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Abstract

The masking countermeasure is among the most potent countermeasures to counteract side-
channel attacks. Leakage models have been exhibited to theoretically reason on the security
of such masked implementations. So far, the most widely used leakage model is the probing
model, but it has been recently challenged as it does not fully capture the capabilities of a
side-channel adversary. To capture a broader class of attacks, another model was introduced,
referred to as the random probing model. From a leakage parameter p, each wire of the circuit
leaks its value with probability p. The random probing model enjoys practical relevance thanks
to a reduction to the noisy leakage model, which is admitted as the suitable formalization for
power and electromagnetic side-channel attacks. In addition, the random probing model is
much more convenient than the noisy leakage model to prove the security of masking schemes.

In this thesis, we study more closely the random probing model and define the first frame-
work dedicated to it. We formalize a composition property for secure random probing gadgets
and exhibit its relation to the strong non-interference (SNI) notion used in probing security.
We then revisit the expansion idea proposed by Ananth, Ishai, and Sahai (CRYPTO 2018)
and introduce a compiler that builds a random probing secure circuit from small base gad-
gets, achieving a random probing expandability (RPE) property. We then provide an in-depth
analysis of the RPE security notion, allowing us to obtain much more efficient instantiations
of the expansion technique, with constructions tolerating a leakage probability of up to 2−7,
against 2−26 for the previous construction and an improved complexity of O(κ3.2) against
O(κ7.87) for the previous constructions, where κ is the security parameter. We also show that
our constructions achieve a quadratic complexity in κ asymptotically as the number of shares
grows. Further attempts to optimize constructions include generalizing the RPE approach by
considering a dynamic choice of the base gadgets at each step in the expansion. We show
that such techniques can further reduce the complexity from quadratic to quasi-linear while
tolerating good leakage rates.

Finally, we introduce IronMask, a new versatile verification tool for masking security. Iron-
Mask is the first to verify standard simulation-based security notions in the probing model
and recent notions in the random probing model. It supports any masking gadgets with linear
randomness (e.g., addition, copy, and refresh gadgets) as well as quadratic gadgets (e.g., mul-
tiplication gadgets) that might include non-linear randomness (e.g., by refreshing their inputs)
while providing complete verification results for both types of gadgets.

We conclude this thesis by discussing other research projects in the random probing model
and suggestions for future works.
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Résumé

La contre-mesure de masquage fait partie des contre-mesures les plus puissantes contre les at-
taques par canaux auxiliaires. Des modèles de fuite ont été introduits pour raisonner théorique-
ment sur la sécurité de telles implémentations masquées. Jusqu’à présent, le modèle de fuite le
plus largement utilisé est le modèle nommé “probing”, mais il a été récemment remis en ques-
tion car il ne rend pas pleinement compte des capacités d’un adversaire par canaux auxiliaires.
Ainsi, un autre modèle a été introduit, appelé “random probing”. Dans ce modèle, à partir
d’un paramètre de fuite p, chaque fil du circuit fuit sa valeur avec probabilité p. Le modèle
random probing est pratique grâce à sa réduction au modèle “noisy leakage”, qui est admis
comme la formalisation appropriée pour la fuite pendant les attaques par canaux auxiliaires.
De plus, le modèle random probing est bien plus pratique que le modèle noisy leakage pour
prouver la sécurité des implémentations masquées.

Dans cette thèse, nous étudions de plus près le modèle random probing et définissons le
premier cadre qui lui est dédié. Nous formalisons une propriété de composition pour les gad-
gets sécurisés dans ce modèle et montrons sa relation avec la notion de non-interférence forte
(SNI) utilisée dans le modèle de sécurité “probing”. Nous revisitons ensuite l’idée d’expansion
proposée par Ananth, Ishai et Sahai (CRYPTO 2018) et introduisons un compilateur qui
construit un circuit sécurisé dans le modèle random probing à partir de petits gadgets de
base. Nous proposons ensuite une analyse approfondie, permettant d’obtenir des instancia-
tions beaucoup plus efficaces de la technique d’expansion, avec des constructions tolérant une
probabilité de fuite allant jusqu’à 2−7, contre 2−26 pour les constructions précédentes et une
complexité améliorée de O(κ3.2) contre O(κ7.87) pour les constructions précédentes, où kappa
est le paramètre de sécurité. Nous montrons également que nos constructions atteignent une
complexité quadratique en κ asymptotiquement en augmentant le nombre de partages pendant
le masquage. D’autres tentatives d’optimisation des constructions incluent la généralisation
de l’approche en considérant un choix dynamique des gadgets de base à chaque étape de
l’expansion. Nous montrons que de telles techniques peuvent réduire davantage la complexité
du quadratique au quasi-linéaire tout en tolérant de bons taux de fuite.

Enfin, nous présentons IronMask, un nouvel outil de vérification polyvalent pour la sécurité
des circuits masqués. IronMask est le premier à vérifier les notions de sécurité standard basées
sur la simulation dans le modèle probing et les notions récentes du modèle random probing.
Il prend en charge tous les gadgets masqués qui utilisent des variables aléatoires de façon
linéaire (par exemple, les gadgets d’addition et de copie) ainsi que les gadgets quadratiques
(par exemple, les gadgets de multiplication) qui peuvent inclure des variables aléatoires non
linéaires, tout en fournissant des résultats de vérification complets. pour les deux types de
gadgets.

Nous concluons cette thèse en discutant d’autres projets de recherche dans le modèle
random probing et en suggérant des travaux futurs.
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Chapter 1

Introduction

1.1 Cryptography Then and Now

We all have secrets, and we all look for privacy. This constant desire for protection gave
birth to cryptography, the art of message encryption. Cryptography protects information
and communications through codes, hiding a message from anyone who is not supposed to
read it. It existed way before the emergence of computers. The ancient Greeks, for instance,
are believed to have used the scytale as a method of transposition cipher during military
campaigns. The scytale is a cylinder with a strip of parchment wound around it. To encrypt
a message into a ciphered one, one can write it on the leather piece wrapped around the rod
and then unwrap it. To decrypt the ciphered message (i.e. retrieve the original message),
one needs the rod with the correct diameter to wind the strip and read the message. If an
incompatible cylinder is used, the message appears as a set of randomly chosen letters. As
simple as the technique may seem, it proves that humans have always looked for ways to secure
communications.

Like everything else, cryptography has evolved into a much broader field, especially with
the rise of technology and modern computers. In the digital world, modern cryptography is a
branch of applied mathematics and computer science. It implements encryption algorithms as
programs relying on mathematical tools. These algorithms should prevent attackers and eaves-
droppers from breaching the privacy of communications. Modern cryptographic algorithms
and protocols follow Kerckhoff’s law by being public, with a secret parameter called the key
being the only secret element. Essentially, anyone with access to this secret key is authorized
to participate and read the communication, while it is computationally impossible for someone
without the key to do the same. The computational impossibility is a widely admitted prin-
ciple in the conception of modern cryptography. This impossibility is because cryptosystems
rely on mathematical problems that are difficult to solve in a reasonable time without access
to the secret parameter. In this case, one can only hope to break such a cryptosystem using
an exhaustive key search (or brute force attack), which comes with exponential complexity in
the security parameters and becomes quickly impossible to use.

Nowadays, cryptography aims at providing confidentiality, integrity, and authentication.
Confidentiality means no one can read private messages except for authorized parties, while
integrity ensures that unauthorized parties can not modify the data. Finally, authentication
allows the receiver to check the identity of the sender of a message. In addition to all of these
properties, digital signatures of electronic documents can ensure non-repudiation like a hand-
written signature: the author of a signature cannot deny it afterward. With the development
of modern cryptography, many other security features were rendered possible such as secure
multiparty computations, group signatures, etc.
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1.2 From Black-Box to Gray-Box Security

Cryptographic primitives are considered secure based on the hardness of the mathematical
problems they use. This security is considered in what we call the black-box setting, where
an adversary only has access to the inputs and outputs of the algorithm. However, these
algorithms are implemented on physical devices vulnerable to side-channel attacks as revealed
in the late nineties [63]. These attacks allow an adversary to measure physical quantities
emanating from the device, revealing information about sensitive data in many cases. Such
observations are made in the gray-box setting and can be the execution time, device temper-
ature, power consumption, or electromagnetic radiations during the algorithm execution. In
the gray-box model, one must analyze the implementation of a cryptosystem on the considered
device, including data representation, function calls, and data manipulation.

Attacking the physical implementation of cryptosystems has gained much popularity since
the discovery of side-channel attacks. More generally, we identify a family of physical attacks
ranging from passive attacks, such as side-channel attacks as mentioned earlier, and more
active attacks, such as fault attacks, where an attacker can tamper with the physical device
and inject faults to alter the execution of the algorithm, potentially resulting in the reveal of
secret information.

1.3 Masking Against Side-Channel Attacks

Since the discovery of side-channel attacks, several countermeasures have been studied to
protect cryptographic algorithms. Among the different approaches, one of the most widely
used is known as masking, simultaneously introduced by Chari, Jutla, Rao, and Rohatgi [35],
and by Goubin and Patarin [52] in 1999. It consists in splitting a sensitive variable x into
n random shares, among which any combination of n − 1 shares does not reveal any secret
information. This can be achieved by generating n−1 shares uniformly at random x1, . . . , xn−1
and computing the last share xn so that x = x1 ∗ . . . ∗ xn−1 ∗ xn according to some group law
∗. We call n the number of shares and n−1 the masking order. When working on F2, we refer
to the masking as Boolean masking and use the operation +. The masking order refers to the
value n−1. The motivation of masking is to make it more difficult for an attacker to recover a
secret by manipulating the shares instead of the sensitive value. Since each observation comes
with noise, increasing the number of shares makes it harder to recover the secret, under some
hypotheses on the leaking device. We optimally would like the security level to increase as
we increase the number of shares n. Meanwhile, proving or validating such security levels in
practice is not trivial.

When manipulating variables as n shares, one needs to adapt operations to preserve the
security under the masking scheme while avoiding recombinations of shares. Indeed, such
recombinations can sometimes lead to more revealed information about the secrets. Let us
take an example of a simple addition + operation over some group and n-shared variables
(x1, . . . , xn) and (y1, . . . , yn). Originally, to get the result of the addition, one performs x+ y.
An attacker observing side-channel measurements then tries to target the moment the value
x + y is computed during the leakage trace. When dealing with the shared variables, we
can compute the addition as a shared variable (z1, . . . , zn) such that the recombination of the
shares gives the desired result x+y, that is z1+ . . .+zn = x+y. For instance, we can compute
the addition sharewise as

z1 = x1 + y1, . . . , zn = xn + yn .

In this case, an attacker must target the computation of each sharewise addition to retrieve
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the result x+ y. A less secure way to compute this addition is, for instance, by doing

z1 = x1 + . . .+ xn, z2 = y1 + y2, z3 = y3, . . . , zn = yn .

Although the shared result still gives z1+. . .+zn = x+y, an attacker that can retrieve the value
of the first share z1 from the leakage traces already learns the value of the secret input x. The
examples above showcase the importance of careful usage of the masking countermeasure as a
misusage can sometimes reduce the security a masked implementation is intended to achieve.
Constructing non-linear computations on shared variables becomes even more complex while
trying to avoid share recombinations. For instance, to compute an n-shared multiplication
between (x1, . . . , xn) and (y1, . . . , yn), cross-products of the input shares can be performed,
resulting in n2 terms that then must be compressed back into an n-shared result.

In addition, this analysis of masked operations does not consider some physical defaults
that can occur on a computing device. For instance, transitions occurring on memory buses or
CPU registers between a previously processed value zi−1 and the current one zi usually leak
some information correlated to zi−1⊕ zi. Such defaults can also lower the initial security level
of a masked implementation. The technical difficulties mentioned above give rise to the need
for proper and rigorous ways to reason about the security of masked implementations.

1.4 Proven Security Against Side-Channel Attacks: Leakage
Models

Providing security guarantees against side-channel attacks is generally tricky, and many works
try to tackle this issue [46, 60, 55, 30]. When dealing with masked implementations, an em-
pirical approach tries to assess the leakage given a certain number of leakage traces, mount
well-known attacks, and check that the security is still guaranteed in the considered envi-
ronment. This technique, however, does not provide a proven security level for a masked
implementation. To reason about the security of such implementations in theory and provide
security bounds for any circuit, the leakage is generally formalized in so-called leakage models.
Ishai, Sahai, and Wagner (ISW) [59] first introduced the t-probing model for t < n, where a
circuit is secure if the exact values of any set of t intermediate variables do not reveal any
information on the secrets. This definition is supposed to reflect the security of masking by
assuming that as t grows, an attacker would need more leakage traces to recover the secret, and
since leakage traces come with noise, it becomes much more challenging to recover sensitive
information. Variants of this model include the robust probing model [49] in hardware scenar-
ios, which considers wider leakage to model physical effects such as glitches and transitions.
In this scenario, t observations might reveal more than t intermediate computation variables.

Since its introduction, the probing model has been widely used by the community [74, 72,
40, 16, 41], thanks to it being very convenient to build security proofs. However, it raised
several concerns regarding its relevance in practice [13, 56]. For instance, the authors of [13]
show that the repeated manipulation of identical values can be exploited to retrieve the secrets
in the context of horizontal side-channel attacks. These issues motivated the formalization
of the noisy leakage model [70]. This model well captures the reality of embedded devices
by assuming that each intermediate variable leaks a noisy function of its value. A circuit or
implementation is secure in the noisy leakage model if the adversary cannot recover the secrets
from a noisy function of each intermediate variable of the implementation. Unfortunately,
proving the security of a masking scheme in this model is rather tedious.

Duc, Dziembowski, and Faust [45] proposed in 2014 a reduction from the noisy model
to the t-probing model. The reduction relies on an intermediate leakage model, the random
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probing model. The latter benefits from a tighter reduction with the noisy leakage model,
which becomes independent of the size of the circuit. In a nutshell, it assumes that every wire
in the circuit leaks with some constant leakage probability. This leakage probability is related
to the amount of side-channel noise in practice. Then, a masked circuit is secure if there is a
negligible probability that these leaking wires reveal information about the secrets.

1.5 Probing Model: Security and Composition

Proving security properties in the probing and random probing models amounts to exploring
a combinatorial number of possible sets of probes and checking that they do not reveal any
information about the secrets. For instance, a circuit using n-shared variables is t-probing
secure for t < n if the exact values of at most t leaking variables are independent of the secret.
Such proofs come in two flavors: generic or exhaustive. Generic proofs are handwritten proofs
that reason on the different forms of probes that can occur on the considered circuit. Generic
proofs then check that we can not reveal information about the secrets for any considered
form of probes. Such proofs do not exhaust all the possible sets of probes but "group" them
into categories that can have a common effect on security. Meanwhile, exhaustive proofs, as
their name indicates, rely on exhausting all possible sets of probes on the circuit and checking
that no information on the secrets is revealed for each such set. When dealing with probing
security and uniform input sharings, checking a set of probes is often done by computing the
distribution of these probes and checking that it is independent of the distribution of the
secrets.

Even in the simple probing model, proving the security of large masked circuits is a chal-
lenging problem using generic or exhaustive proofs. The most common solution is to build
circuits from smaller sub-circuits named gadgets that implement a simple computation on
masked data. Then, these gadgets can be composed to implement more complex computa-
tions, and the security proof only needs to care about the properties of the gadgets and their
composition. In their seminal work [59], ISW introduced such gadgets for Boolean AND and
NOT gates. These gadgets can be arbitrarily composed, but this scheme requires masking with
n = 2t+1 shares. For performance reasons, the follow-up works primarily focused on using the
optimal number of shares n = t+ 1. For instance, the type-system of Barthe et al. [10] makes
it possible to securely compose small gadgets that are proven to be (strong) non-interferent.
These notions rely on the concept of simulatability. In a nutshell, the simulatability notion
consists in constructing an algorithm called the simulator, which can simulate the distribution
of a set of probes using some subset of the input shares of each input sharing. For instance, the
t-non-interference (NI) notion imposes that the distribution of any set of at most t probes on
a circuit or gadget can be simulated using at most t input shares of each n-shared input (with
t < n). Observe that this notion does not necessarily suppose the uniformity of the input
sharings and that if the latter are uniform sharings, then t-NI automatically implies t-probing
security.

The t-strong non-interference (SNI) property is stronger than t-NI and imposes that any
set of probes formed of t1 probes on intermediate variables and t2 probes on output variables
of the gadget such that t1 + t2 ≤ t can be simulated using at most t1 input shares of each
input sharing. This property implies t-NI and allows for more efficient composition, espe-
cially for multiplication gadgets. However, SNI gadgets for affine operations could be more
efficient. This issue was solved by the t-PINI definition (at the expense of slightly less efficient
multiplication) [33].

Another direction to improve efficiency is to drop the requirement of arbitrary composition:
while direct application of the ISW construction with n = t + 1 is not secure [72], it can be
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fixed by adding refresh gadgets (which implement the identity function but re-randomize the
sharings). This has been proposed in [10] with the maskComp tool that can compose weaker
non-interferent (NI) gadgets by inserting SNI refresh gadgets (which can be derived from the
ISW multiplication) in the circuit. Later, Belaïd, Goudarzi, and Rivain [20] introduced tight
private circuits (TPC), another variant of the ISW scheme with n = t + 1 and additional
refresh gadgets. The set of refresh gadgets inserted by their tightProve tool is tight in the
sense that removing one of these gadgets is guaranteed to break t-probing security.

A more potent version of the probing model has been considered in the literature, known
as the region probing model [4]. In this model, the adversary is not limited to t probes on the
circuit but gets t probes per gadget (or region) of the circuit. This model is relevant in practice
as being closer to actual side-channel leakages (providing information on all the gadgets of an
implementation) and provides a tighter reduction to the noisy leakage model [45] than the
probing model. In a recent work [53], Goudarzi, Prest, Rivain, and Vergnaud introduce the
input-output separation (IOS) notion for simple composition in the region probing model. This
notion acts as probing-composition scissors: the circuit is divided into regions separated by
IOS gadgets whose probes can then be simulated separately.

Another extension of the t-probing model is the t-robust probing model. In the former, the
exact values of t circuit variables are supposed to leak independently. However, in practice,
physical defaults might generate a leakage of values carried by several wires simultaneously. In
that case, a circuit secure in the t-probing model might only be secure in the t′-robust probing
model for t′ < t. Typical examples of physical defaults include transitions and glitches, and
probes can be extended accordingly. For instance, in glitches, probes might reveal all the
variables carried by coming wires up to the last synchronization point. Such probes thus
include not only one but a set of wires. Similarly, pairs of values that are successively stored
in the same memory cell may leak at once (when the second variable replaces the first one).
Therefore, in transition-based leakage, probes are generally assumed to include specific pairs of
wires. Hence, in the t-robust probing model, a set of t probes is replaced by a set of t extended
probes, which can reveal the exact values of more than t variables. A circuit is then secure in
this model if any set of t so-called extended probes is independent of the secret inputs.

A complementary line of research has been considering the optimization of the masked
gadgets themselves. This culminated in the design of a (n− 1)-NI multiplication gadget with
randomness usage n2/4+O(n) [16] (while the ISW multiplication is (n−1)-SNI and has n2/2+
O(n) randomness usage) and a (n − 1)-SNI refresh gadget with complexity O(n log n) [14].
Besides these arbitrary-order gadgets, there have also been many optimizations for low-order
gadgets.

1.6 Random Probing Model: Security and Composition

Compared to the probing model, the random probing model is closer to the noisy leakage model
and, in particular, captures horizontal attacks, which exploit the repeated manipulations of
variables throughout the implementation. Classical probing secure schemes are also secure in
the random probing model, but the tolerated leakage probability (a.k.a. leakage rate) might
decrease with the masking order, which is not satisfactory from a practical viewpoint. Indeed,
in practice, the leakage probability translates to some side-channel noise amount that the
implementer might not be able to customize.

Before this thesis, only a few works have studied constructions in the random probing
model. In [1, 4], the authors provide constructions in the random probing model based on
expander graphs. The problem with these constructions is that they are conceptually in-
volved, and their practical instantiation is complex. Also, the tolerated probability is not
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made explicit. Then, in [3], the authors provide constructions based on multi-party computa-
tion (MPC) protocols and an expansion strategy. Their idea is to recursively apply an MPC
protocol on a base circuit several times to achieve a desired security level in the random prob-
ing model. The authors provide an instantiation based on the Maurer MPC protocol [67], and
explain that the complexity of the expansion for a circuit with |C| gates is O(|C| · poly(κ)) for
some parameter κ but neither the polynomial nor the tolerated leakage probability are made
explicit.

1.7 Automatic Verification Tools

As discussed in Section 1.5, exhaustive proofs for (random) probing security consist of enumer-
ating a combinatorial number of probes and checking that they are independent of the secret
inputs (with simulation-based notions, we must be able to perfectly simulate their distribu-
tions without the knowledge of the secret inputs). The manual verification of such properties
on small gadgets is very error-prone [40]. Therefore, automatic tools are regularly built to
apply formal verification on software and hardware masked implementations.

In 2012, Moss et al. [69] designed the first automatic type-based masking compiler to
provide first-order security against DPA. Following this seminal work, Bayrak et al. [15] inves-
tigated the SMT-based method to evaluate the statistical independence between leakage and
secrets. Eldib, Wang, and Schaumont [48] extended it to verifying higher-order targets using
a similar notion to non-interference. Nevertheless, the complexity of their model counting
approach restricts it to small masking orders.

Barthe et al. [9] then formalized the connection between the security of masked implemen-
tation and probabilistic non-interference. While their method does not entirely prevent the
combinatorial explosion of observation sets for high orders, it helps gain several orders of mag-
nitude and provides non-negligible complexity improvements. The resulting tool, maskVerif,
thus verifies circuits at reasonable masking orders. After several improvements in the past
few years [10, 6], maskVerif includes the verification of most probing-like security notions for
different leakage models, including the robust probing model in the presence of glitches. Its
extension into scVerif [32] captures even more advanced hardware side effects [12]. In the same
line of work, checkMasks [38] offers the same functionalities with a more extensive scope (e.g.,
verification of Boolean to arithmetic masking conversion) and a polynomial time verification
on selected gadgets. In the same vein, Zhang et al. use abstraction-refinement techniques
to improve scalability and precision with their tool SCInfer [75] whose complexity remains
significant. Bordes and Karpman [28] also try to improve accuracy with their tool matverif.

In a parallel sequence of works, Rebecca [27] was designed to verify the probing security
in the presence of glitches on Verilog implementations. It preceded the similar improvement
on maskVerif to also handle hardware implementations. One step further, Coco [51] was de-
signed to check masked software implementations given any possible architectural side effects.
Inspired by Rebecca, it analyzes a CPU design as a hardware circuit and investigates several
shares’ potential leaks. Finally, SILVER [62] offers the verification of the classical probing-
like security properties for hardware implementations with a method based on the analysis of
probability distributions.

It is worth noting that before this thesis, no tools existed to verify security in the more
realistic random probing model.
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1.8 Contributions of the Thesis

This thesis focuses on secure and verified masked cryptographic implementations in the random
probing model. Our contributions can be summarized as follows.

Security & Composition [18]. First, we introduce a composition security property to
make gadgets composable in a global random probing secure circuit. We exhibit the relation
between this new random probing composability (RPC) notion and the strong non-interference
(SNI) notion, which is widely used in the context of probing security [10]. We also define a
verification method to automatically exhibit the random probing security parameters of any
small circuit whose variables leak with some probability p. In a nutshell, a circuit is (p, f)-
random probing secure if it leaks information on the secret with probability f(p), where f(p)
is the failure probability function. While it is limited to small circuits by complexity, the
state-of-the-art shows that verifying those circuits can be particularly useful in practice (see
e.g. the maskVerif tool [9]), for instance, to verify gadgets and then deduce global security
through composition properties and low-order masked implementations. Following our work,
the authors of a recent work [32] provide tighter composition notions to compose gadgets
secure in the random probing model by computing probe distribution tables (PDTs). In a
nutshell, a probe distribution table computes a different function f(p) for each leaking set of
input shares and output shares. While their representation allows for tighter composition than
the RPC notion, the latter is used by our expansion strategy, which helps achieve arbitrarily
large levels of security in the random probing model.

Expanding Compiler [18, 22]. Second, we revisit the modular approach of Ananth, Ishai,
and Sahai [3], which uses an expansion strategy to get random probing security from a multi-
party computation protocol. We introduce the powerful expanding compiler that builds ran-
dom probing secure circuits from small base gadgets. We formalize the notion of random prob-
ing expandability (RPE) and show that a base gadget satisfying this notion can be securely
used in the expanding compiler to achieve arbitrary/composable random probing security.
The advantage of this approach is that it enables bootstrapping small gadgets (defined for
a small number of shares) into a circuit, achieving arbitrary security in the random probing
model while tolerating a constant and quantified leakage probability. We provide a detailed
complexity analysis of our strategy and show that it depends on the size of the gadgets and
a parameter that we define as the amplification order. In a nutshell, the amplification order
refers to the size of the smallest set of probes in a gadget that reveals information about the
secret inputs. We prove bounds on the optimal amplification orders achievable by any gad-
get. Then, we compare our approach with previous works, specifically the ISW construction
and the modular approach from [3], and show that our expansion strategy is much more ef-
ficient and achieves better security levels in the random probing model. We also implement
a proof-of-concept expanding compiler that can take any base gadgets as input and give the
expanded gadgets as output (i.e., gadgets on which we applied the expansion strategy). We
additionally implement a protected AES implementation, which uses these output gadgets to
benchmark the performance on a real-life secure implementation. The source code of these
implementations is publicly available at:

https://github.com/CryptoExperts/poc-expanding-compiler

Optimal Expanding Compilers [22, 23]. Third, we provide an in-depth analysis of our
expansion strategy and the expandability notion. We introduce generic constructions of gad-
gets achieving RPE for any number of shares and with nearly optimal parameters. We namely
show how to construct addition, copy, and multiplication gadgets approaching these optimal

15

https://github.com/CryptoExperts/poc-expanding-compiler


parameters and then instantiate these constructions for concrete gadgets on a small number of
shares with a quadratic complexity with respect to the number of shares n. We also push the
random probing expansion strategy one step further by analyzing a dynamic choice of the base
gadgets. We consider a dynamic approach in which a new compiler is selected at each expan-
sion step from a family of base compilers {CCi}i. This approach is motivated by the previously
mentioned generic gadget constructions, which achieve the RPE property for any number of
shares n. While the asymptotic complexity of the expanding compiler decreases with n, the
tolerated leakage probability p also gets smaller with n, which makes those constructions only
practical for small values of n. We show that using our dynamic approach, we can get the best
of both worlds: our dynamic expanding compiler enjoys the best tolerated probability and
the best asymptotic complexity from the underlying family of RPE compilers {CCi}i. This
dynamic approach further motivates the design of asymptotic RPE gadgets to achieve better
complexity. To improve on the previously constructed gadgets with quadratic complexity, we
introduce new constructions achieving quasi-linear complexity. The addition and copy gadgets
are based on the refresh gadget from Battistello, Coron, Prouff, and Zeitoun [14]. While for
the multiplication gadget, we obtain a construction with a linear number of multiplications
by tweaking the probing-secure multiplication gadget from Belaïd, Benhamouda, Passelègue,
Prouff, Thillard, and Vergnaud [17]. As in the original construction, our RPE gadget imposes
some constraints on the underlying finite field. We demonstrate that for any number of shares,
there exists a (possibly large) finite field on which our construction can be instantiated, and
we provide some concrete instantiations for some small number of shares. These new gadgets
finally enable us to achieve nearly optimal complexity for the expanding compiler.

Automatic Verification Tool [21]. Finally, in a first attempt to verify security properties
in the random probing model, we implement a verification tool VRAPS, which verifies random
probing composition and expansion properties by computing the random probing security
parameters as mentioned earlier with the failure function f(p). VRAPS is the first tool to
verify security properties in the random probing model. The source code of VRAPS is publicly
available1. Later, we extend this tool into a more sophisticated one called IronMask, a versatile
verification tool for masking security. IronMask is the first to verify standard simulation-
based security notions in the probing model and composition and expandability notions in
the random probing model introduced through our works. It supports any masking gadgets
with linear randomness (e.g. addition, copy, and refresh gadgets) as well as quadratic gadgets
(e.g. multiplication gadgets) that might include non-linear randomness (e.g. by refreshing
their inputs) while providing complete verification results for both types of gadgets. We
achieve this complete verifiability by introducing a new algebraic characterization for such
quadratic gadgets and exhibiting a complete method to determine the sets of input shares
necessary and sufficient to perform a perfect simulation of any set of probes. We report
various benchmarks which show that IronMask is competitive with state-of-the-art verification
tools in the probing model. IronMask is also several orders of magnitude faster than VRAPS
–the only previous tool verifying random probing composability and expandability– as well
as SILVER –the only previous tool providing complete verification for quadratic gadgets with
non-linear randomness. Thanks to this completeness and increased performance, we obtain
better bounds for the tolerated leakage probability of state-of-the-art random probing secure
compilers. IronMask is open-source and publicly available at:

https://github.com/CryptoExperts/IronMask
1See https://github.com/CryptoExperts/VRAPS
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1.8.1 Other Contributions

Other results were obtained during the thesis but are not discussed in this manuscript.

In [25], we unify and extend existing probing composition notions. Namely, we show
that the composition approach of tight private circuits (TPC) introduced in [20] requires a
stronger notion than the SNI initially considered by the authors. The required notion is
the free SNI notion introduced by Coron and Spignoli in [42]. In a nutshell, the free SNI
notion requires that the non-simulated output shares of a gadget be uniformly distributed
and mutually independent of the simulated wires. We analyze and generalize the free SNI
notion, show how to use it to correct and generalize the TCP proof from [20] and show
strong connections between the free SNI notion and the IOS notion introduced in [53] for
easy composition in the region probing model. We also investigate gadget constructions under
the strong unified notions of free SNI and IOS and propose generic constructions of gadgets
achieving these notions from simpler building blocks. To validate our proofs, we provide
an efficient automatic verification method for these notions and integrate it into the IronMask
tool. Finally, we extend the IOS composition framework proposed in [53] using our generalized
framework to obtain a more efficient composition in the region probing model.

In [24], we present a complete methodology describing the steps to turn an abstract circuit
into a physical implementation satisfying provable security against side-channel attacks in
practice. We propose new tools to enforce or relax the physical assumptions the ideal noisy
leakage model relies on and provide novel ways of including them in a physical implementation.
We also highlight the design goals for an embedded device to reach high levels of proven
security, discussing the limitations and open problems of the practical usability of the leakage
models. Our goal is to show that it is possible to bridge theory and practice and to motivate
further research to fully close the gap and get practical implementations proven secure against
side-channel attacks on a physical device without any ideal assumption about the leakage.
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Chapter 2

Preliminaries

In this chapter, we give the necessary preliminary notations and definitions used in the rest of
this manuscript.

In the following, K shall denote a finite field. For any n ∈ N, we shall denote [n] the integer
set [n] = [1, n] ∩ Z. For any tuple x = (x1, . . . , xn) ∈ Kn (sometimes denoted x̂ depending on
the context, we use x for a vector of variables and x̂ for a sharing) and any set I ⊆ [n], we
shall denote x|I = (xi)i∈I .

Also, for some x̂ = (x̂1, . . . , x̂`) ∈ (Kn)`, we denote by I a collection of sets I = (I1, . . . , I`)
with I1 ⊆ [n], . . . , I` ⊆ [n]. We then denote x̂|I = (x̂1|I1 , . . . , x̂`|I`) where x̂i|Ii ∈ K|Ii| is the
tuple as defined earlier, i.e. x̂i|Ii = (xi,j)j∈Ii .

Finally, any two probability distributions D1 and D2 are said ε-close, denoted D1 ≈ε D2,
if their statistical distance is upper bounded by ε, that is

SD(D1;D2) :=
1

2

∑
x

|pD1(x)− pD2(x)| ≤ ε ,

where pD1(·) and pD1(·) denote the probability mass functions of D1 and D2.

2.1 Circuit Compilers

We call an arithmetic circuit over a field K a labeled directed acyclic graph whose edges are
wires and vertices are arithmetic gates processing operations over K. We consider three types
of arithmetic gates:

• an addition gate, of fan-in 2 and fan-out 1, computes an addition over K,

• a multiplication gate, of fan-in 2 and fan-out 1, computes a multiplication over K,

• a copy gate, of fan-in 1 and fan-out 2, outputs two copies of its input.

A randomized arithmetic circuit is equipped with an additional type of gate:

• a random gate, of fan-in 0 and fan-out 1, outputs a fresh uniform random value of K.

A (randomized) arithmetic circuit is further formally composed of input gates of fan-in 0 and
fan-out 1 and output gates of fan-in 1 and fan-out 0. Evaluating an `-input m-output circuit
C consists in writing an input x ∈ K` in the input gates, processing the gates from input gates
to output gates, then reading the output y ∈ Km from the output gates. This is denoted by
y = C(x). During the evaluation process, each wire in the circuit is assigned a value on K.
We call the tuple of all these wire values a wire assignment of C (on input x).
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Remark 1. We sometimes consider additional types of gates, such as multiplication by a
constant value. For simplicity, we introduce such gates only in the sections where needed.

Definition 1 (Circuit Compiler). A circuit compiler is a triplet of algorithms (CC,Enc,Dec)
defined as follows:

• CC (circuit compilation) is a deterministic algorithm that takes as input an arithmetic
circuit C and outputs a randomized arithmetic circuit Ĉ.

• Enc (input encoding) is a probabilistic algorithm that maps an input x ∈ K` to an encoded
input x̂ ∈ K`′.

• Dec (output decoding) is a deterministic algorithm that maps an encoded output ŷ ∈ Km′

to a plain output y ∈ Km.

These three algorithms satisfy the following properties:

• Correctness: For every arithmetic circuit C of input length `, and for every x ∈ K`,
we have

Pr
(
Dec

(
Ĉ(x̂)

)
= C(x)

∣∣ x̂← Enc(x)
)

= 1 , where Ĉ = CC(C).

• Efficiency: For some security parameter λ ∈ N, the running time of CC(C) is poly(λ, |C|),
the running time of Enc(x) is poly(λ, |x|) and the running time of Dec

(
ŷ
)
is poly(λ, |ŷ|),

where poly(λ, q) = O(λk1qk2) for some constants k1, k2.

2.2 Linear Sharing and Gadgets

In the following, the n-linear decoding mapping, denoted LinDec, refers to the function
⋃
nKn →

K defined as
LinDec : (x1, . . . , xn) 7→ x1 + · · ·+ xn ,

for every n ∈ N and (x1, . . . , xn) ∈ Kn. We shall further consider that, for every n, ` ∈ N, on
input (x̂1, . . . , x̂`) ∈ (Kn)` the n-linear decoding mapping acts as

LinDec : (x̂1, . . . , x̂`) 7→ (LinDec(x̂1), . . . , LinDec(x̂`)) .

Let us recall that for some tuple x̂ = (x1, . . . , xn) ∈ Kn and for some set I ⊆ [n], the tuple
(xi)i∈I is denoted x̂|I .

Definition 2 (Linear Sharing). Let n, ` ∈ N. For any x ∈ K, an n-linear sharing of x is
a random vector x̂ ∈ Kn such that LinDec(x̂) = x. It is said to be uniform if for any set
I ⊆ [n] with |I| < n the tuple x̂|I is uniformly distributed over K|I|. A n-linear encoding is
a probabilistic algorithm LinEnc which on input a tuple x = (x1, . . . , x`) ∈ K` outputs a tuple
x̂ = (x̂1, . . . , x̂`) ∈ (Kn)` such that x̂i is a uniform n-sharing of xi for every i ∈ [`].

In the following, we shall call an (n-share, `-to-m) gadget, a randomized arithmetic circuit
that maps an input x̂ ∈ (Kn)` to an output ŷ ∈ (Kn)m such that x = LinDec(x̂) ∈ K` and
y = LinDec(ŷ) ∈ Km satisfy y = g(x) for some function g, which can be any arithmetic
function over K. In most cases (unless specified otherwise), we shall consider gadgets for three
types of functions corresponding to the three types of gates: the addition g : (x1, x2) 7→ x1+x2,
the multiplication g : (x1, x2) 7→ x1 ·x2 and the copy g : x 7→ (x, x). We shall generally denote
such gadgets Gadd, Gmult and Gcopy respectively. We also make use of the refresh gadget
denoted Grefresh, which takes as input an n-sharing x̂ and outputs a new sharing ŷ such that
x1 + . . . + xn = y1 + . . . + yn. In other words, Grefresh is similar to Gcopy, except that it
corresponds to the identity function g : x 7→ x. As for the other gates (e.g. multiplication by
a constant), we introduce the notation for the corresponding gadgets when needed.
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Definition 3 (Standard Circuit Compiler). Let λ ∈ N be some security parameter and let
n = poly(λ). Let B = {g : K` → Km} be an arithmetic circuit basis with sharing order
n and base gadgets {Gg}g∈B. Typically when we consider B with the three types of gates
introduced earlier (addition, multiplication and copy), we consider the gadgets Gadd, Gmult,
Gcopy respectively. The standard circuit compiler with arithmetic basis B, sharing order n,
and base gadgets {Gg}g∈B is the circuit compiler (CC,Enc,Dec) satisfying the following:

1. The input encoding Enc is an n-linear encoding.

2. The output decoding Dec is the n-linear decoding mapping LinDec.

3. The circuit compilation CC consists in replacing each gate in the original circuit by an
n-share gadget with corresponding functionality (Gg for a gate implementing the function
g), and each wire by a set of n wires carrying an n-linear sharing of the original wire. If
the input circuit is a randomized arithmetic circuit, each of its random gates is replaced
by n random gates, which duly produce an n-linear sharing of a random value.

For such a circuit compiler, the correctness and efficiency directly holds from the correctness
and efficiency of the gadgets {Gg}g∈B.

2.3 (Strong) Non-Interference in the Probing Model

In the t-probing model, an adversary can choose a set of t probes on the wires in the target
circuit. The adversary can then observe the exact values carried by the probes. An n-share
circuit is then t-probing secure for t ≤ n− 1 if any such set of t probes is independent of the
sensitive input shares, assuming all input sharings are uniform.

Proving the security of large masked circuits is a challenging problem. Hence, we usually
build such circuits from smaller blocks called gadgets. However, the definition of t-probing
security does not allow composition of gadgets. In other words, connecting t-probing secure
gadgets does not necessarily give a t-probing secure circuit [40]. Hence, stronger notions are
required to ensure this composition property. In [10], the authors introduce such notions. To
do so, they rely on the simulatability property of sets of probes. Given an `-to-m n-share
gadget with input x̂, a set of probes W is said to be t-simulatable if there exists a collection
of sets I = (I1, . . . , I`) such that |Ii| ≤ t, ∀i ∈ [`], and there exists an algorithm called
simulator that can generate a simulation of the probes in W which have the same distribution
as the probes in W , using only the knowledge of the input shares x̂|I . In other words, given a
fixed input sharing x̂, the simulator only needs access to the values of x̂|I and can perfectly
simulate the distribution of the probes in W . When t ≤ n− 1 and the input sharings are all
uniform, and each set of t probes is t-simulatable, this implies t-probing security as the probes
are independent of the input values not given to the simulator. Note that a trivial simulator
always exists by setting I = ([n], . . . , [n]).

Based on this simulatability notion, the authors of [10] introduce the non-intereference
(NI) and strong non-interference (SNI) composition properties.

Definition 4 (Non-Interference (NI)). Let n, ` and t be positive integers. An n-share gadget
G : (Kn)` → Kn is t-NI if there exists a deterministic algorithm SimG

1 and a probabilistic
algorithm SimG

2 such that for every set J ⊆ [n] and subset W of wire labels from G satisfying
|W |+ |J | 6 t, the following random experiment with any x̂ ∈ (Kn)`

I ← SimG
1 (W,J)

out← SimG
2

(
x̂|I
)
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yields
|I1| 6 t, . . . , |I`| 6 t (2.1)

and
out

id
=
(
AssignWires(G,W, x̂) , ŷ|J

)
(2.2)

where I = (I1, . . . , I`) and ŷ = G(x̂).

We can observe that t-NI is stronger than t-probing security and that t-NI does not suppose
the uniformity of the input sharings. Indeed, t-NI with the uniformity of the input sharings
imply t-probing security.

Next, t-SNI gadgets guarantee independence between the input and output shares in the
presence of a t-probing adversary.

Definition 5 (Strong Non-Interference (SNI)). Let n, ` and t be positive integers. An n-
share gadget G : (Kn)` → Kn is t-SNI if there exists a deterministic algorithm SimG

1 and a
probabilistic algorithm SimG

2 such that for every set J ⊆ [n] and subset W of wire labels from
G satisfying |W |+ |J | 6 t, the following random experiment with any x̂ ∈ (Kn)`

I ← SimG
1 (W,J)

out← SimG
2

(
x̂|I
)

yields
|I1| 6 |W |, . . . , |I`| 6 |W | (2.3)

and
out

id
=
(
AssignWires(G,W, x̂) , ŷ|J

)
(2.4)

where I = (I1, . . . , I`) and ŷ = G(x̂).

The authors of [10] show that building secure circuits from t-NI and t-SNI gadgets is
possible by carefully inserting t-SNI refresh gadgets where needed.

2.4 Gadgets from the Literature

In this section, we introduce some widely used gadgets from the literature that we will use for
our constructions in the rest of this manuscript.

2.4.1 ISW Construction

ISW Multiplication Gadget. The ISW multiplication gadget was introduced in [59] as a
gadget that achieves security in the probing model. The gadget is proven to achieve (n− 1)-
probing security for any number of shares n. Later, the gadget was also proven to satisfy
the stronger (n − 1)-SNI notion in [10]. The ISW multiplication algorithm has quadratic

complexity O(n2) and uses
n(n+ 1)

2
fresh random variables. It is described in Algorithm 1.
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Algorithm 1: ISW Multiplication
Input : (a1, . . . , an),(b1, . . . , bn) input sharings, {rij}1≤i<j≤n random values
Output: (c1, . . . , cn) sharing of a · b

1 for i← 1 to n do
2 ci ← ai · bi;
3 end
4 for i← 1 to n do
5 for j ← i+ 1 to n do
6 ci ← ci + rij ;
7 rji ← (ai · bj + rij) + aj · bi;
8 cj ← cj + rji;
9 end

10 end
11 return (c1, . . . , cn);

ISW Refresh Gadget. The ISW refresh gadget can be seen as an ISW multiplication be-
tween the input sharing and the n-tuple (1, 0, . . . , 0). This is formally depicted in Algorithm 2.
Trivially, the gadget is also (n− 1)-SNI in the probing model.

Algorithm 2: ISW Refresh
Input : (a1, . . . , an) input sharing, {rij}1≤i<j≤n random values
Output: (c1, . . . , cn) such that c1 + · · ·+ cn = a1 + · · ·+ an

1 for i← 1 to n do
2 ci ← ai;
3 end
4 for i← 1 to n do
5 for j ← 1 to i− 1 do
6 ci ← ci + rji;
7 end
8 for j ← i+ 1 to n do
9 ci ← ci + rij ;

10 end
11 end
12 return (c1, . . . , cn);

2.4.2 O(n log n) Refresh Gadget

In [14], the authors introduce a new construction for a refresh gadget that benefits from quasi-
linear complexity. Namely, the n-share gadget has complexity inO(n log n). The authors prove
that the gadget satisfies the strong notion (n − 1)-SNI in the probing model, which makes it
composable and secure in the probing model for any number of shares n. The description of
the gadget is given in Algorithm 3.
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Algorithm 3: QuasiLinearRefresh
Input : (a1, . . . , an) input sharing
Output: (d1, . . . , dn) such that d1 + · · ·+ dn = a1 + · · ·+ an

1 if n = 1 then return a1;
2 if n = 2 then
3 r ← $;
4 return (a1 + r, a2 − r);
5 end
6 for i← 1 to bn/2c do
7 r ← $;
8 bi ← ai + r;
9 bbn/2c+i ← abn/2c+i − r;

10 end
11 if n mod 2 = 1 then bn ← an;
12 (c1, . . . , cbn/2c)← QuasiLinearRefresh(b1, . . . , bbn/2c);
13 (cbn/2c+1, . . . , cn)← QuasiLinearRefresh(bbn/2c+1, . . . , bn);
14 for i← 1 to bn/2c do
15 r ← $;
16 di ← ci + r;
17 dbn/2c+i ← cbn/2c+i − r;
18 end
19 if n mod 2 = 1 then dn ← cn;
20 return (d1, . . . , dn);
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Chapter 3

Random Probing Security

In this chapter, we recall the definition of random probing security from the literature. Then,
we discuss the contributions of this thesis in the following sections. Namely, we introduce
the random probing composability notion, which allows us to securely compose small gadgets
into a circuit with global random probing security. After that, we present our technique for
computing the security parameters of a circuit in the random probing model. In a nutshell,
a circuit is (p, ε)-random probing secure if any set of leaking wires, where each wire is added
independently with probability p, can be perfectly simulated without knowing the secrets with
probability 1− ε. In Section 3.3, we present our contributions on how to compute this failure
probability as a function of the leakage probability p, which allows us to automatically verify
the security of circuits in the random probing model using automatic verification tools like our
tool IronMask discussed later in Chapter 7. The contributions in this chapter are published
in [18].

3.1 Definition of Random Probing Security

Let p ∈ [0, 1] be some constant leakage probability parameter. This parameter is sometimes
called leakage rate in the literature. Informally, the p-random probing model states that during
the evaluation of a circuit C, each wire leaks its exact value with probability p and leaks nothing
with probability 1−p. Such leakage event is defined on each wire in the circuit, independently
of all the other wires. For instance, the probability that all s wires of a circuit C leak their
exact values is ps, while only t ≤ s wires leak their values with probability pt · (1− p)s−t.

Notice that when a wire leaks, it gives the adversary the exact value it carries without
any noise. This is not the case in real-life acquisitions where some noise perturbs the signal
corresponding to a leaked value. Recall that in the t-probing model, at most t wires can leak
their exact values, based on the assumption that retrieving secrets from noisy traces becomes
exponentially hard when the noise becomes more important. In the random probing model,
we have more flexibility than the probing model. Namely, we can represent this noise level by
the leakage probability p, which increases as the noise level decreases.

In order to formally define the random probing leakage of a circuit, we shall consider two
probabilistic algorithms:

• The leaking-wires sampler takes as input a randomized arithmetic circuit C and a prob-
ability p ∈ [0, 1], and outputs a set W , denoted as

W ← LeakingWires(C, p) ,

where W is constructed by including each wire label from the circuit C with probability
p to W (where all the probabilities are mutually independent), except for the output
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wire labels. In other words, the output wires of C (i.e. the wires incoming output gates)
are excluded by the LeakingWires sampler, whereas the input wires of C (i.e. the wires
connecting input gates to subsequent gates) are included. Namely, W does not include
any output wire label of C. This is because when composing several circuits (or gadgets),
the output wires of a circuit are the input wires in the following circuit. This also relates
to the widely admitted only computation leaks assumption [68]: the processing of a gate
leaks information on its input values (and information on the output can be captured
through information on the input).

• The assign-wires sampler takes as input a randomized arithmetic circuit C, a set of
wire labels W (subset of the wire labels of C), and an input x ∈ K`, and it outputs a
|W |-tuple w ∈ (K ∪ {⊥})|W |, denoted as

w ← AssignWires(C,W,x) ,

where w corresponds to the assignments of the wires of C with label in W for an
evaluation on input x.

We can now formally define the random probing leakage of a circuit.

Definition 6 (Random Probing Leakage). The p-random probing leakage of a randomized
arithmetic circuit C on input x is the distribution Lp(C,x) obtained by composing the leaking-
wires and assign-wires samplers as

Lp(C,x)
id
= AssignWires(C, LeakingWires(C, p),x) .

Definition 7 (Random Probing Security). A randomized arithmetic circuit C with ` · n ∈ N
input gates (for ` inputs of n shares) is (p, ε)-random probing secure with respect to encoding
Enc if there exists a simulator Sim such that for every x ∈ K`:

Sim(C) ≈ε Lp(C,Enc(x)) . (3.1)

A circuit compiler (CC,Enc,Dec) is (p, ε)-random probing secure if for every (randomized)
arithmetic circuit C the compiled circuit Ĉ = CC(C) is (p, |C| · ε)-random probing secure
where |C| is the size of the original circuit.

We can slightly tweak the definition above to consider simulation with abort as in [3]. The
difference is that instead of considering that the distribution of Sim(C) is ε-close to that of
Lp(C,Enc(x)), we consider that the simulator either outputs an identical distribution or aborts
(or fails) with probability ε. Formally, for any leakage probability p ∈ [0, 1], the simulator Sim
is defined as

Sim(C) = SimAW(C, LeakingWires(C, p)) (3.2)

where SimAW, the wire-assignment simulator, either returns ⊥ (simulation failure) or a perfect
simulation of the requested wires. Formally, the experiment

W ← LeakingWires(C, p)

out← SimAW(C,W )

leads to

Pr[out = ⊥] = ε and
(
out | out 6= ⊥

) id
=
(
AssignWires(C,W,Enc(x)) | out 6= ⊥

)
. (3.3)

It is not hard to see that if we can construct such a simulator SimAW for a randomized
arithmetic circuit C, then this circuit is (p, ε)-random probing secure. This tweaked definition
will be useful when we express ε as a function of p later in Section 3.3.
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3.2 Composition in the Random Probing Model

It is challenging to construct an arbitrarily large secure circuit, especially with no prior knowl-
edge of the structure of the circuit. To circumvent this issue, we usually build secure circuits
from small building blocks that we call gadgets. For each type of operation (or gate) involved
in the circuit, we construct an n-share gadget with the same functionality as the latter op-
eration. Then, we transform our base circuit starting from the input gates: we replace each
input wire with n wires carrying a sharing of the original wire. Also, each input random wire
is replaced by n input random wires. Then, we replace each internal gate of the circuit with
the corresponding gadget. A standard circuit compiler performs these transformations on the
original circuit. A 2-share example is given in Figure 3.1.

Figure 3.1: Illustration of compilation using a standard circuit compiler with 2-share gadgets.
The inputs are x1, x2, x3 and the output is y. Each arrow represents a wire carrying the value
output by the gate represented as a circle. A gadget is represented as a rectangle since it
consists of multiple gates.

Secure gadgets must satisfy a security notion that guarantees a global security level after
composition. In the t-probing model, many security properties for composition have been
introduced (t-SNI, t-PINI, etc.). In the random probing model, we introduce the random
probing composability notion for a gadget.

Definition 8 (Random Probing Composability). Let n, `,m ∈ N. An n-share gadget G :
(Kn)` → (Kn)m is (t, p, ε)-random probing composable (RPC) for some t ∈ N and p, ε ∈ [0, 1]
if there exists a deterministic algorithm SimG

1 and a probabilistic algorithm SimG
2 such that

for every input x̂ ∈ (Kn)` and for every set collection J = (J1, . . . , Jm) such that ∀i ∈ [m],
Ji ⊆ [n] and |Ji| ≤ t, the random experiment

W ← LeakingWires(G, p)

I = (I1, . . . , I`)← SimG
1 (W,J)

out← SimG
2

(
x̂|I
)

yields
Pr
(
(|I1| > t) ∨ . . . ∨ (|I`| > t)

)
≤ ε (3.4)

and
out

id
=
(
AssignWires(G,W, x̂) , ŷ|J

)
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where J = (J1, . . . , Jm) and ŷ = G(x̂).

In the above definition, the first-pass simulator SimG
1 determines the necessary input shares

(through the returned collection of sets I) for the second-pass simulator SimG
2 to produce a

perfect simulation of the leaking wires defined by the set W together with the output shares
defined by the collection of sets J . Note that there always exists such a collection of sets I
since I = ([n], . . . , [n]) trivially allows a perfect simulation whatever W and J . However, the
goal of SimG

1 is to return a collection of sets I with cardinals at most t. The idea behind this
constraint is to keep the following composition invariant: for each gadget we can achieve a
perfect simulation of the leaking wires plus t shares of each output sharing from t shares of
each input sharing. We shall call failure event the event that at least one of the sets I1, . . . , I`
output of SimG

1 has cardinality greater than t. When (t, p, ε)-RPC is achieved, the failure event
probability is upper bounded by ε according to (3.4). A failure event occurs whenever SimG

2

requires more than t shares of one input sharing to be able to produce a perfect simulation
of the leaking wires (i.e. the wires with label in W ) together with the output shares in ŷ|J .
Whenever such a failure occurs, the composition invariant is broken. In the absence of failure
event, the RPC notion implies that a perfect simulation can be achieved for the full circuit
composed of RPC gadgets. This is formally stated in the next theorem.

Theorem 1 (Composition). Let t ∈ N, p, ε ∈ [0, 1], and CC be a standard circuit compiler
with (t, p, ε)-RPC base gadgets. For every (randomized) arithmetic circuit C composed of |C|
gadgets, the compiled circuit CC(C) is (p, |C| · ε)-random probing secure. Equivalently, the
standard circuit compiler CC is (p, ε)-random probing secure.

Proof. We suppose that all gadgets have two input and one output sharings for simplicity of
notations, but the proof can be trivially generalized to more inputs and outputs.
Let W denote the leaking wires of the randomized circuit CC(C) with probability p for each
wire. We now build a simulator Sim taking as inputs CC(C) and W , and that perfectly
simulates W with probability at least (1 − |C| · ε) from the simulators of the (t, p, ε)-RPC
base gadgets. We start with splitting set W into |C| distinct subsets Wi for i ∈ {1, . . . , |C|}
such that each Wi stands for the output of LeakingWires when applied to the ith gadget Gi of
CC(C) with probability p.
We first describe how Sim executes SimGi

1 for all gadgets in the compiled circuit. Namely,
we start with gadgets whose outputs coincide with the circuit’s outputs (called end gadgets).
We execute their SimGi

1 with Wi and Ji = ∅, to get both sets Ii,1, Ii,2 of required inputs.
Then, we target their parents, that are gadgets whose outputs are inputs of end gadgets. For
instance, for an end gadget Gi, its first input sharing is connected to the output sharing of
a parent gadget Gj , and its second output sharing is connected to the output sharing of a
second parent gadget Gk. Then, we execute Sim

Gj
1 with Wj and Jj = I1,i, and we execute

SimGk
1 with Wk and Jk = I2,i. Both executions give us new sets I of required inputs, which

are correspondingly connected to output sharings of higher parent gadgets. The simulation
goes through the circuit from bottom to top by applying the SimG

1 simulators to get the Wi

and I/J sets. The simulation fails if at least one set I is of cardinal greater than t. For |C|
gadgets, this happens with probability 1−(1−ε)|C| ≤ |C|·ε. Otherwise, the final top execution
of simulators SimGi

1 for gadgets Gi which are directly connected to the input sharings of the
circuit CC(C) gives us the last collection of sets I on the input sharings.
Finally, the global simulator Sim runs the SimG

2 simulators from top to bottom by randomly
picking the initial x̂|I . This completes the construction of our global simulator Sim.
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3.3 Expressing ε as a function of p

In this section, we show how all of the previously seen failure probabilities ε can be expressed as
functions of the leakage probability p. The functional representation of ε will be instrumental
in introducing the idea of Random Probing Expansion, which allows for arbitrarily reducing
the failure event probability of any compiled circuit. In addition, this representation will be
helpful to automatically verify the security of gadgets and circuits in the random probing
model since computing the failure probability then amounts to computing coefficients of a
polynomial in p.

We first derive an upper bound on the simulation failure probability as a function of the
leakage probability p. We consider a compiled circuit Ĉ composed of s wires labeled from 1
to s and a simulator SimAW as defined in Section 3.1. For any sub-set W ⊆ [s] we denote by
δW the value defined as follows:

δW =

{
1 if SimAW(Ĉ,W ) = ⊥,
0 otherwise.

The simulation failure probability ε in (3.3) can then be explicitly expressed as a function
of p. Namely, we have ε = f(p) with f defined for every p ∈ [0, 1] by:

f(p) =
∑
W⊆[s]

δW · p|W | · (1− p)s−|W | . (3.5)

Letting ci be the number of subsets W ⊆ [s] of cardinality i for which δW = 1, namely for
which the simulation fails, we have ci =

∑
|W |=i δW and hence (3.5) simplifies to

f(p) =

s∑
i=1

ci · pi · (1− p)s−i . (3.6)

For any circuit Ĉ achieving t-probing security, the values δW with |W | ≤ t are equal to
zero. Indeed, a circuit which is t-probing secure means that any set of at most t intermediate
computations is independent of the secret values involved in the circuit. In other words, a
simulator can perfectly simulate such a set without access to the secret values. Therefore, the
corresponding ci’s are equal to zero, which implies the following simplification:

f(p) =

s∑
i=t+1

ci · pi · (1− p)s−i .

Moreover, by definition, the coefficients ci satisfy:

ci 6

(
s

i

)
(3.7)

since we have exactly
(
s
i

)
sets of wire labels of size i from a total of s wire labels. This

observation finally leads to the following upper-bound for f(p):

f(p) 6
s∑

i=t+1

(
s

i

)
· pi · (1− p)s−i .

An obvious goal is to try to construct circuits (p, ε)-random probing secure for ε as small
as possible and p as big as possible. The circuit can then tolerate a large amount of leakage,
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which would still be independent of the secret values. From the expression in x, we need to
minimize the coefficients ci in f(p) to get small failure probabilities.

For any compiled circuit Ĉ and any simulator defined as in Section 3.1, the computation
of the function f(p) for any probability p essentially amounts to computing the values of the
coefficients ci’s appearing in (3.6). If no assumption is made on the circuit, this task seems
complicated to carry out by hand. It may be checked that exhaustive testing of all the possible
tuples of wires for a gadget with s wires has complexity lower bounded by 2s. For now, we
suppose we have access to algorithms that allow us to efficiently and automatically compute
the coefficients of the function ε = f(p). We will discuss automatic verification tools in more
detail later in Chapter 7.

Let us take an example to illustrate such a function. We consider the well-known ISW
multiplication gadget for n = 2 shares. The full description of the gadget is given in Algo-
rithm 1 in Chapter 2.This gadget takes at input the 2-sharings (a1, a2) and (b1, b2) of a and b
respectively, and outputs the 2-sharing

(c1, c2) = (a1 · b1 + r1,2, a2 · a2 + r1,2 + a1 · b2 + a2 · b1)

where r1,2 is a random value. The processing is composed of the following intermediate results,
where each variable is assigned a wire:

m1,1 = a1 ∗ b1 m1,2 = a1 ∗ b2 m2,1 = a2 ∗ b1 m2,2 = a2 ∗ b2
tmp = m1,2 + r1,2 r2,1 = tmp+m2,1 c1 = m1,1 + r1,2 c2 = m2,2 + r2,1

Recall that when the same variable is involved as input of several operations, a copy gadget
(with 1 input and 2 output wires) is applied to duplicate it. Consequently, each new use of
the same variable as input of an operation adds 2 wires to the final count of overall wires.

We can check that the circuit corresponding to the 2-share ISW gadget comprises 21
intermediate wires, excluding the 2 output wires c1 and c2. Since the gadget is 1-SNI (c.f. [10])
but not 2-SNI, every set with a single wire can be perfectly simulated without knowing the
secrets. However, it is only the case for some pairs of wires. For instance, the set composed
of two wire labels corresponding to variables {a1, a2} cannot be perfectly simulated without
knowing the secret a since the latter can be obtained from the combination of both share
values. 51 such pairs of wires cannot be simulated. If we continue the test for the sets
of cardinality from 3 to 21, we get the following list of 21 coefficients, computed with the
IronMask verification tool described in Chapter 7:

[0, 51, 754, 4827, 18875, 52994, 115520, 203176, 293844, 352702,
352715, 293930, 203490, 116280, 54264, 20349, 5985, 1330, 210, 21, 1].

We can directly inject these coefficients in (3.6) to get the expression of f(p) for the 2-share
ISW multiplication gadget. This gadget is (p, f(p))-random probing secure for the computed
function f(p). Figure 3.2 shows the evolution of the value of f(p) for an increasing p. For
example, for a leakage rate of p = 0.5, we can check that a simulator has almost a 99.7% chance
of being unable to perfectly simulate a leaking set of wires during the execution of the circuit.
For a leakage rate of p = 0.05, this failure chance decreases to about 10%. Clearly, the higher
the leakage rate, the more difficult it is to guarantee the independence of the leaking wires
from the secret inputs, which is logical since more sensitive leakage gives more information
about the secrets. The speed at which the failure probability increases with the increase of
the leakage rate depends on the security of the constructed circuit and the underlying ε.
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Figure 3.2: Evolution of the failure probability function f(p) for the 2-share ISWmultiplication
gadget, for an increasing leakage rate p.

3.3.1 Failure function for Random Probing Composability

Recall the definition of (t, p, ε)-random probing composability (Definition 8). In this definition,
we can express ε in the same way as a function of the leakage rate p. We need to consider a
set of wire labels and a set of t output wires for each circuit output. Namely, for each possible
collection of sets J = (J1, . . . , Jm) such that ∀ i ∈ [m], Ji ⊆ [n] and |Ji| ≤ t, and each set
W of internal wire labels, we need to consider the simulation of the wires in W and ŷ|J . An
additional constraint is that the simulator must be able to perfectly simulate all the wires
involved while having access to at most t shares of each input sharing. If we denote cJi the
number of such sets W for which the simulation of W along with ŷ|J fails, then we obtain the
expression as follows:

f(p) =
s∑
i=1

max
J

cJi · pi · (1− p)s−i . (3.8)

Interestingly, we can demonstrate that n-share gadgets satisfying the t-SNI notion for t < n
are also random probing composable for specific values we explicit in the following proposition.

Proposition 1. Let n, ` and t be positive integers and let G be a gadget from (Kn)` to Kn.
If G is t-SNI, then it is also (bt/2c, p, ε)-RPC for any probability p and ε satisfying:

ε ≤
s∑

i=b t
2
+1c

(
s

i

)
pi(1− p)s−i , (3.9)

where s is the number of wires in G.

Proof. Since G is t-SNI, there exist two simulators SimG
1 and SimG

2 satisfying (2.3) and (2.4)
for any J ⊆ [n] and any W satisfying |W |+ |J | 6 t. This is in particular true for every W and
every J both of cardinality lower than or equal to bt/2c. For every setW such that |W | > bt/2c
and every set J such that |J | 6 bt/2c, we consider the worst case. We modify simulator SimG

1

to return the full set of input indices (i.e. I = [n]`). Then, the second simulator SimG
2 is

simply augmented to perfectly simulate (AssignWires(G,W, x̂) , ŷ|J) from the full knowledge
of the gadget inputs (which is trivially possible). By construction, for any J with |J | 6 bt/2c,
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the output I = (I1, . . . , I`) of SimG
1 (W,J) contains at least one Ij with cardinality greater

than bt/2c only when W has cardinality strictly greater than bt/2c (and in this case all the
Ij ’s have full cardinality [n]). Hence, the probability Pr

(
(|I1| > bt/2c) ∨ . . . ∨ (|I`| > bt/2c)

)
,

when J is a given set with |J | 6 bt/2c and W is the output of LeakingWires(G, p), satisfies
(3.9), which concludes the proof.

As an illustration of the proposition, let us consider again the 3-share ISW multiplication
gadget satisfying 2-SNI. Recall that the gadget has 57 internal wires, excluding the 3 output
wires. From Proposition 1, this gadget is also (1, p, ε)-RPC for any probability p and such
that

ε ≤
57∑
i=2

(
s

i

)
pi(1− p)57−i.

Using a verification tool like IronMask (we will discuss automatic verification tools in more
detail later in Chapter 7), we get a tighter representation of the function as

ε = 415 · p2 · (1− p)55 +O(p3) .

