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Résumé: La combustion est une source
d’énergie omniprésente dans notre société.
Afin de minimiser ses émissions polluantes,
dans un contexte où les conditions opéra-
toires et les modèles de calculs sont incer-
tains, nous devons être capables de quantifier
les incertitudes de nos simulations prédic-
tives.

Dans cette thèse, nous propageons les
incertitudes provenant du mécanisme de
cinétique chimique, de mesures expérimen-
tales et du modèle de turbulence à travers
la simulation aux grandes échelles (LES)
d’une flamme turbulente. Nous choisissons
de travailler sur la flamme de Cabra H2 car
son mécanisme de stabilisation principal est
l’auto-allumage, ce qui la rend extrêmement
sensible aux paramètres qui affectent les
taux de réaction. Nous simulons la flamme
de Cabra en utilisant une approche basée sur
la tabulation de flammelettes instationnaires
et sur des PDF présumées. La propaga-
tion d’incertitudes repose sur la réduction a
priori de la dimension incertaine en utilisant
une configuration simplifiée : un réacteur
homogène isobare qui s’auto-allume. Une

étude Monte-Carlo sur ce réacteur dévoile un
comportement très non-linéaire dans la plage
d’incertitudes considérée. Ce comporte-
ment a été identifié à la transition entre
les auto-allumages "faible" et "fort". Cette
étude a aussi permis de réduire les incerti-
tudes venant du mécanisme chimique et de
la température du co-flow à un espace de
dimension 2.

Dans cet espace réduit, une approche
basée sur une surface de réponse est réal-
isée en utilisant seulement un faible nombre
d’échantillons LES. Nous étudions égale-
ment l’influence du coefficient de dissipa-
tion de la variance de fraction de mélange.
Dans un premier temps, seule l’incertitude
de la hauteur de stabilisation de la flamme
est quantifiée. Dans un second temps,
nous quantifions les incertitudes de toutes
les quantités mesurées expérimentalement
à toutes les positions dans le domaine de
calcul. Cela est rendu possible par une
analyse en composantes principales (PCA)
et trois surfaces de réponses pour prédire les
coefficients des plus importants modes de la
PCA.
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Abstract: Combustion is a ubiquitous
source of energy in our society. To mini-
mize its pollutant emissions in a context
where operating conditions and computa-
tional models are uncertain, we need to
quantify the uncertainties of our predictive
simulation results.

In this thesis, we propagate kinetic,
experimental, and model uncertainties in the
Large Eddy Simulation of a turbulent flame.
We chose to work with the H2 Cabra flame
because its main stabilization mechanism
is auto-ignition, which makes it extremely
sensitive to parameters that impact reac-
tion rates. We simulate the Cabra flame
using an unsteady flamelet and presumed
PDF approach. The uncertainty propaga-
tion relies on an a priori uncertain dimen-
sion reduction using a simplified configura-
tion: an auto-igniting homogeneous reactor
at constant pressure. An a priori Monte-
Carlo study allows highlighting an extremely
non-linear phenomenon in the uncertainty

range: the transition between weak and
strong auto-ignition. It also allows reducing
the uncertainty coming from the co-flow
temperature and kinetic mechanism to a
mere two dimensions.

In this reduced space, a surrogate-model-
based approach is viable using a limited
number of LES observations. We later inves-
tigate the sensitivity of the simulation to the
dissipation coefficient of mixture fraction
variance. We first quantify the uncertainty
of the Cabra flame lift-off height. Then,
we turn our gaze towards the quantifica-
tion of uncertainties of every experimen-
tally measured quantity at every location
in the computational domain. This is done
using a Principal Component Analysis on
the training samples and three surrogate
models to predict the coefficients of the most
contributing modes brought forth by the
PCA.
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Introduction

The primary motivation: Uncertainty Quantification

Uncertainty Quantification (UQ) is a framework that allows taking into account
unknown (epistemic uncertainties) and/or randomly fluctuating (aleatoric uncertainties)
variables in a given model, in order to determine the uncertainty of a quantity of interest.
These uncertainties can stem from many sources: measurement errors, inadequate compu-
tational models, unknown parameter values...

From this wide concept, diverse procedures can be derived. Among them, forward and
inverse uncertainty propagations are becoming more and more commonplace:

• Forward uncertainty propagation is a procedure that uses the uncertain inputs of
a model to evaluate the probability distribution of an output quantity of interest
in the model. This can be useful, for example, to evaluate risks, compute safety
margins, or estimate performance variability.

• Conversely, given a model and a set of uncertain outputs, inverse uncertainty
propagation infers the probability distributions of the input variables of the
model. This allows calibrating computational model parameters given uncertain
measurement results.

One of the major interests of the uncertainty quantification framework, in particular
its non-intrusive branch, is that "the model" can be practically anything that takes a set
of variables as inputs and produces another set of output variables. "The model" can be
a computer simulation, an analytical model, an experiment, etc. Therefore, uncertainty
quantification can be used for extremely various problems. Hence, the methods presented
and developed in this thesis are not limited to our particular use case. Three, very diverse,
examples of fields that use uncertainty quantification are given below:

• Geosciences can use uncertainty quantification to predict the probability
distributions of natural phenomena. One such example is the study by Li et al.
[62] which evaluated the impact of initial conditions and wind-forcing uncertainties
on the currents of the Gulf of Mexico. Another example is the seminal work of Krige
[57] who introduced the Kriging method as a prospection tool for the Witwatersrand
gold mines in South Africa.

• Modern Portfolio Theory, first introduced by Markowitz in 1952 [67], is the
foundation of the modern financial sector. By applying the probability theory to
the financial markets, he developed a new notion of risk and proposed to evaluate
investment portfolios by evaluating both the expectation and variance of return. His
work paved the way for previously-unseen profits by banks and investment funds.
However, over-reliance on his risk-management method and its successors, coupled
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with over-simplifications of the market mechanisms notoriously led to periodic
financial crises in the 20th and 21st centuries (1987: Black Monday, 1990: LTCM
collapse, 1994: Bond market crisis, 2007: Subprime mortgage crisis...) [49].

• Finally, engineering sciences are fond of uncertainty quantification. In particular,
the combustion community, which initiated this thesis, is in demand for uncertainty
quantification for purposes of robustifying efficient combustors, better predicting
pollutant emissions, etc.

A more practical motivation: Combustion

Modern human civilization is addicted to combustion. From the myth of Prometheus
to the industrial revolution and the wonders of the Saturn V moon rocket, humans have
used fire as a means to exploit the chemical energy contained in their environment. A
major tipping point was the 17th and 18th centuries when combustion moved from being
a source of thermal energy (for cooking, metallurgy, or simply as a source of heat) to being
a source of mechanical energy thanks to a flourishing of innovations in the steam engine.
By the 19th century, combustion had become ubiquitous in human activities: Draught
animals were replaced by engines; wood and peat were gradually replaced by coal, gas,
and oil.

Mechanical energy, made cheaper and way more plentiful by this new technology, was
consumed at an ever-increasing rate [44]. Among other examples, transportation habits
have dramatically evolved since then. Where an intercontinental journey might have taken
a few weeks aboard a sailing ship, the same journey is now done in a few hours aboard any
commercial airplane. As a result, intercontinental flights have become commonplace for
citizens of developed countries. This rebound effect probably reached its climax with the
Concorde, a supersonic airliner which was routinely used for back-and-forth trips between
Europe and America for business meetings.

For several decades now, the combustion of fossil fuels has been known to degrade
our environment and its ecosystems by upsetting the global climate. Yet, despite a clear
scientific consensus and collective awareness, mankind continues to prospect and exploit
new fossil fuel deposits. At this point, it seems rather clear that our economic organization
traps us in a prisoner’s dilemma: the first institution, either company or country, trying
to dispense with combustion would probably do without potential profits and spending
power respectively. This is highlighted by several studies linking the per-capita Gross
Domestic Product (GDP) with the per-capita greenhouse gas emissions [114, 38]. There-
fore, it seems that mankind will likely continue to rely on combustion for as long as it
finds fuel to burn. This tendency is suggested by Figure 1, which plots the evolution
and shares, by source, of the world’s total primary energy supply between 1800 and 2021
[88]. Since 1997 and the signature of the Kyoto Protocol, fossil fuel consumption has
not shown any sign of decrease. On the contrary, mankind, as a whole, has burnt more
and more fossil fuel since then, with only small drops in 2008 and 2020 caused by the
subprime crisis, the Covid-19 pandemic, and the respective global recessions that followed.

The primary means of action to reduce greenhouse emissions is therefore to dramati-
cally reduce the global energy supply and the share of combustion in this supply. Hence,
it is mostly a drastic cultural and political change that is needed. Greenhouse emissions

2
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Figure 1: Global primary energy consumption, in TWh, by source, between 1800 and 2021.
Source: OWID [88]

and global warming are not problems that engineering sciences alone can solve.

For the activities that will be judged absolutely necessary for society, and for which
combustion is definitely irreplaceable, the environmental cost must be minimized. In this
prospect, some potential alternatives to fossil fuels are presently gaining traction. Among
them, biofuels and dihydrogen are particularly in demand these days and draw in human
resources and corporate and state funding.

Despite significant drawbacks at the production stage of these alternative fuels (soil
depletion [104] and overall debatable carbon balance [121], and electric power requirements
respectively), they are seen by decision-makers as valid substitutes that may reduce pollu-
tion without thwarting too much the energetic bulimia of our productivist society. This
belief may lead to yet another rebound effect and should be considered with great caution.

Another area of work is the increase of fuel efficiency of (present and irreplaceable
future) combustion devices and the reduction of their toxic byproducts like CO, NOx,
soot, etc. The motivation of this thesis stems from this context: Cautious uncertainty
quantification is required to ensure that industrial systems stay in their safe and regu-
latory operating ranges, the alternative being the implementation of conservative safety
margins which typically decrease performance.

As engineering has come to rely more and more on numerical simulation, Computa-
tional Fluid Dynamics (CFD) is now as commonplace in design offices as in research labs.
Still, these simulations are subject to uncertainties, coming from the operating conditions
(temperature, mixture composition in the case of biofuels, etc.), the combustion or turbu-
lent models, or even from the chemical kinetic model itself.

Kempf et al. [50], for example, investigated the influence of the Smagorinsky constant,
a key parameter of the turbulence model in Large Eddy Simulation (LES). Figure 2
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presents the qualitative influence of its value on the dynamics of the Sydney flame, a non-
premixed bluff-body configuration. This example exhibits that the choice of turbulence
model constants is paramount when trying to correctly predict a turbulent flame in LES.

Figure 2: Influence of the value of the Smagorinsky constant on the dynamics of the LES of the
Sydney bluff-body flame. Adapted from Kempf et al. [50]

Fiorina et al. [28] published another interesting study, where several research groups
were asked to simulate the same flame. It corresponds to the unconfined Turbulent Strat-
ified Flame from Darmstadt. Each group used its own numerical setup: each defined its
own computational domain, mesh type and mesh size, kinetic mechanism and turbulent
combustion model. Figure 3 presents the radial profiles of the Favre-averaged gas temper-
ature at an axial location of 15 mm from the burner found by the different groups (plain
and dashed lines denote different wall boundary conditions). Although all results are in
global agreement with each other and with the experiment, some discrepancies remain
between the prediction of the different groups, due to their modelization choices.

Figure 3: Radial profiles of the gas temperature in the Turbulent Stratified Flame, as simulated
by each research group. Adapted from Fiorina et al. [28]

The two previous examples show that even high-fidelity simulations like Large Eddy
Simulation are still plagued by epistemic uncertainties resulting from the modelization

4



choice. In other cases, experimental measurement uncertainties also make measurements
and simulations seemingly disagree. This is the case of the H2 Cabra flame [11]: a
turbulent, non-premixed, auto-ignition-stabilized flame. Figure 4 shows a collection of
simulations and experimental measurements of the Cabra flame lift-off height.
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Figure 4: Lift-off height of the Cabra flame. Measurements [11, 34, 120] are the black symbols,
simulations [105, 13, 35, 74, 78] are the colored lines. Note the measurement uncertainty of the
co-flow temperature (black error bar)

Again, in this case, discrepancies appear between the simulation results of those
authors. Perhaps more importantly, the experimental measurements show both a
strong sensitivity of the lift-off height to the co-flow temperature and a significant
uncertainty in the measurement of this temperature. In this configuration, proper
uncertainty quantification is much-needed to evaluate the agreement between experiments
and simulations and highlight the underlying phenomena.
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Uncertainty quantification in inexpensive combustion simula-
tions

In the literature, most of the intersection between combustion and uncertainty
quantification revolves around the uncertainties in kinetic mechanisms. A kinetic
mechanism is a set of reactions and equations to determine their rate constants as a
function of the ambient conditions. In the vast majority of cases, rate constants are found
using an Arrhenius law:

kj = AjT
βj exp

(−Eaj

RT

)

Where kj is the rate constant of reaction j, Aj is its pre-exponential factor, T is the
gas temperature, βj is a dimensionless constant, Eaj is the energy activation of reaction j,
and R is the universal gas constant. Aj, βj, and Eaj are either inferred from experiments
[39] or with collision theory computations [48] which are currently affordable only for
extremely simple molecules. In the former case, measurement uncertainties and depen-
dencies between all the coefficients lead to uncertainties of the coefficients in the Arrhenius
laws of the kinetic mechanism.

Theoretically, a joint probability distribution should be considered for all the
coefficients of all the reactions in the mechanism. In practice, those coefficients are often
assumed independent, and the pre-exponential constants are the only ones considered
uncertain. Their uncertainty is typically represented by a log-normal distribution
parametrized by an "Uncertainty Factor" (UF), such that:

ξj =
log(Aj/A

0
j)

1
3
log(UFj)

∼ N (0, 1)

Forward uncertainty propagation methods are readily available to propagate the vari-
ability of some simulation inputs to a given quantity of interest. They have been applied to
simple combustion problems such as homogeneous reactors and one-dimensional laminar
flames [81, 87, 86, 126, 53]. For example, Phenix et al. [81] propagated the kinetic
uncertainties from an 8-reaction reduced hydrogen combustion mechanism through the
simulation of a plug-flow reactor in a supercritical state. Figure 5 reports the results
of a Monte-Carlo study of this configuration. Significant uncertainties are observed. In
particular, Phenix et al. show that they are much larger than the difference between
simulations performed with and without real-gas corrections in the equation of state.

In most practical cases, non-intrusive methods are used, as they do not require any
modification of the CFD solver. It must be noted, though, that intrusive methods have
also been investigated [86]. In the non-intrusive studies listed above, random sampling
was used to propagate uncertainties. This is not a realistic approach for more expensive
simulations because the simplest laboratory-scale configurations can cost several hundred
to several thousand hours of CPU time to simulate and several thousand runs may be
needed to converge meaningful statistics. Surrogate-based approaches are more suited
to this kind of problem because a response surface is built using relatively few observa-
tions, corresponding to equally few deterministic simulation runs. This response surface
is then resampled to collect statistics. This approach has been implemented by Sheen
and co-workers [99, 98, 119] or more recently Yousefian et al. [124] for simple combus-
tion problems. However, surrogate models still require many training samples when the
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Figure 5: Temporal evolution of the probability distribution of species concentration in the
plug-flow reactor, using 15000 Monte-Carlo samples. Solid lines represent median values and
dashed values encompass the 95% confidence interval. Adapted from Phenix et al. [81]

uncertain dimension is high, which can be problematic for costlier numerical setups.

Uncertainty quantification in turbulent combustion simula-
tions

More recent works have propagated uncertainties through turbulent combustion simu-
lations. Notably Mueller and co-workers [72] used a two-step uncertainty propagation to
build an uncertain tabulation for the chemistry. This allowed them to deal with only a
reduced set of dependent random variables to propagate through the Large Eddy Simu-
lation (LES) of the Sandia flame. A few years later, Mueller and Raman [73] propagated
model form and parameter of the mixture fraction variance dissipation model in that
same simulation. Figure 6 shows the distribution of time-averaged temperature and CO
mass fraction, estimated using a collocation method, along several radial profiles. Again,
notable uncertainties are found by these authors on the quantities of interest, especially
on the most downstream profile.

Concomitantly, Khalil et al. [52] propagated the uncertainties of the turbulent model
(Smagorinsky coefficient and turbulent Prandtl and Schmidt numbers) through the LES
of a bluff-body-stabilized flame. They did not need to reduce the uncertain dimension as
only three random variables were considered, and uncertain chemistry was disregarded.
A similar study was performed by Lucor et al. [65] in the context of non-reactive LES.

All these uncertain turbulent flame studies cited above were performed with either
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Figure 6: Radial profiles of time-averaged Temperature and CO mass fraction. Solid lines are
the LES mean, dashed lines are ±3σ, and symbols are experimental measurements. Adapted
from Mueller and Raman [73]

a limited number of uncertain variables [65, 52, 73] or an a priori dimension reduction
[72]. In a radically different approach, other studies made an a posteriori dimension
reduction of the uncertain space using the concept of "active subspace" [17]. In
this framework, the physical model is first sampled randomly on the entire uncertain
space, and the observations are used to infer a smaller uncertain space on which the
surrogate is built. Constantine and co-workers [18] used it to quantify the uncertainty
of the integrated exit pressure of a scramjet by propagating experimental and boundary
conditions uncertainties. Ji et al. [45] used an active subspace to estimate the distribution
of the H2 Cabra flame lift-off height considering only the kinetic mechanism to be
uncertain. This approach is only affordable for numerical setups that can be run several
times the number of uncertain dimensions, i.e. it is limited to highly symmetric setups or
RANS simulations and/or to cases where the uncertain dimension is low.

Objective of the thesis

The literature for uncertainty quantification in combustion contains few examples of
CFD, and even fewer examples of Large Eddy simulations. LES is more precise than the
Reynolds-Averaged Navier-Stokes approach, and it is also much more expensive due to its
spatial and temporal resolution. However, LES is not immune to uncertainties, in partic-
ular when the physical configuration features high sensitivities to certain parameters.

This thesis aims to expand on the studies cited above and synthesize high-fidelity
simulations and high-dimensional uncertainties. In other words, we aim to propagate
high-dimensional uncertainties through expensive computer simulations, that cost several
tens of thousand to several million of CPU hours for each run. In particular, we aim to
propagate kinetic, turbulence model, and measurement uncertainties in the Large Eddy
Simulation of a turbulent flame. We also choose to work on a flame stabilized by auto-
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ignition because their lift-off height is first-order-determined by the chemical kinetics of
the mixture. Hence, our preferred choice of configuration was the Cabra flame [11], which
fulfills our criteria and has already been extensively studied, both numerically and exper-
imentally. Furthermore, we choose to work on the H2 variant of the Cabra flame because
the contribution of auto-ignition is clearer in this flame than in the CH4 variant [11, 22,
120, 33, 123] and because uncertain H2/O2 combustion mechanisms are readily available.

In short: We aim to propagate several sources of uncertainty through an LES of the H2

Cabra flame. We will take into account the co-flow temperature (uncertain experimental
measurement), the detailed kinetic mechanism of H2 oxidation, and a closure coefficient
of the turbulent combustion model.

Structure of the manuscript
• Chapter 1 presents a set of uncertainty quantification methods that will be useful in

the following: random sampling, surrogate modeling, sensitivity analysis, dimension
reduction. We hope that this chapter may serve as a point of entry to uncertainty
quantification for future researchers. This chapter also summarizes the methods
implemented in the in-house code SURE during this thesis.

• Chapter 2 is a preliminary study on auto-igniting homogeneous reactors and 1D
laminar flames. Its purpose is to highlight the uncertainty of the auto-ignition delay
in typical combustion configurations. It also serves as a first benchmark of the
methods presented in Chapter 1.

• Chapter 3 presents this thesis’ main case of study: the Cabra flame and our
LES of this flame. It details the key equations and the choice of turbulence and
combustion models which rely on tabulated chemistry and presumed filtered-density
function, which were implemented in the AVBP LES solver. Finally, it presents the
deterministic simulation results and their validation.

• Chapter 4 studies the uncertainty of the lift-off height of the simulated Cabra flame.
Using a reduction of the initial uncertain space, a surrogate-based approach is
leveraged to estimate the probability distribution of the lift-off height. 39 LES were
run to train the surrogate and 20 more were run to serve as validation samples. This
study allows the synthesis between seemingly disagreeing experimental observations
and simulation results from several research groups.

• Chapter 5 extends the methodology introduced in Chapter 4 in order to quantify
the uncertainties of every averaged LES field at every location in the computational
domain. These local uncertainties are obtained by applying Principal Component
Analysis to a training set of averaged flames and building surrogate models
to estimate the weights of the most important modes. From these local field
predictions, the uncertainty of global quantities, like the lift-off height, can be
rediscovered.
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Chapter 1

Handling uncertainties

This chapter gives an overview of the methods of the uncertainty quantification (UQ)
methods employed during this thesis. It provides the necessary elements to understand
and implement these methods, as well as references to further investigate the points of
detail. As such, it is written in the form of a beginner’s guide towards uncertainty prop-
agation, in the hope that it may provide a helpful entry point for future Ph.D. students.

The framework of this thesis is forward uncertainty propagation, which means that
we have information on the uncertainty of uncertain inputs, and we seek to determine
statistics (probability distribution, sensitivity, or at least expectation and variance) of a
Quantity of Interest (QoI).

Unless specified otherwise, the methods presented in this chapter have been imple-
mented in the in-house UQ code SURE.

This chapter begins with a quick overview of the different classes of methods that will
be developed later. The second part focuses on how to sample an uncertain space. The
third part is about surrogate modelling, or how to emulate a physical model given only a
few observations. The fourth part deals with sensitivity analysis. Part 5 presents a few
ways to reduce the uncertain dimension. Finally, part 6 introduces the error metrics used
in this thesis to verify the quality of the methods presented in this chapter.

1.1 Methods overview

The methods employed in this thesis have been hand-picked to answer the specific
needs of propagating kinetic and experimental uncertainties in a Large Eddy Simulation
(LES):

• The simulation software are already coded with deterministic applications in mind,
which means going for non-intrusive methods only.

• One observation in LES costs at least several tens of thousands of CPU-hours.
Therefore, sample-efficient methods are wished for.

• The dimensionality of kinetic is high (cf Chapter 2), which means we need methods
able to handle several tens of uncertain inputs, and/or ways to reduce the uncertain
dimension
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1.1.1 Deterministic methods

1.1.1.1 Linearization technique

A local gradient of the model is evaluated at the nominal input point. This allows
performing a local sensitivity analysis by comparing the components of the gradient.
Furthermore, if the input distributions are peaked enough, one can propagate uncertainties
through a local linear surrogate of the model and retrieve an approximate output
distribution, either by resampling or by analytical developments.
On the one hand, this method is quite cheap, because the minimum number of evaluations
of the model is d + 1 in a non-intrusive framework. Even better, when an adjoint solver
is used, gradients are already part of the simulation results. For "simple" analytical
models, the gradient can even be analytically retrieved. On the other hand, this analysis
is local. It is not valid if the input distributions are wide enough that the uncertain inputs
frequently exit the neighborhood of the point of gradient evaluation.

1.1.1.2 Perturbation techniques and Neumann expansions

These techniques obey the same idea as the linearization technique but function with
higher-order derivatives, making them more precise. Still, they remain local.

1.1.1.3 Moments methods

The idea behind these methods is not to solve the model for a given set of inputs, but
rather to solve a system of equations on the moments of the inputs to retrieve moments
of the output. These methods suffer from a problem of closure since the equations on the
moments are often not closed and closure terms have to be modeled. Furthermore, they
enter the domain of intrusive methods and do not allow the use of a legacy deterministic
solver. Therefore, they are out of the scope of this thesis.

1.1.2 Simulation methods
Simulation methods rely on the evaluation of the stochastic process on a large number

of samples, either directly or indirectly, to approximate the Probability Distribution
Function (PDF) of the uncertain output.

1.1.2.1 Sampling techniques

Sampling techniques, as their name suggests, rely on sampling extensively the
uncertain input space according to its joint probability distribution, evaluating the
physical model, and storing the quantity of interest for each sample. The probability
distribution and relevant statistics of the QoI can then be retrieved from the data set.
These methods are very robust and do not require any particular property from the
physical model (non-continuous outputs are fine, for example), and they allow the use of
legacy/deterministic solvers. However, they suffer from slow convergence rates, meaning
that a considerable number of observations may be necessary to retrieve significant
statistics. This is not a problem for cheap models featuring simple or reduced physics,
but it will become an issue for more complex and expensive models.

1.1.2.2 Surrogate modeling

Surrogate modeling alleviates the cost of sampling techniques by building a surrogate,
also called "response surface" or "emulator", using a few observations of the physical
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model. The surrogate is in turn extensively sampled instead of the physical model. As
such, it is way cheaper to implement than a naive sampling technique, when the evaluation
of the physical model is expensive. This cost may lay, for example, in the monetary costs of
an experiment or in the computational power required to run a simulation. The surrogate,
by construction, is very cheap to evaluate, which makes resampling affordable whatever
the number of samples needed to obtain significant statistics. However, the precision of
the resulting PDF relies entirely on the accuracy of the surrogate.

1.2 Random sampling

1.2.1 Monte-Carlo sampling
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Figure 1.1: 800 points of a Monte-Carlo sampling of a 2D uniform random vector on the unit
hypercube

Monte-Carlo simply consists in randomly sampling the input space and computing the
corresponding outputs. An example of Monte-Carlo sampling on the unit hypercube, in
2D, is given in Figure 1.1. Let F (S ) be our quantity of interest, where S is the output of
the physical model. The function F is defined depending on what you need to compute.
For example, if you want to evaluate:

• the expectation of the output: F (S ) = S

• the second moment of the output: F (S ) = S 2

• the probability of the value exceeding a given threshold:

F (S ) =

{
1 if S > Threshold
0 otherwise

Convergence of a Monte-Carlo estimator

F (S ) is a function of the simulation S which is itself a deterministic function of the
uncertain inputs. Therefore, F is a function of the uncertain inputs ξ and we will denote
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indifferently F (S ) = F (S (ξ)) = F (ξ) in the following.

The random vector ξ is defined on the set Ξ of joint probability πξ.
Let F̂N be the Monte-Carlo estimator of E[F ] defined by:

F̂N =
1

N

N∑

i=1

F (S (ξ(i))) (1.1)

Where N is the number of input samples ξ(i) drawn according to the probability
distribution πξ.
The central limit theorem gives, in the asymptotic regime, the following property:

F̂N = E[F ] + εN , with εN ∼ N

(
0,

V[F ]
N

)
(1.2)

Where V[F ] is the variance of F . Substituting the estimator V̂N for V[F ], we can show
that once in the asymptotic regime, a Monte-Carlo estimator has a universal convergence
rate of 1/2, meaning that the slope of the upper bound for 50% confidence on the residual
εN has a −1/2 slope in a log-log diagram, as shown in Figure 1.2. We can also say that
it converges in O(1/

√
N).
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Figure 1.2: Illustration of the convergence of a Monte-Carlo estimator

As highlighted by eq. 1.2, the Monte-Carlo estimator’s precision depends exclusively
on the number of samples drawn and on the variance of the quantity of interest.
In particular, it is independent of:

• The dimensionality of the sampling space

• The regularity of the model

• The oscillarity of the model (For example, V[sin(kx)] does not depend on k)

When trying to converge a Monte-Carlo estimate, it is good practice to make sure
you at least double the number of samples when the error estimator is too high. This
is because F̂N is random and fluctuates. Thus, adding just a few more samples will not
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necessarily help with the convergence and may actually worsen the estimator (see figure
1.2). Finally, it is important to note that the error estimate εN is an absolute value. Only
the relative error εN/F̂N should be used to characterize the estimator’s level of conver-
gence.

1.2.2 Sampling randomly from an arbitrary distribution
Random numbers generators (or rather pseudo-random generators [59]) are typically

only capable of sampling random variables X that follow a uniform distribution over the
segment [0, 1] (X ∼ U([0, 1])). However, uncertain variables that do not follow a U([0, 1])
distribution are plentiful. Thus, we need a way to sample from an arbitrary PDF.
Two cases can be identified:

• When we know (or can approximate) its cumulative distribution function (CDF)
and we can inverse it

• When we only have access to the value of the probability density at any value taken
by the variable

These two cases can be treated respectively by a measure change and Markov-chain Monte-
Carlo sampling. These methods will be detailed in the following sections.

1.2.2.1 Measure change

The measure change is an analytical transformation that generates samples of a
random variable using its CDF.

Let ξ be a one-dimensional random variable of cumulative distribution function Fξ. If
Fξ is strictly monotonic, it is invertible and the random variable F−1

ξ (u), where u follows
a uniform distribution on [0, 1], follows the distribution of ξ. This property is illustrated
in Figure 1.3. In short:

u ∼ U([0, 1]) ⇐⇒ F−1
ξ (u) ∼ ξ (1.3)

F−1
ξ is called the quantile function of ξ. Some examples are given here for usual

distributions:

• Normal distribution:
F−1
ξ (u) = µ+ σ

√
2 erf−1(2u− 1) (1.4)

Where µ is the expectation of the distribution and σ its standard deviation

• Log-normal distribution:

F−1
ξ (u) = exp

(
µ+ σ

√
2 erf−1(2u− 1)

)
(1.5)

Where µ and σ are defined by the associated normal distribution

It follows that, for a given quantity of interest Q,

E[Q] =
∫

Ξ

Q(ξ)π(ξ)dξ =

∫ 1

0

Q
(
F−1
ξ (u)

)
π(u)du =

∫ 1

0

Q ◦ F−1
ξ (u)du (1.6)
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A Monte-Carlo estimator of Q will then be:

E[Q] ≈ Q̂N =
1

N

N∑

i=1

Q ◦ F−1
ξ (u(i)) (1.7)

Or more generally, for any weighted estimator:

E[Q] ≈ Q̃N =
N∑

i=1

w(i)Q ◦ F−1
ξ (u(i)) (1.8)

where u(i) are samples of the random variable u and w(i) the weights associated with the
integration point u(i).

This is an artificial way of sampling from the distribution of ξ because what is ulti-
mately sampled is still u ∼ U([0, 1]). However, it allows to efficiently evaluate an expec-
tation estimator, and it is compatible with every Monte-Carlo convergence acceleration
technique presented in the following.
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Figure 1.3: Illustration of the measure change method for a reduced and centered normal
distribution

In the case of a random vector made of a number of independent random variables
verifying the conditions for the measure change, the method can be generalized and is
then called the Rosenblatt inverse transform [89].

This procedure works only in the case where the probability distribution is
simple/canon enough so that a quantile function, or at least a good approximation of
it, is available. In the multi-dimensional case, it works only if the components of the
random vector are independent.

