
HAL Id: tel-04457278
https://theses.hal.science/tel-04457278

Submitted on 14 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Block Low-Rank compression in mixed precision
for sparse direct linear solvers

Matthieu Gerest

To cite this version:
Matthieu Gerest. Using Block Low-Rank compression in mixed precision for sparse direct linear
solvers. Numerical Analysis [cs.NA]. Sorbonne Université, 2023. English. �NNT : 2023SORUS447�.
�tel-04457278�

https://theses.hal.science/tel-04457278
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
DE SORBONNE UNIVERSITÉ

Spécialité : Informatique
École doctorale nº130: Informatique, Télécommunications et Électronique

réalisé au
Laboratoire d’Informatique de Paris 6 (UMR 7606)

présentée par

Matthieu GEREST

Sujet de la thèse :

Using Block Low-Rank compression in mixed precision for
sparse direct linear solvers

soutenue le 8 novembre 2023
devant le jury composé de :

Mme Barucq Hélène Directrice de recherche, INRIA Examinatrice
M. Boiteau Olivier Industriel, EDF R&D Co-encadrant
M. Duff Iain Directeur de recherche, Rutherford Appleton Laboratory Rapporteur
M. Giraud Luc Directeur de recherche, INRIA Rapporteur
Mme Jézéquel Fabienne Maîtresse de conférence, LIP6 Directrice de thèse
M. Mary Théo Chargé de recherche, LIP6 Co-encadrant
M. Nataf Frédéric Directeur de recherche, Laboratoire Jacques-Louis Lions Président du jury

Acknowledgements

Je souhaite tout d’abord remercier mes encadrants pour leur aide durant ces trois
années. Merci à tous pour votre soutien, votre bienveillance, et vos retours constructifs
tout au long de ma thèse. Je tiens à remercier tout particulièrement Théo Mary, qui m’a
accompagné et guidé sur le plan scientifique et technique au cours de la thèse, ainsi qu’au
cours du stage qui l’a précédée. Nos réunions de travail ont régulièrement soulevé des
pistes intéressantes et prometteuses, dont certaines ont été approfondies dans cette thèse.
Je souhaite remercier Olivier Boiteau, mon tuteur à EDF, qui m’a sensibilisé au contexte
d’utilisation de MUMPS dans les codes d’EDF. Merci pour ton suivi, tes bons conseils et
ton humour. Merci à ma directrice de thèse, Fabienne Jézéquel, pour ses relectures ainsi
que pour son aide lors des différentes procédures administratives. Je tiens à remercier
également mes autres encadrants de l’équipe MUMPS : Patrick Amestoy, Alfredo Buttari
et Jean-Yves L’Excellent.

Merci à Iain Duff et à Luc Giraud qui ont accepté d’être rapporteurs de cette thèse,
qui ont relu attentivement le manuscrit et qui ont fait des retours pertinents. Je tiens à
remercier également les autres membres du jury, Frédéric Nataf et Hélène Barucq.

Je souhaite remercier Alexei Mikchevitch, qui, étant chef de projet à l’époque, a été
d’un grand support pour le lancement de cette thèse CIFRE à EDF R&D. Merci aux
membres de l’ancien groupe I23 d’EDF, avec qui j’ai partagé les (longues) pauses café
quotidiennes, aux discussions animées. Je remercie également mes différents collègues
thésards, notamment Bastien, Roméo, Matthieu et Dimitri, à qui je souhaite une bonne
continuation.

Enfin, je tiens à remercier ma famille, qui m’a soutenu pendant cette thèse : mes
parents, ma sœur Adeline et mon frère Corentin.

iii

iv

Contents

1 Background 3

1.1 The multifrontal method . 3

1.1.1 Gaussian elimination . 3

1.1.2 Adapting Gaussian elimination to sparse matrices 5

1.1.3 Parallelism . 7

1.2 Exploiting data sparsity . 8

1.2.1 Low-rank approximations . 8

1.2.2 BLR matrices . 9

1.2.3 Adapting the multifrontal method to BLR compression 10

1.3 Floating-point arithmetic and rounding error analysis 13

1.3.1 Floating-point arithmetic . 13

1.3.2 The basics of rounding error analysis 16

1.4 Mixed-precision algorithms . 19

1.4.1 Iterative refinement . 19

1.4.2 Mixed precision on GPUs . 20

1.4.3 A scaling algorithm for handling low-precision formats 21

1.4.4 A mixed-precision Cholesky factorization 21

1.4.5 A mixed-precision representation of H-matrices 22

1.4.6 Using low precision for storing or accessing data 22

2 Dense LU factorization in mixed precision 25

2.1 Introduction . 25

2.2 Low-rank approximations in mixed precision 26

2.3 Mixed precision BLR compression . 31

2.3.1 Background on BLR matrices . 32

2.3.2 Error analysis of mixed precision BLR compression 32

2.3.3 Types of mixed precision blocks . 33

2.4 Mixed precision BLR LU factorization . 35

2.4.1 Low-rank matrix times full-rank matrix 36

2.4.2 Low-rank matrix times low-rank matrix 38

2.4.3 Triangular system with low-rank right-hand side 43

v

vi CONTENTS

2.4.4 Putting everything together: error analysis of mixed precision BLR
LU factorization . 45

2.5 Experimental results . 48
2.5.1 Experimental setting . 48
2.5.2 Performance–accuracy tradeoff . 49
2.5.3 Results on real-life matrices . 50

2.6 Conclusion . 51

3 The multifrontal method in mixed precision 55
3.1 Mixed precision aiming for storage reductions 55

3.1.1 Using custom precision formats . 55
3.1.2 Multifrontal method with mixed-precision storage 58
3.1.3 Block-admissibility conditions . 58
3.1.4 Implementation in MUMPS . 59
3.1.5 Storage gains and time overhead . 60
3.1.6 Compressing contribution blocks in mixed precision 62
3.1.7 Reducing the communication volume 63

3.2 Mixed precision aiming for time gains . 65
3.2.1 Main techniques . 65
3.2.2 Application to the triangular solve 69
3.2.3 Towards an application to the factorization 72

3.3 Conclusion . 75

4 Hybrid algorithm for solve 77
4.1 Introduction . 77
4.2 Preliminaries and notations . 79

4.2.1 Notations . 79
4.2.2 Right-looking and left-looking variants 81
4.2.3 Parallelism in multifrontal solve . 82

4.3 New hybrid variants of the BLR triangular solve 83
4.3.1 A novel hybrid variant . 83
4.3.2 Parallelism-driven hybrid variant 84
4.3.3 Low-rank updates accumulation . 85

4.4 Communication volume analysis . 87
4.4.1 Analysis . 87
4.4.2 Discussion . 89

4.5 Performance analysis based on a simplified prototype 91
4.5.1 Experimental setting . 91
4.5.2 Performance analysis of hybrid variants 91
4.5.3 Performance analysis of LUA . 92

4.6 Results on real-life applications with the MUMPS solver 93
4.7 Conclusion . 95

CONTENTS vii

5 Conclusion 97

Scientific presentations 101

viii CONTENTS

Introduction

Many industrial and scientific simulations require to solve linear systems of the form
Ax = b. Being able to perform such an algorithmic step with enough accuracy is crucial
for of feasibility and performance of the simulation and may take a huge part of the
computation time. It is also the case for the codes developed at EDF R&D, such as
code_aster, code_carmel and code_saturne.

In order to solve a linear system in a robust and accurate way, one might need to use a
direct method such as performing an LU factorization A = LU , before solving triangular
systems Ly = b and Ux = y. The multifrontal method and the supernodal method are
both part of this category of algorithms, while handling sparse matrices, whose coefficients
are mostly zero.

However, direct methods can be very costly in terms of memory consumption and
computation time. As an addition to the use of massive parallelism, one may try to
take advantage of the properties of data sparsity of the matrices manipulated in order to
further reduce the complexity. Indeed, carefully chosen sub-matrices of A, L and U can
often be approximated by matrices of low ranks. By doing this we obtain a Block Low-
Rank compression (BLR) that can be exploited to reduce the computational complexity
of direct solvers (Amestoy et al., 2017) and therefore reduce their time and memory
consumption significantly. The BLR format is notably used in the MUMPS (Amestoy
et al., 2001, 2019a), PaStiX (Hénon et al., 2002; Pichon et al., 2018; Pichon, 2018), and
STRUMPACK (Rouet et al., 2016; Ghysels et al., 2016) solvers.

Another perspective to improve the performance of numerical methods is the use of
mixed-precision algorithms. Low precision is used to improve the performance of the
computations: speed, memory, and energy consumption. However, those low-precision
formats are carefully combined with higher ones so that the result will have a high accu-
racy. This category of algorithms has recently known a renewed interest due to the growing
availability of low-precision formats on modern hardware, such as fp16 and bfloat16.

The goal of this work is to develop new techniques that aim at further improving the
performance gains of using BLR compression within a direct method, in particular based
on mixed precision.

In chapter 2 we investigate the possibility of combining low-rank approximations with
mixed-precision arithmetic. The main idea is that not all coefficients of a low-rank ap-
proximation are equally important. We try to store different components in different
precision formats, the components with the lowest norms being kept and used in low

1

2 CONTENTS

precision. We justify this approach with an error analysis in the case where an arbitrary
number of floating-point formats are used. As a result, we obtain a criterion determining
what precision format should be used for each component. Our numerical experiments
suggest that the proposed mixed-precision low-rank representation presents a high po-
tential: a large fraction of both the entries needed to represent BLR matrices and the
floating-point operations needed to compute their LU factorization could be switched to
lower precisions.

In chapter 3 we adapt the approach described in chapter 2 for dense matrices to the
factorization of sparse matrices based on a multifrontal method. Indeed, in the multi-
frontal method we process a sequence of dense frontal matrices on which the algorithms
presented on chapter 2 for the dense LU factorization and its BLR variant can be applied.
We propose two main contributions, while being more focused on the practical aspects
of the algorithms. First, we describe how mixed-precision BLR (MPBLR) can be used
as a storage format only, and could benefit from using custom floating-point formats.
We implemented it in the multifrontal solver MUMPS. Our experiments show that the
memory peak is significantly reduced at the price of a small time overhead, without com-
promising the accuracy. Second, we describe algorithms that perform most computations
using low precision in the phases of factorization and triangular solution. We wrote a
high-performance implementation of the solution phase within the MUMPS solver. The
computation time is reduced, while preserving the previous memory gains, in the case
there is only one right-hand side (RHS) to the linear system.

Our experiments revealed a weakness of the BLR triangular solution phase in case
we have several RHS: in MUMPS, the time gains of both the classical and the mixed-
precision BLR variants diminish when increasing the number of RHS. After analyzing the
algorithm in case of multiple RHS, we conclude that the data locality is rather poor, which
motivates us to rethink the communication and memory access patterns. In chapter 4 we
propose a new algorithm in which the order of the block operations has been modified.
We carry out a communication volume analysis that shows that the data movement is
reduced and therefore the data locality is improved. We implement several variants of the
algorithms, including one that is better adapted to the parallelism scheme of MUMPS.
The latter obtains time gains compared to the standard algorithm, in case of multiple
RHS.

In order to make this thesis self-contained, we also provide a chapter of general back-
ground (chapter 1). In particular we explore the techniques used in the multifrontal
method, how to handle BLR compressions, the basics of rounding error analysis, as well
as the state of the art of the mixed-precision algorithms that are somewhat related to this
thesis.

Chapter 1

Background

1.1 The multifrontal method

1.1.1 Gaussian elimination

Gaussian elimination (Algorithm 1.1) is one of the most basic direct methods for
solving a linear system Ax = b. Its main step consists in performing a series of updates
on each coefficient: overall, we will subtract

∑
k<min(i,j) likukj from each coefficient aij.

The factors L and U are progressively filled with their final values, one column at a time
for L, and one row at a time for U . After the last step of the algorithm (should there
be no division by 0), we obtain a decomposition A = LU of the original matrix, where L

is a lower triangular matrix and U an upper triangular matrix. Then, we solve the two
triangular systems Ly = b and Ux = y using Algorithms 1.2 and 1.3 respectively.

Algorithm 1.1 Gaussian elimination (right-looking)
1: L← 0
2: U ← 0
3: for k=1 to n do
4: for i=k to n do
5: li,k ← ai,k/ak,k
6: uk,i ← ak,i
7: end for
8: for i=k+1 to n do
9: for j=k+1 to n do

10: ai,j ← ai,j − li,kuk,j

11: end for
12: end for
13: end for

Algorithm 1.2 Forward elimination: Solve Ly=b (left-looking)
1: y ← b
2: for i=1 to n do
3: yi ← (yi −

∑i−1
j=1 lijyj)/lii

4: end for

3

4 CHAPTER 1. BACKGROUND

Algorithm 1.3 Backward substitution: Solve Ux=y (left-looking)
1: x← y
2: for i=1 to n do
3: xi ← (xi −

∑n
j=i+1 uijyj)/uii

4: end for

Gaussian elimination is often implemented in-place in practice, and it will also be the
case for the variants presented in this thesis. The computed columns of L are successively
stored in the lower part of A, overwriting the corresponding coefficients of A that are
no longer needed. Similarly, the computed rows of U are stored in the upper part of
A. We note that, as Algorithm 1.1 is written, the diagonal coefficients of L have a
value 1. Thus, it is possible not to store them explicitly, which leaves just enough space
for storing the coefficients of U , including the diagonal. Also, the original matrix A is
overwritten when performing the updates. In short, the matrix that is manipulated by
actual implementations of the algorithm is, after step k, (L− Ik) + U +Asub, where Asub

is obtained from the current matrix A by replacing all unused coefficients by 0, leaving
only the k× k coefficients of the bottom-right block. Ik is a matrix whose k first diagonal
coefficients are 1, the others being 0.

In a less naive approach, one may want to add a pivoting step to Algorithm 1.1. After
line 3, we may exchange row k with another row ip ≥ k, and column k with a column
jp ≥ k. As a consequence, the result obtained at the end of the algorithm is a factorization
PAQ = LU , and the right-hand side of the linear system will have to be adapted as well
by performing pivoting operations on b and/or on x.

One of the reasons behind the need to add such a pivoting step is that we cannot
perform the division by ak,k if its value is 0. Moreover, we try to avoid dividing by a small
value of ak,k for numerical reasons when using an inexact floating-point arithmetic. As a
result, a first strategy known as complete pivoting consists of choosing as pivot the largest
eligible coefficient, which requires pivoting on both the rows and columns. However,
complete pivoting is rather costly, and this is why we will rather consider a cheaper
alternative: we only perform interchanges on the rows, taking the largest coefficient of
the column as the pivot for instance. This pivoting strategy is known as partial pivoting,
and in practice it is often sufficient to obtain numerical stability. As a result, we obtain
a decomposition PA = LU of the original matrix.

This algorithm can be adapted to the symmetric case: given a symmetric matrix A, we
compute a factorization A = LDLT . The number of coefficients to store and the number
of operations to perform on them should both be divided by a factor 2. The pivoting
strategies must be adapted in order to keep the matrix symmetric at each step: the pivots
are typically chosen on the diagonal instead of the current column.

1.1. THE MULTIFRONTAL METHOD 5

Figure 1.1: Elimination tree of a sparse matrix A

1.1.2 Adapting Gaussian elimination to sparse matrices

Other versions of the Gaussian elimination handle the case where we want to factorize
a matrix A that is structurally sparse, with most of its coefficients being 0. However,
with a naive choice of pivots, most of the coefficients of the factors are non-zero: a
huge fill-in occurs, and the sparsity is lost. On the other hand, if the pivots are chosen
so as to minimize this fill-in, then we may obtain factors L and U that are relatively
sparse (although not quite as much as the original matrix). The number of operations
performed is greatly reduced as well, because all operations performed on structural zeros
are skipped.

The multifrontal method is one of these algorithms. It was first formally introduced
in Duff and Reid (1983). It is composed of three main phases:

• During the analysis phase, we choose a main pivoting strategy, choosing pivots on
the diagonal in a way that reduces the fill-in of the factorization. This is done by
running a certain graph algorithm on the adjacency graph of the matrix. At the end
of this phase, we obtain an elimination tree (see Figure 1.1), which is the structure
that will be manipulated. It is a representation of the matrix A.

• Factorization phase: The elimination tree of A is modified, by performing the up-
dates of its coefficients. After each of its coefficient has been fully summed, we
obtain a tree representing the factors L and U .

• Solution phase: We solve the triangular systems Lx = b and Uy = x.

At the end of the analysis, we obtain an elimination tree of the sparse matrix A. Each
of its nodes corresponds to a dense submatrix of A, and is called a front.

We perform a bottom-up traversal of this elimination tree. At each node we perform
a partial LU factorization of the current front, as illustrated in Figure 1.2. As a result,
we obtain new fully summed parts, that is to say coefficients on which all updates have
been performed. They are replaced by L and U , which are submatrices of L and U : they
respectively contain all the non-zero coefficients of a set of columns of L, and all the
non-zero coefficients of a set of rows of U . The contribution block (CB) corresponds to a
certain partial sum of updates, to be added with the right coefficients of the parent front
during the assembly step.

6 CHAPTER 1. BACKGROUND

A → L
U
CB

Figure 1.2: Partial LU factorization of a front. The fully summed parts of A are the first
rows and the first columns. They become L and U after the partial factorization. The
contribution block (CB) corresponds to a certain sum of updates, to be added with the
right variables of the parent front during the assembly step.

Factorization of a frontal matrix

The partial LU factorization of a frontal matrix

[
A11 A12

A21 A22

]
can be seen as perform-

ing the following steps:

• Compute an LU factorization L11U11 of A11

• Compute L21 = A21U
−1
11 (triangular solve)

• Compute U12 = L−1
11 A12 (triangular solve)

• Update the contribution block A22, which becomes the Schur complement of the
original frontal matrix : A22 ← A22 − L21U12

In order to save some memory space, these four operations are once again performed
in-place in practice. As a result, U11 and L11 are stored in the same memory space as A11

(without storing the 1s of the diagonal of L11), and A21 and A12 are overwritten by L21

and U12.
We note that all these operations can be performed using well-parallelized linear alge-

bra routines, such as BLAS-3 routines. Therefore, we can expect them to be performed
very efficiently in practice.

Assembly

Before performing the factorization of a node, the contributions of all its descendants
have to be added to its coefficients. Therefore, the contribution blocks S1 and S2 of the
children nodes are added through an extend-add operation of the form A← A⊕S1⊕S2:
this is the assembly step.

However, the cost for storing the contribution blocks before the assembly can be quite
high, and those temporary variables represent a huge part of the memory peak.

Triangular solution

The factorization of A produced a modified elimination tree illustrated in Figure 1.3,
containing the factors L and U . We now solve the two triangular systems Lx = b and
Uy = x. The nodes are visited from the bottom to the top of the tree for the former, and
from the top to the bottom for the latter.

1.1. THE MULTIFRONTAL METHOD 7

L

U

L

U

L
U

L
U

L

U

L
U

L
U

Figure 1.3: Elimination tree after the factorization of A: it now contains a representation
of the factors L and U .

On each front, we perform a series of operations on the right-hand side

[
X1

X2

]
using

the L factors

[
L1

L2

]
:

• Triangular solve: X1 ← L−1
1 X1

• Update: X2 ← X2 − L2X2

Similarly, the operations performed during the backward substitution on the right-

hand side

[
Y1

Y2

]
using the factors

[
U1 U2

]
are the following :

• Update: Y1 ← Y1 − U2Y2

• Triangular solve: Y1 ← U−1
1 Y1

Before treating a front, the right-hand side X has to be initialized from the children
node, similarly to the assembly step of the factorization.

We may want to solve a linear system with several right-hand sides (RHS) instead
of having only one. In this case, x, y, X and Y will not be a 1-dimensional vectors,
but matrices with several columns instead. This modification is mostly transparent: for
example, matrix-vector products are replaced with matrix-matrix products.

1.1.3 Parallelism

We distinguish two main sources of parallelism in the multifrontal method:

• Different branches of the elimination tree are independent and can be traversed
concurrently. This is referred to as tree parallelism.

• The partial LU factorization of large enough fronts may also be performed on several
processes/threads: this is node parallelism.

We note that tree parallelism induces an extra memory cost: if the factorizations of
two nodes are performed in parallel, then the working space is duplicated. In particular,
the contribution blocks are large-size temporary variables. Using tree parallelism will

8 CHAPTER 1. BACKGROUND

duplicate them, and they will end up taking a huge part of the memory consumption. On
the other hand, node parallelism requires a huge amount of data transfers. Thus, node
parallelism is mostly suited to the top of the tree, where there is not enough potential
for tree parallelism (e.g., the root node is only eligible for node parallelism), while tree
parallelism is best suited to the bottom of the tree.

1.2 Exploiting data sparsity

In many applications, the matrices manipulated are structurally sparse, with most of
their coefficients being zero. As a result, the complexity of the problem can be greatly
reduced. However, this aspect fails to fully take into account how sparse the problem
really is, which part is significant, and which operations can be performed approximately
for numerical reasons. In fact, one may often benefit from data sparsity, given the fact
that the matrices may still be compressed much further for a given accuracy. This is also
often the case for the frontal matrices taken from an elimination tree of the multifrontal
method, especially when the matrix has been obtained from a finite element method.
Their off-diagonal blocks correspond to interactions between two groups of variables that
are weakly connected. They contain little information, and we could try to compress
them.

1.2.1 Low-rank approximations

Definition

Let A be a matrix of size (m,n). A rank-r approximation of A is a matrix T of rank
r situated within a certain distance τ of A. In other words, it means that there exist
two matrices X ∈ Rm×r and Y ∈ Rn×r such that ∥A − XY T∥ ≤ τ . We say that r is
the numerical rank of A. If r is sufficiently small, we say that T = XY T is a low-rank
approximation of A. Storing X and Y requires fewer coefficients than storing A: such a
representation may be used as a matrix compression of A.

We might want to use a threshold τ that is relative to the norm of A instead of a
constant. There are several possible choices for the norm ∥.∥. In this thesis, we will

normally choose the Frobenius norm: ∀M, ∥M∥ = ∥M∥F =

√
m∑
i=1

n∑
j=1

m2
ij .

Truncated SVD

One possible choice for computing a low-rank approximation of A is through a trun-

cated SVD. Let UΣV =
min(m,n)∑

i=1

σiUiV
T
i be the singular value decomposition of A (SVD).

Given a target accuracy τ , we choose r as the smallest integer such that T =
r∑

i=1

σiUiV
T
i

verifies ∥A− T∥ ≤ τ .

1.2. EXPLOITING DATA SPARSITY 9

We know from Eckard and Young (1936) that using a truncated SVD leads to the
optimal low-rank approximation for the Frobenius norm: for a given rank, it leads to the
most accurate low-rank approximation. Said otherwise, for a given required accuracy, this
technique leads to an approximation of minimal rank. This property of optimality also
stands when using the 2-norm instead of the Frobenius norm.

QR decomposition

However, computing a truncated SVD is rather costly in terms of time. In practice one
may prefer to perform a non-optimal low-rank approximation, easier to compute. One
of those possibilities is to compute a truncated QR factorization with column pivoting.
Therefore, we obtain an approximation AP ≈ QR, where P is a permutation matrix, Q
is a matrix of dimensions m × r with orthonormal columns, and R an upper triangular
matrix of size r × n.

1.2.2 BLR matrices

Let A ∈ Rn×n be a dense square matrix partitioned into q×q blocks. A block low-rank
(BLR) representation T of A is a block matrix of the form

T =

T11 T12 · · · T1q

T21 · · · · · ·
...

...
...

Tq1 · · · · · · Tqq

, (1.1)

where the blocks Aij of size b× b are approximated by matrices Tij satisfying

∥Aij − Tij∥ ≤ εβij, (1.2)

where βij > 0. Some of the blocks are left uncompressed, i.e., Tij = Aij. We will refer to
them as being “full-rank” (FR). In particular, this is the case for all the diagonal blocks.
The other blocks are approximated as low-rank (LR): each Tij matrix, of rank rij, is
expressed as

Tij =

XijY

T
ij , i > j,

YijX
T
ij , i < j,

(1.3)

where Xij and Yij are b× rij matrices, and where Xij has orthonormal columns.
Even though, in general, each block can be of different dimensions, we assume for

simplicity that they are all of the same dimensions b× b, and so n = qb.
Representation (1.3) guarantees the so-called outer orthonormality property (Higham

and Mary, 2021; Mary, 2017), which is used in MUMPS. This property will mostly be
reused in chapter 2. For simplifications, we will tend to ignore it in chapters 3 and 4, and
consider that all low-rank blocks are under the form Tij = XijY

T
ij .

10 CHAPTER 1. BACKGROUND

Importantly, the βij parameters in Equation 1.2 are used to distinguish two types of
BLR compression, local and global, depending on whether block Tij approximates Aij with
error ε relative to the local norm βij = ∥Aij∥ or relative to the global norm βij = ∥A∥. In
their error analysis of the BLR factorization, Higham and Mary (2021) show that global
compression achieves a better tradeoff between compression and accuracy, and is therefore
to be preferred. Throughout this thesis, we will thus use a global compression, with
βij = β = ∥A∥. On a BLR matrix, it leads to a global error bound that is proportional
to ε:

∥A− T∥ ≤ qε∥A∥. (1.4)

0

10

20

30

40

50

60

70

80

90

100

Figure 1.4: Ranks of the blocks Tij in the BLR approximation of matrix P64 (see Ta-
ble 2.1), for ε = 10−10, expressed as a percentage of the block size. Dark blue blocks are
full-rank, while light blue blocks have very low ranks.

1.2.3 Adapting the multifrontal method to BLR compression

We observe that, in the multifrontal method, large frontal matrices tend to have a huge
potential for BLR compression. For example, Figure 1.4 was obtained from the root node
of the elimination tree of a sparse matrix, and most of the blocks are highly compressible.
We will now present how to take advantage of the BLR compression described previously
in order to reduce the complexity of the multifrontal method. Such modifications were
first described during the PhD thesis of Clément Weisbecker (see Weisbecker, 2013), and
further improvements were made in the PhD thesis of Théo Mary (see Mary, 2017). In
order to avoid confusion with the BLR variant of the multifrontal method that we present
in this section, we will sometimes refer to the classical multifrontal method presented in
section 1.1.2 as the full-rank algorithm (FR).

Factorization of a frontal matrix

Contrary to the full-rank case, where we could apply basic linear algebra operations
on large parts of the matrix at once, we now have to follow the block structure of the BLR
matrix. Therefore, we must adapt Algorithm 1.1 into a tile algorithm, which manipulates
blocks of size b× b as basic elements. The main difference is that the update formula, for-
merly aij ← aij−aika

−1
kk akj, is now generalized to a block: Aij ← Aij−(AikU

−1
kk)(L

−1
kkAkj).

1.2. EXPLOITING DATA SPARSITY 11

We note that computing a decomposition Akk = LkkUkk and solving the triangular systems
is equivalent to a multiplication by A−1

kk .
We now introduce the use of low-rank approximations in order to obtain Algorithm 1.4.

The main idea is that we store the computed LU factors as a BLR matrix. Moreover,
whenever a low-rank block appears in a formula that involves a matrix product, choosing
the right associativity leads to a reduced number of operations.

Algorithm 1.4 LU factorization of a BLR frontal matrix (Left-looking)
1: /* Input: a q × q block frontal matrix A; A = [Ai,j]i=1:q,j=1:q; q = qfs + pnfs */
2: for k = 1 to qfs do
3: for i = k to q do
4: Update (L): Ai,k ← Ai,k −

∑k−1
l=1 Li,lUl,k

5: end for
6: for j = k + 1 to q do
7: Update (U): Ak,j ← Ak,j −

∑k−1
l=1 Ll,jUk,j

8: end for
9: Factor: Compute LU factorization Lk,kUk,k = Ak,k

10: for i = k + 1 to q do
11: Compress (L): compute Li,k ≈ Ai,k

12: Compress (U): compute Uk,j ≈ Ak,j

13: Solve (L): Li,k ← Li,kU
−1
k,k

14: Solve (U): Uk,i ← L−1
k,kUk,j

15: end for
16: end for
17: for i = qfs + 1 to q do
18: for j = qfs + 1 to q do
19: Update (CB): Ai,k ← Ai,k −

∑k−1
l=1 Ll,jUk,j

20: if CB compression is activated then
21: Compress (CB): compute Ti,k ≈ Ai,k

22: end if
23: end for
24: end for

When the block (i, j) is in low-rank form, we can reduce the complexity of the Solve
step (lines 13 and 14) by performing the following operations:

• If i > j: Solve (L) can be rewritten as Yi,j ← (UT
j,j)

−1Yi,j

• If i < j: Solve (U) can be rewritten as Yi,j ← L−1
i,i Yi,j

As a result, whether the block is considered as low-rank or not, the operations per-
formed for the Solve step require solving a triangular system with several right-hand sides
(rij right-hand sides instead of b if low-rank is used, which systematically reduces the
complexity).

Similarly, a product of the form C = Lik × Ukj from line 4, 7, or 19 may have its
complexity reduced if at least one of the two blocks is in low-rank form. Several cases
appear:

12 CHAPTER 1. BACKGROUND

• LR×FR product: C = Xik × (Y T
ik × Ukj)

• FR×LR product: C = (Lik × Ykj)×XT
kj

• LR×LR product: C = (Xik × (Y T
ik × Ykj))×XT

kj or C = Xik × ((Y T
ik × Ykj)×XT

kj)

depending on which side leads to the lower complexity.