Remark 2. In a follow-up work to our results [32], the authors introduce a tighter composition
approach in the random probing model, which splits the failure function f(p) into several failure
functions for each possible set of leaking output wires and input wires for the simulation. In a
nutshell, their composition strategy relies on using what they call a probe distribution table or
PDT. Each entry in the table corresponds to a failure function fI,O(p) where O is the set of
output shares leaking in addition to the intermediate variables, and I is the set of input shares
necessary for a perfect simulation of the intermediate probes and the output share in O. The
PDT for an n-share gadget with ` inputs and m outputs has n × ` rows and n ×m columns.
The authors reason on the nature of the composition, i.e., parallel or sequential composition,
and can get better security bounds by composing these PDTs. Meanwhile, the sizes of the
PDTs increase exponentially with the circuit size, unlike our RPC notion. In addition, their
composition approach is not yet extended to the random probing expansion approach, which
we will introduce in the next chapter. An interesting future work would be integrating their
composition approach using PDTs with our expansion technique.

3.4 Conclusion

In this chapter, we recalled the definition of random probing security and proposed a way of
composing different RP secure gadgets into a circuit with global RP security. The composition
requires that the gadgets satisfy the RP composability notion. In addition, we presented a
practical way of computing the failure event probability of RP security as a function of the
leakage probability p, which allows for automatic verification of gadgets’ security in the random
probing model.

While the RP composability ensures global RP security in any circuit, it does not help
to increase this security level. Ideally, we would like a circuit to tolerate the highest leakage
rate possible p with the lowest simulation failure probability ε. In the next chapter, we tackle
this problem by introducing the random probing expansion strategy, which helps achieve any
desired security level regarding the failure event probability at the expense of a complexity
overhead, which we also analyze.
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Chapter 4

Random Probing Expansion

Constructing random probing secure circuits is a challenging task. We want to achieve the
highest security level possible, in other words, tolerate the maximum leakage probability p
with the lowest failure probability ε. Indeed, for a fixed number of shares n, a secure gadget
can only achieve a bounded value for the failure probability. A solution would be to increase
the number of shares, meaning that the gadgets’ construction should be generic and scale well
with the number of shares in the circuit. In addition, we want to quantify the exact failure
probability achieved for a given n, which can be done either by getting generic formulas for ε
or by using automatic verification tools. Both solutions are difficult to handle when we have
complex and large gadgets.

This chapter discusses a powerful tool: the random probing expanding compiler. The
expanding compiler allows for achieving arbitrarily large security levels in the random probing
model, starting from small gadgets using the expansion strategy. We will see later that small
gadgets for small numbers of shares tend to tolerate better leakage probabilities but have
higher failure probabilities than larger gadgets. The expansion strategy aims to take the best
of both worlds: use small gadgets which tolerate high leakage rates and expand them into larger
gadgets which tolerate the same leakage rates but have much smaller failure probabilities.

In [3], Ananth, Ishai and Sahai first proposed constructing random probing secure circuit
compilers with a gadget expansion strategy. Such a strategy was previously used in multi-
party computation (MPC) with different but close security goals [37, 58]. Note that such an
approach is called composition in [3] since it roughly composes a base circuit compiler several
times. We prefer the terminology of expansion to avoid confusion with the usual notion of
composition for gadgets in the masking literature.

Our works introduce an instantiation of the expansion strategy relying on atomic gadgets
leading to simple and efficient constructions. In contrast, the construction of [3] relies on a
t-out-n secure MPC protocol in the passive security model. We introduce a security notion
we call random probing expandability, allowing gadgets to be used in the expanding compiler.
We show that this notion can be easily verified using automatic verification tools, making
it convenient to test gadgets for a reasonable order. We provide a detailed analysis and
discussion about this strategy, its security in the random probing model and its asymptotic
complexity. Finally, we show how we can construct generic gadgets that achieve the best
trade-offs between complexity and security levels and instantiate them for a small number of
shares to demonstrate actual security levels achieved for some cryptographic algorithms like
the AES encryption scheme as a proof-of-concept.

In the following, we mostly focus on gadgets with at most 2 inputs and 2 outputs, which
already covers addition, multiplication, copy and random generation gadgets, allowing us to
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model any circuit with basic operations. The contributions in this chapter are published
in [18, 22].

4.1 Expansion Strategy

The basic principle of the gadget expansion strategy is as follows. Assume we have an arith-
metic circuit basis B = {g : K` → Km} of arithmetic operations composing any circuit (in most
cases, we consider B to consist of addition, multiplication and copy gates). Assume that we
also have the corresponding n-share gadgets Gg for g ∈ B and denote CC the standard circuit
compiler for these base gadgets. We can derive new n2-share gadgets by simply applying CC

to each gadget: G(2)
g = CC(Gg) for each g ∈ B. Let us recall that this process simply consists

in replacing each gate g in the original gadget by Gg, and by replacing each wire by n wires
carrying a sharing of the original wire. Doing so, we obtain n2-share gadgets for each base
gate in B over K. This process can be iterated an arbitrary number of times, say k, to an
input circuit C:

C
CC−−−→ Ĉ1

CC−−−→ · · · CC−−−→ Ĉk .

The first output circuit Ĉ1 is the original circuit in which each gate is replaced by a base gadget
Gg. The second output circuit Ĉ2 is the original circuit C in which each gate is replaced by an
n2-share gadget G(2)

g as defined above. Equivalently, Ĉ2 is the circuit Ĉ1 in which each gate is
replaced by a base gadget. In the end, the output circuit Ĉk is hence the original circuit C in
which each gate has been replaced by a k-expanded gadget and each wire has been replaced
by nk wires carrying an (nk)-linear sharing of the original wire. The underlying compiler is
called expanding circuit compiler which is formally defined hereafter.

Definition 9 (Expanding Circuit Compiler). Let CC be the standard circuit compiler for an
arithmetic circuit basis B = {g : K` → Km} with sharing order n and base gadgets {Gg}g∈B.
The expanding circuit compiler with expansion level k and base compiler CC is the circuit
compiler (CC(k),Enc(k),Dec(k)) satisfying the following:

1. The input encoding Enc(k) is an (nk)-linear encoding.

2. The output decoding Dec is the (nk)-linear decoding mapping.

3. The circuit compilation is defined as

CC(k)(·) = CC ◦ CC ◦ · · · ◦ CC︸ ︷︷ ︸
k times

(·)

The goal of the expansion strategy in the context of random probing security is to replace
the leakage probability p of a wire in the original circuit by the failure event probability ε in
the subsequent gadget simulation. If this simulation fails then one needs the full input sharing
for the gadget simulation, which corresponds to leaking the corresponding wire value in the
base case. The security is thus amplified by replacing the probability p in the base case by the
probability ε (assuming that we have ε < p). If the failure event probability ε can be upper
bounded by some function of the leakage probability: ε < f(p) for every leakage probability
p ∈ [0, pmax] for some pmax < 1, then the expanding circuit compiler with expansion level k
shall result in a security amplification as

p = ε0
f−−→ ε1

f−−→ · · · f−−→ εk = f (k)(p) ,

which for an adequate function f (e.g. f : p 7→ p2) provides exponential security. In order to
get such a security expansion, the gadgets must satisfy a stronger notion than the composability
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notion introduced in Chapter 3, which we call random probing expandability ; see Section 4.2
below.

Since in our case, we focus on addition, multiplication and copy gadgets, we limit our
definitions to ` ≤ 2 and m ≤ 2 for the sake of simplicity, but all notions can be generalized to
any ` and m.

4.2 Expansion Security

In evaluating random probing composability, let us recall that the failure event in the sim-
ulation of a gadget means that more than t shares from one of its inputs are necessary to
complete a perfect simulation. For a gadget to be expandable, we need slightly stronger no-
tions than random probing composability. As a first requirement, a two-input gadget should
have a failure probability independent for each input. This is because, in the base case, each
input wire to a gate leaks independently. On the other hand, in case of a failure event in the
child gadget during the expansion, the overall simulator (of the k-expanded gadget) should be
able to produce a perfect simulation of the entire output (that is, the entire input for which
the failure occurs). Hence, the overall simulator is given the clear output (obtained from the
base case simulation) plus any set of n−1 output shares. In this case, whenever the set J is of
cardinal greater than t, the gadget simulator can replace it with any set J ′ of cardinal n− 1.
More details are given hereafter.

Definition 10 (Random Probing Expandability for 2-to-1 gadgets). Let f : R → R. An
n-share gadget G : Kn ×Kn → Kn is (t, f)-random probing expandable (RPE) if there exists
a deterministic algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for every input

(x̂, ŷ) ∈ Kn ×Kn, for every set J ⊆ [n] and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2, J
′)← SimG

1 (W,J)

out← SimG
2 (W,J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
|I1| > t

)
and F2 ≡

(
|I2| > t

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (4.1)

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. J ′ is such that J ′ = J if |J | ≤ t and J ′ ⊆ [n] with |J ′| = n− 1 otherwise,

3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J ′

)
(4.2)

where ẑ = G(x̂, ŷ).

The RPE notion can be simply extended to gadgets with 2 outputs: the SimG
1 simulator

takes two sets J1 ⊆ [n] and J2 ⊆ [n] as input and produces two sets J ′1 and J ′2 satisfying the
same property as J ′ in the above definition (w.r.t. J1 and J2). The SimG

2 simulator must then
produce an output including ẑ1|J ′1 and ẑ2|J ′1 where ẑ1 and ẑ2 are the output sharings. The
RPE notion can also be simply extended to gadgets with a single input: the SimG

1 simulator
produces a single set I so that the failure event (|I| > t) occurs with probability lower than ε
(and the SimG

2 simulator is then simply given x̂|I where x̂ is the single input sharing). For the
sake of completeness, we provide the RPE definition for the 1-to-2 case below, but we only
focus on 2-to-1 and 1-to-2 gadgets.
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Definition 11 (Random Probing Expandability for 1-to-2 gadgets). Let f = R → R. An
n-share gadget G : Kn → Kn ×Kn is (t, f)-random probing expandable (RPE) if there exists
a deterministic algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for every input

x̂ ∈ Kn, for every pair of sets J1 ⊆ [n] and J2 ⊆ [n], and for every p ∈ [0, 1], the random
experiment

W ← LeakingWires(G, p)

(I, J ′1, J
′
2)← SimG

1 (W,J1, J2)

out← SimG
2 (W,J ′1, J

′
2, x̂|I)

ensures that

1. the failure event probability satisfies Pr
(
|I| > t

)
≤ ε with ε = f(p),

2. the set J ′1 is such that J ′1 = J1 if |J1| ≤ t and J ′1 ⊆ [n] with |J ′1| = n− 1 otherwise,

3. the set J ′2 is such that J ′2 = J2 if |J2| ≤ t and J ′2 ⊆ [n] with |J ′2| = n− 1 otherwise,

4. the output distribution satisfies

out
id
=
(
AssignWires(G,W, x̂) , ŷ|J ′1 , ẑ|J ′2

)
(4.3)

where (ŷ, ẑ) = G(x̂).

It is not hard to check that the above expandability notions are stronger than the com-
posability notion introduced in Section 3.2. Formally, we have the following reduction.

Proposition 2. Let f = R→ R and n ∈ N. Let G be an n-share gadget with ` ≤ 2 inputs. If
G is (t, f)-RPE then G is (t, f ′)-RPC, with f ′(·) = ` · f(·).

Proof. We consider a (t, f)-RPE n-share gadget G : Kn×Kn → Kn. The (t, 2·f)-random com-
posability property is directly implied by the (t, f)-random probing expandability by making
use of the exact same simulators and observing that

Pr
(
(|I1| > t) ∨ (|I2| > t)

)
≤ Pr(|I1| > t) + Pr(|I2| > t) = 2 · ε.

The case of ` = 1 input gadgets is even more direct.

Definition 10 (and Definition 11) of random probing expandability is valid for base gadgets.
For level-k gadgets G(k) = CC(k−1)(G) where G ∈ {Gg}g∈B is a base gadget, we provide a
generalized definition of random probing expandability.

Adequate subsets of [nk]. We first define the notion of “adequate" subsets of [nk], instead
of only bounded subsets. For this we define recursively a family Sk ∈ P([nk]), where P([nk])
denotes the set of all subsets of [nk], as follows:

S1 = {I ∈ [n], |I| ≤ t}
Sk = {(I1, . . . , In) ∈ (Sk−1 ∪ [nk−1])n, Ij ∈ Sk−1 ∀ j ∈ [1, n] except at most t}

In other words, a subset I belongs to Sk if among the n subset parts of I, at most t of them are
full, while the other ones recursively belong to Sk−1; see Figure 4.1 below for an illustration
with n = 3 and t = 1.
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Figure 4.1: Illustration of all elements of S1 and some elements of S2, for n = 3 and t = 1.

Generalized definition of Random Probing Expandability. We generalize Definition
10 as follows. At level k the input sets I1 and I2 must belong to Sk, otherwise we have a
failure event. As in Definition 10, the simulation is performed for an output subset J ′ with
J ′ = J if J ∈ Sk, otherwise J ′ = [nk] \ {j?} for some j? ∈ [nk].

Definition 12 (Random Probing Expandability with {Sk}k∈N). Let f : R → R and k ∈ N.
An nk-share gadget G : Knk × Knk → Knk is (Sk, f)-random probing expandable (RPE) if
there exists a deterministic algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for

every input (x̂, ŷ) ∈ Knk ×Knk , for every set J ∈ Sk ∪ [nk] and for every p ∈ [0, 1], the random
experiment

W ← LeakingWires(G, p)

(I1, I2, J
′)← SimG

1 (W,J)

out← SimG
2 (W,J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
I1 /∈ Sk

)
and F2 ≡

(
I2 /∈ Sk

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (4.4)

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. the set J ′ is such that J ′ = J if J ∈ Sk, and J ′ = [nk]\{j?} for some j? ∈ [nk] otherwise,

3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J ′

)
(4.5)

where ẑ = G(x̂, ŷ).

The notion of random probing expandability from Definition 12 naturally leads to the
statement of the following main theorem.

Theorem 2. Let n ∈ N and f : R → R. Let {Gg}g∈B be n-share gadgets for g ∈ B over K,
where each g ∈ B is of at most 2 inputs and 2 outputs. Let CC be the standard circuit compiler
with sharing order n and base gadgets {Gg}g∈B. Let CC(k) be the expanding circuit compiler
with base compiler CC. If the base gadgets {Gg}g∈B, are (t, f)-RPE then, G(k)

g = CC(k−1)(Gg)
for g ∈ B are (Sk, f

(k))-RPE, nk-share gadgets for the addition, multiplication and copy on K.
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Proof. The proof of the theorem relies on what we shall call the assignment expansion property.
Throughout the proof we shall denote εk = f (k)(p). We call level-k gadget a gadget that has
been expanded k − 1 times G(k) = CC(k−1)(G) where G is a base gadget (or a level-1 gadget)
among Gg for g ∈ B.

We proceed by induction to show that the level-k gadgets are (Sk, f
(k))-RPE. The base

case is one of the theorem hypotheses, namely the base gadgets {Gg}g∈B (i.e. the level-1
gadgets) are (t, f)-RPE, which is equivalent to (S1, f)-RPE. We must then show the induction
step: assuming that the level-k gadgets are (Sk, f

(k))-RPE, show that the level-(k+1) gadgets
are (Sk+1, f

(k+1))-RPE. For the sake of simplicity, we depict our proof by assuming that all
the gadgets are 2-to-1 gadget (which is actually not the case for copy gadgets). The proof
mechanism for the general case is strictly similar but heavier on the form.

In order to show that G(k+1) is (Sk+1, f
(k+1))-RPE we must construct two simulators

SimG(k+1)

1 and SimG(k+1)

2 that satisfy the conditions of Definition 28 for the set of subsets Sk+1.
More precisely, we must construct two simulators SimG(k+1)

1 and SimG(k+1)

2 such that for every
(x̂∗, ŷ∗) ∈ Knk+1 ×Knk+1 , and for every set J∗ ∈ Sk+1 ∪ [nk+1], the random experiment

W ∗ ← LeakingWires(G(k+1), p)

(I∗1 , I
∗
2 , J

∗′)← SimG
1 (W ∗, J∗)

out← SimG
2 (W ∗, J∗, x̂∗|I∗1 , ŷ

∗|I∗2 )

ensures that

1. the failure events F∗1 ≡
(
I∗1 /∈ Sk+1) and F∗2 ≡

(
I∗2 /∈ Sk+1) verify

Pr(F∗1) = Pr(F∗2) = εk+1 and Pr(F∗1 ∧ F∗2) = ε2k+1 (4.6)

2. the set J∗′ is such that J∗′ = J∗ if J∗ ∈ Sk+1 and J∗′ = [nk+1] \ {j?} otherwise,

3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J∗′

)
(4.7)

where ẑ = G(k+1)(x̂, ŷ).

We distinguish two cases: either J∗ ∈ Sk+1 (normal case), or J∗ = [nk+1] (saturated case).

Normal case: J∗ ∈ Sk+1. By definition of the expanding compiler, we have that a level-
(k+1) gadget G(k+1) is obtained by replacing each gate of the base gadget by the corresponding
level-k gadget and by replacing each wire of the base gadget by nk wires carrying a (nk)-linear
sharing of the original wire. In particular G(k+1) has nk+1 output wires which can be split
in n groups of nk wires, each group being the output of a different G(k) gadget. We split the
set J∗ accordingly so that J∗ = J∗1 ∪ · · · ∪ J∗n, where each set J∗i pertains to the ith group of
output wires. By definition of Sk, since J∗ ∈ Sk+1, we must have J∗i ∈ Sk for all 1 ≤ i ≤ n,
except at most t of them for which J∗i = [nk]. We define Jbase as the set of indexes i such that
J∗i /∈ Sk. Therefore we must have |Jbase| ≤ t.

We first describe the simulator SimG(k+1)

1 that takes the leaking wires W ∗ and the output
wires J∗ ∈ Sk+1 to be simulated and produce the sets I∗1 ⊆ [nk+1] and I∗2 ⊆ [nk+1] of required
inputs. The simulator SimG(k+1)

1 starts by defining a setWbase which is initialized to ∅; this will
correspond to the set of leaking wires for the base gadget. Then the simulation goes through
all the level-k gadgets composing G(k+1) from bottom to top i.e. starting with the level-k
gadgets producing the output sharing up to the level-k gadgets processing the input sharings.
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Let us denote by {G(k)
j }j these level-k gadgets. For each G

(k)
j , one runs the simulator Sim1

from the (Sk, f
(k))-RPE property on input Wj and Jj defined as follows. The set of leaking

wires Wj is defined as the subset of W ∗ corresponding to the wires of G(k)
j . For the gadgets

G
(k)
j on the bottom layer, the set Jj is set to one of the J∗i (with indices scaled to range in

[nk]). For all the other gadgets G(k)
j (which are not on the bottom layer), the set J is defined

as the set I1 or I2 output from Sim1 for the child gadget G(k)
j′ (for which Sim1 has already

been run).

Whenever a failure event occurs for a G(k)
j gadget, namely when the set I (either I1 or

I2) output from Sim1 is such that I /∈ Sk, we add the index of the wire corresponding to this
input in the base gadget G to the set Wbase. Once the Sim1 simulations have been run for
all the G(k)

j gadgets, ending with the top layers, we get the final sets I corresponding to the

input shares. Each of these sets corresponds to an nk-sharing as input of a G(k)
j gadget, which

corresponds to a wire as input of the base gadget among the 2 ·n wires carrying the two input
n-sharings of the base gadget. We denote by I∗1,1, . . . , I∗1,n and I∗2,1, . . . , I∗2,n the corresponding
sets so that defining

I∗1 = I∗1,1 ∪ . . . ∪ I∗1,n and I∗2 = I∗2,1 ∪ . . . ∪ I∗2,n , (4.8)

the tuple x̂∗|I∗1 and ŷ∗|I∗2 contains the shares designated by the final I sets.

At the end of the SimG(k+1)

1 simulation, the set Wbase contains all the labels of wires in the
base gadget G for which a failure event has occurred in the simulation of the corresponding
G

(k)
j gadget. Thanks to the (Sk, f

(k))-RPE property of these gadgets, the failure events happen
(mutually independently) with probability εk which implies

Wbase
id
= LeakingWires(G, εk) (4.9)

Recall that |Jbase| ≤ t. We can then run SimG
1 to obtain:

(I1,base, I2,base) = SimG
1 (Wbase, Jbase) . (4.10)

For all 1 ≤ i ≤ n, if i ∈ I1,base, we force I∗1,i ← [nk], so that the corresponding i-th input wire
of the base gadget can be computed from the corresponding input wires in I∗1,i. The simulator

SimG(k+1)

1 then returns (I∗1 , I
∗
2 ) as output.

The (t, f)-RPE property of the base gadget G implies that the base failure events |I1,base| =
n and |I2,base| = n are εk+1-mutually unlikely, where εk+1 = f(εk). We argue that for all
1 ≤ i ≤ n, I∗1,i /∈ Sk ⇐⇒ i ∈ I1,base. Namely if a failure event has occurred for a set I∗1,i (i.e.
I∗1,i /∈ Sk) then we must have i ∈ I1,base. Indeed, if a failure event has occurred for a set I∗1,i
then the label of the ith input wire (for the first sharing) of the base gadget G has been added
to Wbase and SimG

1 has no choice but to include this index to the set I1,base so that SimG
2 can

achieve a perfect simulation of the wire assignment (as required by the RPE property of G).
Moreover if i ∈ I1,base then by construction we have set I∗1,i = [nk] and therefore I∗1,i /∈ Sk.
This implies that if |I1,base| ≤ t then I∗1 ∈ Sk+1 (and the same happens for I∗2 w.r.t. I2,base).
We deduce that the failure events F∗1 and F∗2 are also εk+1-mutually unlikely, as required by
the (Sk+1, f

(k+1))-RPE property of G(k+1).

We now describe the simulator SimG(k+1)

2 that takes as input x̂∗|I∗1 and ŷ∗|I∗2 and produces
a perfect simulation of

(
AssignWires(G(k+1),W ∗, (x̂∗, ŷ∗)), ẑ|J∗

)
where ẑ = G(k+1)(x̂, ŷ). Let

x̂b and ŷb denote the n-linear sharings obtained by applying the linear decoding to each group
of nk shares in x̂∗ and ŷ∗, so that the elements of x̂b and ŷb correspond to the input wires in
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the base gadget G. The assignment expansion property implies that a perfect assignment of
the wires of G(k+1) on input x̂∗ and ŷ∗ can be derived from an assignement of the wires of the
base gadget G on input x̂b and ŷb. The simulator makes use of this property by first running

outbase ← SimG
2 (Wbase, Jbase, x̂

b|I1,base , ŷ
b|I2,base) , (4.11)

Note that the input values x̂b|I1,base and ŷb|I2,base can be obtained from the corresponding
shares in I∗1 and I∗2 . Thanks to the (t, f)-RPE property of G and by construction of I1,base
and I2,base, this outputs a distribution satisfying

outbase
id
=
(
AssignWires(G,Wbase, (x̂

b, ŷb)), ẑb|Jbase

)
(4.12)

The simulator then goes through all the G(k)
j gadgets from input to output and for each of

them runs the simulator Sim2 of the RPE property on inputs Wj , Jj , x̂|I1 and ŷ|I2 where Wj

and Jj are the sets from the first phase of the simulation for the gadget G(k)
j , I1 and I2 are the

corresponding sets produced by the Sim1 simulator for G(k)
j , and x̂ and ŷ are the inputs of G(k)

j

in the evaluation of G(k+1)(x̂∗, ŷ∗). Provided that the partial inputs x̂|I1 and ŷ|I2 are perfectly
simulated, this call to Sim2 produces a perfect simulation of

(
AssignWires(G

(k)
j ,Wj , (x̂, ŷ), ẑ|Jj

)
where ẑ = G

(k)
j (x̂, ŷ). In order to get perfect simulations of the partial inputs x̂|I1 and ŷ|I2 ,

the simulator proceeds as follows. For the top layer of G(k) gadgets (the ones processing the
input shares) the shares x̂|I1 and ŷ|I2 can directly be taken from the inputs x̂∗|I∗1 and ŷ∗|I∗2 .
For the next gadgets the shares x̂|I1 and ŷ|I2 match the shares ẑ|J output from the call to
Sim2 for a parent gadget. The only exception occurs in case of a failure event.

In that case the simulation needs the full input x̂ = (x1, . . . , xnk) (and/or ŷ = (y1, . . . , ynk)),
while we have set |I1| = nk − 1 (and/or |I2| = nk − 1) to satisfy the RPE requirements
of the parent gadget in the first simulation phase. Nevertheless, for such cases a perfect
simulation of the plain value x = LinDec(x̂) (and/or y = LinDec(ŷ)) is included to outbase
by construction of Wbase. We can therefore perfectly simulate the missing share from the
nk − 1 other shares and the plain value x (or y). We thus get a perfect simulation of(
AssignWires(G

(k)
j ,Wj , (x̂, ŷ), ẑ|Jj

)
for all the level-k gadgets G(k)

j which gives us a perfect
simulation of

(
AssignWires(G(k+1),W ∗, (x̂∗, ŷ∗)), ẑ|J∗

)
.

Saturated case: J∗ = [nk+1]. The saturated case proceeds similarly. The difference is that
we must simulate all nk+1 output shares of the level-(k+ 1) gadget, except for one share index
j∗ that can be chosen by the simulator.

The simulator SimG(k+1)

1 is defined as previously. Since J∗ = [nk+1], we must define Jbase =

[1, n]. Moreover we have J∗i = [nk] for all 1 ≤ i ≤ n. This implies that for the gadgets G(k)
j on

the output layer, the sets Jj are all equal to [nk] as well. The setWbase is defined as previously,
and the simulator SimG(k+1)

1 returns (I∗1 , I
∗
2 ) as previously. The failure events F∗1 and F∗2 are

still εk+1-mutually unlikely, as required by the (Sk+1, f
(k+1))-RPE property of G(k+1).

The simulator SimG(k+1)

2 is defined as previously. In particular, from the running of the base
gadget simulator SimG

2 , we obtain a perfect simulation of the output wires ẑb|J ′base
for some J ′base

with |J ′base| = n− 1. Combined with the perfect simulation of the output wires corresponding
to the output sets J ′j from the gadgets G(k)

j on the output layer, with |J ′j | = nk − 1, we obtain
a subset J ′ of output wires for our level-(k + 1) gadget with |J ′| = nk+1 − 1 as required.
Eventually this gives us a perfect simulation of

(
AssignWires(G(k+1),W ∗, (x̂∗, ŷ∗)), ẑ|J ′

)
. This

terminates the proof of Theorem 2.

39



The random probing security of the expanding circuit compiler can then be deduced as a
corollary of the above theorem together with Proposition 2 (RPE⇒ RPC reduction) and The-
orem 1 (composition theorem).

Corollary 1. Let B be an arithmetic circuit basis B = {g : K` → Km} such that `,m ≤ 2
for any g ∈ B. Let n ∈ N and f : R → R. Let {Gg}g∈B be n-share gadgets on K. Let CC be
the standard circuit compiler with sharing order n and base gadgets {Gg}g∈B. Let CC(k) be the
expanding circuit compiler with base compiler CC. If the base gadgets Gg are (t, f)-RPE then
CC(k) is (p, 2 · f (k)(p))-random probing secure.

4.3 How to compute f(p) for RPE ?

The requirement of the RPE property that the failure events F1 and F2 are mutually inde-
pendent might seem too strong. In practice it might be easier to show or verify that some
gadgets satisfy a weaker notion. We say that a gadget is (t, f)-weak random probing expandable
(wRPE) if the failure events verify Pr(F1) ≤ ε, Pr(F2) ≤ ε and Pr(F1 ∧ F2) ≤ ε2 instead of
(A.3) in Definition 10. Although being easier to achieve and to verify, this notion is actually
not much weaker as the original RPE. We have the following reduction of RPE to wRPE.

Proposition 3. Let f = R→ [0, 0.14]. Let G : Kn ×Kn → Kn be an n-share gadget. If G is
(t, f)-wRPE then G is (t, f ′)-RPE with f ′(·) = f(·) + 3

2f(·)2.

Proof. Let SimG
1 be the simulator from the (t, f)-wRPE property. This simulator outputs I1

and I2 such that

Pr(F1) = ε1 ≤ ε , Pr(F2) = ε2 ≤ ε and Pr(F1 ∧ F2) = ε12 ≤ ε2 , (4.13)

where F1 ≡ (|I1| > t) and F2 ≡ (|I2| > t). We show how to construct Sim′G1 which outputs I ′1
and I ′2 such that

Pr(F′1) = Pr(F′2) = ε′ and Pr(F′1 ∧ F′2) = (ε′)2 with ε′ = ε+
3

2
ε2 (4.14)

where F′1 ≡ (|I ′1| > t) and F′2 ≡ (|I ′2| > t) and such that I1 ⊆ I ′1 and I2 ⊆ I ′2. In particular,
the latter implies that we can keep the same SimG

2 simulator since it is always given the same
input shares plus additional input shares to achieve the same simulation as before.

The simulator Sim′G1 first calls the simulator SimG
1 to get I1 and I2. Whenever |I1| and

|I2| are both lower than t, i.e. no failure event occurs, which happens with probability psucc =
1− (ε1 + ε2 − ε12), Sim′G1 outputs

(I ′1, I
′
2) =


([n], I2) with probability p1 = δ1/psucc

(I1, [n]) with probability p2 = δ2/psucc

([n], [n]) with probability p12 = δ12/psucc

(I1, I2) with probability 1− (p1 + p2 + p12)

for some δ1, δ2, δ12 ≥ 0 such that δ1 + δ2 + δ12 ≤ psucc. We hence get

Pr(F′1) = ε1 + δ1 + δ12

Pr(F′2) = ε2 + δ2 + δ12

Pr(F′1 ∧ F′2) = ε12 + δ12
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We must now fix δ1, δ2, δ12 ≥ 0 to satisfy Equation 4.14, with ε′ = ε+3·ε2/2 and δ1+δ2+δ12 ≤
psucc = 1 − (ε1 + ε2 − ε12). We fix δ12 = (ε′)2 − ε12; this gives Pr(F′1 ∧ F′2) = (ε′)2, and
from Equation 4.13 we obtain δ12 ≥ 0 as required. We let:

δ1 := ε′ − ε1 − δ12

which gives Pr(F′1) = ε′ as required. Moreover we obtain using Equation 4.13:

δ1 = ε+
3

2
ε2 − ε1 −

(
(ε+

3

2
ε2)2 − ε12

)
≥ 3

2
ε2 −

(
ε2 + 3ε3 +

9

4
ε4
)

≥ ε2 ·
(

1

2
− 3ε− 9

4
ε2
)
≥ 0 for ε ≤ 0.14.

We obtain similar conditions for δ2 := ε′ − ε2 − δ12. Finally, we have

δ1 + δ2 + δ12 = ε′ − ε1 − δ12 + ε′ − ε2 − δ12 + δ12

= 2ε′ − ε1 − ε2 − (ε′)2 + ε12 = psucc + 2ε′ − (ε′)2 − 1

≤ psucc + 2ε′ − 1 ≤ psucc for ε ≤ 0.14.

as required. Note that the upper bound ε ≤ 0.14 is reasonable and is satisfied by all of the
constructions we consider which have a much lower failure event probability.

Assume that we can show or verify that a gadget is wRPE with the following failure event
probabilities

Pr(F1) = f1(p) , Pr(F2) = f2(p) and Pr(F1 ∧ F2) = f12(p) ,

for every p ∈ [0, 1]. Then the above proposition implies that the gadget is (p, f)-RPE with

f : p 7→ fmax(p) +
3

2
fmax(p)2 with fmax = max(f1, f2,

√
f12) .

The computation of f for wRPE can be split into two steps that we first describe for the
case of addition and multiplication gadgets with fan-in 2 and fan-out 1.

In a first step, we compute f to check the (t, f)-wRPE property for output sets of shares
of cardinal at most t. For 2-input gadgets, this step leads to the computation of coefficients
ci corresponding to three failure events F1, F2, and F1 ∧ F2 as defined above but restricted to
output sets of shares of cardinal less than t. The process is very similar to the verification of
random probing composability but requires to separate the failure events counter into failure
events for the first input (|I1| > t), for the second input (|I2| > t) or for both ((|I1| >
t)∧ (|I2| > t)). In the following, we denote the three functions formed from the corresponding
coefficients as f (1)1 , f (1)2 , and f (1)12 .

Then, in a second step, we check that there exists at least one set of n− 1 shares for each
output, such that the simulation failure is limited by f(p) for some probability p ∈ [0, 1]. In
that case, we still loops on the possible output sets of shares (of cardinal n − 1) but instead
of computing the maximum coefficients, we determine whether the simulation succeeds for at
least one of such sets. A failure event is recorded for a given tuple if no output sets of cardinal
n−1 can be simulated together with this tuple from at most t shares of each input. We record
the resulting coefficients for the three failure events to obtain functions f (2)1 , f (2)2 , and f (2)12 .

From these two steps, we can deduce f such that the gadget is (t, f)-wRPE:

∀p ∈ [0, 1], f(p) = max(f1(p), f2(p),
√
f12(p))
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with

fα(p) = max(f (1)α (p), f (2)α (p)) for α ∈ {1, 2, 12}

The computation of f for a gadget to satisfy (t, f)-weak random probing expandability is
a bit trickier for copy gadgets which produce two outputs. Instead of two verification steps
considering both possible ranges of cardinals for the output set of shares J , we need to consider
four scenarios for the two possible features for output sets of shares J1 and J2. In a nutshell, the
idea is to follow the first verification step described above when both J1 and J2 have cardinal
equal or less than t and to follow the second verification step described above when both J1
and J2 have greater cardinals. This leads to functions f (1) and f (2). Then, two extra cases are
to be considered, namely when (|J1| ≤ t) and (|J2| > t) and the reverse when (|J1| > t) and
(|J2| ≤ t). To handle these scenarios, our tool loops over the output sets of shares of cardinal
equal or less than t for the first output, and it determines whether there exists a set of n− 1
shares of the second output that a simulator can perfectly simulate with the leaking wires and
the former set. This leads to function f (12) and reversely to function f (21). From these four
verification steps, we can deduce f such that the copy gadget is (t, f)-wRPE:

∀p ∈ [0, 1], f(p) = max(f (1)(p), f (2)(p), f (12)(p), f (21)(p)).

Once gadgets have been proven (t, f)-weak RPE, they are also proven to be (t, f ′)-RPE
from Proposition 3 with f ′ : p 7→ f(p) + 3

2f(p)2.

Similarly to RP and RPC, we suppose we have access to algorithms that allow us to
efficiently and automatically compute the coefficients of the function f(p) for (w)RPE. We
will discuss automatic verification tools in more detail later in Chapter 7, and provide results
of such computation in the following sections. But before, let us the discuss the complexity of
the expansion strategy.

4.4 Expansion Complexity

In this section we show that the asymptotic complexity of a compiled circuit Ĉ = CC(k)(C) is
|Ĉ| = O

(
|C| · κe

)
for a security parameter κ and some constant e that we explicit below.

Let us denote by N = (Ng1 , . . . , Ng|B|)
T the column vector of gate counts for some base

gadget G, where Ngi stands for the number of gi gates for gi ∈ B. We have B different such
vectors

NGgi
= (NGg1 ,g1

, . . . , NGg|B| ,g|B|
)T

for the gate counts respectively in the base gadget Ggi for each gi ∈ B. Let us define the
|B| × |B| square matrix M as

M =
(
NGg1

| . . . |NGg|B|

)
It can be checked that applying the standard circuit compiler with base gadgets {Gg}g∈B

to some circuit C with gate-count vector NC gives a circuit Ĉ with gate-count vector N
Ĉ

=
M ·NC . It follows that the kth power of the matrix M gives the gate counts for the level-k
gadgets as:

Mk = M ·M · · ·M︸ ︷︷ ︸
k times

=
(
N

(k)
Gg1
| . . . |N (k)

Gg|B|

)
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where N (k)
i are the gate-count vectors for the level-k gadgets G(k)

gi respectively. Let us denote
the eigen decomposition of M as M = Q ·Λ ·Q−1, we get

Mk = Q ·Λk ·Q−1 with Λk =

λ
k
1

. . .
λk|B|


where λi are the eigenvalues of M . We then obtain an asymptotic complexity of

|Ĉ| = O
(
|C| · (λk1 + . . .+ λk|B|)

)
= O

(
|C| ·Nk

max
)
with Nmax = max

i
(λi) . (4.15)

for a compiled circuit Ĉ = CC(k)(C) (where the constant in the O(·) depends on Q and shall
be fairly small).

Specialization to addition, copy, multiplication and random gates. We now consider
B to contain 4 gates that we consider in our circuits: addition, copy and multiplication gates,
as well as randomness gates which simply generate a fresh uniform random value (i.e. with
zero input and one output). In this case, we have the 4 gate count vectors

NGadd = (NGadd,a, NGadd,c, NGadd,m, NGadd,r)
T

NGmult = (NGmult,a, NGmult,c, NGmult,m, NGmult,r)
T

NGcopy = (NGcopy,a, NGcopy,c, NGcopy,m, NGcopy,r)
T

for the three base gadgets Gadd, Gmult and Gcopy respectively (where a, c, m, r stand for
addition, copy, multiplication and random gates respectively). We also have

Nrand = (0, 0, 0, n)T

which holds from the fact that the standard circuit compiler simply replaces each random gate
by n random gates. Then, we can construct the matrix M as

M =
(
NGadd |NGcopy |NGmult |Nrand

)
Interestingly, if multiplication gates are solely used in the multiplication gadget (i.e.

NGadd,m = NGcopy,m = 0) which is the case in the constructions we usually consider, it can be
checked that (up to some permutation) the eigenvalues satisfy

(λ1, λ2) = eigenvalues(Mac) , λ3 = Nk
Gmult,m

and λ4 = nk

where Mac is the top left 2× 2 block matrix of M i.e.

Mac =

(
NGadd,a NGcopy,a

NGadd,c NGcopy,c

)
. (4.16)

We finally get

|Ĉ| = O
(
|C| ·Nk

max
)

with Nmax = max(eigenvalues(Mac), NGmult,m) . (4.17)
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Complexity and security level. In order to reach some security level ε = 2−κ for some
target security parameter κ and assuming that we have a security expansion p→ f (k)(p), the
expansion level k must be chosen so that f (k)(p) ≤ 2−κ. In practice, the function f is of the
form

f : p 7→
∑
i≥d

ci p
i ≤ (cd +O(p)) pd .

where O(p) is to be interpreted as p tends to 0. We shall say that such a function has
amplification order d.

Definition 13 (Amplification Order). We define the amplification order of a function and the
amplification order of a gadget.

• Let f : R→ R which satisfies

f(p) = cd p
d +O(pd+ε)

as p tends to 0, for some cd > 0 and ε > 0. Then d is called the amplification order of
f .

• Let t > 0 and G a gadget. Let d be the maximal integer such that G achieves (t, f)-RPE
for f : R → R of amplification order d. Then d is called the amplification order of G
(with respect to t).

We stress that the amplification order of a gadget G is defined with respect to the RPE
threshold t. Namely, different RPE thresholds t are likely to yield different amplification orders
d for G (or equivalently d can be thought of as a function of t).

The upper bound f(p) ≤ c′d p
d with c′d = cd + O(p) implies f (k)(p) < (c′d p)

dk . Hence, to
satisfy the required security f (k)(p) ≤ 2−κ while assuming c′dp < 1, the number k of expansions
must satisfy:

k > logd(κ)− logd(− log2(c
′
d p)) .

We can then rewrite (4.15) (and also (4.17)) as

|Ĉ| = O
(
|C| · κe

)
with e =

logNmax

log d
. (4.18)

In addition, we recall that for the expansion strategy to be useful, we must have ε =
f(p) < p. We call the maximum tolerated leakage probability of a gadget, the maximal value
0 ≤ pmax ≤ 1 such that f(pmax) < pmax.

Two crucial parameters determine the complexity of the expanding compiler: Nmax and
d. The value of Nmax depends on the number of gates in the gadgets (i.e. complexity of the
gadgets), while the amplification order depends on the associated failure functions for RPE
property. In order to get the best expanding compilers in terms of asymptotic complexity, we
need to find gadgets with the least gates and the highest amplification order.

4.4.1 Bounding the Amplification Order

As recalled above, the amplification order of a gadget is a crucial parameter of its random
probing expandability. The higher the amplification order, the lower the asymptotic complex-
ity of the expanding compiler, ceteris paribus. A natural question is to determine the best
amplification order that can be hoped for given the different parameters of a gadget. In this
section, we exhibit concrete upper bounds on the amplification order that can be achieved by
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a gadget depending on its input-output dimensions (`,m), its number of shares n, and its RPE
threshold t.

Before giving the bounds let us make a key observation on the amplification order of a
gadget. Let G be a 2-to-1 n-share gadget achieving (t, f)-RPE. A subset W of the wires of G
is said to be a failure set with respect to the first input (resp. the second input) if there exists
a set J ⊆ [n] such that (I1, I2, J

′)← SimG
1 (W,J) implies |I1| > t (resp. |I2| > t), namely if a

leaking set W implies the failure event F1 (resp. F2) in the definition of RPE ( Definition 10).
One can check that G has amplification order d ≤ dup if one of the two following events occurs:

1. there exists a failure setW w.r.t. the first input or the second input such that |W | = dup,

2. there exists a failure set W w.r.t. the first input and the second input such that |W | =
2dup.

In the former case, the existence of the failure set implies that the function f(p) has a non-zero
coefficient in pdup and hence d ≤ dup. In the latter case, the existence of the double failure set
implies that the function f2(p) has a non-zero coefficient in p2dup and hence d ≤ dup. The case
of a single-input gadget is simpler: it has amplification order d ≤ dup if there exists a failure
set W (w.r.t. its single input) such that |W | = dup.

We start by exhibiting a generic upper bound for the amplification order and then look at
the particular case of what we shall call a standard multiplication gadget.

Generic Upper Bound. In the following we will say that a function g : K` → Km is
complete if at least one of its m outputs is functionally dependent on the ` inputs. Similarly,
we say that a gadget G is complete if its underlying function g is complete. The following
lemma gives our generic upper bound on the amplification order.

Lemma 1. Let f : R → R, n ∈ N and `,m ∈ {1, 2}. Let G : (Kn)` → (Kn)m be an `-to-m
n-share complete gadget achieving (t, f)-RPE. Then its amplification order d is upper bounded
by

min((t+ 1), (3− `) · (n− t)).

Proof. The first part of the bound on the amplification order d ≤ (t+1) is immediate since by
probing t+ 1 shares of any input, the considered set will be a failure set of cardinality t+ 1.
We then consider two cases depending on the number of inputs:

1. 1-input gadgets (` = 1): We show that we can exhibit a failure set of size 2(n− t). Let
us denote the output shares z1, . . . , zn (for two-output gadgets, i.e. m = 2, z1, . . . , zn
can be any of the output sharings). In the evaluation of the (t, f)-RPE property, t
shares among the zi’s (corresponding to the set J) must be simulated. Without loss of
generality, let z1, . . . , zt be those shares (i.e. J = [t]). By including both input gates
of each of the remaining output shares zt+1, . . . , zn in the set W , the distribution to be
simulated requires the knowledge of the full input (by completeness of the gadget). The
set W is thus a failure set with 2(n− t) elements.

2. 2-input gadgets (` = 2): Considering the same failure set as in the above case, the
simulation of out in the RPE definition requires the full two input sharings. Hence W
is a failure set of size 2(n − t) with respect to the two inputs, and so the amplification
order satisfies d ≤ (n− t).

We hence conclude that d ≤ min((t + 1), 2(n − t)) for one-input gadgets, and d ≤ min((t +
1), (n− t)) for two-input gadgets.
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Corollary 2 (One-input gadget). The amplification order d of a one-input gadget achieving
(t, f)-RPE is upper bounded by

d ≤ 2(n+ 1)

3
.

The above corollary directly holds from Lemma 1 for a RPE threshold t = b2n−13 c (which
balances the two sides of the min).

Corollary 3 (Two-input gadget). The amplification order d of a two-input gadget achieving
(t, f)-RPE is upper bounded by

d ≤ n+ 1

2
.

The above corollary directly holds from Lemma 1 for a RPE threshold t = bn−12 c (which
balances the two sides of the min).

We deduce from the two above corollaries that for a circuit composed of addition, multi-
plication and copy gadgets, the amplification order is upper bounded

d ≤ min

(
2(n+ 1)

3
,
n+ 1

2

)
=
n+ 1

2
,

which can only be achieved for an odd number of shares by taking t = bn−12 c as RPE threshold.

Upper Bound for Standard Multiplication Gadgets. The generic bound exhibited
above is not tight in the special case of a standard multiplication gadget which computes cross
products between the input shares, such as the ISW multiplication gadget [59]. We exhibit
hereafter a tighter bound for such gadgets.

Formally, a n-share multiplication gadget G is a standard multiplication gadget, if on input
(x̂, ŷ) ∈ (Kn)2, G computes the cross products xi · yj for 1 ≤ i, j ≤ n. Our upper bound on
the amplification order for such gadgets is given in the following lemma.

Lemma 2. Let f : R → R and n ∈ N. Let G be an n-share standard multiplication gadget
achieving (t, f)-RPE. Then its amplification order d is upper bounded by

d ≤ min

(
t+ 1

2
, (n− t)

)
.

Proof. The second part of the bound (n− t) holds directly from Lemma 1. We now prove the
bound (t + 1)/2 by exhibiting a failure set of size t + 1 with t output shares, which will be
a failure on both inputs. Let {mij}0≤i,j≤n denote the cross products such that mij = xi · yj .
Consider a set W made of t + 1 such variables {mij} for which the indices i and j are all
distinct. Specifically, W = {xi1 · yj1 , . . . , xit+1 · yjt+1} such that {i`}1≤`≤t+1 and {j`}1≤`≤t+1

are both sets of (t + 1) distinct indices. Clearly, such a set is a failure set for both inputs x
and y since it requires t + 1 shares of each of them to be perfectly simulated (even without
considering the output shares to be also simulated). We hence have a double failure set of
cardinality t+ 1 which implies the (t+ 1)/2 upper bound on the amplification order.

The above lemma implies that the highest amplification order for standard multiplication
gadgets might be achieved for a RPE threshold t = b2n−13 c which yields the following maximal
upper bound:

d ≤ n+ 1

3
,

which is lower than the generic upper bound for 2-to-1 gadgets exhibited in Corollary 3. This
loss suggests that better amplification orders could be achieved for multiplication gadgets
that do not compute direct cross products of the input shares. We actually provide such
constructions in later chapters (c.f. Chapter 5).
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About 2-share gadgets. Thanks to Corollary 3, we know that the highest amplification
order achievable for 2 inputs 2-share gadgets is equal to 1. For such a gadget, the failure
function for RPE would then be equal to f(p) = c1 · p + O(p2), with c1 > 0. Recall that
an amplification order strictly greater than one guarantees that there exists a probability
pmax ∈ [0, 1] such that ∀p ≤ pmax, f(p) ≤ p, which is necessary to benefit from the expansion.
It is not the case for 2-share expanding compilers that use 2 inputs gadgets such as addition
and multiplication. We thus restrict our investigation in the following to n-share gadgets, with
n ≥ 3 to instantiate the expanding compiler.

4.4.2 RPE Compiler Parameters

When constructing an expanding compiler as in Definition 9, the complexity depends on the
parameters of the worst case gadget. In other words, the amplification order and the tolerated
leakage rate will be associated to the worst failure function f(p) among the functions associated
to the base RPE gadgets. We can give the following general definition of the expanding
compiler including the way we define the amplification order and the tolerated leakage rate
associated to it.

Definition 14 (RPE Compiler). Let B = {g : K` → Km} be an arithmetic circuit basis. Let
n, t ∈ N, and let {Gg}g∈B be a family of (t, fGg)-RPE n-share gadgets for the gate functionali-
ties in B. The RPE compiler CC associated to {Gg}g∈B is the expanding circuit compiler which
consists in replacing each gate from a circuit over B by the corresponding expanded gadget G(k)

g

given an expansion level k as defined in Definition 9. Moreover,

• the expanding function of CC is the function f defined as

f : p 7→ max
g
fGg(p)

• the amplification order of CC is the integer d defined as

d = min
g
dGg

where dGg is the amplification order of fGg ,

• the gadget complexity of CC is the integer s defined as

s = max
g
|Gg|

where |Gg| denotes the number of wires in the gadget Gg,

• the tolerated leakage rate of CC is the real number q ∈ [0, 1) such that f(p) < p for every
p < q.

4.5 A First 3-share RPE Construction

In this section, we exhibit and analyze small (1, f)-wRPE gadgets for the addition, multi-
plication, and copy (on any base field K) with n = 3 shares to instantiate the RPE circuit
compiler. These gadgets are sound in the sense that their function f has amplification order
strictly greater than one. For 2-input gadgets, f is defined as the maximum between f1, f2,
and
√
f12 (c.f. Section 4.3). Therefore, the constraint on the amplification order also applies

to the functions f1, f2, and
√
f12. For the function f12, this means that the amplification order

should be strictly greater than two.
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The constructions in this section do not achieve the best parameters regarding security
and complexity. The addition and copy constructions achieve the maximal amplification order
for 3 shares (i.e. d = 2), while the multiplication construction only achieves an amplification
order of d = 3/2. These constructions were the first attempt at the expanding compiler
construction from [18]. Nevertheless, this section aims to present a first working example with
concrete security and complexity bounds. In addition, Section 4.6 shows that this non-optimal
construction still outperforms previous constructions in the state-of-the-art. In Chapter 5
and Chapter 6, our primary goal will be to achieve the best security and complexity bounds
while discussing the benefits and limitations of the expansion strategy.

In the upcoming gadget descriptions, notice that variables ri are fresh random values,
operations are processed with the usual priority rules and the number of implicit copy gates
can be deduced from the occurrences of each intermediate variable such that s occurrences
require s− 1 implicit copy gates (i.e. a total of 2 · s− 1 wires assigned with the same variable
expression). Also, the function expression below each gadget corresponds to the function
obtained from IronMask, computed as discussed in Section 4.3. It implies that the gadget is
(t, f)-wRPE for t = 1 except when defined otherwise.

Addition gadget. The most classical masked addition schemes are share-wise additions
which satisfy the simpler probing security property. Basically, given two input n-sharings x̂
and ŷ, such an addition computes the output n-sharing ẑ as z1 ← x1 + y1, z2 ← x2 + y2, . . . ,
zn ← xn + yn. Unfortunately, such elementary gadgets do not work in our setting. Namely,
consider an output set of shares J of cardinality t. Then, for any n, there exists sets W of
leaking wires with |W | = 1 such that no sets (I1, I2) (on inputs x̂ and ŷ respectively) both of
cardinalities ≤ t can point to input shares that are enough to simulate both the leaking wire
and the output shares of indices in J . For instance, given a set J = {1, . . . , t}, if W contains
xt+1, then no set I1 (on input x̂) of cardinal ≤ t can define a set of input shares from which we
can simulate both the leaking wire and z1, . . . , zt. Indeed, each zi for 1 ≤ i ≤ t requires both
input shares xi and yi for its simulation. Thus, I1 and I2 would contain at least {1, . . . , t},
and I1 additionally contains t + 1 for the simulation of the leaking wire. I1 would thus be
of cardinal t+ 1, representing a failure event in the random probing expandability definition.
Consequently, such an n-share addition gadget could only be (t, f)-RPE, where f has a first
coefficient c1 strictly positive. In other words, f would be of amplification order one such that
∀p ∈ [0, 1], f(p) ≥ p.

In the following, we introduce a 3-share addition gadget, which is (1, f)-wRPE with f of
amplification order strictly greater than one. Basically, in our addition gadget, both inputs
are refreshed with a circular refreshing gadget as originally introduced in [11], while simply
rearranging the order of the refreshing variables:

Gadd : z1 ← x1 + r1 + r5 + y1 + r2 + r4

z2 ← x2 + r2 + r6 + y2 + r3 + r5 fmax(p) =
√

69p2 +O(p3)

z3 ← x3 + r3 + r4 + y3 + r1 + r6 log2(pmax) = −4, 41

x̂ and ŷ are the input sharings and ẑ the output sharing; fmax additionally reports the maxi-
mum of the first non-zero coefficient of the three functions f1, f2, and f12, as defined in Sec-
tion 4.3. pmax reports the maximum tolerated leakage rate as defined in Section 4.4. Both are
computed using IronMask. Note that Gadd is built with 15 addition gates and 6 implicit copy
gates.

Copy gadget. We exhibit a 3-share (1, f)-wRPE copy gadget with f of amplification order
strictly greater than one. The gadget also relies on two calls to the circular refreshing from [11]
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on the input:

w1 ← x1 + r1 + r2; z1 ← x1 + r4 + r5

w2 ← x2 + r2 + r3; z2 ← x2 + r5 + r6 fmax(p) = 33p2 +O(p3)

w3 ← x3 + r3 + r1; z3 ← x3 + r6 + r4 log2(pmax) = −5, 88

This gadget is made of 12 addition gates and 9 implicit copy gates. x̂ is the input sharing,
while ŵ and ẑ are the output sharings.

Multiplication gadget. As shown in Lemma 2, the maximum amplification order for mul-
tiplication gadgets performing a direct products between input shares, is equal to one for n = 3
shares. Hence, standard 3-share multiplication gadgets cannot be used as base gadgets of our
compiler. To circumvent this issue, we build a 3-share multiplication gadget, by first refreshing
both input sharings, before any multiplication is performed:

u1 ← x1 + r6 + r7; u2 ← x2 + r7 + r8; u3 ← x3 + r8 + r6

v1 ← y1 + r9 + r10; v2 ← y2 + r10 + r11; v3 ← y3 + r11 + r9

z1 ←
(
u1 · v1 + r1

)
+
(
u1 · v2 + r2

)
+
(
u1 · v3 + r3

)
z2 ←

(
u2 · v1 + r2

)
+
(
u2 · v2 + r5

)
+
(
u2 · v3 + r4

)
z3 ←

(
u3 · v1 + r3

)
+
(
u3 · v2 + r4

)
+
(
u3 · v3 + r1

)
+ r5

fmax(p) =
√

32p3/2 +O(p2)

log2(pmax) = −7.09

Complexity and tolerated probability. Following the asymptotic analysis of Section 4.4,
our construction yields the following instantiation of the matrix M

M =


15 12 28 0
6 9 23 0
0 0 9 0
6 6 11 3

 (4.19)

with

Mac =

(
15 12
6 9

)
and NGmult,m = 9 .

The eigenvalues ofMac are 3 and 21, which gives Nmax = 21. We also have a random probing
expandability with function f of amplification order d = 3

2 (by taking the worst case between
Gadd,Gcopy and Gmult). Hence we get

e =
logNmax

log d
=

log 21

log 1.5
≈ 7.5

which gives a complexity of |Ĉ| = O
(
|C| · κ7.5

)
. Finally, our construction tolerates a leakage

probability up to
pmax ≈ 2−7.09 .

This corresponds to the maximum value p for which we have f(p) < p which is a necessary
and sufficient condition for the expansion strategy to apply with (t, f)-RPE gadgets.
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Figure 4.2: Number of gates for G(k)
add, G

(k)
copy,

G
(k)
mult circuits with respect to the level k.

Figure 4.3: Values taken by f (k)(p) for dif-
ferent starting leakage rates p with respect to
the level k.

As explained in Section 4.4, we can compute the new gate count vectors for each of the
compiled gadgets G(k)

add, G
(k)
copy, G

(k)
mult by computing the matrixMk. In Figure 4.2, we plot the

total number of gates (Na +Nc +Nm +Nr) in each of the compiled gadgets as a function of the
level k. In Figure 4.3, we plot the values taken by f (k)(p) as a function of the expansion level
k and starting from two different leakage rates: p = 2−7.09 which is the maximum tolerated
leakage rate by our constructed compiler and another lower leakage rate of p = 2−8.

For instance, for level k = 9 the number of gates in the compiled gadgets is around 1013.
For the latter level and assuming a leakage probability of p = 2−7.09 (which is the maximum
we can tolerate), we achieve a security of ε ≈ 2−47. If the considered leakage rate is slightly
lower, for instance p = 2−8, we achieve a security ε ≈ 2−10( for the same expansion level k = 9.

4.6 Comparison with Previous Works

In this section, we compare our scheme to previous constructions. Specifically, we first compare
it to the well-known Ishai-Sahai-Wagner (ISW) construction and discuss the instantiation of
our scheme from the ISW multiplication gadget. Then we exhibit the asymptotic complexity
(and tolerated leakage probability) of the Ananth-Ishai-Sahai compiler and compare their
results to our instantiation.

4.6.1 Comparison with ISW

The classical ISW construction [59] is secure in the t-probing model when the adversary can
learn any set of t intermediate variables in the circuit, for n = 2t + 1 shares. This can
be extended to t probes per gadget, where each gadget corresponds to a AND or XOR gate
in the original circuit. Using Chernoff bound, security in the t-probing model per gadget
implies security in the p-random probing model, where each wire leaks with probability p,
with p = O(t/|G|), where |G| is the gadget size. Since in ISW each gadget has complexity
O(t2), this gives p = O(1/t). Therefore, in the p-random probing model, the ISW construction
is only secure against a leakage probability p = O(1/n), where the number of shares n must
grow linearly with the security parameter κ in order to achieve security 2−κ. This means that
ISW does not achieve security under a constant leakage probability p; this explains why ISW is
actually vulnerable to horizontal attacks [13], in which the adversary can combine information
from a constant fraction of the wires.

ISW-based instantiation of the expanding compiler. In our instantiation, we choose to
construct a new 3-share multiplication gadget instead of using the ISW multiplication gadget
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from [59]. In fact, ISW first performs a direct product of the secret shares before adding some
randomness, while we proved in Section 4.4.1 that no such 3-share multiplication gadget made
of direct products could satisfy (1, f)-RPE with amplification order strictly greater than one
(c.f. Lemma 2). Therefore the ISW gadget is not adapted for our construction with 3 shares.

Table 4.1 displays the output of the VRAPS verification tool [18] when run on the ISW
multiplication gadget for up to 7 shares with different values for t. It can be seen that an
amplification order strictly greater than one is only achieved for t > 1, with 4 or more shares.
And an order of 3/2 is only achieved with a minimum of 4 shares for t = 2, whereas we already
reached this order with our 3-share construction for t = 1. Actually, we observe through
the table that the ISW multiplication gadget achieves the maximal amplification order for a
multiplication gadget performing direct cross-products of input shares (c.f. Lemma 2). We
prove generic bounds on the amplification order achievable by the ISW multiplication gadget
and study linear constructions based on the ISW refresh gadget later in Chapter 5.

If we use the 4 share ISW gadget with appropriate 4-share addition and copy gadgets
instead of our instantiation, the overall complexity of the compiler would be greater, while the
amplification order would remain the same, and the tolerated leakage probability would be
worse (recall that our instantiation tolerates a maximum leakage probability p ≈ 2−7.09, while
the 4-share ISW multiplication tolerates p ≈ 2−9.83). Clearly, the complexity of the 4-share
ISW gadget (Na, Nc, Nm, Nr) = (24, 30, 16, 6) is higher than that of our 3-share multiplication
gadget (Na, Nc, Nm, Nr) = (28, 23, 9, 11). In addition, using 3-share addition and copy gadgets
(as in our case) provides better complexity than 4-share gadgets. Hence to reach an amplifi-
cation order of 3/2, a 4-share construction with the ISW gadget would be more complex and
would offer a lower tolerated leakage probability.

Table 4.1: Complexity, amplification order and maximum tolerated leakage probability of the
ISW multiplication gadgets. Some leakage probabilities were not computed accurately by
VRAPS [18] for performances reasons. An interval on these probabilities is instead given by
evaluating lower and upper bound functions finf and fsup of f(p).

#
shares

Complexity
(Na, Nc, Nm, Nr)

t Amplification
order

log2 of maximum
tolerated leakage

probability
3 (12, 15, 9, 3) 1 1 −

4 (24, 30, 16, 6) 1 1 −
2 3/2 −9.83

5 (40, 50, 25, 10)
1 1 −
2 3/2 −11.00
3 2 −8.05

6 (60, 75, 36, 15)

1 1 −
2 3/2 −13.00
3 2 [−9.83,−7.87]
4 2 [−9.83,−5.92]

7 (84, 105, 49, 21)

1 1 −
2 3/2 [−16.00,−14.00]
3 2 [−12.00,−7.87]
4 5/2 [−12.00,−2.27]
5 2 [−12.00,−3.12]
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4.6.2 Complexity of the Ananth-Ishai-Sahai Compiler

The work from [3] provides a construction of circuit compiler (the AIS compiler) based on
the expansion strategy described in Section 4.1 with a (p, ε)-composable security property,
analogous to our (t, f)-RPE property. To this purpose, the authors use an (m, c)-multi-party
computation (MPC) protocol Π. Such a protocol allows to securely compute a functionality
shared among m parties and tolerating at most c corruptions. In a nutshell, their composable
circuit compiler consists of multiple layers: the bottom layer replaces each gate in the circuit
by a circuit computing the (m, c)-MPC protocol for the corresponding functionality (either
Boolean addition, Boolean multiplication, or copy). The next k − 1 above layers apply the
same strategy recursively to each of the resulting gates. As this application can eventually
have exponential complexity if applied to a whole circuit C directly, the top layer of compi-
lation actually applies the k bottom layers to each of the gates of C independently and then
stitches the inputs and outputs using the correctness of the XOR-encoding property. Hence
the complexity is in

O(|C| ·Nk
g ) , (4.20)

where |C| is the number of gates in the original circuit and Ng is the number of gates in the
circuit computing Π. The authors of [3] prove that such compiler satisfies (p, ε)-composition
security property, where p is the tolerated leakage probability and ε is the simulation failure
probability. Precisely:

ε = N c+1
g · pc+1 (4.21)

Equations (4.20) and (4.21) can be directly plugged into our asymptotic analysis of Section 4.4,
with Ng replacing our Nmax and where c+1 stands for our amplification order d. The obtained
asymptotic complexity for the AIS compiler is

O
(
|C| · κe

)
with e =

logNg

log c+ 1
. (4.22)

This is to be compared to e = logNmax

log d in our scheme. Moreover, this compiler can tolerate a
leakage probability

p =
1

N2
g
.

The authors provide an instantiation of their construction using an existing MPC protocol
due to Maurer [67]. From their analysis, this protocol can be implemented with a circuit of
Ng = (4m − c) ·

((
m−1
c

)2
+ 2m

(
m
c

))
gates. They instantiate their compiler with this protocol

for parameters m = 5 parties and c = 2 corruptions, from which they get Ng = 5712. From
this number of gates, they claim to tolerate a leakage probability p = 1

57122
≈ 2−25 and our

asymptotic analysis gives a complexity of O
(
|C| · κe

)
with e ≈ 7.87 according to (4.22).

Complexity [67] of the Maurer MPC protocol. In the following we compute the com-
plexity and the value of Ng in the instantiation of the AIS compiler [3]. First, using this
compiler, given a circuit C to compile, each gate G is implemented using a functionality F as-
sociated to the MPC protocol. Such a functionality F receivesm shares of each input and then
reconstructs them to obtain original values. This reconstruction can be done with 2(m − 1)
addition gates. Then after computing the gate G, m additive shares of the output are com-
puted twice. This step consists of one gate for G, and 2(m− 1) gates for the additive sharing
along with 2(m − 1) random gates.1 So each gate G to compile is replaced by 6m − 5 gates,
each computed jointly by the m parties in the MPC protocol. Next, we state the complexity

1In [3], the authors only consider 2(m − 1) for the cost of this step, not counting the number of random
gates necessary to compute the additive sharing of the output.
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of the protocol from [67]. Each gate in a functionality F is jointly computed by all m parties.
In the beginning, each party holds one share of each input.

The first step consists in a k-secret sharing of each input share where k =
(
m
c

)
. For an

input of m shares, each party will hold a total of m
(
m−1
c

)
shares. For two inputs, this step

has a complexity of m(2k − 2).

The second step is either performing an addition or a multiplication, depending on the
gate G associated to the functionality. An addition simply means each party locally adding all
its shares, holding a complexity of m

(
m−1
c

)
. In case of a multiplication gate, each party will

locally compute the sum of the product of the shares of both inputs, and then share its local
result using a secret sharing scheme as in the first step. This procedure holds a complexity of(
m−1
c

)2 for computing the result, m(2k−2) for the secret sharing, and 2k2 copy gates. Clearly,
the cost of the second step is more important for the multiplication and can be upper bounded
by2 (

m− 1

c

)2

+m · (2k − 2) + 2k2.

