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Abstract 

On a worldwide scale, breast cancer, glioblastoma, and ovarian cancer present a significant health 

obstacle, being responsible for cancer-related fatalities. Cancer etiological factors are assorted into 

genetic or environmental risk factors of which viruses are estimated to contribute to 20% of all 

cancer cases. Human cytomegalovirus (HCMV) is a herpesvirus that infects a substantial portion 

of the global population, ranging from 40% to 95%. The variability in the HCMV genome may 

contribute to its oncomodulatory potential, as it can promote the initiation and dissemination of 

cancerous cells. Recently, increasing attention has been directed towards the oncogenic role of 

HCMV, particularly high-risk HCMV strains that can directly induce transformation in primary 

cells. Polyploid giant cancer cells (PGCCs), have been definitively shown to exhibit cancer stem 

cells (CSCs) characteristics. These PGCCs give rise to descendant cells through asymmetric 

division, the latter express markers associated with epithelial-mesenchymal transition (EMT), 

which in turn promotes invasion and migration. Research indicated that PGCCs generation can be 

triggered by anti-cancer therapies. PGCCs presence has been particularly linked to cases with poor 

prognosis, contributing to tumor relapse and resistance to therapy. Previous investigations by our 

group have highlighted the presence of PGCCs containing HCMV in cancer biopsies, establishing 

a noteworthy correlation between the presence of PGCCs and HCMV.  

HCMV has been implicated in oncogenesis, particularly in breast cancers, glioblastoma (GBM), 

and epithelial ovarian cancer. Herein, we investigated the oncogenic potential of HCMV in various 

cancer contexts and explored the molecular mechanisms and transforming capabilities of different 

HCMV strains isolated from these distinct cancer types and their impact on patient outcomes. To 

start with breast cancer, we assessed HCMV-B544 and B693 strains, isolated from 

EZH2HighMycHigh triple-negative breast cancer (TNBC) biopsies. These strains transformed 

human mammary epithelial cells (HMECs) resulting in CMV-Transformed-HMECs (CTH cells) 

and PGCCs displaying stemness phenotype. Notably, HCMV persists in long-term cultures, 

indicating sustained viral replication with alternance of lytic and latent states. In glioblastoma, 

HCMV was explored as a reprogramming vector, dedifferentiating mature human astrocytes into 

CMV-Elicited Glioblastoma Cells (CEGBCs) with glioblastoma-like traits. HCMV influences the 

transformation, invasion, and spheroid formation processes, correlating with increased EZH2 and 
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Myc expression in GBM biopsies. Eleven clinical HCMV strains isolated from GBM tissues 

further validated their role in glioblastoma oncogenesis. These CEGBCs exhibit sensitivity to 

therapeutic interventions, including an EZH2 inhibitor, ganciclovir, and temozolomide triple 

therapy, offering potential avenues for glioblastoma treatment. In the context of high-grade serous 

ovarian carcinoma (HGSOC), HCMV-DB and BL high-risk strains transformed ovarian epithelial 

cells (OECs) into "CMV-transformed Ovarian cells" (CTO). HCMV infection was associated with 

EZH2 upregulation and the presence of PGCCs with cancer stem cell-like properties expressing 

EMT markers. From HGSOC biopsies, we isolated three clinical HCMV strains. The high-risk 

strains transformed OECs resulting in CTO cells that displayed proliferative capacities and 

revealed an increase in EZH2 levels, along with the generation of PGCCs. Notably, the observed 

features were curtailed upon the inhibition of EZH2.  

All in all, this study emphasizes the diverse oncogenic potential of HCMV in breast cancer, 

glioblastoma, and ovarian cancer, shedding light on molecular mechanisms, transformation 

processes, and targeted therapies that may improve the overall survival of cancer patients. 

Keywords : Human Cytomegalovirus, High-risk strains, oncogenesis, PGCCs, Myc, EZH2, CTH 

cells, CEGBCs, CTO cells, breast cancer, glioblastoma, high-grade serous ovarian carcinoma. 
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Résumé 

Le cancer du sein, le glioblastome et le cancer de l'ovaire représentent un problème majeur de santé 

publique. Les facteurs étiologiques du cancer se répartissent en facteurs de risque génétiques ou 

environnementaux, parmi ces derniers les virus contribueraient à environ 20% de tous les cas de 

cancer. Le cytomégalovirus humain (HCMV) est un virus herpès qui infecte une part importante 

de la population mondiale, avec une prévalence de 40% à 95%. La variabilité génomique du 

HCMV pourrait contribuer à son potentiel oncomodulateur, car il semble accélérer les mécanismes 

d’oncogenèse. Les cellules cancéreuses géantes polyploïdes (PGCC) ont des caractéristiques 

semblables à celles des cellules souches cancéreuses (CSC) et donnent naissance à des cellules 

« filles» lesquelles expriment des marqueurs associés à la transition épithélio-mésenchymateuse 

(TEM). La présence de PGCC est particulièrement observée dans les cancers de mauvais pronostic. 

De précédentes études de notre groupe ont mis en évidence la présence de PGCC infectées par le 

HCMV dans les biopsies de cancer du sein, évoquant ainsi un rôle oncogène direct du HCMV, 

notamment de certaines souches virales « à haut risque ». Le HCMV a été suggéré comme 

participant à l'oncogenèse, en particulier dans les cancers du sein, le glioblastome et le cancer 

épithélial de l'ovaire. Notre travail de thèse a consisté à examiner le potentiel oncogène du HCMV 

dans ces cancers. Nous avons évalué les souches virales HCMV-B544 et B693, isolées de biopsies 

de cancer du sein triple négatif EZH2HighMycHigh. Ces souches virales transforment les cellules 

épithéliales mammaires humaines (HMEC), donnant naissance à « des cellules HMEC 

transformées par le CMV » (cellules CTH) d’une grande hétérogénéité cellulaire comprenant 

notamment des PGCC présentant des traits de cellules souches. Une persistance du HCMV est 

notée dans les cultures à long terme, indiquant une réplication virale continue avec alternance de 

phase lytique et de latence. Dans le glioblastome, le HCMV a été étudié en tant que vecteur de 

reprogrammation, dédifférenciant les astrocytes humains matures en « cellules glioblastomateuses 

induites par le CMV » (cellules CEGBC) présentant des caractéristiques similaires aux cellules de 

malades. Le HCMV favorise la transformation cellulaire, l'invasion et la de formation de 

sphéroïdes, corrélé avec une augmentation de l’expression d'EZH2 et de Myc observée également 

dans les biopsies de glioblastome provenant de malades. Onze souches cliniques de HCMV ont 

été isolées à partir de biopsies de glioblastome de malades qui reproduisent la transformation 
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d’astrocytes normaux en cellules glioblastomateuses suite à l’infection virale. Ces cellules CEGBC 

sont sensibles aux interventions thérapeutiques, notamment à un inhibiteur d'EZH2, au ganciclovir 

et à une triple thérapie incluant temozolomide-inhibiteur d’EZH2-ganciclovir, offrant ainsi des 

perspectives nouvelles pour le traitement de ce cancer de très mauvais pronostic. Concernant le 

cancer séreux épithélial de l'ovaire de haut grade (HGSOC), les souches « à haut risque » HCMV-

DB et de BL transforment les cellules épithéliales ovariennes (OEC) en "cellules ovariennes 

transformées par le CMV" (cellules CTO). Dans ces cellules CTO une augmentation de 

l'expression d'EZH2 ainsi que la présence de PGCC avec des traits de cellules souches cancéreuses 

avec TEM ont été observées. À partir de biopsies de HGSOC, nous avons réussi à isoler trois 

souches cliniques de HCMV qui en infectant les cellules OEC donnent naissance à des cellules 

CTO hautement prolifératives surexprimant EZH2 et générant des PGCCs ; leur transformation 

étant réduite par les inhibiteurs d’EZH2 in vitro. En résumé, notre travail met en évidence le 

potentiel oncogène du HCMV dans trois cancers graves, en dévoilant certains des mécanismes 

moléculaires mis en œuvre lors de la transformation cellulaire et ouvre la voie à des thérapies 

ciblées qui pourraient améliorer la survie des patients. 

Mots clés: Cytomégalovirus humain, souches virales à haut risque, oncogenèse, PGCCs, Myc, 

EZH2, cellules CTH,  CEGBCs, cellules CTO, cancer du sein, glioblastome, cancer séreux 

épithélial de l'ovaire de haut grade 
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Chapter 1 

1 Human Cytomegalovirus (HCMV) in Focus:An Overview of the Virology, Immunology, 

and Clinical Aspects 

1.1 Herpesviridae Family and HCMV Discovery 

Herpesviridae is a family of viruses that includes a large and diverse group of viruses known as 

herpesviruses. These viruses are characterized by their ability to establish latent infections by 

remaining dormant within the host's body and reactivate later under certain conditions. 

Herpesviruses can infect a wide range of species [1,2]. The family Herpesviridae is divided into 

three subfamilies: Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae. Each 

subfamily has distinct characteristics in terms of virus-host interactions, replication strategies, and 

clinical manifestations. To start with Alphaherpesvirinae, these viruses are known for their rapid 

replication cycle and ability to establish lytic and latent infections, they are often associated with 

lesions and sores on the skin and mucous membranes. Examples of alphaherpesviruses include 

Herpes simplex virus 1 (HSV-1), Herpes simplex virus 2 (HSV-2), and Varicella-zoster virus 

(VZV), which causes chickenpox and shingles. Second, the Betaherpesvirinae comprising 

betaherpesviruses that have a slower replication cycle compared to alphaherpesviruses; they are 

often associated with persistent infections and can cause long-term health issues. Human 

Cytomegalovirus (HCMV), also known as Human Herpesvirus 5 (HHV-5), belongs to this 

subfamily, within the genera Cytomegalovirus. On the other hand, we have HHV6A, HHV6B, and 

HHV7, which belongs to the genera Roseolovirus. Third, the Gammaherpesvirinae including 

Gammaherpesviruses that are associated with certain types of cancers, particularly in 

immunocompromised individuals. Epstein-Barr virus (EBV) or (HHV4), belonging to genera 

Lymphocryptovirus, is associated with infectious mononucleosis and various cancers, and Kaposi's 

sarcoma-associated herpesvirus (KSHV) or (HHV8), belongs to genera Rhadinovirus [1,3]. Both 

viruses are classified as oncogenic pathogens that infect lymphoblastoid cells such as T or B 

lymphocytes and establish latency. However, it's worth noting that a lytic infection has also been 

observed in epithelioid and fibroblastic cells [3]. 

One of the numerous breakthroughs and advancements documented during the 20th century 

involved the identification and characterization of HCMV, which stands as one of the most 
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prevalent viruses and opportunistic pathogens encountered worldwide. Within this discovery, 

several specific dates stand out [4,5]. In 1881, the German pathologist Ribbert documented the 

presence of cells containing inclusions in the kidney of a stillborn infant affected by syphilis and 

in the parotid gland of an infant. These same "protozoan-like" cells were also observed by Jesionek 

and Kiolemenoglou in 1904 in the lungs, kidneys, and liver of an 8-month-old fetus with syphilis 

and by Löwenstein in 1907. These cells, characterized by their large eccentrically placed nuclei, 

appear to represent the earliest descriptions of typical cytomegalic cells, which were later termed 

'cytomegalia' in 1907 [6]. In 1921, Goodpasture and Talbert first suggested a definitive connection 

between viral diseases and cells exhibiting characteristic intranuclear inclusion bodies. This 

concept was further elucidated by Wyatt et al., who later in 1932 referred to it as "generalized 

cytomegalic inclusion disease (CID)." This notion was in alignment with the observations and 

hypotheses put by other researchers, such as Von Glahn, Pappenheimer, Minder, and others. 

Significantly, the mid-1950s saw a breakthrough with the advent of human cell culture techniques, 

enabling the isolation of a virus that was later identified as cytomegalovirus [6]. This achievement 

was the result of independent efforts by three different laboratories: Smith in 1956, Rowe and 

colleagues in 1956, and Weller and colleagues in 1957. It was subsequently named 

'cytomegalovirus' (CMV) [7,8]. This marked a significant milestone in advancing our 

comprehension of various aspects of the virus, including but not limited to epidemiology, structure, 

life cycle, replication, latency, pathogenesis, and treatment modalities. These advancements were 

greatly facilitated by the development of animal models for studying CMV's pathogenesis [9]. 

1.2 HCMV Genome 

HCMV stands out as having the largest genome among human herpesviruses, spanning a length 

of 235 kilobases (kb) [10]. This genome comprises a linear double-stranded DNA (dsDNA) helix, 

with more than 751 translated open reading frames (ORFs) [11,12]. Furthermore, HCMV produces 

polyadenylated non-coding RNAs, including four notable long non-coding RNAs (lncRNAs), 

notably RNA2.7, RNA1.2, RNA4.9, and RNA5.0 [13]. Additionally, it generates non-

polyadenylated RNAs, such as microRNAs, which play pivotal roles in various processes like 

regulating host cell metabolism, immune evasion, and the maintenance of latency [14]. The 

genome of HCMV is highly complex and encodes a wide range of proteins involved in various 
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aspects of the virus's life cycle, including replication, immune evasion, and pathogenesis. The 

organization of the HCMV genome adheres to the characteristic architecture of herpesviruses 

classified under class E [15]. HCMV genome features two inverted domains: the unique long (UL) 

and unique short (US) domains, each flanked by a pair of inverted repeats, one at the terminal end 

(terminal repeat long/internal repeat long (TRL/IRL)) and the other at the junction with the other 

unique domain (internal repeat short/terminal repeat short (IRS/TRS)). This results in a genome 

organization denoted as TRL–UL–IRL–IRS–US–TRS. Consequently, HCMV gene annotations are 

based on their respective positions within these genome segments, specifically UL, US, IRL, IRS, 

TRL, and TRS (Figure 1) [16]. 

 

Figure 1: Schematic representations comparing genome organizations.  

Genome organizations of various human herpesviruses including varicella zoster virus (VZV), human simplex virus 

(HSV), and Epstein-Barr virus (EBV). The labels within each segment of the genome illustrate the following 

characteristics: terminal repeat long (TRL), unique long (UL), unique short (US), internal repeat long (IRL), internal 

repeat short (IRS), terminal repeat short (TRS), and internal repeat (IR). Adapted from Crough et al [17]. 

 

HCMV displays a remarkably broad tropism, encompassing a diverse range of cell types including 

epithelial cells, fibroblasts, endothelial cells, monocytes and macrophages, dendritic cells, smooth 

muscle cells, neural cells, and placental cells [18].  This trait can significantly impact the 

pathogenesis of acute HCMV infections in vivo. For instance, infecting epithelial cells facilitates 

transmission between hosts, while infecting endothelial and hematopoietic cells can support 

systemic spread within the host. Additionally, infecting ubiquitous cell types, such as fibroblastic 

and smooth muscle cells, provides a conducive environment for efficient viral proliferation 

[18,19]. It's worth emphasizing that HCMV tropism varies considerably among different HCMV 
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strains and is primarily influenced by variations within the UL128-131 gene locus. This region has 

been associated with viral persistence, reactivation, and the ability to infect different cell types. 

The resulting genetic differences account for inter-strain variations in viral entry. Notably, the 

UL128, UL130, and UL131 proteins form complexes with the virion envelope glycoprotein 

gH/gL, specifically the pentamer gH/gL/UL128-131. This complex is responsible for mediating 

entry into epithelial and endothelial cells [20,21]. Furthermore, laboratory-adapted strains, such as 

the widely used reference strain AD169 and other well-known strains like Towne or Davis, have 

lost substantial DNA fragments within their ULb’ region due to extensive passaging in human 

fibroblast cell cultures. Consequently, these laboratory strains replicate efficiently in fibroblasts 

but exhibit limited replication in other cell types like endothelial or epithelial cells. This is in 

contrast to clinical isolates, which replicate less efficiently in cultured cells but demonstrate nearly 

equivalent replication efficiency in endothelial cells [22–24]. Understanding the role of the 

UL128-131 gene locus and its impact on viral entry and tropism is essential for unraveling the 

complex interactions between HCMV and its host. This knowledge has implications for vaccine 

development and antiviral strategies aimed at targeting specific strains or cell types. 

1.3 Virion Structure 

The HCMV virion structure consists of several components (Figure 2) that are orchestrated to 

ensure successful attachment, entry, and establishment of infection in target cells [25]. 
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Figure 2: HCMV Virion.  

Double-stranded DNA genome is enclosed within an icosahedral symmetry capsid which is further enveloped by a 

layer called tegument. Mature virions are enveloped; viral glycoproteins protrusions are found on the envelope surface. 

This description has been adapted and altered based on Tomtishen's work [24]. 

 

1.3.1 The Envelope 

The HCMV virion is enveloped by a lipid bilayer derived from the host cell membrane during the 

process of virus assembly and budding. The lipid bilayer is approximately 10 nm thick and contains 

a minimum of 19 integral membrane proteins that play a crucial role in binding to host cells, 

facilitating viral entry, and, in some instances, evading the host immune response by sequestering 

human chemokines [21,26]. Among these proteins, key players in virus entry, cell-to-cell 

transmission, and virion maturation include viral glycoproteins like gpUL55 (gB), gpUL73 (gN), 

gpUL74 (gO), gpUL75 (gH), gpUL100 (gM), gpUL115 (gL), and the pentameric complex 

composed of gL, gH, and UL128-131 [21]. 

1.3.2 The Capsid 

Measuring about 100 nm in diameter, the icosahedral HCMV capsid, also known as the nucleo-

capsid, serves as the innermost core layer of the virion particle. It’s a proteinaceous shell that 

encloses the viral genome. Its primary roles are to safeguard and deliver the genetic material to the 
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host cell's nucleus. This capsid is constructed from a minimum of five distinct proteins, which are 

meticulously organized into 162 capsomeres. These five proteins encompass the major capsid 

protein (UL86), the minor capsid protein (UL85), the smallest capsid protein (UL48-49), the 

assembly protein comprising fragments of UL80, and the minor capsid binding protein (UL46) 

[27,28]. 

1.3.3 The Tegument 

The tegument layer in the HCMV virion is around 50 nm thick and occupies the space between 

the lipid envelope and the protein capsid [29]. This layer is characterized by its high protein 

content, accounting for approximately half of all viral proteins present in an infectious virion. 

Many of these proteins are phosphorylated. These proteins play crucial roles in various aspects of 

the viral life cycle, including replication, gene expression regulation, viral particle assembly, 

immune system evasion, and other essential functions. Beyond viral proteins, the tegument layer 

also contains approximately 70 cellular proteins, as well as viral and cellular RNAs [30,31]. 

1.4 HCMV Life Cycle 

The HCMV life cycle is a complex process involving various stages from viral attachment and 

entry into host cells to replication, assembly, and release of new virions [32]. 

1.4.1 Attachment and Viral Entry 

During the viral entry process, HCMV achieves its tropism by employing cell receptor-mediated 

endocytosis, which is facilitated by virally encoded glycoproteins binding to specific cellular 

receptors. This entry mechanism can be delineated into three key stages. Initially, the virus adheres 

to the host cell's surface by binding to heparan sulfate glycosaminoglycans via the virion 

glycoprotein B (gB) in conjunction with the glycoprotein M/glycoprotein N complex [33]. 

Subsequently, there is an interaction with entry receptors located on the host cell membrane, 

including integrins and epidermal growth factor receptors (EGFRs), both of which bind to gB 

[34,35]. The third step involves either the internalization of the viral particle or the fusion of the 

viral envelope with the cell membrane, a process also mediated by gB. In addition to gB, this step 

may involve the trimeric complex comprised of glycoprotein H, glycoprotein L, and glycoprotein 

O (gH/gL/gO) in fibroblasts, likely due to interactions with platelet-derived growth factor-α 
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(PDGF-alpha). In epithelial and endothelial cells, it may alternatively entail the pentameric 

complex of glycoproteins gH/gL, in conjunction with UL128-131 [36,37]. 

 

1.4.2 Lytic Cycle 

Viral tegument proteins that are bound to the capsid engage with the host microtubule machinery, 

leading to the transportation of viral capsids to the nuclear envelope and subsequently into the 

nucleus, where the viral DNA is released [38]. Within this context, two crucial players in 

nucleocapsid translocation, uncoating, and the release of the viral genome are the large tegument 

protein (product of UL48) and the large tegument protein binding protein (product of UL47) 

[39,40]. In the nucleus, the processes of viral transcription, genome replication, and encapsidation 

occur. Lytic replication is a regulated sequence of events, with immediate early genes (IE) being 

expressed first, followed by early (E) and late genes (L). The IE gene products function as 

transcription factors and expression regulators for the E and L genes. The E proteins primarily 

interact with host proteins while also impacting the transcriptional and replication machinery for 

viral proteins. The L proteins serve primarily as structural components of the virions, and they also 

encompass proteins crucial for the assembly and release of infectious particles [41–43]. In this 

intricate process, UL54 (the viral DNA polymerase) and UL70 (DNA primase) play pivotal roles 

in regulating the replication machinery and ensuring an efficient production of new virus progeny. 

Additionally, various viral-encoded proteins contribute to the regulation of cell signaling pathways 

and cellular metabolism, as well as the inhibition of initial steps in the immune response to support 

viral replication and immune evasion [44–48]. For instance, the viral US3 protein sequesters the 

major histocompatibility complex (MHC) class I within the endoplasmic reticulum (ER), while 

the US2 and US11 proteins induce the destruction of class I heavy chains, thereby impeding viral 

clearance by cytotoxic T lymphocytes (CTL) [49]. 

The nucleocapsid, containing DNA, assembles within the nucleus and exits into the cytoplasm by 

inducing changes in nuclear lamina components. This process is facilitated by two highly 

conserved viral proteins, specifically pUL50 and pUL53 [50]. The assembly and transportation of 

virions involve the integration of various cellular trafficking pathways such as the hijacking of the 

endoplasmic reticulum (ER), Golgi apparatus, and endosomal machinery, forming the cytoplasmic 
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viral assembly complex. It is within this complex that capsids acquire their tegument layer and 

viral envelope from intracellular vesicles [51]. Subsequently, infectious particles are released 

either by fusing with the plasma membrane or by causing cell lysis, releasing them into the 

extracellular space (Figure 3) [52]. Beside mature virions, two types of defective particles are also 

released: dense bodies (DBs) and non-infectious enveloped particles (NIEPs) [53]. DBs are larger 

and denser than mature virions, ranging in size from approximately 250 to 600 nm in diameter; 

they contain most of the structural proteins but lack a viral genome, which is normally packed into 

the protective capsid. NIEPs are similar in size to virions but lack a viral genome [54]. The entire 

lytic replication cycle for HCMV  takes approximately 72 hours before new mature virions are 

prepared to infect further cells, either through release from the infected cells or via cell-to-cell 

transmission mechanisms [55]. 

 

 

Figure 3: HCMV Life cycle.  

The life cycle of HCMV involves a series of steps. Initially, HCMV gains entry into the host cell through the 

interaction of host receptors with specific viral glycoproteins. Following this, capsid and tegument proteins are 

liberated into the host cytosol. The capsid then releases the viral genome into the nucleus, initiating the expression of 

immediate early (IE) genes. These IE proteins, in turn, activate the expression of early (E) genes. Early proteins boost 
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viral genome replication and the expression of late (L) genes. The L gene expression leads to capsid assembly and the 

expression of tegument and glycoproteins. The genome loaded capsid exits the nucleus through nuclear egress and 

associates with the tegument proteins. Subsequently, the capsid acquires a viral envelope by budding into intracellular 

vesicles. Finally, these enveloped viral particles are released into the extracellular space, completing the HCMV life 

cycle. Figure has been adapted from Crough et al [17]. 

 

1.4.3 Latent Cycle 

Latency in the context of HCMV infection refers to a dormant phase where the viral genome is 

retained without active virus replication or the release of infectious viral particles, occasionally 

interrupted by reactivation events [56]. Multiple latency reservoirs have been identified in the 

blood and bone marrow including mainly CD34+ hematopoietic progenitor cells and CD14+ 

monocytes. HCMV reactivation could be triggered by monocytes harboring latent viral genomes 

differentiating into macrophages or dendritic cells (DCs) [57,58]. During latency, only a limited 

set of genes are expressed, including genes from the UL133-UL138 locus, UL144, the latent 

unique nuclear antigen (LUNA), the US28 viral G-coupled receptor and chemokine receptor 

homologue, the latency-associated viral homolog of IL-10 (LAcmvIL-10) encoded by UL111A, a 

shorter variant of the UL123-encoded IE1 protein (IE1×4), a transcript associated with latency 

originating from a distant promoter within the MIE region, and long non-coding RNAs of 2.7 kb 

and 4.9 kb [59]. The establishment of HCMV latency is a complex process that involves epigenetic 

silencing of the viral genome through chromatin remodeling around the viral major immediate 

early promoter (MIEP) and the presence of latency-associated repressors. Histone 

methyltransferases (HMTs) and histone deacetylases (HDACs) play roles in maintaining latency 

[60–62]. Cellular defenses and controls, such as nuclear domain 10 (ND10) structures or 

promyelocytic leukemia protein (PML) nuclear bodies, also contribute to suppressing viral 

replication by modifying chromatin around the viral MIEP [63–65]. On the other hand, reactivation 

involves the transition to lytic replication [66]. Various factors can trigger this switch, including 

cellular differentiation, stress conditions, and certain drugs like histone deacetylase inhibitors; the 

latter have been shown to alleviate the repressive marks on chromatin, resulting in IE gene 

expression [67]. Reactivation of latent HCMV can have significant clinical consequences, ranging 

from severe inflammatory conditions in immunocompromised patients to complications like 

allograft rejection and graft-versus-host disease in transplant recipients [68,69].  
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1.5 HCMV Prevalence and Spread 

HCMV is widely recognized as a ubiquitous virus, with seroprevalence rates ranging from 40% to 

90% in the adult population [70]. HCMV infection is considered endemic and doesn't exhibit 

seasonal variations [71]. The prevalence of HCMV infection varies depending on geographic and 

socioeconomic factors. In developing regions, more than 90% of preschool children are found to 

have acquired HCMV during early childhood. In contrast, in industrialized countries, less than 

20% of children are seropositive [72,73]. As individuals age, the percentage of seropositive 

individuals continues to rise, reaching levels between 40% and 70% [74]. 

The transmission of HCMV is influenced by a multitude of potential sources of exposure [75]. The 

primary route for acquiring HCMV is the direct contact with body fluids from an infected 

individual. These fluids encompass saliva, oropharyngeal secretions, urine, cervical and vaginal 

secretions, semen, breast milk, allografts, and blood products from donors who are seropositive 

[74]. Another means of contracting the virus is through perinatal or vertical transmission, where 

HCMV is transmitted through the placenta, a condition known as congenital infection. It's 

important to mention that infected infants typically excrete substantial amounts of the virus for 

months to years following infection, as do older children and adults following a primary HCMV 

infection [76]. 

1.6 Clinical Aspects of HCMV and HCMV-Related Diseases 

HCMV infection is mostly asymptomatic yet it can result in a mild illness in immunocompetent 

individuals. Primary HCMV infection can occasionally lead to a mild syndrome resembling 

mononucleosis [77]. On the contrary, severe CMV disease occurs in individuals with immature, 

suppressed, or compromised immune systems, such as neonates, transplant recipients receiving 

immunosuppressive drugs, and patients with AIDS. This severe form of the disease can have life-

threatening consequences or cause significant long-term complications [78]. These complications 

encompass a wide range of potential clinical manifestations due to the virus's ability to spread 

through the bloodstream and infect various tissues. This includes gastrointestinal issues, 

respiratory problems, hematological abnormalities, cardiovascular complications, neurological 

symptoms, and urological manifestations. Additionally, severe HCMV infection can indirectly 
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lead to atherosclerosis acceleration, graft rejection, and increased susceptibility to opportunistic 

infections [17]. In cases of congenital HCMV infection, approximately 90% of infected infants 

show no symptoms at birth, although about 5% of them may develop complications later in life 

[79]. Common initial symptoms include jaundice, petechiae, and hepatosplenomegaly [80]. Major 

long-term complications of congenital HCMV infection encompass prematurity, restricted 

intrauterine growth, hypotonia, poor feeding, cerebral ventriculomegaly, microcephaly, 

intracranial periventricular calcifications, sensorineural hearing loss, and, in 10 to 20% of affected 

infants, chorioretinitis and mental retardation [81,82].  

1.7 HCMV Detection and Diagnosis 

Numerous diagnostic approaches are accessible for detecting HCMV infection, primarily 

encompassing serological testing, virus culture, identification of viral antigens, and CMV DNA 

detection through polymerase chain reaction (PCR) [83]. 

1.7.1 Serology 

This method relies on assessing the levels of IgM and IgG antibodies in the serum or plasma of 

patients. The enzyme-linked immunosorbent assay (ELISA) is the most commonly employed 

technique. The presence or absence of CMV IgG serves as a marker to identify whether the 

individual has previously experienced a CMV infection. Meanwhile, the detection of IgM 

antibodies has been employed as an indicator of a recent, acute infection, or viral reactivation 

[81,84]. Furthermore, by determining the avidity of IgG antibodies, it will be possible to 

differentiate between an early primary infection  (low avidity) and a latter infection (high avidity) 

during pregnancy [85]. 

1.7.2 Virus Culture 

The conventional method for detecting HCMV is through traditional cell culture. In this approach, 

clinical samples are introduced to human fibroblast cells (MRC5 cells), and their development is 

observed over a period ranging from 2 to 21 days. The presence of cytopathic effects (CPE), 

characterized by clusters of flattened and swollen cells, is then directly correlated with the virus's 

titer. However, the limitation of this method is the extended time required, with results often taking 

2 to 3 weeks. To expedite this process, an alternative approach involves the detection of viral 
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antigens using monoclonal antibodies directed against CMV immediate-early viral antigens via 

indirect immunofluorescence after a 16-hour incubation period [86,87]. 

1.7.3 Identification of Viral Antigens 

This assay relies on the detection of the viral pp65 antigen within blood specimens, specifically 

within leukocytes, as this antigen is expressed in these cells during the early stages of the HCMV 

replication cycle [88]. An immunofluorescence assay that identifies pp65 in a sample of peripheral 

blood leukocytes not only allows for the quantification of positive leukocyte nuclei but also closely 

correlates with viremia and the severity of clinical disease in immunosuppressed populations [89]. 

However, a significant limitation of this technique is its lack of automation, requiring skilled 

individuals for accurate test execution and result interpretation. Furthermore, results should be 

assessed within a 6-hour window, as delays in processing can significantly reduce the assay's 

sensitivity, potentially leading to false-negative results, especially in patients with neutropenia 

[90,91]. 

1.7.4 PCR Amplification 

PCR is a widely accessible, rapid, sensitive and specific method for detecting HCMV in various 

types of samples, including blood, leukocytes, plasma, tissue biopsy specimens, and fluids for 

instance urine, bronchoalveolar lavage, or cerebrospinal fluid [92]. PCR for HCMV DNA can be 

conducted in either a qualitative or quantitative manner (Real-Time PCR), enabling continuous 

monitoring of immunocompromised individuals to identify those at risk for HCMV-related 

diseases, implement preemptive therapy, and assess treatment response [93]. Additionally, the 

detection of viral mRNA transcripts in peripheral blood leukocytes can be accomplished through 

reverse transcriptase PCR (RT-PCR) during active HCMV infection. However, it's worth noting 

that this method is less sensitive than the pp65 antigen test and PCR in diagnosing HCMV-related 

diseases [94].  

1.8 Therapeutic Approaches for HCMV Infection 

Effective management of HCMV infection is particularly important for immunocompromised 

individuals, such as transplant recipients and people with HIV/AIDS, as well as newborns infected 

with HCMV [95]. Below are the approved therapies for HCMV, their mechanism of action, and 
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their associated benefits and potential adverse effects in addition to the ongoing research and 

emerging therapies that hold promise for improving the therapeutic strategies against HCMV 

infection, offering better patient outcomes [96]. 

1.8.1 HCMV Antivirals 

Most of the current FDA-approved drugs for treatment of HCMV, including ganciclovir, 

valganciclovir, foscarnet, cidofovir, letermovir, and Maribavir target late stages of the virus life 

cycle including viral replication and DNA packaging with varying efficacy and dose-related 

cytotoxicity [97]. 

