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Abstract

State-of-the-art microstructural diffusion MRI employs a “compartmentalization” concept, sug-gesting that an imaging voxel in the human brain can be split into multiple spaces that are isolatedwith respect to diffusion. The diffusion MRI signal is then the sum of the signal contributions ofeach of these spaces. The spaces, modeled based on the underlying tissue morphologies, eachrepresents a specific geometrical structure. These compartment signal models have analytical sig-nal expressions, and by matching these to measured signals, one can determine the geometricallyrelated parameters in the models. The accuracy of a diffusion MRI compartment signal model de-pends on the validity of its assumptions and approximations. Any deviation can affect estimationaccuracy. A numerical analysis of these assumptions is essential, guiding experimental design andimproving estimation precision.In diffusion MRI, the Bloch-Torrey partial differential equation (PDE) serves as a gold-standardreferencemodel. Due to the high computational cost of solving the Bloch-Torrey PDE in complicatedgeometries, simulations involving adjusting geometry-related values are challenging. The objectivesof this thesis are (1) to introduce novel numerical simulation techniques based on the Bloch-TorreyPDE, facilitating the numerical studies of geometry-related parameters, (2) to employ these pro-posed approaches to evaluate existing diffusion MRI compartment signal models and to analyzediffusion MRI signal or apparent diffusion coefficient (ADC) behaviors.First, we present a novel Matrix Formalism representation, which requires only a single eigen-decomposition on the impermeable configuration and re-uses the impermeable Laplace eigenfunc-tions to compute the signals of permeable configurations. Using this formulation, we illustrate that(1) the diffusion MRI signal shows an exponential rate with respect to permeability; (2) the long-time limit ADC shows different rates of dependence at low and high permeabilities; (3) there is acorrelation between permeability and the NEXI model parameters.Second, we develop a second-order asymptotic expansion for two analytical geometrical defor-mations arising from the modeling of the brain white matter. Through numerical studies, we illus-trate that (1) bending will decrease the signal value in the maximum diffusion direction, (2) twistingwill change the maximum diffusion direction.Third, we evaluate the 1/√b power-law scaling and the SANDImodel. We identify inflection point(IP) derived biomarkers from the deviation of power-law scaling in the brain gray matter. We per-form a numerical analysis on the relationship between the IP-derived biomarkers and compartmentvolume fractions aswell as the soma size, and propose an exhaustive searchmethod based on thesebiomarkers.Finally, to address the numerical instability issues in diffusion MRI blood flow imaging simu-lations, we apply the Streamline Upwind Petrov Galerkin scheme. Numerical validation illustratesthat this newmethod is able to yield a stable solution for quite high blood flow velocities on a coarsemesh.
Keyword: Bloch-Torrey equation, diffusion MRI, microstructural estimation, numerical simula-tion
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Résumé

L’imagerie de microstructure par l’IRM de diffusion utilise un concept de “compartimentation”,suggérant qu’un voxel d’imagerie dans le cerveau humain peut être divisé en plusieurs espacesisolés du point de vue de la diffusion. Le signal IRM de diffusion est la somme des contributionsdu signal de chacun de ces espaces. Chaque espace, modélisé selon des connaissances des mor-phologies tissulaires biologiques, représente une structure géométrique spécifique. Cesmodèles designaux de compartiments ont des expressions analytiques de signaux sous certaines assumptions,et enminimisant la différence entre ces modèles et les signauxmesurés, on peut déterminer les pa-ramètres liés à la géométrie dans les modèles. La précision d’un modèle de signal de compartimentd’IRM de diffusion dépend de la validité de ses hypothèses et de ses approximations appliquées.Tout déviation peut affecter la précision de l’estimation. Une analyse numérique de ces hypothèsesest essentielle, guidant les recherches dans la conception expérimentale et améliorer la précisionde l’estimation.Dans l’IRM de diffusion, l’équation différentielle partielle (EDP) de Bloch-Torrey sert comme mo-dèle de référence standard. En raison du coût de calcul élevé de la résolution de l’EDP de Bloch-Torrey dans des géométries compliquées, les simulations nécessitant des ajustements des para-mètres liés à la géométrie sont difficiles. Les objectifs de cette thèse sont (1) de présenter de nou-velles techniques de simulation numérique basées sur l’EDP de Bloch-Torrey, facilitant les étudesnumériques sur les paramètres liés à la géométrie et (2) d’utiliser ces approches proposées pourévaluer les modèles de signal de compartiment IRM de diffusion existants et d’analyser le signalIRM de diffusion ou les comportements du coefficient de diffusion apparent (CDA).D’abord, nous présentons une nouvelle représentation du FormalismeMatriciel, qui ne nécessitequ’une seule décomposition des fonctions propres sur une configuration imperméable et peut réuti-liser ces fonctions propres de l’opérateur Laplacian de la configuration imperméable pour calculerles signaux des configurations perméables. En utilisant cette formulation nouvelle, nous illustronsque (1) le signal IRM de diffusion présente un taux exponentiel par rapport à la perméabilité κ ; (2)la limite du CDA à long terme montre différents taux de dépendance à des perméabilités faibles etélevées ; (3) il existe une corrélation entre la perméabilité et les paramètres liés à la géométrie dumodèle NEXI.Ensuite, nous développons une expansion asymptotique de second ordre pour deux déforma-tions géométriques analytiques issues de lamodélisation de la substance blanche du cerveau. Grâceà des études numériques, nous illustrons que (1) la flexion diminuera la valeur du signal dans la di-rection de diffusion maximale, (2) la torsion changera la direction de diffusion maximale.Troisièmement, nous évaluons la loi de puissance 1/
√b et le modèle SANDI à l’aide des simula-tions numériques. Nous identifions des biomarqueurs dérivés du point d’inflexion (PI) à partir de ladéviation de la loi de puissance dans la substance grise du cerveau. Nous effectuons une analysenumérique de la relation entre les biomarqueurs dérivés du PI et les fractions de volume des com-partiments ainsi que la taille du soma, et nous proposons une nouvelle méthode d’estimation enutilisant le moyen de recherche exhaustive basée sur ces biomarqueurs.Enfin, pour aborder les problèmes d’instabilité numérique dans les simulations d’imagerie duflux sanguin par l’IRM de diffusion, nous appliquons le schéma Streamline Upwind Petrov Galerkin(SUPG). La validation numérique montre que cette nouvelle méthode est capable de produire unesolution stable pour des vitesses d’écoulement sanguin assez élevées sur un maillage creux.

Mots-clés : EDP de Bloch-Torrey, IRM de diffusion, estimation micro-structures, simulation nu-mérique
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Thesis Overview

The prevalent state-of-the-art microstructural diffusion magnetic resonance imaging (diffusionMRI) methods rely on the concept of “compartmentalization” and depend on diffusionMRI compart-ment signal models. The idea is that an imaging voxel in the human brain can be divided into severalspaces that are disconnected with respect to diffusion. The diffusion MRI signal is represented asthe sum of their signal contributions. Each space can be considered as a parameterized compart-ment characterized by a simplified shape, based on the underlying tissue morphology. These geo-metrical parameters are the metrics of the model and correlate to specific geometrical structures.For instance, axons in the brain white matter are commonly modeled as a collection of infinitelylong cylinders, with the axon radii represented as the cylindrical radii. Additionally, these simplifiedshapes have analytical signal expressions. Thus, by fitting the measured signals to their analyticalsignal expressions, one can retrieve the geometrical parameters. Compared to more traditional dif-fusion MRI imagingmethods, such as diffusion tensor imaging (DTI) or kurtosis tensor imaging (KTI),the diffusion MRI compartment signal models link more explicitly the diffusion MRI signals to thehistological parameters, providing more interpretable metrics. Some clinical studies have indicatedthe potential medical values of these models.The validity of a diffusion MRI compartment signal model depends on the approximations itemploys. For example, the signal expressions are often derived from the Gaussian phase approxi-mation and the cell membrane permeability is often assumed to be negligible. Deviation from theseapproximations may deteriorate the estimation performance of a diffusion MRI compartment sig-nal model. Conducting a numerical analysis on the applicable range of these assumptions wouldbe beneficial. Such analysis would guide researchers in designing suitable experimental sequences,understanding the impact of the deviations from idealized assumptions, and thereby enhancing theestimation accuracy.In diffusion MRI, the Bloch-Torrey partial differential equation (PDE) serves as a gold-standardreferencemodel. It describes the time evolution of the complex transverse water protonmagnetiza-tion subject to diffusion-encoding magnetic field gradient pulses. The spatial integral of its solutionprovides a reference value for the diffusion MRI signal arising from the geometry of interest. Dueto the high computational cost of solving the Bloch-Torrey PDE in complicated geometries, simula-tions involving adjusting geometry-related values are challenging. Solving Bloch-Torrey PDE in suchcomplex domains relies on advanced numerical simulation methods. SpinDoctor is a recent Mat-lab Toolbox designed for this purpose, applying either (1) a direct finite elements discretization ofthe Bloch-Torrey PDE or (2) the Numerical Matrix Formalism method which computes the Laplaceeigendecomposition using a finite elements discretization.This thesis aims to (1) introduce novel numerical simulation techniques based on the Bloch-Torrey PDE that aid in the study of geometry-related parameters, (2) employ these proposed ap-proaches to evaluate existing diffusion MRI compartment signal models and analyze diffusion MRIsignal or apparent diffusion coefficient (ADC) behaviors. The thesis is organized as follows:
1. In Chapter 1, we introduce the basics of diffusion MRI physics and human brain structures.Then we describe in detail the Bloch-Torrey PDE, diffusion MRI signal behaviors, especially the

1/
√b power-law scaling at high b-values in the brain white matter, approximationmodels andtwo numerical simulationmethods, the finite elements method and the Numerical Matrix For-malism method. We also present some diffusion MRI compartment signal models, includingthe NEXI model and the SANDI model.

2. In Chapter 2, we present a novel Matrix Formalism representation using impermeable Laplaceeigenfunctions, to facilitate simulations of a large number of membranes permeability values.
1



2 CONTENTS

Using the proposed formulation, we evaluate (1) the relationship between the diffusion MRIsignals/long-time limit ADC and permeability values on a porous medium, (2) the relationshipbetween the NEXI model parameters and permeability values. We observe that (1) the diffu-sion MRI signal shows an exponential rate with respect to permeability, (2) the long-time limitADC shows different rates of dependence at low and high permeabilities, (3) there is a corre-lation between permeability and the NEXI model parameters. The proposed formulation hasbeen published in the paper[1] and integrated into the developer version of SpinDoctor.
3. In Chapter 3, we develop a second-order asymptotic expansion for two analytical geometricaldeformations. Using the asymptotic expansion of the Bloch Torrey PDE, we evaluate the im-pact of deformations on the ADC and diffusion MRI signals from axons. It is observed that (1)the deformations have the same effects on the ADC and signals, (2) bending will decrease thesignal value in themaximumdiffusiondirection, (3) twistingwill change themaximumdiffusiondirection. The asymptotic models have been implemented using SpinDoctor and published inthe paper[2].
4. In Chapter 4, using the Numerical Matrix Formalismmethod, we evaluate the 1/√b power-lawscaling on individual realistic neurons and simple shapes. Based on the numerical analysis, weidentify inflection point-derived biomarkers coming from the deviation of the power-law scal-ing for use in the brain gray matter. We derive the mathematical expressions of the proposedbiomarkers using the Numerical Matrix Formalism method and conduct a numerical analysisof the biomarkers. We propose an exhaustive search estimation method based on these pro-posed biomarkers. We validate the novel biomarker-based estimation method and compareit to alternative signal-based estimations as well as the SANDI model on a Synthetic Voxels Setand an in vivo dataset. This work extends upon the PhD thesis of Chengran Fang [3] and hasbeen published in the paper[4].
5. In Chapter 5, to study diffusion MRI accounting for the blood flow via numerical simulations,we adopt a stabilized finite elements scheme using the Streamline Upwind Petrov-Galerkinscheme and the theta method. This work is a collaboration with the computational medicineteam at the University of Leeds, aiming to extend the existing Bloch-Torrey PDE finite elementssolver of SpinDoctor for diffusion MRI blood flow simulations. By numerical analysis, we showthat this new scheme is able to yield a stable solution for quite high blood flow velocities ona coarse mesh, whereas the standard Galerkin method encounters instability issues and nu-merical explosion. This approach has been implemented as a new module of SpinDoctor andhas been detailed in a pre-print article.
6. In Chapter 6, we conclude the thesis and discuss possible future works.



Aperçu de la thèse

Lesméthodes d’imagerie par résonancemagnétique de diffusion (IRMde diffusion) pour estimerles microstructures du cerveau les plus répandues reposent sur le concept de “compartimentation”et dépendent desmodèles de signaux de compartiments de l’IRM de diffusion. L’idée est qu’un voxeld’imagerie dans le cerveau humain peut être divisé en plusieurs espaces qui sont déconnectés dupoint de vue de la diffusion. Le signal IRM de diffusion est représenté par la somme de leurs contri-butions. Chaque espace peut être considéré comme un compartiment paramétré caractérisé parune forme simplifiée, basée sur la morphologie du tissu sous-jacent. Ces paramètres géométriquessont les métriques du modèle et correspondent à des informations géométriques spécifiques. Parexemple, les axones de la substance blanche du cerveau sont généralement modélisés comme unecollection de cylindres infiniment longs, et les rayons des axones étant représentés par les rayons cy-lindriques. En outre, ces formes simplifiées ont des expressions analytiques du signal sous certainesassumptions. Ainsi, en adaptant les signaux mesurés à les expressions analytiques dumodèle, il estpossible de récupérer les paramètres géométriques et faire l’estimation. Par rapport aux méthodesd’imagerie IRM de diffusion plus traditionnelles, telles que l’imagerie du tenseur de diffusion (ITD)ou l’imagerie du tenseur de kurtosis (ITK), les modèles de signal du compartiment IRM de diffusionrelient plus explicitement les signaux IRM de diffusion aux paramètres histologiques, ce qui permetd’obtenir des mesures plus faciles à interpréter. Certaines études cliniques ont montré les valeursmédicales potentielles de ces modèles.
La validité d’un modèle de signal de compartiment d’IRM de diffusion dépend des approxima-tions qu’il utilise. Par exemple, les expressions du signal sont souvent dérivées de l’approximationde la phase gaussienne (APG) et la perméabilité de la membrane cellulaire est souvent supposéenégligeable. Toute déviation par rapport à ces approximations peut détériorer les performancesd’estimation d’un modèle de signal de compartiment d’IRM de diffusion. Il serait utile de procéderà une analyse numérique de la gamme applicable de ces hypothèses. Une telle analyse aideraitles chercheurs à concevoir des séquences expérimentales appropriées, à comprendre l’impact desécarts par rapport aux hypothèses idéalisées et, par conséquent, à améliorer la précision de l’esti-mation.
Dans l’IRM de diffusion, l’équation différentielle partielle (EDP) de Bloch-Torrey sert comme mo-dèle de référence standard. Elle décrit l’évolution temporelle de la magnétisation transversale com-plexe des protons de l’eau soumise à des impulsions de gradient de champ magnétique codantpour la diffusion. L’intégrale spatiale de la solution fournit une valeur de référence pour le signalIRM de diffusion provenant de la géométrie d’intérêt. En raison du coût de calcul élevé de la résolu-tion de l’EDP de Bloch-Torrey dans des géométries compliquées, les simulations impliquant l’ajus-tement des valeurs liées à la géométrie sont difficiles et intensif en calcul. La résolution de l’EDPde Bloch-Torrey dans des domaines aussi complexes repose sur des méthodes de simulation nu-mérique avancées. SpinDoctor est une boîte à outils Matlab récente conçue, appliquant soit (1) unediscrétisation directe par éléments finis de l’EDP de Bloch-Torrey, soit (2) la méthode du FormalismeMatriciel Numérique qui calcule la décomposition des fonctions propres de l’opérateur Laplacian enutilisant une discrétisation par éléments finis.
L’objectif ultime de cette thèse est d’offrir des outils numériques robustes pour étudier les si-gnaux IRM de diffusion et les comportements ADC dans un contexte plus complexe et réaliste, enévaluant les techniques existantes d’estimation de la microstructure, telles que les modèles de si-gnaux de compartiment d’IRM de diffusion, en concevant des configurations expérimentales d’IRMde diffusion appropriées et en développant de nouveaux modèles d’estimation de la microstruc-ture. Concrètement, dans cette thèse, nous (1) introduisons de nouvelles techniques de simulation
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numérique basées sur l’EDP de Bloch-Torrey qui facilitent l’étude des paramètres liés à la géométrie,(2) utilisons ces approches proposées pour évaluer les modèles de signal de compartiment d’IRMde diffusion existants et analyser les comportements du signal IRM de diffusion ou du coefficientde diffusion apparent (CDA).La thèse est organisée comme suit :
Chapitre 1 : Introduction Dans ce permier chapitre, nous présentons le contexte physique et ma-thématique de l’estimation microstrucutrale du cerveau à l’aide de l’IRM de diffusion. Ce chapitreest divisé en trois parties.La première partie du chapitre aborde les aspects de la physique concernant l’IRM de diffusion.Nous présentons d’abord les bases de la physique de l’IRM, et son équation gouvernante, l’équa-tion de Bloch. Ensuite, on présente le processus de la diffusion puis l’EDP de Bloch-Torrey en tenantcompte de la diffusion. Par ailleurs, comme la thèse se concentre sur la microstructure du cerveau,nous introduisons les structures du cerveau humain du point de vue des types de cellules neuro-nales, de l’anatomie et des fonctionnalités.Dans la deuxième partie, nous décrivons lesmodèlesmathématiques de l’IRM de diffusion. Nousdonnons en détail l’expression de l’EDP de Bloch-Torrey avec les conditions aux limites de Neumannhomogène, la définition du coefficient de diffusion apparent, et les comportements du signal IRMde diffusion, en particulier la loi de puissance de 1/

√b à des valeurs b élevées dans la substanceblanche du cerveau.Mêmepour certaines géométries simples, comme les sphères ou les cylindres, ilest difficile de résoudre analytiquement l’EDPdeBloch-Torrey. Pour pouvoir relier les signaux IRMdediffusion et la microstructure du cerveau, le calcul du signal IRM de diffusion est effectué par (1) dessimulations numériques ou (2) desmodèles d’approximation. Dans la section 1.3.5, nous présentonstrois modèles d’approximation : l’approximation de l’impulsion étroite, l’approximation gaussienneet le modèle de Kärger. À l’exception de certains cas limités, il n’existe pas de solutions analytiquesde l’EDP de Bloch-Torrey. Les méthodes numériques prédominantes pour résoudre l’EDP de Bloch-Torrey sont : (1) les simulations de Monte Carlo, (2) la méthode des éléments finis/différence finiset (3) Représentation du FormalismeMatriciel (FM). Dans la section 1.3.6, nous présentons en détailles expressions des deux dernière méthodes, qui sont implémenté dans SpinDoctor.Dans la dernière partie du chapitre, nous décrivons quatre modèles de signaux de comparti-ments d’IRM de diffusion avancés utilisés pour estimer la microsturcture de la substance blanche etde la substance grise du cerveau : l’Imagerie de la dispersion et de la densité de l’orientation des neu-rites (NODDI en anglais), l’Estimation du diamètre et de la densité des axones (ActiveAx en anglais),l’Imagerie de la densité des somas et des neurites (SANDI en anglais) et l’Imagerie de l’échange deneurites (NEXI en anglais). NODDI et ActiveAx sont conçus pour l’imagerie de la substance blanchedu cerveau. SANDI et NEXI sont conçus pour l’imagerie de la substance grise du cerveau.
Chapitre 2 : Représentation du Formalisme Matriciel perméables en utilisant des fonctions
propres de l’opérateur Laplacian imperméables Dans ce chapitre, nous présentons une nou-velle représentation du FormalismeMatriciel utilisant des fonctions propres de l’opérateur Laplacianimperméables, afin de faciliter les simulations des signaux IRM de diffusion pour un grand nombrede valeurs de perméabilité des membranes.L’estimation de la perméabilité de la membrane cellulaire à l’aide de l’IRM de diffusion présenteun grand intérêt pour la recherche et la clinique. En outre, la perméabilité de lamembrane cellulairepeut influencer l’interprétation de l’imagerie de lamicrostructure du cerveau. Denombreuxmodèlesde signal de compartiment d’IRM de diffusion actuellement utilisés sont basés sur une assumptiond’un échange d’eau négligeable entre les compartiments, dont leur validité reste inconnue. Ignorerles effets de la perméabilité pourrait rendre l’estimation de la microstructure difficile à interpréter.Par exemple, un travail récent par Jelescu et al. en 2022 a souligné que le fait d’ignorer la perméabilitépeut sous-estimer la fraction de volume des neurites, même pour les experiments des temps dediffusion courts. Il est donc essentiel de comprendre ce mécanisme pour améliorer l’estimationde la microstructure. Certains travaux récents dans la littérature sur l’IRM de diffusion concernantl’estimationde lamicrostructure du cerveauont commencé àprendre en compte la perméabilité desmembranes cellulaires, et ont tenté de déterminer la valeur de la perméabilité à l’aide de donnéesréelles d’IRM de diffusion.Afin d’estimer le coefficient de perméabilité à partir des données d’IRM de diffusion et de vali-der les modèles de signaux IRM de diffusion par le moyen numérique, il est souhaitable que l’EDP
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de Bloch-Torrey puisse être calculée efficacement pour de nombreuses valeurs de perméabilitémembranaire. Pour des géométries simples telles que des cercles, des sphères, des plaques ou dessegments unidimensionnels, il existe des expressions analytiques du signal IRM de diffusion. L’effetde la perméabilité est pris en compte par une matrice de transition ou le modèle de Kärger, quiest un modèle d’approximation d’échange à deux compartiments. Ces expressions analytiques ontété utilisées pour estimer la microstructure des tissus et la perméabilité de l’interface. Cependant,pour des géométries cellulaires plus complexes et réalistes, il n’existe pas d’expressions analytiquesexplicites et des simulations numériques sont nécessaires.L’objectif de ce chapitre est de développer une nouvelle approche qui facilite les simulations lorsde l’ajustement de la valeur de perméabilité de la membrane.Si seul un petit nombre de simulations est nécessaire, les trois principaux groupes d’approchessont les suivants (1) les simulations de Monte Carlo, (2) la résolution de l’EDP de Bloch-Torrey dis-crétisée par les éléments finis et (3) la méthode spectrale, appelée représentation du FormalismeMatriciel, comme détaillé dans dans la section 1.3.6 du chapitre 1.La simulation de Monte Carlo utilise des particules aléatoires pour imiter le processus de diffu-sion au cours d’une expérience d’IRM de diffusion. Elle place aléatoirement un grand nombre departicules à l’intérieur de la géométrie complexe et les laisse se déplacer en fonction de la dyna-mique de diffusion. Pour intégrer les membranes perméables dans la simulation, l’échange d’eauà travers les interfaces est modélisé par une probabilité de transit Ptrans, qui est la probabilité queles particules traversent ou se reflètent lorsqu’ils arrivent à une interface perméable. Cependant,lorsque la perméabilité augmente, les pas de temps doit devenir plus petit, afin de maintenir lacondition Ptrans ≪ 1. ce qui entraîne une forte demande en ressources de calcul et en mémoire deserveur.La discrétisation de l’EDP de Bloch-Torrey peut être utilisée pour résoudre directement la ma-gnétisation dans une configuration géométrique complexe. Le domaine de calcul est discrétisé soitpar éléments finis soit par différences finies. Comme il s’agit d’une équation déterministe, l’incorpo-ration de la perméabilité est simple. Les détails de la mise en œuvre de la méthode des élémentsfinis avec la condition des interfaces de perméabilité se trouvent dans la section 1.3.6.1.Dans un travail récent, Agdestein et al. a présenté unemise enœuvre numérique du FormalismeMatriciel pour les interfaces perméables, appelée méthode du Formalisme Matriciel Numérique(FMN), où les conditions de perméabilité de l’interface sont incorporées dans l’étape de décompo-sition des fonctions propres de l’opérateur Laplacian.Dans ce chapitre, nous visons à étendre ce travail et à présenter une nouvelle formulation. Lesignal IRM de diffusion dans un milieu perméable est calculé en utilisant uniquement des fonctionspropres de l’opérateur Laplacian imperméables. Nous donnons d’abord l’expression de la nouvelleméthode. Nous définissons une nouvelle matrice Qproj , qui représente la projection de la matricedes flux sur les fonctions propres de l’opérateur Laplacian avec des conditions d’interface imper-méables. L’effet de perméabilité est considéré comme une perturbation et traité dans l’étape decalcul du signal, au lieu de l’étape de décomposition des fonctions propres. La nouvelle formula-tion ne nécessite donc qu’une seule décomposition sur la configuration imperméable et réutilise lesmêmes fonctions propres de l’opérateur Laplacian pour calculer les signaux perméables, alors quela méthode FMN nécessite de ré-calculer les fonctions propres pour chaque valeur de perméabilité.Ensuite, nous prouvons que la nouvelle méthode produit le même signal IRM de diffusion que laméthode originale du FormalismeMatriciel Numérique, à condition que toutes les fonctions propresdiscretes soit utilisées pour les deux méthodes.Nous montrons la convergence numérique de la nouvelle méthode lorsque le nombre de fonc-tions propres utilisées est beaucoup plus petit que l’ensemble complet. Aux valeurs de perméabilitéles plus faibles (κ = 10−5m/s), les erreurs relatives de notre nouvelleméthode sont aumêmeniveauque celles de la méthode du Formalisme Matriciel Numérique. Lorsque la perméabilité augmente,les erreurs relatives de la nouvelleméthode augmentent,mais restent dans une gamme raisonnable(moins de 1%). Nous évaluons l’efficacité de calcul de notre nouvelle méthode par rapport au FMNlosqu’il s’agit des simulations utilisant de nombreux valeurs de perméabilité. Dans l’étape de calculdu signal, le temps de calcul par la nouvelle méthode est proche de celui de la méthode du For-malisme Matriciel Numérique, mais la nouvelle méthode offre des gains de temps significatifs lorsde l’étape de décomposition ne doit être exécuté qu’une seule fois, ce qui réduit considérablementle temps de calcul, permettant l’étude des effets de la perméabilité sur le signal IRM de diffusion àl’avenir.
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Afin de démontrer les capacités potentielles de notre nouvelle méthode pour l’étude des effetsde la perméabilité, nous effectuons une analyse numérique sur l’impact de la perméabilité sur (1)les signaux IRM de diffusion et (2) le CDA. L’analyse suggère que :
1. Le signal IRM de diffusion a une relation mono-exponentielle avec la perméabilité dans unelarge gamme de valeurs (10−6m/s ≤ κ ≤ 10−4m/s), couvrant les valeurs de perméabilitétypiques trouvées dans les cellules biologiques ;
2. Aux faibles valeurs b, l’impact de la perméabilité est négligeable. Cependant, à des valeursb élevées, même une petite valeur de perméabilité modifierait beaucoup les signaux IRM dediffusion ;
3. Avec une perméabilité élevée, le terme dominant du CDA est t−0,5, où t est le temps de diffu-sion ;
4. A des perméabilités faibles et élevées, la limite du temps long du CDA montre des taux diffé-rents de dépendance à la perméabilité.
En outre, nous évaluons le modèle NEXI, à l’aide de la nouvelle méthode. Pour éviter de tomberdans un minimum local, nous faisons l’estimation par une recherche exhaustive. Le résultat numé-rique indique que le temps d’échange d’eau de NEXI est corrélé à la perméabilité dans une largegamme (10−6 ≤ κ ≤ 2× 10−5m/s).Ce travail contribue (1) à des simulations numériques rapides tenant compte de la perméabilité,(2) à des études numériques sur les effets de la perméabilité dans des géométries complexes, (3) àl’évaluation de modèles d’imagerie microstructurelle.Cette nouvelle méthode a été publiée dans l’article[1] et intégrée dans la version développeurde SpinDoctor. Par rapport à la version publiée, j’ajoute deux sections supplémentaires :
1. La section 2.4.2 applique la nouvelle méthode pour analyser l’impact de la perméabilité sur leCDA;
2. La section 2.4.3 utilise des signaux simulés par notre nouvelle méthode, montrant la corréla-tion entre la perméabilité et le temps d’échange de l’eau du modèle de NEXI.