In the final step, every party broadcasts its shares to all other parties, and then adds all
the shares it receives. The complexity of this step is

(
m
c

)
.

Considering the cost of replacing each gate G in the circuit to compile by 6m − 5 gates,
and the cost to compute each of these gates using the protocol Π, the total number of gates
Ng is upper bounded by

(6m− 5) ·

((
m− 1

c

)2

+m(2k − 2) + 2k2

)
.

Using the parameters m = 5 and c = 2 from the AIS compiler instantiation [3], we get
Ng = 8150. This yields a tolerated leakage probability of p ≈ 2−26 and an exponent e =
log(8150)/log(3) ≈ 8.19 in the asymptotic complexity O

(
|C| · κe

)
of the AIS compiler.

These results are to be compared to the p ≈ 2−7.09 and e ≈ 7.5 achieved by our construc-
tion. In either case (Ng = 5712 as claimed in [3] or Ng = 8150 according to our analysis),
our construction achieves a slightly better complexity while tolerating a much higher leak-
age probability. We stress that further instantiations of the AIS scheme (based on different
MPC protocols) or of our scheme (based on different gadgets) could lead to better asymptotic
complexities and/or tolerated leakage probabilities.

4.7 A Proof-of-Concept Secure AES Implementation

In this section, we describe and report the performances of a proof-of-concept implementation
of the RPE compiler with the base gadgets from Section 4.5 as well as a protected AES
implementation. The source code of these implementations is publicly available at:

https://github.com/CryptoExperts/poc-expanding-compiler

All implementations were run on a laptop computer (Intel(R) Core(TM) i7-8550U CPU,
1.80GHz with 4 cores) using Ubuntu operating system and various C, python and sage li-
braries.

2The authors claim in their paper a complexity of
(
m−1
c

)2
+ 2mk, since they do not take into account the

copy gates needed to compute the product of input shares.
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4.7.1 Circuit Compiler

First, we developed an implementation in python of a compiler CC, that given three n-share
gadgets Gadd, Gmult, Gcopy and an expansion level k, outputs the compiled gadgets G(k)

add,
G

(k)
copy ,G(k)

mult, each as a C function. The variables’ type is given as a command line argument.
Table 4.2 shows the complexity of the compiled gadgets from Section 4.5 using the compiler
with several expansion levels k, as well as their execution time in milliseconds when run in
C on randomly generated 8-bit integers. For the generation of random variables, we consider
that an efficient external random number generator is available in practice, and so we simply
use the values of an incremented counter variable to simulate random gates.

Table 4.2: Complexity and execution time (in ms, on an Intel i7-8550U CPU) for compiled
gadgets G(k)

add, G
(k)
copy, G

(k)
mult from Section 4.5 implemented in C.

k # shares Gadget Complexity (Na, Nc, Nm, Nr) Execution
time

1 3
G

(1)
add (15, 6, 0, 6) 1, 69.10−4

G
(1)
copy (12, 9, 0, 6) 1, 67.10−4

G
(1)
mult (28, 23, 9, 11) 5, 67.10−4

2 9
G

(2)
add (297, 144, 0, 144) 2, 21.10−3

G
(2)
copy (288, 153, 0, 144) 2, 07.10−3

G
(2)
mult (948, 582, 81, 438) 9, 91.10−3

3 27
G

(3)
add (6183, 3078, 0, 3078) 9, 29.10−2

G
(3)
copy (6156, 3105, 0, 3078) 9, 84.10−2

G
(3)
mult (23472, 12789, 729, 11385) 3, 67.10−1

It can be observed that both the complexity and running time grow by almost the same
factor with the expansion level, with multiplication gadgets being the slowest as expected.
Base gadgets with k = 1 roughly take 10−4 ms, while these gadgets expanded 2 times (k = 3)
take between 10−2 and 10−1 ms. The difference between the linear cost of addition and copy
gadgets, and the quadratic cost of multiplication gadgets can also be observed through the
gadgets’ complexities.

4.7.2 AES Implementation

We describe hereafter a proof-of-concept AES implementation protected with our instantiation
of the RPE compiler. We start by describing the underlying AES circuit (over K = GF(256)),
followed by an analysis of the implementation in C of the complete algorithm.

AES circuit. We first describe the non-linear part of the AES, namely the sbox computation.
For the field exponentiation (x 7→ x254 over GF(256)), we use the circuit representation of the
processing proposed in [43] and presented in Figure 4.4. It corresponds to the addition chain
(1, 2, 4, 8, 9, 18, 19, 36, 55, 72, 127, 254) and it has been chosen due to its optimality regarding
the number of multiplications (11 in total). Each time an intermediate result had to be reused,
a copy gate (marked with ‖) has been inserted.

For the second part of the sbox, the affine function is implemented according to the fol-
lowing equation:

Affine(x) = (((((((207x)2 + 22x)2 + 1x)2 + 73x)2 + 204x)2 + 168x)2 + 238x)2 + 5x+ 99
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Figure 4.4: Circuit for the exponentiation x 7→ x254.

with the necessary copy gates. Similarly, the inverse of the affine function is implemented for
the sbox inversion as follows:

Affine−1(x) = (((((((147x)2 + 146x)2 + 190x)2 + 41x)2 + 73x)2 + 139x)2 + 79x)2 + 5x+ 5

The rest of the operations (MixColumns, ShiftRows, AddRoundKey) are considered as in a
standard AES, while adding the necessary copy gates.

Gate count. Table 4.3 displays the gate count vectors for AES-128 encryption/decryption
procedures as well as for their building blocks. The sbox (resp. sbox inversion) gate count
vector was computed as the sum of the gate count vectors of both the exponentiation and
affine (resp. affine inversion) functions. We recall that Na, Nc, Nm, Nr stand for the number
of addition gates, copy gates, multiplication gates, and random gates, respectively.

Table 4.3: AES operations complexity.

AES Operation Complexity
(Na, Nc, Nm, Nr)

AddRoundKey (for 1 byte) (1, 0, 0, 0)

SubBytes (for 1 byte) (8, 25, 26, 0)

MixColumns (for all columns) (60, 60, 16, 0)

ShiftRows (for all rows) (0, 0, 0, 0)

AES-128 encryption (1996 , 4540 , 4304 , 0 )

SubBytes Inversion (for 1 byte) (8, 25, 26, 0)

MixColumns Inversion (for all
columns)

(104, 104, 36, 0)

ShiftRows Inversion (for all rows) (0, 0, 0, 0)

AES-128 decryption (2392 , 4936 , 4484 , 0 )

Using the gadgets Gadd, Gmult and Gcopy proposed in Section 4.5 for the compilation
of the AES algorithm, we obtain the instantiation given in Equation (4.19) of the matrix
M introduced in Section 4.4. Applying the same complexity analysis done previously on
the gate count vectors, we display in Figure 4.5 the total number of gates in the AES-128
encryption/decryption procedures as functions of the level k. For instance, for the same
security level of 2−76 exhibited in Section 4.5 for the gadgets of Figure 4.2, the AES-128
would have to be compiled at a level k = 9, and would count around 1016 gates.

Implementation in C. An n-share AES-128 implementation was developed in C from the
above description. Compiled gadgets from Section 4.7.1 were used for basic operations (addi-
tion, multiplication, copy), as generated using our circuit compiler described in Section 4.7.1.
We chose the C 8-bit unsigned integer type, and considered operations in GF(256). For the
generation of random values, we assume the availability of an efficient (pseudo)random num-
ber generator, and so we simply considered the values of an incremented counter variable to
simulate the cost.
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Figure 4.5: Number of gates after compilation of AES-128 encryption/decryption circuits with
respect to the level k.

Table 4.4 shows the AES-128 execution time on a 16-byte message with 10 pre-computed
sub-keys, using compiled gadgets G2(k)

add , G
1(k)
copy, G

1(k)
mult, with respect to the expansion level k

and sharing order n = 3k. It can be seen that the execution time increases with the expansion
level with a similar growth as in Table 4.2. This is because the complexity of the AES circuit
strongly depends on the gadgets that are used to replace each gate in the original arithmetic
circuit. For example, with our 3-share gadgets that tolerate a leakage probability of p ≈ 2−8,
a 27-share (k = 3) AES-128 takes almost 200 milliseconds to encrypt or decrypt a message.

Table 4.4: Standard and n-share AES-128 execution time (in ms, on an Intel i7-8550U CPU)
using compiled gadgets G2(k)

add , G
1(k)
copy, G

1(k)
mult.

AES Version Execution Time (in ms)
Encryption Decryption

Standard (no sharing) 0.06 0.05

3-share (k = 1) 1.08 1.07

9-share (k = 2) 11.71 10.26

27-share (k = 3) 200.29 197.70

4.8 Conclusion

In this chapter, we introduced the powerful concept of random probing expansion and provided
security-complexity trade-offs on practical implementations inspired by the original work on
expansion using multi-party computation. We compared our constructions to the previous
ones and showed that we achieved better results in terms of security and complexity. We
also showed the result of the expansion on a real-life AES circuit to exhibit the the approach.
Indeed, the obtained performance is not usable in practice yet. The implementation is a proof-
of-concept to show the current advantages and limitations of constructing circuits with proven
security levels in the random probing model. This construction opens the door for many future
works that try to optimize constructions in the random probing model until we can construct
real-life implementations with proven security levels and good performance.

In the following chapters, we exhibit many improvements that offer better trade-offs. We
dive more profoundly into the random probing expansion analysis to test its limits and achieve
higher security levels with better tolerated leakage rates and lower complexities.
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Chapter 5

Generic RPE Constructions

In this chapter, we provide an in-depth analysis of the random probing expandability secu-
rity notion discussed in the previous chapter. We show that the RPE notion can be made
tighter, and we exhibit strong relations between RPE and the strong non-interference (SNI)
composition notion for probing-secure gadgets.

From these results, we introduce the first generic constructions of gadgets achieving RPE
for any number of shares and with nearly optimal amplification orders. These generic gad-
gets are derived from the widely known Ishai-Sahai-Wagner (ISW) construction. We show
that the obtained expanding compiler can approach a quadratic complexity depending on the
leakage probability that must be tolerated: the smaller the leakage probability, the closer the
complexity to O(κ2). We further introduce a new multiplication gadget achieving the optimal
amplification order, which allows us to improve the convergence to a quadratic complexity.

Finally, we provide new concrete constructions of copy, addition, and multiplication gadgets
achieving maximal amplification orders for small numbers of shares. These gadgets yield much
more efficient instantiations than all the previous schemes (including the analysed ISW-based
constructions). While slightly decreasing the tolerated leakage probability to p = 2−7.5, our
3-share instantiation achieves a complexity of O(κ3.9). Moreover, our 5-share instantiation
drops the complexity to O(κ3.2). The contributions in this chapter are published in [22].

5.1 A Closer Look at Random Probing Expandability

In this section, we give a closer look at the RPE notion. We first show that it naturally splits
into two different notions, that we shall call RPE1 and RPE2, and further introduce a tighter
variant which will be useful for our purpose. We then study the relations between (tight) RPE
and the Strong Non-Interference (SNI) notion used for probing security. We exhibit strong
connections between (tight) RPE1 and SNI, which will be very useful for our construction
results depicted in later sections.

5.1.1 Splitting RPE

From Definition 10, we can define two sub-properties which are jointly equivalent to RPE. In
the first one, designated by RPE1, the set J is constrained to satisfy |J | ≤ t and J ′ = J (the
simulator does not choose J ′).

Definition 15 (Random Probing Expandability 1). Let f : R → R. An n-share gadget
G : Kn × Kn → Kn is (t, f)-RPE1 if there exists a deterministic algorithm SimG

1 and a
probabilistic algorithm SimG

2 such that for every input (x̂, ŷ) ∈ Kn×Kn, for every set J ⊆ [n],
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such that |J | ≤ t, and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2)← SimG
1 (W,J)

out← SimG
2 (W,J, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
|I1| > t

)
and F2 ≡

(
|I2| > t

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (5.1)

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J

)
(5.2)

where ẑ = G(x̂, ŷ).

In the second definition, designated by RPE2, J ′ is chosen by the simulator such that
J ′ ⊆ [n] with |J ′| = n− 1 (and J does not matter anymore).

Definition 16 (Random Probing Expandability 2). Let f : R → R. An n-share gadget
G : Kn × Kn → Kn is (t, f)-RPE2 if there exists a deterministic algorithm SimG

1 and a
probabilistic algorithm SimG

2 such that for every input (x̂, ŷ) ∈ Kn × Kn, for every p ∈ [0, 1],
the random experiment

W ← LeakingWires(G, p)

(I1, I2, J)← SimG
1 (W )

out← SimG
2 (W,J, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
|I1| > t

)
and F2 ≡

(
|I2| > t

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (5.3)

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. J is such that J ⊆ [n] with |J | = n− 1

3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J

)
(5.4)

where ẑ = G(x̂, ŷ).

This split is somehow a partition of the RPE notion since we have:

G is (t, f)-RPE ⇐⇒ G is (t, f)-RPE1 and G is (t, f)-RPE2

for any gadget G. As a result of the above equivalence, we can show that a gadget achieves
RPE1 and RPE2 independently in order to obtain RPE for this gadget. Formally, we use the
following lemma.

Lemma 3. An n-share gadget G : Kn ×Kn → Kn which is (t, f1)-RPE1 and (t, f2)-RPE2 is
also (t, f)-RPE with f(p) ≥ max(f1(p), f2(p)) for every p ∈ [0, 1].

We can refine the upper bounds on the amplification order introduced in Section 4.4.1 with
respect to this split. In Lemma 1, the bound d ≤ t + 1 applies to both RPE1 and RPE2,
while the bound d ≤ (3− `) · (n− t) only applies to RPE1. Similarly, in Lemma 2, the bound
d ≤ (t + 1)/2 applies to both RPE1 and RPE2, while the bound d ≤ (n − t) only applies to
RPE1.

58



5.1.2 Tightening RPE

We introduce a tighter version of the RPE security property. The so-called tight random
probing expandability (TRPE) is such that a failure occurs when the simulation requires more
than t input shares (as in the original RPE notion) but also whenever this number of shares
is greater than the size of the leaking set W . Formally, the failure event Fj is defined as

Fj ≡
(
|Ij | > min(t, |W |)

)
for every j ∈ [`]. We give a formal definition in Definition 17. The text in blue points to the
differences from the original RPE definition (i.e. Definition 10).

Definition 17 (Tight Random Probing Expandability). Let f : R → R. An n-share gadget
G : Kn × Kn → Kn is (t, f)-tight random probing expandable (TRPE) if there exists a
deterministic algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for every input

(x̂, ŷ) ∈ Kn ×Kn, for every set J ⊆ [n] and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2, J
′)← SimG

1 (W,J)

out← SimG
2 (W,J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
|I1|> min(t, |W |)

)
and F2 ≡

(
|I2|> min(t, |W |)

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (5.5)

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. J ′ is such that J ′ = J if |J | ≤ t and J ′ ⊆ [n] with |J ′| = n− 1 otherwise,

3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J ′

)
(5.6)

where ẑ = G(x̂, ŷ),

This tighter security property will be instrumental in the following to obtain generic RPE
constructions. Similarly to the original RPE property, the TRPE property can be split into
two intermediate properties, namely TRPE1 and TRPE2.

Definition 18 (Tight Random Probing Expandability 1). Let f : R → R. An n-share
gadget G : Kn × Kn → Kn is (t, f)-tight random probing expandable (TRPE) if there exists
a deterministic algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for every input

(x̂, ŷ) ∈ Kn×Kn, for every set J ⊆ [n], such that |J | ≤ t, and for every p ∈ [0, 1], the random
experiment

W ← LeakingWires(G, p)

(I1, I2)← SimG
1 (W,J)

out← SimG
2 (W,J, x̂|I1 , ŷ|I2)

ensures that
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1. the failure events F1 ≡
(
|I1|> min(t, |W |)

)
and F2 ≡

(
|I2|> min(t, |W |)

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (5.7)

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J

)
(5.8)

where ẑ = G(x̂, ŷ),

Definition 19 (Tight Random Probing Expandability 2). Let f : R → R. An n-share
gadget G : Kn × Kn → Kn is (t, f)-tight random probing expandable (TRPE) if there exists
a deterministic algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for every input

(x̂, ŷ) ∈ Kn ×Kn, for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2, J)← SimG
1 (W )

out← SimG
2 (W,J, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
|I1|> min(t, |W |)

)
and F2 ≡

(
|I2|> min(t, |W |)

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (5.9)

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. J is such that J ⊆ [n] with |J | = n− 1

3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J

)
(5.10)

where ẑ = G(x̂, ŷ),

Lemma 3 also applies to the case of TRPE. Moreover the upper bounds on the amplification
order for RPE in Lemma 1 and Lemma 2 further apply to the amplification order for TRPE
(which holds by definition). We show hereafter that the TRPE notion is actually equivalent
to the RPE notion if and only if the function f is of maximal amplification order t+ 1.

Lemma 4. Let t ∈ N, let f : R→ R of amplification order d. Let G be a gadget.

1. If G achieves (t, f)-TRPE, then it achieves (t, f ′)-RPE for some f ′ : R→ R of amplifi-
cation order d′ ≥ d.

2. If G is of amplification order d with respect to t (i.e. d is the max amplification order of
a function f for which G is (t, f)-RPE), then for all f ′ : R → R for which G achieves
(t, f ′)-TRPE, f ′ is of amplification order d′ ≤ d.

3. If d = t+ 1, then G achieves (t, f)-TRPE if and only if G achieves (t, f)-RPE.
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Proof. The proof for the first two points is easy. In particular, for the first point, if G achieves
TRPE with an amplification order of d, then G achieves RPE with amplification order at least
d, since a failure in the TRPE setting i.e. |Ij | > min(t, |W |) does not necessarily imply a
failure in the RPE setting i.e. |Ij | > t, meanwhile if there is no failure for TRPE for a leaking
set of wires W , then this implies that |Ij | ≤ min(t, |W |) ≤ t so there is no failure in the RPE
setting either.

As for the second point, the proof is similar: if G achieves an amplification of d in the
RPE setting, then it achieves an amplification order of at most d in the TRPE setting, since
a failure in the RPE setting i.e. |Ij | > t immediately implies a failure in the TRPE setting
|Ij | > min(t, |W |). But also, even if there is no failure for a leaking set of wires W in the RPE
setting we might still have a failure in the TRPE setting for the same set W . This is mainly
the case where W can be simulated with sets of input shares Ij such that |W | < |Ij | ≤ t, so
we have |Ij | ≤ t (i.e. no failure for RPE) and |Ij | > min(t, |W |) = |W | (i.e. failure on TRPE).
This concludes the proof for the second point.

We will now prove the third point. Let d = t+ 1. We will show that for every set J ′ ⊆ [n]
of output shares and every leaking set of wires W , a failure occurs in the TRPE setting if and
only if a failure also occurs in the RPE setting. If |W | ≥ t, then the two settings are equivalent
since min(t, |W |) = t. We will thus only focus on the case |W | < t. Clearly, a failure in the
RPE setting, i.e. |Ij | > t, implies a failure in the TRPE setting, i.e. |Ij | > min(t, |W |). Let
us now show that the converse is also true.

We assume by contradiction that there exists J ′ and W implying a TRPE failure which is
not an RPE failure, that is a set Ij satisfying |W | < |Ij | ≤ t. We then show that there exists
a leaking set W ′ of size |W ′| < t+ 1 for which an RPE failure always occurs, which implies an
amplification order strictly lower than t+1 and hence contradicts the lemma hypothesis. This
set W ′ is constructed as W ′ = W ∪ I ′j for some set I ′j ⊂ [n] \ Ij such that |I ′j | = t + 1 − |Ij |.
The simulation of W ′ and J ′ then requires the input shares from Ij ∪ I ′j . However, we have

|Ij ∪ I ′j | = |Ij |+ |I ′j | = t+ 1

implying an RPE failure, and

|W ′| = |W ∪ I ′j | ≤ |W |+ |I ′j | = |W |+ t+ 1− |Ij | < |W |+ t+ 1− |W | = t+ 1.

Thus, we have built a failure set W ′ of size strictly less than the amplification order t + 1,
which contradicts the hypothesis and hence concludes the proof.

The above proof also applies to the case of the split notions, specifically for ((t, f)-RPE1,
(t, f)-TRPE1) and for ((t, f)-RPE2, (t, f)-TRPE2).

5.1.3 Unifying (Tight) RPE and SNI

Strong non-interference (SNI) is a widely used notion to compose probing-secure gadgets [10].
In Section 3.3.1, we exhibit a relation between the SNI and the random probing composability
(RPC) property ( Proposition 1). Here, we study the relation between SNI and (T)RPE. We
state hereafter some equivalence results between the (T)RPE1 and SNI notions, up to some
constraints on the parameters. We first formally show that (T)RPE1 implies SNI.

Lemma 5. Let t ∈ N and f : R → R of amplification order t + 1. Let G be a gadget which
achieves (t, f)-TRPE1. Then G is also t-SNI.

Proof. By definition of TRPE1 and by hypothesis on the amplification order, there exist input
sets I1, . . . , I` which can perfectly simulate any leaking wires set W such that |W | ≤ t and
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any set of output shares J such that |J | ≤ t, satisfying |I1|, . . . , |I`| ≤ |W |. Consequently,
there exist input sets I1, . . . , I` which can perfectly simulate any leaking wires setW such that
|W | = ti ≤ t and any set of output shares J such that |W |+ |J | ≤ t with |I1|, . . . , |I`| ≤ ti. G
is thus t-SNI.

We now show that SNI implies TRPE1 up to some constraints on the parameters.

Lemma 6. Let τ, ` ∈ N. Let G be an `-to-1 gadget which achieves τ -SNI. Then G satisfies
(t, f)-TRPE1 for some f : R→ R with an amplification order of

d ≥ 1

`
min(t+ 1, τ − t+ 1) .

Proof. Since G is τ -SNI, then for any set of leaking wires W and output shares J such that
|W | + |J | ≤ τ , the wires indexed by W and the output shares indexed by J can be perfectly
simulated from input shares indexed by I1, . . . , I` such that |Ij | ≤ |W | for every 1 ≤ j ≤ `.
In the TRPE1 property, the set J of output shares can be any set of size |J | ≤ t so we can
assume |J | = t without loss of generality.

For a leaking setW of size |W | < min(t+1, τ−t+1) no failure event occurs. Indeed τ -SNI
and |W | < τ−t+1 implies |W |+ |J | ≤ τ and hence the existence of the sets I1, . . . , I` allowing
the simulation with |Ij | ≤ |W |. And |W | < t+ 1 implies |Ij | ≤ min(t, |W |) for every j which
implies the absence of failure. Then for a leaking set W of size |W | ≥ min(t + 1, τ − t + 1),
no condition remains to rule out simulation failures and one could actually get a failure for
every input. In the latter case, the amplification order would equal 1

` min(t+ 1, n− t), but in
all generality it could be higher (i.e. this value is a lower bound).

We give an illustrative summary of the relations between RPE1, TRPE1 and SNI in Fig-
ure 5.1 (d denotes the amplification order of the function f). We hence observe an equivalence
between the three notions up to some constraints on the parameters t, d, τ and `.

τ -SNI (t, f)-TRPE1 (t, f)-RPE1

d ≥ 1
` min(t+ 1, τ − t+ 1)

τ = t iff d = t+ 1

Figure 5.1: Summary of relations between the different notions.

Relation and separation between (T)RPE2 and SNI. For a given n-share gadget G,
the (T)RPE2 notion exclusively focuses on the simulation of a set of leaking intermediate
variables together with a chosen set of (n− 1) output shares. If G is τ -SNI for τ < n− 1, then
nothing can be claimed on the simulation of the latter sets. But if G is (n− 1)-SNI, then any
set of (n − 1) output shares can be perfectly simulated without the knowledge of any input
share. Concretely, it implies that G is (t, f)-(T)RPE2 of amplification order at least 1 as a
chosen output set of (n − 1) shares alone can be perfectly simulated without any additional
knowledge on the input shares. Namely, we have

(n− 1)-SNI ⇒ (t, f)-(T)RPE2 of amplification order at least 1.
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Nevertheless, there is no relation from τ -SNI to (t, f)-(T)RPE2 for amplification orders strictly
greater than 1 as (T)RPE2 would then consider leaking sets of size larger than or equal to
n (for n-share gadgets, τ < n). On the other side, there is no direct implication either from
(t, f)-(T)RPE2 to τ -SNI since the former property does not consider all possible output sets
of size (n− 1), but only a chosen one.

5.2 Generic Constructions: Addition and Copy Gadgets

In Section 4.5, we exhibited the first construction of RPE gadgets explicitly designed for a
small number of shares, namely n = 3. The constructed addition and copy gadgets achieved
the maximal amplification order for 3-shares construction, while the multiplication gadget
only achieved an amplification order of 3/2. A natural open question is the definition of RPE
gadgets with good amplification orders, typically achieving or approaching the upper bounds
exhibited in Section 4.4.1, for any number of shares n.

As intuitively proposed in [18] for small gadgets, copy and addition gadgets can be naturally
derived from a refresh gadget. Such a gadget takes one sharing as input and outputs a new
refreshed sharing of the same value. In this section, we exhibit generic constructions of addition
and copy gadgets based on refresh gadgets and show that these gadgets can achieve maximal
amplification orders if the underlying refresh gadget satisfies specific properties that we detail
later. We also prove that the well-known ISW [59] and O(n log n) [14] refresh gadgets can
be used to construct addition and copy gadgets with maximal amplification orders for any
number of shares.

5.2.1 Generic Copy Gadgets

Algorithm 4 displays the generic construction for the copy gadget from a refresh gadget. It
simply consists in refreshing the input sharing twice to obtain two fresh copies.

Algorithm 4: Copy gadget Gcopy

Input : (a1, . . . , an) input sharing
Output: (e1, . . . , en), (f1, . . . , fn) fresh copies of (a1, . . . , an)

1 (e1, . . . , en)← Grefresh(a1, . . . , an);
2 (f1, . . . , fn)← Grefresh(a1, . . . , an);

We have the following lemma.

Lemma 7. Let Grefresh be an n-share (t, f)-TRPE refresh gadget of amplification order d.
Then, the copy gadget Gcopy displayed in Algorithm 4 is (t, f ′)-TRPE of amplification order
d′ = d.

Proof. To prove that Gcopy is TRPE achieving the same amplification order d as the underlying
refresh gadget Grefresh, we need to prove that any set of leaking wiresW such that |W | ≤ d−1
can be perfectly simulated together with any sets of outputs wires J1, J2 ⊆ [n] (such that J1
refers to the first output e and J2 to the second output f) from a set of input wires I such
that |I| ≤ min(t, |W |). In addition, we know from Lemma 1 that the maximal amplification
order achievable in the TRPE setting is dmax ≤ min(t + 1, 2(n − t)). Since we consider sets
W of size at most |W | ≤ d − 1 ≤ min(t + 1, 2(n − t)) − 1 ≤ t then we need to prove that
|I| ≤ min(t, |W |) = |W |.

The leaking setW can be split into two distinct subsetsW1 andW2 such thatW = W1∪W2

where W1 (resp. W2) is the set of leaking wires of Grefresh for the output e (resp. f). Let
J1, J2 ⊆ [n]. We consider four cases:

63



• |J1| ≤ t, |J2| ≤ t: since |W | ≤ d− 1, then |W1|, |W2| ≤ d− 1. Since Grefresh achieves an
amplification order d, then by definition of TRPE, the sets W1 and J1 can be simulated
with a set of input shares I1 such that |I1| ≤ min(|W1|, t). Similarly, the sets W2 and
J2 can be simulated with a set of input shares I2 such that |I2| ≤ min(|W2|, t). As a
consequence, set I defined as I = I1 ∪ I2 is enough to simulate W = W1 ∪W2 and both
output shares J1 and J2. Furthermore, we have

|I| ≤ |I1|+ |I2| ≤ min(|W1|, t) + min(|W2|, t) ≤ |W | = min(|W |, t)

• |J1| > t, |J2| > t: in this case, we need to prove the existence of a set of input shares I
such that |I| ≤ min(t, |W |) = |W | (since |W | ≤ d − 1 ≤ t) for which we can perfectly
simulateW together with two chosen output sets J ′1 and J ′2 such that |J ′1| = |J ′2| = n−1.
Since we have W = W1 ∪W2 such that |W1| ≤ d− 1, |W2| ≤ d− 1, then by definition of
TRPE, there exists J ′1, |J ′1| = n−1 such thatW1 and J ′1 can be perfectly simulated from a
set of inputs shares I1 such that |I1| ≤ min(|W1|, t). Similarly, there exists J ′2, |J ′2| = n−1
such that W2 and J ′2 can be perfectly simulated from a set of inputs shares I2 such that
|I2| ≤ min(|W2|, t). By choosing such sets J ′1, J ′2, the overall simulation of Gcopy can be
done with the set of input shares I = I1 ∪ I2, and we have

|I| ≤ |I1|+ |I2| ≤ min(|W1|, t) + min(|W2|, t) ≤ |W | = min(|W |, t)

• |J1| ≤ t, |J2| > t: Since |J1| ≤ t, by definition of TRPE, W1 and J1 can be perfectly
simulated from a set of input shares I1 such that |I1| ≤ min(|W1|, t). In addition, for
|J2| > t, we also know that we can choose a set J ′2 such that |J ′2| = n − 1 that can be
perfectly simulated with W2 from a set of input shares I2 with |I2| ≤ min(|W2|, t). By
choosing such a set J ′2, the overall simulation of Gcopy can be achieved with the set of
input wires I = I1 ∪ I2, and we have

|I| ≤ |I1|+ |I2| ≤ min(|W1|, t) + min(|W2|, t) ≤ |W | = min(|W |, t)

• |J1| > t, |J2| ≤ t: the proof is exactly the reflect of the previous one.

Hence in the four cases, there is no failure tuple W of size |W | < d. In addition, since the
refresh gadget is of amplification order d, then we know that a failure of size d exists. Then
the gadget Gcopy achieves an amplification order of d, which concludes the proof.

As a consequence of this result, a TRPE refresh gadget directly yields a TRPE copy gadget
achieving with the same amplification order. Both gadgets can then reach the upper bound
for 1-input gadgets whenever t+ 1 = 2(n− t) implying an amplification order d = 2(n+1)

3 .

5.2.2 Generic Addition Gadgets

Algorithm 5 displays the generic construction for the addition gadget from a refresh gadget.
It simply consists in refreshing both input sharings before adding them.

Algorithm 5: Addition Gadget Gadd

Input : (a1, . . . , an), (b1, . . . , bn) input sharings
Output: (c1, . . . , cn) sharing of a+ b

1 (e1, . . . , en)← Grefresh(a1, . . . , an);
2 (f1, . . . , fn)← Grefresh(b1, . . . , bn);
3 (c1, . . . , cn)← (e1 + f1, . . . , en + fn);

64



We have the following lemma.

Lemma 8. Let Grefresh be an n-share refresh gadget and let Gadd be the corresponding addition
gadget displayed in Algorithm 5. Then if Grefresh is (t, f)-RPE (resp. (t, f)-TRPE) of ampli-
fication order d, then Gadd is (t, f ′)-RPE (resp. (t, f ′)-TRPE) for some f ′ of amplification
order d′ ≥ bd2c.

Proof. We need to prove that when Grefresh is (t, f)-RPE (resp. (t, f ′)-TRPE) of amplification
order d, then Gadd is (t, f ′)-RPE (resp. (t, f ′)-TRPE) of amplification order at least bd2c. We
will prove the property for the RPE setting, and the proof for the TRPE setting will be exactly
the same except for the notion of failure event which changes. This amounts to proving that:

1. Any set of leaking wires W such that |W | < bd2c can be simulated together with any set
of outputs wires J ⊆ [n] from sets of input wires I1 on a and I2 on b such that |I1| ≤ t
and |I2| ≤ t (for TRPE we would have |I1| ≤ min(t, |W |) and |I2| ≤ min(t, |W |)).

2. Any set of leaking wires such that bd2c ≤ |W | < d can be simulated together with any
set of outputs wires J ⊆ [n] from sets of input wires I1, I2 such that |I1| ≤ t or |I2| ≤ t
(because of the double failure, i.e failure on both inputs) (for TRPE we would have
|I1| ≤ min(t, |W |) or |I2| ≤ min(t, |W |)).

We proceed by building the necessary simulators for Gadd from the simulators that already
exist for Grefresh. Concretely, we split each set W of leaking wires, into four subsets W =
W r

1 ∪W a
1 ∪W r

2 ∪W a
2 where W r

1 (resp. W r
2 ) is the set of leaking wires during the computation

of Grefresh(a1, . . . , an) (resp. Grefresh(b1, . . . , bn)), andW a
1 (resp. W a

2 ) is the set of leaking wires
of (e1, . . . , en) (resp. (f1, . . . , fn)).

From these notations, we build a leaking set W ′ which contains W r
1 and W r

2 and also each
input or pair of inputs of gates whose output is a wire in W a

1 or W a
2 . We have that

|W ′| ≤ |W r
1 |+ |W r

2 |+ 2|W a
1 |+ 2|W a

2 | ≤ 2|W |.

The new set W ′ can be split into two subsets W ′1 and W ′2 such that W ′1 (resp. W ′2) contains
only leaking wires during the computation of Grefresh(a1, . . . , an) (resp. Grefresh(b1, . . . , bn)).
We now demonstrate how we can simulate W ′ when the output set J is of size less that t
((T)RPE1) and when it is of size strictly more than t ((T)RPE2).

• if |J | ≤ t ((T)RPE1): we prove both properties 1 and 2:

1. we assume that |W | < bd2c. Then we consider the set W ′ = W ′1∪W ′2 (as previously
defined) such that

|W ′| ≤ 2|W | < 2bd
2
c ≤ d

and hence,
|W ′1| < d and |W ′2| < d.

From the (t, f)-RPE property of Grefresh and its amplification order, there exists
an input set of shares of a I1 such that |I1| ≤ t (for TRPE we would have |I1| ≤
min(t, |W |)) and I1 perfectly simulates W ′1 and any set J1 of up to t variables ei.
Similarly, there exists an input set of shares of b I2 such that |I2| ≤ t (for TRPE
we would have |I2| ≤ min(t, |W |)) and I2 perfectly simulates W ′2 and any set J2 of
up to t variables fi. J1 and J2 are chosen as the inputs ei and fi respectively of
wires ei + fi in set J . Namely |J1| = |J2| = |J |.

From these definitions, I1 and I2 together perfectly simulateW ′ and J and are both
of size less than t (less than min(t, |W |) for TRPE), which proves the first property
in this scenario.
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2. we now assume that bd2c ≤ |W | < d. Then we consider the set W ′ = W ′1 ∪W ′2 such
that

|W ′| ≤ 2|W | < 2d

and hence,
|W ′1| < d or |W ′2| < d.

Without loss of generality, let us consider that |W ′1| < d (the proof is similar in the
opposite scenario). From the (t, f)-RPE property of Grefresh and its amplification
order, there exists an input set of shares of a I1 such that |I1| ≤ t (for TRPE we
would have |I1| ≤ min(t, |W |)) and I1 perfectly simulates W ′1 and any set J1 of up
to t variables ei. There also exists an input set of shares of b I2 which perfectly
simulates W ′2 and any set J2 of up to t variables fi but not necessarily of size less
than t (less than min(t, |W |) for TRPE). If J1 and J2 are chosen as the inputs ei
and fi respectively of wires ei + fi in set J , then sets I1 and I2 together perfectly
simulateW ′ and J . In this case, we only have a failure on at most one of the inputs
(b in this case), which concludes the proof for the second property.

At this point, we proved that Gadd achieves an amplification order greater than or equal
to bd2c for RPE1 (for TRPE1 in the TRPE setting).

• if |J | > t ((T)RPE2): we prove both properties 1 and 2:

1. we assume that |W | < bd2c. Then we consider the set W ′ = W ′1∪W ′2 (as previously
defined) such that

|W ′| ≤ 2|W | < d.

W ′1 and W ′2 both point to leaking wires in instances of Grefresh. We denote by
W ′′1 the set of leaking wires on the first instance of Grefresh (on input a) such that
W ′′1 contains W ′1 and all the wires that are leaking within the second instance of
Grefresh (designated by W ′2 in this second instance). Hence, we have that |W ′′1 | ≤
|W ′1 ∪W ′2| < d. From the (t, f)-RPE ((t, f)-TRPE in the TRPE setting) property
of Grefresh and its amplification order, there exists an input set of shares of a I1
such that |I1| ≤ t (for TRPE we would have |I1| ≤ min(t, |W |)) and a set of output
shares ei J ′1 of size n−1 such that the input shares of I1 perfectly simulate the wires
designated by W ′′1 and J ′1. Similarly, as both instances of Grefresh are identical, the
same set I2 but of input shares b perfectly simulates W ′′2 (defined as the equivalent
of W ′′1 on the second instance) and J ′2 which points to the same output shares than
J1 but on fi instead of ei. We thus have two input sets I1 and I2 of size less than
t (less than min(t, |W |) for TRPE2) whose shares perfectly simulate the wires W ′

and the elements ei + fi of a set J ′ of size n− 1 with i ∈ J ′1 = J ′2. That concludes
the proof for the first property.

2. we now assume that bd2c ≤ |W | < d. Then we consider the set W ′ = W ′1 ∪W ′2 such
that

|W ′| ≤ 2|W | < 2d.

Without loss of generality, let us consider that |W ′1| < d (the proof is similar in
the opposite scenario). From the (t, f)-RPE ((t, f)-TRPE in the TRPE setting)
property of Grefresh and its amplification order, there exists a set J ′1 such that
|J ′1| = n − 1 and a set of input shares I1 such that I1 perfectly simulates W ′1 and
J ′1 and |I1| ≤ t (for TRPE we would have |I1| ≤ min(t, |W |)). Thus, we can select
a set J ′ of outputs of Gadd such that J ′ corresponds to the outputs of J1 (for each
element ei designated by J1, ei + fi is pointed by J). Then, by choosing I2 = [n],
we have two input sets I1 and I2 which perfectly simulate W ′ and an output set J ′
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of size n− 1 such that |I1| ≤ t (for TRPE we would have |I1| ≤ min(t, |W |)). That
concludes the proof for the second property.

We thus proved that Gadd achieves an amplification order greater than or equal to bd2c
for RPE2 ( for TRPE2 in the TRPE setting).

Since Gadd has an amplification order greater than or equal to bd2c for RPE1 and RPE2 (resp.
TRPE1 and TRPE2), then Gadd is a (t, f ′)-RPE (resp. (t, f ′)-TRPE) addition gadget for
some function f ′ of amplification order d′ ≥ bd2c, which concludes the proof.

The above lemma shows that a (T)RPE refresh gadget of amplification order d directly
yields a (T)RPE addition gadget of amplification order at least bd2c. If the refresh gadget
achieves the optimal d = 2(n+1)

3 , then the generic addition gadget has an amplification order
at least bn3 c, which is not far from the upper bound for two-input gadgets of n+1

2 . In order to
fill this gap, we introduce a new property which, when satisfied by its inherent refresh gadget
Grefresh, makes the addition gadget TRPE with the same amplification order as Grefresh. We
refer to this property as strong TRPE2.

Definition 20 (t-Strong TRPE2). Let G be an n-share 1-input gadget. Then G is t-Strong
TRPE2 (abbreviated t-STRPE2) if and only if for any set J ′ of output shares indices and any
set W of internal wires of G such that |W | + |J ′| ≤ t, there exists a set J of output share
indices such that J ′ ⊆ J and |J | = n − 1 and such that the assignment of the wires indexed
by W together with the output shares indexed by J can be perfectly simulated from the input
shares indexed by a set I of cardinality satisfying |I| ≤ |W |+ |J ′|.

This new property directly implies the TRPE2 property with maximal amplification order.
Recall that G is t-TRPE2 with maximal amplification order if and only if for any set W of
probed wires such that |W | < t + 1 (recall that the bound n − t on the amplification order
only applies to the TRPE1 property), there exists a set J of output shares indices such that
|J | = n − 1 and such that an assignment of the wires indexed by W and the output shares
indexed by J can be jointly perfectly simulated from input shares indexed in a set I such that
|I| ≤ |W |. This is recalled in the following corollary for the sake of completeness.

Corollary 4. Let G be an n-share 1-input gadget. If G is t-Strong TRPE2 (abbreviated t-
STRPE2), then G is (t, f)-TRPE2 for some f of amplification order t+ 1.

Having a refresh gadget which satisfies the property from Definition 20 results in tighter
constructions for generic addition gadgets as stated in Lemma 9.

Lemma 9. Let Grefresh be an n-share refresh gadget and let Gadd be the addition gadget de-
scribed in Algorithm 5. Then for any t ≤ n − 1, if Grefresh is (t, f)-TRPE of amplification
order d ≥ min(t+ 1, n− t) and Grefresh is (n− 1)-STRPE2, then Gadd is (t, f ′)-TRPE for any
t ≤ n− 1 for some f ′ of amplification order min(t+ 1, n− t).

Proof. Let Grefresh be a (t, f)-TRPE refresh gadget for any t ≤ n− 1 with amplification order
d ≥ min(t+ 1, n− t) and which satisfies Definition 20. We will prove that the construction of
Gadd using Grefresh described in Algorithm 5 is (t, f)-TRPE for any t ≤ n− 1 of amplification
order min(t+ 1, n− t). This amounts to proving that:

1. Any set of leaking wires W such that |W | < min(t+ 1, n− t) can be simulated together
with any set of outputs wires J ⊆ [n] from sets of input wires I1 on a and I2 on b such
that |I1| ≤ min(t, |W |) and |I2| ≤ min(t, |W |).

67



2. Any set of leaking wires such that min(t + 1, n − t) ≤ |W | < 2 min(t + 1, n − t) can
be simulated together with any set of outputs wires J ⊆ [n] from sets of input wires
I1, I2 such that |I1| ≤ min(t, |W |) or |I2| ≤ min(t, |W |) (because of the double failure,
i.e failure on both inputs).

Indeed, this amplification order being the maximum one achievable by 2-input addition gad-
gets, it would conclude the proof.

We will denote (e1, . . . , en) = Grefresh(a1, . . . , an) and (f1, . . . , fn) = Grefresh(b1, . . . , bn).
Then the gadget Gadd consists in the sharewise addition (e1 + f1, . . . , en + fn) as described in
Algorithm 5. We proceed by building the necessary simulators for Gadd from the simulators
that already exist for Grefresh. Concretely, we split each set W of leaking wires, into four
subsets W = W r

1 ∪W a
1 ∪W r

2 ∪W a
2 where W r

1 (resp. W r
2 ) is the set of leaking wires during

the computation of Grefresh(a1, . . . , an) (resp. Grefresh(b1, . . . , bn)), and W a
1 (resp. W a

2 ) is the
set of leaking wires of (e1, . . . , en) (resp. (f1, . . . , fn)). We can see that W r

1 ∪ W a
1 (resp.

W r
2 ∪W a

2 ) contains only leaking wires during the computation of Grefresh(a1, . . . , an) (resp.
Grefresh(b1, . . . , bn)). We now demonstrate how we can simulate W when the output set J is
of size less that t ((T)RPE1) and when it is of size strictly more than t ((T)RPE2).

• if |J | ≤ t ((T)RPE1): we prove both properties 1 and 2:

1. we assume that |W | < min(t + 1, n − t). We construct a new set of probes on
(e1, . . . , en) that we denote Je such that Je = W a

1 ∪ {ei | i ∈ J}. Similarly, we
construct the set of probes on (f1, . . . , fn), Jf = W a

2 ∪ {fi | i ∈ J}. It is clear that
if we can perfectly simulate W r

1 , W r
2 , Je and Jf , then we can perfectly simulate W ,

and J (for each i ∈ J , we can perfectly simulate ei in Je and fi in Jf so we can
perfectly simulate ei + fi). We denote |W a

1 | = m and |W a
2 | = m′. We have

|W r
1 | ≤ min(t+ 1, n− t)− 1−m , |Je| ≤ t+m

and
|W r

2 | ≤ min(t+ 1, n− t)− 1−m′, , |Jf | ≤ t+m′

From the (t, f)-TRPE property of Grefresh for any t ≤ n − 1 and specifically for
t′ = t+m with amplification order at least d′ = min(t+1+m,n− t−m), and since
|W r

1 | ≤ min(t+ 1, n− t)− 1−m ≤ d′ − 1, then there exists an input set of shares
of a I1 such that |I1| ≤ min(t+m, |W r

1 |) = |W r
1 | ≤ |W | and I1 perfectly simulates

W r
1 and Je.

Similarly, there exists an input set of shares of b I2 such that |I2| ≤ min(t +
m′, |W r

2 |) = |W r
2 | ≤ |W | and I2 perfectly simulates W r

2 and Jf .
From these definitions, I1 and I2 together perfectly simulateW and J and are both
of size less than min(t, |W |), which proves the first property in this scenario.

2. we now assume that min(t + 1, n − t) ≤ |W | < 2 min(t + 1, n − t). Without loss
of generality, let us consider that |W r

1 ∪W a
1 | < min(t + 1, n − t) ≤ t (the proof is

similar in the opposite scenario). As in the first property, we construct a new set of
probes on (e1, . . . , en) that we denote Je such that Je = W a

1 ∪ {ei | i ∈ J}. We fix
the set of input shares I2 on b as I2 = [n], so we can perfectly simulate all probes
in W r

2 and W a
2 using the full input b. Next, we need to prove that we can perfectly

simulate all probes in W r
1 and Je similarly as before. We denote |W a

1 | = m. We
have

|W r
1 | ≤ min(t+ 1, n− t)− 1−m , |Je| ≤ t+m

From the (t, f)-TRPE property of Grefresh for any t ≤ n − 1 and specifically for
t′ = t+m with amplification order at least d′ = min(t+1+m,n− t−m), and since
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|W r
1 | ≤ min(t+ 1, n− t)− 1−m ≤ d′ − 1, then there exists an input set of shares

of a I1 such that |I1| ≤ min(t+m, |W r
1 |) = |W r

1 | ≤ |W | and I1 perfectly simulates
W r

1 and Je.
From these definitions, I1 and I2 together perfectly simulate W and J (J is simu-
lated by perfectly simulating each i ∈ J by using ei in Je and simulating fi using
the full input b), and we only have a failure on at most one of the inputs (b in this
case). This concludes the proof for the second property.

At this point, we proved that Gadd achieves an amplification order greater than or equal
to min(t+1, n−t) for TRPE1. Since this amplification order is the maximum achievable
by 2-input addition gadgets, then Gadd achieves an amplification order exactly equal to
min(t+ 1, n− t).

• if |J | > t ((T)RPE2): we prove both properties 1 and 2:

1. we assume that |W | < min(t + 1, n − t). As before, we split W as W = W r
1 ∪

W a
1 ∪ W r

2 ∪ W a
2 . We consider J ′ = {i | ei ∈ W a

1 } ∪ {i | fi ∈ W a
2 } so we have

|J ′| ≤ |W a
1 |+ |W a

2 |. We also construct the set W r which contains the set of leaking
wires on the first instance of Grefresh (on input a) in W r

1 , and all the wires that are
leaking within the second instance of Grefresh in W r

2 . Hence, we have that |W r| ≤
|W r

1 ∪W r
2 | < min(t+1, n−t). Hence, we have |W r|+|J ′| ≤ min(t+1, n−t) ≤ n−1,

so by Definition 20 satisfied by Grefresh, there exists a set of output shares indices
J such that J ′ ⊆ J and |J | = n− 1 such that W r and J can be perfectly simulated
from a set of input shares indices I such that |I| ≤ |W r| + |J ′|. Thus, we can fix
I1 on a and I2 on b such that I1 = I2 = I and we fix the set of n − 1 output
shares indices on Gadd as the same indices in J . Hence, we can perfectly simulate
all wires in W r and J , so we can perfectly simulate all wires in W r

1 and W r
2 and

W a
1 and W a

2 as well as n − 1 output shares of Gadd using I1 and I2 such that
|I1| = |I2| ≤ |W r| + |J ′| ≤ |W | = min(t, |W |). That concludes the proof for the
first property.

2. we now assume that min(t+ 1, n− t) ≤ |W | < 2 min(t+ 1, n− t). Without loss of
generality, let us consider that |W r

1 ∪W a
1 | < min(t+ 1, n− t) (the proof is similar

in the opposite scenario).
We fix I2 = [n] on input b, which allows us to perfectly simulate all wires and output
shares on Grefresh instance with input sharing (b1, . . . , bn), including W a

2 and W r
2 .

Next, we set J ′ = {i | ei ∈ W a
1 }. Since |W r

1 | + |J ′| ≤ n − 1, by Definition 20
satisfied by Grefresh, there exists a set of output shares indices J such that J ′ ⊆ J
and |J | = n− 1 such that W r

1 and J can be perfectly simulated from a set of input
shares indices I1 on a such that |I1| ≤ |W r

1 |+ |J ′| ≤ |W r
1 |+ |W a

1 | ≤ |W |. Thus, we
can fix the set of n− 1 output shares indices on Gadd as the same indices in J . We
can perfectly simulate all output shares indexed in J since for each i ∈ J , we can
perfectly simulate ei using I1 and fi using the full input b in I2, so we can perfectly
simulate ei + fi. Hence, we can perfectly simulate all wires in W as well as n − 1
output shares of Gadd using I1 and I2 such that |I1| ≤ |W r

1 | + |W a
1 | ≤ min(t, |W |)

and with a failure on input b with I2 = [n]. That concludes the proof for the second
property.

We thus proved that Gadd achieves an amplification order greater than or equal to
min(t + 1, n − t) for TRPE2. Since min(t + 1, n − t) is the maximum order achievable
for TRPE2 for a 2-input gadget, then Gadd achieves exactly the order min(t+ 1, n− t).
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Since Gadd has an amplification order equal to min(t+ 1, n− t) for TRPE1 and TRPE2, then
Gadd is a (t, f ′)-TRPE addition gadget for some function f ′ of amplification order min(t +
1, n− t), which concludes the proof.

Hence, we provided generic constructions of addition and copy gadgets from a single build-
ing block, a refresh gadget. The amplification orders achieved can be maximal depending on
the properties verified by the refresh gadget. These constructions allow us to look for efficient
refresh gadgets with good security properties and plug them directly into our copy and ad-
dition gadgets. In the next section, we show that the well-known ISW refresh can be used
to instantiate our constructions and both the ISW-based addition and copy gadgets achieve
maximal amplification orders.

5.3 ISW-based Instantiation of the RPE Compiler

This section describes a complete instantiation of the expanding compiler solely based on the
ISW scheme. Namely, we present instantiations of addition and copy gadgets from the ISW
refresh gadget, and we directly use the ISW multiplication gadget for our compiler.

ISW addition and copy gadgets. The widely-used ISW refresh gadget can be seen as
an ISW multiplication between the input sharing and the n-tuple (1, 0, . . . , 0). We formally
depict it in the preliminaries in Algorithm 2. We demonstrate through Lemma 10 that the
ISW refresh gadget satisfies TRPE with an optimal close to the optimal one.

Lemma 10. Let n ∈ N. For every t ≤ n−1, the n-share ISW refresh gadget is (t, f1)-TRPE1
for some function f1 : R → R of amplification orders d1 = min(t + 1, n − t). The gadget is
also (n− 1)-STRPE2.

Proof. We start by proving the first property of the lemma, i.e the amplification order d1 for
TRPE1. The n-share ISW refresh gadget was proven to be (n− 1)-SNI [10], hence it follows
from Lemma 6 that d1 ≥ min(t+ 1, n− t). In addition, we know from the proof of Lemma 1
that d1 ≤ t+1. It remains to show that d1 ≤ n−t. We thus have to exhibit a simulation failure
by carefully choosing n− t leaking variables (the leaking setW ) together with t leaking output
variables (indexed by the set J). Consider the set of output shares indexed by J = {1, . . . , t},
which corresponds to the first t shares c1, . . . , ct of the output. Next, we construct the set of
leaking wires W of size n− t. First, observe that the partial sums of the output shares are of
the form

ci,j =

{
ai + r1,i + · · ·+ rj,i if j < i
ai + r1,i + · · ·+ ri−1,i + ri,i+1 + · · ·+ ri,j otherwise.

Then, let W = {ct+1,t, . . . , cn,t}. We can prove that the constructed set W along with the
set of indexes of output shares J = {1, . . . , t} cannot be perfectly simulated with at most
min(t, |W |) input shares. For this, we consider a variable s = c1 + · · ·+ ct + ct+1,t + . . .+ cn,t,
the sum of the t output shares indexed in J , and the leaking variables from W . Each of the
output shares {ci}1≤i≤t is the sum of exactly one input share ai and n − 1 random values.
Each of the leaking variables {ci,t}t+1≤i≤n is the sum of exactly one input share ai and t
random values. In addition, it can be observed that each random value appears exactly twice
in the set of expressions of the variables {ci}1≤i≤t ∪ {ci,t}t+1≤i≤n, so all of the random values
are eliminated in the expression of the variable s, which is the sum of all of these variables.
Since each of the variables has one input share ai appearing in its expression, then we have
s = a1 + . . .+an = a. Thus, simulating the variable s requires the knowledge of the full input,
and hence the leaking variables indexed by W and J cannot be perfectly simulated without
the knowledge of the full input. Hence, the set W of size n − t represents a failure set with
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respect to TRPE1, and so the function f1 cannot be of amplification order higher than n− t,
that is d1 ≤ n− t. From the three inequalities d1 ≥ min(t+1, n− t), d1 ≤ t+1 and d1 ≤ n− t,
we obtain d1 = min(t+ 1, n− t).

Next, we demonstrate that the gadget is (n− 1)-STRPE2. Let W be a set of leaking wires
and J ′ a set of output shares indices such that |W |+ |J ′| ≤ n− 1. We aim to prove that there
exists a set J indexing n− 1 output shares such that J ′ ⊆ J and the leaking variables indexed
by both W and J can be perfectly simulated with the input shares indexed by a set I such
that |I| ≤ |W |+ |J ′|. First, we observe that the leaking wires in W are of the following forms:

1. input share ai

2. random variable rij (i < j)

3. partial sum cij =

{
ai + r1,i + · · ·+ rj,i if j < i
ai + r1,i + · · ·+ ri−1,i + ri,i+1 + · · ·+ ri,j otherwise.

We then build I from an empty set as follows. For every wire in W of the first or third form,
we add index i to I. For every wire in W of the second form (rij), if i ∈ I, we add j to I,
otherwise we add i to I. Finally, for each i ∈ J ′, we add i to I. By construction we have
|I| ≤ |W |+ |J ′| ≤ n− 1. Moreover, the wires indexed in W and J ′ only depends of the input
shares ai with i ∈ I which implies that we can perfectly simulate them from the input shares
indexed by I (an output wire i in J ′ can be simulated with aiand n − 1 uniformly random
variables).

We then build the set J as the union of two subsets J1 and J2 such that J1 = I and J2
is any set satisfying |J2| = n − 1 − |I| and J1 ∩ J2 = ∅. We also denote o as the single index
in the set [n] \ J . Now, we aim to show that the output shares determined by the indexes in
J = J1 ∪ J2 can be further perfectly simulated from the input shares indexed by I (namely
given the previous simulation of the variables from W ). The simulation works as follows:

• each output share ci such that i ∈ J1 can be perfectly simulated with ai (since i ∈ I)
and n− 1 uniformly random variables (the same generated rij can be reused for several
ci);

• for each output share ci such that i ∈ J2, we have i /∈ I and hence ai is not available. Let
us suppose without loss of generality that i < o and consider the random variable ri,o.
Since i /∈ I and o /∈ I, then ri,o does not appear in any probed expression by construction
of the set I from W and J ′. Hence, we can use ri,o to mask the expression of ci, which
can then be simulated as a fresh random value without the need for the input share ai.
This produces a perfect simulation of all output wires indexed in J2.

We thus obtain a perfect simulation of the output shares indexed by J = J1 ∪ J2, such
that |J | = n− 1, together with the variables indexed by W , from the input shares indexed by
a set I of size |I| ≤ |W | + |J ′| ≤ n − 1. Hence the ISW refresh gadget is (n − 1)-STRPE2,
which concludes the proof.

Corollary 5 then directly follows from Lemma 3 applied to TRPE, Lemma 10, and
Corollary 4.

Corollary 5. Let n ∈ N. For every t ≤ n− 1, the n-share ISW refresh gadget is (t, f)-TRPE
of amplification order

d = min(t+ 1, n− t).
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The copy gadget Gcopy that uses the n-share ISW refresh gadget as a building block in
Algorithm 4 achieves the same amplification order as the ISW refresh for the TRPE setting,
i.e. d = min(t+1, n−t). This is a direct implication from Lemma 7. Then, from Lemma 4, we
have that ISW-based Gcopy also achieves (t, f ′)-RPE with amplification order d′ ≥ d. We can
actually prove that ISW-based Gcopy achieves (t, f ′)-RPE with amplification order d′ exactly
equal to the amplification order in the TRPE setting, i.e. d′ = d = min(t+ 1, n− t). This is
stated in the following lemma.

Lemma 11 (ISW copy gadget). Let Gcopy be the n-share copy gadget displayed in Algorithm 4
and instantiated with the ISW refresh gadget. Then for every t ≤ n− 1, Gcopy achieves (t, f)-
RPE with amplification order d = min(t+ 1, n− t).

Proof. In order to prove that the amplification order d of Gcopy instantiated with the ISW
refresh gadget is equal to min(t+ 1, n− t), we first demonstrate that d ≥ min(t+ 1, n− t) and
then we show the existence of failure tuples to argue that d ≤ min(t+ 1, n− t).

In fact, we already know that the ISW refresh gadget is (t, f1)-TRPE of amplification order
d1 = min(t+1, n−t). Then from Lemma 7, we know that Gcopy instantiated with ISW refresh
is also (t, f2)-TRPE of amplification order d2 = d1 = min(t+ 1, n− t). Then, from Lemma 4
we have that Gcopy is (t, f)-RPE of amplification order d ≥ d2 = min(t + 1, n − t). Next, we
need to prove that d ≤ min(t+ 1, n− t). In addition, we know from Lemma 1 that d ≤ t+ 1.
Hence, it remains to show that it is also upper bounded by n− t.

We know from the proof of Lemma 10 that, for the ISW refresh gadget, we can construct
a set of leaking wires W of size n− t along with a set of t indexes of output shares J such that
a perfect simulation of both sets W and J requires the knowledge of the full input sharing
i.e. I = [n]. Then, in the case of the copy gadget Gcopy, let W be the set of leaking wires
and J1, J2 ⊆ [n] be the sets of output shares on the outputs e and f respectively. Then, we
can split W into two distinct subsets W1 and W2 such that W = W1 ∪W2, where W1 (resp.
W2) is the set of leaking wires of ISW Grefresh for the output e (resp. f). Then, in the case
where |J1| ≤ t, we can construct the set W = W1 of size n − t (W2 = ∅) in the exact same
way as in the proof of Lemma 10, such that we have simulation failure of W1 along with the
output shares indexed in J1 on the input of the gadget. Otherwise, in the case where |J2| ≤ t,
we can construct the set W = W2 of size n− t (W1 = ∅) in the exact same way, such that we
have simulation failure of W2 along with the output shares indexed in J2 on the input of the
gadget. Hence, the amplification order d of Gcopy is upper bounded by n− t.

From the three inequalities d ≥ min(t + 1, n − t), d ≤ t + 1 and d ≤ n − t, we conclude
that the copy gadget instantiated with ISW refresh is (t, f)-RPE of amplification order d =
min(t+ 1, n− t).

The addition gadget Gadd that uses the n-share ISW refresh gadget as a building block in
Algorithm 5 achieves the same amplification order as the ISW refresh gadget, which is tighter
than the bound from Lemma 8. This directly follows from Lemma 10 and Lemma 9.

Corollary 6 (ISW addition gadget). Let n ∈ N. For every t ≤ n − 1, the n-share gadget
Gadd displayed in Algorithm 5 and instantiated with the ISW refresh gadget is (t, f)-RPE of
amplification order d = min(t+ 1, n− t).

ISW Multiplication Gadget In contrast to the copy and addition gadgets that are built
from generic schemes with a refresh gadget as a building block, the multiplication gadget can
be directly defined as the standard ISW multiplication, recalled in Algorithm 1. We have the
following lemma.
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Lemma 12. Let n ∈ N. For every t ≤ n − 2, the n-share ISW multiplication gadget dis-
played in Algorithm 1 is (t, f1)-RPE1 and (t, f2)-RPE2 for some functions f1, f2 : R→ R of
amplification orders d1, d2 which satisfy:

• d1 =
min(t+ 1, n− t)

2
,

• d2 =
t+ 1

2
.

Proof. We start by proving the first property of the lemma. Since the n-share ISW multipli-
cation gadget is (n− 1)-SNI [10], then we know from Lemma 6 that

d1 ≥
min(t+ 1, n− t)

2
.

In addition, we know from the proof of Lemma 2 that

d1 ≤
t+ 1

2
.

It remains to show that d1 ≤ (n − t)/2. In this purpose, we exhibit a simulation failure on
both inputs by carefully choosing n− t leaking variables, with t output variables. Consider the
set of indexes of output shares J = {1, . . . , t}, which corresponds to the first t output shares
c1, . . . , ct. Next, we construct the set of leaking wires W of size n− t. First, observe that the
partial sums of the output shares are of the form

ci,j =

{
ai · bi + ri,1 + · · ·+ ri,j if j < i
ai · bi + ri,1 + · · ·+ ri,i−1 + ri,i+1 + · · ·+ ri,j otherwise.

Then, let W = {ct+1,t, . . . , cn,t}. We can prove that the constructed set W along with the set
of output shares J = {1, . . . , t} cannot be perfectly simulated with at most t input shares. For
this, we consider a variable s = c1 + · · ·+ ct + ct+1,t + . . .+ cn,t, the sum of the t output shares
indexed in J , and the leaking variables from W . Each of the output shares {ci}1≤i≤t is the
sum of

• one product of input shares ai · bi

• n− 1 random values,

• at most n− 1 pairs of input shares products: (ai · bj , aj · bi) with i 6= j.

Each of the leaking variables {ci,t}t+1≤i≤n is the sum of

• one product of input shares ai · bi,

• t random values,

• at most t pairs of input shares products: (ai · bj , aj · bi) with i 6= j.

In addition, each random value appears exactly twice in the set of expressions of the variables
{ci}1≤i≤t ∪ {ci,t}t+1≤i≤n, so all the random values are eliminated from the expression of the
variable s, which is the sum of all of these variables. Hence, s = a1 · b1 + . . . + an · bn + C
where C is a variable containing other products of input shares of the form ai · bj and aj · bi
with i 6= j. Thus, simulating the variable s requires the knowledge of the full inputs a and
b. Since s is constructed from the set of leaking wires W and the output shares indexed in J ,
then W and J cannot be perfectly simulated without the knowledge of the full inputs a and
b. Hence, the set W of size n− t represents a failure tuple on both inputs, and so the function
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f1 for RPE1 cannot be of amplification order higher than (n− t)/2. Thus, d1 ≤ (n− t)/2.

From the three inequalities d1 ≥
min(t+ 1, n− t)

2
, d1 ≤ (t + 1)/2 and d1 ≤ (n − t)/2, we

conclude that
d1 =

min(t+ 1, n− t)
2

.

Next, we demonstrate the second part of the lemma. Let W be a set of leaking wires such
that |W | ≤ t. We aim to prove that there exists a set J of n−1 output wires such that W and
J can be perfectly simulated with sets of input shares I1 on a and I2 on b such that |I1| ≤ t,
|I2| ≤ t. First, observe that the leaking wires in W are of the following forms :

1. input shares ai, bi, product of shares ai · bi.

2. partial sum ci,j =

{
ai · bi + ri,1 + · · ·+ ri,j if j < i
ai · bi + ri,1 + · · ·+ ri,i−1 + ri,i+1 + · · ·+ ri,j otherwise.

3. random variable rij for i < j, variable rji = ai · bj + rij + aj · bi for j > i.

4. product of shares ai · bj , or variable ai · bj + rij with i 6= j.

