
HAL Id: tel-04457255
https://theses.hal.science/tel-04457255

Submitted on 14 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to white-box cryptography : models and
algebraic constructions

Pierre Galissant

To cite this version:
Pierre Galissant. Contributions to white-box cryptography : models and algebraic constructions.
Cryptography and Security [cs.CR]. Université Paris-Saclay, 2023. English. �NNT : 2023UPASG099�.
�tel-04457255�

https://theses.hal.science/tel-04457255
https://hal.archives-ouvertes.fr

Contributions to white-box cryptography:
models and algebraic constructions
Contributions à la cryptographie boîte blanche : modèles et

constructions algébriques

Thèse de doctorat de l'université Paris-Saclay

École doctorale n°580, Sciences et Technologies
de l’Information et de la Communication (STIC)

Spécialité de doctorat : Informatique
Graduate School : Informatique et Sciences du Numérique

Référent : Université Saint-Quentin en Yvelines

Thèse préparée au LMV (Université Paris-Saclay, UVSQ, CNRS)
sous la direction de Louis Goubin, Professeur, Université Versailles Saint-Quentin

Thèse soutenue à Versailles, le 21 décembre 2023, par

Pierre Galissant

Composition du Jury
Membres du jury avec voix délibérative

Jean-Sébastien CORON
Professeur, Université du Luxembourg Président

Pierre-Alain FOUQUES
Professeur, Université Rennes 1 Rapporteur & Examinateur

Marine MINIER
Professeur, Université de Lorraine

Rapporteure & Examinatrice

Nadia EL MRABET
Professeure, École des Mines de Saint-Étienne Examinatrice

Henri GILBERT
Responsable du laboratoire de cryptographie,
ANSSI

Examinateur

Matthieu RIVAIN
Senior Cryptography expert Examinateur

Titre : Contribution à la Cryptographie Boîte Blanche : Modèles et Constructions Algébriques

Mots clés : Cryptographie Boîte Blanche - Implémentation - Sécurité Logicielle

Résumé : Du fait de la démocratisation de
technologies telles que le paiement par mobile ou
l'essor des technologies basées sur la blockchain, les
besoins d'implémentations sécurisées dans le modèle
boîte blanche d'algorithmes standardisés sont de plus
en plus conséquents dans l'industrie. Malgré ces
besoins, très peu de nouveaux designs sont proposés
dans la littérature. Pour ne pas avoir à utiliser des
implémentations aux designs non publics, de
nouvelles techniques d'implémentations doivent être
proposées et étudiées.

Ce manuscrit commence par un guide pour la
cryptographie boîte blanche. Son but est de réviser,
préciser ou corriger les modèles boîte blanche, les
notions de sécurité et les constructions qui ont
émergé dans l'état-de-l'art depuis l'introduction du
concept. Notamment, nous clarifions les modèles
'Remote-Access' et 'Hardware-Module' et les
contextualisons dans la littérature cryptographique au
sens large.

Nous explorons ensuite les implémentations boîte
blanche de l'AES en synthétisant tout d'abord les
implémentations connues et leurs failles. Nous
proposons ensuite une nouvelle implémentation de
l'AES pour laquelle nous proposons une analyse de
sécurité et un challenge. La dernière partie de cette
thèse est consacrée à l'étude de l'implémentation
des primitives à base de cryptographie multivariée.
Après une introduction succincte à la cryptographie
multivariée, nous motivons l'utilisation de la
cryptographie multivariée dans le modèle boîte
blanche. Nous proposons ensuite la première
implémentation boîte blanche de la famille de
signature HFE, pour laquelle nous proposons une
analyse de sécurité et un challenge. Enfin, pour
proposer d'autres idées basées sur la cryptographie
multivariée, nous proposons un chiffrement à flot
incompressible basé sur QUAD.

Title : Contributions to White-Box Cryptography: Models and Algebraic Constructions

Keywords :White Box Cryptography - Implementation - Software Security

Abstract : Due to the democratization of technologies
such as mobile payment or the soaring of blockchain
technologies, there is a growing need for secure
implementations of standardized algorithms in the
white-box model. In spite of this, there are too few
secure designs published in the literature. To avoid
relying on hidden design implementations to provide
any security in the white-box model, more
implementations designs and techniques have to be
explored.

This thesis begins with a guide to white-box
cryptography. Its goal is to revise, precise or correct
white-box models, security notions and
constructions that have emerged in the state of the
art since the introduction of the concept. We notably
clarify the Remote-Access White-Box model and the
Hardware Module White-Box and contextualize them
in the general cryptographic literature.

We then explore white-box implementations of the
AES by first synthesizing the known
implementations techniques and their flaws, and
then proposing a new solution based on polynomial
representations, for which we propose a security
analysis and a challenge implementation. The last
part of this thesis focuses on the implementation of
multivariate cryptographic primitives in the
white-box model. After introducing succinctly
multivariate cryptography, we motivate the study
of this branch of public key cryptography in the
white-box context. We propose the first
implementation technique of the HFE family of
signature algorithms, for which we propose an
extensive security analysis and a challenge
implementation. Finally, to propose other
perspectives on multivariate white-box
cryptography, we also propose an incompressible
stream cipher adapted from QUAD.

Remerciements :

Tout d'abord, je souhaiterais remercier Louis Goubin, mon directeur de thèse, de
qui j'ai tant appris et qui m'a soutenu à travers les moments les plus di�ciles de cette
thèse. Merci de m'avoir donné l'opportunité de démarrer cette aventure et donné goût
à la cryptographie. Merci pour toutes les discussions que nous avons pu avoir, qu'elles
concernent les mathématiques ou pas. C'est une des choses qui me manqueront le
plus.

J'aimerais aussi remercier Marine Minier et Pierre-Alain Fouques d'avoir accepté
d'être mes rapporteurs d'avoir accompli leur tâche avec attention et intérêt. Je remercie
aussi Jean Sébastien Coron, Nadia El Mrabet, Henri Gilbert et Matthieu Rivain d'avoir
fait partie de mon jury.

Comment ne pas remercier les membres de l'équipe CRYPTO de Versailles pour
tout ce qu'ils m'ont apporté et d'avoir fait du laboratoire un environnement de vie
des plus agréables. Merci donc à Axel, Edouard et Yann d'avoir été là dès le début,
de m'avoir montré tant de choses et de m'avoir compris quand il le fallait. Merci
Michael pour les discussions toujours passionnantes, passionnées et éclectiques : je
sais maintenant que le matelas est l'investissement le plus rentable à faire dans sa vie.
Merci Christina pour les bons conseils et le soutien pendant les moments di�ciles.
Je remercie les membres du bureau 309Amazing, Margot et Rachelle pour m'avoir
supporté et rendu ce bureau joyeux et chaleureux. Je remercie aussi les membres du
projet SWITECH avec lesquels j'ai pu travailler. Aleksei, Junwei et Matthieu, merci
pour les échanges toujours intéressants et le partage de vos connaissances.

Je tiens au passage à non-remercier le Covid, qui a décidé de nuire au début et à
la �n de cette thèse avec une attention particulière.

Il est impensable de ne pas remercier les amis qui m'ont soutenu pendant ces
années. Merci Doriann et Théo pour les maths, les bières, les jeux, les bières, les
randonnées, les bières et le reste. Merci Thomas, Lucien, Stefano et JB pour les
grandes bou�ées d'air frais en jouant à autre chose que LateX. Merci Jacky, d'être
toujours à l'écoute et disponible pour pourfendre des dragons, jouer aux vampires ou
construire des cabanes. Merci Guillaume d'être là depuis si longtemps avec un soutien
indéfectible et d'être un expert en diversions divertissantes.

Carole et Florent, merci de votre écoute, votre amour et votre soutien à toute
épreuve. Merci de m'avoir ramassé en (très) petits morceaux parfois. Merci Paul
d'être mon frère, tout simplement. Merci à mes grands-parents pour leur attention
constante et leur gentillesse. Merci à mes oncles, mes tantes, mes cousines et mes
cousins pour les moments de légèreté ensemble.

Les derniers mots de ces remerciements sont pour toi Claire. Merci pour tout, sans
toi je ne serais pas là.

2

Résumé Étendu :

Le but de la cryptographie est d'étudier la sécurité des communications et de
l'information. L'analyse de sécurité d'un cryptosystème dépend d'une clé secrète. Dans
les premières étapes de l'analyse de sécurité, le stockage et l'utilisation de la clé par un
cryptosystème sont omises par abstraction dans ce que l'on appelle le modèle boîte-
noire.

Si ce modèle est satisfaisant pour étudier la sécurité d'un algorithme à travers son
comportement entrée-sortie, ce n'est pas le cas lorsque l'algorithme est déployé sur un
hardware. En e�et, un adversaire peut alors récupérer des données physiques provenant
de l'exécution de l'algorithme, comme son temps de calcul ou sa consommation de
puissance. Ce modèle d'attaque est appelé modèle boîte-grise. L'étude de la sécurité
dans ce modèle est un sujet actif et bien étudié et les preuves de sécurité dans ce
modèle sont conditionnelles à certaines propriétés du hardware sur lequel l'algorithme
est déployé. La cryptographie boîte blanche a pour but de dépasser cette limite et
d'étudier la sécurité des algorithmes lorsqu'aucun hardware sécurisé n'est disponible.
Dans ce contexte, l'implémentation software est la dernière barrière entre la clé et un
adversaire boîte blanche, qui a un contrôle complet de l'implémentation.

Du fait de la démocratisation de technologies telles que le paiement par mobile
ou l'essor des technologies basées sur la blockchain, les besoins d'implémentations
sécurisées dans le modèle boîte blanche d'algorithmes standardisés sont de plus en
plus conséquents dans l'industrie. Malgré ces besoins, très peu de nouveaux designs
sont proposés dans la littérature. Par exemple, le problème initial d'implémentation de
l'AES est toujours ouvert après deux décennies et les récents e�orts de la communauté
cryptographique pour implémenter ECDSA se sont conclus par un échec. Pour ne pas
avoir à utiliser des implémentations aux designs non publics, de nouvelles techniques
d'implémentations doivent être proposées et étudiées.

Ce manuscrit commence par un guide pour la cryptographie boîte blanche. Son but
est de réviser, préciser ou corriger les modèles boîte blanche, les notions de sécurité et
les constructions qui ont émergé dans l'état-de-l'art depuis l'introduction du concept.
Dans le modèle boîte blanche standard - `Plain White Box Model' - nous révisons
les notions d'incompressibilité, notamment pour les signatures, les algorithmes à clé
publique ayant été peu étudiés dans la littérature. Nous exposons ensuite des liens entre
des notions classiques de cryptographie, telles que le chi�rement à clé publique et les
signatures basées sur l'identité, et les implémentations dans le modèle boîte blanche.
En�n, nous clari�ons deux modèles issus de la littérature, les modèles 'Remote-Access'
et 'Hardware-Module', et les contextualisons dans la littérature cryptographique au
sens large. Notamment, nous montrons à travers des exemples de l'état de l'art que
certaines de ces problématiques sont liées à celles rencontrées dans le domaine de
l'obfuscation indistinguable.

3

La seconde partie est consacrée à l'étude des implémentations d'AES en boîte
blanche. Nous proposons d'abord une synthèse des techniques de l'état de l'art ainsi
que de leur cryptanalyse historique. Nous proposons ensuite une implémentation de
l'AES dont le but est de résister aux attaques de type Linear Decoding Attack (LDA)
de degré supérieur. Cette technique est basée sur le rationnel d'encodage interne et
utilise une représentation polynomiale des calculs. La sécurité de l'implémentation est
ensuite estimée contre les attaques de l'état de l'art conditionnellement au degré de cer-
taines relations de décodage. Pour motiver l'étude de cette technique, nous proposons
une implémentation challenge. En�n, nous extrapolons une méthode d'implémentation
pour les algorithmes de type Substitution Permutation Network (SPN) appelée Ran-
domized Circuit Knitting (RCK). Pour illustrer sa versatilité, nous montrons comment
implémenter l'algorithme PRESENT dans le modèle boîte blanche avec RCK.

La dernière partie de cette thèse est consacrée à l'étude de l'implémentation des
primitives à base de cryptographie multivariée. Après une introduction succincte à la
cryptographie multivariée, nous motivons l'utilisation de la cryptographie multivariée
dans le modèle boîte blanche, notamment pour primitives fondées sur les problèmes
d'Isomorphismes de Polynômes (IP). Nous proposons ensuite la première implémenta-
tion boîte blanche de la famille de signature HFE. Cette technique repose sur le calcul
de multiples a�ne permettant d'inverser la clé publique d'HFE sans utiliser la trappe
traditionnelle. Après avoir étudié l'existence et la calculabilité des multiples a�nes en
fonction de divers paramètres, nous proposons une analyse de sécurité de notre im-
plémentation relative à une conjecture sur une variation du problème IP. En�n, pour
illustrer la �exibilité de la cryptographie multivariée, nous proposons un chi�rement à
�ot incompressible basé sur QUAD

4

Contents

Page

I A Guide To White-Box Cryptography 17

1 The White Box Model: History and Context 18
1.1 A Short Story of White-Box Cryptography 18
1.2 Motivations to the White-Box Model : Industrial and Societal Needs . 20

1.2.1 Digital Rights Management 20
1.2.2 Security of Mobile Devices . 20
1.2.3 Cryptocurrencies and blockchain technologies. 21
1.2.4 Mass Surveillance and Malicious Hardware 22
1.2.5 Ecological Concerns . 23

1.3 Formalization of the Context . 24
1.3.1 Programs . 24
1.3.2 White-Box Compiler . 25

1.4 Hidden and Open Designs, Chosen or Fixed Algorithms 25
1.4.1 What do hidden designs o�er ? 26
1.4.2 Choosing the algorithm to have better implementations 27

2 The Plain White-Box Model 28
2.1 What is it ? For What use cases ? 28
2.2 Security Notions . 29

2.2.1 Unbreakability . 29
2.2.2 Incompressibility . 34
2.2.3 One-Wayness . 37

2.3 What do we know about these notions 38
2.3.1 Incompressible Structures . 38
2.3.2 Links with Identity-Based Cryptography 39
2.3.3 Links with Cryptographic Obfuscation 42

2.4 Discussing an Impossibility Result . 45

5

CONTENTS

3 Variations of the Plain White-Box Model: The Remote Access White-
Box Model and Hardware-Module White-Box Model 46
3.1 The Remote Access White-Box Model 47

3.1.1 Security Notions . 48
3.1.2 A Lack of Benchmarks . 51

3.2 The Hardware Module White-Box Model 51
3.2.1 Security Notions . 53
3.2.2 Examples of Constructions . 55
3.2.3 A Lack of Metrics, Again . 58

4 Generic Attacks in the White-Box Model 59
4.1 Formalizing the framework of automated attacks 60
4.2 DCA . 61

4.2.1 Establishing Probability of Success 62
4.2.2 Countermeasures . 63

4.3 Collision Attack . 64
4.3.1 Probability of Success of the Attack 65
4.3.2 Countermeasures . 66

4.4 LDA . 66
4.4.1 Rationale of the Attack . 66
4.4.2 Complexity and Probability of success 67
4.4.3 Countermeasures . 68

4.5 BCA . 69
4.5.1 Estimating the Success of the Attack 70
4.5.2 Countermeasures . 70

4.6 DFA . 70

II Implementation of AES in the White-Box Model 72

1 State-of-the-art : Implementing the AES in the White-Box Model 73
1.1 Description of the AES-128 Primitive 73
1.2 State-of-the-Art of the Table Based Rationale 76

1.2.1 The Seminal Chow et al. Construction 77
1.2.2 Chow et al. AES implementation 79
1.2.3 Cryptanalysis . 80
1.2.4 Upgrade and Attacks . 83

1.3 A State of the art of Polynomial-Based Implementations 87
1.3.1 Bringer et al. Construction 87
1.3.2 Rasoamiaramanana et al. Construction 92

1.4 Synthesis of Security of White-Box implementation of the AES 95

6

CONTENTS

2 A SPN implementation Technique: Randomized Circuit Knitting 99
2.1 The AES-RCK Implementation . 99

2.1.1 Links with previous works . 99
2.1.2 Rationale of the Construction 99
2.1.3 Preliminaries . 100
2.1.4 Our Implementation . 102
2.1.5 Correctness and Size of the Implementation 107

2.2 Security Analysis . 110
2.2.1 Against LDA . 111
2.2.2 Against DCA . 112
2.2.3 Against MIA and Collision Attacks 113
2.2.4 Against BCA . 114
2.2.5 Against the BGE Attack . 114
2.2.6 Variations of the Challenge Implementation 114

2.3 The Randomized Circuit Knitting Rationale of Design 115
2.3.1 A Pre-processing Step . 115
2.3.2 Randomized Expansion . 116
2.3.3 Knitting Phase . 116
2.3.4 Using RCK on PRESENT . 116

III Multivariate Cryptography in the White-Box Model 121

1 Introduction to Multivariate Cryptography and HFE 122
1.1 Introduction to Multivariate Cryptography 122

1.1.1 Multivariate Cryptography Rationale 123
1.1.2 The PoSSo Problem . 124
1.1.3 Trapdoor Techniques . 125

1.2 A Short Plea for White-Box Multivariate Cryptography 126
1.3 Usual Attack Techniques Against Multivariate Cryptography 126

1.3.1 Direct Inversion Attack . 127
1.3.2 Rank Attacks . 127

1.4 The Hidden Field Equation Familly 127
1.4.1 Description of HFE . 127
1.4.2 Perturbations . 128
1.4.3 The C∗ and D∗ schemes . 129

1.5 Attacks on HFE variants . 130
1.5.1 Message Recovery Attacks . 130
1.5.2 Key Recovery Rank-Attacks 131
1.5.3 Di�erential Attacks . 132

7

CONTENTS

2 A�ne Multiple Implementation of HFE 133
2.1 The Technique . 133

2.1.1 A�ne Multiple Attacks . 133
2.1.2 Rationale of the construction 134
2.1.3 Construction for nude Public-Keys 134
2.1.4 Dimensioning of the construction 138
2.1.5 Using Perturbations . 141

2.2 Security analysis . 145
2.2.1 Attack by Reduction to a Weaker HFE Instance 145
2.2.2 The Implementation as a (da� + 1)-IP1S Problem 146
2.2.3 Generic White-Box Attacks on Multivariate Cryptography . . . 148
2.2.4 Conclusion of the Analysis of Security 149

2.3 Instantiations . 151
2.3.1 Nude HFE . 151
2.3.2 Instances close to pC∗− . 152
2.3.3 Instances close to C∗+̂− . 153
2.3.4 Instances close to D∗+̂− . 154

3 Another Multivariate Scheme and Some Perspectives 156
3.1 Introducing IP-like problems for White-Box Cryptography 156
3.2 An example : A Stream Cipher in the white-box model 157

3.2.1 Description of QUAD . 157
3.2.2 A variation of QUAD with small representation 158

8

General Introduction: Towards

White-Box Cryptography

9

CONTENTS

What is Cryptography ?

Our society relies more and more on digital communication for most of its activities.
Humans now share infomation in their everyday life through many devices and com-
munications lines. In central places of our society, such as hospitals, banks and social
networks, huge amount of sensitive data are stored and exchanged. The security of
this information is central for the good functioning of our society and the well-being
of individuals. It is therefore crucial to establish reliable methods to secure data: this
is the goal of cryptography.

Cryptography is usually de�ned as the science of protecting communication and
information in the presence of a malicious adversary. The two parties communicating
are often abstracted as Alice and Bob and their adversary Charlie. For a better �ow
of this short introduction to cryptography, we will assume that Alice and Bob want to
con�dentially exchange information over a canal. Using cryptography, Alice and Bob
will apply cryptographic algorithms to the data they exchange. Such algorithms are
based on mathematical structures that we assume the reader is familiar with.

In a cryptographer's toolbox, Alice and Bob would need an encryption scheme to
ensure the con�dentiality of their communication. If Alice wants to send a message
to Bob, we assume that they share a secret piece of information called the secret key.
With the secret key, Alice can encrypt her message with an encryption algorithm that
will render it incomprehensible to Charlie. Bob can then decrypt the encrypted message
send by Alice to recover the message. In cryptographic jargon, the original message
of Alice is called plaintext and the encrypted message the ciphertext. Formally an
encryption scheme is a set of three algorithms G,E and D such that :

� G is the key generation algorithm. It generates a private-key k.

� If a user knows k, the encryption algorithm E provides a ciphertext c = Ek(m)
of a message m.

� The decryption algorithm D uses the key k to decrypt the ciphertext so that:

c = Ek(m) ⇐⇒ Dk(c) = m

The goal for us is now to very succinctly overview the methods available to build
such algorithms and how to establish their security.

Public Key and Private Key Cryptography

Cryptography has historically been considered in the symmetrical setting, that is, a
setting where Alice and Bob both have a secret key that allows them to use crypto-
graphic algorithms. However, Di�e and Hellman showed in 1976 that it was in fact

10

CONTENTS

possible to study cryptography in an asymmetric setting. In this setting Alice owns
a private-key and can broadcast its public key. With it, Bob can communicate with
Alice, but Alice only can decrypt Bob's message.

The historical context also made these two settings di�erent in the techniques they
use to provide security. In the Private-Key setting, algorithms are composed of several
rounds of a function that has, paraphrasing Shannon, local di�usion and confusion
properties. The DES is the �rst standardized algorithm of this kind using the Feistel
Network structure, but Substitution Permutations Networks (SPN) like the AES also
share this school of design. We describe in more details the AES in the second part of
this thesis. By design, these algorithms are fast and simple to evaluate on hardware.

The security of private-key algorithms is evaluated by submitting them to the best
known attack. The state-of-the-art of attacks against cryptogtaphic is always im-
proved by cryptographers and helps to constantly reevaluate the concrete security of
the cryptography deployed.

In the public key setting, algorithms are often based on hard mathematical problems.
The well known examples, RSA or ECDSA , are respectively based on �nding roots
over a RSA group and the problem of �nding discrete logarithms over elliptic curves.
Their security is proved by a reduction to said mathematical problem, which has often
been studied by mathematicians before. The goal of cryptographers is then to break
the underlying mathematical problem. Due to the mathematical structure needed to
achieve public key functionnalities, asymmetric algorithms are often more costly than
symmetric ones.

These two techniques usually work in tandem in our everyday life, in what we call
hybrid encryption. The goal of this method is to use fast algorithms for communication
while using the practical broadcasting of key provided by public key cryptography. To
do so, Alice will ask Bob to send a private key using a public key algorithm. If
Alice decrypts the encrypted private-key sent by Bob, they can now use a symmetric
algorithm to communicate.

Other Cryptographic Functionalities

From its historical goal to protect communications, cryptography has then evolved into
a mature science that tackles many problems related to information security. Modern
cryptographic algorithms satisfy properties such as :

� Con�dentiality : Alice and Bob can be sure that no information about their
communication is revealed by their ciphertexts.

� Authenticity: Alice can be sure that the communication comes from Bob and
Bob only.

11

CONTENTS

� Integrity: Alice can be sure that the message send by Bob has not been altered
by an adversary on the line

� Non-Repudiation: Alice cannot deny being the sender of messages she has send
before

� Non-Falsi�ability: Alice cannot tamper commitments she made in the past.

Many other functionalities can by assured by cryptographic algorithms. For some
of them, such as Fully Homomorphic Encryption, Indistinguishability Obfuscation or
Zero-Knowledge Proofs, their existence is already a marvel. We will encounter some
of them in this thesis, and encourage the reader to refer to the sources we provide for
more details about them.

As one of the part of this manuscript is dedicated to a signature algorithm, we
brie�y de�ne it here. The goal of a signature scheme is to allow to Alice to prove to
Bob the authenticity of a document she owns. A signature scheme is a set of three
algorithms G,S and V such that :

� G is the key generation algorithm. It generates a public key kv and a private-key
ks.

� If a user knows ks, the signature algorithm S provides a signature Sks(m) of a
message m.

� The verifying algorithm V uses the public key kv to verify the signature so that:

s = Sks(m) ⇐⇒ Vkv(s,m) = 1

Signature algorithms are by de�nition public key algorithms, but authenticity can
also be ensured in the private-key setting by Message Authentication Codes (MAC),
provided that Alice and Bob share the same key.

Evaluating the Security of Cryptographic Algorithms

The security of the communications of Alice and Bob is only relative to the capabilities
of Charlie. In cryptography, the role of the attacker is taken by cryptanalysts and
the security of algorithms is evaluated and discussed in the literature. The goals of
an attacker can be multiple. They can attempt to recover the secret key, decrypt a
message or recover partial information about it. Key recovery is obviously the most
the potent of them all, and modeling the capabilities of an attacker toward this goal
is crucial for a precise evaluation of the security of communication.

12

CONTENTS

A First Security Analysis : the Black-Box Model

The security of an algorithm is usually evaluated by using its input-output behavior in
what is called the black-box model. In this model, Charlie has access to the line of
communication of Alice and Bob and tries to recover their secret key. This �rst analysis
is crucial as it will determine if an algorithm can be useful at all for cryptography.

Depending on the context, one can allow an adversary to make di�erent types of
queries to the encryption algorithm it studies. Among them, the most common ones
are :

� Ciphertext Only Attack (COA): This is the most basic model of attack. Charlie
only has access to the encrypted data of Alice and Bob to conduct the attack

� Known Plaintext Attack (KPA): In this model, the attacker also knows the plain-
text for each ciphertext it recieves. In this case, the goal is to decrypt future
messages or recover the key.

� Chosen Plaintext Attack (CPA): Relaxing the previous model, the attacker can
now chose particular plaintexts to help their cryptanalysis. It is particularly
relevant in the public key setting.

� Chosen Ciphertext Attack (CCA): In this model, Charlie can request decryption
of chosen ciphertexts.

If these models of attack grasp various use cases, they abstract the fact that
the key used by the algorithm is itself vulnerable to attacks. In our everyday life,
cryptographic algorithms are computed by hardware and attackers can have access to
more information than the input-output behavior of the algorithm. As the algorithms is
implemented on hardware, operations depend on the physical restraints of the device.
An attacker can now plant sensors or steal the device to attempt to recover the key.

Cryptography on Hardware: The Grey-Box model

The grey-box model of attack attempts to use the leakage from hardware to conduct
a cryptanalysis. A grey-box attacker can use physical information of the device during
executions, such as its power consumption, computation time or electromagnetic em-
anation to conduct its cryptanalysis. Hardware is indeed subject to the laws of physics
and the behavior of operations varies depending on the computation it makes. The
discovery of such methods by Kocher [74] in 1996 changed the way cryptographers
envisioned security and forced the community to provide new solutions against this
enhanced adversary.

13

CONTENTS

In the grey-box model, we can classify attacks in roughly two categories : the
passive attacks and the active attacks. In passive attacks, the attacker measures
physical properties of the hardware during the execution of a cryptographic algorithm.
In active attacks, the adversary tries to tamper the hardware to provoke a faulty
behavior that will help the analysis.

The most common examples of side-channel attacks are Di�erential Power Analysis
(DPA) and Di�erential Fault Analysis (DFA). DPA is a passive attack whose goal is to
analyze the power consumption to build two distributions that are based on the input-
output of the algorithm and key-guesses. If the distributions are distinguishable, the
attacker made the correct key-guess. The DFA is an active attack in which the attacker
aims to precisely fault the device. If the the fault is precise enough, information about
the secret key can be recovered by comparing the correct input-output behavior with
the faulty one.

If these attacks were a threat to original implementations, cryptographers have
since proposed countermeasures to these attacks. Among them, we can notably �nd
masking countermeasures [36, 61]. The goal of masking is to share a sensitive value
into a collection of random ones, so that if all the shares are leaked but one, no
information is leaked about the sensitive value. The computations are then made on
the shares instead of the real value. For fault attacks, redundancy or noise can be
introduced in computations to render the exploitation of faulted encryptions harder.

However, most of the countermeasures to these attacks are supplemented by the
fact that hardware can be made a secure environment for computation. The epitome
of this rationale is the usage of smart cards for sensible computations such as payment
functionalities. Smart cards are a restrained environment where direct access is limited
and the structure of the hardware can be hidden. In this context, security can be
reasonably proved conditionally the limited leakage of the device.

Towards the White-Box Model

However, the usage seems to move away from the smart card dogma. In the recent
years, more and more sensible information are held by less secure devices such as
smartphones. One glaring example is the soaring in mobile payments. In such context,
the hardware is of limited use to protect information. Indeed, smartphones for instance
are way more malleable than smart cards and one can plant malware on it to directly
extract the key. Software is now the last barrier between and attacker and a user's key.
This context of attack is called the white-box model and is the focus of this thesis.

14

CONTENTS

Summary of the Thesis and Contributions

To help the reader �nd logic in what follows, we now detail the content of this thesis
and our contributions.

Part I: A Guide To White-Box Cryptography

The �rst part of this thesis consists of a guide to white-box cryptography. Its goal
is to revise, precise or correct white-box models, security notions and constructions
that have emerged in the state of the art since the introduction of the concept. This
part is composed of 4 chapters. In the �rst chapter, we summarize the state of the
art of white-box cryptography and extensively motivate the study of this model. The
second chapter formally introduces the Plain White-Box model, the security notions
discussed in this model, and the cryptographic notions that are linked to it. The third
chapter focuses on two variations of the Plain White-Box model : The Remote-Access
White-Box model and the Hardware-Module White-Box Model. We expose their study
in the same fashion as chapter 2. Finally the fourth chapter closes this part with a
state-of-the-art synthesis of generic white-box attacks.

This part is an extension of the chapter of Embedded Cryptography : P. Galissant
and L. Goubin: "Introduction to White-Box Cryptography", in Embedded Cryptog-
raphy, E. Prou�, G.Renault, M. Rivain and C. O'Flynn editors, Sciences Collection,
Wiley, 2023.

Part II: Implementation of AES

The second part is dedicated to the study of white-box implementations of the AES.
The �rst chapter o�ers a synthesis of the known implementations techniques and the
attacks that broke them. The second chapter details our new method of implemen-
tation designed to resist algebraic attacks based on polynomial representations and
propose a challenge implementation to motivate its study. The chapter 3 is a detailed
correctness and security analysis of our construction. Finally, chapter 4 shows that this
technique can be applied to any SPN for similar security results.

The chapter 2 to 4 are extracted from our joint publication with Louis Goubin
of our implementation technique that is currently in submission. This publication
comes with a challenge implementation that can be found at: https://github.com/
p-galissant/RCKAES

15

CONTENTS

Part III: White-Box Techniques for Multivariate Cryptography

The last part of this thesis focuses on the implementation of multivariate cryptographic
primitives in the white-box model. In chapter 1, after succinctly introducing multivari-
ate cryptography, we motivate the study of this branch of public key cryptography in
the white-box context. In chapter 3, we propose the �rst implementation technique
of the HFE family of signature algorithm, for which we propose an extensive security
analysis and a challenge implementation. Finally, in chapter 4, to propose other per-
spectives on multivariate white-box cryptography, we also propose an incompressible
stream cipher adapted from QUAD.

The chapter 3 is an adaptation of our joint publication with Louis Goubin of our
implementation technique, currently in submission. This publication comes with a chal-
lenge implementation that can be found at: https://github.com/p-galissant/

WBHFE. A previous version of this work can be found https://eprint.iacr.org/

2022/138.pdf. The adaptation of QUAD to the white-box model is original to this
manuscript.

16

Part I

A Guide To White-Box

Cryptography

17

Chapter 1

The White Box Model: History

and Context

In this chapter, we introduce the white-box model, �rst through a short summary of
its development in the state-of-the-art. We then explore some of the problems that
motivate the study of the white-box model of attack, as well as designing algorithms
secure against a white-box adversary. We then formalize the white-box framework we
will use for the rest of the thesis and discuss some design rationales that are common
in the state-of-the-art and what they o�er to the study of the model.

1.1 A Short Story of White-Box Cryptography

The white-box model has been introduced by Chow et al. in 2002 in their paper [38] as
a setting to answer the following question: 'What security can cryptographers provide
to implementations of cryptographic algorithm that are executed on non-secure - or
worse, non-trusted - hardware ?'. In this setting, an attacker can get a complete access
to the device it targets, read computed values and modify the implementation to its
liking.

The white-box model is a natural extension of the grey-box model that aims to use
secure hardware to provide security against an attacker that could use 'side-channel'
information that are leaked from said hardware, such as execution time, power con-
sumption or electromagnetic emissions, to get an advantage that he could not get in
the black-box model of attack. If providing security in the grey-box model of attack
is a hard problem on its own, providing security in the white-box model seems like
a whole new ball game. Indeed, if information leaked by a hardware in the grey-box
model are noisy and partial, the data gathered by a white-box adversary is exact and
each computation made by the execution of the implementation can be retrieved.

18

CHAPTER 1. THE WHITE BOX MODEL: HISTORY AND CONTEXT

For the cryptographer implementing an algorithm in the white-box model, goals
are usually weaker than in the black-box model. The minimum for a white-box im-
plementation is to guarantee the integrity of its key, that is, it should not be possible
for an attacker to extract the secret key from its implementation. Then, if the imple-
mentation is key-extraction resilient, one can also ask the question if the code of the
implementation can be compressed, or if the functionality it computes can be inverted.
We discuss in more details the security goals of the white-box model in chapter 2.

Even if the transition from the grey to the white-box model of attack was ambitious,
Chow et al. proposed in their seminal publication two white-box implementations of
two widely used standards, DES and AES. However, their implementations were quickly
broken by structural attacks like the BGE attack [15]. Some other candidates with
interesting properties were also proposed, but all broken with adaptations of the same
attacks, or known general methods.

If the state-of-the-art of implementation was dire at this point, it was only going
to be worse. The introduction of Di�erential Computation Attack (DCA) by Bos et
al. at CHES 2016 [28] and Sanfelix et al. at Black Hat Europe 2015 [99] showed
that adaptations of attacks in the grey-box model are really e�cient to break white-
box implementations alike. In this context, two contests, the Whibox 2017 and 2019
[106, 107] contests were launched. As most of the papers before, the goal was to
implement the AES so that the key could not be extracted from the implementation,
up to the di�erence that the designs were hidden to the attackers, i.e there was no
publication explaining the technique used for each implementation. At the end of both
contests, the conclusion is without appeal the same: among hundreds of participants
not a single implementation could stand attackers in the white-box model. However,
these contests were not without any lessons. The new submitted implementations
stimulated attackers to improve or develop new automated attacks. We detail these
attacks in chapter 4.

In the meantime, the academic research pushed itself away from the initial problem
of implementing the AES. A �rst line of work was to design algorithms adapted to the
white-box model for which it is easier to prove security in the white-box model as well
as the black-box model. We discuss shortly this line of work in the present chapter.
Another line of work was to tweak the white-box model to get access to stronger
security results. The main two example are the use of some hardware functionality or to
consider only attacks characterized by malware. We discuss and formalize this variation
of model in chapter 3. Lastly, the natural extension of the original AES problem is to
implement another standard. The most important attempt is the community attempt
at implementing ECDSA in the Whibox 21 [108] contest . As for the AES, all the
implementations were broken even with unknown designs (see [6] for instance).

19

CHAPTER 1. THE WHITE BOX MODEL: HISTORY AND CONTEXT

1.2 Motivations to the White-Box Model : Indus-

trial and Societal Needs

Let us �rst summarize some of the main interests in the study of white-box designs,
whether it is for industrial concerns or the individual security of citizens.

1.2.1 Digital Rights Management

One of the �rst motivations introduced by Chow et al. to study this model of security
is the security of DRM (Digital Rights Managements) technologies. The goal of Digital
Rights Management is to restrict the access and distribution of copyrighted products
such as music, �lms or software. Avoid the distribution of illegal copies, locking certain
functionalities to unlawful users or binding the content to a speci�c hardware are often
the motivations to the use of such techniques.

Usually, content protected by DRM technologies is encrypted by its owner (often a
company) and sent to a customer. The customer is then provided a license to use the
content. They then have to use a speci�c device or client to properly use the content
if the license is correct and then decrypt the content using a secret key. If the key is
stored in a secure device, solutions in the grey-box model of attacks are often su�cient.
However, if the key is stored in a software client, a malicious user can attempt to extract
the key with the full knowledge of the implementation of the client. The security of
such industrial solutions is often based on the obscurity of the construction, with hidden
designs implementation. Designing solutions and understanding their security in the
white-box model would greatly enhance the con�dence in DRM technologies.

1.2.2 Security of Mobile Devices

The security of sensible data on mobile devices is a growing concern in the industry
as well as for consumers. The ever growing usage of small devices in the Internet of
Things gives rises to fears that personal data and especially cryptographic keys are
exposed to private or institutional mistreatment. We motivate the use of white-box
cryptography through two contemporary examples: the use of mobile payment and the
development of mobile signature.

Mobile payment In the recent years, the payment industry has vested great interests
in the extension of the EMV speci�cations [52] to mobile transactions via Near Field
Communication (NFC). In that scenario, the usual contactless smart card is emulated
by an NFC-compliant mobile phone or wearable device such as a smart watch. This is
referred to as Host Card Emulation (HCE).

20

CHAPTER 1. THE WHITE BOX MODEL: HISTORY AND CONTEXT

Unfortunately, mobile platforms do not provide access to a secure element to
third-party applications: the SIM card belongs to the telecommunication operator
and handset manufacturers keep any form of trusted hardware for their own needs.
These emerging applications are therefore facing the challenge of being as secure as a
tamper-resistant hardware although being totally based on software. White-box cryp-
tography is currently the only approach to secure these applications and compensate
the security risks inherent to common embedded operating systems such as Android.

By hard-coding the EMV keys into the application code itself, white-box cryp-
tography tries to achieve a notion of tamper-resistant software. Improving white-box
cryptography, in particular for signature algorithms, is therefore a powerful means to
promote the rise of mobile payments. Note that the currently used signature algorithm
is RSA, and EMVCo published a new speci�cation in 2021, to enable Elliptic Curve
Cryptography (ECC) on EMV contact chip payment cards.

Mobile contract signing The eIDAS regulation (EU Reg. N◦910/2014) came into
force on July 1st 2016 in the (then) 28 member states of the EU, and introduced
the end of the smart card dogma, in the sense that the signing capability can now
be implemented by purely software means as long as they ful�ll speci�c requirements
through a quali�cation procedure. Electronic signatures also became legal evidence
that cannot be denied by sovereign authorities or in court.

By relaxing constraints on the signing utility, the eIDAS regulation opens the way to
software-only solutions for digital signatures. As a result, a rapid emergence of mobile
contract signing is anticipated in the near future. The user experience is straightfor-
ward: a contract (or any form of document in that respect) is downloaded on the
mobile device, reviewed by the human user, digitally signed locally and the legally
binding signature is returned to a back-end server where it is validated and archived.

Now, the need for the signing application to be eIDAS-quali�ed imposes (depending
on the quali�cation level) to resist security threats pertaining to mobile platforms and
most particularly logical attacks where some form of external control is exerted through
malware, typically in an attempt to steal the signing key(s) stored on the device. White-
box cryptography is the only approach that e�ectively puts the signing key(s) out of
reach of logical attacks on the operating system. Combined with countermeasures
against code lifting, white-box cryptography is expected to take a major role in the
adoption and deployment of eIDAS-based services in the EU.

1.2.3 Cryptocurrencies and blockchain technologies.

Today, most solutions to store cryptocurrencies and perform transactions on the blockchain
are based on a hardware token (USB stick, smart card) or on a mobile application.

21

CHAPTER 1. THE WHITE BOX MODEL: HISTORY AND CONTEXT

While the former provide adequate security, it is inconvenient for the wider usage. For
the latter case on the other hand, the security often relies on the operating system of
the mobile device and the principle of application sandboxing. Given the wide variety
of mobile OS on the �eld, strictly relying on the operating system to protect critical
assets is very hazardous and must be always be avoided.

This raises a strong need for the design of security solutions for pure-software
cryptocurrency wallet against all kind of threats such as stealing malwares. In or-
der to protect the cryptographic keys intrinsically involved in cryptocurrencies and
blockchain technologies, white-box cryptography is essential. As concerns digital signa-
tures, ECDSA is currently the most used algorithm (for instance Bitcoin and Ethereum
do), but alternatives are considered either for other cryptocurrencies or to prepare the
post-quantum era.

1.2.4 Mass Surveillance and Malicious Hardware

If white-box cryptography can attempt to solve particular industrial problems, it can
also propose solutions to o�er better security for all citizens against monopolies and
institutionalized attacks.

Malicious Hardware The basis for secure computation is a trustful hardware that
correctly computes and does not leak the secret key it contains. But if the hardware
is faulty - that is, outputs incorrect results on certain inputs - or at worst malicious,
the security of the algorithms deployed on it is compromised.

In this context, the dangers implied by malicious hardware cannot be ignored,
especially with the monopoly of few factories and the heavy cost of building new
hardware factories. According to the IC Insight 2014 report, 90% of integrated circuits
are made by 13 factories and none of them are in Europe. If any of said factories are
found to be malicious, the repercussions could be tremendous for a large portion of
users all around the world. Imagine the consequences of malicious hardware in the
defense or in electrical infrastructures.

To limit the danger of such prospect, cryptographer have proposed methods such
as the detection of Trojans [1, 2], or designing algorithms for this special case [32].

Even if these methods are e�cient to a certain degree, they all have some disad-
vantage : the more complex the hardware is, the harder the detection of the Trojan,
and using dedicated algorithms greatly diminishes the interoperability of the protected
device in its ecosystem. One other solution is to use white-box cryptography. Indeed,
if an implementation is secure in the white-box model, regardless of the hardware, a
malicious or faulty hardware cannot break its security properties, as it could be seen
as an adversary in the white-box model.

22

CHAPTER 1. THE WHITE BOX MODEL: HISTORY AND CONTEXT

Mass surveillance In their 2016 paper [10], Bellare et al. propose solutions to
mass surveillance by Advanced Persistent Threats (APTs), i.e. malware implanted in a
device that attempts to extract informations, especially secret keys. The start of their
re�exion is that APTs are almost impossible to entirely remove from one's system.
They argue that leaks from Snowden show that the NSA and other organizations have
enough means to plant APTs if they want to.

They propose a solution with the 'Bounded Retrieval Model' which consist in mak-
ing the keys so big that their extraction cannot go undetected. This goal is somewhat
similar to the goal of an 'incompressible' white-box implementation. In this setting,
the fact that the entire implementation has to be retrieved to get the functionality
ensured by the secret key would hinder attempts of extractions.

The possibility for citizens to protect their secret keys in software implementation
with white-box techniques and the open access to white-box implementations that are
publicly studied is an interesting track to follow to ensure overall privacy against the
ever growing malware and surveillance adversaries. This is especially important when
most of the solutions in these models are designed by companies, and hence often
copyrighted and unavailable to the majority.

1.2.5 Ecological Concerns

A certain advantage of security through software is a diminishing reliance on dedicated
hardware for security in our everyday life. Without a strong reliance on hardware for
dedicated tasks, discussions at the societal and consumerist level can be started to
elect more reasonable consumption of hardware relatively to our needs and the stress
they put on our ecosystem. That is not to say that abandoning all hardware is a good
solution, but having the opportunity to use secure software can open new discussions.

