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Abstract

State-of-the-art microstructural diffusion MRl employs a “compartmentalization” concept, sug-
gesting that an imaging voxel in the human brain can be split into multiple spaces that are isolated
with respect to diffusion. The diffusion MRI signal is then the sum of the signal contributions of
each of these spaces. The spaces, modeled based on the underlying tissue morphologies, each
represents a specific geometrical structure. These compartment signal models have analytical sig-
nal expressions, and by matching these to measured signals, one can determine the geometrically
related parameters in the models. The accuracy of a diffusion MRI compartment signal model de-
pends on the validity of its assumptions and approximations. Any deviation can affect estimation
accuracy. A numerical analysis of these assumptions is essential, guiding experimental design and
improving estimation precision.

In diffusion MRI, the Bloch-Torrey partial differential equation (PDE) serves as a gold-standard
reference model. Due to the high computational cost of solving the Bloch-Torrey PDE in complicated
geometries, simulations involving adjusting geometry-related values are challenging. The objectives
of this thesis are (1) to introduce novel numerical simulation techniques based on the Bloch-Torrey
PDE, facilitating the numerical studies of geometry-related parameters, (2) to employ these pro-
posed approaches to evaluate existing diffusion MRl compartment signal models and to analyze
diffusion MRI signal or apparent diffusion coefficient (ADC) behaviors.

First, we present a novel Matrix Formalism representation, which requires only a single eigen-
decomposition on the impermeable configuration and re-uses the impermeable Laplace eigenfunc-
tions to compute the signals of permeable configurations. Using this formulation, we illustrate that
(1) the diffusion MRI signal shows an exponential rate with respect to permeability; (2) the long-
time limit ADC shows different rates of dependence at low and high permeabilities; (3) there is a
correlation between permeability and the NEXI model parameters.

Second, we develop a second-order asymptotic expansion for two analytical geometrical defor-
mations arising from the modeling of the brain white matter. Through numerical studies, we illus-
trate that (1) bending will decrease the signal value in the maximum diffusion direction, (2) twisting
will change the maximum diffusion direction.

Third, we evaluate the 1/v/b power-law scaling and the SANDI model. We identify inflection point
(IP) derived biomarkers from the deviation of power-law scaling in the brain gray matter. We per-
form a numerical analysis on the relationship between the IP-derived biomarkers and compartment
volume fractions as well as the soma size, and propose an exhaustive search method based on these
biomarkers.

Finally, to address the numerical instability issues in diffusion MRI blood flow imaging simu-
lations, we apply the Streamline Upwind Petrov Galerkin scheme. Numerical validation illustrates
that this new method is able to yield a stable solution for quite high blood flow velocities on a coarse
mesh.

Keyword: Bloch-Torrey equation, diffusion MRI, microstructural estimation, numerical simula-
tion






Résumeé

L'imagerie de microstructure par I''RM de diffusion utilise un concept de “compartimentation”,
suggérant qu'un voxel d'imagerie dans le cerveau humain peut étre divisé en plusieurs espaces
isolés du point de vue de la diffusion. Le signal IRM de diffusion est la somme des contributions
du signal de chacun de ces espaces. Chaque espace, modélisé selon des connaissances des mor-
phologies tissulaires biologiques, représente une structure géométrique spécifique. Ces modeles de
signaux de compartiments ont des expressions analytiques de signaux sous certaines assumptions,
et en minimisant la différence entre ces modeéles et les signaux mesurés, on peut déterminer les pa-
rameétres liés a la géométrie dans les modéles. La précision d'un modéle de signal de compartiment
d'IRM de diffusion dépend de la validité de ses hypothéses et de ses approximations appliquées.
Tout déviation peut affecter la précision de I'estimation. Une analyse numérique de ces hypotheses
est essentielle, guidant les recherches dans la conception expérimentale et améliorer la précision
de I'estimation.

Dans I'lRM de diffusion, 'équation différentielle partielle (EDP) de Bloch-Torrey sert comme mo-
dele de référence standard. En raison du co(t de calcul élevé de la résolution de I'EDP de Bloch-
Torrey dans des géométries compliquées, les simulations nécessitant des ajustements des para-
meétres liés a la géométrie sont difficiles. Les objectifs de cette thése sont (1) de présenter de nou-
velles techniques de simulation numérique basées sur 'EDP de Bloch-Torrey, facilitant les études
numeériques sur les parameétres liés a la géométrie et (2) d'utiliser ces approches proposées pour
évaluer les modeles de signal de compartiment IRM de diffusion existants et d'analyser le signal
IRM de diffusion ou les comportements du coefficient de diffusion apparent (CDA).

D’abord, nous présentons une nouvelle représentation du Formalisme Matriciel, qui ne nécessite
gu'une seule décomposition des fonctions propres sur une configuration imperméable et peut réuti-
liser ces fonctions propres de 'opérateur Laplacian de la configuration imperméable pour calculer
les signaux des configurations perméables. En utilisant cette formulation nouvelle, nous illustrons
que (1) le signal IRM de diffusion présente un taux exponentiel par rapport a la perméabilité «; (2)
la limite du CDA a long terme montre différents taux de dépendance a des perméabilités faibles et
élevées; (3) il existe une corrélation entre la perméabilité et les parametres liés a la géométrie du
modele NEXI.

Ensuite, nous développons une expansion asymptotique de second ordre pour deux déforma-
tions géométriques analytiques issues de la modélisation de la substance blanche du cerveau. Grace
a des études numériques, nous illustrons que (1) la flexion diminuera la valeur du signal dans la di-
rection de diffusion maximale, (2) la torsion changera la direction de diffusion maximale.

Troisiemement, nous évaluons la loi de puissance 1/v/b et le modéle SANDI & I'aide des simula-
tions numériques. Nous identifions des biomarqueurs dérivés du point d'inflexion (PI) a partir de la
déviation de la loi de puissance dans la substance grise du cerveau. Nous effectuons une analyse
numérique de la relation entre les biomarqueurs dérivés du Pl et les fractions de volume des com-
partiments ainsi que la taille du soma, et nous proposons une nouvelle méthode d’estimation en
utilisant le moyen de recherche exhaustive basée sur ces biomarqueurs.

Enfin, pour aborder les problémes d'instabilité numérique dans les simulations d'imagerie du
flux sanguin par I'lRM de diffusion, nous appliquons le schéma Streamline Upwind Petrov Galerkin
(SUPG). La validation numérique montre que cette nouvelle méthode est capable de produire une
solution stable pour des vitesses d'écoulement sanguin assez élevées sur un maillage creux.

Mots-clés : EDP de Bloch-Torrey, IRM de diffusion, estimation micro-structures, simulation nu-
mérique
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Thesis Overview

The prevalent state-of-the-art microstructural diffusion magnetic resonance imaging (diffusion
MRI) methods rely on the concept of “compartmentalization” and depend on diffusion MRl compart-
ment signal models. The idea is that an imaging voxel in the human brain can be divided into several
spaces that are disconnected with respect to diffusion. The diffusion MRI signal is represented as
the sum of their signal contributions. Each space can be considered as a parameterized compart-
ment characterized by a simplified shape, based on the underlying tissue morphology. These geo-
metrical parameters are the metrics of the model and correlate to specific geometrical structures.
For instance, axons in the brain white matter are commonly modeled as a collection of infinitely
long cylinders, with the axon radii represented as the cylindrical radii. Additionally, these simplified
shapes have analytical signal expressions. Thus, by fitting the measured signals to their analytical
signal expressions, one can retrieve the geometrical parameters. Compared to more traditional dif-
fusion MRl imaging methods, such as diffusion tensor imaging (DTI) or kurtosis tensor imaging (KTl),
the diffusion MRl compartment signal models link more explicitly the diffusion MRI signals to the
histological parameters, providing more interpretable metrics. Some clinical studies have indicated
the potential medical values of these models.

The validity of a diffusion MRI compartment signal model depends on the approximations it
employs. For example, the signal expressions are often derived from the Gaussian phase approxi-
mation and the cell membrane permeability is often assumed to be negligible. Deviation from these
approximations may deteriorate the estimation performance of a diffusion MRl compartment sig-
nal model. Conducting a numerical analysis on the applicable range of these assumptions would
be beneficial. Such analysis would guide researchers in designing suitable experimental sequences,
understanding the impact of the deviations from idealized assumptions, and thereby enhancing the
estimation accuracy.

In diffusion MRI, the Bloch-Torrey partial differential equation (PDE) serves as a gold-standard
reference model. It describes the time evolution of the complex transverse water proton magnetiza-
tion subject to diffusion-encoding magnetic field gradient pulses. The spatial integral of its solution
provides a reference value for the diffusion MRI signal arising from the geometry of interest. Due
to the high computational cost of solving the Bloch-Torrey PDE in complicated geometries, simula-
tions involving adjusting geometry-related values are challenging. Solving Bloch-Torrey PDE in such
complex domains relies on advanced numerical simulation methods. SpinDoctor is a recent Mat-
lab Toolbox designed for this purpose, applying either (1) a direct finite elements discretization of
the Bloch-Torrey PDE or (2) the Numerical Matrix Formalism method which computes the Laplace
eigendecomposition using a finite elements discretization.

This thesis aims to (1) introduce novel numerical simulation techniques based on the Bloch-
Torrey PDE that aid in the study of geometry-related parameters, (2) employ these proposed ap-
proaches to evaluate existing diffusion MRI compartment signal models and analyze diffusion MRI
signal or apparent diffusion coefficient (ADC) behaviors. The thesis is organized as follows:

1. In Chapter 1, we introduce the basics of diffusion MRI physics and human brain structures.
Then we describe in detail the Bloch-Torrey PDE, diffusion MRI signal behaviors, especially the
1/+/b power-law scaling at high b-values in the brain white matter, approximation models and
two numerical simulation methods, the finite elements method and the Numerical Matrix For-
malism method. We also present some diffusion MRl compartment signal models, including
the NEXI model and the SANDI model.

2. In Chapter 2, we present a novel Matrix Formalism representation using impermeable Laplace
eigenfunctions, to facilitate simulations of a large number of membranes permeability values.

1
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Using the proposed formulation, we evaluate (1) the relationship between the diffusion MRI
signals/long-time limit ADC and permeability values on a porous medium, (2) the relationship
between the NEXI model parameters and permeability values. We observe that (1) the diffu-
sion MRI signal shows an exponential rate with respect to permeability, (2) the long-time limit
ADC shows different rates of dependence at low and high permeabilities, (3) there is a corre-
lation between permeability and the NEXI model parameters. The proposed formulation has
been published in the paper[1] and integrated into the developer version of SpinDoctor.

3. In Chapter 3, we develop a second-order asymptotic expansion for two analytical geometrical
deformations. Using the asymptotic expansion of the Bloch Torrey PDE, we evaluate the im-
pact of deformations on the ADC and diffusion MRI signals from axons. It is observed that (1)
the deformations have the same effects on the ADC and signals, (2) bending will decrease the
signal value in the maximum diffusion direction, (3) twisting will change the maximum diffusion
direction. The asymptotic models have been implemented using SpinDoctor and published in
the paper][?2].

4. In Chapter 4, using the Numerical Matrix Formalism method, we evaluate the 1/+v/b power-law
scaling on individual realistic neurons and simple shapes. Based on the numerical analysis, we
identify inflection point-derived biomarkers coming from the deviation of the power-law scal-
ing for use in the brain gray matter. We derive the mathematical expressions of the proposed
biomarkers using the Numerical Matrix Formalism method and conduct a numerical analysis
of the biomarkers. We propose an exhaustive search estimation method based on these pro-
posed biomarkers. We validate the novel biomarker-based estimation method and compare
it to alternative signal-based estimations as well as the SANDI model on a Synthetic Voxels Set
and an in vivo dataset. This work extends upon the PhD thesis of Chengran Fang [3] and has
been published in the paper[4].

5. In Chapter 5, to study diffusion MRI accounting for the blood flow via numerical simulations,
we adopt a stabilized finite elements scheme using the Streamline Upwind Petrov-Galerkin
scheme and the theta method. This work is a collaboration with the computational medicine
team at the University of Leeds, aiming to extend the existing Bloch-Torrey PDE finite elements
solver of SpinDoctor for diffusion MRI blood flow simulations. By numerical analysis, we show
that this new scheme is able to yield a stable solution for quite high blood flow velocities on
a coarse mesh, whereas the standard Galerkin method encounters instability issues and nu-
merical explosion. This approach has been implemented as a new module of SpinDoctor and
has been detailed in a pre-print article.

6. In Chapter 6, we conclude the thesis and discuss possible future works.



Apercu de la these

Les méthodes d'imagerie par résonance magnétique de diffusion (IRM de diffusion) pour estimer
les microstructures du cerveau les plus répandues reposent sur le concept de “compartimentation”
et dépendent des modeéles de signaux de compartiments de I''lRM de diffusion. L'idée est qu'un voxel
d'imagerie dans le cerveau humain peut étre divisé en plusieurs espaces qui sont déconnectés du
point de vue de la diffusion. Le signal IRM de diffusion est représenté par la somme de leurs contri-
butions. Chaque espace peut étre considéré comme un compartiment paramétré caractérisé par
une forme simplifiée, basée sur la morphologie du tissu sous-jacent. Ces paramétres géométriques
sont les métriques du modéle et correspondent a des informations géométriques spécifiques. Par
exemple, les axones de la substance blanche du cerveau sont généralement modélisés comme une
collection de cylindres infiniment longs, et les rayons des axones étant représentés par les rayons cy-
lindriques. En outre, ces formes simplifiées ont des expressions analytiques du signal sous certaines
assumptions. Ainsi, en adaptant les signaux mesurés a les expressions analytiques du modeéle, il est
possible de récupérer les paramétres géométriques et faire I'estimation. Par rapport aux méthodes
d'imagerie IRM de diffusion plus traditionnelles, telles que I'imagerie du tenseur de diffusion (ITD)
ou l'imagerie du tenseur de kurtosis (ITK), les modéles de signal du compartiment IRM de diffusion
relient plus explicitement les signaux IRM de diffusion aux parametres histologiques, ce qui permet
d’'obtenir des mesures plus faciles a interpréter. Certaines études cliniques ont montré les valeurs
médicales potentielles de ces modéles.

La validité d'un modeéle de signal de compartiment d'IRM de diffusion dépend des approxima-
tions qu'il utilise. Par exemple, les expressions du signal sont souvent dérivées de I'approximation
de la phase gaussienne (APG) et la perméabilité de la membrane cellulaire est souvent supposée
négligeable. Toute déviation par rapport a ces approximations peut détériorer les performances
d'estimation d'un modele de signal de compartiment d'IRM de diffusion. Il serait utile de procéder
a une analyse numérique de la gamme applicable de ces hypothéses. Une telle analyse aiderait
les chercheurs a concevoir des séquences expérimentales appropriées, a comprendre I'impact des
écarts par rapport aux hypothéses idéalisées et, par conséquent, a améliorer la précision de l'esti-
mation.

Dans I'IRM de diffusion, 'équation différentielle partielle (EDP) de Bloch-Torrey sert comme mo-
déle de référence standard. Elle décrit I'évolution temporelle de la magnétisation transversale com-
plexe des protons de I'eau soumise a des impulsions de gradient de champ magnétique codant
pour la diffusion. L'intégrale spatiale de la solution fournit une valeur de référence pour le signal
IRM de diffusion provenant de la géométrie d'intérét. En raison du colt de calcul élevé de la résolu-
tion de I'EDP de Bloch-Torrey dans des géométries compliquées, les simulations impliquant I'ajus-
tement des valeurs liées a la géométrie sont difficiles et intensif en calcul. La résolution de I'EDP
de Bloch-Torrey dans des domaines aussi complexes repose sur des méthodes de simulation nu-
mérique avancées. SpinDoctor est une boite a outils Matlab récente concue, appliquant soit (1) une
discrétisation directe par éléments finis de 'EDP de Bloch-Torrey, soit (2) la méthode du Formalisme
Matriciel Numérique qui calcule la décomposition des fonctions propres de l'opérateur Laplacian en
utilisant une discrétisation par éléments finis.

L'objectif ultime de cette these est d'offrir des outils numériques robustes pour étudier les si-
gnaux IRM de diffusion et les comportements ADC dans un contexte plus complexe et réaliste, en
évaluant les techniques existantes d'estimation de la microstructure, telles que les modeéles de si-
gnaux de compartiment d'IRM de diffusion, en concevant des configurations expérimentales d'IRM
de diffusion appropriées et en développant de nouveaux modéles d'estimation de la microstruc-
ture. Concretement, dans cette these, nous (1) introduisons de nouvelles techniques de simulation

3
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numérique basées sur 'EDP de Bloch-Torrey qui facilitent I'étude des paramétres liés a la géométrie,
(2) utilisons ces approches proposées pour évaluer les modeéles de signal de compartiment d'IRM
de diffusion existants et analyser les comportements du signal IRM de diffusion ou du coefficient
de diffusion apparent (CDA).

La thése est organisée comme suit :

Chapitre[1]: Introduction Dans ce permier chapitre, nous présentons le contexte physique et ma-
thématique de l'estimation microstrucutrale du cerveau a l'aide de I''lRM de diffusion. Ce chapitre
est divisé en trois parties.

La premiére partie du chapitre aborde les aspects de la physique concernant I''lRM de diffusion.
Nous présentons d'abord les bases de la physique de I'lRM, et son équation gouvernante, l'équa-
tion de Bloch. Ensuite, on présente le processus de la diffusion puis 'EDP de Bloch-Torrey en tenant
compte de la diffusion. Par ailleurs, comme la thése se concentre sur la microstructure du cerveau,
nous introduisons les structures du cerveau humain du point de vue des types de cellules neuro-
nales, de 'anatomie et des fonctionnalités.

Dans la deuxiéme partie, nous décrivons les modéles mathématiques de I''RM de diffusion. Nous
donnons en détail 'expression de 'EDP de Bloch-Torrey avec les conditions aux limites de Neumann
homogene, la définition du coefficient de diffusion apparent, et les comportements du signal IRM
de diffusion, en particulier la loi de puissance de 1/v/b & des valeurs b élevées dans la substance
blanche du cerveau. Méme pour certaines géométries simples, comme les sphéres ou les cylindres, il
est difficile de résoudre analytiquement 'EDP de Bloch-Torrey. Pour pouvoir relier les signaux IRM de
diffusion et la microstructure du cerveau, le calcul du signal IRM de diffusion est effectué par (1) des
simulations numériques ou (2) des modeles d’approximation. Dans la section(1.3.5] nous présentons
trois modeles d'approximation : I'approximation de I'impulsion étroite, 'approximation gaussienne
et le modeéle de Karger. A I'exception de certains cas limités, il n’existe pas de solutions analytiques
de I'EDP de Bloch-Torrey. Les méthodes numériques prédominantes pour résoudre 'EDP de Bloch-
Torrey sont : (1) les simulations de Monte Carlo, (2) la méthode des éléments finis/différence finis
et (3) Représentation du Formalisme Matriciel (FM). Dans la section|1.3.6] nous présentons en détail
les expressions des deux derniére méthodes, qui sont implémenté dans SpinDoctor.

Dans la derniére partie du chapitre, nous décrivons quatre modéles de signaux de comparti-
ments d'IRM de diffusion avancés utilisés pour estimer la microsturcture de la substance blanche et
de la substance grise du cerveau : I'lmagerie de la dispersion et de la densité de I'orientation des neu-
rites (NODDI en anglais), 'Estimation du diamétre et de la densité des axones (ActiveAx en anglais),
I'lmagerie de la densité des somas et des neurites (SANDI en anglais) et I'lmagerie de I'échange de
neurites (NEXI en anglais). NODDI et ActiveAx sont congus pour l'imagerie de la substance blanche
du cerveau. SANDI et NEXI sont congus pour I'imagerie de la substance grise du cerveau.

Chapitre [2: Représentation du Formalisme Matriciel perméables en utilisant des fonctions
propres de l'opérateur Laplacian imperméables Dans ce chapitre, nous présentons une nou-
velle représentation du Formalisme Matriciel utilisant des fonctions propres de 'opérateur Laplacian
imperméables, afin de faciliter les simulations des signaux IRM de diffusion pour un grand nombre
de valeurs de perméabilité des membranes.

L'estimation de la perméabilité de la membrane cellulaire a l'aide de I''RM de diffusion présente
un grand intérét pour la recherche et la clinique. En outre, la perméabilité de la membrane cellulaire
peutinfluencer l'interprétation de I'imagerie de la microstructure du cerveau. De nombreux modéles
de signal de compartiment d'IRM de diffusion actuellement utilisés sont basés sur une assumption
d’'un échange d'eau négligeable entre les compartiments, dont leur validité reste inconnue. Ignorer
les effets de la perméabilité pourrait rendre I'estimation de la microstructure difficile a interpréter.
Par exemple, un travail récent parJelescu et al. en 2022 a souligné que le fait d'ignorer la perméabilité
peut sous-estimer la fraction de volume des neurites, méme pour les experiments des temps de
diffusion courts. Il est donc essentiel de comprendre ce mécanisme pour améliorer I'estimation
de la microstructure. Certains travaux récents dans la littérature sur I''RM de diffusion concernant
I'estimation de la microstructure du cerveau ont commencé a prendre en compte la perméabilité des
membranes cellulaires, et ont tenté de déterminer la valeur de la perméabilité a I'aide de données
réelles d'IRM de diffusion.

Afin d’estimer le coefficient de perméabilité a partir des données d'IRM de diffusion et de vali-
der les modeles de signaux IRM de diffusion par le moyen numérique, il est souhaitable que 'EDP
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de Bloch-Torrey puisse étre calculée efficacement pour de nombreuses valeurs de perméabilité
membranaire. Pour des géométries simples telles que des cercles, des sphéres, des plaques ou des
segments unidimensionnels, il existe des expressions analytiques du signal IRM de diffusion. L'effet
de la perméabilité est pris en compte par une matrice de transition ou le modele de Karger, qui
est un modele d'approximation d'échange a deux compartiments. Ces expressions analytiques ont
été utilisées pour estimer la microstructure des tissus et la perméabilité de l'interface. Cependant,
pour des géométries cellulaires plus complexes et réalistes, il n'existe pas d’expressions analytiques
explicites et des simulations numériques sont nécessaires.

L'objectif de ce chapitre est de développer une nouvelle approche qui facilite les simulations lors
de I'ajustement de la valeur de perméabilité de la membrane.

Si seul un petit nombre de simulations est nécessaire, les trois principaux groupes d'approches
sont les suivants (1) les simulations de Monte Carlo, (2) la résolution de 'EDP de Bloch-Torrey dis-
crétisée par les éléments finis et (3) la méthode spectrale, appelée représentation du Formalisme
Matriciel, comme détaillé dans dans la section[1.3.6]du chapitre[T]

La simulation de Monte Carlo utilise des particules aléatoires pour imiter le processus de diffu-
sion au cours d'une expérience d’IRM de diffusion. Elle place aléatoirement un grand nombre de
particules a l'intérieur de la géométrie complexe et les laisse se déplacer en fonction de la dyna-
mique de diffusion. Pour intégrer les membranes perméables dans la simulation, I'échange d'eau
a travers les interfaces est modélisé par une probabilité de transit Pyans, qui est la probabilité que
les particules traversent ou se reflétent lorsqu'ils arrivent a une interface perméable. Cependant,
lorsque la perméabilité augmente, les pas de temps doit devenir plus petit, afin de maintenir la
condition Pyans < 1. ce qui entraine une forte demande en ressources de calcul et en mémoire de
serveur.

La discrétisation de I'EDP de Bloch-Torrey peut étre utilisée pour résoudre directement la ma-
gnétisation dans une configuration géométrique complexe. Le domaine de calcul est discrétisé soit
par éléments finis soit par différences finies. Comme il s'agit d'une équation déterministe, I'incorpo-
ration de la perméabilité est simple. Les détails de la mise en ceuvre de la méthode des éléments
finis avec la condition des interfaces de perméabilité se trouvent dans la section[1.3.6.1]

Dans un travail récent, Agdestein et al. a présenté une mise en ceuvre numérique du Formalisme
Matriciel pour les interfaces perméables, appelée méthode du Formalisme Matriciel Numérique
(FMN), ou les conditions de perméabilité de I'interface sont incorporées dans |'étape de décompo-
sition des fonctions propres de I'opérateur Laplacian.

Dans ce chapitre, nous visons a étendre ce travail et a présenter une nouvelle formulation. Le
signal IRM de diffusion dans un milieu perméable est calculé en utilisant uniquement des fonctions
propres de l'opérateur Laplacian imperméables. Nous donnons d'abord I'expression de la nouvelle
méthode. Nous définissons une nouvelle matrice Q,.;, qui représente la projection de la matrice
des flux sur les fonctions propres de I'opérateur Laplacian avec des conditions d'interface imper-
méables. L'effet de perméabilité est considéré comme une perturbation et traité dans I'étape de
calcul du signal, au lieu de I'étape de décomposition des fonctions propres. La nouvelle formula-
tion ne nécessite donc qu'une seule décomposition sur la configuration imperméable et réutilise les
mémes fonctions propres de I'opérateur Laplacian pour calculer les signaux perméables, alors que
la méthode FMN nécessite de ré-calculer les fonctions propres pour chaque valeur de perméabilité.

Ensuite, nous prouvons que la nouvelle méthode produit le méme signal IRM de diffusion que la
méthode originale du Formalisme Matriciel Numérique, a condition que toutes les fonctions propres
discretes soit utilisées pour les deux méthodes.

Nous montrons la convergence numérique de la nouvelle méthode lorsque le nombre de fonc-
tions propres utilisées est beaucoup plus petit que 'ensemble complet. Aux valeurs de perméabilité
les plus faibles (v = 1075 m/s), les erreurs relatives de notre nouvelle méthode sont au méme niveau
que celles de la méthode du Formalisme Matriciel Numérique. Lorsque la perméabilité augmente,
les erreurs relatives de la nouvelle méthode augmentent, mais restent dans une gamme raisonnable
(moins de 1%). Nous évaluons I'efficacité de calcul de notre nouvelle méthode par rapport au FMN
losqu'il s'agit des simulations utilisant de nombreux valeurs de perméabilité. Dans I'étape de calcul
du signal, le temps de calcul par la nouvelle méthode est proche de celui de la méthode du For-
malisme Matriciel Numérique, mais la nouvelle méthode offre des gains de temps significatifs lors
de I'étape de décomposition ne doit étre exécuté qu'une seule fois, ce qui réduit considérablement
le temps de calcul, permettant I'étude des effets de la perméabilité sur le signal IRM de diffusion a
I'avenir.
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Afin de démontrer les capacités potentielles de notre nouvelle méthode pour I'étude des effets
de la perméabilité, nous effectuons une analyse numérique sur I'impact de la perméabilité sur (1)
les signaux IRM de diffusion et (2) le CDA. L'analyse suggére que :

1. Le signal IRM de diffusion a une relation mono-exponentielle avec la perméabilité dans une
large gamme de valeurs (107m/s < s < 10~*m/s), couvrant les valeurs de perméabilité
typiques trouvées dans les cellules biologiques;

2. Aux faibles valeurs b, I'impact de la perméabilité est négligeable. Cependant, a des valeurs
b élevées, méme une petite valeur de perméabilité modifierait beaucoup les signaux IRM de
diffusion;

3. Avec une perméabilité élevée, le terme dominant du CDA est ¢t~%5, ou t est le temps de diffu-
sion;

4. A des perméabilités faibles et élevées, la limite du temps long du CDA montre des taux diffé-
rents de dépendance a la perméabilité.

En outre, nous évaluons le modeéle NEXI, a I'aide de la nouvelle méthode. Pour éviter de tomber
dans un minimum local, nous faisons l'estimation par une recherche exhaustive. Le résultat numé-
rique indique que le temps d'échange d’eau de NEXI est corrélé a la perméabilité dans une large
gamme (1076 < k <2 x 1075 m/s).

Ce travail contribue (1) a des simulations numériques rapides tenant compte de la perméabilité,
(2) a des études numériques sur les effets de la perméabilité dans des géométries complexes, (3) a
I'évaluation de modéles d'imagerie microstructurelle.

Cette nouvelle méthode a été publiée dans l'article[1] et intégrée dans la version développeur
de SpinDoctor. Par rapport a la version publiée, j'ajoute deux sections supplémentaires :

1. La section applique la nouvelle méthode pour analyser I'impact de la perméabilité sur le
CDA;

2. La section utilise des signaux simulés par notre nouvelle méthode, montrant la corréla-
tion entre la perméabilité et le temps d'échange de I'eau du modéle de NEXI.

Chapitre[3]: Expansion asymptotique de I'IRM de diffusion et du CDA tenant compte des défor-
mations géométriques Dans ce chapitre, nous proposons une nouvelle approche pour étudier
I'effet de la déformation géométrique en utilisant I'expansion asymptotique.

Dans I'estimation de la microstructure de la substance blanche cérébrale, les axones ou les fibres
de la substance blanche cérébrale sont modélisés le plus souvent par un faisceau de batonnets,
comme le modéle NODDI, soit par une collection de cylindres avec les rayons non nuls, dans la
méme direction ou avec une dispersion dans I'orientation, comme le modeéle ActiveAxapp. Ces hypo-
théses négligent I'imperfection géométrique de la forme réaliste des fibres, y compris les variations
de diametre, les formes de section irrégulieres, I'ondulation, le pliage, etc., ce qui peut entrainer des
imprécisions dans certains estimations. Dans un travail récent par Lee et al. en 2020, une suresti-
mation du diamétre des axones a été constatée a de faibles valeurs b en raison de 'ondulation des
axones.

L'objectif de ce chapitre est de proposer un modeéle réduit pour faciliter les études sur la défor-
mation géométrique et de révéler davantage la relation entre la structure cellulaire du tissu biolo-
gique et le signal IRM de diffusion dans la substance blanche du cerveau par les simulations nu-
mériques. Nous analysons I'EDP de Bloch-Torrey et le modéle de coefficient de diffusion apparent
homogene (CDAH) dans le contexte des mappings de déformation paramétrés, a partir d'une confi-
guration canonique. La configuration canonique que nous concevons est un ensemble d'axones
paralléles droits contenus dans l'espace extracellulaire. Notre idée est de modéliser des axones
réalistes comme des déformations spatiales de configurations canoniques d’axones paralléles.

Pour étre plus concret, nous nous concentrons sur deux déformations analytiquement définies :
la flexion et la torsion. Nous déduirons des modéles asymptotiques du signal IRM de diffusion et du
CDA ou le parametre asymptotique indique le degré de la déformation géométrique. Grace a ce tra-
vail, nous pouvons relier plus directement le signal IRM de diffusion aux paramétres géométriques
des tissus.
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Une application potentielle de ce modéle asymptotique est de servir a étudier la robustesse des
méthodes d'estimation de la substance blanche du cerveau, comme I'estimation de la fraction de
volume ou les rayons des axones, a face des imperfections de la forme. En outre, on peut utiliser
ces modeles asymptotiques pour établir la relation entre les déformations et les signaux IRM de
diffusion.

Dans la section nous présentons d'abord le modele de CDAH et donnons les expressions
analytiques des déformations de flexion et de torsion. Nous dérivons I'EDP de Bloch-Torrey trans-
formée et le modele de CDAH transformé en tenant compte de ces deux déformations, et déve-
loppons les solutions de ces EDP transformées sous la forme d'un développement asymptotique
du second ordre dans les deux paramétres de déformation. Nous effectuons des simulations nu-
meériques dans la section pour valider nos expansions asymptotiques et illustrer les effets des
déformations géométriques. Les simulations suggérent que :

1. Pourle modéle de CDAH et 'EDP de Bloch-Torrey, des développements au moins second ordre
sont nécessaires pour améliorer la précision;

2. Parlesimageries de diffusion a haute résolution angulaire (HARDI en anglais), nous observons
que la flexion rend le CDA et les signaux moins directionnels, tandis que la torsion fait tourner
leur direction maximale;

3. L'analyse du temps de calcul démontre l'efficacité des expansions asymptotiques lors de I'ajus-
tement des parametres de déformation.

Ce travail contribue a lier explicitement le signal IRM de diffusion aux structures cellulaires et a
fournir un outil numérique pour étudier I'impact des imperfections de forme sur le signal IRM de
diffusion et le CDA.

Les modéles asymptotiques ont été implémentés dans SpinDoctor et publiés dans l'article [2].
Par rapport a la version publiée, japporte les modifications suivantes :

1. J'étend l'expansion asymptotique de 'EDP de Bloch-Torrey en incluant le cas perméable. Je
fournis les résultats numériques de I'expansion asymptotique de I'EDP de Bloch-Torrey en
utilisant x = 105 m/s;

2. J'étend les expansions asymptotiques au cas ou les deux déformations sont appliquées, et
j'ajoute ce cas dans les résultats numériques;

3. Jajoute une section qui compare le temps de calcul pour montrer I'efficacité des expan-
sions asymptotiques;

4. Jutilise une formulation alternative du modele de CDAH, qui nécessite un pas de temps plus
grand que la formulation originale pour maintenir la méme précision pendant les simulations
numériques.

Chapitre [4: Estimation de la taille du soma et des fractions de volume a l'aide de biomar-
queurs dérivés du point d’inflexion  Dans ce chapitre, nous étudions la cause de la rupture
de la loi de puissance de 1/v/b dans la sustance grise du cerveau. A la suite de cette étude, nous
proposons une nouvelle approche d'estimation de la taille du soma et des fractions de volume des
compartiments dans la sustance grise en utilisant les signaux IRM de diffusion.

Dans la substance blanche du cerveau, une étude récente de Veraart et al. en 2019 a montré que
les signaux moyennés dans la direction du gradient

S = / Sdug
[lugll=1

diminuent linéairement par rapport a linverse de la racine carrée des valeurs b, 1/v/b, dans la ré-
gions d'intensité de gradient élevée. Ce comportement, appelé la loi de puissance de 1/v/b, est pré-
valent dans les zones différentes de la substance blanche du cerveau. Les simulations numériques
sur des batons, des cylindres et des fantdmes réalistes de neurites permettent d'expliquer cette
observation. Toutefois, dans la substance grise du cerveau, on observe un déviation par rapport
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a cette loi de puissance de 1 /v/b. Plusieurs explications ont été proposées pour cette déviation.
Les trois principales sont : (1) la courbure des neurites, (2) la présence de soma, et (3) Iimportant
échange d'eau entre les neurites et 'espace extracellulaire.

Dans un travail récent, Fang et al. a mené une étude numérique sur le comportement du signal
des neurones individuels réalistes et leurs branches neuritiques a des valeurs b élevées, en utilisant
des séquences PGSE. En fixant l'intensité du gradient et en faisant varier le temps de diffusion (a
I'aide de PGSE avec § = A), il a été révélé que:

1. Pour les branches du neurite, la loi de puissance de 1/v/b se vérifie et la pente de cet ligne pré-
sente une corrélation avec l'inverse de la racine carrée du coefficient de diffusion intrinseque

1/v/Do;

2. En revanche, S des neurones présente un changement de concavité dans la région ou la loi
de puissance de 1/v/b est attendu.

A partir de cette observation, des biomarqueurs potentiels ont donc été proposés autour le point
d'inflexion (IP) de la courbe du signal moyenné en fonction de la direction du gradient.

Dans un travail de suivi, lathése de doctorat de Chengran Fang[3], il a présenté un cadre d'appren-
tissage supervisé basé sur la simulation numérique pour estimer la microstructure, qui utilise les
biomarqueurs dérivés du point d'inflexion ou un grand nombre de valeurs de signal comme entrées
en utilisant les perceptrons multicouches, montrant les applications potentielles des biomarqueurs
dérivés du PI. Afin de s'adapter a 'ensemble de données in vivo, les biomarqueurs dérivés du point
d'inflexion sont définis sur la courbe du signal en utilisant une séquence PGSE fixe et l'intensité de
gradient variable, ce qui est différent de I'article original[5]. Il a construit un ensemble de voxels syn-
thétiques a partir de neurones réalistes et a utilisé des perceptrons multicouches pour approximer
les correspondances sous-jacentes entre les inforations géometriques et (1) un grand nombre de
signaux ou (2) des biomarqueurs dérivés du Pl et le CDA.

L'objectif de ce chapitre est d'étudier la relation entre les biomarqueurs dérivés du Pl et les frac-
tions de volume/la taille du soma, puis d’adapter les résultats pour I'estimation. Différentes confi-
gurations de séquences peuvent donner lieu & des relations différentes. Etant donné que les ex-
périments pratiques utilisent généralement des séquences PGSE avec des ¢ et A fixes, en ajustant
uniquement l'intensité du gradient, nous adoptons cette définition des biomarqueurs dérivés du PlI.

Quatre biomarqueurs dérivés du point d'inflexion sont :

* o : la coordonnée x du point d'inflexion;

* 7o : la coordonnée y du point d'inflexion;

* ¢p : 'ordonnée de la ligne d’ajustement de la loi de puissance au point d'inflexion;
* ¢1 :la pente de la ligne d'ajustement.

Dans ce chapitre, nous présentons d'abord dans la section[4.1]les parameétres expérimentaux, la
construction du NeuronSet, 'ensemble de voxels synthétiques et la méthode d'interpolation spline,
qui sont fait dans la thése de doctorat de Fang.

Ensuite, nous examinons le comportement des signaux de différentes formes géométriques en
utilisant des séquences PGSE avec des § et A fixes (6 < A) et en ajustant l'intensité du gradient. Nous
montrons que les neurones individuels présentent toujours le méme comportement de signal. Nous
pouvons donc également identifier les biomarqueurs dérivés du Pl dans la configuration avec 6 et A
fixés. En outre, nous trouvons que les sphéres individuelles présentent un comportement de signal
similaire a celui des neurones individuels, qui peut lier cette déviation de la loi de puissance de 1/vb
dans la substance grise a la présence de structures sphériques.

Pour pouvoir calculer precisément les biomarqueurs dérivés du Pl, nous dérivons leurs expres-
sions mathématiques a l'aide de la méthode du Formalisme Matriciel Numérique. Ensuite, en ana-
lysant la relation entre ces biomarqueurs dérivés du P, et les fractions de volume/la taille du soma,
nous démontrons que :

1. Dans le cas d'une sphére individuelle, la valeur de z( est déterminée de maniére unique par
le rayon du soma Rsoma, @vec une relation monotone;
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2. Dans le cas d'une sphére combinée a un faisceau de batons, la valeur de ¢ est liée a la fraction
de volume du soma fsoma;

3. Dans le cas d'une sphére, combinée aux batonnets et a un compartiment de diffusion libre, la
valeur de yg est en corrélation avec la fraction de volume du compartiment de diffusion libre

ffree-

Ces recherches suggerent que nous pouvons extraire les informations relatives a la taille du soma
et aux fractions de volume a partir des biomarqueurs dérivés du PI.

Pour démontrer la possibilité d'utiliser les biomarqueurs dérivés du Pl dans l'estimation pratique,
nous proposons une méthode de recherche exhaustive au lieu des algorithmes d'optimisation ou
des algorithmes d'apprentissage. La raison de ce choix est que I'approche de recherche exhaustive
élimine le besoin d'ajuster une fonction non convexe.

Sur I'ensemble de données d'un neurone individuel, nous utilisons une méthode itérative basée
sur les biomarqueurs dérivés du Pl et comparons avec le modéle SANDI. Les résultats numériques
montrent que la performance de la nouvelle méthode d'estimation dépasse celle du modele SANDI
sur cet emsemble.

Nous évaluons cette méthode de recherche exhaustive sur un ensemble de tests synthétiques
et sur un ensemble de données in vivo. Il est démontré que les valeurs estimées sont similaires a
celles du modele SANDI et de la méthode de recherche exhaustive basée sur l'utilisation d'un grand
nombre de valeurs de signaux moyennées en fonction de la direction.

Par rapport a I'estimation basée sur les valeurs de signal, les erreurs d'estimation par l'estimation
basée sur les biomarqueurs sont au méme niveau. L'estimation prend moins de temps parce qu'elle
ne nécessite que trois biomarqueurs comme données d'entrée au lieu de tous les valeurs de signal.

Ce travail contribue & linterprétation de la déviation par rapport a la loi de puissance de 1/v/b a
des valeurs b élevées dans la substance grise du cerveau, avec des biomarqueurs dérivés du PI, et
a I'exploitation de cette compréhension pour l'estimation de la microstructure.

Certaines sections de ce chapitre ont été publiées dans l'article [4]. |l s'agit des éléments suivants :

1. Les parameétres expérimentaux, les constructions du NeuronSet, le Synthetic Voxels Set, et la
méthode d'interpolation spline, décrits dans la section[4.7](qui provient de la these de doctorat
de Chengran Fang[3]);

2. La méthode de recherche exhaustive dans la section[4.3.2];
3. Les résultats de I'estimation sur I'ensemble de voxels synthétiques dans la section|4.4.2];
4. L'estimation sur les données réelles dans la section[4.4.3]

Le reste du chapitre est nouveau pour cette thése et n'a pas été publié ailleurs.

Chapitre [5|: Simulation d'IRM de diffusion avec Streamline Upwind Petrov-Galerkin ~ Une
autre application de I''RM de diffusion au-dela de I'imagerie du tissu cérébral est I'évaluation de la
perfusion sanguine (connue sous le nom d'IRM a mouvement incohérent intravoxel) et I'imagerie du
flux sanguin cardiaque. Dans ce chapitre, nous présentons un nouveau schéma spatial d'éléments
finis pour les applications d'imagerie du flux sanguin par I''RM de diffusion.

Ce travail est une collaboration avec I'équipe de médecine computationnelle de I'Université de
Leeds, visant a étendre le solveur d’éléments finis de 'EDP de Bloch-Torrey existant du SpinDoctor
pour les simulations d'écoulement sanguin par IRM de diffusion.

La simulation de I'lRM de diffusion implique le traitement d’'un terme d'écoulement. La vitesse
sanguine est généralement déterminée par I'équation de Navier-Stokes au moyen de simulations
numeériques. Elle est ensuite souvent fournie comme variable prédéfinie pour les simulations d'IRM
de diffusion.