We build sets I1 and I2 from empty sets as follows. For every wire in W of the first or
second form, we add index i to I1 and I2. For every wire in W of the third or fourth form,
if i ∈ I1, we add j to I1, otherwise we add i to I1, and if i ∈ I2, we add j to I2, otherwise
we add i to I2. Since W is of size at most t, then |I1| ≤ t and |I2| ≤ t. Following the t-SNI
property proof from [10], we can show that W is perfectly simulated using shares of indexes
in I1 and I2. We now build the set J of n − 1 indexes of output shares from two subsets J1
and J2. We define J1 = {i | ci,j is observed in W}. Next, we define J2 as any set such that
|J2| = n− 1− |J1| and J1 ∩ J2 = ∅. Now, we show that the output shares determined by the
indexes in J = J1 ∪ J2 can be perfectly simulated from I1 and I2:

• First consider the output wires indexed in J1, which have a partial sum observed. For
each such variable ci, the biggest partial sum which is observed is already simulated. For
the remaining rij in ci, if i < j, then rij is assigned to a fresh random value. Otherwise,
if rji enters in the computation of any other internal observation, then i, j ∈ I1 and
i, j ∈ I2, and so rji can be perfectly simulated from the input shares. If not, then rji
is replaced by the random value rij . So all output wires indexed in J1 are perfectly
simulated from I1 and I2.

• Now consider the output wires indexed in J2. None of the ci indexed in J2 has a partial
sum observed. Meanwhile, each ci indexed in J2 is composed of n−1 random values, and
at most one of them can enter in the expression of each other output wire cj . Since by
construction of J1, all the variables observed through the setW are included in the set of
variables observed through J1, and since |J1| ≤ |W | ≤ t ≤ n− 2 and |J2| = n− 1− |J1|,
then each output wire ci indexed in J2 has at least one random value that does not
appear in any other observation from W or J1, so ci can be assigned to a fresh random
value. This produces a perfect simulation of all output wires indexed in J2.

We conclude that the set J of n − 1 wires is perfectly simulated along with W from the
constructed sets I1 and I2 of sizes |I1| ≤ |W | ≤ t and |I2| ≤ |W | ≤ t. So there is no failure
set of observations of size at most t for RPE2 on any of the inputs. Hence d2 ≥ (t + 1)/2.
In addition, we know from the proof of Lemma 2 and as explained in Section 5.1 that
d2 ≤ (t+ 1)/2. Hence, d2 = (t+ 1)/2, which concludes the proof for RPE2.

Corollary 7 then directly follows from Lemma 12 by applying Lemma 3 (RPE1 ∩ RPE2
⇒ RPE).
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Corollary 7. Let n ∈ N. For every t ≤ n−2, the n-share ISW multiplication gadget displayed
in Algorithm 1 is (t, f)-RPE of amplification order

d =
min(t+ 1, n− t)

2
.

According to Lemma 2, the upper bound on the amplification order of a standard mul-
tiplication gadget (i.e. which starts with the cross-products of the input shares) is d ≤
min((t + 1)/2, (n − t)) which gives d ≤ (n+ 1)/3 for t = (2n− 1)/3. In contrast, the ISW
multiplication gadget reaches d = bn+1

4 c by taking t = dn−12 e.

Application to the RPE compiler As described in Section 4.4, instantiating the RPE
compiler with three RPE base gadgets gives a (p, 2−κ)-random probing secure compiler (i.e.
achieving κ bits of security against a leakage probability p) with a complexity blowup of O(κe)
for an exponent e satisfying

e =
logNmax

log d

with Nmax as defined in (4.17) and where d is the minimum amplification order of the three
base gadgets as in Definition 14.

We can instantiate the RPE compiler using the ISW-based gadgets. Specifically, we use
the ISW multiplication for the multiplication gadget Gmult, and the generic constructions
of addition and copy gadgets based on the ISW refresh. The maximum amplification order
achievable by the compiler is the minimum of the three gadgets, which is the order of the ISW
multiplication gadget:

d =
min(t+ 1, n− t)

2
.

Hence, for a given number of shares n, the maximum amplification order achievable is

dmax =

⌊
n+ 1

4

⌋
which is obtained for t = dn−12 e. On the other hand, the value of Nmax can be characterized
in terms of the number of shares n. Recall from Section 4.4 that

Nmax = max

(
NGmult,m , eigenvalues

((
NGadd,a NGcopy,a

NGadd,c NGcopy,c

)))
.

For the ISW multiplication gadget, we have NGmult,m = n2. Then, for the ISW-based addition
and copy gadgets, we have(

NGadd,a NGcopy,a

NGadd,c NGcopy,c

)
=

(
n(2n− 1) 2n(n− 1)
n(n− 1) n2

)
.

The eigenvalues of the above matrix are λ1 = n and λ2 = 3n2 − 2n, implying

Nmax = 3n2 − 2n . (5.11)

Thus, the RPE compiler purely based on ISW constructions has a complexity blowup O(κe)
with exponent

e =
log(3n2 − 2n)

log(b(n+ 1)/4c)
.
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Figure 5.2 shows the evolution of the value of this exponent with respect to the number of
shares n (where we assume an odd n). The blue curve corresponds to the construction based
on ISW for multiplication, addition and copy. The value of e clearly decreases as the number
of shares grows, and this decrease is faster for a small number of shares (5 ≤ n ≤ 10). The
exponent value reaches e ≈ 4 for a number of shares around 25 and then slowly converges
towards e = 2 as n grows. This is to be compared with the O(κ7.5) complexity achieved in
Section 4.5.
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Figure 5.2: Evolution of the complexity exponent e = log(Nmax)/ log(d) with respect to the
number of shares n. The blue curve matches the instantiation with the ISW-based gadgets;
the orange curve assumes the optimal amplification order (i.e. an improvement of the multi-
plication gadget); the pink curve assumes a better complexity for addition and copy gadgets
(so that Nmax matches Nm,m = n2).

The red and orange curves provide a comparison in the cases where we can achieve better
values for Nmax and d. The red curve assumes a lower value for Nmax. For instance, con-
structing addition and copy gadgets with better complexity so that Nmax matches the value
of Nm,m = n2. The orange curve, on the other hand, assumes that we achieve the maximal
amplification. While the three curves converge towards e = 2, improving the values of Nmax

and d increases the convergence speed. Decreasing the value of Nmax allows for a faster con-
vergence (e.g. e ≈ 3.6 for n = 20 shares compared to e ≈ 4.25 on the blue curve) while
achieving the maximal amplification order allows achieving much lower complexity blowups
for constructions with small numbers of shares (e.g. e < 5 for n = 3 shares).

Towards a Better Complexity. As we saw in Figure 5.2, there are two directions for
improvement. The first one is choosing gadgets which attain the upper bound min(t+ 1, n−
t) on the amplification order from Lemma 1, allowing the compiler to have the maximum
amplification order d = (n + 1)/2 and thus have the lowest complexity blowup. Our ISW-
based copy and addition gadgets achieve this bound while the ISW multiplication gadget is
limited to (n+ 1)/4 ( Lemma 12). To reach the optimal amplification order, one would need
a different multiplication gadget and, in particular, a multiplication gadget which does not
perform a direct product of shares (because of the bound from Lemma 2). We tackle this
problem in Section 5.4, where we introduce a new multiplication gadget achieving the upper
bound on the amplification order min(t + 1, n − t) by avoiding a direct product of shares
using a refresh on the input sharings. The orange curve in Figure 5.2 shows the evolution
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of the value of the exponent when instantiating the expanding compiler with our previous
addition and copy gadgets and this new multiplication gadget. For such an instantiation, the
complexity exponent still slowly converges towards e = 2, but, as we can see from Figure 5.2,
the exponent value is much better for small values of n.

Another possible direction for improvement would be to lower the complexity of the ad-
dition and copy gadgets, which is mainly dominated by the complexity of the refresh gadget.
Assume that we can design a (T)RPE refresh gadget in sub-quadratic complexity, e.g. as the
refresh gadgets proposed in [72, 14, 47], then the eigenvalues of the matrix Mac as defined
in Section 4.4 would also be sub-quadratic and the value of Nmax from equation (4.17) would
drop to Nm,m = n2 (if the multiplication gadget still requires n2 multiplication gates). The
pink curve in Figure 5.2 depicts the evolution of the exponent value under this assumption.
We still have a slow convergence towards e = 2, but the exponent value is yet better for small
values of n. Such asymptotic complexities are interesting for bigger numbers of shares. For this
reason, we tackle this direction for improvement in the next chapter ( Chapter 6), where we
introduce the idea of dynamic random probing expansion. In a nutshell, the dynamic random
probing expansion allows benefiting from the best tolerated leakage rates of constructions for
a small number of shares and the optimal asymptotic complexity of constructions for a bigger
number of shares. We show that we can use the O(n log n) refresh gadget from [14] to instanti-
ate the addition and copy gadgets and construct a new multiplication gadget, which performs
a linear number of multiplications (i.e. Nm,m = O(n)) under some constraints on the base
field. Indeed, this construction is asymptotic and works better for more shares. Eventually,
this approach allows us to have Nmax = O(n log n).

The above analysis shows that the RPE compiler can theoretically approach a quadratic
complexity at the cost of increasing the number of shares in the base gadgets. The downside is
that the tolerated leakage probability will likely decrease as the number of shares grows. For
instance, the ISW construction is known only to tolerate a leakage probability p = O(1/n) [45].
The number of shares hence offers multiple trade-offs between the tolerated probability and
the asymptotic complexity of the compiler. Starting from a target leakage probability p, one
could determine the highest number of shares admissible from a generic construction and thus
deduce the best complexity exponent achievable. In Section 5.5, we exhibit concrete trade-offs
that can be reached for small values of n.

5.4 Multiplication Gadget with Maximal Amplification Order

Constructing a multiplication gadget which achieves the upper bound on the amplification
order from Lemma 1 is tricky. First, as a standard multiplication gadget (i.e. which computes
the cross products of the input shares), the ISW multiplication cannot achieve the maximal
amplification order (see Lemma 2). In order to reach the upper bound for two-input gadgets
(see Corollary 3), we need a non-standard multiplication gadget, i.e. which does not perform
a direct product between the input shares. As an additional observation, the addition, copy,
and random gates are virtually free in a multiplication gadget since they do not impact the
final complexity of the RPE compiler (see Section 4.4). This suggests that we can be greedy
in terms of randomness to reach the maximal amplification order.

In the following, we will describe the construction of a new multiplication gadget which
achieves the maximum amplification order min(t+ 1, n− t). We first describe our standard n-
share multiplication gadget and then explain how we avoid the initial cross products of shares.
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First, the gadget constructs the matrix of the cross product of input shares:

M =


a1 · b1 a1 · b2 · · · a1 · bn
a2 · b1 a2 · b2 · · · a2 · bn

...
...

. . .
...

an · b1 an · b2 · · · an · bn


Then, it picks n2 random values which define the following matrix:

R =


r1,1 r1,2 · · · r1,n
r2,1 r2,2 · · · r2,n
...

...
. . .

...
rn,1 rn,2 · · · rn,n


It then performs an element-wise addition between the matrices M and R:

P = M +R =


p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n
...

...
. . .

...
pn,1 pn,2 · · · pn,n


At this point, the gadget randomizes each product of input shares from the matrix M with a
single random value from R. In order to generate the correct output, the gadget adds all the
columns of P into a single column V of n elements, and adds all the columns of the transpose
matrix RT into a single column X of n elements:

V =


p1,1 + · · ·+ p1,n
p2,1 + · · ·+ p2,n

...
pn,1 + · · ·+ pn,n

 , X =


r1,1 + · · ·+ rn,1
r1,2 + · · ·+ rn,2

...
r1,n + · · ·+ rn,n


The n-share output is finally defined as (c1, . . . , cn) = V +X.

In order to further increase the maximum amplification order attainable by the gadget,
we need to avoid performing a direct product of shares (because of the bound proved in
Lemma 2). For this, we add a pre-processing phase to the gadget using a refresh gadget
Grefresh. Specifically, we refresh the input (b1, . . . , bn) each time it is used. In other terms,
each row of the matrix M uses a fresh copy of (b1, . . . , bn) produced using the considered
refresh gadget. This amounts to performing n independent refreshes of the input (b1, . . . , bn).
The matrix M is thus defined as

M =


a1 · b(1)1 a1 · b(1)2 · · · a1 · b(1)n
a2 · b(2)1 a2 · b(2)2 · · · a2 · b(2)n

...
...

. . .
...

an · b(n)1 an · b(n)2 · · · an · b(n)n


where (b

(j)
1 , . . . , b

(j)
n ), j ∈ [n], are the n independent refreshings of the input (b1, . . . , bn).

With this refreshing scheme, we avoid using the same share more than once for one of
the two input sharings. As a consequence, the double failure set of size t + 1 which is the
reason behind the bound (t+ 1)/2 in Lemma 2, becomes a simple failure set (i.e. provoking a
failure on a single input sharing). In addition, the computational overhead of these additional
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n refreshes is negligible compared to the joint contribution of the copy and addition gadgets
to the complexity of the RPE compiler.

For the sake of completeness, we present the full algorithm for this multiplication gadget
in Algorithm 6.

Algorithm 6: Our multiplication gadget
Input : (a1, . . . , an),(b1, . . . , bn) input sharings, {rij}1≤i≤n,1≤j≤n random values,

refresh gadget Grefresh
Output: (c1, . . . , cn) sharing of a · b

1 for i← 1 to n do
2 (b

(i)
1 , . . . , b

(i)
n )← Grefresh(b1, . . . , bn);

3 end
4 for i← 1 to n do
5 for j ← 1 to n do
6 pi,j ← ai × b(i)j + ri,j ;
7 end
8 end
9 (v1, . . . , vn)← (0, . . . , 0);

10 (x1, . . . , xn)← (0, . . . , 0);
11 for i← 1 to n do
12 for j ← 1 to n do
13 vi ← vi + pi,j ;
14 xi ← xi + ri,j ;
15 end
16 end
17 for i← 1 to n do
18 ci ← vi + xi;
19 end
20 return (c1, . . . , cn);

In the following lemma, we show that if the refresh gadget Grefresh achieves the TRPE1
property with the amplification order at least d = min(t + 1, n − t) for any t, then the mul-
tiplication gadget depicted in Algorithm 6 achieves TRPE with the maximum amplification
orders. The proof of the Lemma is given in Section A.1.

Lemma 13. Let t ≤ n − 1. Let Grefresh be a (t, f ′)-TRPE1 refresh gadget for some function
f ′ : R → R, and Gmult the n-share multiplication gadget from Algorithm 6. If f ′ is of
amplification order d′ ≥ d = min(t + 1, n − t), then Gmult achieves (t, f)-TRPE for some
function f : R→ R of amplification order d = min(t+ 1, n− t).

Corollary 8 then directly follows from Lemma 13 by applying Lemma 4 (TRPE⇒ RPE).

Corollary 8. Let t ≤ n− 1. Let Grefresh be a (t, f ′)-TRPE1 refresh gadget for some function
f ′ : R → R, and Gmult the n-share multiplication gadget from Algorithm 6. If f ′ is of
amplification order d′ ≥ d = min(t + 1, n − t), then Gmult achieves (t, f)-RPE for some
function f : R→ R of the same amplification order d = min(t+ 1, n− t).

5.5 Efficient Small Gadgets

This section displays our new constructions of small gadgets for copy, addition, and multiplica-
tion operations with a low number of shares. As explained earlier, the maximal amplification
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order achievable for 2-input n-share gadgets is n+ 1/2, hence it is equal to 1 for n = 2 gadets.
We hence focus on n ≥ 3. Then, as explained in Section 4.4.1, the highest amplification
orders can only be achieved for gadgets with an odd number of shares. We therefore omit
4-share gadgets and display our best trade-offs in terms of RPE security and complexity for
3-share and 5-share gadgets. Each one of these gadgets is experimentally verified using the
IronMask verification tool.

Addition and Copy Gadgets. For the construction of small 3-share and 5-share addition
and copy gadgets, we use the generic constructions depicted in Algorithm 4 and Algorithm 5
(in Section 5.2) which naturally use a refresh gadget as a building block. We hence start
by looking for refresh gadgets that have a good complexity in terms of gates count, and
achieve the upper bound on the amplification order for the specific case of 3-share and 5-share
constructions (but not necessarily for a higher number of shares).

Multiplication gadget. For the construction of small 3-share and 5-share multiplication
gadgets, we use the generic construction depicted in Algorithm 6 from Section 5.4 which,
to the best of our knowledge, is the only multiplication gadget which achieves the maximum
amplification order for any number of shares, and specifically for 3-share and 5-share construc-
tions. As for the refresh gadget Grefresh which is used to perform n refreshes on the second
input, we use the same scheme as for the construction of small addition and copy gadgets (and
which shall satisfy the necessary condition on Grefresh from Corollary 8).

While the multiplication gadget from Section 5.4 achieves the desired amplification order,
we add another pre-processing phase to the gadget in order to further improve the tolerated
leakage probability. In addition to the n refreshes performed on the second input b (see
Algorithm 6), we add another single refresh of the input (a1, . . . , an) before computing the
cross-products, using the same refresh gadget Grefresh. Refreshing the input (a1, . . . , an) before
usage experimentally shows a further increase in the maximum tolerated leakage probability,
by adding more randomness to the input shares before computing the cross-product matrix
M in Algorithm 6. And since the refresh gadget Grefresh achieves the maximum amplification
order, the amplification order achieved by Gmult is not affected by adding another refresh to
the first input a.

The above construction achieves the maximum amplification order for 3-share (d = 2) and
5-share (d = 3) gadgets based on natural refresh gadgets detailed hereafter.

5.5.1 3-share Gadgets

We start with the construction of 3-share gadgets for our three base operations.

Copy and Addition Gadgets. We build our copy and addition gadgets from the instan-
tiation of the generic constructions of Section 5.2 ( Algorithm 4 and Algorithm 5) with 3
shares. However, instead of using the ISW refresh gadget, we use the following more efficient
construction with only two random values:

Grefresh : c1 ← r1 + a1

c2 ← r2 + a2

c3 ← (r1 + r2) + a3.
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This refresh is sufficient to reach the upper bounds on the amplification orders (from Lemma 1).
From this basis, we obtain the following 3-share addition gadget with four random values:

Gadd : c1 ← (r1 + a1) + (r3 + b1)

c2 ← (r2 + a2) + (r4 + b2)

c3 ←
(
(r1 + r2) + a3

)
+
(
(r3 + r4) + b3

)
and the following 3-share copy gadget with also four random values:

Gcopy : c1 ← r1 + a1; d1 ← r3 + a1

c2 ← r2 + a2; d2 ← r4 + a2

c3 ← (r1 + r2) + a3; d3 ← (r3 + r4) + a3.

Multiplication Gadget. The following construction is a 3-share instantiation of the multi-
plication gadget described in Section 5.4. For the input refreshing, we use the 3-share refresh
gadget described above with two uniformly random values. The construction achieves the
bound on the amplification order from Lemma 1 with 17 random values:

Gmult : i1,1 ← r1 + b1; i1,2 ← r2 + b2; i1,3 ← (r1 + r2) + b3

i2,1 ← r3 + b1; i2,2 ← r4 + b2; i2,3 ← (r3 + r4) + b3

i3,1 ← r5 + b1; i3,2 ← r6 + b2; i3,3 ← (r5 + r6) + b3

a′1 ← r7 + a1; a′2 ← r8 + a2; a′3 ← (r7 + r8) + a3

c1 ← (a′1 · i1,1 + r1,1) + (a′1 · i1,2 + r1,2) + (a′1 · i1,3 + r1,3) + (r1,1 + r2,1 + r3,1)

c2 ← (a′2 · i2,1 + r2,1) + (a′2 · i2,2 + r2,2) + (a′2 · i2,3 + r2,3) + (r1,2 + r2,2 + r3,2)

c3 ← (a′3 · i3,1 + r3,1) + (a′3 · i3,2 + r3,2) + (a′3 · i3,3 + r3,3) + (r1,3 + r2,3 + r3,3).

Results. Table 5.1 displays the results for the above gadgets obtained through the Iron-
Mask tool. The second column gives the complexity, where Na, Nc, Nm, Nr stand for the
number of addition gates, copy gates, multiplication gates and random gates respectively. The
third column provides the amplification order of the gadget. And the last column gives the
maximum tolerated leakage probability. The last row gives the global complexity, amplifica-
tion order, and maximum tolerated leakage probability for the RPE compiler using these three
gadgets.

Table 5.1: Results for the 3-share gadgets for (t = 1, f)-RPE, achieving the bound on the
amplification order.

Gadget Complexity
(Na, Nc, Nm, Nr)

Amplification
order

log2 of maximum
tolerated proba

Grefresh (4, 2, 0, 2) 2 −5.14

Gadd (11, 4, 0, 4) 2 −4.75

Gcopy (8, 7, 0, 4) 2 −7.50

Gmult (40, 29, 9, 17) 2 −7.41

Compiler O(|C| · κ3.9) 2 −7.50
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Remark 3. The copy gadget Gcopy instantiated in Section 4.5 which uses a refresh scheme
with 3 randoms for each output, also reaches the amplification order 2. It tolerates a better
leakage probability (i.e. 2−5.9) than the one provided here, but with a higher complexity of
(12, 9, 0, 6). If it is used to replace the 3-share copy gadget, the maximum tolerated leakage
probability by the compiler from Table 5.1 would be of 2−7.4 slightly better than the current
value of 2−7.5 but with a higher complexity of O(|C|·κ4.08) instead of O(|C|·κ3.9). Another copy
gadget can be constructed by using the refresh scheme with 3 random values from Section 4.5
for one of the outputs, and the refresh scheme presented in this section with 2 random values
for the second output. This gadget tolerates a maximum leakage probability of around 2−7.1

with a complexity of (10, 8, 0, 5). Using it would bring the complexity of the compiler from
Table 5.1 to O(|C| · κ4), while tolerating a leakage probability of 2−7.4, the same as that of the
used multiplication gadget.

5.5.2 5-share Gadgets

We now present our 5-share gadgets for our three base operations, which reach the optimal
amplification order from Lemma 1.

Copy and Addition Gadgets. As for the 3-share case, we use the generic constructions
from Section 5.2. Instead of using the ISW refresh gadget, we use the circular refresh gadget
described in [7, 11] which requires less randomness (a.k.a. block refresh gadget):

Grefresh : c1 ← (r1 + r2) + a1

c2 ← (r2 + r3) + a2

c3 ← (r3 + r4) + a3

c4 ← (r4 + r5) + a4

c5 ← (r5 + r1) + a5.

This gadget only uses n randoms for an n-share construction, and while it does not achieve
enough security in the generic case (unless the refresh block is iterated on the input a certain
number of times [7, 11]), it proves to be more than enough to achieve the necessary ampli-
fication order for our 5-share constructions. We use a variant of the original version (also
suggested in [7]): we choose to sum the random values first (thus obtaining a sharing of 0) be-
fore adding them to the input shares. The idea is to avoid using the input shares in any of the
intermediate variables, so that input shares only appear in the input variables {ai}1≤i≤n and
the final output variables {ci}1≤i≤n. Intuitively, this trick allows to have less failure tuples in
the gadget because there are less variables that could leak information about the input. This
is validated experimentally where we obtain better results in terms of amplification order and
tolerated leakage probability for small gadgets.

From this circular refresh, we obtain an addition gadget with ten random values which
reaches the upper bound on the amplification order:

Gadd : c1 ←
(
(r1 + r2) + a1

)
+
(
(r6 + r7) + b1

)
c2 ←

(
(r2 + r3) + a2

)
+
(
(r7 + r8) + b2

)
c3 ←

(
(r3 + r4) + a3

)
+
(
(r8 + r9) + b3

)
c4 ←

(
(r4 + r5) + a4

)
+
(
(r9 + r10) + b4

)
c5 ←

(
(r5 + r1) + a5

)
+
(
(r10 + r6) + b5

)
and a copy gadget with also ten random values and which also reaches the upper bound on
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the amplification order:

Gcopy : c1 ← (r1 + r2) + a1; d1 ← (r6 + r7) + a1

c2 ← (r2 + r3) + a2; d2 ← (r7 + r8) + a2

c3 ← (r3 + r4) + a3; d3 ← (r8 + r9) + a3

c4 ← (r4 + r5) + a4; d4 ← (r9 + r10) + a4

c5 ← (r5 + r1) + a5; d5 ← (r10 + r6) + a5.

Multiplication Gadget. The following construction is a 5-share instantiation of the multi-
plication gadget described in Section 5.4. For the input refreshing, we use the 5-share circular
refresh gadget described above. The gadget advantageously achieves the optimal amplification
order (given by Lemma 1) with 55 random values:

Gmult : i1,1 ← (r1 + r2) + b1; i1,2 ← (r2 + r3) + b2; i1,3 ← (r3 + r4) + b3;

i1,4 ← (r4 + r5) + b4; i1,5 ← (r5 + r1) + b5

i2,1 ← (r6 + r7) + b1; i2,2 ← (r7 + r8) + b2; i2,3 ← (r8 + r9) + b3;

i2,4 ← (r9 + r10) + b4; i2,5 ← (r10 + r6) + b5

i3,1 ← (r11 + r12) + b1; i3,2 ← (r12 + r13) + b2; i3,3 ← (r13 + r14) + b3;

i3,4 ← (r14 + r15) + b4; i3,5 ← (r15 + r11) + b5

i4,1 ← (r16 + r17) + b1; i4,2 ← (r17 + r18) + b2; i4,3 ← (r18 + r19) + b3;

i4,4 ← (r19 + r20) + b4; i4,5 ← (r20 + r16) + b5

i5,1 ← (r21 + r22) + b1; i5,2 ← (r22 + r23) + b2; i5,3 ← (r23 + r24) + b3;

i5,4 ← (r24 + r25) + b4; i5,5 ← (r25 + r21) + b5

a′1 ← (r26 + r27) + a1; a′2 ← (r27 + r28) + a2; a′3 ← (r28 + r29) + a3;

a′4 ← (r29 + r30) + a4; a′5 ← (r30 + r26) + a5

c1 ← (a′1 · i1,1 + r1,1) + (a′1 · i1,2 + r1,2) + (a′1 · i1,3 + r1,3) + (a′1 · i1,4 + r1,4)

+(a′1 · i1,5 + r1,5) + (r1,1 + r2,1 + r3,1 + r4,1 + r5,1)

c2 ← (a′2 · i2,1 + r2,1) + (a′2 · i2,2 + r2,2) + (a′2 · i2,3 + r2,3) + (a′2 · i2,4 + r2,4)

+(a′2 · i2,5 + r2,5) + (r1,2 + r2,2 + r3,2 + r4,2 + r5,2)

c3 ← (a′3 · i3,1 + r3,1) + (a′3 · i3,2 + r3,2) + (a′3 · i3,3 + r3,3) + (a′3 · i3,4 + r3,4)

+(a′3 · i3,5 + r3,5) + (r1,3 + r2,3 + r3,3 + r4,3 + r5,3)

c4 ← (a′4 · i4,1 + r4,1) + (a′4 · i4,2 + r4,2) + (a′4 · i4,3 + r4,3) + (a′4 · i4,4 + r4,4)

+(a′4 · i4,5 + r4,5) + (r1,4 + r2,4 + r3,4 + r4,4 + r5,4)

c5 ← (a′5 · i5,1 + r5,1) + (a′5 · i5,2 + r5,2) + (a′5 · i5,3 + r5,3) + (a′5 · i5,4 + r5,4)

+(a′5 · i5,5 + r5,5) + (r1,5 + r2,5 + r3,5 + r4,5 + r5,5).

Results. Table 5.2 gives the results for the above gadgets obtained through the Iron-
Mask tool.
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Table 5.2: Results for the 5-share gadgets for (t = 2, f)-RPE, achieving the bound on the
amplification order.

Gadget Complexity Amplification
order

log2 of maximum
tolerated proba

Grefresh (10, 5, 0, 5) 3 −4.83

Gadd (25, 10, 0, 10) 3 [−4.67,−4.42]

Gcopy (20, 15, 0, 10) 3 −6.17

Gmult (130, 95, 25, 55) 3 [−9.67,−7.66]

Compiler O(|C| · κ3.23) 3 [−9.67,−7.66]

From Table 5.1 and Table 5.2, we observe that the asymptotic complexity is better for
the instantiation based on 5-share gadgets as they provide a better amplification order with
limited overhead. While this result can seem to be counterintuitive, it actually comes from
the fact that each gadget will be expended less in the second scenario. We stress that we
could only obtain an interval [2−9.67, 2−7.66] for the tolerated leakage probability because it
was computationally too expensive to obtain a tighter interval. Meanwhile, we can consider
that our best complexity O(|C|·κ3.2) comes at the price of a lower tolerated leakage probability
of 2−9.67 (5-share gadget) compared to the O(|C| ·κ3.9) complexity and 2−7.5 tolerated leakage
probability obtained for our 3-share instantiation.

In comparison, the previous instantiation of the RPE compiler in Section 4.5 could only
achieve a complexity of O(|C| · κ7.5) for maximum tolerated probabilities of 2−7.09, and the
instantiation of the expanding approach with a multi-party computation protocol [3], could
only achieve a complexity of O(|C| · κ8.2) for maximum tolerated probabilities of 2−26.

5.6 Conclusion

This chapter provided an in-depth analysis of the RPE security notion and showed that it
could be made tighter, with a connection to the strong non-interference (SNI) composition
notion. We also introduced generic RPE constructions achieving the maximal amplification
order for any number of shares and instantiated small constructions with better asymptotic
complexities.

As previously discussed, we want to target high tolerated leakage rates and good asymptotic
complexities. While constructions with small numbers of shares tend to tolerate better leakage
rates, some constructions have better asymptotic complexities for higher numbers of shares.
In the next chapter, we try to get the best of both worlds with dynamic random probing
expansion. The goal is to start the expansion with a few iterations of a compiler with a small
number of shares to benefit from its tolerated leakage probability. Then, we can continue
the expansion with other compilers with optimal asymptotic complexities, bringing us a step
closer to optimal expansion strategies.
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Chapter 6

Dynamic RPE and Optimal
Asymptotic Complexities

In this chapter, we further push the random probing expansion strategy by analyzing the
base gadgets’ dynamic choice. While the expanding compiler considered in previous chapters
consists in applying a compiler CC composed of base RPE gadgets a given number of times,
say k, to the input circuit: Ĉ = CC(k)(C), we consider a dynamic approach in which a new
compiler is selected at each step of the expansion from a family of base compilers {CCi}i. This
approach is motivated by the generic gadget constructions introduced in Chapter 5, which
achieve the RPE property for any number of shares n. While the asymptotic complexity of
the expanding compiler decreases with n, the tolerated leakage probability p also gets smaller
with n, which makes those constructions only practical for small values of n. We show that
using our dynamic approach, we can get the best of both worlds: our dynamic expanding
compiler enjoys the best tolerated probability and the best asymptotic complexity from the
underlying family of RPE compilers {CCi}i. We further illustrate how this approach can
reduce the complexity of a random probing secure AES implementation by a factor of 10 using
a dynamic choice of the gadgets from Section 5.5 in Chapter 5.

The dynamic random probing expansion motivates us to design asymptotic RPE gadgets
achieving better complexity. While the earlier asymptotic constructions achieve a quadratic
complexity, we introduce new constructions achieving quasi-linear complexity, using the quasi-
linear refresh gadget from Battistello, Coron, Prouff, and Zeitoun [14]. With such linear gad-
gets, the complexity bottleneck of the expanding compiler becomes the number of multiplica-
tions in the multiplication gadget, which is quadratic in known RPE constructions. We then
provide a new generic construction of an RPE multiplication gadget featuring a linear number
of multiplications. We obtain this construction by tweaking the probing-secure multiplication
gadget from Belaïd, Benhamouda, Passelègue, Prouff, Thillard, and Vergnaud [17]. As in the
original construction, our RPE gadget imposes some constraints on the underlying finite field.
We demonstrate that for any number of shares, there exists a (possibly large) finite field on
which our construction can be instantiated, and we provide some concrete instantiations for
small numbers of shares.

Using our new asymptotic gadget constructions with the dynamic expansion approach, we
obtain random probing security for a leakage probability of 2−7.5 with asymptotic complexity
of O(κ2). Moreover, assuming that the constraint on the finite field from our multiplication
gadget is satisfied, we can make this asymptotic complexity arbitrarily close to O(κ), which is
optimal. Hence, securing circuits defined on a large field against random probing leakage can
be achieved at a sub-quadratic nearly-linear complexity. The contributions in this chapter are
published in [23].
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6.1 Dynamic Random Probing Expansion

Recall that the principle of the expanding compiler is to apply a base circuit compiler CC
which is composed of base gadgets –one per gate type in the circuit– several times, say k, to
the input circuit: Ĉ = CC(k)(C). The level of expansion k is chosen in order to achieve a
certain desired security level κ such that f (k)(p) ≤ 2−κ.

In this section, we generalize this approach to choose the circuit compiler dynamically at
the different steps of the expansion. Let {CCi}i be a family of circuit compilers, the dynamic
expanding compiler for this family with respect to the expansion sequence k1, . . . kµ, is defined
as

Ĉ = CC
kµ
µ ◦ CCkµ−1

µ−1 ◦ . . . · · · ◦ CC
k1
1 (C) . (6.1)

The idea behind this generalization is to make the most from a family of RPE compil-
ers {CCi}i which is defined with respect to the number of shares ni in the base gadgets. If
we assume that each compiler CCi with ni shares achieves the maximum amplification order
di = ni+1

2 , then the benefit of using a compiler with higher number of shares is to increase
the amplification order and thus reduce the number of steps necessary to achieve the desired
security level κ. On the other hand, the tolerated leakage rate of existing constructions de-
creases with ni. As we show hereafter, a dynamic increase of ni can ensure both, the tolerated
leakage rate of a small ni and the better complexity of a high ni.

6.1.1 Dynamic Expanding Compiler

In the following, we state the security and asymptotic complexity of the dynamic expanding
compiler. We will consider a family of different RPE compilers where each compiler is indexed
by an index i, i.e. a family of different RPE compilers is denoted as {CCi}i for different
number of shares {ni}i. We start with a formal definition of the dynamic compiler:

Definition 21 (Dynamic Expanding Compiler). Let {CCi}i be a family of RPE compilers
with numbers of shares {ni}i. The dynamic expanding compiler for {CCi}i with expansion
levels k1, . . . , kµ, is the circuit compiler (CC,Enc,Dec) where

1. The input encoding Enc is a
(∏µ

i=1 n
ki
i

)
-linear encoding.

2. The output decoding Dec is the
(∏µ

i=1 n
ki
i

)
-linear decoding mapping.

3. The circuit compilation is defined as

CC(·) = CC
kµ
µ ◦ CCkµ−1

µ−1 ◦ . . . · · · ◦ CC
k1
1 (·) .

The following theorem states the random probing security of the dynamic expanding com-
piler. The proof of the theorem is very similar to the proof of RPE security ( Theorem 2) from
Section 4.2 The main difference is that at each level of the expansion, we can use a different
expanding compiler with different sharing orders. Besides that, the proof follows the same
baselines as in the original proof of Theorem 2. For the sake of completeness, we give the full
proof in Section A.2.

Theorem 3 (Security). Let {CCi}i be a family of RPE compilers with expanding functions
{fi}i. The dynamic expanding compiler for {CCi}i with expansion levels k1, . . . , kµ is (p, ε)-
random probing secure with

ε = f
kµ
µ ◦ · · · ◦ fk11 (p) .

We now state the asymptotic complexity of the dynamic expanding compiler in the next
theorem.
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Theorem 4 (Asymptotic Complexity). Let {CCi}i be a family of circuit compilers with com-
plexity matrices {MCCi}i. For any input circuit C, the output circuit Ĉ = CC

kµ
µ ◦ · · · · · · ◦

CCk11 (C) is of size

|Ĉ| = |C| · O
( µ∏
i=1

|λi|ki
)

with λi such that |λi| := max |eigenvalues(MCCi)| . (6.2)

Proof. Let {CCi}i be a family of circuit compilers with complexity matrices {MCCi}i. Given
a circuit C with its complexity vector NC as described in Section 4.4, it can be verified that
the complexity of the compiled circuit Ĉ = CC

kµ
µ ◦ · · · · · · ◦ CCk11 (C) satisfies

N
Ĉ

= M
kµ
CCµ
· . . . ·Mk1

CC1
·NC

If we denote MCCi = Qi ·Λi ·Q−1i to be the eigen decomposition of the matrix MCCi , then we
get

N
Ĉ

= Qµ · Λ
kµ
µ ·Q−1µ · . . . ·Q1 · Λk11 ·Q

−1
1 ·NC (6.3)

We consider in the theorem that the expansion levels {ki}i are the main parameters. We can
also see from (6.3) that the complexity of the compiled circuit is expressed in terms of the eigen
matrices to the powers ki as Λkii . The parameters {ki}i do not affect the matrices {Qi, Q−1i }i.
Then, if we denote λi := max eigenvalues(MCCi) i.e. the maximum of the eigenvalues in Λi,
then we get that in terms of the parameters {ki}i, the complexity of the compiled circuit Ĉ
can be expressed as

N
Ĉ

= O
(
|λµ|kµ · . . . · |λ1|k1

)
·NC

which gives

|Ĉ| = |C| · O
( µ∏
i=1

|λi|ki
)

which concludes the proof of Theorem 4.

In the following, we shall call λi as defined above, the eigen-complexity of the compiler CCi.
We shall further call the product

∏µ
i=1 |λi|ki the complexity blowup of the dynamic expanding

compiler. We note that minimizing the complexity blowup is equivalent to minimizing the log
complexity blowup, which is

µ∑
i=1

ki · log2(|λi|) . (6.4)

6.1.2 General Bounds for Asymptotic Constructions

The following theorem introduces general bounds on the tolerated leakage rate and the expand-
ing function of an RPE compiler with respect to its amplification order and gadget complexity.

Theorem 5. Let CCi be an RPE circuit compiler of amplification order di and gadget com-
plexity si. The tolerated leakage rate qi of CCi is lower bounded by

qi ≥ q̄i :=
1

e

(
1

2 e

) 1
di−1

(
di
si

)1+ 1
di−1

(6.5)

For any p < q̄i, the expanding function fi of CCi is upper bounded by

fi(p) ≤ 2

(
si
di

)
pdi ≤ 2

(
e · si
di

)di
pdi . (6.6)
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Proof. To prove Theorem 5, we introduce the following lemma.

Lemma 14. Let CCi be an RPE circuit compiler of amplification order di and complexity si.
For any probability

p ≤ 1

2
· di + 1

si − di
(6.7)

the expanding function fi of CCi is upper bounded by

fi(p) ≤ 2

(
si
di

)
pdi . (6.8)

Proof. ( Lemma 14) Let us first recall the following general bound on fi:

fi(p) ≤
si∑
j=di

(
si
j

)
pj , (6.9)

for any p ∈ [0, 1). From (6.7), for any j ∈ [si], we get:(
si

j + 1

)
pj+1 ≤ 1

2

(
si
j

)
pj

which gives

fi(p) ≤
si∑
j=di

(
si
di

)(1

2

)j−di
pdi =

(
si
di

)
pdi

si−di∑
j=0

(1

2

)j
≤ 2

(
si
di

)
pdi .

We are now ready to prove Theorem 5. We show that for every p satisfying

p <
1

e

(
1

2 e

) 1
di−1

(
di
si

)1+ 1
di−1

(6.10)

we have fi(p) < p. Let us define

f̄i : p 7→ 2

(
si
di

)
pdi .

(the upper bound on fi from Lemma 14). The equation f̄i(γ) = γ has the following solution

γ =

(
1

2
(
si
di

)) 1
di−1

which, from (
si
di

)
≤
(si · exp(1)

di

)di
,

further satisfies

γ ≥ 1

e

(
1

2 e

) 1
di−1

(
di
si

)1+ 1
di−1

We deduce that (6.10) implies p < γ which further implies f̄i(p) < p. Moreover (6.10) implies

p <
1

2

(
di
si

)1+ 1
di−1

<
1

2
· di
si
<

1

2
· di + 1

si − di
,

which, by Lemma 14, further implies fi(p) ≤ f̄i(p). We hence deduce that (6.10) implies
fi(p) < p which concludes the proof.
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The lower bound q̄i on the tolerated leakage rate quickly converges to the ratio e−1 · di/si
as di grows. In other words, an RPE compiler family {CCi}i indexed by the number of shares
ni of its base gadgets tolerates a leakage probability which is linear in the ratio between
its amplification order di and its complexity si. For known families of RPE compilers from
Section 5.5, this ratio is in O(1/ni).

From Theorem 5, we obtain the following bound for the composition f (k)i .

Corollary 9. Let CCi be an RPE compiler of expanding function fi, amplification order di
and gadget complexity si. For any p < q̄i as defined in (6.5), we have

f
(k)
i (p) ≤

[
2

(
si
di

)](1+ 1
di−1

)
dk−1
i

pd
k
i ≤

(2
1
di esi
di

)(1+ 1
di−1

)
p


dki

.

Proof. For any function f(p) = c · pd, we have

f (k)(p) = c(d
k−1+dk−2+···+1) · pdk ≤ c

(
1+ 1

d−1

)
dk−1

pd
k
.

When ci = 2
(
si
di

)
, Equation (6.6) from Theorem 5 gives the first and the second inequalities.

The following lemma gives an explicit lower bound on the expansion level {ki}i to reach
some arbitrary target probability pout = 2−κout from a given input probability pin = 2−κin by
applying CC

(ki)
i .

Lemma 15. Let pin = 2−κin < qi and pout = 2−κout ∈ (0, 1]. For any integer ki satisfying

ki ≥ logdi(κout)− logdi(κin −∆i)

with
∆i :=

(
1 +

1

di − 1

)( 1

di
+ log2

(esi
di

))
we have

f
(ki)
i (pin) ≤ pout = 2−κout .

In the above lemma, ∆i represents a lower bound for κin which matches the upper bound
q̄i of pin = 2−κin . Assuming that si and di are both monotonically increasing with i, we get
that the threshold ∆i tends towards log2

(
esi
di

)
.

From Lemma 15, we further get that the cost induced by the choice of the compiler CCi
to go from an input probability pin to a target output probability pout is

ki · log2(|λi|) ≥
log2(|λi|)
log2(di)

(
log2(κout)− log2(κin −∆i)

)
(6.11)

(in terms of the log complexity blowup (6.4)). Note that this lower bound is tight: it could
be replaced by an equality at the cost of ceiling the term between parentheses (i.e. the
term corresponding to ki). We further note that the above equation is consistent with the
complexity analysis of the expanding compiler provided in Section 4.4. Indeed going from a
constant leakage probability pin = p to a target security level pout = 2−κ by applying ki times
a single RPE compiler CCi, we retrieve a complexity of O(κe) with e = log2(|λi|)

log2(di)
.

Equation (6.11) shows that using CCi to go from input probability pin to output probability
pout induces a log complexity cost close to

log2(|λi|)
log2(di)

(
log2(κout)− log2(κin)

)
provided that κin is sufficiently greater than ∆i. So given the latter informal condition, it
appears that the parameter i minimizing the ratio log2(|λi|)

log2(di)
gives the best complexity.
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Application. For the asymptotic construction introduced in Section 5.2 and Section 5.3,
the RPE compiler CCi features

• an amplification order di = O(ni),

• a gadget complexity si = O(n2i ),

• an eigen-complexity |λi| = O(n2i ).

For such a construction, the ratio log2(|λi|)
log2(di)

is decreasing and converging towards 2 as ni grows.
On the other hand, ∆i tends to log2(ni) which implies that CCi should only be applied to an
input probability lower than 1

ni
.

6.1.3 Selection of the Expansion Levels

In this section, we investigate the impact of the choice of the expansion levels ki on the
complexity of the dynamic expanding compiler. We first assess the asymptotic complexity
obtained from a simple approach and then provide some application results for some given
gadgets.

In the following CC0 shall denote an RPE compiler with constant parameters while {CCi}i≥1
shall denote a family of RPE compilers indexed by a parameter i. We do this distinction since
the goal of the CC0 compiler shall be to tolerate the highest leakage rate and to transit from
a (possibly high) leakage probability p to some lower failure probability pi which is in turn
tolerated by at least one compiler from {CCi}i.

A Simple Approach. We consider a simple approach in which the compiler CC0 is iterated
k0 times and then a single compiler CCi is iterated ki times. The complexity blowup of this
compiler is |λ0|k0 |λi|ki . The first expansion level k0 is chosen to ensure that the intermediate
probability pi := f

(k0)
0 (p) is lower than q̄i (the lower bound on the tolerated leakage rate of

CCi from Theorem 5). Then ki is chosen so that f (ki)i ≤ 2−κ.
Concretely, we set κi := ∆i + 1 which, by Lemma 15, gives

k0 =
⌈
logd0(∆i + 1)− logd0(log2(p)−∆0)

⌉
, (6.12)

and
ki =

⌈
logdi(κ)

⌉
= O

(
logdi(κ)

)
. (6.13)

For some constant leakage probability p and some start compiler CC0 with constant pa-
rameters, we get k0 = O

(
logd0(∆i)

)
giving an asymptotic complexity blowup of

O
(
|λ0|k0 |λi|ki

)
= O

(
∆e0
i κ

ei
)

with e0 =
log2(|λ0|)
log2(d0)

and ei =
log2(|λi|)
log2(di)

. (6.14)

Then for any choice of i we get an asymptotic complexity blowup of O
(
κei
)
which is the same

asymptotic complexity as the standard expanding compiler with base compiler CCi. On the
other hand, our simple dynamic compiler CC

(ki)
i ◦ CC(k0)

0 tolerates the same leakage rate as
CC0.

Using this simple approach we hence get the best of both worlds:

• a possibly inefficient RPE compiler CC0 tolerating a high leakage rate q0,

• a family of RPE compilers {CCi}i with complexity exponent ei = log2(|λi|)
log2(di)

decreasing
with i.

We stress that for monotonously increasing |λi| and di, the asymptotic complexity of our
simple approach is O(κe) where e can be made arbitrary close to limi→∞

log2(|λi|)
log2(di)

.
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Application. To illustrate the benefits of our dynamic approach, we simply get back to the
experimentations on the AES implementation from Section 4.7. We can apply either a 3-share
or 5-share compiler (from the constructions in Section 5.5) repeatedly until they reach their
targeted security level. While using the 5-share compiler reduces the tolerated probability, we
demonstrate that we can use both compilers to get the best tolerated probability as well as a
better complexity.
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Figure 6.1: Complexity of random probing AES for different security levels for a tolerated
probability of 2−7.6 (left) or 2−9.5 (right).

Figure 6.1 illustrates the trade-offs in terms of achieved security level and complexity of the
expansion strategy when using different compilers at each iteration of the expansion. Starting
from a tolerated leakage probability p (2−7.6 on the left and 2−9.5 on the right), the empty
bullets (◦) give this trade-off when only the 3-share compiler is iterated. In this case, the final
security function ε from Theorem 3 is equal to f (k3)3 (p) if we consider f3 to be the failure
function of the 3-share compiler, for a certain number of iterations k3 which is written next
to each empty bullet on the figure. On the other hand, the black bullets (•) represent the
trade-offs achieved in terms of complexity and security levels while combining both compilers
with different numbers of iterations. In this case, we start the expansion with a certain number
of iterations k3 of the 3-share compiler, and then we continue with k5 iterations of the 5-share
compiler of failure function f5, the final compiled circuit is then random probing secure with
ε = f

(k5)
5 (f

(k3)
3 (p)) for p ∈ {2−7.6, 2−9.5}. The number of iterations of the compilers is written

next to each black bullet in the format k3-k5.

For instance, starting from the best tolerated probability 2−7.6, the static compiler requires
11 applications of the 3-share compiler to achieve a security level of at least 80 bits. This effort
comes with an overall complexity of 1017.52. Using our dynamic approach, we can combine the
3-share and the 5-share to achieve this 80 bits security level for the same tolerated probability
but with a complexity of 1016.04. That would require 7 iterations of the 3-share compiler and
2 iterations of the 5-share compiler. Starting from the same leakage probability, a security
level of at least 128 bits is achieved also with 11 applications of the 3-share compiler with
a complexity of 1017.52. In order to achieve at least the same security, we would need more
iterations of both compilers in the dynamic approach. With 7 iterations of the 3-share compiler
and 3 iterations of the 5-share compiler, we get a complexity of 1017.62 which is very close to
the complexity of the 3-share application alone, while achieving a security level of 231 bits.
That is, we almost double the security level achieved using 11 iterations of the 3-share compiler
with an almost equal complexity. For a tolerated probability of 2−7.6 and at least 128 bits
of security, note that 11 applications of the 3-share compiler yield a security order of 2−135

while both other trade-offs directly yield security orders of 2−242 (6 iterations of 3-share and 4
iterations of 5-share) and 2−231 (7 iterations of 3-share and 3 iterations of 5-share), with one

91



less iteration they would be below 128 bits, which explains their more important complexity.
The same behavior can be observed with a starting tolerated leakage probability of 2−9.5 on
the right.

We showed this far that the tolerated leakage probability decreases with an increasing
number of shares n. So if we want to tolerate the best leakage probability, we would start with
a few iterations of a compiler with a small number of shares and which tolerates a good leakage
probability (which can be computed, for instance, with the verification tool VRAPS [18]),
typically a 3-share construction. Meanwhile, after a few constant number of iterations, we
can change to a different compiler which benefits from a better asymptotic complexity (as
explained above with our simple approach).

The above results motivate finding RPE compilers which achieve the maximal amplification
orders and which benefit from good asymptotic complexity (i.e. gadgets defined for any
number of shares n with amplification order increasing with n) in order to optimize the security-
efficiency trade-off and to tolerate the best possible leakage probability. We showed this far that
the tolerated leakage probability decreases with an increasing number of shares n. So if we want
to tolerate the best leakage probability, we would start with a few iterations of a compiler with
a small number of shares which tolerates a good leakage probability (which can be computed,
for instance, with verification tools like IronMask), typically a 3-share construction. Meanwhile,
after a few constant number of iterations, we can change to a different compiler which benefits
from a better asymptotic complexity (as explained above with our simple approach).

In Section 5.3 and Section 5.4, we instantiate the expanding compiler with ISW-based
addition and copy gadgets, and a new multiplication gadget, which all achieve the maximal
amplification order. The bottleneck of these constructions in terms of asymptotic complexity
was from the linear gadgets (addition and copy) with Nmax = 3n2 − 2n. In the next section,
we show that the O(n log n) refresh gadget from [14] can be used to instantiate addition and
copy gadgets with maximal amplification order, hence achieving quasi-linear complexity in
O(n log n). The bottleneck then becomes the multiplication gadget (with n2 multiplications),
which we also improve in the following sections under some conditions on the base field.

6.2 Linear Gadgets with Quasi-Linear Complexity

In a first attempt, we aim to reduce the complexity of the linear gadgets that are to be used
in our dynamic compiler.

A refresh gadget with O(n log n) complexity was introduced in [14]. In a nutshell, the idea
is to add a linear number of random values on the shares at each step, to split the shares in
two sets to apply the recursion, and then to add a linear number of random values again. We
recall the algorithmic description of the gadget in Algorithm 3.

The O(n log n) refresh gadget was proven to be (n − 1)-SNI in [14]. In Lemma 16, we
show that this gadget is also (t, f)-TRPE of amplification order min(t+ 1, n− t) and that it
satisfies (n − 1)-STRPE2. Hence, we can instantiate the generic copy and addition gadgets
described in Algorithm 4 and Algorithm 5 from Section 5.2 using the above refresh gadget
as Grefresh. We thus obtain RPE gadgets Gadd and Gcopy enjoying optimal amplification order
in quasi-linear complexity O(n log n).

Lemma 16. Let Grefresh be the n-share refresh gadget described above from [14]. Then Grefresh
is (t, f)-TRPE for some function f : R → R of amplification order d ≥ min(t + 1, n − t).
Grefresh is additionally (n− 1)-STRPE2.
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Figure 6.2: O(n log n) refresh gadget from [13]

Proof. We will prove that the gadget from Algorithm 3 is (t, f)-TRPE for any t ≤ n − 1 of
amplification order d ≥ min(t+ 1, n− t). For this, we will prove both properties TRPE1 and
TRPE2.

Proof for TRPE1.

The gadget is proven to be (n − 1)-SNI in [13], thus it is (t, f)-TRPE1 of amplification
order d ≥ min(t+ 1, n− t) thanks to Lemma 6. Note that we can find failure sets of wires of
size t+ 1 which require the knowledge of t+ 1 input shares (simply consider the leaking wires
{a1, . . . , at+1} on input a for instance), so d ≤ t+ 1.

Proof for (n − 1)-STRPE2 (which implies TRPE2 of amplification order t + 1,
c.f. Corollary 4).

We will first start by recalling the result of Lemma 5 in [13] which will be useful for our
proof.
Lemma 5 from [13]. Let a1, a2 ∈ K be inputs, and let r $←− K . Let V be a subset of the
variables {a1, a2, r} and O ∈ {∅, {a1 + r}}. Then the variables in V ∪ O ∪ {a2 − r} can be
perfectly simulated from I ⊂ {a1, a2}, with |I| ≤ |V |+ 2 · |O|.

Proof of Lemma 5 from [13]. If |O| = 1 or |V | ≥ 2, we can take I = {a1, a2}. If |O| = 0 and
|V | = 0, we can simulate a2 − r with a random value. If |O| = 0 and |V | = 1, if V = {a1} we
let I = {a1} and we can again simulate a2 − r with a random value; if V = {r} or V = {a2}
then we let I = {a2}. �

We are now ready to prove our main result. For TRPE2, we will prove the slightly stronger
property (n− 1)-STRPE2. We can clearly see that (n− 1)-STRPE2 implies TRPE2 of ampli-
fication order d = t+1 as shown in Corollary 4. We will prove (n−1)-STRPE2 by recurrence
on the number of shares n ≥ 2.

The gadget in the base case (n = 2) gives the following output sharing:

d1 ← a1 + r

d2 ← a2 + r

The proof in this case is easy. Mainly, if J ′ = ∅, it is easy to see that we can choose J of
size 1 such that we can perfectly simulate W and J from a set of input shares I on a such
that |I| ≤ |W | ≤ 1. Otherwise, if |J ′| = 1, then |W | = 0, and we choose J = J ′ and in this
case we have |I| = 0, since we can perfectly simulate any of the output shares alone by simply
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generating a freshly random value. This concludes the proof for the base case.

Next we suppose that the gadget is (n′−1)-STRPE2 for any number of shares n′ < n, and
we prove the property for n shares.

To prove this, we split the gadget into four subgadgets as in Figure 6.2, where gadget
LI corresponds to the first loop in Algorithm 3 which adds bn/2c random values to the
sharing, R1 and R2 gadgets correspond to the two recursive calls respectively, and LO gadget
corresponds to the second loop which also add bn/2c random values to the output sharing. We
split any set of probes W on Grefresh into W = V 0 ∪ V 1 ∪ V 2 ∪ V 3 on each of the subgadgets
LI , R1, R2 and LO respectively. The gadget R1 is a

⌊n
2

⌋
-share gadget while R2 is

⌈n
2

⌉
-share

gadget. We consider that there are no probes on the output shares of R1 and R2 as they
can be probed through V 3. Similarly, we consider no output probes on LI , since they can be
probed through V 1 and V 2.

Let W bet the set of probes on Grefresh and J ′ be the set of output shares indices such that
|W |+ |J ′| ≤ n− 1. We will construct the sets J ′1 and J ′2 for output shares of the gadgets R1

and R2 as follows:

• for each i ∈ J ′ ∩
[ ⌊n

2

⌋ ]
, add i to J ′1

• for each i ∈ J ′ ∩
[ ⌊n

2

⌋
+ 1 : n

]
, add i to J ′2

• for each i ∈
[ ⌊n

2

⌋ ]
such that the input probe ci to LO is probed in V 3, add i to J ′1

• for each i ∈
[ ⌊n

2

⌋
+ 1 : n

]
such that the input probe ci to LO is probed in V 3, add i to

J ′2

It can be seen that if we can perfectly simulate J ′1 and J ′2, then we can perfectly simulate J ′

and all probes in V 3 (V 3 is composed of input probes ci and random variables ri, since probes
of the form ci + rj are probed in J ′). Observe that we also have |J ′1|+ |J ′2| ≤ |V 3|+ |J ′|.
In order for the recurrence hypothesis to hold, we need the following condition to hold for the
gadget R1:

|V 1|+ |J ′1| ≤
⌊n

2

⌋
− 1 (6.15)

and the following for the gadget R2:

|V 2|+ |J ′2| ≤
⌈n

2

⌉
− 1 (6.16)

We consider three cases based on the sizes of the sets of probes:

• |V2|+ |J′2| ≥
⌈n

2

⌉
. Then we must have |V 1| + |J ′1| ≤

⌊n
2

⌋
− 1, because we have that

|W |+ |J ′| ≤ n− 1 and |J ′1|+ |J ′2| ≤ |V 3|+ |J ′|.
Since (6.15) holds, by the recurrence hypothesis on R1, we can choose a set J1 of size⌊n

2

⌋
− 1 such that J ′1 ⊆ J1 and we can perfectly simulate J1 and V 1 from a set of input

shares I1 on (b1, . . . , bbn/2c) such that |I1| ≤ |V 1| + |J ′1|. Since (6.16) does not hold for

R2, we can set J2 =
[ ⌈n

2

⌉
: n
]
and I2 =

[ ⌈n
2

⌉
: n
]
, and finally set J = J1 ∪ J2 of

n−1 output shares on Grefresh. We can see that J ′2 ⊆ J2 and J2 and V 2 can be perfectly
simulated from I2 trivially (full input).
Next, we show how to perfectly simulate the sets I1, I2 on intermediate variable b, and
V 0. In fact, thanks to the properties of the LI gadget, we can apply Lemma 5 from [13]
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for all 1 ≤ i ≤ bn/2c on each set of intermediate variables {ai, abn/2c+i, ri} and output
variable bi = ai+ri, where all output variables bbn/2c+i = abn/2c+i−ri must be simulated

(since we fixed I2 =
[ ⌈n

2

⌉
: n
]
), and by summing the inequalities, we construct I ⊂ [n]

on n-share input a to perfectly simulate I1, I2 on intermediate variable b, and V 0 such
that

|I| ≤ |V 0|+ 2|I1|+ (n mod 2) ≤ |V 0|+ 2(|V 1|+ |J ′1|) + (n mod 2)

where (n mod 2) comes from the fact that we need to perfectly simulate all shares of
(bdn/2e, . . . , bn) and if n mod 2 = 1, then bn = an by construction of the gadget LI .
From (6.15) which holds in this case, observe that we have

|V 1|+ |J ′1|+ (n mod 2) ≤
⌊n

2

⌋
≤
⌈n

2

⌉
≤ |V 2|+ |J ′2|,

then we have

|I| ≤ |V 0|+ 2(|V 1|+ |J ′1|) + (n mod 2) ≤ |V 0|+ |V 1|+ |J ′1|+ |V 2|+ |J ′2|

which gives
|I| ≤ |W |+ |J ′|

and using the input shares in I, we can perfectly simulate probes in V 0, I1 and I2, and
using I1 and I2 we proved that we can perfectly simulate probes in V 1, V 2, J1 and J2,
and so we can also perfectly simulate the chosen set of n−1 output shares J and probes
in V 3. So we can perfectly simulate all internal probes plus the chosen set J of n − 1
output shares from I. This proves the recurrence step in this case.

• |V1|+ |J′1| ≥
⌊n

2

⌋
. Then we must have |V 2| + |J ′2| ≤

⌈n
2

⌉
− 1, because we have that

|W |+ |J ′| ≤ n− 1 and |J ′1|+ |J ′2| ≤ |V 3|+ |J ′|.
Since (6.16) holds, by the recurrence hypothesis on R2, we can choose a set J2 of size⌈n

2

⌉
− 1 such that J ′2 ⊆ J2 and we can perfectly simulate J2 and V 2 from a set of input

shares I2 on (bdn/2e, . . . , bn) such that |I2| ≤ |V 2| + |J ′2|. Since (6.15) does not hold for

R1, we can set J1 =
[ ⌊n

2

⌋ ]
and I1 =

[ ⌊n
2

⌋ ]
, and finally set J = J1∪J2 of n− 1 output

shares on Grefresh. We can see that J ′1 ⊆ J1 and J1 and V 1 can be perfectly simulated
from I1 trivially (full input).
Next, we show how to perfectly simulate the sets I1, I2 on intermediate variable b, and
V 0. In fact, thanks to the properties of the LI gadget, we can apply Lemma 5 from [13]
for all 1 ≤ i ≤ bn/2c on each set of intermediate variables {ai, abn/2c+i, ri} and output
variable bbn/2c+i = abn/2c+i−ri, where all output variables bi = ai+ri must be simulated

(since we fixed I1 =
[ ⌊n

2

⌋ ]
), and by summing the inequalities, we construct I ⊂ [n] on

n-share input a to perfectly simulate I1, I2 on intermediate variable b, and V 0 such that

|I| ≤ |V 0|+ 2|I2| ≤ |V 0|+ 2(|V 2|+ |J ′2|)

(in this case, we don’t have the term (n mod 2) anymore because we do not need the full
input sharing (bdn/2e, . . . , bn) for the simulation as before). Since (6.16) holds and (6.15)
does not hold, we observe that

|V 2|+ |J ′2| ≤
⌈n

2

⌉
− 1 ≤

⌊n
2

⌋
≤ |V 1|+ |J ′1|

so we get
|I| ≤ |V 0|+ 2(|V 2|+ |J ′2|) ≤ |V 0|+ |V 2|+ |J ′2|+ |V 1|+ |J ′1|
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which gives
|I| ≤ |W |+ |J ′|

and using the input shares in I, we can perfectly simulate probes in V 0, I1 and I2, and
using I1 and I2 we proved that we can perfectly simulate probes in V 1, V 2, J1 and J2,
and so we can also perfectly simulate the chosen set of n−1 output shares J and probes
in V 3. So we can perfectly simulate all internal probes plus the chosen set J of n − 1
output shares from I. This proves the recurrence step in this case.

• |V1|+ |J′1| ≤
⌊n

2

⌋
− 1 and |V2|+ |J′2| ≤

⌈n

2

⌉
− 1. This case can be treated in the exact

same way as the above cases. Namely, if we have |V 1|+ |J ′1|+ (n mod 2) ≤ |V 2|+ |J ′2|,
then we can consider the first case and treat it in the same way (by appyling the recursion
hypothesis on gadget R1 and setting J2 =

[ ⌈n
2

⌉
: n
]
and I2 =

[ ⌈n
2

⌉
: n
]
.

Otherwise, if we have |V 2| + |J ′2| ≤ |V 1| + |J ′1| + (n mod 2), then we can consider the
second case and treat it in the same way (by appyling the recursion hypothesis on gadget
R2 and setting J1 =

[ ⌊n
2

⌋ ]
and I1 =

[ ⌊n
2

⌋ ]
.

This also concludes the proof in this case.

By treating all possible cases on the probed wires, we conclude the recursive proof. This proves
that for any n shares such that |W | + |J ′| ≤ n − 1, we can choose a set J of n − 1 output
shares such that J ′ ⊆ J and we can perfectly simulate J and W from a set of input shares
I such that |I| ≤ |W | + |J ′|. Thus, we conclude that the gadget Grefresh is (n − 1)-STRPE2.
Thus, it is also (t, f)-TRPE2 of amplification order d = t+ 1. This concludes the proof.

Hence, we can instantiate the generic copy and addition gadgets described in Section 5.2
using the above refresh gadget as Grefresh. We thus obtain RPE gadgets Gadd and Gcopy in
quasi-linear complexity O(n log n). In addition, Gadd and Gcopy achieve the maximal ampli-
fication order according to the following corollary, which directly follows from Lemma 16,
Lemma 9 and Lemma 7.

Corollary 10. Let n ∈ N. Let Gadd and Gcopy be the gadgets described in Algorithm 4
and Algorithm 5, and instantiated with the O(n log n) refresh gadget described in Algorithm 3.
Then for every t ≤ n − 1, Gadd if (t, f)-RPE and Gcopy is (t, f ′)-RPE, both of amplification
orders d = min(t+ 1, n− t).