One of the striking examples of how hardware production is detrimental to our
ecosystem is the recycling and production of secure cards such as payment cards. We
take this example as it is one of the most common, but it applies to other dedicated se-
cure hardwares. Mainly composed of PVC and rare minerals such as copper, palladium,
nickel, silver and gold, payment cards are often not recycled due to security concerns
and the hardness of recycling components. According to the 2020 report of the french
'Observatoire de la sécurité des moyens de paiement' (Observatory for the security of
means of payment), there are currently 94 millions payment cards in circulation, more
than one per citizen, which represents about 400 tons of non-recycled wastes. Con-
sidering that the mining of rare mineral is one of the most polluting industry, with the
most diminishing returns as reserves expire, exploring solution to this problem seems
of prime interest.

If the recycling of hardware is certainly an excellent solution to extend the life cycle

23

CHAPTER 1. THE WHITE BOX MODEL: HISTORY AND CONTEXT

of metals and plastics alike, not using dedicated hardware seems like a more radical and
e�cient solution, that can be discussed in our current technological ecosystem. As the
'Observatoire de la sécurité des moyens de paiement' remarks, we have seen a surge
in mobile payment post-COVID crisis, which supports the idea that consumers as well
as industrial are ready for such a transition. While we note that it is of course due the
mainstream use of smartphones, that contains more rare minerals than smartcards, the
social cost of abandoning smartphones would be way heavier than changing a mean of
payment.

The study of security in the white-box model can only put more trust in software-
based solutions and incline the public opinion to change their usage or discuss such
changes.

1.3 Formalization of the Context

The goal of this section is to set a formalism to study the white-box model. We �rst
set the boundaries for programs and then formalize white-box compilers.

1.3.1 Programs

As cryptographic algorithms are implemented, they leave their realm of abstraction to
become grounded programs. Programs are very formally de�ned in a language theoretic
sense and interpreted in the context of a programming and execution model. We will
however not need this level of detail for our uses. Cryptographic algorithms are usually
a composition of operations on mathematical structures and often agnostic to the
programming language. This is the case for most of the white-box designs proposed
in the literature.

For the following, we assume that a program is a sequence of operations over data
that can be implemented by any programming language such as C, Java or Python. We
describe programs as operations over mathematical structures and do not specify them
for any programming language. Programs can be executed, copied or modi�ed at will,
which separate them from oracle calls to an algorithm. This de�nition is consistent
with the white-box model in which an adversary can interrupt computations at will,
read memory at any point, modify values in the execution and so on.

For any program P , we note Size(P) the size of its code ignoring the constant
overhead of its programming language. This de�nition is consistent with the attempt
to propose incompressible structures regardless of the language they are implemented
on. For any input x of P , we note Time(x) its running time on x measured in number
of elementary operations on data structures, similarly to the de�nition of complexity
of an algorithm. We note Time(P) if the running time is identical for all inputs.

24

CHAPTER 1. THE WHITE BOX MODEL: HISTORY AND CONTEXT

Remark: We could be tempted to de�ne Size(P) to be the minimal size of code
that implements P , but as we deal with white-box implementations, this minimal size
is often close to the size of the key and hence not a good measure of the size of a
program that wants to hide its key.

1.3.2 White-Box Compiler

The goal of a white-box designer is to implement a cryptographic algorithm, that is
de�ned by a description of the algorithm and its secret key, into a secure implementation
in the white-box model. Depending on use cases, these algorithms can be encryption
schemes or signature algorithms. To do so, a designer can draw randomness to 'inject'
into the implementation and try to hide the key or use the structure of the algorithm
itself to bury the key. To synthesize this approach, we follow [43] and use the framework
of white-box compiler.

De�nition 1 (White-Box Compiler). A white-box compiler C is probabilistic algorithm
that on the input of a keyed-algorithm A and a key k, outputs an implementation of
Ak noted CA(k) that aims to achieve security properties in the white-box model.

The Grail for a cryptographer would be to propose a compiler for entire classes
of algorithms that can be applied to an algorithm without concerns for its structure.
In practice, white-box compilers are dedicated to attempt to white-box a particular
algorithm. The security notions that a compiler must achieve are discussed in detail
in chapter 2 and 3.

The framework of white-box compiler allows to consider a setting where two or
more implementations come from a same compiler and can be used to mount more
complex attacks based on the similarities between the implementation. The author
of [43] de�ne these attacks as 'recompiling attacks'. While they certainly need to be
addressed, there is no mention of these attacks in the literature : this is probably due
to the fact that regular attacks on one implementation already break most white-box
candidates. As recompiling attacks are not necessary to understand the state of the
art of white-box cryptography, we do not study them further. For this reason it is
common to �nd security claims for an implementation instead of a compiler.

1.4 Hidden and Open Designs, Chosen or Fixed

Algorithms

As the seminal problem of implementing the AES in the white-box model quickly
appeared to be a hard problem, cryptographers turned themselves into variations of

25

CHAPTER 1. THE WHITE BOX MODEL: HISTORY AND CONTEXT

the initial problem to better understand the white-box model of attacks. While we
thoroughly discuss the variations of the initial model of security, we want here to
discuss two variations in the practice of white-box cryptography. The �rst one is the
degree of freedom that hidden designs of implementation allow for the security of
implementations. The second one is to build algorithms designed for white-box instead
of working in implementations of standardized ones.

1.4.1 What do hidden designs o�er ?

One of the key principles of modern cryptography is Kerckho�'s Principle. In its 1883
article 'La Cryptographie Militaire', Kerckho� states in the jargon of its time that if
a cryptographic machine should fall to the hands of the ennemies, the security of the
rest of the communications should not be impacted. In modern terms, cryptographers
want that cryptographic algorithms to be secure, even if everything is known about it,
except its secret key. While cryptography has drastically changed since the late 19th
century, this rationale of design is still core to modern cryptography. In the white-box
context, the natural way to extend Kerckho�'s Principle is to publicly describe the
compiler that produces our white-box implementation, even if there are secret random
data drawn by the compiler to produce the �nal implementation.

If this rationale of design was followed by the seminal paper of Chow et al., the
idea of working with implementations with hidden design began to emerge to allow
degrees of freedom to designers. For instance, the biggest contests for candidate white-
box implementations, Whibox17 and 19, were working with hidden designs. While this
idea might seem daring, this change of rationale is supported by multiple factors. First,
the hardness of the initial problem,that is implementing the AES, did not get many
advances with usual cryptographic methods. Some of the best proposed solutions such
as [16], relied on obscurity of the code to get concrete security, and code obfuscation
techniques were seen as an opportunity to patch what state-of-the-art implementation
techniques were lacking. Secondly, a setting of hidden design is closer to industrial
concerns and can help bridge the gap between communities. Understanding the security
of white-box products on the market is essential for the overall security, especially
when very few proven solutions exist, and the 'white-box' tag is used as a marketing
advantage.

However, from this change of paradigm, it seems that very little security can be
gained. If we take WhiBox17 and 19 as a case of study, the observation is clear:
among the hundreds of proposed designs, none did stand in the end. The reports of
attacks such as [62] show that after a meticulous reverse engineering work, the power
of automated attacks often trivialise a key-recovery from the implementation.

26

CHAPTER 1. THE WHITE BOX MODEL: HISTORY AND CONTEXT

1.4.2 Choosing the algorithm to have better implementa-

tions

The holy grail of white-box cryptography would be to have secure white-box imple-
mentation of popular standards algorithms like the AES, RSA or ECDSA. However,
proposing secure implementations of said algorithms has been found to be a hard
problem, with very few candidate solutions. One of the fruitful alternatives for cryp-
tographers has been to change the algorithms to implement. If the most commons
algorithms are not well-suited for certain context or problem, it is common to design
new algorithms adapted for a speci�c context. One can note algorithms designed with
minimal multiplicative depth in mind for FHE or algorithms that are designed easy to
mask to improve their security against side-channel attacks. In the same fashion, it is
natural for cryptographer to design algorithms tailored for the white-box model.

The line of work dedicated to a better understanding of the notion of 'incompress-
ibility' or 'big-key' ciphers in the white-box is the most notable one. In [23] and [57],
the authors describe symmetric encryption algorithms that are proven to be secure in
the white-box model. In [43], the authors transform the public-key algorithm RSA into
a private-key algorithm and prove an implementation of this algorithm to be secure
in the white-box model. The proven security of these implementation is a striking
advantage of these methods, compared to all the broken candidates implementations
of the AES.

While it does provide practical secure white-box implementation for these chosen
algorithm, the designs exposed in this line of work did not help to get a better grasp
of what was needed to achieve the implementation standardized algorithms. This gap
between algorithms designed with the white-box model in mind, and the common
standards has yet to be bridged. Furthermore, the success of chosen algorithm con-
structions in the white-box model strongly highlights that designing an implementation
of a standard that is not inherently adapted to white-box model - such as the AES to
name but one - is a way harder problem than choosing algorithms adapted to it.

27

Chapter 2

The Plain White-Box Model

In this chapter, we study the plain white-box model. We contrast it with models that
di�er from Chow et al. initial model and that are motivated by speci�c use cases.
We describe them in chapter 3. After de�ning its boundaries, we describe security
notions that are relevant to this model, in the public-key and private-key setting. We
then discuss of links between white-box cryptography and other notions from the state
of the art of cryptography, including identity based cryptography and cryptographic
obfuscation.

2.1 What is it ? For What use cases ?

The plain white-box is the model introduced by Chow et al. in their seminal paper [38].
It studies the security notions that cryptography can o�er when the program computing
a cryptographic algorithm is the last barrier before the attacker. This model is the most
demanding since an attacker has the complete control over an implementation and each
of its executions. Hence, the security notions that can be studied in this model are
way weaker than the ones studied in the black-box model.

However, the notions in the white-box model are more resilient to a bad usage by
its user: to void the security of an algorithm with security only in the black-box model,
one only needs a user to store its key negligently, as for an algorithm implemented with
security in the white-box model in mind, the security property persists even through
misuse. As this model is the most generic, properties studied in this model provide
security in any of the context motivated in the previous chapter.

If the model is rather simple to describe, de�ning the white-box attacker and
understanding its power is a rather di�cult problem. We dedicate the entire chapter
4 to the automated attack such attacker can perform.

The �rst intuition about implementations in the white-box model is that they should

28

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

guarantee the con�dentiality of its key. This folklore notion has been formalized has
'unbreakability'. If achieving unbreakability is the main line of work for the implemen-
tation of the AES, it is clear that this notion is not satisfactory enough. Indeed, if
the key cannot be extracted by an attack, he can then attempt to steal the entire
implementation. To mitigate this, the implementation can be made as big as a desired
threshold, and should be able to be compressed by the adversary. This notion is aptly
known as 'incompressibility'.

Similarly to the black-box model, an adversary can attempt to inverse the im-
plementation of our cryptographic algorithm, expect this time, he has access to the
implementation instead of having an oracle access to the functionality. If a program,
that is computing a bijection is hard to invert with the knowledge of its implementation,
we say that it is 'one-way'.

In contexts similar to DRMs, one can also want to �nd the original owner of a
stolen program. If an implementation can be bound to the user it has been delivered
to, we say that the implementation is 'traceable'. As this notion is not one of the most
studied, we do not detail it here ([43] for more details).

Remark on the Denomination: We add the quali�er 'plain' to the white-box model
to distinguish it from variations that have been studied in the literature and to avoid
any confusion that can come up when comparing models, security properties that can
be achieved and techniques that are available . We study these variations of the plain
white-box model in chapter 3.

2.2 Security Notions

The original work of Chow et al. did not formally introduce security notions. We
adapt de�nitions from [43] or in the same fashion as we believe they are the closest to
practical concerns and the goals of the state-of-the-art of implementations. While there
have been other attempts at formalizing security notions for white-box cryptography,
such as [100] or [57] - for often stronger notions than the ones we will discuss - we
believe that the ones we propose here are the closest to the problems implementation
designers have an that they are formal enough to be interesting for more theoretical
designs.

2.2.1 Unbreakability

The �rst intuitive requirement for a white-box implementation is that is provides the
privacy of the secret key embedded in the program. This the �rst developed notion by
Chow et al. as for them, the choice of the implementation is the last standing line of
defense against an attacker. This notion of resistance to key-extraction is formalized in

29

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

the state-of-the-art by "key-extraction resistance" or "unbreakablity". Unbreakability
is the bare minimum a white-box implementation should satisfy.

If designing implementations that resist key-extraction was a seminal goal of white-
box cryptography, especially of the AES as noted before, it is important to note that no
publicly published AES implementation satis�es the unbreakability property. The two
implementations contests [106] and [107] have been a community e�ort dedicated to
implementing an unbreakable AES, which was not a success. It is hence a reasonable
basic goal to achieve for new designs.

We separate de�nitions in the private-key setting and in the public-key setting to
highlight the di�erences between the two contexts and what they imply for the obtained
implementations.

In the Private-Key Setting

The most common case of study of unbreakablilty is the symmetric key encryption
algorithm, so we describe unbreakability in this context. Note that it can be adapted
for any symmetric algorithm. For this paragraph, let E is an encryption scheme with
encryption algorithm E

Let us describe the game for unbreakability of a compiler CE:

� Draw at random a key k in keyspace K

� The adversary A gets the program CE(k) from the compiler

� The adversary A returns a key guess k̂ in time τ knowing CE(k)

� The adversary A succeeds if k = k̂

De�nition 2. Let E be an symmetric encryption algorithm, CE a white-box compiler
and let A be any adversary. We de�ne the probability of the adversary A to succeed
in the unbreakability game by:

SuccA,CE := P[k ← K;P = CE(k),A(P) = k̂; k = k̂]

We say that CE is (τ ,ϵ)-unbreakable if for any adversaryA running in time τ , SuccA,CE ≤
ϵ.

When we want to precise that the compiler is unbreakable against a certain class
of attacks noted ATK, we note that the compiler is (τ ,ϵ)-UBK-ATK.

Remark: Contrary to what can be done studying when asymptotic security, we do not
set A to be a polynomial adversary depending on a security parameter λ and hope that

30

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

ϵ is exponentially small in λ, as we are interested in concrete security for our chosen
parameters.
Remark: It is often the case that, due to fact that an adversary only get one imple-
mentation from one compiler and that not everybody uses the compiler formalism, we
often say that an implementation is unbreakable by abuse.

The 'one-way function trick' The �rst remark a mischievous reader would make
is that it is easy to transform an encryption algorithm - or any keyed cryptographic
primitive - into another encryption algorithm for which an unbreakable implementation
exists, provided one way function exists. As it is indeed the case, let us describe such a
method. To do so, let us consider an encryption algorithm E = (M,C,K,Setup,Enc,Dec)
and a one-way function f : K → K. We de�ne a new encryption algorithm E ′ :

� The plaintext, ciphertext and key space are identical to E ′

M =M ′, C = C ′, K ′ = K

� The algorithm Setup' ,on the input of 1k, outputs a call of Setup on 1k :

Setup′(1k) = Setup(1k)

� The algorithms Enc' and Dec' are identical to respectively Enc and Dec except
they operate on the key f(k) :

C = Enc′k(M) = Encf(k)(M) ⇐⇒ M = Dec′k(C) = Decf(k)(C)

If the function f is one-way, it is then trivial that E ′ = (M',C',K',Setup',Enc',Dec')
admits an unbreakable implementation. Indeed, by semantic de�nition, the output of
Setup' k is the key of the algorithm, and f(k) is su�cient to encrypt and decrypt. As
a consequence, an unbreakable implementation of Enc' can be made with the value
f(k) and a regular implementation of Enc calling the value f(k).

While this remark makes the unbreakability security property pretty trivial to achieve
from the design of encryption algorithms, it also underlines the fact white-box con-
struction have to be evaluated and compared in regard to a reference implementation.
It also helps to get some perspectives on the state ofthe-art of implementations against
stronger security notions that can be found in the literature : there isn't any unbreak-
able implementation of usual standardized cryptographic algorithm such as AES or
RSA in the literature.

This remark however highlights that for practical as well as for theoretical concerns,
the unbreakability notion is not enough. It is obvious that if the security notion was

31

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

enough for practical concerns standards could be adapted to just use the 'one-way
function trick' to have unbreakable implementations.

In the Public-Key Setting

As we motivated in chapter 1, public-key algorithms and especially signatures in the
white-box model are a topic of their own interest due to the technologies they facilitate.
However, very few research on this topic has been made, theoretical and practical
aspects as well. We adapt here the usual unbreakability notion to signature algorithms.
The main di�erence here is that an attacker has the knowledge of the public key, i.e the
veri�cation algorithm, in addition to the implementation. For the rest of the paragraph,
S is a signature algorithm.

Let us describe the game for unbreakability of a compiler CS :

� Draw at random a key k in private key-space KS

� The adversary A gets the program CS(k) from the compiler

� The adversary A returns a key guess k̂ in time τ knowing CS(k) - and the
veri�ying algorithm V

� The adversary A succeeds if k = k̂

De�nition 3. Let S be an asymmetric signature algorithm, CS a white-box compiler
and let A be any adversary. We de�ne the probability of the adversary A to succeed
in the unbreakability game by:

SuccA,CS := P[k ← K;P = CS(k),A(P) = k̂; k = k̂]

We say that CS is (τ ,ϵ)-unbreakable if for any adversaryA running in time τ , SuccA,CS ≤
ϵ.

White-Box Signatures: a 'Double Trapdoor'

It is common to have signature built from a secure trapdoor one-way function (OWF)
and extended into complete signature algorithm following the so-called 'hash-and-sign'
paradigm. This is the case for RSA, with FDH or PSS and for instance. It is natural
to study the white-box properties of these functions and how they extend to their
corresponding signature schemes. In this case, what is interesting is the implementation
of the inversion of f , for which a secret is needed.

For the rest of the paragraph, f is a secure trapdoor one-way function f : X ×K →
Y and Cf−1 is a white-box compiler for the inversion of this function. We de�ne

32

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

unbreakability and incompressibility, similarly as we did for signatures before. Let us
describe the game for unbreakability for the compiler Cf−1 :

� Draw at random a key k in private keyspace K

� The adversary A gets the program Cf−1(k) from the compiler

� The adversary A returns a key guess k̂ in time τ knowing Cf−1(k)

� The adversary A succeeds if k = k̂

De�nition 4. Let f be a secure trapdoor one-way function, Cf−1 a white-box compiler
of its inversion and let A be any adversary. We de�ne the probability of the adversary
A to succeed in the unbreakability game by:

SuccA,Cf−1 := P[k ← K;P = Cf−1(k),A(P) = k̂; k = k̂]

We say that Cf−1 is (τ ,ϵ)-unbreakable if for any adversary A running in time τ ,
SuccA,Cf−1 ≤ ϵ.

We will then study signature schemes that are built 'on top' of the inversion of a
trapdoor OWF, which a general term to qualify a lot of already existing techniques
such as FDH or PSS.

De�nition 5. We say that a signature algorithm S is built �on top� of a trapdoor
one-way function f if it can be decomposed into two algorithms:

� Algorithm A : On the input of an element in Im(f), outputs one of its premim-
ages

� Algorithm B : On the input of a message, outputs a signature S(m) of a message
m. The algorithm B can only perform computations using the messagem, public
data, data drawn at random and calls to A.

With such algorithms we can reduce the unbreakability of the signature algorithm
to the unbreakability of the trapdoor OWF.

Proposition 1. Let f be a secure trapdoor one-way function. Let WBf−1 be any
(τ, ϵ)-unbreakable implementation of f−1. If S is a signature algorithm built "on top"
of f (De�nition 4) then there exist a (τ, ϵ)-unbreakable implementation of S.

33

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

Proof: IfWBf−1 is such implementation (τ, ϵ)-unbreakable, build the implementation
of S by replacing any call to f−1 by a call to WBf−1 and note this implementation
WBS. Now, if any attacker A breaks the (τ, ϵ)-unbreakability , one can build an
attacker A′ breaking WBf−1 by simply building WBS and running A. This is absurd
by unbreakability of WBf−1.

For this category of algorithm, producing a white-box implementation a signature
algorithm is very similar to introducing a second trapdoor to the function f . Indeed, if
the �rst trapdoor is compute f−1 wit the secret-key, the implementation can be seen
as the second trapdoor intermediate trapdoor that allows to compute f−1 without
revealing the secret-key. This draws similarities with identity-based encryption we
describe later on.

Remark : Note that this property is not trivially generalized to incompressibility.
Indeed, composition of incompressible function do not always behave nicely.

2.2.2 Incompressibility

When a white-box implementation is unbreakable, one can try to retrieve the complete
implementation to circumvent the fact that the key can't be extracted. While imple-
mentations can be hardware bound, it is not possible in the plain white-box model.
To mitigate this, the implementation can be made big enough and incompressible to
dissuade attackers to attempt a code-lifting attack depending on the context. This
goal is similar to big-key ciphers of Bellare et al. [10] but on the implementing side
rather than the design side.

If the unbreakability notion is in practice the most studied one through challenge
implementations, the incompressibility notion is the one that has been the most studied
generically. For instance, Bodganov et al. [23] study the 'space-hardness' of ciphers,
which is essentially imcompressibility, itself based on the weak white-box security of
[18]. Fouques et al. The paper of [57] study weak and strong incompressibility and de-
sign a dedicated encryption algorithm satisfying these properties. While some of these
de�nitions are interesting on their own, we believe that the notion of incompressibility
we present here, adapted from [43], is a good synthesis of them and is grounded in
implementation attempts.

In the Private-Key Setting

Similarly to unbreakability, we describe the notion of incompressibility in the private-
key setting for encryption algorithms as it is the most common use case. Still, the
de�nition can be adapted to any private-key algorithm.

We now describe, for any σ > 0 the game of incompressibility for a compiler CE:

34

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

� Draw at random a key k in keyspace K

� The adversary A gets the program CE(k) from the compiler

� The adversary A returns a program P knowing CE(k)

� The adversary A succeeds if P ≈ CE(k) and size(P) ≤ σ

De�nition 6. Let E be an symmetric encryption algorithm, CE a white-box compiler
and let A be any adversary. We de�ne the probability of the adversary A to succeed
in the σ-incompressibility game by:

SuccA,CE := P[k ← K;P = A(CE(k)) ;P ≈ CENC(k); (size(P) ≤ σ)]

Moreover, we say that CS is (σ,τ ,ϵ)-incompressible if for any adversary
A, Time(A)+Time(P) < τ implies SuccA,CE ≤ ϵ.

When we want to precise that the compiler is (σ,τ ,ϵ)-incompressible against a
certain class of attacks noted ATK, we note that the compiler is (σ,τ ,ϵ)-INC-ATK.

Remark: This de�nition can usually be found with a parameter δ that allows the
program P to agree with the targeted function with probability δ. As no known attack
exploits this fact yet, we did not include it for sake of clarity and simplicity.

The de�nition of incompressibility we propose here is a slightly corrected version
from the usual one used in [43]. Indeed, this one is �awed as it does not constrain the
running time of the program P . If the running time is not bounded we can propose a
compression of any white-box algorithm by using brute force: an attacker can compute
few pairs plaintext-ciphertext, and code the brute force attack on the primitives that is
white-boxed, and then code the computation of the primitive with the key found. This
program can be made with few lines of code, is identically functional to the white-
box code, but has an unreasonable running time. That is why we add a new time
constraint: we want that the sum of the running time of the attacker and the program
produced is less than a constant τ representing the whole computation time allowed.

Remark: Note that if a compiler is not unbreakable, then it cannot be incompressible
for reasonable security levels: the key-recovery is indeed an extreme compression of a
white-box implementation.

In the Public-Key Setting

Similarly to unbreakability, we describe the notion of incompressibility in the public
setting for signature algorithms as we will need it for part III later on. This can easily
be adapted to public-key encryption algorithms.

We now describe, for any σ > 0 the game of incompressibility for a compiler CS :

35

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

� Draw at random a key k in private keyspace KS

� The adversary A gets the program CS(k) from the compiler

� The adversary A returns a program P knowing CS(k)

� The adversary A succeeds if P ≈ CS(k) and size(P) ≤ σ

De�nition 7. Let S be an asymmetric signature algorithm, CS a white-box compiler
and let A be any adversary. We de�ne the probability of the adversary A to succeed
in the σ-incompressibility game by:

SuccA,CS := P[k ← K;P = A(CS(k)) ;P ≈ CS(k); (size(P) ≤ σ)]

Moreover, we say that CS is (σ,τ ,ϵ)-incompressible if for any adversary
A, Time(A)+Time(P) < τ implies SuccA,CS ≤ ϵ.

Metrics for Incompressibility

While the notion of incompressibility is well discussed in the state of the art, the
�eld lacks good metrics to measure if the size σ of an implementation is satisfactory
enough. Is it the ratio of the size to the key to the implementation ? Is it is the
size of the implementation only ? The ratio size to key is probably a bad one as
there exist algorithms with bigger keys than other for the same security level, and
the absolute size of the implementation is completely depending on the usage of said
implementation. If we can provide a functional white-box implementation with σ ≈ 240,
few GB for instance, retrieving it could probably be detected, but the running time
of the implementation would be considerable. In that sense, smaller implementations
might be more useful. However, if the reduction is too e�cient with σ ≈ 220, the
incompressibility criteria might not be useful anymore: an attacker extracting the code
from a device could remain unnoticed.

Overall, more grounded metrics for concrete use cases should be discussed to at-
tempt to bridge the gap between the new incompressible algorithms the state-of-the-art
proposes, and the implementations of standards that are motivated by concrete use in
the industry.

The 'one-way function trick' meets composition

If the unbreakability notion su�ered from a de�nitional problem caused by the possibility
of using the 'one-way function trick', the incompressibility property su�ers from a
similar default. Indeed, this time, one can attempt to consider an encryption algorithm
E that has been modi�ed into E ′ following the one-way function trick, expect this time,

36

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

any input x is replaced by f(x) where f is any bijection that admits an incompressible
compiler.

If it is tempting to assess that the new E ′ admits a trivial incompressible compiler,
some counterexamples show that one has to be careful. For instance, if E = f−1,
the incompressibility property completely vanishes. This shows that a composition
of incompressible functions is not always incompressible and that incompressibility of
complex algorithms can only be stated through precise analyses.

However, similarly to proofs of security in the random oracle model for hash and
sign algorithms, if f is 'random' enough in regard to E, the composition has great
chances to be incompressible.

2.2.3 One-Wayness

In the private-key setting, a natural improvement of the unbreakability notion is to
require that the implementation cannot be inverted. Indeed, having both the function-
ality of encrypting and decrypting is equivalent to having the complete functionality
of an encrpytion algorithm and its secret key, up to the size of these programs and
the time computing these functionality takes. The idea is to extend the property of
one-wayness of functions to the context a white-box program

Let us describe the game for one-wayness of a compiler CE:

� Draw at random a key k in key-space K

� The adversary A gets the program CE(k) from the compiler

� The adversary gets an encryption c of a random message m

� The adversary A returns a message guess m̂ in time τ knowing CE(k) and c

� The adversary A succeeds if m = m̂

De�nition 8. Let E be an symmetric encryption algorithm, CE a white-box compiler
and let A be any adversary. We de�ne the probability of the adversary A to succeed
in the one-wayness game by:

SuccA,CE := P[k ← K;P = CE(k),A(P , c) = m̂;m = m̂]

We say that CE is (τ ,ϵ)-one-way if for any adversaryA running in time τ , SuccA,CE ≤ ϵ.

When we want to precise that the compiler is one-way against a certain class of
attacks noted ATK, we note that the compiler is (τ ,ϵ)-OW-ATK.

37

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

Remark : The notion of one-wayness is only interesting in the symmetric setting, as
in the asymmetric setting, an inversion of the algorithm is possible via the public-key.

Remark : There is a trivial reduction from one-wayness to unbreakability as recovering
the key allows to invert an encryption algorithm.

For a private-key encryption algorithm, having a one-way implementation is similar
to transforming it into a public-key algorithm. The implementation can indeed be
seen as a public-key as it is su�cient to encrypt messages - but cannot be used to
decrypt as it is one-way - and the secret-key still allows for decryption. This idea was
already developed by Di�e and Hellman in their famous [44], where they advocate
for the existence of public-key encryption, when no construction was known, through
'obfuscating' the program of a private-key algorithm.

2.3 What do we know about these notions

The goal of this section is to give insights on links between white-box cryptography
and other state-of-the-art notions of cryptography or mathematics. We �rst discuss
incompressible structures at large and then draw similarities between public-key white
box and identity-based cryptography. We �nish this section by discussing the links
between cryptographic obfuscation and white-box cryptography.

2.3.1 Incompressible Structures

For mathematicians, the �rst intuition of incompressibility comes from Kolmogorov's
complexity. In his axiomatic approach to the theory of probability in 1965, Kolmogorov
wants to graps the notion that what is random is what is the most di�cult to describe.
The Kolmogorov's complexity of x is de�ned by the minimum amount of information
that is needed to represent x. A representation of an element would be incompressible
if its size is equal to its Kolmogorov's complexity. The notion of Kolmogorov' com-
plexity is however a theoretical notion and cannot be computed. The link between
incompressibility and randomness in the look of an adversary is however the track
designers follow in the white-box model.

In practice, the representation of computations by randomized look-up tables is
the most used technique. Since the seminal construction of Chow et al. most of the
implementations advances in the state of the art have been incremental over the table
network they proposed and have hence kept the same structure. This can be seen in
implementations that we describe in the state of the art of AES implementations in
part 2. The look-up table structure can also be seen in new algorithms that achieve
incompressibility such as [23, 57].

38

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

The lack of diversity of incompressible structures for new implementations brings
the following question: what other structures can be used to o�er �exibility of designs ?
An interesting track to follow is to use low-degree polynomials transformations instead
of the full degree transformations that are represented by a look-up table. Indeed, the
look-up table is often a representation of a composition of function that reaches full
degree over its input, hence, the truth table is a compact way of representing it. The
underlying 'hard' problem is the decomposition of functions. However, a composition
of function does not always reach full degree and can be represented by polynomials,
and the problem of decomposing them can still be di�cult. This is the case for HFE
public-keys for instance (see part 3 for more details) and it has seen a few attempts
in the white box model in [31, 95, 96] without too much success. We propose in part
2 a white-box implementation of AES and in part 3 of HFE with these ideas.

2.3.2 Links with Identity-Based Cryptography

Identity-Based Cryptography was conceptualized to answer the question: "is it pos-
sible to use human readable common data, such as e-mail addresses, to derive safe
cryptographic key ?". This concept was �rst introduced by Shamir in 1984 with an
instantiation of a signature scheme [102]. The problem of building an identity-based
encryption scheme was open until 2001 with the pairing-based of Boneh and Franklin
[25] for instance.

The goal of Identity-Based Cryptography is to replace the random public key - that
is generated in the context of an asymmetric algorithm - by publicly available data
linked to a user. As a consequence, the public key of such scheme is usually known is
advance for it is an e-mail adress, a name, or any semantic data derived from the user,
i.e. its identity for the scheme. The main problem is to derive the secret-key from
this public semantic data. Contrary to usual public-key cryptography, the secret-key is
derived by a trusted central authority.

In this paragraph, we focus on identity-based encryption (IBS) as we believe it
has the most pertinence, but the following remark can be applied to identity-based
encryption (IBE). Formally an IBS is a signature scheme described by 4 algorithms:

� IBS− SETUP :The trusted identity generates a master secret key MSK and
a master public-key MPK

IBS− SETUP(1k) = (MSK,MPK)

� IBS− EXTRACT : For any semantic data ID of a user, the trusted authority
computes from MSK and MPK, the secret-key of the user SKID.

39

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

IBS− EXTRACT(ID,MSK,MPK) = SKID

� IBS− SIGN : Given MPK and SKID, one can compute the signature of M :

S = IBS− SIGNMPK,SKID
(M)

� IBS−VERIF : Given a signature (S,M) , and the public-key MPK anyone
knowing ID can compute:

IBS−VERIFMPK,ID(S,M) = 1 iif S = IBS− SIGNMPK,SKID
(M)

Remark: It is important to remark that the trusted authority does not take part in the
communication after key-generation. Conversely, the key SKID is generated without
the intervention of the signer.

For an IBS scheme to be of any use, the information of ID or MPK must not leak
information about the secret key SKID in addition to being secure in the classical
black-box sense.

We now make the remark that an IBS scheme can be seen as an unbreakable
signature scheme and its white-box implementation. Indeed, let us assume that
(IBS− SETUP, IBS− EXTRACT, IBS− SIGN, IBS−VERIF) is a secure
IBS scheme in the black-box model. We de�ne the public-key signature algorithm
Sw/oIB by:

� Sw/oIB− SETUP : For a �xed value ID, the algorithm �rst computes
IBS− SETUP(1k) = (MSK,MPK). The algorithm outputs the secret-key
SK and the public-key PK

Sw/oIB− SETUP(1k) = (SK,PK) = (MSK, (MPK, ID))

� Sw/oIB− SIGN : Given a secret key SK from Sw/oIB − SETUP , the
algorithm computes IBS−EXTRACT (ID,MSK,MPK) = (MPK,SKID)
one can then compute the IBS signature of M :

S = Sw/oIB− SIGNSK(M) = IBS− SIGNMPK,SKID
(M)

� Sw/oIB−VERIF : Given a signature (S,M) , and the public-key
PK = (MPK, ID) anyone knowing ID can compute :

Sw/oIB−VERIFPK(S,M) = 1 iif S = IBS− SIGNMPK,SKID
(M)

40

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

The scheme Sw/oIB is just a rewriting of the IBS scheme where the generation
of the ID related key is relegated to the signer. The algorithm we obtain is just a
public-key signature scheme, without any identity based property. In this scheme, the
master secret key MSK can be seen as the only secret element, with SKID only being
an information computed at the time of signature. To get an unbreakable white-box
implementation of Sw/oIB, one would need to 'hide' the key MSK, but the IBS
scheme is already tailored for that as the secret key SKID (output of the extraction
IBS− EXTRACT) can be used for signing and the security of IBS is based on the
fact that recovering MSK from SKID is hard. We hence get then the trivial property:

Proposition 1. Let IBS be a secure identity-based signature scheme and Sw/oIB
its associated public-key signature scheme. Let WB-Sw/oIB be an implementation of
Sw/oIB where the key SKID from the extraction IBS− EXTRACT(ID,MSK,MPK)
is hardwired into the implementation instead of the master-key
MSK and Sw/oIB− SIGNSK is replaced by IBS− SIGNMPK,SKID

. The imple-
mentation WB-Sw/oIB is unbreakable for the same level of security as the black-box
security of IBS.

If this remark highlights the similarities between Identity-Based Signatures and what
we require from white-box implementations of traditional pubic-key signatures, it fails
to deliver solutions for concrete implementations techniques.

First, this remark only applies to the unbreakability property. Indeed, if we want to
extend this result to incompressibility, we have to then consider the sizes of the keys
MSK and SKID, which are the only di�erent elements from one implementation to
the other. Usually, the sizes of these keys are quite similar and having big keys SKID

is not a goal of this area of research. In that sense, this remark is quite close to the
"one-way function trick" (section 2.2) to get trivial unbreakable implementation of
symmetric algorithms.

Secondly, while designing unbreakable or incompressible public-key signature algo-
rithms from scratch, i.e. without implementing a standard or already deployed algo-
rithm, can be an interesting area of research as it was done for block-ciphers [23, 57],
this link with identity-based cryptography does not seem to help design implementa-
tions of standards such as RSA or ECDSA. Indeed, designing IBS schemes is already a
hard problem, but transforming a traditional PKC signature algorithm into an IBS one
seems out of reach for now.

To us, the important conclusion of this analogy is that the kind of 'double trapdoor'
structure that white-box cryptography needs in the public-key setting exist in the �eld of
cryptography, which opens the room for more experimentation and designs and possibly
for new PKC signature algorithms designed with their white-box implementation in
mind.

41

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

2.3.3 Links with Cryptographic Obfuscation

The �eld of cryptographic obfuscation has a lot of similarities with the goal of white-box
cryptography. Especially, obfuscation techniques have been envisioned as possibilities
to get white-box implementations. To precisely compare them and to see what can be
learned from it, let us quickly introduce it.

The goal of cryptographic obfuscation is to construct a compiler O that transforms
a program P into a functionally equivalent program O(P) that is "unintelligible". First
formally introduced by Hada in [66], de�ning properly what "unintelligible" means for
such generic obfuscator - that is, that works for any class of programs - to exist has
been the �rst di�culty. The work of Barak et al.[5] formalizes the notion Virtual
Black-Box Obfuscation which is pretty intuitive: the obfuscated program should not
give more information than a black-box access to its functionality. Formally:

De�nition 9 (VBB Obfuscation). An algorithm O, which when given a circuit in C
outputs a new circuit, is said to be a black-box obfuscator for the family C, if it has
the following properties:

� Preserving Functionality: There exists a negligible function neg(n) such
that for any input length n, for any ∀C ∈ Cn:

P[∃x ∈ {0, 1}n : O(C)(x) ̸= C(x)] ≤ neg(n)

The probability is over the random oracle and O's coins.

� Polynomial Slowdown: There exists a polynomial p(n) such that for all but
�nitely many input lengths, for any C ∈ Cn, the obfuscator O only enlarges C
by a factor of p:

|O(C)| ≤ p(|C|).

Virtual Black-box: For any polynomial-sized circuit adversary A, there exists a
polynomial-sized simulator circuit S and a negligible function neg(n) such that, for
every input length n and every C ∈ Cn:

|P[A(O(C)) = 1] − P[|SC(1n) = 1]| ≤ neg(n)

Where the probability is over the coins of the adversary, the simulator and the
obfuscator. In the presence of a random oracle, the probability is also taken over the
random oracle.

42

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

However, in the same paper, Barak et al. [5] prove that generic VBB obfuscators
do not exist. To prove their result, they exhibit a special family of functions that have
the property of leaking a secret on the input of a program that computes its own
functionality. While this result proves a generic impossibility, it does not rule out the
possibility of building VBB obfuscation for commonly used cryptographic primitives
such as the AES. Having a VBB implementation of the AES would be ideal since it
would trivially give a unbreakable and one-way implementation of the AES.

Since there are impossibility results for VBB in the standard model, the crypto-
graphic community has shifted from the study of VBB obfuscation to a weaker notion
of obfuscation, Indistinguishability Obfuscation (iO), that was �rst introduced in the
same article by Barak et al. [5]. Roughly, the goal of iO is to transform a program into
a pseudo-canonical form of it. This way, the obtained program should not leak more
information than any program computing the same function. We recall the formal
de�nition of iO:

De�nition 10 (iO). A probabilistic polynomial algorithm O, which takes as input a
circuit in C and outputs a new circuit, is said to be an indistinguishability obfuscator
for the family C, if it has the following properties:

� Preserving Functionality: There exists a negligible function neg(n) such
that for any input length n, for any ∀C ∈ Cn:

P[∃x ∈ {0, 1}n : O(C)(x) ̸= C(x)] ≤ neg(n)

The probability is over the random oracle and O's coins.

� Polynomial Slowdown: There exists a polynomial p(n) such that for all but
�nitely many input lengths, for any C ∈ Cn, the obfuscator O only enlarges C
by a factor of p:

|O(C)| ≤ p(|C|).

� Indistinguishable Obfuscation: For all large enough input lengths, for any
circuit C1 ∈ Cn and for any circuit C2 ∈ Cn which computes the same function
as C1 with |C1| = |C2|, the two distributions O(C1, r) and O(C2, r) over the
coins of the obfuscator are computationally indistinguishable.

After the �rst plausible construction of iO by [59], research bloomed on the subject
and numerous applications of iO were found, including new cryptographic primitives.
Here is a short list of the notable primitives that iO could achieve:

43

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

� Functional Encryption[59] (open problem since 2005)

� Deniable Encryption [98] (open problem since 2006)

� Multiparty Key Exchange [26]

� Universal Witness Signature [94] (open problem since 2010)

As it was forecast, iO is indeed be a cryptographic master tool. The celebrated
line of work leading to the result of Jain et al. [69] lately proved that a polynomials
iO compiler exists under standard assumptions, while a realistic implementation is still
out of reach for usual algorithms.

Link with white-box cryptography While white-box focuses on cryptographic al-
gorithms such as encryption or signature algorithms, cryptographic obfuscation aims
to be applicable to any program. Cryptographic obfuscation also radically di�ers from
practical code obfuscation techniques, for it tries to proves its security based on stan-
dard assumptions while the other do not. The existence results for iO ensure that
polynomial constructions exist, but the solutions tailored for a cryptographic algo-
rithms will surely be more e�cient.

We mention an interesting result of construction of white-box implementations
provided that the targeted white-box properties exist. If a white-box compiler can do
it, then an iO obfuscator can too. We state the result for unbreakability but it can
also be extended to one-wayness and incompressibility. Let us �rst assume that we
extend the notion of white-box compiler to match an obfuscator, that is, our compiler
is now de�ned for any class of circuit Cn and satis�es 'Preserving Functionality' and
'Polynomial Slowdown'. In that case:

Proposition 2. Let O a generic iO obfuscator and P a family of keyed-algorithms.
If there exist an (τ, ϵ)-unbreakable compiler WB with polynomial slowdown for the
family of P , then O is a (τ, ϵ)-unbreakable compiler for P .

Proof. Let n ∈ N∗ and P ∈ Pn. For a �xed key k, the implementation WB(Pk)
is (τ, ϵ)-unbreakable by hypothesis and its size λ is polynomial in n. Now, consider
an implementation of P̃k pf Pk that is obtained by padding Pk to the size λ. The
programs WB(Pk) and P̃k are of the same size and functionally equivalent. As WB
is unbreakable for exponential security parameters, the implementation O(WB(Pk))
is also unbreakable as O is polynomial. By the indistinguishably of O, the output
programs distribution O(WB(Pk)) and O(Pk) are computationally indistinguishable.
If the program O(Pk) is not unbreakable, this means that the key-recovery is a dis-
tinguisher between the two distributions, which is absurd. The compiler O is thus
unbreakable.

44

CHAPTER 2. THE PLAIN WHITE-BOX MODEL

Remark: It is important to note that this result in asymptotic and hence might not be
useful at all in the concrete context of white-box cryptography applied to the AES-128
primitive. It is however helpful to understand the similarities between the notions.

Lastly, a line of work initiated by Alpirez-Bock et al.[22] where they use obfuscation
techniques in addition to a speci�c hardware to prove strong security properties. We
explain this line of work in more details in chapter 3.

2.4 Discussing an Impossibility Result

In 2020, Alpirez Block et al. published, in [21], a result concerning the impossibility
of a secure generic compiler in the white-box model. Their result uses the same
construction as the generic VBB impossibility result of Barak et al. of 2001 [5] and
gives the example of a secure encryption scheme that cannot be white-boxed that we
brie�y recall.

Starting from a secure encryption scheme with encryption algorithm E, they design
a new encryption algorithm E ′ that, on the input of a message that is the code of
an encryption scheme, outputs the key of E, and on the input of a regular message,
outputs the corresponding output ciphertext of E. The technical detail of checking the
input is dealt with a simple pseudo-random functions, which makes the construction
feasible for any encryption scheme. Such algorithm E ′ can still be proven secure, and
no secure white-box implementation can be made: if one gets an implementation of
E ′, on the input of the same implementation, the key is output to an attacker.

While this result once again shows the similarities between obfuscation and white-
box, it does not motivate a complete change of paradigm nor does it give insight to the
hardness of the problem for real cryptographic algorithms. Indeed, the VBB impossib-
lity result forced to change notions of obfuscations because the nature of cryptographic
obfuscation is to be generic. The goal of white-box cryptography however, is to imple-
ment concrete functions that represent a tiny small amount of programs. For instance,
a VBB implementation of the AES might still exist as the impossibility result of VBB
does not rule it out and the same is true for an AES white-box secure implementation.