Triangular solution on a frontal matrix

We consider the triangular solution phase presented in section 1.1.2, and we adapt
it to the case where a front of the factors is stored as a BLR matrix (see Figure 1.5).
Similarly to what have been done for the factorization, it is possible to drastically reduce
the complexity because of the BLR compression.

We first rewrite the forward and backward substitutions as tile algorithms, and we
obtain Algorithms 1.5 and 1.6. Their main cost is a product between a block of the factor
and a block of the RHS (lines 4 and 3 respectively), by calling the function prod.

In the context of the use of BLR compression, the expression prod(M̃,N) is considered
as a LR×FR product if M̃ is in low-rank form XY T , and evaluated with the following
associativity: X × (Y T × N). On the other hand, if M̃ is a full-rank matrix, then we
simply have to perform the matrix product M̃ ×N instead.

L X

FS variables:
qfs blocks

CB variables:
qcb blocks

r b

b

nrhs

b

Figure 1.5: A frontal BLR matrix L and its right-hand side X

Algorithm 1.5 Forward elimination
(Right-looking algorithm)

1: for j = 1 to qfs do
2: Bj ← L−1

jj Bj

3: for i = j + 1 to q do
4: Bi ← Bi − prod(L̃i,j, Bj)
5: end for
6: end for

Algorithm 1.6 Backward elimination
(Left-looking algorithm)

1: for i = qfs to 1 do
2: for j = i+ 1 to q do
3: Xi ← Bi − prod(Ũi,j, Bj)
4: end for
5: Bi ← U−1

ii Bi

6: end for

1.3. FLOATING-POINT ARITHMETIC AND ROUNDING ERROR ANALYSIS 13

Low-Rank updates accumulation

Low-rank updates accumulation (LUA) consists in grouping together low-rank updates
on the same block rows and/or block columns and applying them with a single matrix
multiplication to increase the granularity of the computation.

The LUA technique was originally proposed by Amestoy et al. (2019a) for the outer
product operation in the BLR LU factorization, and is used by default in MUMPS. In
the BLR factorization, we compute low-rank updates of the form

Aij ← Aij − (XikY
T
ik)(YkjX

T
kj).

In the left-looking variant of the BLR factorization, these low-rank updates can instead
be grouped as

Aij ← Aij −
[
X̄i,1,j · · · X̄i,K,j

]
×

Ȳ T
i,1,j

· · ·
Ȳ T
i,K,j

where either X̄ikj = Xik(Y
T
ikYkj) and Ȳikj = XT

kj or X̄ikj = Xik and Ȳikj = (Y T
ikYkj)X

T
kj,

depending on the ranks. The product of block matrices in the above expression can be
efficiently evaluated as a single matrix multiplication X̄ijȲ

T
ij .

1.3 Floating-point arithmetic and rounding error anal-

ysis

1.3.1 Floating-point arithmetic

Definition

In computer science, it is not possible to represent any real number f ∈ R. Instead,
we have to use an inexact representation, for example floating-point arithmetic. The idea
is to approximate f in such a way that the relative error of approximation is bounded by
a certain constant u. In order to do so, its approximation f̂ has a mantissa with a fixed
number of digits, scaled by an exponent allowing cover of a large range of values. Thus,
we define a floating-point number as follows:

f̂ = (−1)s × be−t+1 ×m

= (−1)s × be ×
t−1∑

i=0

mib
−i

(1.5)

• b is the base

• t is the number of significant digits

14 CHAPTER 1. BACKGROUND

• s is the bit of sign (0 or 1)

• e ∈ [[emin; emax]] is the exponent

• m ∈ [[0; bt[[is the mantissa, whose representation in base b is m0...mt−1

The constants b, t, emax and emin = 1− emax define the floating-point format. On the
other hand, s, e and m are the parameters corresponding to the encoding of f̂ in this
format. We will only focus on binary formats in this thesis, so we will take b = 2.

With this definition, f̂ can have several encodings in a floating-point format. However,
such a property is not always acceptable. Therefore, we define the normalized represen-
tation of a floating-point number, in which the constraint m ≥ bt−1 has to be respected.
As a result, we obtain the property of uniqueness of a normalized representation.

The IEEE-754 standard was first published in 1985 and revised in 2008 (see IEEE
Computer Society, 2008). It defines floating-point arithmetics that are portable and
reproducible, but also the behavior of their basic operations, their rounding rules, as
well as their handling of exceptions. In particular, the standard defines a set of binary
interchange formats, having normalized representations whose bit encodings are entirely
specified.

In binary interchange formats, the integer e is encoded as a positive unsigned integer,
offset by a bias in order to reach negative values as well. We notice that, for a binary
format, the first bit of the mantissa is m0 = 1 for a normalized representation. Therefore,
m0 does not have to be stored explicitly, it can be an implicit bit instead: the mantissa is
encoded by the bit string m1 · · ·mt−1. Also, it is specified that the bit string representing
a floating-point number in an interchange format follows the order s, e, m. In particular,
the least significant bits of m are stored last. We will make use of this property in
chapter 3.

format bits for encoding
the exponent e

significant bits:
t

float min
(normalized): 2emin

float max:
(1− 2−t)2emax+1

unit roundoff:
u = 2−t

fp64
(double precision) 11 bits 53 bits 2.2× 10−308 1.8× 10308 1.1× 10−16

fp32
(single precision) 8 bits 24 bits 1.2× 10−38 3.4× 1038 6.0× 10−8

fp16
(half precision) 5 bits 11 bits 6.1× 10−5 6.6× 104 4.9× 10−4

bfloat16 8 bits 8 bits 1.2× 10−38 3.4× 1038 3.9× 10−3

Table 1.1: Some common floating-point formats. fp64, fp32 and fp16 are defined by the
IEEE-754 standard as binary interchange formats.

Range of representation

A floating-point format represents a finite set of values, and therefore has a limited
range. The result of an operation may be outside this range. If the exponent is beyond
emax, we obtain an overflow: the result of the operation is considered as +∞ or −∞.

1.3. FLOATING-POINT ARITHMETIC AND ROUNDING ERROR ANALYSIS 15

This may very well lead to an irrelevant result because it causes a propagation of NaN
(Not a Number) values. Thus, overflows should generally be avoided at all costs. This is
especially the case when handling precision formats such as fp16, whose range is small.
As shown in Table 1.1, converting to fp16 a number higher than 105 will result in an
overflow.

On the other hand, if the value to be stored in a floating-point format is smaller than
the minimum value of the format, that is to say if the exponent should be smaller than
emin, we say that an underflow occurs. A common choice for handling this case is to round
the result to zero. Alternatively, by not imposing the use of a normalized representation,
the result can still be approximated as a so-called subnormal number: the first bits
of the mantissa are zero. However, the relative accuracy is inferior to the normalized
numbers, given the fact that the number of significant bits is reduced. Besides, the use of
subnormal numbers is not often implemented in hardware but in software instead, leading
to a significant slowdown.

However, in practice the overflows and underflows tend to be rare enough that they
usually do not have too much impact on computations. This is especially true for fp64
which has a very large range: [10−308; 10308]. The smaller ranges of fp32 and bfloat16
([10−38; 1038]) are still generally sufficient for avoiding most issues of overflow and under-
flow, contrary to fp16. In this thesis, we will consider that the presence of overflows and
underflows can be neglected, and that the exponent e can take any integer value.

Unit Roundoff

In addition to the range of its representable values, an important parameter describing
the properties of a floating-point format is its unit roundoff u. Let us consider that there
is no restriction on the exponent: e ∈ Z. For any real x we note fl(x) its floating-point
approximation in the format.

The unit roundoff u of the format is a constant approaching the maximal relative
error of approximation of a real number in this format. Such a maximum is obtained
when approximating x = 1 + 2−t by fl(x) = 1 for instance, obtaining a relative error of
|x−fl(x)|

|x| ≈ 2−t. Therefore, we define u = 2−t. For every real x within the range, we find
that there is a δ such that

fl(x) = x(1 + δ), |δ| < u (1.6)

Equation 1.6 is a rather fundamental property of the rounding operator. It is often
used instead of the original definition of floating-point rounding (Equation 1.5). However,
it does not contain the same level of information.

In order to carry out a rounding error analysis of an algorithm, we need to make some
assumptions about the accuracy of its basic arithmetic operations, namely +, −, × and /.
Indeed, the result of such an operation is not always representable in the same format,
and the computation cannot be exact in this case. The most common assumption is the

16 CHAPTER 1. BACKGROUND

standard model of floating-point arithmetic. Given two floating-point numbers x and y,
if we note x op y the result of one of the basic operations and fl(x op y) its computed
value, this model states that the relative error introduced is at most u:

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /} (1.7)

This property is a consequence of the IEEE-754 standard in which those operations
are entirely specified: it is stated that fl(x op y) should give the same result as computing
x op y in infinite precision before rounding it to the floating-point format in use. How-
ever, this specification gives more information than the standard model. In particular,
Equation 1.7 loses track of the fact that some of the operations are performed exactly.

1.3.2 The basics of rounding error analysis

Backward and forward errors

Let us consider a function f : Rn 7→ Rm. We want to assess the quality of a com-
puted approximation ŷ of y = f(x). For example, if f consists in a series of exact basic
operations, such an approximation may be the result of using floating-point arithmetic.
There are several possibilities of error indicators available, depending on the context. A
first approach is to compute the absolute error committed on the output variable y, i.e.,
||ŷ − y||. A bound on this term is referred to as the (normwise) forward error.

However, one may prefer to focus on finding for which modified set of data we have
actually solved the exact problem, i.e., which perturbation ∆x of the input x is needed
in order to obtain ŷ = f(x + ∆x). Among the many ∆x that satisfy this relation we
will consider the one having the smallest norm. As a result, a formal definition of the
(normwise) backward error of ŷ ≈ f(x) would be:

η(y) = min

{
||∆x||
||x||

: ∆x ∈ Rn such that ŷ = f(x+∆x)

}
(1.8)

The concept of backward error is illustrated in Figure 1.6.

Accumulation of rounding errors

We illustrate the definition of the backward error by trying to quantify the impact of
rounding errors on the computation of a certain sum sn =

∑n
k=1 xk, in the order of its

indices. We note ŝn its value computed using floating-point additions (more generally, we
will tend to use the notation v̂ar to denote the computed value approximating a variable
var in this thesis).

We note δ1, · · · , δn−1 the coefficients obtained for the relative errors of each addition
(Equation 1.7). We have the recursive relation ŝn = fl(ŝn−1+xn) = (1+δn−1)(ŝn−1+xn),
and ŝ1 = x1. As a result, we give the expression of the computed sum: ŝn = (π1xn +

· · · πn−1x2) + πn−1x1, after having defined each quantity πk = (1 + δ1) · · · (1 + δk).

1.3. FLOATING-POINT ARITHMETIC AND ROUNDING ERROR ANALYSIS 17

Input space Output space

x

y=f(x)

x+∆x

ŷ

backward error

forward error

: exact evaluation of f
: computed approximation of f

Figure 1.6: Illustration of the forward and backward errors for the computation ŷ ≈ f(x).

We choose to express each πk under the form πk = 1 + θk. Then we obtain |θk| ≤ γk,
with γk = ku

1−ku
. The presence of such a weight γk keeps track of the fact that xn−k+1

appears in k additions.
As a result, we obtain ŝn =

∑n
k=1(1 + θk)xk, with a bound on the relative error

committed on the input variable x = (x1, · · · , xn): ∀k, |θk| ≤ γk ≤ γn−1. Because ||θ|| ≤
γn−1, the relative backward error of the computation of the sum is γn−1 (at most). This
constant is quite common in rounding error analysis.

On the other hand, the error committed on the output variable sn is the forward
error. For the sum, a rough componentwise bound would be |ŝn − sn| = |

∑n
k=1 θkxk| ≤

γn−1

∑n
k=1 |xk|. Therefore, the normwise forward error would be ||x||

Matrix-vector product

The rounding error analysis of a matrix-vector product y = Ax is quite similar to
that of the sum that we did previously. As explained in detail in Higham (2002), the
approximate result ŷ can be expressed as ŷ = (A+∆A)x, with |∆A| ≤ γn|A| (backward
error). As a consequence, the componentwise forward error bound is |ŷ − y| ≤ γn|A| |x|.
We note that, here and throughout the rest of the thesis, we use the notation A ≤ B

to denote the elementwise inequality aij ≤ bij on the coefficients of matrices A and B.
Moreover, we use the notation |A| to denote the matrix obtained by taking the absolute
values of the coefficients of A.

LU factorization

We consider the solution of Ax = b via a Gaussian elimination of A (by combining
Algorithms 1.1, 1.2 and 1.3). Although we could use a multi-word arithmetic in order to
obtain an exact solution, it is much more common to use floating-point arithmetic instead,

18 CHAPTER 1. BACKGROUND

which is much faster. However, one may wonder whether the impact on the accuracy of
the solution would be acceptable or not. Therefore, we would like to obtain its backward
error bound. We look for a ∆A such that (A + ∆A)x̂ = b. We know from Rigal and
Gaches (1967) that such a ∆A of minimal norm verifies:

η(x) = ||∆A|| = ||Ax̂− b||
||A|| ||x̂||

(1.9)

This result stands for any subordinate matrix norm. η(x) is the relative normwise back-
ward error, defined in Equation 1.8.

We would like to obtain a reasonable bound on ∆A, ideally in O(u)||A||. However,
the best obtainable componentwise bound obtained is not as optimistic:

|∆A| ≤ γ3n|L̂| |Û | (1.10)

Indeed, the coefficients of |L̂||Û | are generally much larger than the coefficients of A.
In order to quantify this increase, we define the growth factor of the factorization:

ρn =
max
i,j,k
|a(k)ij |

max
i,j
|aij|

(1.11)

where a
(k)
ij is an intermediate result obtained after performing k updates on the original

coefficient aij. James Wilkinson showed in the early 1960s that the numerical stability
of Gaussian elimination intrinsically depends on the growth factor. When using partial
pivoting, we can find ∆A such that

||∆A||∞ ≤ n2γ3nρn||A||∞ (1.12)

Therefore, one may wonder how large the growth factor ρn is. In the worst-case
scenario, we may have ρn = 2n−1 despite the use of partial pivoting: the backward error
obtained is rather catastrophic and the algorithm cannot be considered numerically stable
in this case. However, it is highlighted in (Higham, 2002, Section 9.4) that fortunately,
“despite the existence of matrices for which ρn is large with partial pivoting, the growth
factor is almost invariably small in practice”. Thus, solving linear systems using Gaussian
elimination with partial pivoting is stable enough in practice.

More recently, this result of backward stability has been extended to the case of a
BLR LU factorization (Algorithm 1.4) in (Higham and Mary, 2021, Theorem 4.3). It is
shown that:

A = L̂Û +∆A, ||∆A|| ≤ (qε+ γq)||A||+ γc||L̂|| ||Û ||+O(uε) (1.13)

if the matrix A has q2 blocks of size b and of rank r, and if c = b + 2r3/2 + q. If u ≪ ε

then the main term of error will be qε||A||.

1.4. MIXED-PRECISION ALGORITHMS 19

1.4 Mixed-precision algorithms

When an accurate result is needed in scientific computing, the default choice is often
to use double precision everywhere, with 64 bits floating-point numbers (fp64). However,
lower precision formats like fp32 also exist. They require less storage space and usually run
faster: we can typically hope to gain a 2× speedup using fp32 instead of fp64. However,
the computations are not as accurate: the relative error of elementary operations (unit
roundoff) is higher, and the range is slightly narrower (see Table 1.1).

Mixed-precision algorithms result from the will to do part of the computations in low
precision, obtaining time and memory gains, while controlling the accuracy by performing
key operations in high precision. In this section, we give some examples of mixed-precision
techniques used in the literature in contexts similar to our own.

The recent availability of half precision formats in hardware raises the question of how
to use them in HPC. In fact, they would allow us to reduce all storage by a factor of 4
compared to double precision (and therefore reduce communication cost), and to possibly
have an even better gain regarding computation time.

In some deep learning models where great accuracy is not needed, algorithms tend
to use Google’s bfloat16 format. The range is the same as in fp32, so the algorithms
do not necessarily require many modifications. In linear solvers where we need more
precision, fp16’s greater relative accuracy would be an advantage. However, fp16 has only
a limited range available: positive numbers lie between 6 × 10−8 and 7 × 104. Standard
algorithms can therefore lead to overflow, underflow, or subnormal numbers, all of which
are undesirable. This is a serious issue that is almost non-existent for the other main
precision formats, and it restricts the use of fp16.

1.4.1 Iterative refinement

One of the best known mixed-precision algorithms is iterative refinement, which was
first programmed by Wilkinson in 1948. It aims at improving the accuracy of the solution
of a linear system Ax = b.

Algorithm 1.7 Iterative refinement
Solve Ax0 = b in precision uf

for i=0:∞ do
Compute ri = b− Axi at precision ur

Solve Adi = ri at precision us

xi+1 ← xi + di at working precision u
end for

A version of this algorithm consists in computing an LU factorization of the matrix at
the beginning and then using it for all the Solve steps. Each task can be performed using a
different precision format. For example, with u = ur = fp64 and uf = us = fp32, the most
expensive part of the computation is done entirely in single precision. The computation

20 CHAPTER 1. BACKGROUND

can therefore be expected to run twice as fast as the double-precision algorithm. This
usage was proposed and analyzed by Langou et al. (2006). However, the convergence
of this algorithm is not guaranteed if the matrix A is ill conditioned, with a condition
number of u−1

f or more.

This is why Carson and Higham introduced another version of mixed-precision it-
erative refinement that does not have this limitation (Carson and Higham, 2017). In
their algorithm, GMRES-IR (GMRES-based Iterative Refinement), each Solve step is
computed using GMRES (Generalized Minimal Residual), an iterative method. A low-
precision LU factorization is used as a preconditioner. The reason is that U−1L−1A is far
better conditioned than A.

In Carson and Higham (2018), the same authors then implemented a version of
GMRES-IR with 3 precision formats instead of 2. The Solve step is now handled by
GMRES at precision u, except matrix-vector products with A that are computed at pre-
cision ur. Their choice of (uf , u, ur) = (fp16, fp32, fp64) or (fp32, fp64, fp128) allowed
them to obtain a much better convergence condition and a smaller forward error than
classic iterative refinement using the same working precisions.

1.4.2 Mixed precision on GPUs

GPUs are a type of hardware that is well adapted to matrix computations and to the
use of low precisions, which makes them a target of particular interest for mixed-precision
algorithms in linear algebra. They handle computations in fp32 at least twice as fast as
in fp64. Recent models tend to have support for fp16 and/or bfloat16 arithmetics, with
great speedups. This the case for NVIDIA’s model A100, available since September 2020,
in which fp16 computation offers a 4x speedup compared to fp32 (peak performance).

Moreover, one of the preferred operations on GPUs is block FMA (Block Fuse Multiple-
Add), computed in special units referred to as “Tensor Cores” by some vendors. This kind
of unit can typically compute operation D = C+AB in one clock cycle, where all matrices
have a size of 4× 4 for instance.

The tensor cores in the NVIDIA Volta, Turing, Ampere and Hopper architectures can
perform these FMAs using different combinations of precision formats, including an fp16
input and an fp32 output. The accumulation inside the matrix multiplication is done in
fp32. Therefore, mixed precision is implemented at a hardware level, and algorithms may
be able to take this fact into account.

D︸︷︷︸
fp32

= C︸︷︷︸
fp32

+︸︷︷︸
fp32

A︸︷︷︸
fp16

×︸︷︷︸
fp32

B︸︷︷︸
fp16

Haidar et al. (2018) introduced a new class of mixed-precision dense matrix factoriza-
tion algorithms based on this basic operation. An error analysis of the mixed block FMA
as well as the LU factorization based on it was done in Blanchard et al. (2020).

1.4. MIXED-PRECISION ALGORITHMS 21

1.4.3 A scaling algorithm for handling low-precision formats

Using the fp16 format can lead to a huge number of overflows and underflows due to
its narrow range. In order to deal with this issue, Higham and Pranesh published in 2019
an algorithm for rounding correctly a matrix to fp16 format (see Higham et al., 2019).
First a two-sided diagonal scaling is applied in order to balance the matrix’s coefficients.
We obtain a factorization DlADr, with Dl and Dr diagonal matrices, and every row and
column of A has an ∞-norm of 1. Then we multiply A by a scalar to bring the elements
of largest magnitude within a factor θ ≤ 1 of the overflow level. We finally round to half
precision. The multiplication by a scalar ensures that a large part of the limited range of
half precision arithmetic is used, and therefore the number of underflows is reduced.

The authors presented an application to GMRES-IR iterative solver. After rounding
in fp16 with the previous algorithm (for negligible cost of O(n2) operations), they compute
an LU factorization of the scaled matrix. The parameter θ is chosen carefully to ensure
the absence of overflow. With this factorization as a preconditioner, GMRES-IR has a
much better convergence rate than using a standard method for rounding to fp16.

1.4.4 A mixed-precision Cholesky factorization

A first method for using mixed precision inside a dense tile Cholesky factorization
was proposed in Abdulah et al. (2019). The authors chose to address specifically the
factorization of a dense covariance matrix in the field of geostatistics, rather than a more
general approach. No compression technique is used in this algorithm.

Their mixed-precision approach consists in storing some blocks of the matrix in double
precision, and the others in single precision. A simple criterion was used to choose between
the two possibilities: every block within a certain distance from the diagonal is kept in
double precision, and the others are stored instead in single precision (Figure 1.7).

Figure 1.7: Block structure used in Abdulah et al. (2019) for mixed-precision Cholesky

The precision of the computation is based on the precision of the target block being
updated. One consequence of this choice is that each computed block is needed at some
point both in single precision and in double precision for the updates. As a result, without

22 CHAPTER 1. BACKGROUND

a careful implementation, this mixed precision algorithm could introduce an extra memory
cost (up to 50%).

On the other hand, they succeeded in obtaining a 1.6× performance speedup on mas-
sively parallel architectures while maintaining the accuracy necessary for their modeling
and prediction.

1.4.5 A mixed-precision representation of H-matrices

The article Ooi et al. (2020a) introduces a mixed-precision algorithm that uses H-
matrices, a low-rank matrix format that is based on hierarchical partitioning of the matrix.
No error analysis was considered.

Each low-rank block is separated between a part in double precision and another in
single (Figure 1.8).

Figure 1.8: A mixed-precision representation of a low-rank matrix, used by Ooi et al.

A diagonal scaling is used. If we have a first low-rank approximation:

A = (v1, ..., vp)× (w1, ..., wp)
T

Then we obtain our scaling from diagonal scalings of the 2 factors:

Dv = diag(∥v1∥∞, ..., ∥vp∥∞)

Dw = diag(∥w1∥∞, ..., ∥wp∥∞)

We then scale using diagonal matrix D = Dv ×Dw.
This type of scaling can guarantee the absence of any overflow and at the same time

avoid most underflows. While its usefulness may be limited if we only work with single
or double precision, if we consider the use of fp16 format as well, such a scaling method
might be helpful due to the huge risk of overflow and underflow associated with the very
narrow range of this format.

1.4.6 Using low precision for storing or accessing data

Another strategy for using mixed precision consists in using low precision formats for
storage and/or communications, while keeping the computations in high precision formats.

1.4. MIXED-PRECISION ALGORITHMS 23

This strategy not only reduces the memory footprint and communication volume of the
algorithm, but also reduce its runtime, thanks to the reduced data movements.

In fact, there are several examples in the literature where data movement reductions
have successfully been turned into time gains. In Mukunoki and Imamura (2016), a set of
7 floating-point formats was used for data storage (the same set as our own, see Table 3.1).
On several GPU architectures, they called memory-bound functions from cuBLAS1, such
as GEMV and AXPY, using a custom format for memory accesses and a certain working
precision (double or single) for computations. They succeeded in obtaining very decent
speedups, up to a factor 2.

Grützmacher et al. (2023) developed a similar idea of decoupling the formats for
computation and storage, based on Ginkgo’s memory accessors2 this time. By doing
this, double precision should only be handled at the register level. They applied their
method to memory-bound functions in double precision, while accessing single-precision
variables. On GPUs as well as on CPUs, they attained a performance comparable to the
single-precision functions.

1The cuBLAS library is an implementation of BLAS on top of the NVIDIA CUDA runtime. It allows
the user to access the computational resources of NVIDIA GPU.

2Ginkgo is a high-performance linear algebra library for manycore systems (including GPUs), with a
focus on the solution of sparse linear systems. It is implemented using modern C++.

24 CHAPTER 1. BACKGROUND

Chapter 2

Dense LU factorization in mixed
precision

2.1 Introduction

In this chapter, we investigate the potential of combining mixed-precision arithmetic
with low-rank approximations. Let A ∈ Rm×n and let XΣY T =

∑min(m,n)
i=1 xiσiy

T
i be

its singular value decomposition (SVD). As mentioned in section 1.2.1, given a target
accuracy ε, a low-rank approximation T of A satisfying ∥T − A∥ ≤ ε∥A∥ can be built
from the truncated SVD T =

∑r
i=1 xiσiy

T
i , where r is the rank of T .

Our starting idea for this work is to ask what precision should be used to store T

and to operate on it. In the literature, the truncated SVD (or any other form of low-
rank decomposition such as truncated QR with column pivoting), tends to be stored
in the lowest possible precision with unit roundoff safely smaller than ε. For example,
if ε = 10−12 and we have access to the floating-point arithmetics defined by the IEEE
standard, existing algorithms would use double precision (for which the unit roundoff is
ud ≈ 1 × 10−16), because the next lower precision, single precision, has a unit roundoff
us ≈ 6× 10−8 that is much larger than the prescribed ε.

However, we explain why and how we can actually exploit much lower precisions, with
almost no loss of accuracy. We show that singular vectors associated with sufficiently
small singular values can be stored at precisions with unit roundoff larger than ε∥A∥
while maintaining an overall approximation accuracy of order ε∥A∥. For example, with
ε = 10−12, any singular vector xi whose associated singular value σi is smaller than
ε∥A∥/us ≈ 2 × 10−5∥A∥ can be stored in single precision. Indeed, the single precision
vector x̂i satisfies ∥x̂i− xi∥ ≤ us, but the overall error introduced by replacing xi by x̂i is
bounded by ∥(x̂i − xi)σiy

T
i ∥ ≤ (ε∥A∥/us)us = ε∥A∥. As can be seen from this example,

the reason we can afford to convert some singular vectors to lower precision is because the
error introduced by this conversion is demagnified by the singular value; hence the error
may be safely bounded if σi is small enough.

In the following, we formalize this intuition with an error analysis considering an arbi-

25

26 CHAPTER 2. DENSE LU FACTORIZATION IN MIXED PRECISION

trary number of precisions. Moreover, our analysis applies to any low-rank decomposition
of the form T = XY T where X has orthonormal columns. Indeed, the mixed-precision
approach presented here is general and can be used for several other low-rank approxima-
tions, in particular rank-revealing QR decompositions.

Clearly, the potential of the proposed approach depends on whether the singular values
of the matrices to be approximated decay rapidly. In the second part of this chapter, we
apply this approach to an important class of matrices: data sparse, rank-structured ma-
trices, whose off-diagonal blocks have low numerical rank (Bebendorf, 2008). We focus in
particular on the block low-rank (BLR) format (Amestoy et al., 2015, 2017), although the
approach is also applicable to hierarchical formats. Our numerical experiments demon-
strate that the proposed mixed precision low-rank representation presents a very high
potential in this context: a large fraction of both the entries needed to represent BLR
matrices and the floating-point operations (flops) needed to compute their LU factoriza-
tion can be switched to lower precisions.

The rest of this chapter is organized as follows. In section 2.2, we describe the proposed
mixed precision low-rank representation and show that the loss of accuracy introduced by
the use of lower precisions can be rigorously bounded. We then apply this representation
to BLR matrices in section 2.3. In section 2.4, we analyze how to compute the LU
factorization of a BLR matrix using mixed precision arithmetic. We present numerical
experiments on a range of real-life matrices in section 2.5, before concluding in section 2.6.

Throughout the chapter, we define γ
(ℓ)
k = kuℓ/(1 − kuℓ) for any unit roundoff uℓ and

for any k such that kuℓ < 1. Given two matrices A and B, we use the notation |A| ≤ |B|
to denote the elementwise inequality |aij| ≤ |bij|.The unsubscripted norm ∥ ·∥ denotes the
Frobenius norm:

∥A∥ =
(m∑

i=1

n∑

j=1

a2ij

)1/2

=

(min(m,n)∑

i=1

σ2
i

)1/2

. (2.1)

In our experiments, we will work with IEEE double and single precision arithmetics
(denoted as fp64 and fp32, respectively) and bfloat16 arithmetic. The unit roundoffs
for these three arithmetics are ud = 2−53 ≈ 1 × 10−16, us = 2−24 ≈ 6 × 10−8, and
uh = 2−8 ≈ 4× 10−3, respectively.

2.2 Low-rank approximations in mixed precision

Let A ∈ Rm×n and let T be a low-rank approximation of A satisfying

∥A− T∥ ≤ εβ, (2.2)

where ε > 0 is the target accuracy and where β is a scaling parameter chosen by the user:
a natural choice is β = ∥A∥, which leads to an accuracy of ε relative to ∥A∥, but other
choices are possible, as mentioned in section 1.2.2.

Hereinafter, we refer to the precision that T is stored in as the working precision, and

2.2. LOW-RANK APPROXIMATIONS IN MIXED PRECISION 27

we assume that its unit roundoff u1 is safely smaller than ε, that is, u1 ≪ ε.