Regarding the asymptotic complexity of the expanding compiler, the eigenvalues λ1, λ2 of
Mac (4.16) from Section 4.4 are hence now both in O(n log n). Namely, we have

Mac =

(
NGadd,a NGcopy,a

NGadd,c NGcopy,c

)
=

(
2n(2 log(n)− 1) + n n(2 log(n)− 1)

2n(2 log(n)− 1) n(2 log(n)− 1) + n

)
.

The eigenvalues of the above matrix are λ1 = n and λ2 = 6n log(n)− 2n, implying

Nmax = max(6n log(n)− 2n,NGmult,m) (6.17)

At this point, only the quadratic number of multiplications in the multiplication gadget still
separates us from a compiler of quasi-linear complexity. We tackle this issue in the next section
by constructing a generic multiplication gadget. We finally end up with a full expanding
compiler with quasi-linear asymptotic complexity.
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6.3 Towards Asymptotically Optimal Multiplication Gadgets
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Figure 6.3: n-share multiplication gadget Gmult from two subgadgets Gsubmult and Gcompress

In what follows we should distinguish two types of multiplication gates: regular two-operand
multiplications on K, that we shall call bilinear multiplications, and multiplications by con-
stant (or scalar multiplications) which have a single input operand and the constant scalar is
considered as part of the gate description.

In the previous constructions, the number of bilinear multiplications is the prominent
term of the expanding compiler’s complexity. While the most deployed multiplication gadgets
(e.g., [59]) require a quadratic number of bilinear multiplications in the masking order, the au-
thors of [17] exhibited a probing secure higher-order masking multiplication with only a linear
number of bilinear multiplications. Their construction, which applies on larger fields, is built
from the composition of two subgadgets Gsubmult and Gcompress, as described in Figure 6.3. In
a nutshell, on input sharings â and b̂, the subgadget Gsubmult performs multiplications between
the input shares of â and b̂ as well as linear combinations of these products and it outputs
a m-sharing ĉ of the product a · b where m ≥ n 1. Next, the compression gadget Gcompress

compresses the m-sharing ĉ back into an n-sharing d̂ of the product a · b.

The authors of [17] instantiate this construction with a sub-multiplication gadget which
performs only O(n) bilinear multiplications and with the compression gadget from [31]. In
addition to bilinear multiplications, their sub-multiplication gadget additionally requires a
quadratic number of linear operations (i.e., addition, copy, multiplications by a constant) and
random generation gates.

In the following, we rely on the construction [17] with its gadget Gsubmult which offers a lin-
ear number of bilinear multiplications to build a more efficient RPE multiplication gadget. In
order to use it in our expanding compiler, we integrate an additional gate for the multiplication
by a constant and discuss the resulting asymptotic complexity. We additionally demonstrate
that the compression gadget of [17] is not (n− 1)-SNI as claimed in the paper, and show that
we can rely on other simple and more efficient compression gadgets which satisfy the expected
properties.

6.3.1 Global Multiplication Gadget

We first define two new properties that Gsubmult and Gcompress will be expected to satisfy to
form a (t, f)-RPE multiplication gadget with the maximum amplification order (c.f. Lemma 1).

Contrary to the usual simulation notions, the first partial -NI property distinguishes the
number of probes on the gadget, and the number of input shares that must be used to simulate
them. It additionally tolerates a simulation failure on at most one of the inputs (i.e., no
limitation on the number of shares for the simulation).

1In case of a sharewise multiplication for instance, we would have m = n2.
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Definition 22 ((s, t)-partial NI). Let G be a gadget with two input sharings â and b̂. Then
G is (s, t)-partial NI if and only if any the assignment of any t wires of G can be perfectly
simulated from shares (ai)i∈I1 of â and (bi)i∈I2 of b̂ such that |I1| ≤ s or |I2| ≤ s.

The second property is a variant of the classical TRPE property that we refer to as comp-
TRPE.

Definition 23 ((t, f)-comp-TRPE). Let G be a 1-to-1 gadget with m input shares and n output
shares such that m > n. Let t ≤ n−1 and d = min(t+1, n− t). Then G is (t, f)-comp-TRPE
if and only if for all sets of internal wires W of G with |W | ≤ 2d− 1, we have:

1. ∀ J, |J | ≤ t a set of output share indices of G, the assignment of the wires indexed by
W and the output shares indexed by J can be jointly perfectly simulated from the input
shares of G indexed by a set I, such that |I| ≤ |W |.

2. ∃ J ′, |J ′| = n−1 a set of output share indices of G, such that the assignment of the wires
indexed by W and the output shares indexed by J ′ can be jointly perfectly simulated from
the input shares of G indexed by a set I, such that |I| ≤ |W |.

Similarly to what was done in [17] for the SNI property, we can prove that the composition
of a gadget Gsubmult and Gcompress which satisfy well chosen properties results in an overall
multiplication gadget which is (t, f)-RPE specifically for any t ≤ n−1 achieving the maximum
amplification order d = min(t+ 1, n− t). This is formally stated in the following Lemma.

Lemma 17. Consider the n-share multiplication gadget of Figure 6.3 formed by a 2-to-1
multiplication subgadget Gsubmult of m output shares and a 1-to-1 compression gadget Gcompress
of m input shares such that m > n. Let t ≤ n− 1 and d = min(t+ 1, n− t). If

• Gsubmult is (d− 1)-NI and (d− 1, 2d− 1)-partial NI,

• Gcompress is (t, f)-comp-TRPE,

then the multiplication gadget Gmult is (t, f)-RPE of amplification order d.

Proof. First let us fix t ≤ n − 1. We will be splitting a set of probe W on the multiplication
gadget into two sets of probes W = Wm ∪Wc where Wm are probes on Gsubmult (internal and
output wires) and Wc are probes Gcompress (on internal wires only).

We start by proving RPE1. Let J bet a set of output shares such that |J | ≤ t.

• LetW be a set of probes on the multiplication gadget such that |W | = |Wm∪Wc| ≤ d−1.
We know in particular from the comp-TRPE property on Gcompress that all wires in J
and Wc can be simulated from a set of input shares Ic on the intermediate result c such
that |Ic| ≤ |Wc| (since |Wc| ≤ d−1 < 2d). Then, we have a set of probes W ′m = Wm∪ Ic
on Gsubmult which is of size |W ′m| ≤ |Wm| + |Ic| ≤ |Wm| + |Wc| ≤ d − 1, then from
(d − 1)-NI property of Gsubmult we know that all the probes in W ′m can be simulated
from sets of input shares Ia and Ib such that |Ia| ≤ d− 1 ≤ t and |Ib| ≤ d− 1 ≤ t. This
proves that we can simulate all probes in the overall set of probes W and in J from at
most t shares of a and t shares of b. this proves the first property for RPE1.

• Next let W be a set of probes on the multiplication gadget such that d ≤ |W | =
|Wm ∪Wc| ≤ 2d − 1. We need to show that we can simulate W and J with at most a
failure on one of the inputs a or b. We know in particular from the comp-TRPE property
on Gcompress that all wires in J and Wc can be simulated from a set of input shares Ic
on the intermediate result c such that |Ic| ≤ |Wc| (since |Wc| ≤ 2d− 1 < 2d). Then, we
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have a set of probes W ′m = Wm ∪ Ic on Gsubmult which is of size |W ′m| ≤ |Wm| + |Ic| ≤
|Wm|+ |Wc| ≤ 2d− 1. Hence from (d− 1, 2d− 1)-partial NI property of Gsubmult, all the
probes in W ′m can be simulated from sets of input shares Ia and Ib such that |Ia| ≤ d−1
or |Ib| ≤ d− 1 ≤ t. Since d = min(t+ 1, n− t), then this implies that we have a failure
on at most one of the inputs.

This proves that we can simulate all probes in the overall set of probes W and in J from
at most t shares of at least one of the inputs a or b (in other words, if we need more
than t shares of a, then we need at most t shares of b). This proves the second property
for RPE1.

From the above two cases, we conclude that the multiplication gadget is (t, f1)-RPE1 with
amplification order d = min(t+ 1, n− t).

Next we prove the property RPE2.

• Let W be a set of probes on the multiplication gadget such that |W | = |Wm ∪Wc| ≤
d − 1. We know in particular from the comp-TRPE property on Gcompress that there
exists a set J of n − 1 output shares such that all wires in Wc and J can be simulated
from a set of input shares Ic on the intermediate result c such that |Ic| ≤ |Wc| (since
|Wc| ≤ d − 1 < 2d). Then, we have a set of probes W ′m = Wm ∪ Ic on Gsubmult which
is of size |W ′m| ≤ |Wm| + |Ic| ≤ |Wm| + |Wc| ≤ d − 1, then from (d − 1)-NI property of
Gsubmult we know that all the probes in W ′m can be simulated from sets of input shares
Ia and Ib such that |Ia| ≤ d − 1 ≤ t and |Ib| ≤ d − 1 ≤ t. This proves that there exists
a set J of n− 1 output shares such that we can simulate all probes in the overall set of
probes W and in J from at most t shares of a and t shares of b. This proves the first
property for RPE2.

• Next let W be a set of probes on the multiplication gadget such that d ≤ |W | =
|Wm∪Wc| ≤ 2d−1. We know in particular from the comp-TRPE property on Gcompress
that there exists a set J of n− 1 output shares such that all wires in Wc and J can be
simulated from a set of input shares Ic on the intermediate result c such that |Ic| ≤ |Wc|
(since |Wc| ≤ 2d − 1 < 2d). Then, we have a set of probes W ′m = Wm ∪ Ic on Gsubmult
which is of size |W ′m| ≤ |Wm|+ |Ic| ≤ |Wm|+ |Wc| ≤ 2d− 1. Hence as for RPE1, from
(d− 1, 2d− 1)-partial NI property of Gsubmult, we have that all the probes in W ′m can be
simulated from sets of input shares Ia and Ib such that |Ia| ≤ d− 1 or |Ib| ≤ d− 1 ≤ t.
Since d = min(t + 1, n − t), then this implies that we have a failure on at most one of
the inputs.

This proves that there exists a set J of n − 1 output shares such that we can simulate
all probes in the overall set of probes W and in J from at most t shares of at least one
of the inputs a or b (in other words, if we need more than t shares of a, then we need at
most t shares of b). This proves the second property for RPE2.

From the above two cases, we conclude that the multiplication gadget is (t, f2)-RPE2 with
amplification order d = min(t+ 1, n− t).

Combining both properties RPE1 and RPE2 with the same amplification order d, we
conclude that the multiplication gadget is (t, f)-RPE with f = max(f1, f2) and of amplification
order d = min(t+ 1, n− t). This concludes the proof of Lemma 17.

6.3.2 Construction of Gcompress

In a first attempt, we analyze the compression function that was introduced in [31] and used to
build a multiplication gadget in [17]. As it turns out not to be SNI or meet our requirements
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for the expanding compiler, we exhibit a new and also more efficient construction in a second
attempt.

Gcompress from [17, 31]. The authors of [17] use the [m : n]-compression gadget introduced
in [31] for any input sharing m, using a [2n : n]-compression subgadget as a building block.
In a nutshell, it first generates an ISW -refresh of the zero n-sharing (w1, . . . , wn). Then,
these shares are added to the input ones (c1, . . . , cn) to produce the sequence of output shares
(c1 + w1, . . . , cn + wn).

The compression gadget is claimed to be (n − 1)-SNI in [17]. However, we demonstrate
that it is not with the following counterexample. Let n > 2 and i ∈ [n]. We consider the set
composed of a single output share of the compression procedure J = {(ci + wi) + cn+i} and
the set of probes on the internal wires W = {wi}. For the compression to be 2-SNI, we must
be able to perfectly simulate both the wires in W and J with at most |W | = 1 share of the
input ĉ. However, we can easily observe that (ci + wi) + cn+i − wi = ci + ci+n requires the
two input shares ci and ci+n to be simulated, which does not satisfy the 2-SNI property. In
conclusion, the above gadget is actually not SNI, and interestingly it is not sufficient either for
our construction, i.e. it does not satisfy Definition 23. This observation motivates our need
for a new compression gadget which satisfies the necessary property for our construction.

New Construction for Gcompress. In Algorithm 7, we exhibit a new [m : n]-compression
technique using an m-share refresh gadget Grefresh as a building block. We demonstrate in
Lemma 18 that this new compression gadget satisfies the necessary properties for our con-
struction as long as m ≥ 2n.

Algorithm 7: [m : n]-compression gadget
Input : (c1, . . . , cm) such that m ≥ 2n, m-share refresh gadget Grefresh
Output: (d1, . . . , dn) such that

∑n
i=1 di =

∑m
i=1 ci

1 K ← bm/nc;
2 (c′1, . . . , c

′
m)← Grefresh(c1, . . . , cm);

3 (d1, . . . , dn)← (c′1, . . . , c
′
n);

4 for i = 1 to K − 1 do
5 (d1, . . . , dn)← (d1 + c′1+i·n, . . . , dn + c′n+i·n);
6 end
7 for i = 1 to m−K · n do
8 di ← di + c′i+K·n;
9 end

10 return (d1, . . . , dn);

Lemma 18. Let Gcompress be the [m : n]-compression gadget from Algorithm 7 such that
m ≥ 2n. If Grefresh is (m− 1)-SNI and (m− 1)-STRPE2 (c.f. Definition 20), then Gcompress
is (t, f)-comp-TRPE ( Definition 23).

Proof. Let Gcompress be the [m : n]-compression gadget from Algorithm 7 such that m ≥
2n and let Grefresh be the m-share refresh gadget such that Grefresh is (m − 1)-SNI and
(m − 1)-STRPE2. We will prove that Gcompress [m : n]-compression gadget constructed with
such Grefresh is (t, f)-comp-TRPE. Let us denote (c1, . . . , cm) the input shares of Gcompress,
(d1, . . . , dn) its output shares, and (c′1, . . . , c

′
m) the refreshed shares of (c1, . . . , cm) using

Grefresh. We write m as m = K.n+ ` for K, ` ∈ N such that K = bm/nc. For each 1 ≤ i ≤ `,
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we have di = c′i+ . . .+c′i+K.n, and for `+1 ≤ i ≤ n, we have di = c′i+ . . .+c′i+(K−1).n. We will
prove that Gcompress is (t, f)-comp-TRPE. This amounts to proving that ∀ W, |W | ≤ 2d− 1 a
set of probes on the internal wires of Gcompress where d = min(t+ 1, n− t):

1. ∀ J, |J | ≤ t a set of output shares of Gcompress, J and W can be simulated from a set of
input shares I of the input c of Gcompress, such that |I| ≤ |W |.

2. ∃ J ′, |J ′| = n−1 a set of output shares of Gcompress, such that J ′ andW can be simulated
from a set of input shares I of the input c of Gcompress, such that |I| ≤ |W |.

We will prove both points separately

1. Let J be a set of output shares indices on Gcompress such that |J | ≤ t for a t ≤ n− 1 and
let d = min(t+ 1, n− t). Let W be a set of probes on Gcompress such that |W | ≤ 2d− 1.
We need to prove that we can perfectly simulate W and J from input shares indices in I
such that |I| ≤ |W |. For this, We will simulate W and J using probes on Grefresh. First
let us consider J? the set of probes such that J? = {i | c′i ∈W ∩ {c′1, . . . , c′m}}.
We construct the set W ′ of probes on Grefresh as follows:

W ′ = {p | p ∈W \ {c′1, . . . , c′m}} (6.18)

In addition, we construct the set J ′ of output shares on Grefresh as follows:

J ′ = J? ∪
⋃
i∈J
i≤`

{i, . . . , i+K.n} ∪
⋃
i∈J
i>`

{i, . . . , i+ (K − 1).n} (6.19)

It is easy to see that if we can perfectly simulateW ′ and J ′, then we can perfectly simulate
W and J since W = W ′ ∪ {c′i | i ∈ J?} and by perfectly simulating (c′i, . . . , c

′
i+K.n) for

i ∈ J such that i ≤ `, then we can perfectly simulate di = c′i + . . . + c′i+K.n and by
perfectly simulating (c′i, . . . , c

′
i+(K−1).n) for i ∈ J such that i > `, then we can perfectly

simulate di = c′i + . . . + c′i+(K−1).n; thus all output shares in J are perfectly simulate
using shares in J ′. Hence, we need to prove that we can perfectly simulate W ′ and J ′

using the Grefresh m-share gadget.
Observe that since |J?| ≤ |W \W ′|, then

|J ′| ≤ |W \W ′|+K.|J |+ min(t, `) ≤ K.t+ min(t, `) (6.20)

where the term min(t, `) comes from the worst case where all output shares i ∈ J are
such that i ≤ `, because in this case we add to J ′ all the indices (i, . . . , i+K.n) instead of
(i, . . . , i+(K−1).n) according to (6.19). Also, according to (6.18), we have |W ′| ≤ |W |.
Hence, we have

|W ′|+|J ′| ≤ |W ′|+|W\W ′|+K.|J |+min(t, `) ≤ |W |+K.|J |+min(t, `) ≤ 2d−1+K.t+min(t, `)

, so
|W ′|+ |J ′| ≤ 2 min(t+ 1, n− t)− 1 +K.t+ min(t, `)

, then
|W ′|+ |J ′| ≤ 2(n− t) +K.t+ `− 1 ≤ 2n+ (K − 2).t+ `− 1

, and from t ≤ n− 1 we get

|W ′|+ |J ′| ≤ K.n+ `− 1− (K − 2) .
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Since by hypothesis we have m ≥ 2n, so K ≥ 2 and (K − 2) ≥ 0, hence

|W ′|+ |J ′| ≤ K.n+ `− 1 ≤ m− 1

Then by the (m− 1)-SNI property of m-share Grefresh, we can perfectly simulate the set
of probes W ′ and output shares in J ′ from a set of input shares I such that |I| ≤ |W ′|,
hence we have

|I| ≤ |W ′| ≤ |W |
which completes the proof for the first point of comp-TRPE on gadget Gcompress.

2. Let t ≤ n− 1 and let d = min(t+ 1, n− t). Let W be a set of probes on Gcompress such
that |W | ≤ 2d− 1. We need to prove that we can perfectly simulate W and a chosen set
J of n− 1 output shares from input shares indices in I such that |I| ≤ |W |. For this, we
will simulate W and choose the set J using probes on Grefresh. First let us consider J?

the set of probes such that J? = {i | c′i ∈W ∩ {c′1, . . . , c′m}}.
We construct the set W ′ of probes on Grefresh as follows:

W ′ = {p | p ∈W \ {c′1, . . . , c′m}} (6.21)

In addition, we construct the set J ′ of output shares on Grefresh as follows:

J ′ = J? (6.22)

Observe that
|W ′|+ |J ′| ≤ |W | ≤ 2d− 1 ≤ 2 min(t+ 1, n− t)− 1

, so
|W ′|+ |J ′| ≤ 2n− 1 ≤ m− 1

Then by the (m − 1)-STRPE2 property of m-share Grefresh, there exists a set J ′′ such
that J ′ ⊆ J ′′ and |J ′′| = m − 1 and W ′ and J ′′ can be perfectly simulated from input
shares indexed in I such that |I| ≤ |W ′| + |J ′|. Since W = W ′ ∪ {c′i | i ∈ J ′} then
|I| ≤ |W |.
By perfectly simulatingW ′ and J ′′, we can perfectly simulateW sinceW = W ′∪{c′i | i ∈
J ′}. In addition, we choose the set J of n− 1 output shares on Gcompress as follows:

J = {i | i ≤ ` and {i, . . . , i+K.n} ⊆ J ′′} ∪ {i | i > ` and {i, . . . , i+ (K − 1).n} ⊆ J ′′}

Since |J ′′| = m − 1, then we are sure that |J | = n − 1 since there is only 1 share of
(c′1, . . . , c

′
m) missing from J ′′. And since we can perfectly simulate J ′′ then we can also

perfectly simulate J like before.
This proves that we can choose a set J of n− 1 output shares on Gcompress using probes
on the internal gadget Grefresh such that W and J can be perfectly simulated from input
shares in I such that |I| ≤ |W ′|+ |J ′| ≤ |W | for any |W | ≤ 2d− 1. This concludes the
proof for the second point of comp-TRPE on gadget Gcompress.

Thus, we proved that Gcompress from Algorithm 7 is (t, f)-STRPE2. This concludes the
proof for Lemma 18.

As shown in Section 6.2 ( Lemma 16), the O(n log n) refresh gadget from [13] is actually
(m− 1)-SNI and (m− 1)-STRPE2 for any sharing order m. This gadget can then be used as
a building block for the [m : n]-compression gadget, giving it a complexity of O(m logm) and
satisfying the necessary properties. In addition, this further provides an improvement over the
complexity of the proposed gadget in [17] which has a complexity of O(bm

n
cn2) (because it

performs a n-share ISW-refreshing bm
n
c times, see [17] for more details on the algorithm).
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6.3.3 Construction of Gsubmult

To complete the construction of the overall multiplication gadget, we now exhibit relevant
constructions for Gsubmult. We first rely on the construction from [17] which happens to
achieve the desired goal in some settings. While all the cases are not covered by the state-
of-the-art proposal, we then slightly modify the construction to meet all our requirements.
Both constructions rely on linear multiplications that are not included yet in the expanding
compiler. We thus start with a construction for this additional linear gadget that we further
denote Gcmult.

Construction for Gcmult. We give a natural construction for Gcmult in Algorithm 8 which
simply multiplies each input share by the underlying constant value and then applies a (t, f)-
RPE refresh gadget Grefresh. Basically, with a (T)RPE refresh gadget Grefresh, we obtain a
(T)RPE linear multiplication gadget Gcmult as stated in Lemma 19.

Algorithm 8: n-share multiplication by a constant
Input : sharing (a1, . . . , an), constant value ĉ, n-share refresh gadget Grefresh
Output: sharing (d1, . . . , dn) such that d1 + · · ·+ dn = c.(a1 + . . .+ an)

1 (b1, . . . , bn)← (c.a1, . . . , c.an);
2 (d1, . . . , dn)← Grefresh((b1, . . . , bn));
3 return (d1, . . . , dn);

Lemma 19. Let Grefresh be a (t, f)-(T)RPE n-share refresh gadget of amplification order d.
Then Gcmult instantiated with Grefresh is (t, f ′)-(T)RPE of amplification order d.

Proof. Gcmult has the exact same wires as the underlying Grefresh except for the extra input
wires {a1, . . . , an} (the wires multiplied by the constant i.e {c·a1, . . . , c·an} are the input wires
to Grefresh). So to simulate probes on Gcmult, we use the simulator of Grefresh. Each probe
which is in the set {a1, . . . , an} will be replaced by the corresponding input share multiplied
by the constant c, in the set of probes on Grefresh, which would lead to a probe on an input
share of Grefresh of the form c · ai. It is clear that if we can perfectly simulate c · ai in Grefresh,
then we can perfectly simulate the input share ai in Gcmult. Thus any set of probes on Gcmult
is simulated using the simulator of Grefresh with the exact same number of probes. Hence,
if Grefresh is (t, f)-(T)RPE n-share refresh gadget of amplification order d, then the gadget
Gcmult is also (t, f ′)-(T)RPE of amplification order d. This concludes the proof.

Relying on an additional gate for the linear multiplication does not impact the security
analysis and the application of the compilation, but it modifies the complexity analysis of the
expanding compiler. From the analysis given in Section 4.4, a complexity vector is associated
to each base gadget NG = (Na, Nc, Ncm, Nm, Nr)

T where Na, Nc, Ncm, Nm, Nr stand for the
number of addition gates, copy gates, constant multiplication gates, (bilinear) multiplication
gates and random gates respectively in the corresponding gadget. The matrix MCC is now a
5× 5 square matrix defined as

M =
(
NGadd | NGcopy | NGcmult | NGmult | NGrandom

)
including, for each vector, the number of linear multiplications. Five eigenvalues λ1, λ2, λ3,
λ4, λ5 are to be computed, i.e., one more compared to the expanding compiler in the original
setting.
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We can consider as before that bilinear multiplication gates are solely used in Gmult
(NGadd,m = NGcopy,m = NGcmult,m = 0) and that constant multiplication gates are eventu-
ally solely used in Gcmult and Gmult (NGadd,cm = NGcopy,cm = 0) which is the case in the
constructions we consider in this paper. It can be checked that (up to some permutation) the
eigenvalues satisfy

(λ1, λ2) = eigenvalues(Mac) , λ3 = NGcmult,cm , λ4 = NGmult,m and λ5 = n

where Mac is the top left 2× 2 block matrix of MCC

Mac =

(
NGadd,a NGcopy,a

NGadd,c NGcopy,c

)
.

We get two complexity expressions for the expansion strategy

|Ĉ| = O
(
|C| ·Nk

max
)

(6.23)

with Nmax = max(|eigenvalues(Mac)|, NGcmult,cm, NGmult,m, n) and with the security parameter
κ

|Ĉ| = O
(
|C| · κe

)
with e =

logNmax

log d
.

Note that the exhibited construction for the linear multiplication gadget requiresNGcmult,cm =
n linear multiplications. Hence λ3 = NGcmult,cm = λ5 = NGrandom,r = n and the global com-
plexity (6.23) can be rewritten as

|Ĉ| = O
(
|C| ·Nk

max
)

with Nmax = max(|eigenvalues(Mac)|, NGmult,m)

if the number of multiplications is greater than n. The asymptotic complexity of the RPE
compiler is thus not affected by our new base gadget Gcmult. We now describe our constructions
of Gsubmult.

Gsubmult from [17]. The authors of [17] provide a (n − 1)-NI construction for Gsubmult
which outputs 2n− 1 shares while consuming only a linear number of bilinear multiplications
in the masking order. We first recall their construction which relies on two square matrices
of (n − 1)2 coefficients in the working field. As shown in [17], these matrices are expected to
satisfy some condition for the compression gadget to be (n−1)-NI. Since we additionally want
the compression gadget to be (d− 1, 2d− 1)-partial NI, we introduce a stronger condition and
demonstrate the security of the gadget in our setting.

Let Fq be the finite field with q elements. Let γ = (γi,j)1≤i,j<n ∈ F(n−1)×(n−1)
q be a constant

matrix, and let δ = (δi,j)1≤i,j<n ∈ F(n−1)×(n−1)
q be the matrix defined by δi,j = 1− γj,i for all

1 ≤ i, j < n−1. Gsubmult takes as input two n-sharings â and b̂ and outputs a (2n−1)-sharing
ĉ such that:

• c1 =
(
a1 +

n∑
i=2

(ri + ai)
)
·
(
b1 +

n∑
i=2

(si + bi)
)

• ci = −ri ·
(
b1 +

n∑
j=2

(δi−1,j−1sj + bj)
)
for i = 2, . . . , n

• ci+n−1 = −si ·
(
a1 +

n∑
j=2

(γi−1,j−1rj + aj)
)
for i = 2, . . . , n

104



where ri and si are randomly generated values for all 2 ≤ i ≤ n. It can be easily checked
that Gsubmult performs 2n− 1 bilinear multiplications, and that it is correct, i.e.

∑2n−1
i=1 ci =∑n

i=1 ai ·
∑n

i=1 bi.

In [17], the authors prove that a gadget is (n − 1)-NI if one cannot compute a linear
combination of any set of n− 1 probes which can reveal all of the n secret shares of the inputs
and which does not include any random value in its algebraic expression. We refer to [17] for
more details on this result. Based on this result, the authors demonstrate in [17], that Gsubmult
is (n− 1)-NI if the matrices γ and δ satisfy Condition 1 that we recall below.

Condition 1. (from [17]) Let ` = 2 · (n + 1) · (n − 1) + 1. Let In−1 ∈ F(n−1)×(n−1)
q be

the identity matrix, 0x×y ∈ Fx×yq be a matrix of zeros (when y = 1, 0x×y is also written
0x), 1x×y ∈ Fx×yq be a matrix of ones, Dγ,j ∈ F(n−1)×(n−1)

q be the diagonal matrix such
that Dγ,j,i,i = γj,i, T n−1 ∈ F(n−1)×(n−1)

q be the upper-triangular matrix with just ones, and
T γ,j ∈ F(n−1)×(n−1)

q be the upper-triangular matrix for which Tγ,j,i,k = γj,i for i ≤ k:

In−1 =


1 0 . . . 0
0 1 0
...

. . .
...

0 . . . 0 1

 Dγ,j =


γj,1 0 . . . 0
0 γj,2 0
...

. . .
...

0 . . . 0 γj,n−1



T n−1 =


1 1 . . . 1
0 1 1
...

. . .
...

0 . . . 0 1

 T γ,j =


γj,1 γj,1 . . . γj,1
0 γj,2 γj,2
...

. . .
...

0 . . . 0 γj,n−1


We define the following matrices (with n′ = n− 1):

L =

(
1 01×n′ 01×n′ 01×n′ 01×n′ . . . 01×n′ 11×n′ 11×n′ . . . 11×n′

0n′ In′ 0n′×n′ In′ In′ . . . In′ T n′ T n′ . . . T n′

)
M =

(
0n′ 0n′×n′ In′ In′ Dγ,1 . . . Dγ,n′ T n′ T γ,1 . . . T γ,n′

)
Condition 1 is satisfied for a matrix γ if for any vector v ∈ F`q of Hamming weight

hw(v) ≤ n− 1 such that L · v contains no coefficient equal to 0 then M · v 6= 0n−1.

In the above condition, the matrices L and M represent the vectors of dependencies for
each possible probe. All the probes involving shares of â for matrix γ (and symmetrically
shares of b̂ for matrix δ) are covered in the columns of L and M. Namely, the first column
represents the probe a1. As it does not involve any random, it results in a zero column in M.
The next columns represents the probes ai, then the probes ri. They are followed by columns
for the probes (ai + ri), then (ai + γj−1,i−1ri) (for 2 ≤ j ≤ n), then a1 +

∑k
i=2(ri + ai) (for

2 ≤ k ≤ n), and finally then a1 +
∑k

j=2(γi−1,j−1rj + aj) (for 2 ≤ i ≤ n and 2 ≤ k ≤ n). The
above condition means that there is no linear combination of (n−1) probes which can include
the expression of all of the input shares, and no random variable.

From this result and by the equivalence between non-interference and tight non-interference
developed in [17], we conclude that Gsubmult is (d − 1)-NI for d = min(t + 1, n − t) for any
t ≤ n− 1. Lemma 17 also requires Gsubmult to be (d− 1, 2d− 1)-partial NI to get an overall
RPE multiplication gadget. For Gsubmult to satisfy this second property, we need to rely on a
stronger condition for matrices γ and δ that we present in Condition 2.
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Condition 2. Let z = 2 · (n + 1) · (n − 1) + 1. Let In−1 ∈ F(n−1)×(n−1)
q , 0`×n ∈ F`×nq ,

1`×n ∈ F`×nq , Dγ,j ∈ F(n−1)×(n−1)
q , T n−1 ∈ F(n−1)×(n−1)

q , T γ,j ∈ F(n−1)×(n−1)
q and L and M

the same matrices as defined in Condition 1.
Condition 2 is satisfied for a matrix γ if and only if for any vector v ∈ Fzq of Hamming

weight hw(v) ≤ n − 1, and for any i1, . . . , iK ∈ [z] such that vi1 6= 0, . . . , viK 6= 0 and the
corresponding columns i1, . . . , iK in L and in M have no zero coefficient (i.e there are K
probes of the form a1 +

∑n
i=2(ri + ai) or a1 +

∑n
j=2(γi−1,j−1rj + aj) for any i ∈ {2, . . . , n}),

if M.v = 0, then we have hw(L · v) ≤ hw(v)−K.

Based on this new condition, we can prove our second property Gsubmult, as stated in
Lemma 20.

Lemma 20. Let t ≤ n−1 such that either n is even or t 6= bn− 1

2
c and let d = min(t+1, n−t).

Let Gsubmult the multiplication subgadget introduced in [17]. If both matrices γ and δ satisfy
Condition 2, then Gsubmult is (d− 1)-NI and (d− 1, 2d− 1)-partial NI.

Proof. Let t ≤ n− 1 where n is the number of shares such that (n, t) 6= (2k + 1, bn− 1

2
c) for

k ∈ N (i.e n is even or t 6= bn− 1

2
c), and let d = min(t + 1, n − t). We will prove that if

both matrices γ and δ satisfy Condition 2, then Gsubmult from Lemma 20 is (d− 1)-NI and
(d− 1, 2d− 1)-partial NI.

Proof for (d− 1)-NI:
If the matrices γ and δ satisfy Condition 2, then they also sastisfy Condition 1, since Con-
dition 2 is stronger. Then, in [17], the authors prove that we have that if γ and δ satisfy
Condition 1, then the gadget Gsubmult is (n−1)-NI. In addition, if Gsubmult is (n−1)-NI, then
in particular it is also (d − 1)-NI for any t ≤ n − 1 and d = min(t + 1, n − t). This implies
that if the matrices satisfy Condition 2, then the gadget Gsubmult is (d− 1)-NI thanks to the
proof from [17]. This concludes the proof for the first point of Lemma 20.

Proof for (d− 1, 2d− 1)-partial NI:
We need to prove that Gsubmult is (d − 1, 2d − 1)-partial NI where d = min(t + 1, n − t). In
other words, we need to consider a set of probes W of size |W | ≤ 2d − 1 ≤ n − 1 and show
that W can be simulated from inputs shares Ia and Ib such that |Ia| ≤ d− 1 or |Ib| ≤ d− 1.
For this, we will split the set W into 3 distinct subsets W = W1 ∪W2 ∪W3 with respect to
the form of the probes in W . In fact, The authors from [17] show that Gsubmult is (n− 1)-NI
if the matrices γ and δ satisfy certain conditions. In fact, all of the probes on the sub-gadget
Gsubmult are of a form in one of the following sets:

Set 1: a1, ai, ri, ri + ai, γj−1,i−1ri, γj−1,i−1ri + ai (for 2 ≤ i ≤ n and 2 ≤ j ≤ n)

Set 2: a1 +
∑k

i=2(ri + ai) (for 2 ≤ k ≤ n)

Set 3: a1 +
∑k

i=2(γj−1,i−1ri + ai) (for 2 ≤ j ≤ n and 2 ≤ k ≤ n)

Set 4: b1, bi, si, si + bi, δj−1,i−1si, δj−1,i−1si + bi (for 2 ≤ i ≤ n and 2 ≤ j ≤ n)

Set 5: b1 +
∑k

i=2(si + bi) (for 2 ≤ k ≤ n)

Set 6: b1 +
∑k

i=2(δj−1,i−1si + bi) (for 2 ≤ j ≤ n and 2 ≤ k ≤ n)

Set 7: −ri × (b1 +
∑n

j=2(δi−1,j−1sj + bj)) (for 2 ≤ i ≤ n)

Set 8: −si × (a1 +
∑n

j=2(γi−1,j−1rj + aj)) (for 2 ≤ i ≤ n)
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Set 9: (a1 +
∑n

i=2(ri + ai))× (b1 +
∑n

i=2(si + bi))

The matrix γ would be related to probes of the form 1,2 and 3, while the matrix δ is directly
related to probes of the form 4,5 and 6.
So we split the set W into W = W1 ∪W2 ∪W3 with respect to the form of each probe as
follows:

• W1 contains probes of the forms in the sets 1, 2 and 3.

• W2 contains probes of the forms in the sets 4, 5 and 6.

• W3 contains probes of the forms in the sets 7, 8 and 9.

This split means that the set W1 only contains probes involving the input shares of a and the
randoms ri, while W2 only contains probes involving the input shares of b and the randoms
si. W3 contains products of both of the probes of W1 and W2.
Next, we will construct two subsets of probes Wa and Wb from the set W and prove that we
can simulate all probes in W from Wa and Wb. In other terms, we start with Wa = W1 and
Wb = W2.

Suppose first that W3 = ∅. Then we consider the sets Wa = W1 and Wb = W2 as before.
Suppose that to simulate Wa, we need sets of input shares Ia such that |Ia| ≥ d, and let M
be the number of probes of the form in sets 2 and 3 in the set of probes Wa. Then from
Condition 2 on matrix γ we know that |Ia| ≤ |Wa|−M ≤ |Wa| (because |Wa| ≤ 2d−1 ≤ n−1

since t ≤ n− 1 such that
(

(n = 2k) ∨ (t 6= n− 1

2
)
)
), then in order to have |Ia| ≥ d, we must

have:
d ≤ |Ia| ≤ |Wa|

Hence, since |W | ≤ 2d− 1, then we must have |Wb| ≤ d− 1 (because |Wa|+ |Wb| ≤ 2d− 1),
then from Condition 2 on matrix δ, we can perfectly simulate Wb from Ib such that |Ib| ≤
|Wb| −M ′ ≤ |Wb| ≤ d− 1 where M ′ is the number of probes of the form in sets 5 and 6 in the
set of probesWb. Thus we showed that we can perfectly simulateW with |W | ≤ 2d−1 ≤ n−1
from Wa and Wb using Ia and Ib such that if |Ia| ≥ d, then |Ib| ≤ d−1, so we have |Ia| ≤ d−1
or |Ib| ≤ d− 1. This concludes the proof in the case where W3 = ∅.

Next, we suppose that W3 6= ∅ so there is at least one probe of one of the sets 7, 8 or 9 in
W3. We construct sets Wa and Wb as before starting with Wa = W1 and Wb = W2, and for
each probe in W3:

• If the probe is of the form −ri×(b1+
∑n

j=2(δi−1,j−1sj+bj)), then we doWa = Wa∪{−ri},
Wb = Wb ∪ {(b1 +

∑n
j=2(δi−1,j−1sj + bj))}. We denote the set of these probes in W3 as

W 7
3 .

• If the probe is of the form −si × (a1 +
∑n

j=2(γi−1,j−1rj + aj)), then we do Wa =
Wa ∪ {(a1 +

∑n
j=2(γi−1,j−1rj + aj))}, Wb = Wb ∪ {−si}. We denote the set of these

probes in W3 as W 8
3 .

• if the probe is of the form (a1 +
∑n

i=2(ri + ai)) × (b1 +
∑n

i=2(si + bi)), then we do
Wa = Wa ∪ {(a1 +

∑n
i=2(ri + ai))}, Wb = Wb ∪ {(b1 +

∑n
i=2(si + bi))}. We denote the

set of these probes in W3 as W 9
3 .

Suppose that in order to simulate Wa, we need the set Ia such that |Ia| ≥ d. In addition,

since |Wa| ≤ |W | ≤ 2d − 1 ≤ n − 1 (because t ≤ n − 1 such that
(

(n = 2k) ∨ (t 6= n− 1

2
)
)
),

then we know from Condition 2 on γ that Wa can be perfectly simulated from Ia such that
|Ia| ≤ |Wa|−M whereM is the number of probes inWa of the form (a1+

∑n
j=2(γi−1,j−1rj+aj))
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or (a1 +
∑n

i=2(ri + ai)). Then, since probes in the sets W 8
3 and W 9

3 add to Wa probes of these
forms, then we have |Ia| ≤ |Wa|− |W 8

3 |− |W 9
3 |. Hence, in order to have |Ia| ≥ d, we must have

d ≤ |Ia| ≤ |Wa| − |W 8
3 | − |W 9

3 | ≤ |W1|+ |W 7
3 |

Similarly, suppose that to simulate Wb we need |Ib| ≥ d, then we also must have

d ≤ |Ib| ≤ |Wb| − |W 7
3 | − |W 9

3 | ≤ |W2|+ |W 8
3 |

Hence, in order to have |Ia| ≥ d and |Ib| ≥ d at the same time, we must have

2d ≤ |Ia|+ |Ib| ≤ |W1|+ |W 7
3 |+ |W2|+ |W 8

3 | ≤ |W |

which holds a contradiction with the fact that |W | ≤ 2d − 1. Hence, we cannot have at the
same time |Ia| ≥ d and |Ib| ≥ d. So Gsubmult is (d − 1, 2d − 1)-partial NI in the case where
W3 6= ∅.
Hence, we conclude that Gsubmult is (d − 1, 2d − 1)-partial NI after proving the property in
both cases W3 = ∅ and W3 6= ∅.

We conclude that Gsubmult satisfies both (d − 1)-NI and (d − 1, 2d − 1)-partial NI, which
conludes the proof for Lemma 20.

The condition on t and n on Lemma 20 implies that the maximum amplification order for
the multiplication gadget cannot be achieved for an odd number of shares (since the maximum

order is reached when t = bn− 1

2
c). This is not a proof artifact but a limitation of the gadget

Gsubmult with respect to the new (d− 1, 2d− 1)-partial NI property. We can easily show that
under this extreme conditions on t and n, we have 2d−1 = n. If we consider the instantiation
of Gsubmult for n = 3 input shares, we obtain the following 2n− 1 = 5 output shares:

c1 = (a1 + (r2 + a2) + (r3 + a3)) · (b1 + (s2 + b2) + (s3 + b3))

c2 = −r2 · (b1 + (δ1,1 · s2 + b2) + (δ1,2 · s3 + b3))

c3 = −r3 · (b1 + (δ2,1 · s2 + b2) + (δ2,2 · s3 + b3))

c4 = −s2 · (a1 + (γ1,1 · r2 + a2) + (γ1,2 · r3 + a3))

c5 = −s3 · (a1 + (γ2,1 · r2 + a2) + (γ2,2 · r3 + a3))

To prove the (d − 1, 2d − 1)-partial NI property, we need to ensure that any set of at most
2d − 1 = 3 probes can be perfectly simulated from at most d − 1 = 1 shares of one of the
inputs and any number of shares from the other one. However, the three probes on c1, c3, c4
reveal information on each of their sub-product. In particular, (a1 + (r2 + a1) + (r3 + a3))
(from c1), r3 (from c3) and (a1 + (γ1,1 · r2 + a2) + (γ1,2 · r3 + a3)) (from c4) would reveal â.
Similarly, (b1 + (s2 + b2) + (s3 + b3)) (from c1), (b1 + (δ2,1 · s2 + b2) + (δ2,2 · s3 + b3)) (from
c3) and s2 (from c4) would reveal b̂. Hence, the gadget is not (d− 1, 2d− 1)-partial NI. This
counterexample with 3 shares can be directly extended to any odd number of shares.

This counterexample motivates a new construction for Gsubmult which would cover all
values for n and t. In the following, we slightly modify the construction from [17] to achieve
the maximum amplification order in any setting.

Remark 4. The current construction of Gsubmult outputs m = 2n− 1 shares, which does not
satisfy the requirement m ≥ 2n shares for the compression gadget. Nevertheless, it is enough
to add an artificial extra share c2n−1 equal to zero between both building blocks. In particular,
the compression gadget (and subsequently the refresh gadget) does not expect the input sharing
to be uniform to achieve the stated security properties.
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New Construction for Gsubmult. As stated earlier, Lemma 20 does not hold for Gsubmult
in the case where n is odd and t = (n− 1)/2. In order to cover this case, we propose a slightly
modified version of Gsubmult with two extra random values r1 and s1. In this version, we let
γ = (γi,j)1≤i,j≤n ∈ Fn×nq be a constant matrix, and let δ ∈ Fn×nq be the matrix defined by
δi,j = 1− γi,j . The sub-gadget Gsubmult outputs 2n+ 1 shares:

• c1 =
( n∑
i=1

(ri + ai)
)
·
( n∑
i=1

(si + bi)
)

• ci+1 = −ri ·
( n∑
j=1

(δi,jsj + bj)
)
for i = 1, . . . , n

• ci+n+1 = −si ·
( n∑
j=1

(γi,jrj + aj)
)
for i = 1, . . . , n

where ri and si are randomly generated values. It can be easily checked that Gsubmult now
performs 2n+1 bilinear multiplications, and that it is correct, i.e.

∑2n+1
i=1 ci =

∑n
i=1 ai ·

∑n
i=1 bi.

We now need the following slightly modified version of Condition 2 on γ and on δ, which
instead of considering a linear combination of at most n−1 probes as in Condition 2, considers
up to n probes.

Condition 3. Let z = (2n + 4) · n. Let In ∈ Fn×nq be the identity matrix, 0`×n ∈ F`×nq be
the matrix of zeros, 1`×n ∈ F`×nq be the matrix of ones, Dγ,j ∈ Fn×nq be the diagonal matrix
such that Dγ,j,i,i = γj,i, T n ∈ Fn×nq be the upper triangular matrix with just ones, T γ,j ∈ Fn×nq

be the upper triangular matrix such that T γ,j,i,k = γj,i for i ≤ k. We define the following
matrices:

L =
[

In 0n×n In In . . . In T n T n . . . T n
]

M =
[

0n×n In In Dγ,1 . . . Dγ,n T n T γ,1 . . . T γ,n
]

Then we say that γ satisfies Condition 3 if and only if

• for any vector v ∈ Fzq of Hamming weight hw(v) ≤ n,

• for any i1, . . . , iK ∈ [z] such that vi1 6= 0, . . . , viK 6= 0 and the corresponding columns
i1, . . . , iK in L and in M have no zero coefficient (i.e there are K probes of the form∑n

i=1(ri + ai) or
∑n

j=1(γi,jrj + aj) for any i = 1, . . . , n),

if M · v = 0, then we have hw(L · v) ≤ hw(v)−K.

Under this new condition, we obtain the following result.

Lemma 21. Let t ≤ n − 1 and d = min(t + 1, n − t). Let Gsubmult as defined above with
n-share inputs. If both matrices γ and δ satisfy Condition 3, then Gsubmult is (d− 1)-NI and
(d− 1, 2d− 1)-partial NI.

Proof. The proof of the Lemma is in fact the same as the proof of Lemma 20. The only
difference is that in this lemma, we also cover the special case of an odd value for the number

of shares n and t = bn− 1

2
c =

n− 1

2
. In the latter case, we consider in the proof up to n

probes on the gadget Gsubmult, while in Lemma 20, we could only have up to n − 1 probes
on the gadget. Since Condition 3 covers the case of having up to n probes on Gsubmult, then
we can follow the exact same procedure of the proof of Lemma 20 to prove the Lemma by
considering the new condition.
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Remark 5. The number of output sharesm = 2n+1 of Gsubmult satisfies the constraint required
by Gcompress in Algorithm 7 (m ≥ 2n). We can thus use the compression gadget Gcompress
exactly as described in the algorithm on the input sharing (c1, . . . , c2n+1), instantiated with the
O(n log n) refresh gadget. Since the multiplication sub-gadget Gsubmult requires O(n) random
values and Gcompress requires O(n log n) random values from the refresh gadget, the overall
multiplication gadget Gmult also requires a quasi-linear number of random values O(n log n).

6.3.4 Instantiations

We first state the existence of a matrix γ which satisfies Condition 3 over any finite field Fq
for q large enough (with log(q) = Ω(n log n))2. The proof technique follows closely the proof of
[17, Theorem 4.5] and makes use of the non-constructive “probabilistic method”. Specifically,
it states that if one chooses γ uniformly at random in Fn logn

q , the probability that the matrix
γ satisfies Condition 3 is strictly positive, when q is large enough. It is important to note
that the proof relies on probability but the existence of a matrix γ which satisfies Condition 3
(for q large enough) is guaranteed without any possible error.

Theorem 6. For any n ≥ 1, for any prime power q, if γ is chosen uniformly in Fn×nq , then

Pr[γ satisfies Condition 3 ] ≥ 1− 2 · (12n)n · n · q−1 .

In particular, for any n ≥ 1, there exists an integer Q = O(n)n+1, such that for any prime
power q ≥ Q, there exists a matrix γ ∈ Fqn×n satisfying Condition 3.

As when γ is uniformly random, so is δ, Theorem 6 immediately follows from the following
proposition and the union bound.

Proposition 4. For any n ≥ 1, for any prime power q, if γ is chosen uniformly in Fn×nq ,
then

Pr[γ satisfies Condition 3 ] ≥ 1− (12n)n · n · q−1 .

In particular, for any n ≥ 1, there exists an integer Q = O(n)n+1, such that for any prime
power q ≥ Q, there exists a matrix γ ∈ Fn×nq satisfying Condition 3.

The proof of this proposition is very technical but follows essentially the proof of the
analogous [17, Proposition 4.6]. It is provided in Section A.3.

In [17], Belaïd et al.. presented examples of matrices which satisfy their condition for 2
shares and 3 shares. Karpman and Roche [61] proposed afterwards new explicit instantiations
up to order n = 6 over large finite fields and up to n = 4 over practically relevant fields such
as F256. It is worth mentioning that the matrices proposed in [61] are actually incorrect (due
to a sign error) but this can be easily fixed and we check that matrices obtained following [61]
also achieve our Condition 3.

A first matrix for 3 shares can be used over the finite field F25 represented as F2[X]/(X5 +
X2 + 1):

γ =

X + 1 X X2 + 1
X X2 + 1 X + 1

X2 + 1 X + 1 X


Another matrix for 3 shares (denoted in hexadecimal by evaluating each polynomial at X =
2 and writing the result in base 16) can be used over the finite field F26 represented as

2Such large finite fields may actually be useful to build efficient symmetric primitives (see for instance
MiMC [2]).
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F2[X]/(X6 +X + 1):

γ =

36 30 1d
21 05 1a
35 31 1b


Another example for 4 shares can be instantiated using the following matrix (also denoted

in hexadecimal) over the (AES) finite field F28 represented as F2[X]/(X8 +X4 +X3 +X+ 1):

γ =


2d f5 2e 23
e1 c3 ac 30
bd f6 fa 8a
e6 4a 4d ab


Eventually, we present a matrix for 5 shares over the finite field F210 represented as

F2[X]/(X10 +X3 + 1):

γ =


225 2a9 0d0 224 2dd
254 11b 325 3a6 219
3d2 2bc 2bf 3a2 2a1
2af 311 295 26b 11d
16c 124 158 319 0b8


6.4 Improved Asymptotic Complexity

In the previous sections, we exhibit the construction of a multiplication gadgetGmult which per-
forms a linear number of multiplications between variables, and a quadratic number of multi-
plications by a constant operations. Using the results of Lemma 18, Lemma 21 and Lemma 17,
the constructed multiplication gadget is RPE and achieves the maximum amplification order
bn+1

2 c for any number of shares n.

Using the linear gadgets (Gadd, Gcopy, Gcmult) instantiated with the O(n log n) refresh
gadget (which all achieve the maximal amplification order for any number of shares n), and
the proposed construction of the multiplication gadget Gmult, we get an expanding compiler
with a complexity matrix MCC of eigenvalues:

(λ1, λ2) = (n, 6n log(n)− 2n) , λ3 = n , λ4 = 2n+ 1 and λ5 = n.

Hence we have Nmax = 6n log(n)− 2n = O(n log n).
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Figure 6.4: Evolution of the complexity exponent e = log(Nmax)/ log(d) with respect to the
number of shares n. The orange curve matches the instantiation from Section 5.3 using
the ISW refresh gadget with quadratic asymptotic complexity and the multiplication gadget
from Section 5.4; the red curve matches the new construction (including the new multiplication
gadget) with quasi-linear asymptotic complexity (Nmax = O(n log n)).

Figure 6.4 illustrates the evolution of the complexity exponent with respect to the number
of shares n, for the best asymptotic construction provided in Chapter 5 with quadratic com-
plexity (as in (5.11)) for an expanding compiler (orange curve), and our new construction with
quasi-linear complexity (red curve). While the best construction from Section 5.3 yields a
complexity in O(|C| · κe) for e close to 3 for reasonable numbers of shares, the new expanding
compiler quickly achieves a sub-quadratic complexity in the same settings.

6.5 Conclusion

In this chapter, we have proposed a dynamic expansion strategy for random probing security,
which can make the most of different RPE gadgets regarding tolerated leakage probability and
asymptotic complexity. We also introduced generic constructions of gadgets achieving RPE
for any number of shares n. When the finite base field of the circuit meets the requirement
of our multiplication gadget, the asymptotic complexity of the obtained expanding compiler
becomes arbitrarily close to linear, which is optimal.

As for concrete instantiations, our small example on the AES demonstrates the benefits
of our dynamic approach. Namely, it provides the best tolerated probability (from the best-
suited compiler) while optimizing the complexity using higher numbers of shares. Using two
compilers with 3 and 5 shares instead of a single one already reduces the complexity by a
factor of 10.

Future works could exhibit explicit constructions of matrices with (quasi)constant field size
for our multiplication gadget. One could also investigate different RPE multiplication gadget
designs with linear number of multiplications for arbitrary fields. Another interesting direction
is to optimize the tolerated leakage probability for a set of (possibly inefficient) small gadgets
to be used as the starting point of the expansion in our dynamic approach before switching to
more (asymptotically) efficient RPE gadgets.

This chapter concludes the theoretical analysis done during the PhD on the random probing
expandability and achieving arbitrary levels of security in the random probing model. However,
the random probing expansion has proven to be an exciting and promising strategy, and many
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future works can be done to push it even further to be of actual practical use in real-life
implementations.
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Chapter 7

Automatic Verification Tools

As discussed in Chapter 1 (Section 1.7), the manual verification of security properties in the
(random) probing models is very error-prone [40]. Hence, automatic tools are regularly built
to apply formal verification on software and hardware masked implementations.

Many tools already exist to verify properties in the probing model. For instance, maskVerif [9,
10, 6] includes the verification of most probing-like security notions, including properties in the
robust probing model in the presence of glitches. maskVerif allows for efficient verification and
good accuracy for circuits of reasonable sizes. Bordes and Karpman [28] also try to improve
accuracy with their tool matverif. SILVER [62] also verifies the classical probing-like security
properties for hardware implementations with a method based on the analysis of probability
distributions. For a more detailed list of existing tools, we refer to Chapter 1, Section 1.7.

It is worth noting that many of the tools discussed above that verify probing-like security
properties do not provide completeness (i.e., they can falsely deem a set of leaking variables
as insecure with respect to the secret). As for tools that achieve completeness, we only count
SILVER [62], which suffers from low performance, and matverif [28], which is restricted to
specific gadgets only.

On the other hand, before this thesis, no verification tools existed for the random probing
model. Since the few past years, the community has made a significant effort to provide
designs in this model, see e.g. [1, 45, 3, 18, 22, 32]. The random probing expandability (RPE)
approach introduced in the previous chapters currently gives the best complexity to achieve
arbitrary random probing security with a constant (and quantifiable) leakage probability.

During our work in [18] where we introduced the RPE notion, we also introduced VRAPS,
the first tool to verify random probing properties. It was followed by STRAPS [32], which
additionally provides a probabilistic mode to boost the performance and checks another ran-
dom probing security property based on what the authors call a Probe Distribution Table
(see Remark 2), but still does not provide a complete verification method since it uses a set
of verification rules from maskVerif which is not complete.

In terms of efficiency, VRAPS makes it challenging to verify even small gadgets at reasonable
orders, and STRAPS only manages to do it using verification rules from the underlying tool
maskVerif [9, 10, 6] (which only verifies probing security properties), and is not complete.

This chapter introduces IronMask (published in [21]), a new versatile verification tool for
masking security. IronMask is the first to verify standard simulation-based security notions in
the probing model and recent composition and expandability notions in the random probing
model. It supports any masking gadgets with linear randomness (e.g. addition, copy, and
refresh gadgets) as well as quadratic gadgets (e.g. multiplication gadgets) that might include
non-linear randomness (e.g. by refreshing their inputs) while providing complete verification
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results for both types of gadgets. We achieve this complete verifiability by introducing a new
algebraic characterization for such quadratic gadgets and exhibiting a complete method to de-
termine the sets of input shares necessary and sufficient to perform a perfect simulation of any
set of probes. We report various benchmarks which show that IronMask is competitive with
state-of-the-art verification tools in the probing model (maskVerif, scVerif, SILVER, matverif).
IronMask is also several orders of magnitude faster than VRAPS –the only previous tool veri-
fying random probing composability and expandability– as well as SILVER –the only previous
tool providing complete verification for quadratic gadgets with non-linear randomness.

Remark 6. We do not discuss VRAPS in this manuscript since IronMask is intended to be
a more advanced and efficient version of VRAPS. For more details on the original implemen-
tation, we refer the readers to the corresponding work [18] and the associated open-source
project.

The organization of this chapter is as follows.

In Section 7.1, we formalize all of the probing and random probing properties from the
state of the art from a single building block, a function we call SIS, and show that all of the
security properties can be verified using a unique instantiation of that function. In a nutshell,
SIS receives as input a set of probes on a gadget (and the description of the corresponding
gadget) and performs some operations on the algebraic expressions of the probes in order
to determine the exact sets of input shares which are necessary and sufficient to perform a
perfect simulation of these probes. While SIS partially uses some properties from the state
of the art, it was not exhibited before, and the unification of all the (random) probing-like
security notions for this function was not explicitly well-defined.

Then, in Section 7.2, we extend the algebraic characterization introduced in [16, 17] of
gadgets with linear randomness (i.e. all random values are additive on the wires of the gad-
get) to more general gadgets with non-linear randomness which perform quadratic operations
on input shares mixed with randomness. Our extended characterization notably captures re-
cent gadget designs such as the one from [13] or the multiplication gadget achieving maximal
amplification order from Section 5.4. This characterization provides a complete verification
method that applies to most (if not all) masking gadgets for standard operations (addition,
multiplication, refreshing, etc.). In comparison, the only previously existing complete verifi-
cation method for such general gadgets would rely on exhausting the truth table of tuples of
intermediate variables for the inputs and the randomness, which is highly inefficient.

Finally, in Section 7.3, we present IronMask, a new versatile verification tool for all probing
and random probing-like properties in the state of the art. IronMask supports the verification
of traditional gadgets with linear randomness and newly formalized gadgets with non-linear
randomness, along with a complete verification method for both types of gadgets based on our
extended algebraic characterization. IronMask implements several optimizations to make the
verification faster. We benchmark the performance of our new tool in Section 7.4 and show
that it is competitive with state-of-the-art verification tools in the probing model (maskVerif,
scVerif, SILVER, matverif) and is also several orders of magnitude faster than VRAPS, the
only previous tool verifying random probing composability and expandability, and SILVER,
the only previous tool providing complete verification for gadgets with non-linear randomness.
IronMask uses complete methods for the verification, unlike VRAPS and STRAPS which are
the only verification tools in the random probing model. IronMask is open-source and publicly
available at:

https://github.com/CryptoExperts/IronMask
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7.1 Characterization of Security Notions for Masking Gadgets

In the following, we shall consider the symbolic expression of a probed wire of a circuit or
gadget. The symbolic expression of a circuit’s wire is expressed in terms of the circuit inputs
(shares) and the generated randoms (outputs of random gates). We denote as before the input
sharings of the circuit as x̂1, . . . , x̂` of n shares each, and we group the random variables used
as input to the circuit in a vector r of size ρ.

We also denote in the rest of this chapter a set of probes on a gadget as a vector or a tuple
P , slightly different from the previous chapters where we consider sets of probes denoted by
W . This is because we consider the vector representation of variables to perform linear algebra
operations on tuples of probes, such as Gaussian Elimination.

Although many different security notions have been introduced to build proofs of gadgets in
the (random) probing model (e.g. NI, SNI in the probing model, and RPC, RPE in the random
probing model), we show that they can almost all be defined on top of a single building block:
the set of input shares (SIS) function. The latter takes as input a set of probes on the gadget’s
internal wires and a set of output shares and returns a set of input shares necessary (and
sufficient) to perfectly simulate these internal probes and output shares. We formalize the SIS
primitive in Definition 24 before showing how to use it to express state-of-the-art properties.
For clarity, we restrain the following definitions to the case of single-output gadgets (the most
common case), but the extension to multi-output gadgets is straightforward. We denote SISG
to be SIS with input gadget G.

Definition 24. Let G be an (n-share, `-to-1) gadget mapping ` input sharings (x̂1, . . . , x̂`) ∈
(Kn)` to an output sharing ŷ ∈ Kn. Let P be a tuple of probes on G and O ⊆ [n] a set of
output shares indices. The function SISG maps P and O to the unique smallest sets of input
indices I1, . . . , I` such that (P , ŷ|O) can be perfectly simulated from x̂1|I1 , . . . , x̂`|I` .

Note that for any gadget G, the smallest set of input shares returned by SISG is uniquely
defined from the result [16, Lemma 7.5], which demonstrates that if a set of probes can be
simulated from different sets of inputs shares, then it can also be simulated by the intersection
of these sets.

7.1.1 Probing Security Notions

We now formalize the probing-like security notions (i.e., to achieve security and secure com-
position in the probing model) for any n-share, `-to-1 gadget G (all these notions can be
generalized for the case of multiple outputs). Definition 25 reformulates Definition 4 of the NI
notion from [10], using the SIS building block.

Definition 25 (t-NI). A gadget G is t-NI if for any tuple P of t1 internal probes and any
set O of t2 output share indices such that t1 + t2 ≤ t, the sets (I1, . . . I`) := SISG(P , O) satisfy
|Ii| ≤ t, ∀i ∈ [`].

Other common probing-like properties can be defined in a similar way by changing the
condition on the sets (I1, . . . , I`) in the output of the SISG primitive. We list these conditions
in Table 7.1 for some of the most common probing-like properties with respect to t and O.
While most of the properties are interesting in the context of composing secure gadgets to
achieve global security, directly verifying the probing security of a complete implementation is
useful in some cases, such as analyzing a complete 2-share AES implementation. To represent
this case, we denote PS? the SIS-based probing security definition. PS? is actually equivalent
to the case of (n− 1)-NI with O = ∅ and t = n− 1. We list this property in Table 7.1 as well.
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Table 7.1: Probing-like security notions from the basic primitive SISG. t1 indicates the number
of probes on input and intermediate variables, while t2 indicates the number of probes on
output shares, with t = t1 + t2.

Notion Condition
t-NI [9] |Ii| ≤ t, ∀i ∈ [`]
t-SNI [10] |Ii| ≤ t1, ∀i ∈ [`]
t-TNI [16] |Ii| ≤ t1 + t2, ∀i ∈ [`]
(t, f)-NI [8] |Ii| ≤ f(t1, t2), ∀i ∈ [`]
t-PINI [33] |(∪iIi) \O| ≤ t1
PS? |Ii| ≤ n− 1, ∀i ∈ [`]

7.1.2 Random Probing Security Notions.

We rely on the LeakingWires procedure formalized in Section 3.1, Chapter 3 to formalize
security notions in the random probing model. We recall that LeakingWires outputs a tuple
of probes P on the gadget G such that each wire of G is added to P independently with
probability p. Definition 26 reformulates Definition 8 of the random probing composability
(RPC) notion from Section 3.2, based on the SIS primitive.

Definition 26. Let p, ε ∈ [0, 1] and n, t ∈ [0, n]. Let G be a n-share `-to-1 gadget and let P be
the random vector defined as P = LeakingWires(G, p). Then G is (t, p, ε)-RPC if for every O ⊆
[n] with |O| = t, the sets (I1, . . . , I`) = SISG(P , O) satisfy Pr[(|I1| > t) ∨ . . . ∨ (|I`| > t)] ≤ ε,
where the probability is taken over all tuples of probes P obtained through LeakingWires(G, p).

Recall that the event
(
(|I1| > t) ∨ . . . ∨ (|I`| > t)

)
is called a failure event (failure of a

perfect simulation) and ε is the failure probability or the probability of a failure event to occur.

The random probing expandability (RPE) notion introduced and analyzed in Chapter 4, Chap-
ter 5 and Chapter 6 can also be defined similarly. Like in the previous chapters, we restrict its
definition to 2-input circuits for clarity but recall that the extension is straightforward. We
have that G is (t, p, ε)-RPE1 (resp. RPE2) if for every O ⊆ [n] with |O| = t (resp. if there
exists O ⊆ [n] with |O| = n− 1), the sets (I1, I2) = SISG(P , O) satisfy(

Pr[|I1| > t] ≤ ε
)
∧
(

Pr[|I2| > t] ≤ ε
)
∧
(

Pr[(|I1| > t) ∧ (|I2| > t)] ≤ ε2
)
.

Table 7.2 summarizes the three random probing notions. As in the probing security case
earlier, it can be helpful to verify the random probing security of a complete implementation
directly. To represent this case, we denote (p, ε)-RPS? the SIS-based definition of random
probing security. This notion is similar to the RPC definition, except that we do not consider
probes on the outputs, i.e. O = ∅, and a failure occurs when all the shares (of one input) are
necessary to simulate the probes perfectly, i.e. the failure event is

Pr[(|I1| = n) ∨ . . . ∨ (|I`| = n)] ≤ ε .