45

Chapter 3

Variations of the Plain White-Box

Model: The Remote Access

White-Box Model and

Hardware-Module White-Box

Model

The study of the plain white-box model is now about two decades old. In these
decades, the cryptographers grown unsatis�ed with some aspects of this model. First,
the hardness of providing any secure implementations of standards in this model made
deployment of peer reviewed implementations in the industry impossible. This estab-
lished a gap between the concrete products that contain white-box implementations
and the academic attempts towards secure implementations. Secondly, the security
properties that can be achieved in the plain white-box model are sometimes too weak
to ensure any security depending on the context. For instance, white-box implemen-
tations of encryption algorithms in the plain white-box model can be used to encrypt
messages, which is a no go for certain applications.

In the recent years, two other main models, have emerged. The �rst model is
the Remote Access White-Box model, which attempts to capture the attack model
of malware that are planted on a target hardware and remotely communicate with an
attacker. The second one is the Hardware Module White-Box model, which studies
secure implementations based on small secure hardware components.

If these two models were originally presented as security notions in the context pf
the the white-box model, we here want to set them apart from the plain white-box
model for sake of clarity and for a fair comparison with the security implementations
can achieve in these model compared to the plain white-box model.

46

CHAPTER 3. VARIATIONS OF THE PLAIN WHITE-BOX MODEL: THE REMOTE ACCESS WHITE-BOX MODEL AND HARDWARE-MODULE

WHITE-BOX MODEL

3.1 The Remote Access White-Box Model

To the best of our knowledge, the �rst evocation of the Remote-Access White-Box
model was made by Todo et al. [104] to study the space-hardness[23] of two block-
cipher built for the white-box model, SPNbox [23] and Yoroi [76]. The authors describe
the 'hybrid' setting of their attack in the following way. If a malware is planted on
a device to target an implementation, it can compute speci�c information about the
implementation on site before sending it to a black-box adversary that has more compu-
tation power than the device allows. This setting seems interesting to us as it highlights
the asymmetry of capabilities between some devices where white-box implementations
are deployed (smartwatches, TVs, ...), that have limited RAM, hard-memory or com-
putational power, and the usual cryptographic adversary: data needs to be extracted
from the device to perform more sophisticated attacks, which can be hard to do re-
motely. While this does not guarantee security against an adversary that can extract
unlimited amount of data, this encapsulates the weaker and common adversaries such
as malware.

We now formally describe the Remote Access model. In this model, we consider
that an adversary only has remote access to the device where the implementation is
deployed. We suppose that this device has memory µ1 and can run for a time τ1.
To attack the implementation, the adversary has two possibilities: he can mount the
attack on this device or extract a certain quantity of information δ to mount an attack
with its own memory µ2 and running time τ2 (Figure ??). Note that we add the
memory constraint to the usual model that cannot be found in [67, 104] to grasp the
real behavior of devices. To distinguish the two phases of the attacks, we divide the
attacker into two subattackers, AMW that builds and plant the malware and Aremote

that carries on the black-box attack in the end.

τ2

Attacker's Hardware

τ1

Target Hardware
data δ

Black box White box

This model is in essence very similar to the setting for strong incompressibility of
[57] except the leakage is here computationally bounded but is only restricted by min-
entropy in [57]. Another main di�erence is that strong incompressibility was introduced
to get provable security while security in the remote-access model is similar to the

47

CHAPTER 3. VARIATIONS OF THE PLAIN WHITE-BOX MODEL: THE REMOTE ACCESS WHITE-BOX MODEL AND HARDWARE-MODULE

WHITE-BOX MODEL

notions we described in the plain white-box model and security is based on the analysis
of the best known attacks against the construction.

One of the motivations of studying this model is that by relaxing the plain white-
box model, designers might achieve stronger securities properties that are useful in
concrete cases. The asymmetric computational restriction (τ1, µ1) from the target
hardware greatly empowers designers, at least at �rst glance.

3.1.1 Security Notions

As the remote-access model is a restriction of the plain white-box model, notions such
as unbreakablility, incompressiblity and onewayness can still be studied. However, has
the model restricts the plain white-box attacker, one can hope for stronger security
notions, especially with the o�ine phase the model introduces. Similarly to chapter 2,
we adapt security notions in the framework of [43].

Notions from the Plain White-Box Model

If notions such as incompressibility are well understood for the design of algorithm
point of view, there are still too few implementation techniques for usual algorithms
that achieve any security in the plain white-box model. Studying the security in the
Remote-Access model might allow for new techniques to sprout, using the relaxation
introduced by the model. We believe that studying notions such as unbreakability or
one-wayness in this model for implementation of standards with relevant parameters is
still a �rst milestone to reach.

We now describe the game of remote access incompressibility for any σ, δ > 0
for a compiler CE . This is a modi�ed version of the game of unbreakability where we
allow black-box access to Ek and a certain quantity δ of data on CE(k) gathered in the
white-box model on the device:

� Draw at random a key k in private keyspace KE

� The adversary A request any set of data DWB of size at most δ on the imple-
mentation CE(k) in the white-box model in time τ1 and memory µ1.

� The adversary A returns a program P in time τ2 and memory µ2 having access
to DWB and a black-box access to Ek

� The adversary A succeeds if P ≈ EK and size(P) < σ

De�nition 11. Remote Access Incompressibility
Let E be a symmetric encryption algorithm, CE a white-box compiler,

let µ1, τ1, µ2, τ2 ∈ N∗, A be any adversary and DWB any data set of size δ that can be

48

CHAPTER 3. VARIATIONS OF THE PLAIN WHITE-BOX MODEL: THE REMOTE ACCESS WHITE-BOX MODEL AND HARDWARE-MODULE

WHITE-BOX MODEL

extracted from CE in time τ1 and memory µ1 in the white-box model. We de�ne the
probability of the adversary A to succeed in the remote access unbreakability game by:

SuccA,CS ,DWB
:= P[k ← K;P = CS(k),A(OS(k), DWB) = P ;P ≈ CE(k); size(P) < σ]

We say that CE is (δ, (µ1, τ1), (µ2, τ2)), σ, ϵ)-remote access incompressible if CE is
(µ1, τ1, ϵ)-unbreakable and if for any adversary A and data set DWB running in time
τ2 and memory µ2, SuccA,CS ,DWB

≤ ϵ.

Closing the Gap with the Black-Box Model

The work of Hosoyamada et al. pushes the usual security notions of the plain white-box
model for notions that are closer to the ones studied in the black-box model. They
extend PRI, PRP, PRF and IND-CPA in the Remote-Access White-box model. If these
notions were not achievable in the plain white-box model, the two-time phase of the
remote-access model might allow implementation that satisfy these properties. We
only adapt the PRP de�nition in our setting and refer to Hosoyamada et al. for the
others. We describe the security property for encryption algorithms.

The PRP security is de�ned by evaluating the distinguishability of two games: a
real one based on the implementation and an ideal one based on oracle calls. To adapt
their de�nition to the Remote-Access model, Hosoyamada et al. modify the usual PRP
games.

� A key k is chosen at random and a program CE(k) is computed by the compiler

� The adversary A creates a malware - or lifter. To create this malware M , the
adversary only has remote-access to the devices, which is modeled as a black-box
access to CE(k).

� Once the malware is built, it is planted and can perform any white-box attack
in time τ1 and memory µ1. It then leaks a data set D of size δ

� Finally, the adversary A can attack CE(k) in the black-box model aided by the
leakage D.

Remark : The choice of allowing A to query CE(k) before building the malware
can be seen as an empowerment of the usual malware adversary. Conversely, the
fact that the malware cannot be modi�ed adaptatively in regard to the white-box
information extracted fails to grasp the most powerful adversaries. These variations
can be discussed, but this framework allows for simplicity of description.

49

CHAPTER 3. VARIATIONS OF THE PLAIN WHITE-BOX MODEL: THE REMOTE ACCESS WHITE-BOX MODEL AND HARDWARE-MODULE

WHITE-BOX MODEL

In PRP security, the real game needs it ideal alternative. To do so, the authors use
a simulator S that simulates the behavior of the malware M on the implementation.
Formally, S is an algorithm that on the input ofM and the functionalities E and E−1,
outputs a data set DIDEAL of size δ that is indistinguishable from the leakage D made
by M . Hosoyamada et al. detail how such simulator should function, but we only
assume here that it can be made in reasonable time.

We now describe these two games. The real experiment is as follow:

� A key k is drawn at random and a program CE(k) is computed by the compiler

� AMW builds a malware for CE(k).

� The malware leaks D =MW (CE(k)) to A

� A tries to distinguish Ek from an random permutation by using D and black-
box access to CE(k). It outputs ExpPRP−real

E,CE(k),A = 1 if it thinks it is random, 0
otherwise

The ideal game goes as follows.

� A random permutation σ ∈ Sn is drawn at random

� AMW builds a malware MW for σ.

� The simulator S simulate the leakage that would produce MW on the input of
a programm computing σ, leaking a data set DIDEAL

� A tries to distinguish σ from a random permutation by using DIDEAL and
black-box access to σ. It ouputs ExpPRP−ideal

S,A = 1 if it thinks it is random, 0
otherwise

De�nition 12. Let E be a symmetric encryption algorithm, CE a white-box com-
piler, let µ1, τ1, µ2, τ2 ∈ N∗, A = (Aremote,AMW) be any adversary. We de�ne the
probability of the adversary A to succeed in the remote access unbreakability game by:

SuccA,CS ,DWB
:= |Pr[ExpPRP−real

E,CE(k),A = 1]− Pr[ExpPRP−ideal
S,A = 1]|

We say that the compiler CE is (δ, µ1, τ1, µ2, τ2, q, qsim, ϵ)-remote-access PRP se-
cure if for any adversary AMW running in time and memory τ1, µ1 leaking data sets δ
in the white-box model and Aremote running in time and memory τ2, µ2 with at most
q queries to CE(k) in the black-box model, there exists a simulator S that makes at
most qsim queries such that SuccA,CS ,DWB

≤ ϵ.

50

CHAPTER 3. VARIATIONS OF THE PLAIN WHITE-BOX MODEL: THE REMOTE ACCESS WHITE-BOX MODEL AND HARDWARE-MODULE

WHITE-BOX MODEL

As the authors of [67], the goal of this security notion is not to be proved, but
to be tested against the best attack found in the literature, like it is common for
the PRP property of usual algorithms. The authors also give SPACE − nα [23],
α ∈ {8, 16, 24, 32} as a candidate for remote-access PRP. They conjecture that it is
the case for τ2 = 2128,q = 2128, δ = (128 − nα) × 2nα−2 and ϵ << 1 as long as
τ1 << qsim < 2128. This means that the property is essentially broken once few tables
have been leaked.

3.1.2 A Lack of Benchmarks

The model is young, with very few publications on the topic. The �rst conjectures of
security about algorithms from the state of the art were made by Todo et al. [67].
These conjecture are essentially parameterized by δ and (τ1, µ1). To know if these
security conjectures are of any use, one needs to evaluate them in the context of
concrete use cases.

A lack of benchmark for the hardware parameters It is natural in white-box
works to ignore hardware speci�cation, as it is the essence of the model. However, in
the remote-access model, the parameters τ1 and µ1 are derived from concrete hardware.
Their speci�cations vary : an hardware on a smartwatch, a TV or a smartphone might
be really di�erent. The power consumption on devices on batteries also intervene in
the estimation of the time that the device can run the malware. As the model matures,
these estimations have to come into play to ground the solutions proposed and evaluate
the concrete utility of the construction.

A lack of study of the control of the extraction of data The argument of
the hardness of huge data extraction on devices is a long time participant in white-box
discussions to bind implementations to hardware. Since the introduction of the notion
of incompressibility in the plain white-box model and works on 'big-key' ciphers [10],
the argument that sensible data has to be made as big as possible to make the task
of code lifting di�cult is central to usefulness of the solutions. However, the actual
means of assuring it or the amount of data extraction that can be detected is never
detailed.

3.2 The Hardware Module White-Box Model

Applications using secret data on devices such as smartphones are already deployed
nowadays and widely used, notably for mobile payment. If the security of payment
cards is usually a problem studied in the grey-box model of attacks as the smart card

51

CHAPTER 3. VARIATIONS OF THE PLAIN WHITE-BOX MODEL: THE REMOTE ACCESS WHITE-BOX MODEL AND HARDWARE-MODULE

WHITE-BOX MODEL

provides hardware security, the same cannot be said for mobile payment. In this setting,
applications run on smartphones can be targeted by malware or a white-box adversary.

The industrial solutions to this problem often come with the usage of a trusted
component in the device that will handle sensible computations. However, the solutions
often vary due to the the available hardware. For instance, Apple smartphones all have
their dedicated secure component, while only the top-end Android phones have them,
and they di�er from one supplier to the other.

In this context, the authors of [21] advocate the usage of hardware to provide
hardware-binding properties, a property that cannot be achieved in the plain white-box
model. The rationale is the following. If one can have a small secure hardware with a
set functionality, one can attempt to bootstrap the security property from the hardware
to multiple software implementation of cryptographic algorithms. The hardware will
then be necessary to the implemented algorithm, and the functionality of said algorithm
cannot be replicated by the an attacker that would retrieve the implementation, leaving
the hardware on site. While this idea is not novel per se as we will see in section 3.2.2,
their paper is the �rst to label model and security notions as white-box cryptography.

Software Hardware

Figure 3.1: Framework for the Hardware-Module White-box model

The usage of hardware in the white-box model might feel such as going backwards
from the initial goals of the white-box model. While it is partly the case, it also allows
for white-box to bridge the gap between the construction in the plain white-box model

52

CHAPTER 3. VARIATIONS OF THE PLAIN WHITE-BOX MODEL: THE REMOTE ACCESS WHITE-BOX MODEL AND HARDWARE-MODULE

WHITE-BOX MODEL

that do not o�er enough security to be deployed as is and the solutions deployed
in the industry that are sometimes already based on hardware functionalities. These
solutions are greatly needed as the soaring of mobile payment shows. Studying the
hardware-module model in academic literature can only improve the overall robustness
of industrial solutions and help ordinary citizens to have access to solutions that are
free of use.

For the rest of the section we will assume that we can have access to hardware
in the form of a hardware module. The hardware-module HMW is assumed to be
tamper-proof, to be computationally bounded and to be equivalent to having a black-
box access to its functionality.

3.2.1 Security Notions

This model o�ers more possibilities than the plain white-box model or the remote
access white-box model. It is indeed closer to the grey-box model of attack, with the
security of the hardware helping to establish the security of the overall implementation.
As this model is a restriction of the plain white-box model, as any implementation can
be made an 'empty' hardware module, the security notions of the previous sections,
such as unbreakability and one-wayness can also be considered in this model. However,
for the mitigation of code-lifting attack, the correct notion to use in this context is
hardware-binding. As the model is equivalent to the black-box model if we do not �x
any limit on the hardware, it is also reasonable to study notions such as IND-CCA for
encryption algorithms and Existential Forgery for signatures adapted to the white-box
model.

For the rest of this section we consider the case of a symmetric encryption algorithm.
The notions can easily be adapted to the case public-key encryption or signature when
the notion is meaningful.

Notions from the Plain White-Box model

As this model is a strong relaxation of the plain white-box model, an implementation
in the hardware-module white-box model should at minimum satisfy notions such as
unbreakability or one-wayness. However, the main motivation of this model is to exceed
plain white-box security properties.

Hardware Binding

The adaptation of incompressibility as a code-lifting counter measure in the context
of hardware-module is hardware-binding. The goal is to ensure that the functionality
of the program cannot be used without the hardware on the device. This is the most
basic property an implementation should achieve in this model.

53

CHAPTER 3. VARIATIONS OF THE PLAIN WHITE-BOX MODEL: THE REMOTE ACCESS WHITE-BOX MODEL AND HARDWARE-MODULE

WHITE-BOX MODEL

We now describe, for any τ > 0 the game for hardware-binding security for a
compiler CE :

� Draw at random a key k in private key-space KE

� The adversary A gets the program CE(k) from the compiler that can make calls
to a hardware module HWM .

� The adversaryA returns a program P knowing CE(k) and making calls toHMW .

� The adversary A succeeds if P ≈ CE(k) and P does not make calls to HMW .

De�nition 13. Let E be an encryption algorithm, CE a white-box compiler and let A
be any adversary. We de�ne the probability of the adversary A to succeed game by:

SuccA,CE := P[k ← K;P = A(CE(k), HWM) ;P ≈ CE(k)]

Moreover, we say that CS is (τ ,ϵ)-hardware bound if for any adversaryA, Time(A)+Time(P)
< τ implies SuccA,CE ≤ ϵ.

However, as the model o�ers more powerful methods to protect implementation by
bootstrapping the security from a secure element to the implementation, one can aim
for stronger security notions. Indeed, an implementation that is bound to a hardware,
there is still the possibility to inverse it on site. The ideal security notion would be to
match the properties such as IND-CPA in the white-box model.

Closing the Gap with the Black-Box model

Similarly to the remote-access model, the natural idea of a stronger security model
than the plain white-box model is to achieve equivalent notions to black-box notions
such as IND-CCA for encryption algorithms or Existential Forgery for signature.

The approach taken by the literature is to extend indistinguishability notions to
the hardware-module context. The papers of [3, 21, 22], respectively de�ne hardware-
binding security for encryption schemes, hardware-binding security for payment func-
tionalities and security of 'global white-boxes'. Global white-boxes are out of the scope
of this thesis.

These security properties aim to distinguish the behavior of the implementation
on the device compared to a simulated one, similarly to the remote-access case or to
cryptographic obfuscation security notions. We refer to the individual papers to the
exact security properties.

54

CHAPTER 3. VARIATIONS OF THE PLAIN WHITE-BOX MODEL: THE REMOTE ACCESS WHITE-BOX MODEL AND HARDWARE-MODULE

WHITE-BOX MODEL

3.2.2 Examples of Constructions

The goal of this section is to explore the solutions that are present in the state of
the art. We review two constructions that are presented as white-box solutions and
two solutions from the obfuscation state of the art, that have surprisingly not being
considered in white-box publications.

Constructions under the White-Box label

The paper of Alpirez-Bock et al. [22] introduces the idea of using hardware modules to
add security to software implementations. This started a line of work studying security
properties of implementations using said methods. These works however do not detail
hardware speci�cations, nor software overhead - when it is concretely computable. This
bias is interesting as it is the opposite goal of the model.

White-Box Key Derivation Function Following security benchmarks of Master-
card and EMVCo, Alpirez-Bock et al. [22] build a white-box key derivation function
(WDKF) that uses a hardware functionnality and de�ne precise security properties
to achieve. Their construction is based on pseudo-random function and iO, with an
hardware that computes PRF functionalities. Roughly, iO helps to hide the key in the
implementation and security is proven through the well-known puncturable function
techniques of [98].

If their construction provides interesting proven security properties in the hardware
model, the use of iO in their construction reduces the hopes of having a concrete
implementation of their solution. Using watered down versions of iO would indeed
void the security of the construction.

With Token Based Obfuscation The construction of Agrawal et al. [3] uses
Token Based obfuscation (TBO). Token Based Obfuscation is a form of obfuscation
that allow to run the obfuscated program on an input only if a token related to said
input is generated. In that sense, TBO produces reusable garbled circuits [60]. A TBO
obfuscator is then divided into two algorithms, the compiler O and the token generator
Token :

� Like obfuscators such as iO, on the input of a circuit C the obfuscator O output
a circuit O(C) but also outputs a secret key k

� The Token generator outputs a token on the input of the secret key k and x an
input of C such that:

(Tx = Token(k, x)) =⇒ (O(C)(Tx) = C(x))

55

CHAPTER 3. VARIATIONS OF THE PLAIN WHITE-BOX MODEL: THE REMOTE ACCESS WHITE-BOX MODEL AND HARDWARE-MODULE

WHITE-BOX MODEL

Their construction essentially adapts this kind of obfuscator in the white-box model
by storing the token generator in the hardware, while the obfuscated circuit is freely
executed on software on the input of a token given by the hardware.

If the theoretical security of this construction is well-grounded in obfuscation works,
the authors however do not elaborate on the concrete complexity of their construction,
which is usual for applicable white-box designs. The construction of [60]- that is a
ground work for this construction - use universal circuits as a basis of their construc-
tion, which begs the question of e�ciency if it is used with multiple garbled circuits,
especially if we consider similar constructions already exist since a decade in the ob-
fuscation literature (see next section).

Construction from Hardware-Based Obfucation

The idea of using hardware as a crutch to achieve notions that we do not know how to
achieve in the standard model is not new. Here, we study the example of obfuscators
build with hardware functionalities. As we have seen in section 2.3.3, using obfuscation
to achieve white-box properties is a natural idea. The example we give here can be
concretely implemented and are very �exible in their usage. As many construction of
cryptographic obfuscators, the programs here are represented by circuits.

It is interesting to note that these kinds of constructions are not mentioned in the
state of the art of hardware module white-box papers. We �nd this rather surprising
considering the similarities between the goal they achieve, and the techniques they use.

The TCC2010 Construction In the context of building an obfuscator, a line of
work attempted to circumvent the impossibility result of Barak et al. by using hardware
- tamper-proof hardware in the obfuscation literature. The work of [64] is the �rst to
achieve it with stateless hardware, that is, hardware that does not have to kept track
of each computation made chronologically.

To build the obfuscator, the authors �rst consider a universal circuit, that is, a
circuit U such that for any circuit C of reasonable size, and x its input, we have :

U(C, x) = C(x)

Using such circuit allows to reduce the problem of obfuscating the circuit to hiding
its input through computations made by the universal circuit. Then, each circuit bit is
encrypted with a non-malleable encryption scheme E with secret key k.

The software part of the obfuscator is then composed of the encrypted circuit and
the universal circuit and the hardware contains the secret key k and the encyption and
decryption algorithms E and E−1. To evaluate the circuit C on input x, one �rst
needs to encrypt each bit of x using the hardware. Then, for each gate of U , the user

56

CHAPTER 3. VARIATIONS OF THE PLAIN WHITE-BOX MODEL: THE REMOTE ACCESS WHITE-BOX MODEL AND HARDWARE-MODULE

WHITE-BOX MODEL

computes the ouput bit in the following way : the user sends the two encrypted bits
to the hardware that decrypts them, computes the gate and encrypts the output, to
send it back to the user.

This simplistic description however have some problems. For instance, a malicious
user can change values on wires by using the encryption algorithm of the hardware -
as the order and values of inputs are not �xed. To circumvent these kinds of problems
with stateless hardware the authors force the execution of the program to be made in
the correct order, for correct inputs. To do so, the author achieve to assign to each
computation what they call an 'execution identity' for the entirety of the execution of
the program. This execution identity ensures that there is only a low probability that
di�erent executions of the circuit have the same execution identity. For an even simpler
construction, the authors propose a stateful construction for which the hardware insert
a nonce in all encrypted values. The hardware will then only compute a gate if the
wire have the right nonce. For a complete description, refer to [64].

This construction is rather simple in essence as it only uses a hardware with encryp-
tion and decryption functionality - and a small check on execution identities. However,
there are as many calls to the hardware than there are gates in the universal circuit,
which is problematic if a user wants to use a large class of circuits C as input.

The FHE based Construction of Dötling et al. The construction of [49] is
based on fully homomorphic encryption and the use of a hardware for decryption.

Similarly to the previous construction, the obfuscator uses a universal circuit to con-
sider the circuit C as an input. The main di�erence here is that each bit of the circuit
is encrypted using the public key of a FHE scheme. The obfuscation software contains
a description of U and the encryption of C, while the hardware part is composed of
the decryption algorithm of the FHE scheme with the secret key.

The circuit can then be evaluated on input x by encrypting each bit of x and
evaluating homomorphically U(C, x). The result then has to be decrypted by the
hardware with the secret key. However, this leads to malleability problems similar to
the previous construction. Here, to decrypt conditionality to a correct execution, user
has to commit to a circuit C by signing its encryption and sending it to the hardware.

This idea is similar to the �rst GGH13 obfuscator. In their construction, the func-
tionality of the hardware is obfuscated and allow a bootstrapping from low classes of
circuits (NC1) to any polynomial circuit. If the GGH13 construction had implementa-
tion issues due to the size the obfuscator on NC1 circuits, this construction only relies
on the security of the hardware and FHE. Using FHE might be more technical than a
regular encryption scheme, this construction only makes one call the the hardware for
the decryption of the output of the circuit. The circuit of decryption can also be small
as there exists FHE schemes with decryption in NC1.

57

CHAPTER 3. VARIATIONS OF THE PLAIN WHITE-BOX MODEL: THE REMOTE ACCESS WHITE-BOX MODEL AND HARDWARE-MODULE

WHITE-BOX MODEL

3.2.3 A Lack of Metrics, Again

The Hardware Module White-Box model has been motivated by concrete use cases
found in the industry. However, there is still a huge gap between the literature and the
concrete use of white-box cryptography in this context.

A �rst problem is the lack of a good target problem. What are the most useful
hardware to consider as a basis ? What are the main goals of implementations de-
pending on the device ? If the problem of payment application has been studied in
theory by Alpirez-Bock et al. [22], there are no concerns for the concrete use of such
methods. The TBO based method of [3] also lacks a concrete study of the cost in
term of software overhead of this bootstrapping.

Conversely, for designers, what is the metric to be optimizing if we aim at designing
future hardware adapted to the white-box model? To what point is it important to
minimize hardware functionalities? What are the hardware solution to minimize the
implementation overhead? These questions are not discussed and no directions are
taken to explore the model on concrete examples. We recall that minimizing hardware
functionalities for bootstrapping security properties to software is the sine qua none
condition for the usefulness of the model. Without this restraint, we are back at
studying hardware security.

58

Chapter 4

Generic Attacks in the White-Box

Model

In the previous chapters, we investigated di�erent white-box security models. In these
models, there is one constant: the attacker is a allowed to have full access to a certain
amount of the software computing the target cryptographic primitive. The goal of
this chapter is to describe the automated attacks that are available to every white-box
attacker and that are generic, i.e can be applied to any implementation without any
real understanding of the implementation.

From Grey to White As the white-box model is a generalization of the grey-box
model of attack, it is natural to consider grey-box attacks and their e�ciency against
white-box implementations. The two main attack techniques that have been used in
the literature are Di�erential Power Analysis (DPA) [75] and Di�erential Fault Analysis
(DFA) [51].

If the use of these attacks has not been immediate, their use in the white-box
model was quickly shown to be powerful. Adaptations of DPA and DFA in the white-
box model have broken most of the state-of the-art solutions [20, 28, 68, 99] and
greatly questioned the e�ectiveness of the state-of-the-art implementation techniques.
The grey-box attacker is a real threat in the white-box model as it does not rely on a
deep understanding of the implementation or an expert reverse engineering.

While being a weaker opponent than the white-box attacker, the grey-box adversary
is a �rst opponent to beat for a designer and resisting its attacks should be a prime
goal for the designer.

Original White-Box Attacks The white-box attacker can observe exact computa-
tional traces which means that attack techniques that do not have an equivalent in the

59

CHAPTER 4. GENERIC ATTACKS IN THE WHITE-BOX MODEL

grey-box context can be envisioned. The e�ciency of these attacks often surpasses
the e�ciency of grey-box attacks in the adapted situation.

The Linear Decoding Attack (LDA) is one of the prime examples of such attacks.
This attack exploit the fact that, due to the techniques used in white-box implemen-
tation, there exists linear or low-degree relations between elements of computations
traces and the target function. Finding the key can then be reduced to simply solv-
ing a linear system. This attack as �rst been reported to break implementations of
the WhiBox19 [107] contest [62] and is particularly adapted to implementations using
masking techniques.

One other notable category of attack is the collision-based attacks. Reported in
papers like [97] and [111], these attacks abuse the fact that collisions in computation
traces are usually equivalent to collisions on target functions. The attack of [97]
exploit collisions that are inherent to the round funtion of the AES while [111] exploits
collisions that are present in traditional AES implementations.

4.1 Formalizing the framework of automated at-

tacks

The automated attacks we described previously all share the same framework that we
describe now. Let us assume that an attacker targets a boolean function ϕk with
k ∈ K. The attack is divided into tree steps.

First, the attacker collects computation traces of the execution of the program.
For any number N of inputs (x(i))i∈{1,...,N}, the attacker collects any value read or
computed by the implementation. This can take the form of values written in any
memory location or the values of look-up tables. The values of the traces are acquired
and ordered chronologically from the �rst to the last T -th value. As the trace depend
on the input, we note the trace (vi)i∈{1,...,N} where :

(vi) = (vi1, ..., v
i
T)

The traces can be obtained straight from the attacked implementation or some
reverse engineering can be performed to reduce the size of traces. The traces can also
be analyzed to remove constant or redundant elements.

After the acquisition of traces, the attacker tries to build a distinguisher D from
the traces. The distinguisher gives a score for each possible key :

(γk)k∈K = D((x(1), ..., x(N)), (v(1), ..., v(N)))

60

CHAPTER 4. GENERIC ATTACKS IN THE WHITE-BOX MODEL

Lastly, the attacker chooses a candidate among the ones with the best score γk.
The attacker succeeds if the distinguisher correctly matches the best score with the
correct key. The probability p is then de�ned by :

p = Pr(k∗ = argmaxk∈Kγk)

If the distinguisher matches not one but few keys to the best score, the attack can
still succeed if the obtained key-space is small enough so that a brute-force search can
eliminate the false positives.

4.2 DCA

The Di�erential Computation Analysis is an attack introduced by Bos et al. at CHES
2016 and Sanfelix et al. at Black Hat Europe 2015 to break many of the state-of-the-
art white-box implementations of the AES. The DCA is an adaptation of the usual
grey-box DPA and exploit the fact that the values of traces are correlated to the values
of s-boxes or round functions.

To launch a DCA, the attacker �rst collects traces of executions of the program.
She then chooses a target keyed function and makes a key guess. Then the correlation
between the evaluations of the target function and the corresponding traces is com-
puted for each key guess. The key with highest correlation score is chosen as the key
candidate, which is then con�rmed or denied with a reference implementation.

Since its seminal use, this attack has proven to break most AES implementations,
in works such as [28, 97]. The most important quality of DCA is that it only requires a
partial knowledge of the implementation and can be launched generically and e�ciently.
The attacker does not need to reverse engineer the implementation, isolate components
or modify the code, she only needs to read the values at execution. By its simplicity and
e�ectiveness, the DCA is a very potent tool for the white-box attacker, and providing
proven countermeasures against it is still a major open problem in the plain white-box
model.

Although it was quickly proven to be e�ective against the state-of-the-art imple-
mentations of AES, the reasons of why it was so e�cient were not well understood.
Further works with �ner analysis lead to a better understanding such as [19, 20]. For
this thesis, we follow the precise analysis of [97] that estimates the probability of success
of the attack when the target is 'encoded' . While this might seems like a restriction, all
the known techniques of open design implementations are using encoding techniques.
As a consequence, their work helps to understand the e�ectiveness of DCA against all
known open design candidates.

61

CHAPTER 4. GENERIC ATTACKS IN THE WHITE-BOX MODEL

4.2.1 Establishing Probability of Success

The DCA attack is very generic but can only be used with certain assumptions. Let
us assume that the program P computes the function f . Two requirement to the
success of DCA is that the input of P can be chosen and that the program P , on the
input of x output f(x) were x is the chosen input. The requirement ensures that the
program does not hide the input-output behavior of the program through external use
like external encodings (extensive description of the encoding strategy of the AES on
part II).

For the rest of this analysis, we follow [97]. While their analysis is not generic, the
work of [97] gives us a good understanding of the e�ciency of DCA against internal
encoding implementations. Initiated by Chow et al. this technique is the most common
one to build AES implementation. Formally, the target function ϕk : Fn

2 :→ Fm
2 is

encoded by a bijection ϵ : Fm
2 → Fm

2 . The composition ϕ̄k = ϵ ◦ ϕk can be observed
in the evaluation traces.

ϕk ϵ

ϕk

De�nition 14 (Correlation Coe�cient). Let f and g be two balanced boolean func-
tions from Fn

2 to F2. We de�ne the correlation coe�cient between f and g by :

Cor(f, g) =
1

2n

∑
x∈Fn

2

(−1)f(x)+g(x)

De�nition 15 (Correlation Distinguisher). Let v = (v1, ..., vT) be a computation
trace for an input x. For 1 ≤ j ≤ T , let Vj be the random variable that returns vj on
input x. For any key guess k∗, we de�ne the DCA distinguisher by :

γk∗ = max
1≤j≤T

|Cor((ϕk∗)i, Vj)|

If for coordinates j where Vj = f̄j we naturally have:

max
1≤j≤m

|Cor((ϕk∗)i, Vj)| = max
1≤j≤m

|Cor((ϕk∗)i, ¯(ϕk)j)|

62

CHAPTER 4. GENERIC ATTACKS IN THE WHITE-BOX MODEL

Proposition 3 (Adaptation from RW19). Let k∗ be the correct key guess and k× a
wrong one. The probability of success of DCA is :

p = Pr[max
1≤j≤m

|Cor((ϕk∗)i, ¯(ϕk)j)| > max
1≤j≤m

|Cor((ϕk×)i, ¯(ϕk)i)|]

The probability p only depends on the encoding ϵ. If n ≥ 2m + 2 the probability
p can be estimated by :

p ≈ 1−
(
2m−1

2m−2

)2m(
2m−1

2m

)m
The result of [97] is more complete shows how to evaluate the probability of success

for other parameters regimes. The regime of parameter n ≥ 2m + 2 is however very
commonly found in the state if the art of AES implementation. For instance, the
seminal implementation of Chow et al. uses 4-bit encodings for 8-bit S-boxes, which
brings the probability of success of the attack at more than 0.92. However, when m is
equal to n, the probability quickly approaches 0.

The DCA attack can be extended to 'high-order' DCA by using correlation between
linear combinations or products of elements of the traces instead of individual elements.
We refer to [105] for more details.

Complexity Once the traces have been acquired, a DCA is made by computing the
correlation scores of all the traces for each potential target. The authors of RW19
then evaluate the complexity of DCA at :

O(T ×N × 2k)

where T is the size of each trace, and N the number of traces. In the case of
n ≥ 2n+ 2, the number of traces is estimated by [97] to be N = O(22m).

4.2.2 Countermeasures

As protecting implementations with open designs against DCA is still an open problem,
providing countermeasures against DCA is not entirely solved. There are however many
techniques, mostly inspired by the grey-box state of the art that can be proposed to
diminish its e�ciency.

63

CHAPTER 4. GENERIC ATTACKS IN THE WHITE-BOX MODEL

Linear Masking The �rst idea is to adapt linear masking techniques in the white-
box context. Introduced to protect hardware implementations against DPA [36, 61],
the goal of this technique is to share secret variables into n parts:

x = x1 + ...+ xn

where the xi are random. The computations are made on the share instead of the
variable x and recombined at the end for correctness. In essence, if only n− 1 shares
are known, no information is leaked about x. However, this technique assume that a
generator of fresh randomness can be accessed by the implementation. Otherwise the
bias in the distribution of shares is detrimental to the implementation - see [81] for
context in the grey-box model. As it is impossible to reveal the design of a PRNG in
the plain white-box model and expect the pseudorandomness of its output, this forces
designers using masking to obfuscate random number generators of unknown design
into their implementations. In practice, implementations using these techniques have
be defeated, as shown by the WhiBox contest.

Di�erent Encoding Techniques In the context of encoding techniques, the e�-
ciency of DCA heavily depends on the size of the encoding. One can then hope to
use bigger encodings to thwart the attack. This rationale has been used in implemen-
tations such as [77], with only partial success. The main problem comes from the
existence of function with large input size that force large encodings to be used in the
implementation. With such large encodings, the size of the implementation quickly
explodes, making it a debatable countermeasure. This explosion is however somewhat
inherent to the SPN structure of the AES and the implementation techniques used.
More on this topic in part 2 chapter 2.

Remark: Shu�ing Methods and Dummy Computations are methods used in hidden
design implementations to limit the e�ectiveness of DCA. The goal of these methods
is to disrupt the �ow of execution of the program by shu�ing the computation in
memory and time and introducing random computation to augment the overall noise
of the implementation. We do not detail them as we want to focus on open design
countermeasures. For the curious reader, we refer to [105] for a detailed study.

4.3 Collision Attack

Introduced by [97], the collision attacks is a variant of the DCA where the distinguisher
is based on collisions happening on round function instead of a classic correlation score.
The main idea is the following : collisions on an encoded function ϵ◦ϕk are equivalent
to collisions on ϕk. This remarks stands for most of the implementations in the state

64

CHAPTER 4. GENERIC ATTACKS IN THE WHITE-BOX MODEL

of the art. For this section we assume that the target function ϕk is from n bits to m
bits and that n > m.

The attack is launched as follows:

� For each key guess, group inputs if they collide after ϕk∗ :

Iv,k∗ = {x|ϕk∗(x) = v}

� De�ne the correlation function - that is equal to 1 if the target function collides
on x and x′, 0 otherwise :

Φk(x, x
′) = NOT (ϕk∗(x)× ϕk∗(x

′))

� For any two inputs x, x′ in Iv,k∗ , compute correlation traces :

wx,x′

i = NOT (vxi × vx
′

i)

� If W
(x,x′)
j is the function that outputs the j-th element of the correlation trace

wx,x′

i the score for a key guess k∗ is de�ned by:

γk∗ = max
1≤j≤T

|Cor(Φk∗i,Wj
(x,x′))|

Remark : The Mutual Information Attack is a variant of collision attacks where the
distinguisher is based on mutual information. As the authors of [97] note, it can be
seen as a regular MIA in the grey-box model where the encodings can be seen as
complex leakages. The complexity of MIA attacks in the white-box model is similar to
the collision one. As they share many similarities, we do not detail it here. We refer
to [97] for any precision.

4.3.1 Probability of Success of the Attack

Similarly to the DCA, the analysis of [97] estimates the probability of success of the
attack for random boolean function encoded by n-to-m bits bijections.

Proposition 2. Let N be the number of acquired traces. If for all key guesses, the
functions ϕk are mutually independent and balanced the probability of the collision
attack is lower-bounded by :

p ≥ 1−#K × exp(−(N − 1)(N − 2)

2m+1
)

65

CHAPTER 4. GENERIC ATTACKS IN THE WHITE-BOX MODEL

Complexity To perform this attack, one only needs to compare collisions observed
on ϕk⋆ and the observed encoded value ϵ ◦ ϕk. In their paper, the authors of [97] note
that when used on state-of-the-art implementations, the trace complexity of collision
attacks is way smaller than the one of regular DCA. They theoretically estimate the
complexity of the attack to be:

O(T ×N2 × 2k)

4.3.2 Countermeasures

Countermeasures to collison attacks have not been discussed in the literature. A
remark that is inherent to the attack is that it assumes the use of non-injections un
the implementation. This is however very common against SPN due to their structure.
A simple idea to thwart collision attacks is to transforms the implementation so that
it contains bijective transformation. In the case of encoding techniques for instance,
this could lead to the absence of observations of collisions and any attempt at collision
attacks would fail.

4.4 LDA

The Linear Decoding Attack (LDA) exploit the fact that, due to the techniques used
in white-box implementation, there often exists linear or low-degree relations between
elements of computations traces and the target function. Finding the key can then
be reduced to simply solving a linear system. This attack has �rst been reported to
break implementations of the WhiBox19 contest [63] and is particularly adapted to
implementations using linear masking techniques.

4.4.1 Rationale of the Attack

The �rst goal of LDA is to tackle linear masking of sensible variable and to propose
a more e�ective attack than DCA in this context. If a sensible variable ϕk is masked
in an implementation, there exists a linear relation between some of the values of the
computation traces and the target ϕk. For the rest of the section, we assume that
there exists a linear relation between elements of computation traces such that:

ϕk(x) = λ0 +
t∑

i=1

λivi

An attacker with many execution traces on input xi can then build a matrix on
computation traces and try to solve the following system for a key guess k∗:

66

CHAPTER 4. GENERIC ATTACKS IN THE WHITE-BOX MODEL

1 v

(1)
1 ... v

(1)
T

1 v
(2)
1 ... v

(2)
T

...
...

...
...

1 v
(N)
1 ... v

(N)
T

×

λ0
λ1
...
λN

 =

ϕk∗(x0)
ϕk∗(x1)

...
ϕk∗(xN)

Hopefully, the system only solves for the right key guess k∗ = k or a small subspace

of the key-space and the correct key can be recovered.

While this attack works against linear masks or encodings, it can also be applied
to higher degree masks or to certain forms of encodings. Indeed, if there exists a
polynomial relation of degree d between values of a trace and the target function, one
can relinearize the problem by considering a linear system depending on the monomials
of the values of the traces. For a trace of execution (v

(i)
j)j∈J1,T K on input (x(i)), we

compute the list of monomials for any order Mond((v
(i))) of degree d, where d is the

supposed degree of the masking/encoding. Then the linear system:

(Mond((v
(i))))i∈J1,σ(T,d)K × λ = (ϕk(x

(i))i∈J1,σ(T,d)K

admits a solution Λ ∈ Fσ(T,d)
2 if a relation exists for the guessed value k∗. To formalize

a distinguisher according to the attack framework of 4.1, the score γk∗ is equal to 1 if
the vector (ϕk∗(x

(i))i∈J1,σ(T,d)K is in the image of the matrix we build for the attack, 0
otherwise. We note d-LDA a LDA of order d.

4.4.2 Complexity and Probability of success

We follow the analysis of [62] for the estimation of the probability of success of the
attack.

This estimation is made under 3 assumptions :

� There exist a linear relation between elements of the trace and the target function
ϕk.

� The plaintext x input of the traces is uniformly distributed.

� The traces are uniformly distributed among the t-uples that verify:

ϕk(x) = λ0 +
t∑

i=1

λivi

67

CHAPTER 4. GENERIC ATTACKS IN THE WHITE-BOX MODEL

While the �rst hypothesis is necessary for LDA to be of any use and the second
is natural as it is usual in the white-box context, the third hypothesis is an ideal
assumption to help the formal analysis. This assumption can be challenged to include
dependency between variables, but it would harden any estimation of the success
probability. The proof of this property can be found in [62]

Proposition 4. Let T ≥ N and v
(j)
i 1 ≤ i ≤ T ,1 ≤ j ≤ N satisfying the 3 above

assumptions. The probability that the system is solvable for an incorrect key guess
k× ̸= k∗ is lower than qN−T−1 where q is de�ned by :

q := max({Pr(Φk×(X) = L(Φk∗(X)))|L : Fn
2 → Fn

2 , L linear, (k∗, k×) ∈ K2})

with uniform X.

As a consequence, the probability to have false positives that are not linearly de-
pendent to the target is exponential in q. It means that for enough traces, there will
be one only positive with overwhelming probability. For instance, if we set the target
ϕ to be a bit of the S-box of the AES, q = 9

16
which makes the probability of failure

already small with very few traces.