Chapitre 3 : Expansion asymptotique de l’IRMde diffusion et du CDA tenant compte des défor-
mations géométriques Dans ce chapitre, nous proposons une nouvelle approche pour étudierl’effet de la déformation géométrique en utilisant l’expansion asymptotique.Dans l’estimation de lamicrostructure de la substance blanche cérébrale, les axones ou les fibresde la substance blanche cérébrale sont modélisés le plus souvent par un faisceau de bâtonnets,comme le modèle NODDI, soit par une collection de cylindres avec les rayons non nuls, dans lamême direction ou avec une dispersion dans l’orientation, comme lemodèle ActiveAxADD. Ces hypo-thèses négligent l’imperfection géométrique de la forme réaliste des fibres, y compris les variationsde diamètre, les formes de section irrégulières, l’ondulation, le pliage, etc., ce qui peut entraîner desimprécisions dans certains estimations. Dans un travail récent par Lee et al. en 2020, une suresti-mation du diamètre des axones a été constatée à de faibles valeurs b en raison de l’ondulation desaxones.L’objectif de ce chapitre est de proposer un modèle réduit pour faciliter les études sur la défor-mation géométrique et de révéler davantage la relation entre la structure cellulaire du tissu biolo-gique et le signal IRM de diffusion dans la substance blanche du cerveau par les simulations nu-mériques. Nous analysons l’EDP de Bloch-Torrey et le modèle de coefficient de diffusion apparenthomogène (CDAH) dans le contexte des mappings de déformation paramétrés, à partir d’une confi-guration canonique. La configuration canonique que nous concevons est un ensemble d’axonesparallèles droits contenus dans l’espace extracellulaire. Notre idée est de modéliser des axonesréalistes comme des déformations spatiales de configurations canoniques d’axones parallèles.Pour être plus concret, nous nous concentrons sur deux déformations analytiquement définies :la flexion et la torsion. Nous déduirons des modèles asymptotiques du signal IRM de diffusion et duCDA où le paramètre asymptotique indique le degré de la déformation géométrique. Grâce à ce tra-vail, nous pouvons relier plus directement le signal IRM de diffusion aux paramètres géométriquesdes tissus.
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Une application potentielle de ce modèle asymptotique est de servir à étudier la robustesse desméthodes d’estimation de la substance blanche du cerveau, comme l’estimation de la fraction devolume ou les rayons des axones, à face des imperfections de la forme. En outre, on peut utiliserces modèles asymptotiques pour établir la relation entre les déformations et les signaux IRM dediffusion.Dans la section 3.2, nous présentons d’abord le modèle de CDAH et donnons les expressionsanalytiques des déformations de flexion et de torsion. Nous dérivons l’EDP de Bloch-Torrey trans-formée et le modèle de CDAH transformé en tenant compte de ces deux déformations, et déve-loppons les solutions de ces EDP transformées sous la forme d’un développement asymptotiquedu second ordre dans les deux paramètres de déformation. Nous effectuons des simulations nu-mériques dans la section 3.4, pour valider nos expansions asymptotiques et illustrer les effets desdéformations géométriques. Les simulations suggèrent que :
1. Pour lemodèle de CDAHet l’EDP de Bloch-Torrey, des développements aumoins second ordresont nécessaires pour améliorer la précision ;
2. Par les imageries de diffusion à haute résolution angulaire (HARDI en anglais), nous observonsque la flexion rend le CDA et les signaux moins directionnels, tandis que la torsion fait tournerleur direction maximale ;
3. L’analyse du temps de calcul démontre l’efficacité des expansions asymptotiques lors de l’ajus-tement des paramètres de déformation.
Ce travail contribue à lier explicitement le signal IRM de diffusion aux structures cellulaires et àfournir un outil numérique pour étudier l’impact des imperfections de forme sur le signal IRM dediffusion et le CDA.Les modèles asymptotiques ont été implémentés dans SpinDoctor et publiés dans l’article [2].Par rapport à la version publiée, j’apporte les modifications suivantes :
1. J’étend l’expansion asymptotique de l’EDP de Bloch-Torrey en incluant le cas perméable. Jefournis les résultats numériques de l’expansion asymptotique de l’EDP de Bloch-Torrey enutilisant κ = 10−5m/s ;
2. J’étend les expansions asymptotiques au cas où les deux déformations sont appliquées, etj’ajoute ce cas dans les résultats numériques ;
3. J’ajoute une section 3.4.4 qui compare le temps de calcul pour montrer l’efficacité des expan-sions asymptotiques ;
4. J’utilise une formulation alternative du modèle de CDAH, qui nécessite un pas de temps plusgrand que la formulation originale pour maintenir la même précision pendant les simulationsnumériques.

Chapitre 4 : Estimation de la taille du soma et des fractions de volume à l’aide de biomar-
queurs dérivés du point d’inflexion Dans ce chapitre, nous étudions la cause de la rupturede la loi de puissance de 1/

√b dans la sustance grise du cerveau. À la suite de cette étude, nousproposons une nouvelle approche d’estimation de la taille du soma et des fractions de volume descompartiments dans la sustance grise en utilisant les signaux IRM de diffusion.Dans la substance blanche du cerveau, une étude récente de Veraart et al. en 2019 amontré queles signaux moyennés dans la direction du gradient
S ≡

∫
∥ug∥=1

Sdug

diminuent linéairement par rapport à l’inverse de la racine carrée des valeurs b, 1/√b, dans la ré-gions d’intensité de gradient élevée. Ce comportement, appelé la loi de puissance de 1/√b, est pré-valent dans les zones différentes de la substance blanche du cerveau. Les simulations numériquessur des bâtons, des cylindres et des fantômes réalistes de neurites permettent d’expliquer cetteobservation. Toutefois, dans la substance grise du cerveau, on observe un déviation par rapport
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à cette loi de puissance de 1 /
√b. Plusieurs explications ont été proposées pour cette déviation.Les trois principales sont : (1) la courbure des neurites, (2) la présence de soma, et (3) l’importantéchange d’eau entre les neurites et l’espace extracellulaire.Dans un travail récent, Fang et al. a mené une étude numérique sur le comportement du signaldes neurones individuels réalistes et leurs branches neuritiques à des valeurs b élevées, en utilisantdes séquences PGSE. En fixant l’intensité du gradient et en faisant varier le temps de diffusion (àl’aide de PGSE avec δ = ∆), il a été révélé que :

1. Pour les branches du neurite, la loi de puissance de 1/√b se vérifie et la pente de cet ligne pré-sente une corrélation avec l’inverse de la racine carrée du coefficient de diffusion intrinsèque
1/
√
D0 ;

2. En revanche, S des neurones présente un changement de concavité dans la région où la loide puissance de 1/
√b est attendu.

À partir de cette observation, des biomarqueurs potentiels ont donc été proposés autour le pointd’inflexion (IP) de la courbe du signal moyenné en fonction de la direction du gradient.Dans un travail de suivi, la thèse dedoctorat deChengran Fang[3], il a présenté un cadre d’appren-tissage supervisé basé sur la simulation numérique pour estimer la microstructure, qui utilise lesbiomarqueurs dérivés du point d’inflexion ou un grand nombre de valeurs de signal comme entréesen utilisant les perceptrons multicouches, montrant les applications potentielles des biomarqueursdérivés du PI. Afin de s’adapter à l’ensemble de données in vivo, les biomarqueurs dérivés du pointd’inflexion sont définis sur la courbe du signal en utilisant une séquence PGSE fixe et l’intensité degradient variable, ce qui est différent de l’article original[5]. Il a construit un ensemble de voxels syn-thétiques à partir de neurones réalistes et a utilisé des perceptrons multicouches pour approximerles correspondances sous-jacentes entre les inforations géometriques et (1) un grand nombre designaux ou (2) des biomarqueurs dérivés du PI et le CDA.L’objectif de ce chapitre est d’étudier la relation entre les biomarqueurs dérivés du PI et les frac-tions de volume/la taille du soma, puis d’adapter les résultats pour l’estimation. Différentes confi-gurations de séquences peuvent donner lieu à des relations différentes. Étant donné que les ex-périments pratiques utilisent généralement des séquences PGSE avec des δ et ∆ fixes, en ajustantuniquement l’intensité du gradient, nous adoptons cette définition des biomarqueurs dérivés du PI.Quatre biomarqueurs dérivés du point d’inflexion sont :
• x0 : la coordonnée x du point d’inflexion ;
• y0 : la coordonnée y du point d’inflexion ;
• c0 : l’ordonnée de la ligne d’ajustement de la loi de puissance au point d’inflexion ;
• c1 : la pente de la ligne d’ajustement.
Dans ce chapitre, nous présentons d’abord dans la section 4.1 les paramètres expérimentaux, laconstruction du NeuronSet, l’ensemble de voxels synthétiques et la méthode d’interpolation spline,qui sont fait dans la thèse de doctorat de Fang.Ensuite, nous examinons le comportement des signaux de différentes formes géométriques enutilisant des séquences PGSE avec des δ et∆ fixes (δ < ∆) et en ajustant l’intensité du gradient. Nousmontrons que les neurones individuels présentent toujours lemême comportement de signal. Nouspouvons donc également identifier les biomarqueurs dérivés du PI dans la configuration avec δ et∆fixés. En outre, nous trouvons que les sphères individuelles présentent un comportement de signalsimilaire à celui des neurones individuels, qui peut lier cette déviation de la loi de puissance de 1/√bdans la substance grise à la présence de structures sphériques.Pour pouvoir calculer precisément les biomarqueurs dérivés du PI, nous dérivons leurs expres-sions mathématiques à l’aide de la méthode du Formalisme Matriciel Numérique. Ensuite, en ana-lysant la relation entre ces biomarqueurs dérivés du PI, et les fractions de volume/la taille du soma,nous démontrons que :
1. Dans le cas d’une sphère individuelle, la valeur de x0 est déterminée de manière unique parle rayon du soma Rsoma, avec une relation monotone ;
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2. Dans le cas d’une sphère combinée à un faisceau de bâtons, la valeur de c0 est liée à la fractionde volume du soma fsoma ;
3. Dans le cas d’une sphère, combinée aux bâtonnets et à un compartiment de diffusion libre, lavaleur de y0 est en corrélation avec la fraction de volume du compartiment de diffusion libre

ffree.
Ces recherches suggèrent que nous pouvons extraire les informations relatives à la taille du somaet aux fractions de volume à partir des biomarqueurs dérivés du PI.Pour démontrer la possibilité d’utiliser les biomarqueurs dérivés du PI dans l’estimation pratique,nous proposons une méthode de recherche exhaustive au lieu des algorithmes d’optimisation oudes algorithmes d’apprentissage. La raison de ce choix est que l’approche de recherche exhaustiveélimine le besoin d’ajuster une fonction non convexe.Sur l’ensemble de données d’un neurone individuel, nous utilisons une méthode itérative baséesur les biomarqueurs dérivés du PI et comparons avec le modèle SANDI. Les résultats numériquesmontrent que la performance de la nouvelle méthode d’estimation dépasse celle du modèle SANDIsur cet emsemble.Nous évaluons cette méthode de recherche exhaustive sur un ensemble de tests synthétiqueset sur un ensemble de données in vivo. Il est démontré que les valeurs estimées sont similaires àcelles du modèle SANDI et de la méthode de recherche exhaustive basée sur l’utilisation d’un grandnombre de valeurs de signaux moyennées en fonction de la direction.Par rapport à l’estimation basée sur les valeurs de signal, les erreurs d’estimation par l’estimationbasée sur les biomarqueurs sont aumême niveau. L’estimation prendmoins de temps parce qu’ellene nécessite que trois biomarqueurs comme données d’entrée au lieu de tous les valeurs de signal.Ce travail contribue à l’interprétation de la déviation par rapport à la loi de puissance de 1/√b àdes valeurs b élevées dans la substance grise du cerveau, avec des biomarqueurs dérivés du PI, età l’exploitation de cette compréhension pour l’estimation de la microstructure.Certaines sections de ce chapitre ont été publiées dans l’article [4]. Il s’agit des éléments suivants :

1. Les paramètres expérimentaux, les constructions du NeuronSet, le Synthetic Voxels Set, et laméthode d’interpolation spline, décrits dans la section 4.1 (qui provient de la thèse de doctoratde Chengran Fang[3]) ;
2. La méthode de recherche exhaustive dans la section 4.3.2 ;
3. Les résultats de l’estimation sur l’ensemble de voxels synthétiques dans la section 4.4.2 ;
4. L’estimation sur les données réelles dans la section 4.4.3.
Le reste du chapitre est nouveau pour cette thèse et n’a pas été publié ailleurs.

Chapitre 5 : Simulation d’IRM de diffusion avec Streamline Upwind Petrov-Galerkin Uneautre application de l’IRM de diffusion au-delà de l’imagerie du tissu cérébral est l’évaluation de laperfusion sanguine (connue sous le nom d’IRM àmouvement incohérent intravoxel) et l’imagerie duflux sanguin cardiaque. Dans ce chapitre, nous présentons un nouveau schéma spatial d’élémentsfinis pour les applications d’imagerie du flux sanguin par l’IRM de diffusion.Ce travail est une collaboration avec l’équipe de médecine computationnelle de l’Université deLeeds, visant à étendre le solveur d’éléments finis de l’EDP de Bloch-Torrey existant du SpinDoctorpour les simulations d’écoulement sanguin par IRM de diffusion.La simulation de l’IRM de diffusion implique le traitement d’un terme d’écoulement. La vitessesanguine est généralement déterminée par l’équation de Navier-Stokes au moyen de simulationsnumériques. Elle est ensuite souvent fournie comme variable prédéfinie pour les simulations d’IRMde diffusion.À faible valeur b, les signaux de l’IRM de diffusion sont sensibles à la microcirculation du sangdans le réseau capillaire cérébral, ce qui fait que le CDA s’écarte de la valeur attendue. Cet écart aété largement utilisé pour mesurer l’indice de perfusion dans les cliniques. Ces dernières années,l’imagerie du tenseur de diffusion (ITD) a devenu un domaine populaire dans l’imagerie cardiaque,mettant en évidence sa polyvalence en imagerie médicale.
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Lorsque l’on considère le flux sanguin, l’EDP de Bloch-Torrey devient une EDP de convection-diffusion-réaction, avec un terme de réaction imaginaire. Cette EDP présente différents comporte-ments en fonction du rapport entre la vitesse et le coefficient de diffusion. Lorsque la vitesse estcomparativement faible, comme dans les capillaires, le mouvement des molécules est principale-ment déterminé par le processus de diffusion et un signal similaire à l’IRM de diffusion classiquesera produit. Au contraire, lorsque la vitesse est comparativement élevée, par exemple dans les ar-tères ou les veines, les molécules sont principalement transposées par l’écoulement et, dans ce cas,la simulation numérique pourrait rencontrer des problèmes d’instabilité.
Le raffinement du maillage peut améliorer la stabilité, mais il ne garantit pas toujours, en par-ticulier lors de l’utilisation de la méthode standard des éléments finis de Galerkin. Cela dépend dela vitesse maximale et du maillage des éléments finis. Dans certains cas, un maillage extrêmementfin peut être nécessaire, ce qui peut être impossible dans la simulation numérique en raison decontraintes de ressources informatiques. Dans d’autres cas, le maillage est prédéfini et il n’est paspossible de le modifier. Certaines études suggèrent une stratégie de raffinement local pour amélio-rer la stabilité et maintenir une taille raisonnable. Un autre problème est qu’avec la méthode stan-dard des éléments finis de Galerkin, des oscillations artificielles peuvent être produites, conduisantà des résultats non-physiques.
L’objectif de ce chapitre est d’appliquer un schéma de simulation stabilisé pour l’IRM de diffu-sion en tenant compte du flux sanguin. De nombreuses approches de stabilisation ont été propo-sées pour résoudre la simulation de l’équation de diffusion-convection dépendante du temps dansla communauté de la dynamique des fluides numérique, comme la méthode Streamline UpwindPetrov-Galerkin (SUPG), la méthode de stabilisation symétrique et la méthode des moindres carrésde Galerkin.
Dans ce travail, nous présentons un nouveau schéma d’éléments finis pour les simulations d’IRMde diffusion qui combine la méthode Streamline Upwind Petrov-Galerkin et la méthode de discré-tisation temporelle thêta. La technique proposée aborde le problème de l’instabilité de la simula-tion du signal de l’IRM de perfusion à une vitesse élevée du flux sanguin, en particulier dans lesartérioles et les veinules. L’idée de la méthode SUPG est d’ajouter un terme de diffusion artificieluniquement dans la direction de l’écoulement, afin d’atténuer les oscillations artificielles survenantprès des zones présentant des gradients prononcés. L’amplitude de ce terme de régularisation estcontrôlée par les paramètres de stabilisation τk. Cette nouvelle schéma sert d’outil de simulationpuissant, ouvrant la voie à l’étude numérique des comportements des signaux et à la conceptionde nouveaux modèles d’estimation de la microstructure pour les futures études sur la perfusionsanguine.
Nous présentons tout d’abord la forme généralisée de l’EDP de Bloch-Torrey, qui intègre le termede convection et le nombre de Péclet, unemesure indiquant le potentiel d’instabilité. Nous donnonsensuite l’expression complète du schéma proposé. Nous comparons la méthode Galerkin standardet la méthode Streamline Upwind Petrov-Galerkin, démontrant ainsi son efficacité. Les résultats dessimulations numériques démontrent que la méthode Galerkin standard conduit à des oscillationsartificielles à des vitesses d’écoulement sanguin élevées, alors que le nouveau schéma peut four-nir une solution stable même sur un maillage d’éléments finis creux. Afin de guider le choix desparamètres de stabilisation et du diamètre des éléments, nous effectuons une analyse de l’effetdu choix des paramètres de stabilisation et des diamètres des éléments. D’après cette étude, deuxcombinaison des paramètres sont choisis pour un maillage creuse et fine.
Cette approche a été implémentée en tant que nouveaumodule de SpinDoctor et a été détailléedans un article préimprimé.

Chapitre 6 : Conclusions et perspectives Ce chapitre donne un résumé des résultats obtenus etdiscute des perspectives de recherche au future dans ce domaine.
Annexe A : Annexe du chapitre 3 Dans cette annexe, nous donnons d’abord la formulation alter-vative du modèle de CDAH utilisé dans le chapitre 3. Afin d’accélérer les simulations, nous implé-mentons les développements asymptotiques à l’aide de la méthode de FormalismeMatriciel Numé-rique. Nous présentons en détail les expressions des développements asymptotiques pour l’EDP deBloch-Torrey et le modèle de CDAH.
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Annexe B : Annexe du chapitre 4 Cette annexe donne les informations supplémentaires du Cha-pitre 4. Nous présentons d’abord l’implémentation numérique des dérivées d’ordre 1 et 2 du signalIRM de diffusion à l’aide de la méthode de Formalisme Matriciel Numérique. Ensuite, nous intro-duisons la méthode d’apprentissage supervisé basé sur la simulation numérique pour estimer lamicrostructure, proposé par Fang[3], afin de comparer avec notre nouvelle méthode d’estimation.
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1.1 Physics of diffusion MRI

1.1.1 Magnetic Resonance Imaging
Magnetic Resonance Imaging (MRI) has been a widely used non-invasive medical imaging tech-nique since the first full-body MRI scanner in 1971[6]. Compared to other radiology modalities,such as computed tomography (CT) or Positron emission tomography (PET), MRI has several ben-efits, including not involving exposure to ionizing radiation and providing better soft-tissue imagecontrast[7].To understand the principles of MRI, in this subsection, we present the underlying physics, nu-clear magnetic resonance (NMR), and the prototypical MRI experiment.For a more comprehensive understanding of the historical evolution, physical phenomena, andexperimental configurations of MRI, we refer readers to the works[8–11] and also an educationalwebsite, mriquestions.com.