In the previous chapters, we introduced a method to verify random probing properties by
computing the failure probability ε as a function f(p) of the leakage probability p. We briefly
recall the principle hereafter using SIS. For more details, we refer to Section 3.3 and Section 4.3.
For (p, ε)-RPS? of an n-share gadget of s wires for example, ε = f(p) is computed as

f(p) =
∑

P s.t. (I1,...,I`)=SIS(P ,∅)
|I1|=n ∨...∨ |I`|=n

p|P |(1− p)s−|P | . (7.1)
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Table 7.2: Random probing-like security notions from the basic primitive SISG.

Notion Output O Condition(s)
(t, p, ε)-RPC [18] ∀ O, |O| = t Pr[(|I1| > t) ∨ . . . ∨ (|I`| > t)] ≤ ε
(t, p, ε)-RPE1 [18] ∀ O, |O| = t

(
∀i, Pr[(|Ii| > t)] ≤ ε

)
∧
(

Pr[(|I1| > t) ∧ (|I2| > t)] ≤ ε2
)

(t, p, ε)-RPE2 [18] ∃O, |O| = n− 1
(
∀i, Pr[(|Ii| > t)] ≤ ε

)
∧
(

Pr[(|I1| > t) ∧ (|I2| > t)] ≤ ε2
)

(p, ε)-RPS? O = ∅ Pr[(|I1| = n) ∨ . . . ∨ (|I`| = n)] ≤ ε

In the above equation, we consider that each tuple of probes P on a gadget can exactly leak
with probability p|P |(1 − p)s−|P | since each of the wires in P is added independently with
probability p, and each of the remaining wires does not leak with probability 1 − p. Then,
out of all such possible tuples of wires, f(p) represents the sum over the probabilities of
obtaining tuples of probes only for which we get a failure event using SIS (the failure event
being (|I1| = n ∨ . . . ∨ |I`| = n) in this context). For a gadget with a total of s wires,
computing f(p) then amounts to computing

f(p) =
s∑
i=1

ci p
i(1− p)s−i , (7.2)

where we group the probabilities with respect to the size of the tuples of probes. In other
words, ci is the number of tuples of i wires, for which we obtain a failure event using SIS. For
instance, if there are exactly 2 tuples of probes P1,P2 for which we get a failure event and
such that |P1| = |P2| = 3, then we get c3 = 2 in equation (7.2). For other random probing
properties, the computation is similar, considering the correct failure event with the correct
t and the condition on the output set of shares O, which is not empty anymore (e.g. RPC,
RPE).

The recent Probe Distribution Table (PDT) of Cassiers et al. [32] for tighter random
probing composition (see Remark 2) can also be expressed in terms of our basic function SISG.
The PDT is a two-dimensional table indexed by all possible sets of input indices I = (I1, . . . , I`)
where Ii ⊆ [n] and by all possible sets of output indices O ⊆ [n], defined as

PDT[I ][O] :=
∑

P s.t. I=SIS(P ,O)

p|P |(1− p)s−|P | (7.3)

where s is the number of wires in G. In other words, each entry in the PDT is a different
function f(p) as in equations (7.1), (7.2). Computing the PDT amounts to considering each
possible tuple of probes P on the gadget and computing SISG(P , O) = I = (I1, . . . , I`) for
each possible set of output shares indices O ⊆ [n]. Then, update the corresponding function
in the PDT indexed by I and O as PDT[I ][O] = PDT[I ][O] + p|P |(1 − p)s−|P |. When
exploring all the possible sets of internal probes, P , and all the sets of output indices O, the
output of SISG shall serve as a basis to compute the expected distributions.

We showed how standard probing and random probing security notions can be expressed
using the SISG function. In the next section, we focus on the algebraic characterization of
masking gadgets and the concrete evaluation of the SISG function.

7.2 Algebraic Characterization of Masking Gadgets

In this section, we recall and extend the algebraic characterization of masking gadgets and the
subsequent security results. Previous works [16, 17] considered gadgets with linear random-
ness, i.e. all random values are additive on the wires of the gadget. We refer to these gadgets
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as LR-gadgets (see, for instance, ISW multiplication or refresh gadget recalled in Chapter 2).
In this work, we extend the characterization to gadgets with non-linear randomness, i.e. gad-
gets performing non-linear operations on input shares mixed with randomness. We denote
these gadgets as NLR-gadgets. Our extended characterization notably captures recent gadget
designs; see e.g. [13] or the multiplication gadget from Section 5.4. We also show how to verify
the security of masking gadgets using this algebraic characterization by a concrete evaluation
of the SIS primitive, which will be the core primitive of IronMask.

7.2.1 Characterization of Gadgets with Linear Randomness

We call an LR-gadget any `-to-m gadget G : x̂ = (x̂1, . . . , x̂`) 7→ ŷ = (ŷ1, . . . , ŷm) with the
output of the form (recall that for the description of SIS, we consider m = 1 but we can
generalize it to any number of outputs):

ŷ := R
(
F (x̂), r

)
,

where F is any arithmetic circuit, R is a linear arithmetic circuit (i.e. computing a linear
function) and r is a vector of internal randomness uniformly drawn from Kρ. Formally, each
coordinate of r is the output of a randomness gate of G, and F and R are composed solely
of operation gates. Note that this characterization is more general than the one from [16, 17],
which only considers quadratic circuits for F . We show hereafter that we can still obtain an
efficient and complete evaluation of SIS for those gadgets, yielding an efficient verification of
the considered security notions.

By definition, any probe on an LR-gadget can be written as

p = fp(x̂) + rT · sp (7.4)

for some arithmetic function fp : (Kn)` → K and some constant vector sp ∈ Kρ.

Given a tuple of probes P = (p1, . . . , pd) on the gadget G, we are interested in determining
the sets of input shares necessary for a perfect simulation of all probes in P . In particular, if
P can be simulated with at most n− 1 shares of each input sharing, then we know that P is
independent of the secret inputs. Belaïd et al. [16] showed how to use a Gaussian elimination
technique in order to determine the simulatability of a tuple of probes for gadgets with linear
randomness over the binary field. This technique was later extended to any finite field in [17].
We base our tool’s verification procedure for LR-gadgets on this technique.

We start by stating the result with Gaussian elimination from [16, 17] in a different, more
convenient formulation for our purposes. For this, we first define a simple function shares(.),
which takes as input a tuple of symbolic expressions (e1, . . . , ed) of the input shares, i.e.
ei = fei(x̂) for some algebraic function fei , and which outputs the (smallest) sets of indices
I = (I1, . . . , I`) such that (e1, . . . , ed) functionally depend on x̂|I . Notice that evaluating
shares(.) consists in extracting the indices of the input shares that are contained in the sym-
bolic expressions (e1, . . . , ed). We stress that the input shares x̂|I where I = (I1, . . . , I`) :=
shares(e1, . . . , ed) are necessary and sufficient for a perfect simulation of (e1, . . . , ed). Note that
shares(.) is executed on the tuple of expressions, the output tuple of the Gaussian elimination
technique. In fact, after executing the Gaussian elimination, we are guaranteed that the re-
maining expressions cannot be simplified any further in the given field K, and they are solely
formed of operations between input shares (they do not include any random variables). In
this case, to perfectly simulate the resulting tuple (which is equivalent to perfectly simulating
the tuple given before Gaussian elimination), there is no choice but to have access to all of the
input shares that are involved in the remaining expressions, which is why shares(.) extracts
the indices of these input shares.
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Lemma 22. Let G be an n-share gadget. Let P = (p1, . . . , pd) be a tuple of probes on G. Let
S ∈ Kd×ρ be the matrix such that

ST = (sp1 | sp2 | · · · | spd)

(i.e. each spi is a row vector of S) and let S′ be the row reduced form of the matrix S such
that S′ is of the form

S′ =

(
0m,d−m 0m,R−d+m
Id−m S′′

)
up to some permutations on the rows with S′ = N ·S where N is an invertible matrix in Kd×d.
Let P ′ be defined as

P ′ = N · P = (p′1, . . . , p
′
m, p

′
m+1, . . . , p

′
d) .

Then, the sets of input shares necessary to simulate the probes in P are shares(p′1, . . . , p
′
m).

Proof. The proof of the result follows the proof of Theorem 3.1 from [16] and Theorem 3.2
of [17]. It is shown in the latter that we can perfectly simulate the probes in P by perfectly
simulating all probes in P ′ since the matrix N is invertible and we can obtain P from N−1 ·P ′.
Then, to perfectly simulate probes in the tuple P ′, we observe from S′ that each algebraic
expression in the tuple (p′m+1, . . . , p

′
d) contains a random value that does not appear in any

other algebraic expression in P ′. We can thus perfectly simulate (p′m+1, . . . , p
′
d) by generating

d−m uniform random values without the need for any input share. The remaining algebraic
expressions (p′1, . . . , p

′
m) contain no random values and are all of the form p′i = fp′i(x̂). Hence,

to perfectly simulate each of them, we need (and only need) the input shares which are involved
in each fp′i(x̂), namely the input shares indexed by I := shares(p′1, . . . , p

′
m). Using the input

shares x̂|I , we can perfectly simulate (p′1, . . . , p
′
m) and thus perfectly simulate all algebraic

expressions in P ′, from which we get a perfect simulation of the probes in P .

Lemma 22 provides a way to evaluate the function SIS in the case of LR-gadgets. Note
that the set of probes P in the lemma must be defined as the union of P and ŷ|O in an
evaluation of SISG(P , O) (while used to define security notions, SIS is based on two arguments
to differentiate probes on internal wires and probes on output shares whereas this distinction is
not used in the evaluation process of Lemma 22). According to the above lemma, an evaluation
of SIS consists of a row reduction on the matrix of the random dependencies S, after which the
function shares(.) is used on the obtained expressions without random values (i.e. (p′1, . . . , p

′
m)

in the lemma). The output of SIS is then the output of shares(.), which is the set of input shares
necessary for a perfect simulation of all the probes. Section 7.3 shows how this technique is
efficiently implemented in our verification tool.

7.2.2 Characterization of Gadgets with Non-Linear Randomness

In this section, we extend the algebraic characterization for LR-gadgets of Section 7.2.1 to
NLR-gadgets, i.e. gadgets performing non-linear operations on input shares mixed with ran-
domness. An NLR-gadgets is an `-to-m gadget G : x̂ 7→ ŷ with the output of the form:

ŷ := R`+1

(
F (R1(x̂1, r1), . . . , R`(x̂`, r`)), r`+1

)
where F is any arithmetic circuit, the Ri are linear arithmetic circuits and the ri are vectors of
random values uniformly drawn from Kρi . We further assume that F computes a homogeneous
multi-linear form, namely F (z1, . . . ,z`) is a sum of degree-` monomials, each of which being
a product containing exactly one coordinate from each zi.
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For clarity, we describe the verification method for the case of 2-input gadgets; the extension
to ` inputs is straightforward. We thus present NLR-gadgets as 2-to-m gadgets G : (x̂1, x̂2) 7→
(ŷ1, . . . , ŷm) with the output of the form:

(ŷ1, . . . , ŷm) := R3

(
F (R1(x̂1, r1), R2(x̂2, r2)), r3

)
This characterization notably covers most (if not the totality of) multiplication gadgets. It
covers, in particular, multiplication gadgets which first start by refreshing one of (resp. each
of) their inputs before performing share-wise products that are finally recombined into the
output sharing (with additional randomness). Such multiplication gadgets have been recently
described in [54, 18, 33] and Section 5.4.

Any probe on such an NLR-gadget is either a probe on the inner circuits Ri(x̂i, ri) and is
of the form:

p = x̂T
i ·wp + rT

i · sp (7.5)

for i ∈ {1, 2} (since the Ri are linear arithmetic circuits) with wp ∈ Kn, sp ∈ Kρi , or is a probe
on the outer circuit and is of the form:

p = fp(z1, z2) + rT
3 · sp (7.6)

where zi := Ri(x̂i, ri) for i ∈ {1, 2} with sp ∈ Kρ3 , and for some arithmetic function fp :
(Kn)2 → K. We show hereafter that we can still obtain an efficient and complete evaluation
of SIS for those gadgets, yielding an efficient verification of the considered security notions.

The verification technique for NLR-gadgets essentially consists of several iterations of the
verification process for LR-gadgets used in Lemma 22. The steps of the technique are as follows.
Suppose that we have a tuple of probes P = (p1, . . . , pk, pk+1, . . . , pd) where (p1, . . . , pk) are
all of the form (7.6) while (pk+1, . . . , pd) are all of the form (7.5).

1. First, we apply the Gaussian elimination technique of Section 7.2.1 on the probes
(p1, . . . , pk) with respect to the vector of randoms r3. This is possible since all of these
probes respect the form (7.4) w.r.t. inputs (z1, z2) and randomness r3. Specifically, let
ST
3 := (sp1 | sp2 | · · · | spk), with spi defined from (7.6), and let N3 be the permutation

matrix such that S′3 = N3 · S3 is the row reduced form of S3 (see Lemma 22). From
this, we get a new derived tuple P ′ := N3 ·P = (p′1, . . . , p

′
m, p

′
m+1, . . . , p

′
k) and we know

from Lemma 22 that each of the expression in (p′m+1, . . . , p
′
k) can be perfectly simulated

by simply generating k−m uniform random values. Thus, we end up with (p′1, . . . , p
′
m),

which we need to simulate perfectly, and where each of the p′i is of the form fp′i(z1, z2)
with no random values from r3, along with the remaining probes (pk+1, . . . , pd). We then
construct the new tuple to simulate P ′′ = (p′1, . . . , p

′
m, pk+1, . . . , pd), which we rewrite as

P ′′ = (p′′1, . . . , p
′′
m+d−k). Thus, to perfectly simulate the tuple of probes P , we need to

perfectly simulate the probes in P ′′.

We stress at this stage that each algebraic expression p′′i in P ′′ is either of the form p′′i =
fp′′i (z1, z2) with fp′′i of a homogeneous bilinear form (this is of the first m coordinates
resulting from Gaussian elimination) or of the form (7.5) (i.e. the probes on R1 or R2

that are not affected by the previous Gaussian elimination since they do not contain any
randoms from r3).

2. For each p′′i in P ′′ of the form p′′i = fp′′i (z1, z2), we factor its algebraic expression with
respect to the vector of values (x̂1||r1). In other terms, we rewrite each p′′i as

p′′i = (x̂1||r1)T · hp′′i (7.7)
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where hp′′i is a tuple of n + ρ1 algebraic expressions of the form (7.5) w.r.t. (x̂2, r2).
We then construct a new tuple P2 := (hp′′1 ‖ · · · ‖ hp′′m) to which we append all the
expressions p′′i of the form (7.5) w.r.t. (x̂2, r2) (i.e. probes from R2).

3. We perform the same procedure as in the last step but this time factoring each p′′i in P ′′

of the form p′′i = fp′′i (z1, z2) with respect to (x̂2||r2), rewriting each p′′i as

p′′i = (x̂2||r2)T · gp′′i (7.8)

From those expressions we define a new tuple P1 := (gp′′1 ‖ · · · ‖ gp′′m) where the co-
ordinates of the gp′′i ’s are of the form (7.5) w.r.t. (x̂1, r1), to which we append all the
expressions p′′i of the form (7.5) w.r.t. (x̂1, r1) (i.e. probes from R1).

4. Recall from the first step that perfectly simulating P amounts to perfectly simulating
P ′′. We will prove later in this section that the input shares from x̂1 and x̂2 that are
necessary and sufficient to produce a perfect simulation of P ′′ are the same as the ones
for a perfect simulation of P1,P2 constructed in the last two steps. Observe that all
probes in P1,P2 respect the form (7.5), which is a special case of (7.4). Hence, we
separately apply the Gaussian elimination technique of Lemma 22 on P1 with respect
to (x̂1, r1), and on P2 with respect to (x̂2, r2). This provides us with the sets of input
shares I1 on x̂1 and I2 on x̂2 that are respectively necessary and sufficient to produce a
perfect simulation of the expressions in P1 and P2. These sets are, therefore, output as
the necessary and sufficient sets of input shares for a perfect simulation of P .

We state in the following lemma that the above verification method is complete.

Lemma 23. Let G be a 2-input n-share NLR-gadget. Let P = (p1, . . . , pd) be a tuple of probes
on G. Let P1,P2 be the tuples of linear expressions w.r.t. (x̂1, r1) and (x̂2, r2) obtained by
applying the above method. The sets I1, I2 obtained by applying the method of Lemma 22 on
P1 with respect to (x̂1, r1) and separately on P2 with respect to (x̂2, r2) are the sets of input
shares necessary and sufficient to simulate P .

Proof. The proof follows the different steps of the method described above. All the statements
hold from Lemma 22 except that the sets I1, I2 are necessary and sufficient for a perfect
simulation of P ′′. We prove this statement hereafter.

For any random distributions Dx̂1 and Dx̂2 over Kn, we denote DP the distribution induced
on P by picking x̂1 ← Dx̂1 , x̂2 ← Dx̂2 , r1 ← Kρ1 , r2 ← Kρ2 . Then I1 and I2 are the minimal
sets such that for any distributions Dx̂1 and Dx̂2 , there exists a probabilistic algorithm S (the
simulator) which given x̂1|I1 and x̂1|I2 outputs a tuple P which is i.i.d. as DP w.r.t. the
random draw x̂1 ← Dx̂1 , x̂2 ← Dx̂2 and the random coins of S.

Direction 1: The sets (I1, I2) are necessary to simulate P ′′. Here we need to perfectly simulate
the distribution of P ′′ given the random samplings x̂1 ← Dx̂1 , x̂2 ← Dx̂2 , r1 ← Kρ1 , r2 ← Kρ2

for any distributions Dx̂1 and Dx̂2 over Kn. Let us consider the uniform distribution for Dx̂1 ,
then the m first coordinates of P ′′ (i.e. the expressions of the form (7.7)) can be written as
P ′′|[m] = (u · hp′′1 , . . . ,u · hp′′m), where u is a vector uniformly sampled on Kn+ρ1 . Recall that
the hp′′i ’s corrdinates are expressions of the form (7.5) w.r.t. (x̂2, r2).

Given the values taken by the hp′′i ’s we can have different distributions for P ′′|[m]. A
particular case is the distribution “P ′′|[m] = 0 with probability 1” which appears if and only
if hp′′1 = · · · = hp′′m = 0. In order to evaluate the probability of outputting P ′′|[m] = 0 (which
must be exact for a perfect simulation), the simulator must hence evaluate the probability that
hp′′1 = · · · = hp′′m = 0 occurs, which must be further conditioned on the remaining expressions
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p′′i of the form (7.5) w.r.t. (x̂2, r2) (i.e. the probes on R2). This precisely means solving the
linear system obtained from the expressions in P2 which can be done by Gaussian elimination
w.r.t. the r2 variables (just as what is actually performed by step 4 of the verification method).
The resulting equations without r2 variables imply some linear constraints on some of the
shares from x̂2. These shares must then be known by the simulator in order to decide if the
system has a solution (and to evaluate the probability to get hp′′1 = · · · = hp′′m = 0). Moreover,
these shares are by construction the shares of indices in I2.

The exact same proof apply to I1 by taking the uniform distribution forDx̂2 and considering
the expressions of the form (7.8) (together with the the probes on R1).

Direction 2: The sets (I1, I2) are sufficient to simulate P ′′. Suppose that we can perfectly
simulate the tuples of algebraic expressions P1,P2 using sets of input shares I1 on input sharing
x̂1 and I2 on x̂2 respectively as described in step 4 above. Let two new sets of input shares
Ĩ1 = [n] on x̂1 and Ĩ2 = [n] on x̂2.

Observe first that we can perfectly simulate P ′′ using the sets of input shares Ĩ1 and I2. In
fact, in the algebraic expression of each probe p′′i in P

′′ of the form (7.7), the coordinates of the
h(p′′i )’s can all be perfectly simulated using I2 since by hypothesis we can perfectly simulate P2.
Also, the randoms in r1 are perfectly simulated by generating uniform random values, and all
shares of input x̂1 are simulated using the full input sharing in Ĩ1 = [n]. Since we can perfectly
simulate each term in the expression of p′′i , then we can perfectly simulate the expression p′′i
and hence we can perfectly simulate P ′′ using Ĩ1 and I2. Similarly, we can perfectly simulate
P ′′ using the sets of input shares I1 and Ĩ2 = [n] by observing the expressions of p′′i of the
form (7.8).

Thanks to [16, Lemma 7.5] (which demonstrates that if a set of probes can be simulated
from different sets of inputs shares, then it can also be simulated by the intersection of these
sets), we get that P ′′ can be perfectly simulated using the sets of input shares Ĩ1 ∩ I1 =
I1 and Ĩ2 ∩ I2 = I2, which proves that by perfectly simulating the tuples P1,P2 using I1, I2,
we can perfectly simulate P ′′ using I1, I2. This concludes the proof for this direction. We
hence conclude the proof of the lemma.

The verification method introduced above describes the procedure of the function SIS in
the case of NLR-gadgets to determine the simulatability of a set of probes on such gadgets.
Section 7.3 shows how this technique is implemented in IronMask. We now present a concrete
example of SIS execution on a set of probes on an NLR-gadget.

Example. Let us consider the following 2-share multiplication gadget (with inputs a and b,
and output e) while taking K = F2:

c1 = a1 + ra, c2 = a2 + ra

d1 = b1 + rb, d2 = b2 + rb

e1 = (c1 ∗ d1 + r) + c1 ∗ d2
e2 = (c2 ∗ d1 + r) + c2 ∗ d2

The above gadget is an example of NLR-gadgets, and uses 3 random values: ra is used to
refresh the input sharing â, rb is used to refresh the input sharing b̂, and r is used during the
compression of the products into the output sharing ê. The non-linear random values are ra
and rb with respect to ê.

Suppose that we would like to verify one of the security properties defined in Section 7.1
using SIS. To do this, we need to determine for each set of probes (formed of intermediate
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values or output shares) on the gadget the exact sets of input shares necessary and sufficient
for a perfect simulation of all the probes in the set. Let us consider, for instance, the following
set of 2 probes on the gadget:

P = (p1 = c1 ∗ d1 + r, p2 = c2 ∗ d1 + r)

We need to determine the sets of input shares of â and b̂ necessary to simulate probes in P
perfectly. SIS will be executed in four steps, as described earlier.

1. Get rid of the random values that are additive in the compression step (which are not
additive to the shares of â and b̂). In this case, it is the unique random value r. Using
the Gaussian elimination technique, we construct a new tuple :

P ′ = (p1 + p2 = c1 ∗ d1 + c2 ∗ d1, p2 = c2 ∗ d1 + r)

Since r only appears in p2, a uniform random value can perfectly simulate this probe.
Next we need to consider the simulation of the new tuple

P ′′ = (c1 ∗ d1 + c2 ∗ d1) = ((a1 + ra) ∗ (b1 + rb) + (a2 + ra) ∗ (b1 + rb)) .

2. Factor the expressions in P ′′ with respect to the elementary variables of shares of â and
random values which are additive to the shares of â and the constant term 1, in this case
the variables (a1, a2, ra, 1). Since there is a single expression in P ′′, we can rewrite it as:

P ′′ = (a1 ∗ (b1 + rb) + a2 ∗ (b1 + rb) + ra ∗ (b1 + rb + b1 + rb) + 1 ∗ (0))

from which we construct the new set of the expressions multiplying (a1, a2, ra, 1)

P2 = (b1 + rb, b1 + rb, 0, 0) .

3. Do the same thing with respect to (b1, b2, rb, 1):

P ′′ = (b1 ∗ (a1 + ra + a2 + ra) + b2 ∗ (0) + rb ∗ (a1 + ra + a2 + ra) + 1 ∗ (0))

from which we construct

P1 = (a1 + a2, 0, a1 + a2, 0) .

4. Determine the input shares of â necessary to simulate the expressions in P1 and the
shares of b̂ necessary to simulate the expressions in P2.

• for input sharing â, we trivially need both input shares (a1, a2) to perfectly simulate
expressions in P1.

• for input sharing b̂, we apply one step of Gaussian elimination with respect to rb, to
obtain the new set P ′2 = (b1 + rb, 0, 0, 0). We can see that we can perfectly simulate
the single non-zero expression with a uniform random value. Thus, in this case, no
shares of b̂ are necessary to perfectly simulate P ′2 and hence also P2.

Hence, to perfectly simulate P1 and P2, we need both input shares of â and no shares of
b̂. Thanks to Lemma 23, we can conclude that P can be perfectly simulated using both
shares of â and no shares of b̂.
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7.3 Efficient Verification: IronMask

In this section, we present IronMask, a new tool that we developed to check probing and random
probing security properties using the algorithms presented in Section 7.2. The implementation
of IronMask currently considers a finite field K of characteristic 2. It can be extended to any
finite field since the verification methods introduced in the previous sections work in any finite
field K. IronMask is written in C, and the only external libraries it depends on are the GNU
Multiple Precision Arithmetic Library (GMP) and the POSIX Threads (pthreads) library.

7.3.1 Data Representation

#shares 2
#in a b
#randoms r0
#out c

m0 = a0 * b1
t0 = r0 + m0
m1 = a1 * b0
t1 = t0 + m1

m2 = a0 * b0
c0 = m2 + r0

m3 = a1 * b1
c1 = m3 + t1

(a) 2-share ISW multi-
plication

#shares 3
#in a
#randoms r0 r1 r2
#out d

d0 = a0 + r0
d0 = d0 + r1

d1 = a1 + r0
d1 = d1 + r2

d2 = a2 + r1
d2 = d2 + r2

(b) 3-share refresh

Figure 7.1: Masking gadgets written in IronMask’s syntax

IronMask takes as input gadgets written in a simple syntax to describe circuits, borrowed
from VRAPS [18]: a gadget is a list of assignments of additions and multiplications into
variables, alongside directives to specify the number of shares, the inputs, the outputs, and the
randoms. Figure 7.1 illustrates our input syntax on a 2-share ISWmultiplication ( Figure 7.1a)
and a 3-share refresh gadget ( Figure 7.1b). In Figure 7.1a, the variables a0/b0 (resp. c0)
and a1/b1 (resp. c1) are the 1st and 2nd shares of the input a/b (resp. output d). Similarly to
maskVerif [9, 10, 6], the syntax ![ expr ] can be used to stop the propagation of glitches in
the robust probing model. For instance, tmp = a0*b0 could be replaced by tmp = ![ a0*b0
], in which case tmp would leak a0*b0 instead of leaking a0 and b0 separately.

Internally, IronMask represents each wire of the gadget as an array of integers composed of
three parts. The first ` parts correspond to linear dependencies on the inputs of the gadget: if
the kth bit of the ith element is set to 1, then the wire depends linearly on the kth share of the ith

input. The second part is a bit vector, where the kth bit set to 1 indicates a linear dependency
on the kth random of the gadget. Finally, the third part is a bit vector as well, where the
kth bit set to 1 indicates a linear dependency on the kth quadratic monomial appearing in the
symbolic expressions of the gadget wires. For instance, the internal representation of the wires
a0, a1, r0, m3, t1 and c1 of Figure 7.1a are as follows:

inputs randoms mults
a0: [ 1, 0, 0, 0,0,0,0 ]
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a1: [ 2, 0, 0, 0,0,0,0 ]
r0: [ 0, 0, 1, 0,0,0,0 ]
m3: [ 0, 0, 0, 0,0,0,1 ]
t1: [ 0, 0, 1, 1,1,0,0 ]
c0: [ 0, 0, 1, 0,0,1,0 ],

with an additional data structure storing the operands of each multiplication:

0: a0 * b1 1: a1 * b0
2: a0 * b0 3: a1 * b1

Using this internal representation enables efficient operations: the linear dependencies of a
wire on the input shares are accessible with a single operation, and the number of such input
shares is efficiently obtained by counting the number of bits to one in the first element (or first
two elements for 2-input gadgets), and xoring two wires, which is one of the basic operations
of our Gaussian elimination can be done by xoring pointwise the arrays representing them.

We use the same glitch model as in [6] to model glitches in the robust probing model.
Namely, we consider that an expression a + b (resp a ∗ b) leaks a and b separately, instead
of leaking a + b (resp a ∗ b). Registers (usually called flip-flops) can be used to stop the
propagation of these glitches.

In IronMask, when taking glitches and transitions into consideration, each wire is repre-
sented by an array of arrays instead of a single array since the leakage of an assignment is the
union of the leakages of its right-hand side operands. For instance, the wire c0 in Figure 7.1a
in the presence of glitches is represented as:

inputs randoms mults
c0: [ [ 0, 0, 1, 0,0,0,0 ],

[ 1, 0, 0, 0,0,0,0 ],
[ 0, 1, 0, 0,0,0,0 ] ]

If a flip-flop was added to m2 to stop the propagation of glitches by doing m2 = ![a0*b0],
then the robust leakage of c0 would become:

inputs randoms mults
c0: [ [ 0, 0, 1, 0,0,0,0 ],

[ 0, 0, 0, 0,0,1,0 ] ]

7.3.2 Basic Verification

This section presents the procedures implemented in IronMask for verifying probing and random
probing properties. Recall that in Section 7.1, we give definitions of all the security properties
based on a single building block SIS: a primitive that, given a set of probes (internal probes
and output probes), determines the input shares necessary for a perfect simulation of these
probes. Thus, to verify any security property, IronMask uses a concrete implementation of the
function SIS based on the algebraic characterization techniques discussed in Section 7.2.

Gadgets with linear randomness. For the verification of LR-gadgets introduced in Sec-
tion 7.2.1 (i.e. gadgets in which all random values are additive), IronMask relies on the SIS_LR
procedure ( Algorithm 9). This procedure directly applies the result presented in Lemma 22.
We recall that Algorithm 9 in IronMask currently considers a finite field of characteristic 2.

As in Lemma 22, Gaussian elimination is first performed on the tuple by the procedure
GaussElimination, after which each probe of the input tuple is either "replaced" by a random
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Algorithm 9: SIS_LR returns the input shares that are leaked by the tuple P with
expressions of the form (7.4), assuming ` input sharings
1 procedure GaussElimination(P )
2 for each probe pi of P do
3 if pi contains at least one random variable then
4 r ← choose (any) one random variable in pi;
5 for each probe pj of P with i 6= j do
6 if pj contains r then
7 pj ← pi + pj ;
8 end
9 end

10 pi ← r;
11 end
12 end
13 procedure shares(P )
14 I1 ← ∅, . . . , I` ← ∅;
15 for each probe pi of P do
16 Add all input shares in pi of each input j to Ij ;
17 end
18 return I1, . . . , I`;
19 procedure SIS_LR(P )
20 P ′ ← GaussElimination(P );
21 return shares(P ′);

r (as shown on line 10 of the procedure GaussElimination), or contains one or more input
shares and no random values. What we mean by replacing the probe pi by a random value
r on line 10 is that after eliminating r from the expressions of all other expressions pj in the
same tuple (loop from line 5 to 7 where the instruction pj ← pi + pj aims to remove r from
pj in a finite field of characteristic 2), we end up with r only appearing in the expression
of pi and so as explained in the proof of Lemma 22, simulating pi amounts to generating r
uniformly at random without the need for any other variables. We represent this by replacing
the expression of pi with the single random value r. Then, the shares leaked by the input tuple
can be found on the probes that do not contain any randoms using the procedure shares. The
latter corresponds to an implementation of the function shares(.) used in Lemma 22.

Gadgets with non-linear randomness. For NLR-gadgets (i.e. gadgets performing non-
linear operations on input shares mixed with randomness), IronMask uses the SIS_NLR pro-
cedure ( Algorithm 10), which implements the four steps described in Section 7.2.2. As
mentioned in Section 7.2.2, SIS_NLR currently only supports gadgets with two input shar-
ings but can be extended to ` input sharings.

First, SIS_NLR performs Gaussian elimination with respect to the vector of output ran-
doms (i.e. r3), using a modified version of GaussElimination that takes as inputs the randoms
to use for the elimination. This corresponds to step 1 of Section 7.2.2. Next, two new tuples
of probes P1,P2 are constructed from the probes in P ′ that do not contain any randoms
from r3, using the FactAndExtract procedure, which corresponds to the factoring technique
discussed in steps 2− 3 of Section 7.2.2. We thus get two tuples P1 and P2 containing input
shares, randoms, and refreshed input shares from each input. Since those variables are linear,
we can use the initial SIS_LR procedure to extract the input shares that they leak.

127



Algorithm 10: SIS_NLR returns the input shares that are leaked by the tuple P in
an NLR-gadget refreshing its output with the randoms r3 (c.f. sec. 7.2.2), assuming
2 input sharings
1 procedure SIS_NLR(P , r3)
2 P ′ ← GaussElimination(P , r3);
3 P1 ← ( ),P2 ← ( );
4 for each probe pi in P ′ do
5 if pi contains no randoms of r3 then
6 (P ′1,P

′
2)← FactAndExtract(pi);

7 (P1,P2)← (P1||P ′1,P2||P ′2);
8 end
9 end

10 I1 ← SIS_LR(P1), I2 ← SIS_LR(P2);
11 return I1, I2;

Verification of security properties. Checking any probing or random probing property
(e.g. NI, SNI, RPC, RPE, ...) consists of enumerating tuples of probes, using SIS_LR or
SIS_NLR to get the input shares that they leak (we abbreviate with SIS and suppose that we
make a call to the correct algorithm for LR-gadgets and NLR-gadgets), and take some action
in consequence (see Section 7.1). In the following, we shall call a t-failure tuple (or simply a
failure tuple when t is not made explicit) any tuple of probes that leaks more than t input
shares of one or more input sharings (i.e. for which SIS outputs a set or more of cardinality
strictly greater than t).

For instance, to verify if an n-share gadget is t-NI, we enumerate all tuples of size t and
make sure that none of them is a t-failure tuple ( Algorithm 11). This corresponds to the first
row of Table 7.1. Verifying random probing-like properties amounts to computing the failure
probability ε as a function f(p) of the leakage probability p as described in Section 3.3 and Sec-
tion 4.3. For instance, to verify the (p, ε)-RPS? of an n-share gadget G in the random probing
model (first row of Table 7.2), we need to compute the coefficients ci from equation (7.2)
of the failure probability function f(p) = ε as explained in Section 7.1. This corresponds to
enumerating all the tuples of probes (excluding the output wires) of size 1 to s (where s is
the total number of wires in the circuit) and counting how many leak more than n− 1 shares.
When it is computationally infeasible to enumerate all tuples, we only enumerate tuples of
size 1 to a certain threshold β. From these β computed coefficients, we can derive upper and
lower bounds on f(p). For example, an upper bound is obtained by replacing each coefficient
ci for i > β by the binomial coefficient

(
s
i

)
(c.f. Section 3.3). We will see in the experimental

results that in most of the cases, the upper and lower bounds on f(p) are tight and give a
precise estimation of the actual function f(p)1.

Enumerating all tuples becomes impractical as soon as gadgets start growing larger than a
few hundred variables since the number of tuples of size k in a gadget containing s variables is(
s
k

)
. For instance, checking that a 9-share masked ISW multiplication containing 279 variables

is 8-NI requires enumerating
(
279
8

)
≈ 8× 1014 tuples, which is not far from being out of reach

for modern computers.

The rest of the Section is organized as follows. In Section 7.3.3, we address dimension
reduction techniques proposed in [16, 28] to reduce the search space of the enumerated tuples.
In Section 7.3.4, we present some optimizations of our implementation that make verification

1This technique has already been used in VRAPS [18]
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Algorithm 11: Is_t_NI returns true if G is t-NI and false otherwise, assuming G
has ` input sharings
1 procedure Is_t_NI(G, t)
2 for each tuple P of size t in G do
3 I1, . . . , I` ← SIS(P );
4 if |I1| > t or . . . or |I`| > t then
5 return false;
6 end
7 end
8 return true;

Algorithm 12: GetCoeffsRPS? returns an array of β cells where the kth index
contains the number of failure tuples of k probes on n-share gadget G with ` input
sharings
1 procedure GetCoeffsRPS?(G, β)
2 coeffs ← [0, . . . , 0] of size β;
3 for k = 1 to β do
4 for each tuple P of k probes on G do
5 I1, . . . , I` ← SIS(P );
6 if |I1| > n− 1 or . . . or |I`| > n− 1 then
7 coeffs[k] += 1;
8 end
9 end

10 end
11 return coeffs;

faster by reducing the cost of SIS_LR (since the latter is also a building block for SIS_NLR)
and parallelizing our procedures. Finally, in Section 7.3.5, we introduce a constructive algo-
rithm to generate failures without enumerating all tuples in linear gadgets.

7.3.3 Dimension Reduction

Checking any probing or random probing property requires enumerating many tuples. For
instance, for a gadget G made of s variables,

(
s
t

)
tuples must be checked to assess whether G

is t-NI. We remove some variables from the search to reduce the number of tuples that have to
be considered. First, as proposed in [16] and further explained in [28], elementary determin-
istic probes can be removed when checking any probing or random probing property. Then,
when checking for probing properties only, we use the “reduced sets” optimization proposed
in [28], eliminating some “less powerful” variables from the search. We recall hereafter the
principle of those two optimizations and show how to make the first one work in the random
probing model and why the second one cannot be used in this model. Note that the dimension
reduction technique is proved to be sound in [28], which means that our verification technique
implementing the optimization remains sound.

Removing elementary probes. Elementary deterministic probes refer to input shares
and products of input shares. The idea behind the removal of those probes is that if a tuple
P functionally depends on k input shares, we can always make it depend on k + k′ input
shares (with k + k′ less or equal to the number of shares of the gadget) by adding elementary
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deterministic probes. For instance, if a tuple t does not depend on the input share a0, then
the tuple (t, a0) does, and so do any of the tuples of the form (t, a0bi).

The goal of our search procedure, instead of finding tuples of size k1 that depend on t input
shares, now becomes to find tuples of size k2 ≤ k1 that depend on t− (k1 − k2) input shares.
In the probing model, such a tuple is enough to know that the property being checked does
not hold. However, we want to generate and count all failures in the random probing model.
When we find such a tuple P , we thus generate all expansions of P combined with elementary
deterministic probes that leak t input shares, thus making sure that all failures of the gadget
are generated.

Similarly, we can remove elementary random probes: if, after the Gaussian elimination on
a tuple P , some input shares are masked by random variables, we can make them appear by
adding the corresponding randoms. For instance, consider the 1-element tuple a0+r1+a1. It
is easy to see that adding r1 to this tuple would make it leak a0 and a1. For simplicity, we
keep elementary random probes when checking random probing properties and only perform
this optimization for probing properties.

Using reduced sets. This optimization is formally introduced and proven correct in [28].
For completeness, we informally recall its principle here.

Let P and P ′ be two sets of probes. P ′ is said to be a reduced set for P iff |P ′| ≤ |P |
and for every linear combination of probes of P , there exists a linear combination of P ′ using
an equal or lower number of probes, which contains the same random dependencies, and at
least as many input share dependencies. [28] proved that if P is a set of all wires of a gadget
G and P ′ is a reduced set for P , then, to prove that G is NI or SNI, the set of probes P ′ can
be used instead of P to enumerate all tuples. If no failure is found in P ′, then none can be
found in P either, and, conversely, if a failure is found in P ′, the same failure exists in P .

For instance, if we consider a set P = (r0, a0, a1, a0+r0, a0+r0+a1) (where r0 is a random
value and a0, a1 are input shares), then the set P ′ = (r0, a0, a1, a0 + r0 + a1) is a reduced set
for P . Evaluating the probing security of a gadget using the latter would yield the same
conclusion as with the former while being faster since the latter contains one less probe.

This optimization is especially potent on ISW-like multiplications, which contain many
wires of the form X + ai · bj : the wire X can often be omitted since (informally) X + ai · bj
contains the same random dependencies as X. However, it contains some additional input
shares.

This optimization cannot be used in the random probing model because a set P and a
reduced set P ′ would yield different failures. For instance, consider the sets proposed earlier
as an example: P = (r0, a0, a1, a0 + r0, a0 + r0 + a1), and P ′ = (r0, a0, a1, a0 + r0 + a1). The
tuple (a0 + r0, a0 + r0 + a1, a1), made of wires of P , reveals two input shares and cannot be
built from wires of P ′ since a0 + r0 is not in P ′.

7.3.4 Implementation Optimizations

On-the-fly Gaussian Elimination. In order to find all failures of a given size, we enumer-
ate all the tuples of that size and apply the SIS procedure on each. This means a complete
Gaussian elimination must be performed on each tuple. However, we generate the tuples in
lexicographic order, meaning that two consecutive tuples only differ by their last elements and,
in most cases, only by their last element. For two consecutive tuples, it is thus very likely that
most of the Gaussian elimination will be identical. We take advantage of this by implementing
our Gaussian elimination on the fly: we only recompute the elimination on the elements that
differ from the previous tuple for each tuple.
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The cost of the Gaussian elimination for a single tuple of k elements of a gadget containing
d inputs and randoms is O(dk2). Performing the elimination on-the-fly brings the amortized
complexity down to O(dk).

The authors of [28] used a similar, slightly more efficient technique to speed up their
implementation. They used a revolving-door algorithm to generate the tuples so that each
consecutive tuple differs by exactly one element, which allows for amortizing the analysis’s
cost. However, we cannot use this revolving-door algorithm because when changing the ith

element of a tuple, the Gaussian elimination needs to be recomputed from this ith element up
to the end of the tuple.

Parallelization. Recall that we generate the tuples in lexicographic order, which admits an
efficient unranking algorithm. This means that we can efficiently compute the jth tuple of size
k for any j and any k. Multi-threading the verification of n tuples is thus trivial: run l threads
in parallel, the jth thread starts with the bj×n/lthc tuple, and verifies the next bn/lc tuples.

Our implementation is multi-threaded in this fashion using POSIX threads provided by
the pthread library. In order to be transparent from the properties’ point of view (e.g., from
Algorithms 11 and Algorithm 12), the multi-threading is done inside SIS. To this end, we use
a few mutexes, which incur an overhead in the random probing model: the more failures a
gadget contains, the less of a speedup multi-threading offers. Although it would not be hard to
implement multi-threading on the properties’ side rather than in SIS, we opted for readability
and maintainability of the code at the slight expense of performance.

7.3.5 Constructive Approach

The enumerative approach of Section 7.3.2 generates many tuples that are trivial non-failures
because they do not contain enough shares to be failures or their shares are masked by random
variables. We designed a constructive algorithm only to generate potential failures to overcome
this issue. Our constructive algorithm aims at generating incompressible failure tuples, which
we define as follows:

Definition 27 (Incompressible failure tuple). A tuple P is an incompressible failure tuple if
it is a failure, and if no tuple P ′ ⊂ P is a failure itself. (⊂ between two tuples means that all
wires of P ′ are included in the tuple P ).

We will describe our constructive algorithm for the well-adapted case of LR-gadgets and
then explain how to extend it to NLR-gadgets. The idea is that given wires which are all of
the form (7.4), a failure tuple of probes on these wires has a specific form: it contains some
wires with input shares, and if those input shares are masked by randoms, it contains some
additional wires to cancel out those randoms. The expression masked by randoms means that
the perfect simulation of the considered probe amounts to generating a uniform random value.
This is typically the case in a tuple of probes where a random value appears only once in one
of the expressions, which then can be used to mask the expression of that probe. To cause
a failure event and avoid masking the expressions, we add wires using the same randoms to
cancel them out.

We start by giving the intuition of the algorithm on the 3-share refresh gadget presented
in Figure 7.1b. We first build a map ( Table 7.3), called Columns, whose keys are the input
shares and randoms of the gadget considered and whose values are all the wires that depend on
those inputs and randoms (a wire will be displayed in several columns if it depends on several
shares or randoms). To build a failure tuple that leaks three shares, we can pick one wire from
each of the a0, a1 and a2 buckets, say (a0, a1+r0,a2+r1) for instance. This tuple is not a
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Algorithm 13: Our constructive algorithm to generate failures. G is the gadget we
are considering, and n is the number of shares required for a tuple to be a failure.
1 procedure UnmaskTuple(G, S, P , unmask_index)
2 if P is a failure then
3 if P is incompressible then
4 S ← S ∪ {P };
5 end
6 return;
7 end
8 if unmask_index > length(P ) then
9 return;

10 end
11 UnmaskTuple(G, S, P , unmask_index+1);
12 PGauss ← GaussElimination(P );
13 if PGauss[unmask_index] contains no randoms then
14 return;
15 end
16 r ← any random from PGauss[unmask_index ];
17 for each wire w of G containing r and not in P do
18 P ′ ← P || (w);
19 UnmaskTuple(G, S, P ′, unmask_index+1);
20 end
21 procedure ConstructiveFailuresGenLR(G, n)
22 S ← ∅;
23 for each tuple P in L do
24 UnmaskTuple(G, S, P , 0);
25 end
26 return S;

failure because the shares a1 and a2 are masked by the randoms r0 and r1 (the two random
values appear only once in the tuple and can be used to mask the corresponding expressions).
We thus pick a wire from the r0 bucket and add it to the tuple, say a0 + r0 + r1 (which
happens to cancel r1 as well as r0). The resulting tuple is (a0,a1+r0,a2+r1,a0+r0+r1),
which is a failure. By doing this for every possible wire of each column, we can generate all
failures of the gadget of Figure 7.1b.

Algorithm 13 introduces more formally this procedure for LR-gadgets. This algorithm lists
all of the tuples composed of one element from each input share column (line 23); we note the
resulting list L. Note that those tuples might have some duplicates since some wires appear
in several columns: these duplicates are removed while building the tuples (which implies that
the tuples in L contain possibly less than n elements).

Then, for each tuple in L, the recursive procedure UnmaskTuple adds wires to the tuple to
cancel the randoms that mask its input shares. The procedure takes as argument the circuit
G, the set of incompressible tuples already computed S, a tuple P that needs to be turned
into a failure and an integer unmask_index that contains the next index of P that we should
try to unmask. First, UnmaskTuple checks if P is a failure (line 2). To do so, we can use
the procedure SIS_LR ( Algorithm 9). If P is a failure, we then check if it is incompressible
(line 3) by checking if any tuple P ′ ⊂ P is already in S. Ignoring line 11 for now, a Gaussian
elimination is then performed on P (line 12). If the unmask_index th element of the resulting
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Table 7.3: Columns map for the constructive generation of incompressible tuples of Fig-
ure 7.1b

input shares randoms
a0 a1 a2 r0 r1 r2
a0 a1 a2 r0 r1 r2

a0 + r0 a1 + r0 a2 + r1 a0 + r0 a2 + r1 a1 + r0 + r2
a1 + r0 + r1 a1 + r0 + r2 a2 + r1 + r2 a1 + r0 a2 + r1 + r2 a2 + r1 + r2

a0 + r0 + r1 a0 + r0 + r1

tuple PGauss contains no random, then there is nothing to unmask, and we can move on to
the next index (which was already done by line 11). Otherwise, we select any random r of
PGauss and try to add to P each wire that contains r (i.e., each wire of the r column of the
Columns map, and move to the next unmask_index (lines 16 to 19).

Unmasking each element of P one by one misses some failures. For this reason, line 11
skips the unmasking of the element of P at index unmask_index to move directly to index
unmask_index+1. Consider, for instance, a 2-share gadget and the tuple P = (a0 + r0, a1 +
r1 + r0). After the Gaussian elimination, the 1st element of P is r0, and lines 16 to 19 of
UnmaskTuple will thus try to add a wire containing r1 to the tuple. However, this would be
missing the fact that the 2nd element of P , a1+r1+r0, already contains r1 and thus somewhat
unmasks a0 + r1. By skipping the first element of P , we will try to unmask its second element
by adding the wire r1 to the tuple. This will produce the tuple (a0 +r0, a1 +r1 +r0, r1), which
is a failure, and would have been missed without the recursive call of line 11.

This constructive method is exhaustive since any incompressible failure tuple P can be built
by taking one element in each column (and possibly removing duplicates) and adding necessary
elements to remove the masks. Consider a minimal sub-tuple P ′ of P , which contains one
element of each column. This sub-tuple P ′ will be listed in line 11. The other coordinates of P
are necessary to remove the masks remaining after an application of the Gaussian elimination to
P ′ (otherwise P would not be incompressible). Since Algorithm 13 is exhaustive in removing
those masks, it will necessarily build P at some point.

Implementation. Implementing UnmaskTuple in Algorithm 13 does not perform a full
Gaussian elimination at every recursive call. Instead, the elimination is performed on the fly,
similar to what we do for the enumerative algorithm (see Section 7.3.4). Likewise, we keep
a variable input_shares containing the input shares already revealed by the current tuple P ,
which enables to check if P is a failure in constant time, without having to call SIS_LR: we
can check if input_shares contains n input shares.

Extension to gadgets with non-linear randomness. The procedure UnmaskTuple of
Algorithm 13 only considers gadgets with linear randomness. To adapt it for gadgets with
non-linear randomness, we proceed similarly as in SIS_NLR ( Algorithm 10): a first step
unmasks randoms that are used to refresh outputs, while a second step unmasks randoms
that are used to refresh inputs. We call ConstructiveFailuresGenNLR this version of our con-
structive algorithm and define ConstructiveFailuresGen as the function that chooses between
ConstructiveFailuresGenLR and ConstructiveFailuresGenNLR depending on whether its input
gadget contains linear or non-linear randomness.

Application. Algorithm 14 shows how to use ConstructiveFailuresGen to compute all gad-
get failures. While the latter returns all incompressible failures to evaluate the failure function
coefficients for random probing notions (RPC, RPE1, RPE2, RPS?), we need to count the num-
ber of all failures, regardless of their incompressibility. To do so, we expand all incompressible
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failures into regular failures by adding wires one by one (using the procedure ExpandTuple,
whose pseudo-code is trivial and hence omitted). However, doing so will lead to the same
tuple being generated multiple times: for instance, if the tuples (x1, x2) and (x1, x3) are both
incompressible failures, expanding them will generate (x1, x2, x3) and (x1, x3, x2), which are
the same tuple. We thus use a hash table (called Sfailure in Algorithm 14, and abstracted as
a set for simplicity) to store the tuples that we generate and prevent counting multiple times
the same tuple. In practice, our hash function returns the sum of the hashes of the indices of
wires in the tuple, which results in a fairly low number of collisions.

Algorithm 14: GetCoeffsRPconstr returns an array of cmax cells where the kth

index contains the number of failure tuples of size k in G
1 procedure GetCoeffsRPconstr(G, cmax)
2 coeffs ← empty array;
3 t← number of shares in G;
4 Sincompr ← ConstructiveFailuresGen(G, t);
5 Sfailure ← ∅;
6 for k = 1 to cmax do
7 S′failure ← all tuples of Sincompr of size k;
8 for each tuple P of Sfailure do
9 S′failure ← S′failure∪ ExpandTuple(P );

10 end
11 Sfailure ← S′failure;
12 coeffs[k] ← number of tuples in Sfailure;
13 end
14 return coeffs;

Remark 7. We initially tried to count the failures from the incompressible failures without
generating all of them. This problem can be formulated as follows: Let W be a set of integers
(the wires). Let S be a set of subsets of W of arbitrary sizes (the set of incompressible
failures). How many subsets of W of size k are super-sets of elements of S (those subsets are
non-incompressible failures)? This is a problem of inclusion-exclusion, and solving it requires
computing the intersections of all pairs of sets in the powerset of S. Since there are 2|S|

such sets, this approach would be prohibitively expensive for any gadget with more than a few
incompressible failures.

Performance & limitations. This constructive algorithm is faster than the traditional
enumerative algorithm of Section 7.3.2 when checking (n − 1)-NI and RPS* properties for
linear gadgets. Table 7.4 shows the exact performance improvements when checking the
RPS* property on some common linear gadgets (ISW refresh [59], O(n log n) refresh [13], and
an “ISW addition” made of a share-wise addition preceded by an ISW refresh of each input),
and on an ISW multiplication with a circular refresh on one of the inputs. On linear gadgets,
the constructive algorithm can go about two coefficients further than the enumerative one
simultaneously, thus producing much more precise results.

Furthermore, the constructive algorithm verifies larger, previously out-of-reach gadgets.
For instance, a 9-share ISW addition contains 243 variables and thus contains

(
243
9

)
≈ 7 ∗ 1015

tuples of size 9 (for 8-RPS*), which is clearly beyond the capabilities of the enumerative
algorithm. Nevertheless, our constructive algorithm can generate all of its failures of size 9 in
7 minutes.
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Table 7.4: RPS* performance of our new constructive algorithm against our traditional enu-
merative one

Gadget Shares #wires
Enumerative Constructive

β
Verif
time β

Verif
time

ISW refresh 8 140 8 5min 8 3sec
10 6min

ISW add 7 224 7 18min 8 2sec
9 2min

O(n log n) refresh 8 100 9 1min 9 2sec
11 2min

ISW mult
refreshed 6 297 6 2min 6 12min7 38min

However, the constructive algorithm is slower on multiplication gadgets than the enumer-
ative one. Table 7.4 illustrates this on an ISW multiplication with an ISW refresh on one
of the inputs. This can be explained by the fact that many tuples are generated multiple
times by this constructive algorithms, each time through a different path in the recursion. For
instance, on the refresh gadget of Figure 7.1b, the tuple (a0, a1+r0, a2+r1, a1+r0+r1) can be
generated by selecting (a0, a1 + r0, a2 + r1) as the initial tuple (line 23 of Algorithm 13), and
then adding a1 +r0 +r1 at line 18. However, the same tuple can also be generated by selecting
(a0, a1+r0+r1, a2+r1) at line 23 and then adding a1+r0 at line 18. This phenomenon is even
more impactful when dealing with multiplication gadgets because multiple shares of the same
input will appear on the same wire, resulting in larger columns (particularly in the “inputs”
part of the Columns map), which can lead to a worst complexity than simply enumerating
all tuples.

Additionally, the constructive algorithm does not perform well when checking t-NI or t-
RPS* with t < n − 1, SNI, RPC, and RPE. The reason is that the traditional enumerative
algorithm enumerates all tuples regardless of the property being checked and the failure con-
dition. However, with the constructive algorithm, for an n-share gadget, to generate tuples
of that leak k shares, all

(
n
k

)
possible combinations of shares must be tested. For instance, in

our example of Figure 7.1b, to generate all failures leaking two shares, we would generate all
failures leaking the 1st and the 2nd shares, then the ones leaking the 1st and the 2nd share,
and, finally, the ones leaking the 2nd and the 3rd share. Testing these combinations quickly
becomes less efficient than just enumerating all tuples, as in the basic enumerative approach.

7.4 Evaluation and Performance

To showcase IronMask, we start in Section 7.4.1 by providing new bounds for the maximum
RPE leakage probability tolerated by some common gadgets (in the random probing model).
Then, we compare the scope and performance (Section 7.4.2) of IronMask and existing ver-
ification tools: VRAPS and STRAPS in the random probing model, and maskVerif, matverif
and SILVER in the probing model. The description files of the gadgets tested in the following
sections are publicly available on IronMask’s GitHub repository.

7.4.1 New Random Probing Expandability Results

So far, VRAPS [18] was the only tool verifying the (t, p, ε)-RPE property. IronMask is several
orders of magnitude faster than VRAPS, in addition to being complete (IronMask avoids failure
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Table 7.5: Maximum t-RPE leakage probabilities tolerated by some common masking gadgets

Gadget Shares t Ampl. order β #wires log2 maximum
tolerated proba. Verif. time

Linear Randomness

ISW
[59]

mult
5 2 3/2 6 180 -10.54 24min
6 2 3/2 5 267 -12.00 13min
7 3 2 5 371 [-10.45, -8.73] 28min

refresh
5 2 3 10 50 -4.28 2min
6 2 3 8 75 [-4.81, -4.61] 5min
7 3 4 7 105 [-5.50,-4.01] 21min

add
5 2 3 7 110 [-6.48,-4.70] 11min
6 2 3 6 162 [-7.81,-5.03] 17min
7 3 4 6 224 [-8.47,-4.15] 3h

copy
5 2 3 6 105 [-5.92,-5.54] 12min
6 2 3 5 156 [-6.92,-5.93] 24min
7 3 4 4 217 [-8.02,-3.87] 33min

n log n
[13]

refresh 4 1 2 30 30 -5.27 1sec
8 3 4 7 100 [-5.42,-4.36] 18min

add 4 1 2 8 68 -5.40 4min
8 3 4 6 216 [-8.40,-4.40] 4h

copy 4 1 2 6 64 -6.96 27sec
8 3 4 4 208 [-7.94,-4.25] 55min

circular
refresh [11]

5 2 3 25 25 -4.84 1sec
10 4 3 8 50 -5.21 1min

Sec. 5.5 add 5 2 3 9 55 [4.67,-4.42] 10min
copy 5 2 3 6 60 -6.17 41sec

Non-linear Randomness
Double-SNI

ISW
4 1 2 5 190 -9.85 5min
5 2 5/2 5 305 [-10.01,-8.09] 31min

mult Sec. 5.5 5 2 3 6 405 [-9.67,-7.66] 31h

false positives i.e. detected failure tuples which are not failures, unlike VRAPS), allowing us
to compute more precise bounds for the coefficient of the failure function f(p) = ε and hence
more precise bounds on the tolerated leakage probability. In particular, we consider the ISW
multiplication and refresh [59], theO(n log n) refresh [13], the circular refresh [11], as well as the
addition, copy, and multiplication from Section 5.5. Additionally, we consider addition (resp.
copy) gadgets obtained by doing an ISW or O(n log n) refresh on one of the inputs followed
by a simple addition (resp. copy). Finally, we also evaluate a double-SNI multiplication [54]
made of an ISW multiplication where one of the inputs is refreshed using circular refresh [44]
(with n shares).

The results are shown in Table 7.5. For the t parameters, we used t = b(n− 1)/2c (with n
shares) to maximize the amplification order (c.f. Section 4.4.1). We cannot precisely compute
the maximum leakage probability tolerated in a reasonable time for large gadgets. Instead, we
compute all failures up to a given cβ , which allows us to obtain upper and lower bounds for
the leakage probability.

For ISW multiplication, our results improve previous results obtained with VRAPS in two
ways: by increasing the value β of the verification, we obtain tighter bounds on the failure
event function f(p) and thus tighter intervals (and even exact values in some cases) for the
tolerated leakage probability. Plus, thanks to the completeness of the verification of IronMask
by avoiding failure false positives (unlike VRAPS), we obtain better values for the estimated
tolerated leakage probability (by better, we mean higher probability values). For example, our
results show that the (exact) tolerated leakage probability of the 6-share ISW multiplication
is 2−12 instead of the 2−13 lower bound of Table 4.1 (Section 4.6, Chapter 4). For all the other
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gadgets in the table, we report the first verification results of the RPE property.

7.4.2 Comparison with State-Of-The-Art Tools

We compare IronMask to six carefully chosen state-of-the-art tools: maskVerif [9, 10, 6] (and its
extension scVerif [12]), matverif [28], SILVER [62], VRAPS [18], and STRAPS [32], with which
our new tool IronMask share the following features:

• do not rely on any gadget’s structure (unlike e.g., maskComp [10], tightPROVE [20],
Tornado [19]),

• verify probing or random probing-like security notions.

We discuss the concretely verified properties and provide benchmarks highlighting the main
differences with IronMask.

Scope. Introduced in 2015 [9] and then extended multiple times ([10, 6]), maskVerif is the
very first tool able to verify reasonable higher-order masking schemes. Based on a symbolic
representation of leakage, it integrates the language-based verification of (robust) probing
security and (S)NI notions with or without leakage on register transitions. One step further,
the latest extension of maskVerif, referred to as scVerif [32], captures even more hardware side
effects, potentially configurable by the user [12]. Compared to our proposal, maskVerif includes
tricks to verify bigger circuits (e.g., s-boxes, block encryption scheme) but fails to provide a
complete verification as soon as the randomness is not linear (i.e., failure false positives may
be produced).

Similarly, matverif [28] targets the same properties as maskVerif. It features a new method
to obtain a complete verification (i.e., without any failure false positive) for specific circuits
(e.g., ISW multiplications) and significantly improve its performance thanks to dimension-
reduction strategies. Regarding supported gadgets, matverif is more limited than maskVerif
and IronMask, as it does not support gadgets with non-linear randomness. Unlike our proposal
and similarly to maskVerif, matverif focuses only on verifying probing-like properties.

Following a different strategy, SILVER [62] was built by Knichel, Sasdrich, and Moradi to
verify the physical security of hardware designs. It takes as input either a Verilog implementa-
tion or an instruction list and checks the probing (S/PI)NI notions in the standard and robust
models and the uniformity of some output sharing. On the one hand, it outperforms the
capacities of maskVerif by offering a complete verification based on a symbolic and exhaustive
analysis of probability distributions and statistical independence of joint distributions. On the
other hand, its verification is significantly slower than that of maskVerif.

Introduced in 2020, VRAPS is the first tool to verify random-probing-like properties [18].
Written in Python and SageMath, it was built to evaluate the RPE security of some base gad-
gets to assess the global security of the expanding compiler of [18]. Specifically, VRAPS detects
all the leaking tuples within an implementation with respect to the RPS?, RPE1, RPE2, and
RPC security properties as described in Section 7.1. Nevertheless, it suffers from low perfor-
mance and, unlike IronMask, can generate failure false positives for both gadgets with linear
and non-linear randomness. VRAPS supports more gadgets than IronMask which is limited
to LR-gadgets and NLR-gadgets. Nevertheless, to our knowledge, all the masking gadgets in
the literature fit the latter representations. While VRAPS can additionally (directly) verify
bigger gadgets (i.e., composition of atomic gadgets), the performance and completeness would
be deficient in practice. In addition, the verification of atomic gadgets using IronMask already
makes it possible to obtain secure global circuits since once individually verified (for probing
or random probing properties), they can be safely composed (c.f. [10] or Section 3.2).
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Finally, STRAPS is a recent tool designed to verify random probing-like properties [32].
In particular, it was built to compute the distribution of a gadget’s input sets of shares with
respect to the output observations and the leakage probability of each internal wire. In its
deterministic mode, it relies on maskVerif as a basic primitive. It integrates a probabilistic mode
based on Monte-Carlo methods, significantly improving performance by avoiding a complete
exploration and limiting the analysis to selected tuples. While the probabilistic mode can allow
increased performance and thus more accurate results for random probing properties, it uses
a set of rules from maskVerif as a building block. These rules by construction do not provide
complete verification, which implies that the verification method of STRAPS is incomplete
too.

Table 7.6: Verified security properties on higher-order masked implementations for carefully
chosen state-of-art automatic tools.

Tools probing-like RP-like
soft robust soft robust

maskVerif 3 3 7 7

scVerif 3 3 7 7

matverif 3 3 7 7

SILVER 3 3 7 7

VRAPS 3 7 3 7

STRAPS 7 7 3 7

IronMask 3 3 3 3

Table 7.6 recalls the categories of properties (as in Section 7.1) that are verified by the
tools mentioned above on higher-order masked implementations. It additionally specifies the
consideration of hardware effects, i.e. glitches (captured in the robust probing model). A green
check (3) means the row tool verifies the column property. On the contrary, a red cross (7)
means that the row tool does not handle the column property. We can see that IronMask is the
first tool to verify probing-like properties and random probing-like properties in the standard
model and in the presence of glitches (robust model).

Additionally, IronMask offers a complete verification method for gadgets with linear ran-
domness and for most deployed gadgets with non-linear randomness (mainly all known mul-
tiplication gadgets). The only other tool providing complete verification for such gadgets
is SILVER but this is achieved by an exhaustive approach making its running time quickly
prohibitive (see comparison hereafter).

Performance. We evaluate the performance of IronMask compared to other state-of-the-art
verification tools in both the probing and random probing models.

Probing Model. We compared the time required by IronMask, maskVerif and matverif to
check that some commonly-used gadgets are (n − 1)-NI and (n − 1)-SNI (abstracted NI and
SNI hereafter for conciseness). In particular, the gadgets we considered are the ISW multipli-
cation [59], the double-SNI multiplication [54, 33] using an ISW multiplication and a circular
refresh [44] on one of the inputs, the new NI and SNI multiplications from [28], and the
O(n log n) refresh [13]. The results are presented in Table 7.7.