Given the SVD A =
∑n

i=1 xiσiy
T
i , it is well known that the approximation of A of

lowest rank is given by the truncated SVD

T = XΣY T =
r∑

i=1

xiσiy
T
i , X ∈ Rm×r, Y ∈ Rn×r, (2.3)

where the rank r is the smallest integer such that (2.2) is satisfied. Neglecting any noise
associated with the working precision, r is given by

r = min

{
k : ∥A−

k∑

i=1

xiσiyi∥ ≤ εβ

}
= min

k :

(min(m,n)∑

i=k+1

σ2
i

)1/2

≤ εβ

 . (2.4)

The goal of this section is to prove that depending on the singular values of T , we can
use lower precisions than the working precision (with unit roundoff larger than ε), and
still preserve an overall approximation error of order ε. We first carry out our analysis
for the SVD, but also provide at the end of this section its extension to other types of
low-rank approximation methods, such as rank-revealing QR.

Our analysis assumes that the use of lower precision arithmetic with fewer exponent
bits than the working precision does not lead to any overflow or underflow. To ensure that
this assumption is satisfied in our experiments, we focus on the use of bfloat16 arithmetic
(which has the same range as fp32), rather than fp16 (which has a much narrower range).

Let us assume that p different floating-point arithmetics are available (including the
working precision u1), and that their unit roundoffs satisfy

u1 ≪ ε < u2 < . . . < up. (2.5)

Let us consider a partition of matrix T into p groups

T = XΣY T =
[
X1 . . . Xp

]

Σ1

. . .

Σp

[
Y1 . . . Yp

]T
, (2.6)

where
Tk = XkΣkY

T
k , Xk ∈ Rm×rk , Σk ∈ Rrk×rk , Yk ∈ Rn×rk (2.7)

is a matrix of rank rk formed by the subset of the singular values and vectors of T assigned
to group k.

We now analyze the effect of converting Tk to precision uk. We assume that only
the singular vectors Xk and Yk are converted, whereas the singular values Σk are kept
in precision u1. This is because the storage for Σk is negligible compared with that of
Xk and Yk. We however note that adapting the analysis to the case where Σk is also
converted to precision uk is straightforward and only slightly increases the constants in

28 CHAPTER 2. DENSE LU FACTORIZATION IN MIXED PRECISION

the error bounds. We write X̂k and Ŷk for the converted vectors, and T̂k = X̂kΣkŶ
T
k (note

that since T1 is already in precision u1, T̂1 = T1). The following lemma bounds ∥T̂k − Tk∥
for k ≥ 2. Since Xk and Yk are stored in precision u1, they only have approximately
orthonormal columns. In the following lemma and throughout this chapter, we neglect
this loss of orthonormality, which would only introduce a lower order term O(εu1) in the
error bounds.

Lemma 2.1. Let Tk = XkΣkY
T
k where Xk and Yk have approximately orthonormal

columns (stored in precision u1), and let T̂k = X̂kΣkŶ
T
k be obtained by converting Xk

and Yk to precision uk. Then

∥T̂k − Tk∥ ≤ (2 +
√
rkuk)uk∥Σk∥. (2.8)

Proof. The converted X̂k and Ŷk satisfy, for k ≥ 2,

X̂k = Xk + Ek, |Ek| ≤ uk|Xk|, (2.9)

Ŷk = Yk + Fk, |Fk| ≤ uk|Yk|. (2.10)

Therefore, we have

∥Tk − T̂k∥ ≤ ∥EkΣkY
T
k ∥+ ∥XkΣkF

T
k ∥+ ∥EkΣkF

T
k ∥. (2.11)

For the first term, we observe that

∥EkΣkY
T
k ∥2 = ∥EkΣk∥2 (2.12)

=
∑

j

σ2
j

∑

i

e2ij (2.13)

≤
∑

j

σ2
j

∑

i

u2
kx

2
ij (2.14)

= u2
k

∑

j

σ2
j = u2

k∥Σk∥2, (2.15)

where we have used the fact that the columns of Xk have a norm of 1. Therefore

∥EkΣkY
T
k ∥ ≤ uk∥Σk∥. (2.16)

Similarly, we also have
∥XkΣkF

T
k ∥ ≤ uk∥Σk∥. (2.17)

Finally, for the third term, we have ∥EkΣkF
T
k ∥ ≤ ∥EkΣk∥∥Fk∥ and so

∥EkΣkF
T
k ∥ ≤

√
rku

2
k∥Σk∥. (2.18)

Reinjecting (2.16), (2.17), and (2.18) into (2.11) yields the result.

2.2. LOW-RANK APPROXIMATIONS IN MIXED PRECISION 29

Lemma 2.1 shows that converting Tk to precision uk introduces an error of order
uk∥Σk∥, which is thus proportional to the size of the singular values in Σk. This fun-
damental observation is at the foundation of the mixed precision representation that we
propose. Indeed, Lemma 2.1 suggests that we can preserve an overall accuracy of order
εβ by partitioning the singular values in such a way that ∥Σk∥ ≈ εβ/uk.

In order to build such a partitioning where the size of the groups stored in lower
precision is as large as possible, it is easy to see that we should start by including the
smallest singular values in the last group first, until its norm exceeds εβ/up; at this point,
we can start building group p−1 with the remaining singular values, and so on. Therefore,
the Σk are formed from consecutive singular values:

Σk = diag(σi), i = ik : ik+1 − 1, (2.19)

where the indices ik and ik+1 define which singular values are part of Σk, and can be
computed by the recursive formula:

ik = min

{
i :

(ik+1−1∑

j=i

σ2
j

)1/2

≤ εβ/uk

}
, k ∈ [2 : p], (2.20)

starting with ip+1 = r+ 1 and ending with i1 = 1. We thus end up with a partitioning of
the SVD as defined by (2.19)–(2.20). Note that this definition may lead to some empty
Σk, in which case Tk is a rank-0 matrix. We note that this partitioning is similar to the
Method 3 proposed by Ooi et al. (2020b). Our analysis justifies the use of this partitioning
and gives a precise rule to define the p groups depending on the singular values and on
the precisions.

This partitioning guarantees that ∥Σk∥ ≤ εβ/uk for all k ≥ 2 and so, by Lemma 2.1,
converting Tk to precision uk introduces an error bounded by

∥Tk − T̂k∥ ≤ (2 +
√
rkuk)εβ. (2.21)

By combining (2.21) over k = 2: p, we readily obtain a bound on the overall error intro-
duced by converting each Tk to precision uk.

Theorem 2.1. Let T be a low-rank approximation of A satisfying ∥A− T∥ ≤ εβ. If T is
partitioned into p groups Tk = XkΣkY

T
k as defined by (2.19)–(2.20), and the Xk and Yk

are converted to precision uk, the resulting matrix T̂ =
∑p

k=1 T̂k =
∑p

k=1 X̂kΣkŶk satisfies

∥A− T̂∥ ≤
(
2p− 1 +

p∑

k=2

√
rkuk

)
εβ. (2.22)

Proof. The triangle inequality ∥A− T̂∥ ≤ ∥A−T∥+
∑p

k=2 ∥Tk− T̂k∥ together with (2.21)
readily yields the result.

Theorem 2.1 shows that the mixed precision low-rank matrix T̂ approximates A with

30 CHAPTER 2. DENSE LU FACTORIZATION IN MIXED PRECISION

an accuracy of order ε. To first order, the constant in this error bound is 2p− 1, instead
of 1 for the uniform precision matrix T : the introduction of lower precisions therefore only
increases the overall error by a very modest quantity. Moreover, we note that by means
of a more sophisticated proof that avoids the use of the triangle inequality, this constant
can be reduced to 1 + 2

√
p− 1:

∥A− T̂∥ ≤
(
1 + 2

√
p− 1 +O(u2)

)
εβ. (2.23)

However, we will not use such proofs for the sake of readability, and because the precise
value of the constants in the error bounds is unimportant, as long as they are not too
large.

Note that while Theorem 2.1 guarantees an approximation error ∥A− T̂∥ in O(ε), the
errors on the low-rank factors ∥X − X̂∥ and ∥Y − Ŷ ∥ are in O(up), the lowest precision
used. Moreover, the loss of orthogonality of X and Y is also in O(up). Therefore, one
should be careful before using the proposed method in applications that make use of the
singular vectors or their orthogonality.

Importantly, the proposed method can be applied to other types of low-rank decompo-
sitions, not necessarily based on SVD. For example, Theorem 2.1 can be easily extended
to decompositions of the form XBY T , where X and Y have orthonormal columns (the
difference with the SVD being that B is not diagonal), bound (2.22) holds with a slightly
larger constant; one example of this form is the UTV decomposition (Fierro and Hansen,
1997). Our analysis can also be adapted to decompositions of the form XY T , where X

has orthonormal columns (but Y does not). This second form is particularly of inter-
est because it applies to rank-revealing QR decompositions. We state the analogue to
Lemma 2.1 for XY T decompositions below.

Lemma 2.2. Let Tk = XkY
T
k where Xk has approximately orthonormal columns (stored

in precision u1), and let T̂k = X̂kŶ
T
k be obtained by converting Xk and Yk to precision uk.

Then
∥Tk − T̂k∥ ≤ (2 +

√
rkuk)uk∥Yk∥. (2.24)

Thus, the error introduced by converting group k now depends on ∥Yk∥, and this
means that the XΣY T partitioning (2.19)–(2.20) should be adapted by replacing ∥Σk∥ by
∥Yk∥. Then, it is easy to show that Theorem 2.1 still holds. Lastly, the proposed method
can even be applied to decompositions XY T where neither X nor Y have orthonormal
columns. In this case the error introduced by the conversion of Tk to precision uk is

∥Tk − T̂k∥ ≤ (2 + uk)uk∥Xk∥∥Yk∥, (2.25)

which shows that there is potential for mixed precision as long as the low-rank components
xiy

T
i are of decreasing norm.
In the rest of this chapter, we will focus on low-rank decompositions of the form XY T ,

computed by means of a truncated QR factorization with column pivoting.

2.3. MIXED PRECISION BLR COMPRESSION 31

An important question is under what condition the low-rank compression is beneficial,
that is, when does the low-rank approximation T require less storage than the original
matrix A ∈ Rm×n. In the standard uniform precision case, T = XY T can be represented
with r(m+ n) entries, and so the condition is

r(m+ n) ≤ mn. (2.26)

With a mixed precision representation, this condition changes due to the fact that entries
belonging to groups k ≥ 2 are stored in lower precision. The condition becomes

(m+ n)

p∑

k=1

ckrk ≤ mn, (2.27)

where ck quantifies the cost of storing a floating-point number in precision uk instead of
u1. For example, if we use three precisions, fp64, fp32, and bfloat16, (2.27) takes the form
(m+n)(r1+0.5r2+0.25r3) ≤ mn. Interestingly, the difference between conditions (2.26)
and (2.27) means that a matrix that is not “low-rank enough” in uniform precision can
become so when using mixed precision arithmetic.

Crucially, the size rk of each group depends on the singular values. Indeed, group k

must satisfy ∥Σk∥ ≤ εβ/uk, so if the singular values of A decay slowly, most of them
must be kept in the first group and little gain can be expected from the use of mixed
precision. Conversely, if A possesses many small singular values, the low precision groups
will be very large and the use of mixed precision will be very beneficial. Therefore, the
potential gains achieved by the proposed approach completely depend on the singular
values of the matrix. From now on, we will focus on an important class of matrices that
exhibit off-diagonal blocks with rapidly decaying singular values, and therefore present a
high potential for the use of mixed precision.

2.3 Mixed precision BLR compression

Data sparse matrices are rank-structured matrices most of whose off-diagonal blocks
have low numerical rank. In this section, we show how this property can be exploited
to represent these matrices in mixed precision. We focus on a specific class of data
sparse matrices, called the block low-rank (BLR) format (Amestoy et al., 2015, 2017,
2019a). The approach described here could also be extended to other formats, such as
hierarchical (Hackbusch, 2015) or multilevel (Amestoy et al., 2019b) ones.

32 CHAPTER 2. DENSE LU FACTORIZATION IN MIXED PRECISION

2.3.1 Background on BLR matrices

As explained in section 1.2.2, a BLR representation T of a dense square matrix A ∈
Rn×n has the block q × q form

T =

T11 T12 · · · T1q

T21 · · · · · ·
...

... · · · · · · ...
Tq1 · · · · · · Tqq

, (2.28)

where some of the off-diagonal blocks Aij of size b×b have been approximated by matrices
Tij of ranks rij:

Tij =

XijY

T
ij if i > j

YijX
T
ij if i < j

(2.29)

where Xij and Yij are b × rij matrices, and where Xij has orthonormal columns. The
other blocks are left uncompressed, with Tij = Aij. In both cases, we ensure that

∥Aij − Tij∥ ≤ εβij, (2.30)

with βij = ∥A∥ if we use a global threshold.

On a BLR matrix, it leads to the global error bound

∥A− T∥ ≤ qε∥A∥. (2.31)

2.3.2 Error analysis of mixed precision BLR compression

We now seek to combine BLR compression with the mixed precision representation
proposed in section 2.2. The natural approach is to simply use this mixed precision
representation on every low-rank off-diagonal block of the BLR matrix, leaving the full-
rank blocks in the working precision u1. Then, it is easy to show that (2.22) becomes

∥Aij − T̂ij∥ ≤
(
2p− 1 +

p∑

k=2

√
r
(k)
ij uk

)
εβij, (2.32)

where r
(k)
ij is the rank of the matrix T̂

(k)
ij = X̂

(k)
ij (Ŷ

(k)
ij)T , that is, the number of columns of

Xij and Yij stored in precision uk. The next result bounds the error introduced by mixed
precision BLR compression.

Theorem 2.2 (mixed precision BLR compression). Let T be a BLR approximation of A
defined by (2.28)–(2.30) with βij = ∥A∥ (global compression). If the off-diagonal blocks
Tij are represented with the mixed precision representation T̂ij described in section 2.2,

2.3. MIXED PRECISION BLR COMPRESSION 33

Figure 2.1: Precision formats used for each block of a mixed-precision BLR matrix (matrix
P64, ε = 10−10).

the resulting BLR matrix T̂ satisfies

∥A− T̂∥ ≤ q

(
2p− 1 +

p∑

k=2

ckuk

)
ε∥A∥, (2.33)

with ck = maxi,j

√
r
(k)
ij .

Proof. Using

∥A− T̂∥2 =
q∑

i=1

q∑

j=1

∥Aij − T̂ij∥2 (2.34)

and (2.32), we readily obtain the result.

Compared with the uniform precision bound (2.31), the mixed precision bound (2.33)
is thus larger by a modest factor of about 2p−1. Theorem 2.2 therefore shows that we can
exploit mixed precision arithmetic in the BLR compression while preserving an accuracy
of order ε.

2.3.3 Types of mixed precision blocks

Figure 2.1 shows an example of a mixed precision BLR matrix, plotting for each of
its blocks the precisions that are effectively used to represent it. With ε = 10−10 and
with three available precisions (fp64, fp32, and bfloat16), we can distinguish four types
of blocks. The singular values of a representative example of each type are plotted in
Figure 2.2.

First, the full-rank blocks (type 1, dark blue blocks in Figure 2.1, consisting of only the
diagonal blocks here) are stored in the working precision (fp64). An example of diagonal
block is given in Figure 2.2a, showing that its singular values decay too slowly to benefit
from the use of a mixed precision representation. However, there is only a small number of
such blocks: the majority of the blocks therefore benefits from the use of lower precisions.

34 CHAPTER 2. DENSE LU FACTORIZATION IN MIXED PRECISION

0 20 40 60 80 100 120 140

10
-20

10
-15

10
-10

10
-5

10
0

(a) Diagonal block in position (15,15).
0 20 40 60 80 100 120 140

10
-20

10
-15

10
-10

10
-5

10
0

(b) Near field block in position (15,16).

0 20 40 60 80 100 120 140

10
-20

10
-15

10
-10

10
-5

10
0

(c) Mid field block in position (15,22).
0 20 40 60 80 100 120 140

10
-20

10
-15

10
-10

10
-5

10
0

(d) Far field block in position (15,27).

Figure 2.2: Distribution of the singular values of four blocks of different type in Figure 2.1.
The dashed lines indicate the thresholds εβ/us, εβ/uh, and εβ, with β = ∥A∥ and where
us and uh denote the unit roundoffs of the fp32 and bfloat16 arithmetics, respectively.

2.4. MIXED PRECISION BLR LU FACTORIZATION 35

Interestingly, the number of low-rank blocks that effectively use all three precisions
is quite small (type 2, light blue blocks, example given by Figure 2.2b). Most blocks
actually do not need to store any of their entries in fp64. This is a consequence of using
global compression: if βij = ∥A∥ ≫ ∥Aij∥, fp64 is not needed to represent Aij. In other
words, blocks of sufficiently small norm can be stored entirely in lower precision. Among
these blocks, we can further distinguish two types: those that are represented in mixed
precision using both fp32 and bfloat16 (type 3, green blocks, example given by Figure 2.2c)
and those that are stored entirely in bfloat16 (type 4, yellow blocks, example given by
Figure 2.2d). The type-4 blocks are those whose norm is smaller than ε∥A∥/uh, where
uh = 2−8 is the unit roundoff of bfloat16. Note that a fifth type of block could arise, those
whose norm is smaller than ε∥A∥: these blocks can simply be dropped, that is, replaced
by zero (but no such blocks appear in the example of Figure 2.1).

The observation that blocks of small norm can be stored entirely in lower precision
is important. It justifies why the simpler approach proposed by Abdulah et al. (2019)
and Doucet et al. (2019) can already achieve significant gains. Their approach consists in
storing each block in uniform precision, but possibly differing from one block to another.
For example, for the matrix in Figure 2.1, all type-2 blocks (light blue) would need to be
stored entirely in double precision, but type-3 blocks (green) could be stored entirely in
single precision. Moreover, our error analysis provides the criterion that should be used
to choose each block’s precision: blocks Aij such that ∥Aij∥ ≤ ε∥A∥/ui can be stored in
precision ui.

2.4 Mixed precision BLR LU factorization

We now present how to exploit the mixed precision BLR representation described pre-
viously in order to accelerate the LU factorization of BLR matrices. There exists several
BLR LU factorization algorithms, and here we focus on the so-called UCF (a.k.a. UCFS
or FCSU) variant described in Algorithm 2.1. This variant has been successfully used in
the literature, for example in the MUMPS (Amestoy et al., 2019a) and PaStiX (Pichon
et al., 2018) sparse direct solvers, and its rounding error analysis in the uniform precision
case has been carried out by Higham and Mary (2021, sect. 4.2). We note that BLR
LU factorization can and usually does incorporate numerical pivoting for stability, but
we describe Algorithm 2.1 without pivoting for simplicity. Note that in the UCF variant,
the matrix is not compressed from the beginning: instead, we perform the compression
on the fly during the LU factorization (step 11 of Algorithm 2.1). To compress the Rik

matrices, we use the same truncation criterion as in (2.30)

∥Rik − Tik∥ ≤ εβik, (2.35)

where βik > 0 is a parameter whose role has been discussed in section 1.2.2 (in practice
we will use global compression by setting βik = ∥A∥).

36 CHAPTER 2. DENSE LU FACTORIZATION IN MIXED PRECISION

Algorithm 2.1 BLR LU factorization.
1: /* Input: a q × q block matrix A with blocks Aij of size b× b. */
2: /* Output: its BLR LDU factors LDU . */
3: for k = 1 to q do
4: Update:
5: Rkk = Akk −

∑k−1
j=1 LkjDjjUjk.

6: for i = k + 1 to q do
7: Rik = Aik −

∑k−1
j=1 LijDjjUjk and Rki = Aki −

∑k−1
j=1 LkjDjjUji.

8: end for
9: Compress:

10: for i = k + 1 to q do
11: Compute low-rank approximations Tik ≈ Rik and Tki ≈ Rki.
12: end for
13: Factor:
14: Compute the LU factorization LkkDkkUkk = Rkk.
15: for i = k + 1 to q do
16: Solve LikDkkUkk = Tik for Lik and LkkDkkUki = Tki for Uki.
17: end for
18: end for

The error analysis presented in this section has a double purpose. First, it proves that
the numerical stability of the uniform precision BLR LU factorization (proven by Higham
and Mary (2021)) is preserved in mixed precision arithmetic. Second, for each operation
required by Algorithm 2.1, it determines which level of accuracy is needed to maintain
the overall error of order ε. Our analysis therefore guides us towards an implementation
of mixed precision BLR LU that is both robust and efficient.

One technical difficulty of this analysis is the handling of the scaling factors hidden
inside the U factor. To make these details more apparent, we analyze instead the LDU
factorization, where L and U are unitriangular matrices (with ones on the diagonal). For
the sake of readability, we will not always keep track of lower order error terms; we use
the notations ≈ and ≲ to indicate when these terms (of order at most upε) have been
dropped.

We first analyze each kernel separately. Algorithm 2.1 requires computing products of
the form LijDjjUjk (on line 7), where Lij and Ujk may be either uniform precision full-
rank blocks or mixed precision low-rank blocks (analysis of sections 2.4.1 and 2.4.2). We
also analyze in section 2.4.3 the solution of a triangular system LkkDkkUki = Tki (needed
on line 16), where the right-hand side Tki is a mixed precision low-rank matrix. Finally,
we combine the analysis of these kernels to obtain a backward error bound on the mixed
precision BLR LU factorization in section 2.4.4.

2.4.1 Low-rank matrix times full-rank matrix

Let us begin with the computation of a product P = BC, where C is a full-rank
matrix and B = XY T is a mixed precision low-rank matrix partitioned into p groups
Bℓ = XℓY

T
ℓ satisfying ∥Bℓ∥ ≤ εβ/uℓ for ℓ > 1, and where the output P is needed under

2.4. MIXED PRECISION BLR LU FACTORIZATION 37

full-rank form.

In which precision should we compute P = BC? The natural approach is to compute
each product Pℓ = BℓC in precision uℓ. Then, using Higham and Mary (2021, Lemma 3.2),
the computed P̂ℓ satisfies

P̂ℓ = BℓC +∆Pℓ, ∥∆Pℓ∥ ≤ γ(ℓ)
cℓ
∥Bℓ∥∥C∥ (2.36)

with cℓ = b+ r
3/2
ℓ . For ℓ > 1, we thus obtain

P̂ℓ = BℓC +∆Pℓ, ∥∆Pℓ∥ ≲ cℓεβ∥C∥, (2.37)

since γ
(ℓ)
cℓ /uℓ = cℓ(1 + γ

(ℓ)
cℓ) ≈ cℓ. This shows that the partial product Pℓ associated with

the part of B stored in precision uℓ can itself be computed in precision uℓ, since the
introduced error remains of order ε.

The next question is what precision should be used to combine the partial results into
P =

∑p
ℓ=1 Pℓ. Since for ℓ > 1 ∥Pℓ∥ ≤ ε/uℓβ∥C∥, it is easy to see that Pi + Pj must

be computed in precision min(ui, uj) = umin(i,j). Knowing this, in order to maximize the
performance gains associated with the use of lower precisions, the best approach is to
compute

∑p
ℓ=1 P̂ℓ in reverse order. The approach to compute P suggested by our analysis

is summarized in Algorithm 2.2.

Algorithm 2.2 Mixed precision low-rank matrix times full-rank matrix.
1: /* Input: a mixed precision low-rank matrix B and a full-rank matrix C. */
2: /* Output: P = BC. */
3: Initialize P to zero.
4: for ℓ = p to 1 do
5: Compute Pℓ = BℓC in precision uℓ.
6: Update P ← P + Pℓ in precision uℓ.
7: end for

With this algorithm, each component of P̂ℓ is involved in exactly min(ℓ, p−1) additions,
one in each precision u1, . . . , umin(ℓ,p−1). Therefore, the computed P̂ satisfies:

P̂ =

p∑

ℓ=1

P̂ℓ ◦ (J +Θℓ), |Θℓ| ≲ uℓ, (2.38)

where J is the matrix of ones, ◦ denotes the Hadamard product, and the inequality

38 CHAPTER 2. DENSE LU FACTORIZATION IN MIXED PRECISION

|Θℓ| ≲ uℓ holds componentwise. Overall, we obtain

P̂ =

p∑

ℓ=1

(BℓC +∆Pℓ) ◦ (J +Θℓ) (2.39)

= BC +

p∑

ℓ=1

BℓC ◦Θℓ +∆Pℓ +∆Pℓ ◦Θℓ (2.40)

= BC +∆P, ∥∆P∥ ≲
(
(c1 + 1)u1∥B(1)∥+

p∑

ℓ=2

(cℓ + 1)εβ
)
∥C∥ (2.41)

= BC +∆P, ∥∆P∥ ≲ (pb+ r3/2 + p)max(u1∥B(1)∥, εβ)∥C∥. (2.42)

We summarize this analysis in the next theorem.

Theorem 2.3. Let B =
∑p

ℓ=1Bℓ ∈ Rb×b be a mixed precision low-rank matrix of rank r

such that ∥Bℓ∥ ≤ εβ/uℓ for ℓ > 1, and let C ∈ Rb×b. If P = BC is computed as described
by Algorithm 2.2, then the computed P̂ satisfies

∥P̂ −BC∥ ≲ cmax(u1∥B∥, εβ)∥C∥, (2.43)

with c = pb+ r3/2 + p.

Theorem 2.3 shows that we can perform many of the flops in Algorithm 2.2 in lower
precisions and still maintain an error of order ε. We now prove similar results for the
other kernels.

2.4.2 Low-rank matrix times low-rank matrix

Next we analyze the product P = BDC of two mixed precision low-rank matrices
B = XBY

T
B and C = YCX

T
C , where we also incorporate a diagonal scaling matrix D,

which will be useful for the LU factorization analysis of section 2.4.4.
The product P , which is needed in full-rank form, can be computed in the following

three steps:

1. Compute the inner product M = (YB)
TDYC .

2. Compute the middle product W = XBM (or W = MXT
C).

3. Compute the outer product P = WXT
C (or P = XBW).

A trivial extension of Higham and Mary (2021, Lem. 3.2) to incorporate D shows that if
P is computed in uniform precision u, the computed P̂ satisfies

P̂ = BDC +∆P, ∥∆P∥ ≲ cu∥B∥∥D∥∥C∥, (2.44)

where c = b+ 2r3/2.

2.4. MIXED PRECISION BLR LU FACTORIZATION 39

We now consider the case where B and C are partitioned into p groups Bℓ = XBℓY
T
Bℓ

and Cm = YCmX
T
Cm, stored in precision uℓ and um, respectively. We assume that matrices

B and C satisfy ∥BℓD∥ ≤ εβB/uℓ and ∥DCm∥ ≤ εβC/um for ℓ,m > 1. We analyze each
of the three steps separately.

Inner product M = Y T
B DYC

Let us first analyze the computation of the inner product M . Assume Mℓm = Y T
BℓDYCm

is computed in a given precision denoted as uM
ℓm. The computed M̂ℓm satisfies M̂ℓm =

Mℓm +∆Mℓm, with
|∆Mℓm| ≲ buM

ℓm|YBℓ|T |D||YCm|. (2.45)

By taking norms, we obtain

∥∆Mℓm∥ ≲ buM
ℓm min(α1, α2, α3), (2.46)

where

α1 = ∥BℓD∥∥Cm∥, α1 ≤ εβB∥Cm∥/uℓ if ℓ > 1, (2.47)

α2 = ∥Bℓ∥∥DCm∥, α2 ≤ ε∥Bℓ∥βC/um if m > 1, (2.48)

α3 = ∥BℓD∥∥D−1∥∥DCm∥, α3 ≤ ε2βBβC∥D−1∥/(uℓum) if ℓ,m > 1. (2.49)

From this we can deduce the optimal choices of precisions uM
ℓm that still guarantee an error

of order ε.

• If ℓ = m = 1, in general we must take uM
11 = u1 since ∥B1∥ and ∥C1∥ are not

bounded in terms of ε. We obtain

∥∆M11∥ ≲ bu1∥B1∥∥D∥∥C1∥. (2.50)

• If ℓ = 1 and m > 1, α2 ≤ ε/um∥B∥βC , and so taking uM
1m = um yields an error of

order ε:
∥∆M1m∥ ≲ bε∥B1∥βC . (2.51)

Similarly, we can take uM
ℓ1 = uℓ and obtain

∥∆Mℓ1∥ ≲ bεβB∥C1∥. (2.52)

• If ℓ,m > 1, we can safely take uM
ℓm = max(uℓ, um) = umax(ℓ,m). Indeed, if ℓ ≥ m we

can use (2.47) and if ℓ < m we can use (2.48), and so, in any case, we have

∥∆Mℓm∥ ≲ bεmax(βB∥C1∥, ∥B1∥βC). (2.53)

40 CHAPTER 2. DENSE LU FACTORIZATION IN MIXED PRECISION

Combining (2.50), (2.51), (2.52), and (2.53), we obtain for ℓ,m ≥ 1

∥∆Mℓm∥ ≲ bmax(εβB∥C1∥, ε∥B1∥βC , u1∥B1∥∥D∥∥C1∥). (2.54)

In summary, for any value of ℓ and m, we can compute the product between the part
of B stored in precision uℓ and the part of C stored in precision um in the lower of the
two precisions. This is a crucial observation that allows us to maximize the use of lower
precision.

Moreover, in some cases we may actually take uM
ℓm > max(uℓ, um) because of (2.49).