A faible valeur b, les signaux de IlRM de diffusion sont sensibles & la microcirculation du sang
dans le réseau capillaire cérébral, ce qui fait que le CDA s'écarte de la valeur attendue. Cet écart a
été largement utilisé pour mesurer l'indice de perfusion dans les cliniques. Ces derniéres années,
I'imagerie du tenseur de diffusion (ITD) a devenu un domaine populaire dans I'imagerie cardiaque,
mettant en évidence sa polyvalence en imagerie médicale.
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Lorsque l'on considére le flux sanguin, 'EDP de Bloch-Torrey devient une EDP de convection-
diffusion-réaction, avec un terme de réaction imaginaire. Cette EDP présente différents comporte-
ments en fonction du rapport entre la vitesse et le coefficient de diffusion. Lorsque la vitesse est
comparativement faible, comme dans les capillaires, le mouvement des molécules est principale-
ment déterminé par le processus de diffusion et un signal similaire a ''RM de diffusion classique
sera produit. Au contraire, lorsque la vitesse est comparativement élevée, par exemple dans les ar-
téres ou les veines, les molécules sont principalement transposées par I'écoulement et, dans ce cas,
la simulation numérique pourrait rencontrer des problemes d'instabilité.

Le raffinement du maillage peut améliorer la stabilité, mais il ne garantit pas toujours, en par-
ticulier lors de I'utilisation de la méthode standard des éléments finis de Galerkin. Cela dépend de
la vitesse maximale et du maillage des éléments finis. Dans certains cas, un maillage extrémement
fin peut étre nécessaire, ce qui peut étre impossible dans la simulation numérique en raison de
contraintes de ressources informatiques. Dans d'autres cas, le maillage est prédéfini et il n'est pas
possible de le modifier. Certaines études suggerent une stratégie de raffinement local pour amélio-
rer la stabilité et maintenir une taille raisonnable. Un autre probléme est qu’avec la méthode stan-
dard des éléments finis de Galerkin, des oscillations artificielles peuvent étre produites, conduisant
a des résultats non-physiques.

L'objectif de ce chapitre est d’appliquer un schéma de simulation stabilisé pour I''RM de diffu-
sion en tenant compte du flux sanguin. De nombreuses approches de stabilisation ont été propo-
sées pour résoudre la simulation de I'équation de diffusion-convection dépendante du temps dans
la communauté de la dynamique des fluides numérique, comme la méthode Streamline Upwind
Petrov-Galerkin (SUPG), la méthode de stabilisation symétrique et la méthode des moindres carrés
de Galerkin.

Dans ce travail, nous présentons un nouveau schéma d’éléments finis pour les simulations d'IRM
de diffusion qui combine la méthode Streamline Upwind Petrov-Galerkin et la méthode de discré-
tisation temporelle théta. La technique proposée aborde le probleme de l'instabilité de la simula-
tion du signal de I''lRM de perfusion a une vitesse élevée du flux sanguin, en particulier dans les
artérioles et les veinules. L'idée de la méthode SUPG est d'ajouter un terme de diffusion artificiel
uniquement dans la direction de I'écoulement, afin d'atténuer les oscillations artificielles survenant
prés des zones présentant des gradients prononcés. L'amplitude de ce terme de régularisation est
contrélée par les paramétres de stabilisation 7. Cette nouvelle schéma sert d’outil de simulation
puissant, ouvrant la voie a I'étude numérique des comportements des signaux et a la conception
de nouveaux modeéles d'estimation de la microstructure pour les futures études sur la perfusion
sanguine.

Nous présentons tout d'abord la forme généralisée de 'EDP de Bloch-Torrey, qui integre le terme
de convection et le nombre de Péclet, une mesure indiquant le potentiel d'instabilité. Nous donnons
ensuite 'expression compléte du schéma proposé. Nous comparons la méthode Galerkin standard
et laméthode Streamline Upwind Petrov-Galerkin, démontrant ainsi son efficacité. Les résultats des
simulations numériques démontrent que la méthode Galerkin standard conduit a des oscillations
artificielles a des vitesses d'écoulement sanguin élevées, alors que le nouveau schéma peut four-
nir une solution stable méme sur un maillage d'éléments finis creux. Afin de guider le choix des
parameétres de stabilisation et du diameétre des éléments, nous effectuons une analyse de l'effet
du choix des parametres de stabilisation et des diamétres des éléments. D'aprés cette étude, deux
combinaison des paramétres sont choisis pour un maillage creuse et fine.

Cette approche a été implémentée en tant que nouveau module de SpinDoctor et a été détaillée
dans un article préimprimé.

Chapitre|6]: Conclusions et perspectives Ce chapitre donne un résumé des résultats obtenus et
discute des perspectives de recherche au future dans ce domaine.

Annexe[A]: Annexe du chapitre[3|Dans cette annexe, nous donnons d'abord la formulation alter-
vative du modéle de CDAH utilisé dans le chapitre [3| Afin d'accélérer les simulations, nous implé-
mentons les développements asymptotiques a I'aide de la méthode de Formalisme Matriciel Numé-
rique. Nous présentons en détail les expressions des développements asymptotiques pour I'EDP de
Bloch-Torrey et le modele de CDAH.
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Annexe B|: Annexe du chapitre 4| Cette annexe donne les informations supplémentaires du Cha-
pitre[4] Nous présentons d'abord I'implémentation numérique des dérivées d'ordre 1 et 2 du signal
IRM de diffusion a l'aide de la méthode de Formalisme Matriciel Numérique. Ensuite, nous intro-
duisons la méthode d'apprentissage supervisé basé sur la simulation numérique pour estimer la
microstructure, proposé par Fang[3], afin de comparer avec notre nouvelle méthode d'estimation.
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1.1 Physics of diffusion MRI

1.1.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) has been a widely used non-invasive medical imaging tech-
nique since the first full-body MRI scanner in 1971[6]. Compared to other radiology modalities,
such as computed tomography (CT) or Positron emission tomography (PET), MRI has several ben-
efits, including not involving exposure to ionizing radiation and providing better soft-tissue image
contrast[/].

To understand the principles of MR, in this subsection, we present the underlying physics, nu-
clear magnetic resonance (NMR), and the prototypical MRI experiment.

For a more comprehensive understanding of the historical evolution, physical phenomena, and
experimental configurations of MRI, we refer readers to the works[8H11]] and also an educational
website, |mriquestions.com.

1.1.1.1 Nuclear magnetic resonance

About 63% of an adult's body weight is made up of water, and for the human brain, this value
reaches approximately 73%[12, [13]. Each water molecule generally contains two hydrogen atoms,
whose nucleus is composed of a single proton. According to quantum physics, protons have a
property called spin (around an axis), and hence possess angular momentum, which produces mag-
netism. In a regular environment, the directions of spins are randomly oriented, as shown in fig.[T.1]
Hence, the net magnetization (the sum of all quantum spins) is zero.

13
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In the presence of a strong static external magnetic field By, the protons will (macroscopically)
precess along the same direction as By at equilibrium, which is called Larmor precession. The an-
gular frequency of Larmor precession is given by[[14]

wo = 7By, (1.1)

where « is called the gyro-magnetic ratio. For the proton, v = 2.67513 x 10% rad/(s - T)[15].

For ease of illustration, we set the direction of B, = Bye, along the z-axis (longitudinal direction),
and the transverse plane on x-y plane. Figure[T.T|shows the Larmor precession of spins. As we can
see, after adding the external magnetic field, a net magnetization is generated.

Figure 1.1: Left: In the absence of external magnetic field. The directions of protons precession
are randomly distributed and the net magnetization is zero. Middle: In the presence of an external
magnetic field By. The directions of protons precession are aligned with the external magnetic field,
or in the opposite direction. Right: The equivalent scheme. The net magnetization precesses in the
direction of external magnetic field.

Macroscopically, the net spin magnetization vector M precesses around the external magnetic
field B satisfies the differential equation below][16]:

dM

In the static magnetic field case (B = By), eq. reduces to,

M
dM v
—— =wy | M|, (1.3)
dt 0

where wy is Larmor frequency, M, and M, are the x and y component of the magnetization M.
Here, we align the direction of B with the longitudinal direction.

The net magnetization always has a constant component aligned with the direction of the ex-
ternal magnetic field, and a component rotating in the transverse plane. The net magnetization
contains statistical information, such as protons density, which can be used to infer properties of
biological tissues. However, due to the very low amplitude M, compared to external magnetic field
By, people usually do not directly measure this net magnetization.

To overcome this difficulty, the idea is to perturb the spin orientation from equilibrium to the
transverse plane (or a plane quasi-perpendicular to By), by applying an additional periodically os-
cillating magnetic field Brr(t) for a short time, called a Radio Frequency (RF) pulse[15]:

cos(wot)
BRF(t) = BRF — sin(wot) . (1 4)
0

The RF pulse has a constant amplitude and a direction that periodically rotates in the transverse
plane. In order to better show the effect of the RF pulse, here we change the coordinate system
from the global coordinate system to a rotating coordinate system, that rotates counterclockwise in
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the transverse plane, at an angular frequency of wy:

ey cos(wot) —sin(wot) 0] [ey
ey | = [sin(wot) cos(wot) Of |ey| . (1.5)
e, 0 0 1| (e,

In this rotating coordinate system, the direction of the RF pulse is fixed in z’-axis.
By replacing B by By + Brr(¢) in eq. and changing to the rotating coordinate system, the
magnetization satisfies

0 0 0
dM
0 —Brr 0
Combining with the initial condition M = Mye,,, M becomes
M = My(sin(yBgrrt)e, + cos(vBrrt)e,). (1.7)

After applying an RF pulse of a duration ¢, the protons will gain energy and change the precession
direction, as shown in fig.[T.2} forming a flip angle ag;, with Bo:

afip = YBRrrt. (1.8)

By controlling the amplitude of the RF pulse Brp or the duration ¢, one can achieve a 90 degrees
flip angle[17,18].

Figure 1.2: The precession when applying RF pulse. The net magnetization will flip into the transverse
plane. By is the static external magnetic field, Bgr is the RF pulse, it rotates in the clockwise direction
at a rate of wy. The blue arrow represents the net magnetization, which forms an angle a ;;;, with
By.

Once the RF pulse is switched off, the protons tend to come back to the previous equilibrium
state and align with By again. Macroscopically, one can observe two phenomena. In the longitu-
dinal direction (the direction of By), the net magnetization grows exponentially from 0 to its initial
value My, called T; relaxation or longitudinal relaxation. In the meantime, the net magnetization
in the transverse plane will decay exponentially from A, to zero, called T; relaxation or transverse
relaxation[[17].

The relaxation process can be described by the Bloch equation below[19]:

IM éMI woM, — T%IMQJ
H = ")/M X BO — TZMU = —woMm — ﬁMy , (1 9)
%I(Mz - MO) _%I(Mz - MO)

where M, is the net magnetization in equilibrium, M, M, and M, are the x, y and zcomponents of
M, respectively.

Let the transverse magnetization be M., = M, + 1:M,, where ¢ is the imaginary unit. Equa-
tion can be rewritten as

dM, 1 _a
dt Y = —(wo + Ty YMyy = My = Moe™*“°'e T12t7 (1.10)
M. 1 _ 1

d 2 — (M, — M) = M, = My(1—e T11). (1.11)

dt T
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Itis clear that at time T3, the longitudinal component M, regains 63% (1 —1/e) of the initial value M,
and at time Ty, the transverse component M, falls to 37% (1/e) of its maximum value M,. T3 and
T, values vary among different biological tissues. In the human brain, T} is typically on the order of
1 second and 75 is about 100 milliseconds[20].

z

Bo

. 7 oy >

/< ----------
[ S
T Time

Figure 1.3: Left: Relaxation process; Right: The evolution of the net magnetization during relaxation.
The red blue and yellow lines represent the z’, ' and 2’ components of the magnetization, respec-
tively.

The received transverse signal after one single RF pulse is called the free induction decay (FID), as
shown in fig.[1.4] It is an oscillating signal that decays at an exponential rate. In actual experiments,
due to the inhomogeneity of By caused by instrumental imperfections, protons at different spatial
positions precess at different Larmor frequencies, which leads to a faster decay. To eliminate this
inhomogeneity effect, in 1950, Hahn proposed the spin echo sequence in his paper[21]. The spin
echo sequence is composed of one 180-degree RF pulse after the 90 RF pulse at half of the echo
time, as shown in fig.[1.4 This sequence is able to refocus the dephasing spins.

90° 180°
FID Spin echo
Te/2
pd TE N

Figure 1.4: Free induction decay (FID) signal and Spin echo signal.

1.1.1.2 Magnetic gradient field

Typical MRI resolution ranges in size from 128 x 128 x 128mm?3 to 512 x 512 x 512mm?, containing
over 1,000,000 voxels (the counterpart of pixels in a three-dimensional image)[22]. To create such
images, one need to make the received transverse signal be spatial-sensitive. To achieve that, the
principle is adding another external magnetic field (G - x)e,, where G = [G,, Gy, G.]7, called a
magnetic gradient field. The direction of this magnetic field is the same as the static magnetic field
By and its amplitude varies linearly with the spatial variable.

Typically, the MRI spatial encoding is realized in two steps: slice selection and image encoding
(including phase and frequency encodings)[20]. In the first step, only the protons located in one
specific slice in the z-axis are flipped into the transverse plane. Then, the second step will encode
the MRI signal in the Fourier domain. The spatial information on the selected plane can be retrieved
after, by applying an inverse Fourier transformation.

Slice selection occurs by simultaneously switching on a longitudinal gradient field (G ) with the
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90-degree RF pulse:
B(x) = (Bo + G.2)e:, (1.12)

where z is the longitudinal position. In this case, the Larmor frequency varies along z-axis:
w(z) = wy + G, 2. (1.13)

In order to excite solely the protons in zy plane and to suppress interference from neighboring
frequencies, an RF pulse with frequencies centered at w(zg) = wo + 7G. 2 is applied[23]:

cos(w(zp)t)
BRF:BRF(AFt) —sin(w(zo)t) 5 (114)
0

where AF is the bandwidth, determined the selected slice thickness. Brr(AFt) serves as a low
pass filter to avoid interacting with particles precessing at other frequencies. One kind of RF pulse
used in practice is the truncated sinc function. With this new RF pulse, in the rotating coordinate

system, eq. becomes

0 (Z - ZO)GZ 0
w =7 | (2~ 20)G- 0 Brr(AFt) | M(x,t). (1.15)
! 0 _Bprr(AF) 0

Figure [1.5]shows the time profile and frequency profile of the RF pulse, and the relation of the
bandwidth and the slice thickness. It is clear that the smaller the bandwidth is, the thinner the
selected slice is. Besides, a phase shift depending on the longitudinal position will occur after the RF
pulse. To rephase the spins, an extra longitudinal gradient field will be employed after the RF pulse.
This gradient field is in the opposite direction and applied for half of the duration of the RF pulse.

120

1
100 ) Frequence
0s 5 () A -
$ 80 | Slice selection
Z : ', Gradient strength
Z of £ 60 ||
. c [ Bandwidth
£ ‘ [
& 40 . ‘
05 real part ® . ’
2 |
—-—-imaginary part| : 0 .‘ |
; ——amplitude v 0 ‘ — Z-coordinate
05 0 05 -20 -10 0 10 20
Time Frequency Slice thickness

Figure 1.5: Left: RF pulse in the temporal domain. The envelope function is the truncated sinc func-
tion; Middle: RF pulse in the frequency domain. It is like a window function, to suppress other
frequencies. The center frequency is 10Hz and the bandwidth is 5Hz; Right: the relation between
the bandwidth AF and the slice thickness.

After slice selection, only the spins on the selected slice are flipped into the transverse plane.
Then, image encoding occurs after the 180-degree RF pulse by adding a new magnetic gradient field
in the transverse plane, denoted by G = [G,, G, 0]”, to make the magnetization be spatial sensitive
in the plane.

In the presence of the image encoding gradient, the external magnetic field becomes B(x) =
(Bo + G,z + Gyy)e, and the Bloch equation eq. becomes

(wo +7G - x)M, — T%Mx
= | —(wo +7G - x)M,, — T%My ) (1.16)
— 77 (M. — My)

OM(x, t)
ot

The transverse gradient field has no effect on T3 relaxation. For the transverse magnetization

M,y (x,1), eq. (1.10) becomes

OMyy(x,1) (

1 1
ot Uwo +7G - x) + ) Moy (x) = May(x,t) = Mo(x)e” T2'e *0le 9> (1.17)

15
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where Mj(x) is the initial transverse magnetization density depending on the position.
The received MRI signal is the spatial integral of the magnetization at the received time ¢,.:

— At —wot,  —17Gext
S(tr):/Mxy(x,tr)dx:/Mo(x)e Ty T MWOtr o TV Xr x| (1.18)

Since the Larmor frequency is known, one can factor out the term caused by the static magnetic field
by multiplying exp(wwot,) during the post-processing. From eq. (1.18), it is clear that the received
signal is the 2D Fourier transform of the initial magnetization density attenuated by 75 relaxation,
at the spatial frequencies vector %[Gm, G,,0]T. This spatial spectrum is called k-space[24]. In the
case of T%tT < 1, the Ty effect is negligible. The initial magnetization density can be retrieved by
applying the inverse Fourier transform to the densely sampled received signal in k-space., as shown

in eq. (1.78).

FFT
(a) Real part of received sig-_) (b) Axial slice of brain image
nal after FFT

Figure 1.6: Imaging encoding. Left: Real part of the received MRI signal plotted in k-space; Right:
Brain MRI image after Fast Fourier transformation (FFT). The brain MRI picture is distributed under
copyright license CC BY-SA 4.0 Deed, from Wikipedia (The link).

There are many different imaging encoding sampling schemes in use, we refer to the works[23]
for a further description. Figure[T1.7]illustrates the full MRl image acquisition scheme, integrating all
the components mentioned above.

90° 1%0° Spin echo
A
RF
Cx —
Gy
Gz [ — [ ] .
Slice selection Image encoding

Figure 1.7: MRI experimental prototype.

1.1.2 Diffusion

Self-diffusion is the physical process by which particles of a single type move from one place to
another within a homogeneous or heterogeneous phase, driven by Brownian motion[25]. At the
microscopic scale, particles are in random motion all the time due to thermal energy. In liquids or
gases, particles have more freedom to move and self-diffusion occurs at a faster rate. Under the
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same conditions, the extent of particle self-diffusion reflects the nature of a medium, helping study
the properties of material.

At the macroscopic scale, the diffusion process can be described from a probabilistic perspec-
tive, firstly proposed by Einstein in 1905[26]. The displacement probability of a particle initially posi-
tioned at x(, and located at x at the moment ¢ is denoted by P(x, ¢; xq), which satisfies the diffusion
equation

%P(x,t;xo) = Dy V2P(x,t; %),

P(X70;X(]) = (S(X — X())7

(1.19)

where Dj is the diffusion coefficient, which is isotopic and spatially constant, and 4(-) denotes the
Dirac function.

Figure 1.8: Isotropic diffusion process in an unbounded medium. Particles can move freely in the
medium.

In the case of isotropic diffusion in a homogeneous free medium (free diffusion), the propagator
(or Green'’s function) of eq. (1.19) is a Gaussian function

1 _ 2
P(x, ;%) = ———— exp (—"45‘?”) (1.20)
(47TDOt)dlm 0

where dim is the spatial dimension. The mean squared displacement of the particles is given by
{||x — x0l|?) = 2dim Dyt.

In a more complex medium, for instance, a biological tissue, the diffusion process is usually
hindered or restricted by geometrical obstacles or boundaries, such as cell membranes and the
mean squared displacement will be smaller than in the case of free diffusion. This deviation can
serve to infer tissue micro-structural information[27, |28].

In that case, eq. needs to be completed with boundary condition accounting for the cell
membranes. There are only a few simple shapes, such as spheres, cylinders, etc. for which eq.
has a closed form solution under the condition that the outer boundary is impermeable and reflec-
tive.

Two terms frequently used to describe diffusion are ‘isotropic’ and ‘anisotropic’. Isotropic diffu-
sion refers to diffusion characteristics that are the same in all directions and mainly occurs in free
space or the case where the boundary is far away from the particles. In contrast, anisotropic diffu-
sion indicates a directional dependency, where the rate of diffusion will be faster in some specific
directions, for example, the case of water diffusion restricted inside axons.

1.1.2.1 Diffusion MRI sequences

Diffusion MRI can be used to indirectly infer information about geometrical microstructure. To
make MRI sensitive to diffusion, another magnetic gradient, G(t) = [Gx(t), Gy(t),GZ(t)]T, needs
to be added, called the diffusion encoding gradient, between the slice selection and the image en-
coding steps, as shown in fig.[1.9] In the presence of the inhomogeneous encoding gradient field,
the external magnetic field becomes B(x) = (By + G,z + G,y + G.z)e., and protons located in
different positions would experience different dephasing rates. Through Brownian motion, the pro-
tons will travel around in the space, accumulating different phases values when located at different
positions. The acquired phases will record the microstructure information.
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90° 1%0° Spin echo
A
RF
Gx == — —
Gy  — —
Gz —I —  — — | [
Slice selection Diffusion encoding Image encoding

Figure 1.9: In a diffusion MRI scheme, a diffusion encoding gradient is added between the slice
selection and the image encoding gradients.

Taking the diffusion effects into account, a modified Bloch equation, called the Bloch-Torrey
equation, was proposed by Torrey in 1956[29]:

1
%Mr =V -DyVM,; +~v(Bo+ G(t) - x) M, — ?MT, (1.21)
2
1
%My = V- DoVM, — (B + G(t) - %)My — =M, (1.22)
2
0 1
— M, =V -DyVM. — (M, — M, 1.2
8t z \Y 0v z + Tl( z 0)7 ( 3)

with initial magnetization in the transverse plane, i.e. M, = 0. Similarly, let the transverse magneti-
zation be M, = M, + M, Bloch-Torrey equation of the transverse magnetization is

0 1
—Myy =V - DoV Mgy + 1(wo +YG(t) - x) Mgy — ™
2

o M,,. (1.24)

Since wy is independent of spatial position, one can factor out this term and obtain

0 1

¢ Moy =V - DoV My + 17G(1) - XMy — 75 Mo (1.25)
By normalizing the received MRI signal against the MRI signal without any supplementary diffusion
encoding gradient, one can retrieve the signal attenuation attributed solely to diffusion.

1.2 Brain structure

As one of the most important and complex organs, the human brain governs a range of essential
activities, from fundamental processes, such as respiration, vision, and temperature regulation, to
advanced functions, like cognition, memory, and emotion. Understanding the structure and func-
tion of the brain has always fascinated the scientific community.

On the cellular level, aside from blood vessels that supply energy and oxygen, the primary con-
stituents of the brain are cells, including neurons and glia. An average adult brain weighs around 1.4
kilograms and hosts nearly 86 billion neurons[30]. These neurons play an important role in informa-
tion transmission and processing through electrical and chemical signals. Each neuron comprises
a cell body, called the soma, dendrites that receive signals, and an extended axon that sends out
signals, as depicted in fig.[1.10] Axons exhibit a wide range of lengths, ranging from less than Tmm
to up to Tm[31]. Myelinated axons typically have diameters between 1um and 20m, while unmyeli-
nated axons often measure less than 1um in diameter. The diameter of an axon directly influences
its conduction velocity, which in turn affects the timing and efficiency of neuronal processing and in-
teractions[32]. Usually, one neuron connects to over 1,000 other neurons via its neurites, leading to
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over 100 trillion synapses, where signal exchanges occur. The diameter of the soma varies between
5um and 100pm, depending on the specific brain regions.

One of the key features of neuron membranes is their permeability. Membrane permeability per-
mits substances, such as liquids or gases, to penetrate or pass through the membranes of cells[33].
This mechanism is essential for living cells as it enables the exchanges of nutrients, ions, chemi-
cal information, and oxygen with the environment, and helps to maintain dynamic concentration
equilibrium[34-36]. Permeability values differ among different biological tissues. For axonal mem-
branes and myelin sheaths, the typical permeability is 10~ m/s[37}38].

Alongside the neurons, glia play an important role, helping the intercommunication of the neu-
rons. Glia are of various types including astrocytes, oligodendrocytes, microglia, and ependymal
cells, as shown in fig.[T.T0} Different shapes serve specific purposes, from providing structural sup-
port and nourishment to insulating nerve pathways and engaging in immune responses within the
central nervous system[39]. Glia are usually smaller than neurons, depending on the brain regions
and their functions.
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Figure 1.10: Left: Atypical neuron, comprising asoma, one long axon, and dendrites. Right: Different
types of glia[40]. Both two pictures are from Wikipedia (Link1 and|Link2), and distributed under the
CC BY 3.0 Deed copyright license.

From an anatomical perspective, the central nervous system (including the brain and the spinal
cord) can be divided into two different regions by their colors, the brain gray matter and the brain
white matter. The brain ray matter is primarily found in the cerebral cortex (the outermost layer
covering the brain) and the nuclei (clusters deep within the cerebral hemispheres and brainstem),
whereas the brain white matter is mainly located in the center of the hemispheres, as shown in
fig.[T.11} The brain gray matter primarily comprises neuron cell bodies, dendrites, unmyelinated
axon terminals, and associated structures, such as glia and capillaries. Information processing oc-
curs in the brain gray matter and it is the most active region in the brain.

Onthe other hand, the brain white matter consists predominantly of white myelin sheaths axons,
which gives its name. The myelin sheaths, produced by oligodendrocytes, act as an insulator that
accelerates the transmission of electrical signals. The main function of the brain white matter is to
link different the brain gray matter areas and to transmit signals among them.

Figure 1.11: The brain white matter and the brain gray matter. The picture is created by Jones
Christiana and licensed under CC BY-SA 4.0 (The link).

From a functional division perspective, the brain can be divided into three parts, the cerebrum,
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the brainstem, and the cerebellum[41], as shown in fig. Each part has distinct functions and
roles.

The cerebrum consists of the brain gray matter located in the cerebral cortex and the brain white
matter in its center. It can be divided into two approximately symmetric left and right cerebral hemi-
spheres. As the largest part of the brain, it controls most of our sensory and cognitive processes,
including vision, hearing, emotions, and learning ability. The brainstem lies beneath the cerebrum
and connects it with the spinal cord. The brainstem is responsible for many involuntary actions, such
as breathing and heart rate. The cerebellum is a smaller region located below the cerebrum and
behind the brainstem. The main function of the cerebellum is maintaining balance and coordination
of movements.

Cerebrum—{
(Forebrain)

Cerebellum
Brainstem (Hindbrain)

Figure 1.12: Brain functional division. The picture is created by Cancer Research UK and licensed
under CC BY-SA 4.0 (The link).

Another component of the brain is the cerebrospinal fluid (CSF), which is a transparent, colorless
body fluid that surrounds the brain and spinal cord[42]. This fluid serves to protect the brain from
collisions and shock and helps in clearing brain waste products. The CSF occupies a small volume
in the brain and its total volume ranges from 100 to 150 ml.

Insights into the microstructural properties of the brain can enhance our understanding of brain
processes and help disease diagnosis. Analyzing fiber connectivity provides insights into the col-
laboration among various brain regions and enables advanced cognitive function studies[43, |44].
Furthermore, certain diseases could be tracked at the microstructural level before they manifest de-
tectable anatomical changes. For example, abnormal changes in permeability could lead to pathol-
ogy and diseases, such as Alzheimer's disease, Parkinson’s Disease, or Multiple Sclerosis[45-48],
and a comparatively low volume fraction of neurites is observed in HIV-infected patients within the
brain white matter of the frontal lobes[49].

1.3 Mathematical model of diffusion MRI

In the previous section, we made a brief introduction to the governing equation of diffusion MR,
the Bloch-Torrey partial differential equation (PDE), and described how this equation is derived from
physical phenomena. In this section, we present its mathematical background. Also, we will discuss
the state-of-the-art numerical simulation approaches and some widely-used approximation models.

1.3.1 Geometrical description of brain tissue

Consider a connected domain Q2 = Uf;{”“ Q; € R% made up of Nempt cOMpartments
{Qi}i<i<n.,.,. Without any overlap. The domain € represents a sub-domain within a voxel, be-
ing as large as computational capacity allows, and containing as many compartments as possi-
ble. The interface between two compartments Q; and ; is denoted by I';; = Q, N Q; for ¢ # j,
(i,5) e {1,..., Ncmpt}Q. If two compartments do not touch each other, I';; = (. Let 992 be the outer
boundary of the domain €2, and the restriction of the outer boundary in compartment 2; is denoted
by X; = 0QNQ;, i € {1,..., Neppe }- If the compartment does not touch the outer boundary, X, = 0.
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Different brain tissue microstructures can be characterized using the aforementioned geomet-
rical framework.

In the brain white matter, each axon is enclosed in the myelin sheath. All these axons are pack-
aged within the extracellular space (ECS). Water exchange between the axons, myelin sheath, and
the ECS is quantified by two different permeability coefficients. The geometry has an outer bound-
ary that is impermeable to water. Thus, the number of compartments is twice of the number of
axons plus one (the ECS compartment).

For the brain gray matter, the number of compartments is the number of neurons plus one.

Q=014+0Q>4+ Q3+ Q4+ Q5+ Q6+ Q7

@
m@

Figure 1.13: Geometrical description of tissue microstructure in 2D.

1.3.2 Bloch-Torrey PDE

In diffusion MRI, a time-varying diffusion-encoding magnetic field gradient is applied to the tissue
to probe water diffusion. Denoting the effective time profile of the diffusion-encoding magnetic field
gradient by f(t), let the vector g contain the amplitude and direction information of the diffusion-
encoding magnetic field gradient, the restriction of the complex-valued transverse water proton
magnetization M (x,t) in the i-th compartment Q; by M‘(x,t), the diffusion MRI process can be
described by the Bloch-Torrey equation[29]:

9 Mi(x,t)= (V D'V - f(t)g - x - 1) M (x,t), x € Q;, (1.26)
ot L

where

+ D is the intrinsic diffusion coefficient in the compartment ;. In this thesis, we assume that
D' is a constant scalar inside Q;;

* 2 is the imaginary unit;
« T, is the transverse relaxation coefficient;

* v is the gyromagnetic ratio. For diffusion MRI of the brain, the gyromagnetic ratio of the water
protonis y = 2.67513 x 108rad/(s - T).

The magnetization M (x, t) is a function of position x and time ¢, and depends on the diffusion gradi-
entvector g and the time profile f(¢). For simplicity, we consider the case that the gradient direction
ug is unchanged, i.e. g = ||g|/ug, which is common in many diffusion MRI practical applications.

In this thesis, we consider a simplified case that the T3 is constant both spatially and temporally,
despite evidence suggesting variability in the myelin sheath in white matter, but all the presented
results can be extended to the case with varying T5. Under this assumption, the T relaxation affects
all the protons uniformly and its effect on magnetization can be factored out by multiplying a factor
of e!/™2, Consequently, we have

%Ml(x t)= (V- D'V —yf(t)g - x) M'(x,t),x € Q. (1.27)
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The Bloch-Torrey PDE needs to be supplemented by interface conditions and boundary condi-
tion. For the interface between i-th and j-th compartments I';;, the two interface conditions are:

D'V M (x,t)
D'V M (x,t)

(x) =-DIVM’(x,t) -n/(x),x €, (1.28)
(x)= kY (M (x,t) — M'(x,t)),x € [';;, (1.29)

. nl
. nl
where

* n’(x) is the unit outward pointing normal vector from i-th compartment;

+ k' is the permeability coefficient of the interface I';;.

These interface conditions suggest the discontinuity of the magnetization at the interfaces. The
interface permeability is non negative, i.e. k% = k7% > 0. The first boundary condition ensures
the flux continuity across the interface I';;. The second boundary condition characterizes the flux
as a quantity proportional to the magnetization difference across the interface, incorporating the
permeability coefficient. When s = 0m/s, eq. reduces to homogeneous Neumann boundary
condition and the interface is impermeable. When k% — +o0, it implies that M7 (x,t) = M'(x,t),
then water can diffuse freely across the interface.

Suppose that the outer boundary ¥; is impermeable, thus the homogeneous Neumann bound-
ary condition:

D'VM'(x,t)-n'(x)=0,x € %;. (1.30)

When the geometry of interest has a periodic structure, another often employed boundary con-
dition is the Bloch periodic boundary condition[50]. Detailed discussion on this topic is out of the
scope of this thesis and we refer the readers to the related literature[51].

The Bloch-Torrey PDE also needs initial conditions. When D¢ is the same cross all compartments
that are connected by non-zero permeabilities, the initial spin density should be uniform. Thus,
unless specified, in this thesis, we assume the initial spin density is the same in all compartments:

M'(x,0)=p,x € Q, (1.31)

where p is the initial spin density in €.
The diffusion MRI signal in the domain €2 is the space integral of magnetization, measured at
echo time Tg:

S(g, f) ::/ QM(X,TE)dx. (1.32)
x€E

It is evident that due to the spatial integral, the diffusion MRI signal would lose some information
on the tissue geometrical structures, which poses challenges to microstructure estimation.

The choice of time profiles varies based on the purposes of the experiments. Some commonly
used time profiles (diffusion-encoding sequences) include:

* The pulsed gradient sequence (PGSE), proposed by Stejskal and Tanner[52], with two ideal
rectangular gradient pulses of duration § and opposite in amplitude, separated by a time in-
terval A — ¢:

1, 0<t<3y,
fO)=¢-1, A<t< A+, (1.33)
0, otherwise.

+ The oscillating gradient spin echo sequence (OGSE), proposed by Callaghan[53}[54], replacing
the rectangular pulses in PGSE by either sine or cosine functions with a period 7, during the
pulses §:
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sin(22t), 0<t<9,
ft) = —sin(ZER)) A <t < A4, (1.34)
0, otherwise,
or
cos(@), 0<t <,
ft) =3 —cos(ZER) A <t <A+, (1.35)
0, otherwise.

+ The double PGSE, proposed by[55], combining two PGSE, separated by a time interval ¢,,:

1, 0<t<o
-1, A <t<A+6;

fO)=9-1 Ar+7n <t <A +6+7, (1.36)
1a A1+A2+TnbStSA1+A2+62+Tm
0, otherwise

Figure[T.14]illustrates the time profiles of these sequences. In order to ensure the phase returns
to the initial state after diffusion encoding gradient, i.e. the transverse magnetization at echo time
M(x,Tg) is real, the time profile f(¢t) must satisfy a rephasing condition and an anti-symmetric
condition[56]:

T

ft) =0,
ft)=—f(Tg —1).

Each time profile has its specificity. The most commonly employed sequence type is the PGSE
sequence, proposed by Stejskal and Tanner[52]. This sequence is used in diverse areas such as
tractography, pathology detection, and perfusion studies[43} [57, |58]. Double PGSE sequences are
often used to assess non-Gaussian diffusion behaviors. For instance, they are adept at separat-
ing between intra-axonal and extra-axonal diffusion[59]. OGSE sequences are particularly suited
for probing short diffusion time behaviors due to their oscillating gradients[60], enabling to assess
information about the tissues with short spatial scales.

(1.37)
0

(1.38)

f(t)

1

f(t)

A

f(t)

1A

f(t)

IA

T, 62 A+6 A A+6

Ai+61

Figure 1.14: From left to right: PGSE, double PGSE, sineOGSE, and coseOGSE.

1.3.3 Diffusion MRI signal behavior

In the homogeneous free space case, assuming that the intrinsic diffusion coefficient is Dy, the
Bloch-Torrey PDE has an analytical solution[61]], and the diffusion MRI signal is represented as:
S = Spe~Peb, (1.39)

where Sy is the diffusion MRI signal at a diffusion encoding gradient strength of zero, and b is defined

as
TE u 2
b =~2|lg|l? d ds) . 1.40
& F) =lgl / u(/ 7(s) ) (1.40)
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This quantity is called the b-value, depending on the strength ||g|| and the time profile f(¢), which
reflects the diffusion weighting. The higher the b-value, the stronger the diffusion effects on the
signal.

For the commonly used diffusion-encoding sequences mentioned in the previous subsection,
the expressions of the b-value are:

b(g,d,A) = v?||g||?6% (A — §/3) for PGSE, (1.41)
b(g,d,A, 1) = vzHgHngor coseOGSE, (1.42)
b(g,d,A,7) = «yzHgHQT—:for sineOGSE, (1.43)

b(g,d,A) = v?|g|l* (A1 — 61/3 + Ay — §2/3) for double PGSE. (1.44)

In order to measure the hindered and restricted effects caused by the tissue microstructure, in
a diffusion MRI experiment, the pulse sequence (time profile f(¢)) is usually fixed, while g is varied
in amplitude, and possibly also in direction[62]. When g varies only in amplitude (while staying in
the same direction), one can fit S against the b-value, to obtain a new quantity, called the apparent

diffusion coefficient (ADC)[63]: 5 ®)
S
ADC := b log 5(0) b:OI (1.45)
The ADC can be understood as an effective diffusion coefficient, i.e. the diffusion process on the
domain 2 is similar to the free diffusion case characterized by a diffusion coefficient equivalent to
the ADC.

However, the signal behavior is more complex than this. Figure [T.15 displays the curve of the
signal attenuation (log(S(b)/S(0))) against the b-value. In both high and low b-value regimes, the
curve is deviated from e APt At low b-values, the signal decays faster than expected, due to water
molecules circulating or perfusing in capillary networks. This phenomenon was firstly found by
Denis Le Bihan in the 1980s[57]. It can be used to probe perfusion in capillaries and leads to a
new diffusion MRI technique, known as intravoxel incoherent motion (IVIM) imaging. On the other
side, at high b-values, the signal attenuation becomes slower than expected due to non-Gaussian
diffusion patterns[56].

>

\

(. IVIM

ADC range

Kurtosis effect

Signal attenuation In(S/So)

=
>

b-value

Figure 1.15: Diffusion MRI signals (solid line) as a function of b-values. The dotted line is the ADC
approximation. At low b-values, the deviation (yellow area) is caused by the IVIM effect, and at high
b-values, the deviation is caused by the non-Gaussian diffusion effect (purple area). This figure is
reproduced of the original figure in https://www.mriquestions.com/ivim.html|

To illustrate the capability of diffusion MRI sequences in assessing microstructure, there are
three critical length scales:

* the size of the cellular geometry L;

+ the mean squared diffusion displacement v/2ADCdim ¢, where dim is the dimension, which
characterizes the average diffusion distance during diffusion time ¢;

+ the gradient length, 1/(~v||g||t), which characterizes the phase shift degree during time t.
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To probe tissue microstructure by restricted diffusion, it is essential to guarantee that spins have
enough time to traverse the entire cellular geometries of interest, meaning L/2 < v2ADCdim ¢ and
the phase shift is significant as well.

1.3.3.1 Power-law scaling in the brain white matter

In a recent work of Veraart el al.[64, |65], it was shown that the direction-averaged signals of
tubular structures such as neurites exhibit a certain high b-value behavior:

_ 1
S = Sdug ~ ¢c1— + ¢, (1.46)
fgl=t - © Wb

where S is the direction-averaged signal. This linear relationship eq. is often referred to as the
1/v/b power-law scaling of direction-averaged signals. Figure depicts S for one infinitely long
straight cylinder with varying radii. The sticks represent cylinders with zero radius, where diffusion
only occurs in the axial direction. It is clear that from 1/v/b < 0.03um - us=%/2(or mm - s~1/2), S'is
linear to 1/v/b.
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Figure 1.16: Direction-averaged signal for a single infinitely long straight cylinder with varying radii.
The simulations are conducted using SpinDoctor. The sequence is PGSE(6 = 8ms, A = 19ms). Left:
Opm - us~/2 < 1/v/b < 0.04pum - us—'/2. Power-law scaling for tubular structures. Right: The zoom-
in figure, Opm - us=/2 < 1/v/b < 0.01um - us—'/2. We can observe the deviations due to non-zero
radius.

This direction-averaged signal behavior in the brain white matter at high b-values indicates that
the intra-axonal signal decays at a rate slower than exponential with respect to b, providing the
possibility to make MRI specifically sensitive to the intra-axonal signal. Furthermore, it provides
theoretical justification for representing neurites (axons, dendrites, cellular process) as a collection
of cylinders or sticks in microstructural imaging at high b-values.

However, at ultra-high b-values, deviations from the 1/v/b power-law scaling are observed in
the brain white matter. This could be attributed to (1) perpendicular diffusion within axons and (2)
water exchange between neurites and the extracellular space[66]. Similarly, a breakdown of the
1/v/b power-law scaling is observed in the brain gray matter, reported in the literature[5, |28].

1.3.4 Probabilistic perspective of diffusion MRI

Given that a diffusion process is involved, the Bloch-Torrey PDE can also be interpreted from a
probabilistic perspective, which provides the theoretical background for Monte-Carlo simulation in
diffusion MRI.

Derived from the Bloch equation, during the relaxation process, protons will acquire a phase
influenced by the strength of the external magnetic field. When a diffusion-encoding gradient f(¢)g-
x is applied, the phase acquired by the protons becomes dependent on their spatial positions. Due
to the Brownian motion, the protons will randomly move around thereby altering their positions.
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As a result, the phase they acquire is affected by multiple strength values. Denoting the position of
a group of spins as a function of time x(¢), with their initial position as x, the acquired phase ¢(¢)
can be expressed as:

o(t) = /O vf(t)g - x(t")dt'. (1.47)

The phase is a random variable depending on the position x(¢). At the echo time, the diffusion
MRI signal is represented as the sum of all spins within the domain 2, with their respective acquired

phases:
“+o0

Sg./)=50 |  Pry(9)e'?ds = SoE{exp(1¢(T))}, (1.48)
where Pr, (+) is the distribution of phase at echo time, E{-} is the expectation and Sy is the MRI signal
without applying the diffusion-encoding gradient. Thus, the diffusion MRI signals can be computed
by random walkers' movements inside the simulation domain.

1.3.5 Approximation models

Even for some simple geometries, such as spheres or cylinders, it is difficult to solve analytically
the Bloch Torrey PDE. To be able to link diffusion MRl and the tissue microstructure, the computation
of the diffusion MRI signal is performed through either numerical simulations or approximation
models.