1.2.2.2 Markov-Chain Monte-Carlo

Markov Chain Monte-Carlo (MCMC) [37] is a method that allows drawing samples
directly from an arbitrary distribution, of which we only need to be able to evaluate the
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probability distribution at any point. This means we do not need an analytical form for
the Probability Distribution Function (PDF), Cumulative Distribution Function (CDF),
or quantile function. MCMC is, therefore, the default choice for sampling non-standard
distributions or random vectors whose components are not independent.

MCMC is based on the concept of Markovian processes, or Markov chains, which
are memory-less random walks. In practice, the Metropolis-Hastings algorithm [37] and
Gibbs sampling [31] are widely used, but other, more advanced algorithms of Markov-
Chain Quasi Monte-Carlo [60] can be used to combine the ability of sampling from any
distribution with the advantages of Quasi-Monte-Carlo (presented in Section 1.2.3.2).

1.2.3 Improving the convergence of the Monte-Carlo estimator
Monte-Carlo estimators do not converge quickly. For this reason, it is common to

try and accelerate this convergence, which means minimizing the residual εN for a given
computational effort. To achieve this you can either:

• Decrease the variance of the QoI (Linked to the intercept of the convergence curve)

• Increase the rate of convergence (The slope of the convergence curve)

1.2.3.1 Reducing the variance of the quantity of interest

Separation of the principal part

The idea here is to find a "principal part" H of F , that is, a function with known
expectation E[H] that approximates the behavior of F . We then define the error Θ
as: Θ(ξ) = F (ξ) − H(ξ). The expectation being a linear operator, we thus have:
E[F ] = E[H] + E[Θ]. We can then define a new estimator:

F̃N = Θ̂N + E[H] (1.9)

This new estimator converges as
σ(Θ)√
N

=
σ(F −H)√

N
≪ σ(F )√

N
This idea is used in:

• Surrogate Variance Reduction / Reduced Model Variance Reduction (exactly the
method presented)

• Multifidelity (degrade physics) and Multilevel (degrade discretization) Monte-Carlo
methods.

The separation of the principal part is illustrated in Figure 1.4.
In practice, it can be simply implemented by spending a few samples to get the rough

shape of F and construct a surrogate (for example a linear fit) to get a suitable H which
is easily samplable/integrable. The better the surrogate, the faster the convergence.

Importance sampling

The idea of Importance sampling is to draw more samples in the areas where F has
large values. That way, the integral computation is more efficient. This is done by using
a variable change and an alternative distribution π∗ to draw the samples.
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Figure 1.4: Illustration of the separation of the principal part

Eπ[F ] =

∫

Ξ

F (ξ)π(ξ)dξ =

∫

Ξ

F (ξ)
π(ξ)

π∗(ξ)
π∗(ξ)dξ =

∫

Ξ

G(ξ)π∗(ξ)dξ

= Eπ∗ [G]

(1.10)

Where G(ξ) = F (ξ)
π(ξ)

π∗(ξ)
. Of course, π∗ Must be non-zero on Ξ. The only difficulty

resides in finding a probability distribution π∗ such that Vπ∗ [G] < Vπ[F ].

Analytically, the π∗ that minimizes Vπ∗ [G] is defined as:

π∗(ξ) =
|F (ξ)| π(ξ)∣∣∫
Ξ
F (η)π(η)dη

∣∣ (1.11)

The denominator of this expression is not known. Indeed, it is the absolute value of
Eπ[F ], the final result of the study. However, equation 1.11 states that any distribution
proportionnal to |F (ξ)| π(ξ) will be suitable. Fortunately, the Metropolis-Hastings
algorithm, mentioned in Section 1.2.2.2, allows sampling from any arbitrary distribution
known within a multiplication factor.

1.2.3.2 Increasing the convergence rate: Low discrepancy sampling

In this section, we will restrict ourselves to the sampling of uniform random variables
on the hypercube [0, 1]d, without loss of generality.

Latin Hypercube Sampling

The idea behind Latin Hypercube Sampling (LHS) [71] is to control the sampling so
that it covers the input space more evenly than Monte-Carlo, while keeping it random.
In 1D, the segment [0, 1] is partitioned into N non-overlapping intervals having the same
probability (equal lengths for uniform distributions). In d-D, the space is partitioned into
N rows in each dimension, and the algorithm draws one and only one sample per row in
each dimension. This is illustrated in Figure 1.5.
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Figure 1.5: LHS sampling of a 2D uniform random vector on the unit hypercube

In practice, what can be done is an LHS is 1D, then one random permutation of
this initial sampling is done for each remaining dimension. For example, to draw 4
LHS points in the uniform unit cube (3D), we first draw 4 LHS points in the segment
[0, 1]: {0.2, 0.37, 0.51, 0.82}. We then perform two random permutations of this list (two
remaining dimensions), which gives us: {0.37, 0.51, 0.2, 0.82} and {0.82, 0.37, 0.2, 0.51}.
Then, we read the three coordinates of the first 3D LHS point as the first elements of the
three lists: (0.2, 0.37, 0.82). The second point is (0.37, 0.51, 0.37), and so on.

This ensures better coverage of the uncertain space than brute-force Monte-Carlo. In
terms of even coverage, an improvement on this method is orthogonal sampling [108]. In
orthogonal sampling, the input space is first divided into N equiprobable subspaces, and
one sample is randomly drawn from each subspace in such a way that the total set of
samples follows the rules of LHS.

Mc Kay et al. [71] showed that LHS could not have a worse convergence rate than
brute-force Monte-Carlo, and that its convergence is O(1/N) if F (ξ) is monotonous in
each of its arguments.

However, LHS presents one major issue. A fixed number of samples is decided a priori.
In the case where the convergence of the quantity of interest’s estimator is not satisfac-
tory, increasing the number of samples while retaining the properties of LHS is not trivial.
Tong [111] gives useful pointers in that regard.

The implementation of LHS used in this thesis is the one proposed by the OpenTURNS
library [6].

Quasi Monte-Carlo

Quasi-Monte-Carlo sampling (QMC) makes use of deterministic space-filling (or "low-
discrepancy") sequences. They are designed to fill the space as uniformly as possible but
lose in the process the randomness of standard Monte-Carlo sampling.

Their advantage is that the sampling is sequential, and the sequences are not periodic,
so samples can always easily be added to the sample set if the estimator is not converged
enough. This is a very interesting property compared to LHS.
The easy refinement of the sampling comes at a cost, though, and this cost is the
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Figure 1.6: Examples of the 800 first points of low-discrepancy sequences of a 2D uniform
random vector on the unit hypercube

convergence rate. The best possible convergence rate for a Quasi Monte-Carlo method is
believed to be O(log(N)d)/N (proven for d = 2, but still a conjecture for d ≥ 3 [61]). This
is asymptotically always better than a brute-force Monte-Carlo estimator, but it may not
be as good as LHS depending on the case. However, they are impaired by some important
drawbacks:

• The sampling sports patterns. If the model is oscillatory, some features may be
difficult to retrieve

• The efficiency of QMC tends to decrease with the increase of dimensionality, while
the convergence rate of Monte-Carlo and LHS is independent of the dimension. In
large dimensions, some parts of the sampling space will not be covered at all if the
number of samples is not sufficient, because the exploration of the space is stratified.
An optimal number of samples, for example N = 2n for the Sobol’ sequence, is
required to maximize the uniformity of sampling.

• As QMC is purely deterministic, Monte-Carlo-style error estimates cannot be
computed for this kind of sampling, because they rely on the intrinsic randomness
of the sampling and the Central limit theorem. This drawback can be alleviated by
the use of Randomized Quasi-Monte-Carlo sampling, which is presented in the next
section.

The implementation of QMC used in this thesis is the one proposed by the OpenTURNS
library [6].
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Randomized Quasi-Monte-Carlo

The randomization of QMC allows the determination of the estimator’s error in the
same way as Monte-Carlo [113]. The randomization is not a trivial task if the space-filling
properties of QMC are to be kept. Dumont’s thesis [24] provides an interesting review of
the different randomization methods.

1.3 Surrogate modeling

Surrogate modeling is the science of reducing the cost of sampling expensive functions
by building "surrogates", also called "emulators" or "response surfaces". These surrogates
are functions that should be cheap to evaluate and that give a good enough approximation
of their underlying "true" physical model.
At this point, you might be wondering one of the following three things:

1. How do I recognize a "good enough" approximation of my function?

2. How cheap is "cheap to evaluate"?

3. Theory is all very well, but where do I start in practice?

First, a "good enough" approximation depends on the problem you want to tackle. It
is an approximation that allows you to retrieve the quantities that you seek with sufficient
accuracy. In practice, you might find that it relates to recovering the probability distri-
bution’s shape and moments of the QoI you want to emulate, but watch out, the level of
accuracy is highly case-dependent. This is best illustrated with two - perhaps caricatural
- scenarii:

Scenario 1: Global performance analysis

Say you are designing a brand new run-of-the-river hydroelectricity plant to power
a city in a remote area. It happens that the only available river is capricious, meaning
that its flow rate is far from constant. This flow rate does not appear to be predictable
for now, but you can model it as a random variable of a given probability distribution
based on previous observations. You then aim to propagate this randomness - this
uncertainty - through a model of the plant to assess the uncertainty of your power
output.
Alas, the decision has been made to design a field of immersed stream generators to
reduce environmental impact. The precise computation of the power output of such
a field requires advanced - and expensive - CFD simulations due to the interactions
between the stream generators.
Thus, you need a surrogate model of the CFD simulation to obtain meaningful statis-
tics for your power output at a reasonable cost.
Now, what are you really trying to figure out with this study? The expectation of
the power output, to be sure, and probably its standard deviation to design adequate
buffers or annex generators.
This means that while a very coarse surrogate only allows us to capture the first two
moments of the power output distribution, it should be enough to suit your needs.
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Scenario 2: Rare events prediction

Still in the energy business, you are now working in a nuclear power plant as a
safety engineer. Your goal is now to assess the probability of the plant blowing up due
to, for instance, excessive pressure in the primary coolant circuit.
Let’s assume that the QoI is a function of the mechanical strength of the circuit and
of the stress applied by the coolant’s pressure. Uncertain inputs, on the other hand,
refer to the composition, crystal structure and mechanical fatigue of the pipes, coolant
temperature and pressure, and so on. Coupled simulations where heat transfer, fluid
mechanics, and solid mechanics interact are very expensive. Therefore, you need a
surrogate again to propagate uncertainties in this problem. Now, a nuclear plant
blowing up is - hopefully - a rare event, so the events we seek to predict are not in
the belly of a bell curve, but rather on the tails of the distribution - regions of low
probability. Thus, the surrogate must be accurate enough so that the shape of the
probability distributions, and in particular the tails, are well predicted.

Second, as a rule of thumb, a cheap function relies on an analytical formula, even a
complicated one, ranging from simple piece-wise constant expressions to complex neural
networks. The key here is that no complex iterative process should be involved in the
evaluation of the surrogate, as these are generally expensive.

Last but not least, you can start building surrogates by using the two relatively
common surrogate types used in this thesis. In the following, you will find a brief
presentation of these surrogate models and how to build them.

1.3.1 Polynomial Chaos Expansion
Despite its daunting denomination, a Polynomial Chaos Expansion (PCE) is nothing

more than a polynomial approximation of a stochastic process, which is itself a function of
random variables. It must be noted that the random input variables must be independent
to build a valid PCE.
Polynomials are very practical functions to approximate continuous physical phenomena.
It is in fact possible to demonstrate that PCEs have a spectral convergence towards any
continuous stochastic process [66]. That is, the more polynomials in the expansion, the
better the approximation of the process, provided that the weights are exactly computed.

Formally, a PCE is defined as follows:
Let (F : ξ ∈ Ξ) ∈ Rd → R be the physical model where ξ = (ξ1, . . . , ξd) are independent,
real-valued, random variables of joint-PDF πξ.
Let α = {αi} ∈ Nd be a multi-index and {ψα} be the set of d-variate orthogonal
polynomials:

ψα(ξ) =
d∏

i=1

ψ(i)
αi
(ξi) (1.12)

If F ∈ L2 (Ξ, πξ), its PCE exists and is written:

F (ξ) = lim
N→∞

∑

∥α∥≤N

ψα(ξ)Fα, ∥α∥ =
d∑

i=1

|αi| (1.13)
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In essence, a Polynomial Chaos Expansion is therefore the combination of a polynomial
basis {ψα} and a set of weights {Fα}. Here is how it shakes down:

1.3.1.1 The basis

Building the polynomial basis

The polynomial basis must be an orthogonal family of polynomials. Being orthogonal
means that the dot product between two basis elements is zero. You may remember that
the dot product between the polynomials ψ1 and ψ2 is written as follows:

⟨ψ1, ψ2⟩ =
∫

Ω

ψ1(ξ) · ψ2(ξ) · π(ξ)dξ (1.14)

The nullity of this expression obviously depends on π(ξ), the probability distribution of
the random vector ξ. Consequently, a different polynomial basis must be built for each
distribution.

Case 1: Canonical distributions

For canonical distributions, canonical polynomial bases are available (see Table 1.1).
These bases can be tensorized for multivariate PCEs.
In the case where two random input variables are canonical but do not have the same
probability distribution, one can (and must) compose the bases.
For example, if ξ1 is normal and ξ2 is uniform, the polynomial basis will be the tensoriza-
tion of Hermite and Legendre polynomials.

distribution Polynomials Support
ξ ψk(ξ)

Continuous RV Gaussian Hermite R
γ Laguerre R+

β Jacobi [a, b]
Uniform Legendre [a, b]

Discrete RV Poisson Charlier N
Binomial Krawtchouk J0, nK

Negative binomial Meixner N
Hypergeometric Hahn J0, nK

Table 1.1: Canonical distributions and associated polynomial bases

Case 2: Arbitrary distributions

In the case of arbitrary distributions, a custom polynomial basis can be built itera-
tively using the Gram-Schmidt orthonormalization process.

Truncating the polynomial basis
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The polynomial bases constructed previously are infinite families of polynomials. The
complete expansion - i.e. the infinite sum of correctly-weighted basis polynomials - is a
perfect representation of the stochastic process.
However, in practice, you must truncate the basis. This means keeping a certain number
of relevant polynomials while discarding all the other ones. The most common ways of
truncating the basis are:

1. Total order truncation

2. Hyperbolic truncation

3. Adaptive basis construction

Total order truncation

This is the simplest of the truncation methods. All polynomials in the basis which
are under a given total order are retained. This allows describing high-order interac-
tions. However, this comes at the cost of rapidly increasing the cardinal of the basis.
The number of basis polynomials M for a PCE of total order p+1 involving d uncertain
variables is given by Equation 1.15.

M =
(d+ p)!

d!p!
(1.15)

As illustrated in Figure 1.7, the number of polynomials (and therefore the cost of
finding the weights) reaches quickly unreasonable amounts for uncertain spaces of high
dimensionality. This is called the "Curse of Dimensionality". Total-order truncation
is therefore affordable only when the dimensionality of the problem is not too high.
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Figure 1.7: Evolution of the number of basis polynomials M with the number of uncertain
variables d and the total order of the basis p
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Hyperbolic truncation

According to the "sparsity-of-effects principle", or "hierarchical ordering principle"
[10], systems are usually governed by main effects (involving a single variable) and
low-order interactions. Therefore, neglecting high-order interactions should not result
in a significant loss of representativeness for the PCE, in the majority of cases. A
systematic way to do so is to perform a so-called hyperbolic truncation, as introduced
by Blatman and Sudret in [9].

A quasi-norm, so called q-quasi-norm ∥·∥q is defined as:

∀ 0 < q < 1, ∥α∥q =
(

d∑

i=1

αi

)1/q

and ∥α∥0 =
d∑

i=1

1{αi>0} (1.16)

The truncated PCE of total order p and q-norm is then defined as:

F (ξ) ≈ F̃p,q(ξ) =
∑

∥α∥q≤p

ψα(ξ)Fα (1.17)

The 1-quasi-norm is actually the absolute norm of Nd and corresponds to the total
order truncation. For 0 < q < 1, the truncation follows a hyperbolic-like pattern
illustrated in Figure 1.8, which cuts presumably-unneeded high-order interactions from
the PCE. By weighting the different directions in the definition of the quasi-norm, you
can also get an anisotropic hyperbolic truncation, which can help describe in more
detail the evolution of the QoI in certain directions relative to others.

Adaptive basis

To further complexify the construction of the basis and retain only the useful terms of
the polynomial basis, Blatman [8] developed adaptive methods to determine conjointly
the optimal basis polynomial and weights of the PCE based on Least-angle Regression
[25, 9].

1.3.1.2 The weights

There are several ways of computing the PCE weights, both intrusive and non-
intrusive. In the following, we will discuss only the non-intrusive methods, which are
projection and regression.

a. Projection

Because the {ψα} form an orthogonal basis of the Hilbertian space, the weights Fα

can be found by simply projecting F on the basis:

Fα =
⟨F, ψα⟩
⟨ψα, ψα⟩

=
1

⟨ψα, ψα⟩

∫

Ξ

F (x)ψα(x)πξ(x)dx (1.18)

The integral can then be approximated with a finite number of samples using a proper
quadrature rule which is a proper numerical way to compute the integral:

Fα ≈ 1

⟨ψα, ψα⟩
N∑

i=1

w(i)F (ξ(i))ψα(ξ
(i)) (1.19)
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Figure 1.8: Illustration of the hyperbolic truncation [95]: Retained basis terms in the PCE when
varying the parameter q and the total degree p = 3, 4, 5, 6 for d = 2 are highlighted by solid
black points. The x and y axes correspond to the partial degree of the polynomial in ξ1 and ξ2
respectively.

The choice of the quadrature rule (ξ(i), w(i)) is crucial as it conditions the number of
samples needed to evaluate a given weight with a given precision. Most of these rules can
be split into three main families:

• Brute-force integration

• Integration of polynomials that interpolate the integrand

• Subtler and more powerful change of variables-based approaches

An extensive discussion and benchmarks of numerous quadrature methods can be found
in Dumont’s thesis [24]. This section will only give a quick overview of these families, as
well as the formal definition of the method primarily used during this thesis.

Brute force integration

This approach relies on Monte-Carlo estimates of the integral obtained using the
methods described in Section 1.2. This approach is obviously not very efficient in this
context because a large number of observations (i.e. a large training set) will be needed
to compute precisely the integrals, which defeats the purpose of surrogate modeling.
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Integration of polynomials that interpolate the integrand

This family of rules relies on the exact (analytical) integration of polynomials that
interpolate the integrand. It comprises the Rectangle method (polynomials of order 0),
the Trapezoidal rule (order 1), and the Newton-Cotes formulas (general case). Obvi-
ously, the closer the interpolating polynomial is to the integrand, the more precise the
evaluation of the integral. However, high-order polynomials tend to oscillate out of
hand and do not necessarily improve the precision of the estimation. Hence the popu-
larity of the Composite Simpson rule, which is a special case of the Newton-Cotes rule,
where the integrand is approached by a piecewise second-order polynomial on a regular
grid.

Change of variable-based approaches

This family includes the well-known Gauss quadrature rules, which are designed
to return the exact integral of a polynomial of order 2n + 1 using only n quadrature
points, i.e. n observations, which must be taken at very specific locations. The Gauss
quadrature rules have the best convergence rate when the integrand is well approxi-
mated by polynomials. However, it is not possible to re-use observations when a more
precise estimation of the integral is desired. For any refinement of the numerical inte-
gration, previous samples have to be put aside and entirely new observations have to
be made. This is an important drawback because the number of quadrature points
needed to get a "good enough" projection is not known a priori, in the general case.
To tackle this problem, nested quadrature rules need to be used. "Nested" means
that there are quadrature "levels" such that for a given level k, the quadrature level
k+1 reuses all the observations of level k, and a reduced number of additional samples
are evaluated. This allows to refining the estimation of the integral by observing a
reduced amount of new samples for each new quadrature level. This also allows sparse
tensorization, which will be discussed in the following.
The Clenshaw-Curtis [14] rule and the Fejér quadrature of the second kind [27] are
nested rules that feature a similar convergence rate as Gauss quadrature rules [112].
Clenshaw-Curtis is a closed quadrature rule, meaning that it includes the boundaries of
the evaluation interval, while the second Fejér rule is an open rule, making it suitable
to integrate a quantity over an open interval (typically R for normal random variables).

The evaluation points and the associated weights are presented for the two methods,
without loss of generality, for an integration over the uniform interval [−1, 1].
Clenshaw-Curtis quadrature points and weights are given respectively by Equations
1.20 and 1.21:

xi = cos
(
iπ

N

)
, i ∈ J0, NK (1.20)





wi =
ci
N


1−

E[N/2]∑

j=1

bj
4j2 − 1

cos
(
2jiπ

N

)


bj =

{
1, j = N/2

2, j < N/2
, ci =

{
1, i = 0 or i = N

2, else

(1.21)
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The Fejér quadrature of the second kind uses the same evaluation points, excluding
the boundaries (−1 and 1), with different weights. They are given respectively in
Equations 1.22 and 1.23.

xi = cos
(
iπ

N

)
, i ∈ J1, N − 1K (1.22)

wi =
4

N
sin
(
iπ

N

) E[N/2]∑

j=1

sin
(

(2j−1)iπ
N

)

2j − 1
(1.23)

In the Clenshaw-Curtis rule, a quadrature of level k which uses Nk = 2n + 1 eval-
uations re-uses all the evaluations of the quadrature with Nk−1 = n + 1 points. For
the second Fejér rule of level k, the quadrature with Nk = 2n − 1 points re-uses the
evaluation of the quadrature with Nk−1 = n− 1 points.

For multi-dimensional integration, the quadrature rules need to be tensorized.
Sometimes, the tensorized quadrature rule is called the "cubature rule". The full
tensorization follows the following principles:

• For each quadrature point in a given dimension, the other dimensions must be
sampled on each quadrature point. As a consequence using a quadrature rule
which needs n evaluations in 1D, and tensorizing it in a space of dimension d
requires making nd evaluations. This exponential growth of the number of required
evaluations is also a curse of dimensionality.

• The weights of a multi-dimensional quadrature rule are computed as the product of
the 1D quadrature weights used in each dimension

To alleviate the curse of dimensionality in the integration, a sparse tensorization
method may be used, such as Smolyak’s tensorization [102]. More recently, Gernster
and Griebel [32] have proposed an adaptive sparse tensorization method to improve
on Smolyak’s idea and prioritize the precision of the cubature on certain dimensions
relative to others.
We will not dive further into the mathematical details of sparse tensorization. Instead,
we refer to Dumont [24] for details on these methods and benchmarks of their respective
performance. We showcase the dramatic decrease in evaluation cost, for a given level
of quadrature, with Smolyak’s method compared to the full tensorization in Figure 1.9.

Sparse cubature rules have some negative weights. Therefore, the positivity of the
approximation of the dot product (defined in equation 1.14) is not guaranteed. While
this may seem problematic from a mathematical point of view, we did not, in practice,
encounter any unexpected behavior using Smolyak’s tensorization. However, Constan-
tine et al. [20] and Conrad et al. [16] explored this issue. They proposed alternative
sparse grid algorithms for orthogonal projection to ensure, in particular, the absence
of internal aliasing (ensure that ⟨ψi, ψj⟩ = δi,j).

b. Regression

The other family of methods is based on the minimization of the surrogate’s error.
We search the optimal PCE F̃ of F such that:

F̃ = argmin
F ∗∈Ψ

(
E
[

distance(F ∗(ξ), F (ξ))
])

, Ψ = Span({ψα}) (1.24)
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Figure 1.9: Example of tensorization of level 4 quadrature rules on the hypercube [0, 1]2. On
the left are the evaluation points needed for the full tensorization. On the right are the points
needed by Smolyak’s method. Up is Clenshaw-Curtis’ rule, and bottom is Fejer’s second rule.

The choice of the distance is critical to get a good surrogate F̃ . The basic choice is
the Ordinary Least-Square method, which transforms the problem into:

F̃ = argmin
F ∗∈Ψ

1

N

N∑

i=1

∥F ∗(ξ(i))− F (ξ(i)))∥2 , Ψ = Span({ψα}) (1.25)

Where N is the number of observations F (ξ(i)) used to calibrate the PCE.

The least-square method can lead to an overfit of the surrogate if the number of
samples is not large enough compared to the number of polynomials in the truncated
basis. This phenomenon is illustrated in Section 1.3.1.3. A good rule of thumb is to use
about three to five times as many samples as coefficients to calibrate.

To improve the quality of the PCE, you can also improve the distance function:

• By adding ε ·∑p
k=1 |Fk|2, ε > 0 :

This is called the "Tikhonov regularization" or "L2 regularization" [110]. It is a
precision/variance trade-off, which means that it trades some discrepancy with the
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observations for lower PCE weights. This reduces the variance of the PCE and its
tendency to overfit.

• By adding γ ·∑p
k=1 |Fk|, γ > 0 :

This is called "Compressed sensing" or "L1 regularization" [109]. This promotes
sparsity in the weights by pulling their values to zero.

• By adding both of the previous regularizations. This is called the "Elastic net"
[125].

The hyperparameters ε and γ can be adjusted using Leave-One-Out or Cross-validation
algorithms [2]. Finally, more advanced algorithms like Least Absolute Shrinkage and
Selection Operator (LASSO) [109] or Least-Angle Regression (LARS) [25] can be used for
the L1 regularization.

This family of methods is much more computation-intensive than the projection
method because there is a minimization problem to solve instead of simple arithmetics to
evaluate. This minimization problem can even become overwhelming as the cost increases
exponen-tially with both the dimensionality and the highest polynomial order. Still,
for a similar sampling cost, regression-based PCE can yield better precision than their
projection-based counterparts if the pitfall of overfitting is avoided. This performance
topic is addressed in Chapter 2.

1.3.1.3 About that coveted spectral convergence...

The spectral convergence of the PCE is no unicorn in real life. Whatever the evaluation
process, one can not simply enrich the polynomial basis and hope the approximation will
improve. The spectral convergence is achieved if and only if the coefficients given to each
basis function are exactly computed.
In practice, for non-trivial stochastic processes, this comes at a cost:

• For regression-based PCE determination, increasing the number of polynomials -
increasing the number of coefficients to determine - will lead to overfitting if new
samples are not computed to train the surrogate. That is, the surrogate will
eventually pass through every sample point but will oscillate between them. In
this situation, the surrogate becomes too specialized to efficiently generalize the
dataset and emulate the "true" physical model. This is illustrated in the left part
of Figure 1.10.

• For projection-based PCE determination, the effect is a bit subtler. A quadrature
method will always give a result for the coefficient of a given polynomial, so you
can always compute as many weights as you want given a dataset. The trick is that
the higher the degree of the polynomial, the more points are needed to accurately
compute its coefficient. A PCE of high degree built with an insufficient number
of points will sport ill-determined high-degree terms that will make the surrogate
oscillate out of hand. This does not qualify as overfit, though, because the surrogate
will not even pass through the sample points. This is illustrated in the right part of
Figure 1.10.
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Figure 1.10: Examples of PCE (in red) of too large polynomial degree (p = 6) compared to the
number of training points (N = 7, represented by green crosses) for a non-trivial physical model
(in black), with an uncertain variable following the standard normal distribution: ξ ∼ N (0, 1).
On the left-hand side, a PCE is trained with an Ordinary Least Square Algorithm on a set of
N = 7 points drawn by a Monte-Carlo algorithm.
On the right-hand side, a PCE is trained by projection using a level 3 Fejer quadrature of the
second kind (N = 7).

1.3.2 Kriging
Kriging, also known as Gaussian process regression, is another surrogate modeling

method first introduced by Krige [57].
Consider a set of training data

D = {(ξ(i), y(i)), i ∈ J1, NK} (1.26)

Such that ∀i, y(i) = F (ξ(i)).

The Ordinary Kriging approximates F with the mean of the stochastic process Y
defined as:

Y (ξ) = µ+ Z(ξ) (1.27)

Where µ is the sum of the global mean contribution and local variations are represented
by the stationary Gaussian process Z(ξ). The mean contribution µ can be replaced by
a deterministic function of the coordinates µ(ξ) when F has a principal part. This is
the principle behind the Universal Kriging introduced by Matheron [69]. The following
developments will be restricted to Ordinary Kriging. However, the Universal Kriging case
is covered if F is replaced by F ′(ξ) = F (ξ)− µ(ξ).

The Kriging Y is defined, at each point ξ by its predictor ỹ(ξ) and its variance σ̃(ξ).
ỹ(ξ) and σ̃(ξ) are determined using the vector y of the observations {y(i)} and the auto-
correlation matrix R:

Rij(θ) = R(ξ(i), ξ(j),θ) (1.28)

where R is a correlation function, or "kernel", and θ is a set of correlation parameters,
"hyperparameters", or "length-scales". Common one-dimensional kernel choices are given
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in Table 1.2 and illustrated in Figure 1.11.

Table 1.2: Common choices of one-dimensional kernels. dij = |ξ(i) − ξ(j)| is the distance
between the samples i and j.

Name R(ξ(i), ξ(j), θ)
Linear max(0, 1− dij/θ)
Exponential exp(−dij/θ)
Squared-Exponential exp(−d2ij/θ)
Matérn 3/2 (1 + k3/2)exp(−k3/2) k3/2 =

√
3dij/θ

Matérn 5/2 (1 + k5/2 + k25/2/3)exp(−k5/2) k5/2 =
√
5dij/θ
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Figure 1.11: Examples of kernel functions. From left to right and from up to down: Exponential,
Squared-Exponential, Matérn 3/2 and Matérn 5/2, for dij ∈ [0, 2]

Multi-dimensional kernels, in dimension d, can be obtained by tensorizing 1D kernels:

Rij =
d∏

k=1

R(ξ
(i)
k , ξ

(j)
k , θk) (1.29)

32



The kriging predictor ỹ at any point ξ is defined as the expectation of the realizations
of the gaussian process presented in Equation 1.27:

F (ξ) ≈ µŶ (ξ) = ỹ (1.30)

And is computed with:

ỹ = µ̂+ rTR−1(y − 1µ̂) (1.31)

Where y is the vector of the observations, and 1 is a vector of size N containing 1 for
each coordinate. The prior estimation µ̂ of the global mean µ is found with:

µ̂ = (1TR−11)−11TR−1y (1.32)

And the vector r is defined by:

ri = R(ξ, ξ(i),θ)∀i ∈ J1, NK (1.33)

The variance of the gaussian process σ̃ can also be computed for any given point ξ,
with:

σ̃2 = σ2
Ŷ (ξ)

= σ̂2
(
1− rTR−1r+ u2(1TR−11)−1

)
(1.34)

With:

u = 1TR−1r− 1 and σ̂2 =
1

N
(y − 1µ̂)TR−1(y − 1µ̂) (1.35)

The fact that the variance of the gaussian process can be computed at any point means
that credible intervals can be predicted along the expectation of the QoI.