1.1.1.1 Nuclear magnetic resonance

About 63% of an adult’s body weight is made up of water, and for the human brain, this valuereaches approximately 73%[12, 13]. Each water molecule generally contains two hydrogen atoms,whose nucleus is composed of a single proton. According to quantum physics, protons have aproperty called spin (around an axis), and hence possess angular momentum, which producesmag-netism. In a regular environment, the directions of spins are randomly oriented, as shown in fig. 1.1.Hence, the net magnetization (the sum of all quantum spins) is zero.
13

mriquestions.com
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In the presence of a strong static external magnetic field B0, the protons will (macroscopically)precess along the same direction as B0 at equilibrium, which is called Larmor precession. The an-gular frequency of Larmor precession is given by[14]
ω0 = γB0, (1.1)

where γ is called the gyro-magnetic ratio. For the proton, γ = 2.67513× 108 rad/(s · T)[15].For ease of illustration, we set the direction ofB0 = B0ez along the z-axis (longitudinal direction),and the transverse plane on x-y plane. Figure 1.1 shows the Larmor precession of spins. As we cansee, after adding the external magnetic field, a net magnetization is generated.

Figure 1.1: Left: In the absence of external magnetic field. The directions of protons precessionare randomly distributed and the net magnetization is zero. Middle: In the presence of an externalmagnetic fieldB0. The directions of protons precession are aligned with the external magnetic field,or in the opposite direction. Right: The equivalent scheme. The net magnetization precesses in thedirection of external magnetic field.
Macroscopically, the net spin magnetization vector M precesses around the external magneticfieldB satisfies the differential equation below[16]:

dM

dt
= γM×B. (1.2)

In the static magnetic field case (B = B0), eq. (1.2) reduces to,
dM

dt
= ω0

 My

−Mx

0

 , (1.3)

where ω0 is Larmor frequency, Mx and My are the x and y component of the magnetization M.Here, we align the direction of B0 with the longitudinal direction.The net magnetization always has a constant component aligned with the direction of the ex-ternal magnetic field, and a component rotating in the transverse plane. The net magnetizationcontains statistical information, such as protons density, which can be used to infer properties ofbiological tissues. However, due to the very low amplitudeM0 compared to external magnetic field
B0, people usually do not directly measure this net magnetization.To overcome this difficulty, the idea is to perturb the spin orientation from equilibrium to thetransverse plane (or a plane quasi-perpendicular to B0), by applying an additional periodically os-cillating magnetic field BRF (t) for a short time, called a Radio Frequency (RF) pulse[15]:

BRF (t) = BRF

 cos(ω0t)
− sin(ω0t)

0

 . (1.4)

The RF pulse has a constant amplitude and a direction that periodically rotates in the transverseplane. In order to better show the effect of the RF pulse, here we change the coordinate systemfrom the global coordinate system to a rotating coordinate system, that rotates counterclockwise in
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the transverse plane, at an angular frequency of ω0:ex′

ey′

ez′

 =

cos(ω0t) − sin(ω0t) 0
sin(ω0t) cos(ω0t) 0

0 0 1

exey
ez

 . (1.5)
In this rotating coordinate system, the direction of the RF pulse is fixed in x′-axis.By replacing B by B0 +BRF (t) in eq. (1.2) and changing to the rotating coordinate system, themagnetization satisfies

dM

dt
= γ

0 0 0
0 0 BRF

0 −BRF 0

M. (1.6)
Combining with the initial conditionM = M0ez′ ,M becomes

M = M0(sin(γBRF t)ey′ + cos(γBRF t)ez′). (1.7)
After applying an RF pulse of a duration t, the protons will gain energy and change the precessiondirection, as shown in fig. 1.2, forming a flip angle αflip with B0:

αflip = γBRF t. (1.8)
By controlling the amplitude of the RF pulse BRF or the duration t, one can achieve a 90 degreesflip angle[17, 18].

Figure 1.2: The precessionwhen applying RF pulse. The netmagnetizationwill flip into the transverseplane. B0 is the static externalmagnetic field,BRF is the RF pulse, it rotates in the clockwise directionat a rate of ω0. The blue arrow represents the net magnetization, which forms an angle αflip with
B0.

Once the RF pulse is switched off, the protons tend to come back to the previous equilibriumstate and align with B0 again. Macroscopically, one can observe two phenomena. In the longitu-dinal direction (the direction of B0), the net magnetization grows exponentially from 0 to its initialvalue M0, called T1 relaxation or longitudinal relaxation. In the meantime, the net magnetizationin the transverse plane will decay exponentially fromM0 to zero, called T2 relaxation or transverserelaxation[17].The relaxation process can be described by the Bloch equation below[19]:
dM

dt
= γM×B0 −

 1
T2
Mx

1
T2
My

1
T1
(Mz −M0)

 =

 ω0My − 1
T2
Mx

−ω0Mx − 1
T2
My

− 1
T1
(Mz −M0)

 , (1.9)
whereM0 is the net magnetization in equilibrium,Mx,My andMz are the x, y and z components of
M, respectively.Let the transverse magnetization be Mxy = Mx + ıMy , where ı is the imaginary unit. Equa-tion (1.9) can be rewritten as

dMxy

dt
= −(ıω0 +

1

T2
)Mxy ⇒Mxy = M0e

−ıω0te−
1
T2

t, (1.10)
dMz

dt
= − 1

T1
(Mz −M0)⇒Mz = M0(1− e−

1
T1

t). (1.11)
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It is clear that at time T1, the longitudinal componentMz regains 63% (1−1/e) of the initial valueM0,and at time T2, the transverse componentMxy falls to 37% (1/e) of its maximum valueM0. T1 and
T2 values vary among different biological tissues. In the human brain, T1 is typically on the order of1 second and T2 is about 100 milliseconds[20].

Figure 1.3: Left: Relaxation process; Right: The evolution of the net magnetization during relaxation.The red blue and yellow lines represent the x′, y′ and z′ components of the magnetization, respec-tively.
The received transverse signal after one single RF pulse is called the free induction decay (FID), asshown in fig. 1.4. It is an oscillating signal that decays at an exponential rate. In actual experiments,due to the inhomogeneity of B0 caused by instrumental imperfections, protons at different spatialpositions precess at different Larmor frequencies, which leads to a faster decay. To eliminate thisinhomogeneity effect, in 1950, Hahn proposed the spin echo sequence in his paper[21]. The spinecho sequence is composed of one 180-degree RF pulse after the 90 RF pulse at half of the echotime, as shown in fig. 1.4. This sequence is able to refocus the dephasing spins.

Figure 1.4: Free induction decay (FID) signal and Spin echo signal.

1.1.1.2 Magnetic gradient field

Typical MRI resolution ranges in size from 128×128×128mm3 to 512×512×512mm3, containingover 1,000,000 voxels (the counterpart of pixels in a three-dimensional image)[22]. To create suchimages, one need to make the received transverse signal be spatial-sensitive. To achieve that, theprinciple is adding another external magnetic field (G · x)ez , where G = [Gx, Gy, Gz]
T , called amagnetic gradient field. The direction of this magnetic field is the same as the static magnetic field

B0 and its amplitude varies linearly with the spatial variable.Typically, the MRI spatial encoding is realized in two steps: slice selection and image encoding(including phase and frequency encodings)[20]. In the first step, only the protons located in onespecific slice in the z-axis are flipped into the transverse plane. Then, the second step will encodethe MRI signal in the Fourier domain. The spatial information on the selected plane can be retrievedafter, by applying an inverse Fourier transformation.Slice selection occurs by simultaneously switching on a longitudinal gradient field (Gz) with the
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90-degree RF pulse:

B(x) = (B0 +Gzz)ez, (1.12)
where z is the longitudinal position. In this case, the Larmor frequency varies along z-axis:

ω(z) = ω0 + γGzz. (1.13)
In order to excite solely the protons in z0 plane and to suppress interference from neighboringfrequencies, an RF pulse with frequencies centered at ω(z0) = ω0 + γGzz0 is applied[23]:

BRF = BRF (∆Ft)

 cos(ω(z0)t)
− sin(ω(z0)t)

0

 , (1.14)

where ∆F is the bandwidth, determined the selected slice thickness. BRF (∆Ft) serves as a lowpass filter to avoid interacting with particles precessing at other frequencies. One kind of RF pulseused in practice is the truncated sinc function. With this new RF pulse, in the rotating coordinatesystem, eq. (1.2) becomes
∂M(x, t)

∂t
= γ

 0 (z − z0)Gz 0
−(z − z0)Gz 0 BRF (∆Ft)

0 −BRF (∆Ft) 0

M(x, t). (1.15)

Figure 1.5 shows the time profile and frequency profile of the RF pulse, and the relation of thebandwidth and the slice thickness. It is clear that the smaller the bandwidth is, the thinner theselected slice is. Besides, a phase shift depending on the longitudinal position will occur after the RFpulse. To rephase the spins, an extra longitudinal gradient field will be employed after the RF pulse.This gradient field is in the opposite direction and applied for half of the duration of the RF pulse.

Figure 1.5: Left: RF pulse in the temporal domain. The envelope function is the truncated sinc func-tion; Middle: RF pulse in the frequency domain. It is like a window function, to suppress otherfrequencies. The center frequency is 10Hz and the bandwidth is 5Hz; Right: the relation betweenthe bandwidth∆F and the slice thickness.
After slice selection, only the spins on the selected slice are flipped into the transverse plane.Then, image encoding occurs after the 180-degree RF pulse by adding a newmagnetic gradient field

in the transverse plane, denoted byG = [Gx, Gy, 0]
T , tomake themagnetization be spatial sensitivein the plane.In the presence of the image encoding gradient, the external magnetic field becomes B(x) =

(B0 +Gxx+Gyy)ez and the Bloch equation eq. (1.9) becomes
∂M(x, t)

∂t
=

 (ω0 + γG · x)My − 1
T2
Mx

−(ω0 + γG · x)Mx − 1
T2
My

− 1
T1
(Mz −M0)

 . (1.16)

The transverse gradient field has no effect on T1 relaxation. For the transverse magnetization
Mxy(x, t), eq. (1.10) becomes
∂Mxy(x, t)

∂t
= −

(
ı(ω0 + γG · x) + 1

T2

)
Mxy(x)⇒Mxy(x, t) = M0(x)e

− 1
T2

te−ıω0te−ıγG·xt, (1.17)
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whereM0(x) is the initial transverse magnetization density depending on the position.The received MRI signal is the spatial integral of the magnetization at the received time tr:
S(tr) =

∫
Mxy(x, tr)dx =

∫
M0(x)e

− 1
T2

tre−ıω0tre−ıγG·xtrdx. (1.18)
Since the Larmor frequency is known, one can factor out the term caused by the staticmagnetic fieldby multiplying exp(ıω0tr) during the post-processing. From eq. (1.18), it is clear that the receivedsignal is the 2D Fourier transform of the initial magnetization density attenuated by T2 relaxation,at the spatial frequencies vector γtr

2π [Gx, Gy, 0]
T . This spatial spectrum is called k-space[24]. In thecase of 1

T2
tr ≪ 1, the T2 effect is negligible. The initial magnetization density can be retrieved byapplying the inverse Fourier transform to the densely sampled received signal in k-space., as shownin eq. (1.18).

(a) Real part of received sig-nal
FFT (b) Axial slice of brain imageafter FFT

Figure 1.6: Imaging encoding. Left: Real part of the received MRI signal plotted in k-space; Right:Brain MRI image after Fast Fourier transformation (FFT). The brain MRI picture is distributed undercopyright license CC BY-SA 4.0 Deed, from Wikipedia (The link).
There are many different imaging encoding sampling schemes in use, we refer to the works[23]for a further description. Figure 1.7 illustrates the full MRI image acquisition scheme, integrating allthe components mentioned above.

Figure 1.7: MRI experimental prototype.

1.1.2 Diffusion
Self-diffusion is the physical process by which particles of a single type move from one place toanother within a homogeneous or heterogeneous phase, driven by Brownian motion[25]. At themicroscopic scale, particles are in random motion all the time due to thermal energy. In liquids orgases, particles have more freedom to move and self-diffusion occurs at a faster rate. Under the

https://fr.wikipedia.org/wiki/Fichier:Normal_axial_T2-weighted_MR_image_of_the_brain.jpg
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same conditions, the extent of particle self-diffusion reflects the nature of a medium, helping studythe properties of material.At the macroscopic scale, the diffusion process can be described from a probabilistic perspec-tive, firstly proposed by Einstein in 1905[26]. The displacement probability of a particle initially posi-tioned at x0, and located at x at the moment t is denoted by P (x, t;x0), which satisfies the diffusionequation

∂

∂t
P (x, t;x0) = D0∇2P (x, t;x0),

P (x, 0;x0) = δ(x− x0),
(1.19)

where D0 is the diffusion coefficient, which is isotopic and spatially constant, and δ(·) denotes theDirac function.

Figure 1.8: Isotropic diffusion process in an unbounded medium. Particles can move freely in themedium.
In the case of isotropic diffusion in a homogeneous free medium (free diffusion), the propagator(or Green’s function) of eq. (1.19) is a Gaussian function

P (x, t;x0) =
1√

(4πD0t)
dim

exp

(
−∥x− x0∥2

4D0t

)
(1.20)

where dim is the spatial dimension. The mean squared displacement of the particles is given by
⟨∥x− x0∥2⟩ = 2dimD0t.In a more complex medium, for instance, a biological tissue, the diffusion process is usuallyhindered or restricted by geometrical obstacles or boundaries, such as cell membranes and themean squared displacement will be smaller than in the case of free diffusion. This deviation canserve to infer tissue micro-structural information[27, 28].In that case, eq. (1.19) needs to be completed with boundary condition accounting for the cellmembranes. There are only a few simple shapes, such as spheres, cylinders, etc. for which eq. (1.19)has a closed form solution under the condition that the outer boundary is impermeable and reflec-tive.Two terms frequently used to describe diffusion are ‘isotropic’ and ‘anisotropic’. Isotropic diffu-sion refers to diffusion characteristics that are the same in all directions and mainly occurs in freespace or the case where the boundary is far away from the particles. In contrast, anisotropic diffu-sion indicates a directional dependency, where the rate of diffusion will be faster in some specificdirections, for example, the case of water diffusion restricted inside axons.
1.1.2.1 Diffusion MRI sequences

Diffusion MRI can be used to indirectly infer information about geometrical microstructure. To
make MRI sensitive to diffusion, another magnetic gradient, G(t) = [Gx(t),Gy(t),Gz(t)]

T , needsto be added, called the diffusion encoding gradient, between the slice selection and the image en-coding steps, as shown in fig. 1.9. In the presence of the inhomogeneous encoding gradient field,the external magnetic field becomes B(x) = (B0 + Gxx + Gyy + Gzz)ez , and protons located indifferent positions would experience different dephasing rates. Through Brownianmotion, the pro-tons will travel around in the space, accumulating different phases values when located at differentpositions. The acquired phases will record the microstructure information.
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Figure 1.9: In a diffusion MRI scheme, a diffusion encoding gradient is added between the sliceselection and the image encoding gradients.

Taking the diffusion effects into account, a modified Bloch equation, called the Bloch-Torreyequation, was proposed by Torrey in 1956[29]:
∂

∂t
Mx = ∇ · D0∇Mx + γ(B0 +G(t) · x)My −

1

T2
Mx, (1.21)

∂

∂t
My = ∇ · D0∇My − γ(B0 +G(t) · x)Mx −

1

T2
My, (1.22)

∂

∂t
Mz = ∇ · D0∇Mz +

1

T1
(Mz −M0), (1.23)

with initial magnetization in the transverse plane, i.e. Mz = 0. Similarly, let the transverse magneti-zation beMxy = Mx + ıMy , Bloch-Torrey equation of the transverse magnetization is
∂

∂t
Mxy = ∇ · D0∇Mxy + ı(ω0 + γG(t) · x)Mxy −

1

T2
Mxy. (1.24)

Since ω0 is independent of spatial position, one can factor out this term and obtain
∂

∂t
Mxy = ∇ · D0∇Mxy + ıγG(t) · xMxy −

1

T2
Mxy. (1.25)

By normalizing the received MRI signal against the MRI signal without any supplementary diffusionencoding gradient, one can retrieve the signal attenuation attributed solely to diffusion.

1.2 Brain structure
As one of themost important and complex organs, the human brain governs a range of essentialactivities, from fundamental processes, such as respiration, vision, and temperature regulation, toadvanced functions, like cognition, memory, and emotion. Understanding the structure and func-tion of the brain has always fascinated the scientific community.On the cellular level, aside from blood vessels that supply energy and oxygen, the primary con-stituents of the brain are cells, including neurons and glia. An average adult brain weighs around 1.4kilograms and hosts nearly 86 billion neurons[30]. These neurons play an important role in informa-tion transmission and processing through electrical and chemical signals. Each neuron comprisesa cell body, called the soma, dendrites that receive signals, and an extended axon that sends outsignals, as depicted in fig. 1.10. Axons exhibit a wide range of lengths, ranging from less than 1mmto up to 1m[31]. Myelinated axons typically have diameters between 1µmand 20µm, while unmyeli-nated axons often measure less than 1µm in diameter. The diameter of an axon directly influencesits conduction velocity, which in turn affects the timing and efficiency of neuronal processing and in-teractions[32]. Usually, one neuron connects to over 1,000 other neurons via its neurites, leading to
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over 100 trillion synapses, where signal exchanges occur. The diameter of the soma varies between
5µm and 100µm, depending on the specific brain regions.Oneof the key features of neuronmembranes is their permeability. Membranepermeability per-mits substances, such as liquids or gases, to penetrate or pass through the membranes of cells[33].This mechanism is essential for living cells as it enables the exchanges of nutrients, ions, chemi-cal information, and oxygen with the environment, and helps to maintain dynamic concentrationequilibrium[34–36]. Permeability values differ among different biological tissues. For axonal mem-branes and myelin sheaths, the typical permeability is 10−5m/s[37, 38].Alongside the neurons, glia play an important role, helping the intercommunication of the neu-rons. Glia are of various types including astrocytes, oligodendrocytes, microglia, and ependymalcells, as shown in fig. 1.10. Different shapes serve specific purposes, from providing structural sup-port and nourishment to insulating nerve pathways and engaging in immune responses within thecentral nervous system[39]. Glia are usually smaller than neurons, depending on the brain regionsand their functions.

Figure 1.10: Left: A typical neuron, comprising a soma, one long axon, and dendrites. Right: Differenttypes of glia[40]. Both two pictures are from Wikipedia (Link1 and Link2), and distributed under theCC BY 3.0 Deed copyright license.
From an anatomical perspective, the central nervous system (including the brain and the spinalcord) can be divided into two different regions by their colors, the brain gray matter and the brainwhite matter. The brain ray matter is primarily found in the cerebral cortex (the outermost layercovering the brain) and the nuclei (clusters deep within the cerebral hemispheres and brainstem),whereas the brain white matter is mainly located in the center of the hemispheres, as shown infig. 1.11. The brain gray matter primarily comprises neuron cell bodies, dendrites, unmyelinatedaxon terminals, and associated structures, such as glia and capillaries. Information processing oc-curs in the brain gray matter and it is the most active region in the brain.On the other hand, the brainwhitematter consists predominantly ofwhitemyelin sheaths axons,which gives its name. The myelin sheaths, produced by oligodendrocytes, act as an insulator thataccelerates the transmission of electrical signals. The main function of the brain white matter is tolink different the brain gray matter areas and to transmit signals among them.

Figure 1.11: The brain white matter and the brain gray matter. The picture is created by JonesChristiana and licensed under CC BY-SA 4.0 (The link).
From a functional division perspective, the brain can be divided into three parts, the cerebrum,

https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Glia
https://commons.wikimedia.org/w/index.php?curid=119265693
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the brainstem, and the cerebellum[41], as shown in fig. 1.12. Each part has distinct functions androles.The cerebrum consists of the brain graymatter located in the cerebral cortex and the brain whitematter in its center. It can be divided into two approximately symmetric left and right cerebral hemi-spheres. As the largest part of the brain, it controls most of our sensory and cognitive processes,including vision, hearing, emotions, and learning ability. The brainstem lies beneath the cerebrumand connects it with the spinal cord. The brainstem is responsible formany involuntary actions, suchas breathing and heart rate. The cerebellum is a smaller region located below the cerebrum andbehind the brainstem. Themain function of the cerebellum ismaintaining balance and coordinationof movements.

Cerebrum
(Forebrain)

Cerebellum 
(Hindbrain)Brainstem

Figure 1.12: Brain functional division. The picture is created by Cancer Research UK and licensedunder CC BY-SA 4.0 (The link).
Another component of the brain is the cerebrospinal fluid (CSF), which is a transparent, colorlessbody fluid that surrounds the brain and spinal cord[42]. This fluid serves to protect the brain fromcollisions and shock and helps in clearing brain waste products. The CSF occupies a small volumein the brain and its total volume ranges from 100 to 150 ml.Insights into themicrostructural properties of the brain can enhance our understanding of brainprocesses and help disease diagnosis. Analyzing fiber connectivity provides insights into the col-laboration among various brain regions and enables advanced cognitive function studies[43, 44].Furthermore, certain diseases could be tracked at themicrostructural level before theymanifest de-tectable anatomical changes. For example, abnormal changes in permeability could lead to pathol-ogy and diseases, such as Alzheimer’s disease, Parkinson’s Disease, or Multiple Sclerosis[45–48],and a comparatively low volume fraction of neurites is observed in HIV-infected patients within thebrain white matter of the frontal lobes[49].

1.3 Mathematical model of diffusion MRI
In the previous section, wemade a brief introduction to the governing equation of diffusion MRI,the Bloch-Torrey partial differential equation (PDE), and described how this equation is derived fromphysical phenomena. In this section, we present its mathematical background. Also, we will discussthe state-of-the-art numerical simulation approaches and somewidely-used approximationmodels.

1.3.1 Geometrical description of brain tissue

Consider a connected domain Ω =
⋃Ncmpt

i=1 Ωi ∈ Rd, made up of Ncmpt compartments
{Ωi}1≤i≤Ncmpt

, without any overlap. The domain Ω represents a sub-domain within a voxel, be-
ing as large as computational capacity allows, and containing as many compartments as possi-ble. The interface between two compartments Ωi and Ωj is denoted by Γij = Ωi ∩ Ωj for i ̸= j,
(i, j) ∈ {1, . . . , Ncmpt}2. If two compartments do not touch each other, Γij = ∅. Let ∂Ω be the outerboundary of the domainΩ, and the restriction of the outer boundary in compartmentΩi is denotedbyΣi = ∂Ω∩Ωi, i ∈ {1, . . . , Ncmpt}. If the compartment does not touch the outer boundary,Σi = ∅.

https://commons.wikimedia.org/w/index.php?curid=34333613
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Different brain tissue microstructures can be characterized using the aforementioned geomet-rical framework.In the brain white matter, each axon is enclosed in the myelin sheath. All these axons are pack-aged within the extracellular space (ECS). Water exchange between the axons, myelin sheath, andthe ECS is quantified by two different permeability coefficients. The geometry has an outer bound-ary that is impermeable to water. Thus, the number of compartments is twice of the number ofaxons plus one (the ECS compartment).For the brain gray matter, the number of compartments is the number of neurons plus one.

Figure 1.13: Geometrical description of tissue microstructure in 2D.

1.3.2 Bloch-Torrey PDE
In diffusionMRI, a time-varying diffusion-encodingmagnetic field gradient is applied to the tissueto probewater diffusion. Denoting the effective time profile of the diffusion-encodingmagnetic fieldgradient by f(t), let the vector g contain the amplitude and direction information of the diffusion-encoding magnetic field gradient, the restriction of the complex-valued transverse water protonmagnetization M(x, t) in the i-th compartment Ωi by M i(x, t), the diffusion MRI process can bedescribed by the Bloch-Torrey equation[29]:

∂

∂t
M i(x, t)=

(
∇ · Di∇− ıγf(t)g · x− 1

T2

)
M i(x, t), x ∈ Ωi, (1.26)

where
• Di is the intrinsic diffusion coefficient in the compartment Ωi. In this thesis, we assume that
Di is a constant scalar inside Ωi;

• ı is the imaginary unit;
• T2 is the transverse relaxation coefficient;
• γ is the gyromagnetic ratio. For diffusion MRI of the brain, the gyromagnetic ratio of the waterproton is γ = 2.67513× 108 rad/(s · T).

