ
−−−−−−−−−→

T→+∞
α

⌈
λ

µ(1− δ)

⌉
+ βd

λ

c
+ γ (2.16)
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2.2 Cooperative robots

In this section, we assume that robots can cooperate to transport loads. We remind the

concepts and terminology developed in Section 1.6:

• bot = An elementary robot, which is cannot be split into several robots.;

• p-bot = A set of p elementary robots, which cooperate on the same task.

2.2.1 Assumptions and notations

The following notations are used:

• p: number of bots constituting one p-bot

• c1: 1-bot capacity

• cp: p-bot capacity

• c′1 = cp/p: virtual capacity of a 1-bot that is part of a p-bot

• τ1: 1-bot cycle time

• τp: p-bot cycle time (including possible cooperation time)

• α: fixed cost per unit of time of a bot

• β: cost per meter traveled by a bot

• γ: fixed cost per unit of time, independent of the number of bots

• N1: number of 1-bots working alone

• Np: number of p-bots

• n1: number of loads transported by 1-bots working alone

• np: number of loads transported by p-bots

• T: planning horizon

• r1: number of round trips for 1-bots
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• rp: number of round trips for p-bots

• n: number of loads to be transported from A to B

n = n1 + np

• N: number of 1-bots in the fleet (including those working in a p-bot)

N = N1 + pNp

We will make the following additional assumptions:

• τ1 ≤ τp as a p-bot may waste time in cooperation.

• There is no additional cost associated to a p-bot. The costs of a p-bot are simply

those induced by the bots constituting it.

• There is no possible reconfiguration. A p-bot always remains a p-bot and a 1-bot

always remains alone.

2.2.2 Optimal fleet (finite horizon)

The fleet sizing problem can then be modeled by the following mathematical program

which aims at minimizing the cost function for cooperative robots fc(r1, rp, N1, Np):

fc = α(N1 + pNp) +
βd
T
(
r1 + prp

)
+ γ (2.17)

subject to:

n1 ≤ N1c1

⌊
T − tb

τ1

⌋
(2.18)

np ≤ Npcp

⌊
T − tb

τp

⌋
(2.19)

n = n1 + np (2.20)
n1

c1
⩽ r1 (2.21)

np

cp
⩽ rp (2.22)

r1, rp, n1, np, N1, Np ∈N (2.23)

Constraints interpretation:



2.2. Cooperative robots 37

• Constraint (2.18): the number of loads carried by 1-bots must be less than or equal

to the maximum number of loads that 1-bots can transport on interval [0, T];

• Constraint (2.19): the number of loads carried by p-bots must be less than or equal

to the maximum number of loads that p-bots can transport on interval [0, T];

• Constraint (2.20): the sum of the number of loads carried by 1-bots and p-bots

must be equal to the total number of loads to be transported;

• Constraint (2.21): the number of round trips for the transport of all the loads

designated by 1-bots must be rounded up to allow the transport of all loads;

• Constraint (2.22): the number of round trips for the transport of all loads desig-

nated by p-bots must be rounded up to allow the transport of all loads.

When β = 0, the problem comes down to determining the minimum number of robots

allowing all loads to be transported. When α = 0, the problem comes down to achieving

the optimal number of round trips to transport all the loads (a round trip from a p-bot

counts as p round trips): r∗1 =

⌈
n∗1
c

⌉
and r∗p =

⌈n∗p
c

⌉
, where n∗1 et n∗p the optimal number

of loads transported by 1-bots and p-bots, respectively, at which the cost is minimal.

We will distinguish three cases linked to the respective capacities of 1-bot and p-bot.

• c1 = 0

In this first case, we assume that a 1-bot can’t carry a load on its own (c1 = 0). This

scenario may appear for a load of great mass, great volume or even great length.

For example, as shown in Figure 27, the robot cannot transport a load much larger

than itself for stability reasons.

(a) 1-bot (not stable) (b) p-bot with p = 2

Figure 27: Illustration for case c1 = 0

The problem then consists in determining the number of p-bots needed to carry

all the loads and the results of Section 2.1 can be re-used. So we have:
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N∗p =

⌈
n

cp
⌊
(T − tb)/τp

⌋⌉ , N∗1 = 0.

• c1 ≥ c′1

In this second scenario, a single 1-bot has a greater capacity than a 1 bot in p-

bot configuration. Let us give a first example where this scenario occurs. If the

capacity constraint is related to the transported mass and an additional pallet

is needed in p-bot mode, then we lose mass capacity in p-bot mode. Another

example would be the case where the load is transported by manipulator arms

installed on the mobile platform in p-bot mode. Figure 28 shows the case when

the robot loses its mass capacity due to the pallet, and thus the 1-bots transport

more than the p-bots.

(a) p-bot with p = 2 (b) 2 1-bots

Figure 28: Illustration for case c1 ≥ c′1

We can easily show that it is optimal to use exclusively 1-bots. Assume that we use

a p-bot for a round-trip in time interval [t, t + τp] to transport cp loads. As τ1 ≤ τp,

we could use p individual 1-bots to transport these loads in the same interval, as

c1 ≥ c′1 (or equivalently pc1 ≥ cp). Hence, it is optimal to use exclusively 1-bots.

We can then use again the results from the previous section. So we have

N∗p = 0, N∗1 =

⌈
n

c1 ⌊(T − tb)/τ1⌋

⌉
.

• 0 < c1 < c′1

In this 3rd case, a single 1-bot has a lower capacity than a 1 bot in p-bot configura-

tion. This scenario may arise for the transport of long objects (for example tubes)

or even objects of large volumes but of low density. Figure 29 shows an example

where a p-bot can have a capacity greater than a 1-bot, when we can not stack

loads on top of each other.
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(a) p-bot with p = 2 (b) 2 1-bots

Figure 29: Illustration for case 0 < c1 < c′1

In this case, unlike previously, the optimal solution can consist of a mix of p-bots

and 1-bots. This appears in particular if the cost linked to the traveled distance

is significant. Consider the following example: n = 4, p = 2, c1 = 1, cp = 3, τ1 =

τp = T/2, tb = 0, α = 1, βd/T = 10, γ = 0. Table 2 presents the optimal solution

according to the type of authorized robots.

N1 Np n1 np total cost

1-bot only 2 0 4 0 42

p-bot only 0 1 0 4 42

Mix of 1-bot and of p-bot 1 1 1 3 33

Table 2: Optimal solutions according to the types of authorized robots

Figure 30 shows the Gantt diagram of the optimal solution when both configura-

tions are allowed.

Figure 30: Gantt diagram of the optimal solution of 4 loads

2.2.3 Optimal fleet (infinite horizon)

We use the following additional notations:

• µ1 =
c1

τ1
: 1-bot flow rate

• µp =
cp

τp
: p-bot flow rate

• λ: demand flow rate of loads to be transported
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• λ1 =
n1

T
: flow rate of loads carried by 1-bots alone

• λp =
np

T
: flow rate of loads carried by p-bots

• δ = tb/T immobilization rate

The mathematical program can then be written as a MILP (Mixed-Integer Linear Pro-

gramming) :

min α(N1 + pNp) + βd
(

λ1

c1
+ p

λp

cp

)
+ γ (2.24)

s.t. λ1 ≤ N1µ1(1− δ) (2.25)

λp ≤ Npµp(1− δ) (2.26)

λ = λ1 + λp (2.27)

λ1, λp ∈ R, N1, Np ∈N (2.28)

In two cases, we can re-use the results of Section 2.1.3.

c1 = 0

N∗1 = 0, N∗p =

⌈
λ

µp(1− δ)

⌉
.

c1 ≥ c′1

N∗1 =

⌈
λ

µ1(1− δ)

⌉
, N∗p = 0.

Conclusion

The case of non-cooperative robots was considered for which we have derived a closed-

form expression for the optimal number of robots. Then we have considered the case

of cooperative robots where loads can be carried either by a single robot (1-bot) or by

several robots that cooperate (p-bot). The fleet sizing problem can be formulated as a

mathematical programming. We have distinguished several scenarios, depending on the

respective carrying capacity of 1-bots and p-bots. Our mathematical model allows us to

determine the most profitable number of robots that should cooperate. If the capacity

of p 1-bots is smaller than the capacity of a single p-bot, then using exclusively p-bots

or with a mix of 1-bots can lead to a significant cost decrease. Otherwise, it is optimal
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to use exclusively 1-bots. We have also addressed the infinite horizon problem which

models a fleet of vehicles operating permanently and leads to simpler results.
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Transport of heterogeneous loads
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In this and later chapters, we consider elementary robots that can be connected in dif-

ferent ways in order to transport loads of different types. These robots can be assembled

in different ways over time to adapt to the loads to be transported. This connection and

disconnection between robots are called reconfiguration. The objective is to determine

the optimal number of elementary robots required to transport various loads within a

specified time frame. We formulate this problem as an integer linear program. Then, we

investigate the special cases with two types of loads, two allowed configurations (1-bot

and p-bot with p ≥ 2) and unit capacities.

Some of the results obtained in this chapter have been published in [Chaikovskaia et al.,

2022].

3.1 Assumptions and notations

We consider a fleet of N mobile elementary robots able to cooperate to transport loads

of different types. An elementary robot is abbreviated as bot. A p-bot is a configuration

where p elementary robots cooperating on the same transportation task. A 1-bot is an

elementary robot working alone. A maximum of P elementary robots can cooperate.

Therefore the set of possible configurations is {1, · · · , P}.

There are nk loads of type k to be transported (k = 1, · · · , K). All the loads to be moved

are located in the loading area of the warehouse and must be transported by the p-

bots to the unloading area. A p-bot can only carry one type of load at a time and can

simultaneously carry cpk loads of type k. Hence, cpk is called the capacity of the p-

bot. We assume that for each type of load there is at least one configuration capable of

carrying it.

The time horizon is divided into T periods (t = 1, · · · , T). At the beginning of each

period, the robots are located in the loading area and can be reconfigured. Note that the

time of reconfiguration is not taken into account.

In each period, after the reconfiguration of robots, p-bots have time to complete the

following four steps of a delivery, namely: loading, loaded trip, unloading and empty

return trip.

We consider three types of costs: a fixed cost per elementary robot linked to its acqui-
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sition or rental, a variable cost linked to the distance traveled by the robots and a fixed

cost independent of the size of the fleet (hardware and software infrastructure). The

fixed cost of an elementary robot is denoted α. The cost of a round trip for an elemen-

tary robot is denoted β and it follows that the cost of a round trip for a p-bot is pβ.

Finally, the fixed cost of a fleet is denoted γ. Thus, the cost of a fleet of N elementary

robots performing M round trips is αN + βM + γ. In the following, we won’t consider

γ because it is a constant in the optimization problem.

The objective is to determine the number of elementary robots needed to transport all

the loads over the time horizon at minimum cost. We consider two variants. In the

first variant, reconfiguration is prohibited and the configurations of the robots are fixed

over the entire horizon. The optimal number of elementary robots is denoted by NW

in this case. In the second variant, reconfiguration is allowed and the configurations

can be changed at the start of each period. The optimal number of elementary robots is

denoted NR in this case. If we do not consider the cost related to the travelled distance,

i.e. if we take β = 0, then NR and NW represent the minimum number of robots with or

without reconfiguration respectively.

We now remind the main notations introduced in this section:

• k: index for load type (k ∈ {1, · · · , K})

• p: index for configuration (p ∈ {1, · · · , P})

• t: index for time period (t ∈ {1, · · · , T})

• nk: number of loads of type k

• cpk: capacity of a p-bot carrying loads of type k

• α: fixed cost of the acquisition of an elementary robot

• β: cost of a round trip for an elementary robot

• NW : optimal number of elementary robots when reconfiguration is prohibited

• NR: optimal number of elementary robots when reconfiguration is allowed
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3.2 Mathematical formulations

In this part, we propose two ILPs in order to formulate the two variants of the problem

of minimizing the number of bots, with or without reconfiguration.

3.2.1 Without reconfiguration

We first assume that reconfiguration is prohibited. We use the following decision vari-

ables:

• Np: total number of p-bots

• Nt
pk: number of p-bots carrying loads of type k in period t

The number of elementary robots is then NW = ∑P
p=1 pNp. The optimization problem

can be formulated by the following ILP:

min α
P

∑
p=1

p · Np + β
T

∑
t=1

K

∑
k=1

P

∑
p=1

p · Nt
pk (3.1)

subject to :
T

∑
t=1

P

∑
p=1

cpk · Nt
pk ≥ nk ∀k (3.2)

Np ≥
K

∑
k=1

Nt
pk ∀t, ∀p (3.3)

Np ∈N, Nt
pk ∈N ∀k, ∀p, ∀t (3.4)

Constraint (3.2) means that the total capacity of the fleet along the time horizon must be

able to transport all loads of each type. Constraint (3.3) means that the number Np of

p-bots must be greater than or equal to the number of p-bots used over each period.

3.2.2 With reconfiguration

When the reconfiguration is allowed, we use the same decision variables, with the dif-

ference that NR = N because each p-bot can be split into p number of bots, and the
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problem can be formulated by the following ILP:

min αN + β
T

∑
t=1

K

∑
k=1

P

∑
p=1

p · Nt
pk (3.5)

subject to :
T

∑
t=1

P

∑
p=1

cpk · Nt
pk ≥ nk ∀k (3.6)

N ≥
K

∑
k=1

P

∑
p=1

p · Nt
pk ∀t (3.7)

N ∈N, Nt
pk ∈N ∀k, ∀p, ∀t (3.8)

Constraint (3.6) is similar to that of the problem without reconfiguration. Constraint

(3.7) means that the number of elementary robots used, N, must be greater than or

equal to the number of elementary robots used over each period.

3.3 Minimizing the number of robots

We assume in all this section that β = 0. Therefore NR and NW represent the minimum

number of elementary robots needed to carry all the loads over the time horizon with

or without reconfiguration respectively. In this section, we derive first closed-form for-

mulas for the optimal number of robots for two types of loads. Then we study the case

with unit capacities.