To see why, let us take an example where ∥D−1∥, βB, βC , and ∥A∥ are all approximately
equal to 1. In this case, for ℓ,m > 1, (2.46) reduces to

∥∆Mℓm∥ ≲ buM
ℓmε

2/(uℓum) (2.55)

and so the requirement to obtain an error of order ε is

buM
ℓmε ≤ uℓum, (2.56)

which thus depends not only on uℓ and um, but also on ε. If ε is small enough, (2.56) may
be satisfied even for uM

ℓm > max(uℓ, um). For example, assume we have three precisions
u1 = ud = 2−53, u2 = us = 2−24, and u3 = uh = 2−8. We may consider that we also have
access to a 0-bit precision format, u4 = 1, whose only representable value is 0. Then,
ignoring the constant b in (2.56):

• The condition uM
22ε ≤ u2

2 is satisfied for uM
22 = u3 if ε ≤ u2

s/uh ≈ 9× 10−13. Thus, if
ε is small enough, M22 need only be computed in half precision.

• The condition uM
23ε ≤ u2u3 is satisfied for uM

23 = 1 if ε ≤ usuh ≈ 2×10−10. The same
holds for uM

32 . Thus, if ε is small enough, the computation of M23 and M32 may be
skipped altogether. Indeed, by replacing the result of the operation by 0, we would
obtain a relative error of 1, which is affordable in this particular case.

• Finally, the condition uM
33ε ≤ u2

3 is satisfied for uM
33 = 1 if ε ≤ u2

h ≈ 2× 10−5. Again,
the computation of M33 may be skipped in this case.

Going back to the general case, the precise requirement on uM
ℓm depends on uℓ, um, ε, βB,

βC , and ∥D−1∥. For global compression (βB = βC = ∥A∥), we obtain

∥∆Mℓm∥ ≲ buM
ℓmε

2∥A∥2∥D−1∥/(uℓum). (2.57)

Middle product W = XBM (or W = MXT
C)

We analyze the product W = XBM , the case of W = MXT
C being analogous. Let

Wm =
∑p

ℓ=1XBℓMℓm, for m = 1: p. Assume the product W (ℓ)
m = XBℓMℓm is computed in

2.4. MIXED PRECISION BLR LU FACTORIZATION 41

precision uW
ℓm, then the computed Ŵ

(ℓ)
m satisfies

Ŵ (ℓ)
m = XBℓM̂ℓm +∆W (ℓ)

m , (2.58)

∥∆W (ℓ)
m ∥ ≲ rℓu

W
ℓm∥XBℓ∥∥M̂ℓm∥ ≲ r

3/2
ℓ uW

ℓm∥BℓDCm∥. (2.59)

This bound on ∥∆W
(ℓ)
m ∥ is similar to the bound (2.46) on ∥∆Mℓm∥, and we should therefore

set uW
ℓm = uM

ℓm. Then, similarly to Algorithm 2.2, the partial results W
(ℓ)
m should be

summed in reverse order and in increasing precision, since W (ℓ)
m +W

(ℓ+1)
m must be computed

in precision uW
ℓm. Overall, with uW

ℓm = uM
ℓm = max(uℓ, um), the computed Ŵm satisfies

Ŵm =

p∑

ℓ=1

Ŵ (ℓ)
m ◦ (J +Θℓ), |Θℓ| ≲ uℓ, (2.60)

=

p∑

ℓ=1

(XBℓMℓm +XBℓ∆Mℓm +∆W (ℓ)
m) ◦ (J +Θℓ), (2.61)

=

p∑

ℓ=1

W (ℓ)
m +∆Ŵ (ℓ)

m = Wm +∆Wm, (2.62)

with
∥∆Ŵ (ℓ)

m ∥ ≲ (b+ r
3/2
ℓ + 1)max(εβB∥C∥, ε∥B∥βC , u1∥B∥∥D∥∥C∥) (2.63)

and so

∥∆Wm∥ ≲ (pb+ r3/2 + p)max(εβB∥C∥, ε∥B∥βC , u1∥B∥∥D∥∥C∥). (2.64)

Outer product P = WXT
C (or P = XBW)

It remains to analyze the final product P = WXT
C (or P = XBW , which is analogous).

Let Pm = WmX
T
Cm be computed in precision uP

m. Then the computed P̂m satisfies

P̂m = ŴmX
T
Cm +∆Pm, (2.65)

∥∆Pm∥ ≲ rmu
P
m∥Ŵm∥∥XCm∥ ≤ r3/2m uP

m∥Ŵm∥ ≲ r3/2m uP
m

p∑

ℓ=1

∥BℓDCm∥. (2.66)

Since
∑p

ℓ=1 ∥BℓDCm∥ is at least as large as ∥B1DCm∥, by (2.48) we must take uP
m = um.

Then, (2.66) becomes

∥∆Pm∥ ≲ r3/2m max(ε∥B∥βC , u1∥B∥∥D∥∥C∥). (2.67)

42 CHAPTER 2. DENSE LU FACTORIZATION IN MIXED PRECISION

Finally, as previously for Wm, we sum Pm over m in reverse order and in increasing
precision, to obtain a computed P̂ satisfying

P̂ =

p∑

m=1

P̂m ◦ (J +Θm), |Θm| ≲ um, (2.68)

=

p∑

m=1

(Ŵm(XCm)
T +∆Pm) ◦ (J +Θm), (2.69)

=

p∑

m=1

Pm + (∆WmX
T
Cm +∆Pm) ◦ (J +Θm), (2.70)

= P +∆P, (2.71)

with

∥∆P∥ ≲ (p2b+ (p+ 1)r3/2 + p2 + p)max(εβB∥C∥, ε∥B∥βC , u1∥B∥∥D∥∥C∥). (2.72)

This concludes the analysis of the product P . We summarize the approach suggested
by this analysis in Algorithm 2.3, for which the following theorem holds.

Algorithm 2.3 Mixed precision low-rank matrix times mixed precision low-rank matrix.
1: /* Input: mixed precision low-rank matrices B = XBY

T
B and C = YCX

T
C and a diagonal

matrix D. */
2: /* Output: P = BDC. */
3: Initialize P to zero.
4: for m = p to 1 do
5: Initialize Wm to zero.
6: for ℓ = p to 1 do
7: Compute Mℓm = YBℓDY T

Cm in precision max(uℓ, um).
8: Compute W

(ℓ)
m = XBℓMℓm in precision max(uℓ, um).

9: Update Wm ← Wm +W
(ℓ)
m in precision max(uℓ, um).

10: end for
11: Compute Pm = WmX

T
Cm in precision um.

12: Update P ← P + Pm in precision um.
13: end for

Theorem 2.4 (Low-rank times low-rank). Let B =
∑p

ℓ=1Bℓ and C =
∑p

m=1 Cm be two
mixed precision low-rank matrices satisfying

∥BℓD∥ ≤ εβB/uℓ for ℓ > 1, (2.73)

∥DCm∥ ≤ εβC/um for m > 1, (2.74)

and D a diagonal matrix, and let P = BDC be computed as described in Algorithm 2.3.
Then, the computed P̂ satisfies

P̂ = BDC +∆P, ∥∆P∥ ≲ cmax
(
εβB∥C∥, ε∥B∥βC , u1∥B∥∥D∥∥C∥

)
, (2.75)

2.4. MIXED PRECISION BLR LU FACTORIZATION 43

with c = p2b+ (p+ 1)r3/2 + p2 + p.

2.4.3 Triangular system with low-rank right-hand side

The last kernel that we need to analyze is the solution of a triangular system LDZ = B,
where L ∈ Rb×b is lower triangular, D is diagonal, and the right-hand side B = Y XT is a
mixed precision low-rank matrix (used in Algorithm 2.1, line 16). We analyze the kernel
for a lower triangular matrix L, the upper triangular case (ZDU = B) being analogous.
For this kernel, the output (the solution Z) is needed under low-rank form.

In the uniform precision case, if the system LDZ = B is solved in uniform precision
u, the computed solution Ẑ satisfies (Higham and Mary, 2021, Lemma 3.5)

LDẐ = B +∆B, ∥∆B∥ ≲ bu∥L∥∥D∥∥Ẑ∥. (2.76)

Let Bℓ = YℓX
T
ℓ be the part of B that is stored in precision uℓ, satisfying ∥Bℓ∥ = ∥Yℓ∥ ≤

εβ/uℓ for ℓ > 1. Then, the natural approach to solve LDZ = B in mixed precision is
to solve each system LDVℓ = Yℓ in precision uℓ and to define Zℓ = VℓX

T
ℓ , which yields

the mixed precision low-rank solution Z =
∑p

ℓ=1 Zℓ. However, a traditional normwise
analysis based on (2.76) does not provide a satisfactory bound here: if we apply (2.76) to
LDVℓ = Yℓ and use V̂ℓ ≈ D−1L−1Yℓ, we obtain the bound

LDV̂ℓ = Yℓ +∆Yℓ, ∥∆Yℓ∥ ≲ bεβκ(L)κ(D). (2.77)

This bound is very weak due to the presence of the normwise condition numbers κ(L)κ(D) =

∥L∥∥L−1∥∥D∥∥D−1∥.

A stronger bound can be obtained by using a componentwise analysis:

LDV̂ℓ = Yℓ +∆Yℓ, |∆Yℓ| ≲ buℓ|L||D||V̂ℓ|. (2.78)

Replacing V̂ℓ by D−1L−1(Yℓ +∆Yℓ) in the bound on ∆Yℓ yields

|∆Yℓ| ≲ buℓ|L||D||D−1L−1Yℓ| ≤ buℓ|L||L−1||Yℓ|. (2.79)

We can now take norms, obtaining for ℓ > 1

∥∆Yℓ∥ ≲ buℓ cond(L, Yℓ)∥Yℓ∥ ≤ bεβ cond(L, Yℓ) (2.80)

where cond(L, Yℓ) is the condition number introduced by Skeel (1979) (Higham, 2002,
Eq. (7.13)):

cond(L, Yℓ) =
∥|L||L−1||Yℓ|∥
∥Yℓ∥

. (2.81)

44 CHAPTER 2. DENSE LU FACTORIZATION IN MIXED PRECISION

Multiplying both sides of (2.78) by XT
ℓ on the right yields

LDẐℓ = Bℓ +∆YℓX
T
ℓ . (2.82)

Summing (2.82) over ℓ, we obtain

LDẐ = B +

p∑

ℓ=1

∆YℓX
T
ℓ = B +∆B, (2.83)

∥∆B∥ ≲ bu1∥L∥∥D∥∥Ẑ1∥+ pbεβ cond(L), (2.84)

where cond(L) = ∥|L−1||L|∥.
The use of intermediate componentwise bounds presents two advantages. First, we

obtain a bound with cond(L), which is in general smaller than κ(L) (see Higham (2002,
p. 123) for a discussion on the difference between these two quantities). Second and
more importantly, we have dropped the matrix D from the term proportional to εβ,
which shows that this term is invariant under scaling, and which represents a significant
improvement since κ(D) ≈ κ(A) can be arbitrarily large. Importantly, in the case of an
LDU factorization with partial pivoting, both L and U are well conditioned, and cond(L)

is in practice a small constant. Therefore, in the context of Algorithm 2.1, the mixed
precision triangular solution analyzed here is backward stable. However, for a general
system LDZ = B, bound (2.84) does not guarantee backward stability, and indeed some
examples can be built where the use of mixed precision arithmetic in the solution of
the system leads to a large increase of the backward error (we note however that such
examples are very hard to find and we were only able to construct one using direct search
optimization (Higham, 1993)).

We summarize the proposed approach to solve LDZ = B in Algorithm 2.4 and its
error analysis in the following theorem.

Algorithm 2.4 Solution to LDZ = B (triangular system with low-rank right-hand side).

1: /* Input: a mixed precision low-rank matrix B = Y XT , a lower triangular matrix L, and
a diagonal matrix D. */

2: /* Output: a mixed precision low-rank matrix Z, solution to LDZ = B. */
3: for ℓ = p to 1 do
4: Solve the triangular system LDVℓ = Yℓ in precision uℓ.
5: Define Zℓ = VℓX

T
ℓ (no computation performed: output is low-rank).

6: end for

Theorem 2.5. Let L ∈ Rb×b be a lower triangular full-rank matrix and let B =
∑p

ℓ=1Bℓ

be a mixed precision low-rank matrix satisfying ∥Bℓ∥ ≤ βε/uℓ. If the system LDZ = B

is solved by Algorithm 2.4, the computed solution Ẑ satisfies

LDẐ = B +∆B, ∥∆B∥ ≲ pbεβ cond(L) + bu1∥L∥∥D∥∥Ẑ∥. (2.85)

2.4. MIXED PRECISION BLR LU FACTORIZATION 45

2.4.4 Putting everything together: error analysis of mixed preci-

sion BLR LU factorization

Now that we have analyzed all the kernels of Algorithm 2.1, we are ready to prove the
backward stability of the BLR LU factorization in mixed precision arithmetic. We define

λ1 = max
k=1: q

max
(
∥L−1

kk ∥, ∥U
−1
kk ∥, cond(Lkk), cond(Ukk)

)
. (2.86)

If partial pivoting is performed, λ1 is almost always small in practice and of order a
constant (Higham, 2002, Chapter 8), even though in theory it can only be bounded by
2b − 1 (Higham, 2002, Lemma 8.6). We also define

λ2 = max
i≥j

max
(
∥Lij∥, ∥Uji∥

)
. (2.87)

If partial pivoting is performed, λ2 ≤ b.

Let us bound the error incurred in the computation of some (i, k) block of the L factor,
the U factor analysis being similar. For i < k, Lik is obtained by solving

LikDkkUkk = Tik, (2.88)

where Tik is the compressed form of

Rik = Aik −
k−1∑

j=1

L̂ijDjjÛjk, (2.89)

where L̂ij and Ûjk are the LU factors computed at the previous steps, and are represented
as mixed precision low-rank matrices, and the product L̂ijDjjÛjk is computed with Algo-
rithm 2.3. Note that if one of L̂ij or Ûjk is a full-rank matrix, the analysis is similar and
relies on Theorem 2.3; if both are full-rank, the computation is done in uniform precision
u1 ≪ ε and introduces an error term bu1∥L̂ij∥∥Djj∥∥Ûjk∥. The difficulty is that L̂ij and
Ûjk are not directly the result of a compression, and so we cannot directly control the
norms of L̂(ℓ)

ij and Û
(m)
jk , the parts of L̂ij and Ûjk stored in precision uℓ and um, respectively.

Instead, they are given by

L̂
(ℓ)
ij ≈ T

(ℓ)
ij Û−1

jj D−1
jj , (2.90)

Û
(m)
jk ≈ D−1

jj L̂
−1
jj T

(m)
jk , (2.91)

where Tij and Tjk have been compressed such that

∥T (ℓ)
ij ∥ ≤ εβij/uℓ for ℓ > 1, (2.92)

∥T (m)
jk ∥ ≤ εβjk/um for m > 1. (2.93)

Therefore, the norms of L̂(ℓ)
ij and Û

(m)
jk depend on βij and βjk, respectively, but also on the

46 CHAPTER 2. DENSE LU FACTORIZATION IN MIXED PRECISION

scaling factors in Djj. However, one of the two D−1
jj in (2.90)–(2.91) is canceled by the

Djj in (2.89) and ∥L̂−1
jj ∥ and ∥Û−1

jj ∥ are both bounded by λ1. As a result, we can rewrite
the product Rik,j = L̂ijDjjÛjk as BDC, where

∥BℓD∥ ≲ λ1εβij/uℓ for ℓ > 1, (2.94)

∥DCm∥ ≲ λ1εβjk/um for m > 1. (2.95)

By Theorem 2.4, the computed R̂ik,j satisfies

R̂ik,j = L̂ijDjjÛjk +∆Rik,j, (2.96)

∥∆Rik,j∥ ≲ cmax(λ1εβij∥Ûjk∥, λ1εβjk∥L̂ij∥, u1∥L̂ij∥∥Djj∥∥Ûjk∥). (2.97)

By (2.89), we obtain a computed R̂ik

R̂ik = Aik ◦ (J +Θk)−
k−1∑

j=1

(
L̂ijDjjÛjk +∆Rik,j

)
◦ (J +Θj), (2.98)

where |Θj| ≤ γ
(1)
j J accounts for the errors in the additions of the products R̂ik,j to Aik.

We thus obtain

R̂ik = Aik −
k−1∑

j=1

L̂ijDjjÛjk +∆Rik, (2.99)

∥∆Rik∥ ≲ ku1∥Aik∥+
k−1∑

j=1

max
(
λ1λ2cεmax(βij, βjk), (λ2

2c+ j)u1∥Djj∥
)
. (2.100)

R̂ik is then compressed into Tik such that the part of Tik stored in precision uℓ satisfies

T
(ℓ)
ik = R̂

(ℓ)
ik + E

(ℓ)
ik , ∥E(ℓ)

ik ∥ ≤ εβik/uℓ, (2.101)

and so overall, by Theorem 2.1,

Tik = R̂ik + Eik, ∥Eik∥ ≲ (2p− 1)εβik. (2.102)

Finally, we solve (2.88) for Lik, and by Theorem 2.5, the computed L̂ik satisfies

L̂ikDkkÛkk = Tik + Fik, ∥Fik∥ ≲ pbλ1εβik + bu1λ
2
2∥Dkk∥. (2.103)

Putting together (2.103), (2.102), (2.100), we obtain

L̂ikDkkÛkk = Aik −
k−1∑

j=1

L̂ijDjjÛjk +∆Rik + Eik + Fik, (2.104)

2.4. MIXED PRECISION BLR LU FACTORIZATION 47

and so

Aik =
k∑

j=1

L̂ijDjjÛjk +∆Aik, (2.105)

∥∆Aik∥ ≲ ku1∥Aik∥+
k∑

j=1

max
(
λ1λ2cεmax(βij, βjk), (λ2

2c+ j)u1∥Djj∥
)
. (2.106)

With the choice βij = βjk = ∥A∥ for j = 1: k, and since k ≤ q, we obtain

∥∆Aik∥ ≲ λ1λ2cqε∥A∥+ qu1∥Aik∥+ q(λ2
2c+ q)ρu1∥A∥, (2.107)

where we have used ∥Djj∥ ≤ ρ∥A∥, where ρ denotes the growth factor. This concludes
the case i < k. Bounds analogous to (2.107) hold for i = k and i > k, and so overall we
have

A = L̂DÛ +∆A, ∥∆A∥ ≲ q2
(
λ1λ2cε+ (λ2

2c+ q)ρu1

)
∥A∥. (2.108)

We summarize this analysis in the next theorem.

Theorem 2.6 (Mixed precision BLR LU factorization). Let A ∈ Rn×n be a BLR matrix
partitioned into q2 blocks of order b. If the BLR LU factorization of A in p precisions
described by Algorithms 2.1–2.4 runs to completion, the computed LU factors satisfy

A = L̂DÛ +∆A, ∥∆A∥ ≲ q2
(
λ1λ2cε+ (λ2

2c+ q)ρu1

)
∥A∥, (2.109)

where λ1 and λ2 are defined by (2.86)–(2.87), ρ is the growth factor, and c = p2b + (p +

1)r3/2 + p.

Theorem 2.6 therefore proves the backward stability of the mixed precision BLR LU
factorization: the computed LU factors give an exact LU decomposition of a perturbed
matrix, where the norm of the perturbation ∥∆A∥ is of order ε. The precise value of the
constants q2λ1λ2c and q2(λ2

2c+ q)ρ in (2.109) is not of great importance but, as a check,
we compare it against the uniform precision bound of Higham and Mary (2021, Thm. 4.3)

A = L̂Û +∆A, ∥∆A∥ ≲ qε∥A∥+ (b+ 2r3/2 + q)u1∥L̂∥∥Û∥. (2.110)

Since ∥L̂∥∥Û∥ ≲ n2ρ∥A∥ and, with partial pivoting, λ2 ≤ b, we see that both (2.109) and
(2.110) grow as O(n2(b+ q)ρ).

After Theorem 2.6, not much additional effort is needed to prove the backward stability
of the solution of linear systems Ax = v by mixed precision BLR LU factorization. We
note that mixed precision arithmetic can also be used in the solution of the triangular
systems with the LU factors, but in the interest of space, we omit these details.

48 CHAPTER 2. DENSE LU FACTORIZATION IN MIXED PRECISION

Table 2.1: List of matrices used in the experiments of chapter 2. We use their Schur
complement corresponding to the root separator in their multifrontal factorization, whose
order n is given in the second column.

Matrix n b Application symmetry

nd24k 8k 128 2D/3D problem SPD
audikw_1 4k 128 Structural problem SPD
perf009d 2k 64 From EDF (code_aster): elastic computation of a pump with

internal pressure (safety device in a nuclear power plant)
SYM

Transport 5k 256 3D finite element flow and transport UNSYM
P64 4k 128 Poisson equation (3D, mesh size=64) SPD
nlpkkt80 14k 256 3D PDE-constrained optimization problem SYM
Fault_639 8k 128 Contact mechanics for a faulted gas reservoir SPD
Geo_1438 13k 256 Geomechanical model of earth crust SPD
Serena 16k 256 Gas reservoir simulation for CO2 sequestration SPD
Cube_Coup_dt0 21k 256 3D coupled consolidation problem (3D cube) SYM

2.5 Experimental results

2.5.1 Experimental setting

We have written a MATLAB code that implements a mixed precision variant of Al-
gorithm 2.1 that uses Algorithms 2.2–2.4. Our implementation can use any number of
arbitrary precisions, where the lower precisions are simulated using the chop function of
Higham and Pranesh (2019). To compress the blocks, we use a mixed precision trun-
cated QR decomposition with column pivoting—we omit a detailed description of this
algorithm, which we plan to investigate more in depth in future work.

For our experiments, we use the matrices listed in Table 2.1. These matrices are
all obtained as the Schur complement of larger sparse matrices (specifically, the root
separators of their multifrontal factorization) arising in various applications: P64 comes
from the discretization of a Poisson equation, perf009d comes from a structural mechanics
problem from EDF (French electricity supplier), the others come from the SuiteSparse
collection (Davis and Hu, 2011).

To confirm experimentally the numerical stability of the algorithms, and to assess
the impact of mixed precision arithmetic on their accuracy, we measure backward errors.
Rather than measuring the backward error for the LU factorization, which is expensive
to compute, we use the computed LU factors to solve a linear system Ax = v, where x

is the vector of ones (and v is computed as Ax), and we use the computed solution x̂ to
measure the backward error

∥Ax̂− v∥
∥A∥∥x̂∥

(2.111)

given by the Rigal–Gaches theorem (Higham (2002, Thm 7.1), Rigal and Gaches (1967)).
To evaluate the potential of using mixed precision for the BLR LU factorization, we

2.5. EXPERIMENTAL RESULTS 49

will focus on two performance metrics: the storage cost for the factorized matrix and
the expected time cost of the factorization. Both these costs depend on the relative
performance of each arithmetic. It is easy to measure the storage cost since, for each
arithmetic, it is proportional to the number of bits used: an fp32 number requires half the
storage of an fp64 one, and a bfloat16 number requires a quarter of the storage. Hence,
we have

storage cost = (#entries in fp64) + 0.5× (#entries in fp32) + 0.25× (#entries in bf16).
(2.112)

The time cost will be estimated based on the number of flops performed in each arithmetic.
This is a more complex issue because the relative speed of each arithmetic strongly depends
on the hardware, the matrix, and several other factors. A practical high-performance im-
plementation of the mixed precision BLR factorization is outside the scope of this chapter
but, as a rough indicator, we make the assumption that the speed of each arithmetic is
also proportional to the number of bits. Hence, we use the cost model

expected time cost = (#flops in fp64) + 0.5× (#flops in fp32) + 0.25× (#flops in bf16).
(2.113)

2.5.2 Performance–accuracy tradeoff

The analytical error bounds obtained in section 2.4 show that the use of mixed pre-
cision arithmetic should only increase the backward error by a small constant. In this
first experiment, we check experimentally (i) that the error increase is indeed small, and
(ii) whether the expected time and storage gains obtained by the use of mixed precision
justify this error increase, that is, whether the mixed precision variant achieves a bet-
ter performance–accuracy tradeoff than the uniform precision variant. Indeed, since the
mixed precision variant achieves a slightly larger error, to be completely fair, we should
compare it against the uniform precision variant with a correspondingly larger ε.

To answer this question, we perform the following experiment in Figure 2.3: for a
given matrix, taking several values of ε, we plot the gains in storage and expected time
(2.112) and (2.113) as a function of the backward error (2.111). We compare three variants
of the BLR factorization: the standard uniform precision variant run entirely with fp64
arithmetic, a two-precision variant using both fp64 and fp32, and a three-precision variant
using bfloat16 as well. The figure shows that the two-precision variant achieves a much
better performance–accuracy tradeoff than the uniform precision one, and that the three-
precision variant further improves this tradeoff. Indeed, using lower precisions slightly
increases the error, but the experiment shows that this increase is largely compensated
by the cost reductions. Indeed, the closer a variant is to the top left corner of the plots,
the better its tradeoff is: for a given accuracy, it is less costly than the other variants, or,
equivalently, for a given cost, it achieves an improved accuracy.

In light of this experiment, and to avoid hand-tuning ε for every variant and every

50 CHAPTER 2. DENSE LU FACTORIZATION IN MIXED PRECISION

(a) Storage. (b) Expected time.

Figure 2.3: Storage (2.112) and expected time (2.113) for three variants of the BLR LU
factorization of matrix perf009d, given as a factor of gain compared with the full-rank
factorization, and as a function of the backward error (2.111). Each point corresponds to
a run performed with a certain value of ε, which ranges from 10−16 to 10−6

matrix, in the remainder of our experiments we directly compare the variants with the
same value of ε.

2.5.3 Results on real-life matrices

In this section we experiment on the Schur complement of real-life matrices listed
in Table 2.1. Figure 2.4 compares the backward error (2.111) achieved by the BLR
factorization for three values of ε: 10−12, 10−9, and 10−6. For ε = 10−6, we compare
the uniform fp32 precision BLR factorization with the two-precision one using fp32 and
bfloat16; for ε = 10−9 and 10−12, we compare the uniform fp64 precision factorization
with both a two-precision variant (using fp64 and fp32) and a three-precision one (also
using bfloat16). The figure shows that the use of mixed precision arithmetic does not
significantly impact the backward error, leading to an increase of at most an order of
magnitude in the worst case (and very often much less than that).

Figure 2.5 shows the associated storage and time gains expected from the use of
mixed precision arithmetic. For each matrix, each bar corresponds to a different value
of ε. For ε = 10−12 and 10−9, we focus on the gains achieved by the three-precision
variant. The y-axis (height of the bars) indicates the number of entries (or number of
flops) required by the mixed precision variant as a percentage of the double precision
variant. For storage, this percentage would be at least 100% if we could ignore some
minor numerical perturbations, and can be larger than that because of the difference
between conditions (2.26) and (2.27). Indeed, as explained in section 2.2, there are some
blocks that satisfy (2.27) but do not satisfy (2.26): that is, we allow the mixed precision
variant to store more entries, because we expect this increase to pay off thanks to the
use of lower precisions. The same property stands for the flops, but some operations are
also skipped (see section 2.4.2): therefore, the percentage for the flops can also differ from
100%, either being larger or smaller.

2.6. CONCLUSION 51

matrices

b
a

c
k
w

a
rd

 e
rr

o
r

Figure 2.4: Backward error (2.111) for the uniform and mixed precision BLR factoriza-
tions, for ε = 10−12, 10−9, and 10−6.

The colors breakdown in Figure 2.5 shows the proportion of entries that are stored
in each precision, and the proportion of flops that are performed in each precision. For
ε = 10−6, note that the mixed precision algorithm recovers the fact that we do not need
any entries or flops in fp64 arithmetic, since ε > us. For all matrices there is a significant
fraction of the entries and flops that can be switched to lower precisions, even for ε = 10−12.
This is a very positive result that confirms that BLR matrices are amenable to the use
of mixed precision arithmetic and that the proposed mixed precision BLR representation
can achieve very significant gains with respect to the one in double precision.

The number on top of each bar in Figure 2.5 indicates the resulting gains in storage
and expected time achieved by the mixed precision variant compared with the double
precision variant. The figure shows very significant reductions, of up to a factor 2.8× in
storage and 3.5× in expected time for ε = 10−9.

Finally, in Figure 2.6 we perform a similar experiment as in Figure 2.5 for matrices of
increasing size belonging to the same Poisson problem class. This experiment highlights
an important and valuable property of the mixed precision BLR factorization: the storage
and expected time gains increase with the problem size, as a larger and larger fraction of
the entries and flops can be safely switched to lower precisions.

2.6 Conclusion

We have introduced a novel approach to exploit mixed precision arithmetic for low-
rank approximations. Given a prescribed accuracy ε, we have proved in Theorem 2.1 that
singular vectors associated with sufficiently small singular values can be stored in preci-
sions with unit roundoff larger than ε while preserving an overall accuracy of order ε. This
approach is not only applicable to low-rank matrices built with a singular value decompo-

52 CHAPTER 2. DENSE LU FACTORIZATION IN MIXED PRECISION

n
b
 o

f
e
n
tr

ie
s
 (

%
 o

f
d
o
u
b
le

 p
re

c
is

io
n
 B

L
R

)

(a) Storage.

n
b
 o

f
o
p
e
ra

ti
o
n
s
 (

%
 o

f
d
o
u
b
le

 p
re

c
is

io
n
 B

L
R

)

(b) Expected time.

Figure 2.5: For each matrix, the 3 bars correspond to ε = 10−12, ε = 10−9 and ε =
10−6 respectively. The y-axis shows the number of entries and flops required by the
mixed precision variant with respect to the double precision variant (which can be slightly
different from 100% because of the different conditions to represent a block under low-rank
form (2.26) and (2.27)). The color breakdown gives the proportion of entries and flops in
each precision. The number above each bar indicates the resulting factor of gain in storage
(2.112) and expected time (2.113) achieved by the mixed precision variant compared with
the double precision one.

sition, but also to many other low-rank decompositions, in particular rank-revealing QR
(Lemma 2.2).