The choice of an appropriate kernel and its proper calibration are extremely important,
as illustrated in Figure 1.12. Ideally, in the case where a large number of observations
is available, a variogram of the data can be plotted. A variogram, first defined in [70],
is a plot of the squared difference between the values of each couple of observations as a
function of the distance between these observations. A kernel that fits the data can then
be chosen and calibrated on this variogram.
In the absence of a sufficient amount of data to plot a meaningful variogram, the hyper-
parameters can be determined using a Maximum-Likelihood approach [57, 4].
As for the choice of a kernel, Santner et al. [91] recommend using the Matérn 5/2 kernel
as a default choice. Furthermore, Schobi et al. [93] state that the influence of the kernel
is low in small dimensional problems.

Kriging can also be trained on noisy data, by adding a regularization constant to the
diagonal of the correlation matrix R. This regularization constant is called the ’nugget’
variance, and translates a lack of correlation with distance between neighboring samples.
This lack of correlation itself can result from uncertain realizations (noisy measurements,
variance introduced by hidden variables...) or from a very rough underlying function.
This nugget variance is the intercept of the variogram of the data, i.e. its value for a zero
distance. Even in the case of non-noisy data, introducing a small regularization constant
can also be used to facilitate the numerical inversion of R.

Finally, Kriging estimates can be used to efficiently resample the uncertain space
to sharpen the surrogate model where it is needed. A state-of-the-art review of such
techniques can be found in [30].
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Figure 1.12: Examples of Kriging surrogates (in red) using N = 7 Monte-Carlo training points
(represented by green crosses) for a non-trivial physical model (in black), with an uncertain
variable following the standard normal distribution: ξ ∼ N (0, 1). The 90% credible interval
predicted by the surrogate is plotted in grey.
On the left-hand side, a Regression-Kriging with a linear trend and a Matérn 5/2 kernel of
hyperparameter θ = 0.5.
On the right-hand side, an Ordinary-Kriging (no trend) and a Matérn 5/2 kernel of
hyperparameter θ = 0.2.

1.3.3 Preconditionning
In certain cases, the physical model does not have an agreeable-enough behavior for

the accurate calibration of a surrogate model. For example, the model may not be very
smooth or comprise a plateau. It may have saturation behaviors. In some cases, the
emulator may have positivity constraints. In these cases, the naive application of a surro-
gate modeling method may not lead to a satisfactory result. To alleviate some of these
issues, it may be interesting to apply a pre-conditionning to the observations of the phys-
ical model.

A pre-conditionning Φ is an invertible transformation of the observations such that:

F ′(ξ) = Φ ◦ F (ξ) (1.36)

And F ′, the pre-conditionned model, has more interesting properties than F .
The best pre-conditionning is case dependent but here are a few pointers:

• To ensure the positivity of a surrogate, it is common practice to use a logarithmic
pre-conditionning: Φ = log

• If F ′ has a tighter spectrum than F , it will be more accurately represented by a
low-order PCE

• The substraction of the physical model’s principal part (cf sec. 1.2.3) can help with
the quality of a Kriging surrogate. This is the idea behind Regression Kriging [69]
and PC-Kriging [95]
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1.4 Sensitivity analysis

Sensitivity analysis is a step sideways from the previous sections. While Monte-
Carlo algorithms and surrogate modeling are primarily aimed at estimating a Quantity
of Interest or its probability distribution given a set uncertain input, sensitivity analysis
aims at determining the relative impact of the uncertain parameters on the QoI.

1.4.1 Local sensitivity analysis
Local sensitivity analysis, as its name suggests, investigates the immediate vicinity of

the nominal conditions. The simplest method of this family is gradient analysis, which is
very close to the linearization method discussed in Section 1.1.1.1. The gradient of the
model F with regard to the components of ξ is computed at a nominal point ξ∗. The
components of the gradient may then be multiplied by the variability of their respective
components of ξ and finally normalized to obtain local sensitivity coefficients.

The advantage of this method is that it is quite cheap because it requires a minimum
of d+ 1 observations of the model in the non-intrusive framework.

Its downsides are:

• The choice of the nominal point to compute the gradient is arbitrary: It may be
more relevant, for a given case, to use either the expectation (ξ = E[ξ]), the median
value (ξ̃), or the location of the most probable value of the uncertain input.

• Local derivatives may not fairly represent the variability of the model on the whole
input space. This is the same issue as with the other local UQ methods discussed
in Sections 1.1.1.1 and 1.1.1.2.

• Interaction effects cannot be retrieved.

Some of these issues may be mitigated by using higher-order derivatives, but the locality
of the method remains an important limitation. For this reason, advanced UQ studies
tend to use global sensitivity analysis.

1.4.2 Global sensitivity analysis
Global sensitivity analysis aims at filling the gaps of local sensitivity analysis. Ergo,

its desirable properties are:

• Taking into account the behavior of the QoI on the whole range of possible values
of the uncertain inputs

• Taking into account the probability distribution of the uncertain inputs

• If possible, representing the effect of interactions between random inputs

A powerful metric for sensitivity analysis is the set of Sobol’ indices [103]. Each index
represents the portion of the variance of the QoI explained by the associated variable
or group of variables, which is precisely what we need to discriminate uncertainties of
consequence.
In most practical cases, the Sobol’ indices are not accessible analytically, and two main
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methods co-exist to approximate them numerically.

Brute-force approach

The first approach, originally proposed by Sobol’ [103] is a specialized Monte-Carlo
algorithm that allows for a precise and controlled approximation of any Sobol’ index. The
downside is that a specific design of experiment is necessary to evaluate each Sobol’ index.
The number of evaluations needed to evaluate nS Sobol’ indices is N(nS + 1) using this
method, where N is the number of evaluations needed to estimate the QoI at the desired
level of convergence. This very large number of evaluations makes this approach imprac-
tical when several indices need to be computed and/or when observations are expensive.
Saltelli et al. [90] proposed an alternate method called FAST to evaluate all the first-order
Sobol’ indices using only the N evaluations used to estimate the QoI. While this approach
is much cheaper for the first-order Sobol’ indices (the variance explained by one, and only
one, variable at a time), it does not allow to compute higher-order indices, meaning the
influence of interacting effects of two or more variables.

Indirect approach via the PCE

The other approach, proposed by Schöbi and Sudret [94], uses a PCE of the quantity
of interest. Algebraic operations are performed on the weights of the PCE to find all the
Sobol’ indices at once. This is an obvious advantage over the other method. However,
the precision of the estimation of the Sobol’ indices depends on the fidelity of the PCE.
This entails that the precision of this method is less controlled. Furthermore, when the
uncertain dimension is high, the maximum order and the number of interactions consid-
ered must be limited so that the determination of the PCE is tractable. Still, this method
gives access to sound approximations of the Sobol’ indices and allows ranking the effects
of all the input variables, which is the key feature of sensitivity analysis when trying to
reduce the uncertain dimension. Ergo, this second approach is the one that we selected
in this thesis.

To simplify notations, let us assume that the components ξ(i) of ξ are independent
uniform random variables on the [0, 1] interval. That way, no pdfs will show in the
following formulas. F is then defined on the unit hypercube Ud. Let us also assume that
F is square-integrable, that is:

F ∈ L 2(Ud) ⇐⇒
∫

Ud

F (ξ)2dξ <∞ (1.37)

The Sobol’ indices of the QoI appear in its Sobol’-Hoeffding (S-H) decomposition, which
writes:

F (ξ) = F (ξ1, . . . , ξd) = F∅+
d∑

i=1

Fi(ξi)+
d∑

i=1

d∑

j=1

Fi,j(ξi, ξj)+ . . .+F1,...,d(ξ1, . . . , ξd) (1.38)

Or in a more compact form:
F (ξ) =

∑

ι⊆D

Fι(ξι) (1.39)

With F the QoI, ξ the vector of its uncertain inputs and D the set of indices of the
components of ξ, ι a subset of D , ξι the corresponding input vector, and Fι the associ-
ated S-H functional.
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The Sobol’ indices are defined for each group of variables ι as:

Sι =
V[Fι]

V[F ]
(1.40)

Where V[X] is the variance of the functional X.

To approximate the Sobol’ indices, the S-H functionals can be approximated by their
corresponding truncated Polynomial Chaos (PC), that is:

Fι(ξι) ≈
∑

α∈Aι

ψα(ξι)Fα (1.41)

Where ψα is the α-th basis polynomial, Fα its weight in the PC expansion of F , and Aι

the set of indices of PC basis polynomials that involve the group of variables ι in the
truncated PCE.

Replacing Equation 1.41 in Equation 1.40, we get:

Sι(F ) =
V[Fι]

V[F ]
=

⟨Fι, Fι⟩
⟨F, F ⟩ ≈ ⟨∑α∈Aι

ψαFα,
∑

α∈Aι
ψαFα⟩

⟨∑α∈A ψαFα,
∑

α∈A ψαFα⟩
(1.42)

Where A is the set of indices of all PC basis polynomials in the truncated PCE.

Finally, the orthonormality of the PC basis gives:

Sι(F ) ≈
∑

α∈Aι
F 2
α∑

α∈A F 2
α

(1.43)

This is a simple algebraic formula which uses only the coefficient of a PCE of the
QoI, which makes the evaluation of any Sobol’ index very cheap once a PCE has been
computed.

1.5 Uncertain dimension reduction

When the dimensionality of an uncertain problem is too high, some propagation
methods (other than Monte-Carlo whose convergence is dimension-independent) may not
be tractable. In particular, as a rule of thumb, surrogate modeling with PCE or Kriging
becomes too expensive past about ten dimensions. As a perspective, when dealing with
chemical kinetic uncertainties, the number of uncertain parameters ranges from a few
tens, for simple fuels, to several hundred when complex hydrocarbons are involved. In this
context, reducing the uncertain dimension is crucial to enabling uncertainty propagation
methods. Two categories of methods can be distinguished: supervised and unsupervised
methods.

1.5.1 Supervised methods
Supervised methods are applied to problems where the dataset comprises both

the coordinates {ξ(i)} and values {yi(i)} of the observations. In the context of
uncertain dimension reduction, it means determining which components or combination
of components of ξ are important to explain the variations of y.
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1.5.1.1 Additive problems

An additive problem is the simplest possible case for uncertain dimension reduction. It
means that the uncertain inputs have an independent impact on the QoI. This translates
into cross-sensitivity indices being null or negligible. In terms of Sobol’ indices, this can
be formalized by:

Sι(F ) ≪ 1 , ∀ι |Card(ι) > 1 (1.44)

If this condition is verified, the interactions between uncertain variables can be neglected
and an uncertainty propagation study can be performed for each dimension independently,
which greatly reduces the cost.

1.5.1.2 Dominant variables

An uncertainty propagation problem with dominant variables is another relatively
simple case to deal with. As its name suggests, it is a problem where a few uncertain
variables explain most of the variance of the QoI. The starting point of dealing with such
a problem is to rank the effects of variables and their interactions according to a relevant
metric, for example, their Sobol’ indices. Then, it may be possible to retain only the most
prominent uncertain variables and interactions in the study. Several courses of action can
be considered for this segregation:

• Choosing an effect threshold (for example: "A variable or interaction should explain
at least 1% of the variance to be kept in the study").

• Choosing a total portion of explained variance in the study: Sobol’ indices are
summed in decreasing order until this chosen portion of variance is reached. All
other variables and interactions are discarded.

• Spotting a significant drop in the values of the Sobol indices sorted by decreasing
order. Variables and interactions prior to the drop are kept. All the others are
discarded.

Of course, this approach requires a priori knowledge of the behavior of the physical
model. This can be achieved, depending on the case, by relying on previous knowledge of
the model, by running an a priori study with degraded physics or resolution, by examining
an approximate analytical model, etc.

1.5.1.3 Active subspace

An active subspace (AS) is a set of directions of the total uncertain space Ξ on which
the QoI varies most [17]. This subspace may be aligned with the directions defined by the
original uncertain variables. In this case, the "Dominant variables" approach of Section
1.5.1.2 applies. If the subspace is not aligned, a rotation can be applied to the uncertain
space by performing a base change. The goal of this base change is to sort the directions
in which the QoI F encounters the greatest gradients. This rotation of the basis is found
with:

CF =

∫

Ξ

(∇ξF (x)) (∇ξF (x))
Tπξ(x)dx = WΛW T (1.45)

Where W = (w1, ...,wd) is a unitary matrix defining the rotated basis and Λ the
diagonal matrix of eigenvalues sorted in decreasing order:

Λ = Diag(λ1, ..., λd) | ∀i ∈ J1, d− 1K, λi > λi−1 (1.46)
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The set {w1, ...,wd} defines a new basis of the uncertain space. This basis can be
truncated at the first rank r such that λr ≫ λr+1. Span(w1, ...,wr) is called the active
subspace.

The expectations for an AS are that it should explain most of the variability of F and
that a surrogate model built on this active subspace should be a good approximation of F .

In practice, the necessary number of observations M to accurately determine an active
subspace is

M = αβlog(d) (1.47)

in the case of an adjoint simulation where the gradient is obtained "for free" with each
sample, and

M = αβ · d · log(d) (1.48)

when the gradient information is obtained by finite differences, where d is the initial
dimension of the problem, α an over-sampling factor, and β the largest dimension of
active subspace acceptable.

In these situations, the cost of finding an active subspace is untenable when
observations are expensive. Constantine et al. propose an alternate solution [18] if certain
conditions are met [21]:

• F is monotonous in each direction ξi

• An active direction (i.e. an AS of dimension 1) can be discovered

Then, an active direction can be determined with a linear regression of F :

F (ξ) = bTξ + b0 + εF (ξ) (1.49)

The active direction w1 is expressed as:

w1 = bT/∥b∥2 (1.50)

And the cost of finding such a direction is only:

M = α · d (1.51)

Finally, if this method was actually appropriate, a single direction w1 on which most
of the variability of the QoI F is found. A reasonable low-dimensional approximation can
be written as:

F (ξ) ≈ G(wT
1 ξ) (1.52)

A surrogate-based study is then very easy to conduct in this new 1D space.

Finally, Constantine and Diaz [19] have proposed to derive global sensitivity indices
from the determination of the active subspace. When the AS is one-dimensional, they
recommend using the components of the eigenvector w1. These components provide
insight into both the magnitude and sign of the effect of each original variable on the QoI.
When the AS in multi-dimensional and the brute-force approach is used to determine the
eigenvectors {wi} and associated eigenvalues {λi}, they recommend using their "activity
scores" αi defined as:

αi =
r∑

j=1

λjw
2
i,j , i ∈ J1, rK (1.53)
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1.5.2 Unsupervised methods
Unsupervised methods used datasets where only observations are available. They try

to identify patterns in the dataset to build a more concise representation of the data.

1.5.2.1 Principal Component Analysis

Principal Component Analysis (PCA) [79], also called discrete Karhunen–Loève Trans-
form (KLT), Proper Orthogonal Decomposition (POD), or Singular Value Decomposition
(SVD) is a statistical tool to reduce, or compress, the dimensionality of a dataset while
controlling the variance left on the table by the compression.

In concrete terms, PCA is the process of finding the principal components, or modes,
of a dataset. The i-th principal component is the direction of the line that best fits the
dataset, with the constraint of being in the subspace orthogonal to the first i−1 principal
components. This is illustrated in Figure 1.13.

In practice, we used the SVD formalism implemented in the numpy.linalg library
[36]. For a dataset matrix M of shape (n,d), where n is the size - or the number of
samples of the dataset - and d is the dimension - or the number of features - we can write:

M = U ∗Σ ∗ V T (1.54)

Where ∗ denotes the matrix multiplication, Σ is the diagonal matrix of the singular values
of M, and U and V are the singular matrices, containing orthonormal vectors in their
rows and columns respectively.

The principal components are the rows of P , such that:

P = Σ1/2 ∗ V T (1.55)

The portion of variance Vi explained by the mode i is found with:

Vi =
Σ2

i,i

n
(1.56)

The new basis of modes can then be truncated to compress the data optimally - in
the sense of retained variance. The possible truncature strategies are the same as those
mentioned in Section 1.5.1.2.

This process is useful to compress correlated inputs. An excellent example of this is
[62] where the authors reduce an uncertain field of data (hundreds or thousands of corre-
lated uncertain initial conditions) into a few uncertain coefficients associated with PCA
modes.

Following the same idea, instead of propagating uncertainties for a very large number
of correlated QoIs (such as fields of data in a fluid flow, for example), it is possible to
compress these uncertain outputs and perform the propagation of uncertainties on the
few coefficients associated to the modes of the output.

Finally, PCA can be used to "clean" data by projecting noisy observations on the
truncated basis of modes, which allows representing most of the variance of the data.
This cleaning must be exercized with caution because it may erase useful data contained
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in the original, "noisy" observations.

PCA is very sensitive to the amplitude of variations in each direction. Therefore, a
proper normalization of the data is required to get the best of a PCA.

The formalism of PCA and Active Subspaces are strikingly similar, at least at first
glance. In both cases, particularly interesting directions of the initial uncertain space are
derived, ranked, and selected using the factorization of a certain matrix. However, the
nature of the matrix that is factorized is extremely different between those cases. As a
result, this allows both methods to pursue completely different objectives:

• In the case of the AS: The matrix CF , defined in Equation 1.45 is a square and
symetric matrix of size d×d, where d is the dimension of the input space of the scalar
function F . The components of CF represent the expected squared derivative of F
in each direction in the original basis. Its diagonalization highlights new directions
of the input space in which the scalar F varies most.

• In the case of the PCA: The matrix M, defined in Equation 1.54, is rectangular of
size n × d, and is the juxtaposition of n realizations of a random vector of Rd. Its
factorization highlights a subspace of Rd where the n realizations can be projected
with a minimal loss of variance. Each basis vector of this subspace is also called a
"mode" of the dataset.
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Figure 1.13: Illustration of a PCA in a 2D dataset, compressed to 1 dimension
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1.6 Error metrics
The methods presented in Sections 1.3 and 1.5 have in common that they induce a

loss of information compared to the reference uncertain problem:

• A surrogate model blurs the features of the physical model it emulates to avoid
overfitting. It may also introduce artifacts, like the oscillations of high-order
polynomials. Furthermore, any prediction from a surrogate model is only "the best
guess" that we could make given the training observations and prior knowledge. A
new observation of the physical model at a new coordinate could always yield a
different, surprising value.

• A dimension reduction neglects the influence of some variables or combination of
variables.

1.6.1 A visual verification: the summary plot
A summary plot of a method is a comparison of observations and predictions for a set

of samples. It is mainly applicable to surrogate models, but it can also be used in the
case of some dimension reduction methods.
Figure 1.14 shows two examples of summary plots. For each sample, the original model
observation is plotted in x-axis, while the prediction is reported in y-axis. If the method
which is investigated does not lose or modify any information, all the points collapse on
the first bisector (x = y).
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Figure 1.14: Illustration of the summary plot of a satisfying UQ method (left) and of a poor one
(right)

In practice, most predictions are not perfect and the points are not exactly on the
first bisector. This is the case of the plot on the left side of Figure 1.14, were a "good"
surrogate is evaluated. On the right side, however, a very poor method (i.e. with a lot
of information loss or modification) is evaluated. While the summary plot gives only
visual, qualitative information on the agreement between predictions and observations, it
is enough to rapidly rule out blatantly substandard surrogates or dimension reductions.
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1.6.2 Distance of probability distribution functions
For more quantitative evaluations, a reference metric is the distance between the

predicted PDF and the PDF of observations. Obviously, this metric is only appropriate
when observations are sufficiently cheap to allow an extensive sampling of the uncertain
space.

The metric used in this thesis is the Wasserstein distance between the reference distri-
bution for a given case - i.e. the result of a brute-force Monte-Carlo study on the original
model, accounting for all the uncertainties - and the distribution predicted by the method
currently studied. The absolute value of the distance does not mean much in itself.
However, comparing the distances obtained with different methods allow ranking them
by precision: the lower the distance, the more precise the method.

The Wasserstein distance, also known as the "earth-mover’s distance" or
"Kantorovitch distance", was first introduced by Kantorovitch in [47]. It can be under-
stood as the cost of changing the value of predictions to match the distribution of obser-
vations. The higher the number of observations to change and the higher the change
amplitude, the higher the distance. Its precise mathematical definition can be found in
[115]. Finally, this choice of metric is an arbitrary choice from our part, and other error
metrics like the energy distance give similar results.

Probability distributions can also be compared by evaluating and comparing their
successive moments: expectation, variance, skewness, kurtosis, etc.

1.6.3 Performance estimation with validation sets of low cardinality
When observations are more expensive, a reference distribution may not be available.

Therefore, another metric needs to be used in order to check a method’s quality. In this
thesis, we used two such metrics: the Normalised Root Mean Squared Error (NRMSE) and
the Normalised Maximum Absolute Error (NMAE) between a set of validation observation
and the predictions made by the method at the same coordinates.
These metrics are defined as:

NRMSE =
∥Yobs −Ypred∥2

∥Yobs∥2
(1.57)

NMAE =
∥Yobs −Ypred∥∞

∥Yobs∥∞
(1.58)

Where Yobs is the vector of the validation observations and Ypred is the vector of the
predictions at the same coordinates.
The NRMSE, whose definition is given in Equation 1.57, measures the global fit of the
predictions with the observations. The NMAE, defined by Equation 1.58, measures the
maximum discrepancy between the predictions and the observations. Ergo, it is more of
a local indicator of the maximum error that may cripple the predictions.
On the one hand, the NRMSE is an efficient - though global - measure of the surrogate
fit, even for validation sets of low cardinality, but it may overlook significant local discrep-
ancies between the predictions and the observations. On the other hand, the NMAE will
catch these local errors of prediction, provided that the validation set covers the relevant
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areas. Still, the NMAE is blind to the fact that the prediction may be excellent over most
of the uncertain space in the event that it catches one important discrepancy. This may
be especially penalising for polynomial surrogates, which tend to oscillate on the fringes
of the uncertain space while having a good fit in high-probability regions.

Both metrics have their pros and cons, but their combination gives a rather complete
overview of the quality of a surrogate’s predictions, both in terms of global fit and local
errors.

1.6.4 Cross-validation
When a separate validation dataset is not available, or when trying to optimize a set

of hyperparameters with regards to a cerain error metric, cross-validation [107, 106] can
be used. Cross-validation is a resampling method, where the available dataset is split
randomly in a training and a validation dataset. The model is trained on the former and
the error metric is evaluated on the latter. To limit the dependence of the error evaluation
on the split of the dataset, it is good practice to repeat this process a number of times
and average the results.

A commonly used variation of this method is k-fold cross validation, where the dataset
is randomly split in k mutually exclusive subsets of equal size. The model is trained k
times using k− 1 subsets and evaluated on the remaining subset. Finally, Leave-One-Out
(LOO) is an extreme form of k-fold cross-validation, where k = n, the number of samples
in the dataset.
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1.7 Takeaway points
• A set of methods has been selected for the forward uncertainty propagation in the

context of very expensive observations.

• Most of these methods have been implemented from scratch in the in-house UQ
code SURE, which was entirely developed during this thesis. A few others relied
on on-the-shelf libraries. SURE is designed as a modular software which allows for
combining UQ methods and pluging in any deterministic model. For the needs of
this thesis, interface modules for AGATH (an in-house 0D and 1D flame simulation
software) and AVBP [96] (reactive, compressible LES software) were developed.

• This chapter is written in the form of an accessible point of entry for future PhD
students discovering uncertainty quantification.
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Chapter 2

Uncertainty propagation in H2/O2
auto-ignition simulations

The goal of this chapter is twofold. First, the importance of quantifying uncertainties
in realistic hydrogen combustion simulations will be substantiated. Second, an efficient
framework will be investigated to tackle kinetic uncertainty propagation in CPU-heavy
combustion simulations. The case study will be a 1D strained and auto-igniting non-
premixed flame. This configuration emulates the physical complexity of more expensive
combustion simulations while still being affordable to sample with a Monte-Carlo method.
This property is essential as the Monte-Carlo study will provide a reference distribution
against which different uncertainty propagation methods can be measured, which allows
for validating the developed framework. With the help of the framework developed in this
chapter, uncertainty quantification in CPU-expensive simulations will be done in Chap-
ters 4 and 5.

The crux of the framework is to build a surrogate model, or response surface, which is
an analytical formula that approximates sufficiently well the behavior of the costly simu-
lation for a negligible fraction of the computational effort. This surrogate, in turn, lends
itself perfectly to extensive Monte-Carlo resampling from which any statistic of interest
can be retrieved.

The challenge is to build a satisfying surrogate model using as few training samples as
possible because each training sample needs a whole simulation to be run. While this may
not be particularly difficult in low-dimensional uncertain spaces, it certainly becomes a
hurdle for high-dimensional spaces. De facto, this is the case when considering an uncer-
tain kinetic mechanism, even as "simple" a mechanism as one for hydrogen combustion.
To tackle this problem, we perform an a priori uncertain dimension reduction using a
simplified physical problem that features the same dominant physical phenomena as the
original one.

The general framework is then a two-stage process. First, we define the simplified
physical problem, which can undergo an extensive Monte-Carlo simulation, and identify
the dominant uncertainties among all the input uncertainties. Only uncertainties leading
to significant amounts of variance in the quantity of interest are retained. This trunca-
tion of this uncertain space results in a much-reduced set of uncertain variables, making
surrogate building manageable with few training samples in the second stage. Four surro-
gate modeling techniques (projection-PCE, regression-PCE, Kriging, and PC-Kriging)
are compared to propagate the uncertainty in the 1D igniting flame case using a minimal
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number of simulation runs.

The following sections detail the corresponding framework and their results on the 1D
strained auto-igniting non-premixed flame. Section 2.1 presents the strained auto-igniting
non-premixed 1D flame configuration along with its simplified physical proxy, an auto-
igniting homogeneous reactor. A qualitative comparison of the results from several kinetic
mechanisms for H2 combustion is given in Section 2.2. The considered high-dimensional
uncertain space is presented in Section 2.3. The methods chosen for the study are very
briefly presented in Section 2.4, which refers to Chapter 1 for all the mathematical details
of the methods. An extensive Monte-Carlo study is performed for the simplified setup, and
an analysis of the resulting uncertainties and underlying physical phenomena is presented
in Section 2.5. In particular, quantitative sensitivity analysis is performed in Section
2.5.2 to reduce the uncertain dimension space. Finally, uncertain dimension reduction
and surrogate modeling techniques are applied to the target configuration in Section 2.6,
which presents and analyses the propagated uncertainties.

2.1 Physical configurations and numerical setups
This section presents the two configurations explored in this chapter and the numerical

setups which simulate them. The complex configuration, a strained auto-igniting non-
premixed 1D flame, is presented in Section 2.1.1. Quantifying uncertainties in this
configuration using as few realizations of the simulation as possible is the goal of this
chapter. Then, a simplification of this setup is presented in Section 2.1.2. This simplified
configuration, an auto-igniting homogeneous reactor, will be helpful to analyse the physics
and uncertainties that dominate hydrogen auto-ignition in a vitiated mixture. In the
following, this analysis will allow sample-efficient uncertainty propagation methods to be
used on the complex case.

2.1.1 The target configuration: a strained and auto-igniting non-
premixed 1D flame

This section presents a setup that emulates complex combustors. The interest is
double: (i) we will verify that a non-trivial uncertain behavior can be found in realistic
setups; (ii) we will benchmark several UQ methods to handle this uncertain problem using
only a few samples, while still being able to afford the complete reference distribution,
using Monte-Carlo sampling.

Table 2.1: Nominal boundary conditions for the auto-igniting 1D flame: temperature and
species molar fractions. The pressure is set to 101 325 Pa.

Fuel side Oxidizer side
Tfuel [K] 305 Tox [K] 1020
XH2 [-] 0.25 XH2O [-] 0.1
XN2 [-] 0.75 XO2 [-] 0.15

XN2 [-] 0.75

The setup that will be studied in the following is a 1D auto-igniting non-premixed
H2/O2 flame. Details of the boundary conditions are given in Table 2.1 and are similar
to conditions found in the Cabra H2 flame [11], only with a slightly colder oxidizer side.
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These conditions mimic what is typically found in the later stages of staged industrial
burners and combustion chambers. The initial conditions are given by the pure mixing
solution from the boundary conditions, which corresponds, in the mixture fraction space,
to a linear evolution of the mass fraction composition and enthalpy from one boundary
to the other. A unity Lewis number is assumed so that this 1D flame is representative
of turbulent combustion [80]. The corresponding evolution of species mass fractions Yk
(with unity Lewis number) in the mixture fraction space is then driven by Equation 2.1:

ρ
∂Yk
∂t

=
ρχ

2

∂2Yk
∂z2

+ ρω̇k (2.1)

With:
χ(z) =

a

π
exp

(
−2
[
erf−1(2z − 1)

]2) (2.2)

Where ρ is the density of the mixture, z is the mixture fraction, ω̇k is the reactive source
term of species k, and a is the strain rate of the flame. A similar equation can be written
for the evolution of the temperature. In the early stages of auto-ignition, if the transport
term - proportional to the strain rate a - is too large compared to the source term ρω̇k for
the intermediate species like O, H, and OH, the flame never ignites. A low strain rate is
chosen to ensure the ignition of all sampled flames, even for low initial temperatures or
slow realizations of the kinetic mechanism: a = 10 s−1. This allows a more straightforward
comparison between surrogate modeling methods, but similar results can be obtained with
higher strain rates by conditioning the surrogate models to the observations where the
flame actually ignites.

The 1D flame equations are solved on a uniform 400-point mesh using the 2nd-order
stabilized explicit Runge-Kutta method (ROCK2) with error control [1]. The auto-
ignition delay is determined when the mass fraction of the hydroxyl radical reaches the
threshold YOH = 600 ppm in the computational domain. The computation time per
sample can rise up to a dozen minutes, making it just affordable in Monte-Carlo.

This setup, while featuring species and heat transport and being the backbone of
flamelet-based tabulated chemistry for 3D simulations [82, 43], is driven by auto-ignition.
Its temporal behavior is presented in Figure 2.1. Starting from the pure mixing line, the
gas temperature first starts to rise at the most-reactive mixture ZMR = 0.04 [68], which
is a very lean and hot mixture. Then, heat and reactive species are transported towards
the slower-reacting mixtures, progressively igniting the whole flame.