3.3.1 Two types of loads

We suppose that we have a wareshouse that handles only boxes and pallets. We obtain

additional results for the special case of two types of loads and two possible configura-

tions (1-bot or p-bot with p ≥ 2). We assume that there are n1 ≥ 1 loads of type 1 and

n2 ≥ 1 loads of type 2. Capacities of each configuration are summarized in Table 3. We

can imagine that loads of type 1 and 2 correspond to respectively small (S) and medium

(M) loads.
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Type of load
Configuration

k = 1 (S) k = 2 (M)

1-bot c11 0

p-bot cp1 cp2

Table 3: Capacity matrix for 2 types of loads

A 1-bot can carry up to c11 loads of type 1 but no load of type 2. A p-bot can carry up

to cp1 loads of type 1 and up to cp2 loads of type 2. In order to always have feasible

solutions, we assume that c11 ≥ 1 and cp2 ≥ 1. When cp1 = 0, it corresponds to a

dedicated transport: loads of type 1 (respectively type 2) can only be transported by

1-bots (respectively p-bots).

The problem simplifies considerably because there is only one way to transport loads

of type 2 and we can obtain analytical formulas for NR and NW . Moreover, when

cp1 ≥ p · c11, reconfigurability does not allow to reduce the number of robots. Theo-

rem 3.3.1 summarizes these results. In this theorem, x+ = max(0, x) denotes the positive

part of x.

Theorem 3.3.1 (Two types of loads). Let n′1 = T ·
⌈

n2
T·cp2

⌉
−
⌈

n2
cp2

⌉
, nr

1 = (n1 − n′1 · cp1)
+

and ñr
1 =

(
nr

1 −
⌊

nr
1

T·cp1

⌋
T · cp1

)+
.

If cp1 < p · c11, then

NW = p ·
⌈

n2

T · cp2

⌉
+

⌈
nr

1
T · c11

⌉
, (3.9)

NR = p ·
⌈

n2

T · cp2

⌉
+

⌈
(n1 − n′1 · p · c11)

+

T · c11

⌉
. (3.10)

If cp1 ≥ p · c11, then

NW = NR = p
⌈

n2

T · cp2

⌉
+ p

⌊
nr

1
T · cp1

⌋
+ min

(⌈
ñr

1
T · c11

⌉
, p
)

. (3.11)

Proof. We distinguish two cases. Whatever the case, we assume that the p-bots are fully

filled before a new p-bot is loaded so that we have no more than one p-bot with free

periods at the outcome of the assignment of loads of type 2.

Case 1 : cp1 < p · c11 In this case, note that it is always more interesting to use 1-bots to

transport loads of type 1. Let’s start by determining NW . The general idea is as follows:
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1. We first assign loads of type 2 to p-bots;

2. If the last p-bot is not used over all the periods, we assign as many loads of type 1

as possible to the last p-bot assigned for loads of type 2;

3. The remaining loads of type 1 are assigned to 1-bots.

In step (1), the number of p-bots needed to carry loads of type 2 is⌈
n2

T · cp2

⌉
. (3.12)

We assume that the p-bots are fully filled before a new p-bot is loaded, so that there

is no more than one p-bot with free periods at the end of the assignment of loads the

second type. Let n′1 be the number of periods not used by the last p-bot:

n′1 =

⌈
n2

T · cp2

⌉
T −

⌈
n2

cp2

⌉
. (3.13)

Indeed, it takes
⌈

n2
cp2

⌉
periods to transport loads of type 2 with p-bots and the total

available number of periods for p-bots is
⌈

n2
T·cp2

⌉
T.

In step (2), we can therefore assign up to n′1 · cp1 loads of type 1 to the last p-bot.

In step (3), it remains nr
1 = (n1 − n′1 · cp1)

+ loads of type 1 that requires
⌈

nr
1

T·c11

⌉
1-bots.

We conclude that

NW = p ·
⌈

n2

T · cp2

⌉
+

⌈
nr

1
T · c11

⌉
. (3.14)

We now determine NR. There are three steps as for the calculation of NW . Step (2) is

modified as follows: if the last p-bot is not used over all the periods, it is reconfigured

into p 1-bots to which we assign as many loads of type 1 as possible (at most n′1 · p · c11).

For step (3), then (n1 − n′1 · p · c11)
+ loads of type 1 remain to be transported by 1-bots.

We conclude that

NR = p ·
⌈

n2

T · cp2

⌉
+

⌈
(n1 − n′1 · p · c11)

+

T · c11

⌉
. (3.15)

Case 2 : cp1 ≥ p · c11
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We assume that a p-bot has more capacity than p 1-bots to carry loads of type 1. It is

then always more interesting to use a p-bot than p 1-bots. Thus, there is no point for

reconfiguration and NW = NR.

We now compute NW (= NR). The general idea is as follows:

1. We first assign loads of type 2 to p-bots;

2. We assign as many loads of type 1 as possible to the last p-bot (assigned for loads

of type 2), which may have free periods;

3. We assign the remaining loads of type 1, if any, to p-bots, as long as we can use

them at maximum capacity on the whole horizon;

4. We assign the last loads of type 1, if any, to 1-bots if it requires less than p 1-bot

and to a p-bot otherwise.

In step (1), the number of p-bots needed to carry loads of type 2 is⌈
n2

T · cp2

⌉
. (3.16)

We assume that the p-bots are fully filled before a new p-bot is loaded, so that there

is no more than one p-bot with free periods at the end of the assignment of loads the

second type. Let n′1 be the number of periods not used by the last p-bot:

n′1 =

⌈
n2

T · cp2

⌉
T −

⌈
n2

cp2

⌉
. (3.17)

Indeed, it takes
⌈

n2
cp2

⌉
periods to transport loads of type 2 with p-bots and the total

available number of periods for p-bots is
⌈

n2
T·cp2

⌉
T.

In step (2), we can assign n′1 · cp1 loads of type 1 to the last p-bot. There remains then

nr
1 = (n1 − n′1 · cp1)

+ loads of type 1 to transport.

In step (3), the additional number of p-bots required to transport loads of type 1 (using

full capacity on the whole horizon) is ⌊
nr

1
T · cp1

⌋
. (3.18)

At the end of step (3), it remains ñr
1 =

(
nr

1 −
⌊

nr
1

T·cp1

⌋
T · cp1

)+
loads of type 1 to transport.
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In step (4), we assign the last ñr
1 loads of type 1 to 1-bots if it requires less than p 1-bot

and to a p-bot otherwise. Hence we need the following additional number of elementary

robots :

min
(⌈

ñr
1

T · c11

⌉
, p
)

. (3.19)

In the end,

NW = NR = p
⌈

n2

T · cp2

⌉
+ p

⌊
nr

1
T · cp1

⌋
+ min

(⌈
ñr

1
T · c11

⌉
, p
)

. (3.20)

3.3.2 Unit capacities

We now consider K types of loads and P = K configurations with 0-1 capacities. More

precisely, the capacity matrix is lower triangular and is such that ckp is equal to 1 if

p ≥ k and 0 otherwise. We also assume that there is at least one load of type K (nK ≥ 1),

otherwise the problem reduces to a problem with (K− 1) types of loads.

Table 4 illustrates the capacity matrix with K = 3 types of loads. We can imagine that

loads of type 1, 2, 3 correspond to respectively small (S), medium (M) and large (L)

loads. Then small loads can be transported by all configurations, medium loads by

2-bots or 3-bots and large loads only by 3-bots.

Type of load
Configuration

k = 1 (S) k = 2 (M) k = 3 (L)

1-bot 1 0 0

2-bot 1 1 0

3-bot 1 1 1

Table 4: Capacity matrix for 3 types of loads

When considering such capacity structure, we are able to derive simple formulas for

the minimum number of elementary robots with or without reconfigurations. In the

case without reconfiguration, we obtain a result that holds for an arbitrary number of

types of loads K. In the case with reconfiguration, we obtain a result up to 3 types of

loads. With 4 types of loads or more, the problem becomes much more complex as the

reconfiguration decision is more complex as we can, for instance, reconfigure a 4-bot

into a 3-bot plus a 1-bot or into two 2-bots.
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Theorem 3.3.2 (Triangular unit capacities). Let n′K = 0 and for k = K, · · · , 2

Nk =

⌈
(nk − n′k)

+

T

⌉
(3.21)

n′k−1 = n′k − nk + Nk · T (3.22)

Then

NW =
K

∑
k=1

k · Nk (3.23)

and, for K ≤ 3,

NR =
K

∑
k=2

k · Nk +

⌈
(n1 − n′1 −∑K−1

k=1 n′k)
+

T

⌉
(3.24)

Note that (3.24) holds for K > 3 if we additionally assume that there are enough loads

of type 1 to fill the holes (n1 ≥ K(T − 1)). In this theorem, Nk represents the number

of required k-bots and n′k the number of free periods in the last used configuration after

the assignment of loads of type k + 1, · · · , K.

Proof. Assume in all this proof that K = P and that ckp is equal to 1 if p ≥ k and 0

otherwise.

Without reconfiguration

We begin by exploring the case without reconfiguration. Note that, if you have a p-bot,

it is optimal to use it as a priority to transport loads with a higher index k. Remind

that we denote by Nk the minimum number of required k-bots. In what follows, we

determine Nk, Nk−1, · · · , N1 in this order.

We also denote by n′k the number of free periods in the last used configuration after

the assignment of loads of type k + 1, · · · , K. It is optimal to use these free periods in

priority for loads of type k, then of type k− 1 and so on. Figure 31 illustrates notation

of n′k. In this figure, n′3 = 4 means that we have 4 free periods for the transport of the

loads of type 3 (L). n′2 = 2 means that we have 2 free periods for the transport of loads

of type 2 (M). n′1 = 3 means that we have 3 free periods for the transport the loads of

type 1 (S).
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Figure 31: Illustration of notation n′k with four types of loads

(T = 5, n1 = 1, n2 = 4, n3 = 2, n4 = 1)

The number of K-bots necessary to transport loads of type K is

NK =
⌈nK

T

⌉
. (3.25)

It then may remain available capacity for the last K-bot. More precisely, the number of

free periods for the last K-bot is

n′K−1 = NK · T − nK =
⌈nK

T

⌉
T − nK. (3.26)

These n′K−1 free periods are used to transport in priority loads of type (K − 1) and it

remains to transport (nK−1 − n′K−1)
+ loads of type K − 1. The number of (K − 1)-bots

necessary to transport these remaining loads of type (K− 1) is then

NK−1 =

⌈
(nK−1 − n′K−1)

+

T

⌉
. (3.27)

Assume now that the number of p-bots, Np, has been determined for p = k + 1, · · · , K

and that there remains n′k free periods on these configurations. These n′k free periods are

assigned in priority to loads of type k and then (nk − n′k)
+ loads of type k remain to be

carried. The number of additional k-bots required is

Nk =

⌈
(nk − n′k)

+

T

⌉
. (3.28)

The number of free periods for the last k-bot is Nk · T − (nk − n′k)
+. There remains also

(n′k − nk)
+ free periods after the transportation of loads of type j (for j > k). It follows

that

n′k−1 = Nk · T − (nk − n′k)
+ + (n′k − nk)

+ (3.29)

= Nk · T + n′k − nk. (3.30)
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In the end, we have

NW =
K

∑
k=1

k · Nk (3.31)

with

Nk =

⌈
(nk − n′k)

+

T

⌉
(3.32)

n′K = 0 (3.33)

n′k−1 = n′k − nk + Nk · T (for k = K, · · · , 2) (3.34)

With reconfiguration

K = 1: With a single type of load, we have immediately NR =
⌈ n1

T

⌉
and it is easy to

check that (3.24) gives the same result.

K = 2: When there are two types of loads, we need N2 2-bots, as in the case without

reconfiguration. If there remains free periods on the last 2-bot, it is optimal to reconfig-

ure into two 1-bots. On the n′1 free periods of the last 2-bot, we can transport up to 2n′1
loads of type 1. It remains (n1− 2n′1)

+ loads of type 2 that require
⌈
(n1−2n′1)

+

T

⌉
additional

1-bots. In the end, the optimal number of elementary robots is

NR = 2 · N2 +

⌈
(n1 − 2n′1)

+

T

⌉
(3.35)

and we have shown that (3.24) holds.

K = 3: Let’s detail now the case with 3 types of loads. We need N3 3-bots to transport

loads of type 3, as in the case without reconfiguration. If there remains free periods on

the last 3-bot, it is optimal to reconfigure into a 2-bot plus a 1-bot. On the n′2 free periods

of the last 3-bot, we can then transport up to n′2 loads of type 2 and n′2 loads of type 1. It

remains (n2 − n′2)
+ loads of type 2 that require N2 =

⌈
(n2−n′2)

+

T

⌉
additional 2-bots, as in

the case without reconfiguration. On the last 2-bots, there are n′1 free periods which can

be used to transport up to 2n′1 loads of type 1. It remains (n1− n′2− 2n′1) loads of type 1

that require
⌈
(n1−n′2−2n′1)

+

T

⌉
additional 1-bots. If ever n2 = 0, then the 3-bot reconfigures
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into three 1-bots and n′2 = n′1. In the end, we have

NR = 3 · N3 + 2 · N2 +

⌈
(n1 − n′2 − 2n′1)

+

T

⌉
(3.36)

and we have shown that (3.24) holds.

3.4 Number of robots saved through reconfigurability

Again, we assume in all this section that β = 0 and NR and NW represent the minimum

number of elementary robots (with or without reconfiguration respectively).

Below we show that we can at best divide the fleet size, by the number of types of loads

K, using reconfiguration.

Theorem 3.4.1 (General case). For the problem described in Section 3.1, when β = 0, we have

1 ≤ NW

NR
≤ K. (3.37)

Proof. Let NR be the minimum number of elementary robots with reconfiguration. NR

robots capable to transport not more than
(

Tcpkk

⌊
NR
pk

⌋)
loads of type k, where ∀k pk =

arg maxp

(
cpk

⌊
NR
p

⌋)
, to note that arg maxx f (x) is the set of x for which f (x) attains the

function’s largest value (if it exists). Then we have

nk ≤ T
(

cpkk

⌊
NR

pk

⌋)
. (3.38)

To transport nk loads of type k, it suffices
(

pmin

⌈
nk

Tcpmink

⌉)
elementary robots, where ∀k

pmin = arg minp

(
p
⌈

nk
Tcpk

⌉)
, to note that arg minx f (x) is the set of x for which f (x)

attains the function’s smallest value (if it exists).