We have applied this approach to block low-rank (BLR) matrices, for which this new
mixed precision low-rank approximation presents a high potential. We have adapted the
existing uniform precision BLR LU factorization algorithm (Algorithm 2.1) to exploit the
mixed precision representation of the blocks. We carried out the rounding error analysis
of this new algorithm and obtained two key results. First, we proved in Theorem 2.6
that the use of mixed precision arithmetic does not compromise the numerical stability
of BLR LU factorization recently proven by Higham and Mary (2021). Second, our
analysis helps us determine what accuracy is needed for each floating-point operation.
The resulting mixed precision BLR algorithms are summarized in Algorithms 2.2, 2.3,
and 2.4. Interestingly enough, our analysis suggests that some operations may even be

2.6. CONCLUSION 53

n
b

 o
f

e
n

tr
ie

s
 (

%
 o

f
d

o
u

b
le

 p
re

c
is

io
n

 B
L

R
)

(a) Storage.

n
b

 o
f

o
p

e
ra

ti
o

n
s
 (

%
 o

f
d

o
u

b
le

 p
re

c
is

io
n

 B
L

R
)

(b) Expected time.

Figure 2.6: Proportion of entries and flops in each precision, and, on top of the bars, the
resulting factors of gain in storage and expected time achieved by the mixed precision
BLR factorization for Poisson matrices of increasing size. We have set ε = 10−12 and
b = 64.

skipped (see section 2.4.2).
We have evaluated the potential of this mixed precision BLR LU factorization on a

range of matrices coming from real-life problems from industrial and academic applica-
tions. We have shown that a large fraction of the entries and flops can be safely switched
to lower precisions. For ε = 10−9, by mixing fp64, fp32, and bfloat16 arithmetics, we
obtain reductions in storage of up to 2.8× with respect to double precision BLR. More-
over, assuming fp32 and bfloat16 flops are, respectively, twice and four times faster than
fp64 ones, we estimate the expected time gains, predicting reductions of up to 3.5× with
respect to double precision BLR. We emphasize that these gains are not achieved at the
expense of accuracy: for the same accuracy, the mixed precision variant is less expensive
than the uniform precision one, or, equivalently, for a fixed storage or work budget, the
mixed precision variant is more accurate (Figure 2.3).

Given the very promising results obtained on large dense matrices with this new mixed
precision BLR approach, we will now try to adapt it to the multifrontal method, and to de-
velop its high-performance implementation within the sparse direct solver MUMPS (Amestoy
et al., 2019a), which already exploits BLR compression.

54 CHAPTER 2. DENSE LU FACTORIZATION IN MIXED PRECISION

Chapter 3

The multifrontal method in mixed
precision

In this chapter we want to improve the performance of the multifrontal method. We
adapt it in order to take advantage of mixed precision, based on the algorithms and
concepts presented in chapter 2. First, we will consider the use of mixed-precision BLR
(MPBLR) as a storage format only. Its aim is to further reduce the cost of storing a
BLR matrix. We include it in the multifrontal method in order to reduce its memory
consumption. In a second section, we perform computations in mixed precision exploiting
the MPBLR compression. By doing this we hope to accelerate the different steps of the
multifrontal method.

We implemented our algorithms in the MUMPS multifrontal solver. Some of the
solver functionalities presented in this chapter are not public yet, and may be added in a
future version. All the experiments were performed on the Olympe supercomputer of the
CALMIP center (project P0989). Unless specified otherwise, experiments are performed
on 2 computational nodes, using 4 MPI processes, and 18 OpenMP threads per process.

3.1 Mixed precision aiming for storage and communi-

cation reductions

3.1.1 Using custom precision formats

We first present an alternative MPBLR format aiming at optimizing the storage cost
of a matrix. In the next subsection we will integrate it in the multifrontal method.

As seen in chapter 1, a floating-point number is a number of the form

f = (−1)s ×
t∑

i=0

mi2
−i × 2(e−bias)

where s is the sign bit, the integer e is the exponent, and m = m0m1 · · ·mt is the mantissa.
m0 = 1 is an implicit bit, and is not actually stored, according to the description of the

55

56 CHAPTER 3. THE MULTIFRONTAL METHOD IN MIXED PRECISION

binary interchange floating-point formats in the IEEE 754 standard (see IEEE Computer
Society, 2008). In this case, the unit roundoff is u = 2−t. If the representation of the
exponent stays the same, a format with fewer mantissa bits, less costly in terms of storage,
will have a greater unit roundoff. As a consequence, in order to maximize the storage
gains, we will try to use a unit roundoff as big as possible.

It is worth mentioning that, according to the description of the interchange floating-
point formats, the bits are stored in the following order: s, e, m. In particular, the least
significant bits of m are stored last.

In chapter 2 we saw that, given a set of formats whose unit roundoffs are u1 · · ·up,
we can find a criterion indicating in which precision format we should store the columns
Xk and Yk of a low-rank approximation XY T ≈ B. Such a criterion may vary depending
on the type of low-rank approximation. For example, we may choose the largest value of
ui (i.e., the lowest precision) satisfying ∥XkY

T
k ∥ ≤ ε/ui. This condition ensures that the

error is bounded by a small multiple of ε, as shown in section 2.3.2.

Another way to consider this is that column k should be stored in any precision format
u above a certain target accuracy u

(k)
target = ε/∥XkY

T
k ∥. Thus it is understandable that, if

we add new precision formats, we will sometimes be able to switch the column to a lower
precision format, less costly, while the resulting error bound will be closer to ε (but still
below it). The error bound of each column would be equal to ε if we had a large number
of available precision formats, enough so that u would vary almost continuously. Such a
set of precision formats would minimize the cost for storing an MPBLR matrix (under
the constraint of respecting a certain error bound).

We did not try to implement such a continuum of precision formats. However, we
understand that having only 2 or 3 precision formats like in chapter 2 may not be entirely
satisfactory: we wish to add a few more precision formats to the set, in order to make
a trade-off between these two extremes. In this section, MPBLR compression is only
used for storage: therefore, in order to define a new precision format, one only needs
functions doing the conversions between the working precision and the new format. Such
conversions may be implemented in software, which means that it is possible to add
virtually any format.

We choose to obtain new custom formats by keeping only the t′ most significant bits
of the mantissa. Conveniently, the discarded bits are all located at the right-hand side of
the format, making it easier to truncate them. The remaining bits correspond to a new
floating-point format, with the same exponent range but fewer mantissa bits and a higher
roundoff u′ = 2−t′ . The rounding mode of this conversion is towards zero.

In order to obtain an implementation that is easy and somewhat efficient, we choose to
only allow byte manipulations, instead of bit manipulations: the new formats are obtained
by removing the last bytes of the mantissa. The conversion back to high precision consists
in padding the missing bits with zeros. As a consequence of these choices, we obtain new
formats on 56, 48, 40 and 24 bits respectively, that we name fp56, fp48, fp40 and fp24.

3.1. MIXED PRECISION AIMING FOR STORAGE REDUCTIONS 57

name sign & exponent bits mantissa bits
fp64 12 52
fp56 12 44
fp48 12 36
fp40 12 28
fp32 9 23
fp24 9 15
bf16 9 7

Table 3.1: A set of seven custom floating-point formats

sign

exponent
(8 bits)

mantissa
(23 bits)

copy
bytes

sign exponent
(8 bits)

mantissa
(15 bits)

Figure 3.1: Conversion from fp32 to fp24, performed by copying the first bytes.

We also add a 16-bits format, which turns out to correspond to the definition of bloat16.
We also reuse the standard formats fp64 and fp32. As a result, we obtain a set of seven
precision formats, which is described in Table 3.1 As a matter of fact, the very same set
of 7 floating-point formats has already been proposed several times in the literature, in
particular by Anderson et al. (2017), Mukunoki and Imamura (2016) and Graillat et al.
(2022).

An example of such a custom floating-point format would be fp24. Its number of
exponent bits is the same as fp32: indeed, we deem the range of fp32 to be sufficient, as
this hypothesis was already made several times in this thesis. Therefore, when converting
a number from fp64 to fp24, it has to be converted to fp32 first. The conversion from fp32
to fp24, shown in Figure 3.1, is performed by discarding the last byte, which corresponds
to the 8 least significant bits. The conversion back to fp32 is obtained by padding the last
byte with zero. We made a first implementation of these byte manipulations in Fortran.

An interesting perspective would be to increase the number of formats even more,
by truncating the mantissa at the bit level instead of the byte level. The sizes of the
available formats would take all values between 10 bits (mantissa of size 1), and 64 bits,
thus approximating a continuum of floating-point formats. The gain would be especially
noticeable for very low precision formats. For example, we may want to convert the last
non-discarded columns from bfloat16 to “fp10”. For these columns, the gain of switching
the truncation operation from the byte level to the bit level would be the most beneficial,
reaching an additional storage reduction of 6

16
≈ 38%. Handling such formats would

probably be complex and costly due to data misalignment, but it might be useful when
wanting to obtain a near-optimal MPBLR compression, with no regard for the overhead.

When handling very low precision formats, the cost for storing the exponent bits
begins to matter. A good illustration of this fact is the format fp10, whose exponent bits

58 CHAPTER 3. THE MULTIFRONTAL METHOD IN MIXED PRECISION

occupy 80% of the storage space. For bfloat16, this proportion is already 50%. However,
we notice that the range of the exponents in a given format is rather narrow, in particular
for the lowest precision formats. This is because we use low precision for the columns
having the smallest coefficients: all coefficients of a column stored in precision i tend to be
smaller than ε/ui (though this may depend on the kind of low-rank approximation being
used). Therefore, another perspective would be to perform a lossless compression of the
exponent. For example, we could use a limited number of bits to represent the exponents,
by removing the leading bits whose values are zero. In order to know the number of bits
to be discarded, we would need to check beforehand the maximal value of the exponent
in a column.

3.1.2 Multifrontal method with mixed-precision storage

We want to take advantage of the storage-focused MPBLR format described previ-
ously. The main idea is the following: whenever the LU factors are not being used in a
computation, we would like them to be stored in mixed precision. Indeed, the storage of
the LU factors contributes to a large part of the memory peak of the multifrontal method
in practice. However, they are not needed between the end of the factorization of a front
and the triangular solution (last step of the multifrontal method).

The main modifications added to Algorithm 1.4 are the following:

• While computing the low-rank compression, we also compute the ranks of the mixed-
precision parts r1, · · · , rp.

• At the end of the factorization of a front, the low-rank blocks are copied from
uniform precision to the mixed-precision low-rank storage format. The original
blocks in uniform precision are not needed anymore and may be discarded.

• Before it is used in the triangular solve step, each low-rank block is temporarily
converted from mixed precision to uniform precision. The computations remain in
uniform precision.

3.1.3 Block-admissibility conditions

In a BLR compression, we use a condition for choosing whether a block should be low-
rank or full-rank: this is the block-admissibility condition, already mentioned in section 2.2
(see Equation 2.26). This choice may be based on the “distance” between the groups of
variables corresponding to the rows and the columns. However there is also a more
pragmatic alternative, which is used in MUMPS: a block is considered as low-rank if
and only if the compression leads to a storage reduction. That is to say, the low-rank
admissibility condition for a block of size (m,n) is:

r(m+ n) ≤ mn. (3.1)

3.1. MIXED PRECISION AIMING FOR STORAGE REDUCTIONS 59

Conveniently, this condition for reducing the storage is also the condition for reducing the
number of operations.

However, the situation is a bit different when using BLR compression for computations
and MPBLR for storing the factors. The condition for reducing the number of operations
stays the same, whereas the condition for reducing storage becomes the following:

(m+ n)

p∑

k=1

ckrk ≤ mn, (3.2)

where ck corresponds to the cost of storing a floating-point number in precision uk instead
of u1. For example, if we use two precisions fp64 and fp32, then Equation 3.2 takes the
form (m+ n)(r1 + 0.5r2) ≤ mn.

However trivial this aspect may seem, it has proven to be important in practice, as
a noticeable fraction of the blocks satisfy the mixed-precision condition (Equation 3.2),
but not the uniform-precision condition (Equation 3.1). That is to say, they would be
full-rank in BLR but are low-rank in MPBLR.

On the other hand, switching to the block-admissibility condition for mixed precision
(Equation 3.2) requires additional operations, which should lead to an overhead. Indeed,
some blocks that were considered as full-rank are now compressed, and this compression
requires additional operations. Moreover, the maximal values for the ranks have been
increased: therefore, more operations may be needed before knowing whether a block
is low-rank or not, at least if this choice is done by trying to compress the block. Fi-
nally, when using the block-admissibility suited to mixed precision, some blocks are not
suited for computations: the ranks are too high, which is not optimal. They should have
been considered as full-rank in order to minimize the number operations, as shown in
Equation 3.1. By forcefully considering them as low-rank, we increase the number of
operations, which should lead once again to an overhead. This is what is done in the
current implementation in MUMPS, but it could still be improved in the future.

3.1.4 Implementation in MUMPS

We implemented our algorithm within the sparse solver MUMPS: we can now choose
to use an MPBLR compression as a storage format. We added several options in order
to customize its use. In particular:

- mpblr_thld: This variable allows the user to modify the thresholds for switching
between two precision formats. In chapter 2, we had considered that such a thresh-
old would be ε/ui for precision i. We now use a modified threshold, divided by
mpblr_thld. Unless otherwise specified, we set mpblr_thld = 10.

As a result, the theoretical error bounds obtained when converting a low-rank block
to mixed precision (with p = 2 formats) is roughly (1+2(p−1)/mpblr_thld)ε = 1.2ε,
instead of 3ε obtained in Equation 2.22. This setting was deemed to be conservative

60 CHAPTER 3. THE MULTIFRONTAL METHOD IN MIXED PRECISION

enough with regard to the uniform precision, whose error bound is ε: in most
applications the numerical error introduced by the use of mixed precision should
not be significant. If it is, then an easy correction would be to increase the value of
mpblr_thld.

- custom_prec: Allows the user to choose between using only the precision formats
supported by the hardware, or a set of custom precision formats. In the current state
of our implementation, the first choice results in using fp64 and fp32. Otherwise,
we use a subset of our 7 precision formats described in Table 3.1. We should not
need any format whose precision is higher than the working precision. Therefore, if
MUMPS is compiled in fp32, we will only use 3 precision formats: fp32, fp24 and
bf16.

- mixed_adm: Allows to switch between the usual block-admissibility condition suited
to uniform precision (see Equation 3.1) and a condition minimizing the storage in
mixed precision (see Equation 3.2), at the cost of a few additional operations.

3.1.5 Storage gains and time overhead

In our implementation, we handle two BLR formats at once: one that is used for
computations in the working precision, and an MPBLR format that is used for storage.
Performing data copies between the two formats, as well as the allocations/deallocations,
may cause some overhead. Moreover, handling custom precision formats may have a
relatively high cost, due to the fact that all conversions are implemented at the software
level instead of the hardware level. Finally, we may want to use the appropriate block-
admissibility condition: this choice results in additional storage reduction, at the cost
of an extra overhead. Therefore, choosing of an MPBLR variant results in a trade-off
between memory and computation time: despite reducing the memory needed for the
factorization even further, the use of more complex storage formats should induce an
overhead.

In Table 3.2 we compare the execution time of different steps of MUMPS, as well
as the memory peak, when using different levels of compression. The full-rank variant
(FR) has no compression, contrary to BLR. MPBLR(2) and MPBLR(7) use sets of 2 and
7 precision formats respectively, and only differ from BLR by adding data conversions
(i.e., they keep the same block-admissibility condition as in double precision). We also
compare those two variants to their respective optimizations using the block-admissibility
conditions suited to mixed precision: MPBLR(2)∗ and MPBLR(7)∗.

As expected, the size of the factors is reduced when increasing the number of precision
formats: we obtained reductions of the factor size of up to 24% by using two hardware-
supported precision formats, and up to 32% when using software-implemented custom
precision formats. Such a compression of the factors induces a reduction of the memory
peak. On the other hand, we confirm that increasing the number of precision formats

3.1. MIXED PRECISION AIMING FOR STORAGE REDUCTIONS 61

generally causes an overhead, albeit small.
When adding mixed-precision admissibility, the compression becomes a bit more ef-

ficient, obtaining storage reductions of up to 27% 38% with sets of 2 and 7 precisions
respectively. In general, the time spent in factorization and in solve tends to increase
again. In later experiments using MPBLR compressions, we will use this mixed-precision
admissibility unless specified otherwise.

matrix variant LU factors Memory peak Backward Time (s)
(GBytes) (GBytes) error factorization solve

Poisson200 FR 289† OOM – – –
(ε = 10−10) BLR 71 220 7.0E-8 395 0.69

MPBLR(2) 54 211 8.9E-8 448 0.79
MPBLR(7) 48 208 7.5E-8 445 0.90
MPBLR(2)∗ 52 209 7.2E-8 439 0.81
MPBLR(7)∗ 44 205 5.9E-8 400 0.97

thmgaz BLR 103 132 3.8E-14 61 1.7
(ε = 10−10) MPBLR(2) 88 127 3.9E-14 62 1.8

MPBLR(7) 84 126 6.9E-14 63 1.8
MPBLR(2)∗ 80 120 5.2E-14 68 1.9
MPBLR(7)∗ 67 111 5.5E-14 68 2.1

Geoazur160 FR 182 253 2.5E-4 465 1.52
(ε = 10−4) BLR 81 153 6.7E-3 308 0.46

MPBLR(7) 61 138 2.1E-2 323 0.84
MPBLR(7)∗ 61 138 2.5E-2 317 0.84

Table 3.2: A comparison of the storage reductions and time overheads for different vari-
ants. FR uses no compression and BLR stands for the standard BLR compression in
uniform precision. MPBLR(2) and MPBLR(7) use sets of 2 and 7 precisions respec-
tively, with the block-admissibility for uniform precision (Equation 3.1). The variants
MPBLR(2)∗ and MPBLR(7)∗ differ by the use of the block-admissibility condition suited
for mixed precision (Equation 3.2). For matrix Geoazur160, the working precision is fp32
and any precision format higher than this will not be used. Therefore, it makes no sense to
use variant MPBLR(2), equivalent to uniform precision. When using variant MPBLR(7),
only the 3 lowest precision formats of the set are used.
†: estimation
OOM : out of memory
Backward error: ∥Ax̂−b∥∞

∥A∥∞∥x̂∥∞

We observed that using a BLR storage format different from the working format causes
an overhead with our implementation. However, such overheads may be reduced, or may
not even happen at all with an implementation focused on performance. In fact, the
data movements have been reduced by doing this: at the very least, a memory-bound
algorithm such as the BLR triangular solve should be able to turn such a reduction of
the data movements into actual time gains, under the assumption that the conversion
functions are sufficiently well tuned (which is not the case for our naive implementation,
targeting storage gains only). Indeed, as explained in section 1.4.6 , we could hope to
obtain, for a memory-bound algorithm such as this one, a speedup factor equal to the

62 CHAPTER 3. THE MULTIFRONTAL METHOD IN MIXED PRECISION

factor of storage gain from mixed precision at most.

A side-effect of using mixed precision is that the backward error could be increased
a bit. In fact, we saw in section 2.2 that using mixed precision increased the error
bounds of a BLR compression by a certain factor. For a number of precision formats
p = 7, we should expect the error bounds to be multiplied by approximately 1 + 2(p −
1)/mpblr_thd = 2.2 (a less pessimistic bound would be that, the error bound is multiplied
by 1 + 2

√
p− 1/mpblr_thd ≈ 1.49, as a consequence of Equation 2.23). Therefore, we

could expect to observe a similar increase in the backward error of a sparse linear system.
However, we did not observe such a behavior: like in the dense case (see section 2.5), the
error stays very similar when adding mixed precision, and we are still far from such an
increase.

3.1.6 Compressing contribution blocks in mixed precision

There is another possibility to reduce the memory consumption of the multifrontal
factorization. The basic idea is similar to our motivation to use MPBLR as a storage
format: when it is kept unused for a long time, data could be compressed as much
as possible, in order to reduce the memory peak, even at the cost of some additional
operations. Therefore, we allow the compression of the block of non-eliminated variables
at the end of a front (the so called Contribution Block, also referred to as CB), by
using a BLR compression instead of keeping them uncompressed: in fact, the off-diagonal
blocks of the CB have low numerical ranks, similar to the factors. As a consequence,
the memory peak will be reduced (as well as the volume of the communication). Such
a feature is being implemented in the multifrontal solver MUMPS, and is referred to as
option "compressCB".

However, contrary to the use of MPBLR, the time complexity of the compression
operations performed here is by no means small, leading in general to a significant time
overhead. Moreover, those compressions are used for storage gains only, and they do
not contribute to reducing the number of operations like the compressions of the factors.
Therefore, such an option should only be used when the memory consumption is critical
and a certain overhead is acceptable.

We observed a reduction of the memory peak of up to of 24% when using option Com-
pressCB, as illustrated in Table 3.3.

In MUMPS, we added the possibility of switching the BLR compression of the contri-
bution block to mixed precision. Thanks to this, the memory peak is further reduced by
up to 15%, which makes a total reduction of up to 35% when considering the combined
gains of both options (variants "BLR" and "MPBLR∗+MP-CCB∗" from Table 3.3). The
overhead caused by the copy/conversion operations should be negligible compared to the
cost of the extra low-rank compressions that are already added with option CompressCB.

As a bonus, the MPI communication volume has been reduced even more, given the

3.1. MIXED PRECISION AIMING FOR STORAGE REDUCTIONS 63

fact that a possibly huge part of the MPI communications now concern mixed-precision
data.

matrix variant Memory peak (GB) Backward
error

Time for
factorization (s)

Poisson200 BLR 220 6.6E-8 442
(ε = 10−10) MPBLR∗ 208 7.6E-8 447

BLR+CCB 168 6.2E-8 127
MPBLR∗+MP-CCB∗ 144 6.9E-8 128

thmgaz BLR 132 5.3E-14 62.0
(ε = 10−10) MPBLR∗ 125 6.8E-14 62.3

BLR+CCB 122 3.7E-14 69.3
MPBLR∗+MP-CCB∗ 104 3.0E-14 69.3

Table 3.3: Impact of option "compressCB" (CCB), and its mixed-precision variant using
7 precision formats (MP-CCB) on the memory peak and the factorization time. The
notation ∗ refers to the use of the block-admissibility condition suited for mixed precision
(Equation 3.2).

3.1.7 Reducing the communication volume

Distributed memory parallelism in MUMPS

As explained in section 1.1.3, the multifrontal method can be parallelized by exploiting
two kinds of parallelism, referred to as tree parallelism and node parallelism. In MUMPS,
distributed-memory parallelism is used in order to take advantage of both sources of
parallelism. This is illustrated by Figure 3.2: for the node parallelism, each front is split
between several processes. Each process is mapped on a group of rows, on which it will
perform all update operations. The master process is associated with the fully summed
rows, while the other rows are split between the worker processes.

P0

P1

P2

P3

P4

P0

P1

P2

P3

P4

Figure 3.2: Illustration of tree and node parallelism. The shaded part of each front
represents its fully summed rows.

64 CHAPTER 3. THE MULTIFRONTAL METHOD IN MIXED PRECISION

Sending the LU factors in mixed precision

We consider the case of an LU factorization, whose communication pattern is simpler
than an LDLT factorization. We consider a node whose rows are split between several
MPI processes (node parallelism), and a worker process that owns a set of rows I. Its main
task is to perform update operations on its rows, in right-looking:

Aij ← Aij − LikUkj, for i ∈ I, for j > k.

The blocks Lik, i ∈ I needed for this operation have been computed locally, and do not
need to be sent by another process. However, the blocks Ukj have been computed on the
master node and need to be sent. Therefore, once the master process has updated a block-
row of U, it sends it to the other processes, so that they may perform the corresponding
updates.

When using BLR compression in MUMPS, the volume of communication is reduced
by sending the blocks Ukj in a low-rank form. We added the possibility of sending these
blocks in mixed precision, in order to reduce the volume of communication.

P0

P1

P2

P3

Figure 3.3: A node split between several MPI processes. The blue part represents the
content of the messages, that is to say the fully summed U factors.

Experimental results

When using this MPBLR compression of the communications on U , as well as option
compressCB in mixed precision, most communications are performed in mixed precision.
As shown in Table 3.4, the results are quite promising: we can expect a reduction in the
communication volume by a factor of 1.9 by adding mixed precision. When combining
these gains with the ones from option compressCB, we realize that the reduction of the
communication volume is quite substantial, up to a factor 13.

No time gain has been observed yet by switching the MPI communications to mixed
precision. However, we can reasonably hope that another implementation, better tuned,
would be able to achieve time gains thanks to the communication being in mixed precision,
in the case of a large problem treated on a huge number of processes. In fact, Table 3.3
shows that reducing the communication volume may sometimes lead to actual time gains
on the appropriate problem: on matrix Poisson200, using option compressCB reduces the
factorization time by a factor 3.5, despite performing a greater number of operations.

3.2. MIXED PRECISION AIMING FOR TIME GAINS 65

matrix variant Communication volume (GBytes)
LU CB Total

Poisson200 BLR 13.8 203 217
MPBLR∗ 6.7 202 209

BLR+CCB 13.7 21 34
MPBLR∗+MP-CCB∗ 6.7 10 17

thmgaz BLR 3.9 8.6 12.5
MPBLR 2.0 8.6 10.6

BLR+CCB 3.9 3.9 7.9
MPBLR∗+MP-CCB∗ 2.0 2.1 4.2

Table 3.4: Communication volumes during an LU factorization with the same variants of
MUMPS as in Table 3.3. The runs are done on 2 computational nodes: 8 MPI processes
and 9 OpenMP threads per process. The contributions to the communication volume are
the U factors as well as the contribution bloc (CB).

3.2 Mixed precision aiming for time gains

In the previous section we presented an algorithm in which the low-rank blocks are
stored using a MPBLR compression. During the triangular solve phase, these blocks were
converted back to the working precision (e.g., double precision), and then used in this
format for the computations.

However we know from our theoretical analysis in chapter 2 that this might not be
optimal: if the precision formats used for storage are also available on hardware (e.g.:
fp64 and fp32), then some of the computations can directly be performed on the MPBLR
structure, without the need to convert it back to the working precision. This is the case
because a low-precision part can often be used in the precision format that was used for
storing it. By doing this, the accuracy of the solution is preserved, while taking advantage
of the higher speed of low-precision computations.

We will first discuss algorithmic issues when switching computations to mixed precision
for the product between a low-rank block and a matrix. Then we will apply it to the
triangular solve, in order to obtain time gains. Finally, we will generalize this kernel so
that it can be used in the factorization as well.

3.2.1 Main techniques

LR×FR product

One of the main low-rank kernels is the multiplication between a low-rank block XY T

and a full-rank matrix M , and we will refer to it as LR×FR kernel. As explained in
chapter 1, this operation can be accelerated when using low-rank approximations: if we
choose to perform the multiplications in the right order, i.e. X × (Y T ×M), then the
complexity is reduced compared to the FR version, from b3 to 2rb2 if M is a square matrix
of size (b, b).

66 CHAPTER 3. THE MULTIFRONTAL METHOD IN MIXED PRECISION

Algorithm 3.1 LR×FR product: X(Y TM).
Input: a low-rank block XY T and a full-rank matrix M
Output: Z = XY TM

1: W ← Y TM
2: Z ← XW

We now want to further reduce the time complexity by performing the operations in
mixed precision, based on the algorithm presented in chapter 2. If XY T is stored in the
mixed-precision form [X1 · · ·Xp][Y1 · · ·Yp]

T , then the operations Xk × (Y T
k ×M) can be

performed in precision k. This is illustrated in Figure 3.4, in the case where the chosen
precision formats are fp64 and fp32. The full details are given in Algorithm 3.2, which can
handle an arbitrary number p of precision formats (this will prove helpful for supporting
half precision in the future). A minor optimization has been taken into account by looping
on the precision formats from the lowest one to the highest: by doing this, we can manage
to switch some additions to lower precision formats, in case p ≥ 3.

Another minor optimization would be to skip any precision format whose part is empty,
making sure that none of these formats require any operation. The implementation is
relatively easy: we basically need to loop on the precision formats whose parts are not
empty.

× = × + ×

a copy in fp32

computed in fp64 computed in fp32

Figure 3.4: Illustration of a low-rank product X(Y TM) performed in mixed precision.

Algorithm 3.2 LR×FR product in mixed precision
Input: a mixed precision low-rank block XY T = [X1 · · ·Xp][Y1 · · ·Yp]

T

and p copies of M in each precision M1, . . . ,Mp.
Output: Z = XY TM

1: Zp ← 0
2: for k = p to 1 do
3: Wk ← Y T

k Mk /* performed in precision k */
4: Zk ← Zk +XkWk /* performed in precision k */
5: if k > 1 then
6: Cast Zk to precision k − 1 and store the result in Zk−1.
7: end if
8: end for
9: Z ← Z1

3.2. MIXED PRECISION AIMING FOR TIME GAINS 67

Avoid conversions by duplicating a variable in every precision format

Note that Algorithm 3.2 requires on input the copies of the full-rank block M in every
precision format. Depending on the context, we may choose to cast this block on the
fly, just before entering this kernel. However, most of the time we should prefer to keep
those copies of a full-rank block, despite the temporary extra memory cost. Indeed, those
copies will be reused many times.