1.8.1.1 Ganciclovir (GCV) is a nucleoside analogue commonly used to treat HCMV infections, 

especially in immunocompromised individuals [98]. GCV and its valine ester derivative, 

valganciclovir (VGCV), are primary treatments for CMV disease. GCV is phosphorylated by the 

HCMV kinase pUL97 to create ganciclovir monophosphate, which accumulates in infected cells, 

inhibiting viral DNA replication. While GCV can add one more base to the DNA chain, it triggers 

nucleotide removal downstream, preventing further elongation. GCV selectively targets infected 

cells due to its activation by a viral kinase and superior inhibition of viral DNA polymerase over 

cellular DNA polymerase. Resistance usually arises from UL97 and UL54 mutations. VGCV 

improves GCV absorption but can lead to adverse effects like neutropenia and nephrotoxicity. 

VGCV has received approval for use in both the initiation and maintenance treatment of AIDS-

related HCMV retinitis. It is also administered for the prevention of HCMV infection and related 

complications in individuals who have undergone kidney, pancreas, or heart transplantation 

[99,100]. 

1.8.1.2 In case of GCV resistance, Foscarnet (FOS), a pyrophosphate analogue, can be used for 

the treatment of HCMV infections. FOS represents the second medication authorized for 

addressing HCMV retinitis in AIDS patients. It acts by inhibiting viral DNA polymerase. Unlike 

some other drugs, FOS doesn't rely on viral kinase-mediated intracellular phosphorylation to exert 

its antiviral effects, nor does it become incorporated into the developing viral DNA chain. This 

unique feature positions it as the preferred rescue therapy for patients encountering treatment 

challenges due to GCV-resistant HCMV strains or those experiencing GCV-induced neutropenia 
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or leucopenia. However, FOS does come with potential adverse effects including nephrotoxicity 

as well as hypocalcemia, hypomagnesemia, and hypokalemia, which could be associated with 

seizures [101,102]. 

1.8.1.3 Cidofovir (CDV) is a second-line treatments for GCV and FOS-resistant cases. CDV is 

classified as an acyclic nucleoside phosphonate analogue. Its primary indication is for treating 

HCMV retinitis in AIDS patients. It is formulated for intravenous use because of its limited oral 

bioavailability. Additionally, CDV is recognized for its extended intracellular half-life, enabling 

less frequent drug administration. This characteristic can be advantageous for patients who may 

have difficulty adhering to daily intravenous dosing schedules. However, CDV is nephrotoxic and 

causes neutropenia, metabolic acidosis and ocular hypotony [96,103]. 

1.8.1.4 Letermovir is effective in preventing or treating HCMV infections in recipients of 

hematopoietic stem cells, thoracic organs, and lung transplants. It offers several advantages over 

traditional antiviral drugs. Notably, it has a low level of toxicity and excellent oral bioavailability, 

preventing the urge for hospitalization or intravenous administration. Moreover, letermovir 

operates by targeting the viral terminase complex and interfering with the viral UL56 gene product, 

instead of DNA polymerase. This unique mechanism of action reduces the risk of cross-resistance 

with anti-CMV medications [104,105]. 

1.8.1.5 Maribavir was being studied for the treatment of resistant or refractory HCMV infections 

in transplant recipients. It has shown encouraging outcomes in clinical trials. This medication 

functions by competing with ATP to attach itself to the viral kinase pUL97. Interestingly, 

Maribavir retains its effectiveness against certain HCMV strains that have developed resistance to 

GCV, despite the fact that most GCV-resistant strains possess mutations in the UL97 gene. It's 

important to emphasize that Maribavir cannot be employed concurrently with GCV treatment, as 

it would impede the initial phosphorylation and activation process of GCV. MBV showed reduced 

haematotoxicity and nephrotoxicity compared to GCV and VGCV [106,107]. 

1.8.2 Immunotherapy 

With the advancement of immunotherapy, a growing cohort of scientists has been exploring its 

application in the context of HCMV infection. 
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1.8.2.1 Vaccines 

Vaccination against HCMV infection remains high priority. In recent years, there has been 

significant interest among pharmaceutical researchers in developing an effective and safe HCMV 

vaccine, as immunity can lessen the severity of the disease. Researchers have explored various 

types of HCMV vaccines, including live vaccines (such as live-attenuated and chimeric viral 

vaccines) and non-living vaccines (including subunit, RNA-based, virus-like particle, and 

plasmid-based DNA vaccines) [108,109]. While clinical trials have yielded promising data, it's 

important to note that an approved HCMV vaccine has not yet been authorized for use. Designing 

a vaccine for HCMV presents unique challenges. First, the virus can establish lifelong latency in 

the host after a subclinical primary infection and can spread from cell to cell, evading antibodies 

in extracellular fluids. Additionally, HCMV can reactivate when the host's immune defenses are 

weakened. Another obstacle is the diversity of HCMV strains, as the virus frequently undergoes 

recombination with disruptive mutations identified in clinical isolates, even exhibiting rapid 

evolution within the host [110]. In summary, the development of an effective HCMV vaccine has 

been hindered by these complex challenges, despite the pressing need for such a vaccine. 

1.8.2.2 Antibody Therapy 

The FDA has granted approval for passive immunization using HCMV immunoglobulin as a 

prophylactic measure. This is typically administered alongside GCV, especially in high-risk 

recipients of lung and cardiothoracic transplants. It is also considered in cases of GCV resistance 

or poor tolerance. However, when it comes to congenital HCMV, passive immunization with 

HCMV immunoglobulin has not shown significant reductions in congenital HCMV disease [111]. 

Therefore, it is not recommended for use in pregnant women with primary HCMV infection. 

1.8.2.3 Adoptive Cell Therapy (ACT) 

T cells isolated from healthy donors who have previously been exposed to HCMV can be expanded 

in vitro and transferred to immunocompromised patients. These "donor-derived" T cells can help 

control HCMV reactivation. ACT is now being used as a treatment approach for HCMV 

reactivation in patients who have undergone allogeneic hematopoietic stem cell transplantation 

(HSCT) and solid organ transplantation (SOT). Research has demonstrated that autologous 
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HCMV-specific T cells can directly eliminate primary glioblastoma (GBM) cells. Some 

researchers have even devised an innovative adoptive immunotherapy approach targeting CMV 

antigens for patients with recurrent GBM. Experimental results from this approach have shown it 

to be both safe and linked to extended progression-free survival in 4 out of 10 patients [112]. 

1.8.2.4 Checkpoint Blockade Therapy 

Research has shown that the use of immune checkpoint inhibitors (ICIs) can potentially revive 

immune function and elicit an immune response to CMV antigens even when in a latent state. One 

promising approach involves a vector called pS-CIFT-aPD-1, which is designed to express the 

gene for an antibody targeting the programmed cell death protein 1 (anti-PD-1) [112].  

1.8.2.5 Novel US28-targeting Strategies 

In search of innovative treatments against HCMV infection, a recent approach has emerged 

focusing on the role of the surface protein US28, which plays a crucial part during both lytic and 

latent infections. The methods for therapeutically targeting US28 can be broadly categorized into 

three distinct categories: small molecules, single-domain antibodies (referred to as nanobodies), 

and fusion toxin proteins (FTPs) [112,113]. 
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Chapter 2  

2. HCMV-Induced Polyploid Giant Cancer Cells and Their Significance in 

Tumorigenesis 

2.1 Morphological Characteristics of PGCCs 

Polyploid giant cancer cells (PGCCs) are characterized as either gigantic mononuclear cells with 

multiple genome copies or multinuclear cells [114]. According to the definition by Zhang et al., a 

PGCC is delineated as a cell three times larger than a typical diploid cancer cell. However, the size 

of a PGCC can vary significantly depending on the DNA content and the number of nuclei within 

the cells, sometimes reaching dimensions that are 10 to 20 times larger than a regular diploid cell 

[115]. PGCCs have a slow cell cycle and divide through asymmetric cell division patterns, which 

include budding and bursting. Budding is characterized by the release of numerous small daughter 

cells resembling the growth and division mechanisms seen in simpler organisms like yeasts. 

Additionally, dormant PGCCs are associated with the induction of quiescence and increased 

storage capacity through the presence of vacuoles and accumulation of lipid droplets, increased 

metabolic capacity, and elevated energy production [116–118]. 

2.2 PGCCs Stimuli and Mechanisms of Generation 

PGCCs frequently emerge as a result of various stressors, such as exposure to chemotherapy, 

ionizing radiation, conditions of hypoxia, viruses, and other stimuli that lead to DNA double-strand 

breaks (Figure 4). CoCl2 serves as a mimic for hypoxia-induced cellular responses in vitro and 

activates signaling pathways associated with hypoxia. CoCl2 plays a role in stabilizing hypoxia-

inducible factor (HIF)-1α by inhibiting proline hydroxylase. Additionally, chemotherapy drugs 

like capecitabine, oxaliplatin, and irinotecan, as well as radiation therapy, can induce PGCCs 

formation. Tumor tissues rich in PGCCs are associated with higher risks of recurrence, metastasis, 

chemoresistance, and poor prognosis [119,120]. 

The generation of PGCCs involves a complex interplay of cellular processes and signaling 

pathways. The giant cell cycle, which leads to the formation of PGCCs, differs from the regular 

cell cycle in certain aspects. While the exact mechanisms can vary between different types of 

cancer, here are some general insights into how PGCCs are generated and the characteristics of 
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the giant cell cycle (Figure 5). PGCCs formation can occur through various mechanisms, 

including endoreplication, mitotic slippage, cytokinesis failure, cell fusion, or cell cannibalism 

with the former being the predominant mechanism. While studies have documented the occurrence 

of PGCCs resulting from cell fusion in Hodgkin's lymphoma and glioblastoma cell lines, it's worth 

noting that, in MDA-MB-231 and ovarian cancer cells, cell fusion contributes to only a modest 

fraction, ranging from 10% to 20%, of all PGCCs [119,121]. 

 

 

Figure 4: Scheme illustrating PGCCs formation mechanisms.  

PGCCs formed through endoreplication and cell fusion have developed the capacity to undergo division using 

mechanisms similar to those seen in single-celled organisms, such as budding and viral-like amitotic division, which 

leads to the production of tumor-initiating cells. Adapted from Chen et al. [120]. 

 

2.3 Characteristics of PGCCs and Potential Biomarkers 

PGCCs exhibit a unique combination of markers, encompassing both normal and cancer stem cell 

(CSC) indicators [115,119]. These markers include OCT4, NANOG, SOX2, CD44, and CD133. 

Notably, the daughter cells originating from PGCCs also display characteristics similar to stem 

cells and continue to express CSC markers, specifically the surface glycoproteins CD44 and 
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CD133. PGCCs maintain a highly dedifferentiated state, reminiscent of embryonic cells, and 

possess more pluripotency compared to typical CSCs. Furthermore, these PGCC progeny share 

similarities with blastomeres observed during embryonic development, possessing the capability 

to differentiate into various cell types representing the three germ layers: ectoderm, mesoderm, 

and endoderm, as demonstrated in vitro. Their expression profile includes spatiotemporal markers 

associated with embryonic development and self-renewal, such as NANOG, OCT3, OCT4, 

aldehyde dehydrogenase-1A (ALDH1A), and SOX-2. These daughter cells exhibit the potential to 

differentiate into diverse benign cell types, such as adipocytes, chondrocytes, erythrocytes, and 

osteocytes, or give rise to carcinomas with differing grades [119]. In a study by Zhang and 

colleagues, PGCCs progeny derived from the MCF-7 cell line were observed to differentiate into 

benign stromal cells, including myoepithelial, endothelial, and erythroid cells. Considering the role 

of the tumor stroma in modulating drug bioavailability and enzymatic degradation, PGCCs can 

exert a significant influence on promoting resistance to various anticancer therapies [115]. Further, 

PGCCs and their progeny often undergo epithelial-mesenchymal transition (EMT). EMT involves 

significant cytoskeletal transformations that lead to alterations in cell adhesion and morphology, 

playing a critical role in the metastatic dissemination of cancer cells. PGCCs, along with their 

progeny, have been observed to exhibit distinct expression patterns, characterized by elevated 

levels of mesenchymal markers like vimentin, fibronectin, and N-cadherin, accompanied by 

reduced levels of epithelial markers such as cytokeratin and E-cadherin. This pattern mirrors the 

connection often seen in cancer cells, where EMT and the acquisition of stem cell-like features are 

closely intertwined. Likewise, in PGCC progeny cells, there is a notable association between the 

expression of EMT markers and stemness markers. This association is exemplified by the 

induction of EMT in human mammary epithelial cells triggered by transforming growth factor-β 

(TGF-β), which also facilitates the generation of cells exhibiting stem cell-like properties, such as 

CD44 expression and self-renewal capacity [119,122]. 
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Figure 5: A scheme illustrating the giant cell cycle.  

The giant cell cycle closely mimics the division of blastomeres. Upon initiation by either intrinsic genetic factors or 

external stresses, a somatic cell enters a phase of self-renewal endoreplication and initiates dedifferentiation or 
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reprogramming. Subsequently, the reprogrammed cell enters a termination phase to start differentiation. During this 

phase, giant cells employ multiple primitive cell division mechanisms to generate diploid daughter cells. These include 

(1) horizontal genetic transfer, where DNA migrates horizontally into adjacent cells through cytoplasmic extensions 

followed by budding, (2) the formation of elongated cells with two giant nuclei, as well as (3) splitting in the middle 

of the giant cell or (4) direct budding from both (5) mononucleated and (6) multinucleated giant cells. In the stability 

phase, differentiated cells gradually organize themselves out of chaos, reaching a specific developmental level. 

Dominant clones emerge from this chaos, resulting in the formation of a visible tumor which can behave as benign, 

malignant, resistant, metastasis or death. Cells that immediately bud off from the giant cells exhibit a high level of 

stemness, symbolized by a red triangle, and progressively attain stability during the process of differentiation, 

represented by a blue triangle. Adapted from Liu et al [122]. 

 

2.4 Potential Involvement of PGCCs in Cancer Progression 

Accumulating evidence underscores the significance of genome duplication, or polyploidization, 

as a fundamental genetic trait in cancer [114,118,121]. Recently, polyploidy was found to be 

present in approximately 37% of human tumors [123,124]. Polyploidization is recognized for its 

role in promoting chromosomal instability, primarily through the frequent missegregation of 

chromosomes during cell proliferation, and by creating conditions conducive to aneuploidy [123]. 

This, in turn, fosters cancer evolution by introducing genetic diversity. PGCCs have been 

described in a broad spectrum of high-grade and chemoresistant tumors, as well as in various 

cancer cell lines [114,119]. These encompass breast and colorectal cancer, glioma, lung, prostate, 

ovarian, cervical, lymphoma, nasopharyngeal, pancreatic carcinoma, neuroblastoma, renal, 

thyroid, bowel sarcoma, and melanoma [114,125,126]. It’s worth noting that the presence of 

PGCCs has been preferentially reported in poor prognosis cancers participating in tumor relapse 

and therapy resistance. PGCCs play a role in contributing to the heterogeneity of tumors (Figure 

6) and have been identified in well-established cancer cell lines, including MDA-MB231, MCF-

7, U87MG, SKOV-3, HeLa, A549, PC-3, SW620, and HCT-116 cell lines [119]. Thus, 

discovering distinctive traits that symbolize polyploid tumors has the potential to enhance the 

clinical management and classification of tumors based on their ploidy status. 
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Figure 6: Generation of PGCCS in various cancer types.  

Representative images of PGCCs in (A) breast cancer tissues, (B) WHO grade II gliomas where the black arrow points 

a single PGCC, and the black frame shows a PGCC with single giant‐nucleus as well as in WHO grade IV gliomas 

where the black arrow points a single PGCC, and the lower black frame shows a PGCC with multi‐nucleus, (C) high 

grade ovarian serous carcinoma, and (D) colorectal cancers. Adapted and modified from several studies considering 

the link between PGCCs and cancer [120,126–128]. 

 

2.5 PGCCs and Oncoviruses 

Since its inception, the field of viral oncogenesis has yielded groundbreaking insights into the 

origins of human cancer, illuminating the intricate molecular mechanisms and multifaceted 

interactions between the host and oncogenic viruses. Approximately 15 to 20% of human cancers 

worldwide can be attributed to infections caused by oncoviruses. These oncoviruses include human 

papillomaviruses (HPV), Epstein-Barr virus (EBV), hepatitis B and C viruses (HBV, HCV, 

respectively), human T-cell lymphotropic virus-1 (HTLV-1), Kaposi's sarcoma herpesvirus 

(KSHV), and Merkle Polyomavirus (MCPyV) (Table 1) [127]. Although significant 

advancements have expanded our understanding of how these pathogens designate cellular 

machinery to establish infection and initiate common pathways leading to tumorigenesis, as well 

as to replicate and maintain persistence, the development of targeted therapies and definitive 

curative clinical treatments remains a formidable challenge. This challenge primarily stems from 

the limitations of equivalent animal models and the mysterious nature of certain mechanistic 
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aspects involved in cancer induction by these agents, given their diverse characteristics. 

Nonetheless, polyploidy emerges as a pivotal common trait shared among oncoviruses, where 

distinct viral proteins can act as catalysts for the induction of polyploidy. Polyploidy is increasingly 

recognized as an initial trigger for cellular transformation within this context [128–130]. 

2.5.1 HPV 

HPV, a small double-stranded circular DNA virus belonging to the Papillomaviridae family, 

encompasses more than 200 identified types categorized by tissue tropism (skin or mucosa) and 

malignant transformation potential (high risk and low risk). Low-risk (LR) HPVs cause benign 

warts, while high-risk (HR) HPVs are associated with high-grade cervical lesions and cancers, 

particularly HPV-16 and -18 [131,132]. The oncogenic potential of HR-HPVs is primarily 

attributed to the HPV-E6 and -E7 proteins [133]. Polyploidy is commonly observed in the context 

of HPV infection, particularly in cervical carcinogenesis. Tetraploidy is an early event, and 

tetrasomy is detected in cervical squamous intraepithelial lesions caused by HR-HPVs [134,135]. 

Additionally, polyploidy is linked to high-grade squamous intraepithelial lesions (HGSIL) 

[136,137]. The expression of E6 and E7 oncoproteins is associated with a higher proportion of 

cells with >4N DNA content [138]. The mechanisms behind HPV-induced polyploidy are diverse. 

E6 and E7 can induce abnormal centrosome duplication and erroneous mitotic spindle pole 

formation, decoupling centrosome duplication from cell cycle division and causing genomic 

instability [139]. Furthermore, E6 disrupts the mitotic checkpoint by interfering with p53-mediated 

functions, while E7 overcomes the mitotic checkpoint through a p53-independent mechanism, 

possibly by modulating Rb function [140]. Further, E6 and E7 downregulate nuclear p21 

localization and upregulate cyclin-dependent kinase 1 (CDK1) upon microtubule disruption, 

contributing to postmitotic checkpoint abrogation-induced polyploidy [141]. This effect is also 

observed with E7 through its role in Rb downregulation [142]. Simultaneous expression of E6 and 

E7 induces polyploidy by disrupting the spindle checkpoint and upregulating G2-M proteins. 

Endoreplication, characterized by multiple S phases without mitosis, is associated with HPV-16 

E5 and E6 oncoproteins, leading to enlarged nuclei and increased cellular DNA content [143,144]. 

Multinucleated cells with enlarged nuclei result from two consecutive S phases without cytokinesis 

upon HPV-18 E7 transduction [145]. Re-replication is induced by HPV-16 E7 in response to DNA 
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damage, mediated by the DNA replication initiation factor [146,147]. E6 and E7 enhance HIF 

protein accumulation and activity in human cervical cancers [148]. In summary, HPV 

oncoproteins, particularly E6 and E7, employ various mechanisms to induce polyploidy, 

contributing to cervical carcinogenesis. These mechanisms encompass centrosome abnormalities, 

mitotic checkpoint abrogation, endoreplication, multinucleation, and re-replication, with 

downstream effects on genomic stability and cellular transformation. Additionally, HPV infection 

is associated with increased HIF activity in cervical cancers. 

2.5.2 EBV 

EBV, a member of the Herpesviridae family within the Gammaherpesvirinae subfamily, is a linear, 

double-stranded DNA virus [149]. It is the first isolated tumor virus and primarily infects B 

lymphocytes [150]. EBV is associated with a variety of malignancies, including lymphomas such 

as Hodgkin's lymphoma, diffuse large B-cell lymphoma, and Burkitt's lymphoma, as well as 

carcinomas like gastric and nasopharyngeal carcinoma (NPC) [150]. Several viral latent antigens, 

including Epstein–Barr virus nuclear antigen 1 (EBNA1), EBNA2, EBNA3, and the latent 

membrane protein 1 (LMP1), play essential roles in B-cell transformation [151]. In tissue biopsies 

of NPC, polynuclear giant cancer cells are observed, often surrounded by small nucleus-containing 

bodies indicative of budding cells [152]. Multinucleated giant cells are also formed following EBV 

replication in epithelial NPC hybrid cells [153]. EBV-infected nasal mucosal neoplasms display 

cells with increased volume and pronounced multinucleation, some containing over 12 nuclei 

[154]. Chromosomal integration of the viral genome into primary human B cells has been linked 

to polyploidy [155]. Infection of B cells with an EBV strain isolated from nasopharyngeal 

carcinoma predisposes them to polyploidy, with cells exhibiting multiple micronuclei or a single 

large polyploid nucleus [156]. Multinucleation and micronucleus formation have been detected in 

human laryngeal carcinoma Hep-2 and osteosarcoma U-2 OS cells following EBNA2 expression 

[157]. Stable expression of LMP1 in Burkitt's lymphoma cell lines is associated with 

multinuclearity, indicating a close correlation between polyploidy and EBV infection or the 

expression of EBV-latent oncoproteins [158]. Additionally, EBV latent genes compromise the 

mitotic spindle assembly checkpoint, preventing metaphase arrest [159]. Cell cycle progression 

without cytokinesis, G1 checkpoint disruption, and spindle assembly checkpoint disruption can 
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lead to polyploidy upon EBNA3C or EBNA2 expression [157]. Expression of EBNA2 or LMP1 

triggers cell re-entry into S phase. EBNA-1, EBNA-3, and EBNA-5 expression enhances the 

synthesis, transcription, and stability of HIF-1α, respectively [160,161]. In terms of telomere 

dysfunction, LMP1 expression is associated with an increase in telomeric aggregates, a decrease 

in total telomere number, an increase in multinucleated cells, and an increase in nuclear volume. 

In brief, EBV infection and the expression of EBV-latent oncoproteins are closely linked to 

polyploidy, which can occur through various mechanisms, including disruption of cell cycle 

checkpoints, centrosome abnormalities, and telomere dysfunction [162,163]. These interactions 

contribute to the oncogenic potential of EBV in various malignancies. 

2.5.3 KSHV 

Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), 

is a double-stranded DNA gamma-herpesvirus capable of infecting various cell types, including 

monocytes, dendritic cells, keratinocytes, B lymphocytes, oral epithelial cells, and endothelial cells 

[164]. It exists in both lytic and latent forms and is responsible for several malignancies, including 

Kaposi sarcoma (KS), primary effusion lymphoma, multicentric Castleman disease, and 

plasmablastic lymphoma [165]. KSHV encodes several viral oncogenes, such as latency-

associated nuclear antigen (LANA), K cyclin, and viral FLICE-inhibitory protein (vFLIP), which 

play roles in inactivating tumor suppressor pathways, promoting cell cycle progression and DNA 

replication, as well as activating nuclear factor kappa B (NFκB) to support cell survival [166,167]. 

In terms of polyploidy, KSHV infection induces a multinucleation state characterized by enlarged 

and irregularly shaped nuclei in various cell types [168]. Constitutive expression of LANA in 

different cell lines results in a dramatic increase in the multinucleated phenotype, characterized by 

cells with two or more polarized nuclei. K cyclin expression leads to cells with enlarged nuclei 

and multiple large multi-lobular nuclei, highlighting a strong association between KSHV and 

polyploidy. Several mechanisms contribute to KSHV-induced polyploidy. KSHV can induce 

abnormal centrosome duplication and multipolar or monopolar spindle formation, mediated by 

LANA and K cyclin proteins. Aurora kinase B cleavage by serine protease-N terminus in KSHV-

latently infected tumor cells promotes the transition from metaphase to telophase, enhancing 

mitotic progress and tumorigenesis. LANA induces S-phase entry and multinucleation by 
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protecting cells from cell cycle arrest; it also interacts with the spindle checkpoint protein Bub1, 

leading to Bub1 ubiquitination and degradation, favoring multinucleation. K cyclin expression 

results in DNA replication and cell nuclei division without simultaneous cell division [169,170]. 

Hypoxia, a condition of reduced oxygen availability, is linked to KSHV-induced polyploidy. 

KSHV viral interferon regulatory factor 3 (vIRF-3) interacts with and enhances the activity of HIF-

1α, leading to increased angiogenesis through vascular endothelial growth factor (VEGF) 

activation [171]. Regarding senescence, viral v-cyclin protein induces senescence during latent 

infection by disrupting the cell cycle and activating the DNA damage response. However, viral 

FLICE inhibitory protein (v-FLIP) can bypass senescence, allowing the growth and division of 

latently infected cell populations, which may include a subpopulation of polyploid cells [172]. In 

summary, KSHV is associated with polyploidy through various mechanisms, including 

centrosome abnormalities, spindle checkpoint disruption, cell cycle deregulation, and interactions 

with cellular proteins involved in mitosis and senescence. These mechanisms contribute to the 

complex interplay between KSHV infection and the development of malignancies. 

2.5.4 HTLV-1 

Human T-cell lymphotropic virus type 1 (HTLV-1), the first human retrovirus discovered, belongs 

to the Retroviridae family. While it can infect various human cell types in vitro, HTLV-1 primarily 

undergoes productive replication within CD4+ T helper cells. HTLV-1 is the causative agent of 

adult T-cell leukemia/lymphoma (ATL), a highly aggressive non-Hodgkin's peripheral T-cell 

malignancy. The viral oncoprotein Tax plays a central role in the development of ATL. Tax 

activates genes that prevent cell death and disrupts the normal cell cycle, leading to DNA damage. 

This results in the clonal expansion of T cells harboring the HTLV-1 provirus, eventually leading 

to cellular immortalization and malignant transformation. HTLV-1 infection can lead to the 

formation of large lymphoma cells, especially in the presence of Tax [173,174]. Specifically, 

HTLV-1-induced multinucleated giant cells, characterized by giant lobulated nuclei or enlarged 

nuclei, have been observed in mammalian cells with elevated Tax expression [175–178]. HeLa 

cells expressing Tax also displayed larger cell sizes and DNA content greater than that of cells 

lacking Tax expression [179]. HTLV-1-infected CD4+ cell clones exhibited enlarged, well-

separated nuclei in binucleated and multinucleated cells, and this morphological feature correlated 
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with Tax expression levels [180]. Thus, HTLV-1 plays a significant role in inducing polyploidy, 

leading to the formation of multinucleated cells and contributing to the pathogenesis of ATL. This 

occurs through various mechanisms involving disruption of the mitotic checkpoint, alteration of 

cell cycle regulation, and enhanced HIF-1α expression. 

2.5.5 HBV 

Hepatitis B virus (HBV), as the prototype member of the Hepadnaviridae family, is an enveloped 

virus with partly double-stranded DNA. It shares some characteristics with retroviruses, involving 

the use of reverse transcriptase during its replication cycle [181]. HBV is primarily a hepatotropic 

virus, with hepatocytes being its major target and the confirmed site for HBV replication. Infection 

and replication of HBV in the liver can lead to various complications, ranging from acute hepatitis 

to severe conditions like liver failure and hepatocellular carcinoma (HCC) [182]. In terms of 

oncogenic proteins, the hepatitis B virus X protein (HBx or pX) plays a significant role in 

promoting the progression of the cell cycle, inhibits the expression of tumor suppressor genes, 

including p53, and affects the transcription of methyltransferases [183]. It has been shown that 

HBx hinders the suppression of E2F1 activity, which is a key promoter of cell cycle progression, 

through the deactivation of the Rb gene promoter and consequently the tumor suppressor Rb. 

Furthermore, HBx augments CDK2 activity, resulting in a disruption of the balance between E2F1 

and Rb [184]. These functions suggest its potential involvement in the pathogenesis of HCC and 

cellular transformation [183]. Another oncogenic factor is the HBV large surface protein (LHBs), 

which exhibits properties that may contribute to hepatocarcinogenesis [185]. Polyploidy, mainly 

endoreduplication and hyperploidy, have been exclusively identified in peripheral blood cells of 

individuals with chronic HBV infection when compared to HBV-negative individuals. Nuclear 

ploidy is positively correlated with poor prognosis and HBV infection [186,187]. Notably, DNA 

polyploidy is significantly increased in the liver tissues of HCC patients with a history of HBV 

infection [188]. This observation is consistent with cellular models where HBV-positive hepatoma 

cell lines exhibit higher levels of hyperploidy than HBV-negative cells [189]. Mechanistically, the 

expression of HBV pX can lead to the depletion of p53, suggesting an antagonistic relationship 

between p53 and pX-induced polyploidy [190]. Moreover, both LHBs and pX protein contribute 

to the override of the G2/M checkpoint. This results in the attenuation of the DNA damage 
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checkpoint and inhibition of p53-mediated apoptosis. Furthermore, cells expressing HBV LHBs 

experience cytokinesis failure compared to controls [189]. In HBV pX-induced polyploid cells, 

DNA re-replication occurs alongside aberrant mitotic spindle formation [191]. This DNA re-

replication is associated with the upregulation of Cdt1 and Cdc6, which are essential for pre-

replicative complex assembly [190]. Lastly, HBx interferes with the degradation of HIF-1α protein 

and enhances its synthesis [192,193]. Hence, HBV, especially through the actions of HBx and 

LHBs, is strongly linked to the induction of polyploidy, which can contribute to hepatocellular 

carcinoma development. This occurs through mechanisms involving the disruption of cell cycle 

checkpoints, cytokinesis failure, DNA re-replication, and interference with HIF-1α regulation. 

2.5.6 HCV 

Hepatitis C virus (HCV), a member of the Flaviviridae family, is a small, hepatotropic virus with 

a single-stranded RNA genome that is enveloped and replicates in the cytoplasm. Various cell 

types, including dendritic cells, epithelial cells, lymph nodes, and others, can support HCV 

replication [195]. Similar to HBV, HCV infection can lead to cirrhosis, severe liver disease, and 

ultimately HCC [194]. There is also a strong potential association between HCV infection and 

non-Hodgkin's B-cell lymphoma [195]. The development of HCV-mediated HCC is driven by 

long-standing hepatic inflammation, oxidative stress, and the potential for DNA damage. 

Additionally, it involves the alteration of normal cellular signaling pathways and the stimulation 

of host cell growth, potentially mediated by specific HCV proteins, including the core proteins 

NS3, NS5A, and NS5B [196]. Polyploidy has been observed in the context of HCV infection. In 

comparison to peripheral blood mononuclear cells (PBMCs) isolated from healthy individuals, 

PBMCs from HCV-infected patients have been found to exhibit chromosomal polyploidy [197]. 

Furthermore, primary human and mouse hepatocytes infected with the HCV strain showed a higher 

frequency of polyploidy compared to non-infected cells. The expression of the viral core protein 

was found to induce extensive polyploidy in various cell lines, including the human liver cell line 

HepG2 and the embryonic kidney cell line HEK293. Moreover, it led to a two-fold increase in 

polyploidy in primary splenocytes, hepatocytes, and embryo fibroblasts isolated from transgenic 

mice [197]. The HCV core protein appears to trigger polyploidy by upregulating the transcription 

of HIF-1α mRNA [198]. 
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2.5.7 MCPyV 

Merkel cell polyomavirus (MCPyV) belongs to a family of small, non-enveloped, icosahedral 

viruses with double-stranded DNA. MCPyV stands out as an oncogenic virus known to cause a 

rare and aggressive skin cancer called Merkel cell carcinoma (MCC) [199,200]. The key players 

in MCPyV-induced transformation and tumorigenesis are the transforming large T antigen (LTAg) 

and small T antigen (sTAg), which interact with important cellular factors disrupting the role of 

tumor suppressors like Rb and p53, contributing to the development of cancer [201,202]. The 

expression of MCPyV sTAg has been shown to lead to the formation of multinucleated cells and 

an increase in the population of cells with more than four sets of chromosomes (>4N) in human 

diploid fibroblastic cells known as WI38 [203]. Moreover, when sTAg was induced in C57BL/6 

mice, it resulted in the development of poorly differentiated neoplasia. These tumors exhibited 

pleomorphic nuclei with variations in size and shape, along with multiple nucleoli [204]. This 

phenomenon is similar to the induction of polyploidy observed in the context of John Cunningham 

Polyomavirus (JCPyV) and BK Polyomavirus (BKPyV) infections, as well as infection with 

simian virus 40 (SV40), which is a closely related oncogenic primate virus [124]. 