Complexity If we assume ϕ, N and T are such that there is a unique key with
overwhelming probability, the complexity of the attack is dominated by checking if the
vector (ϕk(x

(i))i∈J1,σ(T,d)K is in the image of the matrix (Mond((v
(i))))i∈J1,σ(T,d)K. To

do so, one can use the LU decomposition of the matrix which can be computed in
O(nω). This means that the attack can be made in:

O(σ(T, d)ω × 2k)

This makes LDA a very e�cient attack against linear masks or encodings even if
the design is not known. When the attacker has a better idea of the attack window,
it is as e�cient against higher order countermeasures.

4.4.3 Countermeasures

As the LDA is essentially DCA with an algebraic distinguisher, the countermeasures are
similar to those of DCA, with a focus on the algebraic degree of the function involved.
Techniques to increase traces are still e�cient to a certain degree.

While the state of the art has not been bubbling with papers on the topic, one
can note the non-linear masking of [16] and its extension by [101]. Implementations
uisng this countermeasure force attackers to perform higher degree LDA which pushes

68

CHAPTER 4. GENERIC ATTACKS IN THE WHITE-BOX MODEL

the complexity of attacks on unknown designs to their limits against obfuscated im-
plementations. However, these techniques still need PRNGs to provide any security.

There is undoubtedly more exploration to be done against LDA. For instance, one
could try to minimize the probability q for all degrees up to a certain threshold. While
this would be the case for high degree masking techniques, we believe that this strategy
could be used for encoding based implementations such as it is common for open-design
implementations. More on this topic will be seen in part II.

4.5 BCA

The Bucket Computational Attack is a variation of the Statistical Bucket Attack that
was introduced by Chow et al. to break their �rst white-box DES implementation.
Revisited by Zeyad et al. [111] to be adapted to the AES, this attack is based on the
existence of collisions in existing AES implementations. In that sense, it is similar to
the collision attacks of [97]. However, it targets non-injection that are caused by the
implementation, not due to the structural collision of the underlying algorithm. This
attack has only been described for DES and AES implementations, so we attempt here
to abstract it in our usual framework.

The seminal setting for this attack is the special encodings of Chow et al. imple-
mentation. In that setting, the keyed S-box of the AES is encoded by a 4-to-4 bit
bijection, building a 8-to-4 bit non-injection. As the encoding is a bijection on 4 bits,
having collision on the four leftmost bit of the S-box will be equivalent to have collision
on the encoding.

In the framework of this chapter, we assume that the target function is of the
form ϕk(x) = ϕ(x+ k) for a bijection ϕ. Then, the m leftmost bits of target function
ϕk : Fn

2 → Fn
2 are encoded by a bijection ϵ : Fm

2 → Fm
2 so that the encoding ϵ◦ϕk[1 : m]

can be observed in the implementation. To build a distinguisher, we now build a
distinguisher in the following way:

� Compute, from the computation traces, the values ϵ ◦ ϕk[1 : m](x) for each
x ∈ Fn

2

� Choose two m-bit values v0 and v1

� Form two sets for each key guess k∗ I0,k∗ and I1,k∗ , such that:

Ib,k∗ := {x|ϕ[1 : m](x+ k∗) = vb}

� Then, de�ne for each key guess the subsets of traces - computed from the
implementation:

69

CHAPTER 4. GENERIC ATTACKS IN THE WHITE-BOX MODEL

Vb,k∗ := {ϵ ◦ ϕk[1 : m](x)|x ∈ Ib,k∗}

� For each key guess k∗ compute the score:

γk∗ = #{i|V0,k∗ [i] ̸= V1,k∗ [i]}

The correct key guess is attributed to the biggest score as usual.

4.5.1 Estimating the Success of the Attack

This attack has been successfully used to break the usual white-box implementations
of the AES such as the CHES 2016 challenge or Lee et al. CASE 1 algorithm. The
author explain that their attack achieves lower traces size compared to DCA is most
cases and similar time for complete key recovery. However, no extrapolation to other
settings has been given by the author. An extension to the second order has been
given in [80] with similar experimental arguments.

Complexity As the attack needs to compare the collisions of the target function and
the elements of the trace on each input, for each key guess, the complexity is similar
to a DCA:

O(T ×N ×#K)

However, the experimental analysis of [111] on candidate white-box implementa-
tions with nibble encodings shows that the size T of traces is overall smaller than DCA
for complete key-recovery.

4.5.2 Countermeasures

Similarly to Collision Attacks, BCA can be thwarted if non-injections are di�cult to
analyse in the program. One can for instance use bigger encodings to force the attacker
to look for collisions in other potential target functions, with an hopefully bigger key-
space.

4.6 DFA

The Di�erential Fault Analysis (DFA) is an active attack that was originally applied
in the grey-box context. The goal of the attack is to disrupt sub-computations of a
key-dependent cryptographic algorithm to collect faulted executions that can help to

70

CHAPTER 4. GENERIC ATTACKS IN THE WHITE-BOX MODEL

recover the secret key. This attack was pioneered by Boneh et al. in 1996 for public-
key cryptosystems[27] and then extended to DES by Biham and Shamir [14], and to
AES by Dusart et al. [51]

The di�culty of using fault attacks in the grey-box model of attack is to precisely
fault the device to recover useful information. If the hardness of this practical aspect
has been considerably diminished, exactly faulting an implementation is trivial in the
white-box context. As it was shown by Sanfelix et al. [99], DFA is a potent method
to break white-box implementations.

While the method is well-known to be an important toolbox of the white-box
attacker, there are to very few analyses of the e�ciency of the attack against various
targets and fault models. This fact can partly be attributed to the fact the automated
attacks are the main focus of the literature for they are agnostic to the implementation.
Implementations are often obfuscated through obscurity and fault attacks often need
reverse engineering to be applied.

In view of the state of the art, it would be presumptuous to draw generic conclusions
on the probabilty of success of fault attacks. They indeed di�er greatly depending on
the algorithm and the implementation technique used. For most of the state of the art,
DFA on white-box implementation can be reduced to DFA against implementations in
the grey-box model.

In regards to these similarities, the countermeasures to grey-box DFA are similar
to white-box DFA. They often come in the form of redundancy added to the imple-
mentation or error correcting codes embedded in the implementation to cancel certain
types of faults. One can note parity-checks [12, 70] for block-ciphers, invariance-based
codes [65] for the AES. If these techniques might be useful in the white-box context,
it is only conditional to the fact that this redundancy cannot be separated from the
rest of the implementation which is harder to guarantee.

71

Part II

Implementation of AES in the

White-Box Model

72

Chapter 1

State-of-the-art : Implementing

the AES in the White-Box Model

In this chapter, we propose a state-of-the-art synthesis of open white-box implementa-
tions techniques of the AES-128 primitive in the plain white-box model. We choose to
take a chronological approach to this synthesis. Indeed, we think that explaining con-
structions and attacks in reaction to these constructions leads to a better understand-
ing of design development. Without the historical context, some of the constructions
might feel too optimist in their security claims.

This chapter starts with a short summary of the research timeline on white-box
implementations. We focus only on published open designs. Then, we detail the most
notable constructions in the seminal table-based rationale of Chow et al.. We also detail
the new attacks that were used to break these constructions at the time. We then
continue this state-of-the-art synthesis by detailing two polynomial based solutions and
their cryptanalysis. At the end of the chapter, we propose an overall security analysis
of all these constructions against state-of-the-art white-box attacks.

1.1 Description of the AES-128 Primitive

The standard known as Advanced Encryption Standard (AES) is a symmetric encryp-
tion algorithm that won the 'AES competition' launched by the American National
Institute of Standards and Technology (NIST) in 1997. The goal of this competition
was to de�ne a new standard to replace the 3DES. The RIJNDAEL candidate, designed
by Rijmen and Daemen [41], was chosen among the candidates to be the winner of
the contest and is now called AES.

The AES algorithm is a block-cipher with a 128 bit block size, and with three
possible key sizes - 128, 192 or 256 - for di�erent security levels. By design, it is a

73

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

Substitution Permutation Network (SPN) that is composed of 10, 12 or 14 rounds for
the respective key sizes 128, 192 or 256. We focus here on the 128 bit version, as it
is the most commonly found in the state-of-the-art implementations.

In the AES speci�cation, the operations are described at the byte level. Bytes are
represented as elements of F28 with the �xed representation F28 = F2[X]/(X8+X4+
X3 +X + 1). Elements in the �eld are represented by two words in hexadecimal such
that, for any element b0+b1X+b2X

2+b3X
3+b4X

4+b5X
5+b6X

6+b7X
7 is mapped

to 0x(b0b1b2b3)2(b4b5b6b7)2. In the AES speci�cation, the pre�x "0x" is removed when
it is obvious due to the context.

The AES algorithm is composed of 10 rounds. These rounds are described on a
4 by 4 state of bytes s = (si,j)i,j∈J1,4K. From the master key K of 128 bits, eleven
round key Kt of 128 bits each are derived by the key schedule of the algorithm,
stored in a 4 by 4 array (Kt

i,j)i,j∈J1,4K). One round of AES is the composition of four
algorithms: AddRoundKey, SubBytes, ShiftRows and MixColumns. We now describe
these algorithms.

� On the input of t ∈ J0, 10K and a state s, AddRoundKey that XORs the
i-th round key to the state:

AddRoundKey(s, t)i,j = si,j ⊕Kt
i,j

� On the input of a state s, the algorithm SubBytes applies the sbox SB to each
byte of the state:

SubBytes(s)i,j = SB(si,j)

where SB is the composition of the multiplicative inverse on F28 , extended to 0
by 0 and the a�ne map de�ned by:

b0
b1
b2
b3
b4
b5
b6
b7

→

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

×

b0
b1
b2
b3
b4
b5
b6
b7

+

1
1
0
0
0
1
1
0

� On the input of a state s, ShiftRows permutes bytes of the state:

ShiftRows(s)i,j = si,(j+i)mod 4

74

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

� On the input of a state s, MixColumn performs a linear transformation on each
'column' of the state:

MixColumn(s1,j, s2,j, s3,j, s4,j) =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×

s1,j
s2,j
s3,j
s4,j

For future use, we note MC the MixColumn matrix and MCi its columns.

The AES algorithm starts by AddRoundKey(x,0). Then, it performs 9 rounds
composed of SubBytes, ShiftRows, MixColumns and AddRoundKey. The last round is
only composed of SubBytes, ShiftRows and AddRoundKey.

De�nition 16. For 1 ≤ t ≤ 9 and 1 ≤ i, j ≤ 4 and (K0,, K10) the round keys
after key-schedule. The four 32-to-32 bit round functions Rt

j(x1, x2, x3, x4) of the
AES-128 are de�ned by:

Rt
j(x1, x2, x3, x4) :=MC1 × SB(x1 +Kt−1

1,j) +MC2 × SB(x2 +Kt−1
2,j)

+MC3 × SB(x3 +Kt−1
3,j) +MC4 × SB(x4 +Kt−1

4,j)

The output state of a round is the collections of Rt
i,j(x1, x2, x3, x4), where R

t
i,j is

the i-th byte of the function Rt
j.

For t = 10

R10
i,j(x) = SB(x+K9

i,j) +K10
i,j

Remark: We do not describe the key-schedule as it is not useful to the under-
standing of the rest of this chapter. For sake of completeness, it can be found in
[41]

The Standard Implementation The AES submission document [41] contains a
reference implementation. As it is the starting point for many implementation tech-
niques including the seminal Chow et al. technique, we include it for reference. The
goal of this implementation is to be optimized on 32-bit processors. To do so, the
authors reduce the implementation to 8-to-32-bit look up tables and XORs between
the output of these tables.

To build the implementation, the authors use the commutation between some of
the operations of the round function. First, ShiftRows and AddroundKey commute as
they are linear on bytes, hence:

75

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

ShiftRows(AddRoundKey(S,Kt)) =

AddRoundKey(ShiftRows(s), ShiftRows(Kt))

Then, the MixColumn transformation can be reduced to the sum of 8-to-32-bit
transformations by the following equation:

MixColumn(s1,j, s2,j, s3,j, s4,j) =

02
01
01
03

×s1,j+

03
02
01
01

×s2,j+

01
03
02
01

×s3,j+

01
01
03
02

×s4,j
If we note:

SB′
1(x) =

02
01
01
03

×x , SB′
2(x) =

03
02
01
01

×x , SB′
3(x) =

01
03
02
01

×x , SB′
4(x) =

01
01
03
02

×x
The (i, j)-th block of 8 bits of the round function is then the XOR of the key and

the functions SB' on permuted inputs :

SB′
1(s0,jmod4) + SB′

2(s2,j+1mod4) + SB′
3(s3,j+2mod4) + SB′

4(s4,j+3mod4) +Kt
i,j

The authors conclude that the AES round function can then be made made with
4 look-up tables SB' and 4 XORs per column and per round. This implementation
weights approximately 4kB and can use a lot of parallelism, for fast performances.
While it does not provide any security in the grey or white-box models, it is often used
as a comparison point for performances uses.

1.2 State-of-the-Art of the Table Based Ratio-

nale

The �rst part of the state of the art contains table-based solution. Started by the
seminal implementation of Chow et al., this technique of implementation represents
sub-computations of the AES round functions by look-up tables. The goal of this
strategy is to use look-up tables as incompressible elements in which the randomness
introduced by the compiler hides secret information related to the key.

76

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

1.2.1 The Seminal Chow et al. Construction

The 2002 paper of Chow et al. [37] introduces the concept of white-box cryptog-
raphy and proposes an implementation of the AES that is designed to stand against
key-extraction in the white-box model. While their implementation has been broken
by structural and automated attacks, their work laid foundation for several other con-
structions using the same rationale of design.

The �rst design techniques used in their implementation is to use the 'internal
encoding' technique so that the key does not leak from sub computations of a round
function. Roughly, one can represent the AES algorithm by the composition of N
'small' algorithms (Ei)i∈J1,NK and to be conjugated by bijections that are cancelled
from one small algorithms to the other.

De�nition 17. We say that an implementation of an algorithm A =⃝N
i=1Ei is using

the 'internal encoding' rationale if it has been decomposed in the form:

A =⃝N
i=1E

′
i

where

E ′
1 = g1 ◦ E1, E

′
i = gi ◦ Ei ◦ g−1

i−1, E
′
N = EN ◦ g−1

N−1

and gi are bijections. For E ′
i, gi is called the input encoding and g−1

i−1 the output
encoding.

In their paper, Chow et al. also propose to use external encodings, that is, to
transform E ′

1 into E ′
1 ◦ fin and E ′

N into fout ◦ E ′
N to encode inputs and outputs as

well. However, these transformations have to be hidden in the implementation as
well. It is hence not a good design method in the plain white-box model. However,
since it is the �rst design ever proposed, we include it with external encodings in the
state-of-the-art

De�nition 18. We say that an implementation of an algorithm A =⃝N
i=1Ei is using

the 'external encoding' rationale if it has been decomposed in the form:

A′ =⃝N
i=1E

′
i

where
E ′

1 = E1 ◦ gin, E ′
i = Ei, E

′
N = gout ◦ E0

and gin and gout are bijections. The description of g−1
in and g−1

out are necessary to
correctly compute A.

77

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

E1

τ1

σ2 = τ−1
1

E2

τ2

σN = τ−1
N−1

EN

Figure 1.1: Internal Encodings

IN

IN−1

E1

E2

EN

OUT−1

OUT

Figure 1.2: External Encodings

78

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

For this rationale to work, the transformations E ′
i need to hide the bijections gi.

Indeed, if gi can be recovered, an attacker can then trivially recover Ei to break the
implementation. To circumvent this problem, the authors break the round function of
the AES into small key-related transformation that can be encoded and represented by
their look up tables. The main idea is that not leaking intermediate values can help
to make the look up tables look random to an attacker, which is of course related to
the unbreakability security notion we presented in part I.

De�nition 19. We say that an implementation is a look-up table network if it can
be written by composition of 'small' look-up tables that are accessed to in a speci�c
order.

This rationale of design has given birth to variations that we will discuss later in
this section.

1.2.2 Chow et al. AES implementation

In the formalism of part 1, Chow et al. propose a white-box compiler for AES, that is,
their propose an algorithm that, on the input of a key, outputs a white-box implemen-
tation, with randomness drawn at random during the compilation when needed.

Decomposing the AES round function

T-boxes and MixColumn Similarly to the reference implementation, the method
of Chow et al. starts by de�ning look up tables that allow to compute the round
function, that is, the composition of AddRoundKey and SubBytes :

T t
i,j(x) = SB(x+Kt−1

i,j)

T 10
i,j (x) = SB(x+K9

i,j) +K10
i,j

They then compose these function with MixColumn for rounds 1 to 9, like in the
reference implementation to obtain:

TMCt
1,j(x) =

02
01
01
03

× T t
1,j , TMCt

2,j(x) =

03
02
01
01

× T t
2,j ,

TMCt
3,j(x) =

01
03
02
01

× T t
3,j , TMCt

4,j(x) =

01
01
03
02

× T t
4,j

79

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

The idea is to represent the key dependent computations succinctly by 16 8-to-32-
bit look-up tables.

XOR tables Then, like it was noted for the reference implementation, the round
function can be computed by XORing the output of the tables TMC. However, a
round still needs four 32 bit values to be XORed. To be e�cient with encodings later,
the four 32-to-32 XOR table are each split into 32 tables Txor, XORing two 4 bits
values, 8 per quarter of state.

Encoding Phase The compiler can now randomize the XOR tables and the maps
TMCt

i,j following the internal and external encoding rationals. We now describe the
look up tables that compose the implementation after encoding :

� INi,j encodes the 8-to-128 bits mapping composed of the inverse of the external
g−1
in input encoding and a linear bijection. The input encoding of the lookup
table is a 8-bit non-linear bijection and the output encoding is a concatenation
of 32 4-bit encodings.

�
˜TMC

t

i,j encodes the tables TMCt
i,j. The input encoding is a concatenation of

two 4-to-4-bit random bijections composed by a linear 8-to-8-bit bijection. The
output encoding is in the inverse sense, that is a linear 32-to-32-bit bijection
followed by the concatenation of 8 4-to-4-bit bijections.

� T̃ 10
i,j encodes the last round map x→ SB(x+K9

i,j) +K10
i,j . The input encoding

are of the same form as the other T-box input encodings with the addition of
the output encoding gout that is composed of 32 4-bit bijections.

� T̃xor encodes the XOR of two 4 bits words. As the input encodings have to
be compatible with the the other tables, they are of the same form, that is,
concatenation of 4-bit bijections.

�
˜T lin

t

i,j encodes the composition of the round function and a linear map. The

encodings are consistent with tables ˜TMC
r

i,j by removing the previous output
encoding and applying the inverse input encoding.

1.2.3 Cryptanalysis

The early cryptanalysis of Chow et al. implementation was made di�cult by the use of
external encodings. Indeed, the astute reader would have noticed that all the attacks
of part 1 chapter 4 break this implementation without external encodings. We detail
the BGE attack, the �rst attack to break Chow et al. implementation with external

80

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

encodings. Historically, the collision attack of Lepoint and Rivain [78] was also used
to great success. As it is similar to collisions and bucket attacks, detailed in Part 1,
due to the �aw it uses, we do not describe it here.

The BGE Attack

The BGE attack [15], named after its authors, Billet, Gilbert and Ech Chatbi, is an
elegant attack that was developed to break the external encoding implementation of
Chow et al. in about 230 operations. Hence, it is also a potent attack without any
external encodings, and is an important tool to cryptanalyse white-box implementations
of AES and other SPNs. As we will see, the attack fully rely on the SPN structure of
AES and the internal encoding paradigm to succeed, which means it is not a priori a
generic attack against all white-box designs.

We present here the version of the attack that was used to break Chow et al.
implementation, but it is important to note that it was later generalized to more
complex implementations later by Michiels et al. [84] to break implementations with
the same rationale of design. More on this attack will be given below.

The attack is based on the fact that a composition of the right tables in the
implementation leads to having access to an encoding of the round function. This
remark is obvious since the composition of ˜TMC and ˜Txor is by de�nition an encoding
of the round function, simply by correctness of the algorithm. What is not obvious
however, is how to go around the external encoding strategy, which does not allow
to control the input. We focus here on the recovery of the non-linear part of the
encodings, as it is the most important part of the cryptanalysis and clearly shows the
structural weakness of the encoding method.

Here is the trick the authors use to go around this problem. If ψi,j(x1, x2, x3, x4)
denotes the 32-to-8-bit function that represents encoded byte of the round function
R1

i,j, Q
1
i,j the output encoding of the last XOR table and P 1

i,j the input encoding of
the tables TMC, we have the following equality:

ψi,j(x1, x2, x3, x4) = Q1
i,j(R

1
i,j(P

1
1,j(x1), P

2
2,j(x2), P

1
3,j(x3), P

4
4,j(x4))

Then, if we note c1, c2, c3, c4 constants of F8
2, we can �x 3 out of the 4 bytes of

the encoded round function to get:

ϕi,j(x1, c2, c3, c4) = Q1
i,j(02× SB(x1 +K1

1,j) + α1(c2, c3, c4)).

These parametrized 8-to-8-bit functions are bijections since the constants αi take
all possible values in F8

2. The authors then make the key remark that for any �xed
c2, c3, c4 and free x2 in F8

2:

ψ(c2,c3,c4) ◦ ψ−1
(x2,c3,c4)

(x1) = Q1
i,j(02× SB(y1 +K1

1,j) + α1(c2, c3, c4))

81

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

with:
y1 = (02× SB)−1((Q1

i,j)
−1(x1) + α1(x2, xc3, c4)) +K1

1,j

Hence, after simplifying the expression:

ψ(c2,c3,c4) ◦ ψ−1
(x2,c3,c4)

(x1) = Q1
i,j((Q

1
i,j)

−1(x1) + α1(x2, c3, c4) + α1(c2, c3, c4))

As α1(x2, c3, c4)+α1(c2, c3, c4) also describes F8
2 as x2 goes through F8

2 with �xed
c1, c2 and c3, we get 28 distinct bijections, and if we note ⊕δ the function such that
⊕δ(x) = x+ δ we have that :

{ψ(c2,c3,c4) ◦ ψ−1
(x2,c3,c4)

|x2 ∈ F8
2} = {Q1

i,j ◦ ⊕δ ◦ (Q1
i,j)

−1| δ ∈ F8
2}

At this point, we have a set that depends only on the internal encodings Q1
i,j which

has the excellent property to be a vector space for composition. The following property
shows that we can recover Q1

i,j up to an a�ne transformation.

Proposition 5. Given the set Vδ = {ϵ ◦ ⊕δ ◦ ϵ−1|δ ∈ F8
2}, where ⊕δ(x) = x + δ. A

map ϵ′ can be computed where ϵ ◦ ϵ′−1 is a�ne.

Proof. The map Φ : Vδ → F8
2 de�ned by Φ(ϵ ◦ ⊕δ ◦ ϵ−1) = δ is an injection as ϵ is a

bjection and a surjection by cardinality. It is then an isomorphism. The knowledge of
Φ is enough to recover ϵ, as if Φ(g) = δ we have:

g(0) = ϵ ◦ ⊕δ ◦ ϵ−1(0) = ϵ(δ + ϵ−1(0))

which helps us determine ϵ as g spans Vδ.

However, it is not directly possible to get Φ as we cannot get access to δ with our
encodings. It is still possible to get Φ up to an a�ne map.

By computing elements of Vδ, it is possible to form a basis of Vδ by completing the
basis starting from a non-zero element g1. We go through Vδ by 'brute-force' to check
independent elements. We then get access to a basis (g1, ..., g8) of Vδ. We can then
de�ne an isomorphism Ψ de�ned over the basis bi by Ψ(gi) = bi, which is Φ written
in the base bi instead of the canonical base. If l is the basis change map from the
canonical basis to bi, we have Ψ(g) = l−1(Φ(g)), hence

gi(0) = l(bi + (ϵ ◦ l)−1(0))) = l(bi) + ϵ−1(0).

If we note A the a�ne map A(x) = l(x) + ϵ−1(0), we have for any g:

A ◦ ⊕Ψ(g) ◦ A−1 = ⊕Φ(g)

Hence,
g = ϵ ◦ A ◦ ⊕Ψ(g) ◦ A−1 ◦ ϵ−1

82

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

and we can recover ϵ ◦ A over a basis since :

gi(0) = ϵ ◦ A ◦ ⊕Ψ(g) ◦ A−1 ◦ ϵ−1(0) = (ϵ ◦ A)(bi).

The a�ne part is then recovered by solving an overde�ned system of equations and
the input encodings are easily peeled out, to complete the key-recovery. We refer to
[15] for the complete attack.

1.2.4 Upgrade and Attacks

In this section, we brie�y detail the improvement and variations to the state-of-the-
art candidate constructions. As constructions are often reactions to new attacks or
optimizations of attacks, we also include the chronological cryptanalysis of the con-
structions.

The Xiao Lai Implementation

The �rst idea to resist the BGE attack is to consider larger encodings and to encode
more than one byte at a time. The implementation of Xiao and Lai [110] uses this idea
to modify the original implementation of Chow et al.. In this construction, the authors
use linear encodings to widen the size of the encoding, while not having an exponential
explosion in degree due to the composition of random non-linear encodings. The
authors claimed that their construction was standing against the BGE attack. This
implementation still has external encodings.

Historic Cryptanalysis The cryptanalysis of this implementation was made by De
Mulder et al. [86] by using an adaptation of Biryukov et al. [17] algorithm to �nd linear
equivalence. Indeed, while the implementation of Chow et al. had non-linear encodings
and needed the strucural step of the BGE attack, the implementation of Xiao and Lai
only has linear encodings and can be attacked using only linear techniques. The attack
of De Mulder et al. is really e�cient, with a work factor 232.

For the sake of completeness, we also discuss the security against the BGE attack.
The claim of the author was proven to be wrong, as a generalization of the attack
on all traditional encoding strategies was made by Michiels et al. [84]. More on this
attack will be given below.

Karoumi Dual Cipher Implementation

The implementation idea of Karoumi [71] is to use the underlying algebraic structure
of the AES to propose a family of distinct implementations. The remark made by the

83

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

author is that the implementation is made using a �xed representation of the �eld,
that is, F28 = F2[X]/(X8 +X4 +X3 +X + 1). However, for any unitary irreducible
polynomial P of degree 8, there is a representation of the �eld F2[X]/(P). As there
are 30 distinct such polynomials, there is a degree of liberty to build a round function
using multiplication and addition in these special representations.

De�nition 20. Let E and E ′ be two encryption algorithm with space K. E and E ′

are said to be dual ciphers if there exist bijections f , g and h such that :

∀m ∈M, k ∈ K, f(Ek(m)) = E ′
g(k)(h(m)).

Finding dual-ciphers of the AES as been a subject of research in cryptanalysis [9],
and Karoumi exploits the fact that there exist more than 9120 di�erent dual ciphers
of the AES. More precisely, there exist 240 linear maps ∆ such that:

∆(AESk(m)) = AES∆(k)(∆(m)).

Once the rounds are transformed into their dual form, Karoumi uses the imple-
mentation technique of Chow et al. on his round function. We follow the precise
description of De Mulder [85]. We �x a representation of F28 by �xing an irreducible
polynomial Pl of degree 8, there are 30 such polynomials. We note Ψl an isomorphism
from the AES representation to this new representation. We note respectively the
addition ⊕l and the multiplication ⊗l. For any element α ∈ F×

28 , let mα(x) = α × x
and F t the t-th iteration of the Frobenius, that is F t(x) = x2

t
. We now de�ne an

AES dual round:

De�nition 21 (Dual AES Round). Let D be the set de�ned by

D := {Ψl ◦mα ◦ F t | l ∈ J1, 30K , α ∈ F28 , t ∈ J0, 7K }

Let for any 1 ≤ r ≤ 10, 1 ≤ j ≤ 4, let ∆r,j ∈ D , ∃(l, α, t) ,∆r,j = Ψl ◦ mα ◦ F t

and de�ne δr,j = Ψl ◦ F t. The AES Dual Round for a representation Ψl, noted
AESr,∆r,j(x1, x2, x3, x4) is the 4-uple (w1, w2, w3, w4), where wi are de�ned by:

δr,j(MC1)⊗l SBr,j(x1 ⊕l ∆r,j(K
t−1
1,j))⊕l δr,j(MC2)⊗l SBr,j(x2 ⊕l ∆r,jK

t−1
2,j))

⊕l δr,j(MC3)⊗l SBr,j(x3 ⊕l ∆r,jK
t−1
3,j))⊕l δr,j(MC4)⊗l SBr,j(x4 ⊕l ∆r,jK

t−1
4,j))

where SBr,j = ∆r,j ◦ SB ◦∆−1
r,j .

We then have:

AES
r,∆r,j

j ◦ (∆r,j,∆r,j,∆r,j,∆r,j) = (∆−1
r,j ,∆

−1
r,j ,∆

−1
r,j ,∆

−1
r,j) ◦ AESr

j

84

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

The AES can then be computed by using these new round functions. The obtained
result is then conjugated to the real result which allows to compute the correct value
with the maps ∆r,j. The implementation of Karoumi uses these new round functions to
build his implementation, to which he applies the implementation technique of Chow
et al. As the transformation he uses are just di�erent representations of the same
computations, the implementation size is the same as Chow et al..

Cryptanalysis The implementation technique of Karoumi looked interesting because
it transformed the AES round functions into new "randomized" ones before applying
the encoding strategy. While Karroumi estimated the complexity of a BGE attack on
his implementation to be 293, De Mulder et al. showed that the dual round functions
of Karroumi were in fact equivalent to regular AES rounds with the same key. The
implementation would then be broken with a simple adaptation of the BGE attack.

Luo et al. Large Non-Linear Encodings

The implementation of Luo et al. tries to thwart the BGE attack by augmenting the
size of the encodings, while not falling into the trap induced by the linear encodings of
the Xiao and Lai implementation. Indeed, if the linear encodings can be peeled o� by
linear equivalence techniques, larger non-linear encodings might be enough to provide
security to against the BGE attack.

For their implementation technique, Luo et al. merge the technique of Chow et al.
with the di�usion technique of Xiao and Lai, to get larger encodings that do not blow
up exponentially due to their size.

Historic Cryptanalysis While the technique of Xiao and Lai incorporates many of
the improvements discussed before and the BGE attack cannot be applied as is, the
work of Michiels et al. [84] shows that the BGE attack can be generalized to break a
larger class of implementation, to which the implementation of Xiao and Lai belongs.

Michiels et al. adapt the BGE attack on any implementation of any SPN. Formally,
the attack requires that:

� The round function is bijective and composed of a round key addition, a layer of
S-boxes and a linear layer.

� The linear layer must be Maximum Distance Separable (MDS)

� In the implementation the attacker can read encoded outputs of round functions.

These conditions are pretty easy to satisfy and are trivially satis�ed by any previously
discussed implementations. If these conditions are satis�ed, one can state the following
theorem:

85

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

Theorem 1.2.1 (Michiels et al.). Given traces of the function ϵ ◦ R1[0 : m − 1],
the vector space Vδ = {ϵ ◦ ⊕δ ◦ ϵ−1|δ ∈ Fm

2 } can be computed in O(m × 2m) where
⊕δ(x) = x + δ. If the vector space Vδ can be computed, a map ϵ′ can be computed
in O(23m) where ϵ ◦ ϵ′ is a�ne.

This result shows that in essence, the implementations that we considered up to
this point are too simple in design and are structurally �awed. Hopefully, there is still
a lot of design space to be explored.

Lee et al. Implementation

The implementation technique of Lee et al. [77] aims to merge the implementation
techniques of Chow et al. with the masking techniques inherited from the grey-box
hardware techniques. Instead of encoding the keyed tables T as usual, Lee et al.
�rst draw at random a function R and consider the transformation T + R. This
transformation is then encoded using the Chow et al. rationale (see Figure 1.3).

T R

+

ϵ

Figure 1.3: Lee et al.'s basic tranformation

For correctness, the transformation R is carried on through the computations and
encoded as well. The rest of the implementation roughly follows the same design as
the previous implementations in the Chow et al. rationale. The authors proposed
three variations, CASE 1, 2 and 3, with only the CASE 1 implementation published
as a challenge. These three implementations only di�er in the size of the encodings,
CASE 2 and 3 having bigger encodings than CASE 1.

Historic Cryptanalysis As Lee et al. implementation has been published after �rst
reports of DCA and the soaring of white-box automated attacks, it is natural to try

86

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

these attacks against Lee CASE 1 implementation. Although it was claimed to stand
these attacks, at least two reports break Lee CASE 1 implementation.

The work of Rivain and Wang [97] shows that due to a lack of mask in the round
function, which is simply encoded, DCA, Collision and MIA attack all break CASE 1
implementation in few thousand traces, for few minutes of attacks. The work of Zeyad
et al. [111] also breaks the CASE 1 implementation using BCA for the same reasons.
The attack is on the same range of parameters as RW19. For these two attacks,
breaking CASE 2 and 3 should not be more di�cult as the encoding size does not
change the structural weakness of Lee et al. design. Even if there are no publications
clearly addressing it, the CASE 1 implementation is also be vulnerable to LDA as the
round function is only encoded by a small encoding.

This realization that automated attacks can break the most up to date state-of-the-
art implementations shows that implementations have to be more carefully designed
and that new design spaces have to be explored.

1.3 A State of the art of Polynomial-Based Im-

plementations

We now present a line of implementation designs that di�er from the Chow et al. table-
based encoding rationale by the representation of computation used. In the following
work, some or all the sub-computations that allow to evaluate the AES implementations
are represented by polynomials.

From a high level point of view, the technique used in these implementations is
similar to a regular encoding strategy, that is, secret transformations are composed
with functions that are necessary to the computation of the whole AES. The security
of the implementation is then conditional to the fact that the encodings cannot be
split to trivialize key-recovery.

Contrary to look-up tables, whose size is always exponential in their input, the
size of a polynomial is, aptly, polynomial in its number of inputs. If its degree is not
too high, one can hope to represent computation over a large number of variables
by a composition of polynomials that will keep the overall size of the implementation
reasonable. The natural goal using this technique is to allow more �exibility for the
design.

1.3.1 Bringer et al. Construction

The idea comes the Billet and Gilbert block cipher in which they introduce perturba-
tions to enhance the security against algebraic attacks. Roughly speaking, the block

87

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

cipher from Billet and Gilbert is composed of several rounds of IP-instances. However,
Faugère and Perret showed how to break it and Ding explained how to repair it with
perturbations.

The implementation of Bringer et al. [31]bounces back from this idea and represent
the AES round functions as polynomials over F8

2 and tries to hide the SPN round
structure by adding perturbation polynomials. These polynomials are spread from one
round to another, and the implementation still follows the 'internal encoding' paradigm
by mixing perturbation with the round function with linear encodings. However, the
correctness of the implementation cannot be guaranteed o� of one representation of the
ten perturbed AES rounds. To circumvent that problem, the implementation contains
four instances with perturbations and the correct result is computed by a majority vote
over the four instances.

If this implementation technique was envisioned for AES, the cryptanalysis of Coron
in the the Bringer et al. paper shows the weakness of linear encodings in the white-box
context without external encodings. To circumvent this problem, the authors propose
an AES with random Sboxes.

Contrary to the usual description at the byte level, the implementation of Bringer
et al. uses a description of the round function over variables over F28 . This means
that the round function is represented as a polynomial of F28 [X1, X2, X3, X4]. For
instance, the function SubByte(Xi) is a composition of X254

i and a linear map which
translates to a sum of powers of two in F28 . The complete round function is a linear
transformation of the S-boxes, so the round function has 4 variables and is of degree at
most 254. The AES algorithm can then be described by the 10 family of these ANFs,
16 for each round. We note, for 1 ≤ t ≤ 10 and 1 ≤ i ≤ 16, St

i the ANFs of the
round function.

The main idea of the construction is to add the 'controlled faults' with 4 perturba-
tions polynomials and 23 random polynomials for the �rst 9 rounds, and 16 perturba-
tion cancellation polynomials at the last round. The last round XORs the cancellation
polynomials to the round functions S10 to cancel the perturbations. By this method,
the system St

i is transformed into its perturbed version S ′t
j with 1 ≤ i ≤ 43. Finally,

43-to-43-bit linear internal encodings are applied to system S ′t
j .

Remark: Note that the perturbation of the system implies an explosion of the
number of variables as rounds functions from round 2 to 9 are now in 43 variables.
This means that the implementation weights 142MB per AES instance, which is a far
more than the usual table-based implementations.

88

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

Tools for the implementation

The key components of the implementation are the perturbation polynomials. The
goal is to build a system of polynomials Φ̃ that will take the values (ϕ1, ..., ϕ4) most
of the time. To do so, the author of [30] propose to translate the ϕi by a polynomial
evaluating to 0 most of the time, for which they propose a construction (we rerefer to
[30]).

De�nition 22. (Perturbation Polynomials) Let ϕ1, ..., ϕ4 ∈ F28 and 0̃ ∈ F28 [X1, ..., X16]
be a polynomial from the construction [30] that ouptuts 0 for any input x in a mes-
sage subset U1 ⊂ (F28)

16. The system of perturbation polynomials Φ = (Φ1, ...,Φ4)
is de�ned by:

Φi = 0̃ + ϕi

For any system of perturbation polynomials Φ, we de�ne the perturbation cancelling
polynomials 0Φ to be a system of 16 polynomials in F28 [X1, ..., X4] such that:

0Φi (ϕ1, .., ϕ4) = 0

The implementation uses particular linear encodings for di�usion reasons. We refer
to the original paper for their generation.

Description of the Implementation

We �rst recall that the implementation is composed of four instances with di�erent
perturbations polynomials. We describe one instance for a set of perturbation polyno-
mials and then explain how the authors generate these pertubations polynomials for
correctness.

The compiler encodes the �rst round function with perturbation polynomials and
random polynomials. To do so, it draws 19 random polynomialsRP 1 in F28 [X1, ..., X16],
and a 43 by 43 linear encoding M1. It then builds the perturbation polynomials
Φ = (Φ1, ...,Φ4) and computes the encoding of the round system S1:

Z1 =M1 ◦ (S1||Φ||RP1)

S1 Φ̃(x) R1

M1

Z1

89

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

For any round 2 ≤ t ≤ 9, the perturbations polynomials are carried on by the
identity function, new random polynomials RP t and linear encodingMt are drawn and
the previous linear encodings are cancelled so that the round function Zt is de�ned by:

Zt =Mt ◦ (St||ID||RPt) ◦M−1
t−1

M−1
i−1

Yi = Yi−1Si(Y
1
i−1) Ri(Zi−1)

Mi

Finally, the last round function Z10 cancels the perturbations by adding Oϕ into
the circuit:

Z10(x) = S10(M̃
−1
9 (x)) +OΦ(M̃−1

9 (x))

with M̃−1
9 being the �rst 20 coordinates of the inverse of M9.

M−1
9

oΦSR Y10

+

This last operation e�ectively eliminates the random polynomials, and if the perturba-
tion polynomials evaluate to (ϕ1, ..., ϕ4), they are cancelled by OΦ.

However, as Φ is not always (ϕ1, ..., ϕ4), the authors introduce 3 other instances to
ensure the correctness of the construction with probability 1. To do so, they generate
4 perturbation polynomials on complementary sets. Let us split the message space

90

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

in two sets (F28)
16 = U1 ∪ U c

1 = U2 ∪ U c
2 . We then de�ne a set of perturbation

polynomials Φ1,Φ
c
1,Φ2 and Φc

2 such that :

∀x ∈ Ui , Φi(x) = (ϕ1, ..., ϕ4)

∀x ∈ U c
i , Φ

c
i(x) = (ϕ1, ..., ϕ4)

Then:

� if x ∈ U1∪U2 , Φ1(x) = Φ2(x) = (ϕ1, ..., ϕ4) and Φc
1(x) and Φc

2(x) are random.

� if x ∈ U1∪U c
2 , Φ1(x) = Φc

2(x) = (ϕ1, ..., ϕ4) and Φc
1(x) and Φ2(x) are random.

� if x ∈ U c
1 ∪U2 , Φ

c
1(x) = Φ2(x) = (ϕ1, ..., ϕ4) and Φ1(x) and Φc

2(x) are random.

� if x ∈ U c
1 ∪U c

2 , Φc
1(x) = Φc

2(x) = (ϕ1, ..., ϕ4) and Φ1(x) and Φ2(x) are random.

It means that there are always at least two perturbation polynomials that agree for
any input, and that the correct value (ϕ1, ..., ϕ4) can always be found by taking the
majority vote out of all the 4 possible values.

The �nal implementation is composed of four instances of the construction de-
scribed before, one for each of the perturbation polynomials we just described.

Cryptanalysis

A �rst cryptanalysis of the construction is the report by Bringer et al. themselves of
an attack by Coron. The main �aw is due to the fact that the encodings are linear.
Targeting a S-box, one can attempt to solve a linear system by �xing input 3 input
bytes out of the 4 on the �rst systems of polynomials Z1. This is essentially a LDA.

To circumvent this problem, the authors propose to use random S-boxes instead of
the s-box of the AES, turning them into a new block-cipher AEw/oS. This variation
seems to lead to a secure implementation even if this changes the original problem
while proposing new designs to explore.

However, the cryptanalysis of this variation is broken by De Mulder et al.. The
authors propose an inversion attack on the implementation, breaking its one-way prop-
erty. To do so, De Mulder et al. recover equivalent S-boxes that are easier to invert
than the heavy polynomials of the implementation. Essentially, the attack abuses the
weak linear encodings of the implementation on round 10 and �nds equivalent S-boxes
by peeling out linear encodings from the bottom-up. At the end 160 equivalent 8-bit
S-boxes are retrieved, which trivializes the inversion.

91

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

1.3.2 Rasoamiaramanana et al. Construction

The implementation of Rasoamiaramanana et al. [96] was �rst published as a candidate
to the WhiBox 19 contest [107] and was broken among the last candidates. Rasoami-
aramanana published the design of the implementation with as security analysis in her
PhD thesis which we describe now. The implementation uses hybrid methods with
look-up tables and polynomial representation, which is the �rst published using this
design rationale. Roughly speaking, the implementation technique follows the internal
encoding rationale but uses larger encoding. These encodings are structured to allow
to represent the encoded round functions by look-up tables and degree 2 polynomials.

Tools for the Implementation

The implementation is based on two particular encodings. The �rst encoding type
called type 1 encoding, aims to protect the keyed Sbox of the round function, while
including redundancy to lower the degree of its inverse encoding. The type 2 encoding is
a degree 2 bijections that encodes the round function, while cancelling the redundancy
of the previous encoding.

The type 1 encoding is based on a degree 2 bijection. In their description, they use
Dobbertin's polynomials [48].

Proposition 6. Let m = 2n+ 1 be an integer. The Dobbertin Polynomial

X2m+1+1 +X3 +X

is a bijection of F2n . Its coordinate are degree 2 polynomials over Fn
2

Remark: The choice of Dobbertin polynomials for this construction seems to
be entirely practical. The author do not give any advantage of using Dobbertin's
polynomials over any bijection of degree 2 over Fn

2 .