A similar choice is available for the matrix Z on output: it may be duplicated in order
to reduce the number of conversions. More specifically, its contributions Zk = XkY

T
k M , for

k ∈ [1, p] can either be cast on the fly, or be reused in mixed precision. In Algorithm 3.2,
we have chosen to do these conversions on the fly, as soon as Zk has been computed.
This choice is meaningful if only one update at a time is performed, as in a right-looking
algorithm.

However, we often want to perform many updates in a row on the block Z, i.e. we may
want to perform the following operations: Z ← Z−

∑q
j=1X

(j)Y (j)TM (j). This is typically
the case with a left-looking algorithm. In this case, it is still possible to reuse Algorithm 3.2
and do the conversions on the fly, one after the other: we obtain Algorithm 3.3. However,
this algorithm is a bit naive, and we may try to better take advantage of this sum.

Another possibility (see Algorithm 3.4) is to accumulate the contributions of each
precision format uk in a separate buffer Zk, i.e. perform Zk =

∑q
j=1X

(j)
k Y

(j)T
k M (j). By

doing this, most conversions are avoided. The only ones left are performed on each
subsum Zk, when doing the operation Z ← Z −

∑p
k=1 Zk. Therefore, the number of

conversions has been reduced by a factor q overall. The huge majority of the operations
performed are now BLAS-like matrix operations, instead of having 1 conversion every 3
matrix operations: we can expect this to be more efficient.

It is technically possible to implement right-looking algorithms based on Algorithm 3.4:
we would still have to compute similar sums, but a large number of them at once, with
bad spatial and temporal localities. Also, the size of the temporary buffers Zk would not
be small like before. Indeed, we perform a large number of such sums at the same time,
and we have to duplicate all the temporary sums. In the worst case (e.g., right-looking
factorization), the whole front has to be copied p times. Due to this extra memory cost,
Algorithm 3.4 may not be worth using in right-looking.

Algorithm 3.3 Computation of a sum of LR×FR products
Input: a set of mixed precision low-rank blocks X(j)Y (j)T=[X

(j)
1 · · ·X

(j)
p][Y

(j)
1 · · ·Y

(j)
p]T ,

for j ∈ [1; q] and p copies of M (j) in each precision M
(j)
1 , . . . ,M

(j)
p , for j ∈ [1; q].

Output: Z =
∑q

j=1 X
(j)Y (j)TM (j)

1: Z ← 0
2: for all j do
3: Z ← Z + prod(X(j), Y (j),M (j)) /* using Algorithm 3.2 */
4: end for

68 CHAPTER 3. THE MULTIFRONTAL METHOD IN MIXED PRECISION

Algorithm 3.4 Computation of a sum of LR×FR products
(accumulation of updates in mixed precision, minimizing the number of conversions)

Input: a set of mixed precision low-rank blocks X(j)Y (j)T=[X
(j)
1 · · ·X

(j)
p][Y

(j)
1 · · ·Y

(j)
p]T ,

for j ∈ [1; q] and p copies of M (j) in each precision M
(j)
1 , . . . ,M

(j)
p , for each j ∈ [1; q]].

Output: Z =
∑q

j=1 X
(j)Y (j)TM (j)

1: Zp ← 0
2: for k = p to 1 do
3: for all j do
4: W

(j)
k ← Y

(j)T
k M

(j)
k /* performed in precision k */

5: Zk ← Zk +X
(j)
k W

(j)
k /* performed in precision k */

6: end for
7: Cast Zk to precision k − 1 and store the result in Zk−1.
8: end for
9: Z ← Z1

Combining MPBLR formats for storage and computations

If we want to obtain better speedups, then the set of precision formats used for storage
should be the same as the formats used for computations. Indeed, by doing this we
remove the need to perform costly copies and conversions on the data, as emphasized at
the beginning of the section.

However, in the case where reducing the memory footprint is the main priority, it is
in general beneficial to use a custom set of precision formats for storing the factors, and
still do the computations using all hardware-supported precision formats. Indeed, we may
hope that each computation will be quicker than in double precision. As for casting the
custom precision formats to the computation formats, it should not be more costly than
casting them to double precision (in both cases, the conversion has to be implemented
at the software level). We could also expect to reduce the data movements, which could
make the conversion quicker.

As a consequence, we will try to combine the use of the two MPBLR formats at once
in order to take advantage of both the optimal storage reduction and computational time
gains. In all that follows we will refer to an MPBLR format as MPBLR(sto) if it is used
for storage, and we will try to refer to its low-rank blocks as X(sto)Y (sto)T instead of XY T .
Similarly, we will refer to an MPBLR format used for computations as MPBLR(calc),
and we will call refer to its low-rank blocks as X(calc)Y (calc)T .

When the sets of precision formats used for storage and for computations are identical,
we do not need to perform actual data copies between the two formats, because they will
refer to the same data structure.

3.2. MIXED PRECISION AIMING FOR TIME GAINS 69

3.2.2 Application to the triangular solve

Algorithms

We apply the use of mixed precision for computations to the triangular solution phase
of the multifrontal method. We will consider both the forward elimination and the back-
ward elimination. Both steps are quite similar, and we could use the same techniques
for both of them. However, in the current MUMPS implementation, the forward solve is
performed in right-looking, and the backward solve is performed in left-looking.

We use Algorithms 1.5 and 1.6 for these two steps. The function prod (at lines 4 and 3
respectively) refers to the product of a block of the factors with a block of the right-hand
side (RHS). If the block of the factors is represented as low-rank, then this operation can
be seen as a product LR×FR, and it can be performed using Algorithm 3.1.

We now want to switch some of the computations of the forward elimination to mixed
precision, in order to obtain Algorithm 3.5. Therefore, we now use mixed precision for
the LR×FR products (function prod), as in Algorithm 3.2. However, this kernel needs
each block Bj to be copied in every precision format: we do so at line 3. We only need to
keep copies of one block at a time, which means that the extra memory cost caused by
these copies will be negligible.

We also add mixed precision in the left-looking algorithm doing the backward elim-
ination, and we obtain Algorithm 3.6. In left-looking, the updates of a block can be
considered as doing the operation Bi ← Bi −

∑
j UijBj. It requires a sum of LR×FR

products (via function sum_prods), and it may be computed using one of the algorithms
presented previously.

In a first implementation, we used Algorithm 3.3 in order to compute such a sum: the
terms are computed independently, with a large number of conversions needed. Another
alternative would be to use Algorithm 3.4 for sum_prods, summing together contributions
in each precision format.

In both cases we choose to keep copies of each block of the RHS in all precision formats,
so that we do not need to cast it on-the-fly before using it. The number of conversions is
reduced, but the memory is increased if we are using a large number of right-hand sides.

Algorithm 3.5 Forward elimination
(Right-looking algorithm, optionally with
mixed precision)

1: for j = 1 to qfs do
2: Bj ← L−1

jj Bj

3: Copy Bj in precisions u2, · · · , up

4: for i = j + 1 to q do
5: Bi ← Bi − prod(Li,j, Bj)
6: end for
7: end for

Algorithm 3.6 Backward elimination
(Left-looking algorithm, with mixed precision)

1: Copy the whole RHS B in precisions
u2, · · · , up

2: for i = qfs to 1 do
3: Bi ← Bi − sum_prods(Ui1, · · · , Uiq, Bj)
4: Bi ← U−1

ii Bi

5: end for

70 CHAPTER 3. THE MULTIFRONTAL METHOD IN MIXED PRECISION

Results

We evaluate the performance of the mixed-precision solve on matrix Queen_4147 from
Table 4.3.We report in Tables 3.5 and 3.6 the time performance of the forward elimination
and backward elimination respectively for different solve variants, for three values of nrhs.

We begin by analyzing the single RHS case (nrhs = 1). This is rather critical for EDF
applications since the solve phase (whose performance can be critical when MUMPS is
used as a preconditioner) often involves a unique RHS.

We first consider the MPBLR variants presented in the previous section, referred to
as sto2∗ and sto7∗ here. Having the mixed-precision block-admissibility activated, these
two variants minimize the memory cost of the factorization given their respective sets of
precisions (2 and 7 precisions), which makes them interesting when reducing the memory
is a major concern. However, the time spent in both forward and backward substitutions
have been increased drastically, as we had already seen in Table 3.2. Using 7 precisions
formats, this time is increased by a factor 2.75.

However, we may want to accelerate the computations of the solve by performing them
in mixed precision instead of double precision. This is what we do in the next two solve
variants. When using 7 precisions for storage, we successfully accelerated the computa-
tions by adding mixed-precision computations, as can be seen in column sto7∗+calc of
both tables: the time for forward elimination has been reduced by 20%, and the time
for backward elimination by 21%. However, both steps tend to be still slower than doing
everything in double precision (column BLR).

If we allow to slightly compromise the storage reductions by using a set of 2 precisions
instead of 7, then we obtain rather impressive time gains. The time for forward elimination
has been reduced by 56% and the time for backward by 56% when doing computations in
mixed precision (sto2∗+calc compared to sto2∗). Indeed, we do not need to convert and
copy the MPBLR matrix from one format to another using this variant: the same data
structure is kept for both storage and computation, which proves to be more efficient. In
terms of time performance, we even outperform the double-precision variant.

Finally, we analyze the multiple RHS case (nrhs ≫ 1). Tables 3.5 and 3.6 show that
the gain achieved with mixed precision is not as good as with a single RHS. In certain
cases, it may even be slightly slower than double precision, especially for the backward
elimination. The most likely explanation is that in the multiple RHS case, the data
movements associated with the RHS are much more costly and become the bottleneck
of the BLR triangular solve. Thus, reducing the size of the LU factors does not have an
effect as important as in the single RHS case. In fact, this observation is even true when
comparing the performance of double precision BLR solve with that of the FR solve: since
the RHS is not compressed, the effect of BLR compression on the time performance is
also much less significant with multiple RHS. For example, on matrix Queen_4147 the
double precision BLR solve is 1.6× faster than the FR one with nrhs = 1, whereas it is
only 1.2× faster with nrhs = 250.

3.2. MIXED PRECISION AIMING FOR TIME GAINS 71

matrix nrhs time for forward elimination (s)
FR BLR sto2∗ sto7∗ sto2∗+calc sto7∗+calc

Queen_4147 1 0.41 0.25 0.50 0.69 0.22 0.55
(ε = 10−10) 30 1.40 0.67 0.94 1.2 0.65 1.04

250 5.40 4.37 4.95 5.3 4.47 5.05

Table 3.5: Times for forward elimination for the following variants:

- FR: full-rank

- BLR: in double precision

- sto2∗ : using MPBLR with 2 precisions for storage and double precision for compu-
tations in solve

- sto7∗ : using MPBLR with 7 precisions for storage and double precision for compu-
tations

- sto2∗+calc : using MPBLR with 2 precisions for storage and for computations

- sto7∗+calc : using MPBLR with 7 precisions for storage and MPBLR with 2 preci-
sions for computations

The admissibility condition is chosen so that the storage would be minimal.

matrix nrhs time for backward elimination (s)
FR BLR sto2∗ sto7∗ sto2∗+calc sto7∗+calc

Queen_4147 1 0.71 0.46 0.93 1.26 0.41 0.99
(ε = 10−10) 30 1.22 0.91 1.42 1.77 0.99 1.59

250 5.24 5.45 6.38 6.82 7.09 7.73

Table 3.6: Times for backward elimination for the same variants as in Table 3.5

In the next chapter, this observation motivates us to rethink the BLR solve algorithm
in the context of many right-hand sides.

Block-admissibility condition

In most previous experiments presented earlier in this chapter, we have used the
mixed-precision admissibility condition when handling mixed precision, be it for storage
or computations (with the exception of Table 3.2). In fact, this condition somewhat
optimizes the cost for storing data using a given set of precision formats, while introducing
a certain overhead.

We analyze the complexity of a LR×FR product involving a block of the RHS. The
matrix sizes involved are m× r and r×n for the low-rank parts, and n×nrhs for the RHS
block. Around 2(m + n)rinrhs operations are performed in precision number i. Having
defined c′i the time cost for performing an operation in precision format i (compared to
doing it in precision 1), and r̃′ =

∑p
i=1 c

′
iri, the weighted number of flops needed for

the LR×FR product in mixed precision are f̃ ′ = 2(m + n)r̃′nrhs. After comparing it to

72 CHAPTER 3. THE MULTIFRONTAL METHOD IN MIXED PRECISION

matrix time for forward elimination (s)
MPBLR(calc) MPBLR(calc)∗ BLR

Queen_4147 (ε = 10−10) 0.229 0.217 0.248

Table 3.7: Impact of the mixed-precision block-admissibility condition on the time spent
in the forward solve with 1 RHS. MPBLR(calc)∗ uses the block-admissibility condition
suited to mixed precision, whereas MPBLR(calc) does not.

matrix time for backward elimination (s)
MPBLR(calc) MPBLR(calc)∗ BLR

Queen_4147 (ε = 10−10) 0.336 0.408 0.461

Table 3.8: Impact of the mixed-precision block-admissibility condition on the time spent
in the backward solve with 1 RHS. MPBLR(calc)∗ uses the block-admissibility condition
suited to mixed precision, whereas MPBLR(calc) does not.

the complexity of the FR×FR operation, we reach the condition for a block to be worth
storing as low-rank in terms of time complexity:

(m+ n)r̃′ < mn (3.3)

This condition is very similar to the admissibility condition for mixed-precision storage
(Equation 3.2), except for the fact that the coefficients c′i refer to the gain in speed from
format ui compared to u1, instead of the gain in storage. However, it is a rather reasonable
approximation to consider that ∀i, ci = c′i, i.e., the time spent in a computation using a
certain precision format is proportional to the space needed to store it. In particular,
single precision is supposed to be twice as fast as double precision in our case, which
means that c′2 = 0.5c′1 and both mixed-precision admissibility conditions are identical:
there is no need to choose.

We now want to assess whether or not these theoretical time complexities are close to
the reality. More precisely, we want to confirm whether or not the resulting choice of a
mixed-precision block-admissibility condition is the right one in practice. Therefore, we
compare the variants MPBLR(calc) (uniform-precision admissibility) and MPBLR(calc)∗

(mixed-precision admissibility) in Tables 3.7 and 3.8, using a single RHS.
For the forward solve, it is faster to use the admissibility for mixed precision: we

obtain a time reduction of 5%. This does not seem to be the case for the backward solve
(yet), and further work may be needed.

3.2.3 Towards an application to the factorization

After having successfully accelerated the BLR triangular solution by performing com-
putations in mixed precision, we now want to do so for the factorization as well. We
will see how to adapt the algorithms presented in chapter 2 to the implementation of the
factorization of a frontal matrix. In particular, we will reuse and generalize the techniques

3.2. MIXED PRECISION AIMING FOR TIME GAINS 73

presented in section 3.2.1.
Given an algorithm performing the factorization of a frontal matrix, we want to modify

a certain number of its kernels by switching them to mixed precision. Those kernels
are rather independent from each other, so it is possible to only switch some of them
when modifying a uniform-precision implementation. We can therefore obtain a series of
implementations in which mixed precision has been added gradually. One advantage of
this method is that it allows for a progressive implementation, in which we can check that
everything works as intended after the modification of each kernel. Another advantage is
that we can make sure that switching each of those kernels introduces some time gains, and
quantify them. Indeed, there is no guarantee that all kernels are worth switching to mixed
precision, especially for the most complex ones such as LR×LR, which has the lowest
granularity. In the worst-case scenario, it might be beneficial to use an implementation in
which some kernels are kept in uniform precision, if it proves to be faster in some cases.

Factorization kernels

We may add mixed precision in the following kernels, independently:

• The LR×FR and FR×LR products

• The Solve step (so-called TRSM): as argued in chapter 2, the step X ← L−1X

may be switched to mixed precision: if X = [X1 · · ·Xp], we perform each operation
Xi ← L−1Xi in precision i.

• The LR×LR products

When performing a product between a LR block and a FR block, we could reuse the
algorithms presented in section 3.2.1. However, we may also want the same kernel to be
able to perform a FR×LR product since it is very similar. Therefore, we are inclined to
describe a more generic approach, where we want to perform an operation A×B, where
only one matrix among A and B is low-rank. We decompose this kernel into several steps:

• Do the intermediary product in order to get a mixed-precision low-rank approxima-
tion Z ×W of the result, via the function computeW . One of these two matrices is
the result of the product between the full-rank block and the closest low-rank part
of the other block.

• Compute the outer-product Z ×W .

Due to implementation details chosen for MUMPS, we sometimes have to deal with the
transpose of a block instead of the original block. Therefore, while describing a generic
implementation of a mixed-precision product between a LR block and a FR block, we
might as well allow any of the two blocks to be transposed.

74 CHAPTER 3. THE MULTIFRONTAL METHOD IN MIXED PRECISION

As for the LR×LR kernel, its implementation details may vary. For example, in the
so-called inner product we may compute Wij = Y T

AiXBj in precision max(i, j).
In all cases, we need additional conversions before performing LR×LR products on a

block : the part Xi should be copied in each lower precision format k > i.
Similarly to the case of a LR×FR product, we notice that a LR×LR product may

be split into two steps: (i) a function computeW , which includes the inner-product and
the middle-product, returns a low-rank approximation of the result; and then (ii) an
outer-product, which is similar in every way to the one performed in the LR×FR kernel.

Right-looking and left-looking factorizations

The factorization may be done in right-looking. In the implementation of MUMPS,
this particular case happens when a front is split between several MPI processes: as
explained in section 3.1.7, a worker process will perform the updates of its blocks in
right-looking, treating a block-row as soon as it is received from the master process.

We may use some of the kernels in mixed precision as explained above. Note that
doing so requires the low-rank blocks to have been copied in mixed precision beforehand.
If the LR×FR and FR×LR products are performed in mixed precision, then the FR
blocks should also be copied in all other precision formats as well. If the TRSM step is
performed in mixed precision, then the blocks Lkk and Ukk of the factors should be copied
to all precision formats. In case LR×LR products are performed, additional conversions
have to be performed: Xi and Yi should be copied to all precision formats lower than i.

It seems worthwhile to perform all these copies and conversions beforehand: indeed,
each block will be reused many times.

The same can be applied to a left-looking factorization, but there are a few additional
possible optimizations:

• When computing a sum of outer-products in mixed precision, we may once again
reuse Algorithm 3.4. This way, all contributions in precision k will be summed
together, thus reducing the number of conversions. This is very similar to what
was done in the case of the solution phase, except for the fact that we now add the
contributions of LR×FR, FR×LR and LR×LR products at once.

• A very promising perspective would be to adapt LUA (low-rank updates accumu-
lation) to the use of mixed precision. As explained in section 1.2.3, it is possible
to consider a sum of outer-products

∑
j Z

(j)W (j) as a product of two larger ma-
trices [Z(1) · · ·Z(q)] × [W (1); · · · ;W (q)]. Although the number of operations per-
formed is left unchanged, the granularity of the matrix operations is improved
by doing this, resulting in time reductions. We could adapt the principle be-
hind Algorithm 3.4 in order to compute all the contributions in precision k as one
larger matrix product, performed in precision k:

∑
j Z

(j)
k W

(j)
k would be replaced by

[Z
(1)
k · · ·Z

(q)
k]× [W

(1)
k ; · · · ;W (q)

k].

3.3. CONCLUSION 75

By doing LUA in mixed precision, we would improve the very small granularity
induced by the use of mixed precision. In particular, the ranks of the parts in
precision u1 are often small. Some may be empty and are skipped, but there also
are many such blocks having a rank r1 of 1 or 2: the time performance of such
matrix products is rather poor. By performing low-rank updates accumulations on
each precision format, this aspect should be improved.

Yet another perspective would be to compute the inner-products using LUA as well.
Indeed, this kernel is the one whose granularity was the most reduced by the use
mixed precision, each matrix product having been split into 4.

Dissociating storage and computation formats

Contrary to the case of the solution phase, combining mixed precision for computations
and storage is rather easy, and its overhead should be negligible. We just need to convert
the MPBLR(calc) format to an MPBLR(sto) once at the end of the factorization of
a frontal matrix. If the precision formats used for computations and for storage are
identical, there is no need to perform actual data copies: we can once again reuse the
same data structure.

3.3 Conclusion

In this chapter, we adapted the multifrontal method in order to benefit from the
theoretical performance gains from chapter 2. We first considered the BLR compression
in mixed precision (MPBLR) as a storage format only, in order to reduce the size of the
factors and the memory peak of the factorization. We succeeded in obtaining reductions
of the LU factor size up to 38%, without impacting too much the factorization time nor
the error of the solution. We also obtained reductions in the volume of communications up
to 50%, which can be a critical aspect when solving very large linear systems on massively
parallel architectures.

We also described how to adapt the different steps of the multifrontal method in
order to obtain speedups from the use of mixed-precision computations. We implemented
the modifications of the triangular solve step. We obtained time reductions up to 12%
compared to the standard BLR algorithm, and 20% compared to the mixed-precision
version aiming for storage gains only, while keeping the same storage gains as the latter.

In future work we will turn to the implementation of computations in mixed precision
during the BLR factorization phase of the multifrontal method, as described in section 3.2,
and to obtain actual time gains. A preliminary study of the number of flops eligible for
mixed precision seems to indicate that its potential for acceleration is higher than for
storage. For example, as illustrated in figure 3.5, the potential factor of acceleration from
the use of mixed precision is 1.9× for matrix Poisson224 with ε = 10−9, whereas the LU
storage reduction is only 1.4×.

76 CHAPTER 3. THE MULTIFRONTAL METHOD IN MIXED PRECISION

(a) Size needed for storing the LU factors.

(b) Expected time for the factorization. Similarly to section 2.5, such a value is based
on the weighted flops, i.e. take the hypothesis that flops in single precision are twice
as fast as flops in double precision.

Figure 3.5: Estimations of the size of the LU factors and the time spent in the mul-
tifrontal factorization, for several matrices obtained from industrial applications. The
green bars correspond to the complexity of the MPBLR variant using 2 precision formats
(fp64+fp32), while the blue bars correspond to the complexity added by not using mixed
precision. Each group of 3 bars corresponds to values of ε of 10−6, 10−9 and 10−12 respec-
tively. The percentage below the matrix name indicates which percentage of the entries
belong to BLR fronts: the higher the value, the more efficient BLR compression is on this
matrix. More importantly, the number above each bar (e.g. ×1.8) indicates the factor of
gain expected for the mixed-precision variant, compared to using uniform precision.

Chapter 4

Hybrid algorithm for solve

4.1 Introduction

This chapter is concerned with the performance of the triangular solve phase, which is
critical in several contexts. Indeed, the BLR factorization is often used as a preconditioner
for iterative solvers (Amestoy et al., 2023c; Higham and Mary, 2019), which require several
iterations and thus solves. Moreover, even in a pure direct solver context, some of the
real-life applications where BLR solvers have been the most successful are in the field of
geosciences (Operto et al., 2023; Amestoy et al., 2016; Shantsev et al., 2017; Mary, 2017),
where we need to solve a system

AX = B

with many right-hand sides (RHS): B ∈ Rn×nrhs is a (possibly sparse) matrix with nrhs

columns, where nrhs is typically in the thousands or tens of thousands. In this case, the
triangular solves LY = B and UX = Y are the bottleneck of the computation.

This work started from the observation, made in section 3.2.2, that the time gains from
using computations in mixed precision is underwhelming in the case of multiple RHS (see
Table 3.5). While trying to understand what we initially thought to be a performance
issue specific to mixed precision, we realized that a something similar arises in uniform
precision. This is illustrated in Table 4.1, which provides the time for the forward solve
LY = B both for the BLR and FR solvers (i.e. with and without compression), depending
on the number of RHS, for a few problems of interest. For a single RHS (nrhs = 1), the BLR
compression reduces the solve time by significant factors for all problems. However, with
multiple RHS (nrhs = 250), the speedup achieved thanks to BLR compression becomes
much smaller for all problems (for example, for the Poisson120 problem, the 3.9× speedup
with nrhs = 1 becomes only a 1.7× speedup with nrhs = 250).

Therefore, this motivated us to rethink the BLR solve algorithms. The key observation
is that with BLR compression, the performance of the triangular solve is memory bound,
even for multiple RHS. Therefore, the performance of the BLR solve is mainly determined
by its communication costs. Crucially, while BLR compression reduces the size of the LU
factors and therefore the cost of accessing them, it does not reduce the size of the RHS,

77

78 CHAPTER 4. HYBRID ALGORITHM FOR SOLVE

Table 4.1: Some motivating examples: forward solve time (s) for the so-called full-rank
(FR, with no compression) and BLR solvers on 2× 18 cores.

nrhs = 1 nrhs = 250
Matrix FR BLR Ratio FR BLR Ratio

Poisson120 0.24 0.06 3.9× 1.37 0.78 1.7×
Geoazur100 0.23 0.10 2.4× 2.31 1.95 1.2×
atmosmodl 0.14 0.06 2.3× 0.67 0.52 1.3×
Geo_1438 0.19 0.12 1.6× 1.51 1.35 1.1×
Queen_4147 1.69 0.38 4.5× 11.13 5.90 1.9×
Serena 0.20 0.12 1.6× 1.81 1.23 1.5×
Transport 0.15 0.06 2.6× 0.77 0.73 1.0×

which are uncompressed. The consequence is that when there are many RHS, the cost of
accessing them is likely to dominate the cost of accessing the LU factors, thereby reducing
(or even canceling) the performance benefits of the BLR compression.

The main contribution of this chapter is to overcome this limitation by proposing new
hybrid algorithms that reduce the number of accesses to the RHS and therefore the total
volume of communications. We did not consider the use of mixed precision in this chapter,
and all our experiments are therefore performed in uniform precision.

The rest of this chapter is organized as follows. After recalling some preliminaries
on the existing BLR solve variants in section 4.2, we describe in section 4.3 several novel
variants of the BLR solve that reduce its communication costs. We confirm that these new
variants are indeed communication-avoiding by performing a theoretical communication
volume analysis in section 4.4. To quickly analyze the performance of these new variants
and assess their potential, we first develop a simplified prototype code and present our
results on synthetic data in section 4.5. Based on these results, we implement a selected
subset of the most promising variants in the MUMPS solver and test their performance
on a range of real-life applications in section 4.6.

Throughout the chapter, we will discuss the case of the forward solve LY = B without
loss of generality. The algorithms and ideas proposed in this chapter also apply to the
backward solve UX = Y . For clarity of notation, we rename the forward solve LX = B
hereinafter. In our experiments with the MUMPS solver, we will measure the time spent
in the computations for the forward solve. The entire triangular solution phase of the
solver also consists of the backward solve and some additional non-computational parts
(data copies, etc.), whose cost represents a fixed overhead that is independent of the
algorithm variants considered in this chapter.

4.2. PRELIMINARIES AND NOTATIONS 79

4.2 Preliminaries and notations

4.2.1 Notations

With the multifrontal method, the forward solve LX = B amounts to a bottom-up
traversal of a tree whose nodes are associated with the frontal matrices. The solution X
of the global sparse problem is initialized to the right-hand side B. Then, at each node,
a partial forward elimination is performed with the corresponding frontal matrix. To be
specific, let L ∈ Rm×n be such a frontal matrix, with m ≥ n, and let X ∈ Rm×nrhs be the
rows of the solution X associated with the row variables of L. We denote as Lfs and Xfs the
top n×n subparts of L and X, respectively, and as Lcb and Xcb their bottom (m−n)×n

subparts. Lfs corresponds to the so called “fully summed” (FS) variables of the frontal
matrix; these variables are ready to be eliminated by computing Xfs ← L−1

fs Xfs, which
yields the final form of the solution Xfs. Lcb corresponds to the so-called “contribution
block” (CB) variables of the frontal matrix, which are not ready to be eliminated; for
these, the solution is merely updated as Xcb ← Xcb−LcbXfs. Xcb is not the final form of
the solution, it will be further updated by variables from other fronts, until the fronts that
have Xcb as fully summed variables are reached. More details about the frontal operations
performed and their context can be found in chapter 1.

When using BLR compression, the frontal matrix L is partitioned in q × qfs blocks
Lij ∈ Rb×b, with q = m/b, qfs = n/b, and where b denotes the block size (we assume for
simplicity of notation that it is the same for all blocks). The solution X is also partitioned
into q blocks Xi ∈ Rb×nrhs . Lfs is partitioned into qfs×qfs blocks and Lcb is partitioned into
qcb × qfs blocks, where qcb = q − qfs. The blocks Lij that are low-rank are approximated
as Lij ≈ UijV

T
ij , with Uij, Vij ∈ Rb×r, where r denotes the rank of the blocks (we again

assume for simplicity of notation that it is the same for all blocks).
We summarize below the notations used for a given front L and its corresponding part

of the solution X, which are illustrated in Figure 4.1. Note that these notations differ a
bit from those used in chapter 3.

• A, X , B, L, U : the matrix, solution, RHS, and LU factors associated with the global
sparse problem;

• A, X, B, L, U , the matrix, solution, RHS, and LU factors associated with a given
frontal matrix;

• m, the number of rows of L and X;

• n, the number of columns of L;

• nrhs, the number of columns of X (the number of right-hand sides);

• b, the block size;

• r, the rank of the low-rank blocks;

• Lij ∈ Rb×b, the (i, j)th block of L, and UijV
T
ij , its low-rank representation;

80 CHAPTER 4. HYBRID ALGORITHM FOR SOLVE

L X

FS variables:
qfs blocks

CB variables:
qcb blocks

r b

b

nrhs

b

Figure 4.1: A frontal BLR matrix L and its right-hand side X. For convenience we repeat
this figure, which was already present in section 1.2.3.