To transport all the loads without reconfiguration, it is necessary

NW = ∑
k

pmin

⌈
nk

Tcpmink

⌉
≤∑

k

(
pk

⌈
nk

Tcpkk

⌉)
≤∑

k

pk


T
(

cpkk

⌊
NR
pk

⌋)
Tcpkk


 = (3.39)

= ∑
k

(
pk

⌊
NR

pk

⌋)
≤∑

k
pk

NR

pk
= KNR (3.40)



56 Chapter 3. Transport of heterogeneous loads

We now present an instance for which
NW

NR
goes to K when P goes to infinity. Assume

that cpk equal 1 if p = P− (K− k) and 0 otherwise.

Assume also that P > K and that there is one load of each type. We have NR = P

and NW = P + (P− 1) + · · ·+ (P− (K − 1)) = KP− (1 + 2 + · · ·+ (K − 1)) = KP−
K(K− 1)

2
. Thus

NW

NR
= K− K(K− 1)

2P
which goes to K when P goes to infinity.

3.4.1 Two types of loads

Once we showed that by allowing reconfiguration, the minimum number of robots can

be divided by a factor up to K in general case, we now study the case of two types

of loads described in Section 3.3.1. We can show that the number of robots saved by

reconfigurability is at most p elementary robots.

Theorem 3.4.2 (Two types of loads). With two types of loads, the absolute gain is bounded as

follows :

0 ≤ NW − NR ≤ p. (3.41)

Proof. When cp1 ≥ p · c11, the result is trivial because NW = NR.

In the following, we assume that cp1 < p · c11. According to Theorem 3.3.1, we have

NW − NR =

⌈
(n1 − n′1 · cp1)

+

T · c11

⌉
−
⌈
(n1 − n′1 · p · c11)

+

T · c11

⌉
(3.42)

≤
(n1 − n′1 · cp1)

+

T · c11
+ 1− (n1 − n′1 · p · c11)

+

T · c11
(3.43)

=
(n1 − n′1 · cp1)

+ − (n1 − n′1 · p · c11)
+

T · c11
+ 1. (3.44)

Three cases are then possible. Assume first that n1 ≤ n′1 · cp1. Then (n1 − n′1 · cp1)
+ =

(n1 − n′1 · p · c11)
+ = 0. With (3.44), it comes NW − NR ≤ 1 ≤ p.

Assume now that n′1 · cp1 < n1 ≤ n′1 · p · c11. Then we have (n1− n′1 · cp1)
+ = n1− n′1 · cp1,



3.4. Number of robots saved through reconfigurability 57

(n1 − n′1 · p · c11)
+ = 0 and

NW − NR ≤
n1 − n′1 · cp1

T · c11
+ 1 (3.45)

<
n1

T · c11
+ 1 (3.46)

<
n1

n′1 · c11
+ 1 (3.47)

≤ p + 1. (3.48)

Strict inequality (3.46) comes from the assumption that n′1 · cp1 < n1. Strict inequality

(3.47) comes from n′1 < T. Inequality (3.48) comes from the asssumption that n1 ≤

n′1 · p · c11. We have NW − NR < p + 1 and, as NW − NR and p are integers, we conclude

that NW − NR ≤ p.

Finally, assume that n1 ≥ n′1 · p · c11. We can therefore remove the positive parts in (3.44):

NW − NR ≤
n1 − n′1 · cp1

T · c11
+ 1− n1 − n′1 · p · c11

T · c11
(3.49)

=
n′1(p · c11 − cp1)

T · c11
+ 1 (3.50)

<
p · c11 − cp1

c11
+ 1 (3.51)

≤ p + 1. (3.52)

As n′1 < T, again NW − NR < p + 1 implies that NW − NR ≤ p. In any case, we have

NW ≤ NR + p.

We now provide a simple example where the upper bounds of theorems 3.4.1 and 3.4.2

are reached. Let’s take T = 3, p = 2, c11 = c22 = 1, c12 = c21 = 0, n1 = 4 and n2 = 1.

Then NR = 2 and NW = 4. Loads of type 1, 2 correspond to respectively small (S)

and medium (M) loads. Figure 32 represents the Gantt chart for this example. On the

ordinate axis is the reference number of the bots, on the abscissa axis is the reference

number of the period. In each rectangle is indicated the type of load that is transported.

In the optimal strategy with reconfiguration, a 2-bot carries one medium load in period

1 and then is reconfigured into two 1-bots that carry the small loads in periods 2 and 3.

In the optimal strategy without reconfiguration, the 2-bot can not be split and we need

two additional 1-bots.
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(a) Without reconfiguration (b) With reconfiguration

Figure 32: Gantt chart for a simple example where the number of robots is halved

when reconfiguration is allowed

We have seen that the gain can be important in the previous example with a fleet divided

by two. However, the gain in relative value is limited for large robot fleets. Indeed, as a

consequence of Theorem 3.4.2, we have

NW

NR
≤ 1 +

p
NR

. (3.53)

For instance, if NR = 100 and p = 4, then NW/NR ≤ 1.04 and NW ≤ 104. Hence

reconfigurability allows to divide the size of the fleet by at most a factor 1.04.

3.4.2 Unit capacities

We now compare the optimal numbers of robots with unit capacities, in the setting

described in Section 3.3.2. As formula (3.24) holds only for K ≤ 3, we assume that there

are at most 3 types of loads.

Theorem 3.4.3 (Unit capacities). When K ≤ 3, we have

0 ≤ NW − NR ≤ K− 1. (3.54)

Proof. From (3.23) and (3.24), we obtain that

NW − NR =

⌈
(n1 − n′1)

+

T

⌉
−
⌈(

n1 − n′1
T

− 1
T
·

K−1

∑
k=1

n′k

)+⌉
. (3.55)
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Note that the number of free periods n′k can not exceed T − 1 as there is at least one

period used to transport some load. Thus n′k ≤ T − 1 for k = 1, · · · , K − 1. It follows

that

NW − NR ≤
⌈
(n1 − n′1)

+

T

⌉
−
⌈(

n1 − n′1
T

− (K− 1)
)+
⌉

. (3.56)

To conclude we need the following property. Let b a non-negative integer and x a real

number. Then ⌈x+⌉ − ⌈(x− b)+⌉ ≤ b. The proof of this property is straightforward.

⌈x+⌉ − ⌈(x− b)+⌉ =


0 if x < 0

x if 0 ≤ x ≤ b

b if x > b

≤ b

Using this property and (3.56) gives NW − NR ≤ K− 1.

This theorem shows that the gain is not substantial in absolute value. When K = 1, the

gain is null as expected. When K = 2, we can gain at most one elementary robot by

using reconfigurability. When K = 3, the gain is at most of 2 elementary robots. Note

that Theorem 3.4.3 holds for K > 3 if we additionally assume that there are enough

loads of type 1 to fill the holes (n1 ≥ K(T − 1)).

Theorem 3.4.3 implies that NW
NR
≤ 1− K−1

NR
. As nK ≥ 1, we have NR ≥ K and we get that

1 ≤ NW

NR
≤ 2− 1

K
. (3.57)

In what follows, we provide examples where the upper bound in (3.54) and (3.57) are

reached for two or three types of loads.

Example with two types of loads

In the following example, loads of type 1, 2 correspond to respectively small (S) and

medium (M) loads. Let’s take T = 2, n1 = 2 and n2 = 2. Then NR = 2 and NW = 3

and NW
NR

= 3
2 . Figure 33 represents the Gantt chart for this example. On the ordinate axis

is the reference number of the bots, on the abscissa axis is the reference number of the

period. The type of loads the robot is carrying is indicated in each rectangle.
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(a) Without reconfiguration (b) With reconfiguration

Figure 33: Gantt chart for an example with two types of loads

When reconfiguration is allowed, a 2-bot can carry one medium load, then it reconfig-

ures into two 1-bots to carry 2 small loads. If the reconfiguration is not allowed, the

2-bot is not able to split into two independent elementary robots, so it carries a single

small load.

Example with three types of loads

In the following example, loads of type 1, 2, 3 correspond to respectively small (S),

medium (M) and large (L) loads. Let’s take T = 5, n1 = 8, n2 = 2 and n3 = 1. Then

NR = 3, NW = 5 and NW
NR

= 5
3 . Figure 34 represents the Gantt chart for this example.

(a) Without reconfiguration

(b) With reconfiguration

Figure 34: Gantt chart for an example with three types of loads
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When reconfiguration is allowed, a 3-bot can carry one load of type L, then it recon-

figures into 1-bot and 2-bot and then into three 1-bots to carry 6 small loads. If the

reconfiguration is not allowed, the 3-bot is not able to split into two independent robots,

so it carries a single large load and then two medium loads and two small loads.

3.4.3 Demand per period

For now, we have shown that the gain in relative value, NW/NR, can be significant while

the gain in absolute value, NW − NR, remains limited. We will now propose a variant of

the problem where the gain in absolute value can be significant.

We now assume that the demand to transport loads is per period and not over the

whole horizon. More precisely, there are nkt loads of type k to be transported in period

t (instead of nk loads of type k to be transported over the whole horizon in the original

model). This may correspond, for example, to the activity of a warehouse that delivers

one type of load on Monday and another type of load on Tuesday. With this new

assumption, the ILPs remain unchanged except that constraints (3.2) and (3.6) have to

be replaced by the following constraint:

P

∑
p=1

cpk · Nt
pk ≥ nkt ∀k, ∀t (3.58)

We will now present a simple example where the gain in absolute value can be signifi-

cant. Consider two types of loads and two periods where n1 loads have to be transported

in period 1 and n2 loads have to be transported in period 2 (see Table 5b for a summary

of demands). Type 1 (S) loads can only be transported by 1-bots while type 2 (M) loads

can only be transported by p-bots with p ≥ 2 (see Table 5a for a summary of capacities).

Type of load
Configuration

k = 1 (S) k = 2 (M)

1-bot 1 0

p-bot 0 1

(a) Capacities

Period
Type of load

t = 1 t = 2

k = 1 (S) n1 0

k = 2 (M) 0 n2

(b) Demands

Table 5: Example where the gain in absolute value can be significant
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For this example, the minimum numbers of elementary robots are easy to derive :

NW = n1 + pn2, (3.59)

NR = (n1 − pn2)
+ + pn2 (3.60)

= max(n1, pn2).

It follows that

NW − NR = min(n1, pn2), (3.61)

NW

NR
=


1 +

n1

pn2
if n1 ≤ pn2

1 +
pn2

n1
if n1 > pn2.

(3.62)

Figure 35 plots the effect of n1 on the difference NW − NR and the ratio
NW

NR
. When

n1 = pn2, the ratio NW/NR is maximum and equal to 2 while the difference is equal to

n1 and thus unbounded.

(a) Difference (b) Ratio

Figure 35: Effect of the number of loads of type 1 on the gains in absolute and relative

value

Figure 36 represents the Gantt chart for the above example with p = 4, n1 = 8 and

n2 = 2. We have then NR = 8 and NW = 16, NW − NR = 8 and NW/NR = 2.

Conclusion

In this chapter, mathematical programs were obtained in the form of ILP for load trans-

portation with and without the possibility of reconfiguration. This allows us to find out

which configuration of the robot in which period and for the transportation of which
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(a) Without reconfiguration (b) With reconfiguration

Figure 36: Gantt chart when p = 4, n1 = 8 and n2 = 2

type of load we will use to minimize the cost of the transportation. Thanks to the pro-

grams, we can compare the cost of the fleet with and without reconfiguration. These

programs have been tested on Python and CPLEX Optimizer. For the special case of two

types of loads and two configurations of robots, closed-form expressions are derived for

the minimum number of robots with or without reconfiguration. A second special case

with unit capacities is also studied. For this case, we have derived closed-form expres-

sions for the minimum number of robots up to three load types with reconfiguration,

and for any number of load types without reconfiguration. We have showed that recon-

figurability can divide the minimum number of elementary robots up to a factor of K

(with K the number of load types). For the two special cases, we show that the gain in

number of robots is limited but may be significant for small fleets. Finally, in a variant

where the demand is per period of time and not on the whole time horizon, we have

showed that the gain in number of robots is not bounded.
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In this chapter, we study the complexity of the problem, introduced in Chapter 3, where

the transport of loads from one area to another is performed by reconfigurable mobile

robots. After studying the complexity of the problem, we focus in this chapter on finding

an effective heuristic to solve the problem in polynomial time.

4.1 Problem description and model formulation

4.1.1 The Multi_Bot problem

We consider here a fleet of mobile elementary robots which cooperate in order to trans-

port loads of different types. An elementary robot is abbreviated as a bot. A p-bot is

a configuration which makes p elementary bots cooperate on the same transportation

task. A maximum of P elementary bots may cooperate, which identifies the feasible

configuration set with the set P = {1,. . . , P}, P being one of the inputs of our problem.

There are K load types and we denote by K = {1, . . . , K} the set of load types. The

transportation demand for every type k is denoted by nk. So K and vector n = (nk,

k = 1, . . . , K) is another part of our inputs. Given a load type k, there is at least one

value p such that related p-bot is able to transport load type k.

All transportation tasks must be executed within a discrete time horizon T = {1,. . . , T}.

At the beginning of a given period t, the bots are located inside a loading area and may

be put together (reconfigured) in order to provide us with the best fitted p-bots for the

current period. During a given period t, a p-bot reconfigured this way may only deal

with a single type k, and the number of loads of type k that it can transport cannot

exceed a threshold cpk. So T, as well as vector C = (cpk, p = 1, . . . , P, k = 1, . . . , K)

becomes also part of our inputs.

Our purpose is to simultaneously minimize the number of bots involved into the pro-

cess, and the number of transportation transactions (trips) performed throughout the pe-

riods 1, . . . , T. We see that if Ht denotes the number of bots required to be active during

period t, then:

• The number of bots necessary to achieve the whole process is HMax = maxt Ht;

• The number of trips necessary to achieve the whole process is H = ∑t Ht.
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We consider two scaling coefficients α and β and our objective is to minimize the

weighted cost:

Cost = α · HMax + β · H. (4.1)

We call Multi_Bot problem the decisional problem described this way.