De�nition 23. Let m > 8 be an integer and let f : F8
2 → F8

2. For any m-to-m
bits linear map A and n-to-n bit bjection σ, we say that ϵ(y) is a type 1 encoding of
y = f(x) if it is of the form :

ϵ(y) = A(y + q(σ(x))||σ(x))

With the notation ȳ = ϵ(y), the inverse type 1 encoding ϵ−1 is:

ϵ−1(ȳ) = A−1(ȳ)[0 : 7] + q(A−1(ȳ)[8 : m])

De�nition 24. Let m′ > 8 and j > 1 be an integer, f : F8j
2 → F8

2 and y a vector

of Fm′j
2 . For any m'-to-m' bits linear map A, a m′j-to-(m′ − 8)-bit linear map l, a

92

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

(m′ − 8)-to-8-bit quadratic function q and a Dobbertin polynomial on F2m′−8 , we say
that ξ(y) is a type 1 encoding of y = f(x) if it is of the form:

ξ(z) = A(z + q(l(ȳ))||σ(l(ȳ))

With the notation ȳ = ϵ(y), the inverse type 1 encoding ϵ−1 is:

ξ−1(z̄) = A−1(z̄)[0 : 7] + q(σ−1(A−1(z̄)[8 : m′])).

Description of the Implementation

The implementation follows the decomposition of Chow et al., that is, the round key
is composed with the Sbox and the linear part is set aside to carry the encodings onto
the next round. We now describe the compiler.

The �rst part of the construction encodes the T-boxes, that is, the functions:

T t
i,j(x) = SB(x+Kt−1

i,j)

T 10
i,j (x) = SB(x+K9

i,j) +K10
i,j

The compiler then draws type 1 encodings ϵri for 0 ≤ i ≤ 15 and 0 ≤ r ≤ 9 and
type 2 encodings ξri for 0 ≤ i ≤ 15 and 0 ≤ r ≤ 9.

T̄ 1
i (x) = ϵ1i (T

1
i (x))

T̄ t
i (x) = ϵti(T

1
i ((ξ

t−1
i)−1(x))

T̄ 10
i (x) = T 1

i ((ξ
9
i)

−1(x)

The sizes of the encodings depend of the round, according to the following table:

Round m m'
1 24 17
2 24 13

3 to 7 13 13
8 4 × 13 13
9 24 17
10 - -

93

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

Table 1.1: Size of each round encodings

Si σ

q

+

A

The tables are encoded so that encodings are cancelled after compositions of the
encoded functions. For the correctness of the implementation, the encoding of the
tables are carried onto the linear map. If we denote by L to be the 32-to-32-bit linear
map that is the composition of ShiftRows and Mixcolumns, the compiler computes:

L̄r = (ξr0||...||ξr15) ◦ (L||L||L||L) ◦ ((ϵr−1
0)−1||...||(ϵr−1

15)−1)

Round 8 has been modi�ed to include a redundancy countermeasure against DFA,
hence, the linear map L8 has been tweaked to add redundancy to thwart fault attacks.

It is important to note that the form of the type 2 encodings allows for the poly-
nomials L̄r to be only of degree 2. Indeed, the implementation is then composed
of:

� The truth tables T̄ 1
i (x), T̄

t
i (x) and T̄

10
i (x). These truth tables are T-box encoded

with type 1 input encodings and type 2 output encoding.

� The collection of polynomials L̄r. These are encodings of the round function
with type 2 input encodings and type 1 output encodings.

For the sake of clarity, we detail a short correctness and size analysis of the imple-
mentation.

First, it is important to note that the polynomials L̄r are of degree 2 over its
inputs. Indeed, as the functions Rt(L||L||L||L) ◦ ((ϵr−1

0)−1||...||(ϵr−1
15)−1)(ȳ) compute

the round function by correctness of the inverse encodings ϵti, the encoded function L̄r

is such that:

ξti(ȳ) = A(Rt[8i : 8i+ 7](x) + q(l(ȳ)||σ(l(ȳ)))
As Rt is of degree 2 in ȳ, the encoding ξti(ȳ) is a degree 2 function.

94

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

Cryptanalysis

As a contestant of the WhiBox19 constest, this implementation has been broken, like
of the other participants. In Rasoamiaramanana PhD Thesis, the security analysis is
focused on DCA and Collision Attacks. If DCA against S-boxes are ruled out due to
the encoding size and the analysis of [97], the authors attribute the break of their
construction to collision attacks. Indeed, the collision attack strategy is adapted to
internal encoding implementations (part I chapter 4). The authors also claim the
security of their implementation against DFA, which we do not discuss here.

We want to underline another weakness of this implementation, which lies in the
small degree of the inverse of the encodings. To start, let us recall that the map L̄r is
an encoding of the round function of the form:

ξti(ȳ) = A(Rt[8i : 8i+ 7](x) + q(l(ȳ)||σ(l(ȳ)))

As a consequence, the inverse encoding (ξti)
−1 is also of degree 2 in the output ȳ

of the encoded tables and the output z̄ = ξti(ȳ) of the polynomials L̄r. Indeed, if we
note z̄ = ξti(ȳ), one can remark that:

Rt[8i : 8i+ 7](x) = A−1(z̄)[0 : 8] + q(l(ȳ))

This means that even if the inverse encoding ξ−1 is not of degree 2 in z̄, there exist
a degree 2 relation in z̄ and ȳ that allows to recover Rt[8i : 8i+7](x). An attacker can
then launch a degree 2 LDA on Rt[8i : 8i+ 7](x) by �xing 3 out of the 4 bytes. The
complete key recovery can be made in complexity 16×(σ(17×4, 2)+σ(17×16, 2))×28.

1.4 Synthesis of Security of White-Box implemen-

tation of the AES

We now make a complete summary of the the security of the state-of-the-art im-
plementations we described earlier in the chapter. We evaluate the security of the
implementation against key-extraction in the plain white-box model, that is, external
encodings, if any, are included in the clear in the implementation, and can then be
peeled o�. This might seems like a disadvantage for earlier designs, but keep in mind
that early designs were defeated by variants of the BGE attack, even with external
encodings, and that more modern designs avoided the use of external encodings. Also,
we include the implementation of Bringer et al. as an AES implementation without
the keyed S-boxes for a fair comparison.

To argument the results of the summary table 1.2, we �rst detail the e�ciency of
known attacks based on the state of the art of Part 1 and Chapter 2 Part 2. We assume

95

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

that the implementations are taken without external encodings for a fair comparison
in the plain white-box model. We also assume that the Bringer et al. implementation
is made with the AES S-boxes.

Against Linear Methods (LM) We group in linear methods the attacks that
exploit the linear structure of the encodings that are not LDA. Historically, these are the
Linear Equivalence methods and the cryptanalysis of Bringer et al. implementation. We
set them aside from linear techniques such as LDA to emphasize their non-automatic
behavior. All the implementations with non linear encodings are not vulnerable to
these attacks.

Against BGE In this category, we group the BGE attack and its extension by
Michiels et al.. All the implementations using the technique of Chow et al. are
structurally broken by it. The only constructions that stand against it are the ones
that mask the round function to avoid to have a simple bijective encoding of the round
function, namely, Rasoamiaramanana et al. and Bringer et al. constructions.

Against DCA DCA has been showed to be really e�cient to break all the state-of-
the-art implementations as we have seen in part I. When it is not possible to break the
implementation targeting the S-box, it is possible to target the encoding of the round
function.

Against CCA and MIA Reported to be e�cient against many state-of-the-art im-
plementations with internal encodings in [97], the CCA breaks all the implementations
using the Chow et al. design. It also breaks the Lee et al. implementation and the
Rasoamiaramanana et al. construction (see the previous security analysis). The only
implementation for which it is not sure if the collision strategy can be exploited is the
Bringer et al. construction which uses many random polynomials.

Against LDA If LDA was originally designed to detect linear combination in masked
implementations, it also can work in the encoding paradigm. Indeed, if the inverse
encodings are of a too low degree, high degree LDA can detect this weakness. This is
the case for all the implementations using the Chow et al. technique, were encodings
are of size 4 and at most degree 3.

Against BCA The Bucketing Computational Attack is not a historic threat but
is proven to be really e�cient against state of the art constructions. The paper of
Zeyad et al. [111] shows that most of the implementations with small encodings are
broken by it in few minutes. This is the case of all the papers using Chow et al.

96

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

techniques. For Lee et al., the �aw resides in encodings at the round level that are not
randomized like the s-boxes. Due to the heavy use of random polynomials in Bringer
et al. implementation, it is not clear whether collisions can be exploited in this setting.
The implementation of Rasoamiaramanana et al. should not be susceptible to BCA at
the S-box levels as the encodings are larger than the S-box size.

97

CHAPTER 1. STATE-OF-THE-ART : IMPLEMENTING THE AES IN THE WHITE-BOX MODEL

T
ab
le
1.
2:

C
om

p
ar
at
iv
e
S
ec
u
ri
ty

A
n
al
ys
is
ag
ai
n
st

K
ey
-E
xt
ra
ct
io
n

Im
p
le
m
en
ta
ti
on

S
iz
e

L
M

B
G
E

D
C
A

C
C
A

L
D
A

B
C
A

C
h
ow

et
al
.

75
2k
B

*
*

*
*

*

X
ia
o
an
d
L
ai

20
M
B

*
*

*
*

*

K
ar
ro
u
m
i

75
2k
B

*
*

*
*

*

L
u
o
et

al
.

25
.8
M
B

*
*

*
*

*

L
ee

et
al
.

79
6
kB

*
*

*
*

*

B
ri
n
ge
r
et

al
.

56
8
M
B

*
?

?
*

?

R
as
oa
m
ia
ra
-

-m
an
an
a
et

al
.

44
M
B

*
*

*

N
ot
e
:
W
e
m
ar
k
by
∗
if
an

at
ta
ck

is
e�

ci
en
t
ag
ai
n
st
an

im
p
le
m
en
ta
ti
on

an
d
by

?
if
it
is
u
n
kn
ow

n
.
W
e
re
fe
r
to

th
e
pr
ev
io
u
s

p
ar
ag
ra
p
h
fo
r
th
e
ju
st
i�
ca
ti
on
s.

W
e
d
o
n
ot

p
u
t
th
e
ex
ac
t
co
m
p
le
xi
ty

of
th
e
at
ta
ck

as
fo
r
m
an
y
of

th
es
e
im
p
le
m
en
ta
ti
on
s,

so
m
e
im
pr
ov
em

en
ts

ca
n
b
e
d
on
e
on

th
e
co
m
p
le
xi
ty

of
at
ta
ck
s
w
it
h
ad
ap
ta
ti
on

of
st
at
e-
of
-t
h
e-
ar
t
te
ch
n
iq
u
es
.

98

Chapter 2

A SPN implementation

Technique: Randomized Circuit

Knitting

In this chapter we describe a rationale of implementation we call Randomized Circuit
Knitting that is aimed to resist algebraic attacks such as high-order LDA or the BGE
attack. We �rst describe it through an implementation of AES, a challenge, and a
security analysis. Then, we show that this rationale can be applied to other SPNs to
provide similar security properties in the plain white-box model.

2.1 The AES-RCK Implementation

In this section, we detail our implementation of the AES. We �rst explain the rationale
of the construction from a high level point of view. We then detail the ten rounds of
our implementation. We show its correctness and brie�y study its size.

2.1.1 Links with previous works

The implementation we propose is made according to the internal encoding rationale.
However, similarly to the implementation of Rasoamiaramanana et al., it uses the poly-
nomial representation of computations to achieve security. Especially, it uses particular
encodings that are adapted to this structure.

2.1.2 Rationale of the Construction

The starting point of our construction is the weakness of usual design against auto-
mated attacks, especially LDA. The main problem with the usual internal encoding

99

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

strategy is that it does not make an optimal use of the available parameters � the
degree of the encoding and its support � to increase the complexity of the attack. For
seminal implementations, encodings where made on 4-bit nibbles, later augmented to
8-bit or more, but without a di�usion of said encodings on the round function. It means
that attacks can easily be made on 8- or 16-bit keyspace, with a small computation
trace when the support is small.

To circumvent this problem, we divide our construction into two parts. First, we
"expand" the usual AES by adding random transformations to round functions. These
functions are incorporated to the round function with a 1-round Feistel transforma-
tion and for correctness, the 1-round Feistel is composed onto the next round. This
transformation allows us to locally augment the degree and to increase the support of
the substitution part. The counterpart for the augmentation of the degree is an ex-
ponential augmentation of the substitution part size. This expansion phase is however
designed to keep the size of the substitution part reasonable.

After we have expanded our round functions, we perform an encoding step on the
expanded rounds to "knit" rounds and secret transformations together. To avoid linear
encodings while keeping the implementation size reasonable, we use encodings in that
have inverses of degree 2. Using these bijections will allow us to augment the degree
of the involved transformations once again. Their composition will lead to a degree 4
transformations over a relatively large support, but once again, this step is crafted to
keep the size reasonable.

The complete implementation is then the composition of encoded substitution parts
Σ and the degree 4 encoding compositions Λ. As Σ are transformations of full degree
over their inputs, we represent them as truth tables for a tight representation. The
polynomial coordinates of Λ are however only of degree 4, so we represent them by
their algebraic normal forms.

2.1.3 Preliminaries

We here recall or de�ne few notations that we will need for the description of our
implementation. To avoid using too many multi-indexes, for any function f from Fn

2

to Fm
2 we note � when it is well de�ned � f [a : b] = (fa, ..., fb).

For any set element (x1, .., xn) ∈ Fn
2 and integer d, we note Mond(x1, ..., xn)

the set of all the monomials in the xi of at most degree d. We note its cardinal
σ(n, d) =

∑d
i=0

(
n
i

)
.

For any bijection f : Fn
2 → Fn

2 , we note f
−1 its inverse. For any injection f : Fn

2 →
Fm
2 with m ≥ n we also note f−1 its left inverse, i.e. the function Fm

2 → Fn
2 such that

f−1 ◦ f = idFn
2
.

We now describe families of functions we will need for our description:

100

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

De�nition 25. Let d1, d2, n,m ∈ N∗. We de�ne the set Fd1
n,m of all functions

f : Fn
2 → Fn

2 such that ∀i ∈ J1,mK deg(fi) = d1 We de�ne the set Sd1,d2
n to

be the set of all bijections f : Fn
2 → Fn

2 such that ∀i ∈ J1,mK deg(fi) = d1 and
deg(f−1

i) = d2. We note Sd,∗
n = ∪ni=1S

d,i
n and S∗,d

n = ∪ni=1S
i,d
n

To the best of our knowledge, to provide a generic e�cient sampler over S2,d
n for

any n, d ∈ N∗ is not an easy task. We do not provide a solution to this problem, but
we provide a solution to sample on a subset of S2,∗

n that will be large enough as n
increases.

Sampling in S2,∗
n

For the need of our implementation technique, we will need a sampler inS2,∗
n . However,

to the best of our knowledge, sampling uniformly in this set is not an easy task, and
there is no published sampling algorithm available. To circumvent that problem we
will sample in a well-known subset of S2,∗

n that stems from multivariate techniques �
it is almost exactly the C∗ trapdoor function.

For any integer n, one can study monomials in F2n that are of degree two when
projected onto Fn

2 , that is, monomials of the form XD with HW (D) = 2. Now,
consider the special case where we take n such that: ∃D ∈ J2,n−1K gcd(D, 2n−1) = 1
and HW (D) = 2. Then F = XD is a bijection of inverse F−1 = XD′

where DD′ = 1
mod 2n − 1. The degree of F−1 over F2 is HW (D′).

It is important to note that this construction will not work certain values of n. For
instance, there are such no bijective monomials for n = 32 due to the smoothness of
232 − 1. To be sure it exists, we will sample in S2,∗

n when n is odd only.

Now that we have a candidate bijection in S2,∗
n we use the well-known multivariate

to get a family of bijections: we compose xD with linear operations S and T . Formally,
we project xD over Fn

2 bijection over (F2)
n. To do so let us �x a basis (e1, ..., en) ∈

(F2n)
n of F2n over F2. It induces an isomorphism π from (F2)

n to F2n such that
π(x1, ..., xn) =

∑n
i=1 xiei . Then we de�ne the bijection σS,F,T as the map from Fn

2

to Fn
2 is de�ned by:

σS,F,T = T ◦ π−1 ◦ F ◦ π ◦ S

Regarding our sampling problem, for each linear transformations S and T , we get a
bijection σS,xD,T . However, as shown in [109], there are some equivalent choices of S
and T that get to the same P � essentially, maps that commute to a certain extend with
the central map. The number of maps we get is the cardinal of GLn(F2)×GLn(F2)
divided by the cardinal of the equivalence classes:

101

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

(
∏n−1

i=1 (2
n − 2i))2

n(2n − 1)
= O(2

(n−1)2

n
)

Hence the following property:

Proposition 7. For any integer n and any D ∈ J2,n−1K gcd(D, 2n − 1) = 1 and
HW (D) = 2. Let π be the canonical isomorphism from (F2)

n to F2n . We have :

#{T ◦ π−1 ◦ xD ◦ π ◦ S|(S, T) ∈ GLn(F2)
2} = (

∏n−1
i=1 (2

n − 2i))2

n(2n − 1)

and the cardinal of the set of bijections S2,∗
n is at least

(
∏n−1

i=1 (2n−2i))2

n(2n−1)
.

This means that for n reasonably small, we can sample in a subset of S2,∗
n that

has more than 2λ elements for a brute force search.

2.1.4 Our Implementation

We now describe the compiler. It is composed of 10 rounds transforming the 10 AES
rounds (Si, Li) into 10 new round functions (Σi; Λi). The functions Σi are stored as
truth tables and the functions Λi are stored as their ANF.

For sake of simplicity, we introduce notations, grouping transformations by their
functionality:

� First, we relabel bytes of the state in the following way :
s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

→

x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

� We de�ne Si, and Si

j its components byte by byte, to be the composition of
AddRoundKey and SubBytes, that is we consider the keyed S-boxes:

Si(x) = (Si
0(x0), ..., S

i
15(x15)) = (SB(x0 +Ki

0), ..., SB(x15 +Ki
15))

� We de�ne Li, and Li
j its component 32 bits per 32 bits, to be the composition

of ShiftRows and MixColumn for i ≤ 9 and the composition of ShiftRows and
AddRoundKey for i = 10.

With these notations the rounds of the AES are just the composition of Si and Li.
We note Ri the round functions.

102

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

Round 1

We describe the algorithm for the �rst quarter of the state, that is, for the round
functions R1

0 to R1
31. The algorithm applies the same way to other quarter of states,

with the corresponding change of indexes.

The Substitution Σ The compiler �rst draws random functions r11,i ∈ F16,5 for
each 1 ≤ i ≤ 2, and transformations f 1

i,j ∈ F5,8 of degree 5.

The compiler then computes two �rst masks for pairs of keyed S-boxes by comput-
ing:

mask11,1 = S1
0(z0) + f 1

1,1(r
1
1,1(z0, z5))

mask11,2 = S1
5(z5) + f 1

1,2(r
1
1,1(z0, z5))

Σ̃1
1,1 = mask11,1||mask11,2||r11,1(z0, z5)

The same is done with other half of the state with s10 and s15 to compute:

Σ̃1
1,2 = mask12,1||mask12,2||r11,2(z10, z15)

The compiler �nally computes the complete substitution part Σ by drawing two
bijections σ1, σ2 ∈ S∗,2

21 and composing them respectively with Σ̃1 and Σ̃2:

Σ1
1,i = σ1,i ◦ Σ̃1,i

The Di�usion Λ The linear layer is then modi�ed accordingly for correctness. If we
note yi the output of Σ1,i :

ỹi = σ1
1,i

−1
(yi),

the inverse of the encodings are composed with the linear part of the round L1, for
k ∈ J1, 4K:

L̃1
1,k := L1

1,1(ỹ1[0 : 7], ỹ1[8 : 15], ỹ2[0 : 7], ỹ2[8 : 15])[8k : 8k+7] || ỹ1[16 : 20] || ỹ2[16 : 20]

The functions Λ are extended to functions F42,21 by linearly sharing the coordinates
into 21 functions, that is, the compiler computes an application ext11,k ∈ F18,21 such

that there exist extL̃1
1,k ∈ F21,18 :

103

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

L̃1
1,k = ext11,k ◦ extL̃1

1,k

The compiler then encodes bits corresponding to a S-box input of the next round
by drawing, for k ∈ J1, 4K, τ1,k ∈ S2,∗

21 at random computing:

Λ1
1,k = τ1,k ◦ extL̃1

1,k

The same is done for all bytes of the round function.

Output: The output of the �rst round is the collection of the applica-
tions Σ1 = (Σ1

1,1,Σ
1
1,2, ...,Σ

1
4,1,Σ

1
4,2) and the collection of the applications Λ1 =

(Λ1
1,1, ...,Λ

1
1,4, ...,Λ

1
4,1, ...,Λ

1
4,4). The applications 1 ≤ i ≤ 4,1 ≤ j ≤ 4 τ 1i,j and

ext1i,j and the functions 1 ≤ i ≤ 4,1 ≤ j ≤ 2, σ1
i,j and f

1
i,j are carried as inputs for the

next round.

Round 2

We describe the algorithm for the �rst quarter of the state, that is, for the round
functions R2

0 to R2
31. The algorithm applies the same way to other quarter of states,

with the corresponding change of indexes. We suppose that we have the output
functions 1 ≤ i ≤ 4,1 ≤ j ≤ 4 τ 1i,j and ext

1
i,j and the functions 1 ≤ i ≤ 4,1 ≤ j ≤ 2,

σ1
i,j and f

1
i,j of the previous round. We note z to be the output of Λ1, and we de�ne

zi to be the coordinates of z by blocs of 21 bits, that is z = (z0, ...z20).

The Substitution Σ The compiler �rst composes the previous round transformation
with the S-boxes of the current round and the 1-Round Feistel structure for correctness:

z′k = τ 1i,j
−1
(zk)

S ′2
k = S2

k(z
′
k[0 : 7]+L1

1(f
1
1,1(z

′
k[8 : 12]), f 1

1,2(z
′
k[8 : 12]), f 1

2,1(z
′
k[13 : 17]), f 1

2,2(z
′
k[13 : 17]))

The compiler draws random functions for each r21,i ∈ F21,3 (1 ≤ i ≤ 2) transfor-
mations of degree f 2

i,j ∈ F3,3.

The compiler then computes a mask for each keyed S-boxes by computing:

mask21,i := S ′2
5k(z

′
5i) + f 2

1,i(r
2
1,i(z

′
5i))

Σ̃2
1,i := mask21,i || r21,i(z5i)

The compiler �nally computes the complete substitution part Σ by drawing a bi-
jection for each S-box σ2

1,i,∈ S∗,2
11 and composing them with Σ̃2

1,i:

Σ2
1,i = σ2

1,i ◦ Σ̃2
1,i

104

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

The Di�usion Λ The linear layer is then modi�ed accordingly for correctness. If we
note yi the output of Σ1,i :

ỹi = σ2
1,i

−1
(yi),

the inverse of the encodings are composed with the linear part of the round L1, for
k ∈ J1, 4K:

L̃2
1,k := α || ỹ1[8 : 12] || ỹ2[8 : 12] || ỹ3[8 : 12] || ỹ4[[8 : 12]

with

α = L1
1,1(ỹ1[0 : 7], ỹ2[0 : 7], ỹ3[0 : 7], ỹ4[0 : 7])[8k : 8k + 7]

The functions Λ are extended to functions F42,21 by linearly sharing the coordinates
into 21 functions, that is, the compiler computes an application ext11,k ∈ F20,21 such

that there exist extL̃1
1,k ∈ F21,20 :

L̃2
1,k = ext21,k ◦ extL̃2

1,k

The compiler then encodes bits corresponding to a S-box input of the next round
by drawing, for k ∈ J1, 4K, τ1,4 ∈ S2,∗

21 at random computing:

Λ2
1,k = τ1,k ◦ extL̃2

1,k

The same is done for all bytes of the round function.

Output: The output of the second round is the collection of the applications
Σ2 = (Σ2

1,1, ...,Σ
2
1,4, ...,Σ

2
4,1, ...,Σ

2
4,4) and the collection of the applications Λ2 =

(Λ2
1,1, ...,Λ

2
1,4, ...,Λ

2
4,1, ...,Λ

2
4,4). The applications 1 ≤ i ≤ 4,1 ≤ j ≤ 4 τ 2i,j and

ext2i,j , σ
2
i,j and f

2
i,j are carried as inputs for the next round.

Round 3 to 9

We describe the algorithm for the �rst quarter of the state, that is, for 3 ≤ t ≤ 9
the round functions Rt

0 to Rt
31. The algorithm applies the same way to other quarter

of states, with the corresponding change of indexes. We suppose that we have the
functions 1 ≤ i ≤ 4,1 ≤ j ≤ 4 τ t−1

i,j and extt−1
i,j and the functions 1 ≤ i ≤ 4,1 ≤ j ≤ 2,

σt−1
i,j and f t−1

i,j of the previous round. We note z to be the output of Λt−1, and we
de�ne zi to be the coordinates of z by blocs of 21 bits, that is z = (z0, ...z20).

105

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

The Substitution Σ The compiler �rst composes the previous round transformation
with the S-boxes of the current round and the 1-Round Feistel structure for correctness:

z′k = τ t−1
i,j

−1
(zk)

S ′t
k = St

k(z
′
k[0 : 7]+Lt

1(f
t−1
1,1 (z′k[8 : 10]), f t−1

1,2 (z′k[11 : 13]), f t−1
1,3 (z′k[14 : 16]), f t−1

1,4 (z′k[17 : 19]))

The compiler draws random functions for each r21,i ∈ F21,3 (1 ≤ i ≤ 2) transfor-
mations of degree f t

i,j ∈ F3,3.

The compiler then computes a mask for each keyed S-boxes by computing:

maskt1,i := S ′t
5k(z

′
5i) + f t

1,i(r
t
1,i(z

′
5i))

Σ̃2
1,i := maskt1,i || rt1,i(z5i)

The compiler �nally computes the complete substitution part Σ by drawing a bi-
jection for each S-box σt

1,i,∈ S∗,2
11 and composing them respectively with Σ̃t

1 and Σ̃t
2:

Σt
1,i = σt

1,i ◦ Σ̃t
1,i

The Di�usion Λ The linear layer is then modi�ed accordingly for correctness. If we
note yi the output of Σ1,i :

ỹi = σt
1,i

−1
(yi),

the inverse of the encodings are composed with the linear part of the round L1, for
k ∈ J1, 4K:

L̃t
1,k := α || ỹ1[8 : 10] || ỹ2[8 : 10] || ỹ3[8 : 10] || ỹ4[[8 : 10]

with

α = Lt−1
1,1 (ỹ1[0 : 7], ỹ2[0 : 7], ỹ3[0 : 7], ỹ4[0 : 7])[8k : 8k + 7]

The functions Λ are extended to functions F44,21 by linearly sharing the coordinates
into 21 functions, that is, the compiler computes an application ext11,k ∈ F20,21 such

that there exist extL̃t
1,k ∈ F21,20 :

L̃t
1,k = extt1,k ◦ extL̃t

1,k

The compiler then encodes bits corresponding to a S-box input of the next round
by drawing, for k ∈ J1, 4K, τ1,4 ∈ S2,∗

21 at random computing:

Λt
1,k = τ t1,k ◦ extL̃t

1,k

106

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

The same is done for all bytes of the round function.

Output: The output of the second round is the collection of the applications
Σt = (Σt

1,1, ...,Σ
t
1,4, ...,Σ

t
4,1, ...,Σ

t
4,4) and the collection of the applications Λt =

(Λt
1,1, ...,Λ

t
1,4, ...,Λ

t
4,1, ...,Λ

t
4,4). The applications 1 ≤ i ≤ 4,1 ≤ j ≤ 4 τ ti,j and

extti,j , σ
t
i,j and f

t
i,j are carried as inputs for the next round.

Round 10

We describe the algorithm for the �rst quarter of state, that is, for the round functions
R10

0 to R10
31. The algorithm applies to the same way to other quarter of states, with

the corresponding change of indexes. We suppose that we have the functions f 9
i,1 and

f 9
i,2 (1 ≤ i ≤ 4) of the previous round. We note z the output of Λ9, and we de�ne zi
to be the coordinates of z by blocs of 21 bits, that is z = (z0, ...z21).

The Substitution Σ The compiler �rst composes the previous round transformation
with the S-boxes of the current round:

z′k = τ−1
k (l−1

k (zk)

S ′t
k = St

k(z
′
k[0 : 7]+Lt

1(f
t−1
1,1 (z′k[8 : 10]), f t−1

1,2 (z′k[11 : 13]), f t−1
1,3 (z′k[14 : 16]), f t−1

1,4 (z′k[17 : 19]))

As the linear layer is a permutation for last round, the compiler just composes the
two layers:

Σk = L(S ′
0, ...S

′
15)[8k : 8k + 7]

Output: The output of the last round is the collection of the applications Σ10 =
(Σ0, ...,Σ15).

2.1.5 Correctness and Size of the Implementation

We now show the correctness of our algorithm and detail its size.

Correctness

Round 1 For round 1, we just show that the composition of Σ and Λ is a special
encoding of the round function. We only show this for the �rst quarter of state and
the proposition follows for the others.

107

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

Proposition 8. The function Λ1
1,1(Σ

1
1,1,Σ

1
1,2,Σ

1
1,3,Σ

1
1,4) is an encoding of 8 bits of

the round function R1
1,1. More precisely, with the notations of section 3.2 of round

1,if we note y the output of Λ1
1,1(Σ

1
1,1,Σ

1
1,2,Σ

1
1,3,Σ

1
1,4) for an input x and y′ :=

ext11,1(τ
1
1,1

−1
(y), the following relation stands :

R1
1,1(x) = y[0 : 7]+L1

1(f
1
1,1(y[8 : 12]), f 1

1,2(y[8 : 12]), f 1
2,1(y[13 : 17]), f 1

2,2(y[13 : 17]))[0 : 7]

Proof. By construction, the mappings σ1
1,j

−1
and σ1

1,j cancel out when composed.
Then, as L is a linear map, it commutes with the addition of the masks maski,j,
hence, Λ1

1,1(Σ
1
1,1,Σ

1
1,2,Σ

1
1,3,Σ

1
1,4) is an encoding of :

R1
1,1 + L1

1(mask
1
1,1,mask

1
1,2,mask

1
2,1,mask2,2)[0 : 7] || r11,1 || r11,2

The rest follows from the inverse of the extension and of τ 11,1 to encode the following
round.

Round 2 to 9 The construction is very similar for rounds 2 to 9 with the exception
of round two having speci�c parameters. We show the result for round 2 and the proof
for round 3 to 9 follows. We state that after t − 1 rounds of our construction, the
t-th round is an encoding of the t-th round of the AES. We only show this for the �rst
quarter of state and the proposition follows for the others.

Proposition 9. Let z be the output of the (t − 1)-th round of the implementation,
that is, the output of Λt−1 after the composition of the round functions on the input
of x. The function Λt

1(Σ
t
1,1, ...,Σ

t
1,4,,Σ

t
4,1, ...,Σ

t
4,4)[0 : 20](z) is an encoding of the

�rst 8 bits of the composition of t rounds of the AES. More precisely, with the notations
of section 3.2 of round 1,if we note y the output of this function for an input x, and
y′ := extt1,1(τ

t
1,1

−1
(y) the following relation stands

Rt
1,1(x) = y[0 : 7]+L1

1(f
1
1,1(y[8 : 10]), f 1

1,2(y[11 : 13]), f 1
1,3(y[14 : 16]), f 1

1,4(y[17 : 19]))[0 : 7]

Proof. To prove it by induction, consider the basic case t = 2. By the correctness
property of round 1, the �rst round of the implementation is an encoding of the �rst
round of the AES of the form, with the notations for x, y and y′ := ext11,1(τ11,1

−1(y)
de�ned in the proposition, the following relation stands :

R1
1,1(x) = y[0 : 7]+L1

1(f
1
1,1(y[8 : 12]), f 1

1,2(y[8 : 12]), f 1
2,1(y[13 : 17]), f 1

2,2(y[13 : 17]))[0 : 7]

108

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

Then, by construction, the mapping Σ2
i starts by cancelling out τ 11,1. Then, it

computes masks fi,j(r
k,l) and adds L1

1(f
1
1,1(r

1
1,1), f

1
1,2(r

1
1,1), f

1
2,1(r

1
1,2), f

1
2,2(r

1
1,2)) to the

masked round. As L1 is linear, it commutes with the additions of the masks and
correctly unmasks the round. The rest of the round is similar to round 1, except the
input is already large, so we choose smaller masks.

For heredity, the proof stems from the same arguments as the basic case, except
the encodings σ and τ are applied to all the input/output of their respective mappings.

Round 10 Round 10 is just composed of the inverse encoding of the previous round
and a substitution part. The correctness stems from the same arguments as for Σt's
correctness.

Size of the Implementation

We now give a short synthesis of the sizes of the implementation. All the sizes of each
component for each is given in bits. The size a n-to-m bits truth table is m × 2n

and the size of a polynomial of degree 4 in a boolean polynomial ring is given by its
monomials, that is at most σ(n, 4).

Round 1 The substitution part Σ1 is composed of 16-bit truth tables. As we have
21 outputs for each of them per pair of S-boxes, the substitution part of round 1 is
composed of 4× 2× 21× 216 ≈ 223.4 bits.

The encoding part Λ1 is composed of 17 polynomials over 21×2 variables per S-box
of the following round. Hence, the encoding part for round 1 has its representation
composed of 17× 16× σ(21× 2, 4) ≈ 225.5 bits.

Round 2 to 9 The size of round 2 to 9 is the same as for round 1 except the
substitution part Σ has a 21 bit input. Hence the size of the substitution part is
16××11× 221 ≈ 228.45 bits and the size of the polynomials of Λ is 16× 21× σ(11×
4, 4) ≈ 225.5 bits.

Round 10 The last round is only composed of the substitution part Σ. Its size is
then 16× 8× 21× 221 ≈ 225 bits.

Synthesis and Remarks Adding up all rounds the implementation weighs about
231.77 bits ≈ 450MB. While it is non-negligible, it is still deployable in most devices
used nowadays.

109

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

The fast growth of the size of the polynomials is a problem this technique cannot
avoid which limits the array of 'reasonable' parameters. However, if we want bigger
implementations, we can use bigger tables for Σ by adding variables in the �rst round
substitution part or using a larger encoding in round 2 to 10. The number of coordinates
of Λ will then grow linearly, and the size of the truth table will rapidly catch up to
dominate the implementation size. This regime of parameters is surely interesting for
better security claims if bigger implementations are not a problem. For the challenge
construction however, we tried to minimize the space requirements. More on this topic
in the security conjecture section.

Concerning running time, similarly to the size analysis, the polynomials of Λ take
the most time to be computed. As we use a simple polynomial evaluation technique
in our implementation, that is, computing the monomials in a given input and then
adding the corresponding monomials, the time used is then proportional to the size of
our polynomials.

2.2 Security Analysis

We now perform the analysis of our construction. We recall that the study of fault
attacks are out of the scope of this thesis. The goal of this analysis is to estimate the
unbreakability of our compiler against state-of-the-art attacks, especially the algebraic
ones.

When implementations are only composed of truth tables, no intermediate values
appear during the computation of these tables, and the security analysis can be per-
formed with only the input-ouput behavior of these atomic elements. However, when
we add polynomials to an implementation however we add intermediate values such
as monomials and their sums to computation traces. To perform a security analysis,
one has to either consider each of these monomials and their combinations, or try
to reduce the analysis to the input-output behavior of the polynomials - under right
hypotheses. As the �rst option makes a precise analysis impossible due to the combi-
natorial complexity of the problem, we will formalize hypotheses and rely on the second
strategy.

It is important to note that this strategy is not new by any means. Indeed, it is
common in multivariate cryptography to make these kind of assumptions when known
structural attacks are not e�cient. For instance, for cryptosystems based on the IP
problem such as HFE or UOV (see also Part III), if the state-of-the-art attacks are
not e�cient enough, we consider that the polynomials are similar to a 'black-box',
that is, the monomials they are composed of and their partial sums do not give more
information than the complete input-ouput behavior of these polynomials.

110

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

For the rest of the analysis, we make the following reasonable hypothesis: having
the polynomials of the application Λ on our algorithm is equivalent to having their
truth table for the cryptanalysis. This hypothesis can obviously be challenged. A more
detailed discussion about these hypotheses will be given in part III.

Furthermore, automated attacks are usually launched with a set of target functions
to test. For this analysis, we will consider that targets are the most common ones,
that is, outputs of the S-boxes and outputs of round functions.

2.2.1 Against LDA

To study the complexity of LDA or high order LDA against our construction, we detail
the mappings that allow to recover the target function. We then discuss their degree.

Targeting a S-box We focus our analysis on round 1 as it is the case where the
key-space is the smallest. We also detail the analysis only for Σ1

1 as it is easy to
generalize to the complete mapping Σ1. The analysis for S-boxes stems from the
following property:

Proposition 10. Let y = Σ1
1,1(x0, x15). We have:

S0(x0) = σ1
1,1

−1
(y)[0 : 7] + f 1

1,1(σ
1
1,1

−1
(y)[16 : 19])

S5(x5) = σ1
1,1

−1
(y)[8 : 15] + f 1

1,2(σ
1
1,1

−1
(y)[16 : 19])

As we note S0(x0) = ψ0(y) and S5(x5) = ψ5(y), for any other keyed S-box S ′
0 and S

′
5

we have:

S ′
0(x0) = S ′

0(S
−1
0 (ψ0(y))

S ′
5(x5) = S ′

5(S
−1
5 (ψ5(y))

Proof. The proof is trivial from the construction of Σ1.

According to this result, a d-LDA of order d = deg(ψ0) will have a solution for
S0. If d is smaller, the LDA will not succeed as ψ0 is by de�nition the inverse of the
encoding transformation. Furthermore, the second part of the property shows that a
LDA of order deg(S ′

0(S
−1
0 (ψ0))) will also have a solution for any other keyed sbox S ′

0.

To continue our analysis, we have to estimate the degree of deg(ψ0) and deg(S
′
0(S

−1
0 (ψ0)))

when S0, S
′
0, fi,j and σ1 vary through their respective spaces. We propose this con-

jecture, supported by numerical tests:

111

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

Conjecture: If S0 ̸= S ′
0 are keyed s-boxes drawn at random and fi ∈ F5,5 and σ1 ∈

S∗,2
21 drawn at random, then the degree of coordinates of ψ0 and and deg(S ′

0(S
−1
0 (ψ0))

are greater or equal to 10 independently of the key with overwhelming probablility.

If this conjecture stands, an attacker with LDA has to use σ(21, 10) > 216 mono-
mials for the 216 possible inputs and the system admits solutions for more than a single
key : it contains about 2.5 more variables than equations. The LDA then fails targeting
the mappings Σ1.

Remark: We stated a strong version of the conjecture we really need, because it is a
more succinct property. Indeed, it is enough for us that this result stands for enough
S ′
0 so that an adversary cannot reduce the key-space enough to brute force the leftover

keys afterwards.

Targeting Round Functions We also focus on round 1 for key-space reasons and
on the �rst byte of the round function. By property 2, the composition of Σ1 and Λ1

is an special encoding of the AES �rst round function. Let us note the degree of its
decoding relation d.

Contrary to the attack on S-boxes, as the encoding is only of size 21, we have a
solution for degree d for the right key-guess and no a priori solutions for other key-
guesses. Indeed, a byte of an AES round function with a �xed key k is not a basis for
round functions with other keys k′ ̸= k. We can then evaluate the complexity of the
attack according to section 2:

σ(21, d)2 × 232

Again, we have to study the degree d depending of its composing elements:

Conjecture : For fi,j ∈ F5,5 and τ1 ∈ S∗,2
21 drawn at random, with high probability,

d ≥ 11.

If this conjecture stands, the attack can be made in 274 operations.

Remark: Note that to conduct this attack, one has to evaluate Λ over many inputs
and the polynomials of Λ are composed of σ(42, 4) ≈ 224.1 monomials, The evaluation
of the polynomials Λ can be a lower bound for the attack.

2.2.2 Against DCA

For this section, we base our analysis on the analysis of DCA made on random encodings
by Rivain and Wang in [97].

112

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

Targeting Sboxes In [97], the authors prove that for random functions, the proba-
bility of success of a DCA against encoded S-box is small when the size of the encoding
is bigger than the S-box support. In our case, S-boxes σi are "encoded" into Σi that is
a mapping from F16

2 to F21
2 . In an ideal setting, this means that a DCA is not successful

against with S-box as targets.

Targeting Round Functions In this setting, the size of the encoding of the round
function is 21. This means that DCA can be used with a reasonable probability of
success. However there are no results for this kind of encodings. If we apply the
strategy of [97] for 16-to-8-bit encodings, as our encodings are packed by pairs of
bytes, we can �x any bytes to simplify the attacks an the complexity is, with the
notations of their paper:

T ×N ×#K = 21× 221×2 × 232

2.2.3 Against MIA and Collision Attacks

To perform MIA and collision attacks, one has to target a non-injective function of
the algorithm. In [97], the authors directly target the round function and exploit the
equivalence between a collision on the round function and a collision on the encoded
round function, as the encoding is a bijection. However, in our setting, the encodings
of rounds are not local bijections. We still focus our study on the �rst byte of round
1, which can be generalized to the rest of the round.

Proposition 11. Let x = (x0, x5, x10, x15) and x
′ = (x′0, x

′
5, x

′
10, x

′
15) be two distinct

vectors of 4 bytes. If there is a collision Λ1[0 : 16](x) = Λ1[0 : 16](x′) then :
R1[0; 7](x) = R1[0; 7](x

′)

r11,1(x0, x5) = r11,1(x
′
0, x

′
5)

r11,2(x
′
10, x

′
15) = r11,2(x

′
10, x

′
15)

Proof. By property 2, a collision implies a collision for a function of the form:

τ1(R1[0 : 7] + L1
1(f

1
1,1(r

1
1,1), f

1
1,2(r

1
1,1), f

1
2,1(r

1
1,2), f

1
2,2(r

1
1,2)||r11,1||r11,2)

We can then remove the bijection τ1, but as we carry the random terms from
the construction of Σ, a collision of the complete state implies a collision on all the
coordinates and as the masks are computed from the rightmost part of the state, we
have the desired property.

113

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

This property means that collisions are observed on the encoded state when the
random polynomials r11,1(x0, x5) and r

1
1,2(x10, x15) and the round function simultane-

ously collide. In other words, the set of collisions is the intersection of the set of
collision points of these 3 functions. If we consider the polynomials r11,1(x0, x5) and
r11,2(x10, x15) as random functions from F16

2 to F5
2, it means that they have 211 col-

lisions on average. The cardinal of the intersection of the sets of collision points is
now bounded by 211 and a subset of the collision of the round function, which reduces
the set of collisions which was of about 224 collisions for a round function. To know
whether this set is small enough to protect against collision attacks is a challenge for
future works.

2.2.4 Against BCA

In the state of the art, BCA has been mostly used against non-injective encodings of
S-boxes. In our case, the encodings of the S-boxes are wider than their input, hence
the collision property that is needed by BCA to function is not present. We conjecture
our construction to be secure against this form of BCA.

2.2.5 Against the BGE Attack

Let us �rst recall the main theorem used for the BGE attack. In the BGE attack setting,
an m bits encoding of a round function can be found in execution traces. Let assume
that R1[0 : m − 1] is encoded by a m-to-m-bit bijection ϵ so that ϵ ◦ R1[0 : m − 1]
can be observed in execution traces. In the following we use the generalized attack of
Michiels et al. [84].