• Xi ∈ Rb×nrhs , the ith block of X;

• qfs = n/b : the number of block rows in the FS part, also the number of block
columns;

• qcb = (m− n)/b: the number of block rows in the CB part;

• q = qfs + qcb = m/b, the total number of block rows.

• We also define q = qfs(qfs − 1)/2 + qfsqcb, the total number of off-diagonal blocks in
L;

• FS = [1: qfs], the set of block indices for FS variables; and

• CB = [qfs + 1: q], the set of block indices for CB variables.

With the block partitioning defined above, the FS elimination Xfs ← L−1
fs Xfs leads to

the recurrence relation
Xi ← L−1

ii (Xi −
∑

j<i

LijXj) (4.1)

for i ∈ FS . The CB update Xcb ← Xcb − LcbXfs takes the form

Xi ← Xi −
∑

j≤qfs

LijXj (4.2)

for i ∈ CB . The BLR representation of L is exploited by computing LijXj in the above
expressions as Uij(V

T
ij Xj).

Computations (4.1) and (4.2) thus involve two types of tasks:

• update(i, j) for i ∈ FS ∪ CB and j ∈ FS verifying i > j: Xi ← Xi − Uij(V
T
ij Xj),

which can be performed only after trsm(j) has been completed; and

4.2. PRELIMINARIES AND NOTATIONS 81

• trsm(i) for i ∈ FS : Xi ← L−1
ii Xi, which can be performed only after update(i, 1),

. . . , update(i, i− 1) have all been completed.

There are therefore some dependencies between tasks but also some independent tasks
which can be performed in any order, possibly concurrently. We next describe two variants
using different orders.

4.2.2 Right-looking and left-looking variants

Algorithm 4.1 describes the right-looking (RL) variant, which performs the update(i, j)
tasks as soon as they are ready to be performed (eager approach): as soon as trsm(j) has
been completed, all the update(i, j) for i > j are immediately performed, as illustrated
in Figure 4.2.

Algorithm 4.1 Right-looking variant.
1: for j ∈ FS do
2: Xj ← L−1

jj Xj

3: for i > j do
4: Xi ← Xi − Uij(V

T
ij Xj)

5: end for
6: end for

L

X

Figure 4.2: Step j = 3 of Algorithm 4.1 (right-looking variant).

Conversely, Algorithm 4.2 describes the left-looking (LL) variant, which performs the
update(i, j) tasks as late as possible (lazy approach): for a given i, the update(i, j) are
delayed until they are all ready to be performed together, as illustrated in Figure 4.3.

The RL and LL variants perform the same computations in two different orders. In
a sequential context, it is not clear whether one variant can be expected to yield better
performance than the other. However, in a parallel context, a major difference appears.
The RL variant can be parallelized efficiently by executing the loop on block rows (line 3
of Algorithm 4.1) in parallel, since all update(i, j) tasks are independent for a fixed j.
This approach is usually efficient because it does not lead to any conflict and the size

82 CHAPTER 4. HYBRID ALGORITHM FOR SOLVE

Algorithm 4.2 Left-looking variant.
1: for i ∈ FS do
2: for j < i do
3: Xi ← Xi − Uij(V

T
ij Xj)

4: end for
5: Xi ← L−1

ii Xi

6: end for
7: for i ∈ CB do
8: for j ∈ FS do
9: Xi ← Xi − Uij(V

T
ij Xj)

10: end for
11: end for

L

X

(a) Step i = 3 of Algorithm 4.2: Update
of an FS block.

L

X

(b) Step i = 5 of Algorithm 4.2: Update
of a CB block.

Figure 4.3: Left-looking variant.

of the loop, q − j, is large enough to expose a high amount of concurrency. In contrast,
the parallelization of the LL variant is more difficult. The CB part of the update can be
efficiently parallelized by executing the loop on the block-rows (line 7 of Algorithm 4.2)
in parallel, since the updates for different block-rows are independent and the size of the
loop, qcb, is large enough. However, for the FS part of the computation, the only loop
that can be executed in parallel is the loop on the block columns (line 2 of Algorithm 4.2),
which presents two difficulties. First, it requires a reduction operation to avoid conflicts
since all update(i, j) tasks for a fixed i modify the same block Xi. Second, the loop is
only of size i− 1, with i ≤ qfs, so that there is very little concurrency in the first steps of
the loop, and even for the later steps because qfs is typically much smaller than qcb.

4.2.3 Parallelism in multifrontal solve

In the multifrontal solution, we must carry out several partial solves with frontal
matrices following a bottom-up traversal of a tree. As a result, two types of parallelism
can be exploited, as mentioned in section 1.1.3.

4.3. NEW HYBRID VARIANTS OF THE BLR TRIANGULAR SOLVE 83

• Node parallelism consists in processing a given front in parallel, by parallelizing the
partial solve as described above for the RL and LL variants. The amount of work
required by one partial solve is usually sufficient to be efficiently parallelized only
for the largest fronts, which are at the top of the tree.

• Tree parallelism consists in processing multiple fronts on different branches concur-
rently, using only one process per front. This allows for efficiently parallelizing the
bottom of the tree, which consists of many independent fronts of small size.

Since node and tree parallelism are more efficient for the top and bottom of the tree,
respectively, the best approach is to combine both types of parallelism. One possibility
to do so is to exploit tree parallelism for the bottom layers of the tree, and switch to node
parallelism after a given layer (so-called the “L0” layer) is reached. This L0 approach is
implemented in MUMPS (L’Excellent and Sid-Lakhdar, 2014).

With this approach, the frontal triangular solve algorithms described above can be
called either in a sequential setting (corresponding to fronts under the L0 layer) or in a
parallel one (corresponding to fronts above the L0 layer). Both settings are therefore of
interest in the following.

An additional source of parallelism lies in the RHS: these can be partitioned into
blocks and all blocks can be handled concurrently. This type of parallelism must be
used with care because partitioning the RHS in excessively small blocks might degrade
performance due to the small granularity of computations. In this work we focus on
exploiting parallelism within a single block of RHS.

4.3 New hybrid variants of the BLR triangular solve

4.3.1 A novel hybrid variant

As mentioned in section 4.1, the performance of the BLR solve is underwhelming when
dealing with many RHS. Based on the description of the RL and LL variants, we can see
that one common weakness of both variants is that they require multiple accesses to the
entire RHS. Indeed, at each step the RL variant only reads one block of the RHS, but
needs to write all the bottom part of the RHS. Conversely, at each step the LL variant
only writes one block, but needs to read all the top part of the RHS. We will precisely
measure the volume of communications in the next section, but it is clear that when
the number of RHS nrhs is large, the accesses to the RHS can represent a much larger
volume than the accesses to the BLR factors, and thus constitute the bottleneck of the
computation.

Motivated by this observation, we propose in this section a novel BLR solve variant
that is based on a hybrid scheme that only needs to read and write one block of the
RHS per step. The main idea is to perform the read operations following a right-looking

84 CHAPTER 4. HYBRID ALGORITHM FOR SOLVE

scheme, and the write operations following a left-looking scheme. To do so, we divide the
update(i, j) task Xi ← Xi − Uij(V

T
ij Xj) into two separate subtasks:

• updateV(i, j): Wij = V T
ij Xj;

• updateU(i, j): Xi ← Xi − UijWij.

The updateV(i, j) tasks require to read the block Xj of the RHS; the updateU(i, j) tasks
require to write the block Xi of the RHS. Thus, the idea of this hybrid variant is to
perform the updateV tasks with a right-looking pattern (accessing Xj once and executing
immediately all tasks for this j) and the updateU tasks with a left-looking pattern (waiting
that all tasks for a given i are ready so as to access Xi only once). This is accomplished
at the cost of having to store in a temporary workspace the Wij matrices for i > j (Wij

is created at step j and consumed at step i). However, these Wij matrices are of small
dimension r × nrhs, and so the cost of storing and accessing them should be small.

This new hybrid variant is outlined in Algorithm 4.3 and illustrated in Figure 4.4.

Algorithm 4.3 Hybrid variant.
1: for k ∈ FS do
2: for j < k do
3: Xk ← Xk − UkjWkj

4: end for
5: Xk ← L−1

kkXk

6: for i > k do
7: Wik = V T

ikXk

8: end for
9: end for

10: for k ∈ CB do
11: for j ∈ FS do
12: Xk ← Xk − UkjWkj

13: end for
14: end for

4.3.2 Parallelism-driven hybrid variant

One issue with the hybrid variant of Algorithm 4.3 is that it suffers from the same
problems as the left-looking variant in a parallel setting: the updateU tasks corresponding
to FS blocks of the RHS are performed following a left-looking pattern (loop on line 2 of
Algorithm 4.3), which is of small size and requires a reduction.

To overcome this issue, we propose in Algorithm 4.4 a modified hybrid variant that
is more amenable to a parallel execution. The idea is to use the hybrid scheme for the
CB part of the computation only, which can be efficiently parallelized with a parallel loop
on the block rows (line 11 of Algorithm 4.4), and to keep the efficiently parallelizable
right-looking scheme for the FS part (with a parallel loop on line 3). Since the FS part is
typically much smaller than the CB part, we can still expect to retain most of the benefits
associated with the use of the hybrid scheme.

4.3. NEW HYBRID VARIANTS OF THE BLR TRIANGULAR SOLVE 85

L

X

W

(a) updateU tasks for k = 3: access Ukj for
j < k in left-looking, and overwrite the FS
block Xk.

L

X

W

(b) updateV tasks for k = 3: access Vik for
i > k in right-looking. Each product V T

ikXk

is stored in Wik.

L

X

W

(c) UpdateU for k = 5 : access Ukj for j ∈ FS
in left-looking, and overwrite the CB block
Xk.

Figure 4.4: Hybrid variant.

Algorithm 4.4 Parallelism-driven hybrid variant.
1: for k ∈ FS do
2: Xk ← L−1

kkXk

3: for i > k do
4: if i ∈ FS then
5: Xi ← Xi − Uik(V

T
ikXk)

6: else
7: Wik = V T

ikXk

8: end if
9: end for

10: end for
11: for k ∈ CB do
12: for j ∈ FS do
13: Xk ← Xk − UkjWkj

14: end for
15: end for

4.3.3 Low-rank updates accumulation

The hybrid variant described above minimizes the number of accesses to the RHS in
order to reduce the volume of communications. It also increases arithmetic intensity of

86 CHAPTER 4. HYBRID ALGORITHM FOR SOLVE

the BLR solve, defined as the ratio between the number of flops (which is unchanged for
all variants) and the volume of communications. In this section we now propose a further
modification of the BLR solve algorithm to further increase its arithmetic intensity. The
idea is based on using low-rank updates accumulation (LUA), that is, grouping together
low-rank updates on the same block rows and/or block columns and applying them with
a single matrix multiplication to increase the granularity of the computation.

As explained in section 1.2.3, LUA can be used to improve the performance of the BLR
factorization. We now discuss how to adapt this LUA technique to the BLR solve. The
situation is more complicated due to the presence of the RHS, which is not in low-rank
form. In fact, we will see that LUA cannot be fully used in either the RL or LL variants
of the BLR solve. The hybrid variant allows us to take full advantage of LUA, as we now
explain.

updateU accumulation: the updateU(k, j) tasks Xk ← Xk − UkjWkj can be grouped
together for all j as

Xk ← Xk −
J∑

j=1

UkjWkj = Xk −
[
Uk1 · · ·UkJ

][
W T

k1 · · ·W T
kJ

]T
, (4.3)

with J = k− 1 for the FS updates and J = qfs for the CB updates. The sum in (4.3) can
be efficiently evaluated using only one matrix–matrix product, instead of J smaller ones.
In order to do so, all Ukj, j ≤ J , must be allocated contiguously in memory, as well as all
Wkj, j ≤ J .

updateV accumulation: the updateV(i, k) tasks Wik = V T
ikXk can be grouped together

for all i as [
W T

i0k
· · ·W T

qk

]T
=

[
Vi0k · · ·Vqk

]T
Xk (4.4)

with i0 = k + 1. This operation can also be performed using only one matrix–matrix
product instead of q− k. In order to do so, all Vik, i > k, must be allocated contiguously,
as well as all Wik, i > k. Note that this allocation of the “W ” workspaces is not compatible
with the one needed for the updateU accumulation: updateU requires each block row to be
a contiguous array, whereas updateV requires the same of each block column. As a result,
if we wish to accumulate both types of tasks, the “W ” arrays need to be transformed
(that is, copied) from the updateU allocation scheme to the updateV one during the
computation.

Note that the updateU tasks can only be accumulated with a left-looking scheme: thus,
the RL variant can only benefit from the updateV accumulation. Conversely, the updateV
tasks can only be accumulated with a right-looking scheme, so that the LL variant can
only benefit from the updateU accumulation. The hybrid variant uses the right-looking
scheme for the updateV tasks and the left-looking scheme for the updateU tasks: it can
thus benefit from both LUA strategies.

4.4. COMMUNICATION VOLUME ANALYSIS 87

4.4 Communication volume analysis

In this section we develop a theoretical communication analysis that aims at measuring
the total volume of communications required by the different BLR solve variants. In
particular we seek to prove that the hybrid variant can significantly reduce the volume of
accesses to the RHS, which should provide a benefit in the case where nrhs is large.

To perform the analysis, we use a simple model of a two-level memory hierarchy: a
fast but limited memory (such as a cache) and an unlimited but slow memory (such as
RAM). To simplify, we assume that we have control over the transfers of data between the
two levels of memory, that is, that we can choose which data are discarded from the fast
memory to make space for other data that we need to load from the slow memory. We
also assume that the fast memory is large enough to accommodate all the data required to
perform any given update(i, j) or trsm(j) tasks (essentially one BLR block and two RHS
blocks, plus any temporary workspace associated with the computation). Conversely we
assume that the fast memory is not large enough to accommodate all the data needed to
perform more than one of these tasks, so that after one task is completed all the data
required by the next task that were not already used by the previous task need to be
loaded from the slow memory.

Under this model, we compute the volume of data that has to be transferred from
the slow memory to the fast one for each BLR solve variant. This analysis provides an
estimate of the cost of each variant, since the BLR solve tends to be a memory-bound
computation in most practical cases.

Throughout the analysis, we distinguish three types of transfers: read-only (RO: the
data are used but not modified), write-only (WO), and read/write (RW: existing data are
used and modified). As an example, in the operation C ← C −AB, A and B require RO
transfers and C requires a RW transfer, whereas in the operation C = AB, C requires a
WO transfer.

4.4.1 Analysis

Right-looking variant At each step j ∈ FS , the RL variant (Algorithm 4.1) requires
the following transfers:

• trsm(j) reads the diagonal block Ljj and reads/writes the RHS block Xj → b2 RO
transfers and bnrhs RW transfers;

• each update(i, j) for i > j reads the BLR block UijV
T
ij ; Xj is also needed but is

already in the fast memory → 2(q − j)br RO transfers; each update(i, j) also reads
and writes the RHS block Xi → (q − j)bnrhs RW transfers.

Summing over all steps j ∈ FS , the RL variant therefore requires a total volume of
communications of

• 2qrb+ qfsb
2 RO transfers,

88 CHAPTER 4. HYBRID ALGORITHM FOR SOLVE

• qbnrhs + qfsbnrhs RW transfers,

where we recall that q = qfs(qfs − 1)/2 + qfsqcb denotes the total number of off-diagonal
blocks in L.

Left-looking variant At each step i ∈ FS , the LL variant (Algorithm 4.2) requires the
following transfers:

• each update(i, j) for j < i reads the BLR block UijV
T
ij and the RHS block Xj →

(i − 1)(2br + bnrhs) RO transfers; each update(i, j) also reads and writes the RHS
block Xi, but it only needs to be loaded once and can then be kept in the fast
memory for all subsequent updates → bnrhs RW transfers.

• trsm(i) reads Lii; it also reads and writes Xi, which is already in the fast memory
from the previous updates → b2 RO transfers.

Then, at each step i ∈ CB , it requires the following transfers:

• each update(i, j) for j = 1: qfs reads the BLR block UijV
T
ij and the RHS block Xj →

qfs(2br+ bnrhs) RO transfers; each update(i, j) also reads and writes the RHS block
Xi, but it only needs to be loaded once and can then be kept in the fast memory
for all subsequent updates → bnrhs RW transfers.

Summing over all steps i ∈ FS ∪ CB , the LL variant therefore requires a total volume of
communications of

• 2qrb+ qbnrhs + qfsb
2 RO transfers,

• qbnrhs RW transfers.

Hybrid variant At each step k ∈ FS , the hybrid variant (Algorithm 4.3) requires the
following transfers:

• updateU(k, j) for j < k reads Ukj and Wkj → (k − 1)(b + nrhs)r RO transfers;
updateU(k, j) also reads/writes Xk, which only needs to be loaded once → bnrhs

RW transfers;

• trsm(k) reads Lkk; Xk is already in the fast memory → b2 RO transfers;

• updateV(i, k) for i > k reads Vik and Xk, the latter still being in the fast memory;
it also writes Wik → (q − k)br RO transfers and (q − k)nrhsr WO transfers.

The following additional transfers are then required at each step k ∈ CB :

• updateU(k, j) for j ∈ FS reads Ukj and Wkj→ qfs(b+nrhs)r RO transfers; updateU(k, j)
also reads/writes Xk, which only needs to be loaded once → bnrhs RW transfers.

Summing over all steps k ∈ FS ∪CB , the hybrid variant therefore requires a total volume
of communications of

4.4. COMMUNICATION VOLUME ANALYSIS 89

• 2qrb+ qrnrhs + qfsb
2 RO transfers,

• qrnrhs WO transfers,

• qbnrhs RW transfers.

Parallelism-driven hybrid variant Finally, we compute the communication volume
of the parallelism-driven hybrid variant (Algorithm 4.4), which is obtained by combining
the RL volume for the FS part of the computation with the hybrid volume for the CB
part. At each step k ∈ FS , the parallelism-driven hybrid variant requires the following
transfers:

• trsm(k) reads Lkk and reads/writes Xk → b2 RO transfers and bnrhs RW transfers;

• update(i, k) for i > k and i ∈ FS reads Uik and Vik; it also reads Xk which is already
in the fast memory; and finally it also reads/writes Xi → 2(qfs − k)br RO transfers
and (qfs − k)bnrhs RW transfers;

• updateV(i, k) for i ∈ CB reads Vik and Xk, the latter still being in the fast memory;
it also writes Wik → qcbbr RO transfers and qcbnrhsr WO transfers.

The following additional transfers are then required at each step k ∈ CB :

• updateU(k, j) for j ∈ FS reads Ukj and Wkj; it also reads/writes Xk, which only
needs to be loaded once → qfsbr + qfsnrhsr RO transfers and bnrhs RW transfers.

Summing over all steps k ∈ FS ∪ CB , the parallelism-driven hybrid variant therefore
requires a total volume of communications of

• 2qrb+ qfsqcbrnrhs + qfsb
2 RO transfers,

• qfsqcbrnrhs WO transfers,

• (q + qfs(qfs − 1)/2)bnrhs RW transfers.

4.4.2 Discussion

First, we note that the RL and LL variants are not completely equivalent in terms of
communications: while they require the same overall volume regardless of transfer type,
our analysis shows that qbnrhs RW transfers in the RL variant have been replaced with
the same volume of RO transfers in the LL variant. Therefore, in a context where RW
transfers are more costly than RO ones the LL variant might outperform the RL one, at
least in a sequential environment. This could for example occur if a RW transfer requires
a first transfer from the slow to the fast memory and then a second transfer in the other
direction.

We now seek to determine when the hybrid variant requires less communications than
the LL one. To do so, we must make an assumption on the relative cost of RO, WO, and
RW transfers. Under the simplifying assumption that RO and WO transfers are equally

90 CHAPTER 4. HYBRID ALGORITHM FOR SOLVE

costly, and neglecting lower order terms in the expression of the communication volume,
we obtain a ratio between the LL volume and the hybrid volume approximately equal to

2qrb+ 2qrnrhs

2qrb+ qbnrhs

=
1 + nrhs/b

1 + nrhs/2r
. (4.5)

Thus the condition for the hybrid variant to require less communications than the LL one
is 2r ≤ b, which we can expect to be always satisfied, since it corresponds to the condition
for a block to be low-rank (if r > b/2, the block requires less storage if represented as a
full-rank block: see Equation 2.26). We can thus conclude that the hybrid variant should
always communicate less than the LL one.

A more important question is when can we expect the hybrid variant to communi-
cate much less than the LL one: that is, when is ratio (4.5) much less than 1? In the
regime where nrhs/2r is small (just one or few RHS), the ratio (4.5) is close to 1. The
hybrid variant therefore does not significantly reduce the volume of communications for
small numbers of RHS. However, in the regime where nrhs/2r ≫ 1, the ratio (4.5) is
approximately equal to 2r/nrhs + 2r/b. This shows that (4.5) is much less than 1 if
min(nrhs, b)≫ 2r: that is, the hybrid variant could lead to significant gains in case there
is a large number of RHS and the blocks are very low-rank.

As for the parallelism-driven hybrid variant, without surprise it achieves a tradeoff
between the hybrid and LL ones. It requires qfs(qfs− 1)/2(b− r)nrhs extra transfers corre-
sponding to the FS part of the computation which does not use the hybrid communication
pattern. This extra volume can be expected to be small for typical cases where qfs ≪ qcb.

We summarize in Table 4.2 the dominant terms in the total communication volume
of the different variants.

Table 4.2: Summary of the communication volume analysis: dominant terms for each
variant.

Variant Communication volume
RO WO RW

Right-looking 2qrb qbnrhs

Left-looking 2qrb+ qbnrhs

Hybrid 2qrb+ qrnrhs qrnrhs

Parallelism-driven hybrid 2qrb+ qfsqcbrnrhs qfsqcbrnrhs (q + q2fs/2)bnrhs

The above analysis of these hybrid variants also applies to the case where LUA is used.
We do not develop a specific analysis for the use of LUA: as mentioned, we can expect LUA
to also reduce the volume of communications by reducing the number of cache misses;
this is however a more complex phenomenon that our simple communication model used
in this section does not capture.

4.5. PERFORMANCE ANALYSIS BASED ON A SIMPLIFIED PROTOTYPE 91

4.5 Performance analysis based on a simplified proto-

type

4.5.1 Experimental setting

In order to assess the potential of the new BLR solve variants, we have first developed
a prototype in Fortran, which implements a partial BLR solve of a given frontal matrix.
Since we aim to use this prototype for performance analysis only, we use a synthetic
random matrix, and we make some further simplifications by forcing both the block size
b and the rank of the blocks r to be constant.

The prototype implements the four BLR solve variants: RL, LL, hybrid, and parallelism-
driven hybrid. The prototype also allows for the optional use of LUA for the updateU
and/or updateV tasks. We observe the actual time spent in the computation, which allow
us to compare different variants.

As explained in section 4.2.3, the frontal BLR solve algorithms are needed for large
fronts at the top of the tree, where node and tree parallelism are both exploited, but
also for smaller fronts at the bottom of tree, where only tree parallelism is exploited.
Therefore, our goal is to use the prototype to analyze the performance of the BLR solve
in two types of configurations: the first configuration uses tree parallelism only by running
36 instances in parallel (with MPI), each using a single thread; the second configuration
uses both node and tree parallelism by running two instances in parallel (with MPI), each
of them being parallelized with 18 OpenMP threads.

All our experiments were run on the Olympe supercomputer; each node is equipped
with two 18-core Intel Skylake 6140 processors running at 2.3 GHz (for a total of 36 cores
per node). We use Intel MKL 2018 for the BLAS libraries.

4.5.2 Performance analysis of hybrid variants

We report our performance results in Figures 4.5 and 4.6 for the tree and node par-
allelism configurations, respectively. For all experiments we set nrhs = 250 and qfs = q/5.
For the node+tree parallelism experiments, we use large fronts (BLR block size b = 500

and q = 100 or 200, leading to a front size of 50, 000 or 100, 000). For the tree parallelism
experiments, we use smaller fronts (BLR block size b = 250 and q = 30 or 50, leading to
a front size of 7, 500 or 12, 500).

These results show that, as could be hoped, the hybrid variants can be faster than the
RL and LL variants in many cases. The gains are the most significant when the rank r

is small, and when the problem size is large, with speedups reaching a factor 2.5× in the
best case. The parallelism-driven hybrid variant is not as fast as the standard hybrid one
in the configuration with tree parallelism only, but is significantly superior, as expected,
in the configuration with node parallelism. Indeed, as explained in section 4.3.2, the left-
looking loop at line 2 of Algorithm 4.3 involves a reduction operation on a loop of small

92 CHAPTER 4. HYBRID ALGORITHM FOR SOLVE

0 10 20 30 40 50

Rank r

0.4

0.6

0.8

1

1.2
N
o
rm
a
li
ze
d
ti
m
e
(R
L
=
1
)

Right-looking
Left-looking
Hybrid
Hybrid (parallelism-driven)

(a) q = 30

0 10 20 30 40 50

Rank r

0.4

0.6

0.8

1

1.2

N
o
rm
a
li
ze
d
ti
m
e
(R
L
=
1
)

Right-looking
Left-looking
Hybrid
Hybrid (parallelism-driven)

(b) q = 50

Figure 4.5: Time spent in solve with tree parallelism (36 instances with 1 thread per
instance), b = 250, nrhs = 250, and qfs = q/5.

0 10 20 30 40 50

Rank r

0.4

0.6

0.8

1

1.2

N
o
rm
a
li
ze
d
ti
m
e
(R
L
=
1
)

Right-looking
Left-looking
Hybrid
Hybrid (parallelism-driven)

(a) q = 100

0 10 20 30 40 50

Rank r

0.4

0.6

0.8

1

1.2
N
o
rm
a
li
ze
d
ti
m
e
(R
L
=
1
)

Right-looking
Left-looking
Hybrid
Hybrid (parallelism-driven)

(b) q = 200

Figure 4.6: Time spent in solve with node+tree parallelism (2 instances with 18 threads
per instance), b = 500, nrhs = 250, and qfs = q/5.

size, whose parallelization on 18 threads is not very efficient. This is also confirmed in
Figure 4.6 by the observation that for larger values of q the performance of left-looking,
hybrid and parallelism-driven hybrid variants gets closer.

4.5.3 Performance analysis of LUA

We finally analyze the time gains obtained when combining the hybrid variant with the
LUA approach described in section 4.3.3. We report the performance with and without
LUA in Figure 4.7. We use a node+tree parallelism configuration and therefore take the
parallelism-driven hybrid variant as baseline. The figure consists of two plots, one where
the number of block-rows q is fixed and the rank r varies, and the other where r is fixed
and q varies. These two plots illustrate two opposite trends:

• As r increases, the benefits of using LUA diminish, since the granularity of the
low-rank updates without accumulation is already large enough to achieve good
performance.

4.6. RESULTS ON REAL-LIFE APPLICATIONS WITH THE MUMPS SOLVER 93

• As q increases, the benefits of using LUA increase, since there are more blocks to
accumulate together, which leads to a better granularity.

Overall, the use of LUA can lead to noticeable speedups on large fronts with small ranks.

0 20 40 60 80 100

Rank r

0.75

0.8

0.85

0.9

0.95

1

N
o
rm
a
li
ze
d
ti
m
e
(P
a
r-
d
ri
v
en
h
y
b
ri
d
=
1
)

Parallelism-driven hybrid
Parallelism-driven hybrid + LUA

(a) q = 100, r varies

0 50 100 150 200
Number of block-rows q

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

N
or
m
al
iz
ed

ti
m
e
(P
ar
-d
ri
ve
n
hy
br
id
=
1)

Parallelism-driven hybrid
Parallelism-driven hybrid + LUA

(b) r = 10, q varies

Figure 4.7: Time gains obtained with LUA, with node+tree parallelism (2 instances with
18 threads per instance), b = 500, nrhs = 250, and qfs = q/5.

4.6 Results on real-life applications with the MUMPS

solver

Based on the encouraging results obtained with our prototype in the previous section,
we have implemented a subset of variants directly in the MUMPS solver. In addition to
the existing RL variant (used so far by MUMPS), we have implemented the LL, hybrid,
and parallelism-driven hybrid variants. For now we have not implemented the use of LUA,
which we leave for future work.

We now present some experimental results obtained with these new variants of the
MUMPS BLR solve on a range of real-life matrices, listed in Table 4.3. All the experiments
have been performed on one node of the Olympe supercomputer previously described,
using 2 MPI processes and 18 threads per MPI process, except for the tests with the
Poisson200 and thmgaz matrices, which do not fit on a single node, and for which 4× 18

threads were used. The BLR ϵ controls the accuracy of the BLR factorization: the low-
rank blocks Lij ≈ UijV

T
ij are truncated such that ∥Lij − UijV

T
ij ∥ ≤ ϵ. We use double

precision real arithmetic (“d”) for all problems except the Geoazur ones, for which we use
single precision complex arithmetic (“c”).

First, in Figure 4.8, we plot the time spent in the forward solve of MUMPS for each
BLR front. This leads to plots where we can distinguish two distinct groups of points.
Those corresponding to the smaller fronts in the lower part of the tree where tree paral-
lelism is used, are each processed using 1 thread. Those corresponding to the larger fronts
higher in the tree, where node parallelism is used, are processed using 18 threads. The

94 CHAPTER 4. HYBRID ALGORITHM FOR SOLVE

Table 4.3: List of sparse matrices used in the experiments of chapter 4.