ThemagnetizationM(x, t) is a function of position x and time t, and depends on the diffusion gradi-ent vector g and the time profile f(t). For simplicity, we consider the case that the gradient direction
ug is unchanged, i.e. g = ∥g∥ug, which is common in many diffusion MRI practical applications.In this thesis, we consider a simplified case that the T2 is constant both spatially and temporally,despite evidence suggesting variability in the myelin sheath in white matter, but all the presentedresults can be extended to the case with varying T2. Under this assumption, the T2 relaxation affectsall the protons uniformly and its effect on magnetization can be factored out by multiplying a factorof et/T2 . Consequently, we have

∂

∂t
M i(x, t)=

(
∇ · Di∇− ıγf(t)g · x

)
M i(x, t), x ∈ Ωi. (1.27)
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The Bloch-Torrey PDE needs to be supplemented by interface conditions and boundary condi-tion. For the interface between i-th and j-th compartments Γij , the two interface conditions are:
Di∇M i(x, t) · ni(x) = −Dj∇M j(x, t) · nj(x), x ∈ Γij , (1.28)
Di∇M i(x, t) · ni(x)= κij(M j(x, t)−M i(x, t)), x ∈ Γij , (1.29)

where
• ni(x) is the unit outward pointing normal vector from i-th compartment;
• κij is the permeability coefficient of the interface Γij .

These interface conditions suggest the discontinuity of the magnetization at the interfaces. Theinterface permeability is non negative, i.e. κij = κji ≥ 0. The first boundary condition ensuresthe flux continuity across the interface Γij . The second boundary condition characterizes the fluxas a quantity proportional to the magnetization difference across the interface, incorporating thepermeability coefficient. Whenκij = 0m/s, eq. (1.29) reduces to homogeneousNeumannboundarycondition and the interface is impermeable. When κij → +∞, it implies that M j(x, t) = M i(x, t),then water can diffuse freely across the interface.Suppose that the outer boundary Σi is impermeable, thus the homogeneous Neumann bound-ary condition:

Di∇M i(x, t) · ni(x)= 0, x ∈ Σi. (1.30)
When the geometry of interest has a periodic structure, another often employed boundary con-dition is the Bloch periodic boundary condition[50]. Detailed discussion on this topic is out of thescope of this thesis and we refer the readers to the related literature[51].The Bloch-Torrey PDE also needs initial conditions. WhenDi is the same cross all compartmentsthat are connected by non-zero permeabilities, the initial spin density should be uniform. Thus,unless specified, in this thesis, we assume the initial spin density is the same in all compartments:

M i(x, 0)= ρ, x ∈ Ωi, (1.31)
where ρ is the initial spin density in Ω.The diffusion MRI signal in the domain Ω is the space integral of magnetization, measured atecho time TE :

S(g, f) :=

∫
x∈Ω

M(x, TE)dx. (1.32)
It is evident that due to the spatial integral, the diffusion MRI signal would lose some informationon the tissue geometrical structures, which poses challenges to microstructure estimation.The choice of time profiles varies based on the purposes of the experiments. Some commonlyused time profiles (diffusion-encoding sequences) include:

• The pulsed gradient sequence (PGSE), proposed by Stejskal and Tanner[52], with two idealrectangular gradient pulses of duration δ and opposite in amplitude, separated by a time in-terval∆− δ:

f(t) =


1, 0 ≤ t ≤ δ,

−1, ∆ < t ≤ ∆+ δ,

0, otherwise.
(1.33)

• The oscillating gradient spin echo sequence (OGSE), proposed by Callaghan[53, 54], replacingthe rectangular pulses in PGSE by either sine or cosine functions with a period τ , during thepulses δ:
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f(t) =


sin( 2πtτ ), 0 ≤ t ≤ δ,

− sin( 2π(t−∆)
τ ), ∆ < t ≤ ∆+ δ,

0, otherwise,
(1.34)

or
f(t) =


cos( 2πtτ ), 0 ≤ t ≤ δ,

− cos( 2π(t−∆)
τ ), ∆ < t ≤ ∆+ δ,

0, otherwise.
(1.35)

• The double PGSE, proposed by[55], combining two PGSE, separated by a time interval tm:

f(t) =



1, 0 ≤ t ≤ δ1

−1, ∆1 ≤ t ≤ ∆1 + δ1

−1, ∆1 + τm ≤ t ≤ ∆1 + δ2 + τm

1, ∆1 +∆2 + τm ≤ t ≤ ∆1 +∆2 + δ2 + τm

0, otherwise
(1.36)

Figure 1.14 illustrates the time profiles of these sequences. In order to ensure the phase returnsto the initial state after diffusion encoding gradient, i.e. the transverse magnetization at echo time
M(x, TE) is real, the time profile f(t) must satisfy a rephasing condition and an anti-symmetriccondition[56]: ∫ TE

0

f(t) = 0, (1.37)
f(t) = −f(TE − t). (1.38)

Each time profile has its specificity. The most commonly employed sequence type is the PGSEsequence, proposed by Stejskal and Tanner[52]. This sequence is used in diverse areas such astractography, pathology detection, and perfusion studies[43, 57, 58]. Double PGSE sequences areoften used to assess non-Gaussian diffusion behaviors. For instance, they are adept at separat-ing between intra-axonal and extra-axonal diffusion[59]. OGSE sequences are particularly suitedfor probing short diffusion time behaviors due to their oscillating gradients[60], enabling to assessinformation about the tissues with short spatial scales.

Figure 1.14: From left to right: PGSE, double PGSE, sineOGSE, and coseOGSE.

1.3.3 Diffusion MRI signal behavior
In the homogeneous free space case, assuming that the intrinsic diffusion coefficient is D0, theBloch-Torrey PDE has an analytical solution[61], and the diffusion MRI signal is represented as:

S = S0e
−D0b, (1.39)

whereS0 is the diffusionMRI signal at a diffusion encoding gradient strength of zero, and b is definedas
b(g, f) = γ2∥g∥2

∫ TE

0

du

(∫ u

0

f(s)ds

)2

. (1.40)
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This quantity is called the b-value, depending on the strength ∥g∥ and the time profile f(t), whichreflects the diffusion weighting. The higher the b-value, the stronger the diffusion effects on thesignal.For the commonly used diffusion-encoding sequences mentioned in the previous subsection,the expressions of the b-value are:
b(g, δ,∆) = γ2∥g∥2δ2 (∆− δ/3) for PGSE, (1.41)

b(g, δ,∆, τ) = γ2∥g∥2 δτ
2

4π2
for coseOGSE, (1.42)

b(g, δ,∆, τ) = γ2∥g∥2 3δτ
2

4π2
for sineOGSE, (1.43)

b(g, δ,∆) = γ2∥g∥2 (∆1 − δ1/3 + ∆2 − δ2/3) for double PGSE. (1.44)
In order to measure the hindered and restricted effects caused by the tissue microstructure, ina diffusion MRI experiment, the pulse sequence (time profile f(t)) is usually fixed, while g is variedin amplitude, and possibly also in direction[62]. When g varies only in amplitude (while staying inthe same direction), one can fit S against the b-value, to obtain a new quantity, called the apparentdiffusion coefficient (ADC)[63]:

ADC := − ∂

∂b log
S(b)
S(0)

∣∣∣∣b=0

. (1.45)
The ADC can be understood as an effective diffusion coefficient, i.e. the diffusion process on thedomain Ω is similar to the free diffusion case characterized by a diffusion coefficient equivalent tothe ADC.However, the signal behavior is more complex than this. Figure 1.15 displays the curve of thesignal attenuation (log(S(b)/S(0))) against the b-value. In both high and low b-value regimes, thecurve is deviated from e−ADCb. At low b-values, the signal decays faster than expected, due to watermolecules circulating or perfusing in capillary networks. This phenomenon was firstly found byDenis Le Bihan in the 1980s[57]. It can be used to probe perfusion in capillaries and leads to anew diffusion MRI technique, known as intravoxel incoherent motion (IVIM) imaging. On the otherside, at high b-values, the signal attenuation becomes slower than expected due to non-Gaussiandiffusion patterns[56].

Figure 1.15: Diffusion MRI signals (solid line) as a function of b-values. The dotted line is the ADCapproximation. At low b-values, the deviation (yellow area) is caused by the IVIM effect, and at highb-values, the deviation is caused by the non-Gaussian diffusion effect (purple area). This figure isreproduced of the original figure in https://www.mriquestions.com/ivim.html.
To illustrate the capability of diffusion MRI sequences in assessing microstructure, there arethree critical length scales:
• the size of the cellular geometry L;
• the mean squared diffusion displacement √2ADCdim t, where dim is the dimension, whichcharacterizes the average diffusion distance during diffusion time t;
• the gradient length, 1/(γ∥g∥t), which characterizes the phase shift degree during time t.

https://www.mriquestions.com/ivim.html
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To probe tissuemicrostructure by restricted diffusion, it is essential to guarantee that spins haveenough time to traverse the entire cellular geometries of interest, meaningL/2≪ √2ADCdim t andthe phase shift is significant as well.

1.3.3.1 Power-law scaling in the brain white matter

In a recent work of Veraart el al.[64, 65], it was shown that the direction-averaged signals oftubular structures such as neurites exhibit a certain high b-value behavior:
S ≡

∫
∥ug∥=1

Sdug ∼ c1
1√b + c0, (1.46)

where S is the direction-averaged signal. This linear relationship eq. (1.46) is often referred to as the
1/
√b power-law scaling of direction-averaged signals. Figure 1.16 depicts S for one infinitely longstraight cylinder with varying radii. The sticks represent cylinders with zero radius, where diffusiononly occurs in the axial direction. It is clear that from 1/

√b ≤ 0.03µm · µs−1/2(or mm · s−1/2), S islinear to 1/
√b.

Figure 1.16: Direction-averaged signal for a single infinitely long straight cylinder with varying radii.The simulations are conducted using SpinDoctor. The sequence is PGSE(δ = 8ms,∆ = 19ms). Left:
0µm ·µs−1/2 ≤ 1/

√b ≤ 0.04µm ·µs−1/2. Power-law scaling for tubular structures. Right: The zoom-in figure, 0µm · µs−1/2 ≤ 1/
√b ≤ 0.01µm · µs−1/2. We can observe the deviations due to non-zeroradius.

This direction-averaged signal behavior in the brain white matter at high b-values indicates thatthe intra-axonal signal decays at a rate slower than exponential with respect to b, providing thepossibility to make MRI specifically sensitive to the intra-axonal signal. Furthermore, it providestheoretical justification for representing neurites (axons, dendrites, cellular process) as a collectionof cylinders or sticks in microstructural imaging at high b-values.However, at ultra-high b-values, deviations from the 1/
√b power-law scaling are observed inthe brain white matter. This could be attributed to (1) perpendicular diffusion within axons and (2)water exchange between neurites and the extracellular space[66]. Similarly, a breakdown of the

1/
√b power-law scaling is observed in the brain gray matter, reported in the literature[5, 28].

1.3.4 Probabilistic perspective of diffusion MRI
Given that a diffusion process is involved, the Bloch-Torrey PDE can also be interpreted from aprobabilistic perspective, which provides the theoretical background for Monte-Carlo simulation indiffusion MRI.Derived from the Bloch equation, during the relaxation process, protons will acquire a phaseinfluenced by the strength of the external magnetic field. When a diffusion-encoding gradient f(t)g ·

x is applied, the phase acquired by the protons becomes dependent on their spatial positions. Dueto the Brownian motion, the protons will randomly move around thereby altering their positions.



28 CHAPTER 1. INTRODUCTION

As a result, the phase they acquire is affected by multiple strength values. Denoting the position ofa group of spins as a function of time x(t), with their initial position as x0, the acquired phase ϕ(t)can be expressed as:
ϕ(t) =

∫ t

0

γf(t′)g · x(t′)dt′. (1.47)
The phase is a random variable depending on the position x(t). At the echo time, the diffusionMRI signal is represented as the sum of all spins within the domainΩ, with their respective acquiredphases:

S(g, f) = S0

∫ +∞

−∞
PTE

(ϕ)eıϕdϕ = S0E{exp(ıϕ(TE))}, (1.48)
wherePTE

(·) is the distribution of phase at echo time,E{·} is the expectation andS0 is theMRI signalwithout applying the diffusion-encoding gradient. Thus, the diffusion MRI signals can be computedby random walkers’ movements inside the simulation domain.

1.3.5 Approximation models
Even for some simple geometries, such as spheres or cylinders, it is difficult to solve analyticallytheBloch Torrey PDE. To be able to link diffusionMRI and the tissuemicrostructure, the computationof the diffusion MRI signal is performed through either numerical simulations or approximationmodels.In this subsection, we introduce three approximation models: the narrow pulse approximation,the Gaussian approximation, and the Kärger model.

1.3.5.1 Narrow pulse approximation

The aim of the narrow pulse approximation (NPA) is to solve the Bloch Torrey PDE analyticallyduring the pulses. Considering a PGSE sequence whose pulse duration is negligible compared tothe duration of the interval between pulses, i.e. δ ≪ ∆, suppose that the water molecules do notmove much during the pulses. Under this assumption, the transverse magnetization is subjected tothe Bloch equation, and at time δ, it can be expressed as
M(x, δ) = ρe−ıγδg·x. (1.49)

During the interval between the pulses, the diffusion encoding gradient is turned off and theBloch Torrey PDE is reduced to pure diffusion equation. The restricted transverse magnetization on
Ωi satisfies:

∂

∂t
M i(x, t) = ∇Di∇M i(x, t), x ∈ Ωi. (1.50)

It is supplemented by the same interface conditions eqs. (1.28) to (1.29) and boundary conditioneq. (1.30), and uses eq. (1.49) as the initial condition.After∆, the second pulse is applied and dephase themagnetization by e−ıγδg·x again. Therefore,the magnetization at echo time is
M(x, TE) = M(x,∆)e−ıγδg·x, (1.51)

and the received MRI signal becomes
S =

∫
Ω

M(x,∆)e−ıγδg·xdx. (1.52)
From the probabilistic perspective, during the first pulse, the protons remain immobile and ac-quire a phase given by eıγδg·x0 , where x0 is the initial position. After that, they will diffuse in thedomain Ω and maintain this phase until the 180 degrees RF pulse is applied and flip the phase to

e−ıγδg·x0 :
S =

∫
Ω

∫
Ω

P (x,∆;x0)e
ıγδg·(x−x0)dxdx0, (1.53)
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where P (x0,x,∆) is the diffusive propagator at time∆. The signal can be considered as the spatialFourier transformation of the average diffusive propagator. one can retrieve the diffusive propaga-tor by dense sampling in the spatial frequency space, as in q-space imaging[67].Under the narrow pulse assumption, only a pure diffusion equation is needed to be solved. Forsome simple geometries, such as spheres or cylinders, closed forms of the diffusionMRI signal havebeen derived under this approximation. This approximation is a popular choice in the diffusion MRIcommunity[68, 69].A primary limitation of this assumption is that implementing a PGSE sequence with an extremelyshort pulse duration δ and high amplitude poses significant challenges experimentally. Besides, theassumption that molecular movement during the pulses is negligible might not be accurate.
1.3.5.2 Gaussian phase approximation

The Gaussian phase approximation (GPA) assumes that in the diffusion MRI experiment, thedistribution of acquired phases at echo time PTE
(ϕ) is a Gaussian distribution, with zero mean anda variance σ2[70]:

PTE
(ϕ) =

1

σ
√
2π

e−
1
2 (

ϕ
σ )

2

. (1.54)
Concretely, the variance is proportional to themean squared displacement. Under this assumption,the diffusion MRI signal can be expressed as:

S = S0E{eıϕ(TE)} = S0e
− 1

2σ
2

. (1.55)
Replacing it with eq. (1.45), we have ADC = 1

2σ
2/b, and the ADC is proportional to themean squareddisplacement.The first use of this assumption goes back to the 1960s when Robertson used it to recover thesignal for diffusion between two parallel planes[71]. Neumann extended this result to cylinders andspheres[72]. Later on, the GPA has been extensively used in the analysis of the diffusion MRI signalin a variety of structures.The Gaussian phase approximation typically holds true in either the short-time or long-time limitwhen b-values are modest, not to accentuate kurtosis effects. In the short time limit, only a smallamount of the water molecules in the vicinity of the interfaces or the outer boundaries experiencerestricted diffusion, and their contribution to the accumulated phase can be neglected, while themajority diffuse as in the free case. In the long time limit, all the particles have fully explored thedomain.

1.3.5.3 Kärger model

Kärger model[73] is used to characterize membrane permeability in porous media using narrowpulse approximation with PGSE(δ,∆), i.e. δ ≪ ∆. It divides the domain into two compartments:(1) the intracellular space, which contains all the biological cells within a voxel, and (2) the extracel-lular space. The Kärger model incorporates the permeability effect through two coupled ordinarydifferential equations:
d

dt
Si(t) = −γ2∥g∥2δ2ADCiSi(t)− ηiSi(t) + ηeSe(t), (1.56)

d

dt
Se(t) = −γ2∥g∥2δ2ADCeSe(t)− ηeSe(t) + ηiSi(t), (1.57)
Si(0) = fi, (1.58)
Se(0) = fe. (1.59)

where
• Si and Se are intra- and extracellular signals;
• ADCi andADCe are intra- and extracellular effective diffusion coefficient in the diffusion-encodinggradient direction;
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• ηi = κ|Γi|/|Ωi| and ηe = κ|Γi|/|Ωe|, with κ being the permeability, |Γi| being the surface ofbiological cells, |Ωi| and |Ωe| being the intra- and extracellular volumes;
• fi = |Ωi|/|Ω| and fe = |Ωe|/|Ω| are intra- and extracellular volume fractions, their sum equalsto 1.

The received diffusion MRI signal is the sum of the intra- and extracellular signals at TE , given by
S = Si(TE) + Se(TE) = f ′

ie
−bD′

i + (1− f ′
i)e

−bD′
e , (1.60)

where
D′

i/e =
1

2

ADCe + ADCi +
ηe + ηi

(γ∥g∥δ)2
±

√√√√(ADCe − ADCi +
ηe − ηi

(γ∥g∥δ)2

)2

+
4ηiηe

(γ∥g∥δ)4

 , (1.61)

f ′
i =

fiADCi + feADCe −D′
e

D′
i −D′

e

. (1.62)
The accuracy of the Kärger model is to the first order of δ/∆. In[62, 74], a modified Kärger modelis proposed, which eliminates the reliance on the narrow pulse approximation and extends to thefinite pulse case.

1.3.6 Numerical simulation methods
Except for some limited cases, there are no general closed form solutions of the Bloch-TorreyPDE. The predominant numerical methods to solve the BT equation include:
• Monte Carlo simulations[75–81]. As discussed in the previous subsection, the diffusion MRIcan be viewed from a probabilistic perspective. Then we can compute the signals by the ex-pectation of a functional of a stochastic process. The stochastic process can be approximatedby many random walkers inside the simulation domain;
• Finite differences, finite elements[82–87]. After discretizing the simulation domain by a regularor conforming mesh, the continuous Bloch-Torrey PDE is replaced by a set of linear equationsand we can numerically compute its solution on the mesh node at each time step;
• Matrix Formalism (MF) representation[70, 88–92]. The idea of the Matrix Formalism represen-tation is to decompose the magnetization into the eigenbasis of the Laplace operator. Theequation is then reduced to a system of ODEs of the time-dependent coefficients correspond-ing to the eigenfunctions.
Apart from them, other existing simulation methods include the Lattice Boltzmann method[93],layer potential theory (boundary element method)[94], etc. In the following subsections, we willintroduce in detail the finite elements method and Matrix Formalism, and its numerical implemen-tation, which we use in this thesis.

1.3.6.1 Finite element method

The finite element method[51, 87, 95, 96] is a powerful computational technique to numericallysolve partial differential equations. It is based on the variational formulation of the equations. Bymultiplying a test function w, integrating over the domain Ω, and applying the Green’s identity, theweak formulation of the Bloch-Torrey PDEwith homogeneous Neumann boundary condition is writ-ten as[51]
∂

∂t

∫
Ncmpt⋃

i=1
Ωi

Mwdx = −
∫

Ncmpt⋃
i=1

Ωi

Di∇M · ∇wdx− ıγf(t)

∫
Ncmpt⋃

i=1
Ωi

g · xMwdx

+

∫
Ncmpt⋃

i=1

Ncmpt⋃
j=1

Γij

Di∇M · nwdsx.
(1.63)
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By discretizing the simulation domainΩ by a set of regular simple geometric shapes {T h} (calledfinite elements), the continuous solution of the Bloch-Torrey equation can be transformed into adiscretized formMh, which is defined on the nodes of the discretized domain. For piece-wise linear(P1) finite elements, the number of finite elements is equal to the number of nodes. Then Mh canbe expanded into a finite dimensional space defined on {T h}. The standard Galerkin method usesthe same functional spaces for the trial and test function, denoted by (φi)i=1,...,Nnode

, where Nnodeis the number of nodes. The discretized solution is written as
Mh(x, t) =

Nnode∑
i=1

Ti(t)φi(x). (1.64)

Figure 1.17: P1 linear function φ defined on a discretized domain {T h} in two-dimensional space.
Replacing eq. (1.64) into eq. (1.63), one can obtain a system of the ordinary differential equationsin matrix form:

M
d

dt
T = −(K + ıγJ +Q)T, (1.65)

whereT = [T1, T2, . . . , TNnode
]
T is the vector of time-dependent coefficients,M andK are themassmatrix and stiffness matrix in finite element literature, defined as

Mpq =

∫
Ω

φp(x)φq(x)dx, (1.66)
and

Kpq =

{∫
Ω
Di∇φp(x)∇φq(x)dx, (p, q) ∈ I2i , i ∈ {1, . . . , Ncmpt},

0, otherwise, (1.67)
where I2i is the set of nodes index belonging to i-th compartment. J is the diffusion-encoding gra-dient matrix defined as

Jpq =

∫
Ω

g · xφp(x)φq(x)dx. (1.68)
Q is the flux matrix. In order to implement the flux matrix, double nodes are placed at all theinterfaces to enable the discontinuity of magnetization. When two finite elements, φp and φq , resideon the same side of an interface, their integral is positive; when on opposite sides, it is negative. Werefer readers to the papers[51, 95] for the description in detail. Q is defined as

Qpq =

Ncmpt∑
i=1

Ncmpt∑
j=1

Qij
pq, where

Qij
pq =


κij
∫
Γij

φp(x)φq(x)dΓ(x), (p, q) ∈ I2i , i ∈
{
1, . . . , Ncmpt

}
,

κij
∫
Γij

φp(x)φq(x)dΓ(x), (p, q) ∈ I2j , j ∈
{
1, . . . , Ncmpt

}
,

−κij
∫
Γij

φp(x)φq(x)dΓ(x), (p, q) ∈ Ii × Ij , (i, j) ∈
{
1, . . . , Ncmpt

}2
, i ̸= j,

0, Γij = ∅.