Table 1: Oncoviruses. 

Oncogenic  

Viruses 

Genome Human Cancers Mode of infection Oncoproteins 

EBV  dsDNA  Burkitt’s lymphoma, Hodgkin’s 

lymphoma, posttransplantation 

lymphoma, nasopharyngeal carci-

noma  

Saliva, milk, blood, or-

gan transplantation  

EBNA1, 

EBNA2, 

EBNA3A, 

EBNA3B, 

EBNA3C, LMP1 

HBV  dsDNA  Hepatocarcinoma  Transplacentally, milk, 

sexually, parenteraly, 

percutaneously  

HBx 

HCV  ssRNA  Hepatocarcinoma  Injection equipment, 

blood transfusion, sex-

ually  

Core protein 

HPV  dsDNA  Cervical cancer, penis cancer, anal 

cancer, head and neck carcinoma  

Sexually  E6, E7 

HTLV-1  ssRNA Adult T-cell leukemia (ATL)  Transplacentally, milk, 

sexually, blood  

Tax, HBZ 

KSHV  dsDNA Kaposi’s sarcoma, primary effu-

sion lymphoma (PEL), multicentric 

Castleman’s disease (MCD), 

KSHV-associated inflammatory 

syndrome (KICS)  

Sexually, via drug in-

jection, blood transfu-

sion, solid organ trans-

plantation 

LANA, RTA, 

vFLIP, vIL-6, 

vGPCR 
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Merkel cell 

polyomavirus 

(MCV)  

dsDNA Merkel cell carcinoma Saliva and/or skin be-

tween siblings and be-

tween mothers and their 

children 

Unknown 

 

2.6 HCMV and PGCCs 

In general, oncoviruses employ various mechanisms that can be considered as early events leading 

to polyploidy, tumor advancement, and diversity within tumors. Interestingly, HCMV shares many 

of these mechanisms involved in inducing polyploidy [124–126,205]. For example, HCMV 

infection leads to the generation of excess centrosomes and the formation of abnormal mitotic 

spindles [205]. Moreover, HCMV proteins interact with the p53 protein, both in vitro and in vivo, 

resulting in the functional inactivation of p53. Additionally, HCMV affects the Rb protein through 

the HCMV UL97 protein, leading to Rb inactivation by phosphorylation, and it binds to pp71, 

which is part of the Rb protein family, ultimately causing their degradation [206,207]. 

Furthermore, HCMV has been shown to activate Myc at both the transcriptional and translational 

levels and induce the expression of HIF-1α [208–210]. HCMV infection also gives rise to 

multinucleated giant cells through cell fusion and upregulates the expression of G2/M transition 

regulators, including polo-like kinase 1 (Plk1) [205]. These findings suggest a potential connection 

between HCMV infection, the induction of polyploidy, and the development of tumors. It's worth 

noting that there may be a possible link between oncogenic viruses, the presence of a polyploid 

phenotype, and resistance to therapy, metastasis, and disease recurrence, as discussed in previous 

reviews [124]. This connection is strengthened by observations that chromosomal alterations 

coincide with  morphological transformation [211], and the multinucleated cell phenotype is 

triggered by the expression of viral oncoproteins rather than simple cell fusion, a phenomenon also 

observed with other non-oncogenic pathogens [177,212]. Additionally, the emergence of a 

blastomere-like cycle with “CMV-transformed HMECs” or CTH cells in HMECs long-term 

cultures infected with HCMV as well as the detection of polyploidy and oncogenic potential in 

CTH cells have been previously shown, by our laboratory [125,126]. Several HCMV clinical 

strains were used to infect Human Mammary Epithelial Cells (HMECs) cultures which were grown 

for an extended period of time. Cultures of uninfected HMECs were terminated after fifty days 
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due to cellular senescence, similarly the cultures that became senescent when infected with 

HCMV-SD, HCMV-FS, HCMV-KM, HCMV-RM, or HCMV-PJ strains. While all clinical 

isolates could be cultured for about two months in HMECs, only HCMV-BL strain, along with the 

previously described HCMV-DB, exhibited sustained growth. These cells were termed ‘CMV-

transformed HMECs’ or CTH cells. In CTH cultures, several atypical cells with distinct 

morphologies were observed including giant cells with a blastomere-like appearance, numerous 

small round daughter cells, a combination of epithelial and mesenchymal cells, filopodia, and 

patterns indicating asymmetric cell division [125,126]. All of these patterns may represent slow 

self-renewing cells undergoing various stages of the previously described giant cell cycle. This 

cycle consists of a series of synchronized events characterized by the emergence and dominance 

of enlarged giant cells, which then produce multiple small daughter cells. Furthermore, using 

confocal microscopy, common morphological features of PGCCs, characterized by their large size 

and giant nuclei, were detected, along with a broad range of cell sizes. Nehme et al. detected 

polyploidy in cultures infected with HCMV-BL as shown by flow cytometric analysis with 

propidium iodide staining. A significant percentage of cells with polyploidy, including polyploid 

giant cells (>4N), as well as other subpopulations like large tetraploid cells (LCs), intermediate 

cells (ICs), and diploid small cells (SCs) were observed. To assess the transforming potential of 

immortalized CTH cells, they performed a soft agar colony formation assay, which showed an 

increase in colony formation in CTH-BL and CTH-DB cells. This was associated with a significant 

increase in cell proliferation, as evidenced by a seven-fold rise in Ki67 antigen expression, 

increasing from 6.9% in control cells to 51.5% and 53.9% in CTH-BL and CTH-DB cells, 

respectively. Among these, PGCCs exhibited the highest level of Ki67 antigen expression 

[125,126]. Consequently, there is a growing need for novel treatment approaches that not only 

disrupt the replicative machinery of viral infections and inhibit the immortalizing and transforming 

capabilities of oncoviruses but also target PGCCs as a therapeutic strategy.  
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Chapter 3 

3. HCMV-Mediated Oncogenesis 

3.1 HCMV Prevalence in Diverse Forms of Cancer 

While the frequency of HCMV detection remains a subject of debate, several research groups have 

detected HCMV and linked it to various human malignancies. HCMV-associated nucleic acids 

and proteins have been found in tumors and peripheral blood of patients with breast cancer, 

glioblastoma multiforme (GBM), high-grade serous ovarian carcinoma, neuroblastoma, 

medulloblastomas, colorectal cancer, and prostate cancer. These findings suggest a potential 

correlation between HCMV and cancer progression, with some studies reporting poorer prognosis 

in cases with extensive HCMV expression [70,209,213,214]. It has been proposed that HCMV 

gene products may modulate oncogenesis development and activate transformation-related 

pathways (Table 2). This concept aligns with the idea of oncomodulation, where disturbances in 

intracellular signaling pathways, transcription factors, and tumor suppressor proteins in the tumor 

environment create opportunities for HCMV to exert its oncomodulatory effects, potentially 

enhancing malignancy [215,216]. The variability in detecting HCMV, ranging from no detection 

to a high percentage of positivity, can be attributed to the specific methods employed for its 

detection, including IHC, PCR, histopathology, serology, antigenemia, etc.. [217]. 

Table 2: HCMV Gene Products. 

HCMV Gene 

Products 

Mechanism of Action Oncogenic Characteristic 

US2, US3, US6, 

US10, US11 

▪ MHC class I expression impairment, reducing 

HCMV antigen presentation to CD8+ cells 

and evasion of CD8+ T cell immunity, 

superinfection 

▪ US2 down regulates MHC class II and 

reduces HCMV antigen presentation to CD4+ 

cells 

➢ Preventing host cell MHC 

class I antigen expression 

that is required for CD8+ 

cytotoxic tumor killing 

US18 and US20 ▪ Interfere with B7-H6 surface expression 

involving endosomal degradation, evades NK 

cells’ immune recognition 

➢ HCMV-immune evasion 

might indirectly affect tumor 

environment 

US28 (viral 

GPCR) 

▪ Promotes chemotaxis 
➢ Cellular proliferation, tumor 

growth, enhanced 

angiogenesis and cell 

survival 
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UL16 ▪ Regulation of NK cell ligand NKG2D and 

impairing NK cells function 

➢ Immune evasion, protects 

the cells from cytotoxic 

peptides-mediated lysis, and 

protects cancer cells from 

both NK and T cells 

UL40 ▪ NK cell evasion 

▪ HLA-E over expression, potentiating its 

interaction with the inhibitory receptor 

CD94/NKG2A 

➢ HLA-E Over expression 

UL83 (pp65) ▪ IE-1 sequestration, inhibit proteasome 

processing, reduce NKp30 effect and delays 

antiviral gene expression 

➢ Genomic mutation, immune 

evasion 

UL122 (IE2) ▪ Overexpression of anti-apoptotic FLIP 

protein 
➢ Elevated immune 

suppression, cellular 

proliferation, escaping 

growth suppressors and 

enhanced cell survival 

 

UL123 (IE1)  

▪ Induction of TGF-b 
➢ Cellular proliferation, 

genome instability and 

mutation,  escaping growth 

suppressors, and ameliorated 

cell survival 

UL82 (pp71) ▪ Inhibit antiviral response by binding to 

interferon stimulator gene 
➢ Cellular proliferation, 

sscaping growth 

suppressors, and genomic 

mutation 

UL111A 

(cmvIL-10) 

▪ Inhibits MHC class II expression and 

suppresses CD4(+) T-cell recognition 
➢ Immunosuppression, 

cellular proliferation, 

stimulates migration and 

metastasis, telomerase 

activation 

UL142 ▪ Inhibiting major stress protein (MICA) ➢ HCMV-immune evasion 

might indirectly affect tumor 

environment 

UL36 ▪ Complexing with pro-caspase-8 thus 

suppressing its proteolytic activation and 

prompting its designation as viral inhibitor of 

caspase-8-induced apoptosis (vICA) 

➢ Enhanced cell survival 

UL37 ▪ Inhibition of pro-apoptotic Bcl-2 family Bak 

and Bax protein, thus inhibiting apoptosis 

➢ Enhanced cell survival 

UL76 ▪ Activation of the DNA damage response thus 

inducing IL-8 expression 

➢ Genome instability and 

mutation 

UL97 ▪ Forms a complex with pp65 and mediates 

immune evasion 

➢ Escaping growth suppressors 

UL141- UL144 ▪ Encodes for homolog of TNFR, inhibits cell 

surface expression of CD155 and CD112 (NK 

➢ HCMV-immune evasion 

might indirectly affect tumor 

environment 
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cell activating ligands) and the death receptor 

for the TNF family ligand TRAIL 

UL145 ▪ Degradation of helicase like transcription 

factor (HLTF) through the recruitment of 

Cullin4/DDB ligase complex 

➢ Impeding innate immunity  

might indirectly affect tumor 

environment 

UL146 ▪ Promotes neutrophil chemotaxis, immune 

escape 

➢ HCMV-immune evasion 

might indirectly affect tumor 

environment 

UL148 ▪ Suppression of CD58; potent modulator of 

CTL function, increases degranulation in both 

cytotoxic T lymphocytes and NK cells against 

HCMV-infected cells 

➢ HCMV-immune evasion 

might indirectly affect tumor 

environment 

miR-UL112 ▪ Down regulation of MICB thus escaping NK 

cells, and decreased T-cell recognition 

➢ Exerts its oncogene function 

by directly targeting  tumor 

suppressor candidate 3 

(TUSC3) in GBM 

LncRNA ▪ Function in both innate and adaptive 

immunity including the development, 

activation, and homeostasis of the immune 

system 

➢ Cellular proliferation and 

transformation, facilitating 

signal transductions in 

cancer signaling pathways, 

it’s also involved in 

angiogenesis 

 

3.2 HCMV, A Candidate Oncogenic Virus, Fulfilling Cancer Hallmarks 

Hanahan and Weinberg updated their framework to include new additional hallmarks, and the list 

has continued to evolve to reflect our growing knowledge of cancer (Figure 7). Originally and in 

2000,  Douglas Hanahan and Robert Weinberg outlined six key hallmarks of cancer including 

sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling 

replicative immortality, inducing angiogenesis, as well as activating invasion and metastasis [218]. 

Afterwards, in 2011, they expanded on the initial hallmarks and introduced two additional ones 

that involves reprogramming of energy metabolism and evading immune destruction [219]. In 

2022, Douglas Hanahan further incorporated two hallmarks, tumor-promoting inflammation and 

genome instability and mutation [220] as depicted in the figure below. HCMV fulfills all the 

criteria associated with cancer hallmarks, as elaborated in the subsequent discussion below and in 

Table 3. 
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Figure 7: The Hallmarks of Cancer. 

The conceptualization of the hallmarks of cancer serves as a exploratory instrument, aiming to simplify the immense 

complexities of cancer's various phenotypes and genotypes into a working framework of fundamental principles. The 

hallmarks of cancer graphic has been adapted from Hanahan and Weinberg [218–220]. 

 

3.2.1 Sustaining Proliferative Signaling 

One of the primary characteristics of cancer cells is their capacity for continuous and uncontrolled 

proliferation, leading to unlimited growth [221]. This phenomenon is primarily achieved through 

several mechanisms including independent production of growth factors, stimulation of 

neighboring tumor-associated cells to produce various growth factors that support cancer cells via 

paracrine signals, and the constant activation of downstream signaling pathways [222]. Notably, 

certain HCMV proteins, including IE1, IE2, pUL44, and pUL84, have been shown to play a role 

in regulating the tumor suppressor protein p53 by interacting with it and influencing p53-mediated 

transcription, thereby exerting control over the cell cycle at various checkpoints [223–225]. 

HCMV IE1-72 hindered the ability of p53 to bind to its specific DNA sequences, whereas IE2-86 

and/or UL84 augmented p53 binding, resulting in an altered DNA-protein complex [226]. 
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Additionally, the induction of the transcription factor NF-kB by HCMV IE proteins has been found 

to activate cell survival pathways in both normal and tumor cells. Further, HCMV significantly 

elevates the activity of mitogen-activated protein kinase (MAPK) p38 and ERK1/2 through various 

mechanisms [227,228]. The expression of HCMV-US28 has been shown to enhance the secretion 

of biologically active VEGF and activate multiple cellular kinases, thereby promoting glioma 

growth and invasion [229]. Moreover, it induces the production of IL-6 through NF-kB activation, 

resulting in the potent activation of the signal transducer and activator of transcription 3 (STAT-

3) [230]. 

3.2.2 Evading Tumor Suppressors  

By inactivating p53 function and Rb, DNA oncoviruses overpass the G1/S check point and force 

the cell to enter into the S phase, resulting in unregulated cell division and tumor formation. 

Numerous studies have documented HCMV interference with the cell cycle, showing p53 and Rb 

being targeted. HCMV-IE1, and IE2 allow the evasion of tumor suppressors p53 and Rb [215]. 

HCMV-IE1 and IE2 proteins interact with p53 in vitro and in vivo, transcriptionally inactivating 

the latter [226,231]. The aforementioned HCMV-IE proteins have the potential to deactivate the 

Rb protein family, which consequently stimulates the entry of cells into the S phase of the cell 

cycle [232]. Additionally, the IE1 protein drives cell cycle progression toward the G1/S transition 

point by increasing the expression of E2F-responsive genes. Among these genes are cellular 

regulators of the cell cycle, as well as essential enzymes required for DNA precursor synthesis and 

the initiation of cellular DNA replication, such as cyclin E and cdk-2 [233]. HCMV pUL97 

phosphorylates and renders inactive proteins belonging to the Rb family, facilitating the promotion 

of the cell cycle. Additionally, the pUL82 protein works to reduce the levels of Rb family proteins. 

One such protein is encoded by the viral UL82 gene and is termed pp71; HCMV  pp71  protein  

targets  the hypo-phosphorylated  forms  of  the  Rb  proteins  for proteasome-dependent 

degradation through a ubiquitin-independent pathway [234]. In HCMV-infected HMECs, there is 

a decrease in the detection of the Rb protein and an enhanced expression of the UL82 transcript 

[235]. Further, a study showed that the proliferation of IE1-expressing glioblastoma cells depends 

on p53 and Rb inhibition and PI3K/AKT activation [236]. 
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3.2.3 Activating Invasion and Metastasis 

The capacity for invasion and formation of distant metastases are recognized as critical 

characteristics of tumor cells, regulated by a complex network of interactions and regulatory 

mechanisms. This enables them to intravasate into blood and lymphatic vessels while evading 

immune surveillance, displaying anchorage-independent growth. Subsequently, cancer cells 

extravasate from these vessels into their target tissues, where they establish micrometastases [219]. 

The epithelial-mesenchymal transition (EMT) process plays a significant role in this cascade of 

invasion and metastasis [222]. Studies have shown that persistent HCMV infection of 

neuroblastoma cells leads to increased motility and adhesion of human endothelial cells [237]. It’s 

worth noting that the transmigration of tumor cells is facilitated by the focal disruption of 

endothelial cell integrity, mediated by the activation of β1α5 integrin on the surface of infected 

tumor cells. This phenomenon is accompanied by HCMV-induced downregulation of neural cell 

adhesion molecule (NCAM; CD56) receptors, which promotes transendothelial penetration [238]. 

HCMV infection augments glioma invasiveness by enhancing extracellular matrix-dependent 

migration and invasion, specifically through the phosphorylation of FAK at Tyrosine397, which 

is observed exclusively in human malignant glioma cells [239]. In neuroblastoma cell lines 

persistently infected with HCMV, gene microarray analysis has revealed an upregulation of genes 

associated with cancer cell invasion [240]. Furthermore, vIL-10 and US28 will enhance cancer 

cell invasion and metastasis [241]. 

3.2.4 Enabling Replicative Immortality 

It is widely acknowledged that cancer cells possess the capability for endless replication. This 

immortality is achieved by their capacity to overcome two significant barriers to proliferation: 

senescence and crisis, with the latter eventually resulting in cell death [219]. Additionally, tumor 

cells find ways to evade the loss of telomeres, which protect the ends of chromosomes, thereby 

preventing telomere erosion and the entry into crisis, enabling them to sustain unlimited 

proliferation [222]. HCMV has been demonstrated to trigger the continuous expression of human 

telomerase reverse transcriptase (hTERT) and the activation of telomerase. In this context, CMV-

IE and hTERT proteins were observed to co-localize in human primary glioblastoma multiforme 

cells, and their levels correlated with each other. This effect is facilitated by IE1's ability to 
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stimulate telomerase activity and promote telomere lengthening through a specific interaction with 

the hTERT promoter [242]. Previously, in our laboratory, the infection of HMECs with HCMV-

DB resulted in the overexpression of hTERT mRNA and increased telomerase activity [209]. 

3.2.5 Inducing Angiogenesis 

During the progression of tumors, an "angiogenic switch" is triggered to ensure the continuous 

development of new blood vessels that serve not only to sustain tumor growth by providing 

essential nutrients and oxygen but also facilitate the removal of metabolic waste products and 

enable the tumor to enter the process of hematogenous metastasis [222]. This process primarily 

involves the induction of pro-angiogenic factors or the suppression of antiangiogenic signals [219]. 

HCMV typically promotes angiogenesis through both direct and indirect mechanisms. Infections 

occurring near blood vessels may stimulate angiogenesis by releasing angiogenic factors or by 

increasing local inflammation [243]. When fibroblasts and endothelial cells are infected, they 

promote the synthesis and release of various angiogenic factors that facilitate multiple stages of 

angiogenesis [244]. US28-induced angiogenic activity, characterized by the production of VEGF, 

is initiated through an increase in cyclooxygenase-2 (COX-2) expression mediated by US28, 

which activates the NF-κB pathway [245]. Furthermore, HCMV infection of endothelial cells 

induces an angiogenic response through viral binding to the epidermal growth factor receptor, as 

well as β1 and β3 integrins, leading to the activation of the phosphatidylinositol 3-kinase (PI3k) 

and mitogen-activated protein kinase signaling pathways [246]. HCMV also infects lymphatic 

endothelial cells and induces the release of a set of molecules that promote angiogenesis and 

lymphangiogenesis. These molecules include IL-6, granulocyte-macrophage colony-stimulating 

factor, and IL-8 [247,248]. In addition, HCMV induces the production of proinflammatory and 

angiogenic cytokines in retinal pericytes, contributing to angiogenesis in conditions such as 

retinopathy and congenital ocular disease [249]. 

3.2.6 Resisting Cell Death 

In addition to sustaining continuous proliferation and manipulating cellular growth processes, 

cancer cells possess the ability to avoid pathways leading to cell death. While three primary 

pathways apoptosis, necrosis, and autophagy can potentially induce cell death, their activation 

needs to be regulated by tumor cells. Apoptosis, in particular, has been extensively studied in the 
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context of malignant transformation, where the initiation of apoptosis is finely tuned by balancing 

pro-apoptotic and anti-apoptotic factors [220,222]. Numerous HCMV proteins can modulate 

apoptosis through diverse mechanisms, ultimately resulting in the inhibition of both intrinsic and 

extrinsic apoptotic signaling pathways [250]. For instance, pUL38, UL37, and US21 have been 

demonstrated to exert anti-apoptotic effects [70,251,252]. Notably, HCMV encodes a cell death-

suppressing protein known as viral mitochondria-localized inhibitor of apoptosis (vMIA), which 

binds to Bcl2 associated X (BAX) and impedes BAX-mediated mitochondrial membrane 

permeabilization by sequestering BAX within the mitochondria [253]. Another HCMV protein, 

pUL36, interacts with pro-caspase-8 thereby inhibiting apoptosis initiated through death receptors 

[254]. Moreover, HCMV adopts strategies to evade extrinsic pro-apoptotic pathways by 

downregulating the cell surface expression of death receptors, including tumor necrosis factor 

receptor 1 (TNFR1), TNF-related apoptosis-inducing ligand (TRAIL) receptor 1, TRAIL receptor 

2, and Fas [255]. Additionally, the long non-coding RNA lncRNA2.7 directly interacts with the 

gene associated with retinoid/interferon-induced mortality-19 (GRIM-19), leading to the 

stabilization of mitochondrial respiratory chain complex I and the continuous production of ATP 

[256]. Furthermore, HCMV employs alternative mechanisms to block apoptosis, such as the 

expression of the anti-apoptotic Bcl-2 protein or the inhibition of p53-mediated apoptosis by 

HCMV-IE2 [257,258]. 

While the role of autophagy in cancer regulation is a subject of contention, an increasing body of 

research predominantly underscores its pro-survival function in promoting cancer progression and 

metastasis [259]. Autophagy has the capacity to limit viral infections, but persistent viruses have 

developed diverse strategies to evade or hinder multiple stages of the autophagic process [260]. 

For instance, HCMV employs mechanisms to counteract autophagy, one of which involves TRS1 

in addition to IRS1 that hinder autophagy by binding to Beclin 1 [260,261]. Autophagy also 

regulates the properties of CSCs by contributing to the maintenance of stemness, induction of 

recurrence, as well as tumor resistance [262]. On the other hand, in early tumorgenesis, it acts as 

a tumor suppressor and survival pathway by preventing the accumulation of damaged proteins and 

organelles [263]. Hence, autophagy plays dual roles in tumor promotion and suppression 

[262,263]. 
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3.2.7 Evading Immune Suppression 

HCMV has developed various immune evasion tactics to manipulate the host immune system, 

enhancing its infection and spread within the host (Figure 8) [70]. A significant strategy involves 

hindering MHC class I-restricted antigen presentation. During the immediate early phase of 

HCMV infection, cytotoxic T-lymphocytes (CTLs) counteract antigenic peptides produced by the 

IE1 transcription factor. However, the matrix protein pp65, which possesses kinase activity, 

phosphorylates IE1, specifically blocking the presentation of IE-derived antigenic peptides. This 

allows HCMV to evade immune recognition of early viral proteins. Additionally, pp65 is 

introduced directly into cells during viral fusion, enabling HCMV to escape immunological 

surveillance until other immune evasion-related proteins are released. HCMV-specific viral 

proteins and genes associated with host interferon responses further inhibit NK cell detection and 

activation, as well as hinder the recognition of CD4+ and CD8+ T-cells by preventing MHC Class 

I and II antigen processing and presentation. Furthermore, HCMV-infected cells produce a viral 

IL-10 homolog, which suppresses CD4+ and CD8+ T-cell responses [70]. 
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Figure 8: Modulation of the host immune system. 

HCMV-induced modulation of the host immune system. The battle between the host immunity and HCMV is 

permanent, with HCMV developing various mechanisms to evade the host immune system. Immunosuppression may 

be ascribed to the variety of immune modulators encoded by HCMV-specific gene products. HCMV viral genes 

prevent MHC Class I and II antigen presentation and thus interfere with interferon responses, NK cell recognition as 

well as CD4+ and CD8+ T-cell recognition. Additional HCMV genes for instance IL-10 homologue (UL111a), and 

viral proteins acting as receptors for host inflammatory cytokines (US28), further suppress the host immune responses 

[70]. 

 

3.2.8 Reprogramming of Energy Metabolism 

Dysregulation of energy metabolism has been well established as a hallmark of cancer. Lipid 

droplets (LDs) accumulation has gradually been recognized as a prominent characteristic in a 

variety of cancers and attracts increasing attention. In case of nutrient deprivation, fatty acids 

released from LDs are used for energy production via mitochondria β-oxidation and Kreb’s cycle. 

Compared to healthy tissues, higher LD content have been reported in cancer cells and cancerous 

tissues such as colorectal cancer, breast and prostate cancers, hepatocellular carcinoma, renal cell 

carcinoma and glioblastoma. Thereby, during the aggressive process of cancer cells, LDs can 
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function as energy source to support distant dissemination of cells. Notably, not only LD density 

but also their motility was correlated with cancer aggressiveness [264]. Further, HCMV infection 

disrupts cellular energy metabolism and induces significant alterations in metabolic processes 

including increased glucose uptake, elevated glycolysis, diversion of glucose carbon, and the 

induction of the Warburg effect [46]. HCMV-IE1 protein appears to modulate the mRNA levels, 

eliminating glucose transporter 1 (GLUT1) mRNA and increasing GLUT4 mRNA. The elevated 

GLUT4 in infected cells is driven onto the cell surface, verifying that glucose uptake increases 

regardless of Akt function [265]. Further, HCMV-pUL38 is capable of initiating glycolytic 

activation and prompting the breakdown of specific amino acids [266]; HCMV-pUL13 targets 

mitochondrial cristae architecture to increase cellular respiration during infection [267]. 

 

3.2.9 Enabling Characteristics: Genomic Instability, Mutation, and Tumor-promoting In-

flammation 

Throughout the multistep progression of tumors, cancer cells often exhibit an increased rate of 

mutations, wherein a favorable mutant genotype provides a selective advantage to certain 

subclones of cells. This advantage supports their proliferation and eventual dominance within a 

local tissue environment [219,220]. Several mechanisms contribute to this phenomenon, including 

increased sensitivity to mutagenic agents, compromised surveillance systems responsible for 

monitoring genomic integrity (such as p53), as well as increased defects in detecting DNA damage 

and activating the repair mechanisms responsible for DNA damage repair and deactivating 

mutagenic substances. On the other hand, the inflammatory response associated with tumor growth 

has been linked to enhanced tumorigenesis and progression. This is attributed to the release of 

various chemicals, notably mutagenic reactive oxygen species, as well as factors promoting 

growth, survival, and angiogenesis. These factors collectively facilitate proliferative signaling, 

inhibit cell death, and enable processes like angiogenesis, invasion, and metastasis [219]. 

In the context of HCMV infection, it has been shown that HCMV-UL76 induces DNA damage as 

well as the accumulation of chromosome abnormalities, including micronuclei, misaligned 

chromosomes, and issues like lagging and bridging [268]. Further, viral replication activates the 

checkpoint response to DNA double-strand breaks, and this replication alters the localization of 
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checkpoint proteins to the cytoplasm, thus inhibiting the signaling pathway [269]. Furthermore, 

lytic HCMV infection disrupts ataxia telangiectasia mutated protein (ATM)-related kinases and 

triggers DNA damage responses [270]. Specifically, IE1 has been shown to activate ATM kinase 

[223], while E2F1 contributes to the accumulation of the gamma histone variant H2AX (γH2AX) 

during HCMV infection or IE protein expression [271]. On the other hand, pUS28 exacerbates 

tumor-related inflammation by inducing the production of various proinflammatory mediators, 

including IL-6, regulated on activation normal T expressed and secreted (RANTES), monocyte 

chemoattractant protein-1 (MCP-1), and fractalkine [272,273]. HCMV augments the recruitment 

of leukocytes and prompts the production of proinflammatory substances like IL-8 and IL-6, along 

with the expression of the leukocyte intercellular adhesion molecule 1 (ICAM-1) receptor [274–

276]. Furthermore, CMV infection generates intracellular reactive oxygen intermediates in smooth 

muscle cells and human diploid fibroblasts [277,278]. 

3.2.10 Tumor Promoting Microenvironment 

As cancer evolves, it can resist immune clearance by prompting tolerance in the presence of tumor-

associated inflammatory cells. Consequently, a tumor microenvironment (TME) is generated and 

controlled by tumor-induced molecular and cellular interactions in which immune cells not only 

fail to exert anti-tumor effector functions, but also promote tumor development [279]. HCMV 

expresses several gene products that modulate the host immune response and promote 

modifications in non-coding RNA and regulatory proteins. These changes are linked to several 

complications, such as immunosenescence and malignant phenotypes leading to 

immunosuppressive TME and oncomodulation (Figure 9) [70]. NF-κB and PI3K activity play a 

role in facilitating the HCMV-induced transformation of monocytes into macrophages with a dual 

phenotype, exhibiting characteristics of both inflammatory macrophages (M1) and 

immunosuppressive macrophages (M2). In this context, M1 macrophages are responsible for 

releasing inflammatory factors such as TNF-alpha, IL-6, and nitric oxide synthase 2, while M2 

macrophages exhibit an immunosuppressive profile similar to tumor-associated macrophages 

(TAMs), characterized by the secretion of immunosuppressive cytokines like TGF-β and IL-10 

[280]. It's worth noting that a significant portion of TAMs in breast cancer cells display activated 

M2 features, accompanied by the secretion of elevated levels of immunosuppressive cytokines, 
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including IL-10, TGF-β, and, to a lesser extent, pro-inflammatory cytokines [281]. Notably, 

research from our laboratory has demonstrated that the highly macrophage-tropic HCMV-DB 

strain can induce the activation of an M2-like state [282]. This underscores the potential 

contribution of HCMV infection to the development of neoplastic transformation in breast 

epithelial cells, partially through the recruitment and polarization of macrophages [283]. The 

oncomodulatory potential of HCMV catalyzes an oncogenic process by producing viral proteins, 

helping tumor cells to evade the immune system, and preventing and/or delaying cell death. The 

lack of HCMV specific cellular immune responses in these immune-privileged tumor sites would 

definitely enhance HCMV replication. On the other hand, cancer cells on their own can escape 

immune responses by diverse mechanisms. Thus, the combination of intrinsic cellular with viral 

immune escape machineries in cancer cells may offer an environment which enhances HCMV 

replication and boost cancer cells to evade from immune surveillance showing the bidirectional 

relationship between tumor cells and HCMV [70]. 

 

 

Figure 9: HCMV Oncomodulation and Its Significance in Tumor Microenvironment. 

Major signaling pathways stimulated by HCMV that modulate the immune landscape. HCMV-infected cells produce 

elevated levels of interleukin-6 (IL-6) that activates signal transduction via IL-6 receptor (IL6R)-STAT3 axis. US28, 

an active chemokine receptor, also plays a major role in activating STAT3 in cancer cells. The combination of STAT3 
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activation and the impact of HCMV on cancer cell apoptosis, invasion, migration, adhesion, angiogenesis, and 

immunogenicity significantly exacerbates malignancy. In contrast to p53 and Rb, the upregulation of Akt, Myc, PD-

L1, and CCL2 strongly exerts immunosuppressive and oncomodulatory effects. HCMV-induced alterations in the 

TME may contribute to oncomodulation [70]. 