2.1.2 The simplified configuration: Auto-igniting homogeneous reactor
This section presents an auto-igniting constant-pressure homogeneous reactor, which

will serve as a physics-reduced simplification of the setup presented in section 2.1.1. Its
initial composition and temperature are chosen as the conditions initially reigning at the
most reactive mixture ZMR of the non-premixed flame. Thus, it represents the chemistry-
dominated part of the evolution of the 1D flame, where ignition first occurs. As shown in
Table 2.2, the initial temperature is already quite hot and the initial composition includes
both N2 and H2O.
This case is much simpler, as it features a purely chemical behavior and omits the
"transport" part of the equations that govern the evolution of the physical quantities
(Equation 2.3). Therefore, it is a suitable reduced model of the costly setup when studying
only chemical kinetics.
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Figure 2.1: Instantaneous solutions of an example of a 1D auto-igniting flame with the Konnov
2019 mechanism, plotted in mixture fraction space. Solutions are plotted darker with increasing
time from t = 0 ms up to 60 ms every 2 ms.

ρ
∂Yk
∂t

= ρω̇k (2.3)

Table 2.2: Nominal initial conditions for the auto-igniting homogeneous reactor (Pressure,
Temperature and species molar fractions)

P [Pa] 101325
T [K] 987
XO2 [-] 0.1424
XH2 [-] 0.0126
XH2O [-] 0.0950
XN2 [-] 0.7500

Similarly to the 1D flame setup, auto-ignition is detected when YOH = 600 ppm. The
temporal integration is performed using the stiffly-accurate implicit Runge-Kutta method
of fifth-order accuracy (Radau IIA) with error control [26]. The computational cost per
simulation is about 0.1 CPU-second. This makes this setup suitable for a priori studies
with extensive Monte-Carlo sampling. As shown in section 2.5, this minimalistic setup
(H2/O2 chemistry only) is already enough to showcase a non-trivial uncertain behavior.

2.2 A qualitative comparison of deterministic H2/O2 mecha-
nisms

This section provides an (admittedly non-exhaustive) overview of the variety of igni-
tion delay times (IDT) that can be found in the case of the auto-igniting homogeneous
reactor presented in Section 2.1.2. Figure 2.2 presents the evolution of the IDT as a
function of the temperature, for several deterministic combustion mechanisms available
in the literature.
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Figure 2.2: Comparison of the auto-ignition delay time of the reactor using GRI-Mech 3.0
[101], Hong et al.’s 2011 [40], Konnov’s 2008 [54], and Konnov’s 2019 [55] deterministic
mechanisms, at different initial temperatures.

On the one hand, this Figure shows that the IDT varies widely with the initial temper-
ature of the reactor, with two different regimes clearly emerging: "weak" or "mild"
combustion at low initial temperatures and "strong" or "sharp" combustion for high
initial temperatures [92, 122]. In industrial systems and, in particular, in the context of
staged combustion, this initial temperature may not be exactly known, leading to poten-
tially large uncertainties in the behavior of the system.

On the other hand, while the different kinetic mechanisms agree for the most part in
both regimes, the transition zone between them is subject to strong disagreement between
them. For example, two orders of magnitude separate GRI-mech 3.0 [101] and Konnov
(2008) [54] at initial temperatures of about 1000K. Perhaps more interestingly, Figure 2.2,
also compares Konnov’s 2008 [54] and Konnov’s 2019 [55] mechanisms, the latter being
an update of the former. These two closely related mechanisms still present an order of
magnitude of difference in the transition zone. This discrepancy entails that the IDT is
very sensitive to the parameters of the kinetic mechanism.

Furthermore, Arrhenius coefficients that parametrize the kinetic mechanisms are
uncertain because they are calibrated from sets of measurements of finite precision. Uncer-
tainty factors are reported in some kinetic mechanisms, which means it is both possible
and interesting to properly propagate kinetic uncertainties through an auto-ignition simu-
lation, to assess the precision of numerical auto-ignition predictions.

2.3 Uncertainties in hydrogen flame ignition

While hydrogen combustion features a relatively simple kinetic mechanism, the
simulation of ignition is still subject to uncertainties that can introduce a significant
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variance in the results. In the configuration studied here, a 1D non-premixed auto-
igniting flame emulating the staged combustion, only initial oxidizer temperature and
kinetic constants are delved into.

2.3.1 Initial temperature
The scope of this study is on staged combustion, and more specifically on the second

combustion stage of that process. In such circumstances, the initial temperature of the
vitiated gases can be uncertain. This uncertainty can come from thermal losses in the
combustor or mixing inhomogeneities, for example. Furthermore, precisely measuring
the temperature inside the combustor can be challenging. Laser-based measurements
have a typical uncertainty of ±3% [11], and thermocouples are difficult to calibrate in
radiative environments such as heated pipes or combustors, also leading to measurement
uncertainties. For these reasons, we set a representative uncertainty of ±30 K for the
vitiated gases. We also choose a uniform distribution for this temperature, as described
in Equation 2.5, because it is the least-informative distribution for a given range of values.
For the auto-igniting 1D flame, this corresponds to an initial oxidizer temperature ranging
from 990K to 1050K. The fuel temperature, on the other hand, is considered to be precisely
known. For the homogeneous reactor at ZMR, this translates into an initial temperature
ranging from 959K to 1016K.

T ∼ U (Tmin, Tmax) (2.4)

To represent this uncertainty in a normalized way, a unit uniform random variable ξT is
introduced:

ξT =
Tcof − TMin

TMax − TMin
∼ U (0, 1) (2.5)

2.3.2 Kinetic mechanism
In 2008, Konnov first published a detailed combustion mechanism for H2 containing

uncertainty data for all reactions [54]. It models the Arrhenius pre-exponential factors as
log-normal random variables, while the other kinetic parameters remain constant:

kj = AjT
βj exp

(−Eaj

RT

)
(2.6)

ξj =
log(Aj/A

0
j)

1
3
log(UFj)

∼ N (0, 1) (2.7)

With kj being the rate constant of reaction j, Aj the pre-exponential factor, A0
j its

nominal value, and UFj its uncertainty factor.
In this study, we choose to work on an updated version of this mechanism, published in
2019 [55], which brings state-of-the-art nominal Arrhenius coefficients and estimations of
their uncertainty factor.

Konnov’s 2019 mechanism contains excited species and reactions that involve them.
While these are useful for predicting species observed in experimental diagnostics,
this extra complexity only leads to more expensive simulations without changing the
evolution of predominant species significantly [55]. Therefore, we boiled-down the kinetic
mechanism to retain only non-excited species and the relevant reactions. In Figure 2.3,
we plot the probability distribution of the auto-ignition delay time of the homogeneous
reactor introduced in Section 2.1.2 for several temperatures in the operating range, using
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the original mechanism from Konnov [55] (in red) and its reduction to non-excited species
and relevant reactions (in turquoise color). This boiled-down mechanism is detailed in
Annex A.

960 980 1000 1020
Tini [K]

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5
lo

g 1
0
(τ

)
[-

]
Original Konnov (2019)

Arranged Konnov (2019)

Figure 2.3: Violin plots of the logarithm of the homogeneous reactor’s auto-ignition delay time
at different initial temperatures, using both the original and boiled-down versions of Konnov’s
2019 kinetic mechanism, with the initial composition from Sec. 2.1.2

Figure 2.3 shows that no significant discrepancy in the probability distribution of the
auto-ignition delay time is found over the operating range of temperatures.
Finally, the boiled-down Konnov’s 2019 mechanism contains 31 reactions, and therefore
31 uncertain pre-exponential factors.

In total, 32 uncertain variables are accounted for in the study: {ξ1, . . . , ξ31, ξT}. This
relatively high dimensionality means that only Monte-Carlo-like methods will be tractable
to tackle this uncertain problem directly.

2.4 Numerical methods for uncertainty propagation

To propagate these uncertainties through the costly simulation, specific uncertainty
methods will be needed. The brute-force approach of uncertainty propagation is called
Monte-Carlo sampling and is presented in Section 1.2. Although robust and suitable for
high dimensional uncertain spaces, the Monte-Carlo approach has a slow convergence rate,
meaning that many samples are needed to obtain meaningful statistics of the quantity
of interest. This leads to tractability issues when the computation time per sample is
significant.
A way to alleviate this problem is to build a surrogate of the costly simulation. A surro-
gate model, or response surface, emulates the costly simulation for a fraction of the cost,
making an extensive sampling affordable. Two kinds of methods are explored in this study:
Polynomial Chaos expansion, with its two variants, projection-PCE and regression-PCE,
introduced in Section 1.3.1, and Kriging, presented in Section 1.3.2.
Alas, surrogate models need a rising number of training samples when the uncertain
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dimension increases. This makes the construction of surrogate models impractical, or
even intractable when the uncertain dimension is too high and the computation time per
sample is significant.
To allay this problem, we propose to reduce the uncertain dimension a priori by analyzing
a cheaper simulation representative of the physical phenomena at play. The mathematical
tools that we used are presented in Section 1.5.

2.5 Analysis of uncertainty in the homogeneous reactor’s
results and dimension reduction

This section determines and analyses the uncertainty of the simplified case’s auto-
ignition delay time. This case is the homogeneous reactor defined in Section 2.1.2, which
features hydrogen auto-ignition in a vitiated mixture. A brute-force uncertainty propaga-
tion is performed in Section 2.5.1. An analysis of the resulting uncertainty is then carried
out, with a search of the dominant input uncertainties (Section 2.5.2) and an interpreta-
tion of the shape of the auto-ignition delay time’s probability distribution (Section 2.5.3).

2.5.1 Brute force uncertainty propagation
The homogeneous reactor’s behavior is piloted by the physical phenomenon of auto-

ignition. Therefore, a relevant quantity to study is the auto-ignition delay time of the
reactor. However, this delay can easily span several orders of magnitude for slightly
different initial conditions, as shown in Figure 2.2. This makes the analysis and uncer-
tainty quantification difficult. Therefore, a better Quantity of Interest (QoI) is the loga-
rithm of the auto-ignition delay: QoI = log10(τ). This new QoI is contained in one order
of magnitude only, and it has the added benefit of being defined over the entire real axis,
whereas the auto-ignition delay must be strictly positive.

The simulations of auto-igniting homogeneous reactors are extremely cheap, which
makes a brute-force Monte-Carlo approach affordable. The 32-dimension space Span(ξ1,
. . . , ξ31, ξT ), defined in Section 2.3 is therefore sampled extensively. The temporal evolu-
tion of the temperature of a handful of these samples is presented in Figure 2.4 to illustrate
the wide variety of thermal runaway starting points and slopes. 219 QMC samples are
drawn using the Sobol’ sequence, and the resulting probability distribution function of
the QoI is shown in Figure 2.5. Table 2.3 gathers major statistics of this distribution.

Table 2.3: Major statistics of the auto-ignition delay time of the homogeneous reactor from
Section 2.1.2

Auto-ignition delay time τ (ms)
mean median nominal 95% confidence interval
45.4 15.3 14.4 [ 1.7 , 180.6 ]

First of all, it should be noted that the PDF of the auto-ignition delay time τ = 10QoI

spans two orders of magnitude. This uncertainty is far from negligible, and the uncer-
tainty propagation framework will be helpful in this case.
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Figure 2.4: Temporal evolution of the temperature for the first 20 QMC samples
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Figure 2.5: PDF of the logarithm of the homogeneous reactor’s auto-ignition delay time using
219 QMC samples

Second, the PDF of the QoI is bimodal. This shape highlights strong non-linearities in
the underlying physical phenomena. Therefore, this non-trivial statistical behavior must
be represented by its PDF because usual metrics like mean and standard deviation are
ill-suited to describe it.

Furthermore, such a behavior cannot be retrieved using local (linearized) sensitivity
analysis. This justifies the use of a full-blown global uncertainty propagation approach
for combustion simulations.
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2.5.2 Quantitative sensitivity analysis and uncertain dimension reduction

From these QMC samples, Sobol’ sensitivity indices are obtained using the indirect
method described in section 1.4.2. As a reminder, the Sobol’ indices are the portion of
QoI variance explained by each variable or group of variables. The PCE used to retrieve
the Sobol’ indices is determined using least square regression with 10-fold cross-validation
using 219 samples. The PC basis is truncated at a maximum order of 5 and first-order
interactions (p=5, q=0.5) to contain the computational cost of determining the PCE
weights.

This PCE is verified visually using the summary plot of Figure 2.6. The fit is not
perfect because we constrained the highest order of polynomials and limited ourselves to
first-order interactions due to tractability reasons. However, the behavior of the QoI is
mostly retrieved, and we will proceed with confidence in the highest Sobol’ indices we can
extract from it. These highest indices are plotted in decreasing order in Figure 2.7.

Figure 2.6: Summary plot of the PCE used to compute the Sobol’ indices

This sensitivity analysis highlights the dominance of two uncertain parameters in the
problem:

• The initial temperature T : As already exposed in Section 2.2, the QoI is highly
sensitive to the initial temperature. The large uncertainty range associated with
this variable ( T ∼ U (959K, 1016K) ) makes it the most impacting uncertainty in
this configuration.
Its index stands alone in this study, dwarfing all effects from other uncertain
parameters.

• The pre-exponential constant A12: The 12th reaction, H + O2 = OH + O, has been
known for its very high sensitivity for a long time [7]. Because of this, it has since
been extensively studied, and as a result, its uncertainty factor (UF12 = 1.1) is the
lowest of Konnov’s kinetic mechanism. However, it remains the most impacting
uncertain kinetic parameter as already underlined for laminar flame speed [119, 55].
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Figure 2.7: Most significant Sobol’ indices for the homogeneous reactor, plotted in decreasing
order

2.5.3 Interpretation of the bimodal distribution
To understand the bimodal distribution observed for this uncertain problem in Figure

2.5, we propose Figure 2.8 which represents the evolution of the auto-ignition delay as a
function of the initial temperature, while also taking into account the uncertainties of the
kinetic mechanism. This allows for visually isolating the effect of the initial temperature,
which dominates the uncertain problem, from all other uncertain effects.

This figure showcases a "step" in the auto-ignition delay between the initial tempera-
tures of 970 K and 1000 K. This is the transition between the high- and the low- temper-
ature regimes (or "strong" and "weak" regimes respectively). This transition can be
observed at slightly different temperatures, depending on the initial composition. For
numerical studies like this one, its position also obviously depends on the kinetic mecha-
nism in use.

Considering the probability distribution of the initial temperature - a uniform
distribution between 959 and 1016 K - the samples populate both regimes, in which
the QoI is much more probable than in the transition zone between the two. Hence, the
two bellies of the distribution. A similar conclusion can be reached using Figure 2.3, which
shares the same axes but aims at determining the probability distribution of auto-ignition
delay at several deterministic initial temperatures.

2.6 Analysis of the auto-ignition delay time’s uncertainty in
the complex configuration

Section 2.5 proved the necessity of proper uncertainty propagation for the simulation
of the auto-ignition of the mixtures typically found in the second stage of staged
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Figure 2.8: Logarithm of the auto-ignition delay time of the homogeneous reactor as a function
of the temperature. The points are QMC samples from Span(ξ1, . . . , ξ31, ξT ). Note the
consistence of the results with the per-temperature investigation shown in Figure 2.3

hydrogen combustion. It also provided insights into the dominant input uncertainties
in such simulations and into the behavior of the QoI. Based on these insights, this
section pushes forward to propagate uncertainties in the more complex and realistic
configuration: the 1D non-premixed auto-igniting flame presented in Section 2.1.1. A
Monte-Carlo uncertainty propagation is first conducted in Section 2.6.1 to provide a
reference probability distribution of the auto-ignition delay time of the 1D transient flame.
This study is allowed by the still manageable cost of such a simulation. Other uncertainty
propagation methods are explored in the following because the Monte-Carlo approach is
not affordable for typical 3D simulations of turbulent flames. To tackle this problem,
the two-stage framework consists first of an uncertainty dimension reduction based on a
simplified configuration. The reduction proposed in the previous section is assessed on the
actual 1D problem in Section 2.6.2. This allows surrogate models to be built in a second
stage using a limited number of training samples. A comparison of surrogate modeling
methods is given in Section 2.6.3. Finally, error metrics for the surrogates, usable with a
modest set of validation samples, are presented in Section 2.6.4.

2.6.1 Reference distribution from a Monte-Carlo study
The 1D auto-igniting non-premixed flame is still accessible in Monte-Carlo despite

being several orders of magnitude more expensive to simulate than a homogeneous reactor.
213 QMC samples are drawn in the 32-dimension uncertain space as a reference for the
methods investigated in the following. The resulting probability distribution of the QoI
is shown in Figure 2.9. Significant statistics are presented in Table 2.4.

A bimodal distribution is found, much like in the homogeneous reactor case, although
this distribution is skewed by heat and species diffusion. This confirms that complex,
uncertain kinetic behaviors can be observed in more physically complete setups. In turn,
this entails that proper uncertainty quantification can be needed when such situations
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Figure 2.9: PDF of the logarithm of the 1D flame’s auto-ignition delay time

Table 2.4: Major statistics of the auto-ignition delay time of the 1D flame

Auto-ignition delay time τ (ms)
mean median nominal 95% confidence interval
52.1 12.0 12.8 [ 2.6 , 340.2 ]

arise.
In the case of the design of a complex burner, though, a Monte Carlo experiment is not
tractable because the cost of a 3D turbulent combustion simulation typically ranges from
a few hundred CPU hours (in RANS) to tens or hundreds of thousand CPU hours (in
LES). Therefore, only a few observations can be obtained, on which surrogate models
can be built. However, surrogate modeling is problematic in high-dimensional uncertain
spaces. This problem will be addressed in the next section.

2.6.2 Impact of the uncertain dimension reduction

Building a surrogate in high dimensions requires many samples, preferably twice as
many as uncertain dimensions, to capture at least first-order effects in all directions. In
the case of simulations featuring H2/O2 combustion, this means at least 64 simulations of
the physical model. For complex systems that may be expensive to simulate, especially
in the context of design and optimization where several iterations of the system will be
compared, such a high number of simulations to build a surrogate can be unaffordable.
Therefore, we propose to perform a priori uncertain dimension reduction to drastically
reduce the number of samples required to build the surrogate. The most forward way to
do it is to conduct a global sensitivity analysis, i.e. sorting the variables whose uncer-
tainty lead to the greatest uncertainty in the QoI. The researcher can then truncate the
uncertain space at the level of uncertainty that is chosen to be retained.

The problem, however, is that a global sensitivity analysis requires either sufficiently
abundant Monte-Carlo samples or a good surrogate of the phenomenon, which we cannot
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afford in the general case. Then, the idea is to use a simplified setup that requires much
less computational effort to simulate. It should feature approximately the same physical
phenomena and be sensitive to the same uncertain variables. In these conditions, the
sensitivity analysis results can be - at least qualitatively - conveyed onto the complex
system.
In our case, we need a simple setup that is piloted by auto-ignition in the same conditions
as the 1D flame. The homogeneous reactor presented in Section 2.1.2, being chosen at
the most reactive mixture of the 1D flame, matches these requirements. In this study, we
choose to retain only the uncertain parameters whose influence on the QoI’s uncertainty
is greater than 1%, i.e. those whose Sobol’ index is greater than 10−2. This leaves only
the initial temperature T and the pre-exponential constant A12. A new uncertain space
is then assembled, spanned by these two variables alone.

The reduced uncertain space, Span(ξ12, ξT ), is then resampled in a separate Monte-
Carlo simulation, and the simplified physical model is re-evaluated to check the validity
of the uncertain space reduction. As can be seen on the left of Figure 2.10, the two pdfs
mostly collapse, indicating that most of the original uncertainty of the QoI is retained in
the reduced uncertain space.
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Figure 2.10: Comparison of Monte-Carlo experiments in the full and in the reduced uncertain
space Span(ξ12, ξT ). Left: On the homogeneous reactor. Right: On the 1D autoigniting flame.

The more complex physical model is also resampled on the reduced uncertain space as
a means of step-by-step validation. Of course, in the general case, neither this resampling
nor the original "reference" sampling can be afforded and one will have to rely on the error
metrics described in section 1.6. The results of this resampling are shown on the right
of Figure 2.10. Again, the pdfs are very similar, indicating that the sensitivity analysis
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and the resulting uncertain dimension reduction could indeed be extrapolated to the more
complex setup.

2.6.3 Comparison of the surrogate modeling methods
The performance of the four surrogate modeling methods presented in Section 2.4

(Regression PCE, Projection PCE, Kriging, and PC-Kriging) are now compared on
this particular setup. Surrogate models will be trained on the reduced uncertain space
Span(ξ12, ξT ), using different sizes of training sets: The projection-PCE will use 17, 49,
and 129 samples, corresponding to the number of points needed in the second, third, and
fourth levels of the sparse Fejer cubature. The regression-PCE, Kriging, and PC-Kriging
will be trained on a Quasi Monte-Carlo training set, using 10, 15, and 40 observations.
To avoid overfitting, the PCEs are limited to a total order of 4. As shown in Figure 2.11
on the example of the regression PCE, the quality of the surrogate increases with the
number of samples in the training set, which translates into a better fit between the PDF
predicted by the surrogate and the reference PDF in the reduced uncertain space.

−3 −2 −1 0
log10(τ )

0.0

0.2

0.4

0.6

0.8

1.0

p
d

f(
lo
g 1

0
(τ

))

Reference

PCE-R-10

PCE-R-15

PCE-R-20

PCE-R-40

Figure 2.11: Convergence of the pdf obtained by resampling the regression-PCE, for several
sizes of training sets

This better fit between PDFs can be quantitatively measured by their Wasserstein
distance. The evolution of this distance for each type of surrogate and each size of
training set is plotted in Figure 2.12.

This plot highlights that projection-PCE is not performing as well as Kriging and
regression-PCE in this configuration. The projection-PCE has a spectral convergence
towards the "real" evolution of the QoI, which means that given enough exactly computed
polynomials, the real evolution of the QoI can be retrieved with as much accuracy as
desired. However, in the case of expensive simulations, the weights of higher-order poly-
nomials can not be adequately computed because their evaluation requires a large number
of samples. Therefore, with few available samples, projection-PCE is stuck with low-order
effects and interactions. This is not a problem per se, as highlighted by the performance of
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Figure 2.12: Evolution of the Wasserstein distance between the reference pdf (in the 2D
uncertain space) and the resampling for each surrogate modeling method as a function of the
size of the training set

the regression-PCE which uses the same limited polynomial basis. However, the weights
computed using projection do not optimize the global fit of the surrogate to the observa-
tions but are merely projections on basis polynomials.

On the other hand, both Kriging and regression-PCE make good use of the available
samples to mimic the behavior of the QoI. They have a higher convergence rate, and the
fit is already more than acceptable for low training set sizes (15 samples). However, with
these methods, one must take care of the pitfall of overfitting. For the PCE, a rule of
thumb is to avoid using a number of polynomials higher than half of the cardinality of the
training set. However, this may not be enough to avoid overfitting, and we recommend
training PCE surrogates with several sizes of polynomial basis and comparing them using
the available quality metrics. For Kriging, overfitting is avoided by correctly choosing the
Kernel and length scales. In our experience, Matérn 5/2 kernel and MLE determination
of length scales work in most cases.

It is also important to note that Kriging and regression-PCE can use the same training
samples, i.e. random or quasi-random samples, while projection-PCE needs to use its own
set of training samples. Kriging and regression-PCE also yield similar performances while
the projection-PCE surrogate lags behind.

Projection-PCE also suffers from a very specific issue. For some sample points, it may
not be possible to properly define an observed QoI. In the case of a 1D auto-igniting flame,
if the kinetics are too slow, heat and intermediate species are diffused too fast in compar-
ison, and the flame never ignites. This can typically happen at the edges of the uncertain
space, which are reached by the quadrature scheme. Discontinuities of that sort can be
handled with regression methods by building a surrogate conditioned by auto-ignition
and ignoring ill-defined observations in the training process. However, with projection
methods, this is not possible because a value for the QoI must be specified at each quadra-
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ture point. The chosen value impacts the shape of the response surface, and therefore the
fidelity of the response surface. In this study, for the sake of comparing different surro-
gate modeling methods, this problem was avoided by setting a very low strain rate for the
1D flames, as specified in section 2.1.1, ensuring that all sampled flamelets actually ignite.

Finally, in this case, PC-Kriging using a 2nd order regression-PCE as trend outper-
forms the other surrogate model techniques by combining the smooth global trends of
PCE with the possibility of local variations offered by Kriging.

Therefore, to maximize both the performance and the robustness of the surrogate
modeling step, we recommend sampling the reduced uncertain space with a space-filling
sampling method, like a Sobol’ sequence, then building regression-PCE, Kriging, and
PC-Kriging surrogates over these training points. The best surrogate model can then be
selected a posteriori depending on which performs better in each specific situation.

2.6.4 Error measurement with a modest validation set
In the general case, when the reference distribution is not available, the alternative

metrics presented in Section 1.6 can be used. Using 20 validation samples drawn with
Latin Hypercube Sampling (LHS), we can compute the Normalized Root Mean Squared
Error (NRMSE) and Normalized Maximum Absolute Error (NMAE) of each surrogate
model. Figure 2.13 presents their evolution with the size of the training set. On the
one hand, the evolution of the NRMSE is in qualitative agreement with the reference
metric, making it suitable to compare the global quality of surrogates when the reference
distribution can not be obtained. The NMAE, on the other hand, gives a measure of the
maximum error of the surrogate. In particular, it can translate the increasing oscillations
of the regression-PCE at the edges of the uncertain space when the maximum order
of polynomial increases. The NRMSE and NMAE also have the advantage of being
more quantitatively intuitive measures than the Wasserstein distance. Overall, their
combination is suitable to evaluate the quality of a surrogate method, both in terms
of global fit and potential localized error.
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2.7 Takeaway points
On the physical interpretation side:

• This study has shown that typical uncertainties in the initial temperature of
a mixture can significantly impact H2/O2 combustion when the auto-ignition
phenomenon is involved.

• Simulations of such configurations are also impacted by the uncertainties in the
kinetic mechanism itself.

• These effects were shown to happen not only in the relatively simple case of
homogeneous reactor auto-ignition but also in the more complex case of auto-igniting
non-premixed 1D flames.

• Significant non-linearities in the transition zone between high- and low-temperature
chemistry can lead to heavily skewed or even bimodal probability distributions of
the auto-ignition delay.

• A two-dimensional space, Span(ξ12, ξT ), was shown to explain most of the variability
of both auto-igniting homogeneous reactors and non-premixed 1D flames in the
investigated conditions.

On the methodological side:

• In configurations where auto-ignition is involved, a proper uncertainty propagation
framework must be used to tackle these uncertainties in combustion simulations
to provide researchers and designers with reliable, uncertainty-enriched simulation
results

• Propagating high dimensional uncertainties in combustion simulations is challenging
because the Monte-Carlo approach is typically not affordable, and surrogate
modeling methods require large training samples due to the curse of dimensionality.

• We put forward a framework based on a simplified configuration that shares the
same underlying physical phenomena. Extensive sampling and sensitivity analysis
can be performed on this less costly simulation, allowing a priori uncertain dimension
reduction for the more complex configuration.

• We recommend sampling the reduced uncertain space with a space-filling method
that allows building both Kriging surrogates and regression-PCE and picking
whichever surrogate method works best. The comparison between the two methods
can be done using the NRMSE and NMAE error metrics over a set of validation
samples.

• With these tools, we are ready to tackle uncertainty propagation in expensive
simulations such as 3D Large Eddy Simulations of reacting flows.
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Chapter 3

The H2 Cabra flame

This chapter presents the H2 Cabra flame [11] and its Large Eddy Simulation.
Section 1 presents the experimental setup and the flame’s characteristics of interest.
Section 2 presents the numerical setup used in this thesis to simulate the Cabra flame.
Section 3 presents the results of the nominal simulation. Section 4 studies the convergence
of the results with regards to the mesh size and length of the averaging time period.
Sections 5 and 6 explore qualitatively the sensitivity of the Cabra flame to various
parameters.

3.1 The experimental setup

The Cabra flame is a lifted non-premixed flame in a vitiated co-flow. As shown in
Figure 3.1, a jet of H2 diluted in N2 exits from the central nozzle at ambient temperature.
It exits in a co-flow of hot, burned gases composed of H2O, O2, and N2. This hot co-flow
is obtained by surrounding the base of the central nozzle with a myriad of small premixed
H2-air burners in a lean mixture.

3.1.1 Choice of operating conditions
Many combustor designs use the recirculation of hot combustion products. This can

be achieved for example by using a swirled injector which creates an inner and an outer
recirculation zone around the cone of injection. With lower local velocities and bountiful
activation energy coming from the high temperature of the burnt gases, this recirculation
helps the stabilization of flames in highly turbulent flows.
The modelization of such combustors is both difficult and computationally intensive due
to the coupling between a complex, turbulent flow and the chemical kinetics. A corollary
of this state of affairs is that simulations of such combustors are difficult to validate,
because the sources of error are plenty, and modelization errors can sometimes compen-
sate, leading to a "good-looking" solution for the wrong reasons.
For this reason, Cabra et al. [11] introduced the Cabra flame configuration, which partly
decouples the complex flow configuration of industrial burners from the chemical kinetics
by employing a jet in co-flow configuration. The fuel is injected in a cold, diluted central
jet while the oxidizer is present in the hot, vitiated co-flow at atmospheric pressure. This
allows studying the kinetics of a non-premixed flame in a vitiated environment in a rather
simple flow configuration.
On the one hand, from an experimental point of view, this is practical because it allows
easy optical access to the flame, which in turn allows many different diagnostics to be
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Figure 3.1: The experimental Cabra flame setup [11]

performed. On the other hand, from the numerical point of view, this configuration
also eliminates sources of error by using a simple and well-known flow configuration and
reducing the sensitivity to wall boundary conditions.

Lastly, the flame is lifted in its nominal operating conditions, meaning that the flame
front is not attached to the lips of the burner. It rather hovers a few jet diameters above
them. This property is desirable in many practical applications because a lifted flame
does not heat the injector as much as an attached flame.

Two versions of this configuration were proposed by Cabra et al.: A methane flame [12]
and a dihydrogen flame [11, 12]. In this thesis, we studied only the H2 flame. Quantitative
details of the operating conditions are given in Table 3.1.