(1.69)

By applying a time discretization scheme, eq. (1.65) becomes a set of linear equations and onecan obtain its discretized solution at each time step.
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1.3.6.2 Matrix Formalism representation

The Matrix Formalism representation was derived twenty years ago[70, 88–90], and one recentnumerical implementation of this method for irregular three-dimensional domains is proposedby[91, 92]. The idea of the Matrix Formalism representation is that on a bounded domain sup-plemented with Dirichlet, Neumann or Robin boundary conditions, the Laplace operator is com-plete[97]. This implies that the Laplace eigenbasis can represent any static function or time-dependentfunction at one moment on Ω. By decomposing the solution of the Bloch-Torrey PDE into this basis,one can separate the variables dependent on time from those dependent on space and reduce theequation to a system of ordinary differential equations (ODEs).Let ϕk(x) and λk, k = 1, . . ., be the L2-normalized eigenfunctions and eigenvalues associated tothe Laplace operator on Ω satisfying interface conditions and outer boundary condition above:
−∇ · Di∇ϕi

k(x) = λkϕ
i
k(x), x ∈ Ωi, (1.70)

Di∇ϕi
k(x) · ni(x) = −Dj∇ϕj

k(x) · nj(x), x ∈ Γij , (1.71)
Di∇ϕi

k(x) · ni(x) = κij(ϕj
k(x)− ϕi

k(x)), x ∈ Γij , (1.72)
Di∇ϕi

k(x) · ni(x) = 0, x ∈ Σi, (1.73)
where ϕi

k(x) denotes the restriction of ϕk(x) to compartmentΩi for i ∈ {1, . . . , Ncmpt}. Given theseinterface conditions and the outer boundary condition, all eigenvalues are real and non-negative.One remark is that this set of L2-normalized eigenfunctions is orthogonal since the permeabilitycoefficient is the same on both sides of interfaces. Assume that the eigenvalues are ordered innon-decreasing order:
0 = λ1 ≤ λ2 ≤ λ3 ≤ . . . (1.74)

Suppose that Ω is connected. If all permeability coefficients are strictly positive, then only thefirst eigenvalue will be zero and the corresponding eigenfunction will be the constant function onΩ.If all permeability coefficients are zero, then the firstNcmpt eigenvalues will be zero and there will be
Ncmpt corresponding constant eigenfunctions supported on each compartment. We limit ourselvesto these two cases, and defineNgroup as the number of constant eigenfunctions in the basis. Clearly,
Ngroup = 1 in the former case, and Ngroup = Ncmpt in the latter case.When the eigenvalue is sufficiently large, over the length scale of diffusion, the oscillation of thecorresponding eigenfunction will cancel itself out. Thus, we can obtain a reliable approximation ofthe diffusion MRI signals by using the first Neig smallest eigenvalues.Let L be the diagonal matrix containing the first Neig Laplace eigenvalues:

L = diag (λ1, λ2, . . . , λNeig

)
∈ RNeig×Neig . (1.75)

Denote the vector of Laplace eigenfunctions corresponding to the first Neig eigenvalues by
Φ(x) =

(
ϕ1(x), ϕ2(x), . . . , ϕNeig

(x)
)T

. (1.76)
Because {ϕk(x)}k=1,2,3,... is a complete basis on Ω with the correct interfaces and boundariesconditions, the magnetizationM(x, t) can be decomposed in this basis as

M(x, t) ≈
Neig∑
k=1

Tk(t)ϕk(x) = Φ(x) ·T(t), (1.77)
with the time-dependent coefficient column vector

T(t) =
(
T1(t), T2(t), . . . , TNeig

(t)
)T

. (1.78)
Substituting eq. (1.77) into the Bloch-Torrey equation, multiplying both sides with ϕl(x) and inte-grating over Ω gives

∂

∂t
Tl(t) = −λlTl(t)− ıγ

Neig∑
k=1

Tk(t)

∫
Ω

g · xϕk(x)ϕl(x)dx, l = 1, 2, . . . , Neig, (1.79)
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because of the orthogonality of the eigenbasis.Define

W (g) := gxA
x + gyA

y + gzA
z, (1.80)

where g = (gx, gy, gz)
T is the diffusion-encoding gradient vector andAx,Ay andAz are three sym-metricNeig ×Neig matrices whose entries are the first order moments in the coordinate directionsof the product of pairs of eigenfunctions:

Ar
kl :=

∫
x∈Ω

rϕk(x)ϕl(x)dx, (k, l) ∈ {1, 2, . . . , Neig}2, r ∈ {x, y, z}. (1.81)
Then the Bloch-Torrey operator −∇ · Di∇+ ıγf(t)g · x in the Laplace eigenfunctions basis is givenby the complex-valued matrix

L+ ıγf(t)W (g), (1.82)
and eq. (1.79) can be written as a system of ordinary differential equations:

d

dt
T(t) = − (L+ ıγf(t)W (g))T(t). (1.83)

For the PGSE sequence, define the actions of two pulses and the between-pulse by
H(g, f) = e−δ(L−ıγW (g)) · e−(∆−δ)L · e−δ(L+ıγW (g)), (1.84)

and denote
T(0) = ρ

(∫
Ω

ϕ1(x)dx,

∫
Ω

ϕ2(x)dx, . . . ,

∫
Ω

ϕNeig
(x)dx

)T

∈ RNeig,1,

the vector of coefficients of the initial condition projected onto the eigenfunctions of the Laplaceoperator, where ρ is a constant scalar. Because constant function is an eigenfunction and all eigen-functions are L2-orthogonal, the integral of the eigenfunctions over Ω will be zero except for theconstant functions, ∫
Ω

ϕi(x)dx =

{ √
Ωi, if ϕi(x) is a constant function,
0, otherwise.

The magnetization measured at the echo time is
M(x, TE) = Φ(x)H(g, f)T(0). (1.85)

The signal is computed by integrating the magnetization over Ω:
S(g, f ;Neig) =

∫
Ω

Φ(x)H(g, f)T(0)dx. (1.86)
There are two benefits to using the Matrix Formalism signal representation[91]. First, once theLaplace eigendecomposition has been computed and saved, the diffusion MRI signal can be calcu-lated for many experimental configurations at negligible additional cost. This makes it feasible touse the Matrix Formalism representation as the inner loop of optimization or parameter estimationprocedures. Second, it makes explicit the link between the Laplace eigenvalues and eigenfunctionsof the medium and its diffusion MRI signals. This clear link may help in the formulation of reducedmodels of the diffusion MRI signals.

1.3.6.3 The Numerical Matrix Formalism method

In order to numerically implement the Matrix Formalismmethod[91, 92], one may discretize theLaplace operator with permeable interface conditions using finite elements, for example, the P1 fi-nite elements. Ω is discretized into a finite elementmesh anduseP1basis functions {φp(x)}p∈{1,...,Nnode},whereNnode is the number of nodes, to construct the mass, stiffness and flux matrices of finite ele-ment: M ,K,Q ∈ RNnode×Nnode . The definitions of these three matrices are given in section 1.3.6.1,eqs. (1.66), (1.67) and (1.69).
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The discretized eigenfunctions of the Laplace operator with permeable interface condition in the
P1 basis functions are expressed as

ϕk(x) =

Nnode∑
n=1

Pn,kφn(x), n ∈ {1, 2, . . . , Nnode}, k ∈ {1, . . . , Neig}, (1.87)
whereP ∈ RNnode×Neig , and the entryPn,k is the coefficient of eigenfunction ϕk in the basis function
φn.By multiplying the P1 basis function on both sides of eq. (1.70), integrating over the whole do-main Ω and applying the Green’s identity, one can obtain the weak formulation of static Laplace’sequation eqs. (1.70) to (1.73).The finite elements discretization described above changes the continuous Laplace operatoreigenvalue problem in eqs. (1.70) to (1.73) to a discrete, generalized matrix eigenvalues problem:Find the first Neig eigenvalues λ1, λ2, . . . , λNeig

and corresponding eigenfunctions P , such that
(K +Q)P = MPL, (1.88)

where L = diag (λ1, λ2, . . . , λNeig

)
∈ RNeig×Neig is a diagonal matrix whose diagonal terms areeigenvalues of Laplace operator with permeable interface conditions.The integrals of the finite element discretized eigenfunctions are given by∫
Ω

Φ(x)dx = P TM1Nnode,1, (1.89)
where 1Nnode,1 is column vector of all ones with size Nnode and

T(0) = ρ

∫
Ω

Φ(x)dx = ρP TM1Nnode,1 =
[√

Ω1, . . .
√
ΩNgroup

, 0, . . . , 0
]T
∈ RNeig,1, (1.90)

where Ngroup is the number of constant eigenfunctions.Similarly, with this discretization, the matricesAx,Ay andAz in eq. (1.81) can be rewritten as
Ar = P TJrP , r ∈ {x, y, z}, (1.91)

where the entries of Jr are
Jr
kl =

∫
Ω

rφkφldx, r ∈ {x, y, z}. (1.92)
Define

J(g) ≡ gxJ
x + gyJ

y + gzJ
z ∈ RNnode,Nnode , (1.93)

W (g) can be rewritten as
W (g) =

∑
r={x,y,z}

grA
r =

∑
r={x,y,z}

grP
TJrP = P TJ(g)P . (1.94)

Substituting L, P and J(g) intoH(g, f):
H(g, f) = e−δ(L−ıγW (g)) · e−(∆−δ)L · e−δ(L+ıγW (g)). (1.95)

The Numerical Matrix Formalism diffusion MRI signal at echo time is the following:
SNMF(g, f ;Neig) = ρ

(
1T
Nnode,1

MP
)
H(g, f)

(
P TM1Nnode,1

) (1.96)
= ρ T(0)

T
H(g, f)T(0).

When Neig = Nnode, the full set of discretized eigenfunctions will be used to compute the dif-fusion MRI signal. In practice, the eigenfunctions associated with large eigenvalues oscillate signifi-cantly and have little contribution to the physics of diffusion. Using the eigenfunctions whose spatialscales are on the order of the cell structure and the diffusion distance can yield a good approxima-tion, and result in a Neig ≪ Nnode.
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When computing the diffusion MRI signal from the Numerical Matrix Formalism method, Neigis not chosen arbitrarily. Rather, a length scale cut-off Ls will be introduced, that is appropriate forthe geometry and for the MRI experiment. For realistic MRI experimental parameters and braincell geometries, the smallest length scale that can influence the diffusion MRI signal is around 1

µm, comparable to the microstructure length/gradient length. Details about the Numerical MatrixFormalismmethod andhow to choose the length scale cut-off refer to theworks[91, 92]. To translatethe eigenvalues λ into length scales, one can use the expression
l(λ) =

{
∞, λ = 0,

π
√
/Dave/λ, λ > 0,

(1.97)
where /Dave/ is the volume averaged diffusion coefficient. Typically, l(λ) is related to the wave-length of the oscillations in the corresponding eigenfunction. The numberNeig associated with thislength scale choice is determined by the relation

∞ ≥ l(λ1) ≥ · · · ≥ l(λNeig
) ≥ Ls > l(λNeig+1) ≥ · · · > 0. (1.98)

Thus, Neig or Ls are used interchangeably to indicate the truncation of the eigenfunctions for Nu-merical Matrix Formalism.
Remark 1. It is to be noted that for the same geometry and the same Ls, when using the Numerical
Matrix Formalism method, the resulting Neig is smaller at higher permeability.

Remark 2. Even though eigendecomposition routines can accept an eigenvalue range (length scale cut-
off) as input, it is more computationally efficient to input the number of desired eigenvalues and then keep
those eigenvalues within the length scale cut-off. This is what the SpinDoctor do in practice to compute a
subset of eigenfunctions.

1.4 Diffusion MRI compartment signal models for microstruc-
tural imaging

Because the relationship between diffusion MRI signals and underlying tissue morphology, suchas neurites orientation, volume fractions, neurons size etc., is not yet fully understood, microstruc-tural imaging until now primarily relies on the concept of “compartmentalization”[3]. This idea sug-gests that the diffusion MRI signal from one voxel can be viewed as a sum of signal contributionsfrom different compartments. These compartments can be effectively modeled by parameterized,simplified shapes, which have straightforward signal expressions under some assumptions. The pa-rameters of these simplified shapes correspond tomorphological parameters. By fitting the signals,one can identify the optimal combinations of these parameters, corresponding to the estimates oftissue morphology.Here, we describe four state-of-the-art diffusion MRI compartment signal models used for thebrain white matter and the brain gray matter microstructural imaging: Neurite Orientation Disper-sion and Density Imaging (NODDI)[98], Axon diameter and density estimation (ActiveAx)[99], Somaand Neurite Density Imaging (SANDI)[28] and Neurite Exchange Imaging (NEXI)[100]. NODDI is de-signed for both the brain white and gray matter imaging. ActiveAx is designed for the brain whitematter imaging. SANDI and NEXI are designed for the brain gray matter imaging.

1.4.1 NODDI
The NODDI model[98] is an advanced diffusion imaging technique developed to estimate thevolume fraction of neurites and the dispersion of neurites orientations in the brain white matteron clinical MRI scanners. In the brain white matter, the primary component is axons, and somasare often neglected due to a relatively low volume fraction[66, 101], Based on this fact, the NODDImodel assumes that (1) the brain white matter can be represented by three types of microstructuralenvironment: intra-cellular space, extra-cellular space and cerebralspinal fluid and (2) there is nowater exchange between them and the water diffusion is within the environment.
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The normalized voxel signals by volume can be expressed as the sum of signals from each com-partment:
SNODDI = finSin + fexSex + fCSFSCSF, (1.99)

where fin, fex and fCSF are the volume fraction of each compartment and the sum equals to 1.The intra-cellular space is modeled by a collection of orientation-dispersed sticks , i.e., infinitylong cylinders of zero radius. The diffusion only occurs in the axial direction of the cylinders andsatisfies the free diffusion assumption. Sin is given by
Sin =

∫
∥n∥=1

p(n)e−bD0(ug·n)2dn, (1.100)
where n is the axial direction of the sticks, ug is the gradient direction, b is the b-values, D0 is theintrinsic diffusion coefficient and p(n) is the distribution of sticks orientation. In the original NODDIpaper, D0 is fixed to 1.7 × 10−3 s/mm2, estimated from corpus callosum, and p(n) is modeled witha Watson distribution[102]:

p(n) = M

(
1

2
,
3

2
, κ

)−1

eκ(µ·n)2 , (1.101)
where M is a confluent hypergeometric function, µ is a unit vector, representing the mean orien-tation, and κ is the concentration parameter measuring the extent of orientation dispersion about
µ. The extra-cellular space is modeled as an anisotropic Gaussian diffusion compartment and itssignals is expressed as:

Sex = exp

(
−b
∫
∥n∥=1

p(n)
(
D0(ug · n)2 +D⊥(1− (ug · n)2)

)
dn

)
, (1.102)

where D⊥ is the diffusion coefficient perpendicular to the axial direction. D⊥ is set with a simpletortuosity model[103]
D⊥ =

fex
fin + fexD0. (1.103)

The CSF is modeled as a free diffusion compartment[104]:
SCSF = e−bDCSF , (1.104)

where DCSF is the diffusion coefficient of CSF. In the original NODDI paper, this coefficient is set toa fixed value 3× 10−3 s/mm2, corresponding to estimated value of free water diffusion at the bodytemperature.The complete set of parameters includes 5 independent parameters: p = [fin, fCSF, κ,µ]T . Byfitting the directional diffusionMRI signals in various gradient directions withmultiple b-values (mul-tiple shells of high-angular-resolution diffusion imaging),
argmin

p
∥Smeasure − SNODDI(p)∥2,

NODDI can give estimated values of the volume fractions and the orientation dispersion distribution.In practice, a Rician loss is added to account for the noise. The orientation dispersion (OD) index isdefined as
OD =

2

π
arctan(1/κ). (1.105)

1.4.2 ActiveAx
The ActiveAx[99] is another the brain white matter diffusion MRI compartment signal model,which focuses on the orientationally invariant indices of axon diameter and volume fractions. Thismodel is based on the Gaussian phase approximation with PGSE sequence PGSE(δ,∆). For in vivoimaging, it divides the voxel into three compartments: intra-axonal space, extra-axonal space andCSF. The normalized voxel signals is expressed as:

SActiveAx = finSin + fexSex + fCSFSCSF, (1.106)
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where fin, fex and fCSF are the volume fraction of each compartment and the sum equals to 1.The intra-axonal space is modeled by a bundle of parallel infinity long straight cylinders withequal radius Rcyl, and whose axial direction is set to n. Sin is formulated under Gaussian phaseapproximation[72, 105]:

Sin = e−b(D0(ug·n)2+2ccyl(1−(ug·n)2)/((∆−δ/3)δ2)), (1.107)
where D0 is the intrinsic diffusion coefficient, ug is the gradient direction, and ccyl is a coefficientdepending on Rcyl, time profile and D0:

ccyl =
∞∑

m=1

2D0α
2
mδ − 2 + 2e−D0α

2
mδ + 2e−D0α

2
m∆ − e−D0α

2
m(∆−δ) − e−D0α

2
m(∆+δ)

D2
0α

6
m(R2cylα2

m − 1)
, (1.108)

where αm is them-th root of
J ′
1(αmRcyl) = 0, (1.109)

with J ′
1(·) is the derivative of the Bessel function fo the first kind, order one.Similar to NODDI, the extra-axonal space is modeled as an anisotropic Gaussian diffusion com-partment and CSF is modeled as an isotropic Gaussian diffusion compartment:

Sex = e−b(D0(ug·n)2+D⊥(1−(ug·n)2)), (1.110)
SCSF = e−bDCSF . (1.111)

The extra-axonal space is set to align with the intra-axonal space. D⊥ has the same expression aseq. (1.103) and DCSF is also fixed to 3× 10−3 s/mm2

In practice, n is usually set to align with the principal direction of the best fit diffusion tensor, tosimplify the fitting process. Therefore, the full set of independent parameters is p = [fin, fCSF, Rcyl]T .By fitting the directional signals, one can retrieve the indices of axon radius Rcyl and volume frac-tions.

1.4.3 SANDI
The SANDI model[28] is motivated by the deviation of the 1/

√b power-law scaling observed inthe brain gray matter. Morphologically, one key difference between the brain gray matter and thebrain white matter is that the volume fraction of the soma in the brain gray matter is substantial.Thus, SANDI suggests this deviation is because the diffusion within the soma cannot be categorizedas either anisotropic Gaussian diffusion or isotropic Gaussian diffusion. SANDI introduces a newcompartment andmodels the brain graymatter as three separate compartments: intra-soma space,intra-neurite space, and extra-cellular space. The SANDI model is based on the Gaussian phaseapproximation as well. Unlike previous twomodels, SANDI model deals with the direction-averagedsignal, i.e., S =
∫
∥ug∥=1

S(ug)dug. Its signal expression is
SSANDI = fsomaSsoma + fneuriteSneurite + fECSSECS, (1.112)

where fsoma + fneurite + fECS = 1.The intra-soma space is modeled as one sphere of radius Rsphere and Ssoma is computed underGaussian phase approximation with PGSE(δ,∆)[72, 106]:
Ssoma = e−2csphereb/((∆−δ/3)δ2D0), (1.113)

where D0 is the intrinsic diffusion coefficient and csphere is a coefficient depending on Rsphere, timeprofile and D0:
csphere =

∞∑
m=1

α−4
m

α2
mR2 − 2

[
2δ − 2 + e−α2

mD0(∆−δ) − 2(e−α2
mD0δ + e−α2

mD0∆) + e−α2
mD0(∆+δ)

α2
mD0

]
,

(1.114)
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where αm is them-th root of
αmRsphereJ ′

3/2

(
αmRsphere

)
− 1

2
J3/2

(
αmRsphere

)
= 0, (1.115)

J3/2(·) is the Bessel function of the first kind and J ′
3/2(·) is its derivative.The intra-neurite space is modeled as a bundle of sticks, similar to NODDI. After taking the aver-age over diffusion-encoding gradient directions, Sneurite is given by:

Sneurite =
√

π

4bDneurite erf(
√bDneurite), (1.116)

where Dneurite is the longitudinal diffusion coefficient inside the sticks.The extra-cellular space is modeled as an isotropic Gaussian diffusion compartment:
SECS = e−bDECS , (1.117)

where DECS is the scalar effective diffusion constant inside ECS.The complete set of independent parameters is p = [fsoma, fneurite, fECS, Rsphere,Dneurite,DECS]T .By fitting the SANDI model to measured direction-averaged signals, one can retrieve the volumefractions and an apparent soma radius in gray matter.
1.4.4 NEXI

The NEXI model[100] is a two-exchange compartment model for volume fractions and water ex-change rate imaging in the brain gray matter. In the brain gray matter, under typical clinical experi-mental settings, water exchange across the neurite membrane is significant. It extends the classicalthe brain white matter diffusion MRI compartment signal models by accounting for water exchangebetween compartments. The water exchange process is described using the Kärger model underthe narrow pulse approximation.NEXI proposes that signals within a voxel arise from contributions of two compartments: (1) Theintra-neurite compartment, represented as a bundle of sticks where diffusion occurs only in paralleldirection (denoted by n), characterized by Di,∥; (2) the extra-neurite compartment, represented asan anisotropic Gaussian diffusion compartment, characterized by parallel and perpendicular diffu-sion coefficients De,∥ and De,⊥. The NEXI model deals with the direction-averaged signal as well. Itassumes that the direction-averaged signal is expressed as:
S =

∫
∥ug∥=1

K(ug, b)dug, (1.118)
where K(ug, b) is the signal attenuation, which is given by

K(ug,b) = f ′e−bD′
i + (1− f ′) e−bD′

e . (1.119)
with

f ′ =
1

D′
i −D′

e

(fDi + (1− f)De −D′
e), (1.120)

D′
i/e =

1

2

Di +De +
1

(tex/∆)b ∓
[[

De −Di +
2f − 1

(tex/∆)b
]2

+
4f(1− f)

((tex/∆)b)
2

] 1
2

 , (1.121)
Di ≡ Di,∥(ug · n)2 (1.122)
De ≡ De,∥(ug · n)2 +De,⊥(1− (ug · n)2). (1.123)

The independent parameters of NEXI are p = [f,Di,∥, De,∥, De,⊥, tex]
T , where f is the volumefraction of intra-neurite space and tex is a temporal quantity to characterize the water exchangerate.
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Chapter Overview

In this chapter, we present a novel approach to represent the diffusionMRI signals fromaperme-able medium using impermeable Laplace eigenfunctions. This idea is inspired by how the paper[97]treats surface relaxation. We derive our newmethod from theNumericalMatrix Formalismmethod.Our new method decomposes the transverse magnetization onto the impermeable Laplace eigen-functions and treats the permeability separately during the signals computation process. Thus itrequires only a single eigendecomposition on the impermeable configuration and re-uses the sameLaplace eigenfunctions to compute the permeable signals, whereas theNumericalMatrix Formalismmethod necessitates re-running this process for each permeability value. The new method servesas a fast simulation approach when adjusting the membranes permeability values, which is ben-eficial for evaluating diffusion MRI compartment signal models or signal behaviors and designingmicrostructure estimation approaches that account for permeability.We first present our new formulation using impermeable Laplace eigenfunctions and prove theequivalence between our new formulation and the Numerical Matrix Formalismmethod in the casethat the full set of discretized eigenfunctions is used. We validate our method through simulations.When employing a partial eigendecomposition, at lower permeability values (κ = 10−5m/s), the rel-ative errors of our newmethod are at the same level as the Numerical Matrix Formalismmethod. Asthe permeability increases, the relative errors by the new method using a partial set of discretizedeigenfunctions (with the length scale cut-off Ls = 1µm) will increase accordingly but remain within
39
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a reasonable range (less than< 1%). We evaluate the computational efficiency of our new formula-tion in comparison to the Numerical Matrix Formalism method. In the signal computation step, thecomputational time for the newmethod is close to that of the Numerical Matrix Formalismmethod,but most importantly, the new method offers significant time savings during the eigendecomposi-tion step.To demonstrate the potential capabilities of our new method in studying the effects of perme-ability, we conduct a numerical analysis in a porous medium of the impact of permeability on (1) thediffusion MRI signals and (2) the ADC in the long time limit. The analysis suggests that:
1. The diffusion MRI signal has a mono-exponential relationship with permeability across a widerange of values (10−6m/s ≤ κ ≤ 10−4m/s), covering typical permeability values found inbiological cells;
2. For a fixed PGSE sequenve, at low gradient strength, the impact of permeability is negligible.However, at high gradient strength, even a small permeability value would alter the diffusionMRI signals;
3. With high permeability, the dominant term of the long time limit ADC is t−0.5, where t is diffu-sion time;
4. At low and high permeabilities, the long time limit ADC shows different rates of dependenceon permeability.
Moreover, we evaluate a state-of-the-art diffusion MRI compartment signal model accountingfor permeable membranes, the NEXI model, using the new method. To avoid falling into the localminimum, the NEXI model is fitted by an exhaustive search. The result indicates that the waterexchange time of NEXI is correlated to permeability in a wide range (10−6m/s ≤ κ ≤ 2× 10−5m/s).This work contributes to (1) fast numerical simulations accounting for permeability, (2) numer-ical studies on permeability effects in complicated geometries, (3) microstructural imaging modelevaluation.Compared to the published version[1], I incorporate two additional subsections: (1) Section 2.4.2applies the new formulation to analyze the impact of permeability on the time-dependent ADC inthe long time limit; (2) Section 2.4.3 uses simulated signals by our newmethod, to fit the NEXImodel,showing the correlation between permeability and the water exchange time of NEXI.