In this subsection, we introduce three approximation models: the narrow pulse approximation,
the Gaussian approximation, and the Karger model.

1.3.5.1 Narrow pulse approximation

The aim of the narrow pulse approximation (NPA) is to solve the Bloch Torrey PDE analytically
during the pulses. Considering a PGSE sequence whose pulse duration is negligible compared to
the duration of the interval between pulses, i.e. § < A, suppose that the water molecules do not
move much during the pulses. Under this assumption, the transverse magnetization is subjected to
the Bloch equation, and at time 4, it can be expressed as

M(x,0) = pe~ 08X, (1.49)

During the interval between the pulses, the diffusion encoding gradient is turned off and the
Bloch Torrey PDE is reduced to pure diffusion equation. The restricted transverse magnetization on
Q, satisfies:

%Mi(x, t) = VDIV M'(x,t), x € Q. (1.50)

It is supplemented by the same interface conditions egs. (1.28) to (1.29) and boundary condition
eq. (1.30), and uses eq. (1.49) as the initial condition.

After A, the second pulse is applied and dephase the magnetization by e=*7°8* again. Therefore,
the magnetization at echo time is

M(x,Tg) = M(x, A)e "8, (1.51)

and the received MRI signal becomes
S = / M(x,A)e™198%x, (1.52)
Q

From the probabilistic perspective, during the first pulse, the protons remain immobile and ac-
quire a phase given by %8>0 where x is the initial position. After that, they will diffuse in the

domain 2 and maintain this phase until the 180 degrees RF pulse is applied and flip the phase to
e—z'yégxo:

S:/ /P(x,A;xo)ew‘sg'(x*xo)dxdxo, (1.53)
aJa
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where P(xg,x,A) is the diffusive propagator at time A. The signal can be considered as the spatial
Fourier transformation of the average diffusive propagator. one can retrieve the diffusive propaga-
tor by dense sampling in the spatial frequency space, as in g-space imaging[67].

Under the narrow pulse assumption, only a pure diffusion equation is needed to be solved. For
some simple geometries, such as spheres or cylinders, closed forms of the diffusion MRI signal have
been derived under this approximation. This approximation is a popular choice in the diffusion MRI
community[|68, 69].

A primary limitation of this assumption is that implementing a PGSE sequence with an extremely
short pulse duration ¢ and high amplitude poses significant challenges experimentally. Besides, the
assumption that molecular movement during the pulses is negligible might not be accurate.

1.3.5.2 Gaussian phase approximation

The Gaussian phase approximation (GPA) assumes that in the diffusion MRI experiment, the
distribution of acquired phases at echo time Pr,(¢) is a Gaussian distribution, with zero mean and
a variance ¢2[70]:

1
P = e (
T (¢) U\/ﬂ
Concretely, the variance is proportional to the mean squared displacement. Under this assumption,
the diffusion MRI signal can be expressed as:

[N
ale

) (1.54)

S = SoE{e*(Te)} = Spe 27" (1.55)

Replacing it with eq. , we have ADC = 102 /b, and the ADC is proportional to the mean squared
displacement.

The first use of this assumption goes back to the 1960s when Robertson used it to recover the
signal for diffusion between two parallel planes[71]. Neumann extended this result to cylinders and
spheres[72]. Later on, the GPA has been extensively used in the analysis of the diffusion MRI signal
in a variety of structures.

The Gaussian phase approximation typically holds true in either the short-time or long-time limit
when b-values are modest, not to accentuate kurtosis effects. In the short time limit, only a small
amount of the water molecules in the vicinity of the interfaces or the outer boundaries experience
restricted diffusion, and their contribution to the accumulated phase can be neglected, while the
majority diffuse as in the free case. In the long time limit, all the particles have fully explored the
domain.

1.3.5.3 Karger model

Karger model[73] is used to characterize membrane permeability in porous media using narrow
pulse approximation with PGSE(d, A), i.e. 6 < A. It divides the domain into two compartments:
(1) the intracellular space, which contains all the biological cells within a voxel, and (2) the extracel-
lular space. The Karger model incorporates the permeability effect through two coupled ordinary
differential equations:

d

25i(t) = =7*[&l*5°ADCiSi(t) — misSi (1) + neSe(t), (1.56)

d

%Se(t) = —?||g||?0°ADC, S, (t) — neSe(t) + 1:Si(t), (1.57)
Si(0) = i, (1.58)
Se(0) = fe. (1.59)

where
+ S; and S, are intra- and extracellular signals;

+ ADC; and ADC, areintra- and extracellular effective diffusion coefficientin the diffusion-encoding
gradient direction;
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* ni = k[L]/[€;
biological cells,

and n. = &|T;|/|Qe|, with k being the permeability, |T';| being the surface of
;| and || being the intra- and extracellular volumes;

< fi =1%|/19 and f. = |Q2.|/|?| are intra- and extracellular volume fractions, their sum equals
to 1.

The received diffusion MRI signal is the sum of the intra- and extracellular signals at T, given by

S = Si(Tg) + Se(Tg) = fle P + (1 — fl)e P, (1.60)
where
2
L. =2 | ADC, +ADC, + et <ADCe — ADC; + L=~ 77i2> L dmme 161
2 (7gl16) (vlIll5) (vlll5)
\ADC; + f.ADC, — D
fi= ! D{fi o : (1.62)

The accuracy of the Karger model is to the first order of §/A. In[62}74], a modified Karger model
is proposed, which eliminates the reliance on the narrow pulse approximation and extends to the
finite pulse case.

1.3.6 Numerical simulation methods

Except for some limited cases, there are no general closed form solutions of the Bloch-Torrey
PDE. The predominant numerical methods to solve the BT equation include:

* Monte Carlo simulations[[75481]. As discussed in the previous subsection, the diffusion MRI
can be viewed from a probabilistic perspective. Then we can compute the signals by the ex-
pectation of a functional of a stochastic process. The stochastic process can be approximated
by many random walkers inside the simulation domain;

+ Finite differences, finite elements[82H87]. After discretizing the simulation domain by a regular
or conforming mesh, the continuous Bloch-Torrey PDE is replaced by a set of linear equations
and we can numerically compute its solution on the mesh node at each time step;

+ Matrix Formalism (MF) representation[70}/88-92]. The idea of the Matrix Formalism represen-
tation is to decompose the magnetization into the eigenbasis of the Laplace operator. The
equation is then reduced to a system of ODEs of the time-dependent coefficients correspond-
ing to the eigenfunctions.

Apart from them, other existing simulation methods include the Lattice Boltzmann method[93],
layer potential theory (boundary element method)[94], etc. In the following subsections, we will
introduce in detail the finite elements method and Matrix Formalism, and its numerical implemen-
tation, which we use in this thesis.

1.3.6.1 Finite element method

The finite element method[51}87,(95} 96| is a powerful computational technique to numerically
solve partial differential equations. It is based on the variational formulation of the equations. By
multiplying a test function w, integrating over the domain €2, and applying the Green's identity, the
weak formulation of the Bloch-Torrey PDE with homogeneous Neumann boundary condition is writ-
ten as[51]

cmpt Nempt Nempt

U Q; U @

i=1 =1 i=1

% / Mwdx = — / D'VM - Vwdx — vy f(t) / g - xMwdx
N,
Q;

(1.63)
+ / D'V M - nwdsy.
Nempt Nempt

I
i=1 j=1
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By discretizing the simulation domain €2 by a set of regular simple geometric shapes {77} (called
finite elements), the continuous solution of the Bloch-Torrey equation can be transformed into a
discretized form M", which is defined on the nodes of the discretized domain. For piece-wise linear
(P1) finite elements, the number of finite elements is equal to the number of nodes. Then M" can
be expanded into a finite dimensional space defined on {7"}. The standard Galerkin method uses
the same functional spaces for the trial and test function, denoted by (y;) Nooas? where N,,o4¢
is the number of nodes. The discretized solution is written as

i=1,..

Nnode
MMx,t) = Y Ti(t)pi(x). (1.64)
1=1

Figure 1.17: P1 linear function ¢ defined on a discretized domain {7} in two-dimensional space.

Replacing eq. (1.64) into eq. (1.63), one can obtain a system of the ordinary differential equations
in matrix form:

M%T = (K +unJ+Q)T, (1.65)

where T = [T}, T5, ..., Tdee]T is the vector of time-dependent coefficients, M and K are the mass

matrix and stiffness matrix in finite element literature, defined as

M, = / Pp(X)pq(x)dx, (1.66)
Q

and

_ {fQ DiV(pIJ(X)VQOQ(X)an (p7 Q) € IiQai € {1, sy Ncmpt}7 (,I 67)

P41 0, otherwise,

where Z? is the set of nodes index belonging to i-th compartment. J is the diffusion-encoding gra-
dient matrix defined as

Ipq = /Qg - Xipp(X)pg(x)dx. (1.68)

Q is the flux matrix. In order to implement the flux matrix, double nodes are placed at all the
interfaces to enable the discontinuity of magnetization. When two finite elements, ¢, and ¢, reside
on the same side of an interface, their integral is positive; when on opposite sides, it is negative. We
refer readers to the papers[51}|95] for the description in detail. Q is defined as

Nempt Nempt

Qp = Z Z Qy,, where

i=1  j=1
/Q” frij op(X)pg(x)dl(x), (p,q) €TZ i€ {1, e Ncmpt} , (1.69)
ij o K frij Pp(X)pq(x)dl(x),  (p,q) Ezjzv JE {17~-~>Ncmpt}a
= .. R 2 . .
r —k" sz‘j (pp(X)qu(X)dF(X), (paQ) EI’i XIj7 (7’7.]) € {17~-~»Ncmpt} ) Z#J’
0, Fij = 0.

By applying a time discretization scheme, eq. (1.65) becomes a set of linear equations and one
can obtain its discretized solution at each time step.
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1.3.6.2 Matrix Formalism representation

The Matrix Formalism representation was derived twenty years ago[70}[88-90], and one recent
numerical implementation of this method for irregular three-dimensional domains is proposed
by[91] |92]. The idea of the Matrix Formalism representation is that on a bounded domain sup-
plemented with Dirichlet, Neumann or Robin boundary conditions, the Laplace operator is com-
plete[97]. Thisimplies that the Laplace eigenbasis can represent any static function or time-dependent
function at one moment on 2. By decomposing the solution of the Bloch-Torrey PDE into this basis,
one can separate the variables dependent on time from those dependent on space and reduce the
equation to a system of ordinary differential equations (ODEs).

Let ¢x(x) and A\, k = 1,. .., be the L2-normalized eigenfunctions and eigenvalues associated to
the Laplace operator on 2 satisfying interface conditions and outer boundary condition above:

—V - D'Vl (x) = \poi (%), x €y, (1.70)

DIV (x) - n;(x) = —DI V) (x) - nj(x), x € T, (1.71)

D'Vi(x) - mi(x) = £ (¢(x) = ¢j,(x)), x € Ty, (1.72)

DIV (x) - n;(x) =0, X €Yy, (1.73)

where ¢ (x) denotes the restriction of ¢ (x) to compartment Q; fori € {1,..., Nepy }. Given these

interface conditions and the outer boundary condition, all eigenvalues are real and non-negative.
One remark is that this set of L?-normalized eigenfunctions is orthogonal since the permeability
coefficient is the same on both sides of interfaces. Assume that the eigenvalues are ordered in
non-decreasing order:

0=XA <A <A< (1.74)

Suppose that Q is connected. If all permeability coefficients are strictly positive, then only the
first eigenvalue will be zero and the corresponding eigenfunction will be the constant function on €.
If all permeability coefficients are zero, then the first N.,,,; eigenvalues will be zero and there will be
Nempt corresponding constant eigenfunctions supported on each compartment. We limit ourselves
to these two cases, and define Ny, as the number of constant eigenfunctions in the basis. Clearly,
Ngroup = 1 in the former case, and Nyyroup = Nempe in the latter case.

When the eigenvalue is sufficiently large, over the length scale of diffusion, the oscillation of the
corresponding eigenfunction will cancel itself out. Thus, we can obtain a reliable approximation of
the diffusion MRI signals by using the first IV,;, smallest eigenvalues.

Let L be the diagonal matrix containing the first IV,;, Laplace eigenvalues:

L =diag (A, A2, ..., An,,,) € RNew*Neig, (1.75)

Denote the vector of Laplace eigenfunctions corresponding to the first N.;, eigenvalues by

B(x) = ($1(x), $2(x), .-, dn.., (%)) - (1.76)

Because {¢x(x)};_, 53 is a complete basis on 2 with the correct interfaces and boundaries
conditions, the magnetization M (x,t) can be decomposed in this basis as

Neig

M(x,t) ~ > Ti(t)pr(x) = B(x) - T(t), (1.77)

k=1

with the time-dependent coefficient column vector

T(t) = (Ti(t), Ta(t). ..., T, (1)) " (1.78)

Substituting eq. (1.77) into the Bloch-Torrey equation, multiplying both sides with ¢;(x) and inte-
grating over (2 gives

a Neig

aﬂ(t) = _Alﬂ(t) - Z Tk(t) ,/Q g X¢k(x)¢l(x)dxu [ = 17 27 BRI 7Neig7 (1 79)
k=1
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because of the orthogonality of the eigenbasis.
Define
W(g) = g. A" + g, AY + g. A%, (1.80)

where g = (¢z, 9y, gz)T is the diffusion-encoding gradient vector and A®, AY and A* are three sym-
metric Ng;q x Neijg matrices whose entries are the first order moments in the coordinate directions
of the product of pairs of eigenfunctions:

n ;:/ rér(x)gi(x)dx, (k1) € {1,2,..., Ny}, r € {z,y, 2}. (1.81)
x€eN

Then the Bloch-Torrey operator —V - DIV + 2y f(t)g - x in the Laplace eigenfunctions basis is given
by the complex-valued matrix
L+ ft)W(g), (1.82)

and eq. (1.79) can be written as a system of ordinary differential equations:

S0(t) = — (L ()W () T0). (1.83)

For the PGSE sequence, define the actions of two pulses and the between-pulse by

H(g, f) = e dL—yW(g)) . o—(A=0)L  —6(L+1yW(g)) (1.84)

and denote .
T(O) = p(/g; ¢1(X)dxv /Q ¢2(X)dxa sy A ¢Ncig (X)dX) € RNEiwlv

the vector of coefficients of the initial condition projected onto the eigenfunctions of the Laplace
operator, where p is a constant scalar. Because constant function is an eigenfunction and all eigen-
functions are L2-orthogonal, the integral of the eigenfunctions over  will be zero except for the
constant functions,

Vi, if ¢;(x) is a constant function,
0, otherwise.

A bi(x)dx = {

The magnetization measured at the echo time is
M(x,Tg) = ®(x)H(g, f)T(0). (1.85)

The signal is computed by integrating the magnetization over (2:

S(g, f; Neig) = /Q o(x)H (g, f)T(0)dx. (1.86)

There are two benefits to using the Matrix Formalism signal representation[91]. First, once the
Laplace eigendecomposition has been computed and saved, the diffusion MRI signal can be calcu-
lated for many experimental configurations at negligible additional cost. This makes it feasible to
use the Matrix Formalism representation as the inner loop of optimization or parameter estimation
procedures. Second, it makes explicit the link between the Laplace eigenvalues and eigenfunctions
of the medium and its diffusion MRI signals. This clear link may help in the formulation of reduced
models of the diffusion MRI signals.

1.3.6.3 The Numerical Matrix Formalism method

In order to numerically implement the Matrix Formalism method[91}(92], one may discretize the
Laplace operator with permeable interface conditions using finite elements, for example, the P1 fi-
nite elements. Q is discretized into a finite element mesh and use P1 basis functions {cpp(x)}pe{ly__’dee},
where N,,.q4e is the number of nodes, to construct the mass, stiffness and flux matrices of finite ele-
ment: M, K, Q € RNneaeXNnode The definitions of these three matrices are given in section

egs. (1.66), (1.67) and (7.69).
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The discretized eigenfunctions of the Laplace operator with permeable interface condition in the
P1 basis functions are expressed as

Nnode

Ge(X) = Y Parpn(x), n €{1,2,..., Nuoac}, k € {1,..., Neig}, (1.87)
n=1

where P € RNnodexNeig and the entry P, ; is the coefficient of eigenfunction ¢y, in the basis function
©n.

By multiplying the P1 basis function on both sides of eq. (1.70), integrating over the whole do-
main  and applying the Green's identity, one can obtain the weak formulation of static Laplace’s
equation egs. to (1.73).

The finite elements discretization described above changes the continuous Laplace operator
eigenvalue problem in egs. (1.70) to to a discrete, generalized matrix eigenvalues problem:
Find the first V¢, eigenvalues A1, Ao, ..., An,,, and corresponding eigenfunctions P, such that

eig

(K+Q)P=MPL, (1.88)

where L = diag (/\1,)\2, .. .,)\Neig) € RNeisxNeis s a diagonal matrix whose diagonal terms are
eigenvalues of Laplace operator with permeable interface conditions.
The integrals of the finite element discretized eigenfunctions are given by

(1.89)

node,1?

/ ®(x)dx = PT M1y
Q

where 1y 1 is column vector of all ones with size N,,,4. and

nodes

T
_ _ T _ Neig,1
T(0) = p/ﬂ@(x)dx_pP Mily, . 1= [\/Ql,...,/QNWW,O,...,O} eRNewl  (1.90)

where Ng,oup IS the number of constant eigenfunctions.
Similarly, with this discretization, the matrices A%, AY and A* in eq. (1.81) can be rewritten as

A" =PTJ P, rec{xy,z2}, (1.91)
where the entries of J" are
Ji, = / rogpprdx, r € {z,y, z}. (1.92)
Q
Define
J(g) = g, J" + gy JY + g.J* € RNrode:Nnode, (1.93)
W (g) can be rewritten as
W= > gA = > gP'JP=PJ@P. (1.94)
r={z,y,z} r={z,y,2}

Substituting L, P and J(g) into H(g, f):

H(g, f) = e SE=W(®) . o= (A=0L  ,=(L+1yW(e)) (1.95)

The Numerical Matrix Formalism diffusion MRI signal at echo time is the following:

SNMF(ga fi Neig) =p (1£,,mde,1MP) H(g, f) (PTM]'Nnudeyl) (1.96)
= p T(0)" H{(g. f)T(0).
When N¢;g = Npode, the full set of discretized eigenfunctions will be used to compute the dif-

fusion MRI signal. In practice, the eigenfunctions associated with large eigenvalues oscillate signifi-
cantly and have little contribution to the physics of diffusion. Using the eigenfunctions whose spatial
scales are on the order of the cell structure and the diffusion distance can yield a good approxima-
tion, and resultin a Neijg < Npode-
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When computing the diffusion MRI signal from the Numerical Matrix Formalism method, Ne;g4
is not chosen arbitrarily. Rather, a length scale cut-off L, will be introduced, that is appropriate for
the geometry and for the MRI experiment. For realistic MRI experimental parameters and brain
cell geometries, the smallest length scale that can influence the diffusion MRI signal is around 1
pm, comparable to the microstructure length/gradient length. Details about the Numerical Matrix
Formalism method and how to choose the length scale cut-off refer to the works[91}/92]. To translate
the eigenvalues ) into length scales, one can use the expression

A =0,

00,

where /D,,./ is the volume averaged diffusion coefficient. Typically, I()) is related to the wave-
length of the oscillations in the corresponding eigenfunction. The number N.;, associated with this
length scale choice is determined by the relation

o0 > l()\l) > > l(/\Neig) >Lg > l()‘Nezg-‘rl) > > 0. (1.98)

Thus, Ne;q or L, are used interchangeably to indicate the truncation of the eigenfunctions for Nu-
merical Matrix Formalism.

Remark 1. It is to be noted that for the same geometry and the same L, when using the Numerical
Matrix Formalism method, the resulting Ne;q is smaller at higher permeability.

Remark 2. Even though eigendecomposition routines can accept an eigenvalue range (length scale cut-
off) as input, it is more computationally efficient to input the number of desired eigenvalues and then keep
those eigenvalues within the length scale cut-off. This is what the SpinDoctor do in practice to compute a
subset of eigenfunctions.

1.4 Diffusion MRI compartment signal models for microstruc-
tural imaging

Because the relationship between diffusion MRI signals and underlying tissue morphology, such
as neurites orientation, volume fractions, neurons size etc., is not yet fully understood, microstruc-
tural imaging until now primarily relies on the concept of “compartmentalization”|3]. This idea sug-
gests that the diffusion MRI signal from one voxel can be viewed as a sum of signal contributions
from different compartments. These compartments can be effectively modeled by parameterized,
simplified shapes, which have straightforward signal expressions under some assumptions. The pa-
rameters of these simplified shapes correspond to morphological parameters. By fitting the signals,
one can identify the optimal combinations of these parameters, corresponding to the estimates of
tissue morphology.

Here, we describe four state-of-the-art diffusion MRI compartment signal models used for the
brain white matter and the brain gray matter microstructural imaging: Neurite Orientation Disper-
sion and Density Imaging (NODDI)[98], Axon diameter and density estimation (ActiveAx)[99], Soma
and Neurite Density Imaging (SANDI)[28] and Neurite Exchange Imaging (NEXI)[100]. NODDI is de-
signed for both the brain white and gray matter imaging. ActiveAx is designed for the brain white
matter imaging. SANDI and NEXI are designed for the brain gray matter imaging.

1.4.1 NODDI

The NODDI model[98] is an advanced diffusion imaging technique developed to estimate the
volume fraction of neurites and the dispersion of neurites orientations in the brain white matter
on clinical MRI scanners. In the brain white matter, the primary component is axons, and somas
are often neglected due to a relatively low volume fraction[66}[101], Based on this fact, the NODDI
model assumes that (1) the brain white matter can be represented by three types of microstructural
environment: intra-cellular space, extra-cellular space and cerebralspinal fluid and (2) there is no
water exchange between them and the water diffusion is within the environment.
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The normalized voxel signals by volume can be expressed as the sum of signals from each com-
partment:
Snoppl = finSin + fexSex + fcseScsk, (1.99)

where fin, fex and fcsg are the volume fraction of each compartment and the sum equals to 1.

The intra-cellular space is modeled by a collection of orientation-dispersed sticks , i.e., infinity
long cylinders of zero radius. The diffusion only occurs in the axial direction of the cylinders and
satisfies the free diffusion assumption. Si, is given by

Sin = / p(n)e o™’ g (1.100)
[nf|=1

where n is the axial direction of the sticks, ug is the gradient direction, b is the b-values, D is the
intrinsic diffusion coefficient and p(n) is the distribution of sticks orientation. In the original NODDI
paper, D is fixed to 1.7 x 10~% s/mm?, estimated from corpus callosum, and p(n) is modeled with
a Watson distribution[102]:
-1
13
pn) =M (2,2 k) ertem? (1.101)
2°2
where M is a confluent hypergeometric function, w is a unit vector, representing the mean orien-
tation, and k is the concentration parameter measuring the extent of orientation dispersion about
.
The extra-cellular space is modeled as an anisotropic Gaussian diffusion compartment and its
signals is expressed as:

Sex = exp <—b/|n|_1p(n) (Do(ug n)? + Dy (1 — (ug- n)2)> dn> , (1.102)

where D, is the diffusion coefficient perpendicular to the axial direction. D, is set with a simple
tortuosity model[103]

Jex
D, = —"—"Dy. (1.103)
+ fin + fex 0
The CSF is modeled as a free diffusion compartment[/104]:
Scsp = e~ PPest, (1.104)

where Dcsr is the diffusion coefficient of CSF. In the original NODDI paper, this coefficient is set to
a fixed value 3 x 10~2 s/mm?, corresponding to estimated value of free water diffusion at the body
temperature.

The complete set of parameters includes 5 independent parameters: p = [fin, fcsr, &, p|7. By
fitting the directional diffusion MRI signals in various gradient directions with multiple b-values (mul-
tiple shells of high-angular-resolution diffusion imaging),

arg mgn || Smeasure — Snopoi (P)]]2;

NODDI can give estimated values of the volume fractions and the orientation dispersion distribution.
In practice, a Rician loss is added to account for the noise. The orientation dispersion (OD) index is
defined as

2
OD = — arctan(1/k). (1.105)
™

1.4.2 ActiveAx

The ActiveAx[99] is another the brain white matter diffusion MRl compartment signal model,
which focuses on the orientationally invariant indices of axon diameter and volume fractions. This
model is based on the Gaussian phase approximation with PGSE sequence PGSE(d, A). For in vivo
imaging, it divides the voxel into three compartments: intra-axonal space, extra-axonal space and
CSF. The normalized voxel signals is expressed as:

Shactiveax = finSin + fexSex + fcsrScsk, (1.106)
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where fin, fex and fcsg are the volume fraction of each compartment and the sum equals to 1.

The intra-axonal space is modeled by a bundle of parallel infinity long straight cylinders with
equal radius Ry, and whose axial direction is set to n. Si, is formulated under Gaussian phase
approximation[72,[105]:

Sy = e—b(Do(Ug'n)2+20cyl(1—(“g'n)2)/((A—5/3)52)) , (1.107)

where Dj is the intrinsic diffusion coefficient, ug is the gradient direction, and ¢y is a coefficient
depending on Ry, time profile and Dy:

00 2D Ct72n(5 —24 267D0afn§ + 2671)004an o efDoafn(Afﬁ) o efDooc?n(A+5)
e T : (1.108)
m=1 0%m (Rcylam - 1)
where a,,, is the m-th root of
Ji(amRey) =0, (1.109)

with Ji(-) is the derivative of the Bessel function fo the first kind, order one.
Similar to NODDI, the extra-axonal space is modeled as an anisotropic Gaussian diffusion com-
partment and CSF is modeled as an isotropic Gaussian diffusion compartment:

Sy = e P(Po(ugm)* +DL (1 (ugm)?)) (1.110)

Scsp = e PPes, (1.111)
The extra-axonal space is set to align with the intra-axonal space. D, has the same expression as
eq. and Dcsr is also fixed to 3 x 103 s/mm?

In practice, n is usually set to align with the principal direction of the best fit diffusion tensor, to
simplify the fitting process. Therefore, the full set of independent parameters is p = [fin, fcsk, Rcy|]T.
By fitting the directional signals, one can retrieve the indices of axon radius R, and volume frac-
tions.

1.4.3 SANDI

The SANDI model[28] is motivated by the deviation of the 1/v/b power-law scaling observed in
the brain gray matter. Morphologically, one key difference between the brain gray matter and the
brain white matter is that the volume fraction of the soma in the brain gray matter is substantial.
Thus, SANDI suggests this deviation is because the diffusion within the soma cannot be categorized
as either anisotropic Gaussian diffusion or isotropic Gaussian diffusion. SANDI introduces a new
compartment and models the brain gray matter as three separate compartments: intra-soma space,
intra-neurite space, and extra-cellular space. The SANDI model is based on the Gaussian phase
approximation as well. Unlike previous two models, SANDI model deals with the direction-averaged

signal, i.e., S = || =1 S(ug)dug. Its signal expression is

lug
gSANDI = fsomagsoma + fneuritegneurite + fECSgECS; (1 11 2)

where fsoma + freurite + fecs = 1. B
The intra-soma space is modeled as one sphere of radius Rsphere and Ssoma is computed under
Gaussian phase approximation with PGSE(d, A)[72}[106]:

Seoma = e 2CsphereD/ (A=3/3)5°Do) (1.113)

9

where Dy is the intrinsic diffusion coefficient and csphere iS a coefficient depending on Rgppere, time
profile and Dy:

oo a;f 5 24+ = Do(A=38) _ Q(e—afnbg(s + e—aanoA) + e—mDo(A+5)
Csphere = § 3 2 20 — 2 ,
= az R?—2 a2, Dy

(1.114)
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where a,,, is the m-th root of

1
amRsphereJé/g (amRsphere) - §J3/2 (amRsphere) =0, (1.115)

J3/2() is the Bessel function of the first kind and J§/2(~) is its derivative.
The intra-neurite space is modeled as a bundle of sticks, similar to NODDI. After taking the aver-
age over diffusion-encoding gradient directions, Sneurite iS given by:

— T
Sheurite = 67’f( V bDneurite)7 (1.116)
4bDneurite

where Dheurite is the longitudinal diffusion coefficient inside the sticks.
The extra-cellular space is modeled as an isotropic Gaussian diffusion compartment:

Skcs = e~ PPecs, (1.117)

where Decs is the scalar effective diffusion constant inside ECS.

The complete set of independent parameters is p = [fsomas freurites fecs, Rspheres Preurite; Decs)T.
By fitting the SANDI model to measured direction-averaged signals, one can retrieve the volume
fractions and an apparent soma radius in gray matter.

1.4.4 NEXI

The NEXI model[100] is a two-exchange compartment model for volume fractions and water ex-
change rate imaging in the brain gray matter. In the brain gray matter, under typical clinical experi-
mental settings, water exchange across the neurite membrane is significant. It extends the classical
the brain white matter diffusion MRl compartment signal models by accounting for water exchange
between compartments. The water exchange process is described using the Karger model under
the narrow pulse approximation.

NEXI proposes that signals within a voxel arise from contributions of two compartments: (1) The
intra-neurite compartment, represented as a bundle of sticks where diffusion occurs only in parallel
direction (denoted by n), characterized by D; ||; (2) the extra-neurite compartment, represented as
an anisotropic Gaussian diffusion compartment, characterized by parallel and perpendicular diffu-
sion coefficients D, | and D, ;. The NEXI model deals with the direction-averaged signal as well. It
assumes that the direction-averaged signal is expressed as:

§:/ K(ug, b)dug, (1.118)
g =1

where K(ug, b) is the signal attenuation, which is given by

K(ug,b) = f'e ®Pi 4 (1 — f')e e, (1.119)
with
__ 1 p _ Y

f'= pr—prUDi+ (1= f)De = DY), (1.120)
, 1 1 207171 aa-p
 =-{D;+D.+————7F | |D. - D; , 1.121
o= 3\ Pt G ™ | [P P (ORINDE (e
D; = D, (ug - n)* (1.122)
D. =D, (ug-n)*+ D 1 (1~ (ug - n)). (1.123)

The independent parameters of NEXI are p = [f, Di7”,De,H,De,L,tw]T, where f is the volume
fraction of intra-neurite space and t., is a temporal quantity to characterize the water exchange
rate.
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Chapter Overview

In this chapter, we present a novel approach to represent the diffusion MRI signals from a perme-
able medium using impermeable Laplace eigenfunctions. This idea is inspired by how the paper[97]
treats surface relaxation. We derive our new method from the Numerical Matrix Formalism method.
Our new method decomposes the transverse magnetization onto the impermeable Laplace eigen-
functions and treats the permeability separately during the signals computation process. Thus it
requires only a single eigendecomposition on the impermeable configuration and re-uses the same
Laplace eigenfunctions to compute the permeable signals, whereas the Numerical Matrix Formalism
method necessitates re-running this process for each permeability value. The new method serves
as a fast simulation approach when adjusting the membranes permeability values, which is ben-
eficial for evaluating diffusion MRI compartment signal models or signal behaviors and designing
microstructure estimation approaches that account for permeability.

We first present our new formulation using impermeable Laplace eigenfunctions and prove the
equivalence between our new formulation and the Numerical Matrix Formalism method in the case
that the full set of discretized eigenfunctions is used. We validate our method through simulations.
When employing a partial eigendecomposition, at lower permeability values (x = 10~° m/s), the rel-
ative errors of our new method are at the same level as the Numerical Matrix Formalism method. As
the permeability increases, the relative errors by the new method using a partial set of discretized
eigenfunctions (with the length scale cut-off L, = 1um) will increase accordingly but remain within
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a reasonable range (less than < 1%). We evaluate the computational efficiency of our new formula-
tion in comparison to the Numerical Matrix Formalism method. In the signal computation step, the
computational time for the new method is close to that of the Numerical Matrix Formalism method,
but most importantly, the new method offers significant time savings during the eigendecomposi-
tion step.

To demonstrate the potential capabilities of our new method in studying the effects of perme-
ability, we conduct a numerical analysis in a porous medium of the impact of permeability on (1) the
diffusion MRI signals and (2) the ADC in the long time limit. The analysis suggests that:

1. The diffusion MRI signal has a mono-exponential relationship with permeability across a wide
range of values (10°5m/s < xk < 10~*m/s), covering typical permeability values found in
biological cells;

2. For a fixed PGSE sequenve, at low gradient strength, the impact of permeability is negligible.
However, at high gradient strength, even a small permeability value would alter the diffusion
MRI signals;

3. With high permeability, the dominant term of the long time limit ADC is ¢t ~%-%, where t is diffu-
sion time;

4. At low and high permeabilities, the long time limit ADC shows different rates of dependence
on permeability.

Moreover, we evaluate a state-of-the-art diffusion MRI compartment signal model accounting
for permeable membranes, the NEXI model, using the new method. To avoid falling into the local
minimum, the NEXI model is fitted by an exhaustive search. The result indicates that the water
exchange time of NEXI is correlated to permeability in a wide range (107°m/s < k <2 x 107 m/s).

This work contributes to (1) fast numerical simulations accounting for permeability, (2) numer-
ical studies on permeability effects in complicated geometries, (3) microstructural imaging model
evaluation.

Compared to the published version[[1], | incorporate two additional subsections: (1) Section
applies the new formulation to analyze the impact of permeability on the time-dependent ADC in
the long time limit; (2) Section|2.4.3|uses simulated signals by our new method, to fit the NEXI model,
showing the correlation between permeability and the water exchange time of NEXI.

2.1 Introduction

Probing cell membrane permeability using diffusion MRl is of research and clinical interest [59,
107,/108]. Additionally, cell membrane permeability can influence the interpretation of microstruc-
ture imaging. As discussed in the previous chapter, many diffusion MRl compartment signal models
currently in use assume negligible water exchange between compartments, the validity of which
remains unknown. Ignoring permeability effects could make micro-structural estimation hard to in-
terpret. For example, a recent work[/100] pointed out that ignoring permeability may under-estimate
neurite volume fraction even at short diffusion times. Therefore, understanding this mechanism is
vital for improving microstructure estimation. Some recent works in the diffusion MRI literature on
tissue micro-structural estimation have begun to take cell membrane permeability into account, and
have attempted to determine the permeability value using diffusion MRI data[59, (100} (109, 110].

In order to estimate the permeability coefficient from diffusion MRI data and validate diffusion
MRI signal models, it is desirable that the Bloch Torrey PDE can be calculated efficiently for many
values of membrane permeability. For simple geometries such as circles, spheres, plates, or one
dimensional segments, analytical expressions of the diffusion MRI signal exist. The permeability
effect is taken into account by a transition matrix[[111] or the Karger model[100] which is a two-
compartment exchange approximation model. These analytical expressions have been used to es-
timate tissue micro-structure and interface permeability[59,|112]. However, for more complex and
realistic cellular geometries, there are no explicit analytical expressions available and numerical sim-
ulations are needed.

The objective of this chapter is to develop a new approach, that facilitates the simulations when
adjusting the membrane permeability value.
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If only a small number of simulations are needed, the three main groups of approaches are (1)
Monte Carlo/Random Walk simulations[78, 80, |81} |113}|114], (2) solving the discretized Bloch Tor-
rey PDE[50, |86} 95, [115] and (3) spectral method, called the Matrix Formalism representation[70,
89,(90], as detailed in the preceding chapter in section[1.3.6] Monte Carlo simulation uses random
walkers to mimic the diffusion process during a diffusion MRI experiment. It randomly places a large
number of spins inside the complex geometry, and let them move according to the diffusion dynam-
ics. To incorporate permeable membranes, the water exchange through interfaces is modeled via
a transit probability Pyans, which is the probability that spins will either cross or reflect when they
arrive at a permeable interface[1164119]. However, as the permeability increases, the time steps
must become smaller (see the reasoning in the paper[116}|119]) to obtain the condition Pyans < 1
which results in a high demand of computational resources and computer memory. The discretiza-
tion of the Bloch Torrey PDE can be used to directly solve for the magnetization in a geometrical
configuration. The computational domain is discretized either by finite elements[50} [115} [120] or
finite differences|[86]. Since it deals with a deterministic equation, incorporating the permeability is
straightforward. The details of finite element method implementation with permeability interfaces
condition can be found in section[1.3.6.11

In a recent work, Agdestein et al. presented a numerical implementation of the Matrix Formalism
for permeable interfaces[92], called the Numerical Matrix Formalism method, where the permeabil-
ity interface conditions are incorporated in the Laplace eigendecomposition step.

In this chapter, we aim to extend this work and present a new formulation, where the diffusion
MRI signal of a permeable medium is computed using only impermeable Laplace eigenfunctions.
We prove that the new method produces the same diffusion MRI signal as the original Numeri-
cal Matrix Formalism method, under the condition that the full set of eigenfunctions is used. We
show the numerical convergence of the new method when the number of eigenfunctions used is
much smaller than the full set. We also show the improved computational efficiency of the new
method if simulations using many permeability coefficients are needed. Our approach means that
the same basis (the impermeable set) can be used for all permeability values, which reduces the
computational time significantly, enabling the study of the effects of the permeability coefficient on
the diffusion MRI signal in the future.

2.2 New formulation using the impermeable Laplace eigenfunc-
tions

In this section, we use the same geometry configuration as described in section and the
Numerical Matrix Formalism refers to section[1.3.6.3

For the sake of simplicity, we use the PGSE sequence in this chapter to demonstrate the equiva-
lence of our new method with Matrix Formalism. However, extending the results to other types of
sequences is straightforward.

The main objective of this work is to derive a new formulation of the Numerical Matrix Formalism
method for permeable interfaces, using the eigenvalues and eigenfunctions of Laplace operator
from the impermeable case.

Suppose that all the interfaces are impermeable, then the discretized Laplace eigenvalues prob-

lem in eq. (1.88) becomes:
KI:)imp = M-PimpLimp~ (2.1)

The subscript ‘imp’ indicates these matrices are from the impermeable case. We now want to use
these two matrices Limp and Py, as well as

Winp(8) = 9o P Prmp + 9y P J Y Pimp + 9: P J* Pnp (2.2)
= P J (&) Pinp, (2.3)

to obtain the diffusion MRI signal in the presence of permeable interfaces.

Assume that for i # j,(i,5) € {1,...,Ncmpt}2, the interfaces are permeable: x;; > 0, and
denoting the corresponding flux matrix by Q. We recall that the flux matrix @ for the permeable
case is defined by eq. (1.69). We define a new matrix,

Qproj = PpQPimp € RYeioNeio, (2.4)
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the projection of the flux matrix onto the eigenfunctions of the Laplace operator with impermeable
interface conditions. Adding Q,.; to the diagonal matrix Lin,, we define a new matrix (in general
not diagonal)

Lproj = Limp + Qprojv

as well as
Hproj(gaf) = e—ﬁ(Lprnj—’L’YVV\mp(g)) . 67(A75)Lproj . e—(s(LpToJ"l‘l’YWmP(g)). (2_5)

Theorem 1. In the presence of permeable interfaces, the expression
S"(g, f1 Neig) = p(IN, 0o 1 M Pimp) Hproj (8. f) (PipM 1y, ,,,.1) (2.6)
= pTimp (O)THproj (gv f)Timp(O),
where

T
Timp(0) = [\/ml\,\/m2 ,...,./|QNW|,0,...,0] € RVeios!, 2.7)

is exactly equal to the diffusion MRI signal expression from the Numerical Matrix Formalism method, if
the full set of the eigenvalues and eigenfunctions is used for both methods.

Proof. For a permeability matrix Q € RNnode:Nnoae et Lye, € RNeio:Neis and Ppe, € RNVnode:Neia pe
the eigenvalues matrix and the eigenfunctions matrix, respectively,

(K + Q)Pper = MPpeerer~ (2.8)

The subscript ‘per’ indicates these matrices are from permeable case. Then the H matrix for the
permeable case is

Hper(gyf) = e—(S(Lper—’L’YVVper(g))e—(A—5)Lpere—5(Lper-‘y—z'yVVper(g))7 (29)
where
Wper(g) = ij;rJ(g)Ppera

and the signal is
S (g, f: Neig) = (1,1 M Prer) Hoer(g, f) (PoerM1n,,,..1) - (2.10)
We recall that all the eigenfunctions are L?-normalized and orthogonal, so that

ProMPrp = I, (2.11)
P M Pper = Iy, (2.12)

where Iy, is the identity matrix, thus, multiplying Piﬁp on both sides of eq. and PpTer on both
sides of eq. gives

Limp = Pyrp K Pimp, (2.13)
Lper = PF,)I(;r(K + Qper)Pper. (214)

We define a new matrix C € RNeis-Neis, projecting the permeable Laplace eigenfunctions onto
the impermeable Laplace eigenfunctions:

C = P M Pye. (2.15)

Knowing that the mass matrix M is real, symmetric and positive-definite, we apply the Cholesky
factorization, M = RT R. Under the condition that Neig = Npode SO that Prp and Ppe, are full rank
square matrices, we have

Pro(R'R)Pip = In.,, & (RPmp)(PrpR") = In, ... (2.16)

PpI;r(RTR)PPer = INeig e (RPper)(P[;I(;rRT) = [Nnode'
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Then, we can derive that C is a unitary matrix:

C"C = Pjo M Prp Py M Prer

= PL(R"R)PpPL,(R"R) Poer (2.17)
= Pyo. R"(RPmp P, RT) RPye,
=In,,-
In addition, we can derive that
Pper = Rmpca (2~18)
Rmp = PperCT7 (2.19)

because

PiopC = Prp Pl M Poer
< RPnpC = RPy, ImpRTRPper
& RPnpC = RPye
& PnpC = Pper
since R is invertible.