In our setting, the encodings are not local bijections and the set Vδ cannot be
computed. Indeed, the proof of the theorem stands and the set Vδ can be computed
if there exist two sets of inputs x̃1,x̃2 and functions ψ1 and ψ2 such that h(x̃1, x̃2) =
ϵ(ψ1(x̃1) + ψ2(x̃2)) = ϵ ◦ R1[0 : m − 1](x) and for any constant c1 and c2, h(x̃1, c2)
and h(c1, x̃2) are bijections (see [84] for more details).

As we add random 16-to-5 noise polynomials, that are not bjiections, there is no
such decomposition of the encoding of our round function and the BGE attack cannot
be applied against our design.

2.2.6 Variations of the Challenge Implementation

To improve the security of the construction we can adjust the parameters of the con-
struction. The �rst parameter to adjust is the size of the Σ tables. The input size of
these tables is dependent on the number of random polynomials added. If nr is the
number of random polynomials we introduced, their input size is at least 8+2×nr+1

114

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

for the �rst round and 8 + 4 × nr + 1 for the other rounds, since we need an odd
number of inputs for our encodings. For the challenge, nr = 5 on the �rst round and
nr = 3 for the rest of the implementation. Another possibility is to increase the size of
the table outputs, hence the number of variables of the polynomials. It is one of the
less costly adjustment since the size only increases polynomially by a degree 4 when we
add variables. With these remarks in mind we propose 2 other implementations that
are variations of the challenge.

The �rst one is LIGHT-RCK-AES. For this implementation we choose nr = 5 for
the �rst round and nr = 2 for the rest, and the output size of the tables to be the
same as the original challenge. In this setting, the encodings of functions and the
input of truth tables are at most of size 17 and polynomials have at most 44 variables.
Extrapolating the analysis on the challenge, the security level of the implementation is
conjectured to be 60. The implementation would weight 229 bits ≈ 70 MB.

The second one is HEAVY-RCK-AES. For this implementation we choose nr = 5
for the �rst round and nr = 4 for the rest. In this setting, the encodings of round
functions and the inputs of truth tables are of size 25 and polynomials have 100
variables. Extrapolating the analysis once again the security conjectured would be at
a security level of 80. The implementation would weight 236 bits ≈ 8.5 GB .

2.3 The Randomized Circuit Knitting Rationale

of Design

The goal of this section is to show that the technique we used for the implementation
is rather generic and can be used for SPNs in general provided the S-boxes are not too
big. Let us assume that we want to implement a SPN with a keyed S-box Si and linear
layer Li so that Li(Si) is the round function. We now describe the three parts of this
method: a pre-processing step, a randomized expansion step and a knitting phase.

2.3.1 A Pre-processing Step

As the method of implementation we propose is somewhat agnostic to the mathemati-
cal structure the SPN is based on, we can represent Si and Li as their algebraic normal
form over F2. Then the round function can be tweaked at will into any S ′i and L′i,
such that Li(Si) = L′i(S ′i). This includes adding redundancy for DFA countermea-
sures or arti�cially splitting the S-box layer to increase the support of S ′i. This phase
can be seen as an 'unknitting' of the circuit corresponding to the round function. If the
original round function of the SPN has really small S-boxes, depending on the linear
layer, one can attempt to use the composition of two rounds instead of one - more on
this strategy with PRESENT will be given in the following sections.

115

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

2.3.2 Randomized Expansion

The �rst phase, the randomized expansion phase, allows to locally increase the degree
of the transformations involved, while only paying for a small exponential overhead in
the substitution part of the SPN and a linear increase in the permutation part. This
phase follows ideas closer to [31] as it allows to introduce "random" polynomials that
are chosen during the compilation. The goal of these random polynomials is to mask
the round functions monomials by monomials and to increase the degree of algebraic
relations leading to sensible variables. The masking can be done at the level of the
layer S, or directly on L. The masking at the level of S is usually easier as the support
of L is usually big enough so that polynomials of these degree are not adapted to
'reasonable' sizes of implementations. The random polynomials are then carried on
to the next round to ensure the correctness of the computations. To control the size
of our construction, we force these polynomials to be of a certain form. At the end
of this procedure, we get new ANFs that allow to evaluate the SPN. At this point
the representation of our SPN is still 'unknitted' but more complex from an algebraic
standpoint.

2.3.3 Knitting Phase

The goal of the knitting phase is to factorize the ANFs we built in the previous step to
hide the randomness we introduced. It allows to increase the support and the degree
of the algebraic relation between sensible variables involved in the construction. The
input of this transformation is the output of the Randomized Expansion algorithm.
First, we share the ANFs of the round function so that the shares are polynomials with
speci�c support, leading to a representation of the round function L”(S”) where the
support of each coordinate of S” is 'small' enough. This step is needed to avoid an
exponential blow-up of encoded shares. We then group these shares by support and
encode them with bijections, whose inverse are of degree 2 . This leads to the functions
Σ on the AES implementation. To protect the round function, we encode these degree
2 transformations whose inverse are of degree as high as possible to get a degree 4
part. This leads to the polynomials Λ in the AES implementation. The encodings are
then carried on to the ANFs of the next round. If the randomized expansion phase as
been correctly parameterized, the composition of randomized expansion and knitting
onto the complete RCK algorithm does lead to a local exponential growth in size in
the substitution part, and a polynomial one in the 'permutation part'.

2.3.4 Using RCK on PRESENT

PRESENT is an example of an SPN by Bogdanov et al. [24]. It is composed of 31
rounds, the block length is 64 bits and two key lengths of 80 and 128 bits are supported.

116

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

It is a lightweight algorithm that has been designed to be fast in restrained environ-
ments. According to the designers, PRESENT has been meant with the following
target goals, among others:

� To be implemented in hardware

� To be deployed in situations where moderate security levels are needed.

� To be used in challenge-response authentication protocols

PRESENT has not been designed with the white-box model in mind. It is almost
the opposite: it has been designed for restrained hardware environments. However,
in the context of authentication, asymmetries might arise that would lead to consider
implementing PRESENT in the white-box model. For instance, if PRESENT is used
in the hardware of an IoT object for authentication, one can have an implementation
of the encryption or decryption algorithm on a smartphone, that is software based. In
this context, the hardware e�ciency of PRESENT is still relevant, but one needs to
protect the other party with the white-box model in mind. That is why we propose to
see how to use the RCK framework to implement PRESENT in the white-box model.

Description of PRESENT

The round function of PRESENT is composed of AddRoundKey, an S-box layer and a
permutation layer. We do not cover the key schedule and refer to its speci�cation.

PRESENT S-box The S-box of PRESENT is a 4-to-4-bit bijection S de�ned by
the following table in hexadecimal, where the 64-bit state is divided into consecutive
4-bit nibbles:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

PRESENT Permutation Layer The permutation layer of PRESENT is a simple
switch of wires de�ned by the following table:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P(i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51
i 6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P(i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55
i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P(i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59
i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P(i) 2 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

117

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

An implementation of PRESENT with RCK

We now explain how we would use the RCK framework to implement PRESENT with
similar security properties to the AES.

Pre-processing To use the RCK framework on PRESENT, we start by a reprocessing
step that starting from round 1, consist of composing the round function of the t-th
round with the S-box of the following round. For any t ≤ 30, t = 1mod3 we de�ne
St,t+1 by:

Rt+1 ◦Rt(x) = P (S(P (S(x+ kt)) + kt+1)) =: P ◦ St,t+1(x)

Due to the structure of PRESENT, the coordinates of the map St,t+1 each have 16
inputs. We let round t+2 as is. We now can represent PRESENT with an alternation
of 2 round functions de�ned by P ◦St,t+1 and P ◦S, for 21 total round functions. The
goal of this step is to adapt the representation of the round function to expansion, and
then apply the knitting phase.

Randomized expansion We are now ready to expand round functions. For the
rounds of the form P ◦ St,t+1 we expand the "S-boxes" St,t+1 in the same way we did
for the AES, with nr random polynomials for the S-boxes sharing a 16-bit support. As
the layer P involves 4 S-boxes, the number of inputs needed for evaluating the S-box
of the following round is nr × 4 + 4. The inverse of the expansion is carried onto the
following S-box round, which limits the input of the next round of S-boxes to nr×4+4.
A randomized expansion step can also be taken with round of the form P ◦ S, but it
will lead to S-boxes with more than 20 inputs, which is not ideal for minimizing the
size of the implementation.

Knitting Phase For the knitting phase, as the layer P mixes 4 nibbles of 4 bits
together, the randomized S-boxes functions can be grouped by 4 to encode at least 16
bits together. To further augment the size of the encodings, one can share the output
of the S-boxes to arti�cially introduce a linear layer that is not only a bit permutation.
Once the size of the encodings of the S-boxes are decided, the output encoding is �xed
by the size of the S-boxes of the next round.

Synthesis Following this method, the implementation is composed of tables Σ that
have at least 16 bits inputs and depend on more key-bits than the original round
function and the secret polynomials and encodings introduced. The composed degree-
2 encodings with the sharing of the S-box output leads to a map represented by degree-4
polynomials that can be made similar in size to the maps Λ of the AES implementation.

118

CHAPTER 2. A SPN IMPLEMENTATION TECHNIQUE: RANDOMIZED CIRCUIT KNITTING

With these similarities in mind, the security of such an implementation depends on the
same algebraic conjectures.

119

Conclusion of Part II

Implementing the AES is one of the �rst goals established by the white-box community
and is still far from being closed.

As we have seen from the short state-of-the-art study, attackers are stronger than
designers by a huge margin. This is partly due to the impressive e�ciency of the
automated attacks, but also due to the structural vulnerabilities of the methods used,
namely the internal encoding rationale of design.

In the new design we propose, we try to push this rationale of design by using a
polynomial representation to produce an implementation that is resilient to algebraic
attacks such as LDA or the BGE attack. The conjectured security of our implementa-
tion is based on conjectures on the algebraic degree of the relation between the usual
target values of attackers and the values computed by our implementation. We also
motivate the study of our technique by publishing a challenge implementation.

We also abstract the design of our implementation as the RCK framework for SPNs
and describe how to implement PRESENT to support the versatility of this framework.

As following works, it would be interesting to investigate whether the algebraic
countermeasures we propose can be mixed with countermeasures speci�c to other
attacks, such as DCA, in the same spirit as the masking techniques of [16] can be
mixed with linear masking for resilience against DCA and LDA.

120

Part III

Multivariate Cryptography in the

White-Box Model

121

Chapter 1

Introduction to Multivariate

Cryptography and HFE

In this chapter, we propose a short introduction to multivariate cryptography, its usage,
the problems it is based on and the usual attack techniques. We then shortly explain the
"big �eld" trapdoor rationale and extensively describe one of its well known element,
the Hidden Field Equation (HFE) one-way trapdoor function. We then precise the
state of the art of attacks against HFE speci�cally

1.1 Introduction to Multivariate Cryptography

Multivariate cryptography is a part of public-key cryptography that relies on the hard-
ness of solving polynomial equations. This rationale of design has been initiated by
algorithms such as C∗ in the 80's and then followed by a lineage of algorithms such as
HFE [88] or UOV [73] and their descendants.

Among the original appeal of this rationale, one can note its e�ciency for short sig-
natures and its �exibility of design as re�ected by the high number of techniques used
to repair broken candidates or design new ones. However, multivariate cryptography
is also one of the rare promising candidates for post-quantum cryptography, together
with hash, code and lattice-based cryptography. Indeed, while polynomial time quan-
tum algorithms such as Shor's algorithm threaten public-key cryptography based on
factorisation or discrete logarithm, multivariate cryptography is conjectured to stand
against quantum opponents. This is why multivariate schemes have been proposed to
the post-quantum NIST competition, for instance GeMSS (an HFE variant).

Even if cryptanalysis showed that the parameters for these candidates were too
optimist, the latest round of selection was gifted with new submitted multivariate
algorithms such as VOX and PROV, showing the everlasting �exibility of multivariate
cryptography.

122

CHAPTER 1. INTRODUCTION TO MULTIVARIATE CRYPTOGRAPHY AND HFE

1.1.1 Multivariate Cryptography Rationale

In Public-Key Multivariate Cryptography, the public key is given as a set of m polyno-
mials (P) = (P1, . . . , Pm) in n variables, of small degree d over a small �nite �eld F.
Most of the time, d equals 2 and 20 ≤ n ≤ 300:

(P)

P1(x1, . . . , xn)

· · ·
Pm(x1, . . . , xn)

In practice, this system is structured: a central system P ′ : Fn → Fm called the
central map is hidden by two a�ne secrets T : Fm → Fm and S : Fn → Fn to form a
system P de�ned by:

P = T ◦ P ′ ◦ S

The private key is then de�ned by the set (S,P ′, T). The system P ′ is built to
be easy to solve, and the system P hard to solve. We now explain how to use this
public-key to build encryption and signature algorithms.

Encryption and Decryption For encryption, plaintexts are elements of Fn and
ciphertexts are elements of Fm. Using the public key, a message (x1, ..., xn) ∈ Fn is
encrypted by :

c = (c1, ..., cm) = P(x1, ..., xn)

In this context, the public key is the encryption algorithm. This encryption process
is quite fast as evaluating such system of polynomials can be made in O(mn2).

For decryption, one need to use the trapdoor, i.e to use the secret-key (S,P ′, T).
For any c ∈ Fm ∩ Im(P), one can inverse map by map the public key:

x = S−1 ◦ P ′−1 ◦ T−1(c)

Note that c has to be in the image of P to have a solution and that we must have
m ≥ n to hope for a unique solution.

Signature and Veri�cation For signature, as usual, we use the direct sense of the
trapdoor to verify and the inverse to sign. Contrary to encryption, m can be smaller
than n without any impact on the ability to sign. We give the example of a hash-
and-sign algorithm. Let h : {0, 1}∗ → Fm be a hash function. To sign a message
x ∈ {0, 1}∗, one needs to compute the preimage of its hash through P :

123

CHAPTER 1. INTRODUCTION TO MULTIVARIATE CRYPTOGRAPHY AND HFE

s = S−1 ◦ P ′−1 ◦ T−1(h(x))

This can only be done with the knowledge of the trapdoor. If h(x) is not in the
image of P , one can pad x with a counter until its hash is in the image of P . To verify
the signature, we simply evaluate P on s and compare it to h(x):

P(s) ?
= h(x)

1.1.2 The PoSSo Problem

For this rationale to work, the public key P needs at least to be one-way. Indeed, if
one can solve y = P (x), it means for instance that an attacker can forge signatures
or decrypt. The hardness of solving polynomial equations is then a requirement for
multivariate cryptography.

De�nition 26. PoSSo and MQ Problems
Let n,m, d ∈ N∗ with d ≥ 2 and F a �nite �eld. The Polynomial System Solving

problem is de�ned as follows.

Given a system of polynomials (P)(P1(x1, . . . , xn)Pm(x1, . . . , xn) in F, �nd an
n-tuple (x1, ..., xn) ∈ Fn such that:

(P)

P1(x1, . . . , xn) = 0

· · ·
Pm(x1, . . . , xn) = 0

When d = 2 we call this problem Multivariate Quadratic (MQ).

In general, this problem is known to be NP-Hard [58], which explains the initial
interest for this rationale. However, with a complete random system, operations such
that signature or decryption are impossible - that is, �nding preimages of y through P
- especially because of the hardness of PoSSo.

The Isomorphism of Polynomials Problem In the context of multivariate cryp-
tography, �nding the secrets S and T given (P) and (P ′) has been abstracted as the
Isomorphism of Polynomial (IP) problem in [88]. It started a line of work such as
[29, 79, 90, 92] to better understand the security of general multivariate schemes.

There exist several families of multivariate schemes, corresponding to several choices
for the system P ′, such as C∗ [82], HFE [88], Rainbow [45] or UOV [73]. Their secu-
rity depend on the internal polynomial and "perturbations" added to the system. If in

124

CHAPTER 1. INTRODUCTION TO MULTIVARIATE CRYPTOGRAPHY AND HFE

general, solving a set of quadratic equations over a �nite �eld is an NP-hard problem
for any �nite �eld it is however di�cult to obtain a proof of security for multivariate
schemes: since the system (P ′) has to be easy to solve, it is never random, and neither
is (P) (since (P) is obtained by linear changes of variables from (P ′)).

1.1.3 Trapdoor Techniques

The Big Field Trapdoor For this trapdoor technique, let us assume that we have
F a map built on an extension Fqn of a �nite �eld Fq. Let us further assume that the
map F can be easily inverted over Fqn , think of a bijective monomial for instance. If
π denotes an isomorphism from Fqn to Fn

q , we then have the following commutative
diagram :

Fn
q Fn

q Fn
q Fn

q

Fqn Fqn

S T

F

π π

P

The public key is de�ned by :

P = T ◦ π−1 ◦ F ◦ π ◦ S
and the trapdoor is computed with the knowledge of (S, T) and the big �eld rep-
resentation of F . This trapdoor is the basis of schemes such as C∗ [82] and HFE
[88].

The Unbalanced Oil and Vinegar Trapdoor The Unbalanced Oil and Vinegar
(UOV) trapdoor is the basis of the UOV [73] scheme and is used in other designs such
as Rainbow [45]. This trapdoor needs two distinct sets of variables of size o and v
such that n = o+v. We note the set of oil variables O and the set of vinegar variables
V . Consider now a central map whose coordinates are of the form:∑

(x,y)∈O×V

ax,yxy +
∑

(x,y)∈V×V

bx,yxy +
∑

x∈O∪V

cxx+ d

The idea is that, using map such as these, if we �x vinegar variables, we get linear
equations in oil variables. The system of equation can then be solved.

The security of such trapdoor is based on the fact that after a composition with
the secrets S and T , distinguishing oil and vinegar variables is di�cult.

125

CHAPTER 1. INTRODUCTION TO MULTIVARIATE CRYPTOGRAPHY AND HFE

1.2 A Short Plea for White-Box Multivariate Cryp-

tography

As we have seen from the theoretical study of part I and the state of the art of white-
box techniques for SPNs in part II, the array of techniques and mathematical objects
used for white-box cryptography is quite limited. This is probably because the AES is
the most studied algorithm in the white-box model. Indeed, its structure - i.e. the SPN
structure with slow di�usion of the key through ten rounds - does not help designers to
decompose the algorithm into secure blocks in the white-box model. Essentially, with
current state-of-the-art techniques the 8-to-8-bit layer of S-boxes followed by a 32-to-
32 linear layer does not translate into a succinct representation of the round that can
be composed with the next round to ensure a combinatorial hardness for adversaries.
This is why rounds are usually broken down into tables with internal encodings, trying
to decompose the round function - or the round function composed with a secret
transformation.

From these remarks, it seems that studying cryptosystems based on other rationals
and mathematical structures can o�er new design spaces. Even if some of them, such
as lattice-based algorithms that need randomness to be secure, might be burdensome,
others may o�er new design avenues with new techniques due to the mathematical
structures they are based on. This is why this part will be dealing with white-box
techniques for multivariate cryptography.

A �rst selling point is that polynomial representation helps to di�use key bits
into the implementation and the decomposition of the public key is already taken
into account by the black-box security study. In a sense, multivariate cryptography
is one of the closest designs in the black-box model that takes white-box aspects in
consideration, due to the nature of its public key. Also by using structured trapdoors,
especially for big �eld cryptosystems, a designer can take advantage of the vector space
and the �eld structure to use new algebraic techniques for implementations.

1.3 Usual Attack Techniques Against Multivari-

ate Cryptography

In this section, we recall the main attack strategies that are speci�c to multivariate
cryptography. This section is just a brief overview and we will detail them against the
algorithms we study later.

126

CHAPTER 1. INTRODUCTION TO MULTIVARIATE CRYPTOGRAPHY AND HFE

1.3.1 Direct Inversion Attack

In a direct inversion attack, the goal of the attacker is to break the trapdoor one-way
property of the public-key, hence breaking the PoSSo problem. The most common
and e�cient method is to use Gröbner bases. We do not detail the theory of how to
compute them, and refer to [40] for the curious reader. The algorithms to compute
these bases have been improved over the years, the most powerful ones being Faugère
algorithms F4 [56] and F5 [55]. and the hybrid approach of [13].

1.3.2 Rank Attacks

The goal of Rank Attacks is to abuse the structure of the central map to recover
the secret-key. More precisely, it ties the key recovery to an instance of the MinRank
problem [39]. A MinRank instance is de�ned by a set of matrices. To solve a MinRank
problem, one needs to �nd a linear combination of the matrices that minimize the rank.
In the context of multivariate cryptography, it has been �rst used in the Kipnis-Shamir
[72] attack: this attack is based on the fact that the initial system P ′ is often of low
rank as a quadratic form. Solving a MinRank instance based on the equation of P
allows to recover the map T , and the map S is recovered by solving an overde�ned
system of linear equations.

1.4 The Hidden Field Equation Familly

We now describe HFE in more details and review the most powerful attacks known
against it: the Gröbner bases message recovery attack and the key-recovery rank
attacks are especially the attacks that are considered in the black-box model to test
whether an HFE instance can be used to build secure primitives.

1.4.1 Description of HFE

First described by Patarin in [88], the HFE scheme is a direct descendant of C∗ [82, 83].
This is one of the 'big �eld' algorithms, using polynomials that are of degree 2 over
Fq. For any positive integers n and D ∈ N let F ∈ Fqn [X] be de�ned by:

F (X) =
∑

0≤i<j<n
qi+qj≤D

ai,jX
qi+qj +

∑
0≤i<n
qi≤D

biX
qi + c

where the ai,j, the bi and c are elements of Fqn . As the integer D bounds the actual
degree of any such F , we call D the degree of the HFE instance. As the quantity
⌈logq(D)⌉ will be important in the description of attacks, we set d = ⌈logq(D)⌉

127

CHAPTER 1. INTRODUCTION TO MULTIVARIATE CRYPTOGRAPHY AND HFE

The secret key is the list of such polynomial F and a couple of a�ne transformations
(S, T) ∈ AFFn(Fq). We note it (S, F, T). We remark that F is e�ciently invertible
on its image due to the Berlekamp algorithm if D is not too big and that S and T are
trivially invertible as long as qn is not too big.

To compute the public key, let us �x a basis (e1, ..., en) ∈ (Fqn)
n of Fqn over Fq.

It induces an isomorphism π from (Fq)
n to Fqn such that π(x1, ..., xn) =

∑n
i=1 xiei .

The public key P is the map from Fn
q to Fn

2 de�ned by:

P = T ◦ π−1 ◦ F ◦ π ◦ S

The public key is represented by the n coordinates of P : for each 0 ≤ i < n we
note its i-th coordinate Pi ∈ Fq[x1, ..., xn].

1.4.2 Perturbations

Usually, a "nude" instance (that is, an instance without perturbations) is not enough
to resist the state-of-the-art attacks. That is why perturbations were introduced to
reinforce these nude instances, while keeping the trapdoor property. We describe only
the ones that are useful to us in this thesis.

The Minus (-) Perturbation Let a be an integer and a < n. The minus pertur-
bation, denoted by �−�, simply consists in keeping secret some of the n polynomials
(P1, . . . , Pn). Only n − a are made public and will be used to check the validity of
the equations. We formalize it by transforming the full a�ne transformation T into
T− : Fn

q → Fn−a
q which is the (n− a) �rst coordinates of the full transformation T .

Then, messages of size n− a can be signed by selecting the a last elements in Fq

at random and signing with the n elements obtained. Note that these last a elements
must be random; otherwise the last a polynomials can be interpolated.

A HFE scheme with the perturbation − is called HFE− with public key

P = T− ◦ π−1 ◦ F ◦ π ◦ S

The Projection (p) Perturbation The projection variant p of HFE has been re-
investigated recently to enhance the resilience of the public key against support minor
modeling attacks ([87]). In this variant, the map S is not a bijective a�ne map over
Fn
q , but an a�ne map of full rank pS from Fn−p

q to Fn
q where the integer p is the

projection parameter. With such map S, there is a probability 1
qp

that an element
y ∈ Fn

q has no preimage through the internal map. This means that there is a qp

128

CHAPTER 1. INTRODUCTION TO MULTIVARIATE CRYPTOGRAPHY AND HFE

overhead to �nd an element in the image of P , hence a qp overhead in signature time.
More details on this variant are given in [46, 87].

A HFE scheme with the modi�ers p is called pHFE with public key:

P = T ◦ π−1 ◦ F ◦ π ◦ pS

The Plus Hat (+̂) Perturbation Introduced in [54], the Plus Hat +̂ perturbation
modi�es the central polynomial F . To do so, let t be an integer, (β1, ..., βt) ∈ (Fq)

t

and (p1, ..., pt) ∈ Fq[x1, ..., xn]
t de�ne a transformation Q such that:

Q(X) =
∑
0≤i≤t

βi × pi(x1, ..., xn)

where we identify X to its representation (x1, ..., xn) in (Fq)
n. The central polynomial

is then modi�ed to be H = F + Q. A HFE scheme with the modi�ers +̂ is called
HFE+̂ with public key:

P = T ◦ π−1 ◦H ◦ π ◦ S

To sign with such instance, we can remark that the image of Q is a small subvector
space of Fn

q of dimension at most t. Then the qt values of Q can be guessed, and the
regular inversion of the instance can be made for each of these guess. The signature
is the only x corresponding to the correct value of Q. More details on the Plus Hat
variant can be found in [54].

1.4.3 The C∗ and D∗ schemes

We give a brief description of C∗ and D∗, ancestors of HFE, as we will use them for
particular instantiations in section 5.

Historically, HFE is a descendant of the scheme C∗ [82, 83]. This scheme is identical
to HFE except this time, the internal polynomial is only a monomial F = x1+qθ for
any integer θ. The cryptanalysis of C∗ by Patarin [88] caused the disuse of this simple
central polynomials for nude instances and the complete key recovery of [50] broke
the C∗− perturbation. However, the state of the art for pertubations still enables the
design of unbroken multivariate schemes such as C∗+̂−.

The D∗ scheme is more contemporary of C∗ and was proposed in [89]. The idea is
to use F = x2 as a central polynomial over Fn

q where q ̸= 2. Its security is discussed

in the seminal paper [89] but without the considering perturbations like p or +̂. More
on this topic will be given in section 5.

129

CHAPTER 1. INTRODUCTION TO MULTIVARIATE CRYPTOGRAPHY AND HFE

1.5 Attacks on HFE variants

In this section, we recall the best attacks on HFE instances, that is, the best known
message-recovery attacks and key-recovery attacks. The complexity of these attacks
will help us benchmark our instances for the white-box implementations later.

1.5.1 Message Recovery Attacks

The idea of a direct message recovery attack is to invert the polynomial system de�ned
by the public key for a �xed value y. To that extent Gröbner bases are the best tools
available to date. The computation of these bases have greatly been improved since
Buchberger original discovery, with new algorithms to compute them such as J.-C.
Faugère F4 and F5 algorithms [55].

To solve a polynomial system of n equations with n unknowns with F5, the com-
plexity is proved to be [8]:

O
((

n+ dreg
dreg

)ω)
where 2 ≤ ω ≤ 3 is the linear algebra constant, and dreg is the degree of regularity
of the polynomial system. Roughly speaking, the degree of regularity is the maximum
degree that is reached during the Gröbner basis computation. As the complexity is
exponential in dreg, it is really important to know how to compute it for practical HFE
instances.

For HFE instances, the degree of regularity is not well understood theoretically, but
it has been well studied experimentally. Due to the structure of the equations over
Fqn , it has been shown in [53] that dreg behaves as logq(D), whatever value is chosen
for n. This is highly di�erent from what has been theoretically investigated for random
systems, where dreg is supposed to be close to n ([7]).

Degree of Regularity for Perturbed HFE For the pHFE− variant, this degree
of regularity is conjectured to behave as⌈

d+ a− p+ 7

3

⌉
Experimentally, this linear dependence on d + a has been observed in works such

as [93] or the GeMSS speci�cation [35]. The linear dependence in −p has been
conjectured by Patarin et al. in [91].

For the HFE+̂− perturbation, the public-key can be reduced to a system of equations
with degree of regularity conjectured in [54] :

130

CHAPTER 1. INTRODUCTION TO MULTIVARIATE CRYPTOGRAPHY AND HFE

⌈
(q − 1)(d+ a+ t− ϵ)

2

⌉
where ϵ = 1 if q is even, ϵ = 0 otherwise.

1.5.2 Key Recovery Rank-Attacks

To perform a key-recovery on HFE and its variants, the most e�cient attacks to date
are the Kipnis-Shamir attacks. In their paper [72], A. Kipnis and A. Shamir show that
�nding equivalent keys to an HFE instance can be done by solving a particular instance
of the MinRank problem [33]. We note CR(n, d) the complexity of this attack.

Since then, variations of the attack have been thoroughly studied. Especially,
variations with minor modeling and support minor have been the most successful.
Recently, Ding et al. [103] proposed an e�cient use of support minor modeling. This
line of work was continued by [87] and [4] to provide a key-recovery attack that breaks
any small HFE instances such as RedGeMSS128 [35]. Especially, the authors of [87]
show that a key-recovery for HFE can be made with minor modeling in:

O

([
n2

(
2d+ 1

d

)
+ n

(
2d+ 1

d

)2
]ω)

An improvement can be made when there exists 2d + 1 ≤ n′ ≤ n − a such that(
n′

d

)
≥ n, showed by the author of [4] and the complexity is then:

O
(
nω

(
n′

d

)ω)
This means that key recovery is exponential in d = ⌈log2(D)⌉, but polynomial in

n. More details on the links between the parameters regime and the complexity of the
attack can be found in [87].

The Projection Perturbation and Support Minor Modeling Attacks In [87],
the authors analyse the complexity of rank attacks on pHFE variants. They prove
that a pHFE instance with internal polynomial of degree D and p projected variables
is equivalent to an HFE instance with internal polynomial of degree 2p × D. Exper-
imentally, the support minor modeling attacks on pHFE instances can be made with
d′ = d+ p.

131

CHAPTER 1. INTRODUCTION TO MULTIVARIATE CRYPTOGRAPHY AND HFE

The Plus Hat Perturbations and Support Minor Modeling Attacks The
authors of [54] analyse rank attacks against HFE+̂. They conjecture the best attack
to be in:

O
(
qt(2d+1) × CR(n, d)

)
where CR(n, d) is the complexity of the support minor modeling attack on the under-
lying HFE instance.

1.5.3 Di�erential Attacks

The di�erential attacks were introduced in [50] to attack the scheme of Matsumoto
and Imai. They exploit the simple structure of the di�erential of the monomial used
in the scheme, as well as a commutation with some multiplication operation.

Even if they were really e�cient against C∗, no adaptation to HFE was ever found
and the authors of [34, 42] showed that the usually chosen HFE polynomials do not
have any exploitable di�erential structure.

132

Chapter 2

A�ne Multiple Implementation of

HFE

In this chapter, we detail our implementation technique of the HFE trapdoor. We adapt
it to some perturbations of HFE and propose a challenge implementation. Finally, we
conduct a security analysis of our construction in the plain white-box model.

2.1 The Technique

2.1.1 A�ne Multiple Attacks

The starting point of our construction is the concept of a�ne multiple. It was intro-
duced by Patarin in [88] to generalize an inversion attack on C∗ to HFE. The central
idea of this attack is that for any polynomial F ∈ F2n [X] there always exists a poly-
nomial A(x, y) ∈ F2n [X, Y] that is F2-linear in x and a multiple of the polynomial
P (x) + y. This means that if y = F (x), then A(x, y) = 0.

De�nition 27. Let F ∈ F2n [X]. The polynomial A(x, y) ∈ F2n [X, Y] is said to be
an a�ne multiple of F if A(x, y) = 0 mod F (x) + y and A is F2-linear in x.

The goal of the original a�ne multiple attack is to recover A via interpolation.
When A is known to an attacker, they can plug any value of y to get a linear system
in x of reasonable size they can solve to e�ciently sign without using the structure of
the equation in F2n .

To further detail this attack, let us de�ne the a�ne degree da� of an a�ne multiple:

De�nition 28. Let A be an a�ne multiple of F (x) + y, that is, A(x, y) = a +∑D−1
i=0 aix

2i with a, ao, ..., aD−1 ∈ F2[y] , if Mon(ak) is the set of the monomials of ak

133

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

we de�ne da� the a�ne degree of A by:

da� := max
k

(
max

m∈Mon(ak)
HW (degy(m))

)
.

i.e. the maximum Hamming weight of the monomials in y in the polynomial A(x, y).

We then remark that the composition by these a�ne transformations S and T
leads to a new a�ne multiple that has the same da� degree. Now, to start the attack,
just notice that A(x, y) is composed of about n×σ(n, da�) unknown coe�cients over
Fn
2 , where σ(n, da�) is the number of monomials in at most n variables in degree d.

We will go through this in more details in Section 3. This means that with enough
queries (x, P (x)), the unknown coe�cients of A are the solution of a linear system
of n equations with n × σ(n, da�) unknowns that we can obtain with a Gaussian
reduction. This gives us an attack, if F is known to have such a�ne multiple, in space
n2 × σ(n, da�) and in time (n× σ(n, da�))ω.

This attack is quite ine�cient in general as the degree da� is usually quite high. Also,
it is well known that the perturbation minus (−) protects from a�ne multiple attacks
[88]. It is important to remark that the cost of computing an a�ne multiple of
F (x) + y is easier when the private key (S, F, T) is known than when only the public
key P is known, especially when modi�ers like minus are used. This means that an
a�ne multiple might be accessible with the knowledge of (S, F, T) but not with the
knowledge of P only.

2.1.2 Rationale of the construction

The starting point of our construction is to use the a�ne multiple relation over F2

as an alternative way to inverse a public key P : the a�ne multiple will be our white-
box implementation. Indeed, if we take y = F (x) in the image of F , computing x
knowing an a�ne multiple A(x, y) boils down to plugging y onto the expression and
then solving linear system of the size of x. If the a�ne multiple is of a reasonable size,
computing x is as easy as evaluating the a�ne multiple in y.

2.1.3 Construction for nude Public-Keys

Computing the a�ne multiple

We now detail the existence of a�ne multiples and expose an algorithm to e�ciently
compute them if possible.

134

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

To prove the existence of a�ne multiple, let us assume that D = deg(F) is
such that D < n and let us consider the vector space F2(y)[x]/(P (x)+y) of dimension

D = deg(F) over F2(y). Now, the (D+1) F2-linear polynomials (1, x2
0
, x2

1
, ..., x2

D−1
)

are linearly dependent:

∃ a, ao, ..., aD−1 ∈ F2(y) , a+
D−1∑
i=0

aix
2i = 0 mod (P (x) + y)

To compute the coe�cients ak, we can use the reductions of the monomials x2
i

modulo F (x) + y:

∃ bi,0, ..., , bi,D−1 ∈ F2(y) , x
2i =

D−1∑
j=0

bi,jx
j mod (P (x) + y)

We then reinject into the previous equation:

a+
D−1∑
i=0

ai

D−1∑
j=0

bi,jx
j = 0

This clearly translates into the linear system:
1 b0,0 · · · bD−1,0

0 b0,1 · · · bD−1,1
...

...
. . .

...
0 b0,D−1 · · · bD−1,D−1

×

a
a0
...

aD−1

 =

0
0
...
0

We can then solve this system with Gaussian reduction in F2(y). Multiplying this

relation by the LCM of the a′ks denominators leads to an a�ne multiple polynomial
A(x, y). We now note ak ∈ F2[y] the polynomials in y obtained that way. This proves
the existence of an a�ne multiple, and gives us at the same time an algorithm to
compute it.

Remark: We do not claim the uniqueness of the a�ne multiple. It is indeed clear
that considering D other F2-linear monomials leads to a similar relation, but it is not
clear how it a�ects the coe�cients ak obtained.

The white-box construction

We now detail the construction of our white-box compiler and how to use it in practice.
As we mentioned earlier, we focus on implementing the P−1 functionality as it is enough
to guaranty unbreakability and incompressibility (see Section 4.4).

135

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

Now, to start the white-box transformation from an HFE secret key (S, F, T)
over n bits - with bijective a�ne transformation S : Fn

2 → Fn
2 and bijective a�ne

transformation T: Fn
2 → Fn

2 and the public transformation π - the compiler computes
�rst the a�ne multiple A(x, y) of F over F2n following the algorithm described in the
previous section.

From the polynomial A(x, y), the compiler can now compute the coordinates
Ai(x1, ..., xn, y1, ..., yn) (for i ∈ J1, nK) of A through the isomorphism π, and its
composition with the secrets map S and full map T :

Ãi(x1, ..., xn, y1, ..., yn) = Ai(S(x1, ..., xn), T
−1(y1, ..., yn))

Now, to compute P−1(y), one can plug the coordinates y1, ..., yn of y into the
polynomials Ãi to get a linear system of n equations in x1, ..., xn that can be solved
through Gaussian inversion for instance. However, one should worry that (F (x) = y)
only implies (A(x, y) = 0), and not the reciprocate. Indeed, when we plug y in, we
might get a solution x such that (A(x, y) = 0 and F (x) ̸= y). To avoid such cases,
we have to verify that for the chosen y, the signature is valid (i.e. F (x) = y). As
the veri�cation is made with the public key, the time needed to perform this check is
negligible.

We de�ne the collection of the n polynomials Ãi, the code for evaluation and the
code for linear inversion to be the white-box implementation of the computation of
P−1. We note this compiler WBHFE . This leads to the compiling Algorithm 1 :

136

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

Algorithm 1: White-box compiler WBHFE

input : A HFE secret key (S, F, T) with a�ne projected S and a�ne
complete T

output: WBHFE (S ,F ,T) the white-box implementation of P−1 with key
(S, F, T)

� Compute the a�ne multiple A(x, y) of F with algorithm of section 3.2

� Compute the composition with secrets S and T and projection maps to get the
coordinates of Ãi:

Ãi(x1, ..., xn, y1, ..., yn) = Ai(S(x1, ..., xn), T
−1(y1, ..., yn))

� Produce a code that partially evaluates the Ãi over the y1, ..., yn

� Produce a code that compute a pre-image of the vector 0 through linear
application given by the partial evaluations of the Ãi, and output "NONE" if
no solution can be found.

� Produce a code that check if the message to be signed is in the image of P .

� Concatenate the produced codes to get the whole white-box implementation
WBHFE (S ,F ,T).

137

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

2.1.4 Dimensioning of the construction

The study of size of our solution boils down to two points: the computation of the
multiple A over F2n and the size of its coordinates Ãi over (F2)

n. Indeed, the code size
needed to perform evaluations of polynomials and Gaussian inversion is negligible. For
the representation of polynomials, we use the so-called �sparse� representation to get
the smaller size possible. The size analysis is of course to be linked with the white-box
incompressibility which is detailed later on.

Cost of computing an A�ne Multiple.

To compute the coe�cients bi,j, we have to go through the reduction of the monomials

x2
i
modulo F (x) + y, with 0 ≤ i < D. Due to the reduction modulo F (x) + y, the

degree of bi,j can be as big as 2D and the bi,j can have up to 2D monomials. The last
part of the algorithm only solves a D ×D system, leading to a worst case complexity
if the polynomials bi,j are dense:

O(M(n, 2D)Dω)

whereM(n, 2D) is the cost of multiplying polynomials of degree 2D with coe�cients of
size n. This means that with D = O(n), computing this relation is usually impossible.
However, we will use it with smaller polynomials than in usual HFE, i.e. D = O(1).

Size and Running Time of the WBHFE implementation.

For the rest of the construction, let us introduce the a�ne degree of F . The a�ne
degree da� is the greatest Hamming weight that appears in the description of the a�ne
multiple A over F2.

De�nition 29. Let A(x, y) = a+
∑D−1

i=0 aix
2i with a, ao, ..., aD−1 ∈ F2[y] , if Mon(ak)

is the set of the monomials of ak we de�ne da� the a�ne degree of A by:

da� := max
k

(
max

m∈Mon(ak)
HW (degy(m))

)
.

Over F2, da�+1 is the highest degree of the monomials encountered in the expres-
sion of A(x, y). Indeed, A(x, y) is linear in the xi but of degree da� in the yi.

If we note σ(n, da�) to be the number of monomials in at most n variables of
degree at most da�, this means that we have about n× σ(n, da�) coe�cients over Fn

2

needed to compute a coordinate Ai of A(x, y). When we compose by S and T to get
Ã, the overall degree does not change since S and T are a�ne transformations. This

138

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

means that each coordinate Ãi is composed of at most n× σ(n, da�) monomials since
S is a map from n bits to n bits.

As we are computing n coordinates, a lot of monomials will be shared in the ex-
pressions of the Ãi and it is more e�cient to compute all the monomials that appear
in these expressions, and then sum them. Since we want to only evaluate these poly-
nomials in yi to get a linear system in xi, to then inverse it, we will represent the n
polynomials Ãi as a matrix of polynomials over the yi. This transformed expression
is of the same size but will be more suited to our goals. To do so, we de�ne the
polynomials Ãi,j(y1, ..., yn) by the expression:

Ãi(x1, ..., xn−p, y1, ..., yn) =
n∑

j=0

Ãi,j(y1, ..., yn)× xj

Key elements of WBHFE: We can now precisely state the size of our construc-
tion. Since we will need to use great values of n, we will say in our size study that code
size are 'negligible' if they are small - that is few kB. Our construction is composed of:

� A code that evaluates, on an inputm = (m1, ...,mn) of size n, all the monomials
of at most degree 2 in the mi. As we compute all the monomials, a generic code
can be made. This means that this part is negligible in code size. However,
this code will produce σ(n, da�) bits during its execution. We will also suppose
- without loss of generality - that these monomials are computed in an ordered
way, with a label from 1 to σ(n, da�).

� The n × n �les Filei,j i,j < n for which the k-th bit of the �le Filei,j is 1 if
the k-th monomial computed by the precedent code is in the expression of the
polynomial Ãi,j. These �les are the heaviest part of our implementation: their
size is σ(n, da�) bits. As we need each of the coordinates, the whole size is
n2 × σ(n, da�). We divide the n2 polynomials into n2 �les so we can load them
one at a time during evaluation, with potential for parallelization.

� A code that computes the evaluation of Ãi,j(m1, ...,mn) given the evaluations
of the monomials of degree 2 in mi and the �le Filei,j. To do so, one just has
to go through the �le Filei,j and sum the corresponding monomials as they go.
This code is negligible and can load one �le Filei,j at a time.

� A code that computes the n by n binary matrix MatÃ such that (MatÃ)i,j =
Ãi,j(m1, ...,mn). This code is also negligible.

� A code that computes a solution for the linear system MatÃX = 0, X =
(x1, ..., xn)

T . This can be done by Gaussian elimination. Hence, it is negligible.

139

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

� A code that checks whether m was in the image of P , i.e. if P (x) = m. This
can be done with the public key, whose size is n× σ(n, 2). The rest of the code
is negligible.

Size and Time This means that the code is composed of the n2 Filei,j for n2 ×
σ(n, da�) bits, the matrix MatÃ of n2 bits, the public key of n × σ(n, 2) bits, and
some negligible code. The full size is then:

n2 × σ(n, da�) + n2 + n× n2 + negl ≈ n2 × σ(n, da�)

For the rest of the paper we will de�ne:

σWB := n2 × σ(n, da�)

Regarding time, it is interesting to note that the computation of P−1 can be
parallelized. Indeed, the n× n polynomials in the �les Filei,j can be computed inde-
pendently. When the polynomials are evaluated, there is only a small n by n system to
solve. If the evaluation of polynomials in the �les Filei,j is parallelized np < n2 times,
the time for inverting P−1 is:

τWB := nω +
n2

np

× σ(n, da�)

Discussion on the a�ne degree.