4.1.2 A Multi_Bot model

For any period t, configuration p and load type k, we denote by Xt
pk the number of

trips which will take place at period t, and involve the transportation of load type k by

a p-bot. Then we see that any Ht may be written Ht = ∑k,p p · Xt
pk, while the demand

constraint related to the demand vector n = (nk, k = 1, . . . , K) may be formulated as

follows: For any load type k, ∑t,p cpk · Xt
pk ≥ nk. It comes that our Multi_Bot problem

may be formalized as follows.

Inputs:

• A set P = {1, . . . , P} of configurations;

• A set T = {1, . . . , T} of periods;

• A set K = {1, . . . , K} of load types;

• A non negative integral vector C = (cpk, p = 1, . . . , P, k = 1, . . . , K), which repre-

sents capacities (the number of load types k which may be transported by a single

p-bot during a period);

• A non negative integral vector n = (nk, t = 1, . . . , K), which represents transporta-

tion demands.

• Two scaling non negative rational coefficient α and β.

Objective: Compute a non negative integral vector X = (Xt
pk, t = 1, . . . , T, p = 1, . . . , P, k =

1, . . . , K) such that:

• For any k, ∑t,p cpk · Xt
pk ≥ nk;

• α · (maxt ∑k,p p · Xt
pk) + β · (∑t,p,k p · Xt

pk) is the smallest possible.
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Observe that the above formulation is not an ILP one. Still, it is easy to turn it into such

an ILP model by introducing an additional variable Y that replaces maxt ∑k,p p ·Xt
pk and

adding the following constraints: for any t, Y ≥ ∑k,p p · Xt
pk.

4.2 Structural properties of the Multi_Bot problem

Dealing with the design of algorithms, both for the specific cases when one among the

parameters P, T, K is equal to 1 and for the general case, is going to require some better

understanding of our Multi_Bot problem. The present section is going to provide us

with additional information about Multi_Bot solutions.

4.2.1 Encoding size and decisional reformulation

Given a Multi_Bot instance Multi_Bot. P, T, K being defined as respectively configura-

tion, period and load type sets, the encoding size of a Multi_Bot is:

Size(Multi_Bot) = P + T + K + ∑k,p(1 +
⌈
log2 cpk

⌉
) + ∑k(1 + ⌈log2 nk⌉) + (1 + log2 α) +

(1 + log2 β).

As it is the case when a problem involves both combinatorial inputs and numbers [Garey

and Johnson, 1979], this expression clearly distinguishes between the combinatorial part

of the encoding size which is due to the sets P, T, K and the numerical part of this size

related to numbers α, β, cp,k and nk, k = 1, . . . , K, p = 1, . . . , P.

We get a feasible Multi_Bot solution by setting Xt
pk = nk for any t, p, k. Related H

value is equal to K · P · T · nMax, where nMax = supk nk and so the optimal cost value

bounded by 2nMax · sup(α, β) ·K · P · T. It comes that we may solve Multi_Bot by succes-

sively solving (binary search process) no more than
⌈
log2(2nMax · sup(α, β) · K · P · T)

⌉
instances of the following decision problem Multi_Bot_dec(S) where S is a threshold

parameter bounded by 2nMax · sup(α, β) · K · P · T.

Multi_Bot_dec(S): Compute non negative integral vector X = (Xt
pk, k = 1, . . . , K, p =

1, . . . , P, t = 1, . . . , T) such that:
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∑
t,p

cpk · Xt
pk ≥ nk ∀k (4.2)

α · (max
t ∑

k,p
p · Xt

pk) + ∑
t,p,k

p · Xt
pk ≤ S (4.3)

Since
⌈
log2(2nMax · sup(α, β) · K · P · T)

⌉
may be bounded by a polynomial function of

Size(Multi_Bot), we see that the time-complexity of Multi_Bot is going to be (in terms of

polynomiality or NP-Hardness) the same as the time-complexity (in terms of polynomi-

ality or NP-Completeness) of Multi_Bot_dec(S).

4.2.2 Reinforcement of the Multi_Bot model

We are now going to see that we may impose additional constraints to the Multi_Bot

model without deteriorating its optimal value. Those constraints will be the key for our

algorithms.

For every k, let us set p0(k) = arg supp(cpk/p). This quantity p0(k) is the most efficient

configuration for the transportation of k.

Then the following lemma bounds the values Xt
pk, p ̸= p0(k):

Lemma 4.2.1. Given a Multi_Bot instance Multi_Bot. Imposing the following constraint (4.4)

does not modify the optimal value of the instance Multi_Bot :

Xt
pk ≤

p0(k)
GCD(p0(k), p)

− 1 ∀t, k, p ̸= p0(k) (4.4)

In this lemma, GCD means Greatest Common Divisor.

Proof. Let X a feasible solution of the instance Multi_Bot and let us suppose that, for

some (t, k) and for some p1 ̸= p0(k) we may write: p0(k) = u · GCD(p0(k), p1); p1 =

v · GCD(p0(k), p1); Xt
p1,k ≥ u. Then we increase Xt

p0(k),k
by v and decrease Xt

p1,k by u.

Doing this maintains (4.3) since u · p1 = v · p0. But the inequality p0(k) · cp1,k ≤ p1 · cp0(k),k

also keeps the quantity ∑l,p cpkXl
pk from decreasing and so (4.2) keeps holding. We can

do this until (4.4) becomes satisfied and so we conclude.
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A consequence of above result is that we should focus, when dealing with any Multi_Bot

instance, on the “critical” variables Xt
p0(k),k

. The algorithm that we are going to describe

in Section 4.4 for the general case will derive from this interpretation of Lemma 4.2.1

and from the way we are going to characterize the complexity of Multi_Bot. It will also

rely on a time polynomial pre-process (Section 4.3.2) which will allow us to store in

advance the decisions related to variables Xt
p(k),k, p ̸= p0(k).

Let us now set:

• For any t, Et = ∑k p0(k) · Xt
p0(k),k

and Ft = ∑p ̸=p0(k),k p · Xt
pk;

• For any k, Q(k) = (p0(k)− 1) · (P · (P + 1)/2− p0(k)) + p0(k);

• Q = ∑k Q(k).

Q is bounded by a polynomial function of Size(Multi_Bot). Then the following lemmas

4.2.2 and 4.2.3 allow us to bound differences |Et − El | and p0(k) · |Xt
p0(k),k

− Xl
p0(k),k

| in a

way which will open the way to time-polynomial dynamic programming algorithms for

the target cases when one among parameters P, T and K is equal to 1.

Lemma 4.2.2. Given a Multi_Bot instance Multi_Bot. Then imposing the following constraint

(4.5) does not modify the optimal value of the instance Multi_Bot :

|Et − El | =
∣∣∣∣∣∑k

p0(k) · Xt
p0(k),k −∑

k
p0(k)Xl

p0(k),k

∣∣∣∣∣ ≤ Q ∀t, l, t ̸= l (4.5)

Proof. Let X a feasible solution of the instance Multi_Bot, which satisfies (4.4), and let

us suppose that, for some t, l, we have Et − El > Q. We may choose t0 and l0 with

this property and such that Et0 is maximal and El0 is minimal. Then must exist k0 such

Xt0
p0(k0),k0

≥ 1, and so we may try to decrease Xt0
p0(k0),k0

by 1 and to increase Xl0
p0(k0),k0

by 1.

Doing this keeps constraints (4.2) and (4.4). Also, we get Ht0 ≥ Et0 and Hl0 = El0 + Fl0 ≤

El0 + ∑k,p ̸=p0(k0)(p0(k0) − 1) · p ≤ El0 + Q − p0(k0). It comes that even after that we

increased Xl0
p0(k0),k0

by 1, the new value Hl0 does not exceed the previous value Ht0 and

so HMax did not increase. Neither did H = ∑t Ht so αHMax + βH did not increase. But

we also see that one of the following properties hold:

• The value maxt Et −mint Et decreased;
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• The number of elements t which achieve maxt Et or mint Et decreased.

It comes that applying above correction process as many times as necessary leads us to

(4.5).

Lemma 4.2.3. Given a Multi_Bot instance Multi_Bot, reinforced by (4.4), (4.5). Then imposing

the following constraint (4.6) does not modify the optimal value of the instance Multi_Bot:

p0(k) · |Xt
p0(k),k − Xl

p0(k),k| ≤ Q + TP2 ∀t, l, t ̸= l (4.6)

Proof. We know that for any t, l, t ̸= l: |Ek − El | ≤ Q. Let us suppose that, for some

t, l, t, and for some k, we have: Xt
p0(k),k

− Xl
p0(k),k

| ≥ Q + TP2 + 1. Then (4.5) implies the

existence of k′ ̸= k such that p0(k′) · Xl
p0(k′),k′

≥ P2, which also implies that Xl
p0(k′),k′

≥

P ≥ p0(k). By the same way, we clearly have Xt
p0(k),k

≥ P ≥ p0(k′). So we modify current

vector X as follows:

• Make Xt
p0(k),k

decrease by p0(k′) and Xl
p0(k),k

increase by p0(k′);

• Make Xt
p0(k′),k′

increase by p0(k) and Xl
p0(k′),k′

decrease by p0(k).

Doing this does not modify values ∑t,p cpkXt
pk and Ht and so maintains constraints (4.2),

(4.5) as well as the cost value. It also maintains constraints (4.4). Let us now check

that we can iteratively perform this procedure until getting (4.6). In order to do it,

we choose t, l such that Xt
p0(k),k

− Xl
p0(k),k

is maximal. Then we choose k′ such that

Xl
p0(k′),k′

≥ Xt
p0(k′),k′

. We can do it because of (4.5). Once above procedure has been

applied to X, at least one of the two following conditions holds:

• The value supk,t,l s.t. t ̸=l Xt
p0(k),k

− Xl
p0(k),k

have decreased;

• Above value remains the same, but the number of 3-uples (t, l, k) which achieve

supk,t,l s.t. t ̸=l Xt
p0(k),k

− Xl
p0(k),k

have decreased.

This allows to conclude.

As previously told, the upper bounds Q and Q + TP2 involved in lemmas 4.2.2 and

4.2.3 are polynomial functions of the encoding size of our Multi_Bot instances. This will

provide us in Section 4.3 with the key for the design of the time-polynomial dynamic

programming algorithms for the exact resolution of Multi_Bot when K = 1 and T = 1.
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Those algorithms will work while controlling the way the sum ∑k,t Xt
p0(k),k

evolves and

doing in such a way that even if this quantity may become very large, its difference with

some pre-computed lower bound remains bounded by a polynomial function of the size

of the instances.

4.2.3 The Multi_Bot problem is strongly NP-Hard

Section 4.2.1 tells us that we only need to prove that Multi_Bot_dec is strongly NP-

Complete. We are going to do it in the usual way, by checking that Multi_Bot_dec can

be polynomialy reduced to the Bin_Packing problem [Garey and Johnson, 1979], or, in

other words, that Bin_Packing is a particular case of Multi_Bot_dec.

This argument involving the Bin_Packing problem will not only provide us here with

a theoretical result, but also with the basis for the design in Section 4.4 of an efficient

heuristic algorithm for the general case.

A Bin_Packing instance BP is characterized by:

• A set I = {1, . . . , I} of items such that for any item i ∈ I, is provided with a weight

wi;

• A set B = {1, . . . , B} of identical boxes, all with a same capacity ρ.

Then we want to compute an assignment σ from I to B, consistent with the capacities of

the boxes, that means such that for any b ∈ B, ∑i s.t. σ(i)=b wi ≤ ρ.

We know that Bin_Packing is strongly NP-Complete: Strongly means that there exists

a polynomial function Q of I and B such that if we restrict ourselves to instances BP

such that weights wi and the capacity ρ are bounded by Q(I, B), then resulting problem

remains NP-Complete [Garey and Johnson, 1979]. In order to prove that Multi_Bot_dec

is NP-Complete, we only need to design a time-polynomial algorithm Code which turns

any Bin_Packing instance BP into a Multi_Bot_dec instance Multi_Bot_dec = Code(BP)

and a time-polynomial algorithm Decode which turns any Multi_Bot_dec output X into

a Bin_Packing output σ in such a way that: BP admits a feasible solution σ if and only

if Code(BP) admits a feasible solution X such that Decode(X) = σ.
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Theorem 4.2.4. Multi_Bot_dec is strongly NP-Complete

Proof. Its ILP formulation implies that Multi_Bot_dec is in NP. Thus, we only need to

prove that it contains Bin_Packing in the sense of the Code/Decode reduction scheme.

Let us start from a Bin_Packing instance BP such that number ρ and coefficients wi are

all bounded by Q(I, B), with polynomial function Q as above. We notice that if we add

B · ρ−∑i wi items with weight 1 then we do not modify the feasibility of BP. So we may

suppose that BP is such that:

B · ρ = ∑
i

wi. (4.7)

Let us now derive from the instance BP a Multi_Bot_dec instance Multi_Bot_dec as

follows:

• We set t = B: that means that we identify any box b with an index value t of

Multi_Bot_dec.

• We set α = 1 and β = 1.

• We set K = Number of distinct values wi involved into vector w. We identify any

existing weigth wi with an index value k of Multi_Bot_dec. K may be interpreted

as an item type, characterized by its weight w(k). For instance, if we have 5 items

with respective weights w1 = 2, w2 = 6, w3 = 3, w4 = 2 and w5 = 6, then we get

K = {1, 2, 3}, with w(1) = 2, w(2) = 6, w(3) = 3.

• We set P = supi wi. We identify any possible weigth wi with an index value p of

Multi_Bot_dec.

• According to this, we set: cpk = w(k) if p = w(k) and cpk = 0 else.

• For any k, we set nk = w(k) · Rk, where Rk denotes the number of items i with

weight wi = w(k)).

• Finally we set S = (B + 1)ρ.