Combining eq. (2.13), eq. (2.74),eq. (2.18),eq. (2.79) we have

Lproj = Limp + Qpr()j Pmqu(K + Qper)-Pimp = Cij;r(K + Qper)PperCT = CLperCT7 (2-20)

and similarly,

Winp = PiroJ (8) Pinp = C P J (8) Pper CT = CWpe  CT. (2.21)
Then the matrix exponentials satisfy

e (A=) Lproj _ e—(A—é)CLperCT _ Ce—(A-&)LperCT7

6—5(Lprnj+WVVimp(g)) — 6—5C(Lper+1’YWper(g))cT: C"e_é(LPE"‘H'YVVper(g))C"T7

because CCT = I. Thus,

H

pmj(g,f) = e_‘s(LPTOJ'_"YVVimP(g)) e~ (BA=8)Lyroj .e—é(Lproj"'""/VVimp(g)) (2.22)

— 0675(L99f 'VYWPET(g))CTCe A 6 LperCTCe*(s(Lper‘i’Z"/Wper( ))CT
= CHper(ga f)C
Substituting eq. (2.18) eq. (2.22) into eq. (2.6), we obtain the equivalence:

SNY(g, fi Nuode) = p (1R, 1M Pinp) Hproj (8, ) (PrpM1n,,,..1) (2.23)
= P18, puet M (Pimp - C) - Hper(g, f) - (C7 - Pp) - M - 1y
=p (1N,,wd€,1MPper) Hper(ga f) (PpT;erN,wde )
= SNMF(ga f; Nnode)~

Thus, when the full set of the discretized eigenfunctions is used, the new method using the imper-
meable eigenfunctions gives the same signal as the original Numerical Matrix Formalism method
that uses permeable eigenfunctions.

Nnode,

node,l

O

2.2.1 Choice of number of eigenfunctions

As with the original Numerical Matrix Formalism method, the new method will not, in practice,
require the use of the full set of eigenfunctions, and we will again have N¢;; < Npoge, With the
choice of N.;, determined by the length scale cut-off L,:

00> 1(\) > - > 1(An.,,) > Ly > l(An,,11) > --- > 0. (2.24)
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Remark 3. /tis to be noted that for the same geometry and the same L, when using the new method,
the resulting N.q is the same no matter what the interface permeability, and it is usually somewhat larger
than the N, of the Numerical Matrix Formalism method (with the same value of L;).

Remark 4. Any basis set, when it is complete, can represent any discretized solution in the finite elements
basis. We used P1 finite elements, so any basis set is complete that has N,,,q. elements. This means, the
permeable Laplace eigenfunctions set and the impermeable Laplace eigenfunctions set are both sufficient
to represent any PDE solution if Neig = Npode-

The discretized solution of the Bloch-Torrey equation, permeable or not, is usually piece-wise smooth
on each compartment and so should be able to be represented by the smooth eigenfunctions in the im-
permeable basis. The discretized solution should not need to be represented by very oscillatory eigen-
functions, this means the vast majority of the oscillatory eigenfunctions in the impermeable basis are not
needed. Thus, one can just keep the relatively smooth eigenfunctions in the impermeable basis and they
are enough to represent any reasonable solution for the permeable problem. In short, for a discretized
finite element solution of the Bloch-Torrey equation, one never needs to take N.;, to be anywhere close
to Nypode in any basis.

2.3 Numerical results

In this section we conduct a numerical validation of the new method. The generation of the
computational geometries, the discretization into finite elements, and the numerical computation
of the Laplace eigenfunctions in the finite element space were implemented into the SpinDoctor
toolbox[87].

The simulations will be performed on a quasi-two dimensional multi-compartment geometry,
denoted by Qf, shown in fig. containing 20 axons. The axons are randomly placed and then
wrapped by an extra-cellular space (ECS). The ECS is not a rectangle in order to keep the axons
closely packed. The outer boundary condition is set to be impermeable, i.e. homogeneous Neu-
mann boundary condition. The axon radii vary between 1um and 3um. The dimension of the whole
geometry is 34um x 29um x 1um. The diffusion coefficients are set to be the same for all compart-
ments: D; = Dy = 2 x 1073 mm?/s for i € {1, Neype}. The initial spin density is set to p = 1.0.
SpinDoctor creates the geometrical configuration and the surface triangulation, then pass the sur-
face triangulation to TetGen[121] to create a volume mesh. The finite elements mesh contains
Npode = 3455 nodes and 6673 elements.

457 " -0

x

Figure 2.1: Finite element mesh of the geometry Q. It contains 20 randomly placed cylindrical axons,
wrapped in the extra-cellular space (ECS). The radii of all axons are between 1um and 3um and the
height of all compartments is 1um. Dimension of the whole geometry is 34um x 29um X 1um. The
geometry is generated by SpinDoctor and the finite elements mesh is created by Tetgen[121]. The
mesh contains 3455 nodes and 6673 elements.

In the literature, the experimentally measured permeability coefficient  in biological cells ranges
from 10~ m/s to 10~* m/s[122], in particular, k = 10~5 m/s for axonal membranes without myelin
sheath[37]. Therefore, our simulations are performed using permeability coefficients up to k =
1074m/s.

In this section, unless specified, we apply PGSE sequence for the simulations. The average dis-
placementin free diffusion is v/2 dim DyTg, where dim is the dimension. In order to limit the amount



2.3. NUMERICAL RESULTS 45

of spins hitting the outer boundary and reduce the effects from the interaction of spins with the im-
permeable outer boundary, we keep the displacement to less than half of the geometry diameter,
obtaining that T < 20ms. Thus, we limit § + A < 20ms in the simulations on QL. The gradient
strength in in-vivo experiments does not exceed 1000 mT/m[123], so we set the highest simulated
g-value to 1000 mT/m.

2.3.1 Computing the reference solution

For the geometry Qf, we do not have the analytical solution of the diffusion MRI signal. We pro-
pose using the Numerical Formalism method with the full set of permeable Laplace eigenfunctions
as the reference solution. We have compared the reference solution to the finite elements solution
of the discretized Bloch-Torrey PDE for ||g|| = 1000 mT/m, PGSE(10ms, 10ms) across all gradient
directions and verified that the maximun relative differences between them are less than 0.002%.
Thus, we estimate that the signals computed using the Numerical Matrix Formalism method with
the full set of permeable eigenfunctions to be accurate to 0.002% from the true signal.

The reference solution is set to be the Numerical Matrix Formalism solution using the full set of
permeable Laplace eigenfunctions i.e. Ne;g = Npode = 3455 eigenfunctions for o,

SR (g, ) = S"MF(g, £ Npode)-

To avoid the dependence of the results on the gradient direction g, we average the diffusion MRI
signal over 18 gradient directions, uniformly distributed on a unit semicircle in the x — y plane:

— 1 1 18 d d T
Sl Noso) = g 2 S Fi ) a = il cos (g ) sin (55 ) | . 229
d=1

normalized by the total volume. Figure[2.2]depicts the reference signals as a function of the g-value
llgll. The simulations are performed for g-value from 0 mT/m to 1000 mT/m. The signals S have
been normalized by the total volume so their maximum value is 1. We observe that diffusion MRI
signal decays faster in the presence of more permeable membranes.

k =1e-05m/s k = 5e-05m/s 1 £ =0.0001m/s

PGSE(6=A=5ms) PGSE(5=A=5ms) PGSE(6=A=5ms)
L == == PGSE(§=A=7.5ms) L = == PGSE(§=A=7.5ms) L == === PGSE(§=A=7.5ms)
0974 PGSE(5=A=10ms) 0.9 \ PGSE(§=A=10ms) 0.9 \ PGSE(5=A=10ms)

O P PSS O PR SSS O P PSS
PRSP PRSP PRSP

g-value [mT/m] g-value [mT/m] g-value [mT/m]

Figure 2.2: Normalized direction-averaged diffusion MRI signals as a function of the g-value ||g||.
These are the reference solutions computed using the Numerical Matrix Formalism method with
the full set of permeable Laplace eigenfunctions, i.e., Ne;qg = Nyode = 3455 eigenfunctions for (18

2.3.2 Validation of the new method

We have shown in Theorem 1 that the new method yields the same signal as the Numerical
Matrix Formalism method if the full set of basis functions is used. However, since in practice, Ne;y <
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Nhpode, We will now show the accuracy of the two methods for fixed values of the length scale cut-off
L

s
In fig.[2.3} we show the relative errors produced by the two methods compared to the reference
solution. The relative error is defined as:

1S(lgll, £; Neig) — S (g, £)]
5 (Il £)

First, we see that the relative errors of the original Numerical Matrix Formalism method where the
length scale cut-off is Ly = 1um are under 0.03% for all the simulated sequences. The number of
the eigenfunctions differs with permeability: when x = 107°m/s, 5 x 107°m/s, 107*m/s, Ne;; =
538, 535, 532, respectively. Second, for the new method, with a length scale cut-off of Ly = 1um,
resulting in N.;; = 538, the relative error is under 1.5% for all the sequences. The relative error
increases as permeability increases, as the g-value || g|| increases, and as the diffusion time increases.

eret(%) = 100 x . (2.26)
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Figure 2.3: First row: Relative errors of direction averaged signals of the Numerical Matrix Formalism
with the length scale cut-off Ly = 1um (x = 107" m/s,Ne;y = 532; £ = 5 x 107°m/s,N,;, = 535;
k = 107°m/s,N.;, = 538). Second row: Relative errors of direction averaged signals of the new
method with the length scale cut-off Ly = 1um (N.;q = 538). The relative errors are in percent.
Simulations are performed on Q?, by SpinDoctor. Left: x = 10~°m/s; Middle: k = 5 x 1075 m/s;
Right: k = 10~*m/s.

Now we study the convergence behavior of the new method as L, decreases (N.;4 increases) and
compare it to the original Numerical Matrix Formalism method. The simulated gradient direction

is fixed in [v/2/2,v/2/2, O]T and we use the longest sequence PGSE(10ms, 10ms), which yields the
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biggest errors. We define the normalized error between the computed signal and reference signal

to be -
€abs = ‘S(ga fa ]\]P,ig)(2| S (ga f)| . (2.27)

Itis a normalized error because S/|Q?| is always bounded by 1. Note this is not a relative error, we do
not divide by SREF, because we do not want the error to increase due to the decrease in the signal
itself, we simply want to show the convergence of the signals.

Figure[2.4shows the normalized errors of the diffusion MRI signals computed by the new method
and by the original Numerical Matrix Formalism method, compared to the reference solution. The
x-axis gives N.;,. The two vertical lines indicate where the truncations occur for L, = 2um and
Ls = 1pum in the impermeable case:

Ly = 2um, Ny = 193,
Ly = 1um, Ny = 538.

As more eigenfunctions are used, the errors are reduced for both the new method and the original
Numerical Matrix Formalism method. When x < 10~°m/s, the new method converges at a simi-
lar rate as the original Numerical Matrix Formalism. At the higher permeabilities, the new method
converges more slowly than Numerical Matrix Formalism, but it is clear that if we are interested 2
or 3 digits of accuracy, which is reasonable given that the diffusion MRI signal noise is at least of
order 0.01, using the length scale cut-off of L, = 2um is sufficient. As far as we know, there is not
an analytical way to relate the truncation size and the signal error. The truncation is defined on the
impermeable Laplace eigenfunctions, whereas the signal is related to the operator including the
term Ig - « as well as the permeability. We observe that though the errors of the Numerical Matrix
Formalism method increase with lower permeability due to the large variations of the permeable
eigenfunctions around the interfaces, the errors of the new method increase with higher perme-
ability due to the fact that the new method uses impermeable eigenfunctions for all permeability
values.

g-value = 50mT/m, PGSE(10ms,10ms) g-value = 200mT/m, PGSE(10ms,10ms)

i i or i
i — r=5e-6m/s k=1e-4m/s
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I 1
I = k=5e-6m/s w=1e-4m/s
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Figure 2.4: Normalized signal errors of the new method (in solid line) and the Numerical Matrix
Formalism method (in dashed line), compared to the reference solution, as a function of N.;,. The
two vertical lines indicate where the truncations occur for Ly = 2um (N = 193) and Ly, = 1pm

(Neig = 538). The simulations are performed on Qf, with gradient direction fixed in [v/2/2,v/2/2, O}T
and the sequence PGSE(10ms, 10ms). Left: g-value= 50 mT/m; Right: g-value= 200 mT/m.

2.3.3 Computational time

An advantage of the new method to compute the diffusion MRI signal is the savings in com-
putational time. To show the efficiency of the new method, we compare the computational times
of the Numerical Matrix Formalism method and our new method on a bigger geometry (@zons200
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that contains 200 cylindrical axons enclosed in the ECS, as shown in fig. Its dimensions are
98um x 118um x 1um and there are 62145 elements and N,,,q. = 32023 nodes in total, of which

16924 nodes in the ECS. The gradient direction of simulations is fixed in [v/2/2, v/2/2, O}T. Two PGSE
sequences PGSE(5ms,5ms) and PGSE(10ms,10ms) and four g-value = [50, 200, 500, 1000] mT/m
are used. The simulations are performed with 3 different values of N.;; = 2000, 4000, 5000 (we
fixed N, rather than L, to make easier comparisons of computational time). All the simulations
are performed on a computing server with 20 cores of frequency 2.4 GHz, and RAM of 256GB. The
operating system is Rocky Linux 8 and the Matlab version is R2021a.

y -40 -50 X

Figure 2.5: Finite element meshes of the geometry Q3°s2%0 for the computational times compari-
son. The geometry contains 200 randomly placed cylindrical axons, whose radii vary between 1um
and 3um, and one tightly wrapped ECS. All compartments are 1um in height. The dimensions are
98um x 118um x 1um. This mesh has 32023 nodes and 62145 elements in total. Left: 200 axons
compartments; Right: ECS compartment, which contains 16924 nodes and 34258 elements.

Numerical Matrix Formalism with the full set of eigenfunctions is set to be the reference solution.
Both Matrix Formalism and the new method compute the diffusion MRI signal in two steps: Laplace
eigendecomposition and matrix exponential computations. The first step is independent of the
encoding sequence settings, involving only sparse matrices of size Nyo4e X Nnode- The second step
involves dense matrices of size Nc;; x Nejiq. In practice, we have Ne;q < Nyode.

Table[2.7]shows the computational times of the Laplace eigendecomposition by the new method
and the Numerical Matrix Formalism method. The eigenmodes are computed by the Matlab built-in
function ‘eigs’, which computes the first smallest N.;, eigenmodes by Lanczos iteration. To obtain
the full set of the eigenmodes, the Matlab built-in function ‘eig’ can be used to conduct a complete
eigen-decomposition. The computational complexity of ‘eig’ for the generalized eigenvalue problem,
Ay = By), is O(N3_,.) in theory, and O(N?2:376) in practice using the Coppersmith and Winograd

node
algorithm[124]. The computational complexity of ‘eigs’ is O(J\fm-gl\f2 + NnodeNfig), the first term

node
is due to the computation of B\ Ay at each Lanczos iteration and the second term is due to the
orthogonalization of the new Krylov vectors at each Lanczos iteration[125]. In fact, because A and
B are sparse matrices, the computation of B\ Ay is O(N¢;g Npode) rather than O(N,;,N?2,,.), so the
dominant term of the computational complexity for ‘eigs’ is O(Nm,deNfig). We can see in the table
that going from N;, = 2000 to NV.;, = 4000, the computational times increase by 4 in all the rows.
The original Numerical Matrix Formalism method needs to recalculate permeable Laplace eigen-
functions when the permeability changes. On the contrary, the new method only computes the im-
permeable Laplace eigenfunctions once. In addition, the impermeable Laplace eigendecomposition
can be achieved compartment by compartment. The computational complexity of the permeable

. " . 2.376 sy 2 . » .
eigendecomposition is O(N2:376) (‘eig) or O(NnodeNeig) (‘eigs’), compared to the impermeable case,

node

where it is O(va“"’" Ngggge) (‘eig’) or O(Z?{C’"“ (Ni,nodeNfig)) (‘eigs’), Ninode being the number of
finite elements nodes in compartment 4. In table we can see that for the same N.;,, the im-
permeable eigendecomposition is two times faster than the permeable eigendecomposition. If we
consider the simulation of three permeability values, using the new method, the full set eigende-
composition can be done in 141 seconds, whereas the Numerical Matrix Formalism method takes

301 seconds at N¢;q = 2000.
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Computational time (seconds)
Neig = 2000 | Njg = 4000 [ Ny, = 5000 [ Full set (N, = 32023)
New method

Total 41 [ 7 [ 2718 ] 141
k(m/s) Numerical Matrix Formalism method

107° 99 419 646 723
5% 107° 100 389 518 727

1072 102 353 625 734

Total 301 1161 1789 2184

Table 2.1: Computational times of Laplace eigen-decomposition at different permeabilities for
(@xons200 given in seconds. The full set contains N,,q. = 32023 nodes.

On the question of whether to call ‘eigs’ or ‘eig’ to compute the eigenmodes, we remind the
reader that the theoretical complexities are O(NnodeNjig) and O(N2:375), respectively. It is clear
that, at some point, as N, increases, it would be more computationally efficient to compute the
full eigendecomposition instead of a partial eigendecomposition. Some further considerations are
that (1) the ‘eig’ implementation in Matlab is well optimized for parallel computing using all the com-
puter’s cores, unlike the ‘eigs’, (2), the ‘eig’ function in MATLAB only accepts dense matrices whereas
the ‘eigs’ function allows the designation of sparse matrices so the matrix-vector multiplications are
faster and take less memory. In summary, ‘eigs’ is useful when: (1) Only a small number of eigen-
modes (for example, less than 15%) are needed, such as for simple geometries, longer diffusion
times, lower gradient amplitudes; (2) When the computer RAM is limited. For ‘eig’, the input and
output matrices are full, when N,,,q. = 32023, ‘eig' requires 22.9GB of RAM. In contrast, the inputs
of ‘eigs’ are sparse matrices, when N, 4. = 32023, ‘eigs’ requires 1.2GB of RAM. For other cases,
using ‘eig’ and selecting a subset of eigenmodes is preferred.

Table[2.2] shows the computational times of the matrix exponential computations in one gradi-
ent direction with different settings. In order to accelerate the computation, instead of computing
the matrix exponential explicitly, we use the algorithm ‘expmv'[126], which computes the action of
matrix exponential on a vector, without explicitly forming the matrix exponential. The number of
eigenfunctionsis setto N;q = 2000. With this choice, the errors of the normalized signals of the orig-
inal Numerical Matrix Formalism method is less than 0.0008, and the error of the new method is less
than 0.0013. We can see from the table that for the original Numerical Matrix Formalism method,
the computational time is between 0.7 to 4.7 seconds. For the new method, the computational time
is between 0.8 and 3.8 seconds. Thus, the two methods are similar in the signal computational step,
however, the new method offers substantial computational time advantage over the original Nu-
merical Matrix Formalism method due to the savings in the eigendecomposition step. In the table,
we are also include the cost of solving the Bloch-Torrey PDE directly using finite elements rather
than computing eigenfunctions, labeled “FE”, clearly, this approach is much more costly than either
of the two eigenfunctions based methods.

2.3.4 Application to other diffusion MRI sequences

Our methodology can be applied to other sequences, such as double PGSE[55], OGSE[54], flow
compensation sequence[127] and long-narrow pore imaging sequence[128]]. One should represent
or approximate the sequence profile f(t) as a piece-wise constant function defined on n intervals:

n—1

FO =" ), (2.28)
1=0
where {to,...,t,} is a strictly increasing sequence between 0 and T and 1y, 4, is the indicator

function on the interval [t;, t;11].

We illustrate the application of our method to the long-narrow pore imaging sequence[/128],
which consists of two rectangular pulses of duration Trd; and Tz d9, of gradient strengths —||g|| and
llgl|d1/d2, respectively, separated by a time interval T (1 — §; — d2), for which the temporal profile
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NMF New method FE
k6 AT gl [[Time] s Time [ eaps Time || SREF
50 0.9 | 0.000004 0.8 | 0.000001 16.2 0.99
5 5 200 1.2 0.00006 1.1 0.00002 34.0 0.82
500 1.4 0.0002 1.6 0.00008 68.9 0.43
10-5 1000 1.8 0.0006 2.3 0.0001 117.3 || 0.22
50 1.1 0.000008 1.3 | 0.000008 22.1 0.91
10 | 10 200 1.2 0.00007 1.5 0.00009 53.1 0.43
500 1.8 0.0003 23 0.0002 106.9 || 0.24
1000 3.5 0.0008 3.8 0.0001 199.0 || 0.10
50 0.7 | 0.000004 0.8 0.00002 16.6 0.99
5 5 200 0.9 0.00005 0.9 0.0003 34.0 0.81
500 1.4 0.0002 1.4 0.001 67.2 0.38
5 % 10-5 1000 2.1 0.0004 1.8 0.001 106.6 || 0.16
50 1.2 | 0.000007 1.1 0.0002 24.6 0.90
10 | 10 200 1.4 0.00005 1.1 0.001 59.2 0.35
500 23 0.0001 2.2 0.002 103.7 || 0.14
1000 3.7 0.0003 2.6 0.0009 184.8 || 0.05
50 0.9 | 0.000004 0.8 0.00007 16.0 0.99
5 5 200 1.2 0.00005 1.0 0.0009 37.7 0.80
500 1.7 0.0002 1.3 0.003 70.0 0.33
10-4 1000 2.7 0.0002 1.7 0.0003 94.6 0.12
50 1.4 | 0.000007 1.0 0.0005 24.9 0.90
10 | 10 200 1.7 0.00004 1.2 0.004 56.6 0.28
500 2.6 0.00006 1.7 0.0003 103.9 || 0.08
1000 4.7 0.00008 3.1 0.0013 179.9 || 0.02

Table 2.2: Computational times and normalized signal errors of the Numerical Matrix Formalism
(NMF) method and the new method in Q3°"s200 given in seconds. The number of eigenfunctions
is Nei, = 2000. The encoding gradient direction is fixed in [v/2/2,/2/2, O]T. The units are k:m/s,
d:ms, A:ms and ||g||: mT/m. We also include the cost of solving the Bloch-Torrey PDE directly using
finite elements rather than computing eigenfunctions, labeled “FE”, and the value of the reference
signal, labeled “SREF",

Jpore(t) is
-1, 0<t<Tgd,
fpore(t) = 51/52, TE(l — 52) <t< TE, (229)
0, otherwise,

where §; > 0 and §, > 0 are two dimensionless positive time coefficients, with d; + d2 < 1.
We perform the simulations on 7, with long-narrow pore imaging parameters below:

« Ty =20ms, 6; = 1 — d3 and d2 = [0.5,0.2,0.1,0.05];
+ g-values from 0 to 200 mT/m;
+ 18 gradient directions uniformly distributed on a unit semicircle.

We show in fig.[2.7]the simulated reference signals. We note that when d, = 0.5, we are in the
PGSE case. When 4§, # 0.5, while this sequence meets the rephasing condition, it does not satisfy
the anti-symmetric condition. Therefore, we see that the signals have a non-zero imaginary part.
This extra phase information can serve to infer pore size information[129].

We show in fig. [2.8| the relative errors between the new method with the length scale cut-off
L, = 1um (N.;g = 538) and the reference signals. The errors in the real part of the signal are
between 0.01% and 1%, the errors in the imaginary part of the signal are between 2% and 3%.
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Figure 2.6: Time profile of long-narrow pore imaging sequence. The first pulse has longer duration
and an amplitude of 1. The second pulse is shorter in duration but has a higher amplitude, given by
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diffusion MRI signals using the long-narrow pore imaging sequence, with (51 = 1 — §; and Ty =
20ms). Simulations are performed on Q, by SpinDoctor. Left: k = 107°m/s; Middle: x =

g-value [mT/m]

10~°m/s; Right: k = 10~*m/s.

g-value [mT/m]

5 X



52CHAPTER 2. PERMEABLE MATRIX FORMALISM REPRESENTATION USING IMPERMEABLE LAPLACE EIGENFUNCTIONS

x =1e-05m/s

k= 5e-05m/s

+ =0.0001m/s

0.012 +
——— LNPI{5,=0.5) ——— LNFI[3,70.5) ——— LNPI(4,=05) ;’
= = = LNPI{5,=0.2) 0.8 = = =LNPI[4,202) 0.8 = = =LNPI(§,=0.2) ;

0.01 LHPI(3,=0.1) LMPI{4,=0.1) LNPI(5,=0.1) ..p'
0@ ’ == LNPI(4,=0.05) B‘? 071 === LNFI(5,=0.05) '6‘"? 071 l==—== LNPI(5,=0.05) '."
5 5 3 /
E 0.008 E 0.6 E 0.6
2 2os 2os
T 0.006 & B
2 204 204
© b= T
& 0.004 Eo3 _ &os
3 3 g
2 r 0.2 e g 02
0.002 iR
0.1 P 0.1
0 sl 0
50 100 150 200 0 50 100 150 200 0 50 100 150 200
g-value [mT/m] g-value [mT/m] g-value [mT/m]
x =1e-05m/s k =5e-05m/s x =0.0001m/s
35 35
— LNPI(&ZDD 5) — LNPI(JZDD.SJ — LNPIMZDD 5)

' = = =LNPI(5,0.2) I’, = = =LNPI(5,0.2) 1 = = =LNPI(5,=0.2)
§ l'. LNPI(5,=0.1) 3'? 3 A LNPI{3,=0.1) § 3 ,l'l LNPI{4,=0.1}
= b |me——— LNPI(3,=0.05) = P P LNPI{3,=0.05) = 1 |m— LNPI{3,=0.05)
151 1 o ! o '

@ [ & 25[ 'I & 25 r]l
2 | g |0 2 |0
© 1 ‘| w2 'I m 2| 1,
S o4l N A
T P = N + N
T : : 8 1.5 : .] T 1.5 : l|
1 ' 1h &0
050 fi 5 |a A
g iy g e A
E iy Eospi M Eospr o™ -
7\ e RS s
D lr-,_“___ ------------- 0 ¥ ST D fr | L,
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

g-value [mT/m]

g-value [mT/m]

g-value [mT/m]

Figure 2.8: Relative errors of the real part (first row) and the imaginary part (second row) of the
direction averaged signals of the new method with the length scale cut-off Ly = 1um (Ne;q = 538).
The relative errors are in percent. Simulations are performed on Qf, by SpinDoctor. Left: x =
1075 m/s; Middle: kK = 5 x 10~°m/s; Right: k = 10~* m/s.
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2.4 Permeability models evaluation

To illustrate a way that the new method we developed in this paper can be used to study perme-
ability, in this section, we apply the proposed method to evaluate several models that take account
of permeability. Concretely, we will study (1) a mono-exponential model on diffusion MRI signals
regarding permeability and (2) ADC in long time limit relative to permeability. In addition, we test a
novel diffusion MRl compartment signal model, the NEXI model, to show the correlation between
its exchange water time and permeability.

2.4.1 Numerical study of permeability effects on signal

Suppose we want to test the hypothesis that the dependence of the signal on the permeability
can be approximated by the following expression for a range of values of permeability found in
biological tissues:

SAPPROX (g fi Nejg) = e P &I % (S (g, fi Neig) — Stree(8, f3 Neig)) + Stree(8, f3 Neig)s

where (g, f) is a positive fitted coefficient depending on the encoding gradient and the geometry,
Simp(8, f; Neig) is the signal in the impermeable case and Sfee(g, f; Neig) is the signal in absence
of all interior interfaces. Both Simp (8, f; Neig) and Stree(8, f; Neig) are independent of permeability.
By construction, (1) S = Simp When k£ = 0m/s; (2) lim, 400 S = Skees (3) the signal is subject to
exponential decay in x;

We computed the permeable signals using the new method and in fig.[2.9)we show the com-
puted SNEW/Sin o and SAPPROX /G, with the fitted values of 3(g, f). The good fit of the exponential
dependence on « is evident for the range of « tested. At low gradient strength (b = 500s/mm?),
diffusion MRI signal depends very little on . As the gradient strength increases, the signal is more
sensitive to . This result is consistent with the signal behavior at high gradients for one dimensional
problems in the presence of multiple semi-permeable barriers discussed in[122].
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Figure 2.9: The simulations are performed on Qf, with the gradient direction fixed in
V2/2,v/2/2, O]T, using the new method with length scale cut-off Ly = 1um (Ne;, = 538). The solid
and dashed lines represent SN®W /S, and SAPPROX /S, 1, respectively. Left: short diffusion time case,
PGSE(5ms, 5ms). The fitted coefficients are 3 = 2424(m/s)”" (b = 500 s/mm?), 8 = 7497(m/s)""
(b = 5000s/mm?), 3 = 8984(m/s)"" (b = 10000s/mm?). The normalized impermeable signals
are Simp = 0.7 (b = 500s/mm?), Simp = 0.256 (b = 5000 /mm?), Simp = 0.162 (b = 1000 s/mm?);
Right: long diffusion time case, PGSE(10ms, 10ms). The fitted coefficient 8 = 3185(m/s) " (b =
500s/mm?), 3 = 11536(m/s) "' (b = 5000 s/mm?), 8 = 14535(m/s)”" (b = 10000 s/mm?). The nor-
malized impermeable signals are Simp = 0.734 (b = 500 s/mm?), Simp = 0.341 (b = 5000 s/mm?),
Simp = 0.281 (b = 1000 s/mm?).

The evolution of the fitted values of 3(g, f) as functions of b and v/§ is plotted in fig. At low
gradient strength, 8 o /4.
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Figure 2.10: The evolution of 5(g, f) as a function of b-value (left) for three tested sequences,
PGSE(5ms, 5ms), PGSE(7.5ms, 7.5ms) and PGSE(10ms, 10ms), and as a function of v/§ (right) for
three tested gradient strengths, b=500 s/mm?, b=5000 s/mm? and b=10000 s/mm?. The simulations

are performed on Q, with the gradient direction fixed in [v/2/2,v/2/2, O]T, using the new method
with length scale cut-off L, = 1um (Neig = 538).

2.4.2 Long time limit ADC

For an open boundary geometry formed by pore structures with impermeable membranes, the
ADC has an asymptotic approximation in the long time limit toward diffusion time ¢[130, |131]:

k1Dy /{3/2D0 1

; 1372 (2.31)

ADCiong(t) &~ ADCoy +

where D is the intrinsic diffusion coefficient, k; and k3, are coefficients depending on the confin-

ing geometry, and ADC, is the ADC at infinity time. In the presence of permeable membranes, a

new leading term 1/+/t needs to be added[132]. In particular, for one-dimensional diffusion case,

separated by equally spaced permeable barriers with a spacing of a, ADC,, can be expressed as[133]
1 1 1

= — 4+ —. 2.32
ADC D0+cm (2.32)

This approximation is useful to infer the permeability in the one dimensional case. Studying the
time dependent ADC behavior in the long time limit for other geometrical configurations, like two
dimensional or three dimensional, is intriguing.

To examine whether the long time limit ADC behavior of a complex permeable medium matches
the two aforementioned relationships, we perform simulations on /. The experimental settings are
as below:

« Diffusion coefficient Dy is 2 x 1073 mm? /s for all compartments;

* The gradient direction is fixed in [v/2/2, \/§/Q,O}T;
+ PGSE sequence is applied, with 6 = 5ms and 10 A values varying from 60ms to 150ms;

+ ADC value is calculated by fitting the diffusion MRI signals at five low b-values,
25,50, 100, 150, 200] s/mm?;

+ The range of tested permeability values is from 10~ m/s to 10~ m/s;
* Length scale cut-off Ly = 1um, i.e. N¢;y = 538.

In fig. we plot the time dependent ADC as a function of 1//t. We observe that in the case
of Kk = +oom/s (the purple line), ADCiong shows a clearly linear relationship with 1/+/t. This aligns
with the finding presented in [132] As the permeability decreases, this relationship becomes less
clear, suggesting that the leading term should be =%, where 0 < < 0.5.
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Figure 2.11: ADCjong as a function of A~95 The simulations are performed on !, with the gradient

direction fixed in [v/2/2,v/2/2, O]T, using the new method with length scale cut-off Ly = 1um (Ne;g =
538). The blue, red, brown and purple solid lines represent k = 0m/s, xk = 107°m/s, k = 10~*m/s
and k = +oom/s, respectively. The dashed lines represent the linear fit, using the three highest
simulated A values, 130ms, 140ms and 150ms. The markers represent values computed by the new
method.

In fig. we plot a normalized time-dependent ADC, denoted as ADCyorm, against =1 in log-
arithm, with the longest simulated sequence PGSE(5ms, 150ms). The normalized ADC is defined
as
ADCiong — ADCimp

ADC =
"M " ADCfree — ADCimp

(2.33)

where ADCyee is the ADC when k = +0om/s and ADCimp is the ADC in the presence of impermeable
interfaces (x = 0m/s). This choice of normalization eliminates the effect of interface shapes and
allows to study purely the impact of permeability value on the ADC. At two ends of permeability, we
have the asymptotic behaviors:

lim ADCporm =1, (2.34)
K——+00

lim ADCnorm = 0. (2.35)
Kk—0

We can observe that ADC,..., shows different rates at low and high permeabilities. When x <

8 x 10-9m/s, we have ADC, ., o £~ 11045, whereas when x > 3 x 10~°m/s, ADC .., oc k05934,

In summary, at low permeability, the dependence rate of ADC.,, becomes 11045, which is
similar to eq. (2.32).. As high permeability, we observe that ADC ., oc £~ %5934 and ADCjong o 1/V/%.

norm

2.4.3 Neurite Exchange Imaging (NEXI) evaluation

Neurite Exchange Imaging (NEXI) is a state-of-the-art diffusion MRI compartment signal model
to estimate the volume fractions and water exchange time between compartments in the brain
gray matter, as presented in section It fits the direction-averaged signals to estimate the five
parameters: p = [f, D; ||, De ||, De, 1, tez), Where f is the volume fraction of intra-neurite space. D;
is the parallel diffusivity of the intra-neurite space. D, | and D; | are the parallel and perpendicular
diffusivity of the extra-neurite space. t., is a temporal quantity to characterize the water exchange
rate. The details of NEXI expression refer to section|1.4.4

To illustrate what this model effectively quantifies and to understand the relationship between
tew and x, we perform the simulations on a simple geometry Q"®¥, containing four straight cylinders
encapsulated in a tight wrapped ECS, as shown in fig.[2.T3] The height of the cylinders is 30um. The
radii are selected to be small, ranging from 0.5um to 0.9um. The volume fraction of the neurites is
63.3%. We adopt one of the experimental settings consistent with the original NEXI paper[100]:
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Figure 2.12: ADC.., — 1 as a function of ! in logarithm. The simulations are performed on Q/,

with the gradient direction fixed in [v/2/2,v/2/2, O]T, using the new method with length scale cut-off
Ly = 1pm (Ne;y = 538). The sequence is PGSE(5ms, 150ms). The blue solid line represents the
simulated ADC, the dashed red line represents the linear fit at high permeability values and the
dotted yellow line represents the linear fit at low permeability values. The slopes of the low and

high permeability fitted lines are -1.1045 and -0.5934, respectively. The markers represent values
computed by the new method.

Finite element mesh, out compartment: [123 4] Finite element mesh, ecs compartment: [5]

Figure 2.13: Geometry Q" for NEXI estimation. Left: finite element mesh of the four cylinders, with
a height of 30um and a radius from 0.5um to 0.9um; Right: finite element mesh of the tight wrapped
ECS. The volume fraction of the ECS is 36.7%. The whole domain contains 65,720 nodes and 191,403
elements, among them, there are 41,362 nodes and 128,836 elements in ECS.

* 64 gradient directions uniformly distributed in unit sphere;

One PGSE sequence is applied, with 6 = 4.5ms and A = 20ms;

Seven shells at b-values= [1,2.5,4,5.5,7,8.5,10] x 10% s/mm?;

Seven tested permeability values [107%,5x 1076, 7.5x 107¢,1075,2x 1075,5x 1075,10~4] m/s;
* Length scale cut-off Ly = 1um, i.e. N¢;y = 341.

This choice of diffusion time limits the amount of spins hitting the upper and bottom outer bound-
aries.

To avoid local minimum due to the non-convex optimization, We fit NEXI model by an exhaustive
search within a saved signal library. The NEXI signal library is populated along all five parameters:
f € 10,2,0.8], with an equal spacing 0.01, D, | € [1,2] x 10~ mm?/s, with an equal spacing 0.05,
D, €[0.1,2] x 10~* mm?/s, with an equal spacing 0.05, D, 1 € [0,1] x 10~* mm?/s with an equal
spacing 0.1, and t., /A € [0.1,6.1], with an equal spacing 0.1. Besides, one constraint D, | > D, 1
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is applied. We pick the model parameters combination p = [f, D; |, D¢ ||, De, 1, tez)T thatyields the
minimum mean squared error of the direction-averaged signals as the best fit.

Figure [2.743]illustrates the estimated exchange time t., against « in logarithm. It is clear that
within the range of 1075m/s < k < 2 x 1075m/s, there is a linear relation between them, i.e.
ter o< kL. It suggests that NEXI can be effectively used to probe the permeability within this range.

Figure shows the estimated volume fraction f against . Typically, we obtain an over-
estimation for f when x <5 x 10=%m/s.
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Figure 2.14: Estimated parameters of NEXI as functions of x.The circles represent the estimated
values at permeability of 1075m/s, 5x 107 m/s,8 x 107 m/s, 1075 m/s,2x 107> m/s, 5x 107> m /s
and 10~*m/s.The dashed black line on the right plot is the ground truth volume fraction value (f =
63.3%).

2.5 Discussion

The Numerical Matrix Formalism method produces a diffusion MRI signal representation using
the Laplace eigenfunctions basis computed on a domain with permeable interfaces. In this work, we
formulated a new representation of the diffusion MRI signal using the Laplace eigenfunctions in the
same domain while making the interfaces impermeable. This means our new method can use the
same set of eigenfunctions for many different values of permeability, thus saving computational
time in the eigendecomposition step. While the new method requires more eigenfunctions than
the original Numerical Matrix Formalism method to achieve the same accuracy, we have shown
that if the permeability is not too high (while still staying in the realistic range for biological cell
membranes), the total computational time is still significantly lower than the original Numerical
Matrix Formalism method.

The reduction in computational time makes possible the study of permeability effects on diffu-
sion MRI and the evaluation of microstructure estimation methods on complex geometry via nu-
merical simulations. Using the new formulation, we conduct a study on the permeability effect and
demonstrate that the permeable diffusion MRI signals can be approximated by an exponential rela-
tion across a wide range of permeabilities. When the gradient strength is low, the permeability effect
is negligible for the typical axon permeability value 10~°> m/s. The ratio between permeable signals
and impermeable signals is higher than 90%. Therefore, the impermeable membranes assumption
for diffusion MRI compartment signal models based on the low b-values should hold. When the
gradient strength is high, the signals are sensitive to the permeability even at short diffusion time,
which poses new challenges to microstructural imaging at high b-values. In the long time limit, the
ADC exhibits different dependence rates between high and low permeabilities. In addition, as per-
meability increases, we have ADCjgng 1/+/t. Even though in practice, we could not obtain S and
Simp OFf ADC¥ree and ADCimp, these observations may aid in the development of new microstructure
estimation methods.
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The equivalence is proved for the PGSE sequence, it can easily be extended to other sequences,
which is valuable for sequences specifically designed to measure permeability. An example is the
filter-exchange imaging[59], which applies a double PGSE sequence to indirectly probe the perme-
ability, by firstly eliminating the ECS contribution through the first PGSE sequence.

We employ the new method to assess the NEXI model. Numerical analysis indicates a strong
correlation between permeability and the water exchange time of the NEXI model.
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Chapter Overview

In this chapter, we develop asymptotic expansions of the diffusion MRI signal and the ADC ac-
counting for bending and twisting deformations, derived from the Bloch-Torrey PDE and the HADC
model. This work is inspired by how the papers[134,135] treat heart movement in cardiac diffusion
MRI.

In section 3.2} we first present the HADC model, and give the analytical expressions of bending
and twisting deformations. We derive the transformed Bloch-Torrey PDE and the transformed HADC
model accounting for these two deformations, and expand the solutions of those transformed PDEs
as a second-order asymptotic series in deformation parameters. We conduct numerical simulations
in section[3.4} to validate our asymptotic expansions and illustrate the effects of the geometrical de-
formations. The simulations suggest that: (1) For both the HADC model and the Bloch-Torrey PDE, at
least second-order corrections are needed to significantly improve the accuracy; (2) From the HARDI

59
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plots we observe that bending causes the ADC and signals to be less directional whereas twisting will
rotate their maximal direction; (3) the analysis of computational time demonstrates the efficiency
of the asymptotic expansions in terms of performing simulations when adjusting geometrical pa-
rameters.

This work contributes to explicitly linking the diffusion MRI signal to cellular structures and pro-
viding a numerical tool to study the impact of shape imperfections on the diffusion MRI signal and
the ADC.

Compared to the published version[2]], | make the following modifications: (1) | extend the asymp-
totic expansion of the Bloch-Torrey PDE by including the permeable case. | provide the numerical
results of the asymptotic expansion of the Bloch-Torrey PDE using k = 105 m/s; (2) | extend the
asymptotic expansions to the case when both deformations are applied, and add this case in the nu-
merical results; (3) I add section[3.4.4]that compares the computational time to show the efficiency
of the asymptotic expansions; (4) | change to use an alternative form of the HADC model, which
requires a less stringent time step to maintain the same accuracy during numerical simulations.

3.1 Introduction

Due to the complexity of solving Bloch Torrey PDE, the predominant approach up to now has
been adding the diffusion MRI signal from simple geometrical components and extracting model
parameters of interest. Numerous tissue compartment models subdivide the tissue into compart-
ments described by sticks, anisotropic Gaussian space, spheres, ellipsoids, cylinders, and the extra-
cellular space (ECS)[99, [102, [136-141]. Some parameters of interest include axon diameter and
orientation, neurite density, dendrite structure, the volume fraction and size distribution of cylin-
der and sphere components and the effective diffusion coefficient or tensor of the ECS could be
retrieved from the model's compartments|142].

In the brain white matter microstructure estimation, the axons or the brain white matter fibers
are modeled most either by a bundle of sticks, such as the NODDI model[98], or a collection of
cylinders, in the same direction or dispersion in the orientation, such as the ActiveAxapp model[27].
These assumptions neglect the geometrical imperfection of realistic fiber shape on the diffusion MRI
signal, including diameters variations[143], irregular section shapes[144], undulation[145], bend-
ing[146] etc, which may cause inaccuracy issue in some MRI experimental settings[147,/148]. In the
work by Lee et al.[149], an overestimation of axon diameter was found at low b-values due to the
undulation of axons.