2.1 Introduction
Probing cell membrane permeability using diffusion MRI is of research and clinical interest [59,107, 108]. Additionally, cell membrane permeability can influence the interpretation of microstruc-ture imaging. As discussed in the previous chapter, many diffusionMRI compartment signal modelscurrently in use assume negligible water exchange between compartments, the validity of whichremains unknown. Ignoring permeability effects could make micro-structural estimation hard to in-terpret. For example, a recent work[100] pointed out that ignoring permeabilitymay under-estimateneurite volume fraction even at short diffusion times. Therefore, understanding this mechanism isvital for improving microstructure estimation. Some recent works in the diffusion MRI literature ontissuemicro-structural estimation have begun to take cell membrane permeability into account, andhave attempted to determine the permeability value using diffusion MRI data[59, 100, 109, 110].In order to estimate the permeability coefficient from diffusion MRI data and validate diffusionMRI signal models, it is desirable that the Bloch Torrey PDE can be calculated efficiently for manyvalues of membrane permeability. For simple geometries such as circles, spheres, plates, or onedimensional segments, analytical expressions of the diffusion MRI signal exist. The permeabilityeffect is taken into account by a transition matrix[111] or the Kärger model[100] which is a two-compartment exchange approximation model. These analytical expressions have been used to es-timate tissue micro-structure and interface permeability[59, 112]. However, for more complex andrealistic cellular geometries, there are no explicit analytical expressions available and numerical sim-ulations are needed.The objective of this chapter is to develop a new approach, that facilitates the simulations whenadjusting the membrane permeability value.
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If only a small number of simulations are needed, the three main groups of approaches are (1)Monte Carlo/Random Walk simulations[78, 80, 81, 113, 114], (2) solving the discretized Bloch Tor-rey PDE[50, 86, 95, 115] and (3) spectral method, called the Matrix Formalism representation[70,89, 90], as detailed in the preceding chapter in section 1.3.6. Monte Carlo simulation uses randomwalkers tomimic the diffusion process during a diffusionMRI experiment. It randomly places a largenumber of spins inside the complex geometry, and let themmove according to the diffusion dynam-ics. To incorporate permeable membranes, the water exchange through interfaces is modeled viaa transit probability Ptrans, which is the probability that spins will either cross or reflect when theyarrive at a permeable interface[116–119]. However, as the permeability increases, the time stepsmust become smaller (see the reasoning in the paper[116, 119]) to obtain the condition Ptrans ≪ 1which results in a high demand of computational resources and computer memory. The discretiza-tion of the Bloch Torrey PDE can be used to directly solve for the magnetization in a geometricalconfiguration. The computational domain is discretized either by finite elements[50, 115, 120] orfinite differences[86]. Since it deals with a deterministic equation, incorporating the permeability isstraightforward. The details of finite element method implementation with permeability interfacescondition can be found in section 1.3.6.1.In a recent work, Agdestein et al. presented a numerical implementation of theMatrix Formalismfor permeable interfaces[92], called the Numerical Matrix Formalismmethod, where the permeabil-ity interface conditions are incorporated in the Laplace eigendecomposition step.In this chapter, we aim to extend this work and present a new formulation, where the diffusionMRI signal of a permeable medium is computed using only impermeable Laplace eigenfunctions.We prove that the new method produces the same diffusion MRI signal as the original Numeri-cal Matrix Formalism method, under the condition that the full set of eigenfunctions is used. Weshow the numerical convergence of the new method when the number of eigenfunctions used ismuch smaller than the full set. We also show the improved computational efficiency of the newmethod if simulations using many permeability coefficients are needed. Our approach means thatthe same basis (the impermeable set) can be used for all permeability values, which reduces thecomputational time significantly, enabling the study of the effects of the permeability coefficient onthe diffusion MRI signal in the future.

2.2 New formulationusing the impermeable Laplace eigenfunc-
tions

In this section, we use the same geometry configuration as described in section 1.3.1 and theNumerical Matrix Formalism refers to section 1.3.6.3.For the sake of simplicity, we use the PGSE sequence in this chapter to demonstrate the equiva-lence of our new method with Matrix Formalism. However, extending the results to other types ofsequences is straightforward.Themain objective of this work is to derive a new formulation of the Numerical Matrix Formalismmethod for permeable interfaces, using the eigenvalues and eigenfunctions of Laplace operatorfrom the impermeable case.Suppose that all the interfaces are impermeable, then the discretized Laplace eigenvalues prob-lem in eq. (1.88) becomes:
KPimp = MPimpLimp. (2.1)

The subscript ‘imp’ indicates these matrices are from the impermeable case. We now want to usethese two matrices Limp and Pimp as well as
Wimp(g) ≡ gxP

TimpJxPimp + gyP
TimpJyPimp + gzP

TimpJzPimp (2.2)
= P TimpJ(g)Pimp, (2.3)

to obtain the diffusion MRI signal in the presence of permeable interfaces.Assume that for i ̸= j, (i, j) ∈ {1, . . . , Ncmpt}2, the interfaces are permeable: κij > 0, anddenoting the corresponding flux matrix by Q. We recall that the flux matrix Q for the permeablecase is defined by eq. (1.69). We define a new matrix,
Qproj ≡ P TimpQPimp ∈ RNeig,Neig , (2.4)
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the projection of the flux matrix onto the eigenfunctions of the Laplace operator with impermeableinterface conditions. Adding Qproj to the diagonal matrix Limp, we define a new matrix (in generalnot diagonal)
Lproj ≡ Limp +Qproj ,

as well as
Hproj(g, f) ≡ e−δ(Lproj−ıγWimp(g)) · e−(∆−δ)Lproj · e−δ(Lproj+ıγWimp(g)). (2.5)

Theorem 1. In the presence of permeable interfaces, the expression

SNEW(g, f ;Neig) ≡ ρ(1T
Nnode,1

MPimp)Hproj(g, f)(P
T
impM1Nnode,1) (2.6)

= ρTimp(0)
T
Hproj(g, f)Timp(0),

where
Timp(0) =

[√
|Ω1|,

√
|Ω2|, . . . ,

√
|ΩNcmpt |, 0, . . . , 0

]T
∈ RNeig,1, (2.7)

is exactly equal to the diffusion MRI signal expression from the Numerical Matrix Formalism method, if
the full set of the eigenvalues and eigenfunctions is used for both methods.

Proof. For a permeability matrix Q ∈ RNnode,Nnode , let Lper ∈ RNeig,Neig and Pper ∈ RNnode,Neig bethe eigenvalues matrix and the eigenfunctions matrix, respectively,
(K +Q)Pper = MPperLper. (2.8)

The subscript ‘per’ indicates these matrices are from permeable case. Then the H matrix for thepermeable case is
Hper(g, f) ≡ e−δ(Lper−ıγWper(g))e−(∆−δ)Lpere−δ(Lper+ıγWper(g)), (2.9)

where
Wper(g) = P TperJ(g)Pper,

and the signal is
SNMF(g, f ;Neig) =

(
1T
Nnode,1

MPper
)
Hper(g, f)

(
P TperM1Nnode,1

)
ρ. (2.10)

We recall that all the eigenfunctions are L2-normalized and orthogonal, so that
P TimpMPimp = INeig

, (2.11)
P TperMPper = INeig

, (2.12)
where INeig is the identity matrix, thus, multiplying P Timp on both sides of eq. (2.1) and P Tper on bothsides of eq. (2.8) gives

Limp = P TimpKPimp, (2.13)
Lper = P Tper(K +Qper)Pper. (2.14)

We define a new matrix C ∈ RNeig,Neig , projecting the permeable Laplace eigenfunctions ontothe impermeable Laplace eigenfunctions:
C ≡ P TimpMPper. (2.15)

Knowing that the mass matrix M is real, symmetric and positive-definite, we apply the Choleskyfactorization,M = RTR. Under the condition thatNeig = Nnode so that Pimp and Pper are full ranksquare matrices, we have
P Timp(RTR)Pimp = INeig

⇔ (RPimp)(P TimpRT ) = INnode
, (2.16)

P Tper(RTR)Pper = INeig
⇔ (RPper)(P TperRT ) = INnode

.
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Then, we can derive that C is a unitary matrix:

CTC = P TperMPimpP TimpMPper
= P Tper(RTR)PimpP Timp(RTR)Pper (2.17)
= P TperRT (RPimpP TimpRT )RPper
= INeig .

In addition, we can derive that
Pper = PimpC, (2.18)
Pimp = PperCT , (2.19)

because
PimpC = PimpP TimpMPper

⇔ RPimpC = RPimpP TimpRTRPper
⇔ RPimpC = RPper
⇔ PimpC = Pper

sinceR is invertible.Combining eq. (2.13), eq. (2.14),eq. (2.18),eq. (2.19) we have
Lproj ≡ Limp +Qproj = P Timp(K +Qper)Pimp = CP Tper(K +Qper)PperCT = CLperCT , (2.20)

and similarly,
Wimp ≡ P TimpJ(g)Pimp = CP TperJ(g)PperCT = CWperCT . (2.21)

Then the matrix exponentials satisfy
e−(∆−δ)Lproj = e−(∆−δ)CLperCT

= Ce−(∆−δ)LperCT ,

e−δ(Lproj+ıγWimp(g)) = e−δC(Lper+ıγWper(g))CT

= Ce−δ(Lper+ıγWper(g))CT ,

because CCT = I . Thus,
Hproj(g, f) = e−δ(Lproj−ıγWimp(g)) · e−(∆−δ)Lproj · e−δ(Lproj+ıγWimp(g)) (2.22)

= Ce−δ(Lper−ıγWper(g))CTCe−(∆−δ)LperCTCe−δ(Lper+ıγWper(g))CT

= CHper(g, f)CT .

Substituting eq. (2.18) eq. (2.22) into eq. (2.6), we obtain the equivalence:
SNEW(g, f ;Nnode) = ρ

(
1T
Nnode,1

MPimp
)
Hproj(g, f)

(
P TimpM1Nnode,1

) (2.23)
= ρ1T

Nnode,1
·M ·

(
Pimp ·C

)
·Hper(g, f) ·

(
CT · P Timp

)
·M · 1Nnode,1

= ρ
(
1T
Nnode,1

MPper
)
Hper(g, f)

(
P TperM1Nnode,1

)
= SNMF(g, f ;Nnode).

Thus, when the full set of the discretized eigenfunctions is used, the new method using the imper-meable eigenfunctions gives the same signal as the original Numerical Matrix Formalism methodthat uses permeable eigenfunctions.

2.2.1 Choice of number of eigenfunctions
As with the original Numerical Matrix Formalism method, the new method will not, in practice,require the use of the full set of eigenfunctions, and we will again have Neig ≪ Nnode, with thechoice of Neig determined by the length scale cut-off Ls:

∞ ≥ l(λ1) ≥ · · · ≥ l(λNeig
) ≥ Ls > l(λNeig+1) ≥ · · · > 0. (2.24)
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Remark 3. It is to be noted that for the same geometry and the same Ls, when using the new method,
the resultingNeig is the same nomatter what the interface permeability, and it is usually somewhat larger
than the Neig of the Numerical Matrix Formalism method (with the same value of Ls).

Remark 4. Any basis set, when it is complete, can represent any discretized solution in the finite elements
basis. We used P1 finite elements, so any basis set is complete that has Nnode elements. This means, the
permeable Laplace eigenfunctions set and the impermeable Laplace eigenfunctions set are both sufficient
to represent any PDE solution if Neig = Nnode.

The discretized solution of the Bloch-Torrey equation, permeable or not, is usually piece-wise smooth
on each compartment and so should be able to be represented by the smooth eigenfunctions in the im-
permeable basis. The discretized solution should not need to be represented by very oscillatory eigen-
functions, this means the vast majority of the oscillatory eigenfunctions in the impermeable basis are not
needed. Thus, one can just keep the relatively smooth eigenfunctions in the impermeable basis and they
are enough to represent any reasonable solution for the permeable problem. In short, for a discretized
finite element solution of the Bloch-Torrey equation, one never needs to take Neig to be anywhere close
to Nnode in any basis.

2.3 Numerical results
In this section we conduct a numerical validation of the new method. The generation of thecomputational geometries, the discretization into finite elements, and the numerical computationof the Laplace eigenfunctions in the finite element space were implemented into the SpinDoctortoolbox[87].The simulations will be performed on a quasi-two dimensional multi-compartment geometry,denoted by ΩI , shown in fig. 2.1, containing 20 axons. The axons are randomly placed and thenwrapped by an extra-cellular space (ECS). The ECS is not a rectangle in order to keep the axonsclosely packed. The outer boundary condition is set to be impermeable, i.e. homogeneous Neu-mann boundary condition. The axon radii vary between 1µm and 3µm. The dimension of the wholegeometry is 34µm× 29µm× 1µm. The diffusion coefficients are set to be the same for all compart-ments: Di = D0 = 2 × 10−3mm2/s for i ∈ {1, Ncmpt}. The initial spin density is set to ρ = 1.0.SpinDoctor creates the geometrical configuration and the surface triangulation, then pass the sur-face triangulation to TetGen[121] to create a volume mesh. The finite elements mesh contains

Nnode = 3455 nodes and 6673 elements.

Figure 2.1: Finite elementmeshof the geometryΩI . It contains 20 randomly placed cylindrical axons,wrapped in the extra-cellular space (ECS). The radii of all axons are between 1µm and 3µm and theheight of all compartments is 1µm. Dimension of the whole geometry is 34µm× 29µm× 1µm. Thegeometry is generated by SpinDoctor and the finite elements mesh is created by Tetgen[121]. Themesh contains 3455 nodes and 6673 elements.
In the literature, the experimentallymeasured permeability coefficient κ in biological cells rangesfrom 10−6m/s to 10−4m/s[122], in particular, κ = 10−5m/s for axonal membranes without myelinsheath[37]. Therefore, our simulations are performed using permeability coefficients up to κ =

10−4m/s.In this section, unless specified, we apply PGSE sequence for the simulations. The average dis-placement in free diffusion is√2 dimD0TE , where dim is the dimension. In order to limit the amount
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of spins hitting the outer boundary and reduce the effects from the interaction of spins with the im-permeable outer boundary, we keep the displacement to less than half of the geometry diameter,obtaining that TE ≤ 20ms. Thus, we limit δ + ∆ ≤ 20ms in the simulations on ΩI . The gradientstrength in in-vivo experiments does not exceed 1000mT/m[123], so we set the highest simulatedg-value to 1000mT/m.
2.3.1 Computing the reference solution

For the geometry ΩI , we do not have the analytical solution of the diffusion MRI signal. We pro-pose using the Numerical Formalism method with the full set of permeable Laplace eigenfunctionsas the reference solution. We have compared the reference solution to the finite elements solutionof the discretized Bloch-Torrey PDE for ∥g∥ = 1000mT/m,PGSE(10ms, 10ms) across all gradientdirections and verified that the maximun relative differences between them are less than 0.002%.Thus, we estimate that the signals computed using the Numerical Matrix Formalism method withthe full set of permeable eigenfunctions to be accurate to 0.002% from the true signal.The reference solution is set to be the Numerical Matrix Formalism solution using the full set ofpermeable Laplace eigenfunctions i.e. Neig = Nnode = 3455 eigenfunctions for ΩI ,
SREF(g, f) = SNMF(g, f ;Nnode).

To avoid the dependence of the results on the gradient direction g, we average the diffusion MRIsignal over 18 gradient directions, uniformly distributed on a unit semicircle in the x− y plane:
S(∥g∥, f ;Neig) =

1

|Ω|
1

18

18∑
d=1

S(gd, f ;Neig), gd = ∥g∥
[
cos

(
π
d

18

)
, sin

(
π
d

18

)
, 0

]T
, (2.25)

normalized by the total volume. Figure 2.2 depicts the reference signals as a function of the g-value
∥g∥. The simulations are performed for g-value from 0mT/m to 1000mT/m. The signals S havebeen normalized by the total volume so their maximum value is 1. We observe that diffusion MRIsignal decays faster in the presence of more permeable membranes.

Figure 2.2: Normalized direction-averaged diffusion MRI signals as a function of the g-value ∥g∥.These are the reference solutions computed using the Numerical Matrix Formalism method withthe full set of permeable Laplace eigenfunctions, i.e., Neig = Nnode = 3455 eigenfunctions for ΩI .

2.3.2 Validation of the new method
We have shown in Theorem 1 that the new method yields the same signal as the NumericalMatrix Formalismmethod if the full set of basis functions is used. However, since in practice,Neig ≪
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Nnode, we will now show the accuracy of the two methods for fixed values of the length scale cut-off
Ls. In fig. 2.3, we show the relative errors produced by the two methods compared to the referencesolution. The relative error is defined as:

ϵrel(%) = 100× |S(∥g∥, f ;Neig)− S
REF

(∥g∥, f)|
S
REF

(∥g∥, f)
. (2.26)

First, we see that the relative errors of the original Numerical Matrix Formalism method where thelength scale cut-off is Ls = 1µm are under 0.03% for all the simulated sequences. The number ofthe eigenfunctions differs with permeability: when κ = 10−5m/s, 5 × 10−5m/s, 10−4m/s, Neig =
538, 535, 532, respectively. Second, for the new method, with a length scale cut-off of Ls = 1µm,resulting in Neig = 538, the relative error is under 1.5% for all the sequences. The relative errorincreases as permeability increases, as the g-value ∥g∥ increases, and as the diffusion time increases.

Figure 2.3: First row: Relative errors of direction averaged signals of the Numerical Matrix Formalismwith the length scale cut-off Ls = 1µm (κ = 10−4m/s,Neig = 532; κ = 5 × 10−5m/s,Neig = 535;
κ = 10−5m/s,Neig = 538). Second row: Relative errors of direction averaged signals of the newmethod with the length scale cut-off Ls = 1µm (Neig = 538). The relative errors are in percent.Simulations are performed on ΩI , by SpinDoctor. Left: κ = 10−5m/s; Middle: κ = 5 × 10−5m/s;Right: κ = 10−4m/s.

Nowwe study the convergence behavior of the newmethod asLs decreases (Neig increases) andcompare it to the original Numerical Matrix Formalism method. The simulated gradient direction
is fixed in [

√
2/2,
√
2/2, 0]

T and we use the longest sequence PGSE(10ms, 10ms), which yields the
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biggest errors. We define the normalized error between the computed signal and reference signalto be

ϵabs =
|S(g, f ;Neig)− SREF(g, f)|

|Ω|
. (2.27)

It is a normalized error because S/|Ω| is always bounded by 1. Note this is not a relative error, we donot divide by SREF, because we do not want the error to increase due to the decrease in the signalitself, we simply want to show the convergence of the signals.Figure 2.4 shows the normalized errors of the diffusionMRI signals computed by the newmethodand by the original Numerical Matrix Formalism method, compared to the reference solution. The
x-axis gives Neig. The two vertical lines indicate where the truncations occur for Ls = 2µm and
Ls = 1µm in the impermeable case:

Ls = 2µm, Neig = 193,

Ls = 1µm, Neig = 538.

As more eigenfunctions are used, the errors are reduced for both the new method and the originalNumerical Matrix Formalism method. When κ ≤ 10−5m/s, the new method converges at a simi-lar rate as the original Numerical Matrix Formalism. At the higher permeabilities, the new methodconverges more slowly than Numerical Matrix Formalism, but it is clear that if we are interested 2or 3 digits of accuracy, which is reasonable given that the diffusion MRI signal noise is at least oforder 0.01, using the length scale cut-off of Ls = 2µm is sufficient. As far as we know, there is notan analytical way to relate the truncation size and the signal error. The truncation is defined on theimpermeable Laplace eigenfunctions, whereas the signal is related to the operator including theterm Ig · x as well as the permeability. We observe that though the errors of the Numerical MatrixFormalism method increase with lower permeability due to the large variations of the permeableeigenfunctions around the interfaces, the errors of the new method increase with higher perme-ability due to the fact that the new method uses impermeable eigenfunctions for all permeabilityvalues.

Figure 2.4: Normalized signal errors of the new method (in solid line) and the Numerical MatrixFormalism method (in dashed line), compared to the reference solution, as a function of Neig. Thetwo vertical lines indicate where the truncations occur for Ls = 2µm (Neig = 193) and Ls = 1µm
(Neig = 538). The simulations are performed onΩI , with gradient direction fixed in [

√
2/2,
√
2/2, 0]

T

and the sequence PGSE(10ms, 10ms). Left: g-value= 50mT/m; Right: g-value= 200mT/m.

2.3.3 Computational time
An advantage of the new method to compute the diffusion MRI signal is the savings in com-putational time. To show the efficiency of the new method, we compare the computational timesof the Numerical Matrix Formalism method and our new method on a bigger geometry Ωaxons200
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that contains 200 cylindrical axons enclosed in the ECS, as shown in fig. 2.5. Its dimensions are
98µm × 118µm × 1µm and there are 62145 elements and Nnode = 32023 nodes in total, of which
16924 nodes in the ECS. The gradient direction of simulations is fixed in [

√
2/2,
√
2/2, 0]

T . Two PGSEsequences PGSE(5ms, 5ms) and PGSE(10ms, 10ms) and four g-value = [50, 200, 500, 1000]mT/mare used. The simulations are performed with 3 different values of Neig = 2000, 4000, 5000 (wefixed Neig rather than Ls to make easier comparisons of computational time). All the simulationsare performed on a computing server with 20 cores of frequency 2.4 GHz, and RAM of 256GB. Theoperating system is Rocky Linux 8 and the Matlab version is R2021a.

Figure 2.5: Finite element meshes of the geometry Ωaxons200 for the computational times compari-son. The geometry contains 200 randomly placed cylindrical axons, whose radii vary between 1µmand 3µm, and one tightly wrapped ECS. All compartments are 1µm in height. The dimensions are
98µm × 118µm × 1µm. This mesh has 32023 nodes and 62145 elements in total. Left: 200 axonscompartments; Right: ECS compartment, which contains 16924 nodes and 34258 elements.

Numerical Matrix Formalismwith the full set of eigenfunctions is set to be the reference solution.Both Matrix Formalism and the newmethod compute the diffusion MRI signal in two steps: Laplaceeigendecomposition and matrix exponential computations. The first step is independent of theencoding sequence settings, involving only sparse matrices of size Nnode ×Nnode. The second stepinvolves dense matrices of size Neig ×Neig. In practice, we have Neig ≪ Nnode.Table 2.1 shows the computational times of the Laplace eigendecomposition by the newmethodand the Numerical Matrix Formalismmethod. The eigenmodes are computed by the Matlab built-infunction ‘eigs’, which computes the first smallest Neig eigenmodes by Lanczos iteration. To obtainthe full set of the eigenmodes, the Matlab built-in function ‘eig’ can be used to conduct a completeeigen-decomposition. The computational complexity of ‘eig’ for the generalized eigenvalue problem,
Ay = Byλ, is O(N3

node) in theory, and O(N2.376
node ) in practice using the Coppersmith and Winogradalgorithm[124]. The computational complexity of ‘eigs’ is O(NeigN

2
node + NnodeN

2
eig), the first termis due to the computation of B\Ay at each Lanczos iteration and the second term is due to theorthogonalization of the new Krylov vectors at each Lanczos iteration[125]. In fact, because A andB are sparse matrices, the computation of B\Ay is O(NeigNnode) rather than O(NeigN

2
node), so thedominant term of the computational complexity for ‘eigs’ is O(NnodeN

2
eig). We can see in the tablethat going from Neig = 2000 to Neig = 4000, the computational times increase by 4 in all the rows.The original Numerical Matrix Formalismmethod needs to recalculate permeable Laplace eigen-functions when the permeability changes. On the contrary, the new method only computes the im-permeable Laplace eigenfunctions once. In addition, the impermeable Laplace eigendecompositioncan be achieved compartment by compartment. The computational complexity of the permeableeigendecomposition isO(N2.376

node ) (‘eig’) orO(NnodeN
2
eig) (‘eigs’), compared to the impermeable case,

where it is O(∑Ncmpt

i N2.376
i,node) (‘eig’) or O(∑Ncmpt

i (Ni,nodeN
2
eig)) (‘eigs’), Ni,node being the number offinite elements nodes in compartment i. In table 2.1, we can see that for the same Neig , the im-permeable eigendecomposition is two times faster than the permeable eigendecomposition. If weconsider the simulation of three permeability values, using the new method, the full set eigende-composition can be done in 141 seconds, whereas the Numerical Matrix Formalism method takes301 seconds at Neig = 2000.
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Computational time (seconds)

Neig = 2000 Neig = 4000 Neig = 5000 Full set (Neig = 32023)
New methodTotal 41 171 278 141

κ(m/s) Numerical Matrix Formalism method
10−5 99 419 646 723

5× 10−5 100 389 518 727
10−4 102 353 625 734Total 301 1161 1789 2184

Table 2.1: Computational times of Laplace eigen-decomposition at different permeabilities for
Ωaxons200, given in seconds. The full set contains Nnode = 32023 nodes.