Matrix Order BLR ϵ Arithmetic BLR compression source symmetry
(factor size, % of FR)

Poisson120 1.7M 10−6 d 27% SPD
Poisson160 4.1M 10−6 d 22% SPD
Poisson200 8.0M 10−6 d 19% SPD
Geoazur100 1.6M 10−4 c 52% S.Operto UNSYM
Geoazur140 3.8M 10−4 c 47% S.Operto UNSYM
atmosmodl 1.5M 10−6 d 30% SuiteSparse UNSYM
Geo_1438 1.4M 10−6 d 50% SuiteSparse SPD
Queen_4147 4.1M 10−6 d 28% SuiteSparse SPD
Serena 1.4M 10−6 d 40% SuiteSparse SPD
Transport 1.6M 10−6 d 42% SuiteSparse UNSYM
thmgaz 5.0M 10−6 d 30% EDF (code_aster) UNSYM

(a) Matrix Poisson200 (b) Matrix Geoazur140

(c) Matrix Queen_4147 (d) Matrix Thmgaz

Figure 4.8: Time spent in each BLR front, in the forward solve of MUMPS.

figure shows that for the larger fronts with node parallelism, the parallelism-driven hy-
brid variant is the fastest, whereas for the smaller fronts with tree parallelism, the hybrid
variant seems to be the best choice for most fronts. This confirms the trends observed
with the prototype experiments in the previous section.

4.7. CONCLUSION 95

The optimal approach therefore seems to be to combine the two types of hybrid variants
by using the standard one when only tree parallelism is used and the parallelism-driven
when node parallelism is used.

Table 4.4: Time spent in the forward solve in MUMPS; nrhs = 250 and 2 × 18 cores are
used for all problems except Poisson200 (4× 18).

Matrix Time (s) Gain
Right-looking Optimized hybrid

Poisson120 0.78 0.69 -12%
Poisson160 2.15 1.76 -18%
Poisson200 2.30 1.83 -20%
Geoazur100 1.95 1.78 -9%
Geoazur140 5.26 4.70 -11%
atmosmodl 0.52 0.49 -6%
Geo_1438 1.35 1.30 -3%
Queen_4147 5.90 4.80 -20%
Serena 1.23 1.20 -2%
Transport 0.73 0.67 -9%
thmgaz 2.53 2.53 -0%

To assess the impact of these per-front gains on the total time, we report in Table 4.4
the cumulative time spent in all fronts. This includes the time spent in the full-rank
fronts (the very smallest fronts at the bottom of the tree, where BLR compression is
not exploited), which are not shown in Figure 4.8. The table compares the standard RL
variant to the optimized hybrid variant (which uses the parallelism-driven algorithm only
on parallel fronts). The results confirm that the hybrid variant can achieve noticeable
time reductions overall.

4.7 Conclusion

The performance of BLR sparse triangular solve, which is critical in several applica-
tions, is underwhelming when there are many RHS. This is explained by the fact that
the computational bottleneck is the memory access to the RHS, which are dense and far
heavier than the compressed BLR LU factors. To overcome this limitation, we have pro-
posed novel hybrid algorithms that combine right-looking and left-looking communication
patterns to minimize the number of accesses to the RHS. We have carried out a commu-
nication volume analysis that proves that these new variants are indeed communication-
avoiding. Based on a performance analysis on synthetic data using a simplified prototype
of the BLR triangular solve, we have selected a subset of the most promising hybrid
variants and implemented them in the widely used MUMPS solver. Using this imple-
mentation, we have confirmed the potential of these new variants on several real-life
applications, obtaining time reductions up to 20%.

96 CHAPTER 4. HYBRID ALGORITHM FOR SOLVE

Chapter 5

Conclusion

Summary

In this thesis, we have presented, analyzed, and evaluated several techniques aiming
at further improving the performance of dense and sparse direct solvers, on top of using
a BLR compression. In particular, we have proposed a new variant of BLR compression
in which low-precision floating-point formats are used for storing the least significant
columns of a low-rank approximation.

We described such a format in chapter 2 and applied it to reduce both the time and
storage complexities of the LU factorization of a BLR matrix. We performed a backward
error analysis of the algorithm that demonstrates its stability, in addition to guiding the
choice of precision format for each computation. Similarly to the case of introducing BLR
compressions, the theoretical gains of adding mixed precision are entirely dependent on the
numerical properties of the matrix. We will observe such gains under the assumption that,
for most off-diagonal blocks, the singular values decrease rapidly enough. Our simulations
showed that our method has a huge potential on sufficiently large BLR matrices : when
using 3 precision formats, we observed a theoretical gain of a factor 1.5× to 2× on the
storage cost and 2× to 2.5× on the time complexity of the algorithm, while the error
stays of the same order of magnitude.

In chapter 3, we adapted the multifrontal method in order to benefit from the the-
oretical performance gains from chapter 2. Indeed, the multifrontal method relies on a
kernel that performs a partial LU factorization of a BLR matrix, sharing many similarities
with the factorization of a dense BLR matrix (see Algorithm 2.1). We first considered
the BLR compression in mixed precision (MPBLR) as a storage format only, in order to
reduce the size of the factors and the memory peak of the factorization. We succeeded
in obtaining reductions of the LU factor size up to 38%, without impacting too much the
error of the solution. We also obtained reductions of the volume of communications up to
50%, which can be a critical aspect when solving very large linear systems on massively
parallel architectures.

We also described how to adapt the different steps of the multifrontal method in

97

98 CHAPTER 5. CONCLUSION

order to obtain speedups from the use of mixed-precision computations. We implemented
the modifications of the triangular solve step and obtained time reductions up to 12%
compared to the standard BLR algorithm, while keeping the previous storage reductions.

In the case of multiple right-hand sides, our experiments revealed a performance issue
of the BLR triangular solve algorithm. Therefore, in chapter 4 we presented a new variant
of this BLR algorithm that has a better data locality, as highlighted by a communication
volume analysis. After implementing this variant, we were successful in reducing the
computation time of this phase by up to 20%.

Software output

The experiments on new variants of the multifrontal method presented in this thesis
were all based on developments made within the MUMPS solver. Some of these de-
velopments have been made available as features in advance in the consortium version of
MUMPS, available to its industrial partners. None of them have been added to the public
version yet.

The options allowing the use of mixed-precision BLR as a storage format were intro-
duced in the consortium version v5.5c in April 2022. The use of computations in mixed
precision for accelerating the solve phase without impacting the storage gains was added
to the consortium version v5.6c in April 2023. Some of the partners of MUMPS are al-
ready taking advantage of these new capabilities. In fact, an option has been added for
EDF users of code_aster, allowing them to reduce the memory consumption.

The option allowing to send LU factors in mixed precision in order to further reduce
the communication volume (see section 3.1.7) will probably be added in a future release.
The hybrid algorithms for accelerating the solve phase in multiple RHS (chapter 4) might
one day become an experimental option of MUMPS as well.

Publication output

The contributions presented in chapter 2 have been published in IMA Journal of
Numerical Analysis (Amestoy et al., 2023b). These contributions and their application to
the multifrontal method (chapter 3) were the subject of a talk at the conference CANUM
2022 and a poster at conference Sparse Days 2022.

The MPBLR storage format of MUMPS has also been used to reduce the memory
footprint of applications in geophysics. It has contributed to a publication in The Leading
Edge (Operto et al., 2023). The reduction of the memory footprint of applications from
Florian Faucher has also led to a talk by J.Y.L’Excellent at ECCOMAS Congress 2022.

The contributions from chapter 4 have been submitted to the journal SIAM Journal
on Matrix Analysis and Applications (Amestoy et al., 2023a). They were also presented
at conference SIAM CSE 2023.

99

Perspectives

We now briefly discuss a few of the remaining challenges that could be the object of
future work.

The most immediate perspective is to implement the computations in mixed precision
during the BLR factorization phase of the multifrontal method, as described in section 3.2,
and to obtain actual time gains. Such developments are ongoing in the MUMPS solver.

The BLR triangular solve phase could still be accelerated, by trying to combine differ-
ent methods presented in this thesis. The use of mixed-precision BLR could be combined
with the so-called hybrid variant presented in chapter 4, in order to further reduce the
data movements in case there are several RHS. Indeed, performing computations in mixed
precision generally requires extra accesses to the RHS, which can be mitigated by the use
of the hybrid algorithm. Both approaches could also be combined with the so-called LUA
variant of the solve. This technique, presented in section 4.3.3, consists in regrouping
small matrix-matrix products into bigger ones, thus improving the data locality and mak-
ing the multicore parallelization easier, by leaving everything to a well-optimized BLAS
function. We have already obtained some mitigated time gains on a separate prototype
of LUA, although we think it should be possible to obtain better gains with a finely
tuned implementation. We believe that mixed-precision variants could greatly benefit
from LUA, given the fact that the granularity of the computations involved can be criti-
cally low: for some blocks, the parts in the highest precision may even contain only 1 or
2 columns, and it should be beneficial to stack several of them together using LUA. Only
half of the operations can benefit from this increase of the granularity, but this aspect can
be improved by using our hybrid algorithm.

The use of custom precision formats could still be the object of future research and
developments. First, the implementation and integration of the conversion from mixed
precision to uniform precision could be improved, by putting an emphasis on the time
spent in the conversion, and not only the storage reductions. Indeed, we observed slight
time overheads when using mixed precision as a storage format, and larger overheads when
using our set of 7 custom precision formats. However, a correctly tuned implementation
should be able to remove those overheads. One might even hope that they would turn
into speedups for the triangular solve phase, since the data movement is reduced and the
algorithm is memory-bound. Indeed, such speedups have been obtained in the literature
for other memory-bound problems, as mentioned in section 1.4.6. Second, one may think
of using more complex custom precision formats in order to reduce the storage cost of an
MPBLR compression even further, as mentioned in section 3.1.1. If we allow operations
more complex than byte copies, we can choose the size of the mantissa down to the bit
level, thus further saving storage. The number of bits of the exponent could also be
slightly reduced in order for the range of representable numbers not to be mostly wasted
on unused exponents.

The use of low precision is particularly well suited to GPUs: those architectures tend

100 CHAPTER 5. CONCLUSION

to support computations in more floating-point formats than CPUs. Support for fp16
and/or bfloat16 are becoming the norm, and the latest GPU architecture from NVIDIA,
Hopper, even supports 8-bit floating-point formats. As a consequence, it would make
sense to try adapting our mixed-precision BLR algorithms to GPUs. However, combining
BLR computations and GPU may prove to be rather challenging. So far, the granularity
of the computations involved was deemed to be too low to try to combine the use of BLR
compression with GPU accelerators in MUMPS. Much work would be needed, including
rethinking the size of the low-rank blocks, and using low-rank updates accumulation
(LUA) as much as possible. We note that, given the high computational efficiency of
GPUs, the algorithms tend to be more easily memory-bound, which would be an argument
for trying to reduce the data movement by using advanced storage formats such as the
MPBLR compression.

Finally, most of the work presented in this thesis is not exclusive to the MUMPS solver,
nor even to the multifrontal method. Indeed, the use of MPBLR compression could also
be applied, at least partially, to the supernodal method. It should also be interesting to
try to apply some of our work to low-rank formats other than BLR, such as HODLR or
H-matrices: one might think of switching each low-rank approximation to mixed precision.
Finally, we mostly considered the low-rank approximation of a block based on a truncated
SVD or truncated QR decomposition in this thesis. However, other compression kernels
may be considered as well, as long as we keep the fundamental property of adding a
high-accuracy estimation of a block and a small perturbation, the latter being potentially
eligible for low precision.

101

Scientific presentations

As speaker:

• Rencontres Arithmétique de l’Informatique Mathématique (RAIM), 28 May 2021

• MUMPS Consortium meeting, 24 June 2021

• Seminar at EDF organized by Olivier Boiteau : Solveurs linéaires HPC pour les
études industrielles, 18 November 2021.

• Workshop on mixed precision computing, 30 May 2022, LIP6.

• CANUM, 14 June 2022, Évian-les-Bains.

• Sparse Days, Saint-Girons, 21 June 2022 (poster).

• MUMPS Consortium meeting, 29 June 2022

• Reducing communications and memory costs of parallel Block Low-Rank solvers,
SIAM Conference on Computational Science and Engineering (CSE23), 3 March
2023, Amsterdam.

• MUMPS Users Days, 22 June 2023

As a co-author:

• Mixed precision sparse direct solver applied to 3D wave propagation, P. Amestoy, A.
Buttari, F. Faucher, M. Gerest, J.-Y. L’Excellent, T. Mary, ECCOMAS Congress,
5-9 June 2022, Oslo.

• Inauguration of Delft Supercomputer: Sparse Linear Solvers: key tools for High-
Performance Computing and Simulation, P.R. Amestoy, J.-Y. L’Excellent, and C.
Puglisi , A. Buttari, M. Gerest, T. Mary, Art of scientific computing, 30 September
2022, Prinsenhof

102 CHAPTER 5. CONCLUSION

Bibliography

S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton, and D. E. Keyes. Geostatistical modeling
and prediction using mixed precision tile cholesky factorization. In 2019 IEEE 26th
International Conference on High Performance Computing, Data, and Analytics (HiPC),
pages 152–162, Dec. 2019. doi: 10.1109/HiPC.2019.00028.

P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and C. Weisbecker.
Improving multifrontal methods by means of Block Low-Rank representations. SIAM J.
Sci. Comput., 37(3):A1451–A1474, 2015. doi: 10.1137/120903476.

P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L’Excellent, and
T. Mary. Communication avoiding Block Low-Rank parallel multifrontal triangular solve
with many right-hand sides, Apr. 2023a. To appear in IMA J. Numer. Anal. Preprint
available at https://hal.science/hal-04082415.

P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L’Excellent, and
T. Mary. Mixed precision low-rank approximations and their application to Block Low-
Rank LU factorization. IMA J. Numer. Anal., 43(4):2198–2227, July 2023b. ISSN
0272-4979. doi: 10.1093/imanum/drac037. URL https://doi.org/10.1093/imanum/

drac037.

P. Amestoy, A. Buttari, N. J. Higham, J.-Y. L’Excellent, T. Mary, and B. Vieublé.
Combining sparse approximate factorizations with mixed-precision iterative refinement.
ACM Trans. Math. Software, 49(1):4:1–4:29, Mar. 2023c. doi: 10.1145/3582493.

P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl., 23
(1):15–41, 2001.

P. R. Amestoy, R. Brossier, A. Buttari, J.-Y. L’Excellent, T. Mary, L. Métivier,
A. Miniussi, and S. Operto. Fast 3D frequency-domain full waveform inversion with
a parallel Block Low-Rank multifrontal direct solver: application to OBC data from the
North Sea. Geophysics, 81(6):R363–R383, 2016. doi: 10.1190/geo2016-0052.1.

P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. On the complexity of the
Block Low-Rank multifrontal factorization. SIAM J. Sci. Comput., 39(4):A1710–A1740,
2017. doi: 10.1137/16M1077192.

103

https://hal.science/hal-04082415
https://doi.org/10.1093/imanum/drac037
https://doi.org/10.1093/imanum/drac037

104 BIBLIOGRAPHY

P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. Performance and scalability of
the Block Low-Rank multifrontal factorization on multicore architectures. ACM Trans.
Math. Software, 45(1):2:1–2:26, 2019a. doi: 10.1145/3242094.

P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. Bridging the gap between
flat and hierarchical low-rank matrix formats: the multilevel Block Low-Rank format.
SIAM J. Sci. Comput., 41(3):A1414–A1442, 2019b. doi: 10.1137/18M1182760.

A. Anderson, S. Muralidharan, and D. Gregg. Efficient multibyte floating point data
formats using vectorization. IEEE Transactions on Computers, 66(12):2081–2096, 2017.
doi: 10.1109/TC.2017.2716355.

M. Bebendorf. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary
Value Problems. Lecture notes in Computational Science and Engineering (LNCSE).
Springer-Verlag, 2008. ISBN 3540771468.

P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh. Mixed precision block
fused multiply-add: Error analysis and application to GPU Tensor Cores. SIAM J. Sci.
Comput., 42(3):C124–C141, 2020. doi: 10.1137/19M1289546.

E. Carson and N. J. Higham. A new analysis of iterative refinement and its application
to accurate solution of ill-conditioned sparse linear systems. SIAM J. Sci. Comput., 39
(6):A2834–A2856, 2017. doi: 10.1137/17M1122918.

E. Carson and N. J. Higham. Accelerating the solution of linear systems by iterative
refinement in three precisions. SIAM J. Sci. Comput., 40(2):A817–A847, 2018. doi:
10.1137/17M1140819.

T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Trans.
Math. Software, 38(1):1:1–1:25, Dec. 2011. ISSN 0098-3500. doi: 10.1145/2049662.
2049663. URL http://doi.acm.org/10.1145/2049662.2049663.

N. Doucet, H. Ltaief, D. Gratadour, and D. Keyes. Mixed-precision tomographic re-
constructor computations on hardware accelerators. In 2019 IEEE/ACM 9th Workshop
on Irregular Applications: Architectures and Algorithms (IA3), pages 31–38, Nov. 2019.
doi: 10.1109/IA349570.2019.00011.

I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear
systems. ACM Trans. Math. Software, 9:302–325, 1983.

C. Eckard and G. Young. The approximation of one matrix by another of lower rank.
Psychometrica, 1:211–218, 1936.

R. D. Fierro and P. C. Hansen. Low-rank revealing utv decompositions. Numerical
Algorithms, 15(1):37–55, 1997.

http://doi.acm.org/10.1145/2049662.2049663

BIBLIOGRAPHY 105

P. Ghysels, X. S. Li, F.-H. Rouet, S. Williams, and A. Napov. An efficient multicore im-
plementation of a novel HSS-structured multifrontal solver using randomized sampling.
SIAM J. Sci. Comput., 38(5):S358–S384, 2016. doi: 10.1137/15M1010117.

S. Graillat, F. Jézéquel, T. Mary, and R. Molina. Adaptive precision sparse matrix-vector
product and its application to Krylov solvers, Sept. 2022. To appear in SIAM J. Sci.
Comput. Preprint available at https://hal.science/hal-03561193.

T. Grützmacher, H. Anzt, and E. S. Quintana-Ortí. Using Ginkgo’s memory accessor
for improving the accuracy of memory-bound low precision BLAS. Software: Practice
and Experience, 53(1):81–98, 2023. doi: https://doi.org/10.1002/spe.3041. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/spe.3041.

W. Hackbusch. Hierarchical Matrices : Algorithms and Analysis, volume 49 of Springer
series in computational mathematics. Springer, Berlin, 2015. doi: 10.1007/978-3-662-
47324-5.

A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham. Harnessing GPU tensor cores for
fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers. In Pro-
ceedings of the International Conference for High Performance Computing, Networking,
Storage, and Analysis, SC18 (Dallas, TX), pages 47:1–47:11, Piscataway, NJ, USA, 2018.
IEEE. doi: 10.1109/SC.2018.00050.

P. Hénon, P. Ramet, and J. Roman. PaStiX: A high-performance parallel direct solver
for sparse symmetric definite systems. Parallel Computing, 28(2):301–321, Jan. 2002.

N. J. Higham. Optimization by direct search in matrix computations. SIAM J. Matrix
Anal. Appl., 14(2):317–333, Apr. 1993. doi: 10.1137/0614023.

N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, second edition, 2002. ISBN 0-89871-
521-0. doi: 10.1137/1.9780898718027.

N. J. Higham and T. Mary. A new preconditioner that exploits low-rank approximations
to factorization error. SIAM J. Sci. Comput., 41(1):A59–A82, 2019. doi: 10.1137/
18M1182802.

N. J. Higham and T. Mary. Solving Block Low-Rank linear systems by LU factorization
is numerically stable. IMA J. Numer. Anal., 42(2):951–980, 04 2021. ISSN 0272-4979.
doi: 10.1093/imanum/drab020. URL https://doi.org/10.1093/imanum/drab020.

N. J. Higham and S. Pranesh. Simulating low precision floating-point arithmetic. SIAM
J. Sci. Comput., 41(5):C585–C602, 2019. doi: 10.1137/19M1251308.

N. J. Higham, S. Pranesh, and M. Zounon. Squeezing a matrix into half precision, with
an application to solving linear systems. SIAM J. Sci. Comput., 41(4):A2536–A2551,
2019. doi: 10.1137/18M1229511.

https://hal.science/hal-03561193
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3041
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3041
https://doi.org/10.1093/imanum/drab020

106 BIBLIOGRAPHY

IEEE Computer Society. IEEE standard for floating-point arithmetic. IEEE Std 754-
2008, pages 1–70, 2008. doi: 10.1109/IEEESTD.2008.4610935.

J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Dongarra. Exploiting
the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (revisiting
iterative refinement for linear systems). In SC ’06: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, 2006. doi: 10.1109/SC.2006.30.

J.-Y. L’Excellent and M. W. Sid-Lakhdar. A study of shared-memory parallelism in a
multifrontal solver. Parallel Comput., 40(3-4):34–46, 2014.

T. Mary. Block Low-Rank multifrontal solvers: complexity, performance, and scalability.
PhD thesis, Université de Toulouse, Nov. 2017.

D. Mukunoki and T. Imamura. Reduced-precision floating-point formats on gpus for high
performance and energy efficient computation. In 2016 IEEE International Conference
on Cluster Computing (CLUSTER), pages 144–145, 2016. doi: 10.1109/CLUSTER.2016.
77.

R. Ooi, T. Iwashita, T. Fukaya, A. Ida, and R. Yokota. Effect of mixed precision
computing on H-matrix vector multiplication in BEM analysis. HPCAsia2020, 2020a.

R. Ooi, T. Iwashita, T. Fukaya, A. Ida, and R. Yokota. Effect of mixed precision
computing on H-matrix vector multiplication in BEM analysis. In Proceedings of the
International Conference on High Performance Computing in Asia-Pacific Region. ACM
Press, New York, Jan. 2020b. doi: 10.1145/3368474.3368479.

S. Operto, P. Amestoy, H. Aghamiry, S. Beller, A. Buttari, L. Combe, V. Dolean, M. Ger-
est, G. Guo, P. Jolivet, J.-Y. L’Excellent, F. Mamfoumbi, T. Mary, C. Puglisi, A. Ri-
bodetti, and P.-H. Tournier. Is 3D frequency-domain FWI of full-azimuth/long-offset
OBN data feasible? the Gorgon data FWI case study. The Leading Edge, 42(3):173–183,
2023. doi: 10.1190/tle42030173.1.

G. Pichon. On the use of low-rank arithmetic to reduce the complexity of parallel sparse
linear solvers based on direct factorization techniques. Ph.D. thesis, Université de Bor-
deaux, Nov. 2018. URL https://hal.inria.fr/tel-01953908/.

G. Pichon, E. Darve, M. Faverge, P. Ramet, and J. Roman. Sparse supernodal solver
using Block Low-Rank compression: Design, performance and analysis. Journal of
Computational Science, 27:255–270, 2018. ISSN 1877-7503. doi: https://doi.org/
10.1016/j.jocs.2018.06.007. URL http://www.sciencedirect.com/science/article/

pii/S1877750317314497.

J. L. Rigal and J. Gaches. On the compatibility of a given solution with the data of
a linear system. J. Assoc. Comput. Mach., 14(3):543–548, July 1967. ISSN 0004-5411.
doi: 10.1145/321406.321416. URL http://doi.acm.org/10.1145/321406.321416.

https://hal.inria.fr/tel-01953908/
http://www.sciencedirect.com/science/article/pii/S1877750317314497
http://www.sciencedirect.com/science/article/pii/S1877750317314497
http://doi.acm.org/10.1145/321406.321416

BIBLIOGRAPHY 107

F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov. A distributed-memory package for dense
hierarchically semi-separable matrix computations using randomization. ACM Trans.
Math. Software, 42(4):27:1–27:35, June 2016. ISSN 0098-3500. doi: 10.1145/2930660.
URL http://doi.acm.org/10.1145/2930660.

D. V. Shantsev, P. Jaysaval, S. de la Kethulle de Ryhove, P. R. Amestoy, A. Buttari,
J.-Y. L’Excellent, and T. Mary. Large-scale 3D EM modeling with a Block Low-Rank
multifrontal direct solver. Geophys. J. Int., 209(3):1558–1571, 2017. doi: 10.1093/gji/
ggx106.

R. D. Skeel. Scaling for numerical stability in gaussian elimination. J. Assoc. Comput.
Mach., 26(3):494–526, July 1979. doi: 10.1145/322139.322148.

C. Weisbecker. Improving multifrontal solvers by means of algebraic Block Low-Rank
representations. PhD thesis, Institut National Polytechnique de Toulouse, Oct. 2013.
URL http://ethesis.inp-toulouse.fr/archive/00002471/.

http://doi.acm.org/10.1145/2930660
http://ethesis.inp-toulouse.fr/archive/00002471/

Matthieu GEREST 8 novembre 2023

Sujet : Utilisation de compression Block Low-Rank en précision mixte
pour améliorer les performances d’un solveur linéaire creux direct

Résumé : EDF effectue des simulations numériques dans différents domaines de la physique. Plu-
sieurs de ses codes de calcul font appel au logiciel MUMPS pour traiter de façon générique, robuste
et performante l’étape de résolution de systèmes linéaires creux, qui est très coûteuse. Dans cette
thèse, nous explorons plusieurs pistes d’amélioration d’une fonctionnalité existante de MUMPS, la
compression Block Low-Rank (BLR). En combinant plusieurs arithmétiques en virgule flottante
(précision mixte), il est possible de réduire les complexités en temps et en mémoire, tout en ob-
tenant un résultat suffisamment précis. Notre démarche, guidée par une analyse d’erreur, permet
dans un premier temps de réduire la complexité d’une factorisation LU de matrice dense, sans
pour autant impacter l’erreur commise de façon significative. Notre méthode est ensuite adaptée
au cas d’une factorisation de matrices creuses avec MUMPS. Une première implémentation utilise
notre compression BLR en précision mixte comme format de stockage, et permet ainsi de réduire
la consommation mémoire de MUMPS. Une seconde implémentation permet de combiner ces gains
en mémoire avec des gains en temps lors de la phase de résolution de systèmes triangulaires, grâce
à des calculs effectués en précision faible. Enfin, d’autres techniques sont étudiées pour améliorer
la localité mémoire de cette phase, dans le cas de seconds membres multiples. Elles conduisent elles
aussi à une réduction du temps de calcul de MUMPS.

Mots clés : matrices creuses, solveurs linéaires directs, approximations de rang faible, arithmétique
à virgule flottante, analyse d’erreur d’arrondi, calcul haute performance

Subject : Using Block Low-Rank compression in mixed precision for
sparse direct linear solvers

Abstract: EDF performs numerical simulations in different domains of physics. Several of its soft-
ware use the library MUMPS in order to perform the costly step of solving sparse linear systems
in a way that is generic, robust and efficient. The goal of this work is to develop new techniques
for improving the performance gains of an existing functionality of MUMPS, the Block Low-Rank
(BLR) compression. By combining several formats of floating-point numbers (mixed precision), it
is possible to reduce the time and memory complexities, without compromising the accuracy of
the result. Based on an error analysis, we design new variants of the LU factorization of dense
matrices. We then adapt this work to the case of a sparse matrix factorization with MUMPS. A
first implementation uses our mixed-precision BLR compression as a storage format, thus reducing
the memory consumption of MUMPS. A second implementation allows to combine these memory
gains with time gains during the resolution of triangular systems. Finally, we study new techniques
for improving the data locality of the BLR triangular solve with multiple right-hand sides, and
obtain time reductions within MUMPS.

Keywords : sparse matrices, direct methods for linear systems, low-rank approximations, floating-
point arithmetic, rounding error analysis, high-performance computing

	Background
	The multifrontal method
	Gaussian elimination
	Adapting Gaussian elimination to sparse matrices
	Parallelism

	Exploiting data sparsity
	Low-rank approximations
	BLR matrices
	Adapting the multifrontal method to BLR compression

	Floating-point arithmetic and rounding error analysis
	Floating-point arithmetic
	The basics of rounding error analysis

	Mixed-precision algorithms
	Iterative refinement
	Mixed precision on GPUs
	A scaling algorithm for handling low-precision formats
	A mixed-precision Cholesky factorization
	A mixed-precision representation of H-matrices
	Using low precision for storing or accessing data

	Dense LU factorization in mixed precision
	Introduction
	Low-rank approximations in mixed precision
	Mixed precision BLR compression
	Background on BLR matrices
	Error analysis of mixed precision BLR compression
	Types of mixed precision blocks

	Mixed precision BLR LU factorization
	Low-rank matrix times full-rank matrix
	Low-rank matrix times low-rank matrix
	Triangular system with low-rank right-hand side
	Putting everything together: error analysis of mixed precision BLR LU factorization

	Experimental results
	Experimental setting
	Performance–accuracy tradeoff
	Results on real-life matrices

	Conclusion

	The multifrontal method in mixed precision
	Mixed precision aiming for storage reductions
	Using custom precision formats
	Multifrontal method with mixed-precision storage
	Block-admissibility conditions
	Implementation in MUMPS
	Storage gains and time overhead
	Compressing contribution blocks in mixed precision
	Reducing the communication volume

	Mixed precision aiming for time gains
	Main techniques
	Application to the triangular solve
	Towards an application to the factorization

	Conclusion

	Hybrid algorithm for solve
	Introduction
	Preliminaries and notations
	Notations
	Right-looking and left-looking variants
	Parallelism in multifrontal solve

	New hybrid variants of the BLR triangular solve
	A novel hybrid variant
	Parallelism-driven hybrid variant
	Low-rank updates accumulation

	Communication volume analysis
	Analysis
	Discussion

	Performance analysis based on a simplified prototype
	Experimental setting
	Performance analysis of hybrid variants
	Performance analysis of LUA

	Results on real-life applications with the MUMPS solver
	Conclusion

	Conclusion
	Scientific presentations