The purpose of this chapter is to propose a reduced model to facilitate the studies on geometrical
deformation and to further reveal the relationship between the tissue geometrical parameters and
the diffusion MRI signal in the brain white matter via the simulations. Relevant works can be found
in the works[[110}/149]. In the paper[110], Olsen et al. analyzed the impact of realistic neurite shapes
at high b-values via Monte-Carlo simulation on numerical neuron phantoms.

In this chapter, we continue the Bloch-Torrey PDE-based simulation work to further reveal the
relationship between the cellular structure and the diffusion MRI signal in the brain white matter.
We analyze the Bloch-Torrey PDE and the HADC model in the context of parameterized deformation
mappings, starting from a canonical configuration. The canonical configuration we have in mind is
a set of straight parallel axons contained in the extra-cellular space. Our idea is to model realistic
axons as spatial deformations of canonical configurations of parallel axons.

To be more concrete, we focus on two analytically defined deformations: bending and twisting.
We will derive asymptotic models of the diffusion MRI signal and the ADC where the asymptotic
parameter indicates the extent of the geometrical deformation. The purpose of this work is to relate
the diffusion MRI signal more directly with tissue geometrical parameters.

One potential application of this asymptotic model is to serve as a validation model to study the
robustness of the brain white matter microstructure imaging, such as axons radii and volume frac-
tion estimation, towards shape imperfections. Furthermore, one may use these asymptotic models
to establish the relation between the deformations and diffusion MRI signals.

This work uses similar mathematical tools as several previous papers focused on the mathemati-
cal analysis of the Bloch-Torrey PDE subject to geometrical deformations. In[150], a new mathemat-
ical model of Bloch-Torrey PDE in moving and deforming media was introduced. In[[134], a rigorous
mathematical formalism was introduced to quantify the effect of macroscopic-scale tissue motion
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and deformation in cardiac diffusion MRI. In[135], a new model of the ADC of cardiac diffusion MRI
was formulated in the presence of microscopic-scale tissue motion and deformation.

3.2 Theory

In this section, we briefly present the HADC model and give the definition of two analytical de-
formations.

3.2.1 Geometrical description

To reveal the relationship between the geometrical structure and the diffusion MRI signal, we
propose to describe the brain white matter fibers as a deformation of a canonical configuration.
For ease of mesh generation, we ignore myelin sheathes and consider the canonical the brain white
matter configuration as a set of straight parallel axons encapsulated in one extra-cellular space.

Let the whole canonical simulation domain be C = UfV:“{”’” C; € R3, containing Neppr — 1 ax-
ons {Ci}»1§Z.S]\,WM_1 and one ECS Cy,,,,,, Without any overlap. The interface between one axon
and ECS is denoted by F;; = C; N C; for (4,5) € {1, ..., Nempt — 1} X {Nempt } OF (4,5) € {Nempe } ¥
{1, ..., Nempt—1}. And the interfaces between axons are F;; = (), fori # j, (¢, j) € {1,..., Nempt — 1}2.
Let OC be the outer boundary of the domain C, we denote the restriction of the outer boundary in
compartmentC; by B, =9CNC;, i € {1,..., Neypt }-

We denote the simulation domain after applying analytical deformation as Q2 = Uf\i“{”“ Q; € R3,
and the interfaces and restriction of the outer boundary of the deformed domain become T';; and
33;, respectively.

The Bloch Torrey PDE on the deformed domain € remains the same as egs. to de-
fined in section[.3.21

3.2.2 HADC Model

When water exchange between compartments is negligible, a homogenized model, called the
HADC model, is derived, to compute time-dependent apparent diffusion coefficient using homoge-
nization techniques[151]. In this chapter, we use an alternative formula of the HADC model, which
differs from the one presented in the original paper. This alternative formula requires less finer
time steps in numerical computation. The ADC of compartment §2; by the HADC model is

Di

ADCl = ——
] [ F(t)%dt

TE _
/ Flt) / W (r, ) (ug - n(r)) dsrdt, (3.1)
0 o0Q;

where ug is the diffusion-encoding gradient direction, n is the outward normal, ' is the solution of
the non-homogeneous diffusion equation on the deformed domain Q2 with homogeneous Neumann
boundary condition and zero initial condition:

aoﬂ'(r,t) =V -D'Vui(r,t) — f(Hug - r,r € Q; (3.2)
D'Vwi(r,t) -n'(r) =0, r € 09, (3.3)
w'(r,0) =0, reqQ, (3.4)

The above set of equations, egs. (3.2) to (3.4), comprise the HADC model.
The ADC of the whole domain € is determined by the volume-weighted sum of each compart-
ment:

Ncmpt
ADC= > |Q]ADC'/[Q)]. (3.5)
i=1

See appendix[A.T]for the derivation of this alternative formula of the HADC model.
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3.2.3 Canonical configuration and analytical geometrical deformations

The two basic types of deformations that we implement in this chapter are (1) bending, and (2)
twisting. Both types of deformations will be described by one single parameter, called a; and «y.
The geometrical structure of the brain white matter fibers will be defined by these two deformation
parameters.

Let r be the space variable in the deformed (by bending, twisting, or both of them) configuration,
whose domain is 2. The coordinate transformation,

T:C—Q,
maps the canonical configuration defined on C to the deformed configuration on €:
x —r=T(x).

Bending on the x — z plane with a bending parameter «; is defined by

x x4+ ab22
To: |ly| — Y . (3.6)
z z

Twisting around the z-axis with a twisting parameter «; is defined by

x cos(apz) —sin(arz) Of |z
Ti: |y| — |sin(agz) cos(arz) Of |y] . (3.7)
z 0 0 1( [z

The subscriptbindicates this termis related to bending and ¢ indicates this term is related to twisting.
When both two deformations are applied, the canonical configuration will firstly perform bending,
then twisting:

x cos(az) —sin(azz) 0] [z + apz?
Tiw:=TioTp: |y| — |sin(azz) cos(azz) 0 Y . (3.8)
z 0 0 1 z

Itis worth mentioning that the order of deformation is just a choice we have taken. Switching this
order would modify the transformation operator, but the asymptotic derivation process remains
valid.

We plot in fig.[3.T] a geometrical configuration of 20 cylindrical axons and the ECS before and
after deformation, with two different deformation parameter values. Since all the compartments
are the same in height, the bending deformation affects each axon uniformly, whereas the twisting
deformation depends on the position in the x-y plane. We can observe that when a3 or oy reach
a value of 0.07, the deformation already exceeds the regime of small deformation, compared to
straight configuration. Thus, in this thesis, we limit the maximum deformation parameters to 0.07.
By adjusting these deformation parameters, we can emulate a configuration closer to the realistic
axons.
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Figure 3.1: First row: canonical configuration, ECS (left), and all 20 cylindrical axons on top view
(right).

Second row: 20 cylindrical axons with, bend deformation with «;, = 0.025 (left), 20 cylindrical axons
with ap = 0.05 (middle), 20 cylindrical axons with «a; = 0.07 (right).

Third row: 20 cylindrical axons with, twist deformation with «; = 0.025 (left), 20 cylindrical axons
with a; = 0.05 (middle), 20 cylindrical axons with a; = 0.07 (right).

Fourth row: 20 cylindrical axons with, deformation with a;, = 0.025 and a; = 0.025 (left), 20 cylindri-
cal axons with a, = 0.05 and «; = 0.05 (middle), 20 cylindrical axons with o, = 0.07 and «; = 0.07
(right).

The radii of all axons are between 0.25um and 2um, the mean radius is 0.9um, and the height is
20pum.
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3.3 Derivation of asymptotic models on the deformation param-
eter

The main objective of this work is to construct appropriate models to describe the relationship
between the deformation parameters «;, o and the diffusion MRI signal as well as the ADC. We
will expand the solutions of the Bloch-Torrey PDE and the HADC model as asymptotic series in the
deformation parameters «; and «;. This approach is expected to work well in the regime of small
deformations, i.e. apz < 1 and a2z < 1.

3.3.1 Formulation of the PDEs on the canonical configuration

First, we transform the Bloch-Torrey PDE and the HADC model posed on the deformed geometry
Q2 into PDEs that are posed on the canonical geometry C.
Let J be the Jacobian of the transformation 7

oT 9T OT
J=| oL o). (3.9)

We define the composite function for the Bloch-Torrey PDE to be N(x,t) : C — R, where
N=MoT, (3.10)
and for the HADC model to be n(x,t) : C — R, where
n=woT. (3.11)

M (r,t) and w(r,t) are solutions on the deformed domain 2, thus, N(x,t) and 7(x,t) are the solu-
tions of the respective transformed PDEs.
It is easy to show that the transformed gradient operator of transformed PDE in the i-th com-
partment is
Ve =J TV, (3.12)

and the transformed Laplacian operator is
Vy D'V, =V J D' JTV,, (3.13)

by performing the chain rule. The matrix J~7 is the transpose inverse of the Jacobian matrix.
Thus, we can define the transformed diffusion tensor as:

gli=J1pig T, (3.14)

For the bend deformation, the inverse of the Jacobian matrix is

1 0 —2ap2
Jt=10 1 0 |, det(Jy) =1, (3.15)
00 1

and the transformed diffusion tensor is

, 4 , 4(1522 +1 0 —2ap2
Bi=J Dyt =D 0 10 . (3.16)
—2ap2 0 1

For the twist deformation, the inverse of the Jacobian matrix is

cos(apz)  sin(az) oy
J7t = | —sin(arz) cos(azz) —agx|, det(Jy) =1, (3.17)
0 0 1

and the transformed diffusion tensor is

) , 4 aly? +1  —a?yx oy
Bi=J'"D'J; T =D | —alyz oz +1 —aux|. (3.18)
oy —uT 1
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In the case of both two deformations are applied:

cos(apz)  sin(ayz) oy — 202
It = (Jedy) = I I = [ —sin(ez)  cos(agz) —opx |, det(Jy) =1, (3.19)
0 0 1

and the transformed diffusion tensor is

Bev = (JoJy) D (Jedy)
=J, ottt

dajz? + O‘ty —daparyz +1  —af yr + 2apxz —20p2 + auy (3.20)
=D —a2yr + 200422 a?r? 41 —ax
—2@[;2 + ary —Q;T 1

According to[152], the transformed outward normals on the canonical configuration are the
product of the transpose inverse of the Jacobian matrix and the normals on transformed config-
uration

n'(r) = J Tn'(x). (3.21)

Using eq. (3.21), the right-hand side of eq. (1.29) becomes

K (M (e, 1) — M(r,8)) = 59 (M9 (x, )’ (x) + M (x, £)(—n'(x))) - '(r)

i (3.22)
= J %9 Tn'(x) - n'(x) (N (x,t) — N'(x,1)).
We define the transformed permeability coefficient as
pi = J kY ] Tni(x) - n'(x). (3.23)
Combining egs. (3.14) and (3.23), the transformed Bloch-Torrey PDE in C is then:
%Nl(x t) = (V- BV -y f(t)g T(x)) N'(x,t)x € C;, (3.24)
B'VN'(x,t) -n'(x) = -/ VNI(x,t) - n’(x), x € Fij, (3.25)
B'VN!(x,t)-n'(x) = p (N (x,t) — N'(x,t)), x € Fij, (3.26)
B'VNi(x,t)-n'(x) =0, x € B;, (3.27)
N(x,0) =p, x € C;, (3.28)
The transformed HADC model is:
9 . o
&nl(xa t) = V : /Blvnl(xv t) - f(t)ug : T(X)7 X E Qi (329)
B'Vni(x,t) - n'(x) =0, x € 08 (3.30)
n'(x,0) =0, x € Q. (3.31)

3.3.2 Asymptotic expansion of HADC according to one deformation parame-
ter

We now expand the solution of the HADC model in one deformation parameter (a; or ;) and
match the terms to get the first three terms of the asymptotic expansion.
We write the solution n of egs. (3.29) to (3.37) as a three-term asymptotic expansion:

Nk (X7 t) = Tk,0 (Xa t) + ak'nknl(xa t) + aznk‘,Q()g t) + O(Oéi),
where k € {b,t}. Replacing eq. (3.29) by the expansion above, we obtain:

OMie,0 + kO + @z =V - BV + axV - BiVne 1 + aiV - BV 2 — f(t)ug - T(x).
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Using eq. (3.16) for the bending transformation, the transformed Laplacian operator is:
4a522 +1 0 —2ap2| [0;

V-BiV=V-|D! 0 1 0 d,
Oz 0 1 a. (3.32)

=V D'V + D" (a(—20; — 420,.) + af (42°0ys)) -
To simplify the notation, we define two second-order differential operators:
b1 =D (=20, — 420,.), Kj, = D"42°0,,. (3.33)

Similarly, in the case of the twisting transformation, using eq. (3.18), the transformed Laplacian
operator is:

_ a?y? +1  —a?yr oy | [0
V-BiV=V-|D| —alyz o2®>+1 —aux| |0,

gy —oux 1 0, (3.34)
=V .-DV+ D' (204,5(y6m —20y.) + (YO0 — YOy — 2yx0yy — 05 + anyy)) )
Also, we define:
K;l i= D" (2y0,, — 220, ), Kig = D'(Y? O — YOy — 2yx0sy — 10y + T°0yy). (3.35)

So the transformed Laplacian operator acts as the first and the second correction operators for
the Laplacian: . ‘ ‘ ‘
VBV =V -D'V+ K, + 07 Kj 5, (3.36)

where k € {b,t}.
Using eq. (3.16) for the bending transformation, the transformed gradient operator is:

‘ _ 4a§z2 +1 0 —2apz| |04 _ ‘ —220, 4220,
BiV =D’ 0 1 0 o =D'V+D' || O +ai| 0 . (3.37)
—20p% 0 1 0, —220, 0

Similarly, we define two correction operators for the transformed gradient operator:

_ _ —220, 4 , 4220,
b1 =D 0 ; Gpoi=D' 0 . (3.38)
—220, 0

For the twist transformation, using eq. (3.18), the transformed gradient operator is:

at2y2 +1 —afyx arly 89: yaz yzgm - -ryay
BZV = D? —adyr  air?+1 —opx| |0,] = DV+D oy | —20. | + a? 220, — xyd,
Y —oux 1 o YOy — T 0
(3.39)
Also, we define:
yaz yQaw - xyay
t1=D"| —20. |, Gi,:=D"|2%0, —xyd, | . (3.40)
yam - 0

The expansion of the transformation operator 7 (x) until the second-order is
T(x) = x + axPr1 + aiPy 2, (3.41)
where k € {b,t},

(3.42)
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and
—yz —x2?
Pii=|2z|,Pa= —yz2 |, (3.43)
0 0

using Taylor expansion to trigonometrical functions. It is evident that for twisting deformation, the
error bound of the Taylor expansion depends on both the twisting parameters a; and the length
of axons. Therefore, for the twisting deformation, in the regime of large deformation (long axons
or large twisting transformation value), a higher asymptotic order is required to obtain accurate
results.

For simplicity of notation, we note the normals on the canonical configuration as n* below, and
except for the initial condition equation, we note nj, ((x,t), nj. , (x,t) and 7}, ,(x,t) as nj, o, 73, and
Nk 2» respectively.

Finally, we obtain the following equations after matching the terms ai, withj =0,1,2and k €
{b,t}.

For a9, we get the solution of the HADC on the canonical configuration:

J . . .

an}w =V -D'Vno— ft)ug -x,x €C, (3.44)
D'V, -1’ =0, x € 9C;, (3.45)
Meo(x,0) =0, x € C;. (3.46)

For o}, we get a PDE that depends on the solution of the previous equation, 7y o:

0

a?ﬁ;,l =V Divmi,l + Ki,mzi,o — f(t)ug -Pr1,x €C;, (3.47)
D'V, -n' = —Gj 1} -1, x € 9C;, (3.48)
Ma(x,0) =0, x € C;. (3.49)

For a3, we get a PDE that depends on the solutions of both the above PDEs:
0

&%,2 =V -D'Vipy2 + Ki,mi,l + Kﬁ;,zm’;,o — f(t)ug - Pro,x€C;, (3.50)
D'V -0’ = —(Gj, 171 + Gonio) - 10, x € C;, (3.51)
Mo(x,0) =0, x € C;. (3.52)

3.3.3 Asymptotic expansion of Bloch-Torrey PDE according to one deforma-
tion parameter

Similar to the asymptotic expansion of the HADC model, we write the solution N (x, t) of egs. (3.24)
to as a three-term expansion:

Ni(x,t) = Nio(x,t) + ap N1 (%, 1) + @i Npo(x,t) + O(a), k€ {b,t}.

The transformed Laplacian operator V3¢V, the transformed gradient operator 3°V and the ex-
pansion of transformation operator 7 (x) here are identical to the case of HADC asymptotic expan-
sion. Only the transformed permeability coefficient is needed to be treated.

For the bend transformation, the expansion of transformed permeability coefficient in «, is:

B 40222 +1 0 —2ap2
ij_ i i i
e =K 0 1 0 n’(x) - n*(x)
a4z 0 1 (3.53)

= kY + Y (ap(—42ng'n.') + af (42°ng'ng")) |,

where n,’ and n,* are the x and z components of the normal vector n(x) in the canonical config-

uration. We define

2

N‘i{l = nij(74znminzi)a uZ{Q = 4Hijz nminmi (354)
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Similarly, for the twist transformation, the expansion of transformed permeability coefficient is:

o [afP+l —afyr oy | ,
pl =k | —a?yr  afa?+1 —aur| n'(x)- n'(x) 355
oy —ux 1 (3.55)

= kY 4 kY (at(2ynminzi — 2$nyinzi) + af(yznwinwi — Qxynwinyi + xznyinyi)) .
Also, we define
ugl = 269 (yng'n, — QC’rLyinz’.)7 ,u;f? = K9 (Y ng'ng — Qxynmj’nyi + xznyinyi). (3.56)

So for k € {b,t}, the transformed permeability coefficient also gets two correction terms:

py = kY +agp ) + ozi,u;jg. (3.57)

For simplicity of notation, we define the Bloch-Torrey operator BT := VD'V — 1y £(t)g - x, and
except the initial condition equation, we omit the variable dependence (x,t) for all the orders of
magnetizations. 4

We obtain the following equations after matching for o, with j = 0,1,2, and k € {b, t}:

For af, this is the solution of the Bloch-Torrey PDE on the canonical geometry C;:

%N,io =BT'N},, x € G, (3.58)
D'VNj,-n'=-DIVN] -n/, xeF;, (3.59)
D'VNj - n' =k (N] y— Ni o), x € Fy, (3.60)
D'VNj-n' =0, x € B;, (3.61)
N,;O(x, 0) =p, x € C;. (3.62)

For oz,lg, the solution depends on the solution of the above PDE, Ny:

%Niﬁ = BTiNlé,l + (K}, — 7 f(t)g - Pr1)Ni o, x € Gy, (3.63)
D'VN;,-n'=-D/VN] v/, x € Fyj, (3.64)
DiVN/iJ ‘n' = ’%'ij(ngJ - N/i,1) + U2{1(N1g,o - N/i,o) - G2,1Nli,0 ‘', x € Fij, (3.65)
D'VN;,-n'=—-G} N, -1’ x € B;, (3.66)
Nii(x,0) =0, x € C;. (3.67)

For o3, the solution depends on the solutions of both of the above PDEs:

0

&Nlig = BTiN/i,z + (K}m -1y f(t)g - Pk,l)Nli,l

+ (Ko — 17f(t)g Pr2)Ni o, x € G, (3.68)
D'VNj,-n' = -DIVN], 1/, x € Fyj, (3.69)
D'VNiy-n' = ”ij(le,z ~ Ni2) + sz;l(le,l ~ Nia) + N?@(N;z,o ~ Nio)

— (G} N1 + G2 Nig) -1, x € Fij, (3.70)
D'VN;,-n' = —(Gj.Ni, + Gj.oNi,) -0, x € B;, (3.71)
Njo(x,0) =0, x €Ci. (3.72)

3.3.4 Asymptotic expansion of HADC according to two deformation parame-
ters

In this subsection, we expand the solution of the HADC model when two deformation parameters
(ap and «) are applied, and match the first six terms of the asymptotic expansion.
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We write the solution 7 of egs. (3.29) to (3.31) as a six term asymptotic expansion:
0%, 1) = 10 (X, 8) + 0w, (%, 1) + o 2(X, 1) + o (X, 1) + 0 12,0 (%, £) + e 1 (x, 1) + Oag + o),

where the first subscript indicates the order of twist deformation and the second subscript indi-
cates the order of bend deformation.

The transformed diffusion tensor 3, can be decomposed into four terms: an identity matrix, a
pure bending term, a pure twisting term, and a coupling-effect term.

404%22 0 —2mp2 aly? +1  —alyz oy —daparyz  20p00xz 0

By = D Id+ 0 0 0 + fafyx atsz +1 —az| + | 2app22 0 0
—2apz 0 0 gy —ouT 1 0 0 0

(3.73)

If we switch to applying firstly the twisting transformation, and then bending transformation, the
first three terms will be unchanged, and only the coupling effect term will be different.
Replacing eq. (3.73) into the transformed Laplace operator, we obtain

AV ﬁZbV =V D'V + oszle + agKag + oK1+ afKi,Q + aboztDi(—Zlyz@m +4220,y). (3.74)
We define a new second-order differential operator for the coupling effect term:
K}, 11 = D' (—4yz0ss + 4220,,). (3.75)
Similarly, using eq. (3.73), the transformed gradient operator is:
—4y20, + 2220,

BV =DV + mGj | + Gy, + Gl + o} G, + D' 2220, . (3.76)
0
We define
A | —4y20; + 2220,
W=D 2020, . (3.77)
0
In the same manner, the transformation operator 7 (x) can also be divided into four terms:
apz? z(cos(arz) — 1) — ysin(ay2) apz?(cos(azz) — 1)
Tiw(x)=|x+ | 0 | + |zsin(azz) + y(cos(ayz) — 1) | + apz? sin(ay2) . (3.78)
0 0 0
When we expand it to the second-order term:
0
T(x) =x+ P14+ ajPpo+ aPi1 + aiPio + oy |22 (3.79)
0

using Taylor expansion to trigonometrical functions. The error bound of the coupling effect term is
of the second-order of o, z, whereas the error bound of the pure twisting term is higher, of the third
order.

We define a new vector
0

Pyii1:= [23]. (3.80)
0

After matching the order of deformation parameters, we obtain that g is equivalent to the so-

lution of eqs. (3.44) to (3.46), 10,1, 71,0 are equivalent to the solution of egs. (3.47) to (3.49) and 7 2,
12,0 are equivalent to the solution of egs. (3.50) to (3.52):

Mo = Mb,0 = M0, 0,1 = Mo,1, 0,2 = Nb,2, m,0 = N1, 72,0 = Ne,2-

For ooy, the solution 7 ; depends on three lower order solutions ng, 10,1 and 71 o:

ETdE! =V D'V +Kimo + Km0+ Kip110m0 — f()ug - P11, x €6, (3.81)
Divni,l ‘n' = —(Gi,mé,l + Gi,mi,o + Gib,l,ln(i)) ‘', x € 0C;, (3.82)

n.(x,0) =0, xeC.  (3.83)
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3.3.5 Asymptotic expansion of Bloch-Torrey PDE according to two deforma-
tion parameters

Similar to the asymptotic expansion of the HADC model, we write the solution N (x, ) of egs. (3.24)
to (3.28) as a six-term expansion:

N(x,t) = No(x,t)+apNo1(x, t)—|—a§N0,2(x, t)+a N1 o(x, t)+afN27o(x, t)+aiap N1 1(x, t)—&—@(af—&—af),

where the first subscript indicates the order of twist deformation and the second subscript indicates
the order of bend deformation.

Similarly, we only need to treat the transformed permeability coefficient.

The expansion of transformed permeability coefficient is:

40(%22 + o@y2 —dapauyz + 1 —afyx + 20p002  —20p2 + Yy

u% = K4 —a?yx + 20022 a§x2 +1 —ux n'-n’
—20p2 + Yy —oux 1 (3.84)
= kY + +abuz{1 + a%uffé + oztuifl + afufé + apapk (—dyzng'ng' + dveng'ny),
We define the coupling permeability coefficient as
/1%7171 = /<;i-7(—4yznminmi + 4xznzinyi). (3.85)
After matching the order of deformation parameters, we obtain
No = Nyo = Ny o, No,1 = Ny, No,2 = Ny 2, Nio= Ny, Nag = Nypo.
For apay, the solution Ny ; depends on Ny, Ny 1 and Ny o:
%Nf,l = BTiNli,l + (Ké,l - flt)g- P(),I)Nf,o + (Kil - flt)g- Pl,O)NS,l
+ (Kib,1,1 — 1y f(t)g - P11)Ng, x €C;, (3.86)
D'VN{,-n'=—-D/VN{, -n’, x € Fij, (3.87)

DIVNiy -’ = k(N = Ni o) + s (N = Ng o) + iy (V] = Ni o)

+ pip 11 (NG — N§) = (Gi1Noa + Gy Ni o+ Gl i 1 NG) - 1, x € Fij, (3.88)
D'VN;,-n' = —(G}{ Ny, +Gj | Ni o+ G}, N) - o', x € B;, (3.89)
N{(x,0) =0, x €C;. (3.90)

3.3.6 Asymptotic expansion using Matrix Formalism and numerical imple-
mentation

To compute efficiently the asymptotic expansion, we aim to apply Matrix Formalism represen-
tation for the asymptotic expansion. The solutions of zeroth order terms of HADC and Bloch-Torrey
PDE asymptotic expansion 79 and Ny are identical to the solutions on the canonical geometry. So we
can naturally decompose these terms into the Laplace basis with the same interfaces and boundary
conditions. For the solutions of first and second-order terms accompanied by a non-homogeneous
boundary condition, they can be transformed into homogeneous case. We decompose these high-
order solutions on the same Laplace eigenfunctions, consider the forcing terms on the boundaries
and interfaces as a perturbation, and add the projection of the forcing terms onto the Laplace eigen-
basis into the matrix exponentials. By construction, we can decompose the solution  and N into
the Laplace basis of canonical configuration, and write the time-dependent coefficient vector as an
expansion of six terms:

N t) ~ B, Nx1) ~ Sx)T(1),

where ®(x) is the eigenfunctions and

¢(t) = Colt) + apo,1(t) + po2(t) + i o(t) + 07 20(t) + cvawCii(t) + Olaj + of),
T(t) = TO(t) + abTO,l(t) + O‘zTO,Q(t) + atTl,O(t) + Oészo(t) + OétOébTLl(t) + O(Oég =+ Oé?)
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Another concern regarding RAM limitation is that the solution for each asymptotic order relies
on the solution of a lower order. Solving them individually necessitates the storage of intermediate
solutions for each order at every time step. To address this issue, one approach is to concatenate
these PDEs into one system of PDEs. The solution of this system of PDEs is

¢ = [CO,C0,17C1,07C0,2’C1,17C2,0]T7

After solving it, we can break it into pieces again and obtain the final result. Further details about
the numerical implementation are found in appendix|A.2]

The numerical computations of the asymptotic expansions in Matrix Formalism representation
are already integrated into SpinDoctor[87,/92]]. We use SpinDoctor to create the geometries, gener-
ate finite element (FE) meshes, and compute the orders 0, 1, and 2 asymptotic expansions.

Firstly, we use SpinDoctor to create a canonical geometry, containing several straight cylindri-
cal axons parallel to the z-axis and an extracellular space wrapped around the axons. Then a finite
element mesh is generated for the canonical geometry. The deformed geometries will have finite el-
ement meshes that are the analytical deformations of the canonical finite element mesh, described
in egs. and (3.7).

The finite element discretization is based on continuous piece-wise linear basis functions (the
P1 finite elements), with a numerically efficient implementation from[153].

The eigen-decomposition and matrix exponential steps are identical to the previous chapter.

T = [T07T0,1,T1,0,To,z,T1,1,T2,0]T-

3.4 Numerical results

The numerical validation of the asymptotic expansions of the Bloch-Torrey PDE and the HADC
model will be conducted in this section. The geometry we use is composed of 20 cylindrical axons
and a tightly wrapped ECS, as depicted in fig. The radii of the axons are between 0.25um and
2um, with a mean value of 0.7um. This range selection is based on the histological study of axon
size[154}/155]. The volume fraction of the ECS is 50.4%. The height of all the compartments is 20m.
The diffusion coefficients are set to D¥°" = DS = Dy = 2 x 107> mm?/s and the permeabil-
ity coefficient is set to k = 107° m/s, which is the permeability value for axonal membranes[37,
122]. The gradient sequence is PGSE(5ms, 15ms) and the gradient strength is b-value=500 s/mm?
(g-value=145mT/m) and b-value=1000 s/mm? (g-value=205 mT/m), within the range of commercial
used MRI scanner gradient strength (up to 300 mT/m)[156].

The reference values are either the ADC obtained by solving the HADC model (egs. to (3.4))
on the deformed geometry 2 or the diffusion MRI signal obtained by solving the Bloch-Torrey PDE
(egs. (1.27) to (1.37)) on the deformed domain using Numerical Matrix Formalism. Both of these
reference values are obtained using SpinDoctor. To ensure a fair comparison, We fix the length
scale cut-off L, to 1.5um. Given that the HADC model is based on an impermeable geometry as-
sumption, the number of eigenfunctions corresponding to the same length scale cut-off is greater
than that for the Bloch-Torrey PDE with permeable interfaces, as we saw in the previous chapter.
For the asymptotic expansion which deals with Laplace eigenfunctions on canonical configuration,
the corresponding number of eigenfunctions is N;, = 917 for Bloch-Torrey PDE and Ne;, = 922 for
the HADC model. For the reference results obtained by using Laplace eigenfunctions on deformed
configuration, the corresponding number of eigenfunctions N.;, increases as the deformed angle
increases. In table we list the required N.;, for each configurations.

Because pure bending and pure twisting are two special cases of the last case, in practice, we
only need to solve the asymptotic expansion in the case when both two deformations are applied
and set one deformed angle to zero to obtain one deformation result.

[ar, 0] | canonical | [0,0.05] | [0,0.07] | [0.05,0] | [0.07,0] | [0.05,0.05] | [0.07,0.07]
k=107 917 945 956 927 936 951 958
k=0 922 949 958 934 940 952 961

Table 3.1: Corresponding number of eigens N, to a length scale cut-off Ly = 1.5um with different
permeability values and deformed angles on the simulation domain. The unit of permeability « is
m/s.
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3.4.1 HADC model

First, we show the effects of bending and twisting in multiple gradient directions for the HADC
model. Being that 0*" order term 7, gives the ADC of the canonical configuration, n; and 7, could
be considered as two corrections. In all the plots that follow, the ADC is normalized by the intrinsic
diffusion coefficient 2 x 1072 mm?/s.

In fig.[3.2lwe show ADC and the contribution from 0*", 15* and 2"¢ order terms in multiple gradient
directions in 3 dimensions. For bend deformation, we can see that 1¢ order term provides maximal
negative correction along the z direction. On the other hand, 2"¢ order term provides maximal
positive correction along the = — z plane. As a result, the ADC figure will be thicker in x directions
compared with canonical case and be lower in the axial direction.

For twist deformation, 1°¢ and 2"? provide different maximal correction directions, because of
the different orders of Taylor expansion of trigonometrical functions. This will change the maximum
ADC direction. The final ADC is titled toward to maximal correction direction of the 2" order cor-
rection. When both two deformations are applied, the effects of high order correction terms look
like the convolution of bend and twist effects.
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05
05 ADC contribution by 0™ order term, [ar, 0 ]={0.07,0], 120 directions ADC contribution by 1*' order terms, [« ]=[0.07,0], 120 directions ADC contribution by 2 order terms, [a,,a J<[0.07,0], 120 directions

fos |os
‘ 01
‘ 01
03 04 o o4 04
J 0os
02 00s !
02 | N o o 0
e .o M)
e 02 02 0
01 02 N 005 |
; 005
i o 0 o
04 01
0 l
08 ° 015, ’ s - o
r N S < 005 > - 005
< 0 o o1 S~ Ll 01
005 008 005

005

z

¥y

o . =t i st -
06 ADC contribution by 0" order term, [a=10,0.07}, 120 directions  ADC contribution by 17! order terms, [ J=[0,007], 120 ditections A cantrbution by 2™ order terms, [a,J<[0.0.07), 120 directions

{os
08 0.04

002

{os
\
02 . , 0 04 04 003 04 04
sl 02 . 005
N 0 - 03 0014 03 03
5 02 . S’
o g . N 0l
02 fR—_— A 02 02 N0 02
. o s B ) 001
04 , e 002 005
o1 01 01
01
o o { >
. 004 ~ — o
02 > N 005 <
RN < 02 02 0 001 002 AN _— oos
~ o D [N 0 N o 01
— 005

003
06 0
S o 06

~_—__ 0 01 o - p
, 02 02 . , o2 0’ o o , s
ADC, [a,,0,]=[0.07,0.07], 120 directions

ADC contribution by 0" order term, [a,,.a,1=[0.07,0.07), 120 directions  ADC contribution by 1 order terms, [, 1=[0.07,0.07], 120 directions  ADC contribution by 2° order terms, {oyad=10.07,0.07) 120 dirctions
05, —

105
04 06 02

015
< 04 04 018 o
2 - 03 01| o1y
- 02,
N 0y . L 005 o 005
J 02 e
g R N 0 o)
- o p 02 02 N
p— Facgs 005 |
01 02 g, 005
n . . o1
’ o o1 01 o1l
05 1 015
05 _ 0 015
> — o 2 o

02 = AN < 2 <
N _— — 02 005 S
O N~ 0 01 0N~ o 01 0o o
02 7 02 02 0z 005

Figure 3.2: The components of the HADC asymptotic model in 120 gradient-directions, which are
uniformly distributed on the sphere. The black dots indicate the ADC values. The distances from
the origin of the dots as well as the colors are proportional to the ADC (normalized by the intrinsic
diffusion coefficient Dy = 2 x 10~3mm?/s). The gradient sequence is PGSE(5ms, 15ms). Top: the
bend deformation with o, = 0.07. Middle: the twist deformation with a; = 0.07. Bottom: bend then
twist deformation with [y, o] = [0.07,0.07]. From left to right: ADC, contribution from 0, 15¢ and
274 order terms.

For the clarity of display, we show further results, which concern the accuracy of our asymptotic
model, using two dimensional plots, where a uniform distribution of gradient directions is taken
from the z — z plane (y = 0). The reference value is the ADC obtained by solving the HADC model on
the deformed geometry 2. The error of the asymptotic model is the difference between different
order approximations and the reference value.

In fig. 3:3] we show four curves: the reference value, the asymptotic model (the second-order
approximation), the zeroth order approximation (the ADC from the canonical geometry), and the
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first-order approximation (sum of the zeroth and first-order terms). We see that frequently, for
bend deformation, the first-order correction is an over-correction on 79 and that our second-order
correction brings the result closer to the reference value. As the deformation parameter increases,
the difference between our asymptotic model and the reference value increases, as expected. We
note that even though 7 is the same function on the canonical geometry for both the bend and
twist deformations, after integrating over the surface of deformed geometry, its contribution to the
ADC is different depending on the specific deformation. This causes that the computed zeroth order
ADC is different for each deformation despite the fact that 7 is the same function on the canonical
geometry C.

ADC ([, ,]=[0.05,0]) in 60 directions ADC ([, ]=[0,0.05]) in 60 directions ADC ([, ,]=[0.05,0.05]) in 60 directions
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Figure 3.3: 2D HARDI simulations of the ADC in 60 gradient-directions, which are uniformly dis-
tributed in the x — z plane (y = 0). The ADC values are normalized by the intrinsic diffusion coef-
ficient Dy = 2 x 107> mm? /s and labeled on the gray circles. The displayed angle (from 0 to 360
degrees) is the angle between positive x-axis and the diffusion gradient direction. The blue, red,
yellow lines represent 0%, 15¢ and 2"¢ order approximations, respectively. The reference value is
shown in purple. The gradient sequence is PGSE(5ms, 15ms). Top left: «, = 0.05; Top middle:
a; = 0.05 (where the first-order, second-order approximations and the reference value are indis-
tinguishable); Top right: [as, o] = [0.05,0.05] Bottom left: o, = 0.07; Bottom middle: «; = 0.07;
Bottom right: [, o¢] = [0.07,0.07].

In fig. we show the relative errors of the 0", 15¢ and 2"¢ order approximations, normalized
by the reference values. At a;, = 0.05, the maximum 2"? order approximation error is 11%, and
the maximum 0" order approximation error is 35%. At oy, = 0.07, the maximum 2" order approx-
imation error is 11%, and the maximum 0 order approximation error is 65%. At a; = 0.05, the
maximum 274 order approximation error is 2%, and the maximum 0" order approximation error is
18%. At a; = 0.07, the maximum 2" order approximation error is 4%, and the maximum 0" order
approximation error is 30%. At [y, ;] = [0.05, 0.05], the maximum 2" order approximation error is
2%, and the maximum 0" order approximation error is 39%. At [ay, o] = [0.07,0.07], the maximum
274 order approximation error is 9%, and the maximum 0% order approximation error is 50%.

Next, we show in fig. 3.5 the relative errors for the axons compartment and for the ECS sepa-
rately. For axons compartment, the maximum relative errors lie in x-axis, where the ADC values are
the smallest (less than 0.2). In general, the axons compartment is much less accurately modeled
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Figure 3.4: The relative ADC error between 0, 15t and 2"¢ order approximations and the reference
value in 60 gradient directions, which are uniformly distributed in the z—z plane (y = 0). The labeled
values on the gray circles are given in percent. The gradient sequence is PGSE(5ms, 15ms). The dis-
played angle (from 0 to 360 degrees) is the angle between positive x-axis and the diffusion gradient
direction. The blue, red, yellow lines represent 0", 15¢ and 2" order approximations, respectively.
Top left: o, = 0.05; Top middle: «; = 0.05; Top right: [, ] = [0.05,0.05] Bottom left: oy, = 0.07;
Bottom middle: «; = 0.07; Bottom right: [a, «¢] = [0.07,0.07].

than the ECS compartment (which is more isotropic), except the case «; = 0.07.

3.4.2 Bloch-Torrey PDE

Now we validate our asymptotic model for the Bloch-Torrey PDE in the same geometries. We
show firstly the deformation effects on the diffusion MRI signals. In fig.[3.6|we show the normalized
signals at b = 1000 s/mm? in the canonical geometry, as well as in the bend and twist deformed
geometries. We can observe that the maximum diffusion MRI signal will decrease in the presence
of any kind of deformation, compared to the canonical configuration. When both two deformations
are applied, it is clear that the signals HARDI plot is titled.

In fig. we depicted the diffusion MRI signals and each order approximations in x-z plane. It
is evident that the second-order approximation is close to the reference signal, except the case of
[, ] = [0.07,0.07].

In fig. we show the relative errors between the 0", the 1°, the 2"¢ order approximations
and the reference value, for b = 1000 s/mm?. For the bend deformation, the 0** and the 1°* order
approximations are indistinguishable for ay, from 0.05 to 0.07, whose maximum relative error angles
align with x-axis. Therefore, at least a second-order approximation is needed to obtain an accurate
simulation. The overall relative error of 2"¢ approximation is under 5.6% and the relative error in
x-axis direction is well reduced.

For the twist deformation, in the case of .y = 0.05, the relative error by first-order approximation
is about the same level as zeroth order approximation. Thus a higher order approximation is also
required. The overall relative error of 2¢ approximation is under 1.6%.

When both two deformations are applied, the first-order approximation does not have signifi-
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Figure 3.5: The relative ADC errors between the reference solution and the asymptotic model in 60
gradient directions in the x — z plane (y = 0), in all compartments (blue line), in the axons (red line),
and in the ECS (yellow line). The labeled values on the gray circles are given in percent. The dis-
played angle (from 0 to 360 degrees) is the angle between positive x-axis and the diffusion gradient
direction. The gradient sequence is PGSE(5ms, 15ms). The volume fraction of ECS is 50.4%. Top left:
ap = 0.05; Top middle: a; = 0.05; Top right: [a, o] = [0.05,0.05] Bottom left: o, = 0.07; Bottom
middle: a; = 0.07; Bottom right: [«, o] = [0.07,0.07].

cant improvement because of the bending deformation. For [y, o] = [0.07,0.07], the relative error
in x-axis is the same level for all three approximations, which means that second-order approxima-
tion is not accurate enough to approximate this extent of deformation.

In fig.[3.9] we show the relative errors of the asymptotic model for the axons compartment and
for the ECS separately, for b = 500 s/mm? and b = 1000 s/mm?. For bend deformation, the relative
errors of axons and ECS are at the same level.

3.4.3 Convergence order of the asymptotic models

Next, we show the convergence order of the asymptotic models. In fig.[3.70) we show the relative
errors in the direction-averaged ADC of 0*?, 1%, and 2"¢ approximations, as oy, and o, decrease. The
first-order approximation yields almost the same errors as the zeroth-order approximation for bend
deformation. We see a lower error level for our second order asymptotic model.

In fig.[3.11) we show the relative errors in the direction-averaged signal of 0™, 1°, and 2"¢ ap-
proximations, as o, and «; decrease, for b = 1000 s/mm?. We see a convergence order of 3, O(a?),
for our second order asymptotic model.

Finally, in fig.[3.12} we show the convergence of our asymptotic models with b-value is first-order,
O(b).