 

Table 3:  HCMV enabling the characteristics of cancer. 

Cancer Hallmarks HCMV Mechanism of Action HCMV Proteins 

Sustaining Proliferative Signaling 

Induces cell cycle progression to S phase IE2 

Induces expression of E2F genes pp71 

Phosphorylates Rb UL97 

Evading Growth Suppressors 

Activates EGFR 

 

HCMV infection 

 

Dysregulates Cyclin E expression 

 

IE1 

 

Inhibits p53 degradation 

Decreases levels of p21 

Induces expression of p53 

Binds to p53 

mtrII 

Activating Invasion and Metastasis 
Activation of RhoA dependent motility of U373 cells 

as well as smooth muscle cells 
US28 

Enabling Replicative Immortality Activation of telomerase IE1 

Inducing Angiogenesis 
Induction of VEGF expression US28 

Induction of IL-8 IE1 

Resisting Cell Death 

Inhibits apoptosis IE1 

Activates PI3-K/Akt pathway IE2, vMIA, vICA 

Deregulating Cellular Energetics 
Increases flux through glycolytic pathway, acetyl 

CoA, flux of carbon, nucleotide biosynthesis 
HCMV infection 

Avoiding Immune Destruction 
Production of homologs to immunosuppressive cyto-

kines 
HCMV IL-10 
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Inhibits expression of MCH I US2 

Intracellular retention of NKG2D UL16 

Induces expression of TGF-β1 IE2 

Genome Instability and Mutation 

Inhibits DNA damage repair HCMV infection 

Increases mutation frequency pp65 and pp71 

Induces chromosome aberrations in cell lines IE1 and UL76 

Tumor Promoting Inflammation 

Induces production of RANTES, fraktalkine, MCP-1 HCMV infection 

NF-κB activation & IL-6 production US28 

 

3.3 HCMV and Its Association with Breast Cancer 

Globally, breast cancer poses a formidable health challenge as it is the most prevalent malignancy 

accounting for a high number of cancer deaths in women [284]. Breast cancer consists of a group 

of heterogeneous diseases driven by a multifactorial etiology involving genetic predisposition, 

hormones, and environmental factors; viruses are considered indisputable causal factors for nearly 

20% of all human malignancies [285]. Triple-negative breast cancer (TNBC) comprises 15% of 

breast cancers globally [286]. Despite its susceptibility to standard chemotherapy, TNBC is highly 

invasive, has a high relapse tendency, and is associated with a poor overall prognosis [287]. 

Recently, more significant advances include characterizing the molecular features of TNBC which 

will maximize the efficacy of certain chemotherapeutic agents and aid in actively exploring novel 

therapeutic targets [288]. The majority of breast cancers originate from cells lining the milk-

forming ducts within the mammary gland, known as carcinomas [289]. Following childbirth, 

HCMV can be detected in breast milk, potentially spreading to nearby mammary epithelial cells 

[290]. Moreover, HCMV has the ability to infect macrophages and induce an atypical M1/M2 
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phenotype that closely resembles the phenotype of tumor-associated macrophages. This alteration 

is linked to the release of cytokines that play a role in the initiation or promotion of cancer, 

particularly in cases of breast cancer with a poor prognosis [290]. Furthermore, HCMV antigens 

and DNA have been identified in tissue biopsies of individuals with breast cancer [291], and there 

have been reports of elevated serum HCMV IgG antibody levels occurring before the onset of 

breast cancer in certain women [292]. Further, previous studies demonstrated the ability of 

HCMV-DB and HCMV-BL strains in transforming primary HMECs into CMV-Transformed 

HMECs (CTH) cells in vitro [125,209]. CTH cells, which are slow self-renewing cells, undergo 

diverse stages of the giant cell cycle. They were shown to be heterogeneous, generate PGCCs, 

exhibit dedifferentiation, and display stemness and EMT/MET features [125,126]. HCMV 

oncomodulation, molecular mechanisms, and ability to support PGCCs generation might 

underscore its contribution to oncogenesis, especially breast cancers. The heterogeneity of strains 

can be linked to distinct properties influencing the virus-transforming potential, cancer types 

induced, and patient’s clinical outcomes.  

3.4 The Potential Link Between HCMV and Glioblastoma  

GBM, a subtype of adult diffuse glioma, is a primary central nervous system (CNS) tumor 

presumed to arise from neuroglial stem cells or their progenitors in the subventricular zone 

[293,294]. There has been a recent paradigm shift, with increasing reliance on molecular 

information for diagnostic classification and prognostication within gliomas, as seen in the most 

recent World Health Organization (WHO) classification of CNS tumors [294]. Despite the 

molecular evolution of GBM, it continues to be an incurable disease with poor survival. HCMV 

infects neural stem/progenitor cells, and human astrocyte [295–298]. Although HCMV DNA and 

antigens, especially IE1, have been detected in GBM tissue [236,299], there is no conclusive 

evidence about HCMV oncogenicity in GBM, and the mechanisms by which the virus might 

contribute/induce oncogenesis remain elusive. The expression of HCMV proteins and 

oligonucleotides in high percentage of low- and high-grade malignant gliomas was first reported 

by Cobbs et al. in 2002 [213]. Although these data do not establish a causal role for HCMV in 

glioma pathogenesis, existing data indicates that HCMV could facilitate glioma progression. A 

study showed that HCMV-IE1 protein was detected in 100% of glioblastomas and 82% of low-
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grade gliomas upon using immunohistochemistry. They further reported the detection of HCMV-

specific oligonucleotides in the same areas of IE1 expression within the tumor. Their finding, as 

initially described by Cobbs et al. in 2002, is that HCMV IE1 and virus-specific oligonucleotides 

weren’t detected in necrotic areas or outside the tumor margin [236]. Numerous reports have 

provided evidence of HCMV's presence in GBM, although typically confined to a small subset of 

cells [300]. Studies have also indicated that viral proteins can dysregulate cellular processes and 

intensify the malignancy of tumors [70,215,236,300]. Additionally, it has been observed that 

HCMV IgG seropositivity is linked to reduced overall survival rates among GBM patients [301]. 

These discoveries hold substantial implications for GBM screening and treatment, as anti-HCMV 

IgG testing may offer valuable prognostic insights. A study revealed a significant association 

between HCMV seropositivity and diminished overall survival in GBM patients, especially among 

those with unmethylated MGMT. This observation suggests that prior HCMV infection may have 

a noteworthy impact on the outcomes of GBM patients [301]. Consequently, anti-HCMV 

antibodies may prove to be a valuable prognostic tool in the management of GBM patients. 

Moreover, GBM cells exhibit HCMV proteins, presenting a unique opportunity for targeted 

therapy. A study utilized the universal intracellular targeted expression (UNITE) platform to 

develop a multi-antigen DNA vaccine encoding HCMV proteins pp65, gB, and IE1. The UNITE 

platform incorporates lysosomal targeting technology, involving the fusion of lysosome-associated 

membrane protein 1 (LAMP1) with target antigens. This study demonstrates compelling evidence 

of enhanced antigen presentation through both MHC-I and -II, resulting in a robust antigen-

specific CD4 and CD8 T-cell response, along with a potent humoral response [302]. Thus, this 

research underscores that vaccination with HCMV antigens elicits robust cellular and humoral 

immune responses, triggering significant anti-tumor activity and leading to improved survival in a 

mouse model of GBM. Lastly and most recently, it’s worth mentioning that Moderna's RNA 

vaccine for HCMV infection (CMVictory mRNA-1647) is currently undergoing Phase 3 clinical 

trials (NCT05085366) [303]. 

3.5 The Interplay Between HCMV and Ovarian cancer 

Epithelial ovarian cancer (OC), the most common and life-threatening cancer amongst 

gynecologic malignancies, has a 5-year age-standardized survival rate of 30–40%. Nearly 75% of 
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all OC cases are diagnosed at late stages [304]. Despite the advances in treatment modalities, the 

overall survival remains low for stage III and stage IV accounting for 40% and 20%, respectively 

[305,306]. Currently, infection-triggered chronic inflammation is recognized as a crucial 

mechanism in the progression and spread of OC. In alignment with this observation, recent studies 

have identified elevated expressions of HCMV proteins in OC tissue samples that have been 

associated with poor survival outcomes [307]. One study revealed that HCMV-IE protein 

expression was present in 82% of OC cases and 36% of benign tumors, while pp65 was detected 

in 97% of EOC cases and 63% of benign tumors. Notably, pronounced HCMV-IE expression was 

correlated with a shorter median overall survival [308]. Additionally, the presence of HCMV DNA 

was found in 70% of cancerous ovarian tissues, significantly exceeding the detection rate in benign 

tumor cases [307]. These findings suggest that HCMV infection might potentially facilitate the 

progression of cancer. Within the ovarian cancer TME, active HCMV infection may directly 

contribute to OC progression. Once HCMV infects host cells, it initiates mechanisms to counteract 

key antiviral immune responses necessary for infection control. These mechanisms involve the 

secretion of immunosuppressive cytokines and the impairment of cell-mediated immune 

responses, which are also crucial for restraining tumor growth [304]. Previously existing data 

showed the detection of HCMV-gB by PCR in approximately 50% of OC tissues, with 80% of 

these cases being late-stage invasive tumors, suggesting that HCMV infection within the TME 

could potentially promote cancer progression or metastasis [304]. Another recent study by 

Radestad et al. explored the prevalence of HCMV in ovarian cancer and its association with clinical 

outcomes. Their research indicated higher levels of HCMV-IgG, HCMV-IE proteins, and pp65 

proteins in OC patients with malignant or benign ovarian epithelial tumors compared to control 

subjects [309]. This observation underscores the need to investigate whether administering anti-

HCMV treatment to OC patients experiencing active HCMV reactivation in their TME should be 

considered in future therapeutic approaches. In conclusion, HCMV proteins and nucleic acids are 

frequently detected at varying levels in high-grade serous ovarian carcinoma. The shorter median 

overall survival of patients with HCMV-IE and pp65 in their tumors underscores the imperative 

to further explore the role of HCMV in ovarian cancer patients. 
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Chapter 4 

4. Emerging Threats: Decoding The Molecular Pathways in Cancer Development and 

Understanding Viral Variants 

4.1 Decoding The Molecular Pathways in Cancer Development 

The cumulative body of evidence underscores the pivotal roles played by EZH2 and Myc in the 

initiation of cancer and maintenance of stem cell properties [310]. Being the enzymatic subunit of 

polycomb repressive complex 2 (PRC2), EZH2 is a histone-lysine N-methyltransferase 

responsible of transcriptional silencing [311]. EZH2 dysregulation was associated with the 

development, progression, and therapeutic resistance of many tumors [312,313]. Additionally, it 

was shown to expand the stem cell pool and the tumor-initiating cells in glioma, breast, ovarian, 

and prostate cancer, hence enhancing accelerated initiation, metastasis, invasion and growth [314–

316]. In breast cancer pathogenesis, EZH2 overexpression assumes a critical role as it suppresses 

the expression of early growth response 1 (EGR1), thus inhibiting EGR1-mediated tumor-

suppressive signals [317]. Moreover, EZH2 mediates the stability of ribosomal DNA by silencing 

PHACTR2-AS1, thereby fostering genomic instability and promoting growth and metastasis in 

breast cancer [318]. Further, EZH2 was demonstrated to be overexpressed in GBM tissues 

harboring HCMV [319]. EZH2 was also shown to be recruited to the major immediate early 

promoter (MIEP) in CD14+ monocytes where HCMV establishes latent infection in vivo [320]. 

Furthermore, several studies showed that EZH2 overexpression is associated with HGSOC 

[321,322]. A study reported that EZH2 degradation profoundly blocked ovarian tumor cell 

proliferation and tumorigenesis in vitro and in vivo [323]. Another study revealed that invading 

PGCCs possess strong EZH2 expression [324]. Since EZH2 enhances cell proliferation, inhibits 

apoptosis, promotes angiogenesis, metastasis and therapy resistance in several tumors, inhibiting 

EZH2 suggests an effectual therapeutic strategy [325,326].  

EZH2 was identified as a downstream target of Myc oncogene, the latter coordinately regulating 

EZH2 through transcriptional and post-transcriptional mechanisms during tumor initiation and 

disease progression [327]. Myc has been shown to stimulate EZH2 expression through direct 

binding and activation of its promoter, as well as by suppressing its negative regulator, miR-26a, 

or by directly repressing miR-137 [327,328]. The Myc-miR-137-EZH2 pathway has been linked 
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to cisplatin resistance in ovarian cancer [329]. Additionally, bromodomain-4 protein (BRD4) was 

shown to positively regulate EZH2 transcription through Myc upregulation [330]. Interestingly, 

Myc activation has been widely reported in the progression of breast cancer, especially in triple-

negative breast cancer and in tumors that exhibit drug resistance, much like aggressive 

medulloblastoma tumors where elevated Myc levels are associated with increased EZH2 

expression [126,331]. By uncoupling DNA replication from mitosis, Myc overexpression can 

induce DNA replication, thus opening the door toward polyploidy [332]. This intricate relationship 

between Myc, polyploidy, and cancer has been previously demonstrated [333], with Myc 

correlating with nuclear pleomorphism in both primary and metastatic renal cell carcinomas. 

Moreover, Myc has been found overexpressed in GBM; its expression correlates with glioma grade 

where 60-80% of GBM reveal elevated Myc levels [334]. In glioma cells, EZH2 knockdown 

depleted Myc expression [335]. Further, Myc direct transcriptional regulation by EZH2 may 

establish a new mechanism underlying glioma cancer stem cell maintenance [336]. Similarly, 

enhanced Myc expression have been observed in 20-50% of ovarian carcinoma [337,338].  

4.2 Viral Variants and Their Oncogenic Potential 

Viral variants acquire diverse capacities to manipulate host cell machinery, making them more or 

less efficient at promoting cellular transformation and cancer development. Some variants may be 

more efficient at evading the immune response, more prone to causing persistent infections, or 

more effective at disrupting cellular processes that regulate cell growth and division [339–341]. 

Oncoviruses could serve to emphasize the significance of HCMV in processes related to cellular 

transformation and oncogenesis. To start with, HPV strains were classified into high- and low-risk 

strains after being isolated from different lesions. These discoveries were shown to radically alter 

the tumor diagnosis, prognosis, and prevention approaches [342,343]. Low-risk HPV strains were 

generally not strongly linked to cancer development, for instance HPV-6 and HPV-11. On the 

other hand, certain high-risk HPV strains were strongly associated with the development of various 

cancers through persistent infections that may cause various cellular changes. The most notable 

high-risk HPV strains include HPV-16 and HPV-18, HPV-31, HPV-33, and HPV-45 [344,345]. 

Researchers have identified specific genetic sequences within high-risk HPV types that are 

associated with increased cellular transformation. The HPV E7 carboxyl terminus contains two 
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copies of a CXXC motif that are separated by a 29-amino-acid spacer. This domain may function 

as a dimerization domain [346]. Like adenovirus E1A and SV40 T antigen, the HPV E7 proteins 

interact with pRB and the related “pocket proteins” p107 and p130 through a conserved LXCXE 

sequence within the conserved region 2 sequences thereby impairing their ability to control cell-

cycle dependent transcription [346,347]. These sequences often involve the viral E6 and E7 genes, 

which produce proteins that interfere with cellular regulatory mechanisms and contribute to the 

transformation of normal cells into cancerous cells. Variations in these genes can affect the severity 

of their oncogenic effects. Additionally, KSHV isolates were identified in patients of different 

geographical regions, indicating the importance of these newly isolated strains in developing better 

diagnostic procedures and novel treatment approaches in the context of KSHV-associated 

malignancies as well as enriching potential vaccine studies [348–350]. The cytoplasmic tail of 

KSHV-K1 protein contains two SH2 binding motifs that together constitute an immunoreceptor 

tyrosine-based activation motif (ITAM) [351]. ITAM motif consisting of six conserved amino acid 

residues spaced precisely over 26-amino acid sequence,(D/E)X7(D/E)X2YX2LX7YX2L/I [352], is 

able to constitutively induce angiogenic and inflammatory responses via AKT and NFkB [353]. 

Further, EBV was initially categorized into two primary sub-types, namely type 1 and type 2, based 

on the genetic sequences of two EBV-encoded genes, EBNA2 and EBNA3. Type 1 is widespread 

globally, whereas type 2 is primarily found in sub-Saharan Africa. Currently, more than 71 distinct 

EBV strains have been documented. These EBV variants exhibit varying replication 

characteristics, and individuals can potentially be infected with multiple strains. It has been 

observed that certain EBV strains possess a higher oncogenic potential compared to others. For 

instance, the EBV strain M81, derived from nasopharyngeal carcinoma (NPC), exhibits an 

elevated rate of replication in B cells and a remarkably strong tendency to infect epithelial cells 

[354,355]. Ongoing research efforts are increasingly delving into the diversity of EBV latent and 

lytic genes among the various EBV strains, aiming to discover high-risk EBV strains. This attempt 

holds the potential to identify individuals at a higher risk of infection and pave the way for the 

development of effective EBV vaccines and anti-EBV T-cell therapies [354].  

Nonetheless, it is noteworthy that the oncogenic potency of HCMV clinical strains varies between 

low and high-risk strains. HCMV-DB and HCMV-BL have been classified as high-risk strains in 
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which they possessed their oncogenic potentials in acutely infected HMECs in vitro showing 

sustained transformation [125,126,209,356]. Upon infection with HCMV high-risk strains, there 

was an increase in the activation of Myc and EZH2 as well as the induction of polyploidy. This 

activation of the mentioned axis was significantly more pronounced in CTH cells. Moreover, it 

has been previously shown that the high-risk HCMV-BL strain robustly induces Myc expression 

while suppressing p53 levels [126]. This can enhance the replicative potential of stem cells and 

the reprogramming of progenitor cells in breast cancer, as Myc is identified as a transcriptional 

target of p53 in mammary stem cells and is activated upon p53 loss. Furthermore, HCMV-DB 

increases pRb repression [125], with the pRB-E2F pathway known to regulate the expression of 

EZH2 [357]. Previously, in experiments involving the infection of HMECs with KM, FS, and 

TB40/E strains, no significant activation of molecular oncogenic pathways was observed upon 

acute infection, nor were CTH cells detected in cultures [126,356]. This was especially notable 

when compared to the high-risk HCMV-DB and BL strains. Consequently, it is reasonable to 

classify HCMV-KM, FS, and TB40/E strains as low-risk strains. This conclusion is consistent with 

the absence of colony formation in soft agar assays following seeding HMECs infected with 

HCMV-KM, FS, and TB40/E strains. This underscores the hypothesis that the HCMV high-risk 

strains, namely DB and BL differentially induce Myc upregulation and consequently stimulating 

EZH2 overexpression and polyploidy induction, thus pointing to the presence of the 

Myc/EZH2/PGCCs axis as a key factor underlying these observed results [126]. With regard to 

immune responses, Myc suppresses immune surveillance by modulating the expression of the 

innate immune regulator (CD47, also known as integrin-associated protein) and the adaptive 

immune checkpoint namely, programmed death ligand 1 (PD-L1, also known as CD274 and B7-

H1) [358]. Further, Myc suppresses thrombospondin-1 gene [359], type 1 IFN [360], interleukin-

2, and perforin [358]. Hence, Myc initiates and maintains tumorigenesis through the modulation 

of immune regulatory molecules [361]. These high-risk strains were also characterized by 

PI3K/Akt pathway activation. PI3K/Akt activation induced inflammation and immunosuppression 

through nitric oxide synthase (NOS) overexpression; thus, resulting in tumor initiation via the 

activated Notch pathway leading to tumor progression. On the other hand, suppression or mutation 

of p53 has been shown to decrease MHC-I presentation, increase STAT3 phosphorylation, 
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upregulate PD-L1 via microRNA (miR34), elevate pro-inflammatory chemokine and cytokine 

production, and indirectly upregulate the expression of chemokine receptors (CXCR4 and 

CXCR5). Loss of Rb leads to the increase in CCL2 and IL6 secretion and this is because of the 

elevated fatty acid oxidation (FAO) activity and enhanced mitochondrial superoxide (MS) 

production. Indeed, those molecular alterations have been linked to immune suppression in the 

TME [70]. 
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Chapter 5 

5. Study Objectives 

 

Objective 1: 

In the context of breast cancer, previous studies that were conducted by our research team 

demonstrated the ability of HCMV-DB and HCMV-BL strains in transforming primary HMECs 

into CMV-Transformed HMECs (CTH) cells in vitro. CTH cells, which are slow self-renewing 

cells, undergo diverse stages of the giant cell cycle. They were shown to be heterogeneous, 

generate PGCCs, exhibit dedifferentiation, and display stemness and EMT/MET features. Herein, 

we aimed to: 

• Characterize two HCMV strains, B544 and B693, isolated from TNBC biopsies and assess 

their transformation potential in vitro. 

• Evaluate the resulting cellular phenotype and examine the genetic and molecular features 

induced by these strains. 

• Examine the sensitivity of CTH cells to combination therapy using paclitaxel (PTX) and 

ganciclovir (GCV). 

 

Objective 2: 

With regards to GBM, since HCMV-DB and BL clinical strains previously transformed HMECs 

into CTH cells and as HCMV has been detected in malignant gliomas, we aimed to discover its 

transforming potential in human astrocytes (HAs) by setting the following objectives: 

• Screening HCMV-DB and BL clinical strains for their transforming capacity in HAs and 

investigating the molecular and cellular characteristics of CMV-induced glioblastoma cells 

(CEGBCs) that emerge during long-term cultures. 

• Examining the impact of temozolomide (TMZ), Ganciclovir (GCV), and the EZH2 

inhibitor (GSK 343) on this glioblastoma model. 
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• Exploring the potential link between the triad of HCMV, CEGBCs and EZH2, as well as 

the potential interrelation with Myc in the context of glioblastoma carcinogenesis. 

• Investigating the morphological and phenotypic characteristics of CEGBCs and assess the 

potential implication of Myc and EZH2 in both CEGBCs and GBM biopsies. 

• Isolating eleven clinical HCMV strains from GBM biopsies, analyzing their oncogenic, 

stemness, and invasiveness properties when cultured on HAs, as well as evaluating the 

potential effectiveness of combination therapy in curtailing these effects. 

 

Objective 3: 

In the context of ovarian cancer and since HCMV-DB and BL clinical strains previously 

transformed HMECs and HAs into CTH and CEGBCs cells, respectively,  we decided to 

investigate the potential association between HCMV infection and epithelial ovarian cancer, 

particularly in the case of high-grade serous ovarian cancer (HGSOC) through setting the 

objectives below: 

• Assessing the transforming capacities of the two high-risk clinical strains namely, HCMV-

DB and HCMV-BL, as well as exploring the molecular and cellular characteristics that 

emerged during long-term cultures of  "CMV-transformed Ovarian cells" (CTO cells). 

• Isolating clinical HCMV strains from HGSOC biopsies displaying high EZH2 expression 

and investigating their oncogenic and stemness properties when cultured on OECs. 

• Evaluating the efficacy of EZH2 inhibitors in curtailing CTO’s oncogenic and stemness 

features. 
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Chapter 6 

6. Materials And Methods 

6.1 Reagents 

All the reagents that were used including primers, antibodies, and therapies were provided in the 

tables below (Table 4, Table 5, and Table 6). 

Table 4:  Primers Used. 

Primer  Primer Sequence 

IE1-forward  5'-CGACGTTCCTGCAGACTATG-3' 

IE1-reverse  5'-TCCTCGGTCACTTGTTCAAA-3' 

UL69-forward  5’-GGGATGTCGATGACTCCCTTC-3’ 

UL69-reverse  5’-GTCGCTATTGGATCTCACCGT-3’ 

EZH2-forward  5’-TCGTGCCCTTGTGTGATAGC-3’ 

EZH2-reverse  5’-TCTCGGACAGCCAGGTAGC-3’ 

MYC-forward  5’-ACACCCTTCTCCCTTCG-3’ 

MYC-reverse  5’CCGCTCCACATACAGTCC3’ 

Akt-forward 5’-ATCCCCTCAACAACTTCTCAGT-3’ 

Akt-reverse 5’-CTTCCGTCCACTCTTCTCTTTC-3’ 

LncRNA4.9-forward  5’-GTGAACCGATACGGGTGGAG-3’ 

LncRNA4.9-reverse  5’-CATTTGAACAGAGAAAGGTGG-3’ 

LncRNA HOTAIR-forward  5’-GGTAGAAAAAGCAACCACGAAGC-3’ 

LncRNA HOTAIR-reverse  5’-ACATAAACCTCTGTCTGTGAGTGCC-3’ 

SOX2-forward  5′-GGGAAATGGAGG GGTGCAAAAGAGG-3′ 

SOX2-reverse  5′-TTGCGTGAGTGT GGATGG GATTGGTG-3′ 

Nanog-forward 5′-TCCTCCTCTTCCTCTATACTAAC-3′ 

Nanog-reverse 5′-CCCACAATCACAGGCATAG-3′ 

Oct4-forward 5′-TGGAGAAGGAGAAGCTGGAGCAAAA-3′ 

Oct4-reverse 5′-GGCAGAGGTCGTTTGGCTGAATAGACC-3′ 

OLIG2-forward  5’-CTCCTCAAATCGCATCCAG-3’ 

OLIG2-reverse  5’-AAAAGGTCATCGGGCTCTG-3’ 

CD133-forward  5’- GGGAGAACAA TAATAGGATATTTTGAA-3’ 

CD133-reverse  5’-CGATGCCACTTTCTCACTGAT3’ 

CD44-forward  5’-GACAAGTTTTGGTGGC ACG-3′ 

CD44-reverse  5’-CACGTGGAATACACCTGCAA-3′ 

c-MET-forward  5’-CATCTCAGAACGGTTCATGCC-3’ 

c-MET-reverse  5’- TGCACAATCAGGCTACTGGG-3’ 
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EGFR-forward  5’-TGCGTCTCTTGCCGGAAT-3’ 

EGFR-reverse  5’- GGCTCACCCTCCAGAAGGTT-3’ 

CNDK2A‐forward  5’‐GGGAGCAGCATGGAGCCG‐3’ 

CNDK2A‐reverse  5’‐AGTCGCCCGCCATCCCCT‐3’ 

CCND1‐forward  5’‐GCGAGGAACAGAAGTGC‐3’ 

CCND1‐reverse 5’‐GAGTTGTCGGTGTAGATGC‐3’ 

GAPDH-forward  5’-CCCCTCTTCAAGGCCTCTAC-3’ 

GAPDH-reverse  5’-CGACCACTTTGTCAAGCTCA-3’ 

β-2-Microglobulin-forward 5’-GATGAGTATGCCTGCCGTGTG-3’ 

β-2-Microglobulin-reverse 5’-CAATCCAAATGCGGCATCT-3’ 

 

Table 5: Antibodies Used. 

Antibody  Catalog Number/Source  

Myc  06-549/Upstate, Lake Placid, NY, USA  

Anti-Myc Tag  06-549-25UG/Merck KGaA, (Darmstadt, Germany)  

EZH2  39875/Active Motif (Carlsbad, CA, USA)  

Ki67 Ag BD-556026/BD Biosciences (Franklin Lakes, USA)  

CMV pp72 (IE1)  SC-69834/Santa Cruz Biotechnology (CA, USA)  

HCMV Late antigen  11-005 Argene (Varilhes, France)  

IE1/2 ab53495/Abcam (Cambridge, UK)  

p53 SC-47698/Santa Cruz Biotechnology (CA, USA) 

Rb SC-102/Santa Cruz Biotechnology (CA, USA) 

pRb SC-377528/Santa Cruz Biotechnology (CA, USA) 

Nestin  SC-23927/Santa Cruz Biotechnology (CA, USA)  

GFAP  SC-166481/Santa Cruz Biotechnology (CA, USA)  

Oct4  ab19857/Abcam (Cambridge, UK)  

SOX2  ab97959/Abcam (Cambridge, UK)  

Nanog SC-293121/Santa Cruz Biotechnology (CA, USA) 

SUZ12 AB_2614929/Active Motif (Carlsbad, CA, USA)  

OLIG2  ab109186/Abcam (Cambridge, UK)  

EpCAM  BD-347197/BD Biosciences (Franklin Lakes, USA)  

pp65  SC-52401/Santa Cruz Biotechnology (CA, USA)  

SSEA-4  SC-21704/Santa Cruz Biotechnology (CA, USA)  

AKT  SC-5298/Santa Cruz Biotechnology (CA, USA)  

pAKT (Ser473)  SC-293125/Santa Cruz Biotechnology (CA, USA)  

CD44  BD-555478/BD Biosciences (Franklin Lakes, USA)  
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CD24  BD‐555428/BD Biosciences (Franklin Lakes, USA) 

CD49f  BD‐555735/BD Biosciences (Franklin Lakes, USA) 

Vimentin  SC-6260/Santa Cruz Biotechnology (CA, USA)  

E-cadherin SC-8426/Santa Cruz Biotechnology (CA, USA) 

Phalloidine ab235137/ Abcam (Cambridge, UK) 

Propidium Iodide P3566/Life Technologies (Eugene, USA) 

Annexin V   BD-65874 BD Biosciences (Franklin Lakes, USA)  

FITC-conjugated anti-mouse antibody  BD- 553399/BD Biosciences (Franklin Lakes, USA)  

PE-conjugated anti-mouse antibody  BD-551436/BD Biosciences (Franklin Lakes, USA)  

FITC-conjugated anti-rabbit antibody  ab6717/Abcam (Cambridge, UK)  

FITC-conjugated Goat Anti-Mouse  BD-555988/BD Biosciences (Franklin Lakes, USA)  

FITC-conjugated Rat Anti-Mouse  BD-553443/BD Biosciences (Franklin Lakes, USA)  

 

Table 6: Treatments Used. 

Drugs Dosage 

GCV 20 μM 

PTX 20nM 

TPA 100 nM 

TMZ 50 μM 

GSK343 0.1 μM 

EPZ6438 0.1 μM 

 

6.2 Cell Cultures 

Human primary mammary epithelial cells (HMECs, A10565) were purchased from Life 

Technologies (Carlsbad, CA, USA), and were cultured in HMEC medium (Life Technologies) 

supplemented with HMEC supplement and bovine pituitary extract (Life Technologies). Human 

breast cancer cell lines MDA-MB231 and MCF7 were obtained from Institut Hiscia (Arlesheim, 

Switzerland). Human embryonic lung fibroblasts (MRC5, 84002) were purchased from RD-

Biotech (Besançon, France). MRC5, MDA-MB231 and MCF7 cells were grown in Dulbecco's 

modified Eagle medium (DMEM) (PAN-Biotech, Aidenbach, Germany) supplemented with 10% 

fetal bovine serum (Dutscher, Bernolsheim, France) and penicillin (100U/mL)-streptomycin 

(100μg/mL) (Life Technologies, Eugene, OR). Primary human astrocytes (HAs) were purchased 

from Innoprot (Derio, Spain) and cultivated in astrocytes medium (Innoprot). Human ovarian 
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surface epithelial cells (HOSE cells or OECs, as mentioned in our study) were purchased from 

Innoprot (Derio, Spain), and cultivated in ovarian epithelial cell medium (serum-free) 

supplemented with ovarian epithelial cell growth supplement (OEpiCGS) and 

penicillin/streptomycin solution (P60132, Innoprot). To note that, HOSE cells or OECs were 

isolated from healthy human ovaries, as mentioned in the technical data sheet (P10982, Innoprot).  

CTH and CTO cells emerging following chronic HCMV infection were cultured in the same 

condition as HMECs and OECs, respectively. With regards to CEGBCs isolation and growth, upon 

the appearance of large cellular clusters/structures in HAs cultures that were infected with HCMV-

DB and BL isolates, clusters were gently detached. CEGBCs were initially cultivated in HAs 

medium complemented with low levels of fetal bovine serum (2%) as per the manufacturer’s 

recommendations. At day 150 post-infection, since CEGBCs resemble stem cells compared to 

uninfected HAs, serum was excluded and this is to fit with the optimal conditions of serum-free 

stemness growth as requested for glioblastoma cell cultures [362]. Serum was omitted at day 5 

post-infection of HAs with the HCMV strains that were isolated from GBM biopsies. CTH, 

CEGBCs, and CTO cultures used in this study were maintained for at least 9 months in culture. 