As seen in the previous section, the size our construction is exponential in the a�ne
degree da�, so it is important for us to understand its variations depending on F .

As a consequence of the algorithm we used to prove the existence of a multiple
a�ne, we know that the degrees involved in the computation of the multiple are upper
bounded by 2D where D is the degree of F . The a�ne degree is then bounded by D
but this bound is clearly an overestimate.

Through our experimentation we found that polynomials with degree of at most
degree 12 can reach any a�ne degree ranging from 2 to 6. These experiments show
that most of small da� can be reached and that there are many polynomials reaching
these values. We give example of some families of these polynomials with d = 3 in the
following table but these are just mere examples and any polynomial with the desired
a�ne degree can be used in our construction.

140

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

Internal Polynomial F , ∀A,B ∈ Fn
2 da�

x12 + Ax10 +Bx6 2
x12 + Ax4 +Bx3 3
x10 + Ax6 +Bx3 4
x10 + Ax5 +Bx3 4
x12 + Ax10 +Bx5 5
x12 + Ax5 +Bx3 5
x10 + Ax6 +Bx4 6

Table 2.1: For the polynomials F proposed, the a�ne multiple is easily computable
with the algorithm of section 3.2. The values da� are exact, provided that � for our
choice of A and B � the terms of degree da� do not vanish (this only happens on few
singular points).

Besides our experiments on low degree polynomials, there are some examples that
are really far from any expected bound. For instance, the Dobbertin polynomial
x2

m+1+1 + x3 + x (see [47]) has a multiple a�ne of a�ne degree 3 over F22m+1 for
every value m ([88]), which is � in general � really di�erent from the observed values.

2.1.5 Using Perturbations

Usually, nude HFE instances are not su�cient by themselves to get reasonable black-
box security. The goal of this section is to explain how we can turn the implementation
of a nude HFE instance into a perturbed one. We will focus on three of them: p, −,
and +̂. For each perturbation on the public-key, we associate a perturbation or a list
of perturbations between parentheses (p corresponding to (p) for instance) that are
applied on the a�ne multiple of the nude HFE instance to match the perturbations
made to the public-key.

The p Perturbation

To transform a nude public key to a one perturbed with p, one only needs to replace
the bijective a�ne application S : Fn

2 → Fn
2 with an a�ne transformation of full rank

Sp : Fn−p
2 → Fn

2 for a small integer p.

This replacement can be made in the a�ne multiple representation by also replacing
S by Sp, so the perturbation is compatible with the a�ne multiple structure.

For a HFE instance perturbed with "p", we associate its a�ne multiple where S is
replaced by Sp. When we use this perturbation en the a�ne multiple, we note that Ã
is perturbed by (p).

141

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

The − Perturbation

To transform a nude public-key to a one perturbed with −, one needs to remove some
coordinates from the public-key. Let a be the number of equations removed. To sign
with the private key, one needs to select at random these last a coordinates, and then
proceed to the normal signing procedure.

The fact that the a last coordinates are random or at least secret is important to
avoid any reduction to a nude public-key. Indeed, if the values of these coordinates
are known for each signature produced, an attacker can then interpolate them and
completely remove the − modi�er from the key: the last a coordinates cannot be
freely chosen in the white-box model.

For instance, one could try to replace the last a coordinates of y with any linear
combination of the �rst n− a coordinates. Then, the attacker knows that the missing
polynomials in x are equal to a linear application in y and can then interpolate them
from some couples message-signature (even in the black-box model). Note that, in
practice, the choices we can make here are limited. If we take polynomials of degree 2
in the �rst n− a coordinates for instance, the degree of the a�ne multiple increases.
If these coordinates depend on x the a�ne multiple is not linear in x anymore.

If the HFE instance is itself resistant enough in the white-box model, one possibility
is to let the last a coordinate free to be chosen at random for signing:

For a HFE instance perturbed with "-", we can associate its a�ne multiple without
any modi�cation from the nude one, but the last a coordinate of the signature are
taken at random. When we use this perturbation on the a�ne multiple, we note that
Ã is perturbed by (−, 1).

Remark : Even if the a�ne multiple is not modi�ed we can remark that in
the black-box model, the last a coordinate are random so the reduction to an HFE
instance without minus is not possible in the black-box model. This means that the
(−, 1) perturbation on the a�ne multiple does not carry the security from minus in the
white-box model but keeps it in the black-box model. More on the security of (−, 1)
in section 4.

A direct consequence of the previous remark is that the − perturbation is not
directly compatible with the a�ne multiple structure. To partially go around this
problem, we propose a countermeasure. To e�ciently interpolate the missing equations
of the public key, the attacker needs to know that the a last coordinates depend from
x and y in a simple way. We will then try to hide these coordinates in a single special
a�ne multiple.

142

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

First, we decompose y = y′ + y− from a direct sum Fn
2 = Fn−a

2 ⊕ Fa
2. The idea

is to have an a�ne multiple that represents at least 2 �xed choices for the last a
coordinates y−. To do so, let us take any integer ns > 0 and split Fa

2 = ∪ns
i=1Ui where

#Ui = ϵi ≥ 2. We set Ui = {ui,1, ..., ui,ϵi}. Now consider the polynomials :

Gi(x) =

ϵi∏
j=1

(y′ + ui,j − F (x))

We now want an object that is similar to an a�ne multiple for the polynomial F ,
but for the polynomials Gi. To do so, we introduce the composite a�ne multiple:

De�nition 30. Let δ ∈ N and ∀i, Fi ∈ F2n [X] and G(x) =
∏δ

i=1(Fi(x) − y). The
polynomial A(x, y) ∈ F2n [X, Y] is said to be a composite a�ne multiple of G if
A(x, y) = 0 mod G(x) and A is F2-linear in x.

Remark: It is obvious that the algorithm of section 3.3 can be adapted to compute
a composite a�ne multiple. The modulus simply needs to be changed to the product
G. Its functionality is then similar to a regular a�ne multiple, except the solution
satis�es one of the equations Fi(x) = y.

A composite a�ne multiple Bi(x, y
′) of Gi in unknowns x and y′ can produce

signatures for which the last a coordinates of the message can be any element of Ui

(relatively to the nude public key). When signing in the white-box model, the value of
the ui,j are then not revealed and the signature can be chosen randomly among the
ones satisfying the n − a �rst coordinates. An attacker can then, at best, guess that
the missing coordinates lie in a set of ϵi values to interpolate.

To incorporate the "−" perturbation in the white-box model, we will use the poly-
nomials Gi and apply the a�ne multiple construction:

For a HFE instance perturbed with "-", we can associate the collection of the a�ne
multiples of the Gi. When we use this perturbation, we note that the implementation
is perturbed by (−, 2) with parameters (ϵ1, ..., ϵns).

Remark : In the (−, 2) perturbation, we provide a collection of ns a�ne multiple
to cover the whole vector space Fa

2. Note that it is possible to do it for only few
values, only one of the Ui for instance, and then get an implementation that produces
a signature only when the last a coordinates are in Ui. This will lead to a smaller
signature space and a smaller implementation size. More details on this technique will
be given in section 5.

143

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

The +̂ Perturbation

To transform a nude public key to a one perturbed with +̂, one needs to change the
central polynomial F into F +Q where Q is quadratic over F2 and of high degree over
Fn
2 such that ∀x ∈ Fn

2 , Q(x) ∈ V , where V is a small vector space of dimension t.

Similarly to the "−" modi�er, the value ofQ(x) for any message y cannot be known
to an attacker, otherwise Q can be interpolated. That is why the +̂ perturbation is
not directly compatible with the a�ne multiple construction. Also, it is not possible
to propose a perturbation close to (−, 1) as the values of Q cannot be left to be freely
chosen.

We propose the same kind of perturbation as (−, 2) to not reveal the values of
Q(x). To do so, let us take any integer ms > 0 and split Im(Q) = ∪ms

i=1Vi where
#Vi = δi ≥ 2. We set Vi = {vi,1, ..., vi,δi}. Now consider the polynomials:

Hi(x) =

δi∏
j=1

(y − F (x)− vi,j)

A composite a�ne multiple Ci(x, y) of Hi in unknowns x and y and �xed vk can
produce signatures for which the value of Q can be any vi,j. An attacker can then at
most guess that the missing coordinates lie in a set of δk values to interpolate.

For a HFE instance perturbed with "+̂", we can associate the collection of the a�ne
multiples of the Hi. When we use this perturbation, we note that the implementation
is perturbed by (+̂) with parameters (δ1, ..., δms).

Remark : In the same spirit as the remark on the (−, 2) perturbation, it is possible
to not use the whole collection of the Hi, but only few, or one of them. More details
on this technique will be given in section 5.

Combining Perturbations

Usually, multiple perturbations are used on a nude-HFE to achieve satisfactory security
parameters be it pHFE− or the more recent HFE+̂−.

For our white-box implementation, we proceed similarly, although the compatibility
depends on the perturbation used. For instance, the (p) and (−, 1) perturbation are
easily compatible with (+̂) but (−, 2) and (+̂) needs more a subtle adaptation to
work together: instead of splits of Fa

2 and Im(Q), one needs to work with a split of
Fa
2 × Im(Q) and work with a�ne multiples of products of polynomials of the form

(y + u− F (x)− v), with u ∈ Fa
2 and v ∈ Im(Q).

144

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

In section 5, we detail more on the compatibility of perturbations for a�ne multiples
in a case by case basis on the implementation.

2.2 Security analysis

In this section, we de�ne the white-box security notions of unbreakability and incom-
pressibility for public-key signature algorithms. We then analyse the security of our
implementation designs for these notions. For the rest of this section we suppose that
A is an a�ne multiple of F or a composite a�ne multiple with respect to perturbations
of section 3.5.

We will study the unbreakability and incompressiblity of our construction. We recall
that for unbreakablility, studying the unbreakability of the one-way function is su�cient
(part I, chapter 1).

2.2.1 Attack by Reduction to a Weaker HFE Instance

This paragraph only deals with HFE implementations with perturbations. If pertur-
bations are used on an implementation (section 3.5), one idea to perform an attack
is to try to remove the perturbation on the a�ne multiple construction, in the same
way attackers try to remove perturbations on public-keys for attacks in the black-box
model. We describe such reductions for some of the perturbations described in section
3.5.

Reduction for (-,1) If we have an implementation perturbed with (-,1), we can
remove the perturbation - on the public-key by recovering the missing coordinates. We
can �x the last a coordinates to any constant and gather enough signatures to solve
a linear system with the coe�cients of the monomials of our missing coordinates as
unknowns. Experimentally, this allows us to recover vector space of dimension a that
contains these equations, which is su�cient to recover an equivalent HFE public key.
Since there are

(
n
2

)
unknowns, the cost of this attack is O(n2ω + n2 × τWB).

Remark 1: The time τWB can be increased by other used perturbations, and needs
to be taken into account for concrete security analysis.

Reduction for (-,2) With the (-,2) perturbation, the a last coordinates are not
known: they are grouped by sets of ϵi unkown values. Indeed the a�ne multiples Bi

of the polynomials Gi only provide a signature if the last coordinates are in Ui. If the
same attack as for (-,1) cannot be used, we can still know that the signatures from Bi

will satisfy:

145

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

ϵi∏
j=1

(Πa(P (x)) + ui,j) = 0

where Πa is the projection onto Fa
2. This product can then be interpolated by gathering

signatures, using the same method as in the reduction for (−, 1). Then, a recovery
of Πa(P (x)) can be attempted. In our setting, the exact values ui,j are unknown.
To the best of our knowledge, recovering Πa(P (x)) can only be made by factoring∏ϵi

j=1(Πa(P (x)) + ui,j) = 0, which is hard for any instance we will use later.

Remark 2: Note that the same polynomial relation can be recovered for any HFE−

instance in black-box for ϵi = 2a. This means that the security problem we have
identi�ed is similar to recovering the missing equations in a HFE− instance for small
values a.

Reduction (+̂) For the (+̂) perturbation, the same strategy as (-,2) can be used.
Indeed for the a�ne multiples Ci of the polynomials Hi the only possible values of
Q(x) are in Vi. The signatures from Bi will satisfy:

δi∏
j=1

(Q(x) + vi,j) = 0

This product can then be interpolated by gathering signatures using the same
method as for the reduction for (−, 1). Then, a recovery of Q(x) can be attempted
using the same method as for (−, 2), except this time, the entire set Im(Q) is unknown.
This reduction is hence similar than the (-.2) reduction.

Remark 3: Note that these equations can be gathered for any HFE+̂ instance in
black-box for Vi = Im(Q). This means that any algorithm solving this problem if
#Vi = 2t can break the corresponding HFE+̂ instance. Even if this perturbation is
young, no attack of this kind has been reported by the authors of [54] which con�rms
our security analysis.

2.2.2 The Implementation as a (da� + 1)-IP1S Problem

To analyse unbreakability and incompressibility directly on the a�ne multiple, we rely on
two properties of the polynomials describing our white-box implementation. The �rst
will be the key recovery of the underlying (da� +1)-IP1S (Isomorphism of polynomials
with one secret whose internal polynomial is of degree (da� + 1)) instance, a problem
that has been studied in papers such as [29, 79, 90, 92] to explore the security of
multivariate cryptography in general. The second one is a variant of the regular IP1S
problem that we call �incompressibility of IP instances�. We detail these two properties,

146

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

how they are linked to our problem and how well studied they are. For this section,
let A be an a�ne multiple of any HFE instance with perturbations (p), (-,1), (-,2) or
(+̂).

Secret recovery on (da� + 1)-IP1S

Let us �rst recall that our white-box implementation is composed of the n polynomials
Ãi and a deterministic generic way to evaluate them (compute all the monomials then
sum them up). The polynomials Ãi are de�ned by a composition with two a�ne
transformations S and T such that:

Ãi(x1, ..., xn, y1, ..., yn) = Ai(S(x1, ..., xn), T
−1(y1, ..., yn))

It is then obvious that Ãi is an instance of a (da� + 1)-IP1S problem over 2n vari-
ables, with Ai as the known polynomials and a block-a�ne transformation composed
of S and T . This problem has a structured secret, so it is not generic, but we do not
know any other attack against it (as an IP problem) than the generic ones. To the best
of our knowledge, the best generic attack on 3−IP1S with a�ne secrets has complexity
O(n6qn) ([29]). This means that the best known attack against 3−IP1S instances is
exponential in n . For our instances, (da� + 1) ≥ 3, these pieces of evidence allow us
to conjecture that our instances are secure for the desired security level.

Remark 1: For the perturbation (p), the secret S : Fn−p
2 → Fn

2 is not a bijection,
this instance is di�erent from the one studied in general. However, as the projection
variant is e�cient against key recovery for HFE instances, one can hope that it will
help our IP instance to stand against secret-recovery for the same reasons.

Remark 2: For perturbations (−, 2) and (+̂) , the polynomial Ã are composite a�ne
multiples, but the same analysis can be made.

Incompressibility of IP1S instances

The main goal of this part is to highlight a speci�city of multivariate cryptography in
general that will help us to prove the incompressibility of our white-box construction.
To do so, we formalize a new problem around IP instances, and analyse it on our
instance (Ãi)i∈J1,nK.

We de�ne the (σ,τ)-incompressibility of an IP instance with known polynomials
(Pi)i∈J1,mK:

� Draw at random two secret a�ne transformations S, T in AFFn(F2)

� The adversary A is given an IP instance (P̃i)i∈J1,mK composed of (Pi)i∈J1,mK, S
and T

147

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

� The adversary A returns a program P that allows to evaluate (P̃i)i∈J1,mK for
every element (F2)

n

� The adversary A wins if size(P) ≤ σ

De�nition 31. Let (P̃i)i∈J1,mK be an IP instance with polynomials in n variables over
F2, with known polynomials (Pi)i∈J1,mK and secrets S, T and let A an adversary. We

say that (P̃i)i∈J1,mK is (σ,τ)-incompressible if there is no adversary A that wins the
σ-incompressibility game with probability 1 and Time(A)+Time(P) < τ .

Remark 1: We could also consider, similarly to the incompressibility for white-
box, that A does not have to agree with (Pi)i∈J1,mK on all inputs or that it can be
probabilistic. However, known attacks do not use this �exibility.

It is well known that, for truly random polynomials, compressibility is not possible
by de�nition in the sense of Kolmogorov, even with an unbounded computation power.
In contrast, in our context, a compressed version of the Ãi polynomials is obviously
given if we can recover the secrets S and T . This problem of secret recovery on an IP
instance corresponds to the extreme case σ = size(S) + size(T) in De�nition 4, and
boils down to the unbreakability problem, for which the best known attacks require a
computational e�ort way larger than 280 (see paragraph above, about Secret recovery
on (da� + 1)-IP1S). In the intermediate cases size(S) + size(T) < σ ≤ size(Pi), to
the best of our knowledge, no attack has been found in the literature.

2.2.3 Generic White-Box Attacks on Multivariate Cryptog-

raphy

In the literature, generic automated attacks are proven to be very e�cient against
the state-of-the-art white-box implementations of block-ciphers due to the techniques
used (i.e masking or internal encodings for instance). These attacks include Di�eren-
tial Computation Analysis (DCA) and Di�erential Fault Analysis (DFA) as their most
potent representatives. In this section we argue against their usefulness against our
technique.

The main point of this section is to understand how IP instances are secure against
these attacks, even if they are used in HFE schemes and hence have a trapdoor. A
�rst example of this is how HFE public keys are not vulnerable to DPA attacks or
their white-box DCA counterpart. Indeed, even if the inversion of the public key can
be attacked because it decomposes the inversion of P into the inversion of S, T and
F separately, the public key itself is not vulnerable against DCA, even if it contains
the complete key (S, T). This is due to the structure of the IP problem. Indeed, all
the bits of S and T are di�used by polynomial composition into the coe�cients of the
public key P . This means that unless a speci�c computation depending on few key bits

148

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

is found on a speci�c instance, the probability is negligible that a �nice� target exists
for generic white-box attacks, as the complexity of DCA is exponential in the number
of key bits on which the target depends. The state of the art HFE security ignores
these attacks for such reasons. For DFA, it is easy to make faults on the evaluation
of P , but any evaluation of any function depending on the polynomials' coe�cients of
the public is already allowed to solve IP and hence does not provide new information.
This is a huge di�erence compared to state-of-the-art targets of these attacks, which
usually are S-Boxes in SPN schemes, and most often speci�cally those of the AES
algorithm.

For our implementation, the a�ne multiple structure allows to di�use S and T into
A, in the same way they are di�used into the public key. Unless a speci�c relation is
found for this particular instance, the DCA has no more chances to succeed than the
ones targeting the public key. The same argument also stands for DFA. In summary,
such a DCA-like (resp. DFA-like) attack is not expected to be able to circumvent
the similar hard-to-solve algebraic problem on which the algorithm's black-box security
relies.

Remark: We can think of the following factorization-�avoured analogy. Assume
an attacker is given an RSA public key. Since n depends on the secrets primes p and
q, one could wonder if DCA (resp. DFA) could be applied to n (or to a computation
making use of n) to recover the secret elements p and q. However, it is also easy to
see that in this case the algebraic complexity of the bits of n (as functions of the bits
of p and q) quickly get so high that this kind of DCA (resp. DFA) strategy is not
relevant here.

2.2.4 Conclusion of the Analysis of Security

In this section we synthesize the analysis of security above into two conjectures of
similar nature, one for unbreakability, one for incompressibility.

149

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

Unbreakability Conjecture:

Let P be a HFE public key with modi�ers chosen among −, p and +̂ . LetWBHFE be
the white-box implementation of P−1 and A an associated composite a�ne multiple
with corresponding perturbations. Let ϵ < 1 be a small probability and λ be our
security level. If

1. The HFE instance associated to the public key P is secure against key recovery
in the black-box model up to security level λ.

2. The knowledge of A does not help to remove modi�ers from P (Section 4.2) in
less than 2λ operations.

3. The a�ne multiple A is (2λ,ϵ)-unbreakable as a (da�+1)-IP1S instance. (Section
4.3.1)

then the implementation WBHFE of the primitive P−1 is (2λ,ϵ)-unbreakable in the
white-box model.

Remark 1: The �rst point of this conjecture is trivial if we want our HFE instance
to be of any use. However, as we will see in section 5, this is an important dimensioning
parameter to optimize the implementation size. This is why we make it part of the
conjecture.

Incompressibility Conjecture:

Let P be a HFE public-key with modi�ers chosen among −, p and +̂ . LetWBHFE be
the white-box implementation of P−1 and A an associated composite a�ne multiple
with corresponding perturbations. Let ϵ < 1 be a small probability and λ be our
security level. If :

1. The HFE instance associated to the public-key P is secure against key recovery
in the black-box model up to security level λ.

2. The knowledge of A does not help to remove modi�ers from P (Section 4.2) in
less than 2λ operations.

3. The a�ne multiple A is (σWB,2
λ,ϵ)-incompressible as a (da�+1)-IP1S instance.

(Section 4.3.2)

then the implementation WBHFE of the primitive P−1 is (σWB,2
λ,ϵ)-incompressible

in the white-box model.

Remark 2: This conjecture is very similar to the unbreakability one. This is due
to the fact that the only compression we know from the public key is key recovery.

150

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

Of course, proving this conjecture still requires new insights, in particular to clarify
the deep algebraic links between the polynomial systems arising from A(x, y) on the
one hand, and from P−1 on the other hand. However, we believe this paves the way
for a better understanding of the incompressibility property, which up to now could
be formally veri�ed only for white-box implementations of symmetric cryptosystems
in very restricted models (see the proof of incompressibility of an RSA-like symmetric
encryption scheme in [43], using an Ideal Group Model).

2.3 Instantiations

In this section, we propose instances of HFE based on the construction of section 3
according to the security analysis of section 4 in the white-box model. We propose
challenges for a subset of them.

2.3.1 Nude HFE

As a starting example, we propose a Nude HFE instantiation. This �rst example is a
proof of concept and shows the need of perturbations to reach any reasonable size of
implementation.

Security analysis Let us �rst recall the main attacks in the black-box model. Our
instance needs to stand against direct inversion with Gröbner bases and key-recovery
rank attacks (Section 2.10). As our instance will not have any perturbation, it also
needs to be protected against the a�ne multiple attack.

For the white-box security, according to our conjecture, the instance needs to stand
against attacks on da�-IP1S instances of section 4.4. As the HFE instance will be nude,
the problem of removing modi�ers is not relevant here.

Parameter Choices The goal of this section is to minimize the size of the imple-
mentation for a given security level. For the Nude HFE instance, the only parameters
to be chosen are n and da�. For a better compromise between size and security, we can
take polynomials for which there exist a�ne multiples with da� = 2 and d and dreg is
maximal. The maximum we experimentally found is dreg = 3 for internal polynomials
of the form F = x6 +Ax5 +Bx3, A,B ∈ Fn

2 . Note that getting higher values of dreg
for the same da� would improve the security/size trade-o�. The instances we consider
are resistant to the attacks of section 4.4.2.

Target (log2(n), d) log2(σWB) CG CR CAFF

Smallest for λ = 80 (11.76,3) 45.7 91.1 80 95.5
Smallest for λ = 128 (20.22,3) 79.8 137 128 167.6

151

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

Table 2.2: Set of parameters da� and n which satis�es particular security levels λ. The
value log2(σWB) is the corresponding log2 of implementation size in bits. The values
CG, CR and CAFF are the log2 of the complexity of respectively best Gröbner basis
attack, best rank attack and best a�ne multiple attack.

Remark 1: It clearly appears that d being small is a problem to scale the con-
struction. While we use perturbations to partly solve this problem, having a better
understanding of the a�ne degrees could lead to smaller implementations (section
3.4.3). This remark carries onto the following instances.

2.3.2 Instances close to pC∗−

As the Nude HFE instance is too weak for concrete use, we include state-of-the-art
perturbations p and −. To do so, we include perturbations (p) and (−, 2) on the a�ne
multiple. This means that the implementation is composed of the composite a�ne
multiples of the polynomials Gi:

Gi(x) =

ϵi∏
j=1

(y′ + ui,j − F (x))

for which the last p coordinates of x are projected. For this section, we will choose
internal polynomials of the form F = x3 + Ax2, thus close to C∗.

Security analysis As for Nude HFE our instance needs to stand against direct
inversion with Gröbner bases and key-recovery rank attacks (Section 2.10). However,
the a�ne multiple attack is not applicable to public keys with −.

For white-box security, according to the conjecture, our instance needs to stand
against attacks on da�-IP1S instances of section 4.4. This time, we need to ensure that
perturbations cannot be removed in the white-box model. According to our conjecture,
we only need to ensure that the attack of section 4.3 cannot be used. To do so, we
take ϵi = 3 so that the polynomial

ϵi∏
j=1

(Πa(P (x)) + ui,j) = 0

is not linear in Πa(P (x)).

Parameter Choices The main problem to minimize the implementation size for a
given security level is that the a�ne degree of the a�ne multiple is high if we take F
at random as soon as ϵi ≥ 2. To reduce this degree, we choose polynomials F of the

152

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

form x3 +Ax2, A ∈ Fn
2 and take ϵi = 3. Indeed, with these parameters, we get a�ne

multiples with da� = 3. We then optimize n, p and a for the desired level of security.

Target (n, d, p, a) log2(size((Bi)) CG CR

Smallest for λ = 80 (101,2,12,21) 30.5 86.4 83
Smallest for λ = 90 (116,2,14,26) 31.5 101.3 91.6
Smallest for λ = 128 (169,2,23,41) 34.3 136.5 130

Table 2.3: Set of parameters da�, a, p and n which satis�es particular security level λ.
The value log2(size(Bi)) is the corresponding log2 of size of an a�ne multiple in bits.
The values CG and CR are the log2 of the complexity of respectively best Gröbner
basis attacks and best rank attacks.

Remark 1: To get an implementation of the complete signature algorithm, one needs
to gather all the a�ne multiple Bi. However, with only one of them, a signature can
be computed if the last a coordinate of the signature lie in Ui. This means that a
message drawn at random will be signed with roughly probability 3

2a
. This probability

is quite low but this remark can be used to have a smaller signature algorithm in the
white-box model while not changing the public key and the veri�cation algorithm.

2.3.3 Instances close to C∗+̂−

In this section we include the perturbations +̂ and −. To do so, we include pertur-
bations (+̂) and (−, 1) in the a�ne multiple. This means that the implementation is
composed of the composite a�ne multiples of the polynomials Hi:

Hi(x) =

δi∏
j=1

(y + vi,j − F (x))

and the last a coordinates of y are chosen at random for signing. We will choose
internal polynomials of the form F = x3 + Ax2, thus close to C∗.

Security analysis The analysis is similar to the previous one, with p changed to
+̂ for better security against rank attacks: our instance needs to stand against direct
inversion with Gröbner bases and key-recovery rank attacks (Section 2.10). However,
once again, the a�ne multiple attack is not applicable to public keys with +̂ and −.

For white-box security, according to the conjecture, our instance needs to stand
against attacks on da�-IP1S instances of section 4.4, i.e. we only need to ensure that

153

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

the attack of section 4.3 cannot be used. To do so, we take δi = 3 so that the
polynomial

δi∏
j=1

(Q(x) + vi,j) = 0

is not linear in Q(x).

Parameter Choices For the same reasons as for the previous instance, to reduce
the a�ne degree, we choose polynomials F of the form x3 + Ax2, A ∈ Fn

2 and take
ϵi = 3. Indeed, with these parameters, we get a�ne multiples with da� = 3. We then
optimize n, t and a for the desired level of security.

Target (n, d, t, a) log2(size((Ci)) CG CR

Smallest for λ = 80 (85,2,9,5) 29.5 82.4 80.3
Smallest for λ = 90 (96,2,11,6) 30.3 106.5 91.3
Smallest for λ = 128 (132,2,18,4) 32.6 138.3 128.9

Table 2.4: Set parameters da�, a, t and n which satis�es a particular security level λ.
The value log2(size(Ci)) is the corresponding log2 of size of an a�ne multiple in bits.
The values CG and CR are the log2 of the complexity of respectively best Gröbner
basis attacks and best rank attacks

Remark 3: Similarly to the previous instance with one of the a�ne multiples Ci,
a signature can be computed if its image through Q lies in Vi. This means that a
message drawn at random will be signed with roughly probability 3

2t
. This probability

is quite low but this remark can be used to have a smaller signature algorithm in the
white-box model while not changing the public-key and the veri�cation algorithm.

Challenge: To motivate the cryptanalysis of our technique, we propose a challenge
implementation corresponding to the line (85, 2, 9, 5) on the previous table. The code
in Sage1 contains the public-key, one a�ne multiple and resources to manipulate them.

2.3.4 Instances close to D∗+̂−

As a last example, we propose to use a variation of the long standing D∗ scheme. Even
if the security of D∗ and its variations have not been studied in the recent literature,
we use this instance to motivate the understanding of a�ne multiple structures over

1available at the following URL: https://github.com/p-galissant/WBHFE

154

CHAPTER 2. AFFINE MULTIPLE IMPLEMENTATION OF HFE

di�erent �eld: the composite a�ne multiples of the D∗+̂− have the smallest da� among
the ones presented here.

One of the problems of the previous instances is that the a�ne multiples have to
be built with δi = 3 so that attacks from section 4.3 cannot be used. This is due to the
fact that squaring is linear over F2. The signature algorithm D∗ is however designed
over Fq, q ̸= 2, with internal polynomial F = x2: we want to use this fact to �nd
small a�ne multiple with da� = 2.

To do so, the public key is an instance with F = x2 +Ax for any A ∈ Fn
3 and use

the +̂ and − perturbations. We include perturbations (+̂) and (−, 1) on the a�ne
multiple, as in section 5.3. This means that the implementation is composed of the
composite a�ne multiples of the polynomials Hi:

Hi(x) =
2∏

j=1

(y − vi,j − x2 − Ax)

with vi,j in the image of Q.

Security analysis The main problem with D∗ without perturbations is that polar-
isation attacks ([89]) easily break the public-key. However, the recent +̂ makes the
polarisation attack fail, for Q is not a square only.

Even if D∗+̂− is not a state-of-the-art algorithm, we will assume the same relevant
attacks as in the case of HFE, that is to say rank attacks and direct inversion attacks.
While it might need more research to con�rm the soundness of this assumption, we
will rely on these attacks to parameterize our proof of concept.

Parameter Choices The parameters n, t and a are the same as for the previous
section. Indeed, we only we get a variation of da� from 3 to 2.

Target (n, d, t, a) log2(size((Ci)) CG CR

Smallest for λ = 80 (85,2,9,5) 25.7 82.4 80.3
Smallest for λ = 90 (96,2,11,6) 26.4 106.5 91.3
Smallest for λ = 128 (132,2,18,4) 28.2 138.3 128.9

Table 2.5: Set parameters a, t and n which satis�es a particular security level λ. The
value log2(size(Ci) is the corresponding log2 of size of an a�ne multiple in bits. The
values CG and CR are the log2 of the complexity of respectively best Gröbner basis
attacks and best rank attacks

155

Chapter 3

Another Multivariate Scheme and

Some Perspectives

The goal of this chapter is to shortly discuss how multivariate cryptography problems
such as the IP problem can be used for white-box cryptography in general and why
multivariate cryptography is an adapted setting for white-box cryptography. As an
example, we show a construction based on QUAD that inherently has incompressible
properties.

3.1 Introducing IP-like problems for White-Box

Cryptography

The implementation we made is essentially based on a variation of the IP problem. This
'decomposition' problem is very interesting in the white-box model as it let di�use all
the key bits into the implementation at once, which is very unusual for white-box
techniques. Usually, the key is 'glued' to a local transformation and hidden with an
encoding. The key itself is not di�used into the code and the encoding only locally
randomizes the implementation. This leads to very e�cient automated attacks on
target functions with small key-spaces.

The HFE cryptosystem itself shows that there are inherent white-box properties to
be found in multivariate cryptography. If the HFE instance is secure, the public key
can be seen has an incompressible implementation of the composition of S, P and T .
Studying links between white-box cryptography and multivariate cryptography is surely
a refreshing and fruitful approach.

For cryptosystem not related to multivariate cryptography, we believe this approach
can also be interesting. First, polynomial transformations are a natural extension of
the table-based methods to extend the support of the functions while keeping succinct

156

CHAPTER 3. ANOTHER MULTIVARIATE SCHEME AND SOME PERSPECTIVES

representations. Attempting to composing them with techniques similar to the encod-
ing rationale would lead to IP-like problems. Our AES construction of part II is made
in this spirit.

One of the main problems to this approach is to actually decompose the algorithm
into polynomials of small degrees. If ad hoc techniques might be successful for speci�c
cryptosystem, we believe that structural techniques such as the a�ne multiple we used
for HFE need to be investigated. The ARX implementation of Ranea et al. [95] is an
example of such attempt, but it also uses external encodings. To us, the structure of
public-key cryptosystems can only o�er more �exibility to white-box designers.

3.2 An example : A Stream Cipher in the white-

box model

In this section, we adapt the stream cipher QUAD [11] to get incompressible properties
in the white-box model. Unlike HFE, QUAD is a private-key algorithm. To do so,
we replace the random polynomial system that allows to compute the stream by a
structured one. This approach is similar to the design of incompressible block-cipher
presented in part I.

3.2.1 Description of QUAD

We describe QUAD over F2, knowing that it can be done in any characteristic. In the
stream cipher QUAD published by Berbain et al. [11], the key stream generation is
made as follows. For any integers n and k, let S be a system of kn polynomials in n
variables over F2:

S = (Q1, ..., Qkn)

Then de�ne Sout and Sit as subsets of S: Sit = (Q1, ..., Qn) and Sout = (Qn−1, ..., Qkn).
The keystream generation is composed of the iteration of Sit in the following way. Let
x be the intermediate state:

� Compute the system S(x)

� Output Sout(x) as key-stream values

� Update the internal state x← Sit(x)

For initialization, assume that the secret key K and vector IV are de�ned by a
n-bit vector and that we have access to other n-by-n random systems of polynomials
of degree 2, namely S0 and S1. We initialize the internal state x to the value K. Then,

157

CHAPTER 3. ANOTHER MULTIVARIATE SCHEME AND SOME PERSPECTIVES

Sit(x) Sout(x)

x

Figure 3.1: QUAD keystream generation

for each bit of IV, the state is updated as follows: starting from i = 1, IVi = b, x is
updated by Sb(x). Note that in QUAD, the system S, S0 and S1 are made public.

The authors of QUAD prove that, provided S, S0 and S1 are random systems, their
algorithm is secure. More precisely, they show that if the MQ problem stands for these
systems of polynomials, then the stream cipher is secure.

3.2.2 A variation of QUAD with small representation

The original QUAD algorithm uses random systems S, S0 and S1 with n variables over
F2. Such systems are inherently incompressible as random systems of equations. We
now propose to introduce a 'trapdoor' in these systems to get a compact version of it.
We can then have a short description of this algorithm, and use the whole system of
polynomials as the incompressible representation.

To do so, we will generate the system S as a pHFE+̂− public key. While this
variation is not used for signature due to the large overheads induced by +̂ and p, we
only use the system in the direct sense, so that these concerns are not relevant here.
We then conjecture that if the MQ problem stands on the HFE instance we propose, the
tweaked QUAD stream cipher admits incompressible implementations in the white-box
model, with a non negligible gap between the short and long implementations.

HFE-TRAP-QUAD We now de�ne a new stream cipher based on QUAD. Instead
of taking a random polynomial S, we use a system S(S,F,T),Q. This system will be secret
unlike regular QUAD. It is de�ned in the following way. Let (S, F, T) be a naked HFE
instance over F2((k+1)×n. We now perturb the naked public key P = T−◦π−1◦F ◦π◦S

158

CHAPTER 3. ANOTHER MULTIVARIATE SCHEME AND SOME PERSPECTIVES

with p = kn, a = n and the +̂ perturbation with quadratic form Q with parameter
t ∈ N. We get a perturbed public key denoted by S(S,F,T),Q, omitting indexes p and
a since they are �xed. Due to the chosen parameters, the public key S(S,F,T),Q is a
system of kn polynomials over n variables. We repeat this process with k = 1 to
de�ne two systems S(S0,F0,T0)0,Q0 and S(S1,F1,T1),Q1 , with the same trapdoor structure.

We de�ne the HFE-TRAP-QUAD stream cipher by using the exact same pro-
cedure for key-stream generation, except the private key is de�ned by the original
private key K of QUAD, plus the secrets of the HFE instances, that is ((S, F, T), Q),
((S0, F0, T0), Q0) and ((S1, F1, T1), Q1). We then de�ne the white-box implementa-
tion of WBHFE-TRAP-QUAD by the implementation of HFE-TRAP-QUAD where the
systems polynomials S(S,F,T),Q, S(S0,F0,T0),Q0 and S(S1,F1,T1),Q1 are computed with the
knowledge of this secret key and stored that way. The rest of the implementation is
identical to a naive implementation of QUAD. If the secret key cannot be recovered
from the polynomials, the implementation is obviously unbreakable. For incompress-
ibility however, we state the following conjecture.

Conjecture: Let S(S,F,T),Q, S(S0,F0,T0),Q0 and S(S1,F1,T1),Q1 be the HFE instances de-
�ned above. If these instances de�ne secure trapdoor one-way functions, the stream-
cipher HFE-TRAP-QUAD is secure in the black-box model. If these instances are in-
compressible, the compiler WBHFE-TRAP-DOOR is incompressible. More precisely, if
for any ϵ < 1, S(S,F,T),Q is (σ, τ, ϵ)-incompressible, S(S0,F0,T0),Q0 is (σ0, τ0, ϵ)-incompres-
sible and S(S1,F1,T1),Q1 is (σ1, τ1, ϵ)-incompressible, WBHFE-TRAP-QUAD is (σ+σ0+
σ1, τ + τ0 + τ1, ϵ)-incompressible in the plain white-box model.

Remark: The incompressibility property of the implementation does not trivially stems
for the incompressibility of the system. Indeed, similarly to the HFE implementation
earlier, the stream-cipher generation functionality is not equivalent to the functionality
of evaluating the polynomials but a subset of it.

We shortly discuss the size of the private key of HFE-TRAP-QUAD. For the system
S(S,F,T),Q, the size of the underlying HFE key is essentially the size of the matrices S
and T and the size of the structure quadratic form Q which is composed of t random
quadratic polynomials. As it is the same for S(S0,F0,T0),Q0 and S(S1,F1,T1),Q1 but with
only n variables, the size of the private key is dominated by 2(kn)2 + t× (kn)2. Once
the HFE public keys have been composed, we obtain a system of kn equations in n
variables for S(S,F,T),Q, and systems of n equations in n variables for S(S0,F0,T0)0,Q0 and
S(S1,F1,T1),Q1 . Their total size is then dominated by kn × n2. This means there is
essentially a gap of size n between the 'compact' private key and the incompressible
representation. As values of k such as 2 or 3 are recommended in [11] and small t
can be taken for secure HFE instances, the incompressible implementation is n times
bigger than its private key.

159

Conclusion of part III

The white-box state of the art of public-key cryptography is really young. It is however
a subject that needs more attention considering the growing needs in the industry.

We propose the �rst white-box implementation technique for the inversion of the
HFE trapdoor one-way function based on the structure of its 'big �eld' representation.
This technique is based on the a�ne multiple principle, which relies on the vector-
space structure of the big �eld representation. After proposing a �rst implementation
for nude HFE instances, we incorporate the perturbations p,− and +̂ into the design
strategy. We then propose a security analysis that is based on a variation of the IP
problem, and a challenge implementation to motivate cryptanalytic studies of this new
kind of white-box implementation.

We then support the use of multivariate cryptography at large in the white-box
context, and show some inherent white-box properties of multivariate schemes through
an example based on QUAD.

As research on white-box cryptography has been mainly split between designing
implementations of AES and attacking them, and theoretical constructions, there un-
doubtedly remain unturned stones for white-box implementations of public-key algo-
rithms, and many areas are to be explored.

If one can look into new structures that support this 'double trapdoor' behavior of
white-box signature implementation, one can also attempt to better understand the
behavior of a�ne multiples. Indeed, we only explored a�ne multiples with a practical
viewpoint, and a better understanding of their a�ne degree is a goal for future works,
in order to generalize our implementation techniques to more HFE instances, or even
to other multivariate schemes.

160

General Conclusion

161

CHAPTER 3. ANOTHER MULTIVARIATE SCHEME AND SOME PERSPECTIVES

Assessing Security Contexts and Adversaries

In this thesis, we showed that in the state of the art, depending on the modeling of
the attacker and the devices, an array of di�erent security notions can be considered
and the methods to achieve them can be vastly di�erent. For instance, the use of
hardware modules can enable very strong properties, but what are the adapted uses of
an hardware in the context of a white-box study?

In that sense, we think that the concrete use cases for white-box cryptography need
to be clari�ed. A consultation between manufacturers and academics, to establish the
concrete needs of the industry in terms of security goals and implementation environ-
ments, would be very useful. Some questions naturally emerge: is a secure hardware
available at all? is there a control of the communications of the device? or is its
computational power limited? To us, asking these question is essential, and precisely
quanti�ed answers could directly in�uence the production of hardware (see Apple's
phones for instance) and the accessibility of such technologies to individuals without
the restraints of a speci�c hardware.

As we relax the white-box model to consider the hardware-module white-box model,
we should also be careful of introducing again the problems of mistrusted hardware.
We can think of an 'hybrid' construction in the following sense. An implementation
can be �rst constructed in the plain white-box model and then transformed into a
hardware-module implementation. That way, if the hardware on which the security in
the hardware module is malicious or faulty, the underlying security of the implementa-
tion in the plain white-box model mitigates the �aws.

With the ever increasing needs of white-box cryptography, we also believe that the
standardization initiatives should lean toward imposing constraints of compatibility with
white-box on their candidates. This is already the case for special use cases such as
lightweight cryptography as shown by the recent NIST competition. If standardization
does not include these constraints, the design of white-box implementation might be
very arduous, as the post-quantum NIST candidates based on LWE may illustrate since
they require precise noise distributions to be secure. In the plain white-box model, using
randomness is surely a hard problem.

White-Box Implementation of Standards, Mostly

the AES

In the last few years, few di�erent implementation techniques appeared, especially for
the AES. The implementation we propose is in a line of work that attempts to replace
the countermeasures coming from the grey-box model, and based on randomness, by

162

CHAPTER 3. ANOTHER MULTIVARIATE SCHEME AND SOME PERSPECTIVES

countermeasures based on the algebraic or combinatorial complexity of �nding rela-
tions between sensible functions and values computed by the implementation. The
questions to know if such design rationale can work in open design, and if a structural
improvement can be gained by hidden design, are still open.

Considering new techniques, one track would be to consider designs inspired by
constructions of cryptographic obfuscators. For instance, considering universal circuits
� such as the constructions of part I � would reduce the problem of white-boxing
particular algorithms to the evaluation of encoded inputs. This change of viewpoint
has been very fruitful for iO, and could probably help to produce new designs.

The underlying problem of implementing standards such as AES or RSA is that
the 'cutting' of the evaluation circuit is not very suited to the white-box context, with
few bits of the key di�used at the same time. One idea, that comes with the use
of multivariate cryptography we made in part III, is that representing algorithms as a
composition of multivariate polynomials systems of low degree would enable more
possible techniques. This is however a very di�cult problem in general and it is
very likely that such 'cutting' would need to exploit the particular structure of the
implemented algorithm.