3.44 Computational time comparison

In terms of the computation time, the asymptotic offers two benefits when conducting the sim-
ulations with multiple deformation parameter values. First, the Laplace decomposition just needs
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Figure 3.6: Normalized diffusion MRI signal at b-value = 1000s/mm?, in 120 gradient-directions,
which are uniformly distributed on the sphere. The distances from the origin of the black dots
as well as the colors are normalized by S, equivalent to the volume of the simulation domain. The
gradient sequence is PGSE(5ms, 15ms). The diffusion MRI signals of the canonical configuration (left
top). The signals of the bend deformation by asymptotic model, with a;, = 0.05 (right top). The sig-
nals of the twist deformation by asymptotic model, with a; = 0.05 (left bottom). The signals of two
deformations by asymptotic model with [, o] = [0.05,0.05] (right bottom).

to be done once. In contrast to the classical Matrix Formalism, where changing the deformation
angles necessitates regenerating the Laplace eigenbasis, the asymptotic approach is based on the
canonical configurations, which saves time in this step. Second, although solving the system of ODEs
(or computing the matrix exponential) is more time-consuming than the classical way because the
larger matrix size is related to the asymptotic order, it also requires only a single computation. After
obtaining and storing the solution for each asymptotic order, calculating the diffusion MRI signal or
ADC for various deformed configurations is immediate.

To show this efficiency, we compare the computational time of the classical Matrix Formalism
and the asymptotic expansion on the same geometry in fig.[3.T|with the same experimental settings.
There are 335,284 elements and N,,,q. = 99,414 nodes in total, of which 52,563 nodes in the ECS.
All the simulations are performed on a computing server with 20 cores of frequency 2.4 GHz, and
RAM of 256GB. The operating system is Rocky Linux 8 and the Matlab version is R2021a. All the
simulations are performed on a Dell laptop with 6 cores of frequency 1.1 GHz and RAM of 32GB/@.
The operating system is Windows 11 and the Matlab version is R2022b.

Table[3.2]shows the computational times of the Laplace eigendecomposition with different con-
figurations, using the same routine as the previous chapter. Numerical Matrix Formalism needs to
perform the Laplace eigendecomposition on each deformed configuration, whereas the asymptotic
expansion only needs to perform once on the canonical configuration.

Table[3.3shows the computational times of the matrix exponential computations in one gradi-
ent direction with different settings. The number of eigenfunctions is set to N¢;, = 1,000. We can
see from the table that the asymptotic expansion is much slower than the Numerical Matrix For-
malism. It takes around 36 times longer to compute one value compared to the Numerical Matrix
Formalism because the matrix size is six times bigger. However, the asymptotic expansion requires
computing the matrix exponentials just once for each sequence setting. After that, signal computa-
tions for different deformed configurations become instant. Thus, when various deformed angles
are simulated, both two methods will consume similar time. In the table, we also include the cost of
solving the Bloch-Torrey PDE directly using finite elements rather than computing eigenfunctions,
labeled “FE". It is much more costly than either of the two eigenfunction based methods, if multiple
diffusion encoding gradient directions and shells are needed.
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Figure 3.7: The diffusion MRI signal by 0, 15* and 2"¢ order approximations and the reference in
60 directions gradient-directions in the  — z plane (y = 0). The diffusion MRI signal is normalized by
the initial signal Sy. The labeled values on the gray circles are the normalized signal values from 0 to
1. The displayed angle (from 0 to 360 degrees) is the angle between positive x-axis and the diffusion
gradient direction. The b-value = 1000 s/mm? and the gradient sequence is PGSE(5ms, 15ms). The
blue, red, yellow, purple lines represent 0", 15¢, 2"¢ order approximations and reference signal,
respectively. Top (from left to right): a;, = 0.05, o, = 0.05 and [« o¢] = [0.05,0.05]; Bottom (from
left to right): a, = 0.07, oy = 0.07 and [a, o] = [0.07,0.07].

Computational time (seconds)
[aeg, aup) Neig = 1,000 Neig = 1,500 Neig = 2,000
HADC | k=107 | HADC | k=107 | HADC | k =107°
Canonical 219 258 367 490 455 725
[0,0.05] 216 290 319 548 426 799
[0.05, 0] 205 297 314 512 438 781
[0.05,0.05] 216 292 303 534 471 834
] Total (NMF) \ 856 \ 1137 \ 1303 \ 2084 \ 1790 \ 3139 \
| Total (asymptotic) | 219 | 258 | 367 | 490 | 455 | 725 |

Table 3.2: Computational times of Laplace eigen-decomposition with different deformation angles,
given in seconds. The unit of permeability x is m/s. The full set contains N,,,q. = 99,414 nodes.
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Figure 3.8: The relative signal error between 0", 15¢ and 2"? order approximations and reference
value in 60 directions gradient-directions in the x — z plane (y = 0). The labeled values on the gray
circles are given in percent. The displayed angle (from 0 to 360 degrees) is the angle between positive
x-axis and the diffusion gradient direction. The b-value = 1000 s/mm? and the gradient sequence is
PGSE(5ms, 15ms). The diffusion MRI signal is normalized by the initial signal Sy. The blue, red,
yellow lines represent 0", 15t and 2" order approximations, respectively. Top (from left to right):
ap = 0.05, ap = 0.05 and [, ;] = [0.05,0.05]; Bottom (from left to right): a;, = 0.07, o = 0.07 and
[, ] = [0.07,0.07].

b NMF asym FE
[at, aup] [0,0] | [0,0.05] | [0.05,0] | [0.05,0.05] [0,0]
500 24 24 2.3 2.3 186 734
1000 | 3.6 3.5 3.5 3.5 189 1363
] \ HADC \ 1.1 \ 0.9 \ 0.4 \ 0.5 H 105 H 579 \

Table 3.3: Computational times of the Numerical Matrix Formalism (NMF) method, and the asymp-
totic expansion, given in seconds. The number of eigenfunctions is N.;; = 1,000. The encoding
gradient direction is fixed in [v/3/3,v/3/3,v/3/3]" . The gradient sequence is PGSE(5ms, 15ms). We
also include the cost of solving the Bloch-Torrey PDE directly using finite elements rather than com-
puting eigenfunctions in canonical configuration, labeled “FE” The units are x:m/s and b: s/mm?.
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Figure 3.9: The relative signal errors between the reference solution
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and the asymptotic model

in 60 gradient directions in the x — z plane (y = 0), in all compartments (blue line), in the axons
(red line), and in the ECS (yellow line). The labeled values on the gray circles are given in percent.

The displayed angle (from 0 to 360 degrees) is the angle between posit

ive x-axis and the diffusion

gradient direction. The gradient sequence is PGSE(5ms, 15ms). The volume fraction of ECS is 50.4%.

Left: o, = 0.05. Middle: oy = 0.05. Right: [, ay] = [0.05,0.05]. Top:
b = 1000 s/mm?.
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3.5 Discussion

We analyzed the Bloch-Torrey PDE and the HADC model in the context of geometrical defor-
mations starting from a canonical configuration, focusing on two analytically defined deformations,
bending and twisting. We derived asymptotic models of the diffusion MRI signal and the ADC where
the asymptotic parameter indicates the extent of the geometrical deformation. We computed nu-
merically the first three orders of the asymptotic models, the zeroth order model based on the
canonical configuration, and two orders of corrections.

In section[3.4] we have shown the accuracy levels of the second-order asymptotic models for four
geometrical deformations. From fig. [3.T|we can see that at the smaller deformation values, o, =
0.05 and «; = 0.05, there are already visually significant deformations compared to the canonical
geometry. It seems that this range of values is sufficient to model significant deviations from straight
cylinders and is therefore biologically relevant to describe the geometry of the brain white matter.
At the higher values that we simulated, a;, = 0.07 and «; = 0.07, the asymptotic models resulted in
much higher errors, but by visual inspection, this larger range of values seems beyond the level of
geometrical deviations from straight cylinders that we can expect in the brain white matter.

We have shown that for biologically relevant geometrical deviations, the ADC and the diffusion
MRI signal are accurately described as the sum of a zeroth order value (signal or ADC from the
straight cylinders) and two orders of corrections. We showed that a first-order correction is not
sufficient to improve on the zeroth order model, at least two orders of corrections are needed to
significantly improve on the zeroth order model. With the second-order corrections, the asymp-
totic models are second order accurate in the geometrical deformation parameters. In addition,
the model errors were shown to come mainly from the axons, with the errors from the ECS com-
partment a much smaller source of error.

Through HARDI plot, We observe that: (1) The bending deformation causes the HARDI plot in x-z
plane to become thicker; (2) The twisting deformation will rotate the direction of maximal ADC, which
might potentially introduce challenges in orientation estimation; (3) Applying both two deformations
simultaneously, the final effect is the superposition of them.

Compared to traditional approaches computing diffusion MRI signals on deformed domains, the
proposed asymptotic expansions only need to solve the PDE once on the canonical geometry and
can yield the results immediately for all the combination of deformation angles, which facilitate the
study of deformation effects. This method can be used to quantitatively examine how realistic axons
shapes affect the microstructure estimation in the brain white matter.

The purpose of this work is to contribute to relating the diffusion MRI signal more directly with
the tissue geometrical parameters. The idea is that the diffusion MRI signal and ADC differences
between nearby voxels and regions of interest can be modeled by second-order corrections due to
geometrical deformations with respect to a canonical configuration of straight brain white matter
fibers. Even though the two correction terms we described in this paper are in the forms of partial
differential equations and hence are complicated to solve, an intriguing possible future direction is
the use of machine learning algorithms to directly map diffusion MRI signals to some geometrical
deformation parameters relevant to the brain white matter fibers in the regions of interest.
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Chapter 4

Soma size and volume fractions
estimation using inflection
point-derived biomarkers
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Chapter Overview

In this chapter, we investigate the underlying cause of the breakdown of the 1/v/b power-law
scaling in the brain gray matter. Following the investigation, we propose a novel soma size and
compartment volume fractions estimation approach.

This work is inspired by the numerical study on the signal behavior of individual realistic neurons
at high b-values in[5]. By fixing the gradient strength and varying the diffusion time (using PGSE with
0 = A), Fang et al.[5] observed that the direction-averaged neuron signal will change its concavity
in the region where 1/v/b power-law is expected. From this observation, potential biomarkers were
derived from this signal inflection point (IP). In the PhD thesis of Chengran Fang[3], he presented
a simulation-driven supervised learning framework for microstructural imaging, which uses the in-
flection point-derived biomarkers (and alternatively, a large number of signal values) as inputs to
Multi-layer Perceptrons (MLPs). Also from that PhD thesis are the following needed elements for
this thesis described in section the experimental settings, the constructions of the NeuronSet,
the Synthetic Voxels Set, and the spline interpolation method.

83
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In this work, we first examine the signal behaviors of various geometrical shapes using PGSE
sequences with fixed ¢ and A (§ < A) and adjusting the gradient strength. This choice is more in
accordance with practical MRI experimental settings than the fixed gradient strength setting above.
We found that individual neurons still show the same signal pattern as observed in[5]. Thus, we can
identify the IP-derived biomarkers in the fixed 4, A setting as well. In addition, we found that single
spheres exhibit a similar signal pattern as individual neurons, hence we would like to link the signal
deviation in realistic neurons to the presence of spherical structures. To be able to accurately com-
pute IP-derived biomarkers, we derive their mathematical expressions using the Numerical Matrix
Formalism method. Then, by analyzing the relationship between IP-derived biomarkers and volume
fractions and soma size, we demonstrate that:

1. In the single sphere case, the b-value at the inflection point is uniquely determined by the
soma radius, with a monotonic relationship;

2. For the case of a single sphere combined with a bundle of sticks, the y-intercept of the linear
fit at the inflection point is related to the soma volume fraction;

3. In the case comprising a single sphere, sticks, and one free diffusion compartment, the signal
value at the inflection point correlates with the volume fraction of the free diffusion compart-
ment.

These investigations suggest that we can retrieve the soma size and volume fractions information
from IP-derived biomarkers.

To demonstrate the ability to use the IP-derived biomarkers for practical microstructure estima-
tion, we propose an exhaustive search method, using similar parameters to the Synthetic Voxels
Set constructed in[3]. On the single neuron dataset, we evaluate an iterative method based on the
IP-derived biomarkers. On a synthetic test set and on an in vivo dataset, we evaluate this exhaustive
search method. It is shown that the estimated values are similar to those of the SANDI model and
the exhaustive search method based on using a large number of direction-averaged signal values.

This work contributes to the interpretation of the deviation from the 1/v/b power-law scaling at
high b-values in the brain gray matter with IP-derived biomarkers corresponding to physically mean-
ingful parameters, and leveraging this understanding for microstructure estimation. Compared to
signal-based estimation, the estimation errors by the biomarker-based estimation are at the same
level. Because it requires only three biomarkers as inputs instead of signal values of multiple shells,
the estimation takes less time.

Certain sections from this chapter have been published in the paper[4]. This includes

1. the experimental settings, the constructions of the NeuronSet, the Synthetic Voxels Set, and
the spline interpolation method, described in section [4.1] (which originated in the PhD thesis
of Chengran Fang[3]);

2. the exhaustive search method in section
3. the estimation results on the Synthetic Voxels Set in section|4.4.2
4. the in vivo parameters estimation in section(4.4.3

The rest of the chapter is new to this thesis and has not been published elsewhere.

4.1 Introduction

Inthe brain white matter, a recent study by Veraart et al.[64,|65] found that the direction-averaged
signals
?E/ Sdug
ugl|=1

decay at a linear rate with the inverse of the square root of the b-values, 1/v/b, at high gradient
strength. This behavior, called 1/v/b power-law scaling, is prevalent in the brain white matter. Sub-
sequent explanation of this observation is achieved through the numerical simulations on sticks,
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cylinders as well as realistic neurites phantoms[[110}/157]. However, in the brain gray matter, a devi-
ation from this 1/v/b power-law scaling is observed. Several explanations have been proposed for
this deviation. The three primary ones are: (1) the curvature of neurites|[158], (2) the presence of
somal28]], and (3) the significant water exchange between neurites and the extracellular space[100].

In a recent work[5], Fang et al. conducted a numerical study on individual realistic neurons and
their neurite branches, using PGSE sequences with § = A, keeping the gradient strength constant
and adjusting the pulse duration §. It was revealed that: (1) For the neurite branches, the 1/vb
power-law scaling holds true and the slope of this linear fit exhibits a correlation with the inverse
of the square root of the intrinsic diffusion coefficient 1/1/Dy; (2) In contrast, S of neurons exhibits
a change of the concavity. Thus, potential biomarkers were proposed based on the inflection point
(IP) of the direction-averaged signal curve.

In follow up work, in the PhD thesis of Chengran Fang[3], he presented a simulation-driven su-
pervised learning framework for microstructural imaging, showing the potential applications of the
inflection point derived biomarkers. In order to fit the in vivo dataset, the IP-derived biomarkers
are defined based on the signal curve using a fixed PGSE sequence and varying gradient strength,
which is different from the original paper[5]. He constructed a Synthetic Voxels Set from realistic
neurons and used multilayer perceptrons (MLPs) to approximate the underlying mappings between
(1) a large number of signals or (2) IP-derived biomarkers plus ADC and microstructure parameters.

The objective of this chapter is to further investigate the relationship between the IP-derived
biomarkers and the volume fractions and soma size, then employ the findings for estimation. Differ-
ent sequence configurations might result in different relationships. Because practical experiments
usually employ PGSE sequences with fixed § and A, adjust only the gradient strength, we adopt the
latter definition of IP-derived biomarkers from[3]. Figure depicts the S of an individual realistic
neuron as a function of 1/v/b within the regime where the 1/v/b power-law scaling is expected, using
a fixed PGSE sequence PGSE(8ms, 49ms) with varying gradient strength. Four IP-derived biomarkers
are:

* xo: the x-coordinate of the inflection point;

* yo: the y-coordinate of the inflection point;

* ¢o: the y-intercept of the power-law fit at the inflection point;
* c1: the slope of the fit.

This chapter addresses the challenges of interpreting signals in relation to microstructures in the
brain gray matter and seeks to provide insights into the design of microstructure estimation algo-
rithms. We analyze the relationship between these four IP-derived biomarkers and volume fractions
and soma size. To conduct accurate estimation in practice, we use an exhaustive search method
rather than optimization algorithms or machine learning algorithms such as MLPs. The reason for
this choice is that the exhaustive search approach eliminates the need for difficult computations of
nonconvex fitting. Our library will use similar parameters to the Synthetic Voxels Set constructed in
the work[3].

In the remainder of this section, we will present the simulation-driven supervised learning frame-
work proposed in the thesis of Fang[3], including the in vivo data, the construction of Synthetic Voxels
Set, and the computation of IP-derived biomarkers using spline interpolation. Detailed information
regarding the MLP configurations can be found in appendix|B.2} We will employ the same datasets
to validate our exhaustive search method and compare its performance with the simulation-driven
supervised learning framework in a later section.

4.1.1 MGH CDMD data and experimental settings

We first introduce the in vivo data and corresponding experimental settings. All subsequent
investigations and estimations will be presented using these experimental parameters.

The MGH Connectome Diffusion Microstructure Dataset (CMCD)[156] is a publicly accessible
dataset designed to serve as a test platform for the new diffusion MRI microstructure models work-
ing at high gradient strengths. The diffusion MRI data are acquired from 26 healthy participants on
the 3T Connectome MRI scanner (Magnetom CONNECTOM, Siemens Healthineers). The experiment
settings are:
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Figure 4.1: Four inflection point derived biomarkers values. The inflection point is characterized
as the location where the concavity of the signals changes. The simulation is performed on the
neuron “20171005A07” from neuromorpho.org[159] using SpinDoctor. Different from the original
paper[5], the curve is plotted with fixed sequence PGSE(8ms, 49ms) and varying gradient strengths.
Signal values are normalized by the neuron volume and averaged over 32 uniformly distributed
diffusion-encoding gradient directions. The black dots indicate values computed by Numerical Ma-
trix Formalism.

+ Two PGSE sequences are applied. The pulse duration § = 8ms, and two different between
pulse duration A = [19,49]ms. The echo time T = 77ms;

« Eight gradient strengths are used, g-values=[31, 68,105, 142, 179, 216, 253,290] mT/m, corre-
sponding to b-values [72, 346, 825, 1509, 2400, 3491, 4789, 6292] s/mm? for A = 19 ms and
[204, 981, 2340, 4279, 6800, 9902, 13584, 17848| s/mm? for A = 49ms;

+ 32 diffusion encoding directions uniformly distributed on a sphere for b < 2400 s/mm? and
64 uniform directions for b > 2400 s/mm?.

The acquired image parameters are: field of view (FOV) = 216 x 216 mm); slice thickness = 2mm;
and voxel size =2 x 2 x 2 mm3,

The diffusion MRI data were already pre-processed to correct gradient non-linearity, eddy cur-
rents, and susceptibility-induced distortions. The estimated median signal-to-noise ratio (SNR) is
21[156/|[160]. MGH CDMD recorded only the real part of the signals for some subjects. Further de-
tails regarding data acquisition and processing can be found in the initial publication associated with
this dataset[156].

Accordingly, the simulated experiments are designed based on the in vivo dataset in use:

+ Two PGSE sequences PGSE(8ms, 19ms) and PGSE(8ms, 49ms) are applied, referred in the fol-
lowing as the short and long sequences;

+ 64 gradient strengths ||g|| linearly space between 0 and 290 mT/m are simulated;

+ 32 diffusion encoding gradient directions ug uniformly distributed on a hemisphere are used,
which are equivalent to 64 directions on a sphere because the signals are anti-symmetric;

+ The simulations are performed using the Numerical Matrix Formalism. The length scale cut-off
L, is chosen to be 1.5um, which corresponds to a characteristic time scale of 76us;

« The intrinsic diffusion coefficient Dy is set to be 3 x 1073 mm?/s;
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* Interfaces are supposed to be impermeable.

The initial condition is assumed to be a uniformly distributed density. The signals are normalized
by the initial density, denoted as S(||G||, ug, d, A). The direction-averaged signals are computed as
the average value over all the 32 diffusion encoding directions:

32

1
> S(IG], ug, 6, A). 4.1)
=1

50161,5,4) = o

4.1.2 NeuronSet

The quality of the estimation using MLP is tightly coupled with the quality of the diffusion MRI
signal data in the training set. Furthermore, accurate microstructural parameters are required for
the validation as well. To be able to acquire high-fidelity data, it is desired that simulations are
performed on neurons with realistic shapes. In [4], a neuron database, named NeuronSet, was es-
tablished using digitally reconstructed real human neurons sourced from neuromorpho.org[159],
via an automatic generator. This dataset is now available athttps://github.com/SpinDoctorMRI.
To ensure diversity and avoid potential biases arising from similarities in shapes, NeuronSet includes
neurons covering a wide range of brain regions and encompassing a diverse range of shapes. This
dataset contains simulation-ready surface meshes of 1,163 real human neurons and 50 glia, inde-
pendently recorded by 11 laboratories, stored in 11 archives, and reported on 22 papers[161H182].
For simplicity of notation, we refer to both neurons and glia as neurons in the following since they
have the same neuronal shapes.

To be able to perform the simulations (compute the signals and their second-order derivatives),
surface meshes will be transformed into volume meshes. This process is done by Tetgen[121] using
SpinDoctor. Figure[4.2]displays the distributions of the number of triangles on surface meshes and
the number of nodes on volume meshes. The average numbers of faces and nodes are around
150,000 and 80,000, respectively. The maximum number of nodes is 200, 000, which is within the
capability of our computer.
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Figure 4.2: Distributions of surface meshes and finite element meshes information of the NeuronSet
which contains 1213 neurons. Left: The distribution of the number of triangles; Right: The distribu-
tion of the number of nodes. The blue solid line is the probability density function of the distributions
calculated by Seaborn[[183].

In addition, the volume meshes will be used to accurately measure the neuron’s shape informa-
tion. The soma is represented as a sphere with a radius of Rsoma. Thus, its volume is approximated
as Veoma = 4mRZ. /3 and the volume fraction of soma is fsoma = Vsoma/Vaeuron, Where Vieuron is the
neuron volume. The volume fraction of neurite is freurite = (Vheuron — Veoma)/ Vheuron-

Figure[4.3|shows the distributions of these four different morphological parameters of the 1,213
neurons in the NeuronSet. The soma radius ranges from 2 to 28 micrometers, with the majority of
neurons having a soma radius of 8 or 21 micrometers in this one-neuron dataset. More than 50%
of neurons have a fsoma vValue between 40% and 60%.
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Figure 4.3: Distributions of morphological parameters of the NeuronSet which contains 1, 213 cells.
All the morphological parameters are measured on the finite elements meshes. Top left: The distri-
bution of neuron volume; Top right: The distribution of soma volume; Bottom left: The distribution
of Rsoma; Bottom right: The distribution of fsoma. The blue solid line is the probability density func-
tion of the distributions calculated by Seaborn[183].

4.1.3 Synthetic Voxels Set
The Synthetic voxels set is constructed based on the following assumptions:

* The blood vessels compartment and the stationary water are negligible because their volume
fractions in the brain gray matter are relatively small;

* The intracellular compartment is modeled as a combination of neurons randomly selected
from the NeuronSet. Each neuron comprises a soma and neurites, all of which are correctly
interconnected;

+ Due to the complexities of accurately packing neurons into extracellular space (ECS) and main-
taining a volume fraction close to the actual value, as well as the intensive computational costs
for simulating the permeability effects, the signal contribution from ECS is modeled as one
isotropic Gaussian diffusion compartment. To reduce the model complexity, its diffusion co-
efficient is fixed to be the same value of the intrinsic diffusion coefficient, Dy;

+ Water exchange between neurons and the free diffusion compartment is negligible. There-
fore, each neuron and ECS are disconnected.

The Synthetic voxels set is constructed by randomly selecting M neurons from the NeuronSet to
make 145,000 artificial intercellular spaces. The number M ranges from 1 to 500 and there are no
duplicate neurons by choice. Each combination of M neurons is then supplemented with 10 differ-
ent free diffusion compartments whose diffusion coefficient is fixed to Dy but the volume fraction
follows a Gaussian distribution (1 = 0.5,02 = 0.25?). The choice of the Gaussian distribution is
empirical. In total, 1.45 million distinct artificial brain voxels are made.
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Since the orientation of the neurons has no impact on the direction-averaged signal, all the com-
partments in one voxel are uncoupled. Therefore, the signal is simply represented as the sum of
all the contained compartments. Suppose an artificial brain voxel contains M neurons and a free
diffusion compartment, the direction-averaged signal inside one voxel is expressed as

M _

= =1 Vi Si -

Svoxel(éaAv ”GH) = fneuron X Z:zZ;MV + firee X € Dob’ (4.2)
i=1 "1

where the subscription i indicates the i-th cell, V; is the neuronal volume, S, isthe direction-averaged
signal, and Dy is the intrinsic diffusion coefficient. freuron @and free are the volume fraction of the
neuron and free compartment, respectively. The sum of themis 1.

The microstructural parameters of the synthetic voxel can be determined by the contained neu-
rons. Here, we focus on the volume fractions and the soma radius. Given the neuroanatomical
parameters of one synthetic voxel of M neurons, the soma volume fraction is

M m
Zm:1 Vsoma (4 3)
M ™ :
ZnL:l Vneuron

fsoma - fneuron

the neurite volume fraction is

M m
Zm:l Vneurite (4 4)
M m ’ '
Zm:l Vneuron

fneurite = fneuron
and the volume-averaged soma radius is

M
Zm:l VsronmaR;ycL)ma (4 5)
17 . .
Zm:l ‘/;Torlr\ﬁa
Figure[4.4] presents the distributions of the volume fractions and volume-averaged soma radius
in the Synthetic voxels set. Jsoma and freurite @re not very correlated after adding the free diffusion
compartment. Two peaks of Rsoma are 10um and 18um.
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Figure 4.4: The distributions of the volume fractions and volume-averaged soma radius in the Syn-
thetic voxels set. Left: The distributions of fsoma, freurite: ffree. Middle: The joint distributions of fsoma
and freurite- Right: The distributions of Rsoma. The Synthetic voxels set contains 1.45 million artificial
voxels, where fiee follows a Gaussian distribution N'(z = 0.5, 02 = 0.252), fsoma and freurite are
derived from realistic neuron meshes. The contour lines in the joint distributions contain 50%, 75%,
and 90% of the data points.

4.1.4 Spline interpolation
The spline interpolation is used for:

+ The MLPs are trained using 64 gradient strengths, in order to be designed as a dataset-independent
framework. To perform estimation on the in vivo data, 8 measured signals need to be inter-
polated into 64 signals;



90CHAPTER 4. SOMA SIZE AND VOLUME FRACTIONS ESTIMATION USING INFLECTION POINT-DERIVED BIOMARKERS

* The IP-derived biomarkers need to be computed using spline interpolation.

Because a vanilla cubic spline suffers a large fluctuation, which may cause inaccuracy and pro-
duce spurious inflection point, the fourth-order B-spline interpolation implemented in Scipy[184] is
adopted. To moderate the fluctuation, the Gaussian phase approximation is applied when b-values
are smaller than 35 s/mm?, which provides two boundary conditions which are the continuity of the
first and second-order derivatives at the lowest b-values bjgy:

' (1/+/Drow) = 2ADCy/bil, e ~APCBon (4.6)
5" (1/y/biow) = 2ADC - b2, (2ADC - bjgy, — 3)eAPCDiw 4.7)

At the high b-value end bpgn, the “natural” boundary condition[185] is adopted:
S"(1/4/brign) = 0. (4.8)

The boundary conditions help moderate the fluctuation of the interpolation and allow to sample
of gradient strength up to its maximum value in the real data and find the inflection point. Figurel4.5)
demonstrates the measured and interpolated signals. It is worth mentioning that if the inflection
point exceeds the maximum gradient strength, it will be capped at the maximum value, due to the
considerable extrapolation error of this method.
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Figure 4.5: Fourth-order B-spline interpolation of direction-averaged signals. Red circles represent
the direction-averaged signals at eight non-zero b-values measured from a voxel of the second sub-
ject (sub_002) in MGH CDMD. The voxel index is (19, 25, 73). A vanilla cubic spline interpolation
represented by the dotted black line suffers a large fluctuation. The inflection point is marked by
the green cross. The orange dash line represents the power-law fit at the inflection point. By incor-
porating the three boundary conditions annotated in the boxes, the fourth-order B-spline method
interpolates the eight measured signals giving the solid blue line.

4.2 Analysis of the deviation of power-law scaling in gray mat-
ter

To start, we examine the direction-averaged signal behavior at high b-values for different ge-
ometries, from simple shapes, such as sticks, cylinders, and spheres, to realistic neurons, as shown
in fig.[4.6] Two numerically reconstructed neurons from NeuronSet are used. The first one is located
in the fronto-insula region, labeled as “neuron1”, which has a radius of 15.65xm and a soma volume
fraction of 83%. The second one is located in the occipital lobe, labeled as “neuron2”, which has a
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Figure 4.6: Finite element meshes of two numerically reconstructed neurons from NeuronSet. From
left to right: The whole neurons, the soma part, and the neurites part. The neuron is cut manually in
Blender and its volume is conservative. Top row: The name of the neuronis “280_spindle21aFl” (from
the allman archive, located in the fronto-insula region). Its soma radius is 15.65um and its soma
volume fraction is 83%; Bottom row: The name of the neuron is “H17-06-012-14-08-03_680980293_m"
(from the allen archive, located in the occipital lobe). Its soma radius is 5.5u¢m and its soma volume
fraction is 91%.

radius of 5.5um and a soma volume fraction of 91%. This analysis employs fixed PGSE sequence
and varying |G|, which differs from[5].

In fig.[4.7) we plot the direction-averaged signals using two sequences for eight cases: (1) a bundle
of sticks, (2) one sphere, (3) one sphere + sticks (4) a collection of infinity long cylinders, (5) connected
neuron, (6) disconnected neuron, (7) soma part and (8) neurites part. The direction-averaged signal
of sticks has an analytical expression:

1
gsticks = / e_DUbZZdZ = 74,D7T berf( Vv Dob) (4.9)
—1 0

where erf(-) is the error function. For the other shapes, S is computed by the Matrix Formalism. We
observe that:

1. The 1/v/b power-law scaling holds true for all tubular structures, from simple shapes such
as sticks and straight cylinders to realistic neurite branches, implying that the curvature and
branching won't break this relationship. For sticks, at high b-values, erf(v/Dyb) = 1, thus we
have S.ticrs = \/7/4Dob, which results in the power-law relationship;

2. At ultra-high b-values, the signal of the collection of cylinders starts to become sensitive to
the perpendicular diffusion inside the neurite, resulting in deviation from the linear relation-
ship[66];

3. All the shapes containing spherical structures do not exhibit the power-law in the range where
we should observe it. Furthermore, for all of them, we notice the signals will change the con-
cavity at a specific point, suggesting that the inflection point is related to the inclusion of spher-
ical structures;

4. As the diffusion time increases, the point of concavity change occurs at a higher b-value;
5. Signal of the whole neuron is similar to those of the case comprising one sphere and sticks;

6. The signals from disconnected neurons are similar to those from the connected neurons, in-
dicating that water exchange between the soma and neurites has minimal influence on the
global signal behavior pattern.
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Figure 4.7: S against 1/v/b. Top: Results for simple shapes, using the long sequence, The blue,
red, purple, green, and brown lines represent the case of (1) one sphere with a radius of 15.65um,
labeled ‘Sphere?’, (2) ‘Sphere1'+sticks, (3) one sphere with a radius of 5.5um, labeled ‘Sphere2’, (4)
‘Sphere2'+sticks and (5) a collection of cylinders with radii from 0.5um to 1.5m; Bottom left: Results
for realistic shapes, using the short sequence; Right: Results for realistic shapes, using the long
sequence. The blue, red, purple, green, brown, gray, light blue, and yellow lines represent the case
of (1) connected neuron1, (2) disconnected neurons1, (3) the soma of neuron1, (4) the neurites of
neuronT, (5) the connected neuron2, (6) the disconnected neuron2, (7) the soma of neuron2 and (8)
the neurite of neuron2. The black line is the pure sticks case. The markers indicate values computed
by Numerical Matrix Formalism.

4.2.1 IP-derived biomarkers

In the previous subsection, we demonstrate that the presence of spherical structures will cause
the deviation of the 1/v/b power-law scaling. In the following, we adopt the same definition of the
four IP-derived biomarkers in section [4.7]and investigate the relationship between these biomark-
ers and the soma size and volume fractions. Notably, among these four IP-derived biomarkers,
only three are truly independent. The slope ¢; can be computed by (yo — ¢o)/xo. Mathematically,
the x-coordinate of the inflection point x corresponds to the gradient strength value making the
second-order derivative of S against 1/v/b equal to zero. The y-coordinate yj is the corresponding
normalized signal value and the slope c¢; is the corresponding first-order derivative value. The y-
intercept ¢ signifies that, starting from the inflection point, the signals begin to decay at their peak
rate c¢1, and this trend continues as the gradient strength approaches infinity.

Because of the high b-values resonance, the second-order derivative of S perhaps has multiple
zeros. In that case, we take the lowest b-values point as the target inflection point, where the first-
order derivative of S against 1/v/b is maximum.
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4.2.2 Mathematical computation of IP-derived biomarkers from Numerical
Matrix Formalism

In this subsection, we provide the mathematical expressions of the four IP-derived biomarkers,
Zo, Yo, ¢1 and ¢, using Numerical Matrix Formalism. Compared to find them by fourth-order spline
interpolation, these expressions ensure precise computation of these biomarkers during numerical
analysis.

Using the first Ne;y smallest Laplace eigenfunctions (¢;),_; ., . the diffusion MRI signals of
PGSE(d, A) have the expression as below by the Numerical Matrix Formalism:

S(IGl, ug, 8, A; Neig) = (1,,,. 1M P) H(||G||, ug, 6, A) (P" M1y
=T{ H(|G||,ug, 6, A)Ty,

(4.10)

nod67 )

where -T'is the transposed conjugate, 1y, .1 is an all-one vector, M is the mass matrix, and P is
the coefficient of Laplace eigenfunctions in the P1 finite element functions. We denote the initial
magnetization coefficient on the Laplace eigenfunctions as To = PT M1y, ,. 1, which is indepen-
dent of the imposed gradient sequence. H(||G||, ug,d, A) is expressed as

H(|G|, ug, 5, A) = e dL—n|GW(gw)) . ,—(A=0)L 6*5(L+VYHGHW(gu))’ @.11)

where L is a diagonal matrix of Laplace eigenvalues, ||G|| is the gradient strength, g., is the diffusion
encoding gradient direction and W (ug) is the projection of encoding gradient term onto the Laplace
eigenfunctions:

W (gu) = sin()(cos(9) A” + sin(9) A¥) + cos(6) A°, 4.12)
ki :/ rér(x)¢1(x)dx, (k,1) € {1,2,..., Neig}®, 7 € {2,y,2}, (4.13)
xEN
with
gu = [sin() cos(6), sin(¢) sin(8), cos(¢)] " . (4.14)

The matrices L and W are symmetric. The details of the Numerical Matrix Formalism represen-
tation can be found in chapter[2]

For ease of notation, we introduce a new variable ¢, defined as ¢ = +||G||. For PGSE, the vb
holds a linear relation with g:

Vb = 6/A = 6/3||G|| = 6+/A - 6/3q. (4.15)
Here, we represent H as the product of a matrix G and its transpose conjugate:
H=G"aG, (4.16)

with G defined as

G = e—O.5»(A—6)L . e—é(L—i—qu). 4.17)

Inthe case of § and A fixed, and the gradient strength || G|| varying, the direction-averaged signals
exclusively depend on the gradient strength and can be written as

1 T 2
- L / | sl uganag 4.18)
27
T} I / HdfdeTy (4.19)

27r
T / GTGdOdHT,. (4.20)
Am
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The first-order derivative of S with respect to 1/v/b is
ds B @ dq
d(1/vb)  dq d(1/Vb)

= —¢*5\/A — 6/ as
_ _q25\/WT0T (/w /27r d(GTG) d0d¢) - (4.21)
_ —q%/A ~*V/A 0 (/ /2“ GTdG (GTciqu?)Tdod¢) T
where the first-order derivative of G with respect to ¢ can be computed by the theorem(186]
% — o 05(A-0)L /01 e~ LH1aW) (_ysp7) = (1= e)d(LtaaW) g, (4.22)

For simplicity in notation, we define one new variable depending on g¢:

2
4i < / / GTde9d¢) (4.23)

Therefore, the first-order derivative dS/d(1/+v/b) is expressed as

(1Cj:qf = —¢*5V/A = 5/3(a+a") = ~2¢°6\/A — §/3R(a). (4.24)

The second-order derivative of S with respect to 1/v/b is

25 _d( dS ) dg
d(1/vb)*  da \d(1/vb)/ d(1/vb)

2 T
_ 2oxa—sppdatatal)) (‘;; ) (4.25)

a+al a a\"
= '9*(A ~ 5/3) (2(:)+;2+<Zq> )

The derivative da/dq is expressed as

e (L (GTdG)d9d¢)T

™ AGT dG P*G (4.20)
—TT / / ——+ GT d9d¢
dq dq
The second-order derivative of G with respect to ¢ is
2
TG 050 (B + BT), (4.27)

dg?

where B can be computed using the same theorem][[186]
1 1
B= / o ( / e—ﬁaé(LWW)(—zéW)e—(l—m“(L“qW)dﬁ) (—16W)e~1=e0(L+uaW) gn  (4.28)

For simplicity in notation, we define two new variables depending on ¢:

27 T
—TT ( / / dZCZGd@cM) To, (4.29)

2
=Ly ( /0 0 GTdeGd¢> (4.30)
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Thus, the second-order derivative d2§/d(1/\fb)2 is expressed as

2qQ T
df;2:q%%A—ﬁﬁn<%&+a)+b+c+bT+J)
d(1/vb) q (4.31)

::%%%A—ﬁﬂﬂ<%?w+%@+c0.

The x-coordinate of the inflection point z is the b-value where eq. equals to 0:

%T”+%@+@=o (4.32)

This formulation of x is valid for all kinds of geometries with a fixed PGSE sequence, except in
the presence of the non-equilibrium permeable interfaces. Even though it is difficult to solve directly
this equation due to the complex dependence of g, b, and ¢ on gradient strength, we can numerically
compute it by root-finding algorithms[187].

Yo is the corresponding S value at the b-value of x:

Yo = S |b=zo- (4.33)

c1 is the corresponding first-order derivative value of S with respect to 1/v/b at b-value of zy:

ds
0= — . (4.34)
d(1/Vb) by,
co can be given by
Co = Yo — C1%0. (4.35)

In summary, to accurately compute the IP-derived biomarkers, we use root-finding algorithms
to find the zero of eq. (4.32), which is zy. Once we obtain the value of xg, yo and ¢; can be calculated
by eq. (4.33) and eq. (4.34) respectively, then ¢y can be obtained by eq. (4.35).

Figure(4.8|depicts d2§/d(1/\@)2 and 2R (a)/q+R(b+c) against g, for a single sphere with varying
radius. The inflection point is marked by the transition of 2%(a)/q + R(b + ¢) from a negative to a
positive value. As Rsoma increases, the ¢ value at the inflection point decreases. Additionally, in
the regime near zero, 2R(a)/q + R(b + ¢) exhibits a quasi-linear behavior, whereas d2§/d(1/\/5)2
appears more curved, in order of ¢°. This implies that using spline interpolation to compute the
IP-derived biomarkers may be less accurate.
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Figure 4.8: d2§/d(1/\%)2 (left) and 2R(a)/q + R(b + ¢) (right) against 1 /¢, using the short sequence.
The simulations are performed on a single sphere with varying radii. The markers indicate values
computed by Numerical Matrix Formalism.

The numericalimplementation of the first and second-order derivatives of the direction-averaged
signals using Numerical Matrix Formalism refers to appendix[B.1]

Remark 5. The q, b, and c are real numbers in the case of uniformly distributed initial density. Therefore,
in practice, the operator R(-) in eq. (4.32) isn’t necessary.
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4.2.3 Analysis IP-derived biomarkers on simplified shapes

In this subsection, we investigate the relationship between the four IP-derived biomarkers and
the soma size and volume fractions on some simplified shapes. As shown in fig. we observe
that the signals from the neuron can be roughly approximated as a combination of signals from the
soma and the neurites. Furthermore, the soma can be represented as a sphere and the neurites
can be represented as a bundle of sticks. Throughout this subsection, we use the terms “soma”
and “sphere” as synonyms and “neurite” and “sticks” as synonyms. We will examine four simplified
shapes: a single sphere, a sphere accompanied by sticks, a sphere combined with sticks and a free
diffusion compartment, and multiple spheres.

4.2.3.1 One sphere case

The soma is often modeled as a perfect sphere with a radius of Rsoma. Our initial effort is to
relate the four IP-derived biomarkers with Rsoma in the single sphere case. In that case, the diffusion
MRI signals are identical in all the diffusion encoding directions, so we can remove the integral in

eq. (3.32).
The Laplace operator in spherical coordinates (r, 8, ¢) can be separated into an axial term and
spherical harmonic term

A sinf— + —

sinfof 00 0p?

T or2  ror 2

2 2
0 20 1(1 0 0 8>. (4.36)

The eigenvalues and eigenfunctions of the Laplace operator with Neumann boundary condition
are expressed as[70]

D, 2
Ak = ok with 1 () = 0, (4.37)
Ssoma

Bnk . r
nk (T, 0, = n{Qn
¢l k( <P) vV 2T 'n (Oénk)j ( F Rsoma

where j(-),, and j/ () are the spherical Bessel function of the first kind of order n and its deriva-

1 (2n+1)Ank
R3/2 Ank—n(n+1)’

Y™ (8, o) is the spherical harmonics. The eigenvalues are degenerates (2/+ 1 eigen%ﬂnﬁctions for one
eigenvalues), and hold a linear relation with R_ 2., L o R.2,,.