According to this, Xt
pk refers to the number of items with weigth p and item type k

which are assigned to box t. Constraints (4.2) means that all items should be assigned
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to some box t. Since (4.7) implies ∑t,p,k pXt
pk = Bρ, then (4.3) implies that every sum

Ht = ∑p,k pXt
pk should be equal to ρ.

If σ is a feasible solution of the Bin_Packing instance BP then we see that we get a

feasible solution X of the instance Multi_Bot_dec by setting: Xt
w(k),k = number of items

i with weight w(k) assigned to box t, and Xt
pk = 0 if w(k) ̸= p. Conversely, if X is a

feasible solution of the instance Multi_Bot_dec, then we get a solution σ of the instance

BP by assigning Xt
w(k),k items with weight w(k) to box t.

The Code procedure which computes T, P, K together with coefficients S and nk, k ∈ K,

clearly works in polynomial time (as a function of Q(I, B), I and B and thus also as a

function of I and B). The Decode procedure which retrieves assignment σ from X works

the same way. So we conclude.

4.3 Exact polynomial algorithms for special cases

Our purpose here is to prove that, in case one of the 3 main parameters K, T, P of the

Multi_Bot problem is neutralized, that means is equal to 1, then Multi_Bot can be

solved in polynomial time. Doing it will provide us with tools for the design in Section

4.4 of an efficient heuristic for the Multi_Bot problem. Since dynamic programming

will be deeply involved, we are first going to recall a few things about dynamic pro-

gramming.

4.3.1 A few things about dynamic programming

Dynamic programming [Bellman, 1966], abbreviated by DP, can be applied to a problem

P if P can be rewritten in such a way it becomes equivalent to the search for a shortest

or largest path in an acyclic network GP . Notice that while in most cases, the operator

which underlies the notion of length of a path is the standard sum operator +, we may

in some case deal with ∗, max or min operators. In any case Bellman principle is applied,

which allows the computation, for any node x of GP , of the optimal value of a shortest

(largest) path from origin x0 to x according to the formula: V(x) = inf arcse=(y,x)(V(y) +

Cost(e)). The key issue becomes related to the number of nodes in the network GP .

In many cases (the simplest ones), the node set of GP appears as a set of pairs (j, s),

j = 0, 1, . . . , N + 1, and s belongs to a set S (j) of states related to time value j. L =
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{0, . . . , N + 1} is then called the time space and S (j) is the state space related to j. In

such a case, corresponds to any pair (j, s) a decision set D(j, s), as well as a feasibility

procedure O : (j, s, d) → O(j, s, d) ∈ {0, 1}, which checks whether decision n ∈ D(j, s)

can be applied to s at time j or not. In case n can be applied, it induces a transition

T (j, s, d): (j, s)→d (j + 1, s∗), provided with some cost C(j, s, d), which underlies an arc

((j, s), (j + 1, s∗))d of GP . Therefore, the goal of a DP algorithm is to compute through

Bellman principle [Broumi et al., 2019] a sequence of decisions which will allow moving

from some initial state s0 at time 0 to final state s f at time N + 1, with a smallest cumu-

lated cost.

Such an algorithm may be designed according to the following forward driven scheme:

Initialization:

• We set S (j) = {(s0, 0, d1 = Unde f ined)}, where s0 is the initial state;

• For any j ̸= 0, we set S (j) = Empty list ;

Explanation: For any j, S (j) provides the set of states s which we reached from s0, to-

gether with their best cumulated cost V and the decision n1 which allowed us to switch

from some former state s′ in S (j− 1) to s.

Main Loop:

Scan time space L , and, for any j, scan the state set S (j): for any 3-uple (s, V, d1)

in S (j), generate all feasible decisions n in D(j, s), together with resulting states

s* in S (j + 1) and related cost C(j, s, d). At the time when (s, V, d1), n and s∗ are

generated, we are provided with a current set S (j + 1): then we compare s∗ and

the states s′ currently in S (j + 1). If s∗ is dominated (Bellman principle) by some

3-uple (s′ = s∗, V ′, d′), that means if V + C(j, s, d) ≥ V ′, then we drop s; Else, we

insert (s∗, V + C(j, s, d), d) into S (j) and we remove any 3-uple (s∗, V ′, d′) which

could appear in S (j + 1).
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The main components of a DP algorithm are:

• The time space L and, for every j, the state space S (j);

• For every (j, s), the decision set D(j, s) and the feasibility procedure O ;

• The transition procedure T (j, s, d), which, to any (j, s) and any feasible decision n

in D(j, s), makes correspond resulting pair (j + 1, s∗), together with cost C(j, s, d);

• The search strategy (forward, backward, . . . );

• Potential filtering devices, which aim at controlling the number of states in S (j),

by killing states s which may be considered as not promising enough.

4.3.2 Pre-processing

This section is dedicated to pre-processing the variables Xt
pk, p ̸= p0(k) and building the

table Table_Bot. As told in Section 4.2, we are going to handle the general Multi_Bot

problem while focusing on “critical” variables Xt
p0(k),k

. More precisely, we shall neu-

tralize the other variables Xt
pk, p ̸= p0(k), while using a pre-process relying on Lemma

4.2.1 and the fact that every Xt
pk, p ̸= p0(k), is bounded by (p0(k)/GCD(p0(k), p))− 1.

The key for this approach is that for any t, k, if we know in advance the value W of

∑p ̸=p0(k) pXt
pk, then the best we can do is to compute values Xt

pk in such a way that

∑p ̸=p0(k) cpkXt
pk be the largest possible, that means as an optimal solution of the follow-

ing Knapsack like problem Aux_Bot(k, W):

Aux_Bot(k, W): Compute Y = (Yp, p ̸= p0(k)), integral and such that:

∑
p ̸=p0(k)

pYp ≤W; (4.8)

For any p, Yp ≤ (p0(k)/GCD(p0(k), p))− 1; (*Because of Lemma 4.2.1*)

V = ∑
p ̸=p0(t)

cpkYp is the largest possible.
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We are going to check that solving this problem can be done in polynomial time through

a single DP algorithm A_Bot. A_Bot will compute all 3-uples (W, V, Y) such that V and

Y define an optimal solution of Aux_Bot(k, W) and which are Pareto optimal. Pareto

optimal means here that there does not exist W ′ < W and Y′ which is a feasible solution

of Aux_Bot(k, W ′) and which achieves a value V ′ ≥ V. Then, performing A_Bot for

any value k and storing resulting 3-uples (W, V, Y) in a list Table_Bot[k] will provide us

in polynomial time with the vectors Y = (Yp, p ̸= p0(k)) = (Xt
pk, p ̸= p0(k)) likely to

be involved into an optimal Multi_Bot solution. In other terms, every time we must

deal some pair (t, k) and decide about values Xt
pk, p ̸= p0(k), we shall only decide about

value W, next retrieve V and Y from the table Table_Bot and finally set Xt
pk = Yp for any

p ̸= p0(k).

The algorithm A_Bot is a dynamic programming algorithm with the following charac-

teristics:

• The time space L is the set {0} ∪ {p = 1, . . . , P, p ̸= p0(k)); The successor Succ(p)

of a time value p is p + 1 in case p + 1 ̸= p0(k) and p + 2 else.

• The state space S is the set of all non negative number w such that w ≤ (p0(k)−

1)∑p ̸=p0(k) p. Every state w will be given together its cumulated profit (we seek

maximization) v.

• A decision n at time p is a non negative integral number between 0 and p0(k)/GCD(p, p0(k))−

1, which means at time p the value of YSucc(p).

• Related transition increases w by Succ(p) · d and cumulated profit v by cSucc(p),k · d.

• Initial state is 0 with related value 0; Related profit v is 0.

• Final states are all W which could be reached at time P, provided with a final

cumulative profit V.

• Bellman principle: for any p, we only keep Pareto pairs (w, v), which means that

we forbid two pairs (w, v) and (w′, v′) related to a same set S (p) to be such that

w ≤ w′ and v ≥ v′.

The whole algorithmic scheme is a mere adaptation of the general DP scheme of Section
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4.3.1:

Algorithm 1 A_Bot(k)

1: Initialize:

2: S (0) = a list reduced to one 3-uple (w = 0, v = 0, d = Unde f ined)

3: For any p ≥ 1 and ̸= p0(k), S (p) = Empty list;

4: Main loop:

5: Scan the time space L and, for any p ̸= P in L (or ̸= P− 1 in case P = p0(k)) scan

current set S (p):

For any (p, (w, v, d1)) generated this way, scan the decision set n ≤

p0(k)/GCD(p, p0(k))− 1:

For any n generated this way, compare the 3-uple (v + d · Succ(p), w +

cSucc(p),k · d, d) with the elements of current list S (Succ(p)):

If there exists (w′, v′, d′) in S (Succ(p)) such that w′ ≤ w and v′ ≥ v

then drop (w, v, d);

Else insert (w, v, d) into S (Succ(p)) while removing from S (Succ(p))

all 3-uples (w′, v′, d′) such that w ≤ w′ and v ≥ v′;

6: Output:

7: For any (w, v, d) in S (P) (or S (P− 1)) if P = p0(k), retrieve solution vector Y, and

put related 3-uple (w, v, Y) into the list Table_Bot[k].

Lemma 4.3.1. A_Bot(k) solves Aux_Bot(k, W) in polynomial time

Proof. A_Bot(k) clearly solves Aux_Bot(k, W). The fact that it does it in polynomial

time is a mere consequence of Lemma 4.2.1 and the constraints: For any p, Yp ≤

(p0(k)/GCD(p0(k), p))− 1. Then the number of states w is bounded by (p0(k)− 1)∑p ̸=p0(k) p,

which is a polynomial function of P.

4.3.3 Single type of load

Since K = 1, we may simplify our notations as follows: Xt
pk becomes Xt

p, cpk becomes cp,

nk becomes n, and p0(k) becomes p0. Then the problem becomes:
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Multi_Bot_K_1: Compute X = (Xt
p, p = 1, ..., P, t = 1, ..., T) such that:

∑
t,p

cpXt
p ≥ n; (4.9)

α(max
t ∑

p
pXt

p) + β(∑
t,p

pXt
p) is the smallest possible.

The idea for the algorithm is the following. As suggested in the previous sections,

we shall rely here on a dynamic programming algorithm, with a time space which

follows the values t = 1, . . . , T. The question is clearly about the definition of the state

space, since values Xt
p0

and cp0 may not be bounded by any polynomial function of our

Multi_Bot inputs. In order to overcome this difficulty, we shall define a state at time t

while splitting it into 2 components:

• A component made of a number W whose meaning will be the value ∑l≤t,p ̸=p0
pXl

p

related at time t to the contribution of the variables Xl
p, p ̸= p0. We are going to

use Lemma 4.2.1 and the table Table_Bot pre-computed in Section 4.3.2 in order to

manage those variables Xl
p, p ̸= p0 as a whole according to a single decision.

• A component EX which will refer to the difference between ∑l≤t p0 ·Xl
p0

and some

number UMin(t). The key here is that we are going to use lemmas 4.2.2 and

4.2.3 in order to identify (next lemmas 4.3.3, 4.3.4 and 4.3.5) 2 numbers UMin(t)

and UMax(t) whose difference is a polynomial function of our Multi_Bot inputs

and which are such that ∑l≤t p0 · Xl
p0

may be maintained between UMin(t) and

UMax(t).

Related decisions will be designed accordingly.

Let us now enter into the details of this approach, and state:

Theorem 4.3.2. Multi_Bot_K_1 may be solved in polynomial time

Proof. It is enough (Section 4.2.1) to prove that the decisional version of Multi_Bot_K_1

can be solved in polynomial time. S being such that S ≤ 2 sup(α, β)TPn, (see Section

4.2.1), Multi_Bot_dec_K_1(S) comes as:
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Multi_Bot_dec_K_1(S): Compute X = (Xt
p, p = 1, ..., P, t = 1, ..., T) such that:

∑
t,p

cp.Xt
p ≥ n; (4.10)

α(max
t ∑

p
pXt

p) + β(∑
t,p

pXt
p) ≤ S. (4.11)

We are going to design a polynomial time DP algorithm with time space 0, 1, . . . , T,

which solves Multi_Bot_dec_K_1. But in order to control the number of states of this

algorithm, we must restrict the search space of Multi_Bot_dec_K_1 , which we are going

to do through the following lemmas:

Lemma 4.3.3. Given a Multi_Bot_dec_K_1 instance mb_dec_K_1, reinforced by (4.4), (4.5),

(4.6). Then imposing the following constraint (4.12) does not modify the feasibility value of

mb_dec_K_1:

α · sup
t

Ht + β · H ≥ S− (α + Tβ). (4.12)

Proof. Given a feasible solution X of mb_dec_K_1. We see that if we increase every value

Xt
p0

by 1, then we do not lose any of the constraints (4.9), (4.4), (4.5), (4.6). So we may

impose the following constraint (4.13):

X is maximal in the sense that increasing every Xt
p0

by 1 violates (4.11). (4.13)

But if X satisfies (4.13) then we must have: α · supt Ht + β · H ≥ S− (α + Tβ). So we

conclude.

Lemma 4.3.4. For any t0 = 1, . . . , T, we have ∑t≤t0
p0Xt

p0
≤ t0S/(α + Tβ) + t0Q, with Q

defined in Section 4.2.2

Proof. We know (Lemma 4.2.2) that for any pair t, l, t ̸= l, |p0Xt
p0
− p0Xl

p0
| ≤ Q. Let us

set ϕ = inft p0Xt
p0

. (4.11) implies: (α + Tβ)ϕ ≤ S and so, for any t, p0Xt
p0
≤ ϕ + Q ≤

S/(α + Tβ) + Q. It comes that for any t0, ∑t≤t0
p0Xt

p0
≤ t0Q + t0S/(α + Tβ).