On the question of whether to call ‘eigs’ or ‘eig’ to compute the eigenmodes, we remind thereader that the theoretical complexities are O(NnodeN
2
eig) and O(N2.376

node ), respectively. It is clearthat, at some point, as Neig increases, it would be more computationally efficient to compute thefull eigendecomposition instead of a partial eigendecomposition. Some further considerations arethat (1) the ‘eig’ implementation in Matlab is well optimized for parallel computing using all the com-puter’s cores, unlike the ‘eigs’, (2), the ‘eig’ function in MATLAB only accepts dense matrices whereasthe ‘eigs’ function allows the designation of sparse matrices so the matrix-vector multiplications arefaster and take less memory. In summary, ‘eigs’ is useful when: (1) Only a small number of eigen-modes (for example, less than 15%) are needed, such as for simple geometries, longer diffusiontimes, lower gradient amplitudes; (2) When the computer RAM is limited. For ‘eig’, the input andoutput matrices are full, when Nnode = 32023, ‘eig’ requires 22.9GB of RAM. In contrast, the inputsof ‘eigs’ are sparse matrices, when Nnode = 32023, ‘eigs’ requires 1.2GB of RAM. For other cases,using ‘eig’ and selecting a subset of eigenmodes is preferred.Table 2.2 shows the computational times of the matrix exponential computations in one gradi-ent direction with different settings. In order to accelerate the computation, instead of computingthe matrix exponential explicitly, we use the algorithm ‘expmv’[126], which computes the action ofmatrix exponential on a vector, without explicitly forming the matrix exponential. The number ofeigenfunctions is set toNeig = 2000. With this choice, the errors of the normalized signals of the orig-inal Numerical Matrix Formalismmethod is less than 0.0008, and the error of the newmethod is lessthan 0.0013. We can see from the table that for the original Numerical Matrix Formalism method,the computational time is between 0.7 to 4.7 seconds. For the newmethod, the computational timeis between 0.8 and 3.8 seconds. Thus, the twomethods are similar in the signal computational step,however, the new method offers substantial computational time advantage over the original Nu-merical Matrix Formalism method due to the savings in the eigendecomposition step. In the table,we are also include the cost of solving the Bloch-Torrey PDE directly using finite elements ratherthan computing eigenfunctions, labeled “FE”, clearly, this approach is much more costly than eitherof the two eigenfunctions based methods.

2.3.4 Application to other diffusion MRI sequences
Our methodology can be applied to other sequences, such as double PGSE[55], OGSE[54], flowcompensation sequence[127] and long-narrow pore imaging sequence[128]. One should representor approximate the sequence profile f(t) as a piece-wise constant function defined on n intervals:

f(t) =

n−1∑
i=0

f(ti)1[ti,ti+1], (2.28)
where {t0, . . . , tn} is a strictly increasing sequence between 0 and TE and 1[ti,ti+1] is the indicatorfunction on the interval [ti, ti+1].We illustrate the application of our method to the long-narrow pore imaging sequence[128],which consists of two rectangular pulses of duration TEδ1 and TEδ2, of gradient strengths−∥g∥ and
∥g∥δ1/δ2, respectively, separated by a time interval TE(1 − δ1 − δ2), for which the temporal profile



50CHAPTER 2. PERMEABLEMATRIX FORMALISMREPRESENTATIONUSING IMPERMEABLE LAPLACE EIGENFUNCTIONS

NMF New method FE
κ δ ∆ ∥g∥ Time ϵabs Time ϵabs Time SREF

10−5

5 5
50 0.9 0.000004 0.8 0.000001 16.2 0.99200 1.2 0.00006 1.1 0.00002 34.0 0.82500 1.4 0.0002 1.6 0.00008 68.9 0.431000 1.8 0.0006 2.3 0.0001 117.3 0.22

10 10
50 1.1 0.000008 1.3 0.000008 22.1 0.91200 1.2 0.00007 1.5 0.00009 53.1 0.43500 1.8 0.0003 2.3 0.0002 106.9 0.241000 3.5 0.0008 3.8 0.0001 199.0 0.10

5× 10−5

5 5
50 0.7 0.000004 0.8 0.00002 16.6 0.99200 0.9 0.00005 0.9 0.0003 34.0 0.81500 1.4 0.0002 1.4 0.001 67.2 0.381000 2.1 0.0004 1.8 0.001 106.6 0.16

10 10
50 1.2 0.000007 1.1 0.0002 24.6 0.90200 1.4 0.00005 1.1 0.001 59.2 0.35500 2.3 0.0001 2.2 0.002 103.7 0.141000 3.7 0.0003 2.6 0.0009 184.8 0.05

10−4

5 5
50 0.9 0.000004 0.8 0.00007 16.0 0.99200 1.2 0.00005 1.0 0.0009 37.7 0.80500 1.7 0.0002 1.3 0.003 70.0 0.331000 2.7 0.0002 1.7 0.0003 94.6 0.12

10 10
50 1.4 0.000007 1.0 0.0005 24.9 0.90200 1.7 0.00004 1.2 0.004 56.6 0.28500 2.6 0.00006 1.7 0.0003 103.9 0.081000 4.7 0.00008 3.1 0.0013 179.9 0.02

Table 2.2: Computational times and normalized signal errors of the Numerical Matrix Formalism(NMF) method and the new method in Ωaxons200, given in seconds. The number of eigenfunctions
is Neig = 2000. The encoding gradient direction is fixed in [

√
2/2,
√
2/2, 0]

T . The units are κ:m/s,
δ:ms, ∆:ms and ∥g∥:mT/m. We also include the cost of solving the Bloch-Torrey PDE directly usingfinite elements rather than computing eigenfunctions, labeled “FE”, and the value of the referencesignal, labeled “SREF”.

fpore(t) is
fpore(t) =


−1, 0 ≤ t ≤ TEδ1,

δ1/δ2, TE(1− δ2) < t ≤ TE ,

0, otherwise,
(2.29)

where δ1 > 0 and δ2 > 0 are two dimensionless positive time coefficients, with δ1 + δ2 ≤ 1.We perform the simulations on ΩI , with long-narrow pore imaging parameters below:
• TE = 20ms, δ1 = 1− δ2 and δ2 = [0.5, 0.2, 0.1, 0.05];
• g-values from 0 to 200mT/m;
• 18 gradient directions uniformly distributed on a unit semicircle.
We show in fig. 2.7 the simulated reference signals. We note that when δ2 = 0.5, we are in thePGSE case. When δ2 ̸= 0.5, while this sequence meets the rephasing condition, it does not satisfythe anti-symmetric condition. Therefore, we see that the signals have a non-zero imaginary part.This extra phase information can serve to infer pore size information[129].We show in fig. 2.8 the relative errors between the new method with the length scale cut-off

Ls = 1µm (Neig = 538) and the reference signals. The errors in the real part of the signal arebetween 0.01% and 1%, the errors in the imaginary part of the signal are between 2% and 3%.
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Figure 2.6: Time profile of long-narrow pore imaging sequence. The first pulse has longer durationand an amplitude of 1. The second pulse is shorter in duration but has a higher amplitude, given by
δ1/δ2.

Figure 2.7: Real part (first row) and imaginary part (second row) of normalized direction-averageddiffusion MRI signals using the long-narrow pore imaging sequence, with (δ1 = 1 − δ2 and TE =
20ms). Simulations are performed on ΩI , by SpinDoctor. Left: κ = 10−5m/s; Middle: κ = 5 ×
10−5m/s; Right: κ = 10−4m/s.
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Figure 2.8: Relative errors of the real part (first row) and the imaginary part (second row) of thedirection averaged signals of the new method with the length scale cut-off Ls = 1µm (Neig = 538).The relative errors are in percent. Simulations are performed on ΩI , by SpinDoctor. Left: κ =
10−5m/s; Middle: κ = 5× 10−5m/s; Right: κ = 10−4m/s.



2.4. PERMEABILITY MODELS EVALUATION 53
2.4 Permeability models evaluation

To illustrate a way that the newmethod we developed in this paper can be used to study perme-ability, in this section, we apply the proposed method to evaluate several models that take accountof permeability. Concretely, we will study (1) a mono-exponential model on diffusion MRI signalsregarding permeability and (2) ADC in long time limit relative to permeability. In addition, we test anovel diffusion MRI compartment signal model, the NEXI model, to show the correlation betweenits exchange water time and permeability.
2.4.1 Numerical study of permeability effects on signal

Suppose we want to test the hypothesis that the dependence of the signal on the permeabilitycan be approximated by the following expression for a range of values of permeability found inbiological tissues:
SAPPROX(g, f ;Neig) = e−β(g,f)·κ ·

(
Simp(g, f ;Neig)− Sfree(g, f ;Neig)

)
+ Sfree(g, f ;Neig), (2.30)

where β(g, f) is a positive fitted coefficient depending on the encoding gradient and the geometry,
Simp(g, f ;Neig) is the signal in the impermeable case and Sfree(g, f ;Neig) is the signal in absenceof all interior interfaces. Both Simp(g, f ;Neig) and Sfree(g, f ;Neig) are independent of permeability.By construction, (1) S = Simp when κ = 0m/s; (2) limκ→+∞ S = Sfree; (3) the signal is subject toexponential decay in κ;We computed the permeable signals using the new method and in fig. 2.9 we show the com-puted SNEW/Simp and SAPPROX/Simp with the fitted values of β(g, f). The good fit of the exponentialdependence on κ is evident for the range of κ tested. At low gradient strength (b = 500 s/mm2),diffusion MRI signal depends very little on κ. As the gradient strength increases, the signal is moresensitive to κ. This result is consistent with the signal behavior at high gradients for one dimensionalproblems in the presence of multiple semi-permeable barriers discussed in[122].

Figure 2.9: The simulations are performed on ΩI , with the gradient direction fixed in
[
√
2/2,
√
2/2, 0]

T , using the new method with length scale cut-off Ls = 1µm (Neig = 538). The solidanddashed lines representSNEW/Simp andSAPPROX/Simp, respectively. Left: short diffusion time case,
PGSE(5ms, 5ms). The fitted coefficients are β = 2424(m/s)−1 (b = 500 s/mm2), β = 7497(m/s)−1

(b = 5000 s/mm2), β = 8984(m/s)−1 (b = 10000 s/mm2). The normalized impermeable signalsare Simp = 0.7 (b = 500 s/mm2), Simp = 0.256 (b = 5000 s/mm2), Simp = 0.162 (b = 1000 s/mm2);
Right: long diffusion time case, PGSE(10ms, 10ms). The fitted coefficient β = 3185(m/s)−1 (b =

500 s/mm2), β = 11536(m/s)−1 (b = 5000 s/mm2), β = 14535(m/s)−1 (b = 10000 s/mm2). The nor-malized impermeable signals are Simp = 0.734 (b = 500 s/mm2), Simp = 0.341 (b = 5000 s/mm2),
Simp = 0.281 (b = 1000 s/mm2).

The evolution of the fitted values of β(g, f) as functions of b and√δ is plotted in fig. 2.10. At lowgradient strength, β ∝ √δ.



54CHAPTER 2. PERMEABLEMATRIX FORMALISMREPRESENTATIONUSING IMPERMEABLE LAPLACE EIGENFUNCTIONS

Figure 2.10: The evolution of β(g, f) as a function of b-value (left) for three tested sequences,PGSE(5ms, 5ms), PGSE(7.5ms, 7.5ms) and PGSE(10ms, 10ms), and as a function of √δ (right) forthree tested gradient strengths, b=500 s/mm2, b=5000 s/mm2 and b=10000 s/mm2. The simulations
are performed on ΩI , with the gradient direction fixed in [

√
2/2,
√
2/2, 0]

T , using the new methodwith length scale cut-off Ls = 1µm (Neig = 538).

2.4.2 Long time limit ADC
For an open boundary geometry formed by pore structures with impermeable membranes, theADC has an asymptotic approximation in the long time limit toward diffusion time t[130, 131]:

ADClong(t) ≈ ADC∞ +
k1D0

t
+

k3/2D0

t3/2
+O( 1

t5/2
), (2.31)

where D0 is the intrinsic diffusion coefficient, k1 and k3/2 are coefficients depending on the confin-ing geometry, and ADC∞ is the ADC at infinity time. In the presence of permeable membranes, anew leading term 1/
√
t needs to be added[132]. In particular, for one-dimensional diffusion case,separated by equally spaced permeable barriers with a spacing of a, ADC∞ can be expressed as[133]

1

ADC∞
=

1

D0
+

1

aκ
. (2.32)

This approximation is useful to infer the permeability in the one dimensional case. Studying thetime dependent ADC behavior in the long time limit for other geometrical configurations, like twodimensional or three dimensional, is intriguing.To examine whether the long time limit ADC behavior of a complex permeablemediummatchesthe two aforementioned relationships, we perform simulations onΩI . The experimental settings areas below:
• Diffusion coefficient D0 is 2× 10−3mm2/s for all compartments;
• The gradient direction is fixed in [

√
2/2,
√
2/2, 0]

T ;
• PGSE sequence is applied, with δ = 5ms and 10∆ values varying from 60ms to 150ms;
• ADC value is calculated by fitting the diffusion MRI signals at five low b-values,
[25, 50, 100, 150, 200] s/mm2;

• The range of tested permeability values is from 10−6m/s to 10−4m/s;
• Length scale cut-off Ls = 1µm, i.e. Neig = 538.
In fig. 2.11, we plot the time dependent ADC as a function of 1/√t. We observe that in the caseof κ → +∞m/s (the purple line), ADClong shows a clearly linear relationship with 1/

√
t. This alignswith the finding presented in [132] As the permeability decreases, this relationship becomes lessclear, suggesting that the leading term should be t−θ , where 0 ≤ θ ≤ 0.5.
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Figure 2.11: ADClong as a function of∆−0.5. The simulations are performed on ΩI , with the gradient
direction fixed in [

√
2/2,
√
2/2, 0]

T , using the newmethodwith length scale cut-offLs = 1µm (Neig =
538). The blue, red, brown and purple solid lines represent κ = 0m/s, κ = 10−5m/s, κ = 10−4m/sand κ = +∞m/s, respectively. The dashed lines represent the linear fit, using the three highestsimulated∆ values, 130ms, 140ms and 150ms. The markers represent values computed by the newmethod.

In fig. 2.12, we plot a normalized time-dependent ADC, denoted as ADCnorm, against κ−1 in log-arithm, with the longest simulated sequence PGSE(5ms, 150ms). The normalized ADC is definedas
ADCnorm =

ADClong − ADCimpADCfree − ADCimp , (2.33)
where ADCfree is the ADC when κ = +∞m/s and ADCimp is the ADC in the presence of impermeableinterfaces (κ = 0m/s). This choice of normalization eliminates the effect of interface shapes andallows to study purely the impact of permeability value on the ADC. At two ends of permeability, wehave the asymptotic behaviors:

lim
κ→+∞

ADCnorm = 1, (2.34)
lim
κ→0

ADCnorm = 0. (2.35)
We can observe that ADC−1norm shows different rates at low and high permeabilities. When κ ≤

8× 10−6m/s, we have ADC−1norm ∝ κ−1.1045, whereas when κ ≥ 3× 10−5m/s, ADC−1norm ∝ κ−0.5934.In summary, at low permeability, the dependence rate of ADC−1norm becomes κ−1.1045, which issimilar to eq. (2.32).. As high permeability, we observe that ADC−1norm ∝ κ−0.5934 and ADClong ∝ 1/
√
t.

2.4.3 Neurite Exchange Imaging (NEXI) evaluation
Neurite Exchange Imaging (NEXI) is a state-of-the-art diffusion MRI compartment signal modelto estimate the volume fractions and water exchange time between compartments in the braingray matter, as presented in section 1.4.4. It fits the direction-averaged signals to estimate the fiveparameters: p = [f,Di,∥, De,∥, De,⊥, tex], where f is the volume fraction of intra-neurite space. Di,∥is the parallel diffusivity of the intra-neurite space. De,∥ andDi,∥ are the parallel and perpendiculardiffusivity of the extra-neurite space. tex is a temporal quantity to characterize the water exchangerate. The details of NEXI expression refer to section 1.4.4.To illustrate what this model effectively quantifies and to understand the relationship between

tex and κ, we perform the simulations on a simple geometryΩnexi, containing four straight cylindersencapsulated in a tight wrapped ECS, as shown in fig. 2.13. The height of the cylinders is 30µm. Theradii are selected to be small, ranging from 0.5µm to 0.9µm. The volume fraction of the neurites is63.3%. We adopt one of the experimental settings consistent with the original NEXI paper[100]:
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Figure 2.12: ADC−1norm − 1 as a function of κ−1 in logarithm. The simulations are performed on ΩI ,
with the gradient direction fixed in [

√
2/2,
√
2/2, 0]

T , using the newmethod with length scale cut-off
Ls = 1µm (Neig = 538). The sequence is PGSE(5ms, 150ms). The blue solid line represents thesimulated ADC, the dashed red line represents the linear fit at high permeability values and thedotted yellow line represents the linear fit at low permeability values. The slopes of the low andhigh permeability fitted lines are -1.1045 and -0.5934, respectively. The markers represent valuescomputed by the new method.

Figure 2.13: GeometryΩnexi for NEXI estimation. Left: finite elementmesh of the four cylinders, witha height of 30µmand a radius from 0.5µm to 0.9µm; Right: finite element mesh of the tight wrappedECS. The volume fraction of the ECS is 36.7%. The whole domain contains 65,720 nodes and 191,403elements, among them, there are 41,362 nodes and 128,836 elements in ECS.

• 64 gradient directions uniformly distributed in unit sphere;
• One PGSE sequence is applied, with δ = 4.5ms and∆ = 20ms;
• Seven shells at b-values= [1, 2.5, 4, 5.5, 7, 8.5, 10]× 103 s/mm2;
• Seven tested permeability values [10−6, 5×10−6, 7.5×10−6, 10−5, 2×10−5, 5×10−5, 10−4]m/s;
• Length scale cut-off Ls = 1µm, i.e. Neig = 341.

This choice of diffusion time limits the amount of spins hitting the upper and bottom outer bound-aries.To avoid local minimum due to the non-convex optimization, We fit NEXI model by an exhaustivesearch within a saved signal library. The NEXI signal library is populated along all five parameters:
f ∈ [0, 2, 0.8], with an equal spacing 0.01, Di,∥ ∈ [1, 2] × 10−3mm2/s, with an equal spacing 0.05,
De,∥ ∈ [0.1, 2]× 10−3mm2/s, with an equal spacing 0.05, De,⊥ ∈ [0, 1]× 10−3mm2/s with an equalspacing 0.1, and tex/∆ ∈ [0.1, 6.1], with an equal spacing 0.1. Besides, one constraint De,∥ > De,⊥
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is applied. We pick the model parameters combination p = [f,Di,∥, De,∥, De,⊥, tex]

T that yields theminimum mean squared error of the direction-averaged signals as the best fit.Figure 2.14a illustrates the estimated exchange time tex against κ in logarithm. It is clear thatwithin the range of 10−6m/s ≤ κ ≤ 2 × 10−5m/s, there is a linear relation between them, i.e.
tex ∝ κ−1. It suggests that NEXI can be effectively used to probe the permeability within this range.Figure 2.14b shows the estimated volume fraction f against κ. Typically, we obtain an over-estimation for f when κ ≤ 5× 10−6m/s.

(a) Estimated exchange time tex against κ in loga-rithm. (b) Estimated volume fraction against κ.

Figure 2.14: Estimated parameters of NEXI as functions of κ.The circles represent the estimatedvalues at permeability of 10−6m/s, 5×10−6m/s, 8×10−6m/s, 10−5m/s, 2×10−5m/s, 5×10−5m/sand 10−4m/s.The dashed black line on the right plot is the ground truth volume fraction value (f =
63.3%).

2.5 Discussion

The Numerical Matrix Formalism method produces a diffusion MRI signal representation usingthe Laplace eigenfunctions basis computed on a domain with permeable interfaces. In this work, weformulated a new representation of the diffusion MRI signal using the Laplace eigenfunctions in thesame domain while making the interfaces impermeable. This means our new method can use thesame set of eigenfunctions for many different values of permeability, thus saving computationaltime in the eigendecomposition step. While the new method requires more eigenfunctions thanthe original Numerical Matrix Formalism method to achieve the same accuracy, we have shownthat if the permeability is not too high (while still staying in the realistic range for biological cellmembranes), the total computational time is still significantly lower than the original NumericalMatrix Formalism method.The reduction in computational time makes possible the study of permeability effects on diffu-sion MRI and the evaluation of microstructure estimation methods on complex geometry via nu-merical simulations. Using the new formulation, we conduct a study on the permeability effect anddemonstrate that the permeable diffusion MRI signals can be approximated by an exponential rela-tion across awide range of permeabilities. When the gradient strength is low, the permeability effectis negligible for the typical axon permeability value 10−5m/s. The ratio between permeable signalsand impermeable signals is higher than 90%. Therefore, the impermeable membranes assumptionfor diffusion MRI compartment signal models based on the low b-values should hold. When thegradient strength is high, the signals are sensitive to the permeability even at short diffusion time,which poses new challenges to microstructural imaging at high b-values. In the long time limit, theADC exhibits different dependence rates between high and low permeabilities. In addition, as per-meability increases, we have ADClong ∝ 1/
√
t. Even though in practice, we could not obtain Sfree and

Simp orADCfree andADCimp, these observationsmay aid in the development of newmicrostructureestimation methods.
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The equivalence is proved for the PGSE sequence, it can easily be extended to other sequences,which is valuable for sequences specifically designed to measure permeability. An example is thefilter-exchange imaging[59], which applies a double PGSE sequence to indirectly probe the perme-ability, by firstly eliminating the ECS contribution through the first PGSE sequence.We employ the new method to assess the NEXI model. Numerical analysis indicates a strongcorrelation between permeability and the water exchange time of the NEXI model.
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Chapter Overview
In this chapter, we develop asymptotic expansions of the diffusion MRI signal and the ADC ac-counting for bending and twisting deformations, derived from the Bloch-Torrey PDE and the HADCmodel. This work is inspired by how the papers[134, 135] treat heart movement in cardiac diffusionMRI.In section 3.2, we first present the HADC model, and give the analytical expressions of bendingand twisting deformations. Wederive the transformedBloch-Torrey PDE and the transformedHADCmodel accounting for these two deformations, and expand the solutions of those transformed PDEsas a second-order asymptotic series in deformation parameters. We conduct numerical simulationsin section 3.4, to validate our asymptotic expansions and illustrate the effects of the geometrical de-formations. The simulations suggest that: (1) For both the HADCmodel and the Bloch-Torrey PDE, atleast second-order corrections are needed to significantly improve the accuracy; (2) From the HARDI
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60CHAPTER 3. ASYMPTOTIC EXPANSIONOFDIFFUSIONMRI ANDADCACCOUNTING FORGEOMETRICALDEFORMATIONS
plots we observe that bending causes the ADC and signals to be less directional whereas twisting willrotate their maximal direction; (3) the analysis of computational time demonstrates the efficiencyof the asymptotic expansions in terms of performing simulations when adjusting geometrical pa-rameters.This work contributes to explicitly linking the diffusion MRI signal to cellular structures and pro-viding a numerical tool to study the impact of shape imperfections on the diffusion MRI signal andthe ADC.Compared to the published version[2], Imake the followingmodifications: (1) I extend the asymp-totic expansion of the Bloch-Torrey PDE by including the permeable case. I provide the numericalresults of the asymptotic expansion of the Bloch-Torrey PDE using κ = 10−5m/s; (2) I extend theasymptotic expansions to the case when both deformations are applied, and add this case in the nu-merical results; (3) I add section 3.4.4 that compares the computational time to show the efficiencyof the asymptotic expansions; (4) I change to use an alternative form of the HADC model, whichrequires a less stringent time step to maintain the same accuracy during numerical simulations.