All cells were cultured under standard conditions (37°C, 5% CO2, 95% humidity). Cultures were 

verified as mycoplasma-free as determined by monthly screenings (VenorGem classic 

mycoplasma detection, Minerva Biolabs).  

6.3 HCMV Isolates Growth and Detection 

Clinical HCMV strains, namely HCMV-DB (GenBank KT959235), BL (GenBank MW980585), 

KM, and FS were isolated from patients that were hospitalized at Besançon University Hospital 

(France) as described previously [125,209]. Data corresponding to TNBC biopsies and other 

HCMV strains were reported previously [125,126]. Cell-free virus stocks and infections were 

performed as previously detailed [125]; to prepare these stocks, HCMV strains were propagated 

in MRC5 cells for only few passages to avoid losing the ULb’ region. It is worth mentioning that 

careful screening of our viral stocks was conducted to rule out the presence of other oncoviruses. 

Infections of cells (HMECs, HAs, MRC5, and OECs), quantification of viral replication, and 

HCMV detection were performed as previously described [125,126]. Briefly, the aforementioned 
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cells (1x106) infection with the clinical isolates was performed at a multiplicity of infection (MOI) 

of 1. Cells were incubated at 37 °C for two hours, after which the inoculum was dis-carded, and 

the cell monolayer was washed three times using 1X PBS and afterwards covered with fresh 

medium. HAs (3x106) cells infection with HSV was performed at a MOI of 1.  

For HCMV quantification, cell-free infectious supernatant was collected, DNA was isolated 

(EZNA Blood DNA Kit, D3392-02, Omega BIO-TEK, Norcross, GA) and real-time quantitative 

PCR (qPCR) was performed using a Stratagene Mx3005P thermocycler (Agilent Technologies, 

Santa Clara, CA) and IE1 primers. Where specified, UL69 as well as HCMV lncRNA4.9 were 

detected by the qPCR assay. qPCR was performed using a KAPA SYBR FAST Master Mix 

(KAPA BIOSYSTEMS, KK4601, Potters Bar, UK); reactions were activated at 95 °C for 10 min, 

followed by 50 cycles (15 seconds at 95 °C and 1 min at 60 °C). Results were collected and 

analyzed using MxPro qPCR software.  

6.4 Microscopy 

Olympus optical microscope (Olympus Corporation, Tokyo, Japan) and OPTIKA digital camera 

(Optica Microscopy, Ponteranica, Italy) were used to monitor the short and long-term cultures of 

infected HMECs, MRC5, HAs, and OECs including CTH, CEGBCs, and CTO cells. 

Confocal microscopy imaging for all the aforementioned cells was performed as described 

previously [125]. Briefly, cells were washed with 1X PBS, fixed and permeabilized (BD 

Cytofix/Cytoperm, 554722) and stained with primary antibodies and their corresponding 

secondary antibodies listed in Table 5. For visualization of the nucleus and the cytoplasm, DAPI 

(4′, 6′-diamidino-2- phenylindole) and phalloidin staining respectively were performed according 

to the manufacturer’s protocol. Post-staining, the slides were assessed using a 63× oil immersion 

objective lens with a Carl-Zeiss confocal microscope (Jena, Germany); images were analyzed 

using ZenBlue Software (Carl-Zeiss Microscopy GmbH). 

6.5 Soft Agar Colony Formation Assay 

Colony formation in soft agar seeded with uninfected HMECs, B544, B693, DB, and BL-infected 

HMECs, untreated and PTX/GCV-treated CTH cells, uninfected HAs, CEGBCs, uninfected 
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OECs, and CTO cells was carried out as mentioned previously [125]. MCF7 and MDA-MB231 

were used as positive controls. Briefly, cells were assayed using Cell Biolabs Cytosolic Cell 

Transformation Assay kit (Colorimetric assay, CB135; Cell Biolabs Inc., San Diego, CA) as per 

the manufacturer’s protocol. The provided MTT solution and a microplate reader (A570 nm) were 

used for detection and quantification of the formation of colonies in soft agar (Cayman Chemical, 

Ann Arbor, MI). Olympus optical microscope (Olympus Corporation, Tokyo, Japan) and OPTIKA 

digital camera (Optica Microscopy, Ponteranica, Italy) were used to observe the formed colonies. 

6.6 Tumorsphere and Spheroid formation Assays 

Tumorsphere formation by uninfected HMECs and HMECs infected with HCMV-B544 and 

HCMV-B693 was assayed using StemXVivo serum-free tumorsphere media (R&D Systems) 

supplemented with heparin (2 U/ml) (Sigma) and hydrocortisone (0.5 microg/ml) (Sigma) 

following the manufacturer's protocol and as described previously [125]. 

Spheroids of CEGBCs were prepared as described previously [363,364]. Single cells (1x104) 

isolated by accutase were seeded in a serum-free astrocytes medium containing methylcellulose. 

Where indicated, drugs were mixed in serum-free astrocytes medium with 0.4% methylcellulose. 

Treatment was renewed daily. Spheroid size and surface area were determined using the ImageJ 

software, taking the mean length of the major and minor axis of the spheroid at a given time point 

compared to the initial measurements at time zero. Spheroids of OECs were prepared as described 

previously [365].  Single cells (1x104) isolated by accutase were seeded in a serum-free OECs 

medium containing methylcellulose. 

6.7 Flow Cytometry Analysis 

Cells (1×105) were collected from uninfected HMECs, HAs, OECs, as well as  CTH cells, HCMV-

infected HAs, CEGBCs, HCMV-infected OECs, and CTO cells including treated cells (where 

indicated). Cells were fixed, permeabilized, and stained as previously reported [125,126]. Briefly, 

cells were fixed and permeabilized using 100 μl of BD Biosciences Cytofix/Cytoperm solution for 

20 minutes at 4°C and washed with BD Biosciences 1X BD perm/wash solution. One half of the 

cells were stained using the respective primary antibody and the remaining cells were mock stained 
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to identify secondary antibody background staining. Cells were incubated at 4°C for 1 hour in the 

dark, washed twice with BD Biosciences 1X BD perm/wash solution and incubated at 4°C for 1 

hour in the dark with the corresponding secondary antibody. Cells were then washed twice and 

subjected to cytofluorometric analysis. For cell cycle analysis, uninfected OECs or CTO cells were 

washed in 1X PBS, fixed in 70% ethanol, and resuspended in 50 µg/ml propidium iodide (P3566, 

life technologies, Eugene, USA) with 0.1 mg/ml RNase (R4642, Sigma-Aldrich, Saint-Louis, MO, 

USA), then incubated at 37°C for 30 min as described previously. Cytofluorometric analysis was 

achieved using a BD LSRFortessa X-20 (BD Biosciences) flow cytometer. FACSDiva software 

(BD Biosciences) was used for data collection and analysis.  

6.8 Western Blotting 

Expression of IE1, pp65, Myc, EZH2, Akt, and pAkt in uninfected HAs and HCMV-infected HAs 

as well as IE1, pp65, Myc, EZH2, Sox2, Nanog, E-cadherin, and vimentin expression in uninfected 

OECs, HCMV-infected OECs and CTO cells were assessed as described previously [125]. 

Densitometry using ImageJ 1.40 software (National Institutes of Health, Bethesda, MA, USA) was 

applied to quantify protein levels. β-actin was used as a loading control.  

6.9 RT2 Profiler PCR Array  

The RT2 profiler PCR array was performed as detailed previously [356]. Total RNA was extracted 

from uninfected HAs, and CEGBCs-DB and BL using an RNA extraction kit (EZNATotal kit 

I,Omega BIO-TEK). Afterwards, cDNA was synthesized using the SuperScript IV First-Strand 

Synthesis kit (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s protocol. RT2 Profiler 

PCR Arrays for human oncogenes & tumor suppressor genes (PAHS502ZR) (from 

Qiagen,Germantown,MD,USA) were performed using Mx3005P real-time PCR system as per 

manufacturer’s instructions. Fold regulation was analyzed using the delta-delta Ct method 

[356,366].  

6.10  RNA Cross-linking Immunoprecipitation (RNA CLIP) assay 

RNA CLIP assay was performed on CEGBCs and uninfected HAs as previously reported 

[126,320]. qPCR analysis of EZH2 immunoprecipitated samples (IP EZH2) and negative control 
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(IP IgG) were normalized with respect to each input and expressed as (2(−ΔCt)) x100 (% Input) 

as previously reported [126].  

6.11 Assessment of telomerase activity 

Uninfected OECs and CTO cells were collected, washed with PBS, and resuspended in RIPA lysis 

buffer and 4% protease inhibitor on ice for 30 minutes. Samples were then centrifuged at 16,000 

g for 30 minutes at 4°C and the protein concentration was determined using Bradford assay (DC 

Protein Assay kit, Bio-Rad Laboratories, Hercules, CA). Telomerase activity was assessed as 

described previously and according to the manufacturer’s instructions. 

 

6.12  Quantitative Reverse Transcription PCR (RT-qPCR) 

In CTH cells, the detection of absolute mRNA levels of epidermal growth factor receptor (EGFR), 

cyclin dependent kinase inhibitor 2A (CNDK2A), cyclin D1 (CCND1), SOX2, Oct4, and Nanog 

was assessed by RT-qPCR. Furthermore, RT-qPCR was also used to detect the transcripts of IE1, 

UL69, Myc, EZH2, OLIG2, CD133, SOX2, CD44, EGFR, MET, HCMV lncRNA4.9, and cellular 

lncRNA HOTAIR in CEGBCs as well as the IE1, UL69, EZH2, Myc, Sox2, Nanog, and Oct4 

transcripts in CTO cells. RT-qPCR was performed as detailed previously [126,356]. In brief, RNA 

was extracted from the biopsies or the aforementioned cells using the EZNA® Total RNA Kit I 

(Omega BIO-TEK, Norcross, GA, USA). Reverse transcription was carried out using the 

SuperScript IV First-Strand Synthesis kit (Invitrogen, Carlsbad, CA, USA). The expression of 

markers was assessed by performing real-time qPCR using a KAPA SYBR FAST Master mix 

(KAPA BIOSYSTEMS, KK4601) and specific primers according to the manufacturer’s protocol. 

The fold change expression was calculated by adopting the delta-delta Ct method [356]. 

6.13  Invasion Assay 

Collagen invasion assay: Collagen I (Corning, New York, NY) of 1 mg/ml concentration was 

prepared in 1X PBS with 7.2mM NaOH and 0.1% HCl was added. Where indicated, treatments, 

were mixed directly into the collagen gels. Prepared spheroids were incubated on ice for 30 min 

and then separately selected, washed in PBS, and subsequently included in the collagen solution. 
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After 1 hour at 37°C in a cell incubator, serum-free astrocytes medium including the diverse 

treatments was added. Secondly, 3D astrocyte scaffold invasion assay: scaffolds were formed by 

HAs in hyperconfluent culture. Afterwards, CEGBCs-DB and BL spheroids were cultured on top 

of HAs scaffolds. Spheroids’ core area and invasion area were measured using ImageJ software; 

protrusions were measured using OPTIKA Vision Pro software and manually quantified. 

6.14  Treatments 

Where indicated, CTH cells were treated with ganciclovir (GCV) and paclitaxel (PTX). CEGBCs-

DB and BL were under GCV, temozolomide (TMZ), and EZH2 inhibitor (GSK343). Treatments 

was renewed every day. Further, CTO-DB and BL were treated with the two EZH2 inhibitors 

(GSK343 and EPZ6438). Treatment was renewed every 2 days. CTH, CEGBCs, and CTO cells 

were also treated with 12-O-45 tetradecanoylphorbol-13-acetate (TPA); treatment was renewed 

daily. The dosages corresponding to each drug were provided in Table 6. 

6.15  Tumor Biopsies and HCMV isolation 

6.15.1 Tumor Biopsies 

All tumor biopsies were provided by the Regional tumor bank (BB0033-00024 Tumorothèque 

Régionale de Franche-Comté). It’s worth noting that a written informed consent for participation 

was obtained from all patients. The studies were authorized by the local ethics committees of 

Besançon University Hospital (Besançon, France) and the French Research Ministry (AC-2015-

2496, CNIL n°1173545, NF-S-138 96900 n°F2015). 

-Tumor breast biopsies (luminal tumor biopsies n=10 and basal tumor biopsies n=9) and adjacent 

healthy breast biopsies (n=8). The treatment, clinical outcome and pathological data for these two 

TNBC patients were described previously [126]. 

-GBM biopsies [n=37; O (6)-methylguanine DNA methyltransferase (MGMT) promoter 

methylated GBM biopsies n=17, and MGMT promoter unmethylated GBM biopsies n=20] as well 

as healthy brain biopsies (n=4). Clinical and biological data of the GBM patients were provided in 

Table 7. 
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Table 7: Clinical and biological data of the GBM patients.   

GBM  

Pa-

tients 

N°  

Age  

(years)  

Sex 

(F/M)  

CMV  

detection  

(IE1/UL69  

Expres-

sion)  

EZH2 Fold gene  

Expression  

(Low/Intermedi-

ate/ High)  

Myc Fold gene  

Expression  

(Low/Intermedi-

ate/ High)  

Akt Fold gene  

Expression  

(Low/Intermedi-

ate/ High)  

MGMT PROMOTER METHYLATED GBM BIOPSIES (n=17) 

1  53  M  +/+  *  *  **  

2  81  M  +/+  **  **  ***  

3  77  F  +/+  **  **  *  

4  79  F  +/+  ***  **  **  

5  70  M  + /+  *  *  *  

6  68  F  +/+  **  **  *  

7  85  M  +/+  **  **  *  

8  72  F  +/+  *  *  *  

9  75  F  +/+  **  *  *  

10  76  M  +/+  ***  **  *  

11  69  F  +/+  *  *  *  

12  22  M  +/+  *  *  *  

13  76  M  +/+  ***  **  **  

14  68  M  +/+  *  *  *  

15  84  F  +/+  *  *  **  

16  64  F  +/+  *  *  **  

17  59  M  +/+  *  *  *  

Mean  69.29  [8F/9M]  

47-53%  

[+/+]  [9*/5**/3***] 53-

29-18%  

[10*/7**/0***] 

59-41-0%  

[11*/5**/1***] 

65-29-6%  

MGMT PROMOTER UNMETHYLATED GBM BIOPSIES (n=20) 

18  50  M  +/+  ***  **  *  

19  42  M  +/+  *  *  *  

20  77  M  +/+  ***  *  *  

21  76  M  +/+  ***  ***  **  

22  68  F  +/+  *  *  *  

23  69  M  +/+  **  **  *  

24  59  M  +/+  **  **  *  

25  59  M  +/+  **  **  ***  

26  73  M  +/+  *  *  *  

27  72  F  +/+  *  *  *  

28  55  M  +/+  *  *  *  

29  77  F  +/+  **  *  **  

30  78  F  +/+  **  *  **  

31  65  M  +/+  ***  **  ***  

32  41  M  +/+  **  *  *  

33   46  F  +/+  **  **  *  

34  73  F  +/+  *  *  *  

35  65  M  +/+  **  *  **  

36  67  F  +/+  *  *  *  
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37  47  F  +/+  *  *  *  

Mean  62.95  [8F/12M]  

40-60%  

[+/+]  [8*/8**/4***] 40-

40-20%  

[13*/6**/1***] 

65-30-5%  

[14*/4**/2***] 

70-20-10%  

TOTAL GBM BIOPSIES (n=37) 

Mean  65.86  [16F/21M] 

43-57%  

[+/+]  [17*/13**/7***] 

46-35-19%  

[23*/13**/1***] 

62-35-3%  

[25*/9**/3***] 

68-24-8%  

 
Key: Myc Fold gene expression: *Low: <10; **Intermediate:10-100; ***High: >100; EZH2 Fold gene 

expression: *Low: <10; **Intermediate:10-100; ***High: >100; Akt Fold gene expression: *Low: <1; 

**Intermediate:1-10; ***High: >10 . 

 

-Ovarian biopsies (n=25; HGSOC biopsies n=18, and adjacent non-tumoral biopsies n=7) were 

provided by the Regional tumor bank (BB0033-00024 Tumorothèque Régionale de Franche-

Comté). Clinical data and treatments of the OC patients were provided in Table 8. 

Table 8:  Clinical data and treatments of the OC patients.   

Biopsy 

# 

Age Tumor Metastasis Chemotherapy 

1 67 HGSOC + carboplatin – gemcitabine - bevacizumab 

2 64 HGSOC + carboplatin -paclitaxel  

3 

 

50 HGSOC + bevacizumab-carboplatin -paclitaxel -pegylated liposomal doxorubi-

cin-HIPEC 

4 82 HGSOC + carboplatin – gemcitabine – bevacizumab - paclitaxel 

5 63 HGSOC + carboplatin -paclitaxel - pegylated liposomal doxorubicin 

6 

 

48 HGSOC + bevacizumab – carboplatin – paclitaxel - pegylated liposomal doxo-

rubicin 

7 57 HGSOC + topotecan 

8 79 HGSOC - carboplatin -paclitaxel 

9 70 HGSOC + carboplatin – gemcitabine - bevacizumab 

10 57 HGSOC - carboplatin - cyclophosphamide 

11 

 

70 HGSOC + carboplatin -paclitaxel - pegylated liposomal doxorubicin – gemcita-

bine -topotecan 

12 54 HGSOC + carboplatin -paclitaxel - bevacizumab 

13 56 HGSOC + carboplatin -paclitaxel 

14 88 HGSOC + carboplatin -paclitaxel 

15 60 HGSOC + carboplatin -paclitaxel 

16 64 HGSOC + carboplatin -paclitaxel 

17 57 HGSOC + docetaxel - carboplatin -paclitaxel 

18 44 HGSOC + carboplatin - paclitaxel 
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6.15.2 Genes and Transcripts Expression As Well As Polyploidy Detection Within Tumor 

Biopsies  

RNA was extracted from TNBC biopsies (B544 and B693) followed by reverse transcription to 

measure EGFR, CNDK2A, CCND1, SOX2, Oct4, and Nanog mRNA expression by RT-qPCR. 

Genomic DNA was isolated from GBM as well as OC biopsies, and HCMV presence was 

identified by qPCR using specific primers against IE1 and UL69 genes. Further, RNA was 

extracted from GBM and OC biopsies and reverse transcription was performed as reported 

previously. For GBM biopsies, expression of EZH2, Myc, Akt, and GAPDH was assessed by real-

time qPCR using specific primers according to the manufacturer’s protocol. For OC biopsies, the 

expression of EZH2, Myc, Akt, and β-2-Microglobulin was assessed by real-time qPCR using 

specific primers according to the manufacturer’s protocol. Fold change expression in TNBC, GBM 

and OC biopsies versus healthy breast and brain biopsies as well as adjacent non-tumoral OC 

biopsies, respectively was calculated using the delta-delta Ct method. 

In TNBC biopsies, hematoxylin and eosin slides were used to detect PGCCs presence based on 

Zhang et al. description, with PGCCs being defined as a cancer cell with a nucleus at least three 

times larger than that of a diploid cancer cell [115]. PGCCs presence in HGSOC biopsies was 

confirmed by hematoxylin and eosin staining; briefly, PGCCs were counted in five hot spots of 

each tumor sample (magnification x400, field diameter of 250 µm and 100 µm, Zeiss Axiostar).  

6.15.3 HCMV Isolation From Tumor Biopsies 

HCMV strains, B544 and B693, were isolated from TNBC patient biopsies by mechanical tissue 

disruption and filtration of the frozen biopsy through a 0.45 µm filter and initially grown on MRC5 

cells. The supernatant from MRC5 culture was filtrated through a 0.45 µm filter and used to infect 

HMECs. The purity of our HCMV cultures was confirmed by ruling out the presence of other 

viruses (Epstein-Barr virus, human papillomavirus, Kaposi sarcoma herpesvirus and adenovirus). 

Eleven HCMV-GBM strains were isolated from MGMT promoter methylated (n=4) and promoter 

unmethylated (n=7) GBM biopsies by mechanical tissue disruption and filtration of the frozen 

biopsy through a 0.45 µm filter and initially grown on MRC5 cells. The supernatant from MRC5 

culture was used to infect fresh human astrocytes. The purity of our HCMV cultures was confirmed 

by ruling out the presence of other viruses (Epstein-Barr virus and human papillomavirus). Three 
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HCMV-OC strains were isolated from HGSOC biopsies. Neither human papillomavirus (HPV) 

nor Epstein-Barr virus (EBV) was detected in the OC biopsies.  

6.16  Statistical Analyses 

All quantitative results are reported as mean ± SD of the independent experiments. Statistical 

analyses were done using Wilcoxon and Mann-Whitney tests; a p-value≤0.05 was considered to 

be statistically significant [*: ≤0.05; **: ≤0.01; ***: ≤0.001]. Correlation analyses were done using 

Spearman, Pearson, and Kendall's Tau correlation tests. Microsoft Excel was used to construct the 

plots and histogram data. 
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Chapter 7 

7. Results 

7.1 Oncogenic and Stemness Signatures of the High-Risk HCMV Strains in Breast Cancer 

Progression 

7.1.1 Growth of Two HCMV Clinical Strains Isolated from TNBC in HMECs and the 

Emergence of Morphologically Distinct Cells 

To assess the cellular environment achieved by HCMV, B544 and B693 were isolated from TNBC 

biopsies and grown in MRC5 cells, revealing a viral growth at days 3 and 5 post-infection (PI) 

(Figure 10A). At day 1 post-HMECs infection, HCMV-IE1 and pp65 were detected with confocal 

microscopy (Figure 10B). HCMV-B544 and B693 promoted the transformation of the infected 

HMECs toward CTH cells as previously reported [126]. Uninfected HMECs were used as controls 

which underwent cellular senescence in long-term cultures. At day 110 PI, we detected a wide 

variety of spheroids and giant cells distributed between round dense cells, flat, and elongated 

spindle-like cells. Afterwards, lipid droplet-packed cells, multinucleated giant cells, cell budding, 

and filopodium protrusions were observed in CTH cultures (Figure 10C,D). Hence, this 

population displayed mesenchymal and fibroblastic-like structures in addition to epithelial and 

small cells. The above-mentioned detailed cell morphology is close to that of CTH cells which 

were previously detected in HMEC cultures acutely infected with high-risk BL and DB strains 

[126]. Thus, the CTH-B544 and CTH-B693 heterogeneous cell population represent transformed 

and self-renewing cells that are engaged in distinct phases of the giant cell cycle [117,118].  

7.1.2 Transformation Capacity of CTH Cells and the Induction of an Oncogenic Environment 

To evaluate the transformation of HCMV-B544 and B693 immortalized infected HMECs, cells 

were seeded in soft agar. Colony formation was detected at day 14 post-seeding in CTH-B544 and 

CTH-B693 cells (p-value ≤ 0.05) in contrast to uninfected HMECs which showed no changes 

(Figure 11A). The resulting anchorage-independent growth in CTH cells is a crucial phase in the 

acquisition of malignancies. With regard to oncogenes, the expression of c-Myc was assessed by 

performing confocal microscopy imaging where large and elongated CTH cells showed 

remarkable c-Myc staining compared to uninfected HMECs (Figure 11B). Using flow cytometry, 

a slightly higher expression of the proliferation marker (Ki67Ag) was detected in CTH-B693 
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compared to CTH-B544 cells with a limited expression in the uninfected HMECs. Only CTH-

B544 and B693 cells were positively stained with Ki67 Ag as detected by confocal microscopy 

imaging (Figure 12A). On the other hand, a slight increase in the expression of phosphorylated 

Akt (pAkt-ser473) along with a limited to nonexistent increase in Akt expression levels was shown 

in all CTH cells compared to uninfected HMECs (Figure 12B). Overall, the acquisition of an 

immortal phenotype in CTH-B544 and B693 cells reflects their transformation potential. 
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Figure 10: Replication of B544 and B693 strains in MRC5 cultures, and the appearance of 

morphologically distinct cells following the infection of HMECs with these high-risk strains.  

(A) Time-course of the viral titer in the supernatant of MRC5 infected with the strains HCMV-B544 and HCMV-

B693, as measured by IE1-qPCR. (B) Confocal microscopic images of HCMV-IE1 and pp65 staining in HMECs 

infected with HCMV-B544 and HCMV-B693 (day 1 post-infection). Uninfected HMECs were used as controls. 

Nuclei were counterstained with DAPI; magnification ×63, scale bar 10 μm. (C) HMECs time-course infection with 

HCMV-B544 and HCMV-B693 strains (MOI = 1). Magnification ×100, scale bar 100 μm. Uninfected HMECs were 

used as a control. (D) Presence of giant cells with blastomere-like morphology (1 and 6), mesenchymal cells (4 and 

7), lipid droplet-packed cells (3, 8, and 9), cells displaying multiple nuclei (2) as well as cell budding (4, 5, and 6), 

and cells with filopodia protrusions (9) in CTH-B544 and CTH-B693 cells. The inverted light microscope scale bar 

represents 100 µm; magnification ×200.  

 

 

 

Figure 11: Colony formation in soft agar and Myc expression in CTH-B544 and B693 cells.  

(A) Colony formation in soft agar seeded with uninfected HMECs, CTH-B544 and CTH-B693 cells. At day 15 post-

seeding, quantification of colonies was performed; Histogram represents the mean data ± SD of three independent 

experiments. * p-value ≤ 0.05, (B) Confocal microscopic images of Myc and DAPI staining in CTH cells. 

Magnification ×63, scale bar 10 μm. 
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Figure 12: CTH proliferation capacities and AKT activation.  

(A) Proliferation assessment by FACS and confocal microscopy; UI HMECs, CTH-B544 and CTH-B693 cells were 

stained for Ki67 Ag and DAPI. Magnification ×63, scale bar 10 μm. (B) P-AKT, and AKT expression in UI HMECs 

and CTH cells, as measured by FACS. Results are representative of three independent experiments.  
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7.1.3 CTH Cells Promote Embryonic Stemness and Develop an Epithelial/Mesenchymal Hybrid 

State 

When cultured in serum-free tumorsphere medium, CTH-B544 and B693 cells gave rise to 

mammospheres at day 14 and expressed stemness markers versus uninfected HMECs (Figure 

13A). CTH cells revealed a rise in CD44 and CD24 expression when compared to uninfected 

HMECs (Figure 13B), in line with CTH-DB and BL data. Activated expression of the embryonic 

stem cell markers, SSEA-4 and Nanog, was recognized in CTH-B544, CTH-B693, CTH-DB, and 

CTH-BL cells by performing flow cytometry (Figure 14A) and confocal microscopy imaging 

(Figure 14B,C). Moreover, CTH-B544 and B693 cells gained embryonic stem-like properties by 

highly expressing Oct4 and SOX2 as demonstrated by confocal microscopy imaging (Figure 

14D,E). Similar to CTH-DB and BL, the newly discovered CTH cells showed an elevated 

expression of the stemness marker CD49f or Integrin alpha-6, and a limited EpCAM expression 

(Figure 15). CTH-B544 and B693 as well as CTH-DB and BL cells were positive for both 

vimentin and E-cadherin staining (Figure 15) thereby signifying their ability to dynamically 

oscillate between the epithelial-hybrid-mesenchymal spectrum as reported previously in tumors 

with poor prognosis [367,368]. As a result, CTH-B544 and B693 cells exhibited the following two 

phenotypes: stemness and hybrid epithelial/mesenchymal phenotypes. 
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Figure 13: Tumorspheres formation and the expression of stemness markers in CTH cells.  

(A) Tumorspheres were observed under an inverted light microscope in CTH-B544 and CTH-B693 cells. 

Magnification ×100 and ×200, scale bare 100 µm. Uninfected HMECs were used as a negative control. (B) FACS 

staining of CD44 and CD24 was performed in CTH cells. Results are representative of three independent experiments.   
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Figure 14: Expression of embryonic stem cell markers in CTH-B544 and B693 cells.  

(A) Detection of SSEA4 and Nanog in CTH cells by FACS. Results are representative of three independent 

experiments. Confocal microscopy imaging demonstrating the expression of (B) SSEA-4, (C) Nanog, (D) Oct4, and 

(E) SOX2. Nuclei were counterstained with DAPI; magnification ×63, scale bar 10 μm. 
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Figure 15: Penotypic analysis of CTH cells.  

Detection of a panel of cell markers through FACS staining of CD49f, EpCAM, Vimentin, and E-cadherin in CTH-

B544 and CTH-B693 versus UI HMECs. Results are representative of three independent experiments.  
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7.1.4 Persistent HCMV Replication in CTH-B544 and CTH-B693 Long-Term Cultures 

To determine the sustained HCMV presence, HCMV-IE1 antigen was detected using flow 

cytometric analysis. IE1 was strongly expressed in CTH-B544 and CTH-B693; uninfected 

HMECs showed no staining for IE1 (Figure 16A). Using qPCR, we detected HCMV (IE1 DNA) 

in the supernatant of CTH-B544 and CTH-B693 cultures (Figure 16B). Further, CTH cells were 

positively stained for HCMV-pp65 antigen versus uninfected HMECs (Figure 16C). CTH cells 

were treated with TPA to assess latency relevance (Figure 16D,E). Post TPA treatment, the 

proliferation of CTH-B544 and CTH-B693 cells was promoted (Figure 16D). IE1 detection was 

elevated at day 1 and day 2 post-treatment in CTH-B544 and CTH-B693, respectively (p-value= 

0.33), and subsequently decreased (Figure 16E). 
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Figure 16: Sustained viral replication in CTH cells.  

IE1 expression in CTH cells was assessed by (A) FACS and (B) qPCR. (C) pp65 detection in CTH-B544 and B693 

cells as demonstrated by confocal microscopy imaging. As a negative control, uninfected HMECs were used; nuclei 

were counterstained with DAPI; magnification ×63, scale bar 10 μm. (D, E) Determination of viral reactivation from 

latency in CTH cells through the treatment of TPA. (D) Representative images of CTH cultures treated with TPA (100 

nM). Untreated cells were used as a control. Magnification ×100, scale bar 100 μm. (E) HCMV lytic replication was 

induced by TPA in CTH cultures. Histograms represent the mean data ± SD of three independent experiments.  
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7.1.5 A Specific Molecular Landscape Unveiled in the Tumor Microenvironment of TNBC Har-

boring High-Risk HCMV 

To evaluate the variation in strains’ aggressiveness, we compared the transcriptomic profile 

corresponding to the two high-risk biopsies. The absolute mRNA level of epidermal growth factor 

receptor (EGFR), cyclin dependent kinase inhibitor 2A (CNDK2A), cyclin D1 (CCND1), SOX2, 

Oct4, and Nanog was assessed by RT-qPCR. EGFR, a proto-oncogene that enhances cell 

proliferation and survival, the cell cycle regulator CNDK2A, the proliferation marker CCND1, 

and the three embryonic markers were overexpressed in biopsy 693 compared to biopsy 544 (p-

value ≤ 0.05 for all markers) (Figure 17A). Our results indicated that biopsy 693, from which we 

isolated the HCMV-B693 strain, is associated with higher tumor aggressiveness and poor 

prognosis.  

7.1.6 Restricting Soft Agar Colony Formation, Controlling PGCCs Count and Proliferation by 

Paclitaxel and Ganciclovir Therapy 

To assess the colony formation in soft agar, CTH cells were treated by PTX/GCV combination 

therapy to target the oncogenic cellular environment as well as HCMV. Breast cancer cell lines, 

MDAMB231 and MCF7 were used as positive controls. PTX/GCV treatment of CTH-B544 cells 

resulted in the disappearance of colonies; however, colony formation was restricted in treated 

CTH-B693 cells versus untreated cells (Figure 17B). Post therapy, the PGCCs count was reduced 

by 25% in CTH-B544 while it remained constant in CTH-B693 as measured by FACS (Figure 

17C). Further, the proliferation of PGCCs was assessed by Ki67 Ag measurement using flow 

cytometric analysis; Ki67 Ag expression was reduced in PTX/GCV-treated CTH-B544, but not in 

CTH-B693 (Figure 17D). Our outcomes revealed that CTH-B544 cells are more responsive to 

PTX/GCV therapy compared to CTH-B693 cells implying that the latter exhibits aggressive 

behavior. 
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Figure 17: Distinct responses of CTH cells to paclitaxel/ganciclovir (PTX/GCV) treatment in 

vitro recapitulates distinct TNBC molecular signatures in vivo.  