Lemma 4.3.5. For any t0 = 1, . . . , T, we must have ∑t≤t0
p0Xt

p0
≥ t0S/(α + Tβ)− t0(2Q +

1− p0).
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Proof. Let us denote by t∗ the index value t which achieves supt Ht. (4.12) tells us that

αHt∗ + β ∑t Ht ≥ S − (α + Kβ). But we may decompose αHt∗ + β ∑t Ht as αp0Xt∗
p0
+

β ∑t p0Xt
p0
+ αFt∗ + β ∑t Ft. We know that αFt∗ + β ∑t Ft ≤ (α + Kβ)(Q− p0). We deduce

αp0Xt∗
p0
+ β ∑t p0.Xt

p0
≥ S− (α + Tβ)− (α + Tβ)(Q− p0) = S− (α + Tβ)(Q− p0 + 1).

Let us set ϕ = inft p0Xt
p0

as in Lemma 4.3.4. We deduce (α + Tβ)(Q + ϕ) ≥ αp0Xt∗
p0
+

β ∑t p0Xt
p0
≥ S− (α + Tβ)(Q− p0 + 1) and so (α + Tβ)ϕ ≥ S− (α + Tβ)(2Q− p0 + 1).

So we get that, for any t, p0Xt
p0
≥ S/(α + Tβ)− (2Q− p0 + 1) and the result.

For any t, let us set UMin(t) = t0S/(α + Tβ) − t0(2Q + 1 − p0) and UMax(t) =

t0S/(α + Tβ) + t0Q. The key point is that the number of possible integral values

∑t≤t0
p0Xt

p0
becomes bounded by UMax(t)−UMin(t), which itself bounded by a poly-

nomial function of T and P. By the same way we know that ∑l≤t ∑p ̸=p0
pXl

p is also going

to be bounded by a polynomial function of T and P (Lemma 4.2.2). So we become able

to provide the main components of the DP algorithm Multi_Bot_dec_K_1(S):

• Time Space: The set of all values t = 0, 1, . . . , T.

• State Space: A state at time t is given by:

– A number W whose meaning is ∑l≤t ∑p ̸=p0
pXl

p induced by the decisions

taken until time t;

– The value EX whose meaning is the difference (∑l≤k p0.Xl
p0
−UMin(t)), whose

value is non negative and no larger than UMax(t) because of lemmas 4.3.1,

4.3.3, 4.3.4.

– Related Cost value: To any state (W, EX) at time t corresponds some current

cost VAL which means current value ∑l≤t ∑p pXl
p;

– Initial state at time 0 is (0, 0). Related value VAL is 0.

• Decisions at time t = 0, . . . , T − 1:

– We choose a 3-uple (w, v, Y) in the list Table_Bot: for any p ̸= p0 we set

Xt+1
p = Yp;

– We decide some number z between 0 and (UMax(t + 1)−UMin(t + 1)); Re-

lated value Xt+1
p0

is going to comes as (z+UMin(t+ 1)− (EX +UMin(t))/p0.
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– Feasibility criterion: we should have:

* α(z + UMin(t + 1)− (EX + UMin(t)) + β(W + w) ≤ S;

* (z + UMin(t + 1)− (EX + UMin(t)) is an integral multiple of p0;

* 0 ≤ (z + UMin(t + 1)− (EX + UMin(t)).

• Transitions:

W is turned into W + w;

EX becomes z;

VAL is incremented by cp0(z + UMin(t + 1)− (EX + UMin(t)) + v.

• Bellman Principle: There must not exists 2 states (W, EX) and (W ′, EX′) in L (t+

1) such that W ≤ W ′, EX ≤ EX′ and VAL ≥ VAL′, VAL and VAL′ being the cost

value related to (W, EX) and (W ′, EX′) respectively.

The fact that this dynamic programming algorithm solves Multi_Bot_dec_K_1(S) de-

rives from Lemma 4.2.2 and lemmas 4.3.3, 4.3.4, 4.3.5 and from the fact that any pair

(W, EX) determines the whole values ∑l≤t ∑p ̸=p0
pXl

p and ∑l≤t p0Xl
p0

. In order to achieve

our proof, we only need to check that it works in polynomial time. We first notice that

the number of possible state values W is polynomial bounded in T and P. The same

holds for values EX, because the difference UMax(t)−UMin(t) = t0Q+ t0(2Q+ 1− p0)

depends on T and P in a polynomial way. The number of possible decisions w contained

into the list Table_Bot is also bounded by a polynomial function of T and P, and the same

holds for the number of decisions z. We conclude.

4.3.4 Single period

Since T = 1, we simplify our notations as follows: Xt
pk becomes Xpk. By the same way,

we set: H = ∑kp pXpk; E = ∑k p0(k)Xp0(k),k; F = ∑k,p ̸=p0(k) pXpk.

Then Multi_Bot becomes:

Multi_Bot_T_1: Compute X = (Xpk, p = 1, ..., P, k = 1, ..., K) such that:
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For any k, ∑
p

cpkXpk ≥ nk;

∑
k,p

pXpk is the smallest possible.

The idea for the algorithm: as suggested in the previous sections, we shall rely here on

dynamic programming, with a time space which follows the values k = 0, . . . , K. Once

again, the question is about the definition of the state space, since values Xp0,k and cp0,k

may take very large values. In order to overcome this difficulty, we are going to define

a state at time k while splitting it into 2 components:

• A component made of a number W whose meaning will be the value ∑u≤k,p ̸=p0(u) p ·

Xp,u related at time k to the contribution of the variables Xp,u, p ̸= p0(u), u ≤ k.

We are going to use Lemma 4.2.1 and the table Table_Bot pre-computed in Section

4.3.2 in order to manage those variables Xp,u, p ̸= p0(u) as a whole according to a

single decision.

• A component EX which will refer to the difference between ∑u≤k p0 · Xp0,u and

some number Min1(t). The key here is that we are going to use lemmas 4.2.2

and 4.2.3 in order to identify (next Lemma 4.3.7) 2 numbers Min1(k) and Max1(k)

whose difference is a polynomial function of our Multi_Bot inputs and which are

such that ∑u≤k p0 · Xp0,u may be maintained between Min1(k) and Max1(k).

Related decisions will be designed accordingly.

Let us now enter into the details of this approach, and state:

Theorem 4.3.6. Multi_Bot_T_1 may be solved in polynomial time

Proof. It is enough to prove that the decisional version of Multi_Bot_T_1 can be solved in

polynomial time. S being a parameter such that S ≤ 2 sup(α, β)PK(supk nk), Multi_Bot_dec_T_1

may be written:
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Multi_Bot_dec_T_1(S): Compute X = (Xpk, p = 1, ..., P, k = 1, ..., K) such that:

∑
p

cpkXpk ≥ nk ∀k (4.14)

∑
k,p

pXpk ≤ S (4.15)

We are going to design a polynomial time DP algorithm with time space 0, 1, . . . , K and

decisions related, for any k, to values Xpk, p = 1, . . . , P. As a matter of fact, since values

Xpk, p ̸= p0(k) may be controlled through the table Table_Bot, we focus on the key value

Zk = Xp0(k),k. For any k, let us set:

• Max1(k) = ∑u≤k p0(u) ·
⌈

nu/cp0(u),u

⌉
;

• Min1(k) = ∑u≤k p0(u) ·
⌊

nu/cp0(u),u

⌋
−∑u≤k(Q(u)− p0(u)).

Then we state the following lemma, which is going to help us in controlling the way

values Zk = Xp0(k),k are going to evolve with time value k.

Lemma 4.3.7. Given a solution X of Multi_Bot_dec_T_1 which satisfies (4.4), and which

minimizes ∑k,p pXpk. Let us set, for any k, Uk = ∑u≤k p0(u)Xp0(u),u = ∑u≤k p0(u)Zu. Then

we have, for any k: Min1(k) ≤ Uk ≤ Max1(k)

Proof. Clearly, Zk = Xp0(k),k should not exceed
⌈

nk/cp0(k),k

⌉
. Thus, ∑u≤k p0(u)Zu should

not exceed Max1(k). On another side, we should have that cp0(k),kZk +(p0(k)− 1)(∑p ̸=p0(k) cpk) ≥

nk for any k, because of (4.4). That means that Zk should be no smaller than
⌊

nk/cp0(k),k

⌋
−

(p0(k)− 1)(∑p ̸=p0(k) cpk/cp0(k),k), and so that p0(k)Zk should not be smaller than p0(k)
⌊

nk/cp0(k),k

⌋
−

(p0(k)− 1)p0(k)(∑p ̸=p0(k) cpk/cp0(k),k). But the definition of p0(k) implies cpk/cp0(k),k ≥

p/p0(k) for any p. We deduce that p0(k)Zk should be at least equal to p0(k)
⌊

nk/cp0(k),k

⌋
−

(p0(k)− 1)(∑p ̸=p0(k) p) =
⌊

nk/cp0(k),k

⌋
− (Q(k)− p0(k)). We conclude.

We may now design our dynamic programming algorithmic scheme, while specifying

its main components:

• Time Space: k = 0, . . . , K.

• State Space: A state at time k is a pair (W, EX) with the following meaning:

– W= ∑p ̸=p0(u),u≤k pXpu;
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– EX = ∑u≤k p0(u)Zu −Min1(k).

Explanation: W means the amount of values pXpu ≤ (p0(u)− 1) which have been de-

cided until k and which are not related to p0(u) values. EX provides us with the location,

inside the window {Min1(k), . . . , Max1(k)} of the sum of values p0(u)Xp0(u),u decided

until k. Defining the states this way will ensure that the number of states remains

bounded by a polynomial function of P and K.

• Initial state: (0, 0): no decision has been taken.

• Final State: Any pair (W, EX) related to time value K.

• Decisions: At any k = 0, . . . , K− 1, and for any current state (W, EX) we choose:

– A 3-uple (w, v = ∑p ̸=p0(k+1) cp,k+1Xp,k+1, Y) in Table_Bot[k+1], as computed in

Section 4.3.2.

– A value z which between Min1(k + 1) and Max1(k + 1).

Explanation: Decision w means that we follow Section 4.3.2 and choose values

Xp,k+1, p ̸= p0(k + 1) while using the table Table_Bot. Table_Bot[k+1] pro-

vides us with the 3-uple (w, v, Y) such that v is the optimal value of the

Aux_Bot(k + 1, w) instance of Aux_Bot related to w and k + 1. As for z, it cor-

responds to the increment of the new difference ∑u≤k+1 p0(u)Zu −Min1(k +

1) when we shift to k + 1, and refers to a quantity p0(k + 1)Xp0(k+1),k+1 =

z−Min1(k + 1) + Min1(k)− EX.

• Feasibility of a decision:

– z − Min1(k + 1) + Min1(k) − EX must be non negative and a multiple of

p0(k);

– v + cp0(k+1),k+1(z − Min1(k + 1) + Min1(k) − EX)/p0(k) should be at least

equal to nk;

– W + z + Min1(k + 1) should not exceed S.

• Transitions: Transition from k to k + 1 works as follows:

– W becomes W + w;
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– EX becomes z.

• Bellman Principle: We keep, for any time value k, states (W, EX) and related

values ∑u≤k,p cpuXpu which are not dominated in the sense of Pareto.

Checking that above dynamic programming solves Multi_Bot_dec_T_1 is nothing but

routine. As for its complexity, we already saw in Section 4.3.2 that values W and w were

bounded by Q, which is a polynomial function of P and K. As for state values EX,

we see that the difference Max1(k)− Min1(k) is bounded by a a polynomial function

R(P, K). It comes that both the number of state values EX and decision values z are also

bounded by R(P, T), and so are the number of states (W, EX) and decisions (w, z). We

conclude.

4.3.5 Single robot configuration

This last case does not involve dynamic programming. Since P = 1, we simplify our

notations as follows: cpk becomes ck and Xt
pk becomes Xt

k. Then our Multi_Bot problem

becomes:

Multi_Bot_P_1: Compute X = (Xt
k, t = 1, . . . , T, k = 1, . . . , K) such that:

For any k, ck · (∑
t

Xt
k) ≥ nk;

α(max
t ∑

k
Xt

k) + β(∑
t,k

Xt
k) is the smallest possible.

Then we state:

Theorem 4.3.8. Multi_Bot_P_1 may be solved in polynomial time

Proof. Section 4.2.1 tells us that it is enough to prove that the decisional version of

Multi_Bot_P_1 may be solved in polynomial time. S being a parameter such that

S ≤ 2 sup(α, β)KT(supk nk), (see Section 4.2.1), this decisional version may be writ-

ten:
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Multi_Bot_dec_P_1: Compute X = (Xt
k, t = 1, . . . , T, k = 1, . . . , K) such that:

α(max
t ∑

k
Xt

k) + β(∑
t,k

Xt
k) ≤ S;

For any k, ck · (∑
t

Xt
k) ≥ nk.

For any k, let us set n∗k = ⌈nk/ck⌉. If we impose X to minimize ∑t,k Xt
k, then we get that

for any k, (∑t Xt
k) = n∗k . Let us set S∗ =

⌊
(S− β ∑k n∗k )/α

⌋
. Then Multi_Bot_dec_P_1

becomes:

Multi_Bot_dec_P_1: Compute X = (Xt
k, t = 1, . . . , T, k = 1, . . . , K) such that:

For any t, ∑
k

Xt
k ≤ S∗;

For any k, ∑
t

Xt
k = n∗k .

At this point, Multi_Bot_dec_P_1 is no more than a Transportation problem, i.e. an ILP

with a totally unimodular underlying constraint matrix related to a complete bipartite

graph. We conclude.

4.4 A heuristic algorithm for the general case

We propose now an algorithm H_Bot for the general case, which relies on the arguments

used in order to get above theoretical results.

This algorithm starts by capitalizing on the knowledge provided by Lemma 4.2.1 and the

proof of Theorem 4.2.4. It restricts itself to the handling of critical variables Xt
p0(k),k

while

interpreting the Multi_Bot problem as a variant of the Bin Packing problem. According

to this purpose, it fills the Bin Packing boxes while considering the items according to

decreasing weight and assigning them boxes in such a way that the maximal load of

a box increases the slowest possible. Next, it takes advantage of Section 4.3 involving

dynamic programming techniques, which led in Section 4.3.2 to the pre-computation of

the table Table_Bot. That means that, for any k, t it redistributes part of the current values

Xt
p0(k),k

among the variables Xt
p,k, p different from p0(k). It does it while using the table



88 Chapter 4. Complexity analysis and heuristic algorithms

Table_Bot in order to manage those variables Xp,k, p ̸= p0(k) as a whole according to a

single decision.