We used the multi-threaded version of each tool, setting the maximal number of cores to
use to 4, to give a fair chance to maskVerif: while IronMask and matverif can use an arbitrary
number of cores, maskVerif is limited to 4 cores. We evaluated several masking orders for each
gadget to highlight each tool’s scaling. To save time, we did not run the verification of gadgets
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Table 7.7: Comparison of the performance of IronMask, maskVerif and matverif on higher-
order masked gadgets. The multithreaded versions of each tool were used, with the maximum
number of threads set to 4. N/A means that a tool cannot check a gadget, whereas - means
that a tool was not evaluated on a gadget because we deemed it too slow.

Gadget Type Shares Property Verification time

IronMask maskVerif matverif

ISW mult LR

7 NI 7sec 1min30sec 24sec
SNI 8sec 3min56sec 25sec

8 NI 4min 6sec 2h 10min 5min 19sec
SNI 5min 15sec 6h 30min 5min 15sec

9 NI 2h 22min - 2h 3min
SNI 3h 7min - 1h 58min

ISW mult
refreshed NLR

6 NI 2sec 3sec N/A
SNI 3sec 10sec N/A

7 NI 3min 41sec 1min 50sec N/A
SNI 6min 8min 16sec N/A

8 NI 8h 52min 2h 2min N/A
SNI 14h 46min 10h 4min N/A

NI mult
[28] LR

7

NI

1sec 1min50sec 5sec
8 5sec 2h 10min 9sec
9 2min50sec - 40sec
10 6h 28min - 1h 40min

SNI mult
[28] LR

7

SNI

1sec 6min 8sec
8 46sec 6h 26min 17sec
9 24min - 4min 37sec
10 24h - 1h 54min

refresh
O(n log n)

LR

9 NI 1sec < 1sec 1sec
SNI 24sec 2sec 1sec

10 NI 1sec <1sec 10sec
SNI 16min 9sec 10sec

11 NI 1sec <1sec 3min
SNI 7h 50min 1min 3min

12 NI 1sec <1sec 3h 35min
SNI - 5min 1h 52min
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when it would have taken more than a few hours. Finally, to analyze a gadget, matverif needs
probes description files to be generated using a SageMath script and the main program to be
recompiled. While the incurred additional time was ignored in [28], we take it into account so
that the time we report reflects the actual time that a user would need to check those gadgets.

Before discussing the results, we recall that the three tools are not functionally equivalent.
maskVerif can handle any circuit, while IronMask is limited to LR-gadgets and NLR-gadgets
as characterized in Section 7.2, and matverif only handles LR-gadgets. On the other hand,
the verification of IronMask is complete for both types of gadgets, while maskVerif’s is not.
In addition, while IronMask is limited to LR-gadgets and NLR-gadgets, to the best of our
knowledge, all the masking gadgets in the literature fit the latter representations, and the
verification of atomic gadgets already makes it possible to obtain secure global circuits through
composition.

Overall, the three tools have similar performance and allow the analysis of gadgets up
to similar masking orders, although each tool has strengths and weaknesses. For instance,
maskVerif performs better on LR-gadgets, while matverif shines on LR multiplications. In the
following, we investigate the relative speed of each tool in more detail.

Five main factors need to be considered to analyze the performance of IronMask compared
to matverif. First, matverif’s method to verify a tuple of probes on an LR-gadget has linear
complexity in the tuple’s length, while our SIS_LR method has the complexity of a Gaussian
elimination which in our implementation is quadratic in the tuple’s length. Second, the dimen-
sion reduction performed by IronMask is faster than that of matverif in most cases, probably
because ours is written in C and matverif’s in SageMath. Third, our dimension reduction of-
ten removes more wires, resulting in fewer tuples. Fourth, matverif needs to be recompiled for
each gadget. Fifth and last, on linear gadgets (add and copy) and when checking (n− 1)-NI,
IronMask uses the constructive algorithm (see Section 7.3.5), which is much faster than any
enumerative algorithm.

It can be observed through Table 7.7 that the scale of the speedups offered by IronMask
compared to matverif and maskVerif depends mainly on the structure and nature of the gadgets.
We will explain the reason for this scaling depending on the tested gadgets.

matverif tends to be slower than IronMask at smaller masking orders and at any order when
checking (n − 1)-NI on linear gadgets. However, at the highest masking orders, the cost of
the dimension reduction and the recompilation of matverif becomes negligible compared to the
main enumerative algorithm. matverif thus becomes faster than IronMask, thanks to its linear
complexity in the tuples’ length (compared to the quadratic complexity of IronMask’s SIS_LR
primitive).

On the standard ISW multiplication and the multiplication from [28], both matverif and
IronMask outperform maskVerif thanks to the dimension reduction they use (see Section 7.3.3),
which is not implemented in maskVerif. For instance, the 7-order ISW multiplication initially
contains 220 variables, but only 77 remain after the dimension reduction.

The dimension reduction is much less potent on the double-SNI ISW multiplication with
a circular refresh on the inputs. For the 6th-order double-SNI multiplication, 175 probes must
thus be considered against 57 for the standard 6th-order ISW multiplication. As a result,
maskVerif and IronMask have similar performance on this gadget.

The O(n log n) refresh is NI at any order since at no point multiple secret shares are part
of the same probe. maskVerif has a special rule to detect that, resulting in the verification
of NI that is almost instantaneous. We did not add this special rule in IronMask, but our
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constructive algorithm (presented in Section 7.3.5) can detect that the gadget is indeed NI
very quickly. However, to check that this gadget is SNI, both matverif and IronMask enumerate
all tuples, which becomes very expensive as the masking order grows. As a result, checking
that the 11th-order gadget is SNI with IronMask would require at least a few days. On the
other hand, maskVerif does not need to enumerate all tuples and can quickly determine that
this gadget is SNI, taking just 5 minutes to do so at order 11.

Table 7.8: Verification time of NI and SNI verification of the ISW multiplication and O(n log n)
refresh by IronMask and SILVER

Gadget Shares Property Verification time
IronMask SILVER

ISW mult

4 NI <1sec 1sec
SNI <1sec 2sec

5 NI <1sec 9min
SNI <1sec 14min

6 NI <1sec >10h
SNI <1sec >10h

refresh n log n

6 NI <1sec 8sec
SNI <1sec 20sec

7 NI <1sec 7min
SNI <1sec 14min

8 NI <1sec >10h
SNI 2sec >10h

As mentioned earlier, SILVER, while being the only tool mentioned here that is complete
on any gadget suffers from severe performance limitations. This is illustrated in Table 7.8,
which shows that SILVER is several orders of magnitude slower than IronMask on the ISW
multiplication and the O(n log n) refresh.

Random Probing Model. Table 7.9 shows the time needed by VRAPS and IronMask to
compute the maximum tolerated leakage probability of the ISW multiplications when setting
β to 4 (which is the maximum that is computable by VRAPS in reasonable time). IronMask
was not multi-threaded in this benchmark, and we recall that VRAPS does not support multi-
threading. IronMask is several orders of magnitude faster than VRAPS in addition to being more
precise (since VRAPS can incorrectly classify tuples as failures). Several factors explain the
performance gains. First, IronMask is written in C, whereas VRAPS is written in SageMath.
Second, IronMask uses a complete technique based on Gaussian elimination to determine if
tuples are failures, whereas VRAPS uses SageMath’s symbolic calculus to apply simplification
rules inspired by maskVerif iteratively. Third, IronMask allocates less memory and performs
its Gaussian elimination on the fly (see Section 7.3.4), whereas VRAPS allocates chunks of
memory to store batches of tuples and restarts the simplifications from scratch for each tuple.

Table 7.9: Performance of (t, p, ε)-RPE verification of IronMask and VRAPS on ISW multipli-
cation gadgets at orders 4 to 6 (i.e. 5 to 7 shares)

Shares t β #wires log2 maximum
tolerated proba

Verification time
IronMask VRAPS

5 2 4 180 [-11.00,-10.67] 3sec 1h 15min
6 2 4 267 -13 17sec 24h
7 3 4 371 [-12.00,-7.83] 24sec 24h
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The performance gains of IronMask over VRAPS have two main benefits. First, IronMask
can be more beneficial for prototyping since it can provide approximate results for small
β within a few seconds. Second, IronMask can compute exact and more precise results by
increasing β, as shown in Table 7.5.

7.5 Conclusion

In this chapter, we introduced our verification tool IronMask, which offers an exact verification
for most gadgets in the state of the art, using an algebraic characterization of the probes
inspired from [16, 17]. We discussed how to extend this algebraic characterization to gadgets
with linear and non-linear randomness and how to use it to implement SIS, our building block
used to verify any (random) probing-like property. We showed that IronMask is competitive
with other tools in the literature for probing-like properties and is more efficient than existing
tools for checking properties in the random probing model. Namely, IronMask can verify the
RPC and RPE properties discussed in the previous chapters. It gives tighter results than the
original tool VRAPS and can verify gadgets for bigger numbers of shares.

Future works include generalizing the algebraic characterization of probes to gadgets with
more than quadratic randomness. In other words, non-linear randomness is restricted to
quadratic, where we refresh some inputs and then perform multiplication between those inputs.
This characterization could be generalized to any level of non-linearity on the randoms in the
gadget. A possible approach would be to extend this characterization to a leveled approach
where we partition randoms into different layers and process them iteratively from bottom to
top. One challenge is when the same random is used in different layers, in which case, special
processing is needed. Nevertheless, the benefit of this generalization would be to verify broader
types of circuits not restricted to atomic gadgets anymore.

Another direction for future works is to combine the fast verification of IronMask with
recent automatic verification tools combining fault and probing attacks on circuits, such as
VERICA [71]. The latter tool verifies combined security properties in the fault probing model
but relies on the slow verification technique of SILVER. The goal would be to extend the
algebraic characterization and verification techniques of IronMask to take faults into account
(i.e. in the fault probing and fault random probing models), to achieve faster verification
in these combined models, inspired by the verification techniques against fault attacks in
VERICA.
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Chapter 8

Conclusion

During this thesis, we studied the security of masked constructions in the random probing
model. We introduced the first composition notion in this model in [18], analogous to the
ones in the probing model. Our random probing composability notion allows safely composing
gadgets while preserving global security in the resulting circuit.

In [18], we also studied a powerful approach, the expansion strategy, which allows for
achieving arbitrary levels of security in the random probing model. Inspired by [3], we provided
a practical instantiation of the approach using expanding compilers equipped with gadgets
instead of MPC techniques as in [3]. We presented the random probing expandability notion
and showed that any gadget satisfying this notion could be used with an expanding compiler.
Indeed, the gadgets’ choice affects the expansion’s complexity to achieve the desired security
level. Namely, we showed that achieving κ bits of security using expansion on a circuit C
induces a complexity of O(|C| · κe), where |C| is the number of gates in the circuit and e
is a parameter which depends on the size of the gadgets in the expanding compiler and the
parameter that we referred to as the amplification order. The latter is the size of the smallest
set of probes that reveal information about the secret inputs and relates to the simulation
failure function of the random probing security of the gadgets. The bigger this amplification
order and the smaller the size of the gadgets, the lower the complexity exponent e becomes. We
provided bounds on the best amplification order achievable. Then, we constructed a 3-share
expanding compiler, which outperforms the MPC construction from [3] without achieving
the optimal amplification order. Our construction tolerates a leakage rate of 2−7.09 with a
complexity of O(|C| · κ7.5), while we showed that the one from [3] tolerates a rate of 2−26

with a complexity of ≈ O(|C| ·κ8). We finally provided an open-source implementation of our
expanding compiler and a proof-of-concept masked AES1.

After that, we pushed the limits of the expansion strategy and showed that optimal com-
plexities could be achieved in [22]. We tightened the random probing expandability notion,
showed its relation to the SNI notion in the probing model, and used this analysis to exhibit
generic constructions of addition and copy gadgets achieving the maximal amplification order,
using a refresh gadget as a building block. Using this generic construction instantiated with
the well-known ISW scheme and a new multiplication gadget we introduced, we could con-
struct 3-share and 5-share expanding compilers, achieving the maximal amplification orders
and thus giving much better complexities. Our 3-share compiler tolerates a leakage rate of
2−7.5 with a complexity of O(|C| · κ3.9), while our 5-share compiler tolerates a slightly lower
leakage rate 2−7.66 ≤ p ≤ 2−9.67 with a better complexity of O(|C| · κ3.23).

Next, we discussed that the complexity of the expanding compiler decreases as the number
of shares n grows, but also the tolerated leakage rate decreases. This motivated us to introduce

1https://github.com/CryptoExperts/poc-expanding-compiler
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the dynamic random probing expansion strategy in [23] , which benefits from the best of both
worlds: the best asymptotic complexities of constructions for large numbers of shares and
the best tolerated leakage rates of constructions for a small and fixed number of shares. We
tackled the problem of optimal asymptotic complexity, providing new constructions of linear
gadgets with quasi-linear global complexity using the O(n log n) refresh gadget, as well as a
multiplication gadget that performs a linear number of multiplications. These new construc-
tions gave a new expanding compiler with sub-quadratic values for the complexity exponent
e.

We saw that many future works are possible in the random probing model. For instance,
we can look for constructions of small gadgets that tolerate the best leakage probability for a
fixed number of shares (e.g. n = 3). Proving bounds on the tolerated leakage rate depending
on the structure of the gadgets can also help perform an exhaustive search for such optimal
constructions. Also, as stated in Remark 2, we can integrate the tight composition technique
from [32] based on probe distribution tables into our expansion strategy to benefit from tighter
results but also from the security levels that can be achieved using the expanding compilers.
Another example for future works is to look for efficient constructions of the expanding compil-
ers while considering the underlying parameters, such as the used field or the physical defaults
of the underlying device.

In a parallel work [21], we introduced a powerful verification tool, IronMask, offering a
complete verification technique for most gadgets in the state-of-the-art and covering all security
properties in the probing and random probing models. Our technique relies on an algebraic
characterization of probes on gadgets with a Gaussian elimination-based approach. We showed
that our tool is the fastest verification tool for the random probing model and is competitive
with verification tools in the probing model. Future works include extending the algebraic
characterization used in IronMask to cover more gadgets and circuits than the current ones.
Another direction would be to integrate the combined probing and fault verification techniques
from VERICA [71] into IronMask to extend the verification to more extended models. Indeed,
VERICA only considers the probing model and relies on techniques from SILVER, which are
relatively slow, while a possible approach is to also consider faults in the random probing
model and extend the verification technique with the efficient method of IronMask.

The end of this thesis is only the beginning of research in this field. Having proven security
levels against side-channel attacks is essential. While current theoretical constructions are still
far from being practical to achieve high security levels (such as 128 bits of security), as shown
in Section 4.7 on the AES implementation, it still offers a proof-of-concept achieving such
levels. However, further research is necessary to ultimately bridge the gap between theory and
practice. Verification tools help us achieve this goal by offering a reliable method to validate
our constructions. One can even look for constructions directly in the noisy leakage model
based on the obtained results on the random probing model.

8.1 On the Practical Usability of Leakage Models

The noisy leakage, random probing, and t-probing models have proven helpful for the commu-
nity to model side-channel attacks theoretically and provide formal security proofs on masked
implementation. Meanwhile, applying these security proofs to real-world implementations is
still challenging.

First, the theoretical literature lacks a proper methodology to implement proven secure
constructions in the leakage models on a physical device while preserving the proven security
levels. Second, these leakage models rely on two assumptions about the physical device for
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which a systematic investigation is lacking: the leakage of an elementary operation only de-
pends on its inputs (i.e. the data isolation assumption), and the leakage’s noise of an operation
is independent of the previous and following noises (i.e. the noise independence assumption).

The first assumption (data isolation) can be easily broken, for instance, due to physical
effects on a device. In particular, transitions occurring on memory buses or CPU registers
between a previously processed value xi−1 and the current one xi usually leak some infor-
mation correlated to xi−1 ⊕ xi, which violates the data isolation principle [39, 5]. On the
hardware level, glitches further make the successive gates’ leakages mutually dependent on
their respective inputs [64, 65, 66]. On the software level, CPU synchronization limits, but
does not eliminate, the issue of glitches. These issues can be avoided by adding registers and
controlling transitions [49, 34] in hardware, and by trying to avoid transitions using assembly
programming tricks in software [50, 29, 26]. However, these techniques still rely on abstract
models for the leakage, and current techniques in the literature test the data isolation assump-
tion only indirectly, by estimating the statistical security order of an implementation [11, 73].

As for the second assumption (noise independence), the noise in the side channel leakage
of a device is multivariate, and the noises occurring during successive operations likely include
some dependency. This assumption is only currently studied at a high level in a few works [57,
36].

In [24], we tackle the above issues by proposing a complete methodology to transform
abstract circuits into physical implementations secure against side-channel attacks. For this
purpose, we rely on a random probing compiler and discuss the concrete steps to use the reduc-
tion from the noisy leakage model to the random probing model on physical implementations.
While this reduction is well-studied in theory, our methodology summarizes all hypotheses
that must be met in practice and identifies technical challenges that must be overcome to
achieve formally secure circuits on physical devices.

Then, we propose new tools to solve these technical challenges. Namely,

• we explain how to enforce the data isolation assumption and introduce a novel practical
test for its validation on a physical implementation. Our test offers a direct approach,
contrasting with existing methods in the literature. We conduct experiments on a real
target, an STM32F3 MCU, using NewAE’s ChipWhisperer-Lite CW1173 board. While
our test does not provide a formal proof for the assumption, it stands as the first literature
instance of directly addressing and validating this hypothesis with a practical, dedicated
procedure,

• we also offer a method to integrate the noise independence assumption into the analysis,
making it possible to quantify the loss of security implied by a lack of independence.
We specifically discuss a relaxation of the assumption aiming to split the noise occurring
during the execution of the algorithm into independent noises on each of the operations.
We first show a trivial way of doing the split and then express it as a constrained
optimization problem that better scales with the size of the circuit. We propose a direct
non-optimal solution to the problem and leave the question of optimally and efficiently
solving it as an open problem.

Finally, we highlight the design goals that this security reduction involves. We also exhibit
the remaining limitations and open problems of the practical usability of the leakage models.
Our goal is to show that it is possible to bridge theory and practice and to motivate further
research on remaining issues to fully close the gap, that is to get practical implementations
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proven secure against side-channel attacks on a physical device without any ideal assumption
about the leakage.
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Appendices

A.1 Proof of Lemma 13

Recall the procedure of the gadget. We consider that we have an n-share (t, f ′)-TRPE refresh
gadget Grefresh achieving the amplification order d ≥ min(t+ 1, n− t). First, the gadget Gmult
performs n executions of the gadget Grefresh on the input sharing (b1, . . . , bn) to produce:

(b
(1)
1 , . . . , b(1)n ) ← Grefresh(b1, . . . , bn)

. . .

(b
(n)
1 , . . . , b(n)n ) ← Grefresh(b1, . . . , bn)

then, the gadget constructs the matrix of the cross product of input shares using the refreshed
input shares of b:

M =


a1 · b(1)1 a1 · b(1)2 · · · a1 · b(1)n
a2 · b(2)1 a2 · b(2)2 · · · a2 · b(2)n

...
...

. . .
...

an · b(n)1 an · b(n)2 · · · an · b(n)n

 .

Then, it picks n2 random values which define the following matrix:

R =


r1,1 r1,2 · · · r1,n
r2,1 r2,2 · · · r2,n
...

...
. . .

...
rn,1 rn,2 · · · rn,n

 .

It then performs an element-wise addition between the matrices M and R:

P = M +R =


p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n
...

...
. . .

...
pn,1 pn,2 · · · pn,n

 .

At this point, the gadget randomized each product of input shares from the matrix M with a
single random value from R. In order to generate the correct output, the gadget adds all the
columns of P into a single column V of n elements, and adds all the columns of the transpose
matrix RT into a single column X of n elements:

V =


p1,1 + · · ·+ p1,n
p2,1 + · · ·+ p2,n

...
pn,1 + · · ·+ pn,n

 , X =


r1,1 + · · ·+ rn,1
r1,2 + · · ·+ rn,2

...
r1,n + · · ·+ rn,n


155



The n-share output is finally defined as (c1, . . . , cn)T = V +X such that

c1 = V1 +X1

. . .

cn = Vn +Xn.

(a1, . . . , an)

Ia

Ib(b1, . . . , bn)

I
(1)
b

W (1)Grefresh

J
(1)
b

(b
(1)
1 , . . . , b

(1)
n )

. . .

. . .

I
(n)
b

W (n)Grefresh

J
(n)
b

(b
(n)
1 , . . . , b

(n)
n )

W ′Gsubmult

J

(c1, . . . , cn)

Figure A.1: Gmult gadget from Section 5.4.

Figure A.1 represents the Gmult gadget from a high-level, composed of several blocks. First,
a refresh gadget Grefresh is executed n independent times on the input sharing of b to produce
n fresh copies b(1), . . . , b(n). Then, the gadget Gsubmult takes as input (a1, . . . , an) and the
outputs of the refreshing gadgets b(1), . . . , b(n) to produce the output of Gmult.

In the following proofs, we will denote W to be any set of probes on the global gadget
Gmult, then W can be split as W = W ′ ∪W (1) ∪ . . . ∪W (n) where W (i) is the set of probes
on the internal wires of the execution of Grefresh for the fresh sharing b(i) of b, and W ′ is the
set of probes on the internal wires of Gsubmult. We will also denote J to be any set of output
wires of Gmult (which are the output wires of Gsubmult), and J

(i)
b (resp. I(i)b ) any set of output

wires (resp. input wires) of the execution of Grefresh for the fresh sharing b(i) of b. Observe
that any probe on the output wires of Grefresh for any sharing b(i) can be obtained through
internal probes in W ′ on Gsubmult, so in the beginning we always consider that J (i)

b = ∅ for all
i ∈ [n].

Observe that any probe in the set W ′ on the internal wires of Gsubmult is of one of the
following forms:

(a) ai, b
(i)
j , ai · b

(i)
j , ri,j , pi,j = ai · b(i)j + ri,j ,

(b) Vi,j partial sum of the first j terms of Vi. Observe that Vi,n = Vi,

(c) Xi,j partial sum of the first j terms of Xi. Observe that Xi,n = Xi.

Also observe that each random value ri,j only appears in the expression of the wires ri,j , pi,j ,
Vi,j , or Xj,i (so also ci = Vi +Xi and cj = Vj +Xj), and does not appear anywhere else in the
wires.

We will first start by proving some simple claim.

Claim 1. Let J be a set of output shares of Gmult and W = W ′ ∪W (1) ∪ . . . ∪W (n) be a set
of leaking wires as described above such that |J |+ |W ′| ≤ n− 1 (we only consider the set W ′

of probes on the internal wires to Gsubmult). Then, for any i ∈ J such that Vi,j /∈ W for any
j ∈ [n], the output wire ci can be perfectly simulated by generating a uniform random value
without knowing any of the input shares.
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Proof. Let i ∈ J such that Vi,j /∈W ′ for any j ∈ [n]. Then we know that the expression of Vi in
ci = Vi+Xi contains n−1 random values since Vi = pi,1+ . . .+pi,n and each pi,j = ai ·b(i)j +ri,j
(without counting the random ri,i because it is cancelled out in ci as it appears in Vi andXi and
ci = Vi +Xi). Observe that each random value ri,k in Vi appears in exactly one other output
share ck = Vk+Xk that comes from the expression of Xk = r1,k+ . . .+ri,k+ . . .+rn,k. In other
terms, each output share ck has exactly one random value in common with Vi in ci. Then,
by probing |J | output shares in J including ci, there are at least n − |J | remaining random
values in Vi that do not appear in any other expression of the output shares. In addition,
observe that any probed variable in W ′ can have in its expression at most one random value
in common with Vi (because each random value ri,j appears exactly once in each of the wires
pi,j , ri,j or Xj). Then, since |W ′| ≤ n− |J | − 1 (because |J |+ |W ′| ≤ n− 1), there is at least
n−|J |−(n−|J |−1) = 1 remaining random value ri,` where ` ∈ [n] in Vi, that does not appear
in any other expression of the probed values in W ′ or J . So ci = Vi + Xi can be perfectly
simulated by generating the uniform random value ri,`, which concludes the proof.

In the following, we will separately prove the TRPE1 then the TRPE2 property on Gmult
via Lemmas 24 and 27 to demonstrate Lemma 13.

A.1.1 Proof for TRPE1 property

Lemma 24. The multiplication gadget Gmult is (t, f1)-TRPE1 of amplification order d =
min(t+ 1, n− t)

Proof. We proceed in two steps through the following two lemmas 25 and 26, considering the
leaking wires in two distinct ranges.

Lemma 25. Let J be a set of at most t output shares of Gmult. Let W be a set of leaking
wires as described above such that |W | ≤ d− 1 ≤ t. Then W and J can be perfectly simulated
from at most min(t, |W |) = |W | shares of each of the inputs a and b.

Proof. Let J be the set of t output shares of Gmult (i.e of Gsubmult), and let W = W ′ ∪W (1) ∪
. . .∪W (n) with |W | ≤ d−1 ≤ t be the set of probes on the global gadget Gmult and decomposed
as explained earlier. We organize the proof in two steps:

1. We first identify the set of input shares Ia and the sets J (i)
b for i ∈ [n] which are necessary

to perfectly simulate J and W ′ in Gsubmult.

2. Then, we show that we can perfectly simulate the sets J (i)
b and W (i) for i ∈ [n] using

the simulator of the gadget Grefresh. This will determine the sets I(i)b necessary for each
of the n simulations of Grefresh, and thus determine the set Ib of input shares on b as
Ib = I

(1)
b ∪ . . . ∪ I

(n)
b .

Using Ib, we will be able to perfectly simulate J (i)
b and W (i) for i ∈ [n]. Then using Ia and

J
(i)
b for i ∈ [n], we will be able to perfectly simulate W ′ and J . This will lead to a perfect

simulation of all probes W and output shares in J on the global gadget Gmult.

We first start by constructing the set of input shares indices Ia and the sets J (k)
b for k ∈ [n]

depending on the probes in the set W ′ as follows1:

(a) For probes of form (a), we add index i to Ia, and index j to J (k)
b for k ∈ [n].

1We consider that all J(k)
b are empty at first since all the output shares of Grefresh can be probed directly

in W ′.
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(b) For probes of form (b), we add index i to Ia and to J (k)
b for k ∈ [n].

(c) For probes of form (c), we add index i to J (k)
b for k ∈ [n].

Observe that since |W | ≤ d− 1, then in particular |W ′| ≤ d− 1 ≤ t, then |Ia| ≤ |W ′| ≤ |W | ≤
min(t, |W |) so we have no failure on the input a. We also have |J (k)

b | ≤ |W
′| ≤ t.

Simulation of W ′: probes of the form (a) can be perfectly simulated from the corre-
sponding input shares in Ia and J (k)

b , and by generating uniformly random values ri,j when
necessary. Probes of the form (c) are also perfectly simulated by simply generating uniformly
random values, since Xi,j = r1,i + . . .+ rj,i. As for probes of the form (b), we know that i ∈ Ia
and i ∈ J

(i)
b , then we look at each of the terms pi,j′ for j′ ∈ [j] in Vi,j = pi,1 + . . . pi,j . In

particular, if j ≥ i, the term pi,i is in the partial sum Vi,j and is perfectly simulated using the
input shares ai and b

(i)
i and by generating the random value ri,i. Next, for each pi,j′ such that

j′ 6= i, if j′ ∈ J (i)
b , then pi,j′ can be perfectly simulated from the corresponding input shares

and by generating uniformly at random ri,j′ . Otherwise, if j′ /∈ J (i)
b , then that means that the

wires pi,j′ , ri,j′ and Xj′ are not probed in W ′ because otherwise j′ would have been added to
all J (k)

b for k ∈ [n]. Since the random value ri,j′ only appears in the expression of the wires
pi,j′ , ri,j′ and Xj′ (besides Vi,j which is already probed), and of the output wire cj′ = Vj′+Xj‘,
we need to consider two cases:

• j′ /∈ J : in this case, the random value ri,j′ can be used to mask the expression of pi,j′ in
the partial sum Vi,j , perfectly simulating it without the need to the share b(i)j′ .

• j′ ∈ J : cj′ = Vj′ +Xj′ , and ri,j′ is the one of the summed terms in the expression of Xj′ .
We know that Vj′,k /∈ W ′ for any k ∈ [n] since otherwise j′ would have been added to
J
(i)
b . Since in addition we have |J |+ |W | ≤ t+ d− 1 ≤ t+n− t− 1 ≤ n− 1, by claim 1,

the output share c′j can be masked by some random value rj′,`. Thus, Xj′ is masked
and ri,j′ does not appear anymore in cj′ . So ri,j′ can be used to mask the expression
of pi,j′ in the partial sum Vi,j . This brings us to a perfect simulation of pi,j′ simply by
generating at random ri,j′ .

By perfectly simulating each of the terms pi,j′ for j′ ∈ [j] in the probed wire Vi,j independently,
we can perfectly simulate their sum and thus perfectly simulate Vi,j . This brings us to a perfect
simulation of the set W ′.

Simulation of J : Let i ∈ J .

• if Vi,j /∈W ′ for any j ∈ [n], then by claim 1, ci is perfectly simulated by simply generating
a uniform random value ri,` for some ` ∈ [n].

• if Vi,j ∈ W ′ for at least one j ∈ [n], then let Vi,j′ be the largest of the probed partial
sums. All of the partial sums including Vi,j′ are perfectly simulated as described earlier.
Then, let us consider ci + Vi,j′ = pi,j′+1 + . . .+ pi,n +Xi. The wire Xi can be perfectly
simulated by generating uniform random values. As for each of the terms pi,j′+1, . . . , pi,n,
they can each be perfectly simulated in the exact same way each of the terms in Vi,j′ are
simulated independently.

In the particular case where j′ ≤ i then the term pi,i = ai · b(i)i + ri,i appears in the
expression of ci + Vi,j′ , and in this case, the random value ri,i is cancelled out in the
expression of ci +Vi,j′ since it appears in both pi,i and Xi, and ci +Vi,j′ = pi,j′+1 + . . .+
pi,i + . . .+ pi,n +Xi. So to simulate the term pi,i in ci + Vi,j′ we need both input shares
ai and b

(i)
i . This is already the case by construction because we assume that Vi,j′ ∈W ′.
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Thus, by perfectly simulating Vi,j′ and ci + Vi,j′ , the output share ci is also perfectly
simulated.

Also, since |J (k)
b | ≤ |W

′| ≤ t and |W (k)| ≤ d−1, and since Grefresh is (t, f ′)-TRPE achieving
the amplification order d, then we can perfectly simulate sets J (k)

b and W (k) from the set of
input shares I(k)b such that |I(k)b | ≤ |W

(k)| ≤ t for k ∈ [n]. Thus, we can let Ib = I
(1)
b ∪ . . .∪I

(n)
b

and we have |Ib| ≤ |W (1)| + . . . + |W (n)| ≤ |W | ≤ min(|W |, t), so we have no failure on the
input b either. Until now, we have shown that we can simulate all sets W (k) and J (k)

b from Ib
of size at most min(|W |, t). It remains to show that we can also perfectly simulate the sets
W ′ and J from Ia and J (k)

b for k ∈ [n].

We have shown that we can perfectly simulate any set of t output shares J and any set of
probes W of size at most d− 1, with at most min(|W |, t) shares of each of the inputs a and b.
This concludes the proof of Lemma 25.

Remark 8. We can observe that for this lemma to apply on Gmult, we do not need the pre-
processing phase of the refresh on input b. In fact, we can see that during the construction
of the sets J (k)

b , we add each index to all of the sets for all k ∈ [n]. However, executing n
refreshings on the input b is necessary to prove the next result, specifically when we consider
W such that d ≤ |W | ≤ 2d− 1.

To get back to the proof of Lemma 24, we also need the following result.

Lemma 26. Let J be a set of at most t output shares of Gmult. Let W be a set of leaking
wires as described above such that d ≤ |W | ≤ 2d−1. Then W and J can be perfectly simulated
from the sets of input shares Ia and Ib such that |Ia| ≤ min(|W |, t) or |Ib| ≤ min(|W |, t). In
other terms, we have a simulation failure on at most one of the inputs a or b.

Proof. Recall that the setW can be split into subsetsW = W ′∪W (1)∪ . . .∪W (n) as described
above. We can consider two cases.

Case 1: |W′| ≤ d− 1. This case is similar to the case of Lemma 25, so we can construct
the set Ia in the same way as in the proof of Lemma 25, and we can eventually consider
Ib = [n]. We know that |Ia| ≤ |W ′| ≤ d − 1 ≤ t, so there is no failure on the input a. And
all probes in W ′ can be simulated like in the proof of Lemma 25 with Ia and trivially with
Ib = [n]. Also, all probes in W (1) ∪ . . . ∪W (n) can be trivially simulated since we have access
to the full input b. As for output shares in J , whenever i ∈ J ∩ Ia, then ci = Vi + Xi is
easily simulated using Ib = [n]. If i ∈ J but i /∈ Ia, then Vi,j /∈ W ′ for any j ∈ [n] and since
|J |+ |W ′| ≤ t+d−1 ≤ t+n− t−1 ≤ n−1, ci is perfectly simulated by a single random value
thanks to claim 1. Thus, W and J are perfectly simulated with at most |W ′| ≤ min(|W |, t)
shares of a and eventually n shares of b.

Case 2: |W′| ≥ d (and thus |W (1) ∪ . . . ∪W (n)| ≤ d − 1). In this case, we will construct
the sets Ia and J

(k)
b from empty sets, in a way that we will have a simulation failure on at

most one of the inputs a or b, and we will be able to perfectly simulate W ′ and output shares
in J using Ia and J (k)

b . We will also show how to perfectly simulate all J (k)
b and W (k) using a

set of input shares Ib.
First, we construct the sets Ia and J (k)

b depending on the probes in W ′ as follows:

(a) For probes of form (a), we add index i to Ia, and index j only to J (i)
b .

(b) For probes of form (b), we add index i to Ia and only to J (i)
b .
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(c) For probes of form (c), we add index i to J (k)
b for all k ∈ [n].

In the rest of the proof, we will show that if we have a failure on one of the inputs, we can
still perfectly simulate W and J without a failure on the other input. In this purpose, we will
consider two cases: in the first case (2.1), we will have a failure on input a (i.e., more than
min(t, |W |) shares of a are added to Ia) and in the second case (2.2), we won’t have a failure
on input a, and so we will eventually have a failure on input b.

Case 2.1: Simulation failure on input a. Notice that by construction we always have
|Ia| ≤ |W ′| ≤ |W |. Thus, a simulation failure on input a for TRPE1 means that the set Ia
is of size |Ia| ≥ t + 1 ≥ d. We will first start by showing that the sets W (k) and J (k)

b can be
perfectly simulated using the simulator of Grefresh without a failure on the input b. Next, we
will show that W ′ and output shares in J can be perfectly simulated using Ia and J (k)

b .
Since we only add shares indices to Ia when we have probes of the form (a) or (b), this

means that we have at least t+ 1 probes of these two forms with t+ 1 different values for the
index i. In addition, since we have at least t+ 1 probes (a) or (b) with distinct values for the
index i, then this also means that each of the sets J (i)

b built from these probes has at most
one share of b(i) added to it by construction. In other terms, when we only consider probes of
the form (a) and (b) with distinct i, we have |J (k)

b | ≤ 1 for each k ∈ [n].
Now let us consider the remaining probes in W which are either in W ′ of the form (c), in

W ′ of the form (a)/(b) for which i ∈ Ia or in W (1) ∪ . . . ∪W (n). Since |Ia| ≥ t + 1 ≥ d, then
there are at most d−1 of these remaining probes. Without loss of generality, we consider that
there are exactly d − 1 instead of at most d − 1 probes. Let m be the number of probes in
W (1) ∪ . . . ∪W (n) and d − 1 −m the remaining in W ′ of the form (c) or of the form (a)/(b)
for which i ∈ Ia.

Since each wire inW ′ of the form (c) or of the form (a)/(b) for which i ∈ Ia results in adding
at most one more share index to each J (k)

b for k ∈ [n], then we have |J (k)
b | ≤ 1 + (d− 1−m) =

d−m. And |W (1) ∪ . . . ∪W (n)| ≤ m, in particular |W (k)| ≤ m for any k ∈ [n].

• if m = 0, then W (k) = ∅ for any k ∈ [n], and |J (k)
b | ≤ d ≤ min(t+ 1, n− t) ≤ bn+ 1

2
c ≤

n − 1, so by the TRPE property of Grefresh for any t ≤ n − 1, all of the J (k)
b sets can

be perfectly simulated with no knowledge of the input shares of b since W (k) = ∅, so
I
(k)
b = ∅. Hence, Ib = I

(1)
b ∪ . . .∪ I

(n)
b = ∅ and we have no simulation failure on the input

b.

• if m > 0, then |J (k)
b | ≤ d − 1 ≤ t and |W (1) ∪ . . . ∪ W (n)| ≤ d − 1, in particular

|W (k)| ≤ d − 1 for each k ∈ [n]. Thus, by the (t, f)-TRPE property of the refresh
gadget Grefresh achieving the amplification order d for any t ≤ n − 1, we can perfectly
simulate both sets for each k ∈ [n] with I(k)b such that |I(k)b | ≤ |W

(k)|. Thus, we can let
Ib = I

(1)
b ∪ . . . ∪ I

(n)
b so we can have |Ib| ≤ |W (1) ∪ . . . ∪W (n)| ≤ d− 1 ≤ t, and we can

perfectly simulate W (1) ∪ . . .∪W (n) along with J (1)
b ∪ . . .∪ J

(n)
b from the set Ib without

a simulation failure on input b.

So far we proved that if we have |Ia| ≥ t+ 1, then we must have |Ib| ≤ |W (1) ∪ . . . ∪W (n)| ≤
d− 1 ≤ t, and W (1) ∪ . . . ∪W (n) can be perfectly simulated along with J (1)

b ∪ . . . ∪ J
(n)
b from

the set Ib. Next we need to prove that we can perfectly simulate W ′ and J from these sets Ia
and J (1)

b ∪ . . . ∪ J
(n)
b .

Case 2.1.1: Ia = [n]. This only occurs by construction in the case where |W | = 2d− 1 = n

so when d = dmax = bn+ 1

2
c for t = dn− 1

2
e. In this case, since |W | ≤ 2d−1 ≤ (n+1)−1 ≤ n,

160



then all probes in W are all in W ′ of the form (a) or (b) with n distinct values for the index i
and so |J (i)

b | ≤ 1 for all i ∈ [n]. In other words, for each i ∈ [n] there is exactly one probe inW ′

of the form (a) or (b) and no probe of the form (c) i.e Xi,j nor probes in W (1)∪ . . .∪W (n). We
will prove that all the probes inW and in J can be perfectly simulated from these constructed
sets Ia and J (i)

b for i ∈ [n]. For this, for each i ∈ [n] we consider three cases:

• Vi,j /∈ W ′ for any j ∈ [n], then we know that there exists a probe of the form (a) in W ′

with index i, in other terms, ai ∈ W ′, or ∃! j ∈ [n] such that b(i)j or ai · b(i)j or ri,j or

pi,j = ai · b(i)j + ri,j is probed in W ′. The corresponding probe is perfectly simulated by

construction of the sets Ia and J (i)
b .

If we also have i ∈ J , then we know that we only have one probe of the form (a) for
the considered index i in W ′ and no probe of the form (b) or any probe of the form (c).
And since there are t output shares probed in J , then there are at least n − t − 1 > 1

(since t = dn− 1

2
e) remaining random values which only appear in the expression of ci,

and any of them can be used to perfectly simulate ci without the knowledge of the input
shares (i.e., to mask ci).

• Vi,n ∈W ′ then Vi,n contains in its expression n random values ri,1, . . . , ri,n. Since there
are no probes of the form (a) for the index i, and no probes of the form (c), then each
of these random values appears at most once in each of the expressions of the probed

outputs cj in J . With t probed output shares, there are n − t > 1 (since t = dn− 1

2
e)

remaining random values which only appear in the expression of Vi,n and any of them
can be used to perfectly simulate Vi,n, i.e., mask Vi,n.

If in addition we have i ∈ J , then the output share ci is perfectly simulated by simulating
Vi,n and simulating ci + Vi,n = Xi which is perfectly simulated by generating uniform
random values.

• Vi,j ∈W ′ for some j ∈ [n] such that 1 < j < n (j > 1 because otherwise it would be the
wire pi,1 which is probed). Thus, Vi,j is the sum of at least two wires pi,j1 and pi,j2 .

– If i /∈ J , then ci is not probed and Vi,j is the sum of at most n−1 terms of the form
pi,1 = ai · b(i)1 + ri,1, . . . pi,j = ai · b(i)j + ri,j . We have that i ∈ Ia by construction and

j ∈ J (i)
b . In fact we can reconstruct J (i)

b into J (i)
b = {1, . . . , j} such that |J (i)

b | ≤ n−1
and sinceW (i) = ∅, then by the (t, f)-TRPE1 property of Grefresh for any t ≤ n−1,
we still have no failure on the input b and we still have |I(i)b | ≤ |W

(i)| = 0. In
addition, we can perfectly simulate this way all of the summed terms in Vi,j by
using the corresponding input shares and thus we can perfectly simulate Vi,j . Since
we have no probes of the form (a) for this same index i, then reconstructing J (i)

b

does not affect the simulation of the probes.

– If i ∈ J , then we consider Vi,j and ci + Vi,j . Since we have no probes of the form
(a) for the index i, then as proven before, with t probed output shares, there are
at least n− t > 1 remaining random values which only appear in the expression of
Vi,j or ci + Vi,j . Any of these random values can be used to mask the expression
of Vi,j or ci + Vi,j . In the case where the expression of Vi,j is masked, then we can
reconstruct as before the set J (i)

b with at most n− 1 output shares of b(i) in order
to perfectly simulate all the terms pi,k in ci + Vi,j including the shares of b(i) and
thus perfectly simulate ci + Vi,j (the rest of the terms are just random values to be
generated uniformly at random). In the other case where the expression of ci +Vi,j
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is masked, we can also reconstruct the set J (i)
b with at most n − 1 output shares

of b(i) in order to perfectly simulate all the summed terms in Vi,j . In either case,
by perfectly simulating one term (Vi,j or ci + Vi,j) masked by a random value, and
perfectly simulating the remaining one with i ∈ Ia and the reconstructed set J (i)

b ,
we can perfectly simulate both Vi,j and ci + Vi,j and hence also perfectly simulate
the output share ci.

So we proved that we can perfectly simulate the setsW ′ and J from the constructed set Ia and
from sets J (i)

b such that |J (i)
b | ≤ n − 1 for all i ∈ [n]. Furthermore, from the TRPE property

of Grefresh for any t ≤ n− 1 and the fact that W (i) = ∅ for all i ∈ [n], we have no simulation
failure on the input b. This concludes the simulation of W and output shares in J for the case
where Ia = [n].

Case 2.1.2: Ia ⊂ [n] with |Ia| ≤ n− 1. In this case, we have at least one index k ∈ [n] \ Ia
for which there are no probes in W ′ of the form (a) or (b). In other terms, no partial sum
of Vk is probed, no product of shares ak · b

(k)
j or pk,j is probed, and no random value rk,j is

probed since otherwise we would have k ∈ Ia by construction.
On another hand, since |Ia| ≥ t+ 1, there are at most d− 1 ≤ n− t− 1 remaining probes

of the form (c) in W ′, and since we have t output shares in the set J , there exists at least one
wire X` such that ` /∈ J and for which there is no partial sum X`,j probed in W ′.

These two wires X` and Vk for `, k ∈ [n] will be very important for the simulation of the
sets W ′ and J . In particular, we need the two following claims.

Claim 2. Let i ∈ J . Suppose that i /∈ Ia. Then the expression of ci = Vi +Xi can be masked
by the random value ri,`, in other terms ci ← ri,`.

Proof. This claim can be proved easily, since we suppose that i /∈ Ia so the random value ri,`
and pi,` are not probed in W ′. In addition, since ` /∈ J and X`,j /∈W ′ for all j ∈ [n], then the
random value ri,` does not appear in any other probed wire expression except in ci, then ci
can be masked by the random value ri,`.

Claim 3. Let i ∈ J . Suppose that Xi,j /∈ W ′ for any j ∈ [n]. Suppose that i ∈ Ia. Then the
expression of ci = Vi +Xi can be masked by the random value rk,i, in other terms ci ← rk,i.

Proof. Since we suppose that k /∈ Ia, then the random value rk,i or pk,i or Vk,j for all j ∈ [n]
are not probed in W ′. Then, if k /∈ J , then the random value rk,i does not appear in the
expression of any other probed wire in W ′ or J and ci can be masked by the random value
rk,i. Otherwise, if k ∈ J , then by Claim 2, ck = Vk +Xk can be masked by rk,` and so ci can
also be masked by rk,i since i 6= ` (because i ∈ J and ` /∈ J).

From these two claims, we are now ready to show thatW ′ and J can be perfectly simulated
with the sets Ia and J

(1)
b ∪ . . .∪J

(n)
b as constructed earlier with respect to the probes in the set

W ′. Recall that all probes in W (1) ∪ . . . ∪W (n) and J (1)
b ∪ . . . ∪ Jb(n) are perfectly simulated

using Ib and the simulator of Grefresh.

Simulation of W ′. Probes of the form (a) and (c) are trivially simulated by construction of
the sets of input shares and by generating uniformly at random the necessary random values.
Let us now check the probes of the form (b). Let Vi,j = pi,1 + . . .+ pi,j be such a probe. Let
us consider each of the terms pi,j′ for j′ ∈ [j]. if j′ = i, then by construction pi,i is perfectly
simulated using ai and b

(i)
i and by generating the random value ri,i if needed. Otherwise, let

j′ 6= i. If j′ ∈ J (i)
b then the simulation of pi,j′ is straightforward. Otherwise if j′ /∈ J (i)

b , then
we know that none of the wires ri,j′ or pi,j′ or Xj′,s for all s ∈ [n] are probed in W ′. Thus, ri,j′
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can be eventually used to mask the expression of pi,j′ without the need of the share b(i)j′ for the
simulation. Meanwhile, we still need to check if j′ ∈ J , since Xj′ appears in the expression of
cj′ = Vj′ +Xj′ . Then we consider two cases:

• If j′ /∈ Ia, then by claim 2, cj′ can be masked by the random value rj′,` and so ri,j′ does
not appear in the expression of Xj′ in cj′ anymore, and ri,j′ can be used to mask pi,j′ .

• Otherwise, if j′ ∈ Ia, then by claim 3, cj′ can be masked by the random value rk,j′ and
so ri,j′ does not appear in the expression of Xj′ in cj′ anymore, and ri,j′ can be used to
mask pi,j′ (since i /∈ k).

Thus, each term pi,j′ in Vi,j can be perfectly simulated and thus Vi,j = pi,1 + . . .+ pi,j can be
perfectly simulated. This concludes the simulation of the set W ′.

Simulation of J . Let i ∈ J . If i /∈ Ia, then by claim 2, ci is perfectly simulated by generating
the random value ri,`. Otherwise, let i ∈ Ia. If Xi,j /∈W for any j ∈ [n], then by claim 3, ci is
perfectly simulated by generating the random value rk,i. Otherwise, we can show that we can
perfectly simulate each term in ci = Vi +Xi. In particular, each term in Xi can be simulated
by generating the underlying random value uniformly. For each term in the sum Vi, we know
in particular that ai · b(i)i is perfectly simulated since Xi,j ∈ W ′ for at least one j ∈ [n] so
i ∈ J

(i)
b by construction. For the other terms in Vi, they can be perfectly simulated in the

exact same way as we simulated the probes Vi,j of the form (b) in the setW ′. So ci is perfectly
simulated by summing all the perfectly simulated terms. This concludes the simulation proof
for the set J .

Up until now, we have concluded that if we have a constructed set Ia of size at least t+ 1,
then we can perfectly simulate the sets W and J without having a simulation failure on the
input b. In the rest of the proof, we will consider that |Ia| ≤ t (along with |Ia| ≤ |W | by
construction meaning that we have no failure on input a), and we will prove that we can
perfectly simulate W and J with at most a simulation failure on b. Recall that we are also
considering that |W ′| ≥ d and |W (1) ∪ . . . ∪W (n)| ≤ d− 1.

Case 2.2: |Ia| ≤ t. This means that the number of probes of the form (a) or (b) in W ′ with
distinct values for the index i is at most t.

First, let us consider that |Ia| ≥ d (this is the case where d = n − t ≤ t + 1). Then, as
proved earlier, and with t additional output shares in J of the form ci = Vi + Xi, there are
at least one X` remaining such that ` /∈ J and X`,j /∈ W for all j ∈ [n]. In this case, we can
set Ib = [n] and Ia as constructed with respect to the probes in W ′. It is clear that all probes
in W (1) ∪ . . . ∪W (n) and J (1)

b ∪ . . . ∪ J
(n)
b are trivially simulated using Ib = [n]. In addition,

all probes in W ′ are also perfectly simulated by construction of the set Ia and using Ib = [n]
and generating the necessary random values. This means that we can perfectly simulate all
of the set of probes W = W ′ ∪W (1) ∪ . . . ∪W (n). As for the set of output shares indexed
in J . Let i ∈ J . If i ∈ Ia, then ci is perfectly simulated using the share ai and Ib = [n],
and by generating the necessary random values. Otherwise, if i /∈ Ia, then in the same way
as in claim 2, ci can be masked by the random value ri,` (because ` /∈ J and X`,j /∈ W for
all j ∈ [n]), so ai is not needed for the simulation of ci. This proves that we can perfectly
simulate the output shares in J with Ia and Ib = [n].

In the rest, we suppose that |Ia| ≤ d− 1 ≤ n− t− 1, i.e., the number of probes of the form
(a) or (b) in W ′ with distinct values for the index i is at most d− 1 ≤ n− t− 1. In this case,
and with t additional output shares, we have at least one index k such that k /∈ J and for
which there are no probes in W ′ of the form (a) or (b). In other terms, no partial sum of Vk
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is probed, no product of shares ak · b
(k)
j or pk,j is probed, and no random value rk,j is probed.

Now we reason on the number of probes of the form (c) in W ′:

• We first consider the special case where the number of Xi,j probed (of form (c) in W ′)
for distinct values of i is equal to n. In other terms, we have probes X1,j1 , . . . , Xn,jn for
certain values j1, . . . , jn. Since the set of probesW satisfies |W | ≤ n (because 2d−1 ≤ n),
then this means that there are no remaining probes in the set W except for the n probes
of the form (c) in W ′. This is an easy case since we can let Ib = [n] and Ia = J (always
without a failure on a since in the case where |W | = n, we have d = t + 1 = n − t so
|Ia| = |J | ≤ min(t, |W |) where t ≤ |W |). This allows us to trivially simulate all output
wires indexed in J , and since the remaining wires in W are just sums of random values,
we can simulate them by generating the corresponding random values.

• Next, we consider that there is at least one index ` such that X`,j /∈ W for all j ∈ [n]
(in other terms, the number of probes of the form Xi,j for distinct values of i is at
most n − 1). Notice that this case is slightly different than the case of claims 2 and 3,
since ` can be in the set J . In this case, we can let Ib = [n] so that we can perfectly
simulate all wires in W (1) ∪ . . . ∪W (n) and J (1)

b ∪ . . . ∪ J
(n)
b using Ib = [n], and we can

perfectly simulate all wires in W ′ using Ia by construction and Ib = [n] and generating
the necessary random values. Next, we need to prove that we can perfectly simulate all
output shares in J . Let i ∈ J . If i ∈ Ia, then ci is perfectly simulated using ai and
Ib = [n] and generating the necessary random values. Next, if i /∈ Ia, then if ` /∈ J ,
we can use claim 2 to prove that we can replace the expression of ci = Vi + Xi by the
random value ri,l and so the share ai is not needed for the simulation of ci (even if Xi,j

for a certain j is probed, the expression of Vi is still masked by ri,l and ai is not needed
to simulate Xi which is a sum of random values). Meanwhile, if ` ∈ J , then we cannot
directly use the random value ri,` to mask the expression of ci. But since X`,j /∈ W for
all j ∈ [n], and since rk,` /∈W because k /∈ Ia by assumption, then c` can be masked by
the random value rk,`, i.e c` = V`+X` ← rk,`. Since i ∈ J and k /∈ J , then i 6= k and the
random value ri,` does not appear anymore in X` in the expression of c`. Since i /∈ Ia
then ri,` can be used to mask the expression of the output share ci indexed in J and so
the share ai is not needed for the simulation of ci. This proves that we can perfectly
simulate all shares in J with the constructed sets Ia and Ib = [n].

We managed to show that whenever the construction of the set Ia gives |Ia| ≤ t, then
we can perfectly simulate the sets W and J with at most a failure on input b and while still
having |Ia| ≤ t and |Ia| ≤ |W |.

By considering both cases |Ia| ≥ t + 1 and |Ia| ≤ t, we covered all the cases for the
simulation, and we proved that we can always perfectly simulate the set of probes W along
with the set of output shares J while having a failure on at most one of the inputs. This
concludes the proof of Lemma 26.

A.1.2 Proof for TRPE2 property

Lemma 27. The above multiplication gadget is (t, f2)-TRPE2 of amplification order d ≥
min(t+ 1, n− t)

Proof. To prove the lemma, we proceed in two steps through the following two lemmas 28
and 29.
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Lemma 28. LetW be a set of leaking wires as described above such that |W | < min(t+1, n−t).
Then there exists a set J of n− 1 output shares, such that W and J can be perfectly simulated
from at most min(|W |, t) = |W | shares of each of the inputs a and b.

Proof. We will construct the set of input shares indices Ia and the sets of output shares J (k)
b

for k ∈ [n] depending on the probes in the set W ′ (recall that W = W ′ ∪W (1) ∪ . . .∪W (n)) as
follows (we consider that all J (k)

b are empty at first since all the output shares of Grefresh can
be probed directly in W ′):

(a) For probes of form (a), we add index i to Ia, and index j to J (k)
b for k ∈ [n].

(b) For probes of form (b), we add index i to Ia and to J (k)
b for k ∈ [n].

(c) For probes of form (c), we add index i to J (k)
b for k ∈ [n].

Observe that since |W | < min(t+ 1, n− t), then in particular |W ′| ≤ min(t+ 1, n− t)− 1 ≤ t,
then |Ia| ≤ |W ′| ≤ |W | ≤ t so we have no failure on the input a. Also, since |J (k)

b | ≤ |W
′| ≤ t

and |W (k)| < min(t+ 1, n− t), then by the (t, f ′)-TRPE1 property of Grefresh, we will be able
to simulate sets J (k)

b andW (k) from the set of input shares I(k)b such that |I(k)b | ≤ |W
(k)| ≤ t for

k ∈ [n]. Thus, we can let Ib = I
(1)
b ∪ . . .∪I

(n)
b and we have |Ib| ≤ |W (1)∪ . . .∪|W (n)| ≤ |W | ≤ t,

so we have no failure on the input b either. Until now, we have shown that we can simulate all
sets W (k) and J (k)

b from Ib of size at most min(|W |, t) = |W |. It remains to show that we can
also perfectly simulate the set W ′ and a well chosen set J of n− 1 output shares, from Ia and
J
(k)
b for k ∈ [n]. We will choose the set J from two subsets J = J1 ∪ J2, where J1 = {i | i ∈
J
(k)
b for any k ∈ [n]}, and J2 ⊂ [n] is any set such that J1 ∩ J2 = ∅ and |J1 ∪ J2| = n − 1.

Let ` ∈ [n] be the index such that ` /∈ J . Since |W | ≤ min(t+ 1, n− t)− 1 ≤ n− 1, then by
construction of the sets J (k)

b , we have that |J (1)
b ∪ . . . ∪ J

(n)
b | ≤ n− 1, then for the index `, we

have that ` /∈ J (k)
b for all k ∈ [n], then X`,j /∈ W for any j ∈ [n] by construction of the sets

J
(k)
b . The value of X` will be useful to use the following claim.

Claim 4. Let i ∈ J . Suppose that Vi,j /∈W for all j ∈ [n]. Then the expression of ci = Vi+Xi

can be masked by the random value ri,`, in other terms ci ← ri,`.

Proof. The proof of this claim is quite straightforward since we suppose that Vi,j /∈ W for all
j ∈ [n], so none of the partial sums Vi,j has been probed. Then Vi in ci contains n− 1 random
values. In particular, we know that ri,` and pi,` only appear in the expression of the probed
output ci, because if they were probed in W then we would have ` ∈ J (i)

b by construction, but
we suppose that ` /∈ J (k)

b for all k ∈ [n]. In addition, since X`,j /∈ W for all j ∈ [n] (because
otherwise then by construction ` ∈ J

(k)
b which does not hold), then ri,` does not appear in

any other expression of the probed wires in W , so we can simply use it to perfectly simulate
ci.

We can now show that the sets W ′ and J can be perfectly simulated from the constructed
sets Ia and J (k)

b .

Simulation ofW ′. Probes of the form (a) can be perfectly simulated from the corresponding
input shares in Ia and J (k)

b , and by generating uniformly random values ri,j when necessary.
Probes of the form (c) are also perfectly simulated by simply generating uniformly random
values, since Xi,j = r1,i + . . . + rj,i. As for probes of the form (b), we know that i ∈ Ia, then
we look at each of the terms pi,j′ for j′ ∈ [j] in Vi,j = pi,1 + . . . pi,j . For each pi,j′ , if j′ ∈ J

(i)
b ,
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then pi,j′ can be perfectly simulated from the corresponding input shares and by generating
uniformly at random ri,j′ . Otherwise, if j′ /∈ J (i)

b , then that means that the wires pi,j′ , ri,j′
and Xj′ are not probed in W ′. That means that we can potentially replace pi,j′ by a random
value ri,j′ since ri,j′ does not appear in any other expression of the variables probed in W ′.
Meanwhile, we also need to check the case where j′ ∈ J , since cj′ = Vj′ +Xj′ , and ri,j′ is the
one of the summed terms in the expression of Xj′ :

• If j′ /∈ J , then we can replace pi,j′ by a random value ri,j′ since ri,j′ does not appear in
any other expression of the variables probed in W ′ and is not probed either through cj′ .

• If j′ ∈ J , then we also know that Vj′ /∈ W ′ (because otherwise we would have by
construction j′ ∈ J (k)

b for k ∈ [n] which does not hold), then we know from claim 4 that
cj′ can be masked by the random value rj′,`, which masks Vj′+Xj′ . Since ` 6= j′ (because
` /∈ J while j′ ∈ J), then ri,j′ does not appear anymore in any other wire expression of
the probed variables in W or J except in the term pi,j′ of Vi,j , so ri,j′ can be used to
mask the expression of pi,j′ .

By perfectly simulating each term pi,j′ in Vi,j , we can perfectly simulate Vi,j . Thus, we can
perfectly simulate all wires in W ′.

Simulation of J . Let i ∈ J . Let us first consider the case where Vi,j /∈ W ′ for any j ∈ [n],
then by claim 4, the output share ci can be masked by the random variable ri,`, so ci is
perfectly simulated by generating a fresh random value. Otherwise, if Vi,j ∈ W ′ for a certain
j ∈ [n], then we know that the value of Vi,j is perfectly simulated as proven above. Now, let us
check each term pi,j′ for j′ ∈ [j + 1, n]. Actually, we can also perfectly simulate each of these
terms like the terms pi,j′ for j′ ∈ [j]. Plus, the term pi,i is perfectly simulated by construction
of the sets Ia and J (i)

b (because Vi,j ∈W ′). In addition, all terms in Xi in ci = Vi +Xi can be
perfectly simulated by generating a fresh random value. Thus, ci can be perfectly simulated
by summing all of the perfectly simulated terms in it. This brings us to a perfect simulation
of all output shares in J . We have shown that we can perfectly simulate any set of probes
W of size at most min(t + 1, n − t) − 1 with a chosen set J of n − 1 output shares, with at
most min(|W |, t) = |W | shares of each of the inputs a and b. This concludes the proof of
Lemma 28.

Remark 9. We can observe that for this lemma to apply on Gmult, we don’t need the pre-
processing phase of the refresh on input b. In fact, you can see that during the construction
of the sets J (k)

b , we add each index to all of the sets for all k ∈ [n]. However, executing n
refreshings on the input b will be necessary for the proof of the next result, specifically when we
consider W such that min(t+ 1, n− t) ≤ |W | < 2 ·min(t+ 1, n− t).

To get back to the proof of Lemma 27, we also need the following result.

Lemma 29. Let W be a set of leaking wires as described above such that min(t+ 1, n− t) ≤
|W | < 2 ·min(t+ 1, n− t). Then there exists a set J of n− 1 output shares such that W and J
can be perfectly simulated from sets of input shares Ia and Ib such that |Ia| ≤ min(|W |, t) or
|Ib| ≤ min(|W |, t). In other terms, we have a simulation failure on at most one of the inputs
a or b.

Proof. Recall that the setW can be split into subsetsW = W ′∪W (1)∪ . . .∪W (n) as described
above. We consider two cases.
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Case 1: |W ′| < min(t + 1, n − t). This case is similar to the case of Lemma 28, so we can
construct the set Ia in the same way as in the proof of Lemma 28, and we can eventually
consider Ib = [n]. We know that |Ia| ≤ |W ′| ≤ min(t+ 1, n− t)− 1 ≤ t, so there is no failure
on the input a. And all probes in W ′ can be simulated like in the proof of Lemma 28 with
Ia and trivially with Ib = [n]. Also, all probes in W (1) ∪ . . . ∪W (n) can be trivially simulated
since we have access to the full input b. In addition, we choose the set J of size n − 1 in the
same way as in Lemma 28. Whenever i ∈ J and Vi,j ∈W ′ for some j ∈ [n], then ci = Vi +Xi

is easily simulated using Ib = [n] and the share ai. If i ∈ J but Vi,j /∈ W ′ for all j ∈ [n], then
as in the proof of Lemma 28, ci in this case can be masked by the random value ri,` (because
|W ′| < min(t+ 1, n− t)) and so simulating ci amounts to generating uniformly at random the
corresponding random value. Thus, W and J are perfectly simulated with at most min(|W |, t)
shares of a and eventually the full input b.

Case 2: |W ′| ≥ min(t + 1, n − t) (and thus |W (1) ∪ . . . ∪W (n)| < min(t + 1, n − t)). In
this case, we will construct the sets Ia and J (k)

b from empty sets, in a way that we will have
a simulation failure on at most one of the inputs a or b. We construct the mentioned sets
depending on the probes in W ′ as follows:

(a) For probes of form (a), we add index i to Ia, and index j only to J (i)
b .

(b) For probes of form (b), we add index i to Ia and only to J (i)
b .

(c) For probes of form (c), we add index i to J (k)
b for all k ∈ [n].

In the rest of the lemma, we will prove that if we have a failure on one of the inputs, we can
still perfectly simulate W and a chosen set J of n− 1 output shares without a failure on the
other input. For this, we will consider two cases, the first where we have a failure on input a,
the second where we don’t have a failure on input a, and so we can eventually have a failure
on input b.

Case 2.1: simulation failure on input a, i.e. Ia > t. This means that the set Ia is of
size |Ia| ≥ t + 1 ≥ min(t + 1, n − t) (this is because by construction |Ia| ≤ |W |, so to have
|Ia| > min(|W |, t), we must have |Ia| > t). We will first start by showing that the sets W (k)

and J
(k)
b can be perfectly simulated using the simulator of Grefresh without a failure on the

input b. Next, we will show that W ′ and a well chosen set of n− 1 output shares in J can be
perfectly simulated using Ia and J (k)

b .
Since we only add shares indices to Ia, when we have probes of the form (a) or (b), this

means that we have at least t+ 1 probes of these two forms with t+ 1 different values for the
index i. In addition, since we have at least t+ 1 probes (a) or (b) with distinct values for the
index i, then this also means that each of the sets J (i)

b has at most one share of b(i) added
to it. In other terms, |J (k)

b | ≤ 1 for each k ∈ [n] (from the probes (a) and (b) with distinct
indices i).