More Structure for New Implementation Techniques

If the implementation of very common standards is out of reach for high security pa-
rameters for now, cryptographers can turn themselves to algorithms with more math-
ematical structure. Usually, if there is more mathematical structure, there are more
attacks to be considered. However in our case � as shown by our white-box implemen-
tation of HFE �, it allows for techniques that are far from the usual 'internal encoding'
rationale of implementation.

One could also try to implement functionalities that are extended from the original
algorithm but still allow to compute the algorithm. For instance, one could remark
that in our HFE implementation, A(x, y) is not strictly equivalent to F−1. Having
access to a structure that is not equivalent to the primitive that is to be white-boxed
might give more freedom to designers.

If the algorithm or its underlying structure can be chosen, new designs constraints
might arise. Finding 'double trap-door' structures, to help the design of cryptosystems
adapted to the plain white-box model, is an interesting problem on its own that could
greatly facilitate the deployment of white-box cryptography for asymmetric contexts.
One of the most interesting problems would be to implement the decryption algorithm
of a fully homomorphic encryption (FHE) scheme, to allow to consider the boostrapping
in relation to other functionalities, as it was done for iO in [59].

163

Bibliography

[1] J. Aarestad, D. Acharyya, R. M. Rad, and J. Plusquellic. Detecting trojans
through leakage current analysis using multiple supply pad iddq s. IEEE Trans.

Inf. Forensics Secur., 5(4):893�904, 2010. doi: 10.1109/TIFS.2010.2061228.
URL https://doi.org/10.1109/TIFS.2010.2061228.

[2] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar. Tro-
jan detection using IC �ngerprinting. In 2007 IEEE Symposium on Security
and Privacy (S&P 2007), 20-23 May 2007, Oakland, California, USA, pages
296�310. IEEE Computer Society, 2007. doi: 10.1109/SP.2007.36. URL
https://doi.org/10.1109/SP.2007.36.

[3] S. Agrawal, E. A. Bock, Y. Chen, and G. J. Watson. White-box cryptography
with device binding from token-based obfuscation and more. IACR Cryptol.
ePrint Arch., page 767, 2021. URL https://eprint.iacr.org/2021/767.

[4] J. Baena, P. Briaud, D. Cabarcas, R. A. Perlner, D. Smith-Tone, and J. A. Verbel.
Improving support-minors rank attacks: Applications to g�isplaystyle emss and
rainbow. In Y. Dodis and T. Shrimpton, editors, Advances in Cryptology -
CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO
2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part III,
volume 13509 of Lecture Notes in Computer Science, pages 376�405. Springer,
2022. doi: 10.1007/978-3-031-15982-4_13. URL https://doi.org/10.

1007/978-3-031-15982-4_13.

[5] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vad-
han, and K. Yang. On the (im)possibility of obfuscating programs. In
J. Kilian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August
19-23, 2001, Proceedings, volume 2139 of Lecture Notes in Computer Sci-
ence, pages 1�18. Springer, 2001. doi: 10.1007/3-540-44647-8_1. URL
https://doi.org/10.1007/3-540-44647-8_1.

164

BIBLIOGRAPHY

[6] G. Barbu, W. Beullens, E. Dottax, C. Giraud, A. Houzelot, C. Li, M. Mah-
zoun, A. Ranea, and J. Xie. Ecdsa white-box implementations: Attacks and
designs from whibox 2021 contest. Cryptology ePrint Archive, Paper 2022/385,
2022. URL https://eprint.iacr.org/2022/385. https://eprint.iacr.
org/2022/385.

[7] M. Bardet, J. Faugère, and B. Salvy. On the complexity of the F5 gröbner basis
algorithm. J. Symb. Comput., 70:49�70, 2015. doi: 10.1016/j.jsc.2014.09.025.
URL https://doi.org/10.1016/j.jsc.2014.09.025.

[8] M. Bardet, J. Faugère, and B. Salvy. On the complexity of the F5 gröbner basis
algorithm. J. Symb. Comput., 70:49�70, 2015. doi: 10.1016/j.jsc.2014.09.025.
URL https://doi.org/10.1016/j.jsc.2014.09.025.

[9] E. Barkan and E. Biham. In how many ways can you write rijndael? In Y. Zheng,
editor, Advances in Cryptology - ASIACRYPT 2002, 8th International Conference
on the Theory and Application of Cryptology and Information Security, Queen-
stown, New Zealand, December 1-5, 2002, Proceedings, volume 2501 of Lec-
ture Notes in Computer Science, pages 160�175. Springer, 2002. doi: 10.1007/
3-540-36178-2_10. URL https://doi.org/10.1007/3-540-36178-2_10.

[10] M. Bellare, D. Kane, and P. Rogaway. Big-key symmetric encryption: Re-
sisting key ex�ltration. In M. Robshaw and J. Katz, editors, Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, vol-
ume 9814 of Lecture Notes in Computer Science, pages 373�402. Springer,
2016. doi: 10.1007/978-3-662-53018-4_14. URL https://doi.org/10.

1007/978-3-662-53018-4_14.

[11] C. Berbain, H. Gilbert, and J. Patarin. QUAD: A practical stream cipher with
provable security. In S. Vaudenay, editor, Advances in Cryptology - EUROCRYPT
2006, 25th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006,
Proceedings, volume 4004 of Lecture Notes in Computer Science, pages 109�
128. Springer, 2006. doi: 10.1007/11761679_8. URL https://doi.org/10.

1007/11761679_8.

[12] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri. Error analysis and
detection procedures for a hardware implementation of the advanced encryption
standard. IEEE Trans. Computers, 52(4):492�505, 2003. doi: 10.1109/TC.
2003.1190590. URL https://doi.org/10.1109/TC.2003.1190590.

165

BIBLIOGRAPHY

[13] L. Bettale, J. Faugère, and L. Perret. Hybrid approach for solving multivariate
systems over �nite �elds. J. Math. Cryptol., 3(3):177�197, 2009. doi: 10.1515/
JMC.2009.009. URL https://doi.org/10.1515/JMC.2009.009.

[14] E. Biham and A. Shamir. Di�erential fault analysis of secret key cryptosystems.
In B. S. K. Jr., editor, Advances in Cryptology - CRYPTO '97, 17th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
17-21, 1997, Proceedings, volume 1294 of Lecture Notes in Computer Science,
pages 513�525. Springer, 1997. doi: 10.1007/BFb0052259. URL https://

doi.org/10.1007/BFb0052259.

[15] O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a white box AES imple-
mentation. In H. Handschuh and M. A. Hasan, editors, Selected Areas in Cryp-
tography, 11th International Workshop, SAC 2004, Waterloo, Canada, August
9-10, 2004, Revised Selected Papers, volume 3357 of Lecture Notes in Computer
Science, pages 227�240. Springer, 2004. doi: 10.1007/978-3-540-30564-4_16.
URL https://doi.org/10.1007/978-3-540-30564-4_16.

[16] A. Biryukov and A. Udovenko. Attacks and countermeasures for white-box de-
signs. In T. Peyrin and S. D. Galbraith, editors, Advances in Cryptology - ASI-
ACRYPT 2018 - 24th International Conference on the Theory and Application of
Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6,
2018, Proceedings, Part II, volume 11273 of Lecture Notes in Computer Science,
pages 373�402. Springer, 2018. doi: 10.1007/978-3-030-03329-3_13. URL
https://doi.org/10.1007/978-3-030-03329-3_13.

[17] A. Biryukov, C. D. Cannière, A. Braeken, and B. Preneel. A toolbox for
cryptanalysis: Linear and a�ne equivalence algorithms. In E. Biham, edi-
tor, Advances in Cryptology - EUROCRYPT 2003, International Conference on
the Theory and Applications of Cryptographic Techniques, Warsaw, Poland,
May 4-8, 2003, Proceedings, volume 2656 of Lecture Notes in Computer Sci-
ence, pages 33�50. Springer, 2003. doi: 10.1007/3-540-39200-9_3. URL
https://doi.org/10.1007/3-540-39200-9_3.

[18] A. Biryukov, C. Bouillaguet, and D. Khovratovich. Cryptographic schemes based
on the ASASA structure: Black-box, white-box, and public-key (extended ab-
stract). In P. Sarkar and T. Iwata, editors, Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application of Cryp-
tology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11,
2014. Proceedings, Part I, volume 8873 of Lecture Notes in Computer Sci-
ence, pages 63�84. Springer, 2014. doi: 10.1007/978-3-662-45611-8_4. URL
https://doi.org/10.1007/978-3-662-45611-8_4.

166

BIBLIOGRAPHY

[19] E. A. Bock, C. Brzuska, W. Michiels, and A. Tre�. On the ine�ectiveness
of internal encodings - revisiting the DCA attack on white-box cryptography.
In B. Preneel and F. Vercauteren, editors, Applied Cryptography and Network
Security - 16th International Conference, ACNS 2018, Leuven, Belgium, July
2-4, 2018, Proceedings, volume 10892 of Lecture Notes in Computer Science,
pages 103�120. Springer, 2018. doi: 10.1007/978-3-319-93387-0_6. URL
https://doi.org/10.1007/978-3-319-93387-0_6.

[20] E. A. Bock, J. W. Bos, C. Brzuska, C. Hubain, W. Michiels, C. Mune,
E. S. Gonzalez, P. Teuwen, and A. Tre�. White-box cryptography:
Don't forget about grey-box attacks. J. Cryptol., 32(4):1095�1143,
2019. doi: 10.1007/s00145-019-09315-1. URL https://doi.org/10.1007/

s00145-019-09315-1.

[21] E. A. Bock, A. Amadori, C. Brzuska, and W. Michiels. On the security goals
of white-box cryptography. IACR Cryptol. ePrint Arch., page 104, 2020. URL
https://eprint.iacr.org/2020/104.

[22] E. A. Bock, C. Brzuska, M. Fischlin, C. Janson, and W. Michiels. Security
reductions for white-box key-storage in mobile payments. In S. Moriai and
H. Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - 26th Inter-
national Conference on the Theory and Application of Cryptology and Infor-
mation Security, Daejeon, South Korea, December 7-11, 2020, Proceedings,
Part I, volume 12491 of Lecture Notes in Computer Science, pages 221�
252. Springer, 2020. doi: 10.1007/978-3-030-64837-4_8. URL https:

//doi.org/10.1007/978-3-030-64837-4_8.

[23] A. Bogdanov and T. Isobe. White-box cryptography revisited: Space-hard ci-
phers. In I. Ray, N. Li, and C. Kruegel, editors, Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO,
USA, October 12-16, 2015, pages 1058�1069. ACM, 2015. doi: 10.1145/
2810103.2813699. URL https://doi.org/10.1145/2810103.2813699.

[24] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: an ultra-lightweight block
cipher. In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and
Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria,
September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer
Science, pages 450�466. Springer, 2007. doi: 10.1007/978-3-540-74735-2_31.
URL https://doi.org/10.1007/978-3-540-74735-2_31.

[25] D. Boneh and M. K. Franklin. Identity-based encryption from the weil pair-
ing. In J. Kilian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual

167

BIBLIOGRAPHY

International Cryptology Conference, Santa Barbara, California, USA, August
19-23, 2001, Proceedings, volume 2139 of Lecture Notes in Computer Sci-
ence, pages 213�229. Springer, 2001. doi: 10.1007/3-540-44647-8_13. URL
https://doi.org/10.1007/3-540-44647-8_13.

[26] D. Boneh and M. Zhandry. Multiparty key exchange, e�cient traitor tracing,
and more from indistinguishability obfuscation. In J. A. Garay and R. Gennaro,
editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I,
volume 8616 of Lecture Notes in Computer Science, pages 480�499. Springer,
2014. doi: 10.1007/978-3-662-44371-2_27. URL https://doi.org/10.

1007/978-3-662-44371-2_27.

[27] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking
cryptographic protocols for faults (extended abstract). In W. Fumy, editor,
Advances in Cryptology - EUROCRYPT '97, International Conference on the
Theory and Application of Cryptographic Techniques, Konstanz, Germany, May
11-15, 1997, Proceeding, volume 1233 of Lecture Notes in Computer Science,
pages 37�51. Springer, 1997. doi: 10.1007/3-540-69053-0_4. URL https:

//doi.org/10.1007/3-540-69053-0_4.

[28] J. W. Bos, C. Hubain, W. Michiels, and P. Teuwen. Di�erential computation
analysis: Hiding your white-box designs is not enough. In B. Gierlichs and
A. Y. Poschmann, editors, Cryptographic Hardware and Embedded Systems -
CHES 2016 - 18th International Conference, Santa Barbara, CA, USA, August
17-19, 2016, Proceedings, volume 9813 of Lecture Notes in Computer Science,
pages 215�236. Springer, 2016. doi: 10.1007/978-3-662-53140-2_11. URL
https://doi.org/10.1007/978-3-662-53140-2_11.

[29] C. Bouillaguet, J. Faugère, P. Fouque, and L. Perret. Practical cryptanaly-
sis of the identi�cation scheme based on the isomorphism of polynomial with
one secret problem. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi,
editors, Public Key Cryptography - PKC 2011 - 14th International Conference
on Practice and Theory in Public Key Cryptography, Taormina, Italy, March
6-9, 2011. Proceedings, volume 6571 of Lecture Notes in Computer Science,
pages 473�493. Springer, 2011. doi: 10.1007/978-3-642-19379-8_29. URL
https://doi.org/10.1007/978-3-642-19379-8_29.

[30] J. Bringer, H. Chabanne, and E. Dottax. Perturbing and protecting a trace-
able block cipher. In H. Leitold and E. P. Markatos, editors, Communications
and Multimedia Security, 10th IFIP TC-6 TC-11 International Conference, CMS
2006, Heraklion, Crete, Greece, October 19-21, 2006, Proceedings, volume 4237

168

BIBLIOGRAPHY

of Lecture Notes in Computer Science, pages 109�119. Springer, 2006. doi:
10.1007/11909033_10. URL https://doi.org/10.1007/11909033_10.

[31] J. Bringer, H. Chabanne, and E. Dottax. White box cryptography: Another
attempt. IACR Cryptol. ePrint Arch., page 468, 2006. URL http://eprint.

iacr.org/2006/468.

[32] O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, and F. Stan-
daert. MOE: multiplication operated encryption with trojan resilience. IACR
Trans. Symmetric Cryptol., 2021(1):78�129, 2021. doi: 10.46586/tosc.v2021.
i1.78-129. URL https://doi.org/10.46586/tosc.v2021.i1.78-129.

[33] J. F. Buss, G. S. Frandsen, and J. O. Shallit. The computational complexity of
some problems of linear algebra, 1997.

[34] R. Cartor, R. Gipson, D. Smith-Tone, and J. Vates. On the di�erential security of
the hfev- signature primitive. In T. Takagi, editor, Post-Quantum Cryptography
- 7th International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-
26, 2016, Proceedings, volume 9606 of Lecture Notes in Computer Science,
pages 162�181. Springer, 2016. doi: 10.1007/978-3-319-29360-8_11. URL
https://doi.org/10.1007/978-3-319-29360-8_11.

[35] A. Casanova, J.-C. Faugère, G. Macario-Rat, J. Patarin, L. Perret, and
J. Ryckeghem. GeMSS. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-3-submissions.

[36] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In M. J. Wiener, editor, Advances in Cryp-
tology - CRYPTO '99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666 of Lec-
ture Notes in Computer Science, pages 398�412. Springer, 1999. doi: 10.1007/
3-540-48405-1_26. URL https://doi.org/10.1007/3-540-48405-1_26.

[37] S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. A white-box
DES implementation for DRM applications. In J. Feigenbaum, editor, Se-
curity and Privacy in Digital Rights Management, ACM CCS-9 Workshop,
DRM 2002, Washington, DC, USA, November 18, 2002, Revised Papers,
volume 2696 of Lecture Notes in Computer Science, pages 1�15. Springer,
2002. doi: 10.1007/978-3-540-44993-5_1. URL https://doi.org/10.

1007/978-3-540-44993-5_1.

[38] S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. White-box cryp-
tography and an AES implementation. In K. Nyberg and H. M. Heys, editors,

169

BIBLIOGRAPHY

Selected Areas in Cryptography, 9th Annual International Workshop, SAC 2002,
St. John's, Newfoundland, Canada, August 15-16, 2002. Revised Papers, vol-
ume 2595 of Lecture Notes in Computer Science, pages 250�270. Springer,
2002. doi: 10.1007/3-540-36492-7_17. URL https://doi.org/10.1007/

3-540-36492-7_17.

[39] N. T. Courtois. E�cient zero-knowledge authentication based on a linear al-
gebra problem minrank. In C. Boyd, editor, Advances in Cryptology - ASI-
ACRYPT 2001, 7th International Conference on the Theory and Application
of Cryptology and Information Security, Gold Coast, Australia, December 9-
13, 2001, Proceedings, volume 2248 of Lecture Notes in Computer Science,
pages 402�421. Springer, 2001. doi: 10.1007/3-540-45682-1_24. URL
https://doi.org/10.1007/3-540-45682-1_24.

[40] D. A. Cox, J. Little, and D. O'Shea. Ideals, varieties, and algorithms - an
introduction to computational algebraic geometry and commutative algebra (2.
ed.). Undergraduate texts in mathematics. Springer, 1997. ISBN 978-0-387-
94680-1.

[41] J. Daemen and V. Rijmen. Rijndael for AES. In The Third Advanced Encryption
Standard Candidate Conference, April 13-14, 2000, New York, New York, USA,
pages 343�348. National Institute of Standards and Technology� 2000.

[42] T. Daniels and D. Smith-Tone. Di�erential properties of the HFE cryptosys-
tem. In M. Mosca, editor, Post-Quantum Cryptography - 6th International
Workshop, PQCrypto 2014, Waterloo, ON, Canada, October 1-3, 2014. Pro-
ceedings, volume 8772 of Lecture Notes in Computer Science, pages 59�75.
Springer, 2014. doi: 10.1007/978-3-319-11659-4_4. URL https://doi.

org/10.1007/978-3-319-11659-4_4.

[43] C. Delerablée, T. Lepoint, P. Paillier, and M. Rivain. White-box security no-
tions for symmetric encryption schemes. In T. Lange, K. E. Lauter, and
P. Lisonek, editors, Selected Areas in Cryptography - SAC 2013 - 20th In-
ternational Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised
Selected Papers, volume 8282 of Lecture Notes in Computer Science, pages
247�264. Springer, 2013. doi: 10.1007/978-3-662-43414-7_13. URL https:

//doi.org/10.1007/978-3-662-43414-7_13.

[44] W. Di�e and M. E. Hellman. New directions in cryptography. IEEE Trans. Inf.
Theory, 22(6):644�654, 1976. doi: 10.1109/TIT.1976.1055638. URL https:

//doi.org/10.1109/TIT.1976.1055638.

170

BIBLIOGRAPHY

[45] J. Ding and D. Schmidt. Rainbow, a new multivariable polynomial signature
scheme. In J. Ioannidis, A. D. Keromytis, and M. Yung, editors, Applied Cryptog-
raphy and Network Security, Third International Conference, ACNS 2005, New
York, NY, USA, June 7-10, 2005, Proceedings, volume 3531 of Lecture Notes
in Computer Science, pages 164�175, 2005. doi: 10.1007/11496137_12. URL
https://doi.org/10.1007/11496137_12.

[46] J. Ding, D. Schmidt, and F. Werner. Algebraic attack on hfe revisited. In T.-C.
Wu, C.-L. Lei, V. Rijmen, and D.-T. Lee, editors, Information Security, pages
215�227, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-
85886-7.

[47] H. Dobbertin. Almost perfect nonlinear power functions on gf(2n): The welch
case. IEEE Trans. Inf. Theory, 45:1271�1275, 1999.

[48] H. Dobbertin. Uniformly representable permutation polynomials. In T. Helle-
seth, P. V. Kumar, and K. Yang, editors, Sequences and their Applica-
tions - Proceedings of SETA 2001, Bergen, Norway, May 13-17, 2001, Dis-
crete Mathematics and Theoretical Computer Science, pages 1�22. Springer,
2001. doi: 10.1007/978-1-4471-0673-9_1. URL https://doi.org/10.

1007/978-1-4471-0673-9_1.

[49] N. Döttling, T. Mie, J. Müller-Quade, and T. Nilges. Basing obfuscation on
simple tamper-proof hardware assumptions. IACR Cryptol. ePrint Arch., page
675, 2011. URL http://eprint.iacr.org/2011/675.

[50] V. Dubois, P. Fouque, A. Shamir, and J. Stern. Practical cryptanalysis of
SFLASH. In A. Menezes, editor, Advances in Cryptology - CRYPTO 2007,
27th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2007, Proceedings, volume 4622 of Lecture Notes in Computer
Science, pages 1�12. Springer, 2007. doi: 10.1007/978-3-540-74143-5_1.
URL https://doi.org/10.1007/978-3-540-74143-5_1.

[51] P. Dusart, G. Letourneux, and O. Vivolo. Di�erential fault analysis on A.E.S.
In J. Zhou, M. Yung, and Y. Han, editors, Applied Cryptography and Network
Security, First International Conference, ACNS 2003. Kunming, China, October
16-19, 2003, Proceedings, volume 2846 of Lecture Notes in Computer Science,
pages 293�306. Springer, 2003. doi: 10.1007/978-3-540-45203-4_23. URL
https://doi.org/10.1007/978-3-540-45203-4_23.

[52] EMV. Integrated circuit card speci�cations for payment systems. Book 2. Secu-
rity and Key Management. Version 4.2. June 2008. www.emvco.com., 2008.

171

BIBLIOGRAPHY

[53] J. Faugère and A. Joux. Algebraic cryptanalysis of hidden �eld equation
(HFE) cryptosystems using gröbner bases. In D. Boneh, editor, Advances
in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings,
volume 2729 of Lecture Notes in Computer Science, pages 44�60. Springer,
2003. doi: 10.1007/978-3-540-45146-4_3. URL https://doi.org/10.

1007/978-3-540-45146-4_3.

[54] J. Faugère, G. Macario-Rat, J. Patarin, and L. Perret. A new perturbation for
multivariate public key schemes such as HFE and UOV. IACR Cryptol. ePrint
Arch., page 203, 2022. URL https://eprint.iacr.org/2022/203.

[55] J.-C. Faugère. A new e�cient algorithm for computing gröbner bases with-
out reduction to zero (f5). Proceedings of the International Symposium on
Symbolic and Algebraic Computation, ISSAC, pages 75�83, 01 2002. doi:
10.1145/780506.780516.

[56] J.-C. Faugére. A new e�cient algorithm for computing gröbner bases (f4).
Journal of Pure and Applied Algebra, 139(1):61�88, 1999. ISSN 0022-4049.
doi: https://doi.org/10.1016/S0022-4049(99)00005-5. URL https://www.

sciencedirect.com/science/article/pii/S0022404999000055.

[57] P. Fouque, P. Karpman, P. Kirchner, and B. Minaud. E�cient and provable
white-box primitives. In J. H. Cheon and T. Takagi, editors, Advances in Cryp-
tology - ASIACRYPT 2016 - 22nd International Conference on the Theory and
Application of Cryptology and Information Security, Hanoi, Vietnam, December
4-8, 2016, Proceedings, Part I, volume 10031 of Lecture Notes in Computer
Science, pages 159�188, 2016. doi: 10.1007/978-3-662-53887-6_6. URL
https://doi.org/10.1007/978-3-662-53887-6_6.

[58] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979. ISBN 0-7167-1044-7.

[59] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-
29 October, 2013, Berkeley, CA, USA, pages 40�49. IEEE Computer Society,
2013. doi: 10.1109/FOCS.2013.13. URL https://doi.org/10.1109/FOCS.

2013.13.

[60] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zel-
dovich. Reusable garbled circuits and succinct functional encryption. In

172

BIBLIOGRAPHY

D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, Symposium on The-
ory of Computing Conference, STOC'13, Palo Alto, CA, USA, June 1-4,
2013, pages 555�564. ACM, 2013. doi: 10.1145/2488608.2488678. URL
https://doi.org/10.1145/2488608.2488678.

[61] L. Goubin and J. Patarin. DES and di�erential power analysis (the "duplication"
method). In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware and Em-
bedded Systems, First International Workshop, CHES'99, Worcester, MA, USA,
August 12-13, 1999, Proceedings, volume 1717 of Lecture Notes in Computer
Science, pages 158�172. Springer, 1999. doi: 10.1007/3-540-48059-5_15.
URL https://doi.org/10.1007/3-540-48059-5_15.

[62] L. Goubin, P. Paillier, M. Rivain, and J. Wang. How to reveal the secrets
of an obscure white-box implementation. J. Cryptogr. Eng., 10(1):49�66,
2020. doi: 10.1007/s13389-019-00207-5. URL https://doi.org/10.1007/

s13389-019-00207-5.

[63] L. Goubin, M. Rivain, and J. Wang. Defeating state-of-the-art white-box coun-
termeasures with advanced gray-box attacks. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2020(3):454�482, 2020. doi: 10.13154/tches.v2020.i3.454-482.
URL https://doi.org/10.13154/tches.v2020.i3.454-482.

[64] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Found-
ing cryptography on tamper-proof hardware tokens. In D. Micciancio, edi-
tor, Theory of Cryptography, 7th Theory of Cryptography Conference, TCC
2010, Zurich, Switzerland, February 9-11, 2010. Proceedings, volume 5978
of Lecture Notes in Computer Science, pages 308�326. Springer, 2010.
doi: 10.1007/978-3-642-11799-2_19. URL https://doi.org/10.1007/

978-3-642-11799-2_19.

[65] X. Guo and R. Karri. Invariance-based concurrent error detection for advanced
encryption standard. In P. Groeneveld, D. Sciuto, and S. Hassoun, editors, The
49th Annual Design Automation Conference 2012, DAC '12, San Francisco,
CA, USA, June 3-7, 2012, pages 573�578. ACM, 2012. doi: 10.1145/2228360.
2228463. URL https://doi.org/10.1145/2228360.2228463.

[66] S. Hada. Zero-knowledge and code obfuscation. In T. Okamoto, editor, Ad-
vances in Cryptology - ASIACRYPT 2000, 6th International Conference on the
Theory and Application of Cryptology and Information Security, Kyoto, Japan,
December 3-7, 2000, Proceedings, volume 1976 of Lecture Notes in Computer
Science, pages 443�457. Springer, 2000. doi: 10.1007/3-540-44448-3_34.
URL https://doi.org/10.1007/3-540-44448-3_34.

173

BIBLIOGRAPHY

[67] A. Hosoyamada, T. Isobe, Y. Todo, and K. Yasuda. A modular approach to
the incompressibility of block-cipher-based aeads. In S. Agrawal and D. Lin,
editors, Advances in Cryptology - ASIACRYPT 2022 - 28th International Con-
ference on the Theory and Application of Cryptology and Information Se-
curity, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part II, volume
13792 of Lecture Notes in Computer Science, pages 585�619. Springer, 2022.
doi: 10.1007/978-3-031-22966-4_20. URL https://doi.org/10.1007/

978-3-031-22966-4_20.

[68] M. Jacob, D. Boneh, and E. W. Felten. Attacking an obfuscated cipher by inject-
ing faults. In J. Feigenbaum, editor, Security and Privacy in Digital Rights Man-
agement, ACM CCS-9 Workshop, DRM 2002, Washington, DC, USA, Novem-
ber 18, 2002, Revised Papers, volume 2696 of Lecture Notes in Computer Sci-
ence, pages 16�31. Springer, 2002. doi: 10.1007/978-3-540-44993-5_2. URL
https://doi.org/10.1007/978-3-540-44993-5_2.

[69] A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from well-founded
assumptions. In S. Khuller and V. V. Williams, editors, STOC '21: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June
21-25, 2021, pages 60�73. ACM, 2021. doi: 10.1145/3406325.3451093. URL
https://doi.org/10.1145/3406325.3451093.

[70] R. Karri, G. Kuznetsov, and M. Gössel. Parity-based concurrent error detection
of substitution-permutation network block ciphers. In C. D. Walter, Ç. K. Koç,
and C. Paar, editors, Cryptographic Hardware and Embedded Systems - CHES
2003, 5th International Workshop, Cologne, Germany, September 8-10, 2003,
Proceedings, volume 2779 of Lecture Notes in Computer Science, pages 113�
124. Springer, 2003. doi: 10.1007/978-3-540-45238-6_10. URL https://

doi.org/10.1007/978-3-540-45238-6_10.

[71] M. Karroumi. Protecting white-box AES with dual ciphers. In K. H. Rhee and
D. Nyang, editors, Information Security and Cryptology - ICISC 2010 - 13th
International Conference, Seoul, Korea, December 1-3, 2010, Revised Selected
Papers, volume 6829 of Lecture Notes in Computer Science, pages 278�291.
Springer, 2010. doi: 10.1007/978-3-642-24209-0_19. URL https://doi.

org/10.1007/978-3-642-24209-0_19.

[72] A. Kipnis and A. Shamir. Cryptanalysis of the HFE public key cryptosystem
by relinearization. In M. J. Wiener, editor, Advances in Cryptology - CRYPTO
'99, 19th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Com-
puter Science, pages 19�30. Springer, 1999. doi: 10.1007/3-540-48405-1_2.
URL https://doi.org/10.1007/3-540-48405-1_2.

174

BIBLIOGRAPHY

[73] A. Kipnis, J. Patarin, and L. Goubin. Unbalanced oil and vinegar signa-
ture schemes. In J. Stern, editor, Advances in Cryptology - EUROCRYPT
'99, International Conference on the Theory and Application of Crypto-
graphic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, vol-
ume 1592 of Lecture Notes in Computer Science, pages 206�222. Springer,
1999. doi: 10.1007/3-540-48910-X_15. URL https://doi.org/10.1007/

3-540-48910-X_15.

[74] P. C. Kocher. Timing attacks on implementations of di�e-hellman, rsa, dss, and
other systems. In N. Koblitz, editor, Advances in Cryptology - CRYPTO '96, 16th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer
Science, pages 104�113. Springer, 1996. doi: 10.1007/3-540-68697-5_9. URL
https://doi.org/10.1007/3-540-68697-5_9.

[75] P. C. Kocher, J. Ja�e, and B. Jun. Di�erential power analysis. In M. J.
Wiener, editor, Advances in Cryptology - CRYPTO '99, 19th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 15-
19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science,
pages 388�397. Springer, 1999. doi: 10.1007/3-540-48405-1_25. URL
https://doi.org/10.1007/3-540-48405-1_25.

[76] Y. Koike and T. Isobe. Yoroi: Updatable whitebox cryptography. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):587�617, 2021. doi: 10.46586/
tches.v2021.i4.587-617. URL https://doi.org/10.46586/tches.v2021.

i4.587-617.

[77] S. Lee, T. Kim, and Y. Kang. A masked white-box cryptographic implemen-
tation for protecting against di�erential computation analysis. IEEE Trans. Inf.
Forensics Secur., 13(10):2602�2615, 2018. doi: 10.1109/TIFS.2018.2825939.
URL https://doi.org/10.1109/TIFS.2018.2825939.

[78] T. Lepoint and M. Rivain. Another nail in the co�n of white-box AES im-
plementations. IACR Cryptol. ePrint Arch., page 455, 2013. URL http:

//eprint.iacr.org/2013/455.

[79] G. Macario-Rat, J. Plût, and H. Gilbert. New insight into the isomorphism
of polynomial problem IP1S and its use in cryptography. In K. Sako and
P. Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013 - 19th Inter-
national Conference on the Theory and Application of Cryptology and Infor-
mation Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part I,
volume 8269 of Lecture Notes in Computer Science, pages 117�133. Springer,

175

BIBLIOGRAPHY

2013. doi: 10.1007/978-3-642-42033-7_7. URL https://doi.org/10.

1007/978-3-642-42033-7_7.

[80] H. Maghrebi and D. Alessio. Revisiting higher-order computational attacks
against white-box implementations. In S. Furnell, P. Mori, E. R. Weippl, and
O. Camp, editors, Proceedings of the 6th International Conference on Informa-
tion Systems Security and Privacy, ICISSP 2020, Valletta, Malta, February 25-27,
2020, pages 265�272. SCITEPRESS, 2020. doi: 10.5220/0008874602650272.
URL https://doi.org/10.5220/0008874602650272.

[81] S. Mangard, E. Oswald, and T. Popp. Power analysis attacks - revealing the
secrets of smart cards. Springer, 2007. ISBN 978-0-387-30857-9.

[82] T. Matsumoto and H. Imai. Public quadratic polynominal-tuples for e�-
cient signature-veri�cation and message-encryption. In C. G. Günther, edi-
tor, Advances in Cryptology - EUROCRYPT '88, Workshop on the Theory
and Application of of Cryptographic Techniques, Davos, Switzerland, May 25-
27, 1988, Proceedings, volume 330 of Lecture Notes in Computer Science,
pages 419�453. Springer, 1988. doi: 10.1007/3-540-45961-8_39. URL
https://doi.org/10.1007/3-540-45961-8_39.

[83] T. Matsumoto, H. Imai, H. Harashima, and H. Miyakawa. A class of asymmet-
ric cryptosystems using obscure representations of enciphering functions. 1983
National Convention Record on Information Systems, IECE Japan, 1983.

[84] W. Michiels, P. Gorissen, and H. D. L. Hollmann. Cryptanalysis of a generic
class of white-box implementations. In R. M. Avanzi, L. Keliher, and F. Sica,
editors, Selected Areas in Cryptography, 15th International Workshop, SAC 2008,
Sackville, New Brunswick, Canada, August 14-15, Revised Selected Papers, vol-
ume 5381 of Lecture Notes in Computer Science, pages 414�428. Springer,
2008. doi: 10.1007/978-3-642-04159-4_27. URL https://doi.org/10.

1007/978-3-642-04159-4_27.

[85] Y. D. Mulder. White-Box Cryptography: Analysis of White-Box AES Imple-
mentations (White-Box Cryptogra�e: Analyse van White-Box AES implemen-
taties). PhD thesis, Katholieke Universiteit Leuven, Belgium, 2014. URL
https://lirias.kuleuven.be/handle/123456789/430072.

[86] Y. D. Mulder, P. Roelse, and B. Preneel. Cryptanalysis of the xiao - lai
white-box AES implementation. In L. R. Knudsen and H. Wu, editors,
Selected Areas in Cryptography, 19th International Conference, SAC 2012,
Windsor, ON, Canada, August 15-16, 2012, Revised Selected Papers, vol-
ume 7707 of Lecture Notes in Computer Science, pages 34�49. Springer,

176

BIBLIOGRAPHY

2012. doi: 10.1007/978-3-642-35999-6_3. URL https://doi.org/10.

1007/978-3-642-35999-6_3.

[87] M. Øygarden, D. Smith-Tone, and J. A. Verbel. On the e�ect of pro-
jection on rank attacks in multivariate cryptography. In J. H. Cheon and
J. Tillich, editors, Post-Quantum Cryptography - 12th International Workshop,
PQCrypto 2021, Daejeon, South Korea, July 20-22, 2021, Proceedings, vol-
ume 12841 of Lecture Notes in Computer Science, pages 98�113. Springer,
2021. doi: 10.1007/978-3-030-81293-5_6. URL https://doi.org/10.

1007/978-3-030-81293-5_6.

[88] J. Patarin. Hidden �elds equations (HFE) and isomorphisms of polynomials
(IP): two new families of asymmetric algorithms. In U. M. Maurer, editor,
Advances in Cryptology - EUROCRYPT '96, International Conference on the
Theory and Application of Cryptographic Techniques, Saragossa, Spain, May
12-16, 1996, Proceeding, volume 1070 of Lecture Notes in Computer Science,
pages 33�48. Springer, 1996. doi: 10.1007/3-540-68339-9_4. URL https:

//doi.org/10.1007/3-540-68339-9_4.

[89] J. Patarin and L. Goubin. Trapdoor one-way permutations and multivariate poly-
nominals. In Y. Han, T. Okamoto, and S. Qing, editors, Information and Com-
munication Security, First International Conference, ICICS'97, Beijing, China,
November 11-14, 1997, Proceedings, volume 1334 of Lecture Notes in Com-
puter Science, pages 356�368. Springer, 1997. doi: 10.1007/BFb0028491. URL
https://doi.org/10.1007/BFb0028491.

[90] J. Patarin, L. Goubin, and N. T. Courtois. Improved algorithms for isomorphisms
of polynomials. In K. Nyberg, editor, Advances in Cryptology - EUROCRYPT
'98, International Conference on the Theory and Application of Cryptographic
Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding, volume 1403
of Lecture Notes in Computer Science, pages 184�200. Springer, 1998. doi:
10.1007/BFb0054126. URL https://doi.org/10.1007/BFb0054126.

[91] J. Patarin, G. Macario-Rat, M. Bros, and E. Koussa. Ultra-short multivari-
ate public key signatures. Cryptology ePrint Archive, Report 2020/914, 2020.
https://eprint.iacr.org/2020/914.

[92] L. Perret. A fast cryptanalysis of the isomorphism of polynomials with one secret
problem. In R. Cramer, editor, Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume
3494 of Lecture Notes in Computer Science, pages 354�370. Springer, 2005. doi:
10.1007/11426639_21. URL https://doi.org/10.1007/11426639_21.

177

BIBLIOGRAPHY

[93] A. Petzoldt. On the complexity of the hybrid approach on hfev-. IACR Cryptol.
ePrint Arch., page 1135, 2017. URL http://eprint.iacr.org/2017/1135.

[94] C. Qian, M. Tibouchi, and R. Géraud. Universal witness signatures. In A. Inomata
and K. Yasuda, editors, Advances in Information and Computer Security - 13th
International Workshop on Security, IWSEC 2018, Sendai, Japan, September
3-5, 2018, Proceedings, volume 11049 of Lecture Notes in Computer Science,
pages 313�329. Springer, 2018. doi: 10.1007/978-3-319-97916-8_20. URL
https://doi.org/10.1007/978-3-319-97916-8_20.

[95] A. Ranea, J. Vandersmissen, and B. Preneel. Implicit white-box implemen-
tations: White-boxing ARX ciphers. In Y. Dodis and T. Shrimpton, editors,
Advances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryp-
tology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18,
2022, Proceedings, Part I, volume 13507 of Lecture Notes in Computer Sci-
ence, pages 33�63. Springer, 2022. doi: 10.1007/978-3-031-15802-5_2. URL
https://doi.org/10.1007/978-3-031-15802-5_2.

[96] S. Rasoamiaramanana. Design of white-box encryption schemes for mobile ap-
plications security. (Conception de schémas de chi�rement boîte blanche pour
la sécurité des applications mobiles). PhD thesis, University of Lorraine, Nancy,
France, 2020. URL https://tel.archives-ouvertes.fr/tel-02949394.

[97] M. Rivain and J. Wang. Analysis and improvement of di�erential computation at-
tacks against internally-encoded white-box implementations. IACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2019(2):225�255, 2019. doi: 10.13154/tches.v2019.
i2.225-255. URL https://doi.org/10.13154/tches.v2019.i2.225-255.

[98] A. Sahai and B. Waters. How to use indistinguishability obfuscation: deni-
able encryption, and more. In D. B. Shmoys, editor, Symposium on The-
ory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03,
2014, pages 475�484. ACM, 2014. doi: 10.1145/2591796.2591825. URL
https://doi.org/10.1145/2591796.2591825.

[99] E. Sanfelix, C. Mune, and J. de Haas. Unboxing the white-box: Practical attacks
against obfuscated ciphers. Blackhat, 2015.

[100] A. Saxena, B. Wyseur, and B. Preneel. Towards security notions for white-box
cryptography. In P. Samarati, M. Yung, F. Martinelli, and C. A. Ardagna, edi-
tors, Information Security, 12th International Conference, ISC 2009, Pisa, Italy,
September 7-9, 2009. Proceedings, volume 5735 of Lecture Notes in Computer
Science, pages 49�58. Springer, 2009. doi: 10.1007/978-3-642-04474-8_4.
URL https://doi.org/10.1007/978-3-642-04474-8_4.

178

BIBLIOGRAPHY

[101] O. Seker, T. Eisenbarth, and M. Liskiewicz. A white-box masking scheme re-
sisting computational and algebraic attacks. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst., 2021(2):61�105, 2021. doi: 10.46586/tches.v2021.i2.61-105. URL
https://doi.org/10.46586/tches.v2021.i2.61-105.

[102] A. Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley
and D. Chaum, editors, Advances in Cryptology, Proceedings of CRYPTO '84,
Santa Barbara, California, USA, August 19-22, 1984, Proceedings, volume 196 of
Lecture Notes in Computer Science, pages 47�53. Springer, 1984. doi: 10.1007/
3-540-39568-7_5. URL https://doi.org/10.1007/3-540-39568-7_5.

[103] C. Tao, A. Petzoldt, and J. Ding. Improved key recovery of the hfev- signature
scheme. IACR Cryptol. ePrint Arch., page 1424, 2020. URL https://eprint.

iacr.org/2020/1424.

[104] Y. Todo and T. Isobe. Hybrid code lifting on space-hard block ciphers appli-
cation to yoroi and spnbox. IACR Trans. Symmetric Cryptol., 2022(3):368�
402, 2022. doi: 10.46586/tosc.v2022.i3.368-402. URL https://doi.org/10.

46586/tosc.v2022.i3.368-402.

[105] J. Wang. On the practical security of white-box cryptography. (De la théorie
à la pratique de la cryptographie en boite blanche). PhD thesis, University
of Luxembourg, Luxembourg City, Luxembourg, 2020. URL https://tel.

archives-ouvertes.fr/tel-02953586.

[106] WhibOx Organizing Committee. Ches 2017 ctf challenge � whibox contest.
https://whibox.io/contests/2017/, 2017.

[107] WhibOx Organizing Committee. Ches 2019 ctf challenge � whibox contest.
https://whibox.io/contests/2019/, 2019.

[108] WhibOx Organizing Committee. Ches 2021 ctf challenge � whibox contest.
https://whibox.io/contests/2021/, 2021.

[109] C. Wolf and B. Preneel. Equivalent keys in hfe, c*, and variations. In E. Daw-
son and S. Vaudenay, editors, Progress in Cryptology - Mycrypt 2005, First
International Conference on Cryptology in Malaysia, Kuala Lumpur, Malaysia,
September 28-30, 2005, Proceedings, volume 3715 of Lecture Notes in Com-
puter Science, pages 33�49. Springer, 2005. doi: 10.1007/11554868_4. URL
https://doi.org/10.1007/11554868_4.

[110] Y. Xiao and X. Lai. A secure implementation of white-box aes. In 2009 2nd
International Conference on Computer Science and its Applications, pages 1�6,
2009. doi: 10.1109/CSA.2009.5404239.

179

[111] M. Zeyad, H. Maghrebi, D. Alessio, and B. Batteux. Another look on buck-
eting attack to defeat white-box implementations. In I. Polian and M. Stöt-
tinger, editors, Constructive Side-Channel Analysis and Secure Design - 10th
International Workshop, COSADE 2019, Darmstadt, Germany, April 3-5, 2019,
Proceedings, volume 11421 of Lecture Notes in Computer Science, pages 99�
117. Springer, 2019. doi: 10.1007/978-3-030-16350-1_7. URL https:

//doi.org/10.1007/978-3-030-16350-1_7.