(A) EGFR, CNDK2A, CCND1, SOX2, Oct4, and Nanog mRNA expression was measured by RT-qPCR in TNBC 

biopsies B544 and B693. Histograms represent the mean ± SD of three independent experiments. * p ≤ 0.05, 

determined by Mann–Whitney U test. (B) Soft agar seeded with CTH-B544 and CTH-B693 cells treated with PTX 

(20 nM)/GCV (20 μM) combination therapy. Untreated cells were used as negative controls; MCF7 and MDA-MB231 

cells were used as positive controls. Magnification ×200, scale bar 100 μm. (C) Propidium iodide (PI) staining for 

detection of PGCCs in untreated and treated CTH cells by FACS analysis. (D) Ki67 Ag expression in PGGCs of 

untreated and treated CTH cells. Histograms represent the mean data ± SD of three independent experiments. 
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7.2 EZH2-Myc Driven Glioblastoma Elicited by Cytomegalovirus Infection of Human 

Astrocytes 

7.2.1 HCMV Clinical Isolates Permissively Infect HAs Inducing Increased Myc and 

EZH2 Expression 

The cellular environment induced by HCMV infection was assessed by studying the tropism of 

DB and BL high-risk HCMV strains (Figure 18) as well as KM and FS low-risk HCMV strains 

(Figure 19) to HAs. HCMV-DB and BL strains replicated in HAs with a burst of viral growth (6 

logs for DB and 3 logs for BL) followed by occasional blips (Figure 18A and Figure 20). Acute 

infection was then confirmed through immediate early gene (IE1), pp65, and the late HCMV 

antigens detection (Figure 18B,C and Figure 19). In addition, IE1 and early/late gene (UL69) 

transcripts were detected in HAs infected with HCMV-DB and BL compared to controls (Figure 

18D). At day 3 post-infection, Myc was overexpressed in HAs-DB and BL compared to controls 

(p-value = 0.09), mostly in HAs-DB. Elevated EZH2 expression was detected in HAs-DB and BL 

compared to uninfected HAs (p-value = 0.02) (Figure 18E). Myc and EZH2 transcripts were 

detected in HAs-DB and BL compared to controls (Figure 18F). Lower apoptosis levels were 

recognized with the two strains (Figure 18G) in line with Akt and pAkt-Ser473 upregulation as 

confirmed by western blot and FACS, particularly with HCMV-DB (Figure 18H). In contrast to 

the high-risk DB and BL strains, the low-risk FS and KM strains did not elicit any of the above-

mentioned behavior (Figure 19). Taken together, a MycHigh EZH2High molecular profile was 

observed with both high-risk strains, preferentially with HCMV-DB. 
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Figure 18: Replication of two high-risk oncogenic HCMV strains in HAs cultures, the 

activation of oncogenic pathways, and reduced apoptosis rates.  

(A) Time-course of the viral titer in the supernatant of HAs infected with HCMV-DB and BL as measured by IE1-

qPCR. (B) Immunoblotting data of IE1 and pp65 in uninfected HAs lysates and HAs infected with HCMV-DB and 

BL (day 5 post-infection). β-actin was used as loading control. (C) Confocal microscopic images of HCMV-IE1, pp65, 

and late antigen staining in HAs infected with HCMV-DB and BL (day 1 post-infection). Uninfected HAs and MRC5-

DB cells were used as negative and positive controls, respectively. Nuclei were counterstained with DAPI; 

magnification ×63, scale bar 10 μm. (D) IE1 and UL69 transcripts detection by RT-qPCR in uninfected HAs, HAs-

DB and BL as well as HAs infected with UV-treated HCMV. (E) Myc and EZH2 protein expression as measured by 

western blot (day 5 post-infection) and FACS (day 3 post-infection) in uninfected HAs and HAs infected with HCMV-

DB and BL. β-actin was used as loading control. (F) Myc and EZH2 transcripts detection by RT-qPCR. (G) Early 

apoptosis assessment in HAs-DB and BL (MOI = 1). UI HAs were used as a control. (H) Akt, and pAkt-Ser473 protein 

expression as measured by western blot and FACS in uninfected HAs and HAs infected with HCMV-DB and BL. β-

actin was used as loading control. Data are represented as mean ± SD of two independent experiments.  
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Figure 19: Long-term cultures of HAs infected with the two low-risk HCMV strains.  

(A) Time-course of the viral titer in the supernatant of infected HAs as measured by IE1-qPCR along with the cellular 

analysis of HAs-KM and FS based on their size (FSC) and granularity (SSC). (B) Confocal microscopic images of 

HCMV-IE1, pp65, and late antigen staining in HAs infected with HCMV-KM and FS (day 1 post-infection). Nuclei 

were counterstained with DAPI; magnification ×63, scale bar 10 μm. (C) Myc, Akt, pAkt-Ser473, and Rb protein 

expression as measured by FACS in uninfected HAs and HAs infected with HCMV-KM and FS. Data are represented 

as mean ± SD of two independent experiments. 
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7.2.2 Emergence of a Glioblastoma-Like Phenotype With CEGBCs in HAs Chronically In-

fected With High-Risk HCMV Strains. 

In contrast to the low-risk HCMV strains that didn’t allow long-term replication in HA cultures 

and were senescent (Figure 19), HAs infected with HCMV-DB and BL were maintained in culture 

for an extended period of time (Figure 20). Around day 80–90 post-infection, dense cellular 

aggregates appeared in HCMV-BL and DB cultures with invasive-like cells irradiating from the 

main cellular structures resembling the formerly described “go or growth” phenotype of 

glioblastoma cells [369] (Figure 21A,B). Cells with a glioblastoma-like phenotype were 

termed “CMV-Elicited GlioBlastoma Cells” or CEGBCs similar to the previously reported 

“CMV-Transformed Human mammary epithelial cells” or CTH cells [125,209]. 

We next assessed the protein expression of EZH2 and Myc in CEGBCs in which increased 

expression levels were observed compared to controls (Figure 21C). CEGBCs characterization 

was achieved by assessing oncogenes, tumor suppressor genes and cell cycle genes. Oncogenes 

and cell cycle genes were mainly upregulated in CEGBCs-DB; however, tumor suppressor genes 

were down-regulated mostly in CEGBCs-BL (Figure 21D,E). CEGBCs-DB and BL were seeded 

on a soft agar to evaluate their tumorigenic potential and colony formation was detected; 

uninfected HAs and HAs infected with herpes simplex virus (HSV) showed no colony formation 

(Figure 21F). Primary GBM experiences the subtype switch during relapse, shifting from the 

proneural (PN) subtype to the mesenchymal (MES) one namely the proneural-mesenchymal 

transition (PMT), thus acquiring a therapy-resistant phenotype [370]. With regards to PMT 

markers, vimentin was elevated mostly in CEGBCs-DB, and to a lesser extent in CEGBCs-BL 

(Figure 21G). CD44, a widely accepted marker for cancer stem cells and a mesenchymal marker 

regulating both stemness and epithelial-mesenchymal plasticity, was shown to be predominantly 

upregulated in CEGBCs-DB (Figure 21H). EMT genes were mostly upregulated in CEGBCs-DB 

compared to CEGBCs-BL (Figure 21I). CEGBCs-DB were shown to be close to the transcriptome 

profile of mesenchymal glioblastoma (mGB) whereas CEGBCs-BL expressed more PN 

traits (mesenchymal markers: p-value (CEGBCs-DB:CEGBCs-BL) = 0.002; proneural markers: p-

value (CEGBCs-DB:CEGBCs-BL) = 0.06) (Figure 21J). Taking into account the proteomic and 

transcriptome data, CEGBCs-DB mostly displayed a mesenchymal phenotype compared to 
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CEGBCs-BL. High levels of SOX2, Oct4, and SSEA4 were detected in CEGBCs (Figure 22A 

and Figure 23A,B). Hence, the identified stemness features in CEGBCs indicated their relevance 

to glioblastoma stem cells (GSCs). Assessing the spheroid formation potential of CEGBCs, 

spheroids were generated 24–48 hours post-seeding; no spheroid formation was detected in HAs 

infected with HSV (Figure 22B). Nestin and IE1 were concomitantly expressed in CEGBCs-DB 

and BL spheroids (Figure 22C). 

 

 

Figure 20: Long-term replication of two high-risk HCMV strains in HAs cultures.  

Time-course of the viral titer in the supernatant of HAs infected with HCMV-DB and BL as measured by IE1-qPCR.   



Page | 104  
 
 

 

 

Figure 21: Chronic infection of HAs with HCMV clinical isolates, the appearance of 

CEGBCs as well as colony formation in soft agar, and the phenotypic characterization of 

CEGBCs.  

(A) HAs time-course infection with HCMV-DB and BL strains (MOI = 1). Red arrows showing the generated 

CEGBCs. Magnification ×100, scale bar 100 μm. Uninfected HAs were used as a control. (B) An inverted light 

microscope was used to closely follow up the chronic CEGBCs-DB and BL cultures and the appearance of several 

structures; magnification 200x, scale bar 100 µm. (C) FACS staining of Myc and EZH2 in HAs infected with HCMV-

DB and BL; uninfected HAs were used as a negative control. The fold regulation of oncogenes and tumor suppressor 

genes (D) as well as cell cycle genes (E) was assessed in uninfected HAs and HAs infected with HCMV-DB and BL 

using RT2 Profiler PCR Arrays. (F) Colony formation in soft agar seeded with CEGBCs-DB and BL (MOI = 1); UI 

HAs and HAs-HSV were used as controls. Formed colonies were observed under an inverted light microscope 

(Magnification 200x, scale bar 100 µm). (G) Vimentin expression by FACS and confocal microscopy in CEGBCs-

DB and BL; uninfected HAs were used as a control. Nuclei were counterstained with DAPI; magnification ×63, scale 

bar 10 μm. (H) FACS staining of CD44 in CEGBCs-DB and BL. Uninfected HAs were used as controls. (I) The fold 

regulation of EMT genes was assessed in UI HAs and HAs infected with HCMV-DB and BL using RT2 Profiler PCR 

Arrays. (J) Histogram depicting the expression of PN markers (OLIG2, CD133, and SOX2), MES markers (CD44, 

EGFR, and MET), as quantified by RT-qPCR in CEGBCs-DB and BL. **p- value ≤ 0.01. Data are represented as 

mean ± SD of two independent experiments.    
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Figure 22: Spheroid-forming potentials of CEGBCs as well as invasiveness and migration.  

(A) Confocal microscopic images of SOX2 and DAPI staining in CEGBCs-DB and BL. UI HAs were used as controls; 

magnification ×63, scale bar 10 μm. (B) Schematic for spheroid generation from the chronically infected DB and BL 

astrocytes (day 222 post-infection); magnification 100x, scale bar 100 µm. HAs-HSV were used as a negative control. 

(C) Concomitant staining of IE1 and Nestin in CEGBCs-DB and BL spheroids. Nuclei were counterstained with 

DAPI; magnification ×63, scale bar 10 μm. (D) HCMV-IE1 and Nestin staining in 3D-scaffolds formed by CEGBCs 

in confluent culture and seeded with CEGBCs-DB and BL spheroids using confocal microscopy; magnification x20, 

scale bar 20 µm. Confocal microscopic images of Nestin and IE1 staining in PGCCs (E) and isolated cells (F) present 

in CEGBCs-BL culture (red arrows). Nuclei were counterstained with DAPI; magnification ×20, scale bar 20 and 50 

μm. Time-course of the 3D-invasion assay where CEGBCs-DB (G) and BL (H) spheroids were embedded into type-

1 collagen in the presence of HCl; red arrows showing cell invasion. Magnification x100, scale bar 100 µm. (I) Graphs 

showing the variation in the invasion area of CEGBCs- DB and BL spheroids. Measurements were taken using ImageJ; 

data are represented as mean ± SD of two independent experiments.  

 

 

Figure 23: Stemness potential of CEGBCs-DB and BL.  

Confocal microscopic images of Oct4 (A) and SSEA4 (B) staining in CEGBCs-DB and BL; UI HAs were used as a 

control. Nuclei were counterstained with DAPI; magnification ×63, scale bar 10 μm. 
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7.2.3 CEGBCs Productively Infected With High-Risk HCMV Display Invasiveness 

CEGBCs from spheroids readily invaded astrocyte scaffolds, by aligning along and intercalating 

between astrocytes and penetrating all scaffold layers as measured by nestin detection. After 7 

days, nestin was present in the spheroids’ core and invasive part; cells were IE1 and nestin-

positive. HCMV-IE1 was predominantly located in the spheroid core and present in the individual 

cells detaching from the core (Figure 22D). Uninfected HAs expressed GFAP in the absence of 

nestin. PGCCs and neural progenitor cell (NPC)-like cells, positive for nestin and IE1, were also 

present (Figure 22E,F); supernatants were positive for HCMV-IE1 indicating ongoing viral 

replication. Further, using a 3D collagen-invasion assay, invasiveness was noticed for CEGBCs-

DB and to a lesser extent for CEGBCs-BL as measured by the invasion area (Figure 22G,H); the 

protrusions’ number and length were also recorded (Figure 24). Within the CEGBCs-DB cultures, 

the majority of invading cells adopted a neural progenitor-like phenotype with a round small cell 

body and a long leading process characterized by high cell motility (Figure 25, left panel). 

Cellular heterogeneity occurred among the invasive cells with random morphology in which low 

motility cells co-existed with highly motile cells (Figure 25). Three mechanisms of invasiveness 

were detected in CEGBCs-DB and BL cultures as recently reported [371] (Figure 26A,B, and C). 

Filopodia and lamellipodia were also observed (Figure 26D). 
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Figure 24: The invasion capacities of CEGBCs-DB and BL. 

(A,B) Histograms representing the number (A) and size (B) of protrusions generated from CEGBCs-DB and BL 

spheroids. Data are represented as mean ± SD of two independent experiments.   

 

 

Figure 25: Cellular migration of CEBGCs. 

Microscopic images showing the high and low motility cells that are invading from the CEGBCs-DB spheroid; 

magnification x100, scale bar 100µm. Graphs showing the variation in the migration distance of the selected cells 

using ImageJ. 
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Figure 26: The three major invasion mechanisms of CEGBCs-DB and BL. 

(A,B,C) Microscopic images illustrating the branching migration (A), locomotion (B), and translocation (C) invasion 

mechanisms in addition to the graphs showing the variation in the migration distance of the selected cells (C1, C3, 

and C8) using ImageJ. (D) Classification of specific structural features (filopodia and lamellipodia) of CEGBCs-DB 

and BL; magnification x100 and x200, scale bar 100µm. 
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7.2.4 Detection of lncRNA4.9/EZH2 and HOTAIR/EZH2 Complexes in CEGBCs Cultures 

HCMV latency in CEGBCs cultures was established by IE1 expression that was observed at day 

1 post-TPA treatment (Figure 27A) parallel to the detection of HCMV gene (lncRNA4.9) (Figure 

27B). In agreement with the presence of the lncRNA4.9 gene in EZH2-expressing CEGBCs, we 

observed the interaction of HCMV lncRNA4.9 and cellular lncRNA HOX antisense intergenic 

RNA (HOTAIR) transcripts with EZH2 using RNA CLIP assay (Figure 27C,D). Cellular lncRNA 

HOTAIR transcript, reported as a poor prognostic factor in cancers [372] was detected particularly 

in the EZH2 immunoprecipitated samples corresponding to CEGBCs-DB compared to CEGBCs-

BL (Figure 27D). 
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Figure 27: Detection of replicative HCMV and identification of the lncRNA4.9 and 

HOTAIR/EZH2 complex in CEGBCs cultures. 

(A) Histograms representing the viral load post-TPA treatment (100 nM) in CEGBCs-DB and BL cultures as measured 

by IE1-qPCR. (B) lncRNA 4.9 gene detection in CEGBCs-DB and BL using RT-qPCR. HCMV-DB sample was used 

as a positive control. NTC: no template control. lncRNA 4.9 (C) and lncRNA HOTAIR (D) transcript detection in the 

EZH2 IP samples of CEGBCs-DB and BL, as measured by RT-qPCR. Mouse anti-IgG was used as an isotype control. 

Data are represented as mean ± SD of two independent experiments. 
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7.2.5 Upregulation of EZH2 and Myc in HCMV-positive GBM Tissues 

To further decipher the role of HCMV and EZH2-Myc pathway in vivo, we analyzed 37 GBM 

biopsies (MGMT promoter methylated n = 17 and MGMT promoter unmethylated n = 20) for the 

presence of HCMV as well as EZH2 and Myc expression. Tumor biopsies displayed an enhanced 

EZH2 and Myc expression in both MGMT promoter methylated and unmethylated tissues, 

particularly in MGMT promoter unmethylated ones (Figure 28B). HCMV was detected in all 

GBM samples (100%) (Table 7). In all GBM biopsies, there was a statistically significant strong 

correlation between Myc and EZH2 expression (Figure 28C). A significant strong correlation was 

found between HCMV presence (IE1 gene) and Myc/EZH2 expression in unmethylated GBM 

biopsies (r = 0.690, p-value = 0.001; r = 0.589, p-value = 0.006; respectively) (Figure 28D). In 

unmethylated GBM biopsies, HCMV presence (UL69 gene) strongly correlated with Myc/EZH2 

expression (r = 0.507, p-value = 0.02 and r = 0.544, p-value = 0.01, respectively) (Figure 28E). 

On the other hand, a weak to moderate correlation was detected between HCMV presence and 

Myc/EZH2 expression in methylated GBM biopsies (Figure 28D,E). Hence, we reported the 

detection of HCMV in GBM tumor biopsies displaying enhanced EZH2, Myc, and Akt expression 

(Figure 28 and Figure 29). 
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Figure 28: HCMV detection as well as EZH2, and Myc expression in glioblastoma biopsies. 

(A) Glioblastoma multiforme tissue was stained using HES; magnification x40, scale bar 25 µm. (B) Scattered plots 

showing Myc, and EZH2 expression in individual methylated, and unmethylated HCMV-positive GBM biopsies. 

Mean values are indicated. (C) Correlation test between Myc and EZH2 expression in all GBM biopsies, methylated, 

and unmethylated HCMV-positive GBM biopsies. Correlation test between IE1 (D) and UL69 (E) presence and the 

expression of Myc and EZH2. p-values were determined by Pearson’s correlation test. 
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Figure 29: Akt expression in glioblastoma biopsies. 

(A) Scattered plots showing Akt expression in individual methylated, and unmethylated HCMV-positive GBM 

biopsies. Mean values are indicated. (B) Correlation test between Myc and Akt expression, as well as EZH2 and Akt 

expression in all GBM biopsies, methylated, and unmethylated HCMV-positive GBM biopsies. Correlation test 

between IE1 (C) and UL69 (D) presence and Akt expression. p-values were determined by Pearson's correlation test. 

 

7.2.6 Isolation of Oncogenic HCMV Strains From GBM Tumors 

Among the thirty-seven GBM biopsies, eleven GBM biopsies were considered for HCMV 

isolation. Eleven HCMV-GBM strains were isolated from MGMT promoter methylated (n = 4) 

and MGMT promoter unmethylated (n = 7) GBM tumors by tissue disruption and filtration, and 

were subsequently grown in MRC5 cells showing a peak of viral load (1–3 log) around day 20 

post-infection (Figure 30A and Table 9). Following HAs infection with the eleven HCMV-GBM 

strains, we detected cell clusters with irradiating low and high motility cells displaying a neural 

progenitor-like phenotype (Figure 30B) parallel to the sustained viral replication confirmed by 

FACS (Figure 30C)  and IE1 gene detection by qPCR (Figure 30D). Viral transcripts (IE1 and 

UL69) were detected in HAs infected with methylated and unmethylated HCMV-GBM strains 

compared to uninfected HAs (Figure 30E). Upregulated Myc and EZH2 proteins and transcripts 

were detected in HAs infected with methylated and unmethylated HCMV-GBM strains, unlike 
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uninfected HAs (Figure 30F,G,H and Table 9). All HCMV-GBM isolates transformed HAs as 

measured by soft agar colony formation assay (p-value (UI HAs: HCMV-GBM) = 0.02; p-value (UI HAs: 

HCMV-GBM-M) = 0.04, p-value (UI HAs: HCMV-GBM-UM) = 0.03) (Figure 30I). 
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Figure 30: Isolation of oncogenic HCMV strains from GBM biopsies. 



Page | 117  
 
 

 

(A) Isolation protocol of eleven HCMV-GBM strains from GBM tissues; seven unmethylated and four methylated 

GBM biopsies. Histogram representing the viral replication of the isolated HCMV strains in MRC5 cultures. UI MRC5 

cells were used as control. (B) The subsequent infection of HAs generating CEGBCs. Microscopic images showing 

the different cellular morphology (red arrows) generated in human astrocytes infected with the eleven isolated GBM 

HCMV strains; (1) neural progenitor cell (NPC)-like cells; (2) dendritic-like cells with cytoplasmic prolongation, and 

(3) PGCCs; magnification x100, scale bar 100 µm. IE1 protein and gene expression in the isolated methylated and 

unmethylated promoter HCMV-GBM strains as measured by FACS (C) and qPCR (D), respectively; UI HAs were 

used as a control. (E) IE1 and UL69 gene and transcript detection in HAs infected with the isolated methylated and 

unmethylated promoter HCMV-GBM strains as measured by qPCR and RT-qPCR, respectively. (F) Myc and EZH2 

expression in the isolated methylated and unmethylated GBM strains, as measured by western blot and FACS; 

uninfected HAs were used as a control. β-actin was used as loading control. Histogram representing Myc and EZH2 

expression in uninfected HAs, the total isolated HCMV-GBM strains, methylated and unmethylated HCMV-GBM 

strains as measured by FACS. (G) Confocal microscopic images of Myc and EZH2 staining in HAs infected with the 

isolated methylated and unmethylated promoter HCMV-GBM strains. Nuclei were counterstained with DAPI; 

magnification ×63, scale bar 10 μm. (H) Myc and EZH2 transcripts detection by RT-qPCR. (I) Colony formation in 

soft agar seeded with CEGBCs generated from HAs infection with the isolated methylated and unmethylated promoter 

HCMV-GBM strains; UI HAs were used as a control. Formed colonies were observed under an inverted light 

microscope (Magnification 200x, scale bar 100 µm). Histograms representing the number of colonies generated in all 

GBM strains as well as methylated and unmethylated HCMV-GBM strains. Data are represented as mean ± SD of 

two independent experiments. *p-value ≤ 0.05. 

 

Table 9: Characteristics of HCMV-GBM strains.  

HCMV iso-

lated from  

GBM  

Biopsy  

(HCMVGBM)  

N°  

Human Astrocytes Infected with HCMV-GBM 

Myc  

Expres-

sion by 

FACS  

EZH2  

Expres-

sion by 

FACS   

SOX2  

Expression 

by Confo-

cal  

Staining 

Soft Agar 

Colonies  

Spheroids For-

mation  

Invasion  

MGMT  PROMOTER METHYLATED GBM BIOPSIES (n=4) 

10  +  +  +  +  +  +/-  

11  +  +  +  +  +  +  

12  +  +  +  +  +  +  

13  +  +  +  +  +  +  

Positive  [4/4]  [4/4]  [4/4]  [4/4]  [4/4]  [3/4]  

MGMT  PROMOTER UNMETHYLATED GBM BIOPSIES (n=7) 

18  +  +  +  +  +  +  

20  +  +  +  +  +  +  

21  +  +  +  +  +  +  

23  +  +  +  +  +  +  

25  +  +  +  +  +  +  

31  +  +  +  +  +  +  

33  +  +  +  +  +  +  

Positive  [7/7]  [7/7]  [7/7]  [7/7]  [7/7]  [7/7]  

TOTAL ISOLATED GBM BIOPSIES (n=11) 

Positive  [11/11]  [11/11]  [11/11]  [11/11]  [11/11]  [10/11]  
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Spheroids were generated 24–48 hours post-seeding the HAs infected with the clinical HCMV-

GBM strains (p-value (UI HAs: HCMV-GBM) = 0.02; p-value (UI HAs: HCMV-GBM-M) = 0.04, p-value (UI HAs: 

HCMV-GBM-UM) = 0.03) (Figure 31A). High SOX2 levels were detected in spheroids generated from 

the eleven HCMV-GBM strains (Figure 31B and Table 9). Nestin and IE1 were concomitantly 

expressed in spheroids generated from all HCMV-GBM strains (Figure 31C). Spheroids 

generated from the HCMV-GBM strains did not express GFAP unlike uninfected HAs. Further, a 

3D collagen-invasion assay was performed to evaluate the invasiveness potential of the spheroids 

generated from HCMV-GBM strains (Figure 31D). The lncRNA4.9 gene was detected in 

CEGBCs derived from HCMV-GBM strains (Figure 31E). Viral lncRNA4.9 and cellular lncRNA 

HOTAIR transcripts were detected in the EZH2 immunoprecipitated samples corresponding to 

CEGBCs derived from all HCMV-GBM strains, mostly from MGMT promoter unmethylated 

HCMV-GBM strains, using RNA CLIP assay (p-value (UI HAs:GBM) = 0.03; p-value (UI HAs: GBM-

M) = 0.07; p-value (UI HAs: GBM-UM) = 0.04) (Figure 31F). 
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Figure 31: Spheroid forming and invasion potentials of the HCMV-GBM strains and the 

detection of lncRNA 4.9 and HOTAIR transcripts. 

(A) Microscopic images of the spheroids generated from the isolated GBM HCMV strains; magnification ×100, scale 

bar 20 μm. Histograms representing the number of spheroids generated in all HCMV GBM strains as well as 

methylated and unmethylated HCMV-GBM strains; UI HAs were used as a control. Confocal microscopic images of 

SOX2 (B) and concomitant Nestin/IE1 (C) staining in spheroids generated from the isolated HCMV-GBM strains. 

Nuclei were counterstained with DAPI; magnification ×63, scale bar 10 μm. (D) Microscopic images showing the 

invasion potential of CEBGCs through protrusions and cell migration (red arrows); magnification ×200, scale bar 20 

μm. (E) lncRNA 4.9 gene detection in the supernatants of HAs infected with the isolated HCMV-GBM strains using 

qPCR; UI HAs were used as a control. (F) Interaction of lncRNA4.9 and HOTAIR transcripts with EZH2 in CEGBCs-

GBM using RNA cross-linking immunoprecipitation (CLIP) assay. 

 

7.2.7 EZH2 inhibitor, TMZ, and GCV tritherapy Curtails CEGBCs Growth 

Although TMZ is known as the first-choice chemotherapeutic agent in glioblastoma, TMZ 

resistance often becomes a limiting factor in effective glioblastoma treatment [373,374]. Herein, 

we evaluated EZH2 inhibitor GSK343, GCV and TMZ efficacy as single therapies, as well as bi- 

or tri-combination therapy on CEGBCs-DB, BL, and GBM spheroids (Figure 32). TMZ reduced 

spheroids’ size by 23% only in CEGBCs-BL cultures, unlike CEGBCs-DB which displayed more 

mesenchymal traits (p-value (CEGBCs-DB:CEGBCs-BL) = 0.03). GCV reduced the spheroids’ size by 21% 

and 24% in CEGBCs-DB and BL, respectively (p-value (CEGBCs-DB:CEGBCs-BL) = 0.35). On the other 

hand, GCV/TMZ combination therapy lead to a 27% size reduction of CEGBCs-BL spheroids, 

meanwhile having a very limited effect in CEGBCs-DB in which the spheroids’ size was reduced 

by 9% (p-value (CEGBCs-DB:CEGBCs-BL) < 0.01) (Figure 32A). Spheroids of CEGBCs-DB and BL 

were treated by GSK343, GSK343/GCV, GSK343/TMZ, and GSK343/GCV/TMZ. CEGBCs-DB 

were resistant to mostly all therapies except the triple therapy (p-value (CEGBCs-DB:CEGBCs-BL) = 0.06) 

unlike CEGBCs-BL that were mainly responsive to GSK343/TMZ (p-value (CEGBCs-DB:CEGBCs-

BL) < 0.001) and triple treatment (p-value (CEGBCs-DB:CEGBCs-BL) = 0.06) (Figure 32A). Under triple 

therapy (GSK343/GCV/TMZ), spheroids’ size was reduced by around 90% in CEGBCs-DB and 

BL at day 10 post-treatment (p-value (triple therapy: TMZ) = 0.02) (Figure 32B). Spheroids’ size was 

reduced by around 60% with all the eleven HCMV-GBM strains at day 10 post-triple treatment 

(GSK343/GCV/TMZ) (p-value (triple therapy: TMZ) < 0.001) (Figure 32C), similar to that reported for 

DB and BL strains. 
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Figure 32: The effect of diverse single and combination therapies on CEGBCs’ growth. 

(A) Curves representing the spheroid surface area corresponding to CEGBCs-DB and BL under GCV(20 μM), 

TMZ(50 μM), GCV(20 μM)/TMZ(50 μM), GSK343 (0.1 μM), GSK343 (0.1 μM)/ GCV(20 μM), GSK343 (0.1 

μM)/TMZ(50 μM), and GSK343 (0.1 μM)/GCV(20 μM)/TMZ(50 μM) therapies. (B) Histogram representing the 

CEGBCs-DB and BL spheroids size reduction 10 days post-treatment. Data are represented as mean ± SD of two 

independent experiments. *p-value ≤ 0.05. (C) Histogram representing the CEGBCs-GBM spheroids size reduction 

at day 10 post-treatment. Data are represented as mean ± SD of two independent experiments. *p-value ≤ 0.05; ***p-

value ≤ 0.001. 
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7.3 Polyploidy, EZH2 Upregulation, and Transformation in CMV-infected Human Ovarian 

Epithelial Cells 

7.3.1 OECs Chronically Infected With HCMV-DB and BL Strains Generated CTO 

Cells With PGCCs 

Upon studying the tropism exhibited by HCMV in OECs, all HCMV clinical strains replicated 

showing a peak viral replication at day 21, 16, 16, and 19 post-infection in OECs infected with 

HCVM-DB, HCMV-BL, HCMV-KM, and HCMV-FS, respectively (Figure 33A and Figure 

34A). The peak level of HCMV productive infection was 6 and 4 logs in OECs-DB and BL, 

respectively (Figure 33A). HCMV-IE1 and pp65 proteins were detected in OECs-DB and BL 

(Figure 33B). 

 

Figure 33: Replication of high-risk HCMV strains in OECs cultures. 

(A)Time-course of the viral titer in the supernatant of OECs infected with HCMV-DB and BL as measured by IE1-

qPCR. (B) Immunoblotting data of IE1 in uninfected OECs lysates and OECs infected with HCMV-DB and BL (day 

5 post-infection). β-actin was used as loading control. IE1 expression by FACS in acutely infected OECs-DB and BL; 

UI OECs were used as a control. 
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Figure 34: Replication of low risk HCMV strains in OECs cultures. 

(A) Time-course of the viral titer in the supernatant of OECs infected with HCMV-KM and FS as measured by IE1-

qPCR. (B) Confocal microscopic images of DAPI and phalloidine staining in OECs infected with HCMV-KM and 

FS. (C)  FACS staining of EZH2 and Myc in uninfected OECs as well as OECs-KM and FS. Data are represented as 

mean ± SD of two independent experiments. * p-value≤0.05. 



Page | 124  
 
 

 

We noticed the existence of large-sized cells having large nuclei that were detected only in OECs 

chronically infected with the high-risk HCMV-DB and BL strains compared to uninfected OECs 

(Figure 36A) and OECs chronically infected with HCMV-KM and FS strains (Figure 34B). 

Further, around three months post-infection, cellular survival was noted only in the chronically 

infected OECs-DB and BL compared to OECs-KM and FS (Figure 35). The emerging cells were 

termed “CMV-Transformed Ovarian epithelial cells” or CTO similar to the transformed cells that 

were previously reported by our group, namely, “CMV-Transformed Human mammary epithelial 

cells” or CTH cells and “CMV-Elicited GlioBlastoma Cells” or CEGBCs [125,209,375]. 

 

 

Figure 35: Flow cytometric analysis based on FSC and SSC of uninfected OECs as well as 

chronically infected OECs. 

Only chronically-infected OECs-DB and BL, namely CTO-DB and CTO-BL cells, and not the chronically-infected 

OECs-KM and FS were alive at day 86 post-infection (black arrows). 