We have also the analytical expression of the matrix of the projection of encoding gradient term
W70l

Y0, ), (4.38)

tive, B, is the L2-norm normalized constant, which can be expressed as 8, =

m4+n"+1)0pnt1 Ak + Ay —n (0 +1) —n'(n+1)+1

It is clear that in this case, the eigenvalues matrix L and encoding gradient projection matrix W
only depend on Rsoma. In fig. we illustrate the four IP-derived biomarkers as functions of Rsoma.
The blue and red lines represent the results for the short and long sequences, respectively. From
the plot, we have the following observations:

Wk = BrkBn/k

(4.39)

1. xg and ¢; are one-to-one mappings with Rsoma, implying that we can retrieve the radius value
from either of them;

2. For a Rsoma Value, the longer the sequence, the smaller the values of z. Besides, with a longer
sequence, the relationship between zy and Rsoma appears increasingly linear;

3. Forlarge radius (R > 20um), the curve z tends to flatten with shorter PGSE sequence, making
it challenging to differentiate between different large radius values;

4. Conversely, ¢; remains consistent for 3um < Rgoma < 10um across two sequences. With a
longer sequence, the mapping between c¢; and Rsoma in logarithm also tends toward linearity;

5. yo and ¢y are fluctuated around 0.22 and 0.45, preventing us from establishing one-to-one
mappings between yq or ¢g with the radius Rsoma-
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Figure 4.9: Four IP-derived biomarkers as functions of Rsoma. The blue and red lines are the results
using short and long sequences, respectively. The markers indicate values computed by Numerical
Matrix Formalism.

4.2.3.2 One sphere + sticks

A common simplification about neuronal shape is to model the soma as one sphere, and the
neurites as a collection of infinitely long sticks[188]. These two compartments are distinct and dis-
connected. Its direction-averaged signal can be written as

S = fsomaSsoma + fneuriteSneuritEa

with fsoma + fneurite = 1. The direction-averaged sphere signal is the same as discussed in the pre-
vious subsection, and the sticks signal is given by eq. (.9). Its first and second-order derivatives
are

(4.40)

dgneurite 0 -

——hearite _ | ——erf(y/Dyb) — Vbe PeP, 4.41
d(1/vb) 4Dy (VDob) )
@ Sheuite __ o 2, Db, (4.42)

d(1/vb)’

In fig. we plot the first and second-order derivatives of sticks compartment against 1/v/b.
The second-order derivative of the sticks is a strictly negative monotone function. Thus, the sticks
compartment does not have an inflection point itself. In the regime of high b-values (1/vb <
0.02um - us~1/2), the second-order derivative is almost zero (—2Dyb*e~PoP ~ (), manifesting the
power-law scaling. The first-order derivative converges to /7 /(4Dy) ~ 16.18.

However, adding the sticks to single sphere will change the relationship between our IP-derived
biomarkers and morphological parameters. In this case, the x-coordinate of the inflection point is
given by the expression:

2% 2 2
fsoma ((aqsoma) + §R(bsoma + Csoma)) - fneuriteDOCSQ(A - 5/3)€_D06 (A=0/3)q =0. (4-43)
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Figure 4.10: The first-order derivative (left) and second-order derivative (right) of Speurite as functions
of 1/+v/b. The dotted black line represents /7 /(4Dy).

Because of incorporating a negative term into the second-order derivative, xq will be smaller than
in the single sphere case. In fig.[4.11] we illustrate z( as a function of the radius for various soma
volume fraction values, using two sequences. From fig. we note that realistic values for fsoma
range from 0.1 to 1. We clearly observe this downward shift for spheres with a large radius. With
increasing the diffusion time, the influence of the soma volume fraction on zy becomes negligible
for spheres with small radius.
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Figure 4.11: xq as a function of Rsoma for various values of fsoma. Left: results using short PGSE
sequence; Right: results using long PGSE sequence. The blue, green, purple, red, and brown lines
represent fsoma = [100%, 75%, 50%, 25%, 10%)]. The markers indicate x, values computed by Nu-
merical Matrix Formalism.

In fig.[4.72} we plot the other three IP-derived biomarkers against the radius across various soma
volume fraction values, using the short sequence. Similarly, as fsoma increases, the ¢; curve tends
to flatten, making it challenging to differentiate between larger radius values. Besides, the ¢, curve
against Rsoma Maintains the same trend. At very low fsoma, co is nearly independent of the radius.

In fig. we plot the four IP-derived biomarkers against fsoma, across various values of Rsoma,
using the short sequence. We can observe that both ¢; and ¢y show a quasi-linear relationship
with fsoma. Besides, zq is quite independent of fioma. AS Rsoma iNCreases, the slope of the ¢; curve
diminishes, while the slope of ¢y remains consistent. Therefore, ¢y could be a good indicator for
Ssoma- IN fig. We plot the curves of ¢; and ¢y when using the long sequence. As diffusion time
increases, we note a more linear relationship between ¢y and fsoma-

When § is sufficiently short, the soma and neurites can be considered as disconnected compart-
ments, allowing the values of the four IP-derived biomarkers to be expressed as the sum of the
contributions from each of them. At high b-values, the second-order derivative of Speurite iS Nearly
zero and its y-intercept of linear fit is virtually zero. Thus, the contribution of neurites to ¢ is negligi-
ble. As observed in fig.[4.T} when this shift of the x-coordinate of the inflection point remains within
asmall range, Ssoma is linear towards 1/\/5, ensuring that its contribution to ¢q remains unchanged.
Therefore, we have ¢y = co somafsoma: Where cg soma iS the y-intercept in the single sphere case.

Also, Sheurite decays at a near-constant rate /7/(4Dy) in the regime of high b-values. As a
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Figure 4.12: yo (left), ¢y (middle), and ¢y (right) as functions of Rsoma, across various values of
fsoma, Using the short sequence. The blue, green, purple, red, and brown lines represent fsoma =
[100%, 75%, 50%, 25%, 10%]. The markers indicate values computed by Numerical Matrix Formal-
ism.
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Figure 4.13: Four IP-derived biomarkers against fsoma, across various values of Rsoma, Using the short
sequence. The brown, red, purple, and green lines represent radius of 5um, 10um, 15um, and 20m.
The markers indicate values computed by Numerical Matrix Formalism. In the ¢ plot, The curves
5um and 10pum coincide each other.

result, the contribution of neurites to ¢1 is (1 — fsoma)y/7/(4Dp). So, we have ¢1 ~ (¢1,s0ma —
V7/(4Do)) fsoma + /7/(4Dy), where ¢; soma is the slope of linear fit at the inflection point in the
single sphere case. The longer the diffusion time, the more linear the ¢y and ¢;. As the diffusion
time increases, ¢y and ¢; become more linearly related to fsoma-

In summary, when using a sequence with infinitely long diffusion time, the one-to-one relation-
ship between zy and Rsoma remains, and ¢y is linear to fsoma. Hence, using only z and ¢y is sufficient
to determine the soma radius and its volume fraction. Besides, ¢; depends on both Rsoma and fsoma-

In practice, it is not feasible to use infinitely long sequence. Moreover, as we discuss in the pre-
vious subsection, the z( curve will become less steep toward Rsoma as the diffusion time increases,
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Figure 4.14: ¢4 (left) and ¢ (right) against soma volume fraction, using the long sequence. The brown,
red, purple, and green lines represent radius of 5um, 10um, 15um, and 20um. The markers indicate
values computed by Numerical Matrix Formalism.

making accurate estimation difficult.

To be able to obtain a more precise estimation based on our IP-derived biomarkers under prac-
tical sequence configurations, we proposed an iterative method based on IP-derived biomarkers.
We define firstly two groups of functions. For a given z( value, the function

facg ¢ fsoma = R

describes the mapping from fsoma to Rsoma, determined by eq. (4.43). And for a given ¢y, the function

feo : R = fsoma

describes the mapping from Rsoma tO fsoma. This choice ensures a good initial guess. Figure
depicts these two functions across various zy and ¢y values by numerical simulations. The solid
line and dash line represent f,, and f.,. respectively. For each possible combination of (zg,cp),
there is a unique intersection between f, and f.,, corresponding to the actual values of Rsoma
and fsoma. It guarantees a unique solution for the iterative method. The algorithm begins with
an initial estimation of the soma radius R%, ., = f.,(1), and calculates the soma volume fraction
by f&ma = feo(RY). In each iteration, the values of Rsoma and fsoma are alternately updated until
convergence. The procedure of this algorithm is plotted in fig.[4.75b]

Algorithm 1: Iterative method for estimating Rsoma and fsoma in the case of one sphere +
sticks
Data: X-coordinate zg, y-intercept co, initial values RY, ... = f.,(1) and f3 .. = fe, (R?),
tolerance €; and e, maximum number of iterations NV
Result: Estimations fZ ., and R*
11+ 0
2 while n < N and not converged do
3| RO, e fao(Floma);
sT(L)Jr%g < feo (R?otnla);
if |fsTLL)77_721 - fs?)ma' <€ and |Rs7t)-ri_nla - R%ma' < €2 then
L converged < true;

o U b

7 ¥n<—n+1;

if converged or n>N then

* n+1.
9 fsoma soma’

* +1.
10 Rioma ¢ Reomas
1" return f5., Riomar

[
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Figure 4.15: Left: The mapping f., and f., across various z, and cq values, computed by numerical
simulations. The solid line represents the mapping f.,, defined as the mapping from fsoma t0 Rsoma
for a given zy and the dash line represents f.,, defined as the mapping from Rsoma t0 fsoma for a
given cg. Right: An illustrative picture on the procedure of the iterative method. Each red segment
represents one iteration. The procedure starts from f,,(1), where on the right end of the red line,
and will converge to the intersection point.

4.2.3.3 One sphere+sticks+one free diffusion compartment

One simplified shape assumption about the brain gray matter is to represent it as the combina-
tion of three compartments: a single sphere, a collection of sticks, and one free diffusion compart-
ment[28]. In that case, the direction-averaged signal is

g = fsomagsoma + fneuritegneurite + ffreegfree; (4.44)
where the signal of the free diffusion compartment is defined as isotropic Gaussian diffusion:
Stree = €~ PP, (4.45)

Its second-order derivative is

= 2Dyb*(2Dyb — 3)ePob, (4.46)

In fig. we plot the signals and second-order derivative of the free diffusion compartment.
Its inflection point is fixed at [\/2Dy /3, e3/2].

In fig. we plotthe four IP-derived biomarkers against fsee, for various pairings of ( fsoma, Rsoma)
using the long PGSE sequence. It is evident that yo and ¢; are proportional to (1 — fgee). As shown
in fig. at high b-values (1/vb < 0.015um - us~'/?), St is almost zero, as well as the first and
second-order derivatives, i.e. S o (1 — fiee). Thus, we can link ffree to yo.

In summary, ¢; depends on all these three morphological parameters (Rsoma, fsomas ffree) and
from the values of (xg, yo, ¢1), we can deduce a unique estimate of (Rsoma, fsoma; ffree). We define a
multivariate function:

I (Rsomav fsoma; ffree) — (100550; 10yo, 1OCO)~

The different coefficients before z, yo and ¢y are used to make the gradient smoother. A non-zero
determinant of the Jacobian matrix suggests the invertibility of f. Consequently, f~*(100x¢, 10yo, 10co)
gives a unique solution of (Rsoma, fsoma, ffree ) IN addition, A determinant significantly deviating from

1 indicates that inverting the function f is numerically challenging.
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Figure 4.17: Four IP-derived biomarkers against fsee for various combinations of (fsoma, Rsoma), US-
ing the long PGSE sequence. The markers indicate values computed by Numerical Matrix Formalism.

In fig. [4.18} we plot the determinant of its Jacobian matrix as a function of fi.e for some pair-
ings of Rsoma and fsoma, USing the long sequence. In a realistic brain tissue voxel, free should not
exceed 50%. Notably, all determinant values for fiee < 50% are strictly positive. For small radii, the
determinant is close to 1 and it is not dependent on the volume fractions, implying that inverting
f is straightforward. As Rsoma increases or fooma decreases, it always exists a unique solution but
inverting the function f may become more challenging.
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Figure 4.18: The determinant of the Jacobian matrix of f against fiee When using the long sequence.
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and blue lines represent fsoma = 10%, fsoma = 25%, fsoma = 50%, fsoma = 75% and fsoma = 90%. For
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4.2.3.4 Multiple spheres case

Within one single voxel, there are a large number of neurons with different soma radii. It can
be modeled as a composite of multiple spheres with different radii, complemented by a bundle of
sticks and one free diffusion compartment. The impact of sticks and the free diffusion compartment
on the four IP-derived biomarkers, especially ¢q and g, are the same as we discussed in previous
subsections.

In the multiple spheres case, the x-coordinate of the inflection point x( satisfies the expression
as below:

2R(agm )

M 3 soma
Y om=1 %W(R?éma) (# +R(brm  + crm )

M 3
Zmzl %W(Rgéma)

Itis the zero of the volume-weighted sum of the function 2R(agm_)/q+R(brm  +crm ). Therefore,
xg is linked to one kind of volume-averaged radius. This effective soma radius lies between the
minimum and maximum radii, and it closely approximates the radius associated with the highest

volume fraction. We define the volume-averaged radius Rsoma as:

M 4

Esoma _ Zm:l (Rg?)ma)
== 3
ZmZI (Rggma)s

In fig. we illustrate xy against Rsoma in the two spheres case. We note that although zg
and Rsoma do not maintain a one-to-one mapping in this case, zy still follows the same trend as we
observed in the single sphere case in fig.[4.93]

Throughout the analysis, we conclude that:

=0. (4.47)

(4.48)

1. Inonesingle sphere case, z is one-to-one mapping with Rsoma. As the diffusion time increases,
the mapping becomes more linear;

2. Inthe case of one sphere supplemented by a bundle of sticks, ¢y exhibits a linear relationship
With fsoma;

3. In the case of one sphere complemented by a bundle of sticks and a free diffusion compart-
ment, when using a sequence with long diffusion time, ensuring that zo < 0.015um - us~/2
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and Sfree ~ 0, yo exhibits a linear relationship with fiee. Thus, g, yo and ¢y are each uniquely
correlated to Rsoma, ffree aNd fsoma;

4. c¢q shows a dependence on all these three morphological parameters;

5. The determinant of the Jacobian matrix of the mapping f from (Rsoma; fsoma, ffree) t0 (20, Yo, ¢o)
is invertible, indicating that three IP-derived biomarkers are sufficient to determine the soma
radius and volume fraction;

6. In the cases of multiple spheres, the relationship between z, and volume-averaged radius
Rsoma Will follow the same trend observed between zy and Rsoma in the single sphere case.

4.3 Impact of realistic neuronal shapes and exhaustive search

In the previous section, we show the ability to use the IP-derived biomarkers to estimate soma
size and volume fractions for simplified shapes. However, in real estimation, finding the accurate
inverse of the mapping f presents challenges due to the following reasons:

1. As we can see in section|4.2} even though the actual neurites branches also exhibit the power-
law scaling, their signals are not identical to those of sticks or cylinders. The slope is different
and at ultra-high b-values, the signals will deviate from the linear relationship, which leads to
a slightly different neurites contribution to the IP-derived biomarkers;

2. There are multiple somas with varied radii within one voxel, and representing them as one
single sphere introduces an extra error in IP-derived biomarkers.

To be able to perform precise estimation using these IP-derived biomarkers, we propose an ex-
haustive search method with the Synthetic voxels set in section[4.1.3] The intra-neuronal space is
modeled as a combination of several realistic neurons, accommodating both the authentic shapes
of neurites and the presence of multiple soma radii. The second-order derivative of S,y ON the Syn-
thetic voxels set is computed by the volume-averaged second-order derivatives of all the neurons

supplemented by the second-order derivative of Sgee. Then four biomarkers (g voxel; Yo voxels C1.vosel, €0 voxel)

are retrieved from the zero of d?Syoxel/d(1/v/b)?.

In this section, we first plot the IP-derived biomarkers against volume fractions and soma radius
on NeuronSet and 145,000 artificial intercellular spaces, to illustrate the impacts of the two effects
above. Then, we present the exhaustive search approach.

4.3.1 Impact of realistic neuronal shapes on IP-derived biomarkers

In fig. we plot the two IP-derived biomarkers xy and ¢y against the two morphological pa-
rameters Rsoma and fsoma ON the NeuronSet. We clearly observe the correlations between the IP-
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derived biomarkers and the neuronal parameters. The effect of curvature and branches perturb ¢y
more than z.
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Figure 4.20: Left: xy against Rsoma ON the NeuronSet; Right: ¢q against fsoma On the NeuronSet. The
blue cross represents the results by the short PGSE sequence and the red circle represents the
results by the long PGSE sequence.

In ﬁg. we plot zg and ¢y against Rsoma and fsoma 0N 145,000 artificial intercellular spaces.
Compared to fig. the scatter plots become thicker but maintain the same trends. Adding
the free diffusion compartment will perturb the inflection point and these correlations, resulting
in thicker scatter plots.
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Figure 4.21: Left: 2y against Rsoma; Right: ¢ against fsoma. The blue cross represents the results by
the short PGSE sequence and the red circle represents the results by the long PGSE sequence.

4.3.2 Exhaustive search method

The exhaustive search method relies on a pre-constructed library for estimation. We randomly
picked 0.45 million synthetic voxels in the Synthetic voxel set as the Synthetic test set. We used
the remaining 1 million voxels to build the Synthetic library set, serving as the pre-built library for
exhaustive search.

We restrict our exhaustive search to (xg, yo, co), given that only the fourth IP-derived biomarker
is not independent. The difference between the IP-derived biomarkers of a test voxel, denoted as
(%o,test: Yo,tests Co test)r and the IP-derived biomarkers of the i-th voxel from the Synthetic library set,
denoted as (2.4, Y0.i, Co,;) is defined as:

_ |l”o,test — 20,4
=

|y0,test - y0,¢| i |Co,test - C0,z'| ) (4.49)
|0, |Y0,] |co,q

Because multiple combinations of neurons and fsce can give similar IP-derived biomarkers values,
we average the parameters from the elements of the Synthetic library set that give the 10 lowest ¢;.
Thus, our IP-derived biomarkers-based exhaustive search fitted parameters { Rsoma, fsoma, fneurite }
are the averages of 10 values from the Synthetic library set.
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4.4 Estimation results

In this section, we will evaluate our estimation based on IP-derived biomarkers on the NeuronSet,
the Synthetic test set, and the in vivo MGH CDMD dataset. On the NeuronSet, we employ the IP-
derived biomarker-based iterative method and compare it to the SANDI model. This is due to the
NeuronSet not being sufficiently large enough to conduct a complete library-test split and exhaustive
search process. On both the Synthetic test set and the in vivo MGH CDMD dataset, we evaluate the
exhaustive search within the Synthetic library set and compared it to (1) the SANDI model and (2)
an exhaustive search approach within the same Synthetic library set but based on L? differences at
64 direction-averaged signal values.

The SANDI model[28] has an analytical signal expression, which allows one to recompute the
direction averaged signals by substituting five SANDI's estimation parameters p=[fsoma: ffree: Rsoma:
Dhreuriter Drree] into the signal formula. Its signal expression is given in section|1.4.3

To avoid the commonly encountered numerical instabilities due to the difficulty of finding the
global minimum in optimization procedures, we chose to perform SANDI fitting using an exhaustive
search approach on a saved signal library. Exhaustive search should be more numerically stable
than a fast optimization method such as AMICO[189]. Also, this makes it possible to compare the
models only, without having to account for errors that come from the optimization procedures. To
make the library search computationally feasible, we further simplified the problem by fixing both
Dheurite AN Diree t0 3 x 1073 mm? /s,

Thus, the signals library for SANDI is populated along three dimensions: the soma radius dis-
cretized on the interval [0, 35]um in 0.35um increments, the fsoma and free discretized on the interval
[0,1] in 0.01 (1 percent) increments. The set of three parameters { Rsoma, fsomas firee } that gives the
smallest L? difference at the 64 direction-averaged signal values will be called the SANDI fitted pa-
rameters for that voxel. For the estimation on the NeuronSet, fxee is set to 0, so only two parameters
{Rsoma; fsoma} are left.

Besides, we compare our method to an exhaustive search applied to the simulated signals, which
uses the same Synthetic library set, but operates directly on the signals. Its fitted parameters Rsoma,
fsomar fneurite @re the averages of values from the elements of the Synthetic library set that gave
the 10 lowest L2 differences at the 64 direction-averaged signal values. This comparison can help
illustrate whether the low dimensional data (three IP-derived biomarkers) is as effective as the high
dimensional data (64 signals) in estimating the soma size and volume fractions.

4.4.1 On NeuronSet

In fig. we plot the estimated soma radius and soma volume fraction against the ground
truth values on the NeuronSet by the biomarker-based iterative method shown in fig.[4.75land SANDI
library search, with free = 0. The iterative method uses the mappings f,, and f., from the sphere-
sticks model. Thus, the main difference between the IP-derived biomarker-based iterative method
and SANDI library search is that the sphere-sticks model uses IP-derived biomarkers computed by
Numerical Matrix Formalism, whereas SANDI employs signals under Gaussian phase approxima-
tion. At high b-values, due to non-Gaussian diffusion, SANDI signal expression may be less accurate
than the sphere-sticks model. From the plots, it can be inferred that:

1. The overall estimation errors by SANDI are greater than the biomarker-based iterative method;

2. For the biomarker-based iterative method, the long PGSE sequence outperforms the short
PGSE sequence in Rsoma €stimation, especially for the larger radii. As discussed in the previous
section, for the short PGSE sequence, the curve zy against Rsoma is less steep for large radii,
posing challenges to distinguishing large radius values;

3. Both two sequences give a slight overestimation of Rs,m, Using the iterative method. In fig.[4.7}
we can see that the signals by sphere-sticks model are higher than the case of connected
neuron, leading to an overestimation of the soma radius;

4. Using the SANDI library search, the short PGSE sequence tends to give a slight overestimation
of Rsoma Whereas the long PGSE sequence gives a slight underestimation;

5. SANDI yields a larger bias than the iterative method in terms of fsoma €stimation.
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Figure 4.22: Estimated morphological parameters against ground truth values on the NeuronSet.
The blue cross represents the results by the short PGSE sequence and the red circle represents the
results by the long PGSE sequence.

4.4.2 On Synthetic voxels set

Next, we compare the estimation results of these methods on the Synthetic test set. In the Syn-
thetic voxels set, we have the ground truth microstructural parameters. We compare the perfor-
mance of the exhaustive search using IP-derived biomarkers (1 million elements) with the exhaus-
tive search using the simulated signals (1 million elements) and the SANDI signals library (1 million
elements, incremented in Rsoma, fsoma and free)-

In fig. we can see that there is a larger bias in fsoma and free in the SANDI library fit. The
Synthetic library search based on signals yields the smallest errors among these three methods and
is consistent through two sequences. Our Synthetic library search based on IP-derived biomarkers
is unbiased, with slightly larger errors compared to the Synthetic library search based on signals for
the long PGSE sequence, but not as big as the SANDI library search.

we now compare the estimated Rsoma among these three methods. Infig. Synthetic library
search based on IP-derived biomarkers yields comparable results compared to the Synthetic library
search based on signals, and the fitted Rsoma errors are much smaller than the SANDI library search.
There is no bias for the two Synthetic library search, whereas SANDI library search shows significant
bias. The results using the long PGSE sequence outperform those the using short PGSE sequence
for all three methods. These results of volume fraction estimation and volume-averaged radius
estimation indicate that the IP-derived biomarker-based method is a good estimator in the Synthetic
voxels set.

Figure[4.23|shows that significant errors occur in SANDI's estimation of soma and free diffusion
compartment volume fractions. This is not surprising because the soma term in eq. has the
same form as the free diffusion term fqeee™ PP, causing an indeterminacy problem. Based on the
sum of the two exponentials alone (fie~ P + f,e~P2P), there is no way to tell which exponential
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Figure 4.23: The box plots summarizing the distributions of the absolute errors of fsoma, freurite: ffree-
The estimations are computed by (1) Synthetic library search based on signals, (2) SANDI library
search, and (3) Synthetic library search based on IP-derived biomarkers on the Synthetic test set.
The Synthetic voxels set has 1.45 million artificial voxels containing neurons and a free diffusion
compartment. The Synthetic test set has 450,000 voxels from the Synthetic voxels set. A box plot
denotes the median, interquartile range, and 1.5 times the interquartile range by the center line,
hinges, and whiskers.
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Figure 4.24: The box plots summarizing the distributions of the absolute errors of Rsoma. The es-
timations are computed by (1) Synthetic library search based on signals, (2) SANDI library search,
and (3) Synthetic library search based on IP-derived biomarkers on the Synthetic test set. A box plot
denotes the median, interquartile range, and 1.5 times the interquartile range by the center line,
hinges, and whiskers.

belongs to soma and which belongs to the free diffusion compartment. The two exhaustive searches
within the Synthetic library set do not suffer from such a problem. We note that in contrast to
SANDI, the NODDI model[98] has two diffusion compartments, one is an ECS compartment with
a low diffusion coefficient, another is a compartment labeled free water or CSF that has a much
higher diffusion coefficient. It seems likely that if either of these compartments has a diffusion
coefficient that is close in magnitude to the exponent of the signal term from the spheres, then an
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indeterminacy can happen.
Concerning the estimation of the soma radius, fig. shows that significant errors occur in
SANDI's estimation of Rsoma, compared to the much smaller errors from the other two approaches.

4.4.3 Invivo parameters estimation

Finally, we compare the three methods on the MGH CDMD dataset. Specifically, the eight direction-
averaged signals from a brain voxel are interpolated to get the 64 signals for SANDI and Synthetic
library search base on signals, then we use the interpolated signals to compute the three IP-derived
biomarkers xg, yo, and ¢q for Synthetic library search based on IP-derived biomarkers since directly
computing the second-order derivative to identify those biomarkers derived from the inflection
point isn't feasible on the in vivo data. We obtain an in-vivo parameter map by applying the three
methods to every brain voxel of a subject in the MGH CDMD. In this subsection, the second subject
in MGH CDMD (sub_002) serves as an exemplar.

4.4.3.1 Fitting brain white matter voxels

To be able to fit voxels that contain primarily axons, we created 20,000 random combinations
of cylinders with radius from the interval [0.2,5]um and a free diffusion compartment, and added
them to the Synthetic library set. Henceforth, the full Synthetic library has 1 million artificial voxels
from the Synthetic voxels set plus 20,000 voxels that contain cylinders and a free diffusion compart-
ment only. Then we generated a Synthetic Cylinders-only test set that has 10,000 voxels containing
random combinations of cylinders. We fitted fsoma, fneurite: ffree USing SANDI library search and the
Synthetic library search based on signals on the Synthetic Cylinders-only test set. In table [4.T] we see
that with SANDI the mean of the fitted values are fsoma = 0.14, freurite=0.86, firee=0, Whereas with the
Synthetic library search, fsoma = 0, freurite=1, ffree=0. This means the Synthetic library search based
on signals will be able to fit axons-only voxels.

fsoma fneurite ffree
mean std mean std mean std
SANDI_19 0.14 | 0.0076 0.86 0.0076 0 0
sig_Lib_Search_19 0 0 1 0.00024 0 0.00024
SANDI_49 0.14 | 0.0076 0.86 0.0076 0 0
sig_Lib_Search_49 0 0 1 0.00024 0 0.00024

Table 4.1: Fitted fsoma: freurites firee USiNg SANDI library search and the Synthetic library search based
on signals on the Synthetic Cylinders-only test set. The Synthetic Cylinders-only test set has 10,000
voxels containing random combinations of cylinders. The Synthetic library set has 1 million artificial
voxels from the Synthetic voxels set plus 20,000 voxels that contain cylinders and a free diffusion
compartment only. The SANDI library has 1 million elements, incremented in Rsoma, fsoma and ffree-

4.4.3.2 Invivo parameter maps

Figure[4.25|shows the volume fractions estimation by Synthetic library search based on IP-derived
biomarkers, to the scanned data of sub_002. We also include the SANDI library search parameter
maps as well as the Synthetic library search based on signals parameter maps.

There are no significant differences between the Synthetic library search based on based on IP-
derived biomarkers and signals. The Synthetic library search based on IP-derived biomarkers gives
a higher soma volume fraction and lower neurite volume fraction compared to the other two meth-
ods. Besides, it is less clean. This is because it uses only three inputs. In addition, the computation of
the IP-derived biomarkers, especially the zyp and yy, is sensitive to noise. Nonetheless, the IP-derived
biomarkers still manage to give reasonable volume fraction estimations.

The maps of fsoma properly highlight the brain gray matter and the cerebral nuclei. In contrast,
the maps of freurite are prominent in the brain white matter, especially the brain white matter tracts
located at the corpus callosum, the corona radiata, and the brain stem.
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Figure 4.25: Parameter maps for MGH CDMD sub_002. The first column is fsoma, the second col-
umn is fneurite, the third column is free. First row is the exhaustive search on Synthetic library
based on IP-derived biomarkers at the short diffusion time (6/A = 8/19ms), the second row is the
exhaustive search on Synthetic library based on IP-derived biomarkers at the long diffusion time
(6/A = 8/49ms), third row is the exhaustive search on Synthetic library based on signals at the
short diffusion time (§/A = 8/19ms), the fourth row is the exhaustive search on Synthetic library
based on signals at the long diffusion time (6/A = 8/49ms), fifth row is SANDI library search at the
short diffusion time (6/A = 8/19ms), the sixth row is SANDI library search at the long diffusion time
(6/A = 8/49ms).

The above results qualitatively demonstrate that the proposed method can yield encouraging
estimations even though it only uses three inputs. We further validate the parameter maps by in-
vestigating the consistency across diffusion times.

4.4.3.3 Independence of diffusion time

We present the voxel-wise joint distributions for the estimated parameters. All brain white and
gray matter (WM and GM) voxels of sub_002 are included. Due to the lack of real-world ground truth,
validating parameter maps remains largely qualitative. Given this limitation, the community has be-
gun to seek consistency across acquisition parameters, sequences, and scanners[190-192], instead
of qualitative visual assessment. In our case, we focus on the dependence of the volume fractions
and volume-averaged soma radius on the two diffusion times. Indeed, microstructure imaging aims
to infer the objective properties based on diffusion MRI signals. If the estimated properties largely
depend on the acquisition parameters, the estimation interpretation becomes non-trivial.

In fig.[4.26} we show the voxel-wise joint distributions of fsoma, freurites firee fOr all the three meth-
ods. For fsoma and fee, the spread of the distributions of the Synthetic library search based on
IP-derived biomarkers is wider than for the Synthetic library search based on signals. The estimated
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volume fractions of both SANDI and Synthetic library searches lie on the identity line. The Synthetic

library search based on signals produces lower freurite and higher free in the brain white matter than
SANDI library search.
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Figure 4.26: The voxelwise joint distribution of fsoma, freurites firee at two diffusion times. Top row:
exhaustive search within the Synthetic library based on IP-derived biomarkers. Middle row: exhaus-
tive search within the Synthetic library based on signals. Bottom row: SANDI library search. All brain
white and gray matter voxels of sub_002 are included. The x- and y-axes represent the estimated
fractions at (§/A = 8/19ms) and (/A = 8/49ms), respectively. The black lines are the identity lines.
The contour lines represent 50%, 75%, and 90% of the data.

In figs. to we show the diffusion time dependence in the estimation of Rsoma for the
three methods. At the lower diffusion time, Rsoma ranges from [8, 13]pem for all the three methods,
whereas at the longer diffusion time, Rsoma ranges from [10 — 18]um for the Synthetic library search
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based on signals and from [10 — 20]um for SANDI library search.
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Figure 4.27: The voxel-wise joint distribution of Rsoma at two diffusion times. All brain white and
gray matter voxels of sub_002 are included. The x- and y-axes represent the estimated fractions
at (6/A = 8/19ms) and (§/A = 8/49ms), respectively. The black lines are the identity lines. The
contour lines represent 50%, 75%, and 90% of the data.

Figure demonstrates that the parameter maps given by the proposed are consistent be-
tween the short and long diffusion times. For a more quantitative comparison, we plot the voxel-
wise joint distribution of the estimated volume fractions at the two diffusion times in fig.[4.26] If the
estimation is consistent, the scatter points should lie around the identity line.

Finally, figs.[4.27ato[4.27dshow the diffusion time dependence of the three methods in estimat-
ing Rsoma. This means that the estimation of soma radius on the real data needs to be improved in
the future.

4.5 Discussion

In this chapter, we propose an exhaustive search method for estimating soma size and volume
fractions, based on the inflection point of diffusion MRI signals at high b-values. This approach
is driven by the observation that the power-law scaling does not hold true in the brain gray matter
because of the presence of the soma. We identify three independent biomarkers from the inflection
point and give their mathematical expressions through the Numerical Matrix Formalism. Through
the studies on simplified geometries, we demonstrate that these IP-derived biomarkers can link to
soma size and volume fractions.

Similar to the simulation-driven supervised learning framework, the proposed method has two
distinct features, compared to diffusion MRI compartment signal models:

1. The representation of intra-neuronal space is more realistic, by including numerically recon-
structed neurons;

2. Itemploys the Numerical Matrix Formalism, while most state-of-the-art diffusion MRl compart-
ment signal models to date rely on the Gaussian phase approximation. To be able to probe
fine microstructure, strong gradient strength needs to be applied. However, at high b-values,
the Gaussian phase approximation may lose accuracy due to the non-Gaussian diffusion ef-
fects.

Compared to signal-based estimation, which necessitates signal values across various b-values,
biomarker-based estimation requires only three biomarkers, leading to a potentially rapid estima-
tion process. For instance, the biomarker-based estimation would be 2.6 times faster than directly
fitting the SANDI model to 8 measured signals on the MGH CDMD data.
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The main differences between the proposed method and the simulation-driven learning frame-
work proposed in[3] are (1) substituting the MLPs with an exhaustive search (2) using three IP-
derived biomarkers instead of using four IP-derived biomarkers plus the ADC. In fig. we plot
the estimation errors on Synthetic voxels set using MLPs. Itis clear that exhaustive search and MLPs
yield very close results. This implies that ADC would not help enhancing volume fractions and soma
size estimation. The benefits of exhaustive search are:

* It is easy to implement and robust, avoiding introducing fitting errors, like initialization, or
falling into local optima;

* It does not require training before performing estimation;

+ Eventhough it may not be as instantaneous as MLPs during the estimation process, exhaustive
search within an ordered library remains efficient;

+ Once we find the 10 elements giving the lowest ¢;, we can acquire all the estimated microstruc-
tures, whereas MLPs need to require re-training for each microstructure.
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Figure 4.28: The box plots summarizing the distributions of the absolute errors of fsoma: fneuriter firee
and Rsoma. The estimations are computed by (1) MLP with signals as inputs and (2) MLP with IP-
derived biomarkers plus ADC as inputs. A box plot denotes the median, interquartile range, and 1.5
times the interquartile range by the center line, hinges, and whiskers.

We carried out an in-depth performance analysis comparing the IP-derived biomarker-based
estimation with two other approaches, SANDI and Synthetic library search based on signals, on
the NeuronSet, the Synthetic test set, and the in vivo dataset. On the NeuronSet and Synthetic test
set, the IP-derived biomarker-based method outperforms SANDI. On the in vivo dataset, IP-derived
biomarker-based estimation yields similar values but displays more noise compared to the other
two methods and exhibited diminished performance concerning diffusion time independence. Be-
cause |IP-derived biomarkers-based estimation is based on only three biomarkers, it is more sen-
sitive. There are many factors that may deteriorate the performance of the IP-derived biomarker-
based estimation:

1. The signal-to-noise ratio level. At high b-values, the signal-to-noise ratio decreases. The accu-
racy of inflection point computation is vital for the estimation;

2. Stationary water. When we construct the Synthetic voxel dataset, we exclude the stationary
water compartment. However, in presence of the stationary water, the ¢y will be higher and
also the yq, introducing an extra error;

3. Inherent time-dependency. Biomarker-based estimation requires that the sequence should
be long enough to ensure that the inflection point lies within the power-law scaling range and
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that the signal contribution from extra-cellular space is almost negligible. Given a specific se-
guence, the method exhibits sensitivity to a particular range of soma radii, making it naturally
dependent on diffusion time;

4. We observe that even though we include 20,000 voxels that contain cylinders and a free dif-
fusion compartment only, the biomarker-based method could rarely make an estimation on
fneurite 1arger than 80%, implying that this method is not valid in the brain white matter. As we
see in fig.[4.7} cylinders do not possess the inflection point.
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Chapter Overview

In this chapter, we present a new finite element scheme for diffusion MRI blood flow imaging
applications. The proposed technique addresses the instability issue of simulating perfusion MRI
signal at high blood flow velocity, particularly in arterioles and venules. The new scheme combines
the Streamline Upwind Petrov-Galerkin (SUPG) method and the theta time discretization method.
The idea of the SUPG method is to add an artificial diffusion term only in the flow's direction, to
smooth out the spurious oscillations arising near areas with sharp gradients. The amplitude of
this regularization term is controlled by stabilization parameters 7. Numerical simulation results
demonstrate that the standard Galerkin method leads to spurious oscillations at high blood flow ve-
locity whereas the new scheme can provide a stable solution even on a coarse finite elements mesh.
To provide guidance on selecting the stabilization parameters and diameter of elements for 7, we
conduct a study evaluating the performance of different combinations of these two parameters.

This work is a collaboration with the computational medicine team at the University of Leeds,
aiming to extend the existing finite elements solver of the SpinDoctor for diffusion MRI blood flow
simulations.

5.1 Introduction

Another promising application of diffusion MRI beyond brain tissue imaging is the assessment
of the blood perfusion (known as intravoxel incoherent motion (IVIM) MRI) and cardiac blood flow
imaging[193+196]. As explored in the first chapter, atlow b-values, diffusion MRI signals are sensitive
to micro-circulation of blood in the cerebral capillary network, which makes the ADC deviate from
the expected value[197]. This deviation has been widely used to measure the perfusion index in

115
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clinics[[198, [199]. In recent years, diffusion tensor imaging (DTI) has seen a growing application in
the cardiac domain, highlighting its versatility in medical imaging[200H204].

Simulating the diffusion MRI involves treating a flow term. The velocity is typically determined
by the Navier-Stokes equation through numerical simulations. It is then often provided as a pre-
defined variable for diffusion MRI simulations[204].

When considering blood flow, the Bloch-Torrey PDE becomes a convection-diffusion-reaction
PDE, with an imaginary reaction term[/115} 205]. This PDE exhibits different behaviors based on the
ratio of the velocity to diffusion coefficient. When the velocity is comparably low, such as in the cap-
illaries, the molecules movement is mainly determined by the diffusion process and a signal pattern
similar to classical diffusion MRI will be produced. On the contrary, when the velocity is comparably
high, for example in the arteries or veins, the molecules are mainly transposed by the flow, and in
this case, the numerical simulation would potentially encounter instability issues, reported in[206)|
207].

Mesh refinement may enhance stability, but it doesn't always guarantee addressing it, especially
when using the standard Galerkin finite element method. It depends on the maximum velocity and
the finite element mesh. In some cases, an extremely fine mesh might be necessary, which could be
impractical due to computational resource constraints. Or in some cases, the mesh is pre-defined
and we could not modify it. Some studies suggest a local refinement strategy to improve the stability
and maintain a reasonable size[208, |209]. Another issue is that with the standard Galerkin finite
element method, spurious oscillations may be produced, leading to nonphysical results[210].

The objective of this chapter is to apply a stabilized simulation scheme for the diffusion MRI
accounting for the blood flow. Many stabilization approaches were proposed to solve the time-
dependent convection diffusion equation simulation in the computational fluid dynamics commu-
nity, such as the Streamline Upwind Petrov-Galerkin (SUPG) method[210-213], symmetric stabiliza-
tion method[214,215] and Galerkin least-squares method (GLS)[216].

In this work, we present a new finite element scheme for diffusion MRI simulations that combines
the Streamline Upwind Petrov-Galerkin method and the theta time discretization method. This new
approach addresses the instability issue observed in diffusion MRI signal computation involving
blood flow. It serves as a powerful simulation tool, paving the way for numerically studying signal
behaviors and designing novel microstructure estimation models for future blood perfusion studies.
We firstly introduce the generalized form of Bloch-Torrey PDE incorporating the convection term
and the Péclet number, a metric indicative of the potential for instability. Then, we give the full
expression of the proposed scheme. We compare the standard Galerkin method and the Streamline
Upwind Petrov-Galerkin method via simulations, demonstrating its effectiveness. We conduct an
analysis of the effect of the choice of the stabilization parameters and the diameters of elements on
the performance.

5.2 Bloch Torrey PDE with blood flow term

In this chapter, we focus on blood flow within the intravascular space and disregard the con-
tribution of water diffusion inside the extravascular space and the exchange between these two
domains. The intravascular space is modeled as one connected space, denoted €2, with its bound-
ary given by 9Q = 9Quan | 00ena. 0Qyau is the vascular wall and 09,4 is the artificial boundary
on the inlet and outlet sections.

The presence of blood flow induces a change in the acquired phase of spins, introducing a con-
vection term to the Bloch-Torrey PDE[205| 217]:

%M(x, t) = (VDoV —wyf(t)g - x — v(x,t) - V) M(x,t), x € , (5.1)
where Dy is the intrinsic diffusion coefficient, v(x, t) represents the velocity field of blood flow, which
should satisfy Vv(x, t) = 0. This modified Bloch-Torrey PDE is called the generalized form of Bloch-
Torrey PDE in some literature[115} 218]. In reality, the velocity field is complex. It varies spatially
according to the vessel section, blood pressure, and viscosity, and its direction can change along
both parallel and perpendicular axes of the vessel[219].
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For the sake of simplicity, we assume that the vascular wall is impermeable and there is no
surface relaxation thus 9§, can be modeled as a homogeneous Neumann boundary condition:

DoVM(x,t) -n(x) =0, x € 0yal- (5.2)

We impose also the homogeneous Neumann boundary conditions at both end sections. To
prevent molecules from reaching these artificial boundaries and inducing artificial reflect flows in
the simulation domain, we constrain the initial density to a specific region close to the inlet section
without touching it and make the simulation domain sufficiently long in the direction normal to
the outlet section. This ensures that by the end of the simulation, spins won't approach the outlet
section:

DoVM(x,t) -n(x) =0, X € 0Qend, (5.3)
M(x,0) = mg(x), x € Q, (5.4)

where myg is the initial density, located near the inlet section.

Another possible boundary condition on the two end sections of the vessel for the convection
equation is the inlet/outlet boundary condition[220]. It assigns one inlet velocity and one outlet
velocity on the end sections and the initial condition can be set to uniform in the domain. How-
ever, with mass consistently entering and leaving the simulation domain, accurately “tracking” the
acquired phase for diffusion MRl becomes challenging. Thus, in this chapter, we do not adopt this
boundary condition. A further investigation of the inlet/outlet boundary condition on diffusion MRI
is needed in the future.