3.1.2 Flame structure and behavior

Cabra et al. noted in [11] that the flame spontaneously ignites downstream soon after
the fuel inlet is opened. This event happens at H/Djet = 660, which is far above the
steady state flame front which hovers at about 10 diameters of the fuel inlet. This first
observation indicates that the Cabra burner can - and does - auto-ignite. This initial
auto-ignition is followed by "a sequence of loud auto-ignition events, each successively
closer to the nozzle exit" [12], until the lifted flame stabilizes at its steady-state position.

Cabra et al. also asserted that the stabilization of the flame in its steady-state is
mostly driven by auto-ignition, based on intermediate species budgets from a RANS-
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Table 3.1: H2 Cabra flame experimental conditions [11]

Central jet Co flow
QH2 (slm) 25 QH2 (slm) 225
QN2 (slm) 75 Qair (slm) 2100
Tjet (K) 305 Tcoflow (K) 1045
Vjet (m/s) 107 Vcoflow (m/s) 3.5
Rejet 23600 Recoflow 18600
Djet (mm) 4.57 dcoflow (mm) 210
XH2 0.25 XH2O 0.1
XN2 0.75 XO2 0.15
tlips (mm) 0.89 XN2 0.75
Q: volumetric flow rate; X: mole fraction;
Re: Reynolds number; D: diameter; t:thickness

PDF simulation. This conclusion is shared by another experimental study by Wu et al.
[120], another RANS-PDF simulation by Gordon et al. [33], and a Direct Numerical
Simulation by Yoo et al. [123].

Finally, the structure of the steady-state flame can be described as follows:

• The fuel and oxidizer mix in the peripheral regions of the central jet.

• Small auto-igniting pockets form in places where a highly-reactive, hot, and lean
mixture is found.

• These pockets swell and fuse while being convected downstream, ultimately forming
a plume of burnt gases

3.1.3 The Quantity of Interest: the flame lift-off height
A relevant quantity of interest to describe the Cabra flame is its lift-off height. [11]

defines this lift-off height as the axial location where the Favre-filtered hydroxyl mass
fraction YOH first reaches 600 ppm.

3.1.4 Sensitivity to the co-flow temperature
The auto-igniting nature of the Cabra flame entails that the flame position and shape

are affected by how reactive the initial mixture is.
The co-flow is formed by a hot, oxygenated gas (1045 K in the nominal conditions). It

is the thermal energy brought by this gas that jumpstarts the combustion reaction with
the cold fuel jet. The initial reactivity of an auto-igniting reactor varies exponentially
with its initial temperature. Therefore, even small variations in the co-flow temperature
should lead to significant modifications of the flame position and/or shape. Figure 3.2
presents the results of experiments by Cabra et al., Gordon et al., and Wu et al. [11,
34, 120]. It shows the normalized lift-off height plotted against the measured co-flow
temperature. As expected, the sensitivity of the lift-off height to the co-flow temperature
is significant in the vicinity of the nominal operating conditions. Also interesting is the
fact that these three authors seem to be in severe disagreement unless the uncertainty
on the measurement of the co-flow temperature is taken into account. This uncertainty,
evaluated as ±3% in [11], substantiates the agreement between the four experiments.
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However, it also highlights the difficulty to validate a deterministic simulation, or worse,
to discriminate between two modelization choices, based on these experimental results.
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Figure 3.2: Experimental measurements of the normalized lift-off height of the Cabra flame as
a function of the measured co-flow temperature. [11, 120, 34]. The red error bar denotes the
experimental uncertainty on the measurement of the co-flow temperature as reported in [11]

3.2 Numerical simulation of the cabra flame
Since the Cabra flame is mainly piloted by the local and transient phenomenon of auto-

ignition, and since we wish to simulate it in the most precise possible way, the framework
of choice is Large Eddy Simulation (LES).

LES is a framework of turbulent simulation that resolves the large scales of fluid
motion, while smaller scales are filtered and their effect are modelled. Cost- and precision-
wise, it falls between Direct Numerical Simulation (DNS) which resolves all scales of
turbulence and Reynolds-Averaged Navier-Stokes simulations (RANS) which resolves only
the mean fields. The large scales are geometry-dependent and contain most of the kinetic
energy of the fluid. The smaller scales are more geometry-independent and contain less
energy, which allows them to be modeled more accurately than the large scales.

To perform said LES of a reactive flow, a number of physical modelization choices
need to be made, along with very practical discretization choices. To be precise, we need
to choose:

1. A turbulence model

2. A chemical kinetic mechanism

3. A combustion model

4. A turbulence-combustion interaction model

And :
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1. A computational domain

2. Boundary conditions

3. A spatial mesh

4. Numerical methods

3.2.1 Favre-filtered Navier Stokes equations

A Large Eddy Simulation solves a set of Favre-filtered Navier-Stokes equations. In the
following, for any variable ϕ, Favre-filtered quantities are noted ϕ̃, and Reynolds-filtered
quantities are noted ϕ, such that ρϕ̃ = ρϕ.

The equations that will need to be solved, regardless of the modelization choices, are
the following:

Mass balance ρ
∂ρ

∂t
+∇ · ρũ = 0 (3.1)

Where ρ is the gas density and u is its velocity vector.

Momentum balance ρũ

∂ρũ

∂t
+∇ · (ρũũ) = −∇P +∇ · τ +∇ · τu (3.2)

Where P is the gas pressure, τ is the laminar stress tensor and τu is the subgrid stress
tensor.
The laminar and subgrid stress tensors are defined respectively as:

τ ij = µ

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3
µ
∂ũk
∂xk

δij ; τuij
= −ρ(ũiuj − ũiũj) (3.3)

With µ the laminar dynamic viscosity of the fluid.

Total energy balance ẽt

∂ρẽt
∂t

+∇ · (ρũẽt) = −∇ · (P ũ) +∇ · (τu)−∇ · q−∇ · qt (3.4)

et is the gas total energy, q is the laminar heat flux and qt is the subgrid heat flux.
The viscous flux τu can also be written τ ũ. The laminar and subgrid heat fluxes are
respectively defined as:

qi =
λ

C̃p

∂h̃

∂xi
; qt

i = (ρet + P )ui − (ρẽt + P )ũi (3.5)

Where λ is thermal conductivity of the gas, C̃p is its laminar heat capacity at constant
pressure and h is its enthalpy.
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3.2.2 Physical choices

3.2.2.1 Turbulence model

The subgrid stress tensor τu is modeled using the eddy-viscosity assumption:

τuij
− 1

3
δijτull

= 2ρνt

(
S̃ij −

δij
3
S̃kk

)
(3.6)

Where:
S̃ij =

1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(3.7)

The subgrid-scale viscosity νt is modeled in this study using the so-called Sigma model
[76], which is written:

νt = (Cσ∆)2 · σ3(σ1 − σ2)(σ2 − σ3)

σ2
1

(3.8)

where ∆ is the filter characteristic length, Cσ = 1.5 is the model constant and σ1 ≥ σ2 ≥
σ3 ≥ 0 are the singular values of the resolved velocity gradient tensor.
This turbulence model is the recommended model for 3D simulation in the AVBP soft-
ware [96]. It was developed to alleviate some drawbacks of the previous static turbulence
models, notably by converging to zero subgrid-scale effects in laminar flows and having
the correct asymptotic behavior near solid boundaries.

The subgrid heat flux qt is modeled using the Standard Gradient Diffusion Hypothesis
(SGDH):

qt = − λt

C̃p

∇h̃ (3.9)

Where the turbulent thermal conductivity λt is given by:

λt =
ρνtC̃p

Prt
(3.10)

Where Prt is the turbulent Prandtl number whose value is set at Prt = 0.6, the default
in the AVBP software.

3.2.2.2 Kinetic mechanism

The ultimate goal of this thesis is to study the uncertainties in the Cabra flame, and
in particular the uncertainties introduced by the kinetic mechanism. Therefore, for the
LES of the Cabra flame, we chose to use the boiled-down Konnov 2019 [55], which was
introduced in chapter 2, section 2.3.2.

3.2.2.3 Combustion and flame-turbulence interaction model

Since the flame is a diffusion flame and is auto-igniting [120], we leverage the Unsteady
Flamelet Progress Variable (UFPV) approach with a presumed PDF closure model,
proposed by Ihme and See [43]. The UFPV approach consists of the tabulation of non-
premixed auto-igniting flamelets. It is important to note that this approach will predict
accurate source terms solely for the auto-ignition of a mixture in the flamelet regime.

The flamelet model
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The flamelet model, on which the UFPV tabulation is based, assumes that the flame
front is thin compared to its wrinkling scales and other flow scales. This allows to
assimilate the flame front to a locally-1D laminar flame, or flamelet, whose structure
depends only on time and on the coordinate normal to the flame front. This structure can
be pre-computed and stored in a table, from which thermophysical properties, composition
and reaction source terms can be read at each time step and at every point of a 3D
simulation.
In our case, a non-premixed jet flame, the flamelet of choice is a diffusion flamelet, which
describes the structure of a counter-flow, non-premixed flame. The relevance of this choice
is illustrated in Figure 3.3, which presents, in a simplified manner, the mixing in a shear
layer behind a splitter plate, which can also be seen as a cross-section of one side of a
non-premixed jet.

Figure 3.3: Mixing in a shear layer behind a splitter plate [80]

This figure shows that the shear layer can very locally be seen as a counter-flow flame,
which calls for a non-premixed flamelet modelization.
Furthermore, it also illustrates that the properties of the flow, in this case the mixture
fraction, can vary significantly across very short distances in a turbulent flow. These short
distances may be smaller than the mesh size, which means that these variations must be
modeled and taken into account when building the table. This is where the presumed
PDF closure model comes into action. We also chose unsteady flamelets to correctly
represent the auto-ignition of the mixture. Finally, a unity Lewis number is chosen for
the simulation of the flamelets, as it is representative of turbulent combustion [80]. As a
reminder, these flamelets are the ones studied in Chapter 2.

The UFPV table

The flamelets whose solutions are used to build the table should span the domain
where they can auto-ignite. This domain can be determined by plotting the so-called
S-curve.

The S-curve, shown in Fig. 3.4, displays the maximum temperature of the flamelet as
a function of the strain rate it is subject to, all other parameters being equal. It contains
two critical points:

• The first critical point corresponds to the quenching strain rate aq beyond which
heat and radical species diffusion become too strong for the flamelet to sustain
combustion.
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• The second critical point corresponds to the ignition strain rate ai beyond which heat
and radical species diffusion become too strong for the cold mixture to auto-ignite.
This second critical point is the upper bound of our table.
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Figure 3.4: S-Curve computed in the operating conditions of the Cabra H2 flame. The first and
second critical points are circled in red. The extinct branch is shown in dotted line.

The table should include flamelets with a strain rate going from zero up to the second
critical point of the S-curve. Alas, the transient simulation of the auto-igniting flamelet is
not stable for too small strain rates. Thus, an empirical value of a = 5 s−1 was chosen as
a lower bound of the table, because it was the smallest strain rate to guarantee numerical
stability.

A set of 10 flamelets are computed, each one with a different strain rate, ranging from
this empirical lower bound up to the strain rate of the second critical point of the S-curve.
The evolution of the gas temperature in such a flamelet is plotted in Figure 3.5.

From these flamelets, we could pre-compute the auto-ignition of non-premixed laminar
flames, and tabulate, for each quantity ϕ, the function Fϕ:

ϕ = Fϕ(z,Λ, χz,st) (3.11)

Where z is the mixture fraction, χz,st is the stoichiometric scalar dissipation rate and Λ
is a mixture fraction-independent reaction progress parameter [42]. In this work, Λ is
defined as:

Λ = YC(zΛ) , zΛ = 0.1 (3.12)

Where YC is the progress variable defined in Equation 3.14. The choice of zΛ is arbitrary.
In this work, we chose to place it near the most reactive mixture zmr = 0.04. This
definition of Λ allows a unique mapping of instantaneous flamelet solutions in the (t, a)-
space (time and strain rate) to the (Λ, χz,st)-space (progress parameter and stoichiometric
scalar dissipation rate).

74



0.0 0.2 0.4 0.6 0.8 1.0
Mixture fraction [-]

250

500

750

1000

1250

1500

T
em

p
er

at
u

re
[K

]

Figure 3.5: Evolution of the gas temperature in a flamelet of strain rate a = 10 s−1, plotted in
mixture fraction space. Solutions are plotted every 10 ms, darker with increasing time.

The progress variable is typically defined as a linear combination of the mass fractions
Yk of the reactive species:

Yc =

Nspecies∑

k=1

αkYk (3.13)

The "correct" way to define the weights αk is still an open problem for complex fuels
and reactions [77], but it is much more manageable for simpler reactions such as H2-O2

combustion. The progress variable, in our case, must be defined such that:

1. It is an increasing function of time during ignition

2. Its derivative is non-zero at t = 0. This condition ensures that auto-ignition can
occur in the simulation

To enforce the first condition, it is common to give a strictly positive weight to at least
one product of the reaction: in this case, H2O. However, this is not enough to enforce the
second condition, because the final products of the reaction are not immediately produced.
So-called intermediate species are first produced, and are in turn consumed to produce the
final products. Therefore, an additional negative weight on at least one reactant ensures
a strict, non-zero increase of the progress variable from the very start of the reaction. In
our case, we chose to define Yc as:

Yc = YH2O − 0.3778YO2 (3.14)

The weight of O2 could have any negative value, but we chose this one to set Yc = 0
for Z = 0 and Z = 1. It also leads, that, for all Z values, the value YC,u of the progress
varibale in the unburnt conditions is null: ∀Z, YC,u(Z) = 0. This is a purely esthetical
consideration and this arbitrary choice has no impact on the transport of the progress
variable or the construction of the table.

For turbulent flames in LES, a relation equivalent to Equation 3.11 must be defined for
filtered quantities. A presumed joint PDF P̃ for the mixture fraction, reaction progress
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parameter, and stoichiometric scalar dissipation rate is defined, so that:

ϕ̃ =

∫ ∫ ∫
Fϕ(z

∗,Λ∗, χ∗
z,st)P̃ (z

∗,Λ∗, χ∗
z,st)dz

∗dΛ∗dχ∗
z,st (3.15)

Λ is statistically independent of z and χz,st by definition, and we assume that z and χz,st

are also independent. This gives:

P̃ (z∗,Λ∗, χ∗
z,st) = P̃ (z∗)P̃ (Λ∗)P̃ (χ∗

z,st) (3.16)

Furthermore, we assumed a beta-PDF for z [46, 118], a Dirac distribution for χz,st [83],
and we chose a Dirac distribution for Λ. This last choice is a significant simplification
compared to Ihme and See [43], who chose a statistically most likely distribution for the
progress parameter. This greatly simplified the implementation of the model in the AVBP
solver, reduced the computer memory taken by the table, and reduced the computational
time required to run a simulation. Most importantly, as shown in Section 3.3.2, this choice
did not prevent the simulation from accurately reproducing the experimental data. With
these assumptions, we get:

P̃ (z∗,Λ∗, χ∗
z,st) = β(z∗, z̃, zv)δ(Λ

∗ − Λ̃)δ(χ∗
z,st − χ̃z,st) (3.17)

Joining Equations 3.15 and 3.17 gives:

ϕ̃ = Gϕ(z̃, zv, Λ̃, χ̃z,st) (3.18)

However, the definition of Λ̃ makes it difficult to transport. The progress variable ỸC is
easier to transport, and its normalization C̃ is used as a coordinate of the table, using the
unique transformation C such that:

C̃ = C (Λ̃, z̃, zv, χz,st) (3.19)

With C defined as:
C =

YC − YC,u

YC,eq − YC,u

(3.20)

Where YC,eq and YC,u are respectively the values taken by the progress variable at
equilibrium and in unburnt conditions.

We can also replace the subgrid variance of mixture fraction zv with the mixture
fraction segregation Sz, defined in Eq. 3.25. Finally, this gives, for every quantity ϕ the
relation:

ϕ̃ = Tϕ(z̃, Sz, C̃, χ̃z,st) (3.21)

Where the function Tϕ is precomputed and tabulated on the mesh specified in Table 3.2.

Table 3.2: Discretization of the UFPV table

Variable Discretization type Num. of points Bounds
z̃ Regular 400 [0, 1]
Sz Geometric (increasing steps) 20 [0, 1]

C̃ Double-geometric (increasing then decreasing steps) 153 [0, 1]
χ̃z,st Geometric (increasing steps) 10 [1.6, 555]

Special attention is given to the discretization in C̃ to ensure a correct prediction of
the source term at the very start of the auto-ignition. The C̃-mesh is refined towards both
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the lower and upper bounds. For C̃ near 0, the mesh needs to be very fine, because the
reaction is exponential in its first instants. Therefore, any error committed early on would
have important repercussions on the predicted auto-ignition delay-time. Conversely, for C̃
near 1, we must correctly refine the reaction termination, especially in the richer mixtures,
where every quantity still varies while they are already nearly settled at zΛ.

Figure 3.6 provides a verification that the C̃-mesh is adequate, by comparing the auto-
ignition of a homogeneous reactor simulated with both detailed chemistry and tabulated
chemistry using the same C-mesh as the UFPV table.
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Figure 3.6: Comparison of detailed and tabulated chemistry on the auto-ignition of a
homogeneous reactor at z = zmr = 0.04 The evolution of temperature is plotted in plain line
for the detailed chemistry and in dotted line for the tabulated chemistry.

A selection of slices of this table for the hydroxyl mass fraction YOH are plotted in
Figure 3.7 as a function of the Favre-filtered mixture fraction z̃ and of the Favre-filtered
normalized progress variable C̃, for a few strain rate and mixture fraction segregation
values. Note the significant shape change and overall amplitude decrease with increasing
mixture fraction segregation. This species, which is a marker of the reaction, has a very
similar behavior as the source term of progress variable. Slices of this source term, and
other selected species mass fractions and thermophysical properties can be found in Annex
B.

At each time step and at every point, a set of coordinates must be computed

As shown in Equation 3.21, the UFPV table used in this work involves four coordinates:

• The Favre-filtered mixture fraction balance z̃

• The mixture fraction segregation Sz

• The Favre-filtered scalar dissipation rate at stoichiometry χ̃z,st

• The normalized Favre-filtered progress variable C̃

z̃, Sz, and C̃ are found by solving transport equations, while χ̃z,st is computed using an
algebraic equation. These equations are detailed in the following:
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Figure 3.7: Slices of the filtered mass fraction of OH ỸOH as a function of the filtered mixture
fraction z̃ and of the filtered normalized progress variable C̃, for different strain rates a and
different mixture fraction segregation values Sz. Note the evolution of the vertical scale
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Favre-filtered mixture fraction balance z̃

z̃ is directly transported by the following equation:

∂ρz̃

∂t
+∇ · (ρũz̃) = ∇ · ρD∇z̃ −∇ · τz (3.22)

Where D is the mass diffusivity, determined using the unity Lewis number assumption:
Le = Sc/Pr = 1. The subgrid flux of mixture fraction τz is defined as:

τz = ρuz − ρũz̃ (3.23)

This subgrid flux is modeled using a turbulent diffusivity Dt = Sctνt, where Sct is the
turbulent Schmidt number. Although the determination of the optimal value for the
turbulent Schmidt number remains an open question [64], we used the default value
proposed by the AVBP software: Sct = 0.6, which is well within the range of acceptable
values found in the literature.
Finally, τz is modeled using the SGDH:

τz = −ρDt∇z̃ (3.24)

Mixture fraction segregation Sz

Sz =
zv

z̃(1− z̃)
(3.25)

Where zv = z̃2 − z̃2 is the subgrid variance of the mixture fraction and respects the
following transport equation:

∂ρzv
∂t

+∇ · (ρũzv) = ∇ · (ρD∇zv)−∇ · τzv − 2τz · ∇z̃ − sχz (3.26)

The subgrid flux of mixture fraction variance τzv , is defined as:

τzvi = ρ
(
ũiz2 − ũiz̃2

)
− 2z̃τzi (3.27)

And it is modeled using the SGDH:

τzv = −ρDt∇zv (3.28)

Finally, the subgrid mixture fraction scalar dissipation rate sχz is modeled using a linear
relaxation assumption:

sχz = CD ρ
zv

∆2/νT
=
CχzCε

Cu

ρ
zv

∆2/νT
(3.29)

Caution must be exercised when dealing with this equation, for the definition of CD is
not standard in the literature. Other works, such as [23] introduce a factor 2 before sχz in
Equation 3.26, and a factor 0.5 in the definition of CD. For the sake of simplicity, we kept
Ihme’s definition [43] which removes these unnecessary factors. With this definition, we
used a nominal value of CD = 20.0 in the following. The value chosen for this coefficient
is discussed in Section 3.6.2.
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Favre-filtered stoichiometric scalar dissipation rate χ̃z,st

The stoichiometric scalar dissipation rate χz,st is computed from the following algebraic
equation:

χz,st = χz
F (zst)

F (z)
(3.30)

With the local scalar dissipation rate χz defined as:

χz = 2D |∇z|2 (3.31)

And:
F (z) =

1

π
exp

(
−2
[
erfc−1(2z)

]2) (3.32)

This function can also be evaluated with the following equivalent expression, as seen in
[117]:

F (z) =
1

π
exp

(
−2
[
erf−1(2z − 1)

]2) (3.33)

The stoichiometric scalar dissipation rate is equivalent to the strain rate a, which follows
the relation [80]:

χz,st = aF (zst) (3.34)

In LES, χz is not accessible because it is not a filtered quantity. Instead, we can compute
the Favre-filtered scalar dissipation rate χ̃z with:

χ̃z = 2D |∇z̃|2 + sχz

ρ
(3.35)

The Favre-filtered stoichiometric scalar dissipation rate is then computed with:

χ̃z,st =
χ̃z

F (z̃, Sz)
(3.36)

Where F is defined as:

F (z̃, Sz) =

∫ 1

0

F (z∗)

F (zst)
P̃ (z∗)dz∗ (3.37)

Favre-filtered normalized progress variable C̃

C̃ =
Ỹc − YC,u

YC,eq − YC,u

(3.38)

Where Ỹc is the Favre-filtered progress variable and respects the following balance
equation:

∂ρỸc
∂t

+∇ · (ρũỸc) = ∇ · (ρD∇Ỹc)−∇ · τYc + ρ ˜̇ωYc (3.39)

Where ˜̇ωYc is the production term of the progress variable, and is read from the table.
The subgrid flux of progress variable, τYc , is defined as:

τYci = ρ
(
ũiYc − ũiỸc

)
(3.40)
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It is then modeled with the SGDH:

τYc = −ρDt∇Ỹc (3.41)

Finally, YC,eq and YC,u are the values taken by the progress variable respectively at equilib-
rium and in unburnt conditions. They are functions of z̃, Sz, and χ̃z,st only. Hence, they
can be tabulated along with other values of interest and retrieved for the computation of C̃.

3.2.3 Numerical choices

3.2.3.1 Computational domain and spatial mesh

The computational domain is a cylinder in which the fuel inlet tube protrudes. It
is presented in Figure 3.8. It is large enough that the jet is unaffected by the domain
boundaries in the region of interest. Figure 3.8 (a) presents an overview of the domain
and the gas flows involved.

The mesh is composed of tetrahedral elements defining 5.5 million nodes. An axial
slice of this mesh is presented in Figure 3.8 (b), with a zoom on the fuel inlet zone in
Figure 3.8 (c). The domain is 100 diameters long and 65 diameters wide. The cone, where
the jet develops and the flame is located, is finely discretized.

Stability issues were encountered when trying to simulate the inlet tube itself, as
acoustic waves were growing uncontrollably in this tube. Therefore, it was decided to
remove the tube from the computational domain. Instead, the fuel inlet boundary is
placed on a surface leading directly to the main volume of the computational domain. It
is highlighted by the red disk on Figure 3.8 (d). The lips of the inlet tube are highlighted
in blue in this same figure.

3.2.3.2 Boundary conditions

Proper boundary conditions must be chosen for the different surfaces enclosing the
computational domain, which are:

• Fuel inlet

• Co-flow inlet

• Inlet tube walls

• Side walls

• Outlet

For all fluid boundaries, i.e fuel inlet, co-flow inlet, and outlet, Navier-Stokes
Characteristics Boundary Conditions (NSCBC) [84] are used. These conditions do not
enforce any one quantity at the boundary, but rather control the waves crossing the
boundaries, such that:

• The mean quantities are kept at their target values

• Acoustic waves can be generated or let through without reflection

• When appropriate, turbulence can be injected.
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Figure 3.8: Mesh used in the LES of the Cabra flame. (a): 3D view and fluid boundary
conditions. (b): Axial slice in the y-normal plane

82



D

D

(c)

D

(d)

Figure 3.8: Mesh used in the LES of the Cabra flame (cont.). (c) Zoom on the axial y-normal
slice near the fuel inlet. (d) Zoom on the fuel inlet in the x-normal plane. The fuel inlet is
highlighted in red and the pipe lips are highlighted in blue.
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Fuel inlet

The fuel inlet is probably the most critical boundary condition, because it conditions
the shape of the jet, especially regarding the length of the potential core. A non-reflective
(NSCBC) inlet condition is used, with turbulence injection. The injection turbulence
method applied is described in [100]. The quantities controlled are the velocity, temper-
ature, and composition.

To emulate the effect of the inlet tube on the velocity and turbulence profile of the fuel
inlet, a RANS simulation was performed on a tube of the same diameter, with a length
L = 200 D to ensure the convergence of the various profiles of the flow. It was run using
the Ansys Fluent software, with a k - ω turbulence model and resolved flow at the wall
(y+ = 1).

The resulting profiles for the axial velocity U and root mean square velocity Urms are
presented in Figures 3.9 and 3.10. The velocity profile was kept unaltered and the velocity
values at the mesh points of the boundary were interpolated from this profile.
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Figure 3.9: Velocity profile obtained from the RANS simulation

However, using the Urms profile resulted in a much too short potential core. This may
be explained by the fact that the profile is under-resolved in our LES, in particular near the
wall. The turbulent intensity is thus interpolated only from the parts of the profile where
it is high, ignoring the area close to the wall where the turbulent intensity plummets.
This may lead to a premature destabilization of the jet and a shortening of the potential
core. This is an important problem because it perturbs the mixing process, which will in
turn modify the flame lift-off height. Because the most important feature to reproduce is
the potential core length, and because the intensity profile only affects this critical length,
an arbitrary profile can be used for Urms as long as the potential core length fits the
experiment. Therefore, an empirical, uniform value of Urms = 0.5 m/s was used. This
arbitrary choice of a uniform Urms profile does not affect the flow beyond the potential
core, because the flow becomes independent of the turbulence injection conditions once it
reaches the developed jet zone.
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Figure 3.10: Root mean square velocity profile obtained from the RANS simulation (in black),
and empirical value found to fit the potential core length with the experiment (in red)

Co-flow inlet

For the co-flow inlet, a non-reflective condition was again used. This time, however,
due to the low mean velocity (3.5 m/s) compared to the jet velocity (107 m/s), a flat
velocity profile without turbulence injection was used. Furthermore, we did not simulate
all the small laminar flames present in the experiment setup, but rather injected directly
the equilibrium (post-combustion) mixture, as described in Section 3.1.

Inlet tube walls

The inlet tube walls are defined as adiabatic walls with a wall law. It sets the
normal heat flux and velocity to zero and computes the wall shear stress according to
the logarithmic law of the wall.

Side walls

The side walls of the domain are defined as adiabatic slip walls. They are placed far
enough from the jet that they do not influence the central jet.

Outlet

The co-flow outlet is a partially reflective (relaxed) outlet condition with controlled
pressure, which acts as a high-frequency filter for the acoustic waves crossing the boundary.

3.2.4 Numerical methods
The numerical scheme applied is the Two-step Taylor-Galerkin C (TTGC) [15], which

is third-order in space and time. It emphasizes low-dissipation and dispersion. Although
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about twice more expensive as a Lax-Wendroff scheme [75], it was chosen to minimize
simulation error and to allow us to focus on other sources of uncertainties later on. We
used the implementation of this numerical scheme provided by the AVBP solver [96]. We
implemented in this solver the UFPV model described in Section 3.2.2.3, using the TTC
formalism for compressible equations [3].

3.3 Results of the nominal simulation

3.3.1 Qualitative behavior of the simulated flame
The flame does ignite spontaneously, as described by Cabra et al. [12]. Furthermore,

once the steady-state is reached, the correct behavior, explained in section 3.1.2 prevails:
mixing happens in the periphery of the jet. Then some pockets of mixture auto-ignite,
swell, fuse, and ultimately form a continuous flame front. Nota bene: reaching the steady-
state does not mean that quantities become constant at every point of the flame. Rather,
it means that, on average, the flame occupied the same position. A y-normal cut of an
instantaneous solution is presented in Figure 3.11. It presents, on the upper part, the
field of Favre-filtered mixture fraction z̃, and on the lower part, the field of Favre-filtered
normalized progress variable C̃.

Figure 3.11: y-normal cut of the Favre-filtered instantaneous fields of mixture fraction and
normalized progress variable

3.3.2 Comparison of the mean quantities with the experimental results
In this section, experimental measurements from Cabra et al. [11] are compared to

the simulated average fields of the Cabra flame. Measurement uncertainties in this setup,
using the laser Raman-Rayleigh-LIF method are estimated in [5].

For brevity’s sake, not every available profile is shown and commented on. For a
more exhaustive display of the comparison between experimental and simulation profiles,
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please refer to Annex C. For clarity’s sake, in this section, unless specified otherwise, the
averaged Favre-filtered scalar {ϕ̃} will simply be denoted ϕ.

A synthetic quantity of the mixing of the jet is the mixture fraction of the gas z. The
axial profile of this scalar is plotted in Figure 3.12, and several radial profiles are presented
in Figure 3.13.
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Figure 3.12: Axial profile of the mixture fraction Z in the LES, compared to the measurements
from [11]

The axial profile of z shows the correct length of the potential core, as was expected
from the work on the turbulent injection. However the initial slope of decrease (from
x/D ≈ 6 onwards is too steep by about 30%. While this may be concerning, this issue
has already been seen in works that computed similar jet flames in LES with AVBP, for
example [97] and [117] for the methane Cabra flame. However, radial profiles of z, plotted
in Figure 3.13, show a satisfactory agreement between experimental and simulated data.
In particular, the evolution of the width of the jet is very well reproduced.

On the combustion side, the radial profiles of the reaction marker OH are plotted in
Figure 3.14. A good agreement is found in the vicinity of the flame foot, i.e. for heights
around x = 10 D. However, the mass fraction of OH is over-predicted higher up in the
flame. This is visible in the profile taken at x = 26 D, and is best illustrated by Figure
3.15 which compares the entire fields of YOH in the simulation and experiment.