 

After applying a morphology-based classification, cellular heterogeneity was detected in CTO-DB 

and BL cultures including giant cells, blastomeres, blastocytes, multinucleated, mesenchymal, 

budding, and lipid droplets-rich cells as well as cells exhibiting filopodia and cytoplasmic 

vacuolization (Figure 36B). Some of the aforementioned morphologies were further confirmed by 

confocal microscopy showing mainly multinucleated and mesenchymal cells, asymmetric 

division, budding, and cells with giant nuclei (Figure 36C). A high percentage of tetraploidization 

and polyploidy cells was detected in CTO-DB and BL compared to UI OECs (Figure 36D). CTO-
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DB and BL populations were classified into PGCCs (≥4 N), intermediate cells (ICs of 2–4 N), and 

small cells (SCs of 2 N) (Figure 36D). As a positive control, cobalt chloride (CoCl2) was used to 

induce PGCCs formation in OECs cultures (Figure 36D). 

Since the blockade of tumor suppressors and decreased telomerase activity have been correlated 

with tetraploidization in several human cancers [376], p53 and Rb expression as well as telomerase 

activity were assessed in uninfected OECs, CTO-DB, and CTO-BL (Figure 36E,F). 

Downregulation of p53 and Rb proteins was noticed in CTO-DB and BL compared to controls (p-

value (UI OECs:CTO-HCMV) = 0.03), unlike pRb which was upregulated in CTO-DB and BL (p-value (UI 

OECs:CTO-HCMV) = 0.03) (Figure 36E). Notably, telomerase activity was relatively low or 

undetectable in CTO-DB and BL compared to uninfected OECs (p-value = 0.03) (Figure 36F). 

Hence, p53 and Rb downregulation along with decreased telomerase activity are sufficient to drive 

polyploidization in CTO-DB and BL, as previously reported [376]. 
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Figure 36: Chronic infection of OECs with the high-risk HCMV clinical isolates and 

polyploidy detection in OECs cultures. 
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(A) Microscopic images including confocal images of DAPI and phalloidine staining in OECs infected with HCMV-

DB and BL; uninfected OECs were used as a negative control. Left panel: magnification ×100 and ×200, scale bar 

100 and 50 μm; Right panel: magnification ×63, scale bar 10 μm. Red arrows showing the PGCCs detected in OECs 

cultures. (B) The appearance of distinct cellular morphologies of the giant cell cycle including (a) filopodia, (b, c, d) 

blastomeres and blastocytes, (e) lipid droplets-filled cells, (f) multinucleated, (g, h) budding, (i) mesenchymal cells as 

well as (j, k, l) few atypical morphologies; magnification ×100, scale bar 100 μm. Uninfected OECs were used as a 

control. (C) Confocal microscopic images of DAPI and phalloidine staining in CTO-DB and BL. Uninfected OECs 

were used as a negative control; magnification ×63, scale bar 10 μm. (D) Propidium iodide (PI) staining for polyploidy 

detection in HCMV-transformed OECs. Cobalt chloride (CoCl2)-treated OECs (450 μM) were used as a positive 

control. Microscopic images of uninfected OECs as well as the PGCCs generated in CTO-DB and BL cultures and 

post- CoCl2 treatment; magnification ×100, scale bar 100 μm. (E) p53, Rb, and p-Rb expression in uninfected OECs 

and CTO-DB and BL by FACS. (F) Histograms representing the relative telomerase activity in uninfected OECs as 

well as CTO-DB and BL. Data are represented as mean ± SD of two independent experiments. *p-value ≤ 0.05. 

 

7.3.2 CTO cells Display Dedifferentiation, Stemness, and EMT Characteristics 

CTO-DB and BL were seeded in soft agar to assess their oncogenic transforming potential. Colony 

formation was detected in the cultures seeded with CTO-DB and BL, compared to uninfected 

OECs (Figure 37A). On the proteomic level, EZH2 and Myc upregulation was detected in CTO-

DB and BL compared to uninfected OECs (p-value (UI OECs:CTO-HCMV) = 0.03) (Figure 37B,C, and 

D); on the contrary, a limited EZH2 and Myc upregulation was observed in OECs-KM and FS (p-

value (UI OECs:OECs-HCMV) = 0.02) (Figure 34C). A significant positive correlation between EZH2 

and Myc protein expression was detected in CTO cells (r = 0.983, p-value < 0.001) (Figure 38). 

Further, EZH2 and Myc transcripts were upregulated in CTO-DB and BL compared to uninfected 

controls (p-value (UI OECs:CTO-HCMV) = 0.03) (Figure 37E). Altogether, a remarkable EZH2 

upregulation parallel to the limited increase in Myc expression was noticed in CTO infected with 

the high-risk HCMV-DB and BL strains. EZH2 and Myc were expressed mainly in the PGCCs 

subpopulation of CTO-DB and BL (Figure 37G). A limited increase in SUZ12 expression was 

observed in CTO-DB and BL compared to uninfected OECs (p-value (UI OECs:CTO-HCMV) = 0.03) 

(Figure 39A,B). Upon assessing the proliferative potential of OECs chronically infected with 

HCMV high-risk strains, Ki67Ag was highly prominent in CTO-DB and BL compared to 

uninfected OECs (p-value (UI OECs:CTO-HCMV) = 0.03) (Figure 37F). High Ki67Ag expression was 

detected in the large cells (Figure 37G). 
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Figure 37: Colony formation in soft agar and the phenotypic characterization of HCMV-

transformed OECs. 

(A) Colony formation in soft agar seeded with CTO-DB and BL (MOI = 1); UI OECs were used as a negative control. 

Formed colonies were observed under an inverted light microscope (Magnification ×200, scale bar 50 µm). Histogram 

representing the colony quantification/10,000 cells over days. (B) Immunoblotting data of EZH2 and Myc in 

uninfected OECs lysates and CTO-DB and BL. β-actin was used as loading control. (C) Confocal microscopic images 

of EZH2, Myc, and DAPI staining in CTO-DB and BL. UI OECs were used as controls; magnification ×63, scale bar 

10 μm. (D) FACS staining of EZH2 and Myc in uninfected OECs as well as CTO-DB and BL. (E) EZH2 and Myc 

transcriptsVdetection by RT-qPCR. (F) FACS staining of Ki67Ag in uninfected OECs as well as CTO-DB and BL. 

(G) EZH2, Myc, and Ki67Ag expression in CTO-DB and BL subpopulations (2 N, 2–4 N, and ≥4 N). Data are 

represented as mean ± SD of two independent experiments. *p-value ≤ 0.05. 

 

 

Figure 38: The assessment of the correlation between EZH2 and Myc expression in CTO 

cells. 

A significant-positive correlation detected between EZH2 and Myc protein expression in CTO-DB and BL cells. p-

values were determined by Pearson’s test.  
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Figure 39: Expression of SUZ12 in CTO-DB and BL cells. 

SUZ12 expression by (A) confocal microscopy and (B) FACS in CTO-DB and BL; uninfected OECs were used as a 

control. Nuclei were counterstained with DAPI; magnification ×63, scale bar 10 μm. Data are represented as mean ± 

SD of two independent experiments. * p-value≤0.05. 

 

CTO-DB and BL displayed an embryonic stemness phenotype. The key regulatory genes 

maintaining the pluripotency and self-renewal properties of embryonic stem cells, Nanog, Sox2, 

and Oct4 were shown to be highly expressed in CTO-DB and BL compared to uninfected OECs 

(Figure 40A,B, and Figure 41A). Additionally, transcripts of Nanog, Sox2, and Oct4 were 

elevated in CTO-DB and BL (Nanog, p-value (UI OECs:CTO-HCMV) = 0.06; Sox2 and Oct4, p-value (UI 

OECs:CTO-HCMV) = 0.03) (Figure 40C, and Figure 41B). Besides PGCCs appearance in CTO-DB 

and BL cultures, it’s worth mentioning the appearance of spontaneous spheroids in CTO-BL 

cultures (Figure 40D). Further, in the presence of methylcellulose, spheroids were generated in 

CTO-DB and BL cultures (Figure 40E). Finally, CD44, a marker of stemness and invasiveness, 

was upregulated in CTO-DB and BL cultures compared to uninfected OECs (Figure 42). 



Page | 131  
 
 

 

 

Figure 40: HCMV-transformed OECs display an embryonic stemness phenotype and possess 

spheroid-forming potential. 

(A) Immunoblotting data of Nanog and Sox2 in uninfected OECs lysates and CTO-DB and BL. β-actin was used as 

loading control. (B) Confocal microscopic images of Nanog, Sox2, and DAPI staining in CTO-DB and BL. UI OECs 

were used as controls; magnification ×63, scale bar 10 μm. (C) Nanog and Sox2 transcripts detection by RT-qPCR. 

Data are represented as mean ± SD of two independent experiments. (D) Spontaneous spheroid formation and PGCCs 

were detected under an inverted light microscope in HCMV-transformed OECs cultures. Magnification ×100, scale 

bar 100 μm. (E) Spheroid generation from the chronically infected DB and BL OECs in methyl-cellulose assay; 

magnification ×100, scale bar 100 µm. *p- value ≤ 0.05. 
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Figure 41: Expression of Oct4 in CTO-DB and BL cells. 

(A) Confocal microscopic images of Oct4 and DAPI staining in CTO-DB and BL cells. UI OECs were used as 

controls; magnification ×63, scale bar 10 μm. (B) Oct4 transcript detection by RT-qPCR. Data are represented as 

mean ± SD of two independent experiments. * p-value≤0.05. 
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Figure 42: Expression of CD44 in CTO-DB and BL cells. 

FACS staining of CD44 in CTO-DB and BL whole and subpopulations; uninfected OECs were used as a control. 

 

EMT fuels cancer progression, tumor cell invasion, and therapy resistance [377]. PGCCs gain 

strong invasiveness and migration ability after they undergo EMT [378]. Vimentin was strongly 

upregulated in DB and BL-infected OECs (p-value (UI OECs:CTO-HCMV) = 0.03), whereas a slight 

decrease in E-cadherin was noticed compared to uninfected OECs (p-value (UI OECs:CTO-

HCMV) = 0.06) (Figure 43A,B, and C). Vimentin and E-cadherin were expressed mainly in the 

PGCCs and ICs subpopulations of CTO-DB and BL (Figure 43D). Altogether, the co-existence 

of vimentin and E-cadherin was detected in CTO-DB and BL, indicating a mesenchymal/epithelial 

hybrid state that was also accompanied with occasionally existing small cells possessing an 

elevated E-cadherin expression (Figure 43 and Figure 44). The co-existence of mesenchymal and 

epithelial phenotypes confirms the cellular plasticity of CTO-DB and BL. As a control, EZH2, 

Myc, Ki67Ag, Vimentin, E-cadherin, and CD44 protein expression in the subpopulations of 

uninfected OECs was provided in Figure 45. 
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Figure 43: HCMV infection of OECs enhances EMT/MET hybrid traits. 

Vimentin and E-cadherin expression by western blot (A), confocal microscopy (B), and FACS (C) in CTO-DB and 

BL. Uninfected OECs were used as controls. (D) Vimentin and E-cadherin expression in CTO-DB and BL 

subpopulations (2 N, 2–4 N, and ≥4 N). Data are represented as mean ± SD of two independent experiments. *p-value 

≤ 0.05. 
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Figure 44: Detection of high expression of E-cadherin in several small cells present in CTO-

DB and BL cultures. 

Confocal microscopic images of E-cadherin and DAPI staining in CTO-DB and BL cultures; magnification ×63, scale 

bar 10 μm. 

 

 

Figure 45: FACS staining of EZH2, Myc, Ki67Ag, Vimentin, E-cadherin, and CD44 in the 

subpopulations of uninfected OECs. 
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7.3.3 Lytic and Latent HCMV Replication in Transformed OECs 

Sustained HCMV replication was confirmed in OECs chronically infected with HCMV-DB and 

BL, namely CTO-DB and BL (Figure 46). IE1 protein was remarkably detected in CTO-DB and 

BL versus uninfected OECs (Figure 46A,B); elevated IE1 expression was detected mainly in the 

PGCCs subpopulation compared to ICs and SCs (Figure 47). IE1 and UL69 genes and transcripts 

were detected in CTO-DB and BL compared to uninfected OECs (Figure 46C,D), indicating lytic 

HCMV replication. In addition, HCMV latency in CTO-DB and BL cultures was established by 

IE1 reactivation that was observed post-TPA treatment (p-value (CTO:TPA treated CTO) = 0.02) (Figure 

46E and Figure 48). 

Given that EZH2 is considered a major tumor marker and an effective therapeutic target for OC, 

herein, we evaluated the impact of two EZH2 inhibitors (GSK343 and EPZ6438) on CTO 

proliferation and polyploidization. Upon EZH2 blockade (Figure 49), detection of HCMV-IE1 

gene was suppressed (Figure 46F). Ki67Ag protein expression was decreased post-EZH2 inhibitor 

treatment of CTO-DB and BL compared to untreated CTO cells (p-value (CTO:EZH2 inhibitors treated 

CTO) = 0.004) (Figure 46G). Upon assessing the PI expression in the subpopulations of CTO cells, 

GSK343 and EPZ6438 reduced tetraploidization and polyploidization in treated CTO cells 

compared to controls (p-value (CTO:EZH2 inhibitors treated CTO) = 0.007 and 0.004, respectively) (Figure 

46H). 
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Figure 46: Sustained HCMV replication in chronically HCMV-infected OECs. 

(A) IE1 expression by FACS in chronically infected OECs-DB and BL cultures. (B) IE1 expression by confocal 

microscopy in CTO-DB and BL; uninfected OECs were used as a control. Nuclei were counterstained with DAPI; 

magnification ×63, scale bar 10 μm. (C) IE1 and UL69 gene detection in chronically infected OECs-DB and BL as 

measured by qPCR. Uninfected OECs were used as a negative control. (D) IE1 and UL69 transcripts detection as 

measured by RT-qPCR. (E) Histogram representing the viral load post-TPA treatment in CTO-DB and BL cultures 

as measured by IE1-qPCR. (F) IE1 gene detection by qPCR in untreated CTO-DB, and CTO-DB treated with two 

EZH2 inhibitors (0.1 µM of GSK34 and EPZ6438). Ki67Ag expression (G) and PI staining (H) in untreated CTO-

DB/BL and CTO-DB/BL treated with 0.1 µM of GSK34 and EPZ6438 by FACS. Data are represented as mean ± SD 

of two independent experiments. *p-value ≤ 0.05; **p-value ≤ 0.01. 
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Figure 47: Expression of IE1 in CTO-DB and CTO-BL subpopulations by FACS. 

 

 

Figure 48: CTO cultures post-TPA treatment. 

Microscopic images of TPA-treated CTO cells; untreated CTO cells were used as a control. Magnification ×100, scale 

bar 100 μm. Red arrows represent PGCCs found in TPA-treated CTO cultures.  
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Figure 49: EZH2 expression in untreated CTO-DB/BL and CTO-DB/BL treated with 0.1 µM 

of GSK343 and EPZ6438 by FACS. 

 

7.3.4 EZH2 Upregulation in HCMV-positive HGSOC Biopsies and The Isolation of 

Three Oncogenic HCMV Strains From EZH2High HGSOC Biopsies 

To further assess the role of HCMV, EZH2, and PGCCs induction in vivo, we analyzed 25 OC 

biopsies (HGSOC biopsies n = 18 and adjacent non-tumoral biopsies n = 7) (Table 8) for the 

presence of HCMV, PGCCs count, as well as EZH2, Myc, and Akt expression (Figure 50, Figure 

51, and Figure 52). PGCCs with giant or multiple nuclei were detected in the HGSOC biopsies 

(Figure 50A). HCMV was detected in 72% of HGSOC biopsies (Figure 50B). Elevated PGCCs 

count was mainly detected in HCMV-positive HGSOC biopsies (Figure 50C). HCMV-positive 

tumor biopsies displayed mostly an enhanced EZH2 and Akt with a limited Myc expression 

(Figure 50D, Figure 51, and Figure 52A). A significant positive correlation was found between 

HCMV presence and EZH2 as well as Akt expression (r = −0.598, p-value = 0.009 and r = − 

0.466, p-value = 0.05, respectively, based on Ct values) (Figure 50E, and Figure 52B). A 

significant positive correlation was detected between Akt expression and EZH2 as well as Myc 

expression (r = 0.420, p-value = 0.015 and r = 0.620, p-value = 0.006, respectively) (Figure 52B). 
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Among the eighteen HCMV-positive HGSOC biopsies, three biopsies with the highest EZH2 

expression were considered for HCMV isolation. The three HCMV-OC strains were isolated by 

tissue disruption and filtration, and were subsequently grown in MRC5 cells showing a peak of 

viral load of 3 logs around day 7 post-infection (Figure 50F). Following OECs infection with the 

three HCMV-OC strains, HCMV presence was confirmed by the detection of IE1 gene in addition 

to the morphological changes that appeared in the OECs infected cultures, for instance, giant and 

multinucleated cells showing cell budding as well as mesenchymal cells (Figure 50F,G). Post-

EZH2 inhibition, using GSK343, no HCMV replication was detected in addition to the absence of 

morphological heterogeneity in the infected cultures (Figure 50G,H). Upregulation of Ki67Ag, 

EZH2, and Myc expression was observed in CTO-HCMV-OC compared to uninfected OECs and 

GSK-treated CTO-HCMV-OC cells (Ki67Ag p-value (CTO:GSK343-CTO) = 0.01; EZH2 p-

value (CTO:GSK343-CTO) = 0.002; Myc p-value (CTO:GSK343-CTO) = 0.002). GSK343 reduced Ki67Ag, 

EZH2, and Myc expression by 56%, 79%, and 63%, respectively (Figure 50I). EZH2 inhibition 

reduced PGCCs percentage in infected cultures compared to untreated CTO cells (p-value = 0.002) 

(Figure 50J). 
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Figure 50: HCMV detection, PGCCs presence as well as EZH2 expression in ovarian cancer 

biopsies. 

(A) Ovarian cancer tissue HES staining; magnification ×400, scale bar 250 µm (upper panel) and 100 µm (lower 

panel). Red arrow representing the PGCCs while the yellow arrow represents the diploid carcinoma cells. (B) 

Histogram representing HCMV presence in the ovarian tumor biopsies. (C) Scattered plots showing the PGCCs count 

in HCMV-positive and negative ovarian tumor biopsies. (D) Scattered plots representing EZH2 expression in HCMV-

positive and negative ovarian tumor biopsies by RT-qPCR. Red box indicates the high-risk HCMV strains with high 

EZH2 expression. (E) Correlation test between Ct value of EZH2 and HCMV presence p-values were determined by 

Spearman’s correlation test. (F) Isolation protocol of the three high- risk HCMV-ovarian cancer strains from HGSOC 

tissues; histogram representing the viral replication of the isolated HCMV strains in MRC5 cells and CTO cultures by 

IE-qPCR. CTO cells were observed under an inverted light microscope (magnification ×200, scale bar 50 µm). (G) 

Light microscopic images (magnification ×200, scale bar 50 µm) as well as confocal images of DAPI and phalloidine 

staining in CTO-HCMV-OC and GSK343-treated CTO cells (magnification ×63, scale bar 10 μm); uninfected OECs 

were used as a negative control. (H) IE1 gene detection in CTO- HCMV-OC and GSK343-treated CTO cells by IE-

qPCR. Ki67Ag, EZH2, Myc expression (I) and PI staining (J) in CTO-HCMV-OC, GSK343-treated CTO cells, and 

uninfected OECs by FACS. Data are represented as mean ± SD of two independent experiments. **p-value ≤ 0.01. 

 

 

Figure 51: Myc Expression in ovarian cancer biopsies. 

Scattered plot representing Myc expression in HCMV-positive and negative ovarian tumor biopsies by RT-qPCR. 
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Figure 52: Akt Expression in ovarian cancer biopsies. 

(A) Scattered plot representing Akt expression in HCMV-positive and negative ovarian tumor biopsies by RT-qPCR. 

(B) A correlation detected between Akt expression (Ct value) and HCMV presence, in addition to Akt expression and 

EZH2 as well as Myc expression.  p-values were determined by Spearman, Kendall's Tau, and Pearson correlation 

tests, respectively. 
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Chapter 8 

8. Discussion 

 

Understanding the potential connections between viral infections and oncogenesis has been an 

ongoing area of research. In the context of breast cancer and to the best of our knowledge, our 

study demonstrated the oncogenic transformation and stemness potential of HCMV-B544 and 

B693 strains that were isolated from TNBC biopsies and indicated a differential treatment response 

depending on the HCMV strain present in the tumor. CTH-B544 and CTH-B693 cells are 

heterogeneous cellular populations that give rise to PGCCs, and display dedifferentiating 

phenotypes with stemness features as well as hybrid epithelial/mesenchymal phenotypes, 

resembling the morphological features found in aggressive cancers.  

Myc activation has been widely described in breast cancer progression and can be used as a 

predictive marker for cancer staging, therapy resistance, and prognosis [331]. It is noteworthy that 

both B544 and B693 HCMV strains were isolated from EZH2HighMycHigh -expressing TNBC 

[126], further indicating a potential link between the presence of these HCMV strains and cancer 

progression. The coupling of c-Myc overexpression with Akt pathway activation observed in CTH 

cells is in line with previous findings [125]. Moreover, colony formation was detected in CTH-

B544 and CTH-B693 cells associated with a high expression level of Ki67 Ag and c-Myc 

overexpression, thus revealing cellular transformation and their oncogenic potential which is 

consistent with the previously reported CTH data [125]. Ki67, a prognostic biomarker in invasive 

breast cancer, is not only required for cell proliferation in tumors but is also strongly linked to 

tumor initiation, growth, and metastasis [379]. PGCCs formation was promoted in hypoxic 

environments. It is worth noting that hypoxia inducible factor 1 alpha (HIF-1α) expression is 

induced by HCMV infection [210]. In PGCCs, the evaluation of metabolic reprogramming 

revealed the presence of PLIN4, a perilipin covering the lipid droplets especially in chemo-

resistant tumors [118]; the Warburg effect [380] and the involvement of the glycolytic pathway 

were also found to be induced in cancer environments and upon HCMV infection [117]. PGCC-

bearing CTH cells acquired embryonic-like stemness and an epithelial-mesenchymal hybrid 

phenotype. Studies have shown that the acquisition of the EMT and stemness properties lead to an 
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increase in the invasiveness and the metastatic potential of cancer cells within tumors [367]. The 

embryonic stem cells transcriptional network is based on the presence of master pluripotency 

regulators, Oct4, SSEA-4, SOX2, and Nanog [381]. Besides mammosphere generation, CTH-

B544 and CTH-B693 gained a stemness phenotype with increased expression of Oct4, SOX2, and 

Nanog promoting tumor progression; CTH cells were positively stained for SSEA4 which is 

associated with EMT and drug resistance [381]. SOX2, Nanog, and Oct4 expression was 

associated with poor differentiation, advanced cancer stages, and the worst outcomes in breast 

cancer patients [382]. Studies have implicated CD44 in breast cancer cell adhesion, proliferation, 

motility and migration, angiogenesis, and metastasis. Limited CD24 expression in breast cancer 

cells was shown to augment their growth and metastatic potential through a chemokine receptor 

response [381]. The CD44high/CD24low phenotype was recognized in CTH-B544 and B693 cells 

indicating a tumor-initiating phenotype similar to that of the highly tumorigenic breast cancer cells 

[383]. The existence of an intermediate state between epithelial and mesenchymal phenotypes is 

considered a hybrid E/M state which is associated with elevated cellular plasticity, migration, 

stem-cell-like properties, metastatic potential, and therapy resistance [367]. In CTH cells, the co-

existence of vimentin and E-cadherin resembled a partial EMT hence ensuring their plasticity 

while preserving the same tumor-propagating potential [125]. Since in breast tumors CD49f was 

considered a marker for distant metastasis and recurrence, CD49f+/CD44high/CD24low CTH cells 

represented an aggressive phenotype which is associated with an increased risk for disease 

recurrence with poor clinical outcomes [384].  

On the transcriptomic level, biopsy 693 overexpressed EGFR, CNDK2A, CCND1, SOX2, Oct4, 

and Nanog. It is known that EGFR promotes TNBC progression through JAK/STAT3 signaling 

[385], CNDK2A drives TNBC tumorigenesis [386], CCND1 has a prognostic significance in 

TNBC [387], and the three embryonic markers correlate with stemness, metastasis, tumor relapse, 

and poor clinical outcomes of TNBC [388]; therefore, we proposed that biopsy 693 maintains a 

tumor signature that is associated with an aggressive behavior predicting poor clinical outcome. 

Studies reveal that the initiation of KSHV and EBV lytic cycles supported malignancies driven by 

the aforementioned oncogenic viruses [389,390]. HCMV persistence was established in CTH cells 

by detecting IE1 and pp65 throughout long-term cultures [125,126,209]. High-risk strains express 



Page | 146  
 
 

 

immediate-early (IE), early (E), and late (L) viral antigens including IE1 in agreement with a viral 

lytic cycle following the acute infection of permissive cells such as MCR5 cells. High-risk strains 

are detected in chronically infected cells, for instance CTH cells in our study, which is in line with 

the HCMV latency observed in Hodgkin’s disease and Non-Hodgkin’s lymphoma revealing the 

latent viral UL138 protein expression [391]. Nonetheless, a dynamic state of latency is 

recommended by novel transcriptomic studies. Since HCMV develops a complex relationship with 

the host, to define lytic and latency phases, several studies used the ratio of replicative and latency 

genes as a phase indicator [56,392]. To further highlight the role of the HCMV-IE1 gene, a study 

showed the potential of HCMV in regulating stemness in glioblastoma cells by specifically 

increasing SOX2 and Nestin, thus upregulating stemness and proliferation markers [393]. 

A study revealed the potential of combining GCV with certain chemotherapeutic agents to 

suppress EBV-positive NPC tumor growth [394]. In HPV-infected cervical cancer cells, cidofovir 

and cisplatin inhibited cellular proliferation, reduced E6 protein expression, and restored the 

activity of p53 [395]. A third study showed the effectiveness of anti-herpetic drugs, GCV and 

cidofovir, as single therapies or in combination with chemotherapy in treating KSHV-associated 

primary effusion lymphoma (PEL) [396]. Based on our results, the heterogeneity of HCMV strains 

including their distinct behavioral aspects had a major impact on CTH cells’ response post-therapy. 

CTH-B544 cells were therapy sensitive whereas CTH-B693 cells displayed an aggressive behavior 

with lower sensitivity to PTX/GCV combination therapy. Generally, isolating distinct HCMV 

strains from tumors that possess potential prognostic biomarkers and behave differently depending 

on their own heterogeneity and various cell types may improve the diagnostic process and 

treatment options, provide effective follow-up strategies, and may be essentially pertinent in breast 

cancer pathophysiology and other adenocarcinomas, particularly of poor prognosis. 

While our primary aim in this study was to investigate the potential link between breast cancer and 

the high-risk HCMV strains, we must not overlook the importance of the secondary goal of our 

research which was to examine the impact of these high-risk HCMV strains on the progression 

and clinical outcomes of GBM patients. Within the context of GBM, we presented the first 

experimental evidence for HCMV as a reprogramming vector, straight through the 

dedifferentiation of mature human astrocytes, and generation of CMV-Elicited Glioblastoma Cells 
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(CEGBCs) possessing glioblastoma-like traits. HCMV counterparts the progression of the 

perceived cellular and molecular mechanisms succeeding the transformation and invasion 

processes with CEGBCs involved in spheroid formation and invasiveness. Our study was 

conducted to assess the potential transforming capacities of HCMV-DB and BL following the HAs 

infection which were previously classified as high-risk transforming strains [125,126,241,397]. 

HAs infection with the high-risk HCMV-DB and BL strains resulted in a pro-oncogenic cellular 

environment and sustained growth of CEGBCs with soft agar colonies formation, unlike HAs 

infected with the low-risk HCMV-KM and FS strains that showed no transforming potentials and 

resulted in cell death in the long term cultures. CEGBCs displayed a “go and growth” phenotype 

in 2D monolayer cultures, dedifferentiated and displayed stemness as well as PMT features, and 

finally resulted in spheroid formation and invasion in 3D cultures. PGCCs appearance as well as 

cellular heterogeneity were previously allied to cultures of mammary epithelial cells infected with 

the high-risk HCMV strains [125,398]. Similar to HMECs transformed with the high-risk HCMV 

strains, around day 80 post-infection, we observed the appearance of dense cell aggregates, 

followed by the emergence of a wide array of morphologically distinct cells in HCMV-DB and 

BL cultures. We named these cells CMV-elicited glioblastoma cells (CEGBCs) with reference to 

the CMV-transformed HMECs (CTH) cells. PGCCs, NPC-like, neuron-like and mesenchymal-

like cells were detected as well as filopodia, lamellipodia, and asymmetric cell division patterns. 

The described patterns could be representative of self-renewing cells undergoing diverse stages of 

the previously described giant cell cycle [125,398], although blastomere-like structures weren’t so 

far detected as reported previously in CTH cells [125]. A replication-competent virus susceptible 

to reactivation from latency upon TPA treatment has been detected in CEGBC cultures. Activation 

of the Myc/EZH2 axis was observed in acute and sustained chronic infection with both high-risk 

HCMV strains. In agreement with EZH2 activation by HCMV, we observed a direct interaction 

between EZH2 and HCMV lncRNA4.9 transcript, likewise between EZH2 and cellular lncRNA 

HOTAIR transcript, a poor prognosis oncogenic factor for glioma patients. In line with EZH2 and 

HCMV involvement in our glioblastoma model, combination triple therapy (GSK343/GCV/TMZ) 

curtailed the growth of CEGBCs-derived spheroids. In vivo, all GBM tumor biopsies were found 

to harbor HCMV with enhanced EZH2 and Myc expression, possessing a strong positive 
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correlation between EZH2 and Myc expression as well as a strong correlation between EZH2/Myc 

and HCMV presence. Eleven HCMV-GBM strains were isolated from GBM tumors which acutely 

transformed HAs toward CEGBCs with increased EZH2/Myc expression that undergo 

dedifferentiation towards glioblastoma stem cells with spheroid formation and invasiveness 

capacities that could be curtailed by GSK343/GCV/TMZ triple therapy.  

Among the mechanisms studied to transform HAs and promote disease progression in addition to 

poor prognosis in GBM, is the coupling of Myc and EZH2 overexpression as well as the depletion 

of retinoblastoma protein (Rb) which was observed in our study [336,399]. Although limited Myc 

upregulation and Rb downregulation were observed, none of the two low-risk HCMV-KM and FS 

strains transformed HAs as measured by soft agar colony formation in addition to the cell death 

observed in prolonged cultures. On the other hand, the high-risk clinical isolates HCMV-DB and 

BL can drive HAs towards oncogenic transformation in vitro. Our findings conform to the 

“astrocyte dedifferentiation theory” corresponding to glioblastoma origin [400–402]. In contrast 

to uninfected HAs, the distinct transcriptome profile including oncogenes, tumor suppressor genes 

and cell cycle genes facilitated the characterization of CEGBCs that possess a glioblastoma-like 

phenotype [403,404]. Stemness acquisition, commonly described in metastasis and poorly 

differentiated tumors [405–407], is in accordance with previous findings where GB-generated 

spheroids are composed of glioma stem cells (GSCs). The concomitant presence of the stemness 

marker nestin and HCMV-IE1 was detected in the spheroid structures generated from CEGBCs, 

as reported for nestin in the cell lines derived from GBM [408]. Highly motile Nestin/IE1-positive 

cells were spotted leaving the core which are similar to the neural-progenitor-like tumor cells 

detected in glioblastoma, especially the ones adopting the Lévy-like movement patterns [293,408]. 

The concomitant presence of viral proteins and nestin within transformed cells has been reported 

for the two herpes oncoviruses EBV and KSHV [409,410]. In agreement with enhanced CD44 and 

CD133 expression in CEGBCs, their expression in glioblastoma stem cells correlates with cell 

proliferation, intra-tumor heterogeneity, invasion and poor prognosis in CD44-expressing glioma 

[405,411]. The presence of vimentin+/CD44+ cells in CEGBC cultures as well as the detection of 

stem cells expressing SOX2 and nestin confirms the PMT plasticity. In agreement with the 

proneural-mesenchymal plasticity described upon oncogenic stress activation highlighting 
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astrocyte plasticity/reactivity during tumorigenesis [370,412,413], a high invasive potential was 

observed in CEGBCs-DB compared to BL with increased mesenchymal traits indicating a more 

aggressive behavior that might drive therapeutic resistance. 