Now let us consider the remaining probes in W which are either in W ′ of the form (c) or in
W (1)∪. . .∪W (n) or of the forms (a) or (b) with i ∈ Ia. Since |Ia| ≥ t+1 ≥ min(t+1, n−t), then
there are at most min(t+ 1, n− t)− 1 of these remaining probes. Without loss of generality,
we consider that there are exactly min(t+ 1, n− t)− 1 instead of at most min(t+ 1, n− t)− 1
probes. Letm be the number of probes inW (1)∪. . .∪W (n) and d−1−m the remaining probes
in W ′ of the form (c) or (a)/(b) with i ∈ Ia. Since each wire in W ′ of the form (c) or (a)/(b)
with i ∈ Ia results in adding at most one more share index to each J (k)

b for k ∈ [n], then we
have |J (k)

b | ≤ 1+(min(t+1, n−t)−1−m) = d−min(t+1, n−t). And |W (1)∪ . . .∪W (n)| ≤ m,
in particular |W (k)| ≤ m for any k ∈ [n].
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• if m = 0, thenW (k) = ∅ for any k ∈ [n], and |J (k)
b | ≤ min(t+1, n−t) ≤ bn+ 1

2
c ≤ n−1,

so by the TRPE property of Grefresh for any t ≤ n−1, all of the J (k)
b sets can be perfectly

simulated with no knowledge of the input shares of b since W (k) = ∅, so I(k)b = ∅. Hence,
Ib = I

(1)
b ∪ . . . ∪ I

(n)
b = ∅ and we have no simulation failure on the input b.

• if m > 0, then |J (k)
b | ≤ min(t+1, n−t)−1 ≤ t and |W (1)∪ . . .∪W (n)| < min(t+1, n−t),

in particular |W (k)| ≤ min(t + 1, n − t) − 1 for each k ∈ [n]. Thus, by the (t, f)-
TRPE property of the refresh gadget Grefresh achieving the amplification order d, we
can perfectly simulate both sets for each k ∈ [n] with I

(k)
b such that |I(k)b | ≤ |W

(k)|.
Thus, we can let Ib = I

(1)
b ∪ . . . ∪ I(n)b so we can have |Ib| ≤ |W (1) ∪ . . . ∪ W (n)| ≤

min(t + 1, n − t) − 1 ≤ t, and we can perfectly simulate W (1) ∪ . . . ∪W (n) along with
J
(1)
b ∪ . . . ∪ J

(n)
b from the set Ib without a simulation failure on input b.

So far we proved that if we have |Ia| > t, then we must have |Ib| ≤ t, and W (1) ∪ . . . ∪W (n)

can be perfectly simulated along with J (1)
b ∪ . . .∪ J

(n)
b from the set Ib. Next we need to prove

that we can perfectly simulate W ′ and a chosen set J of n− 1 output shares, from these sets
Ia and J (1)

b ∪ . . . ∪ J
(n)
b . We consider two sub-cases.

Case 2.1.1: Ia = [n]. In this case, since |W | ≥ n (from Ia) and |W | < 2 min(t+ 1, n− t) ≤
n + 1, then |W | = n and all probes in W are all in W ′ of the form (a) or (b) with n distinct
values for the index i. We neither have probes in W (1) ∪ . . . ∪W (n) nor in W ′ of the form
(c). Thus, we can reconstruct each |J (k)

b | of size at most n− 1 without having a failure on the
input b (since Grefresh is (t′, f ′)-TRPE for any t′ ≤ n− 1 achieving d′ = min(t′ + 1, n− t′) and
all W (k) are empty). We consider two cases:

• Suppose that for each i ∈ [n], we have at least one probe in W ′ of the form rk,i or pk,i
for some k ∈ [n], note this probe qk,i ∈ {rk,i, pk,i}. Since also Ia = [n], this means that
we have probes qk1,1, . . . , qkn,n, such that k1 6= . . . 6= kn. Because |W ′| = n, then all
probes in W ′ are of the form (a) (specifically qk,i), and we have no probes of the form
Vi,j for any i, j ∈ [n]. In this case, the simulation of the probes in W ′ is straightforward
by construction of the sets Ia and J

(k)
b . As for the set J , we let J ⊂ [n] such that

|J | = n − 1 (any set of n − 1 shares works), and let ` ∈ [n] such that ` /∈ J . Observe
that out of all the random values ri,` in X` in the expression of c` = V` + X`, only
the random value rk`,` appears in the expression of the probe qk`,` in the set W ′, and
all other random values ri,` for i 6= k` do not appear in any other probed variable in
W ′ (since W ′ = {qk1,1, . . . , qk`,`, . . . , qkn,n}, such that k1 6= . . . 6= kn). Then, for each
i ∈ J such that i 6= k`, the expression of ci = Vi + Xi can be masked by the random
value ri,`, so simulating ci amounts to generating a fresh random value ri,`. Now let’s
check i = k` ∈ J . Since qk`,` is probed, then we cannot mask the expression of ck`
using rk`,`. However, for each i ∈ J with i 6= k`, we have that ci is masked by ri,`.
Since ci = Vi +Xi, and the random value rk`,i is one of the terms in Xi, then rk`,i does
not appear anymore in the expression of ci. And since W ′ = {qk1,1, . . . , qk`,`, . . . , qkn,n},
such that k1 6= . . . 6= kn and qk`,` ∈ W ′, then qk`,i /∈ W ′ and rk`,i only appears in the
expression of ck` , so ck` can be masked by the random value rk`,i. Thus, we proved that
we can perfectly simulate the sets W ′ and J using the sets Ia and J (k)

b .

• Next, we suppose that there exists ` ∈ [n] such that we have no probes in W ′ of the
form qk,` ∈ {rk,`, pk,`}. In this case, we choose J = [n] \ {`}. Next, we show that we can
perfectly simulate all probes in W ′ and output shares in J for each i ∈ Ia = [n]. For
this, first let i ∈ [n] \ {`} (notice that we automatically have i ∈ J):
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– if for the considered i, the probe in W ′ is of the form (a) i.e ai, b
(i)
j , ai · b

(i)
j , pi,j =

ai · b(i)j + ri,j , then the simulation of this probe is trivial by construction of the

sets Ia and J (i)
b . In addition, we know that ri,` and pi,` are not probed in W ′ by

assumption, and since X`,j /∈ W ′ for all j ∈ [n], then the random value ri,` only
appears in the expression of ci = Vi +Xi (specifically in Vi), and so can be used to
mask ci. So simulating ci amounts to generating a fresh random value.

– if for the considered i, the probe in W ′ is of the form (b), i.e Vi,j ∈W ′ for a certain
j ∈ [n] (there is a unique probe of this form), then:

∗ either j < `, and so the random value ri,` can be used as before to mask the
expression of ci +Vi,j , and since in this case Vi,j contains less than n− 1 terms
pi,j′ , then we can add all the necessary shares of b(i) to J

(i)
b without having

a failure on b (recall that W (i) = ∅). So we can perfectly simulate Vi,j and
ci + Vi,j , and hence also simulate ci.

∗ or j ≥ `, and so the random value ri,` can be used in this case to mask the
expression of Vi,j so simulating Vi,j amounts to generating a fresh random value,
and since Vi,j is the sum of at least two terms of the form pi,j′ , then ci + Vi,j
can be simulated with at most n − 1 shares of b(i), so there is no simulation
failure on input b(i). So we can perfectly simulate Vi,j and ci + Vi,j , and hence
also simulate ci.

Next we consider the case of the probe V`,j :

– either j < `, and so in this case V`,j contains less than n−1 terms p`,j′ , then we can
add all the necessary shares of b(`) to J (`)

b without having a failure on b (recall that
W (`) = ∅). So we can perfectly simulate V`,j using the input share a`, the input
shares of b(`) and by generating necessary random values.

– or j ≥ `, and so the random value r`,` can be used in this case to mask the expression
of V`,j so simulating V`,j amounts to generating a fresh random value.

Thus, also in this case, we can perfectly simulate W ′ and a chosen set of n − 1 output
shares without a failure on input b, using Ia = [n].

This concludes the simulation for the special case where Ia = [n].

Case 2.1.2: Ia ⊂ [n] such that |Ia| ≤ n − 1. Let k such that k /∈ Ia. Recall that
|Ia| ≥ t + 1 ≥ min(t + 1, n − t) and |W | < 2 · min(t + 1, n − t), then there are at most
min(t+ 1, n− t)− 1 ≤ t ≤ n− 1 probes remaining either in W (1) ∪ . . .∪W (n), of the form (c)
in W ′, or of the form (a)/(b) with i ∈ Ia. Thus, there exists at least one index ` ∈ [n] such
that X`,j /∈ W ′ for all j ∈ [n]. In this case, we choose J = [n] \ {`}. Next, we will prove that
we can perfectly simulate the sets W ′ and J from the constructed sets Ia and J (k)

b , using the
following claims.

Claim 5. Let i ∈ J . Suppose that i /∈ Ia. Then the expression of ci = Vi +Xi can be masked
by the random value ri,`, in other terms ci ← ri,`.

Proof. This claim can be proved easily, since we suppose that i /∈ Ia so the random value ri,`
and pi,` are not probed in W ′. In addition, since ` /∈ J and X`,j /∈ W for all j ∈ [n], then the
random value ri,` does not appear in any other probed wire expression except in ci, then ci
can be masked by the random value ri,`.

Claim 6. Let i ∈ J . Suppose that Xi,j /∈ W for any j ∈ [n]. Suppose that i ∈ Ia. Then the
expression of ci = Vi +Xi can be masked by the random value rk,i, in other terms ci ← rk,i.
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Proof. Since we suppose that k /∈ Ia, then the random value rk,i or pk,i or Vk,j for all j ∈ [n]
are not probed in W . Then, if k /∈ J , then the random value rk,i does not appear in the
expression of any other probed wire in W or J and ci can be masked by the random value rk,i
(Recall that ci = Vi + Xi and Xi = r1,i + . . . + rn,i). Otherwise, if k ∈ J , then by Claim 5,
ck = Vk +Xk can be masked by rk,` and so ci can also be masked by rk,i since i 6= ` (because
i ∈ J and ` /∈ J) and i 6= k (because i ∈ Ia and k /∈ Ia).

Probes of the forms (a) or (c) in W ′ are trivially simulated using the constructed sets of
input shares, and generating the necessary random values. Let us now check the probes of
the form (b). Let Vi,j = pi,1 + . . . + pi,j be such a probe. Let us consider each of the terms
pi,j′ for j′ ∈ [j]. if j′ = i, then by construction pi,i is perfectly simulated using ai and b

(i)
i

and by generating the random value ri,i if needed. Otherwise, let j′ 6= i. If j′ ∈ J (i)
b then the

simulation of pi,j′ is straightforward. Otherwise if j′ /∈ J (i)
b , then we know that none of the

wires ri,j′ or pi,j′ or Xj′,s for all s ∈ [n] are probed in W ′. Thus, ri,j′ can be eventually used to
mask the expression of pi,j′ without the need of the share b(i)j′ for the simulation. Meanwhile,
we still need to check if j′ ∈ J , since ri,j′ appears in Xj′ in the expression of cj′ = Vj′ +Xj′ .

• If j′ ∈ J and j′ /∈ Ia, then by claim 5, cj′ can be masked by the random value rj′,` and
so ri,j′ does not appear in the expression of Xj′ in cj′ anymore, and ri,j′ can be used to
mask pi,j′ .

• Otherwise, if j′ ∈ J ∩ Ia, then by claim 6 cj′ can be masked by the random value rk,j′
and so ri,j′ does not appear in the expression of Xj′ in cj′ anymore, and ri,j′ can be used
to mask pi,j′ (since i /∈ k).

Thus, each term pi,j′ in Vi,j can be perfectly simulated and thus Vi,j = pi,1 + . . .+ pi,j can be
perfectly simulated. This concludes the simulation of the set W ′.

We now focus on the simulation of J . Let i ∈ J . If i /∈ Ia, then by claim 5, ci is
perfectly simulated by generating the random value ri,`. Otherwise, let i ∈ Ia. If Xi,j /∈ W
for any j ∈ [n], then by claim 6, ci is perfectly simulated by generating the random value rk,i.
Otherwise, we can show that we can perfectly simulate each term in ci = Vi+Xi. In particular,
each term in Xi can be simulated by generating the underlying random value uniformly. For
Vi, we know in particular that ai · b(i)i is perfectly simulated since Xi,j ∈ W ′ for at least one
j ∈ [n] so i ∈ J (i)

b by construction. For the other terms in Vi, they can be perfectly simulated
in the exact same way as we simulated the probes Vi,j of the form (b) in the set W ′. So
ci is perfectly simulated by summing all the perfectly simulated terms. This concludes the
simulation proof for the set J .

Up until now, we have concluded that if we have a constructed set Ia of size at least t+ 1,
then we can perfectly simulate the sets W and a chosen set J of n− 1 output shares, without
having a simulation failure on the input b. In the rest of the proof, we will consider that |Ia| ≤ t,
and we will prove that we can perfectly simulate W and J with at most a simulation failure
on b. Recall that we are also considering that |W ′| ≥ d and |W(1) ∪ . . . ∪W(n)| ≤ d− 1.

Case 2.2: |Ia| ≤ t. This means that the number of probes of the form (a) or (b) in W ′ with
distinct values for the index i is at most t.

First, let us check the special case where the number of probes of the form (c) in W ′ with
different values for the index i is equal to n (notice that this cannot occur when we have
|Ia| ≥ t+ 1). Since |W | ≤ 2 ·min(t+ 1, n− t)− 1 ≤ n, then we have W = {X1,j1 , . . . , Xn,jn}
for certain j1, . . . , jn ∈ [n]. So we can let J (k)

b = [n] for all k ∈ [n] and Ib = [n], and by
construction Ia = ∅. In this case, we choose J = [n − 1]. The simulation of the set W is
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straightforward since all wires of the form (c) are just sums of random values. Then, let us
consider the output shares in J .

• If for at least one ` ∈ J , we have X`,n ∈ W , we can mask the expression of X`,n by the
random value rn,` (because there are no probes of the form (a) or (b) in W and n /∈ J ,
so rn,` only appears in the expression of X`,n). Recall that X`,n = r1,` + . . . + rn,`, so
rn,` masks all random values rj,` for j ∈ [n − 1]. Each of the random values rj,` for
j ∈ [n−1]\{`} can be used to mask the corresponding output share cj for j ∈ J because
there are no probes of the form (a) or (b) in W and X`,n is already masked by rn,`, so
rj,` only appears in the expression of cj = Vj +Xj , so cj ← rj,`. As for the output c`, we
can let Ia = {`} and we can perfectly simulate c` using a` and Ib = [n]. Since |W | = n,
so min(t+ 1, n− t) > n

2
≥ 1, so we have no failure on the input a, and we can perfectly

simulate the chosen set J and the set of probes W .

• Now we consider that for all W = {X1,j1 , . . . , Xn,jn}, we have j1 < n, . . . , jn < n. In
this case, the set W is also trivially simulated by generating random values, and we let
J = [n − 1]. Since, n /∈ J and there are no probes of the form (a) or (b) in W , then
the random values rn,i for i ∈ [n− 1] only appear in the expression of the output share
ci = Vi+Xi each. And since all probes of the form Xi,j are such that j < n, then we can
let rn,i be used to mask the expression of ci +Xi,j because rn,i does not appear in Xi,j

for j < n, i.e ci +Xi,j ← rn,i. By perfectly simulating the masked expression of ci +Xi,j

and the sum of random values Xi,j , we can perfectly simulate ci. Thus, simulating all
output shares in J amounts to generating random values uniformly. So we can perfectly
simulate sets W and J from Ia = ∅ and Ib = [n].

Next, we suppose that the number of probes of the form (c) in W ′ with different values for
the index i is strictly smaller than n. So, there is at least one index ` such that X`,j /∈W ′ for
all j ∈ [n]. We let J = [n] \ {`}. We also let Ib = [n] and we keep the set Ia as constructed
according to the probes in the set W ′. Observe that all probes in W ′ are perfectly simulated
by easily using the set Ia and Ib = [n]. As for the output shares in J , observe that for each
i ∈ J such that i /∈ Ia, we can use claim 5 to mask the expression of ci by ri,`, and so the
share ai is not needed for the simulation of ci. Otherwise, if i ∈ J ∩ Ia, then ci is perfectly
simulated using ai and Ib = [n].

This proves that whenever i /∈ Ia, the output share ci can be simulated without the need of
the share ai. Since we suppose that |Ia| ≤ t, then we conclude that we can perfectly simulate
W and a chosen set of n− 1 output shares J with at most a simulation failure on input b.

By considering both cases |Ia| ≥ t + 1 and |Ia| ≤ t, we covered all the cases for the
simulation, and we proved that we can always perfectly simulate the set of probes W along
with a chosen set of n− 1 output shares J while having a failure on at most one of the inputs.
This concludes the proof of Lemma 29.

From Lemmas 28 and 29, we conclude that Gmult is (t, f2)-TRPE2 of amplification order
d ≥ min(t+ 1, n− t). This concludes the proof of Lemma 27.
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A.2 Proof of Theorem 3

We consider that we have ` compilers CC1, . . . , CC`, and we want to prove the following result:

Lemma 30. Let CC1, . . . , CC` RPE compilers with expanding functions f1, . . . , f`. The dy-
namic expanding compiler for CC1, . . . , CC` ,which on input circuit C outputs the compiled
circuit CC` ◦ · · · ◦ CC1(C), is an RPE compiler with expanding function f such that

f = f` ◦ · · · ◦ f1.

It can be seen that proving Lemma 30 implies proving the result of Theorem 3. Indeed, we
can replace ` in the lemma by k1 + . . . + kµ from Theorem 3 and consider the corresponding
compilers with their expansion levels. Thus, we will prove in this appendix Lemma 30 and the
proof of the Theorem will follow directly.

To prove the lemma, we first start by introducing some definitions from [18] for random
probing expandability of level-` with different sharing orders n1, . . . , n` gadgets. First, we
introduce a generalized definition of adequate subsets of [n1 × . . .× n`] as in [18]. For this, we
define recursively a family Sk ∈ P([n1 × . . .× nk]) for k ≤ `, where P([n1 × . . .× nk]) denotes
the set of all subsets of [n1 × . . .× nk], as follows:

S1(n, t) ={I ∈ [n], |I| ≤ t}
Sk({ni}i∈[k], {ti}i∈[k]) ={(I1, . . . , Ink) ∈ (Sk−1({ni}i∈[k−1], {ti}i∈[k−1]) ∪ [n1 × . . . nk−1])nk ,

Ij ∈ Sk−1 ∀ j ∈ [1, nk] except at most tk}

In other words, a subset I belongs to Sk if among the nk subset parts of I, at most tk of them
are full, while the other ones recursively belong to Sk−1. For simplicity, we will sometimes
denote Sk without the parameters ({ni}i∈[k], {ti}i∈[k]) which will be implicit in the notation.
We will also denote for simplicity Ni = n1 · . . . · ni for i ∈ N.

Then we recall the generalized definition of RPE with Sk for level-k gadgets.

Definition 28 (Random Probing Expandability with {Sk}k∈N). Let f : R → R and k ∈ N.
An Nk-share gadget G : KNk × KNk → KNk is (Sk, f)-random probing expandable (RPE) if
there exists a deterministic algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for

every input (x̂, ŷ) ∈ KNk×KNk , for every set J ∈ Sk∪ [Nk] and for every p ∈ [0, 1], the random
experiment

W ← LeakingWires(G, p)

(I1, I2, J
′)← SimG

1 (W,J)

out← SimG
2 (W,J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
I1 /∈ Sk

)
and F2 ≡

(
I2 /∈ Sk

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (A.1)

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. the set J ′ is such that J ′ = J if J ∈ Sk, and J ′ = [Nk] \ {j?} for some j? ∈ [Nk]
otherwise,

3. the output distribution satisfies
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out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J ′

)
(A.2)

where ẑ = G(x̂, ŷ).

We are now ready to prove Lemma 30.

Lemma 30. We will prove the Lemma recursively. In other words, we will suppose that we have
RPE compilers CC1, . . . , CCk with expanding functions f1, . . . , fk and (ti, fi)-RPE gadgets for
each i ≤ k, and we will prove that the gadgets of the expanding compiler CCk ◦ · · · ◦CC1 are
(Sk, f)-RPE with f = fk ◦· · ·◦f1. This will imply that the expanding compiler CCk ◦· · ·◦CC1

is RPE with expanding function f .
The base case is one of the theorem hypotheses, namely for k = 1, the level-1 gadgets

are (t1, f1)-RPE, which is equivalent to (S1, f1)-RPE. We must then show the induction step:
assuming that the level-k gadgets are (Sk, fk ◦· · ·◦f1)-RPE, show that the level-(k+1) gadgets
are (Sk+1, fk+1 ◦ · · · ◦ f1)-RPE. For the sake of simplicity, we depict our proof by assuming
that all the gadgets are 2-to-1 gadget (which is actually not the case for copy gadgets). The
proof mechanism for the general case (with 2-to-1 and 1-to-2 gadgets) is strictly similar but
heavier on the form. We also denote in the following

• εk = fk ◦ · · · f1(p),

• GCCk to be a gadget of the expanding compiler CCk,

• G(k) to be the gadget resulting from applying CCk−1 ◦ . . .◦CC1(G
CCk), i.e. obtained by

replacing each gate of the base gadget GCCk by the corresponding level-(k − 1) gadget
G(k−1) and by replacing each wire of the base gadget by Nk−1 wires carrying a Nk−1-
linear sharing of the original wire.

In order to show that a gadgetG(k+1) is (Sk+1, εk+1)-RPE we must construct two simulators
SimG(k+1)

1 and SimG(k+1)

2 that satisfy the conditions of Definition 28 for the set of subsets Sk+1.
More precisely, we must construct two simulators SimG(k+1)

1 and SimG(k+1)

2 such that for every
(x̂∗, ŷ∗) ∈ KNk+1 ×KNk+1 , and for every set J∗ ∈ Sk+1 ∪ [Nk+1], the random experiment

W ∗ ← LeakingWires(G(k+1), p)

(I∗1 , I
∗
2 , J

∗′)← SimG(k+1)

1 (W ∗, J∗)

out← SimG(k+1)

2 (W ∗, J∗, x̂∗|I∗1 , ŷ
∗|I∗2 )

ensures that

1. the failure events F∗1 ≡
(
I∗1 /∈ Sk+1) and F∗2 ≡

(
I∗2 /∈ Sk+1) verify

Pr(F∗1) = Pr(F∗2) = εk+1 and Pr(F∗1 ∧ F∗2) = ε2k+1 (A.3)

2. the set J∗′ is such that J∗′ = J∗ if J∗ ∈ Sk+1 and J∗′ = [Nk+1] \ {j?} otherwise,

3. the output distribution satisfies

out
id
=
(
AssignWires(G(k+1),W, (x̂, ŷ)) , ẑ|J∗′

)
(A.4)

where ẑ = G(k+1)(x̂, ŷ).
We distinguish two cases: either J∗ ∈ Sk+1 (normal case), or J∗ = [Nk+1] (saturated case).
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Normal case: J∗ ∈ Sk+1.

By definition of the expanding compiler, we have that a level-(k+1) gadget G(k+1) is obtained
by replacing each gate of the base gadget GCCk+1 of the compiler CCk+1 by the corresponding
level-k gadget G(k) and by replacing each wire of the base gadget by Nk wires carrying a
Nk-linear sharing of the original wire. In particular G(k+1) has Nk+1 output wires which can
be split in nk+1 groups of Nk wires, each group being the output of a different G(k) gadget.
We split the set J∗ accordingly so that J∗ = J∗1 ∪ · · · ∪ J∗nk+1

, where each set J∗i pertains to
the ith group of output wires. By definition of Sk, since J∗ ∈ Sk+1, we must have J∗i ∈ Sk for
all 1 ≤ i ≤ nk+1, except at most tk+1 of them for which J∗i = [Nk]. We define Jbase as the set
of indexes i such that J∗i /∈ Sk. Therefore we must have |Jbase| ≤ tk+1.

We first describe the simulator SimG(k+1)

1 that takes the leaking wires W ∗ and the output
wires J∗ ∈ Sk+1 to be simulated and produce the sets I∗1 ⊆ [Nk+1] and I∗2 ⊆ [Nk+1] of required
inputs. The simulator SimG(k+1)

1 starts by defining a set Wbase which is initialized to ∅; this
will correspond to the set of leaking wires for the base gadget GCCk+1 . Then the simulation
goes through all the level-k gadgets composing G(k+1) from bottom to top i.e. starting with
the level-k gadgets producing the output sharing up to the level-k gadgets processing the input
sharings. Let us denote by {G(k)

j }j these level-k gadgets. For each G(k)
j , one runs the simulator

Sim1 from the (Sk, fk ◦ . . . ◦ f1)-RPE property on input Wj and Jj defined as follows. The
set of leaking wires Wj is defined as the subset of W ∗ corresponding to the wires of G(k)

j . For

the gadgets G(k)
j on the bottom layer, the set Jj is set to one of the J∗i (with indices scaled to

range in [Nk]). For all the other gadgets G(k)
j (which are not on the bottom layer), the set J

is defined as the set I1 or I2 output from Sim1 for the child gadget G(k)
j′ (for which Sim1 has

already been run).
Whenever a failure event occurs for a G(k)

j gadget, namely when the set I (either I1 or
I2) output from Sim1 is such that I /∈ Sk, we add the index of the wire corresponding to this
input in the base gadget GCCk+1 to the set Wbase. Once the Sim1 simulations have been run
for all the G(k)

j gadgets, ending with the top layers, we get the final sets I corresponding to

the input shares. Each of these sets corresponds to an Nk-sharing as input of a G(k)
j gadget,

which corresponds to a wire as input of the base gadget among the 2 · nk+1 wires carrying
the two input nk+1-sharings of the base gadget. We denote by I∗1,1, . . . , I∗1,nk+1

and I∗2,1, . . . ,
I∗2,nk+1

the corresponding sets so that defining

I∗1 = I∗1,1 ∪ . . . ∪ I∗1,nk+1
and I∗2 = I∗2,1 ∪ . . . ∪ I∗2,nk+1

, (A.5)

the tuple x̂∗|I∗1 and ŷ∗|I∗2 contains the shares designated by the final I sets.

At the end of the SimG(k+1)

1 simulation, the set Wbase contains all the labels of wires
in the base gadget GCCk+1 for which a failure event has occurred in the simulation of the
corresponding G(k)

j gadget. Thanks to the (Sk, εk)-RPE property of these gadgets, the failure
events happen (mutually independently) with probability εk which implies

Wbase
id
= LeakingWires(GCCk+1 , εk) (A.6)

Recall that |Jbase| ≤ tk+1. We can then run SimGCCk+1

1 to obtain:

(I1,base, I2,base) = SimGCCk+1

1 (Wbase, Jbase) . (A.7)

For all 1 ≤ i ≤ nk+1, if i ∈ I1,base, we force I∗1,i ← [Nk], so that the corresponding i-th input
wire of the base gadget can be computed from the corresponding input wires in I∗1,i. The

simulator SimG(k+1)

1 then returns (I∗1 , I
∗
2 ) as output.
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The (tk+1, fk+1)-RPE property of the base gadget GCCk+1 implies that the base failure
events |I1,base| = nk+1 and |I2,base| = nk+1 are εk+1-mutually unlikely, where εk+1 = fk+1(εk).
We argue that for all 1 ≤ i ≤ nk+1, I∗1,i /∈ Sk ⇐⇒ i ∈ I1,base. Namely if a failure event has
occurred for a set I∗1,i (i.e. I

∗
1,i /∈ Sk) then we must have i ∈ I1,base. Indeed, if a failure event

has occurred for a set I∗1,i then the label of the ith input wire (for the first sharing) of the base

gadget GCCk+1 has been added toWbase and SimGCCk+1

1 has no choice but to include this index
to the set I1,base so that SimGCCk+1

2 can achieve a perfect simulation of the wire assignment
(as required by the RPE property of GCCk+1). Moreover if i ∈ I1,base then by construction we
have set I∗1,i = [Nk] and therefore I∗1,i /∈ Sk. This implies that if |I1,base| ≤ tk+1 then I∗1 ∈ Sk+1

(and the same happens for I∗2 w.r.t. I2,base). We deduce that the failure events F∗1 and F∗2 are
also εk+1-mutually unlikely, as required by the (Sk+1, εk+1)-RPE property of G(k+1).

We now describe the simulator SimG(k+1)

2 that takes as input x̂∗|I∗1 and ŷ∗|I∗2 and produces
a perfect simulation of

(
AssignWires(G(k+1),W ∗, (x̂∗, ŷ∗)), ẑ|J∗

)
where ẑ = G(k+1)(x̂, ŷ). Let

x̂b and ŷb denote the nk+1-linear sharings obtained by applying the linear decoding to each
group of Nk shares in x̂∗ and ŷ∗, so that the elements of x̂b and ŷb correspond to the input
wires in the base gadget GCCk+1 . The assignment expansion property implies that a perfect
assignment of the wires of G(k+1) on input x̂∗ and ŷ∗ can be derived from an assignement of
the wires of the base gadget GCCk+1 on input x̂b and ŷb. The simulator makes use of this
property by first running

outbase ← SimGCCk+1

2 (Wbase, Jbase, x̂
b|I1,base , ŷ

b|I2,base) , (A.8)

Note that the input values x̂b|I1,base and ŷb|I2,base can be obtained from the corresponding
shares in I∗1 and I∗2 . Thanks to the (tk+1, fk+1)-RPE property of GCCk+1 and by construction
of I1,base and I2,base, this outputs a distribution satisfying

outbase
id
=
(
AssignWires(GCCk+1 ,Wbase, (x̂

b, ŷb)), ẑb|Jbase

)
(A.9)

The simulator then goes through all the G(k)
j gadgets from input to output and for each of

them runs the simulator Sim2 of the RPE property on inputs Wj , Jj , x̂|I1 and ŷ|I2 where Wj

and Jj are the sets from the first phase of the simulation for the gadget G(k)
j , I1 and I2 are the

corresponding sets produced by the Sim1 simulator for G(k)
j , and x̂ and ŷ are the inputs of G(k)

j

in the evaluation of G(k+1)(x̂∗, ŷ∗). Provided that the partial inputs x̂|I1 and ŷ|I2 are perfectly
simulated, this call to Sim2 produces a perfect simulation of

(
AssignWires(G

(k)
j ,Wj , (x̂, ŷ), ẑ|Jj

)
where ẑ = G

(k)
j (x̂, ŷ). In order to get perfect simulations of the partial inputs x̂|I1 and ŷ|I2 ,

the simulator proceeds as follows. For the top layer of G(k) gadgets (the ones processing the
input shares) the shares x̂|I1 and ŷ|I2 can directly be taken from the inputs x̂∗|I∗1 and ŷ∗|I∗2 .
For the next gadgets the shares x̂|I1 and ŷ|I2 match the shares ẑ|J output from the call to
Sim2 for a parent gadget. The only exception occurs in case of a failure event.

In that case the simulation needs the full input x̂ = (x1, . . . , xNk) (and/or ŷ = (y1, . . . , yNk)),
while we have set |I1| = Nk − 1 (and/or |I2| = (Nk − 1) to satisfy the RPE requirements
of the parent gadget in the first simulation phase. Nevertheless, for such cases a perfect
simulation of the plain value x = LinDec(x̂) (and/or y = LinDec(ŷ)) is included to outbase
by construction of Wbase. We can therefore perfectly simulate the missing share from the
Nk − 1 other shares and the plain value x (or y). We thus get a perfect simulation of(
AssignWires(G

(k)
j ,Wj , (x̂, ŷ), ẑ|Jj

)
for all the level-k gadgets G(k)

j which gives us a perfect
simulation of

(
AssignWires(G(k+1),W ∗, (x̂∗, ŷ∗)), ẑ|J∗

)
.
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Saturated case: J∗ = [Nk+1].

The saturated case proceeds similarly. The difference is that we must simulate all Nk+1 output
shares of the level-(k + 1) gadget, except for one share index j∗ that can be chosen by the
simulator.

The simulator SimG(k+1)

1 is defined as previously. Since J∗ = [Nk+1], we must define
Jbase = [1, nk+1]. Moreover we have J∗i = [Nk] for all 1 ≤ i ≤ nk+1. This implies that for the
gadgets G(k)

j on the output layer, the sets Jj are all equal to [Nk] as well. The set Wbase is

defined as previously, and the simulator SimG(k+1)

1 returns (I∗1 , I
∗
2 ) as previously. The failure

events F∗1 and F∗2 are still εk+1-mutually unlikely, as required by the (Sk+1, εk+1)-RPE property
of G(k+1).

The simulator SimG(k+1)

2 is defined as previously. In particular, from the running of the base
gadget simulator SimGCCk+1

2 , we obtain a perfect simulation of the output wires ẑb|J ′base
for some

J ′base with |J ′base| = nk+1−1. Combined with the perfect simulation of the output wires corre-
sponding to the output sets J ′j from the gadgets G(k)

j on the output layer, with |J ′j | = Nk−1, we
obtain a subset J ′ of output wires for our level-(k+1) gadget with |J ′| = Nk+1−1 as required.
Eventually this gives us a perfect simulation of

(
AssignWires(G(k+1),W ∗, (x̂∗, ŷ∗)), ẑ|J ′

)
. This

terminates the proof of Lemma 30. As stated earlier, proving Lemma 30 implies proving
Theorem 3. Thus, this also terminates the proof for the theorem.
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A.3 Proof of Proposition 4

Proof. We consider the following matrices

L =
[

In 0n×n In In . . . In Tn Tn . . . Tn

]
M =

[
0n×n In In Dγ,1 . . . Dγ,n Tn Tγ,1 . . . Tγ,n

]
The matrices L and M have z = (2n + 4) · n columns. We want to lower-bound the

probability, for γ picked uniformly at random in Fn×nq , that for any vector v ∈ Fzq of Hamming
weight hw(v) ≤ n, and for any i1, . . . , iK ∈ [z] such that vi1 6= 0, . . . , viK 6= 0 and the
corresponding columns i1, . . . , iK in L and in M have no zero coefficient (i.e there are K
probes of the form

∑n
i=1(ri + ai) or

∑n
j=1(γi,jrj + aj) for any i = 1, . . . , n), if M.v = 0, then

we have hw(L.v) ≤ hw(v)−K.
For any set I ⊆ {1, . . . , z}, we denote by LI the n × |I| submatrix of L obtained by only

keeping the columns in L whose indices are in I and MI is the n×|I| submatrix of M obtained
by only keeping the columns in M whose indices are in I. We will lower-bound the probability
that for any set I ⊆ {1, . . . , z} of cardinal n and any vector v ∈ Fnq , if hw(LI ·v) ≥ hw(v)−K+1
then MI · v 6= 0n.

We consider different cases (in order of increasing generality) which depend on the columns
selected with the set I:

1. I ⊆ {(n+ 4) · n+ 1, . . . , z}, i.e., all columns in MI are taken from the matrices Tγ,i for
i ∈ {1, . . . , n};

2. I ⊆ {(n+ 3) · n+ 1, . . . , z}, i.e., all columns in MI are taken from the matrix Tn or the
matrices Tγ,i for i ∈ {1, . . . , n};

3. I ⊆ {1, . . . , n + 1} ∪ {(n + 3) · n + 1, . . . , z}, i.e., all columns in MI are taken from the
null vectors, from the matrix Tn or the matrices Tγ,i for i ∈ {1, . . . , n};

4. I ⊆ {1, . . . , z}, i.e., the columns in MI can be taken arbitrarily.

Case 1.

In order to analyze the probability in the first case, we recall the definition of a probability
distribution on structured matrices introduced in [17]. In this distribution of structured ma-
trices, a number of elements with known location are identically zero, and remaining elements
are chosen uniformly at random independently of each other.

Definition 29. Let n andm be two positive integers. Let α = (α1, . . . , αm) be a non-decreasing
finite sequence with 1 ≤ α1 ≤ α2 ≤ · · · ≤ αm ≤ n.

• A matrix Θ = (θi,j) ∈ Fn×mq is called a progressive patterned matrix with pattern α if
θi,j = 0 for all j ∈ {1, . . . ,m} and all i /∈ {αj−1 + 1, . . . , αj} (where α0 = 0).

• The unitary progressive patterned matrix Υα = (ui,j) ∈ Fn×mq with pattern α is defined
by ui,j = 0 for all j ∈ {1, . . . ,m} and all i /∈ {αj−1 + 1, . . . , αj} and ui,j = 1 for all
j ∈ {1, . . . ,m} and all i ∈ {αj−1 + 1, . . . , αj}.

• The distribution Dα is the probability distribution on random progressive patterned ma-
trix Sα = (si,j) ∈ Fn×mq whose elements si,j for (i, j) ∈ {1, . . . , n} × {1, . . . ,m} are
sampled uniformly at random and independently according to:

Pr[si,j = s] =


1 if s = 0 and ui,j = 0

0 if s 6= 0 and ui,j = 0

q−1 for all s ∈ Fq if ui,j = 1
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Figure A.2: Form of a progressive patterned matrix with pattern α = (α1, . . . , αm)

where Υα = (ui,j) ∈ Fn×mq is the unitary progressive patterned matrix with pattern α.

A matrix Θ is thus a progressive patterned matrix with pattern α = (α1, . . . , αm) if it is of
the form described in Figure A.2 where the symbol ? denotes an arbitrary value in Fq. For the
unitary progressive patterned matrix Υα, this symbol ? is replaced by a 1 and for a random
progressive patterned matrix Sα each symbol ? is replaced by a value picked uniformly and
independently at random in Fq. Note that such a matrix can contain a null column (when
αi = αi+1 for some i ∈ {1, . . . ,m− 1}).

Belaïd et al. [17] also defined more generally block column matrices formed of progressive
patterned matrices.

Definition 30. Let n,m, t be three positive integers. Let m1, . . . ,mt be positive integers such
that m1 + · · ·+mt = m and let α(i) = (α

(i)
1 , . . . , α

(i)
mi) be a non-decreasing finite sequence with

1 ≤ α
(i)
1 ≤ α

(i)
2 ≤ · · · ≤ α

(i)
mi ≤ n for all i ∈ {1, . . . , t}. We suppose that there exists at least

one j ∈ {1, . . . , t} such that α(j)
mj = n.

• A matrix Θ ∈ Fn×mq is called a block progressive patterned matrix with pattern (α(1), . . . ,α(t))

if there exist progressive patterned matrices Θ(i) ∈ Fn×miq with pattern α(i) for all
i ∈ {1, . . . , t} such that Θ = (Θ(1)| . . . |Θ(t)).

• The block unitary progressive patterned matrix Υα(1),...,α(t) ∈ Fn×mq with pattern (α(1), . . . ,α(t))
is Υα(1),...,α(t) = (Υα(1) | . . . |Υα(t)).

• The distribution Dα(1),...,α(t) is the probability distribution on block random progressive
patterned matrix in Fn×mq defined by

Dα(1),...,α(t) = (Dα(1) | . . . |Dα(t)).

The main ingredient of the proof of Proposition 4 is the following technical lemma:

Lemma 31. Let n,m, t be three positive integers with m ≥ n and let α(i) for i ∈ {1, . . . , t}
be patterns for block progressive patterned matrix as in Definition 30. For a block random
progressive patterned matrix S drawn following the distribution Dα(1),...,α(t) , there exists a linear
subspace of Fmq of dimension m−n that contains {v ∈ Fmq s.t. hw(v) = m and Sv = 0}, with
probability at least 1−mq−1.
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Lemma 31. We will prove this lemma by induction on m.
For m = 1, since m ≥ n ≥ 1, Definition 30 implies that the matrix S consists simply

in a single entry s1,1 which is picked uniformly at random in Fq and this entry is null with
probability q−1. The set {v ∈ Fq s.t. hw(v) = 1 and S · v = 0} is therefore the empty set
with probability at least 1 − q−1 and it is thus included in the subspace of dimension 0 with
probability at least 1− q−1.

We now consider m ≥ 2 and we suppose Lemma 31 proven for all block random progressive
patterned matrix with strictly less than m columns.

We first assume that the matrix Υα(1),...,α(t) ∈ Fn×mq is the matrix of ones Un×m (i.e.,
does not contain any zero). Then S is simply a matrix drawn from Fn×mq with the uniform
distribution.

It is well known that the number of full-rank n×m matrices over Fq (with m ≥ n) is:

(qm − 1)(qm − q) · · · (qm − qn−1)

and the probability that S is of full rank is thus equal to:

(1− q−m)(1− q−m+1) . . . (1− q−m+n−1)

which is greater than

1−
m∑

i=m−n+1

q−i ≥ 1−
∞∑

i=m−n+1

q−i = 1− 1

q−m+n−1(1− 1/q)
≥ 1− 2qn−m−1.

The subspace {v ∈ Fmq s.t. S · v = 0} is therefore included in a linear subspace of dimension
m− n with probability at least 1− 2qn−m−1 and the result follows (since m ≥ 2).

We now assume that the matrix Υα(1),...,α(t) ∈ Fn×mq contains some 0. By assumption,

there exists some j ∈ {1, . . . , t} such that α(j)
mj = n.

1. We first assume that mj > 1 (i.e. that the column of index m1 + · · · + mj consists in
α
(j)
mj−1 ≥ 1 zeroes followed by α(j)

mj − α
(j)
mj−1 = n− α(j)

mj−1 ≥ 1 ones, see Figure A.3). We
consider the submatrix of Υα(1),...,α(t) ∈ Fn×mq obtained by deleting the column of index

m1 + · · ·+mj and the rows of indices in the set {α(j)
mj−1 + 1, . . . , α

(j)
mj}.

It is easy to see that this submatrix is a block unitary progressive patterned matrix with
n′ ≤ n − 1 rows and m − 1 columns, where some columns may possibly contain only
zeroes (see Figure A.3). We can thus apply the induction hypothesis to the submatrix
S′ of S obtained by deleting the same column and the same rows.

By induction hypothesis, we know that with probability at least 1 − (m − 1)q−1, there
exists a linear subspace V ′ ⊆ Fm−1q of dimension m − 1 − n′ that contains the set
{v ∈ Fm−1q s.t. hw(v) = m− 1 and S′ · v = 0}.
If V ′ is of dimension 0, then {v ∈ Fm−1q s.t. hw(v) = m − 1 and S′ · v = 0} ⊆ {0m−1}
and this set is thus the empty set. We then have {v ∈ Fmq , hw(v) = m and S ·v = 0} = ∅
with probability at least 1−(m−1)q−1 ≥ 1−mq−1, and so there exists a linear subspace
V of dimension m− n that contains this set.

If V ′ is of dimension m − 1 − n′ > 0, we can assume without loss of generality that
the column of S deleted to obtain S′ was the last one (by permuting the blocks of the
matrix). We have the following block-decomposition of S

S =

(
S′ 0n′×1
S′′ u

)
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Figure A.3: Example of a matrix Υα(1),...,α(t) ∈ Fn×mq . The column and the rows highlighted
in red are deleted in order to apply the induction hypothesis.

where S′′ is a (n − n′) × (m − 1) matrix and u a column vector of dimension (n − n′).
Note that u is a random vector in Fn−n′q independent from S′ and S′′. Let v ∈ Fmq such
that hw(v) = m and Sv = 0.

We write v =

(
w
τ

)
wherew ∈ Fm−1q and τ ∈ Fq is a scalar. We have hw(w) = m−1 and

S′w = 0, and therefore w ∈ V ′. Since τ 6= 0 by assumption, the vector u thus belongs
to the image W of V ′ by S′′ (with probability at least 1 − (m − 1)q−1). Moreover, W
has dimension at most max(m− 1− n′, n− n′).

• IfW is of dimension at most n−n′−1, since u is independent of S′ and S′′ (and thus
of W ), u belongs to W with probability at most q−1. Therefore, with probability
at least (1−q−1) · (1− (m−1)q−1) ≥ 1−mq−1, {v ∈ Fmq s.t. hw(v) = m and Sv =
0} = ∅.

• If W is of dimension n − n′, with probability 1 − q−(n−n′) ≥ 1 − q−1 , we have
u 6= 0(n−n′)×1 and we can construct a basis u1 = u, . . . , un−n′ of W .

All subspaces V ′ ∩ S′′−1(〈ui〉) are of dimension at least one and we have

V ′ =

n−n′⊕
i=1

V ′ ∩ S′′
−1

(〈ui〉).

Therefore the linear subspace V defined as V = V ′ ∩ S′′−1(〈u1〉) satisfies

dim(V ) = dim(V ′)−
n−n′∑
i=2

dim
(
V ′ ∩ S′′

−1
(〈ui〉)

)
≤ m− 1− n′ − (n− n′ − 1)

= m− n.

Moreover, we have {v ∈ Fmq s.t. hw(v) = m and Sv = 0} ⊆ V and since this
occurs with probability at least (1− q−1)(1− (m− 1)q−1) ≥ 1−mq−1, the result
follows.
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Figure A.4: Example of a matrix Υα(1),...,α(t) ∈ Fn×mq . The column and the rows highlighted
in red are deleted in order to apply the induction hypothesis.

2. We now assume that mi = 1 for all i such that α(i)
mi = n (i.e. that all the columns

with a one in the last row consists only of ones, see Figure A.4). Since the matrix
Υα(1),...,α(t) ∈ Fn×mq contains some 0, there exists some j ∈ {1, . . . , t} such that mj > 1

and we consider such a j ∈ {1, . . . , t} for which α(j)
1 is minimal (see Figure A.4).

We consider the submatrix of Υα(1),...,α(t) ∈ Fn×mq obtained by deleting the column of

index m1+ · · ·+mj−1+1 and the rows of indices in the set {1, . . . , α(j)
1 −1}. It is easy to

see that this submatrix is a block unitary progressive patterned matrix with n′ ≤ n− 1
rows and m− 1 columns (see Figure A.4). We can thus apply the induction hypothesis
to the submatrix S′ of S obtained by deleting the same column and the same rows.

We know that with probability at least 1 − (m − 1)q−1, there exists a linear subspace
V ′ ⊆ Fm−1q of dimension m − 1 − n′ that contains the set {v ∈ Fm−1q s.t. hw(v) =
m− 1 and S′v = 0}.
If V ′ is of dimension 0, then {v ∈ Fm−1q s.t. hw(v) = m − 1 and S′v = 0} ⊆ {0} and
this set is thus the empty set. We then have {v ∈ Fmq , hw(v) = m and Sv = 0} = ∅ with
probability at least 1− (m− 1)q−1 ≥ 1−mq−1, and so there exists a linear subspace V
of dimension m− n that contains this set.

If V ′ is of dimension m − 1 − n′ > 0, we can assume without loss of generality that
the column of S deleted to obtain S′ was the last one (by permuting the blocks of the
matrix). We have the following block-decomposition of S

S =

(
S′′ u
S′ 0n′×1

)
where S′′ is a (n − n′) × (m − 1) matrix and u a column vector of dimension (n − n′).
Note that u is a random vector in Fn−n′q independent from S′ and S′′. Let v ∈ Fmq such
that hw(v) = m and Sv = 0.

We write v =

(
τ
w

)
wherew ∈ Fm−1q and τ ∈ Fq is a scalar. We have hw(w) = m−1 and

S′w = 0, and therefore w ∈ V ′. Since τ 6= 0 by assumption, the vector u thus belongs
to the image W of V ′ by S′′ (with probability at least 1 − (m − 1)q−1). Moreover, W
has dimension at most max(m− 1− n′, n− n′).
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• IfW is of dimension at most n−n′−1, since u is independent of S′ and S′′ (and thus
of W ), u belongs to W with probability at most q−1. Therefore, with probability
at least (1−q−1) · (1− (m−1)q−1) ≥ 1−mq−1, {v ∈ Fmq s.t. hw(v) = m and Sv =
0} = ∅.

• If W is of dimension n− n′ then S′′ is invertible. With probability 1− q−(n−n′) ≥
1− q−1 , we have u 6= 0(n−n′)×1 and we can construct a basis u1 = u, . . . , un−n′

of W .
All subspaces V ′ ∩ S′′−1(〈ui〉) are of dimension at least one and we have

V ′ =

n−n′⊕
i=1

V ′ ∩ S′′
−1

(〈ui〉).

Therefore the linear subspace V defined as V = V ′ ∩ S′′−1(〈u1〉) satisfies

dim(V ) = dim(V ′)−
n−n′∑
i=2

dim
(
V ′ ∩ S′′

−1
(〈ui〉)

)
≤ m− 1− n′ − (n− n′ − 1)

= m− n.

Moreover, we have {v ∈ Fmq s.t. hw(v) = m and Sv = 0} ⊆ V and since this
occurs with probability at least (1− q−1)(1− (m− 1)q−1) ≥ 1−mq−1, the result
follows.

This concludes the proof of Lemma 31.

Recall that we want to lower-bound the probability over the γ ∈ Fn×nq , that for a given
set I ⊆ {(n + 4) · n + 1, . . . , z} of cardinal n, if hw(LI · v) ≥ n − K then MI · v 6= 0n for
any vector v ∈ Fnq . where K denotes the number of coordinates i1, . . . , iK ∈ [z] such that
vi1 6= 0, . . . , viK 6= 0 and the corresponding columns i1, . . . , iK in L and in M have no zero
coefficient.

Remark that the non-zero coefficients in the lower block of LI and in MI are at the same
positions. If K = 0, then the matrices MI and LI have a null row. In this case, we have
readily hw(LI · v) ≤ n− 1 = n−K − 1 < n−K).

If K ≥ 1, then the matrices MI and LI does not have a null row. The matrix MI (up to
some permutation of its columns) can be written as a block matrix where each block is of the
form described in Figure A.5 (on the left).

From this matrix, one can construct another matrix M̃I such that in each block, one
substract each column to the following columns (i.e., one substract iteratively the i-th column
to the columns of index in {i + 1, . . . ,m} for i ∈ {1, . . . ,m}). The blocks appearing in the
matrix M̃I are given in Figure A.5 (on the right). Since we apply only elementary operations
on the columns, if there exists a vector v ∈ Fnq such that MIv = 0 then, there exists a vector
v′ ∈ Fnq such that M̃Iv

′ = 0.
Since MI has no null row, we have αm = n in one of this block (with the notation from

Figure A.5) and the matrix M̃I is thus a block random progressive patterned matrix as defined
in Definition 30. By Lemma 31, for each non-empty subset J of the n columns of M̃I , the
probability over γ that there exists a vector v′ ∈ Fnq with support J (i.e., set of non-zero
coordinates) such that M̃Iv

′ = 0 is upper bounded by n · q−1. By the union bound over all
supports, the probability over γ that there exists a vector v′ ∈ Fnq such that M̃Iv

′ = 0 is thus
upper-bounded by 2n · n · q−1.

For the sets I ⊆ {(n+ 4) ·n+ 1, . . . , z} of cardinal n, we have proved that with probability
at least 1−2n ·n ·q−1 (over the choice of γ ∈ Fn×nq ), we have hw(LI ·v) < n−K or MI ·v 6= 0n
for any vector v ∈ Fnq .
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Figure A.5: Blocks appearing in matrices MI and M̃I

Case 2.

We now consider matrices MI were all columns are taken from the matrix Tn or the matrices
Tγ,i for i ∈ {1, . . . , n} (i.e., I ⊆ {(n + 3) · n + 1, . . . , z}). With the notation from Defini-
tion 30, we consider the modified distribution D̃α(1),...,α(t) defined as the following probability
distribution in Fn×mq :

D̃α(1),...,α(t) = (Υα(1) |Dα(2),...,α(t)) = (Υα(1) |Dα(2) | . . . |Dα(t))

(i.e., in which the first block is a fixed unitary progressive patterned matrix instead of being a
random progressive patterned matrix). We can easily extend Lemma 31 to this distribution:

Lemma 32. Let n,m, t be three positive integers with m ≥ n and let α(i) for i ∈ {1, . . . , t}
be patterns for block progressive patterned matrix as in Definition 30. For a block random
progressive patterned matrix matrix S drawn following the distribution D̃α(1),...,α(t), there exists
a linear subspace of Fmq of dimension m− n that contains {v ∈ Fmq s.t. hw(v) = m and Sv =
0}, with probability at least 1−mq−1.

Lemma 32. We will prove Lemma 32 by induction on m.
For m = 1, since m ≥ n ≥ 1, Definition 30 implies that the the matrix S either (1) consists

simply in a single entry s1,1 which is picked uniformly at random in Fq or (2) a constant
non-null vector. In the first case, this vector is null with probability q−1 and in all cases the
set {v ∈ Fq s.t. hw(v) = 1 and Sv = 0} is therefore the empty set with probability at least
1− q−1. It is thus included in the subspace of dimension 0 with probability at least 1− q−1.

We now consider m ≥ 2 and we assume Lemma 32 proven for all block random progres-
sive patterned matrix matrix drawn from a distribution D̃α(1),...,α(t) with strictly less than m
columns.

We first assume that the matrix Υα(1),...,α(t) ∈ Fn×mq is the unitary matrix Un×m (i.e., does
not contain any zero). Then, by assumption, we have mi = 1 and α(i) = n for i ∈ {1, . . . , t}.
The matrix S is thus the concatenation of the vector 1n×1 and a matrix picked from Fn×m−1q

with the uniform distribution. Using elementary operations on the columns of S, one can
obtain a matrix of the form (

1 01×m−1

un−1 S′

)
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where un−1 ∈ Fn−1q is the all-one vector and S′ is a matrix drawn from Fn−1×m−1q with the
uniform distribution. As in the proof of Lemma 31, the matrix S′ is of full rank n − 1 with
probability at least 1− 2qn−m−2. The matrix S is thus of full rank n with probability at least
1− 2qn−m−2 and thus with probability at least 1−mq−1.

We now assume that the matrix Υα(1),...,α(t) ∈ Fn×mq contains some 0. By assumption,

there exists j ∈ {1, . . . , t} such that α(j)
mj = n and in the following, it there exist two indices

j ∈ {1, . . . , t} such that α(j)
mj = n, we select one such index different from 1.

If j = 1, by assumption we have α(i)
mi < n for all i ∈ {2, . . . , t} and the last row of the

matrix S has one coordinate equal to 1 and all other coordinates equal to 0. If v ∈ Fq is of
full Hamming weight hw(v) = m, the last coordinate of the vector Sv is always non-null and
the set {v ∈ Fq s.t. hw(v) = m and Sv = 0} is therefore the empty set. It is thus included in
the subspace of dimension 0 with probability at least 1 ≥ 1−mq−1. We therefore now assume
that j > 1.

1. We first assume that mj > 1 (i.e. that the column of index m1 + · · · + mj consists in
α
(j)
mj−1 ≥ 1 zeroes followed by α(j)

mj − α
(j)
mj−1 = n− α(j)

mj−1 ≥ 1 ones).

We consider the submatrix of Υα(1),...,α(t) ∈ Fn×mq obtained by deleting the column of

index m1 + · · ·+mj and the rows of indices i in {α(j)
mj−1+1, . . . , α

(j)
mj}. This submatrix is

a block unitary progressive patterned matrix with n′ ≤ n rows and m− 1 columns. We
can thus apply the induction hypothesis to the submatrix S′ of S obtained by deleting
the same column and the same rows. We know that with probability 1 − (m − 1)q−1,
there exist a linear subspace V ′ of dimension m − 1 − n′ that contains the set {v ∈
Fm−1q s.t. hw(v) = m− 1 and S′v = 0}.
If V ′ is of dimension 0, then {v ∈ Fm−1q s.t. hw(v) = m − 1 and S′v = 0} ⊆ {0} and
the set is the empty set. We thus have {v ∈ Fmq , hw(v) = m and Sv = 0} = ∅ and with
probability 1 − (m − 1)q−1 ≥ 1 −mq−1, there exist a linear subspace V of dimension
m− n that contains this set.

If V ′ is of dimension m− 1− n′ > 0, we can assume without loss of generality that the
deleted column of S to obtain S′ was the last one in the last block (i.e., in a block where
S is a random progressive patterned matrix since j > 1).

By permuting some rows and columns, we can write

S =

(
S′ 0n′×1
S′′ u

)
where S′ is a (n − n′) ×m − 1 matrix on which we can apply the induction hypothesis
(since mj > 1). Let v ∈ Fmq such that hw(v) = m and Sv = 0.

We write v =

(
w
τ

)
where w ∈ Fm−1q and τ ∈ Fq is a scalar. We have hw(w) = m − 1

and S′w = 0, and therefore w ∈ V ′. Since τ 6= 0 by assumption, the vector u thus
belongs to the image W of V ′ by S′′ (with probability at least 1 − (m − 1)q−1). Since
j > 1, note that u is a random vector in Fn−n′q independent from S′. We can then
conclude as in the proof of Lemma 31.

2. We now assume that mi = 1 for all i such that α(i)
mi = n for i ∈ {1, . . . , t} (i.e. that all

the columns with a one in the last row consists only of ones).

Since the matrix Υα(1),...,α(t) ∈ Fn×mq contains some 0, there exists some j ∈ {2, . . . , t}
such that mj > 1 and we consider such a j ∈ {2, . . . , t} for which α(j)

1 is minimal.
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We consider the submatrix of Υα(1),...,α(t) ∈ Fn×mq obtained by deleting the column of

index m1+ · · ·+mj−1+1 and the rows of indices in the set {1, . . . , α(j)
1 −1}. It is easy to

see that this submatrix is a block unitary progressive patterned matrix with n′ ≤ n− 1
rows and m− 1 columns. We can thus apply the induction hypothesis to the submatrix
S′ of S obtained by deleting the same column and the same rows.

We write v =

(
w
τ

)
where w ∈ Fm−1q and τ ∈ Fq is a scalar. We have hw(w) = m − 1

and S′w = 0, and therefore w ∈ V ′. Since τ 6= 0 by assumption, the vector u thus
belongs to the image W of V ′ by S′′ (with probability at least 1 − (m − 1)q−1). Since
j > 1, note that u is a random vector in Fn−n′q independent from S′. We can then
conclude as in the proof of Lemma 31.

We know that with probability at least 1 − (m − 1)q−1, there exists a linear subspace
V ′ ⊆ Fm−1q of dimension m − 1 − n′ that contains the set {v ∈ Fm−1q s.t. hw(v) =
m− 1 and S′v = 0}.
If V ′ is of dimension 0, then {v ∈ Fm−1q s.t. hw(v) = m − 1 and S′v = 0} ⊆ {0} and
this set is thus the empty set. We then have {v ∈ Fmq , hw(v) = m and Sv = 0} = ∅ with
probability at least 1− (m− 1)q−1 ≥ 1−mq−1, and so there exists a linear subspace V
of dimension m− n that contains this set.

If V ′ is of dimension m − 1 − n′ > 0, we can assume without loss of generality that
the column of S deleted to obtain S′ was the last one (by permuting the blocks of the
matrix). We have the following block-decomposition of S

S =

(
S′′ u
S′ 0n′×1

)
where S′′ is a (n − n′) × (m − 1) matrix and u a column vector of dimension (n − n′).
Note that u is a random vector in Fn−n′q independent from S′ and S′′. Let v ∈ Fmq such
that hw(v) = m and Sv = 0. Since j > 1, note that u is a random vector in Fn−n′q

independent from S′. We can then conclude as in the proof of Lemma 31.

This concludes the proof of the lemma.

Using the same arguments as above for Case 1 (but replacing Lemma 31 by Lemma 32),
we obtain that for any set I ⊆ {1, . . . , z} of cardinal n such that MI has no identically
zero column vectors, with probability at least 1 − 2n · n · q−1 over the choice of γ, we have
hw(LI · v) < n − K or MI · v 6= 0n for any vector v ∈ Fnq (where K denotes the number
of coordinates i1, . . . , iK ∈ [z] such that vi1 6= 0, . . . , viK 6= 0 and the corresponding columns
i1, . . . , iK in L and in M have no zero coefficient). .

Case 3.

We now consider the sets I ⊆ {1, . . . , n}∪{(n+3) ·n+1, . . . , z} of cardinal n for which MI has
some identically zero column vectors (i.e., I ∩{1, . . . , n} 6= ∅). For each i ∈ I ∩{1, . . . , n} 6= ∅,
the i-th column in L is the i-th vector in the canonical basis of Fnq (i.e., it corresponds to a
probe of a value ai). We can consider the submatrix of MI and LI in which we delete for each
i ∈ I ∩ {1, . . . , n} 6= ∅, the i-th column and the i-th row. We denote ρ = #I ∩ {1, . . . , n} 6= ∅.

Let us denote M′
I and L′I the corresponding matrices (with m′ = m− ρ columns). These

matrices are of the form handled in the previous Case 2 (withm′ < m). The previous argument
shows therefore that with probability at least 1−2n ·n ·q−1, we have hw(L′I ·v) < n−ρ−K or
M′

I ·v 6= 0n for any vector v ∈ Fm′q (whereK denotes the number of coordinates i1, . . . , iK ∈ [z]
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such that vi1 6= 0, . . . , viK 6= 0 and the corresponding columns i1, . . . , iK in L and in M have
no zero coefficient).

Going back to the original matrices LI and MI we have shown for any set I ⊆ {1, . . . , n}∪
{(n+ 3) · n+ 1, . . . , z} of cardinal n, with probability at least 1− 2n · n · q−1 over the choice
of γ, we have hw(LI · v) < n −K or MI · v 6= 0n for any vector v ∈ Fnq (indeed a vector v
satisfies MI · v = 0n if an only if M′

I · v′ = 0n where v′ denotes the restriction of v to the
support I ∩{1, . . . , n} and the Hamming weight of hw(LI ·v) is at smaller than hw(LI ·v′)+ρ
since at most ρ positions can be set arbitrarily..

Case 4.

We now consider all sets I ⊆ {1, . . . , z} (with no restrictions). Without loss of generality, we
can assume that all not identically zero column vectors in MI are pairwise distinct. Indeed, if
two columns are equal, they come either from the two submatrices In of M, or from the first
column vectors of a submatrix In and the submatrix Tn, or from the first column vectors of
a submatrix Dγ,i for some i ∈ {1, . . . , n} and the corresponding submatrix Tγ,i. In all these
cases, one can replace the index of the second vector in I by an index in {1, . . . , n − 1} (and
modify the vector accordingly ) in such a way that MI′ for the new set I ′ has a new null
column vector for each duplicate in the original matrix MI .

We can now delete the columns corresponding to the null vectors as in Case 3 (i.e., for each
i ∈ I∩{1, . . . , n+1} 6= ∅, the i-th column and the i-th row in MI and LI). The only difference
occurs if a column in MI is equal to the i-th vector in the canonical basis (for i ≥ 2) or to
the scalar multiplication of this vector by some element of the matrix γ ∈ Fq (corresponding
to the cases I ∩ {n+ 1, . . . , 2n} 6= ∅ and I ∩ {2n+ 1, . . . , (n+ 3) · n+ 1} 6= ∅ respectively). As
in Case 3, we can delete the corresponding column and row in MI and LI (i.e., it corresponds
to a probe of a value ri, a value ai + ri or a value ai + γj,iri).

As above, if we denote M′
I and L′I the corresponding matrices (with m′ columns and

n′ < n and n′ + 1 rows, respectively), the previous argument shows that with probability at
least 1 − 2n · n · q−1, we have hw(L′I · v) < n′ − K or M′

I · v 6= 0n for any vector v ∈ Fm′q
(where K denotes the number of coordinates i1, . . . , iK ∈ [z] such that vi1 6= 0, . . . , viK 6= 0
and the corresponding columns i1, . . . , iK in L and in M have no zero coefficient).

Going back to the original matrices LI and MI we have shown for any set I ⊆ {1, . . . , z} of
cardinal n, with probability at least 1−2n·n·q−1 over the choice of γ, we have hw(LI ·v) < n−K
or MI · v 6= 0n for any vector v ∈ Fnq

A.3.1 Conclusion

. By the union on all such sets, we obtain that the probability that, for γ picked uniformly at
random in Fn×nq , the matrix M satisfies Condition 3, i.e., for any vector v ∈ Fzq of Hamming
weight hw(v) ≤ n we have hw(L · v) < n−K or M · v 6= 0n is at least

1−
(
z

n

)
2n · n · q−1 = 1−

(
(2n+ 4) · n+ 1

n

)
2n · n · q−1.

The binomial coefficient in this lower-bound is always less than (6n)n (this can be checked
by hand for small values of n and it follows for large values using the classical upper-bound(
r
s

)
≤ ((r · exp(1))/s)s). We thus obtain the claimed bounds and this concludes the proof.
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