Finally, as shown in Annex C, Temperature profiles and major species’ profiles show
a correct flame temperature and consumption rate of reactants, meaning that most of the
reaction has already occurred when the discrepancies in hydroxyl mass fraction appear.
Overall, the agreement between experimental and simulation data is very satisfactory.

Finally, the simulation of the Cabra flame costs about 100k CPU hours on the Irene
KNL supercomputer with Intel Xeon Phi 7250 1.4 GHz processors.

3.4 Convergence study
Convergence is paramount to putting any trust in the simulation’s result. We can

distinguish two kinds of convergence in this case:

1. Temporal mean convergence: The LES is transient, and we are interested in the
mean quantities of the flame, such as its mean lift-off height. Therefore, we must
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Figure 3.13: Radial profiles of the mixture fraction Z in the LES, compared to the measurements
from [11]
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Figure 3.14: Radial profiles of the mass fraction of OH YOH in the LES, compared to the
measurements from [11]
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Figure 3.15: Hydroxyl mass fraction mean field. Left: Experimental measurements from [11].
Right: This study.The white dots on the left-hand side denote the locations of multi-scalar
measurements, reported in Figures 3.12, 3.13 and 3.14, as well as in Annex C for every other
available scalar of interest

ensure that the fields have been averaged long enough for the mean quantities to
stabilize.

2. Mesh convergence: The mesh must be fine enough so that its influence on the
simulation is negligible. The repartition between resolved and subgrid quantities
will of course evolve when the mesh is refined, but the total quantities must remain
stable.

3.4.1 Temporal mean convergence
The quantities of interest are averaged over 7.5 ms of simulated time in the nominal

simulation. This corresponds to roughly 7 flow-through times in the region covered by
experimental measurements, i.e from the fuel inlet to 26 diameters in the axial direction.

The convergence of the averaged quantities can be assessed by comparing profiles of
the simulated flame, averaged respectively on the nominal simulation time and double
this time. The simulation will be considered as converged if no discrepancies are spotted.
Figures 3.16 and 3.17 display such plots for YOH and z̃ respectively. Other comparisons
of profiles of species and quantities of interest are plotted in Annex D at several axial
locations.

Additionally, since we are interested in the lift-off height of the Cabra flame, it is also
interesting to quantify the convergence of this global property. To that end, a bootstrap
estimate of the lift-off height is performed.

The lift-off height H is extracted from the averaged solution of the flame via the
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Figure 3.16: Temporal convergence of the Hydroxyl mass fraction mean field.
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Figure 3.17: Temporal convergence of the mixture fraction mean field.

function H , as follows:
H = H (E[ψ]) (3.42)

Where ψ represents the fields of the simulated flame. The ergodicity of the flow is lever-
aged to replace the statistical expectation of the fields by its temporal average. However,
this temporal average can not be perfectly converged, leading in turn to an incomplete
convergence of the predicted lift-off height. To characterize the convergence error on the
lift-off height, a bootstrap procedure is proposed.

The successive instantaneous solutions of the flame (i.e. snapshots of the flame at
each time step of the simulation) are dependent, making the straightforward bootstrap
procedure inapplicable. Instead, a stationary block bootstrap scheme [85] is implemented:
instantaneous solutions of the flame are averaged in N non-overlapping blocks of data.
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Each of these blocks produces a partially converged Cabra flame ψi . This is illustrated
in figure 3.18. The resulting partially converged flames are much less dependent than
the original instantaneous solutions. Therefore, they are assumed independent in the
following.

N bootstrap resamples are then drawn with replacement from this set of partially
converged flames, and averaged to form a "simulated bootstrap sample" ψ̂k. Such a
simulated bootstrap sample may be, for example (with N = 10):

ψ̂k =
1

N

∑

i∈Ik

ψi , Ik = {1, 1, 3, 5, 6, 6, 6, 6, 8, 9} (3.43)

The lift-off height Ĥk = H (ψ̂k) is computed for this simulated bootstrap sample.
Finally, this "draw, average, and post-process" procedure is repeated a large number
of times B, giving birth to the empirical bootstrap distribution of the simulated Cabra
flame’s lift-off height Ĥ.

t

Instantaneous solution

Partially averaged solution 𝜓i

Figure 3.18: Illustration of the partial averaging of instantaneous solutions to produce
independent blocks of data suitable for the bootstrap procedure

We used N = 20 blocks, each averaging 500 instantaneous solutions spanning 0.4 ms
of simulated time, and a resampling size of B = 1000. This resulted in the bootstrap
mean and standard deviation being respectively:

Ĥ = 11.75D ;

√
σ2(Ĥ) = 0.074D ≈ 0.6% of Ĥ (3.44)

Therefore, with the time accumulation used for the nominal simulation, we are confident
that the lift-off estimate will not be off by more than a percent, which is negligible before
the variations we expect to witness in the following.

Finally, we can conclude that the average of the simulated flame is converged enough
in our case.

3.4.2 Mesh convergence
The mesh convergence can be performed in two ways:

1. Verifying that most of the biggest turbulence scales are well resolved, meaning
that the variance of any quantity of interest is mostly resolved rather than mostly
modeled.

2. Verifying that the averaged solution of the flame does not change when the mesh is
refined.
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The first point can be addressed by comparing the portion of resolved (RV) and
modeled (MV) mixture fraction variance. The total variance of mixture fraction Zvar is
written:

Zvar = {zv}︸︷︷︸
Modeled variance

+ {z̃2} − {z̃}2︸ ︷︷ ︸
Resolved variance

(3.45)
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Figure 3.19: Comparison of resolved and modeled mixture fraction variance on the flame axis
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Figure 3.20: Comparison of resolved and modeled mixture fraction variance on two radial
profiles around the flame foot

Figures 3.19 and 3.20 show that the total variance of the mixture fraction is indeed
mostly explained by its resolved component.

To address the second point, a new mesh was generated on the same computational
domain, with a uniform factor of refinement over the mesh used for the nominal simula-
tion. This new mesh featured 7.5 million nodes, i.e. about 1.3 times more nodes than the
original mesh. Figure 3.21 features a selection of radial profiles comparing the simulated
hydroxyl mass fractions on the original and finer mesh. More comparisons of profiles can
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be found in Annex D. The profiles overlap for the most part, which indicates that the
simulation is converged mesh-wise.

Finally, the lift-off height computed on the finer mesh is only 0.7% higher than the
original, which is considered converged in our application.
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Figure 3.21: Comparison of two hydroxyl mass fraction profiles for the original and finer mesh

3.5 Sensitivity of the simulation to the co-flow temperature
Figure 3.2 shows that the experimental flame is sensitive to the co-flow temperature,

with the lift-off height exponentially increasing when the co-flow temperature decreases.
To verify whether the LES of the Cabra flame reproduces this pattern, a set of four
additional simulations were performed at varying temperatures, spanning the range of
uncertainty reported by Cabra. One new UFPV table was generated for each of these
conditions. Figure 3.22 shows the mean hydroxyl mass fraction YOH for each of these
simulations. This figure does highlight a noticeable sensitivity of the flame to the co-flow
temperature.

Figure 3.23 reprises the experimental data from Figure 3.2 to compare with the lift-
off height predicted by the simulation. The nominal simulation, which features a co-
flow temperature of 1045 K, is in good agreement with Cabra’s experiment. The trend
given by [120] and [34] is also correctly reproduced. The exponential increase of the lift-
off height with decreasing co-flow temperatures was unfortunately not observed in this
study. However, we believe that simulations with co-flow temperatures of about 1000 K
would show this increase, because the exponential increase of the auto-ignition delay-time
with decreasing oxidizer temperature was observed with this kinetic mechanism during
the uncertainty propagation studies presented in chapter 2, both for homogeneous auto-
igniting reactors and non-premixed auto-igniting flamelets.

For reference, we present in Figure 3.24 a comparison of this LES with other numerical
works from the literature. Again, our simulation fares well against other state-of-the-
art simulations. Nota Bene: In this case, the results’ discrepancies are not associated
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Figure 3.22: Hydroxyl mass fraction mean fields plotted for five simulations with varying co-
flow temperature (1015, 1030, 1045, 1060 and 1075 K)
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Figure 3.23: Lift-off height as a function of the co-flow temperature. Numerical simulations are
compared with results from [11, 120, 34].

with co-flow temperature uncertainties but with different modeling choices, and modeling
uncertainties (chemical kinetics, turbulence, turbulent combustion).

Finally, it must be noted that the measurement uncertainty on the co-flow temperature
forbids any categorical statement about whether our simulation is better or worse than
any other simulation that falls within the uncertainty range reported by Cabra.
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3.6 Sensitivity to the numerical setup

3.6.1 Sensitivity to the chemical kinetics
In chapter 2, we showed that the auto-ignition delay times of homogeneous reactors

and non-premixed flamelets were very sensitive to the kinetic mechanism employed to
model the chemical reactions. Different kinetic mechanisms lead to significantly different
results. Kinetic mechanisms which reported uncertainties, such as Konnov (2019) [55],
allowed the determination of wide probability distributions of the auto-ignition delay.
Consequently, we can expect a noticeable sensitivity of the lift-off height - and therefore
of the flame shape - to the chemical kinetics.

3.6.2 Sensitivity to the mixture fraction variance dissipation coefficient
The flame-turbulence interaction model used in this LES contains the coefficient CD,

also written [41]:

CD = Cχz

Cε

Cu

(3.46)

Cχz is the mechanical-to-scalar time scale ratio:

Cχz =
τ sgs
u

τ sgs
z

=
{ksgs}
{εsgs}

{χ̃z
sgs}

{z̃′′2}
(3.47)

And Cε and Cu are defined as:

Cε = {εsgs} ∆

{ksgs}3/2 , Cu =
{νt}

∆{ksgs}1/2 (3.48)

Where ∆ is the LES filter size, ksgs is the subgrid-scale turbulent kinetic energy and εsgs

is the subgrid-scale turbulent energy dissipation rate.
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Although there is a consensus on the proper value to choose for other model coefficients
like the Sigma model constant Cσ, this mixture fraction variance dissipation coefficient
takes significantly different values in previous works. Domingo et al. [23] or Vicquelin
[117] set its value at CD = 2.0, for example, while Ihme and See [43] use CD = 4.0.
Ihme’s thesis [41] (pp. 33-37) gives more details on how to best determine this coefficient
for a given simulation. Ihme shows that the value of CD is dependent on the Taylor-scale
Reynolds number, on the filter width, and on the Kolmogorov length scale. This makes
the ideal CD value dependent on the flow configuration and the local mesh size. Therefore,
any attempt to define a global CD value for a given simulation must be a compromise
designed to minimize the discrepancy between the experiment and the simulation.

• A value of Cχz = 2.0 is proposed by Ihme for typical LES filter size, which is in
agreement with other propositions in the literature ([80, 29]).

• Ihme also shows that the ratio Cε/Cu is in the range π2 ≤ Cε/Cu ≤ 20 for typical
LES filter size, with an asymptotic value of π2 for large Reynolds numbers.

In this study, a value of CD = 20 (Cχz = 2.0 and Cε/Cu = 10) was found to lead to
a satisfying agreement between the simulation and Cabra’s experimental data. However,
given the wide variety of values found in the literature, between theoretical arguments
and actual values implemented, we deemed it important to check the sensitivity of the
macroscopical behavior of the flame to this coefficient.

Figure 3.25 presents the mean field of OH mass fraction YOH computed with different
mixture fraction variance dissipation coefficient values. We witnessed a significant sensi-
tivity of the flame shape, and in particular of the flame lift-off, to the value of CD.

0.0 2.0
r/D

0.0

10.0

20.0

x/
D

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Y
O

H
[-
]

0.0 2.0
r/D

0.0

10.0

20.0

x/
D

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Y
O

H
[-
]

0.0 2.0
r/D

0.0

10.0

20.0

x/
D

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Y
O

H
[-
]

0 2
r/D [-]

0

10

20

x/
D

[-
]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0 2
r/D [-]

0

10

20

x/
D

[-
]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0 2
r/D [-]

0

10

20

x/
D

[-
]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0 2
r/D [-]

0

10

20

x/
D

[-
]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0 2
r/D [-]

0

10

20

x/
D

[-
]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0 2.0
r/D

0.0

10.0

20.0

x/
D

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Y
O

H
[-
]

CD = 2.0 CD = 20.0 CD = 40.0

Figure 3.25: Hydroxyl mass fraction mean fields plotted for three simulations of the nominal
Cabra flame, for different values of CD (2.0, 20.0 and 40.0)
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This sensitivity was expected because the equilibrium value of zv is proportional to
C−1

D . This is deduced from equations 3.26 and 3.29. Therefore, as a general trend, the
higher CD, the lower the subgrid mixture fraction variance. Additionally, less subgrid
variance entails more reaction source term. This can be seen, indirectly, in Figure 3.7, or
directly in Annex B. Finally, a higher reaction source term leads to a shorter lift-off height.
This is illustrated in Figure 3.26, which displays the subgrid mixture fraction variance,
progress variable source term, and hydroxyl mass fractions for the extreme values of CD

considered in the study.
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Figure 3.26: From left to right: Subgrid mixture fraction variance, Progress variable source term
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Cabra flame, for the extreme values of CD (2.0 and 40.0)
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3.7 Takeaway points
• A Large Eddy Simulation of the Cabra flame was performed.

• The UFPV framework was implemented in the AVBP solver to tackle the
modelization of the turbulent combustion in the non-premixed auto-igniting flamelet
regime.

• Although some discrepancies between the experimental measurements and the
simulation were found, the LES of the Cabra flame was deemed satisfactory overall,
in particular in its reproduction of the lift-off height.

• In light of the uncertainties on the co-flow temperature and the chemical kinetics,
and the substantially different values of mixture fraction variance dissipation
coefficient found in the literature, the deterministic approach to simulation is not
sufficient to ascertain the agreement between the experiment and simulation of the
Cabra flame.

• Additional work is therefore required, and Chapter 4 tackles this issue with the
framework of uncertainty propagation.
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Chapter 4

Quantifying the uncertainty of the
simulated Cabra flame’s lift-off height

This chapter investigates the uncertainties introduced in the LES of the Cabra flame
and their influence on its lift-off height. It does not aim to be an exhaustive uncer-
tainty propagation, meaning that we do not claim to have taken into account every input
uncertainty. The first part of this chapter, (Sections 1-4) details the propagation of uncer-
tainties directly linked to chemical kinetics. The second part introduces a new uncertain
parameter from the turbulence-combustion model and performs again the uncertainty
propagation with the addition of this new coefficient.

Section 1 introduces the kinetic and temperature propagated in the first study. Section
2 reduces the input uncertain dimension to a manageable number. Section 3 details the
computer experiment and section 4 presents the results of the uncertainty propagation.
Finally, section 5 repeats the same procedure with the addition of the uncertain dissipation
coefficient of the mixture fraction variance.

4.1 The input uncertainties

4.1.1 Kinetic mechanism

The combustion model used in the LES of the Cabra flame relies on a kinetic
mechanism, that is, a set of elementary chemical reactions and laws to determine their
associated reaction rates. Chapter 2 outlined the uncertainties associated with these
reaction rates and the effects that they have on the auto-ignition delay time of a reactive
mixture. As explained in Chapter 3, the driving process of flame stabilization in the H2

Cabra setup is auto-ignition. Therefore, uncertainties in the kinetic mechanism must have
an impact on the flame lift-off height.
Similarly to the study presented in Chapter 2, we use the boiled-down Konnov (2019)
mechanism [55] detailed in Annex A. This mechanism models the reaction rates of each
reaction j with an Arrhenius law:

kj = AjT
βjexp

(−Eaj
RT

)
(4.1)

Where T is the gas temperature, Eaj is the activation energy of reaction j, βj is
a corrective dimensionless number and R is the universal gas constant. Aj is the pre-
exponential factor of the Arrhenius law and is modeled as a log-normal random variable:
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ξj =
log(Aj/A

0
j)

1
3
log(UFj)

∼ N (0, 1) (4.2)

Where A0
j is the nominal value of Aj and UFj is its "uncertainty factor". ξj is a unit

normal random variable.

The boiled-down Konnov mechanism has 31 reactions and therefore 31 uncertain pre-
exponential factors are considered in the following.

The results of the following study are of course sensitive to the choice of kinetic
mechanism and considered uncertainties. In particular, the fact that only the pre-
exponential constants are assumed uncertain is a modelization choice from the authors
of the mechanisms and their sources. We choose to use Konnov’s (2019) mechanism [55]
because it is state-of-the-art at the time of this thesis, but the methodology would be
compatible with other mechanisms should better inputs become available in the future.

4.1.2 Co-flow temperature
As stated in the original publication by Cabra et al. [11], the co-flow temperature Tcof

can be measured with an uncertainty of about ±3%, which corresponds to ±30K. This
uncertainty is dependent on the measurement method used (the laser Raman-Rayleigh-
LIF method in the case of Cabra et al. [11] and Wu et al. [120]), but Gordon et al. [34]
report the same uncertainty using a K-type thermocouple.

Figure 3.22, in Chapter 3, shows that such uncertainty on the co-flow temperature
introduces significant variability in the lift-off height. Therefore, it must be taken into
account to compare simulations with the experimental results.
As far as we are aware, no more information is available about this uncertainty. The least-
informative probability distribution - the uniform distribution between TMin = 1015 K and
TMax = 1075 K - is consequently chosen for the co-flow temperature:

Tcof ∼ U (TMin, TMax) (4.3)

To represent this uncertainty in a normalized way, a unit uniform random variable ξT
is introduced:

ξT =
Tcof − TMin

TMax − TMin
∼ U (0, 1) (4.4)

In total, 32 uncertain variables are accounted for in the study: {ξ1, . . . , ξ31, ξT}.

4.2 Reduction of the input uncertain dimension

Large Eddy simulations of the Cabra flame are expensive (about 100k CPU hours on
the Irene KNL supercomputer) which means that a brute-force, Monte-Carlo approach is
unaffordable in this case. A surrogate-based approach will therefore be preferred.
However, Chapter 1 pointed out that building a surrogate model in high dimensions
requires a large number of observations, which, again, are not affordable.

Therefore, an a priori uncertain dimension reduction is mandatory. In this study,
we chose to use the "dominant variables" approach (cf Section 1.5.1.2).To this end, a
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global sensitivity analysis has to be performed to sort out important variables from less
important ones. That is, to highlight the variables whose uncertainties lead to the greatest
uncertainty in the quantity of interest.
Again, global sensitivity analysis cannot be implemented directly on the 3D flame lift-off
height for tractability reasons. Instead, a representative physical problem of much reduced
computational cost must be used.

4.2.1 A representative reduced physical problem
Auto-ignition being the dominant stabilization mechanism for the Cabra flame in most

of the operating conditions [120], it can be assumed that the lift-off height of the flame
is first-order dependent on the auto-ignition delay (IDT) of the most reactive mixture in
the jet [45]. In Figure 4.1, we compare the normalized auto-ignition delay time of the
most reactive mixture to the normalized lift-off height for different co-flow temperatures,
with different nominal kinetic mechanisms. The auto-ignition is detected in the same way
as lift-off is detected in the 3D flame, i.e. when the hydroxyl mass fraction first reaches
YOH = 600 ppm. The nominal initial conditions of the reactor are given in Table 4.1.
Figure 4.1 shows a very similar response of the auto-ignition delay of 0D reactors and the
Cabra lift-off height in actual LES to both temperature and kinetic mechanism changes.

0D auto-ignition simulations are, therefore, a representative physical problem for most
of the Cabra flame’s operating conditions. Furthermore, each 0D simulation costs about
0.1 CPU-second, making them suitable for a Monte-Carlo-based sensitivity analysis.
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Figure 4.1: Comparison of the evolution of IDT (0D) to lift-off height (LES) for 2 kinetic
mechanisms. All auto-ignition delays are log-preconditioned and normalized by the IDT at a
co-flow of 1045K with the Konnov (2008) mechanism. All lift-off heights are normalized by
the lift-off height at a co-flow of 1045K with the Konnov (2008) mechanism.

A Monte-Carlo study is conducted to account for the uncertainties of the co-flow
temperature and the kinetic mechanism on the 0D auto-ignition delay. 217 ≈ 100k samples

103



Table 4.1: Initial conditions for the 0D reactor at the most reactive mixture zmr = 0.04 [68] in
the nominal case (corresponding to Tcof = 1045 K)

P (Pa) 101325 YO2 0.1669 YH2O 0.0626
T (K) 1011.3 YH2 0.0009 YN2 0.7696
T : Temperature; P : Pressure; Y : Mass fraction

are drawn from the 32D Sobol’ sequence and a homogeneous reactor autoignition is simu-
lated for each sampled condition. Figure 4.2 shows the temporal evolution of the mixture
temperature for the first 20 realizations of the homogeneous reactor. Table 4.2 records
some statistics of this study. The uncertainty on the QoI is considerable, as shown by the
95% confidence interval, which spans an entire order of magnitude. Moreover, the impor-
tant discrepancy between the mean of the distribution and the nominal case suggests
substantial non-linearities in the underlying physical phenomenon.
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Figure 4.2: Evolution of the temperature, as a function of time, of the first 20 realizations of the
homogeneous reactor

Table 4.2: Statistics of the Monte-Carlo study on the auto-ignition delay τ of the 0D reactor

Auto-ignition delay time τ (ms)
mean median nominal 95% confidence interval
5.10 2.07 2.04 [ 0.99 , 21.9 ]

4.2.2 Global sensitivity analysis
The global sensitivity analysis method we chose is Sobol’ sensitivity analysis [103],

approximated using the PCE approach proposed by Schöbi and Sudret [94] (cf Section
1.4.2). The target quantity of the surrogate is the logarithm of the IDT log10(τ), to
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enforce the positivity of the emulated auto-ignition delay time.

The PCE is determined using least square regression with an elastic net and 10-fold
cross-validation based on 217 ≈ 100k Quasi Monte-Carlo samples. To attenuate the
computational cost of determining the PCE weights in high dimensions, the PC basis is
truncated at a maximum order of 3 and first-order interactions (p = 3, q = 0.75, see
Figure 1.8). A summary plot of the PCE is given in Figure 4.3 as a means of visual
validation of the surrogate.

Figure 4.3: Summary plot of the PCE used to compute the Sobol indices

The Sobol indices, plotted in Figure 4.4, highlight the dominance of two uncertainties
in the problem:

• The co-flow temperature: As already exposed in Section 3.1.4 and Figure 4.1,
the lift-off height of the Cabra flame and the auto-ignition delay time of the
corresponding homogeneous reactor are highly sensitive to the co-flow temperature.
The large uncertainty range associated with this variable makes it the most
impacting uncertainty in this configuration. Its index stands alone in this study,
dwarfing all effects from other uncertain parameters.

• The pre-exponential constant A12: The 12th reaction, H + O2 = OH + O, has been
known for its very high sensitivity for a long time [7]. Because of this, it has since
been extensively studied and, as a result, its uncertainty factor (1.1) is the lowest
of Konnov’s kinetic mechanism. However, it remains the most impacting uncertain
kinetic parameter.

4.2.3 Dimension reduction
Even if the PCE is truncated, the resulting Sobol indices are sufficient to rank vari-

ables and get an adequate estimate of the portion of variance explained by each variable
or group of variables.
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Figure 4.4: First- and second-order Sobol indices of the auto-ignition delay

In this study, we choose to truncate the uncertain space to ensure that 95% of the
variance of the QoI is retrieved, based on the prediction of the PCE. Only two uncertain
variables are needed to explain that portion of the variance of the QoI: ξT and ξ12, corre-
sponding to the uncertainty on the co-flow temperature and 12th reaction rate respectively.

The reduced uncertain space spanned by these two variables is resampled to validate
the truncation. The resulting probability distribution of the QoI is compared to its orig-
inal distribution in Figure 4.5. The shape of the distribution is well captured. The peak
has both the correct position and the correct amplitude and the kurtosis of the distribu-
tion is also well reproduced.

Therefore, the uncertainties of the co-flow temperature and of the 12th reaction pre-
exponential factor are enough to explain most of the variability of the auto-ignition delay-
time of the homogeneous reactor corresponding to the most reactive mixture in the Cabra
flame configuration.

4.2.4 Verification of the dimension reduction on a slightly more complex
problem

The dimension reduction proposed in the previous section is valid for a homogeneous
reactor. In this section, we aim, to verify if it still holds in a configuration more repre-
sentative of the real Cabra flame. Therefore, we test it on a strained and auto-igniting
non-premixed laminar 1D flame. As shown in Chapter 3, this flamelet is the basis of the
combustion model used in the LES. Therefore, if the dimension reduction holds well for
this configuration, we trust that it will also hold for the uncertain behavior of the lift-off
height in the Cabra flame’s LES.

A pair of Monte-Carlo experiments are conducted in the original, 32D space and in the
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Figure 4.5: Comparison of auto-ignition delay probability distribution of the homogeneous
reactor, between the reference sampling of the 32D uncertain space and the sampling of the
reduced uncertain space spanned by ξT and ξ12

reduced, 2D space, for reference and evaluation of the reduced uncertain space respectively.

The conditions are very similar to the flamelets presented in chapter 2. The only differ-
ence is the boundary temperature of the oxidizer size, which is slightly higher in the case
of the Cabra flame. Boundary conditions in the nominal case are summarized in Table 4.3.

Table 4.3: Nominal boundary conditions for the auto-igniting 1D flame: temperature and
species molar fractions. The pressure is set to 101 325 Pa.

Fuel side Oxidizer side
Tfuel [K] 305 Tox [K] 1045
XH2 [-] 0.25 XH2O [-] 0.1
XN2 [-] 0.75 XO2 [-] 0.15

XN2 [-] 0.75

For the same reasons as in the study presented in Chapter 2, the strain rate a is set to
a = 10 s−1 to ensure the ignition of the flamelet even for slow realizations of the uncertain
mechanism or low initial temperatures.

The flamelet equations (Equation 2.1) are solved in the mixture fraction space on
a uniform 400-point mesh using the 2nd-order stabilized explicit Runge-Kutta method
(ROCK2) with error control [1]. The auto-ignition delay is determined when the mass
fraction of the hydroxyl radical first reaches the threshold YOH = 600 ppm in the compu-
tational domain. The quantity of interest, again, is the logarithm of the auto-ignition
delay time. The computation time per sample can rise up to a dozen minutes. The cost
of these simulations is still moderate but no longer negligible like it was for the homo-
geneous reactor. For this reason, the PDFs are approximated using only 211 = 2048
Quasi-Monte-Carlo samples drawn from the 32D Sobol’ sequence for the reference PDF
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and 211 more Quasi-Monte-Carlo samples from the 2D Sobol’ sequence for the PDF in
the reduced uncertain space.

The resulting PDFs are presented in Figure 4.6. Again, the two PDFs collapse for
the most part, which indicates that the dimension reduction holds for strained auto-
igniting non-premixed flamelets. Therefore, we are confident that the uncertain behavior
of the Cabra flame will also mostly take place in the same reduced uncertain space:
Span(ξT , ξA12).
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Figure 4.6: Comparison of auto-ignition delay probability distribution of the strained flame,
between the reference sampling of the 32D uncertain space and the reduced uncertain space
spanned by ξT and ξ12

4.3 The computer experiment

4.3.1 Sampling budget, strategy, and surrogate choice
A single LES of the Cabra flame costs about 100k CPU hours on the Irene KNL

supercomputer that we used. Our CPU time allotment was enough for 30 simulations.
We chose to reserve a third of these simulations for validation, while the two other thirds
were assigned to the surrogate training.

We use Quasi Monte Carlo sampling (a Sobol’ sequence), to draw the 20 training
samples. This choice is motivated by:

• The superiority of regression surrogate methods over projection methods observed
in the preliminary study in Chapter 2 which disqualifies cubature sampling in this
case

• The low-discrepancy property of the sequence, although we recognize that a set of
20 samples does not maximize this property
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• The convenience of increasing the cardinality of the training set, if deemed necessary
and if more resources were available later on

The 10 validation samples were drawn using Latin Hypercube sampling, because:

• It has a good space coverage

• Its randomness protects against potential sampling bias

Each of these samples is a Large Eddy Simulation of the Cabra flame, with a setup
identical as the one presented in Chapter 3. Instantaneous solutions of these simulations
are shown in Figure 4.7 for the nominal case and for the samples where the highest and
lowest lift-off heights are found.
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Figure 4.7: y-normal slices of the instantaneous fields of water vapor mass fraction for the
nominal (left), lowest (center), and highest (right) observed flames in the training set

The mean fields of hydroxyl mass fractions, from which the lift-off heights are
extracted, are plotted for every training sample in Figure 4.8.

A wide variety of flame shapes and heights is observed. From these mean fields,
we compute the lift-off height as the first streamwise location where the hydroxyl mass
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Figure 4.8: Mean fields of hydroxyl mass fraction for every training sample
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fraction first reaches 600 ppm. A logarithmic preconditioning is then applied to these
observations of the lift-off height in order to guarantee its positivity in the following.

Finally, we chose to use a Regression Kriging as a surrogate model because it gave
the best results among tested methods in this case. The chosen surrogate’s properties
are given in Table 4.4 and the response surface itself is plotted in Figure 4.9. The other
surrogate types that were investigated are detailed, plotted, and evaluated in Annex E.

Table 4.4: Properties of the surrogate model used for the Lift-off height in Span(ξA12 , ξT )

Surrogate Type Regression Kriging
Trend Linear
Kernel Matérn 5/2
Length-scales (θ) determination Maximum likelyhood approach
Nugget 0.05
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Figure 4.9: Response surface of the Regression Kriging, plotted alongside the training and
validation samples

Figure 4.9 suggests a good agreement between the data and the surrogate. This
agreement is quantified in the following section.
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4.3.2 Surrogate validation

The first step of validating the surrogate is to produce a summary plot. While the
model plot of Figure 4.9 informs on the overall shape of the response surface, it does not
really frame the agreement between the surrogate and the observations. The summary
plot, shown in Figure 4.10 drops any notion of surrogate shape to focus solely on the
comparison between the observations and their approximations by the surrogate.
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Figure 4.10: Summary plot of the Regression Kriging

The summary plot in Figure 4.10 shows that the Kriging surrogate reproduces correctly
its training set. More importantly, the validation samples which, by definition, were not
included in the training of the surrogate, are also correctly reproduced. This indicates
that there is little to no overfitting in this surrogate.