Accumulated evidence highlighted Myc and EZH2 as key players in both oncogenesis and 

stemness. Myc stimulates EZH2 expression by activating the EZH2 promoter [328], repressing 

miR-26a [327], or directly suppressing miR-137. Bromodomain-4 protein (BRD4) positively 

regulates EZH2 transcription through Myc upregulation [330]. Myc activation was reported in 

glioblastoma progression, particularly in poor prognosis and therapy resistant-tumors [328,414]. 

EZH2 mediates proliferation, migration, and invasion in GBM. High-risk HCMV clinical strains 

DB and BL differentially induce Myc upregulation, and consequently stimulate EZH2 

overexpression as well as CEGBCs induction, pointing toward the presence of 

Myc/EZH2/CEGBCs axis underlying the described results. Though, the interrelationship between 

HCMV and EZH2 is further complexed by the detection of HCMV lncRNA4.9 gene in CEGBCs 

which is in line with Rossetto et al. report [320]. Consistent with our data, the cellular lncRNA 

HOTAIR was described to interact with EZH2 in glioblastoma, thus linked to tumor dissemination, 

PMT, and drug resistance [414,415]. The noticeable detection of high lncRNA HOTAIR in the 

EZH2 IP samples corresponding to CEGBCs-DB explicates the aggressiveness of this particular 

high-risk HCMV strain, predicting poor prognosis. Indeed, EZH2-mediated stemness could 

underlie the appearance and maintenance of CEGBCs expressing a high degree of embryonic 

stemness, as EZH2 expression in astrocytes induced their dedifferentiation toward stem-like cells 

expressing nestin, SOX2, and CD133 [402]. Further, we reported the detection of HCMV in GBM 

tumor biopsies displaying enhanced EZH2, Myc, and Akt expression. HCMV-induced Myc and 

EZH2 expression along with the embryonic stem-like phenotype in the IE1-expressing CEGBCs 

could establish a significant model in the context of GBM. Since EZH2 and Myc have been 

implicated in tumor initiation and proven to impact glioblastoma appearance and development 

with the two high-risk HCMV DB and BL strains isolated from biological fluids (cervical swab 

and urine respectively), we evaluated EZH2/Myc expression and recovered HCMV strains directly 

from GBM biopsies thereby assessing their oncogenic potential. Eleven HCMV strains were 

isolated from GBM tumors (with unmethylated and methylated MGMT promoters). After HAs 
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infection, CEGBCs were generated with morphological features matching the previously 

described CEGBCs-DB and BL and led to the appearance of spheroids with invasiveness potential. 

HCMV-IE1 protein detection parallel to stemness markers and the upregulated Myc and EZH2 

expression parallel to the detection of lncRNA4.9 gene, lncRNA4.9 and HOTAIR transcripts in 

cultures infected with the eleven HCMV-GBM strains recapitulates the previously observed 

molecular phenotype induced by HCMV-DB and BL strains. The expression of Myc was 

predominantly elevated in IE1-positive HAs. Altogether, HCMV strains are present in GBM 

tumors retaining tumor-promoting abilities, therefore considered as oncogenic strains. 

Highlighting the critical role of EZH2 and HCMV in our glioblastoma model, the impact of EZH2 

inhibitor (GSK343) and anti-HCMV drug ganciclovir (GCV) alone and in combination with TMZ 

was assessed. TMZ possessed a very limited effect on the growth of CEGBCs spheroids derived 

from HCMV-DB, HCMV-BL and the eleven HCMV-GBM strains. In agreement with our results, 

valganciclovir possessed a positive effect on glioblastoma tumors with an unmethylated or 

methylated MGMT promoter gene [416], potentially through its antiproliferative effect [417,418]. 

Although GSK343 single therapy had a limited effect on the growth of CEGBCs spheroids, its 

combination with TMZ enhanced the restriction of the CEGBCs spheroids growth derived from 

DB and BL, and to a lesser extent HCMV-GBM strains. EZH2 may modulate TMZ resistance 

where blocking EZH2 reverses TMZ chemosensitivity in GBM patients; an increased number of 

apoptotic cells were detected by knocking down EZH2 [419]. Although encouraging responses 

were detected post-dual therapy (GSK343/TMZ) in CEGBCs-DB and BL, and to a lesser extent 

from the eleven GBM HCMV strains, the triple therapy (TMZ/GSK343/GCV) was the most 

effective in CEGBCs derived from DB, BL, and the eleven GBM HCMV strains. Hence, triple 

therapy provides the foundation for a combinational therapeutic strategy to improve overall patient 

survival, reduce viral resistance, and lower drug toxicity. 

 

While exploring the potential association between HCMV, BC, and GBM, we also recognized the 

significance of understanding how diverse HCMV viral strains may influence OC progression. 

Finally, we presented the experimental evidence for HCMV as a reprogramming vector that 

elicited human ovarian epithelial cells (OECs) transformation leading to the generation of “CMV-
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transformed Ovarian cells” (CTO). Herein, we assessed the potential transforming capacities of 

the high-risk HCMV-DB and BL strains, following the OECs infection. The OECs infection with 

the high-risk HCMV-DB and BL strains resulted in a pro-oncogenic cellular environment and 

sustained growth of CMV-transformed OECs with soft agar colonies formation. The CTO cells 

dedifferentiated, displayed stemness as well as EMT-MET hybrid phenotype, and finally resulted 

in PGGCs generation and spheroid formation. HCMV presence accompanied by polyploidy, EZH2 

upregulation, and malignant phenotype potentially confirm the transformation process. In vivo, 

72% of HGSOC biopsies were found to harbor HCMV with elevated PGCCs count as well as 

enhanced EZH2 expression, revealing a strong correlation between HCMV, PGCCs, and EZH2 

expression. Three HCMV-OC strains were isolated from EZH2high OC tumors that transformed 

OECs toward CTO possessing increased EZH2, Ki67Ag, and Myc expression parallel to 

polyploidy induction. The expression of the aforementioned markers and polyploidy were 

curtailed by EZH2 inhibitors therapy. 

PGCCs play a fundamental role in tumor progression and in regulating tumor heterogeneity 

[115,420]. Accumulating evidence reveals the presence of PGCCs in OC, particularly the HGSOC, 

where PGCCs act as stem-like, self-renewing cells that are considered prognostic factors for OC 

[115,421]. In our study, CTO cells generated PGCCs, and were heterogeneous showing distinct 

morphological features including budding, filopodia, lipid droplets-filled cells, blastomere-like 

cells, and multinucleated cells that were previously detected in OC especially HGSOC [420,422–

427] and reported upon HCMV infection of human mammary epithelial cells [125,126,397]. Our 

findings indicated that polyploidy harboring HCMV might induce the acquisition of a malignant 

phenotype via the giant cell cycling [118]. p53 and Rb inactivation have been correlated with 

tetraploidization in human tumors [428]. Indeed, p53 was shown to be mutated in more than 50% 

of human tumors, especially HGSOC; most of the p53 mutations acquired an oncogenic function. 

It’s worth mentioning that tumor-promoting viruses reduce p53 activity [429]. Studies have shown 

that the incidence of tetraploidy occurs in p53-deficient cells possessing prolonged DNA damage 

due to persistent telomere dysfunction [430]. p53 and Rb expression was decreased in CTO-DB 

and BL that showed high percentages of tetraploidization and decreased telomerase activity, in 

line with the telomere-driven tetraploidization induced by critically short telomeres with the 



Page | 152  
 
 

 

potential to promote tumorigenesis in early cancerous lesions [376]. Several HCMV products have 

been involved in the cellular transformation including IE1, IE2, pp65, US28, cmvIL-10, UL76, 

UL44, and UL84, etc. Such expression of HCMV gene products could impair the pathways of p53 

and Rb [70,215]. HCMV-IE1, IE2, and UL97 allow the evasion of p53 and Rb [215]. Hence, the 

impaired p53 and Rb pathways in CTO cells was due to the transforming potential of HCMV 

contrasting the Ras, human telomerase reverse transcriptase (hTERT), and SV40-mediated 

transformation of human ovarian cells [431]. 

Cells possessing sphere-forming potentials were shown to reside in the malignant ascites of OC 

patients [432–434].  In OC, the aforementioned cells are strong contributors to tumor progression, 

metastasis, chemotherapy resistance, and disease relapse [433]. The spontaneous spheroid 

generation along with the high expression of Nanog and Oct4 in CTO-DB and BL is in line with 

the previously described OC cell phenotype [435]. Given their role in maintaining pluripotency 

and long-term self-renewal, the embryonic transcription factors Oct4 and Nanog are recognized as 

part of the stem cell signature that strongly correlates with spheroid formation, tumor initiation, 

and chemoresistance in ovarian cancer cells [435,436]. CD44 was highly expressed in CTO-DB 

and BL cells; it has been previously shown to drive the progression of several tumors [437,438], 

maintain stem cell quiescence, and promote EMT in OC [439]. Further, CD44 has been linked to 

the sphere-forming, self-renewing and tumor-initiating potential of OC cells [440]. The co-

existence of vimentin and E-cadherin in CTO-DB and BL highlights the high cellular plasticity. 

EMT plasticity with EMT and MET alternately taking place was revealed during HGSOC 

progression where cells co-express epithelial and mesenchymal determinants [427,441,442]. 

Besides cellular plasticity, the hybrid E/M state promotes stem-like properties as well as metastatic 

and tumorigenic potential [367,443].  

Upon infecting OECs with HCMV-DB and BL strains, IE1 and pp65 proteins were detected which 

is in line with the recent studies that have identified high expressions of HCMV-IE or pp65 in 

ovarian tumor samples that were associated with poor survival outcomes [304,444], suggesting 

that HCMV infection could potentially promote cancer progression. All in all, HCMV-induced 

EZH2 expression along with the embryonic stem-like phenotype and cellular plasticity in the IE1-

expressing OECs/CTO cells could establish a significant model in the context of OC. Several 
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studies shed light on the existence of herpesviruses DNA and proteins in ovarian tissues that may 

hold potential in the process of OC tumorigenesis [304,444,445]. Herein, we reported the detection 

of HCMV in HGSOC biopsies displaying elevated PGCCs count as well as enhanced EZH2 

expression. It is worth mentioning that, neither HPV nor EBV was detected in the eighteen tested 

HGOSC biopsies. 

Three HCMV strains with a strong transforming potential, so called high-risk strains, were isolated 

from EZH2High HGOSC biopsies. After OECs infection, CTO cells were generated with 

morphological features matching the previously described CTO-DB and BL. Additionally, we 

evaluated EZH2 expression in the high-risk HCMV strains that were recovered directly from 

HGSOC biopsies thereby assessing their oncogenic and stemness potential. Unlike GSK-treated 

CTO, the expression of EZH2, Myc, and Ki67Ag was predominantly elevated in untreated CTO-

HCMV-OC cells parallel to the PGCCs appearance. In summary, HCMV clinical strains reside in 

HGOSC biopsies retaining cancer-promoting potentials. 

Targeting HCMV might have a vital role in treating OC [444]. Post-anti-CMV therapy, a 

remarkably high extended survival was observed in both newly diagnosed and recurrent 

glioblastoma patients [446]. Current vaccine candidates have focused on several HCMV 

antigens/epitopes such as gB, gH, pentamer complex, pp65 and IE1 [447,448]. Recently, CMV-

specific immunotherapy including cytotoxic T lymphocyte (CTL) or dendritic cell (DC)-based 

vaccines has contributed to minimal successful outcomes in glioblastoma treatment [8,448]. In 

addition, using EZH2 inhibitors to specifically target ovarian tumors could ultimately improve 

patients outcomes [322]. Two inhibitors triggering EZH2 degradation (DZNep and YM281) 

exhibited potent efficacy in OC cell lines and xenografts [323]. GSK343 significantly induced 

apoptosis and inhibited the invasion of ovarian epithelial cells in 3D cultures which more closely 

mimics the tumor microenvironment in vivo [449]. In patient-derived glioma stem cells, GSK343 

was shown to suppress the stemness traits [335]. Interestingly, in the present study, EZH2 

inhibitors totally blocked HCMV replication. It’s worth noting that the HCMV major immediate 

early promoter (MIEP) transcriptional repressor, growth factor independence1 (GFI1), is 

controlled by the EZH2-NDY1/KDM2B-JARID2 axis. Therefore, EZH2 inhibitors might result in 

an enhanced GFI1 expression which could block viral replication [450]. Hence, combinational 
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therapies including EZH2 inhibitors may prove to be a promising milestone in developing 

therapeutic strategies for ovarian cancer treatment. 

Overall, the existence of diverse strains expressing potential biomarkers and possessing various 

replication potentials in different tissues and/or cell types explain the distinct oncogenicity. So far, 

sixteen high-risk oncogenic clinical HCMV strains were isolated directly from tumor biopsies 

(breast cancer, N=2; glioblastoma, N=11; HGSOCs, N=3). These strains shared the same 

transforming potential. PGCCs were detected in the aforementioned cell cultures that were shown 

to highly express Myc and EZH2 pointing toward a potential link between HCMV, PGCCs, EZH2, 

and Myc. CTO and CTH cells dedifferentiated and revealed stemness as well as EMT traits. On 

the other hand, CEGBCs dedifferentiated and displayed stemness, PMT as well as invasiveness 

features. The phenotypic changes were similar in HCMV-infected ovarian and mammary epithelial 

cells. However, the difference was mainly the detection of high percentages of tetraploid cells in 

the CTO cultures compared to the >4N population detected in CTH cells. In both models, a high 

degree of cellular plasticity was detected knowing that ovarian and mammary epithelial cells are 

isolated from human glandular organs. Thus, discovering distinct viral strains will adjust the 

different adopted approaches to tumor diagnosis, prognosis, prevention, advanced treatment, as 

well as therapy monitoring and will enrich potential vaccine studies. In the forthcoming studies, it 

would be essential to sequence the isolated high-risk HCMV strains aiming to define the specific 

viral gene(s) that are responsible for driving the transformation process. Further, it is of high 

importance to conduct in vivo experimental studies since they can serve as a crucial bridge for 

extrapolating our findings to the patient context as well as translating the exact relevance of such 

models in the pathogenesis of breast cancer, GBM, and ovarian cancer. This could play a pivotal 

role in indicating and confirming HCMV as an oncogenic virus. 
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Chapter 9 

9. Conclusion 

 

As a conclusion, our findings elucidate the concept of how HCMV is linked to breast cancer, 

glioblastoma, and ovarian cancer as depicted in the figures below (Figure 53, Figure 54, and 

Figure 55). The data that were provided proved that HCMV is not solely associated with 

oncomodulation; it is also recognized for its involvement in oncogenesis. The oncogenic and 

stemness signatures of the high-risk HCMV strains accentuate the oncogenic potential of HCMV 

in breast cancer, glioblastoma, and ovarian cancer progression and support the tumorigenic 

properties of EZH2 and Myc which might be highly pertinent in the pathophysiology of the 

aforementioned tumors. With respect to breast and ovarian cancer, HCMV triggered EZH2 and 

Myc expression, generated PGCCs, displayed dedifferentiating phenotypes with stemness features 

as well as hybrid EMT/MET phenotypes parallel to the existence of giant cell cycling. Further, 

HCMV induced a CEGBCs phenotype with tumor heterogeneity, proneural to mesenchymal 

plasticity, and embryonic-like stemness leading to spheroid formation and invasiveness in vitro 

and in GBM biopsies.  

In accordance with the previous findings discussed, and considering that HCMV has been detected 

primarily within tumors correlating positively to poor prognosis, along with the potential influence 

of HCMV gene products on the regulation of tumorigenic pathways and processes associated with 

key cancer characteristics, and taking into account HCMV's wide tissue tropism, we deduce that 

HCMV harbors distinctive mechanisms that contribute to cancer progression.  
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Figure 53: Potential model depicting the course of events leading to the initiation of the giant 

cell cycle. 

In response to HCMV infection (1), the 2N human mammary epithelial cells (HMECs) enter the initiation phase of 

the giant cell cycle through endoreplication (2). Polyploid (>4N) cells in the dedifferentiation stage display a luminal-

like phenotype with high to intermediate expression of epithelial and stemness markers. Cells directly bud from mul-

tinucleated or mononucleated giant cells (3) or alternatively continue endoreplication (4). The termination/differenti-

ation step characterized by intermediate 2-4N cells profile gradually achieve stability into diploid 2N small cells (SCs) 

(5), where the latter are triple-negative with lower expression of epithelial and stemness markers. A small population 

of SCs could revert and show a mesenchymal-to-epithelial transition (6). A gradual decrease in HCMV presence is 

seen from left to right. Adapted from Nehme et al [125]. 
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Figure 54: Glioblastoma generation scheme.  

The scheme illustrates the four phases of the CEGBCs cycling including initiation, self-renewal, proliferation, and 

dedifferentiation, termination/differentiation, and stability. Large red arrows showed the large cells and PGCCs; Small 

red and black arrows showed the intermediate/small heterogeneous cells. In the termination/differentiation phase, 

NPC-like (1, 2), neuron-like (3, 4), and mesenchymal-like (5, 6) cells were detected. 
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Figure 55:  A schematic representing the giant cell cycling following HCMV infection of 

OECs. 

Giant cell cycle representing four distinct phases including initiation, self-renewal, termination and stability. Upon 

HCMV infection, the 2 N OECs go into the initiation phase through endoreplication. Polyploid cells ( > 4 N) and 

tetraploid cells (4 N) generate in the self-renewal/dedifferentiation stage due to HCMV infection and the subsequent 

EZH2 upregulation. Cell budding takes place from multinucleated or mononucleated giant cells generating 

intermediate 2–4 N OECs during the termination/differentiation phase. Intermediate OECs gradually reach stability 

and are converted into diploid small OECs (2 N). 
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Future studies, with more detailed analyses of target genes within the CMV-transformed cells 

namely, CTH, CEGBCs, and CTO cells and their corresponding response to inhibitors may 

establish new avenues to understand the complex pathogenesis of breast cancer, glioblastoma, and 

ovarian cancer. Additionally, large-scale experiments are highly encouraged to further validate our 

findings. Meanwhile, the presented data provides new insights into the oncogenic role of HCMV 

in cancer progression, thereby uncovering novel targeted therapeutic approaches and innovative 

clinical interventions that will improve cancer patient outcomes and their overall survival rates. 
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11. Annex  

11.1 Publication N°1 

El Baba R, Herbein G. Management of epigenomic networks entailed in coronavirus infections 

and COVID-19. Clin Epigenet 2020;12:118. https://doi.org/10.1186/s13148-020-00912-7. 

 

Coronaviruses (CoVs) are highly variable single-stranded RNA viruses susceptible to genetic 

mutations and recombination. They include pathogens like SARS-CoV, MERS-CoV, and the 

highly infectious SARS-CoV-2, responsible for the COVID-19 pandemic. Severe outcomes of 

COVID-19 are linked to older age and compromised immune systems, often involving a cytokine 

storm marked by excessive inflammation. The molecular processes governing coronavirus 

infection encompass interactions between the virus and host, affecting viral entry, replication, 

escape, and immune control. Exploring coronavirus infections and COVID-19 from an epigenetic 

perspective may lead to altered gene expression, potentially limiting infection. Clinical trials of 

epigenetic therapies, approved epigenetic agents, and combining antivirals with epigenetic drugs 

are viewed as effective strategies for controlling viral replication and excessive inflammation. 
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11.2 Publication N°2 

Haidar Ahmad S, Al Moussawi F, El Baba R, Nehme Z, Pasquereau S, Kumar A, et al. 

Identification of UL69 Gene and Protein in Cytomegalovirus-Transformed Human Mammary 

Epithelial Cells. Front Oncol 2021;11:627866. https://doi.org/10.3389/fonc.2021.627866. 

 

A growing body of evidence suggests that human cytomegalovirus (HCMV) is involved in cancer 

development, particularly in breast tumors. HCMV-infected human mammary epithelial cells 

(HMECs) give rise to rapidly proliferating, spheroid-shaped cells called CTH cells, indicating 

HCMV's contribution to oncogenesis. This study focused on the UL69 gene in HCMV, which was 

detected in CTH cells and breast cancer biopsies. In our experiments, ganciclovir treatment 

reduced UL69 gene presence and cell proliferation, while UL69 knockdown using siRNA affected 

HCMV replication and CTH cell growth. These findings highlight the direct role of HCMV in 

breast tumor development, particularly through the UL69 gene. 
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11.3 Publication N°3 

El Baba R, Herbein G. Immune Landscape of CMV Infection in Cancer Patients: From 

“Canonical” Diseases Toward Virus-Elicited Oncomodulation. Front Immunol 2021;12:730765. 

https://doi.org/10.3389/fimmu.2021.730765. 

 

Human cytomegalovirus (HCMV) is a highly prevalent herpesvirus that persistently infects a 

significant portion of the global population. Despite robust host immune responses, HCMV has 

evolved multiple immune-modulatory strategies to replicate, evade host defenses, and establish 

lifelong latency. It achieves this by impairing the expression of HLA Class I and II molecules, 

evading natural killer cell-mediated cytotoxicity, interfering with cellular signaling, inhibiting 

apoptosis, escaping complement attack, and inducing immunosuppressive cytokines. HCMV also 

expresses various gene products that modulate the host immune response and affect non-coding 

RNA and regulatory proteins. These immune evasion strategies are associated with complications 

such as immunosenescence and malignant phenotypes, resulting in an immunosuppressive tumor 

microenvironment and oncomodulation. Consequently, HCMV's role in promoting tumor survival 

involves influencing cellular proliferation, survival, invasion, immune evasion, 

immunosuppression, and the production of angiogenic factors. Understanding HCMV's immune 

evasion mechanisms is crucial for developing adapted therapeutic approaches, particularly in the 

era of immunotherapy, which has transformed cancer treatment. By employing multimodal 

strategies that induce immunogenic tumor apoptosis and counteract the immune-suppressive 

microenvironment, it may be possible to enhance anti-tumor immunity. 
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11.4 Publication N°4 

Haidar Ahmad S, Pasquereau S, El Baba R, Nehme Z, Lewandowski C, Herbein G. Distinct 

Oncogenic Transcriptomes in Human Mammary Epithelial Cells Infected With Cytomegalovirus. 

Front Immunol 2021;12:772160. https://doi.org/10.3389/fimmu.2021.772160. 

 

Human cytomegalovirus (HCMV) is increasingly recognized as a potential oncovirus, beyond its 

oncomodulatory role. The study isolated two high-risk HCMV strains, HCMV-DB and HCMV-

BL, which promoted oncogenic pathways and tumorigenicity in human mammary epithelial cells. 

In contrast, low-risk strains like HCMV-FS, KM, and SC did not induce these traits. When 

comparing high-risk and low-risk strains, high-risk HCMV-BL exhibited numerous pro-oncogenic 

features, including enhanced expression of oncogenes and genes associated with cell survival, 

proliferation, and epithelial-mesenchymal transition. Furthermore, mammosphere formation was 

observed only with high-risk strains. The Ki67 gene proved useful for distinguishing between 

high-risk and low-risk strains in vitro and in HCMV-positive breast cancer biopsies, primarily in 

basal tumors, potentially associated with high-risk HCMV strains. Overall, the transcriptome of 

human mammary epithelial cells infected with HCMV clinical isolates demonstrates an 

"oncogenic gradient," with high-risk strains creating a pro-oncogenic environment that may 

contribute to breast cancer development. 
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11.5 Publication N°5 

Nehme Z, Pasquereau S, Haidar Ahmad S, El Baba R, Herbein G. Polyploid giant cancer cells, 

EZH2 and Myc upregulation in mammary epithelial cells infected with high-risk human 

cytomegalovirus. EBioMedicine 2022;80:104056. https://doi.org/10.1016/j.ebiom.2022.104056. 

 

Human cytomegalovirus (HCMV) infection has been associated with complex cancer processes. 

Herein, we explored the molecular mechanisms underlying HCMV-induced oncogenesis. We have 

identified EZH2 as a downstream target for HCMV-induced Myc upregulation during acute and 

chronic infection with high-risk strains. This leads to the development of giant cells and acquisition 

of embryonic stemness markers in CMV-transformed cells. We also found that EZH2 inhibitors 

can mitigate the malignant properties of these cells. Breast biopsies with HCMV were 

characterized by elevated EZH2 and Myc expression, and this correlated with the presence of giant 

cancer cells. Further, we isolated two oncogenic HCMV strains from basal-like tumors with high 

EZH2 and Myc levels. This study suggests a connection between HCMV-induced Myc activation, 

EZH2 upregulation, and the development of polyploidy, supporting the idea that EZH2 and Myc 

play a role in tumorigenesis. Additionally, EZH2 is identified as a potential therapeutic target for 

breast cancer, especially in the presence of HCMV infection. 

 

https://doi.org/10.1016/j.ebiom.2022.104056
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11.6 Publication N°6 

El Baba R, Pasquereau S, Haidar Ahmad S, Diab-Assaf M, Herbein G. Oncogenic and Stemness 

Signatures of the High-Risk HCMV Strains in Breast Cancer Progression. Cancers 2022;14:4271. 

https://doi.org/10.3390/cancers14174271. 

 

Lately, human cytomegalovirus (HCMV) has been progressively implicated in carcinogenesis 

alongside its oncomodulatory impact. CMV-Transformed Human mammary epithelial cells (CTH) 

phenotype might be defined by giant cell cycling, whereby the generation of polyploid giant cancer 

cells (PGCCs) could expedite the acquisition of malignant phenotypes. Herein, the main study 

objectives were to assess the transformation potential in vitro and evaluate the obtained cellular 

phenotype, the genetic and molecular features, and the activation of cellular stemness programs of 

HCMV strains, B544 and B693, which were previously isolated from triple-negative breast cancer 

(TNBC) biopsies. The strains’ sensitivity to paclitaxel and ganciclovir combination therapy was 

evaluated. A unique molecular landscape was unveiled in the tumor microenvironment of TNBC 

harboring high-risk HCMV. Overall, the explicit oncogenic and stemness signatures highlight 

HCMV potential in breast cancer progression thus paving the way for targeted therapies and 

clinical interventions which prolong the overall survival of breast cancer patients. 
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11.7 Publication N°7 

Bouezzedine F, El Baba R, Morot-Bizot S, Diab-Assaf M, Herbein G. Cytomegalovirus at the 

crossroads of immunosenescence and oncogenesis. Explor Immunol 2023:17–27. 

https://doi.org/10.37349/ei.2023.00086. 

 

Human cytomegalovirus (HCMV) is a common herpesvirus infecting a significant portion of the 

population. While it often causes mild symptoms, HCMV can trigger strong immune responses 

and persist for life. In individuals with weakened immune systems, such as those with AIDS or 

transplant recipients, HCMV can lead to severe diseases. Immunosenescence, associated with 

aging and inflammation (inflammaging), has received increased attention. HCMV is closely linked 

to accelerated aging of the immune system and age-related diseases, contributing to mortality, 

reduced vaccine efficacy, serious illnesses, and cancer, particularly in the elderly. HCMV can both 

initiate and worsen immunosenescence, and its reactivation, involving different viral cycles, adds 

to its genetic diversity. In addition to its oncogenic role, the immune-privileged tumor 

microenvironment plays a significant part in tumor progression. Understanding the interplay 

between HCMV, immunosenescence, and cancer could lead to novel therapeutic approaches, 

particularly for challenging cancers in older individuals. 
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11.8 Publication N°8 

El Baba R, Pasquereau S, Haidar Ahmad S, Monnien F, Abad M, Bibeau F, et al. EZH2-Myc 

driven glioblastoma elicited by cytomegalovirus infection of human astrocytes. Oncogene 

2023;42:2031–45. https://doi.org/10.1038/s41388-023-02709-3. 

 

Increasing evidence suggests that human cytomegalovirus (HCMV) may have oncogenic 

potential, particularly in malignant gliomas. Notably, the presence of the EZH2 and Myc genes 

correlates with the severity of gliomas. This study provides the first experimental proof that 

HCMV can reprogram mature human astrocytes, leading to the creation of CMV-Elicited 

Glioblastoma Cells (CEGBCs) with traits resembling glioblastoma cells. HCMV mimics the 

cellular and molecular processes associated with transformation and invasion, with CEGBCs 

exhibiting spheroid formation and invasiveness. Glioblastoma multiforme (GBM) biopsies were 

characterized by elevated EZH2 and Myc expression, with a strong positive correlation when 

HCMV was present. Eleven clinical HCMV strains were isolated from GBM tissues, transforming 

astrocytes into CEGBCs with increased EZH2 and Myc expression. These CEGBC-derived 

spheroids displayed invasive potential and were responsive to treatment with an EZH2 inhibitor, 

ganciclovir, and temozolomide. This research establishes a model for HCMV-induced 

glioblastoma and underscores the significance of Myc and EZH2 in astrocytic brain tumor 

pathophysiology, offering potential avenues for novel therapeutic strategies. 
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11.9 Publication N°9 

Haidar Ahmad S, El Baba R, Herbein G. Polyploid giant cancer cells, cytokines and 

cytomegalovirus in breast cancer progression. Cancer Cell Int 2023;23:119. 

https://doi.org/10.1186/s12935-023-02971-1. 

 

This study investigates the connection between human cytomegalovirus (HCMV) and breast 

cancer, focusing on high-risk HCMV strains. It finds that high-risk HCMV strains contribute to 

oncogenic effects leading to aggressive breast cancer. We examined cytokine expression in 

HCMV-transformed cells and breast cancer biopsies, revealing a correlation between cytokine 

production and the presence of polyploid giant cancer cells (PGCCs) in both in vitro and in vivo 

settings. This suggests the potential for novel therapies, particularly cytokine-based 

immunotherapy, in treating aggressive basal-like breast cancer associated with high-risk HCMV 

strains. 
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11.10 Publication N°10 

El Baba R, Haidar Ahmad S, Monnien F, Mansar R, Bibeau F, Herbein G. Polyploidy, EZH2 

upregulation, and transformation in cytomegalovirus-infected human ovarian epithelial cells. 

Oncogene 2023. https://doi.org/10.1038/s41388-023-02813-4. 

 

The present study investigates the connection between human cytomegalovirus (HCMV) infection 

and epithelial ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC). 

Herein, we identified the presence of polyploid giant cancer cells (PGCCs) with stem cell-like 

characteristics in HGSOC. Additionally, we highlighted the role of the oncogene EZH2, which 

correlates with OC tumor grade and proliferation. Our study presents evidence of HCMV's 

involvement in transforming human ovarian epithelial cells, leading to the creation of "CMV-

transformed Ovarian cells" (CTO). High-risk clinical HCMV strains, including the three strains 

isolated from HGSOC biopsies, induced distinct cellular and molecular changes, including EZH2 

upregulation and increased cell proliferation. These findings support the notion of an HCMV-

induced model for epithelial ovarian cancer and suggest the tumorigenic properties of EZH2. This 

research may have implications for targeted therapeutics in the treatment of ovarian tumors. 
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11.11 Publication N°11 

Bouezzedine F, El Baba R, Haidar Ahmad S, Herbein G. Polyploid Giant Cancer Cells Generated 

from Human Cytomegalovirus-Infected Prostate Epithelial Cells. Cancers 2023;15:4994. 

https://doi.org/10.3390/cancers15204994. 
 

Prostate cancer remains a leading cause of death in men worldwide. Polyploid giant cancer cells 

(PGCCs) and chromosomal instability have been proposed to drive the progression of cancer. 

Given that HCMV infection has been implicated in malignant diseases from different cancer 

entities, in the present study, we assessed its transformation potential in vitro and evaluated the 

obtained cellular and molecular phenotypes of prostate epithelial cells (PECs) using HCMV high-

risk clinical strains, DB and BL, which were previously isolated in our laboratory. HCMV-induced 

PGCC formation, Myc and EZH2 upregulation, as well as the stemness and epithelial–

mesenchymal transition features verified the transformation process of PECs. Our research work 

deserves to be distributed among the scientific community, as it paves the way for upcoming 

studies targeting the potential role of HCMV and PGCCs in prostate cancer development and 

treatment. 
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