More precisely, it works in two steps as described below:

• First step: We solve the specific Multi_Bot instance involved in the proof of The-

orem 4.2.4 in order to get an initial solution. This specific instance, which only

involves variables Xt
p0(k),k

, t ∈ T, k ∈ K, is a kind of Bin_Packing instance, with

item set K and box set T, which we handle by considering the items according to

decreasing weights and assigning them to the box with the smallest current load.

• Second step: It involves the table Table_Bot of Section 4.3.2, adapted I such a way

that we may control the number of states generated by A_Bot(k)and maintain it

below some threshold parameter State_Max. It aims at improving the solution

obtained through step 1 while iteratively applying a local procedure which acts by

picking up some pair (t0, k0), some 3-uple (w0, v0, Y0) and redistributing part of

the value Xt0
p0(k0),k0

among variables Xt0
p,k0

, p ̸= p0(k0) in order to make the value of

the objective function decrease.

The procedure A_Bot is rewritten into a procedure A_Bot(k, State_Max), where State_Max ≤

3P is a threshold parameter, in such a way that this procedure computes output list Ta-

ble_Bot[k] exactly as in Section 4.3.2, with the restriction that a state value w is forbidden

from exceeding State_Max. This impose an additional test on the feasibility of decision

n, which must be such that n + w must not exceed State_Max. This allows us to bet-

ter control the running time of the procedure A_Bot, which becomes a heuristic for the

problem Aux_Bot.

4.4.1 First step

As previously told, the first step of H_Bot works by focusing on the variables Xt
p0(k),k

and making them increase until constraint (4.2) is satisfied in such a way that the values

Ht = ∑k p0(k)Xt
p0(k),k

, t = 1, . . . , T, remain balanced.



4.4. A heuristic algorithm for the general case 89

Algorithm 2 H_Bot_First_Step

1: Order values k according to decreasing p0(k) values and denote by LK resulting list;

2: For any t initialize Ht as 0;

3: For any t, k initialize Xt
p0(k),k

as 0;

4: For k in LK do

B �
⌈

nk/cp0(k),k

⌉
; /*B measures the gap between current situation and (4.2)

satisfaction*/

While B ≥ 1 do

Pick up t0 such that Ht0 is minimal;

Ht0 � Ht0 + p0(k);

Xt0
p0(k),k

� Xt0
p0(k),k

+ 1;

B � B− 1;

4.4.2 Second step

The second Step of H_Bot relies on the following compact representation of a Multi_Bot

solution. We consider here a Multi_Bot solution as given by:

• A vector Z = (Zt
k, t = 1, . . . , T, k = 1, . . . , K), which provides the Xt

p0(k),k
values;

• A vector ∆ = (∆t
k, t = 1, . . . T, k = 1, . . . , K), where every ∆t

k is a 3-uple (wt
k, vt

k, Yt
k),

belonging to Table_Bot[k].

Such a pair (Z, ∆), with indexation on T ·K, gives rise to a Multi_Bot solution X through

the formulas:

• For any t, k, p: If p ̸= p0(k) then Xt
pk = (Yt

k)p else Xt
pk = Zt

k.

So H_Bot_Second_Step starts from the values Zt
k = Xt

p0(k),k
computed by H_Bot_First_Step.

Then, for every pair (t0, k0), it picks up (w0, v0, Y0) in Table_Bot[k0] in such a way that

decreasing Zt0
k0

by
⌊
(cp0(k0),k0

(∑t Zt0
k0
)− nk0 + v0)/cp0(k0),k0

⌋
and setting Xt0

p,k0
= (Yt0

k0
)p =

(Y0)p for any p ̸= p0(k0) keeps the constraints and yields the best decrease of α ·HMax +

β · H.
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Algorithm 3 H_Bot_Second_Step

1: Start from values Zt
k = Xt

p0(k),k
computed according to H_Bot_First_Step and from a

null vector ∆;

2: Initialize a vector MARK = (MARKt
k, t = 1, . . . , T, k = 1, . . . , K) with Boolean val-

ues, to the null vector;

3: Initialize a vector NMARK = (NMARKt, t = 1, . . . , T) with integral values all equal

to K;

4: For any k, set Bk = cp0(k),k.(∑t Zt
k);

5: For any t, set Ht = ∑k p0(k)Zt
k; Set H = ∑t Ht;

6: Initialize counter value COUNT to T · K;

7: While COUNT ̸= 0 do

Choose t0 and k0; (I1)

For any (w, v, Y) in Table_Bot[k0] compute:

γ =
⌊
(Bk0 − nk0 + v)/cp0(k0),k0

⌋
;

HAux = H + w− γ · p0(k0);

HKAux = Ht0 + w− γ · p0(k0);

HMax = Max(Maxt ̸=t0 Ht, HKAux);

H∗ = β · HAux + α · HMax;

Choose (w0, v0, Y0) such that γ ≤ Zt0
k0

and which provides us with the smallest

value H∗; (I2)

Update:

MARKt0
k0

is set to 1; COUNT and NMARKt0 are decremented by 1;

Bk0 is set to Bk0 − γcp0(k0),k0
+ v0;

Ht0 is set to HKAux and H is set to HAux;

Zt0
k0

is decremented by γ and ∆t0
k0

becomes (w0, v0, Y0).

We now provide some details for instructions (I1) and (I2).

Instruction (I1)

• Choice of t0: We target t0 such that NMARKt0 ̸= 0 and Ht0 = MaxtHt; In case
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such a value t does not exist, then we pick up t0 randomly;

• Choice of k0: Once t0 has been chosen, we target k0 such that MARKt0
k0

= 0 and

that p0(k0) is the largest possible.

Instruction (I2)

• The 3-uple (w∗, v∗, Y∗) may be null, which yields no improvement of our current

solution (Z, ∆).

We may implement a variant of the algorithm H_Bot_Second_Step by making the main

loop depend on a STOP signal, activated when no (t, k) pair exists which induces an

improvement of the solution according to above instruction (I2).

4.5 Numerical experiments

Recall that the fleet size (= number of robots) is given by HMax = maxt ∑k,p p · Xt
pk

and the number of trips by H = ∑t,p,k p · Xt
pk. The objective is to minimize Cost =

α · HMax + β · H.

Purpose: We follow here a two-sided purpose. On one side, we want to observe some

characteristics of the solutions of our Multi_Bot problem, namely, the size HMax of the

robot fleet with regard to Cost. On the other side, we are interested by the performances

of the algorithm H_Bot, and more specifically to its ability to compute good solutions

(gap to optimality).

Technical Features: Algorithms were implemented in C++, on PC AMD Opteron 2.1GHz,

while using gcc 4.1 compiler. On the other hand, to solve the ILP a program was written

in Python and solved using PuLP library. PuLP is an application programming interface

and it can generate data file created in the Mathematical Programming System (MPS)

format or Linear Programming (LP) file and call one of the solvers (GLPK, CBC, CPLEX)

to solve linear problems. In the program we use so the default solver is CBC (Coin-or
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branch and cut).

Instances: We have generated the instances as follows:

• Decide about T, P, K;

• Randomly select α, β in J0; 1000K. If α ≤ T · β

2
, set β = 0. We do this in order to

have HMax not negligible compared to H, otherwise the problem becomes trivial.

• For every k:

– Select capacities cpk as follows for every p:

* Randomly select the mean value cmean
k (of coefficients cpk) in J1; 11K;

* Randomly select coefficient cpk in J0; 2cmean
k + 1K;

* Normalize capacities: cpk ← cpk ·
cmean

k P
∑p cpk

;

* cpk ← round(cpk); (rounded to the nearest whole number)

* cmean
k ← round

(
1
P ∑p cpk

)
.

– Randomly select a coefficient J ∈ J0; 10000K. Select demand coefficient nk as

nk =
⌊

P · J · cmean
k

⌋
.

For the purpose of this chapter, we present 20 instances, whose characteristics are sum-

marized in Table 6.

Outputs: For every instance, we compute:

• Characteristics of the solutions:

– HMax = Fleet size

– H = Number of trips

– Cost = α · HMax + β · H

• Behavior of the Algorithm H_Bot:
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Table 6: Instances

Instances α β T P K cmean
k

a J

1 642 21 2 2 2 7;11 8

2 791 4 4 2 2 7;10 848

3 465 95 8 2 2 9;2 601

4 344 0 16 2 2 1;1 945

5 847 2 32 2 2 2;3 286

6 161 0 64 2 2 8;9 273

7 833 0 128 2 2 7;4 816

8 60 0 256 2 2 5;6 233

9 428 0 512 2 2 7;8 161

10 33 0 1024 2 2 7;3 23

11 872 0 2048 2 2 1;5 411

12 981 0 4096 2 2 5;9 8544

13 218 16 2 2 4 4;2;7;3 80

14 443 12 2 2 6 2;3;6;7;10;11 89

15 857 96 2 4 4 8;6;7;3 51

16 90 0 4 4 4 3;7;7;8 41

17 116 74 2 4 6 5;3;6;7;1;11 42

18 328 65 4 4 6 9;1;2;7;5;8 9

19 234 72 6 4 6 4;9;2;9;1;10 6

20 545 71 2 6 6 1;7;4;1;6;3 22

a cmean
k are listed by semicolon in order: cmean

1 ; cmean
2 ; etc.

– GAP_cost = Cost(H_Bot)−Cost(PuLP)
Cost(PuLP) : Gap to optimality with respect to cost

– GAP1_cost = Gap to optimality with respect to cost when we restrict ourselves

to the first step of H_Bot

– GAP_fleet = HMax(H_Bot)−HMax(PuLP)
HMax(PuLP) : Gap to optimality with respect to fleet

size

– GAP1_fleet = Gap to optimality with respect to fleet size when we restrict

ourselves to the first step of H_Bot
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The results provided by our experiments may be summarized into the flowing Tables 7,

8.

Table 7: Results cost

Instances Cost(PuLP)b Cost(H_Bot) Cost(1_Step) GAP_cost GAP1_cost

1 12975 12975 12975 0% 0%

2 857022 857022 857026 0% 0.001%

3 499705 499705 499705 0% 0%

4 81872 81872 81872 0% 0%

5 32780 32780 32780 0% 0%

6 4025 4025 4025 0% 0%

7 29155 29988 29988 3.0% 3.0%

8 300 300 300 0% 0%

9 856 856 856 0% 0%

10 33 33 33 0% 0%

11 1744 1744 1744 0% 0%

12 - 11772 11772 -% -%

13 100280 100280 100280 0% 0%

14 324086 324086 324086 0% 0%

15 706450 707307 707445 0.121% 0.141%

16 31320 31320 31320 0% 0%

17 273768 273884 273884 0.042% 0.042%

18 54096 54096 55668 0% 3.0%

19 - 24894 25200 -% -%

20 - 671744 671744 -% -%

b the dash means that no result has been obtained after one hour of computa-

tion.

For 14 of the 20 instances, the H_bot algorithm finds the optimal solution after the first

step of the algorithm. For 3 other instances, it does not find the optimal solution and

the cost gap does not exceed 3 %. The fleet gap does not exceed 4 % after the first step

and 3 % after the second step. For the last 3 instances, the exact method does not find

the optimal solution in less than one hour.
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Table 8: Results fleet

Instances HMax(PuLP)c HMax(H_Bot) HMax(1_Step) GAP_fleet GAP1_fleet

1 19 19 19 0% 0%

2 1062 1062 1062 0% 0%

3 408 408 408 0% 0%

4 238 238 238 0% 0%

5 36 36 36 0% 0%

6 25 25 25 0% 0%

7 35 36 36 3.0% 3.0%

8 5 5 5 0% 0%

9 2 2 2 0% 0%

10 1 1 1 0% 0%

11 2 2 2 0% 0%

12 - 12 12 -% -%

13 436 436 436 0% 0%

14 694 694 694 0% 0%

15 710 711 711 0.141% 0.141%

16 348 348 348 0% 0%

17 1037 1038 1038 0.096% 0.096%

18 92 92 96 0% 4.0%

19 - 39 40 -% -%

20 - 978 978 -% -%

c the dash means that no result has been obtained after one hour of computation.

Note that we can build instances with larger gaps. For instance, take two configurations

of robots (p ∈ {2, 3}), two types of loads (k ∈ {1, 2}) and two periods (T = 2). Loads

of type 1, 2 correspond to respectively small (S) and medium (M) loads. The capacities

are: There are 3 loads of type 1 (n1 = 3) and 2 loads of type 2 (n2 = 2). The objective

is to minimize the number of robots (α = 1, β = 0). A 2-bot can transport only a small

load (c21 = 1, c22 = 0) and a 3-bot can transport only a medium load (c31 = 1, c32 = 0).

Then HMax(PuLP) = 6, HMax(H_Bot) = 7 and GAP_cost = GAP_fleet ≈ 16.7%. Figure 37

represents the Gantt chart for this example. On the ordinate axis is the reference number
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of the bots, on the abscissa axis is the reference number of the period. The load type the

robot is carrying is indicated in each rectangle.

(a) Optimal solution (b) H_Bot solution

Figure 37: Gantt chart for simple example with gap 17%.

Conclusion

We have proved that the problem is strongly NP-complete by reducing it to the Bin

Packing problem. We have showed that in three special cases (single period, single load

type or single configuration), the problem can be solved in polynomial time with appro-

priate dynamic programming algorithms. We have then derived from our theoretical

results an efficient heuristic algorithm for the general case. A numerical study shows

that the heuristic algorithm can successfully be applied even for large instances and has

good performances on the tested instances.
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In this chapter we consider the reconfigurable robots in the context of the problem of

scheduling with the objective to minimize the time to execute all transportation tasks.

We propose an integer linear programming formulation for the problems with or with-

out reconfiguration. We show that reconfigurability can reduce significantly the execu-

tion time.

5.1 Problem description

We consider a fleet of N mobile bots capable of cooperating to transport loads. A p-bot

is a set of p bots that are aggregated to carry loads (p = 1, · · · , P). There are nk loads

of type k to be transported (k = 1, · · · , K). A p-bot is able to carry cpk loads of type k.