To quantify the error of the Kriging surrogate relative to the validation samples, we
use the error metrics introduced in Section 1.6: The Normalized Root Mean Squared
Error (NRMSE), and the Normalized Maximum Absolute Error (NMAE):

NRMSE =
∥yvalidation − ypredicted∥2

∥yvalidation∥2
= 1.4% (4.5)

NMAE =
∥yvalidation − ypredicted∥∞

∥yvalidation∥∞
= 2.1% (4.6)

These error results are extremely satisfying, especially compared to those of the best
PCE (presented in Annex E) which were about 4 times higher for both metrics. Finally,
the Regression Kriging whose response surface is plotted in Figure 4.9 will be used in the
following.
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4.4 Uncertainty propagation results for the Cabra flame’s
lift-off height in Span(ξT , ξ12)

4.4.1 Uncertain behavior analysis
As a whole, the lift-off height of the Cabra flame is mostly sensitive to the co-flow

temperature, but the 12th reaction of the mechanism (H + O2 = OH + O) also has a
sensible influence, especially at low temperatures. This behavior is consistent with the
sensitivity analysis performed a priori. The surrogate also shows a sudden increase in
slope, both ξT - and ξ12-wise when the temperature decreases. This is consistent with the
results of Figure 2.3 (from Chapter 2, reproduced below), which plots the probability
distribution of the auto-ignition delay time of a homogeneous reactor at zmr for different
initial temperatures.
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Figure 2.3 (reproduced): Violin plots of the auto-ignition delay τ in the conditions of the Cabra
flame for different co-flow temperatures for the original and boiled-down Konnov (2019) [55]
mechanisms

This sudden increase in sensitivity to both variables at the low end of the temperature
range translates the transition from two auto-ignition modes allowed by the kinetic
mechanism:

• High-temperature auto-ignition, very fast, found in the "plateau" region which
begins at about ξT ≈ 0.5

• Low-temperature auto-ignition, much slower, which would be found for even lower
co-flow temperatures

We did not investigate the Cabra flame in the conditions of weak auto-ignition [92, 122] in
this study. However, this combustion mode is encountered in Chapter 2 for homogeneous
reactors and non-premixed auto-igniting flamelets. The increase in sensitivity to ξ12 only
reflects the higher uncertainty of the mechanism in the transition zone between weak and
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strong auto-ignition.

The surrogate model, duly validated, can then be resampled extensively to obtain the
probability distribution of the lift-off height in the uncertain space spanned by ξT and ξ12.
219 ≈ 500k samples are drawn from the 2D Sobol’ sequence and the surrogate is evaluated
for each sample. The resulting PDF is presented in Figure 4.11.
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Figure 4.11: Probability distribution of the lift-off height in the uncertain space spanned by ξT
and ξ12 using 219 surrogate evaluations

The peak of the distribution, located around H/D ≈ 8.5, corresponds to the plateau
of high-temperature auto-ignition, while the near-uniform component between H/D = 10
and H/D = 20 corresponds to the transition zone, for ξT < 0.5, or Tcof < 1045 K.

4.4.2 Comparison with Ji et al. (2019)
Ji et al. [45] proposed an uncertainty propagation study for the lift-off height of

the simulated H2 Cabra flame in 2019. Their simulation framework is Reynolds Aver-
aged Navier-Stokes simulations, with a k-ε turbulence model, the Transported Probability
Density Function approach to model combustion, and Interaction-by-Exchange-with-the-
Mean approach for micro-mixing. They used the kinetic mechanism from Li et al. (2004)
[63] with uncertainty factors borrowed from Konnov (2008)’s uncertain mechanism [54].
They did not propagate the uncertainties on the temperature measurement. However,
they did qualitatively investigate the influence of co-flow temperature on the flame’s lift-
off height.

Using an active direction approach to reduce the kinetic uncertain dimension and a
second-order PCE as a response surface, they obtained the PDF that we plotted in Figure
4.12 in the dotted line. It is visually different from the one plotted in their article [45]
(Fig. 4b.) because they used a logarithmic scale in abscissa. Otherwise, the data points
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are strictly identical.
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Figure 4.12: Probability distribution of the lift-off height as estimated by Ji et al. [45] and in
our work for the fixed, nominal co-flow temperature of Tcof = 1045 K and uncertain kinetic
mechanism

Ji et al. found an expected lift-off height of H/Dexpected = 4.6, which is in agreement
with the experimental measurement of Wu et al. [120] (as seen in Figure 4.13, in the next
Section) and a 95% confidence interval of [1.1, 28.3] which covers all the experimental
measurements for a co-flow temperature of 1045 K.

We plotted on the same graph, in plain line, a PDF of the lift-off height obtained
by resampling a slice of our surrogate model (trained with UF12 = 1.1 as given by the
Konnov 2019 mechanism) at ξT = 0.5 ⇔ Tcof = 1045 K in order to place ourselves in the
same conditions as Ji et al.. The PDF is much narrower than Ji’s proposed PDF and the
expected value is also much higher: H/Dexpected = 11.8.

The divergence in expected value between [45] and our study can be explained by
the differences between Li (2004)’s and Konnov (2019)’s nominal kinetic mechanisms. In
particular, for the most sensitive reaction of both mechanisms, H + O2 = OH + O, Li et al.
propose a rate constant of 3.55×1015 while Konnov proposes a rate constant of 1.04×1014.

We have three leads to explain the difference in PDF width showcased in Figure 4.12:

• Konnov (2008)’s uncertainty factor for H + O2 = OH + O was 1.5, while its
updated (2019) version only has an uncertainty factor of 1.1 for this reaction. This
uncertainty reduction, stemming from a decade of further research, must have a
significant influence on this problem. To evaluate this influence, we resampled our
surrogate model for an uncertainty factor of 1.5 on A12. The response surface was
not trained for such a wide range of possible values, but the linear trend of the

115



Kriging guarantees an asymptotic behavior which is at least sound compared to a
PCE. The result of this resampling is also plotted in Figure 4.12 in dashed line. This
manipulation widens the PDF about three times and brings out the signature of the
transition between low- and high-temperature combustion (or "weak" and "strong"
combustion respectively): the onset of a bipolar distribution with the right-side
bump in the PDF. However, this lead is not enough to explain the whole difference
between Ji’s and ours PDF.

• Our study reduced the uncertain dimension by discarding all variables that were not
sensitive enough. Most of the uncertain reactions were discarded because of their
insignificance before the uncertainty on the co-flow temperature. In particular, the
next reaction in terms of sensitivity, H + HO2 = 2 OH has a first-order Sobol’ index
about 2 times lower than H + O2 = OH + O in 0D homogeneous reactor simulations
in the conditions of the Cabra flame (cf Figure 4.4). Taking this uncertain parameter
into account may help to further explain the difference in PDF width between [45]
and our study.

• Finally, our most speculative lead is that Ji et al.’s choice of surrogate type may
have artificially widened their proposed PDF. Fig. 4a. of their article [45] suggests
that their second-order polynomial fit lacks curvature, which would result in an
over-representation of high lift-off heights in the resampling.

As a conclusion, further work is needed to benchmark simulations and uncertainty
propagation methods from different teams with modern uncertainty data.

4.4.3 Comparison with deterministic simulation results and experimental
measurements

Section 4.4.2 showed the PDF of lift-off height conditioned to Tcof = 1045 K. This
procedure can be generalized, to several co-flow temperatures in the range of measurement
uncertainties. The resulting violin plots are shown in Figures 4.13 and 4.14, compared
respectively to experimental measurements and to other numerical works.

Figure 4.13 shows a good agreement between the experimental measurements and our
simulation: the predicted lift-off heights are well within the range of measurements from
[11, 120, 34]. Its evolution with regards to the co-flow temperature is also well reproduced.
It also confirms that, in the H2 Cabra flame configuration, taking into account the uncer-
tain kinetic mechanism is only a refinement compared to the uncertainties introduced by
uncertain measurements of the co-flow temperature.

Figure 4.14, on the other hand, shows that state-of-the-art kinetic uncertainties are
not enough to explain the spread of numerical results. Section 4.4.2 already highlighted
that older mechanisms were more uncertain. According to the PDF proposed by Ji et
al., the relatively high uncertainties from [54] are representative of the spread of kinetic
mechanisms from that era and suffice to explain the different experimental results from
the literature.

The reduction of kinetic uncertainties over the last decade, compiled in [55], allows for
much less uncertain simulations nowadays.
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Figure 4.13: Violin plots of the lift-off height of the Cabra flame for several co-flow
temperatures, compared to the measurements from [11, 120, 34]. For enhanced readability,
measurement uncertainties of the co-flow temperature are only plotted for the experiment from
Cabra et al. [11]. The error bars are the same for the other experiments.
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Figure 4.14: Violin plots of the lift-off height of the Cabra flame for several co-flow
temperatures, compared to deterministic simulations from [105, 13, 35, 74, 78], and a violin
plot of the uncertainty quantification study from [45]

However, there is another major axis that introduces uncertainties in numerical
simulations of the H2 Cabra flame: the turbulence and turbulence-combustion interaction
models. The next section investigates this new aspect of the problem.
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4.5 Investigating the uncertainty in the turbulence-combustion
model

4.5.1 The uncertain dissipation coefficient of mixture fraction variance
Section 3.6.2 showed that the flame shape is extremely sensitive to the dissipation

coefficient of the mixture fraction variance CD. Moreover, while the theoretical value of
CD should lie between 2π2 and 40 for typical LES filter sizes, much lower values can be
found in the literature [23, 117, 43]. This disagreement between the values proposed by
different authors and values obtained by theoretical developments can be considered as a
parametric uncertainty in the turbulence-combustion interaction model.

Without any more information on the probability distribution of CD, we assume that
it is equiprobable over the entire range of possible values.
Therefore, we model CD as a uniform random variable:

ξCD
=

CD − CD,Min

CD,Max − CD,Min
∼ U (0, 1) (4.7)

Where CD,Min = 2.0 is the lowest value we found in the literature [23] and CD,Max =
40.0 is the highest possible value predicted by analytical developments [41].

Therefore, the uncertainties must now be propagated from the 3D space: Span(ξA12 ,
ξT , ξCD

). To this end, 29 more LES are run for this study: 19 more training samples are
drawn from the 3D Sobol’ sequence and 10 more validation samples are drawn with LHS.

The 30 LES drawn from Span(ξA12 , ξT ) are also recycled to train and evaluate the
surrogate model. In total, 39 training samples and 20 validation samples are used in the
following.

As a side note, the first sample sample from the 2D and 3D Sobol’ sequence are
located at the same coordinates: they correspond to the nominal case. This is why only
19 samples were drawn from the 3D sequence, starting from the second element of the
sequence.

4.5.2 Surrogate modeling
Several surrogate modeling methods were tested to emulate the behavior of the lift-

off height in Span(ξA12 , ξT , ξCD
). They are presented and evaluated in Annex E. The

best candidate among them was a PC-Kriging, whose parameters are given in Table 4.5.
However, the performance of this surrogate was unsatisfying:

Table 4.5: Properties of the best surrogate model found in Span(ξA12 , ξT , ξCD
)

Surrogate Type PC-Kriging
Trend Regression PCE, p = 3, q = 0.75
Kernel Matérn 5/2
Length-scales (θ) determination Maximum likelyhood approach
Nugget 0.05

NRMSEPCK = 7.5% (4.8)
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NMAEPCK = 18.6% (4.9)

To improve the quality of the surrogate model, we tried to reduce again the uncertain
dimension in order to reduce the distance between observations. The discovery of an active
direction was attempted but to no avail. Then, we noticed that the problem was mostly
additive, which means that interactions between ξCD

and the other uncertain variables
were small enough to be neglected. This allows writing:

F (ξ12, ξT , ξCD
) ≈ Fkinetics(ξ12, ξT ) + Fturbulence(ξCD

) (4.10)

In this case, the 2D surrogate proposed in Section 4.3 was recycled and substracted
from the observations in the 3D space. A 1D surrogate could then be constructed from
the remaining data projected on the direction of ξCD

. The best surrogate model we found,
in this case, was a regression Kriging with linear trend, presented in Table 4.6 and plotted
in Figure 4.15.

Table 4.6: Properties of the surrogate used in Span(ξCD
)

Surrogate Type Regression Kriging
Trend Linear
Kernel Matérn 5/2
Length-scales (θ) determination Maximum likelyhood approach
Nugget 0.05
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Figure 4.15: Response surface of the 1D surrogate

In this figure, the cluster of training and validation points located at ξCD
≈ 0.47 corre-

sponds to the observations from Section 4.3.

Using the additivity of the problem, both the 2D and 1D surrogates are finally
aggregated to form a 3D surrogate in Span(ξA12 , ξT , ξCD

), as shown in Equation 4.10.
As a side note, because we submitted the observations to a logarithmic preconditioning
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(Sec. 4.3), the response surfaces shown in Figures 4.9 and 4.15 are actually multiplied,
not added, to obtain the aggregated surrogate of the flame lift-off. Its validation scores
are the following :

NRMSEagg = 6.8% (4.11)

NMAEagg = 13.0% (4.12)

The resulting response surface is much more satisfactory. Its root mean square is
slightly lower and its maximum error is significantly reduced. A slice of the surrogate in
the hyperplane ξ12 = 0 is presented in Figure 4.16.
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Figure 4.16: Response surface of the aggregated surrogate in the hyperplane ξ12 = 0

Training and validation observations are absent from this plot because most of them
don’t belong in the hyperplane ξ12 = 0 and it would make no sense to represent them.

As expected from the qualitative study of Section 3.6.2, low dissipation coefficients of
mixture fraction variance lead to large simulated flame lift-off. Furthermore, no significant
influence of this parameter is found for values of ξCD

> 0.5, which loosely corresponds
to the range of values that should be used for typical LES sizes (2π2 < CD < 40 [41]).
This is interesting for future deterministic LES of this type of flame because it suggests
a "perfect" value of CD does not need to be determined prior to the simulation. At least
in this configuration, the lift-off height of the flame is only weakly dependent on this
parameter, as long as it is in the range recommended by Ihme [41]. However, the flame
shape is more and more sensitive to CD with decreasing values. Increased caution should
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therefore be exercised when analyzing simulations using CD values in the lower range.

Finally, the minor bulge in the response surface, which can be observed in Figures
4.15 and 4.16 near ξCD

= 1, is probably an artifact of the surrogate model and probably
has no physical signification.

Aside from the error metrics presented above, the aggregated surrogate can be visually
verified against its training and validation observations using the summary plot presented
in Figure 4.17, which compares the observations (on the x-axis) with the surrogate eval-
uations at the same coordinates in the uncertain space (on the y-axis).
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Figure 4.17: Summary plot of the aggregated surrogate, in Span(ξA12 , ξT , ξCD
)

The surrogate is not perfect. In particular, it fails to accurately predict lift-off heights
in the higher range, i.e. when the flame is lifted above 15 D. However, the general agree-
ment of the surrogate with the training and validation observations is satisfactory.

4.5.3 Probability distribution of the lift-off height in the 3D space

The 3D surrogate constructed in Section 4.5.2 is sampled extensively using 219 evalua-
tions at coordinates drawn from the 3D Sobol’ sequence. The resulting PDF is presented
in Figure 4.18.

The shape of the PDF in Span(ξCD
, ξT , ξ12) is very close to the one obtained in

Span(ξT , ξ12), presented in Figure 4.11. However, the region of high probabilities around
H/D = 9 is less peaked and the tail of the distribution is much heavier, due to the large
lift-off heights permitted by the combination of low co-flow temperatures, slow-chemistry
- which both slow down auto-ignition - and low dissipation coefficient of the mixture frac-
tion variance - which enlarges the zone where auto-ignition does not even start due to a
too high strain rate.
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Figure 4.18: Probability distribution of the lift-off height in the uncertain space spanned by ξCD
,

ξT , and ξ12 using 219 surrogate evaluations. Note that the x-scale is different from the PDF in
the 2D uncertain space shown in Figure 4.11

We can also slice and resample the response surface for different temperatures and
compare it to deterministic simulations (Figure 4.19) and experimental results (Figure
4.20) from the literature.
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Figure 4.19: Violin plots of the lift-off height of the Cabra flame for several co-flow
temperatures, compared to deterministic simulations from [105, 13, 35, 74, 78]

As expected, the resulting probability distributions are much wider than those
obtained when considering only the chemical kinetics uncertain, as seen in Figure 4.14.
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Figure 4.20: Violin plots of the lift-off height of the Cabra flame for several co-flow
temperatures, compared to the measurements from [11, 120, 34]. For enhanced readability,
measurement uncertainties of the co flow temperature are only plotted for the experiment from
Cabra et al. [11]. The error bars are the same for the other experiments.

The abrupt bottom side of the violin plots is due to the same artifact of the surrogate
model that caused the minor bulge in Figures 4.15 and 4.16 near ξCD

= 1.

Taking into account the uncertainty of the turbulence-combustion interaction model
can explain some of the variety of simulation results found in the literature. Moreover, the
state-of-the-art Konnov (2019) mechanism [55] is much less uncertain than other, more
ancient mechanisms that were used when the other simulations were run and Section
4.4.3 already showed that the uncertainties in kinetic mechanisms of that era were already
enough to explain most of the discrepancies between the numerical results of the litera-
ture. This explains why our study, as expected, using modern uncertainty factors, does
not cover the whole range of previous simulation results. Finally, our uncertainty propa-
gation study also explains most of the experimental measurements, considering that their
uncertainty on the co-flow temperature is ±3%.

Only the smallest of lift-off heights observed in the experiments and predicted by other
simulations and, most importantly, observed by Gordon et al. are seemingly not explained
by our study.

However, looking more closely at the foot of the flame for our observation with the
shortest flame lift-off, we identified an early zone of progress variable production at the
foot of the jet. This is illustrated in Figure 4.21.

This early ignition zone leads to a small - but visible - increase in hydroxyl mixture
fraction near the jet exit. This suggests that smaller lift-off heights are accessible with
our simulation setup, but that they would need slightly higher co-flow temperatures to
appear. We are confident that future investigations at higher temperatures would confirm
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Figure 4.21: Comparison of the progress variable and hydroxyl mass fraction fields between
the lowest flame simulated (left) and the nominal case (right)

this hypothesis. Moreover, given the uncertainty of the temperature measurement for
experimental results, our simulation is already within Gordon et al.’s measurement range.
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4.6 Takeaway points
On the methodological side:

• A procedure to take into account highly dimensional kinetic and experimental
uncertainties in LES is proposed in this chapter.

• Uncertainties not directly related to chemical kinetics can also be taken into account.
We demonstrate this by taking into account an uncertain variable in the turbulent
combustion model.

On the physical interpretation side:

• Taking into account state-of-the-art kinetic and temperature uncertainties shows
that deterministic simulations of the Cabra flame are not suited to predict its
behavior. It may not be a very useful configuration to compare quantitatively
turbulence or combustion models in a deterministic framework.

• The reduction of kinetic uncertainties in the last decade has led to a dramatic
decrease in lift-off height uncertainty in the simulated H2 Cabra flame.

• The uncertainties on the turbulence-combustion interaction model are about as
sensitive as the uncertainty on the co-flow temperature. Therefore, special care
must be exercised when setting model parameters, in configurations similar to the
H2 Cabra flame, i.e. auto-igniting non-premixed lifted flames.
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Chapter 5

Uncertainty Quantification in averaged
LES fields

In this chapter, we aim to quantify the uncertainties of the averaged LES fields of the
Cabra flame. That is, we aim to evaluate the PDF of every time-averaged quantity at
every point in the computational domain. This will allow comparing the experimental
and numerical ranges of uncertainty on local quantities. Furthermore, this work is a proof
of concept for the prediction of uncertain averaged fields using LES for turbulent reacting
flows.

We propagate the uncertainties coming from the kinetic mechanism, the co-flow
temperature, and the dissipation coefficient of the mixture fraction variance. The fields
considered in this study are the fields that were measured experimentally by Cabra et al.
[11].

Sections 1 and 2 deal with uncertain dimension reduction of the input and output
space respectively. The third section presents and validates the surrogate models used
to predict uncertain fields. Section 4 validates the method as a whole and presents the
results of the uncertainty propagation on the averaged LES fields of the Cabra flame.

5.1 Reducing the input uncertain dimension

In this study, we consider the uncertainties from the kinetic mechanism, the co-flow
temperature, and the mixture fraction variance dissipation coefficient. We employ the
same reduction of the input uncertain space as the one used in Section 4.5: The dominant
variable approach on the auto-ignition delay time of a homogeneous reactor corresponding
to the most reactive mixture of the Cabra flame eliminates a large number of weakly sensi-
tive reaction rates. Finally, the reduced uncertain space is Span(ξA12 , ξT , ξCD

).

Therefore, we can re-use the simulations used in Chapter 4: the results of 39 LES
are used as training observations, and 20 more are used as validation observations. The
averaged fields of hydroxyl mass fraction for the training samples are shown in Figure 5.1.
The fields of every considered averaged LES variable for the training samples are shown
in Annex F.
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Figure 5.1: Averaged YOH fields of the training samples
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5.2 Reducing the output uncertain dimension

The computational mesh of the LES of the Cabra flame comprises 5.5 million nodes.
Considering that Cabra [11] measured local values for YOH , YO2 , YH2 , YH2O, Z, and the
temperature, a total of 33 million local surrogates should be constructed and 33 million
PDFs evaluated.

This brute-force approach is quite expensive, and clearly suboptimal:

• There is a spatial auto-correlation of each field and a cross-correlation between
fields which means that there would be some redundant work in constructing every
surrogate independently.

• With only 39 training observations, it is highly probable that the surrogates would
not be perfectly determined. Therefore, inconsistencies may appear, such as spatial
discontinuities or the sum of mass fractions locally not equal to 1.

These reasons call for a drastic dimension reduction of the uncertain outputs.

5.2.1 Preliminary work on the spatial mesh
The averaged fields are interpolated on a structured, axisymmetric, hexahedral mesh

which discretizes the region covered by experimental measurements (x ∈ [0, 26D] and
r ∈ [0, 3D]). This 3D mesh has 315×250×20 ≈ 1.5M nodes. An azimuthal mean is then
applied to the fields to enforce the axisymmetric nature of the fields and further reduce
the mesh size to nnodes = 315× 250 ≈ 79k.

This preliminary work brings the uncertain output dimension to about 4.8 million,
which is still extremely large. Moreover, it does not address the two problems cited
above. Further dimension reduction is therefore needed.

5.2.2 Uncertain dimension reduction using Principal Component Anal-
ysis

The ideal dimension reduction tool would have the following properties:

• Reduce the dimension of the problem to a tractable number (dout < 10)

• Allow the prediction of the averaged fields from the reduced variables without too
much information loss

• Preserve the auto-correlation and cross-correlations of the fields

Principal Component Analysis (PCA) fills these specifications and is used in this work.

For each observation, the averaged fields are centered and normalized using the "stan-
dard score" normalization [56]. Then, the normalized averaged fields are queued up in a
unique "features’ vector" of size nfeatures = nnodes × nfields ≈ 4.7× 105.

A PCA is applied to the set of observations. The modes obtained with this PCA
represent the variations of the six different fields that were initially considered. This way,
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their cross-correlation is conserved.

The first eigenvalues of the PCA are plotted in Figure 5.2. The basis of PC modes is
truncated such that only modes that correspond to more than 1% of the variance of the
observations are retained. This truncature is materialized by the red line in Figure 5.2.
With only three modes left, 98.5% of the variance of the observation is explained. These
three modes are plotted in Figure 5.3 for YOH and in Figure 5.4 for the gas temperature.
The modes are plotted for the other variables in Annex G.
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Figure 5.2: Variance explained by each mode of the PCA

These modes are enough to account for most of the possible variations of the Cabra
flame in the uncertain space. A set of three weights - which can also be considered as coor-
dinates in the basis formed by the three first modes of the PCA - are therefore enough to
characterize a flame shape. The output uncertain dimension is reduced to three, compared
to about 33 million initially. Equation 5.1 summarizes the prediction process of all the
fields:

Yprediction(ξ) = Y +N
[
w1(ξ) ·M1 + w2(ξ) ·M2 + w3(ξ) ·M3

]
(5.1)

Where Yprediction(ξ) is the vector of predicted field values, for each considered field
and at each spatial location. It can be written as:

Yprediction(ξ) =
(
YOH,1, . . . ,YOH,nnodes ,

YO2,1, . . . ,YO2,nnodes , (5.2)
...

Z1, . . . ,Znnodes

)

Y is the vector of the mean of the training observations at each location for each field.
Its shape is the same as Yprediction.
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Figure 5.3: Mean and retained modes for YOH

M1,M2,M3 are the first three modes of the PCA. They are also vectors whose shape
is the same as Yprediction: the first nnodes components correspond to the mode intensity for
the variable YOH at every node, and so on.

w1, w2, w3 are the scalar weights associated with the first three modes of the PCA.
They depend on the position ξ in the uncertain space and are predicted in Section 5.3.

Finally, N is a (nfeatures, nfeatures) diagonal matrix containing the nfields normalization
coefficients applied to each field before computing the PCA. This allows rescaling the
weighted modes and obtain dimensionalized quantities:
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Figure 5.4: Mean and retained modes for the gas temperature

N = Diag

(
normYOH , . . . , normYOH︸ ︷︷ ︸

nnodestimes

,

... (5.3)

normZ , . . . , normZ

)

As with any type of dimension reduction, we can compute error metrics to measure
the loss of information induced by the compression. For each field, we concatenate the
field value at each point and for each validation sample in a single vector. This vector is
created for the LES averaged fields and their projections on the first three PCA modes.
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The results are given in Table 5.1.

Table 5.1: Error scores of the projection of the validation observations on the first three PCA
modes, per field

YH2 YH2O YO2 YOH T Z
NRMSE 2.27% 1.53% 1.21% 7.31% 1.16% 1.29%

NMAE 5.92% 9.06% 5.19% 21.96% 6.49% 4.29%

These error scores are satisfying for the most part, in particular regarding the
extremely low mean error (NRMSE). Only the YOH field’s projection is worse, with the
validation samples VS12 and VS16 contributing the most to the NRMSE and VS12 being
responsible for the disappointing NMAE. To better understand where these errors come
from, we propose Figure 5.5.

Each subfigure of Figure 5.5 presents the fields of hydroxyl mass fraction YOH

computed by the LES (left), compared with their projection on the first three modes
of the PCA (right) for every validation sample. This visual representation of the projec-
tion suggests that no significant amount of information was lost in the compression. In
fact, in most cases, the flame shapes are very well preserved by the compression. In
particular, the flame lift-off height and axial evolution of the hydroxyl mass fraction are
well reproduced. Furthermore, the explanation of the relatively high error scores observed
with samples VS12 and VS12 appears clearly.

Sample VS12 has a higher lift-off flame than any of the training samples. As a
reminder, the PCA only generalizes its training dataset and cannot accomplish mira-
cles for samples outside its training range. The case of VS16 is a bit subtler: The lift-off
height (≈ 17D) is well within the range of previously-seen values. However, the foot of the
flame - i.e. the area where YOH values are non-negligible but lower than the auto-ignition
threshold - is much longer than any of the training samples.

In both of these problematic cases, using more PCA modes did not improve signifi-
cantly the agreement between the averaged LES fields and their projection. In terms of
error metrics, using 5 modes, for example, the NMAE for the YOH field stayed around
22% and the NRMSE decreased slightly to reach 5.5%. To improve the quality of the
projection, a more extensive sampling of the input uncertain space would be needed -
meaning more LES should be run.

Overall, the compression satisfyingly preserves flame shapes given our training sample
budget.

5.3 Surrogate modeling

5.3.1 Preliminary remarks
The dimension reduction of inputs and outputs defined in the previous sections results

in only three input variables (ξA12 , ξTcof , ξCD
) and three output variables (the weights of

the three most important modes of the PCA, see Equation 5.1). The input variables are
independent by nature. The three coefficients of the PCA modes may be statistically
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Figure 5.5: YOH fields of the validation samples compressed by the PCA (right) compared to
the LES (left)

134



dependent. This is not a problem for us because we determine them as a function of the
initial, independent uncertain parameters.

5.3.2 Choice of surrogates
Unlike in Section 4.5.2, we did not find any further simplification of the problem of

emulating the coefficients of the PCA modes. Therefore, three surrogates must be fitted in
the 3D input space Span(ξA12 , ξT , ξCD

). We select PC-Kriging (Kriging using a Polynomial
Chaos Expansion as a trend) to emulate the PCA coefficients. PCEs of total order 2 are
used for the first two coefficients, and a PCE of total order 1 (a linear trend) is used for
the third coefficient. The hyperparameters of the Kriging models are fitted by minimizing
the NRMSE in a Leave-One-Out cross-validation procedure (Section 1.6.4).

5.3.3 Verification of Surrogates
Unfortunately, 39 observations, 20 of which are in the 2D plane Span(ξA12 , ξT ) (see

Section 4.5.2), do not fill the 3D input space very densely. Therefore, it is doubly
important to check the quality of the surrogate models. Figure 5.6 and Table 5.2 give a
summary of the quality of the surrogates used to emulate the three PCA modes.
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Figure 5.6: Summary plots of the surrogates used to predict each mode’s coefficient

Table 5.2: Error metrics for the surrogate models

Mode Surrogate Type PCE trend order NRMSE NMAE
1 PC-Kriging 2 27.36% 49.10%
2 PC-Kriging 2 32.32% 39.44%
3 PC-Kriging 1 55.45% 67.10%

Figure 5.6 suggests that the surrogate for the coefficient of mode 1 is relatively satis-
fying, although one of the validation samples is poorly predicted. This one poor prediction
mostly drives the relatively high values of NRMSE and NMAE computed for this surro-
gate. The surrogates of the coefficients of modes 2 and 3 are a bit worse, both in terms
of error metrics and visual agreement on the summary plot. Nevertheless, both of them
correctly reproduce the trend of the coefficients they emulate, and they both avoid overfit-
ting. Therefore, we consider these surrogate models satisfying despite their imperfections.

Moreover, Figure 5.2 showed a steep decrease in the variance explained by the
successive modes. This means that the greater the mode index, the less a slightly off
coefficient prediction matters in the reproduction of the fields.
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5.4 Validation of the field prediction, as a whole
Both the projection phase and the surrogate modeling of the coefficients have been

verified. However, the combination of these two methods to predict a flame shape requires
the validation of the method as a whole. Similarly to Section 5.2.2, we compute error
scores for the prediction of the validation samples. The results are given, per field, in
Table 5.3.

Table 5.3: Error scores for the prediction of the validation observations, per field

YH2 YH2O YO2 YOH T Z
NRMSE 3.98% 3.76% 3.15% 11.15% 2.49% 1.79%

NMAE 7.97% 16.06% 14.37% 29.56% 11.69% 4.47%

The error scores are only slightly higher than those obtained in Section 5.2.2 to eval-
uate the projection step. This means that while the surrogate models that predict the
coefficients of the modes are not perfect, most of the prediction error comes from a lack
of richness of the PCA modes, in the sense that they restrict the possibilities of flame
shape variation. Ultimately, as seen in Section 5.2.2, this comes from a lack of variety in
the training observations. To enrich the training dataset, more LES should be run, each
one costing 100k hours of CPU time. Due to our finite computational budget, we did not
include any more observations in the study. Besides, the fidelity of the fields prediction
is already more than satisfying in the probable regions of the uncertain space.