One remark is that in the presence of the convection, the diffusion MRI signals of PGSE sequence
are usually complex values. Some advanced techniques are needed to make the phases back to zero
in practice.

5.2.1 Numerical instability for the standard Galerkin method

Considering the blood flow, the generalized form of Bloch-Torrey PDE is a time dependent convection-
diffusion-reaction PDE with an imaginary reactive term. The solution exhibits different behaviors
based on convection and diffusion terms. A prevalent metric used to predict the behavior is the
mass Péclet number (Pe)[221], defined as Pe = ||v||2h/Dy, where h is the characteristic length.

When Pe <« 1, water molecular movement is mainly affected by the self diffusion effects. Con-
versely, when Pe >> 1, molecules are mainly transported by the flow[222].In this case, the standard
Galerkin method will suffer significant instability and spurious oscillations. Refining the mesh re-
duces the characteristic length as well as the Péclet number. However, this isn't always practical.
The Péclet number is determined by the local finite element size. To keep the Péclet number low,
all the finite elements might experiencing high velocities during the whole simulation time need
to be reduced in size by the same scale as velocity increases, leading to significant computational
demands.

In addition, the convective operator is inherently directional. In convection-dominated regions,
the solution will align in the direction of the flow or against it. The standard Galerkin method does
not account for this directionality and thus might produce non-physical oscillations near areas of
very steep gradients. These oscillations can then propagate throughout the simulation domain and
cause a numerical explosion.

We illustrate this numerical instability in the simulation section.

5.3 SUPG scheme with theta method

The Streamline Upwind Petrov-Galerkin finite element method is a technique to stabilize the
convection-diffusion equation in convection-dominated regimes for incompressible flows. The term
“Petrov-Galerkin” means that the trial and test space are different and the term “streamline upwind”
signifies that a stabilization term is added in the direction of the velocity field (the streamline).

To begin, we present first the weak formulation of eq. by the standard Galerkin method.
After discretizing the domain €2 by a set of confirming tetrahedra 7", eq. can be transformed
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into a weak formulation of the generalized Bloch-Torrey equation by multiplying a test function w”
and integrating over the domain 2. The finite element methods are employed now on the finite
dimensional space W". The standard Galerkin method uses the same functional space for the trial
and test function, to find the discretized solution M" € W, such that

(8Mh
ot

where w" € W wh|sq = 0 is the test function and (-,-) is the inner product in the L2-norm
Lebesgue spaces.

We consider now #-scheme as temporal discretization. At the discrete time t,,, eq. is trans-
formed into

,wh) = —(DoVM", V) — (vyf(t)g - xM" +v - VM" wh), (5.5)

(M:j, wh) + 0At, ((DOV]\J,};7 th) + (v f(tn)g - XM,,}Z' +v- VM:LI, wh))

= (Mff:—lﬂ wh) - (1 - Q)Atn ((DOVMT}Z—lﬂ vwh) + (Z’Yf(tn—l)g : XM’!’Z—l +v- VMZLL—hwh)) )
(5.6)

where 0 < 0 < 1 and At = t, — t,_1 is the time step. For the given parameter, when 6 = 1, it
corresponds to the backward Euler scheme and when § = 0.5 it corresponds to the Crank-Nicolson
scheme. Equation can be viewed as a stationary convection-diffusion-reaction equation at ¢,
with the right-hand side as a source term and the following diffusion, convection, and reaction co-
efficients:

D = §AID,, (5.7)
C = 6Atv, (5.8)
R=1+w0Atf(t,)g " x. (5.9)

To recompense the upwind phenomenon, the SUPG method employs a different test functional
space
Vii={o" M (wh) =w" + ) nC - Veliwh e W, (5.10)
keTh

where 7y, is the stabilization parameter depending on finite elements. With this test function space,
the SUPG method is expressed as

(M" wh) + Z TOAL, (M v - V),
keTh
+ 0AtL, ((DOVM,’;, V) + (v f(tn)g - xM! +v - VM, wh))
+ Z Th(0AL,) (VDo VM + 1y f(t,)g - xMP + v -V M" v - Vuh),
keTh
= (M| wh) + Z TOAL(M!_ | v - th)k
keTh
— (1= 0)At, (DoVM}'_, V') + (7 f(tn—1)g - xM}_| +v-VM)_ w"))
= > (1= O)ALOAL,)(~VD VM| + 1y f(tn-1)g - XM}, +v - VM), v-Vu"),.

keTh
(5.11)

The literature[223]] has proven that for incompressible flow, i.e. VC = 0, this formulation is
well-posed for each time-step with the Crank-Nicolson scheme.

5.3.1 Choice of stabilization parameters

How to choose appropriate stabilization parameters is a vital consideration in actual simulations.
We can distinguish the convection and diffusion effects by their characteristic time:

he 2
tconvection = ﬁ and tiffusion = ﬁ; (5.12)
2
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where hy, is the diameter of finite element. These definitions are related to Péclet number by Pe =
tdiffusion /tconvection- WheN teonvection < tdiffusion, the solution is more sensitive to the convection effect.

The desired asymptotic behaviors of the stabilization parameters (or characteristic stabilization
time) 1, should be two-fold: (1) In the diffusion-dominated regions where the standard Galerkin
method is effective, 7, should tend to the diffusion characteristic time tgifrusion; (2) In the convection-
dominated regions, 1, should tend to the convection characteristic time tconvection t0 Stabilize the
equation and prevent spurious oscillations. The stabilization parameters typically depend on the
diameter of elements, the amplitude of velocity ||C||2 and the diffusion coefficient D. In[210], it
also suggests taking the reaction term into consideration. However, for our equation eq. (5.1), the
diffusion term always dominates the diffusion encoding gradient term in actual experimental set-
tings. Consequently, the solution won't fall into a reaction-dominated region in the presence of the
diffusion. Hence, we will not add the reaction coefficient R into the stabilization parameters in our
study.

Various proposals for 7, exist in the literature. We will specifically consider the following three.

In[224], 7 is suggested to be set as:

Y S T i (5.13)
T ~ = .
K Ldiffusion tconvection 0At71(4tnpo + QthV”Q)
In[225],, 7 is suggested to be set as
hy mp||Cll2hg h mg|lvllah
B T klICll2 ky Z k ( kllVIl2 £y (5.14)

2/|C |2 2D  20At,]|v|2 2Dy

where my, is a constant related to the finite element function. For piece-wise linear (P1) function,
mg = 1/3. And £(z) function is
z, 0<z<1,
xTr) =
&) {1, x> 1.

In[226|[227], 7 is suggested to be set as

T min{ i hi } = min{ I hi } (5.15)
g PillClloc” Pl 1Dl PrOAL,[|[v]oo” plct, 0AL, Do '
where py, is the polynomial degree of the finite element function and ¢, is a constant from an
inverse estimate. For P1 function, we have pr = 1 and ¢,y = 1.

Allthese three proposals satisfy the asymptotic behaviors of 7, but they exhibit a slightly different
in the intermediate regions. We will evaluate and compare these three stabilization parameters in
the following section.

Another concern is that for tetrahedral elements, there is not a standard definition of the diam-
eter hy. In[228}229], it is suggested that h; should be chosen as the length of the elements in the
direction of the velocity field, which should be re-calculated at each time step if the velocity is time
dependent. Conversely, another study in[210] indicates that the specific direction chosen for the
diameter isn't crucial. In our analysis, we evaluate both diameter definitions and will compare them
through numerical simulations. The non-directional diameter hy, ; is selected as the diameter of the
inscribed sphere within the element, while the directional diameter k5 is defined as follows:

3V
2Fk (V) ’

hio = (5.16)

where V}, is the volume of the tetrahedral element, and Fy, is the average area of the projection
of four tetrahedral faces onto the surface orthogonal to the velocity direction, as shown in fig.
When the direction of velocity is orthogonal to the face of the element, h;, is equal to the height of
that face.
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\'

Figure 5.1: Projection of tetrahedral faces onto the perpendicular plane of velocity, in the case of
the velocity is orthogonal to one face. For such a case, the projection of the bottom face is itself and
the projection of the other three faces are labeled as 1, 2 and 3 (depicted in blue), respectively. The
average area is equivalent to half the combined area of 1, 2 and 3.

5.4 Simulation

The numerical studies of the generalized Bloch-Torrey PDE using the SUPG method are con-
ducted in this section. Due to the constraints of our computational resources, we only simulate one
segment of the vessel, modeled as a straight cylinder with a radius of 2.1ym and a height of 100um,
denoted L, as depicted in fig. The intrinsic diffusion coefficient is set to 2 x 1072 mm?/s.

Velocity is usually assumed to run in the tangent direction to the vessel wall. While the actual
environment might be more intricate as discussed in[219]. Here, we adhere to the tangent direction
assumption. Accordingly, we set the velocity direction as [0, 0, 1}T, which aligns with the cylinder’s
axial direction. For simplicity, we use a constant velocity. The amplitude of velocity is set to be
[[v]l2 = [1073,1.5x1072,3x 1072,4 x 10~2]um/ s, corresponding to some typical blood flow velocity
values inside capillaries, arterioles and venules[230-232].

To ensure that theinitial density is concentrated near the inlet section at the bottom and remains
a continuous function, we define it as an exponential function:

mo(x) = e~ (= (=L/2+4)° (5.17)

as shown in fig. At the bottom section, mg(—L/2) = 1.1 x 10~7 ~ 0. The initial signal is Sy =
24.58.

Finite el mesh, out partment: [1] Initial density

Figure 5.2: Left: Finite elements mesh of the simulation domain €, with a radius of 2.1um and a
height of 100um. Right: The initial density on 2. We adjusted the plot z-coordinate scale to enhance
its visual representation.

To make sure that at the echo time, the spins will not reach the top artificial boundary, we limit
the Tz < 2 x 10°ms and employ the sequence PGSE(1ms, Ims).

The diffusion encoding gradient direction is set to [0;0; 1]7, parallel to the velocity field direction.
Indeed, in the x-y plane perpendicular to the velocity, the diffusion encoding gradient term is entirely
decoupled from the convection term, so we only need to consider the convection-diffusion in z-
direction. In the simulations, three gradient strengths are used: ||g|| = [0,200] mT/m. In the case of
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llgll = 0mT/m, the equation is reduced to a convection-diffusion equation and the magnetization
should be real, which will make it easier to detect spurious oscillations.

The temporal discretization scheme is the Crank-Nicolson scheme § = 0.5. It requires that the
ratio of time step At times diffusion coefficient to the square of element size should be small, in
order to produce a stable solution in time discretization[233]. Thus, if not specific, we use a time
step of 0.5us, which is sufficient short.

The finite element mesh is generated by Tetgen[121]. The coarseness of the mesh is controlled
by a parameter h. In table[5.7} we list the number of elements Nejeent, the number of nodes N, oqe,
and the average inner radius 7, 4. for different h values. In the application of brain diffusion MRI,
the mesh of h = 1 can already yield an accurate solution.

h 1 0.2 0.1 0.07 0.05
Novode 4,593 | 8,981 | 10,379 | 11,731 | 24,783
Notement || 154117 | 28332 | 38,402 | 47,266 | 104,156
Timave 0294 | 0238 | 0228 | 0218 | 0.160

h 0.03 0.02 0.015 0.12 0.01
Nrode 27,300 | 31,850 | 37,972 | 47,332 | 57,708
Nelement || 120,495 | 150,437 | 189,302 | 235,325 | 286,228
Tin,ave 0.157 0.148 0.140 0.130 0.122

Table 5.1: Number of nodes, Number of elements and the average inner radius [in um] of the finite
element meshes with different coarseness parameters.

There is no analytical solution for the generalized Bloch-Torrey PDE. Therefore, we take the
stable solutions on the finest mesh as the reference solutions.

5.4.1 Numerical instability of the standard Galerkin method

First, we will show that the standard Galerkin method will encounter instability issues when sim-
ulating the convection-diffusion equation.

In fig.[5.3] we plot the magnetization at echo time M (x, T) simulated by the standard Galerkin
method on the finite elements mesh of h = 1, using the four distinct velocity values, with ||g| =
0mT/m. In this case, the magnetization and signals at echo time should be real. With high veloci-
ties, the particles are less likely to reach the bottom section due to diffusion. Thus, the diffusion in z-
direction is like the free diffusion transported by the flow and the signals should be closed to Sy. We
can observe that in the diffusion-dominated regions (as in the case of ||v||z = 1 x 10~3um/pus), par-
ticles disperse more rapidly than transport by the flow. As the flow velocity increases, the particles
are transported together as a group. In the convection-dominated regions (||v|2 = 4 x 10~2um/us),
we could not obtain stable solutions. Besides, even in the case ||v|]2 = 3 x 1072um/pus, the ampli-
tude of magnetization does not exceed 1, spurious oscillations will arise, where negative values are
present (between z = Oum and z = 10um).

In fig.[5.4] we plot the amplitude of transverse magnetization with ||g|| = 200 mT/m for the two
high velocities ||v|j2 = [3 x 1072,4 x 10~2]um/us. We can still see the spurious oscillations at high
velocities.

In fig.[5.5} we depict normalized signals (divided by Sy) as a function of the number of nodes with
lg]l = 0mT/m, across different velocity values. In the diffusion-dominated region, the signals are a
little bit higher than Sy due to interactions with the bottom boundary caused by flow. In this case,
using the coarsest mesh is already capable of yielding a convergent solution. At high velocities, the
signals simulated on the coarse meshes are not accurate. Moreover, spurious oscillations occur for
[[v]l2 = 1.5 x 10~2um/us on the two coarse meshes even though we do not observe that from the
magnetization plot.

In fig.[5.6] we plot the amplitude, real part, and imaginary part of the normalized signals against
the number of nodes with ||g|| = 200 mT/m, across different velocity values. We can see that at
low gradient strengths, the signals have similar amplitude at three high velocities, but different real
parts and imaginary parts due to the diffusion-encoding gradient.
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Figure 5.3: Transverse magnetization with various velocities on the finite element mesh of h = 1, at
g-value of 0mT/m. The PGSE(1ms, 1ms) sequence is applied. The simulations are performed by the
standard Galerkin finite elements method. From left to right: ||v|s = [1072,1.5 x 1072,3 x 1072,4 x
10~2]um/us. A spurious oscillation (negative magnetization values) occurs between Opm and 10um
for |v|l2 = 3 x 1072um/pus.
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Figure 5.4: Transverse magnetization with various velocities on the finite element mesh of h = 1, at
g-value of 200 mT/m. The PGSE(1ms, 1ms) sequence is applied. The simulations are performed by
the standard Galerkin finite elements method. From left to right: ||v|j2 = [3 x 1072,4 x 10~2]um/ us.
A spurious oscillation occurs between 0pm and 10um for ||v||2 = 3 x 10~2um/ps.
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Figure 5.5: Normalized signals by the standard Galerkin method against the number of nodes, with
llgll = 0mT/m. The signals are normalized by Sy. The solid, dotted, dashed, and dash-dot lines
represent the velocity values of 10=3um/us, 1.5 x 10~2um/us, 3 x 10~2um/us and 4 x 10~2um/us.

We use the signals from the standard Galerkin method on the finest mesh as our reference, as it
provides stable results in this example. One reminder is that the standard Galerkin method doesn't
always guarantee stable solutions in other cases. In fig.[5.7} we plot the relative errors between the
signals and reference. It is clear that to obtain stable solutions at high velocities, the number of
nodes needs to be more than 27,300.
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Figure 5.6: Amplitude (left), real part (middle), and imaginary part (right) of normalized signals by
the standard Galerkin method against the number of nodes, with ||g|| = 200 mT/m. The signals
are normalized by Sy. The solid, dotted, dashed, and dash-dot lines represent the velocity values of
1073um/pus, 1.5 x 1072um/us, 3 x 10~2um/us and 4 x 10~2um/pus.
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Figure 5.7: Relative errors by the standard Galerkin method against the number of nodes. Left:||g|| =
0mT/m, computed by 100% x |S — Sycf|/|Sref|; Middle: Real part with ||g|| = 200 mT/m, computed
by 100% x [R(S) — R(Sres)|/IR(Srer)|; Right: Imaginary part with ||g|| = 200 mT/m, computed by
100% x |(S) — S(Sres)|/|S(Sref)|. The solid, dotted, dashed, and dash-dot lines represent the
velocity values of 10~3um/pus, 1.5 x 10~2um/pus, 3 x 10~2um/us and 4 x 10~2um / us.

5.4.2 Using SUPG

Next, we employ the SUPG method on the simulations. At low velocities, the results by the SUPG
method should be close to those by the standard Galerkin method, and at high velocities, we expect
that the solutions are stable on a coarse mesh.

In fig. we plot the magnetization calculated by the SUPG method, with stabilization param-
eters 7} and directional diameter of elements hj o, on the finite elements mesh of A = 1 with
lgll = 0mT/m. We can see that after adding the stabilization terms, the magnetization at high
velocities is stable and there are no spurious oscillations.

In fig. we plot the normalized signals by the SUPG method against the number of nodes,
with ||g|| = 0mT/m and ||g|| = 200mT/m. We can see that after adding the stabilization terms,
the signals are stable for all velocities when N,,qs. > 8,981, which is a significant improvement
compared to the standard Galerkin method.

5.4.3 Choice of stabilization parameters and diameter of elements

The choice of the stabilization parameters and diameter of elements will affect the performance
of the SUPG method. In fig.[5.70] we plot the signal relative errors using different combinations of
stabilization parameters and diameters of elements, with ||g|| = 0mT/m. We use the solutions by
the standard Galerkin method on the finest mesh as the reference solutions, same as the previous
subsection. We observe that not every combination effectively stabilizes the equation. With the
directional diameters of elements hy, 2, only the first stabilization parameter 7/ produces stable
results. In contrast, for the non-directional diameter hy 1, all three stabilization parameters can
stabilize the solution, though with varying efficiency. Specifically, (7{, hx.1) and ({!, hy 1) are better
than (7, by 1).

In summary, generally, the combination (7}, hy2) is preferable, it could converge on coarse
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Figure 5.8: Transverse magnetization with various velocities on the finite element mesh of h = 1, at
g-value of 0mT/m. The PGSE(1ms, 1ms) sequence is applied. The simulations are performed by the
SUPG method, with stabilization parameters T,g and diameter of elements hy 2. From left to right:
[[vl2 =[1073,1.5 x 1072,3 x 1072,4 x 10~2]um/ps.
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Figure 5.9: Normalized signals by the SUPG method with stabilization parameters 7/ and diam-
eter of elements hy 5, against the number of nodes. Left: ||g|| = O0mT/m. Left: Real part with
llgll = 200mT/m; Right: Imaginary part with ||g|| = 200mT/m. The solid, dotted, dashed, and
dash-dot lines represent the velocity values of 10=3um/us, 1.5 x 10~2um/us, 3 x 10~2um/us and
4 x 10~ 2um/ps.

meshes (V, node = §8,981). However, for the low blood flow velocity case, this combination converges
slower than Tk ,hi1) and (Tk ,hi1) as the number of nodes increases.

In fig we plot the signal absolute errors with the three combinations (7, hy.2), (£, hi.1)
and (Tk ,hk 1), with |lg|| = 200mT/m. We note that on the coarsest meshes (N,o4. = 4,593),
only (7, hy 2) can stabilize the equation. And the other two combinations need a denser mesh
(Nnodge > 10,379). The directional diameter of elements yields a better solution on the coarse
meshes. However, an advantage of the undirectional diameter of elements is that when velocity
is time-dependent, we do not need to re-compute the stabilization at each step, which may save

computational time.
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5.5 Discussion

In this chapter, we extend our diffusion MRI simulator for blood flow imaging. Introducing the
convection term can lead to stability issues in the convection-dominated region. To stabilize the
equation, we employ the Streamline Upwind Petrov-Galerkin method to the generalized form of
the Bloch-Torrey equation. Numerical simulations demonstrate its superiority over the standard
Galerkin method, achieving stable results on coarser meshes.

In the implementation of the SUPG method, the selection of stabilization parameters 7, and
diameter of elements hy, is crucial. Our numerical simulations indicate that not all (7%, hy) pairings
are effective in stabilizing the equation. Of the pairings that do stabilize, (7, hy 2) performs well
on coarse meshes, yet it converges slower at low blood flow velocity, compared to (7{, hx.1) and
(Tlgl, hk,l)-



Chapter 6

Conclusions and perspectives

The ultimate objective of this thesis is to offer robust numerical tools for studying diffusion
MRI signals and ADC behaviors in a more complex and realistic context, evaluating the existing
microstructure estimation techniques, such as diffusion MRI compartment signal models, design-
ing appropriate diffusion MRI experimental setups, and developing new microstructure estimation
models.

We develop a new formulation of Matrix Formalism, which computes the diffusion MRI signals of
permeable medium using the impermeable Laplace eigenfunctions. This new formulation decom-
poses permeable magnetization into impermeable Laplace eigenfunctions and treats the permeabil-
ity as a perturbation term Q,,.,; during the signal computation process. Thus, it saves computational
resources for simulations when adjusting the permeability values, since the eigen-decomposition is
only needed to be performed once. A promising application of this new formulation is to study the
impact of permeability values on the signals or ADC patterns and evaluating diffusion MRI compart-
ment signal models that account for permeability. Q,,,; can be further split into two components:
the permeability value and the interface shapes, which relate to the surface-to-volume ratio. More-
over, the numerical analysis on diffusion MRI signals illustrates that the signals can be approximated
by an exponential relationship SAPPROX = e~ . (G0 — Sfee) + Sfree, Where 3 is related to inter-
face shapes, providing the possibility to probe individually the surface-to-volume ratio of porous
medium and permeability in the future.

Asymptotic model accounting for geometrical deformations is another powerful numerical anal-
ysis tool. By expanding the transformed diffusion MRI signal and ADC defined on canonical domain
as a power series of deformation parameters, one can explicitly link the structure and signals. In
the small deformation regime, a second-order correction is sufficient to yield good approximations.
Minor corrections values imply that the deformations have minimal influence on the signals. This
insight can guide the design of experimental settings to minimize the shape imperfections. In this
thesis, we focus on the asymptotic expansions for bending and twisting deformations. Theoreti-
cally, this method can also be adapted to other types of deformations with analytical forms, such as
undulation, beading, or orientation dispersion in the future.

Following the research in[3}|5], we conduct a numerical analysis on the relationship between in-
flection point-derived biomarkers and the soma size and volume fractions in the brain gray matter
using the Numerical Matrix Formalism method. This analysis directly relates specific signal patterns
to certain microstructures. Based on this investigation, we propose an IP-derived biomarkers ex-
haustive search method for volume fractions and soma size estimation. We validate this IP-derived
biomarker-based estimation on both the Synthetic Voxels Set and the in vivo dataset, showing sim-
ilar results compared to signals-based estimations. Potential performance improvements of this
IP-derived biomarker-based method include:

1. Combining IP-derived biomarkers from various diffusion MRI sequences. Given that each se-
quence is particularly sensitive to a specific range of soma sizes, their combinations can po-
tentially broaden the estimation range and enhance estimation reliability;

2. Introducing additional biomarkers. In this work, we focus on three IP-derived biomarkers.
Incorporating other biomarkers, derived from the inflection point, like the error in the power-
law approximation, or kurtosis tensor, may improve the method’s robustness;
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3. Using manifold learning to approximate the mappings. The mappings from biomarkers to
soma size are effectively low dimensional manifolds. Some advanced machine learning tech-
niques may help make a better estimation.

Diffusion MRI simulation with Streamline Upwind Petrov-Galerkin scheme addresses the insta-
bility issues in blood flow imaging. Numerical validation shows that the proposed scheme yields
stable solutions on coarse meshes at large velocities. However, this method has been tested only
on a simple case, further analysis of realistic velocity field and other inlet/outlet boundary conditions
is essential before the practical applications. To be able to make an appropriate choice, a compre-
hensive study on velocity limits[234] and potentially integrating the imaginary reaction term with
stabilization parameters is necessary for future research. In addition, to mitigate or even eliminate
spurious oscillations in layers from SUPG solutions, a potential work in the future is to integrate the
SOLD method into the formulation[229, 235].

To conclude, this thesis contributes to numerical simulation methods in diffusion MRI and mi-
crostructural imaging.
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Appendix of Chapter 3

A.1 Alternative formula of HADC model

The ADC of compartment €2; by the HADC model in the original paper[151] is

4 . Di TE ‘
HADC' =Di — ——— [ F() hi(t) dt, (A1)
I E ()2t Jo
where )
Ri(t) = w'(r,t) (ug - n(r)) ds, (A.2)
€%] Joq,

is a quantity related to the directional gradient of a function w® that is the solution of the homoge-
neous diffusion equation with Neumann boundary condition and zero initial condition:

Ewi(r, t) = VD'Vuwi(r,t), re; (A.3)
D'Vuw'(r,t) - n(r) = D'F(t)ug - n(r),r € 9Q; (A.4)
wi(r,0) =0, req,, (A.5)

n being the outward normal and ¢ € [0, T'E].
We define a new function
O(r,t) = w(r,t) — F(t)ug - r. (A.6)
Replacing eq. into egs. (A.3) to (A.5), we obtain the following non-homogeneous diffusion equa-
tion:

aaﬂ’(r, t) = VD'V&i(r,t) — f(Hug -, r € Q; B2 revisited)
D'V (r,t) -n(r) =0, r e o (3.3]revisited)
@'(r,0) =0, rcQ,, (B4 revisited)

Using the divergence theorem to the second term of the new function F(t)ug - r, we have

, F(t)ug - r(ug - n(r)) dsy = F(t)/ V- (ug - r) ugdr = |Q;|F(t). (A7)
09, Q;

Therefore, eq. becomes

iﬁ'(t):i | Q'(r,t) (ug - n(r)) dse — F(t). (A.8)
|Qz‘ o0,

And at echo time, the second term equals to D¢ and the ADC is
, , _pi TE -
HADCI = D — — 2 / PR (8)dt
[TF F(t)*dt Jo

0 (A.9)

Di TE 1 » . ) .
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A.2 Asymptotic expansion in Matrix Formalism representation

By decomposing each order of the asymptotic expansion of the transformed HADC model into
the Laplace eigenfunctions, multiplying the eigenfunction ¢(x), and integrating over the whole do-

main, we have

d
% — — L& — f(HToln,., 1,
d
2?571 =—L¢o,1 — Co160 — f(O) T 11N,
d
2?5’0 =—LC0—Ci1Co — f(t)Je1ln, 0,
dCo2 I C C
ar €02 — C,1€0,1 — Cp2C0 — f(t) T 21N, .1,
d
23570 =—L¢,0 — Ci,1€10 — Cr2€o — f(0) e 21N, 1,
ST C C C
a ¢11— Cw,160 — Cp1610 — C1Co,1 — f(H)Tip1,11N.,,.15

where C are correction matrices and J are matrices of transformation,
Coalyy =20 [ 200006 + 0un0.0) .
[Cy2),,, =4D' /Q 220, Pp Oy P dxX,
Cutly = D' [ 0(0.6,0,6m + 0y6,0:01) ~ 1 (06,06 + 0s6,0:m)ix.
Cotlyy = D [ 50(0.6,0,00+0,0,0.0) ~ 22(016,0,60) — 1*(016,Ds01 .

[Ctb,l,l]nm = 2DZ/ Z(azd)nay(bm + 8y¢nam¢m) - 2y8x¢nam¢mdx~
Q

Jolm = /s;ug - X Py, P dX,
Joal,,, = /Q Uy, 2° P dmdx,
[Jv.2],,,, =0,
Jial,, = /Q —yzug, + x2Ug, GnPmdx,
Ji2l,, = /Q —a:z2ugx — yzzugy(;bngi)mdx7
Jew,1.1),,, = /ngyZS(bnd?de'
We concatenate the solutions of each order as one new time-dependent variable

T ios
¢ = (€0, €0,1,€1,0, 0,2, €115 Coy0) T € RONeior)

and denote one new matrix and one vector

L 0 0 0 0 O
Cbiy L 0 00 0
cal Cia 0 L 0 0 O
Cho Coy O L 0 O
C. 0O Cu 0L 0
Cwi1 Cii G 0 0 L

(A.10)
(A11)
(A.12)
(A.13)
(A.14)

(A.15)

(A.16)

(A7)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)
(A.23)

(A.24)

(A.25)

(A.26)

(A.27)
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Jo
Ja“ . 5 . 1
vec — Neig,1+

Jiv1,1
The solution ¢?' can be calculated by solving the following system of ODEs

dcall

_ all ~all all
e S O}

vec*

and it can be expressed as

Ca” / f 7(t S)Ca"JSQCd
The HADC is computed by

TE
HADC' = / / / f(s)e = S)Ca”Ja” dsdt (u r))ds;,.
1] f )2dt Jos, (g - 7)) dsr
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(A.28)

(A.29)

(A.30)

(A.31)

Compared to the orlglnal HADC model, this alternative form needs to compute a double integral
on f(s)- F(t) instead of F(s)- F(t), which requires less finer time steps to maintain a good accuracy.

Similarly, for the asymptotic expansion of transformed Bloch-Torrey PDE, we have

% = —LT, — f(t)JyT,,

def’l = — (L + f(1)J0) To,1 = (Co1 + Qo1 + f(£)5.1) T,

dei’O = —(L+ f()J0) Tro = (Coa + Qe + f(1)T11) To,

deEVQ == (L+ f()Jo) To2 = (Co1 + Qo1 + f(H)Ts1) To = (Co2 + Qo2 + f(8)Jb,2) To,
d£§70 =—(L+ f(t)Jo) T2,0 = (Ce1 + Qua + f(£)Je,1) Tro — (Ce2 + Q2 + f(¢)Je.2) To,
dqéi’l = (L + f()30) Tra = (Cova + Qua + F(H)Twp1.1) To

—(Co1+Qp1+ f(t)Ip1) Tio— (Cri + Qi+ fF(£)Te1) Toa,

where the correction matrices for the flux term are

[Qb,l]nm = 74’4&‘ / Zn:ninzid)n(bmdsxa
JoQ
[Qb,Q]nm = 4’%”/ ZQnminmiQSnd)mdsx,
o0
[Qt,l]nm = 25”/ (ynwinzi - xnyinzi)d)nd)mdsxv
oN
[Qt,Q]nm = Kij / (y2nminwi - 2xynwinyi + x2nyinyi)¢n¢mdsxa
o0

[th,l,l]nm = 4k / (_yznminwi + xznwinyi)¢n¢md3x~
o0
Denoted the combining time-dependent variable as
T = [To,To,l,T1,0,T0,2,T1,17T2,0]T € RONeig: 1

and two new matrices

0 0 0 0 0 O

Qb1 0 0 00O

Q" — Qi1 0 0 0 0O
Q2 Q1 0 0 0 O0f’

Q2 0 Q: 0 0 O

Qw11 Qi1 Q1 0 0 0

(A.32)
(A.33)
(A.34)
(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)
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Jo 0 0O 0 0 O
Ju1 Jo 0 0 0 O
J 0 J 0 0 O
all __ t,1 0
JT = Jbo Jpy O Jp 0O O (A44)
Jio o J,; 0 J, O
Jwi11 Je1 Jpr 0 0 Jg
We obtain a new system of ODEs
dr™ [ [ [ [
TR (C" +vyllgl f(O) T + Q™) T (A.45)
At echo time, we have
Ta”(TE) _ eié(call771,y||g”JaH+QaH) ) 67(A75)(Ca||+Qa||) ) 6*5(Ca"+17\|gllJa"+QaII) ‘v, (A.46)

where v is a vector of size 6 N4, With all entries being zero except for the first item, which is p.
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Appendix of Chapter 4

B.1 Numericalimplementation of the first and second-order deriva-
tives of signals
The computation of the first and second-order derivatives involves the integral of matrix expo-

nentials. To be able to calculate them efficiently, we construct an upper triangular matrix, denoted
as C"

—0(L +1qW) —10W
= B.1
¢ |: ONeigyNeig _6(L + ZqW) ’ ( )
where N, is the number of eigens. The exponential of C' is expressed as[236]
—6(L+1gW) 1 —ad(L41qW)(_ —(1—a)d(L+1gW)
o€ = {e Joe (-oW)e | da} , (82)
ONeigyNeig € “
Define two vectors:
V1 = [Nty Vet ONeig Ny ) € RNt Neia, (B3)
Vg = [ONei_queig’INei_q-,Nezg]T € R?Neia:Neia (B.4)
We have 5G
= 0PATIL (v eC L vy) (B.5)

dq
Thus, by construction, we can calculate the first-order derivative by the action of the matrix expo-

nential on one vector without explicitly computing the integral, using ‘expmv'[126].
Analogously, to compute the second-order derivative, we construct a new matrix D:

C |:0NcigaNrjig ONeigchig
On., —10W
D= 0 NeigiNeig 0 : (B.6)
O2N 9N Ne'ig;Neig Neig7Ne’ig
eigs eig ONMmng _6(L + ZL]W)
The second-order derivative is expressed as
>’G —0.5(A—68)L (T _D
qu = 2e (V3 e V4) s (B7)
where
T 4Nei :Nei
V3 = [INcigaNEig’ONEigyNeig7ONeig-,Ncig70NcigaNrjig] ER g 7y (B.8)
T 4Neig,Nei
V4 = [ONeiy Neigs ONeig o Neigs ONeig Neigs INig Noig) € RETeir et (B.9)

Therefore, the expressions of a,b and c are

133



134 APPENDIX B. APPENDIX OF CHAPTER 4

™ 27
a= / / R (1L, e " ET W) e B=0L (v eOvy) T ., ) dddo, (B.10)
0 0 '
T 2m N
b= / / x (TENSM (ng(ec) v1) e (A=OL (vlTeCVQ) T17Ne'ig) dfdo, (B.11)
0 0
T 27
c= / / 2R(T ,, e P E T W= (A0 (vEePy,) Ty ., )dOds. (B.12)
0 0
The inflection point is
2
2 ibte=0. (B.13)
q

B.2 MLPs training

In the thesis of Fang[3], he proposed to using MLPs to learn the mappings from IP-derived
biomarkers plus ADC to the microstructure parameters of interest, fsoma Rsoma and free.

Consider a set of tuples that is extracted from the Synthetic voxels set, T = {(X,,Y;),i €
{1,..., Nsample } } where Ngampie (= 1.45 million for Synthetic voxels set) is the number of samples.

Refer to a tuple (X,Y") as a data point. The input of an IP-derived biomarker-based MLP is de-
noted by X, which is the four IP-derived biomarkers xq, co, ¢; and yg arising from an artificial brain
voxel, plus the ADC. The input of a signal-based MLP is denoted by X5, which is the 64 dierction-
averaged signals. The desired output (fsoma, Rsoma OF ffree) is denoted by Y. To reduce the learning
difficulty, two individual MLPs are trained, for the volume fractions and the volume-averaged soma
radius, instead of combining them as one. The four MLPs are

1. X € R%isthefour IP-derived biomarkers plus ADC with A being 19 or 49 ms, Y1 = [fsomas fneurite, ffree]T IS

[0,1)% represents the volume fractions, and the sum (the L'-norm of output ||Y||;) should be
one;

2. X, € R%is same as above, Y5 = Rsoma represents the volume averaged soma radius.

3. X, € [0,1]%" is the 64 direction-averaged signals linearly spaced between 0 and 290 mT/m,
with A being 19 or 49 ms, Y1 = [fsoma, fneurite, ffree]T € [0, 1]3 represents the volume fractions,
and the sum (the L'-norm of output ||Y||;) should be one;

4. X, €0, 1]64 is same as above, Y> = Rsoma represents the volume averaged soma radius.

It is worth noting that the measurements at two diffusion times are analyzed separately. Ac-
cording to[237], combining diverse input data or incorporating multi-modal data can enhance the
robustness of the estimation.

We randomly select one million samples from the Synthetic voxels set to form the the training
set Tirain; the rest (0.45 million samples) makes up the test set Teest Which is held out and not used
for model training. The test set allows us to assess the generalization of a trained MLP[238].

An MLP is a nonlinear function h parameterized by its weights 6[238]. The model training is to
find optimal weights 68* that minimize the loss function defined by the distance between the MLP’s
output and the desired output

#’Krain
> Y — h(Xi:0)]3. (B.14)
1

* .
0" = arg , min

] #,ﬁrain

Here, the mean squared error (MSE) is chosen as the loss function. The minimization is possible
if an underlying function ¢ mapping X, to Y; exists. Once the optimization converged, the trained
MLPs could be a good approximation of the underlying function, i.e., h(-;0*) ~ ¢ in the sense of
minimizing L2-norm in the training set.

The function ¢ varies with the choice of the microstructure parameters of interest, and the MR
physics determines its existence. One must be careful about the initial normalization, activation
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function, initial weights, and optimization algorithm to reach the convergence[239]. Here, the Gaus-
sian error linear unit (GELU)[240] is employed, a ReLU-like activation function that incorporates the
properties of stochastic regularizers such as dropout[241]. The weights @ are initialized using Kaim-
ing initialization[242] because of the ReLU-like activation functions. The optimization is performed
with a variant of the Adam optimizer that has a long-term memory of past gradients to enhance the
convergence[243)] 244]. The initial learning rate is 0.01, the batch size is 10,000, and the maximum
number of epochs is 500. The two parameters (betas) of the Adam optimizer for computing running
averages of gradient and its square are 0.9 and 0.999.

The architecture of an artificial MLP can also significantly affect its performance. Finding a suit-
able network architecture for brain microstructure estimation is a subject worth investigating in the
future. Here a four-layer MLP structure are chosen. Even though it is simple, it can effectively “learn”
a wide range of mappings or functions if there are enough nodes[245]. For MLPs using IP-derived
biomarkers plus ADC as inputs, the selected size of each layer is set to (5, 30, 30, 3) for the volume
fractions estimation and (5, 30, 30, 1) for the effective soma radius estimation. For MLPs using sig-
nals as inputs, the selected size of each layer is set to (64, 128, 64, 3) for the volume fractions estima-
tion and (64, 128, 64, 1) for the effective soma radius estimation. For the volume fractions estimation
MLP, to guarantee the outputs are all positive and sum to unity, a softmax function[246] is used as
the output layer. The implementation and training of MLPs are performed with PyTorch[247].

In total, eight MLPs (2 kinds of inputs, 2 kinds of outputs, and 2 different sequences) are trained
to find optimal hyper-parameters.
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Résumé: Les objectifs de cette thése sont
(1) de présenter de nouvelles méthodes
de simulation basées sur I'EDP de Bloch-
Torrey, facilitant les études numériques sur
les parameétres liés a la géométrie, et (2)
d'employer ces méthodes proposées pour
évaluer les modeles de signal de comparti-
ment en IRM de diffusion et pour analyser le
signal d'IRM de diffusion ou le coefficient de
diffusion apparent (CDA).

Tout d'abord, nous présentons une nouvelle
représentation sous forme de Formalisme
Matriciel, qui réutilise les fonctions propres de
Laplace imperméables pour calculer les sig-
naux perméables. Grace a cette formulation,
nous illustrons que (1) les signaux d’IRM de
diffusion ont un taux exponentiel vers la per-
méabilité; (2) le CDA montre un taux de dépen-
dance différent a faibles et hautes perméabil-
ités; (3) il existe une corrélation entre la per-
méabilité et le modéle NEXI.

Ensuite, nous développons une expansion
asymptotique du second ordre sur deux dé-

formations géométriques analytiques. A
travers une investigation numeérique, nous
montrons que (1) le pliage réduit la diffusion
dans la direction de diffusion maximale; (2) la
déformation par torsion change la direction
de diffusion maximale.

Troisiemement, nous identifions des biomar-
queurs dérivés du point d'inflexion (Pl) de la
déviation de la loi de puissance 1/v/b dans
la matiere grise du cerveau. Nous effectuons
une analyse numérique de larelation entre les
biomarqueurs dérivés du Pl, les fractions de
volume, la taille du soma, et proposons une
estimation basée sur la recherche exhaustive
efficace en utilisant ces biomarqueurs.

Enfin, pour résoudre l'instabilité dans la sim-
ulation d'écoulement sanguin en IRM de dif-
fusion, nous appliquons le schéma Stream-
line Upwind Petrov Galerkin. La validation
numérique montre que cette nouvelle méth-
ode est capable de fournir une solution stable
pour une vitesse d'écoulement sanguin rela-
tivement élevée sur un maillage creux.

Title: Numerical methods to estimate brain micro-structure from diffusion MRI data
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Abstract: The objectives of this thesis are (1)
to introduce novel simulation methods based
on the Bloch-Torrey PDE, facilitating numerical
studies on geometry-related parameters and
(2) to employ the proposed methods, to eval-
uate the existing diffusion MRI compartment
signal models, and to analyze diffusion MRI
signal or apparent diffusion coefficient (ADC).
First, we present a novel Matrix Formalism
representation, which can re-use the imper-
meable Laplace eigenfunctions to compute
the permeable signals. Using this formula-
tion, we illustrate that (1) diffusion MRI sig-
nal shows an exponential rate towards perme-
ability; (2) Long-time limit ADC shows different
rates of dependence at low and high perme-
abilities; (3) there is a correlation between per-
meability and the NEXI model.

Second, we develop a second-order asymp-
totic expansion towards two analytical geo-

metrical deformations. By numerical studies,
we illustrate that (1) bending will decrease the
signal value in the maximum diffusion direc-
tion; (2) twisting will change the maximum dif-
fusion direction.

Third, we identify inflection point (IP) derived
biomarkers from the deviation of the 1/vb
power-law scaling in the brain gray matter. We
conduct numerical analysis on the relation-
ship between the IP-derived biomarkers and
volume fractions and soma size and propose
an efficient exhaustive search based on these
biomarkers.

Finally, to address the instability issues in dif-
fusion MRI blood flow imaging simulation, we
apply the Streamline Upwind Petrov Galerkin
scheme. Numerical validation illustrates that
this new method is able to yield a stable solu-
tion for a quite high blood flow velocity on a
coarse mesh.
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