Therefore the poly-robots have a capacity that depends on their configuration and the

load type. All loads are to be transported from one point to another in the warehouse.

The time horizon is divided into T periods (t = 1, · · · , T). During a period, a p-bot is

able to perform a round trip and carry a maximum of cpk loads of type k. The duration

of a round trip is independent of the configuration and load type.

The goal is to minimize the makespan, i.e. the time to transport all loads from one place

of the warehouse to another. We examine two scenarios. In the first scenario, recon-

figuration is allowed, and the configurations can be modified at the beginning of each

period. In the second scenario, reconfiguration is not permitted and the configurations

are determined for the whole time horizon. The minimum makespan with allowed

reconfiguration is denoted TR. The minimum makespan without any reconfiguration

during the process is denoted TW . To have a feasible solution of this problem, T and N

must be sufficiently large.

5.2 Integer linear programming formulation

In this section, we present ILP formulations for the two scenarios. We first assume that

reconfiguration is allowed. We use the following decision variables:

• Nt
pk : number of p-bots transporting loads of type k in period t;

• αt : binary variable equal to 1 if any load is transported in period t and to 0

otherwise.
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TR = min
T

∑
t=1

αt (5.1)

subject to :
T

∑
t=1

P

∑
p=1

cpk · Nt
pk ≥ nk ∀k (5.2)

K

∑
k=1

P

∑
p=1

p · Nt
pk ≤ N · αt ∀t (5.3)

αt+1 ≤ αt t = 1, · · · , T − 1 (5.4)

Nt
pk ∈N, αt ∈ {0, 1} ∀p, ∀k, ∀t (5.5)

We now comment each line of the above ILP:

• Objective function (5.1): ∑T
t=1 αt represents the makespan;

• Constraint (5.2): all loads of all types must be transported;

• Constraint (5.3): the number of bots used in each period must not exceed the fleet

size;

• Constraint (5.4): if period t is inactive, then period t + 1 is inactive.

When reconfiguration is prohibited, we can simply add the following constraint to the

above ILP:

K

∑
k=1

Nt
pk ≥

K

∑
k=1

Nt+1
pk t = 1, · · · , T − 1, p = 1, · · · , P (5.6)

This constraint ensures that there are less p-bots used in period t + 1 than in period t,

which ensures that there is no reconfiguration.

5.3 Reconfigurable vs non-reconfigurable fleet

In this section, we compare the makespans of the two scenarios. Consider the following

simple example based on the situation described in Figure 1.

• The first load type corresponds to a box and will be referred to as Small (S);

• The second load type corresponds to a pallet and will be referred to as Large (L);
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• A 1-bot can carry one box at a time;

• A 4-bot can carry either one pallet at a time or one box at a time (we assume that

each box is in a different location and there is no gain to organize a tour);

• There are N = 4 bots;

• There are 1 load of type Large and 4 loads of type Small

Table 9 summarizes the capacities of the different configurations.

Type of load
Configuration

Small Large

1-bot 1 0

4-bot 1 1

Table 9: Capacity matrix for 2 types of loads

The optimal solutions for both strategies are shown as Gantt charts in Figure 38. When

reconfiguration is allowed, a 4-bot transports a load of size L in period 1 and then splits

into four 1-bots in period 2 to transport four loads of size S. The makespan is TR = 2.

When reconfiguration is not allowed, the 4-bot transports the load of size L in period 1,

then the loads S in periods 2, 3, 4, 5. The makespan is TW = 5. We conclude that the

strategy with reconfiguration is 2.5 times faster than the strategy without reconfigura-

tion.

(a) Without reconfiguration (b) With reconfiguration

Figure 38: Gantt chart for an example with two types of loads

More generally, we can establish the following theorem that compares the makespan

with reconfiguration to the makespan without reconfiguration.
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Theorem 5.3.1. Let n be the total number of loads to be transported (n = ∑k nk). When n ≥ 2,

we have

1 ≤ TW

TR
≤ n

2
. (5.7)

Proof. We distinguish two cases.

1. TR ≥ 2

We have TW ≤ n since we transport at least one load per period.

1 ≤ TW

TR
≤ n

TR
≤ n

2
. (5.8)

2. TR = 1

Reconfiguration is not used and TW = TR. Since n ≥ 2, it follows that
TW

TR
= 1 ≤ n

2
.

By generalizing the example of Figure 38, we can easily show that the upper-bound is

tight. We consider n loads, n1 = n − 1 loads of type 1, n2 = 1 load of type 2, two

configurations (1-bot and (n− 1)-bot), c11=1, c12 = 0, c(n−1),1 = 1, c(n−1),2 = 1 and a fleet

of N = n− 1 bots. Then we have TR = 2, TW = n. Hence TW =
n
2
· TR.

Conclusion

We have studied the problem of scheduling a fleet of reconfigurable robots with the

objective to minimize the makespan. We have proposed a mathematical formulation of

the problem which can be solved with a linear optimization solver. We have showed

that reconfigurability can reduce drastically the makespan when boxes are located in

different locations.
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Conclusion and perspectives

The presented work considers the problem of load transportation by poly-robots in

the context of intralogistics. The poly-robots in this dissertation are reconfigurables,

that is they consist of elementary robots that can be assembled in different ways over

time to adapt to the loads to be transported. Each poly-robot configuration has its

own transportable load capacity and can be reconfigured after each transportation. The

interest of the work is to find out how to determine the optimal number of elementary

robots and which configurations is more profitable to use at a given time.

As shown in the study of the literature, over the past decade there has been a signifi-

cant increase in the use of robots in warehouses, freeing operators from tedious tasks.

While reconfigurable robots offer several advantages for warehouse transport opera-

tions. Firstly, the means of transport can be dynamically adapted to the load size or

mass, which prevents to use oversized poly-robots and allows to re-affect the available

elementary robots. Secondly, poly-robots can fit any warehouse, whatever the rack type,

aisle width or door width. The elementary robots are interchangeable, which improves

failure tolerance. In addition, a poly-robot has mechanical characteristics that make it

more stable and maneuverable than a forklift. However, since this branch of robotics is

only at the stage of its development, the question of the size of the fleet of reconfigurable

robots has not been considered in the literature, despite its huge potential.

Our contributions on cooperative and reconfigurable models

First of all, in Chapter 2, a comparison of the fleet of robots without cooperation and

with cooperation was made for homogeneous loads. In the first case, robots work alone

and the minimum number of robots can be found using an analytical formula. In the
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second case, the robot fleet consists of 1-bots and p-bots (only one possible configura-

tion). The constructed mathematical model allows us to determine the most profitable

configuration (number of robots that should cooperate) for the minimum cost of trans-

portation. If the capacity of p elementary robots is smaller than the capacity of a single

p-bot configuration, then using exclusively p-bot configurations or with a mix of 1-bots

can lead to a significant cost decrease. Otherwise, it is optimal to use exclusively single

robots. With an infinite horizon problem, that is a fleet of vehicles operating indefinitely,

the models lead to simpler results.

In Chapter 3 we have added the ability to reconfigure the robots. Mathematical pro-

grams were obtained for load transportation with and without the possibility of recon-

figuration. This allows us to find out which configuration of the robot in which period

and for the transportation of which type of load we will use to minimize the transporta-

tion cost. Thanks to the programs, we can compare the cost of the fleet with and without

reconfiguration. The reconfigurability can divide the minimum number of elementary

robots up to a factor of K (with K the number of load types). For the special case of

two types of loads and two configurations of robots, the gain in number of robots is

limited by p (with p the number of elementary robots in the p configuration) but may

be significant for small fleets. For the second special case, with unit capacities, the gain

in number of robots is limited by K− 1 (with K the number of load types). In a variant

where the demand is per period of time and not on the whole time horizon, the gain in

number of robots is not bounded.

Seeing a mathematical problem, the question of complexity is posed and considered in

Chapter 4. The described problem of a reconfigurable robot fleet is strongly NP-Hard. In

three special cases of single period, single load type or single configuration, the problem

can be solved in polynomial time with appropriate dynamic programming algorithms.

An efficient heuristic algorithm for the general case can successfully be applied even for

large instances and has good performances on the tested instances.

Eventually, in Chapter 5, we also focused on the issue of minimizing transportation time.

Our mathematical programs of the problem can compare the minimum transport time

with and without the possibility of reconfiguration. The reconfigurability can reduce

drastically the time to transport all loads from one place of the warehouse to another,

when boxes are located in different locations.
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Future research directions

This dissertation marked the beginning of a new branch of research in intralogistics

by considering a fleet of reconfigurable robots. The models that we considered are

naturally simplified compared to real situations. Several lines of research could be thus

proposed by tackling more general problems, where some hypotheses of our work are

weakened. As an example, an interesting question is the handling of traffic jams in

the robot fleet. Another one would consist in examining of options when the same

robot configuration can have several different transport capacities and when a p-bot can

simultaneously transport several types of loads. Finally, it would be also of interest to

consider stochastic processes such as robot breakdowns, demands and transportation.

We terminate this dissertation by focusing on two specific lines of research which sound

challenging.

Different transportation times

We focus on a first extension of our initial model: having different locations for un-

loading areas. Each location could be at a different distance from the loading area, and

accordingly has its own transportation time.

Initially, for each type of load, the transportation time lasted one period. We propose a

new model where some loads need a larger transportation time, i.e. of several periods.

This new characteristic is justified by at least two reasons. First, some loads might be

heavy or voluminous and, hence, make the speed of the robot which carries it decrease.

Second, the unloading area of some loads could be farther from the starting point. As

a consequence, the travel time of the robot to transport these loads is increased. In

fact, we propose an even more general model: the transportation time of some load can

also depend on the configuration which carries it. For instance, some load could be

transported in two periods with a 10-bot but in one period with a 4-bot - due to the fact

that a 10-bot are heavier and more difficult to guide.

We remind that the initial entries of the model in Chapter 3 were parameters T, K, P, α, β,

the number of loads of each type nk and the capacities cpk. We add a new entry τpk which

is the number of periods of time needed to transport loads of type k by a p-bot.
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A natural question is whether the techniques employed to tackle the initial problem

could fit this more general version. Obviously, some variables have to be modified from

the initial model. Indeed, when all transportation time used to be of one period and

everything could be reconfigured at each step, variable Nt
pk denoted the number of p-

bots carrying loads of type k during period t. It was sufficient to describe entirely the

state of the warehouse. Now, we see that these p-bots, when τpk > 1, can be at different

step of their travel: either leaving the loading area at period t, being at the middle of

their trip or arriving. For this reason, we fix a new variable Ñt
pk which corresponds to

the number of p-bots leaving the loading area at period t in order to transport loads

of type k. We fix Tpk = T − τpk + 1 as the limit departure time for a p-bot with loads

of type k. Hence, the total number of transported loads of type k is ∑P
p=1 ∑

Tpk
t=1 cpk · Ñt

pk.

In summary, an ILP formulation of this problem, with variables N (total number of

elementary robots) and Ñt
pk, can be formulated.

min αN + β
K

∑
k=1

P

∑
p=1

Tpk

∑
t=1

p · τpk · Ñt
pk

subject to :

P

∑
p=1

Tpk

∑
t=1

cpk · Ñt
pk ≥ nk ∀k

N ≥
K

∑
k=1

P

∑
p=1

t

∑
s=[t−τpk ]++1

Ñs
pk t = 1, · · · , T

N ∈N, Ñt
pk ∈N ∀k, ∀p, t = 1, · · · , T

Complexity of the problem with 2 load types

Our last direction of research concerns the complexity of some specific cases of the

reconfigurable model. In this dissertation, we showed that the Multi_Bot problem is

strongly NP-complete. But, meanwhile, we identified exact polynomial-time algorithms

for some cases, in particular when K = 1 (one type of load) but also when T = 1 (only

one period) and P = 1 (one configuration). A natural question following our work is to

determine where is the frontier between P and NP-hardness on the Multi_Bot problem.

Let us focus on one particular question of this context: what is the complexity of the

Multi_Bot problem when K = 2? We thus consider a fleet of poly-robots which must
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carry 2 types of loads. There are two ways to approach such question: trying either

to design an exact polynomial-time algorithm for it or to build a reduction from some

(strongly) NP-hard problem.

Our first idea is to consider the reduction presented in Theorem 4.2.4, page 73, from

Bin_Packing to the general Multi_Bot problem. We wonder whether it could be adapted

so that the case K = 2 could be proven strongly NP-hard.

By applying exactly this reduction, we prove in fact that the case K = 2 of the Multi_Bot

problem is harder than Bin_Packing_2, which corresponds to Bin_Packing where the

items admit only 2 distinct weights. Filippi and Agnetis [2005] showed that Bin_Packing_2

is in P. Therefore, the reduction proposed in Theorem 4.2.4 does not allow us to prove

that Multi_Bot with K = 2 is strongly NP-hard. Furthermore, it was proven recently

[Goemans and Rothvoss, 2020] that Bin_Packing with a constant number of items (not

only 2 but also 3, 4, 5,. . . ) is in P. As a consequence, there is no hope that this reduction

could help us to fix the complexity. On one hand, the observations made above imply

that a trickier reduction would be needed if the case K = 2 is strongly NP-hard. On the

other hand, they give us some hope to identify an exact polynomial-time algorithm. For

the case K = 1, we proposed a dynamic programming algorithm (Section 4.3.3, page 78).

A first approach could be to adapt this algorithm for the case K = 2.

The states of the DP algorithm proposed for K = 1 were made up of two components:

value W, which represents the contribution of the p-bots with p ̸= p0(k), and value EX

which represents the contribution of the most efficient configurations p0(k). Thanks to

Lemma 4.2.1, we know that keeping a similar value W in states is certainly a good idea

as it will be polynomially bounded. Nevertheless, our analysis of value EX for the case

K = 1 does not hold anymore now for K = 2. It seems that there is considerable effort

to do in order to adapt this idea to the case K = 2.

In brief, starting from the DP algorithm for case K = 1 and modifying the state space in

a suitable way would be our first approach to tackle the case K = 2.
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