Finally, we provide a visual verification of the predictions with Figures 5.7 and 5.8
which compare the surrogate predictions and LES observations for the hydroxyl mass
fraction and temperature fields respectively. The comparisons of the other fields can be
found in Annex H.
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Figure 5.7: YOH fields of the validation samples predicted using the PCA modes and their
coefficients predicted by their surrogates (right) compared with the LES (left)
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Figure 5.8: Gas temperature fields of the validation samples predicted using the PCA modes
and their coefficients predicted by their surrogates (right) compared with the LES (left)

138



5.5 Analysis of the uncertain fields

5.5.1 Comparison of the uncertain lift-off height with the results from
Chapter 4

Chapters 3 and 4 highlighted the importance and the variability of the Cabra flame’s
lift-off height and its variations in the uncertain space. Therefore, a proper prediction
of the time-averaged fields should also lead to a correct prediction of the lift-off height.
Figure 5.9 shows a summary plot of the lift-off height, as observed in the LES (x-axis)
and predicted using the method presented in this chapter (y-axis).
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Figure 5.9: Summary plot of the lift-off height computed from the predicted fields, compared
to the LES results

The agreement between the observations and the predictions is almost perfect. This
further validates our field prediction method.

It is also possible to resample extensively the 3D uncertain space Span(ξA12 , ξT , ξCD
),

predict the time-averaged fields, and determine a PDF of the lift-off height. This is shown
in Figure 5.10.

Figure 5.10 shows a satisfying agreement between the PDF determined with the direct
surrogate (in dotted line, from Chapter 4) and the PDF determined by post-processing
the predicted fields. The general shape of the distribution is mostly respected. Perhaps
more importantly, the key properties reported in Table 5.4 are extremely well reproduced.

Finally, Figure 5.10 shows a fundamental difference between both approaches. The
lift-off height distribution determined from the predicted fields is bounded, as opposed to
the non-bounded result of the direct approach from Chapter 4. This difference is related
to an issue already reported in Section 5.2.2: The predicted fields are linear combinations
of the PCA modes, which are themselves linear combinations of the fields observed in the
training set. Therefore, while lift-off heights inside the training set range are extremely
well predicted, as shown in Figure 5.9, our method cannot predict lift-off heights outside
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Figure 5.10: PDF of the Cabra flame lift-off height in Span(ξA12 , ξT , ξCD
), determined by post-

processing the predicted field (this Chapter) in plain line, and determined by the direct surrogate
model (cf. Chapter 4) in dotted line, using 219 Quasi Monte Carlo samples

Table 5.4: Key features of the lift-off height distribution

Direct surrogate Predicted fields
Expectation 13.7 13.6

Standard deviation 4.7 4.2
Mode position 8.6 8.5

of this range. This is also the cause of the bulge in the PDF around H/D = 20: lift-off
heights that should have been in the tail of the distribution are wrongly predicted at the
upper end of the range of the training range, which, in turn, leads to an overestimation
of the probability at this location.

To improve the prediction of the lift-off height, and of the general flame shape for
the rare events above H/D = 20, observations of such flames should be included in the
training set of the PCA. However, an over-representation of rare events may tamper
with the optimal variance reproduction property of the PCA. Due to a lack of time and
computational budget to run more LES, we did not investigate this aspect any further.
Furthermore, despite this issue, the proposed method is already very satisfying in the
probable regions.

5.5.2 Comparison of the uncertain fields with the multi-scalar measure-
ments from Cabra et al. [11]

The ability to predict time-averaged fields given a set of coordinates in the input
uncertain space allows the determination of a PDF for every time-averaged quantity at
every location in the original LES computational domain. Among other possible use
cases, it allows more relevant comparisons with experimental measurements than simply
comparing the deterministic simulation with a set of experimental readings.
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In this section, we complete the work of Section 3.3.2 by plotting the nominal, 50%,
and 95% confidence intervals of the uncertain simulation for all the profiles investigated
by Cabra et al. [11]. Figure 5.11 shows the axial profile of dioxygen mass fraction, Figure
5.12 shows several radial profiles of water vapor mass fraction, and Figure 5.13 shows
several radial profiles of hydroxyl mass fraction. In these figures, we also represent the
measurement uncertainties as reported by Cabra et al. All the other profiles are given in
Annex I.
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Figure 5.11: Nominal, 50%, and 95% confidence interval of the O2 mass fraction’s axial profile
in the LES, compared to the measurements from Cabra et al. [11]

The profiles shown in Section 3.3.2 showcased some minor disagreements between the
experimental measurements from [11] and our deterministic LES. However, for the most
part, these measurements fall well within our confidence interval when taking into account
the uncertainties coming from the kinetic mechanism, the co-flow temperature, and the
turbulence-combustion interaction model. Therefore, our modelization choices are suit-
able to explain most of the experimental measurements from [11].

Two discrepancies of note remain:

• The initial slope of the axial mixture fraction decrease, already outlined in Section
3.3.2, is still off (see Figure I.6). This issue is also noticeable in other works that
used the same LES solver in a similar configuration (the CH4 Cabra flame) [117,
97]. There may be an issue with the numerical setup that our numerous tests could
not ferret out, or a problem with the experimental measurements.

• The hydroxyl mass fraction confidence interval is still 50 to 100% higher than the
measurements from [11] in the far-downstream locations. These high values are
directly linked to the mixture fraction values found in the UFPV table. In the
nominal case, Figure B.4 shows maximum OH mass fraction values higher than
1000 ppm at C̃ = 1 (end of reaction), increasing with the strain rate. The relatively
high values of OH found downstream in the LES are therefore not surprising.
However, we did not have the time to investigate further the discrepancy with
experimental measurements in the Cabra flame.

The 95% confidence intervals displayed in these profiles are extremely large. Figure
5.13, in particular, is striking: At the flame foot, between X = 9D and X = 14D,
the hydroxyl mass fraction can range from 0 to over 1000 ppm, depending on whether
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Figure 5.12: Nominal, 50%, and 95% confidence interval of the H2O mass fraction’s radial
profiles in the LES, compared to the measurements from Cabra et al. [11]
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Figure 5.13: Nominal and 95% confidence interval of the OH mass fraction’s radial profiles in
the LES, compared to the measurements from Cabra et al. [11]

143



auto-ignition has already occurred. This puts into perspective the "high fidelity" charac-
terization of Large Eddy Simulation if uncertainties are not taken into account.

In light of this study, we conclude that the Cabra flame is an excellent benchmark case
for uncertainty quantification in reactive flow simulations, which would warrant further
work from other groups, but a poor benchmark case for turbulence or combustion models
in a deterministic framework.

5.6 Limitations of the study

This study presented in this chapter is subject to a few limitations, due to work
hypotheses that would warrant further verifications and/or corrections. They are
presented in the following in increasing order of importance.

Sampling uniformity

The sampling of the 3D uncertain space Span(ξA12 , ξT , ξCD
) was not performed

according to its probability distribution: of the 39 training samples and 20 validation
samples, 20 and 10 respectively were actually sampled from the 2D uncertain space
Span(ξA12 , ξT ). This is due to our desire to recycle the LES results obtained for the
study of Section 4.3. The idea was to enrich our knowledge of the 3D uncertain space
with already-available observations in one of its subspaces.

To the author’s knowledge, this inclusion of additional observations does not consti-
tute an issue for the determination of the various surrogate models. On the contrary,
it allows more accurate prediction on the plane Span(ξA12 , ξT ) and does not degrade the
predictions elsewhere.

On the contrary, over-representing an area of the uncertain space (compared to its asso-
ciated probability distribution) may tamper with the optimality of variance explained by
the PCA. In this case, however, we found that the inclusion of the observations from the
2D study did not fundamentally alter the shape of the three principal components of the
Cabra flame. Rather, it resulted in "smoother" modes by removing some minor artifacts.

Overall, in this case, the addition of more samples in the training set of the PCA
improved the quality of the modes. Although, we would recommend, when adding new
observations in such a training set, to sample according to the uncertain space’s proba-
bility distribution when possible.

The dimension reduction of input uncertainties

In this chapter, we used the same dimension reduction of the kinetic uncertainties as
in Chapter 4 without justifying further. We showed in Chapter 4 that using a dominant
variable approach allowed neglecting most of the uncertain Arrhenius constants. However,
this dimension reduction was shown valid only for the lift-off height determination. In the
case of the whole flame shape, a more complete study of the sensitivity of each quantity
(mass fractions, gas temperature, reaction source term...) in homogeneous reactors as a
function of time should be performed to guarantee the relevance of the dimension reduc-
tion. Such a study can be found in Dumont’s thesis [24].
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However, given the predominance of the sensitivity of the lift-off height (or auto-
ignition delay in the case of the homogeneous reactor) to the co-flow temperature (or
initial temperature), compared to kinetic parameters, we are confident that the predicted
PDF for each quantity at each location in the Cabra flame would not change much if more
kinetic parameters had to be taken into account.

Choice of the probability distribution of CD

Our choice of the probability distribution of CD, both in terms of PDF shape and
amplitude, is debatable. We chose what appeared to be the most sensible option at the
time:

• A uniform distribution that reflects our lack of a priori knowledge on the "best"
value to use

• A range that covered both the empirical range of values found in the literature
and the theoretical range of values proposed by Ihme [41] for typical LES sizes.
Confusingly, these two ranges were distinct, which lead us to consider a wider
interval that included both empirical and theoretical ranges.

This wide distribution can be considered as a prior estimation of the parameter CD

that could be narrowed down in the future using bayesian optimization.
We show in Figure 5.14 the impact of choosing the most extreme cases of probability
distributions for the YH2O radial profile at X = 11D. On the left is the uncertain radial
profile obtained with the uniform distribution of CD considered in the whole chapter. On
the right is the same uncertain profile obtained with a Dirac distribution of CD at its
nominal value (CD ∼ δ(20.0)).
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Figure 5.14: Uncertain radial profile of YH2O at X = 11D. Left: with the uniform distribution
of CD. Right: With a Dirac of CD, at its nominal value.

Figure 5.14 shows little differences between the uncertain profiles of YH2O at X = 11D,
aside from the location of the 95% confidence interval, although X = 11D is a location
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where the gas can be either ignited or not depending on the coordinates in the uncertain
space. Similar conclusions can be reached by comparing other fields. This is consistent
with Figure 4.18, in Chapter 4, which compared the PDF of the lift-off height of the
Cabra flame in Span(ξA12 , ξT , ξCD

) and Span(ξA12 , ξT ): The probability distributions of
every variable of interest are more heavy-tailed in the 3D uncertain space than they are
in the 2D space, but the probable regions are similarly populated.
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5.7 Takeaway points
On the methodological side:

• In this chapter, we propose a method to quantify the uncertainties of averaged LES
fields.

• A combination of PCA, to reduce drastically the number of uncertain outputs, and
surrogate modeling allows predicting every desired field at every location of the
uncertain space.

• While our choices of uncertain inputs may be debatable, the method proposed in
this chapter can be applied again, should further research reveal a need to change
our uncertain inputs.

On the physical interpretation side:

• In this chapter, we predicted LES averaged fields using dimension reduction and
surrogate modeling. This allowed the propagation of high-dimensional uncertainties
and the determination of the probability distribution of every relevant field at any
location in the computational domain.

• Taking into account state-of-the-art kinetic, temperature, and turbulence model
uncertainties shows, again, that deterministic simulations of the Cabra flame are not
suited to predict its behavior. This point is redundant with the previous chapter,
but the confidence intervals of the averaged LES fields are even more eloquent.
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Conclusion

Main achievements and results

• A set of uncertainty quantification methods, suitable for forward uncertainty
quantification in the context of very expensive observations, has been selected and
implemented in the in-house code SURE, which was entirely developed in this thesis.
Its modularity and non-intrusive nature allow for combining different methods and
interfacing with any "observations generator". For now, it has been interfaced with
the in-house 0D-1D code AGATH, and with the LES code AVBP.

• The extreme uncertainty of H2/O2 auto-ignition simulations has been demonstrated
in configurations where the transition between strong and weak combustion is
involved. This uncertainty stems from the kinetic mechanism itself - which
remains quite uncertain even when using state-of-the-art mechanisms - and from
the uncertainty on the initial temperature of the mixture: uncertainties as small
as ±3% in the vicinity of 1000K can lead to orders of magnitude of uncertainty in
the auto-ignition delay. The resulting uncertainty of the auto-Ignition Delay Time
is non-trivial: the probability distribution of the IDT can even be bimodal in the
worst-case scenario.

• The deterministic Cabra flame was satisfyingly simulated using LES and UFPV
tabulation.

• Thanks to an a priori study on a simplified configuration, which dramatically
reduced the input uncertain dimension, we made affordable the surrogate-based
uncertainty quantification of the Cabra flame lift-off height stemming from the
kinetic mechanism and co-flow temperature. We also investigated the uncertainties
introduced by the combustion-turbulence interaction model.

• Finally, we introduced a much richer uncertainty propagation study: by predicting
entire averaged fields at any location in the uncertain space without resorting
to LES other than for a few training observations, we were able to determine
the probability distribution of every measured quantity and compare them with
experimental measurements. This study also proved capable of rediscovering the
results of the direct uncertainty quantification of the lift-off height.

• This work shows that, while recent works in chemistry greatly reduced the
uncertainty of H2/O2 auto-ignition, the simulated Cabra flame remains very
uncertain, mostly due to the experimental uncertainty on the co-flow temperature.
This uncertainty affects first and foremost the lift-off height of the flame. In turn,
every measured fields are eventually impacted.
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A few words of nuance about the uncertainties uncovered in
this thesis

The specificities of the Cabra flame
The large confidence intervals discovered in this study are likely not the norm in more

conventional flame configurations. The Cabra flame is cursed - or gifted, depending on
the point of view - with a very high sensitivity to parameters that happen to be slightly
uncertain (the kinetic mechanism and the co-flow temperature) or that are lacking a scien-
tific consensus, as far as the author is aware (the dissipation coefficient of mixture fraction
variance).

The high sensitivity of the Cabra flame to these parameters is due to the
driving mechanism of flame stabilization: auto-ignition delay. In more conventional
configurations, the driving stabilization mechanism tends to be either mixing (for non-
premixed flames) or the presence of low velocity and strain-rate areas behind a bluff body
or in the recirculation of a swirler. In these configurations, the uncertain parameters
investigated in this study have a much lesser sensitivity.

The choice of uncertain inputs
• We worked with a state-of-the-art kinetic mechanism, which assumed every

parameter to be certain, except for the pre-exponential constants of the Arrhenius
laws. This is a choice of the chemistry community to represent kinetic uncertainties
that way. However, to the author’s knowledge, there is no reason other than
convention to assume the other parameters to be certain. Should further research
from the chemistry community come up with an uncertain mechanism featuring
uncertain activation energies as well as pre-exponential constants, the results of the
uncertainty of the Cabra flame lift-off height may be different. In any case, the
methodology proposed in this thesis can work with any parametric uncertainty in
the kinetic mechanism.

• Section 5.6 already pointed out the arbitrariness of the choice of the CD probability
distribution. We chose to use the least informative distribution which covered
both the empirical values found in the literature and those deduced from analytical
developments. We are not claiming to hold any absolute truth about this probability
distribution and another choice may have been wiser. Then again, our methodology
can accommodate other distributions for CD.

• Finally, other sources of uncertainty may have been overlooked.

150



Perspectives

Further improving the prediction of the averaged fields
This section proposes a few ideas to improve the study from Chapter 5.

• The statistical dependence of the mode coefficients may even have been an asset
if we used a joint surrogate model of mode coefficients that takes into account the
statistical dependence of its outputs, like co-kriging [51, 58]. Joint surrogate models
were not implemented during this thesis due to a lack of time but would be an
interesting improvement in future works.

• We saw that an important limitation of our results was our inability to predict
rare events, in particular very high lift-off heights. We also saw that this inability
was due to the lack of such examples in the training set, not due to an insufficient
number of modes retained in the PCA. Training observations being expensive LES
runs, adding more of them was not an option during this thesis. This problem is
inherent to the PCA algorithm, and we leave finding a satisfying solution to future
work.

Bayesian inference of the distributions of the co-flow temperature and
dissipation coefficient of the mixture fraction variance: narrowing down
our uncertain inputs

Our ability to predict the averaged fields of the Cabra flame nearly anywhere in the
uncertain space indicates that we could also infer conjointly the probability distribution
of the experimental co-flow temperature and of the "ideal" value for CD using the
experimental multi-scalar measurements from Cabra et al. [11]. We did not have the
time to investigate this during this thesis. However, we believe that it would be very
interesting for the combustion community:

• Reducing the uncertainty of the co-flow temperature in Cabra’s experiment would
allow numerical scientists to produce more relevant deterministic simulations, which
would in turn allow more relevant combustion model comparisons on this flame.

• Fine-tuning the value of CD would bring fresh arguments to the scientific debate
over the choice of dissipation coefficient value.

Applying the methods to other use cases
The methods presented in this thesis could be applied to other combustor

configurations. Given their non-intrusive nature, they could also be applied in other
domains. In the chemistry sector, they could for example be applied to improve [116]
the (currently) extremely polluting Haber-Bosch process that keeps afloat our intensive
agriculture model. Finally, they may also be used in any scientific domain where expensive
observations meet high-dimensional uncertainties and where cheaper sub-problems can be
used to reduce the uncertain dimension a priori.
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Table A.1: H2/O2 combustion mechanism. k = AT β exp (−Ea/RT ), UF is the uncertainty
factor of the pre-exponential constant A.

Index Reaction A β Ea UF
1 H+H+M=H2+M 7.00E+17 -1 0 2

Enhanced third-body efficiencies (relative to Ar):
O2=0.0, N2=0.0, H=0.0, H2O=14.3

2 H+H+H2=H2+H2 1.00E+17 -0.6 0 2.5
3 H+H+N2=O2+N2 5.40E+18 -1.3 0 3.2
4 H+H+H=H2+H 3.20E+15 0 0 3.2
5 O+O+M=O2+M 1.00E+17 -1 0 2

Enhanced third-body efficiencies (relative to Ar):
O=28.8, 02=8.0, N2=2.0, H2O=5.0

6 O+H+M=OH+M 6.75E+18 -1 0 3
Enhanced third-body efficiencies:
H2O=5.0

7 H2O+M=H+OH+M 6.06E+27 -3.312 120770 2
Enhanced third-body efficiencies (relative to Ar):
H2O=0.0, H2=3.0, N2=2.0, O2=1.5, He=1.1

8 H2O+H2O=H+OH+H2O 1.00E+26 -2.44 120160 2
9 H+O2(+M)=HO2(+M) 4.66E+12 0.44 0 1.2

Low pressure limit 1.23E+19 -1.2 0
Fcent = 0.5
Enhanced third-body efficiencies (relative to N2):
Ar=0.72, H2O=16.6, O2=1.0, H2=1.5, He=0.57

10 H2O2(+M)=OH+OH(+M) 2.00E+12 0.9 48750 1.5
Low pressure limit 2.49E+24 -2.3 48750
Fcent = 0.42
Enhanced third-body efficiencies (relative to Ar):
H2O=7.5, H2O2=7.7, O2=1.2, N2=1.5, He=0.65, H2=3.7

11 O+H2=OH+H 5.08E+04 2.67 6292 1.3
12 H+O2=OH+O 1.04E+14 0 15286 1.1
13 H2+OH=H2O+H 2.14E+08 1.52 3450 1.5
14 OH+OH=H2O+O 2.67E+06 1.82 -1647 1.4
15 HO2+O=OH+O2 2.85E+10 1 -723.9 2
16 H+HO2=OH+OH 7.08E+13 0 300 2
17 H2O+O=H+HO2 2.20E+08 2 61600 5
18 H2+O2=H+HO2 7.40E+05 2.43 53500 1.5
19 HO2+OH=H2O+O2 7.00E+12 0 -1093 2
20 HO2+OH=H2O+O2 4.50E+14 0 10930 2
21 HO2+HO2=H2O2+O2 1.03E+14 0 11040 2.5
22 HO2+HO2=H2O2+O2 1.94E+11 0 -1409 1.4
23 H2O2+H=HO2+H2 5.02E+06 2.07 4300 3
24 H2O2+H=H2O+OH 2.03E+07 2.02 2620 3
25 H2O2+O=HO2+OH 9.55E+06 2 3970 3
26 H2O2+OH=HO2+H2O 1.74E+12 0 318 1.5
27 H2O2+OH=HO2+H2O 7.59E+13 0 7269 1.5
28 H+O2+H=H2+O2 8.80E+22 -1.835 800 2
29 H+O2+H=OH+OH 4.00E+22 -1.835 800 2
30 H+O2+O=OH+O2 7.35E+22 -1.835 800 2
31 H+O2+OH=H2O+O2 2.56E+22 -1.835 800 2
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Figure B.1: Slices of the filtered mass fraction of H2 ỸH2 as a function of the filtered mixture
fraction z̃ and of the filtered normalized progress variable C̃, for different strain rates a and
different mixture fraction segregation values Sz
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Figure B.2: Slices of the filtered mass fraction of O2 ỸO2 as a function of the filtered mixture
fraction z̃ and of the filtered normalized progress variable C̃, for different strain rates a and
different mixture fraction segregation values Sz
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Figure B.3: Slices of the filtered mass fraction of H2O ỸH2O as a function of the filtered mixture
fraction z̃ and of the filtered normalized progress variable C̃, for different strain rates a and
different mixture fraction segregation values Sz
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Figure B.4: Slices of the filtered mass fraction of OH ỸOH as a function of the filtered mixture
fraction z̃ and of the filtered normalized progress variable C̃, for different strain rates a and
different mixture fraction segregation values Sz. Note the evolution of the vertical scale
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Figure B.5: Slices of the filtered mass fraction of HO2 ỸHO2 as a function of the filtered mixture
fraction z̃ and of the filtered normalized progress variable C̃, for different strain rates a and
different mixture fraction segregation values Sz. Note the evolution of the vertical scale
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Figure B.6: Slices of the filtered mass fraction of H2O2 ỸH2O2 as a function of the filtered
mixture fraction z̃ and of the filtered normalized progress variable C̃, for different strain rates a
and different mixture fraction segregation values Sz. Note the evolution of the vertical scale
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Figure B.7: Slices of the filtered temperature T̃ as a function of the filtered mixture fraction
z̃ and of the filtered normalized progress variable C̃, for different strain rates a and different
mixture fraction segregation values Sz
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Figure B.8: Slices of the filtered specific heat capacity at constant pressure c̃p as a function of
the filtered mixture fraction z̃ and of the filtered normalized progress variable C̃, for different
strain rates a and different mixture fraction segregation values Sz
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Figure B.9: Slices of the filtered progress variable source term ˜̇ωY c as a function of the filtered
mixture fraction z̃ and of the filtered normalized progress variable C̃, for different strain rates a
and different mixture fraction segregation values Sz. Note the evolution of the vertical scale
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Annex C

Profiles of the simulated Cabra flame
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Figure C.1: Axial profile of the mixture fraction Z in the LES, compared to the measurements
from [11]
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Figure C.2: Axial profile of the mass fraction of H2 YH2 in the LES, compared to the
measurements from [11]
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Figure C.3: Axial profile of the mass fraction of O2 YO2 in the LES, compared to the
measurements from [11]
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Figure C.4: Axial profile of the mass fraction of H2O YH2O in the LES, compared to the
measurements from [11]
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Figure C.5: Axial profile of the mass fraction of OH YOH in the LES, compared to the
measurements from [11]
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Figure C.6: Axial profile of the temperature T in the LES, compared to the measurements from
[11]
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Figure C.7: Radial profiles of the mixture fraction Z in the LES, compared to the measurements
from [11]
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Figure C.8: Radial profiles of the mass fraction of H2 YH2 in the LES, compared to the
measurements from [11]
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Figure C.9: Radial profiles of the mass fraction of O2 YO2 in the LES, compared to the
measurements from [11]
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Figure C.10: Radial profiles of the mass fraction of H2O YH2O in the LES, compared to the
measurements from [11]
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Figure C.11: Radial profiles of the mass fraction of OH YOH in the LES, compared to the
measurements from [11]
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Figure C.12: Radial profiles of the temperature T in the LES, compared to the measurements
from [11]
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Annex D

Convergence study for the LES of the
Cabra flame
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Figure D.1: Temporal convergence of the hydrogen mass fraction radial profiles
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Figure D.2: Temporal convergence of the oxygen mass fraction radial profiles
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Figure D.3: Temporal convergence of the water vapor mass fraction radial profiles
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Figure D.4: Temporal convergence of the hydroxyl mass fraction radial profiles
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Figure D.5: Temporal convergence of the HO2 mass fraction radial profiles
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Figure D.6: Temporal convergence of the temperature radial profiles
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Figure D.7: Temporal convergence of the mixture fraction radial profiles
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Figure D.8: Comparison of the hydrogen mass fraction radial profiles for the original and finer
mesh
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Figure D.9: Comparison of the oxygen mass fraction radial profiles for the original and finer
mesh
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Figure D.10: Comparison of the water vapor mass fraction radial profiles for the original and
finer mesh
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Figure D.11: Comparison of the hydroxyl mass fraction radial profiles for the original and finer
mesh
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Figure D.12: Comparison of the HO2 mass fraction radial profiles for the original and finer
mesh

194



0.0 2.0
r/D

400

600

800

1000

T
em

p
er

at
u

re
[K

]

X = 1 D

REF

FINE

0.0 2.0
r/D

400

600

800

1000

T
em

p
er

at
u

re
[K

]

X = 9 D

REF

FINE

0.0 2.0
r/D

600

800

1000

T
em

p
er

at
u

re
[K

]

X = 11 D

REF

FINE

0.0 2.0
r/D

800

1000

1200

T
em

p
er

at
u

re
[K

]

X = 14 D
REF

FINE

0.0 2.0
r/D

1250

1300

1350

1400

1450

T
em

p
er

at
u

re
[K

]

X = 26 D
REF

FINE

Figure D.13: Comparison of the temperature radial profiles for the original and finer mesh
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Figure D.14: Comparison of the mixture fraction radial profiles for the original and finer mesh
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Annex E

Surrogate evaluations for the prediction of
the Cabra flame’s lift-off height
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Figure E.1: Evolution of the error of the tested surrogates for the lift-off height of the Cabra
flame in Span(ξT , ξA12)
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Figure E.2: Evolution of the error of the tested surrogates for the lift-off height of the Cabra
flame in Span(ξT , ξA12 , ξCD

)
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Annex F

Averaged fields of the uncertain Cabra
flame’s training observations

This annex shows the fields of every field taken into account in the field prediction
study of Chapter 5. These are the same training samples used in the lift-off height
prediction study of Chapter 4, except that it uses only the YOH field. The part that
treats the 2D uncertain space Span(ξT , ξA12) uses only the samples S0 to S19, and the
part that treats the 3D uncertain space Span(ξA12 , ξT , ξCD

) uses all 39 samples.
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Figure F.1: Averaged YH2 fields of the training samples
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Figure F.2: Averaged YH2O fields of the training samples
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Figure F.3: Averaged YO2 fields of the training samples
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Figure F.4: Averaged YOH fields of the training samples
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Figure F.5: Averaged temperature fields of the training samples
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Figure F.6: Averaged Z fields of the training samples
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Annex G

Modes retained for the prediction of the
Cabra flame’s averaged fields
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Figure G.1: Mean and retained modes for YH2
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Figure G.2: Mean and retained modes for YH2O
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Figure G.3: Mean and retained modes for YO2
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Figure G.4: Mean and retained modes for YOH
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Figure G.5: Mean and retained modes for the gas temperature
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Figure G.6: Mean and retained modes for Z
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Annex H

Prediction of the Cabra flame validation
samples’ averaged fields
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Figure H.1: Validation samples predicted using the PCA modes and their coefficients predicted
by their surrogates (right) compared with the LES (left): YH2 field
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Figure H.2: Validation samples predicted using the PCA modes and their coefficients predicted
by their surrogates (right) compared with the LES (left): YH2O field
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Figure H.3: Validation samples predicted using the PCA modes and their coefficients predicted
by their surrogates (right) compared with the LES (left): YO2 field
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Figure H.4: Validation samples predicted using the PCA modes and their coefficients predicted
by their surrogates (right) compared with the LES (left): YOH field
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Figure H.5: Validation samples predicted using the PCA modes and their coefficients predicted
by their surrogates (right) compared with the LES (left): Gas temperature field
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Figure H.6: Validation samples predicted using the PCA modes and their coefficients predicted
by their surrogates (right) compared with the LES (left): Z field
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Annex I

Prediction of the Cabra flame validation
samples’ averaged profiles
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Figure I.1: Nominal and 95% confidence interval of the H2 mass fraction’s axial profile in the
LES, compared to the measurements from [11]
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Figure I.2: Nominal and 95% confidence interval of the H2O mass fraction’s axial profile in the
LES, compared to the measurements from [11]
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Figure I.3: Nominal and 95% confidence interval of the O2 mass fraction’s axial profile in the
LES, compared to the measurements from [11]
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Figure I.4: Nominal and 95% confidence interval of the OH mass fraction’s axial profile in the
LES, compared to the measurements from [11]
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Figure I.5: Nominal and 95% confidence interval of the gas temperature’s axial profile in the
LES, compared to the measurements from [11]
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Figure I.6: Nominal and 95% confidence interval of the mixture fraction’s axial profile in the
LES, compared to the measurements from [11]
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Figure I.7: Nominal and 95% confidence interval of the H2 mass fraction’s radial profiles in the
LES, compared to the measurements from [11]
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Figure I.8: Nominal and 95% confidence interval of the O2 mass fraction’s radial profiles in the
LES, compared to the measurements from [11]
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Figure I.9: Nominal and 95% confidence interval of the H2O mass fraction’s radial profiles in
the LES, compared to the measurements from [11]
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Figure I.10: Nominal and 95% confidence interval of the OH mass fraction’s radial profiles in
the LES, compared to the measurements from [11]
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Figure I.11: Nominal and 95% confidence interval of the gas temperature’s radial profiles in the
LES, compared to the measurements from [11]
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Figure I.12: Nominal and 95% confidence interval of the mixture fraction’s radial profiles in the
LES, compared to the measurements from [11]
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