3.1 Introduction
Due to the complexity of solving Bloch Torrey PDE, the predominant approach up to now hasbeen adding the diffusion MRI signal from simple geometrical components and extracting modelparameters of interest. Numerous tissue compartment models subdivide the tissue into compart-ments described by sticks, anisotropic Gaussian space, spheres, ellipsoids, cylinders, and the extra-cellular space (ECS)[99, 102, 136–141]. Some parameters of interest include axon diameter andorientation, neurite density, dendrite structure, the volume fraction and size distribution of cylin-der and sphere components and the effective diffusion coefficient or tensor of the ECS could beretrieved from the model’s compartments[142].In the brain white matter microstructure estimation, the axons or the brain white matter fibersare modeled most either by a bundle of sticks, such as the NODDI model[98], or a collection ofcylinders, in the same direction or dispersion in the orientation, such as the ActiveAxADD model[27].These assumptions neglect the geometrical imperfection of realistic fiber shape on the diffusionMRIsignal, including diameters variations[143], irregular section shapes[144], undulation[145], bend-ing[146] etc, which may cause inaccuracy issue in some MRI experimental settings[147, 148]. In thework by Lee et al.[149], an overestimation of axon diameter was found at low b-values due to theundulation of axons.The purpose of this chapter is to propose a reducedmodel to facilitate the studies on geometricaldeformation and to further reveal the relationship between the tissue geometrical parameters andthe diffusion MRI signal in the brain white matter via the simulations. Relevant works can be foundin the works[110, 149]. In the paper[110], Olsen et al. analyzed the impact of realistic neurite shapesat high b-values via Monte-Carlo simulation on numerical neuron phantoms.In this chapter, we continue the Bloch-Torrey PDE-based simulation work to further reveal therelationship between the cellular structure and the diffusion MRI signal in the brain white matter.We analyze the Bloch-Torrey PDE and the HADCmodel in the context of parameterized deformationmappings, starting from a canonical configuration. The canonical configuration we have in mind isa set of straight parallel axons contained in the extra-cellular space. Our idea is to model realisticaxons as spatial deformations of canonical configurations of parallel axons.To be more concrete, we focus on two analytically defined deformations: bending and twisting.We will derive asymptotic models of the diffusion MRI signal and the ADC where the asymptoticparameter indicates the extent of the geometrical deformation. The purpose of this work is to relatethe diffusion MRI signal more directly with tissue geometrical parameters.One potential application of this asymptotic model is to serve as a validation model to study therobustness of the brain white matter microstructure imaging, such as axons radii and volume frac-tion estimation, towards shape imperfections. Furthermore, one may use these asymptotic modelsto establish the relation between the deformations and diffusion MRI signals.This work uses similarmathematical tools as several previous papers focused on themathemati-cal analysis of the Bloch-Torrey PDE subject to geometrical deformations. In[150], a newmathemat-ical model of Bloch-Torrey PDE in moving and deforming media was introduced. In[134], a rigorousmathematical formalism was introduced to quantify the effect of macroscopic-scale tissue motion
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and deformation in cardiac diffusion MRI. In[135], a new model of the ADC of cardiac diffusion MRIwas formulated in the presence of microscopic-scale tissue motion and deformation.

3.2 Theory

In this section, we briefly present the HADC model and give the definition of two analytical de-formations.

3.2.1 Geometrical description

To reveal the relationship between the geometrical structure and the diffusion MRI signal, wepropose to describe the brain white matter fibers as a deformation of a canonical configuration.For ease of mesh generation, we ignore myelin sheathes and consider the canonical the brain whitematter configuration as a set of straight parallel axons encapsulated in one extra-cellular space.
Let the whole canonical simulation domain be C =

⋃Ncmpt

i=1 Ci ∈ R3, containing Ncmpt − 1 ax-ons {Ci}1≤i≤Ncmpt−1 and one ECS CNcmpt
, without any overlap. The interface between one axon

and ECS is denoted by Fij = Ci ∩ Cj for (i, j) ∈ {1, . . . , Ncmpt − 1} × {Ncmpt} or (i, j) ∈ {Ncmpt} ×
{1, . . . , Ncmpt−1}. And the interfaces between axons areFij = ∅, for i ̸= j, (i, j) ∈ {1, . . . , Ncmpt − 1}2.Let ∂C be the outer boundary of the domain C, we denote the restriction of the outer boundary incompartment Ci by Bi = ∂C ∩ Ci, i ∈ {1, . . . , Ncmpt}.

We denote the simulation domain after applying analytical deformation as Ω =
⋃Ncmpt

i=1 Ωi ∈ R3,and the interfaces and restriction of the outer boundary of the deformed domain become Γij and
Σi, respectively.The Bloch Torrey PDE on the deformed domain Ω remains the same as eqs. (1.27) to (1.31) de-fined in section 1.3.2.

3.2.2 HADC Model

When water exchange between compartments is negligible, a homogenized model, called theHADC model, is derived, to compute time-dependent apparent diffusion coefficient using homoge-nization techniques[151]. In this chapter, we use an alternative formula of the HADC model, whichdiffers from the one presented in the original paper. This alternative formula requires less finertime steps in numerical computation. The ADC of compartment Ωi by the HADC model is
ADCi =

Di

|Ωi|
∫ TE

0
F (t)

2
dt

∫ TE

0

F (t)

∫
∂Ωi

ωi(r, t) (ug · n(r)) dsrdt, (3.1)

where ug is the diffusion-encoding gradient direction, n is the outward normal, ωi is the solution ofthe non-homogeneous diffusion equation on the deformeddomainΩwith homogeneousNeumannboundary condition and zero initial condition:
∂

∂t
ωi(r, t) = ∇ · Di∇ωi(r, t)− f(t)ug · r, r ∈ Ωi (3.2)

Di∇ωi(r, t) · ni(r) = 0, r ∈ ∂Ωi (3.3)
ωi(r, 0) = 0, r ∈ Ωi, (3.4)

The above set of equations, eqs. (3.2) to (3.4), comprise the HADC model.The ADC of the whole domain Ω is determined by the volume-weighted sum of each compart-ment:
ADC =

Ncmpt∑
i=1

|Ωi|ADCi/|Ω|. (3.5)
See appendix A.1 for the derivation of this alternative formula of the HADC model.
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3.2.3 Canonical configuration and analytical geometrical deformations

The two basic types of deformations that we implement in this chapter are (1) bending, and (2)twisting. Both types of deformations will be described by one single parameter, called αb and αt.The geometrical structure of the brain white matter fibers will be defined by these two deformationparameters.Let r be the space variable in the deformed (by bending, twisting, or both of them) configuration,whose domain is Ω. The coordinate transformation,
T : C → Ω,

maps the canonical configuration defined on C to the deformed configuration on Ω:
x→ r = T (x).

Bending on the x− z plane with a bending parameter αb is defined by

Tb :

xy
z

→
x+ αbz

2

y
z

 . (3.6)

Twisting around the z-axis with a twisting parameter αt is defined by

Tt :

xy
z

→
cos(αtz) − sin(αtz) 0
sin(αtz) cos(αtz) 0

0 0 1

xy
z

 . (3.7)

The subscript b indicates this term is related to bending and t indicates this term is related to twisting.When both two deformations are applied, the canonical configuration will firstly perform bending,then twisting:
Ttb := Tt ◦ Tb :

xy
z

→
cos(αtz) − sin(αtz) 0
sin(αtz) cos(αtz) 0

0 0 1

x+ αbz
2

y
z

 . (3.8)
It is worthmentioning that the order of deformation is just a choice we have taken. Switching thisorder would modify the transformation operator, but the asymptotic derivation process remainsvalid.We plot in fig. 3.1 a geometrical configuration of 20 cylindrical axons and the ECS before andafter deformation, with two different deformation parameter values. Since all the compartmentsare the same in height, the bending deformation affects each axon uniformly, whereas the twistingdeformation depends on the position in the x-y plane. We can observe that when αb or αt reacha value of 0.07, the deformation already exceeds the regime of small deformation, compared tostraight configuration. Thus, in this thesis, we limit the maximum deformation parameters to 0.07.By adjusting these deformation parameters, we can emulate a configuration closer to the realisticaxons.
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Figure 3.1: First row: canonical configuration, ECS (left), and all 20 cylindrical axons on top view(right).Second row: 20 cylindrical axons with, bend deformation with αb = 0.025 (left), 20 cylindrical axonswith αb = 0.05 (middle), 20 cylindrical axons with αb = 0.07 (right).Third row: 20 cylindrical axons with, twist deformation with αt = 0.025 (left), 20 cylindrical axonswith αt = 0.05 (middle), 20 cylindrical axons with αt = 0.07 (right).Fourth row: 20 cylindrical axons with, deformation with αb = 0.025 and αt = 0.025 (left), 20 cylindri-cal axons with αb = 0.05 and αt = 0.05 (middle), 20 cylindrical axons with αb = 0.07 and αt = 0.07(right).The radii of all axons are between 0.25µm and 2µm, the mean radius is 0.9µm, and the height is
20µm.
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3.3 Derivationof asymptoticmodels on thedeformationparam-

eter
The main objective of this work is to construct appropriate models to describe the relationshipbetween the deformation parameters αb, αt and the diffusion MRI signal as well as the ADC. Wewill expand the solutions of the Bloch-Torrey PDE and the HADC model as asymptotic series in thedeformation parameters αb and αt. This approach is expected to work well in the regime of smalldeformations, i.e. αbz ≪ 1 and αtz ≪ 1.

3.3.1 Formulation of the PDEs on the canonical configuration
First, we transform the Bloch-Torrey PDE and the HADCmodel posed on the deformed geometry

Ω into PDEs that are posed on the canonical geometry C.Let J be the Jacobian of the transformation T :
J =

[
∂T
∂x

∂T
∂y

∂T
∂z

]
. (3.9)

We define the composite function for the Bloch-Torrey PDE to be N(x, t) : C → R, where
N = M ◦ T , (3.10)

and for the HADC model to be η(x, t) : C → R, where
η = ω ◦ T . (3.11)

M(r, t) and ω(r, t) are solutions on the deformed domain Ω, thus, N(x, t) and η(x, t) are the solu-tions of the respective transformed PDEs.It is easy to show that the transformed gradient operator of transformed PDE in the i-th com-partment is
∇r = J−T∇x, (3.12)

and the transformed Laplacian operator is
∇r · Di∇r = ∇x · J−1DiJ−T∇x, (3.13)

by performing the chain rule. The matrix J−T is the transpose inverse of the Jacobian matrix.Thus, we can define the transformed diffusion tensor as:
βi := J−1DiJ−T . (3.14)

For the bend deformation, the inverse of the Jacobian matrix is
J−1
b =

1 0 −2αbz
0 1 0
0 0 1

 , det(Jb) = 1, (3.15)
and the transformed diffusion tensor is

βi
b = J−1

b D
iJ−T

b = Di

4α2
bz

2 + 1 0 −2αbz
0 1 0

−2αbz 0 1

 . (3.16)
For the twist deformation, the inverse of the Jacobian matrix is

J−1
t =

 cos(αtz) sin(αtz) αty
− sin(αtz) cos(αtz) −αtx

0 0 1

 , det(Jt) = 1, (3.17)
and the transformed diffusion tensor is

βi
t = J−1

t DiJ−T
t = Di

α2
t y

2 + 1 −α2
t yx αty

−α2
t yx α2

tx
2 + 1 −αtx

αty −αtx 1

 . (3.18)
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In the case of both two deformations are applied:

J−1
tb = (JtJb)

−1
= J−1

b J−1
t =

 cos(αtz) sin(αtz) αty − 2αbz
− sin(αtz) cos(αtz) −αtx

0 0 1

 , det(Jtb) = 1, (3.19)

and the transformed diffusion tensor is
βtb = (JtJb)

−1Di(JtJb)
−T

= J−1
b J−1

t DiJ−T
t J−T

b

= Di

4α2
bz

2 + α2
t y

2 − 4αbαtyz + 1 −α2
t yx+ 2αbαtxz −2αbz + αty

−α2
t yx+ 2αbαtxz α2

tx
2 + 1 −αtx

−2αbz + αty −αtx 1

 .

(3.20)

According to[152], the transformed outward normals on the canonical configuration are theproduct of the transpose inverse of the Jacobian matrix and the normals on transformed config-uration
ni(r) = J−Tni(x). (3.21)

Using eq. (3.21), the right-hand side of eq. (1.29) becomes
κij(M j(r, t)−M i(r, t)) = κij

(
M j(r, t)ni(r) +M i(r, t)(−ni(r))

)
· ni(r)

= J−1κijJ−Tni(x) · ni(x)(N j(x, t)−N i(x, t)).
(3.22)

We define the transformed permeability coefficient as
µij := J−1κijJ−Tni(x) · ni(x). (3.23)

Combining eqs. (3.14) and (3.23), the transformed Bloch-Torrey PDE in C is then:
∂

∂t
N i(x, t) =

(
∇ · βi∇− ıγf(t)g · T (x)

)
N i(x, t),x ∈ Ci, (3.24)

βi∇N i(x, t) · ni(x) = −βj∇N j(x, t) · nj(x), x ∈ Fij , (3.25)
βi∇N i(x, t) · ni(x) = µij(N j(x, t)−N i(x, t)), x ∈ Fij , (3.26)
βi∇N i(x, t) · ni(x) = 0, x ∈ Bi, (3.27)
N i(x, 0) = ρ, x ∈ Ci, (3.28)

The transformed HADC model is:
∂

∂t
ηi(x, t) = ∇ · βi∇ηi(x, t)− f(t)ug · T (x), x ∈ Ωi (3.29)

βi∇ηi(x, t) · ni(x) = 0, x ∈ ∂Ωi (3.30)
ηi(x, 0) = 0, x ∈ Ωi. (3.31)

3.3.2 Asymptotic expansion of HADC according to one deformation parame-
ter

We now expand the solution of the HADC model in one deformation parameter (αb or αt) andmatch the terms to get the first three terms of the asymptotic expansion.We write the solution η of eqs. (3.29) to (3.31) as a three-term asymptotic expansion:
ηk(x, t) = ηk,0(x, t) + αkηk,1(x, t) + α2

kηk,2(x, t) +O(α2
k),

where k ∈ {b, t}. Replacing eq. (3.29) by the expansion above, we obtain:
∂tηk,0 + αk∂tηk,1 + α2

k∂tηk,2 = ∇ · βi∇ηk,0 + αk∇ · βi∇ηk,1 + α2
k∇ · βi∇ηk,2 − f(t)ug · T (x).
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Using eq. (3.16) for the bending transformation, the transformed Laplacian operator is:

∇ · βi
b∇ = ∇ ·

Di

4α2
bz

2 + 1 0 −2αbz
0 1 0

−2αbz 0 1

∂x∂y
∂z


= ∇ · Di∇+Di

(
αb(−2∂x − 4z∂xz) + α2

b(4z
2∂xx)

)
.

(3.32)

To simplify the notation, we define two second-order differential operators:
Ki

b,1 := Di(−2∂x − 4z∂xz), Ki
b,2 := Di4z2∂xx. (3.33)

Similarly, in the case of the twisting transformation, using eq. (3.18), the transformed Laplacianoperator is:

∇ · βi
t∇ = ∇ ·

Di

α2
t y

2 + 1 −α2
t yx αty

−α2
t yx α2

tx
2 + 1 −αtx

αty −αtx 1

∂x∂y
∂z


= ∇ · Di∇+Di

(
2αt(y∂xz − x∂yz) + α2

t (y
2∂xx − y∂y − 2yx∂xy − x∂x + x2∂yy)

)
.

(3.34)

Also, we define:
Ki

t,1 := Di(2y∂xz − 2x∂yz), Ki
t,2 := Di(y2∂xx − y∂y − 2yx∂xy − x∂x + x2∂yy). (3.35)

So the transformed Laplacian operator acts as the first and the second correction operators forthe Laplacian:
∇ · βi

k∇ = ∇ · Di∇+ αkK
i
k,1 + α2

kK
i
k,2, (3.36)

where k ∈ {b, t}.Using eq. (3.16) for the bending transformation, the transformed gradient operator is:

βi
b∇ = Di

4α2
bz

2 + 1 0 −2αbz
0 1 0

−2αbz 0 1

∂x∂y
∂z

 = Di∇+Di

αb

−2z∂z0
−2z∂x

+ α2
b

4z2∂x0
0

 . (3.37)

Similarly, we define two correction operators for the transformed gradient operator:

Gi
b,1 := Di

−2z∂z0
−2z∂x

 , Gi
b,2 := Di

4z2∂x0
0

 . (3.38)

For the twist transformation, using eq. (3.18), the transformed gradient operator is:

βi
t∇ = Di

α2
t y

2 + 1 −α2
t yx αty

−α2
t yx α2

tx
2 + 1 −αtx

αty −αtx 1

∂x∂y
∂z

 = Di∇+Di

αt

 y∂z
−x∂z

y∂x − x

+ α2
t

y2∂x − xy∂y
x2∂y − xy∂x

0

 .

(3.39)Also, we define:
Gi

t,1 := Di

 y∂z
−x∂z

y∂x − x

 , Gi
t,2 := Di

y2∂x − xy∂y
x2∂y − xy∂x

0

 . (3.40)
The expansion of the transformation operator T (x) until the second-order is

T (x) = x+ αkPk,1 + α2
kPk,2, (3.41)

where k ∈ {b, t},
Pb,1 =

z20
0

 , Pb,1 = [0]3×1, (3.42)
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and

Pt,1 =

−yzxz
0

 , Pt,2 =

−xz2−yz2
0

 , (3.43)
using Taylor expansion to trigonometrical functions. It is evident that for twisting deformation, theerror bound of the Taylor expansion depends on both the twisting parameters αt and the lengthof axons. Therefore, for the twisting deformation, in the regime of large deformation (long axonsor large twisting transformation value), a higher asymptotic order is required to obtain accurateresults.For simplicity of notation, we note the normals on the canonical configuration as ni below, andexcept for the initial condition equation, we note ηik,0(x, t), ηik,1(x, t) and ηik,2(x, t) as ηik,0, ηik,1 and
ηik,2, respectively.Finally, we obtain the following equations after matching the terms αj

k, with j = 0, 1, 2 and k ∈
{b, t}.For α0

k, we get the solution of the HADC on the canonical configuration:
∂

∂t
ηik,0 = ∇ · Di∇ηik,0 − f(t)ug · x, x ∈ Ci, (3.44)

Di∇ηik,0 · ni = 0, x ∈ ∂Ci, (3.45)
ηik,0(x, 0) = 0, x ∈ Ci. (3.46)

For α1
k, we get a PDE that depends on the solution of the previous equation, ηk,0:

∂

∂t
ηik,1 = ∇ · Di∇ηik,1 +Ki

k,1η
i
k,0 − f(t)ug ·Pk,1, x ∈ Ci, (3.47)

Di∇ηik,1 · ni = −Gi
k,1η

i
k,0 · ni, x ∈ ∂Ci, (3.48)

ηik,1(x, 0) = 0, x ∈ Ci. (3.49)
For α2

k, we get a PDE that depends on the solutions of both the above PDEs:
∂

∂t
ηik,2 = ∇ · Di∇ηk,2 +Ki

k,1η
i
k,1 +Ki

k,2η
i
k,0 − f(t)ug ·Pk,2, x ∈ Ci, (3.50)

Di∇ηik,2 · ni = −(Gi
k,1η

i
k,1 +Gi

k,2η
i
k,0) · ni, x ∈ ∂Ci, (3.51)

ηik,2(x, 0) = 0, x ∈ Ci. (3.52)
3.3.3 Asymptotic expansion of Bloch-Torrey PDE according to one deforma-

tion parameter
Similar to the asymptotic expansionof theHADCmodel, wewrite the solutionN(x, t)of eqs. (3.24)to (3.28) as a three-term expansion:

Nk(x, t) = Nk,0(x, t) + αkNk,1(x, t) + α2
kNk,2(x, t) +O(α2

k), k ∈ {b, t}.

The transformed Laplacian operator∇βi∇, the transformed gradient operator βi∇ and the ex-pansion of transformation operator T (x) here are identical to the case of HADC asymptotic expan-sion. Only the transformed permeability coefficient is needed to be treated.For the bend transformation, the expansion of transformed permeability coefficient in αb is:

µij
b = κij

4α2
bz

2 + 1 0 −2αbz
0 1 0

−2αbz 0 1

ni(x) · ni(x)

= κij + κij
(
αb(−4znx

inz
i) + α2

b(4z
2nx

inx
i)
)
,

(3.53)

where nx
i and nz

i are the x and z components of the normal vector ni(x) in the canonical config-uration. We define
µij
b,1 := κij(−4znx

inz
i), µij

b,2 := 4κijz2nx
inx

i (3.54)
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Similarly, for the twist transformation, the expansion of transformed permeability coefficient is:

µij
t = κij

α2
t y

2 + 1 −α2
t yx αty

−α2
t yx α2

tx
2 + 1 −αtx

αty −αtx 1

ni(x) · ni(x)

= κij + κij
(
αt(2ynx

inz
i − 2xny

inz
i) + α2

t (y
2nx

inx
i − 2xynx

iny
i + x2ny

iny
i)
)
.

(3.55)

Also, we define
µij
t,1 := 2κij(ynx

inz
i − xny

inz
i), µij

t,2 := κij(y2nx
inx

i − 2xynx
iny

i + x2ny
iny

i). (3.56)
So for k ∈ {b, t}, the transformed permeability coefficient also gets two correction terms:

µij
k = κij + αkµ

ij
k,1 + α2

kµ
ij
k,2. (3.57)

For simplicity of notation, we define the Bloch-Torrey operatorBTi := ∇Di∇− ıγf(t)g · x, andexcept the initial condition equation, we omit the variable dependence (x, t) for all the orders ofmagnetizations.We obtain the following equations after matching for αj
k, with j = 0, 1, 2, and k ∈ {b, t}:For α0

k, this is the solution of the Bloch-Torrey PDE on the canonical geometry Ci:
∂

∂t
N i

k,0 = BTiN i
k,0, x ∈ Ci, (3.58)

Di∇N i
k,0 · ni = −Dj∇N j

k,0 · n
j , x ∈ Fij , (3.59)

Di∇N i
k,0 · ni = κij(N j

k,0 −N i
k,0), x ∈ Fij , (3.60)

Di∇N i
k,0 · ni = 0, x ∈ Bi, (3.61)

N i
k,0(x, 0) = ρ, x ∈ Ci. (3.62)

For α1
k, the solution depends on the solution of the above PDE, N0:
∂

∂t
N i

k,1 = BTiN i
k,1 + (Ki

k,1 − ıγf(t)g ·Pk,1)N
i
k,0, x ∈ Ci, (3.63)

Di∇N i
k,1 · ni = −Dj∇N j

k,1 · n
j , x ∈ Fij , (3.64)

Di∇N i
k,1 · ni = κij(N j

k,1 −N i
k,1) + µij

k,1(N
j
k,0 −N i

k,0)−Gi
k,1N

i
k,0 · ni, x ∈ Fij , (3.65)

Di∇N i
k,1 · ni = −Gi

k,1N
i
k,0 · ni, x ∈ Bi, (3.66)

N i
k,1(x, 0) = 0, x ∈ Ci. (3.67)

For α2
k, the solution depends on the solutions of both of the above PDEs:
∂

∂t
N i

k,2 = BTiN i
k,2 + (Ki

k,1 − ıγf(t)g ·Pk,1)N
i
k,1

+ (Ki
k,2 − ıγf(t)g ·Pk,2)N

i
k,0, x ∈ Ci, (3.68)

Di∇N i
k,2 · ni = −Dj∇N j

k,2 · n
j , x ∈ Fij , (3.69)

Di∇N i
k,2 · ni = κij(N j

k,2 −N i
k,2) + µij

k,1(N
j
k,1 −N i

k,1) + µij
k,2(N

j
k,0 −N i

k,0)

− (Gi
k,1N

i
k,1 +Gi

k,2N
i
k,0) · ni, x ∈ Fij , (3.70)

Di∇N i
k,2 · ni = −(Gi

k,1N
i
k,1 +Gi

k,2N
i
k,0) · ni, x ∈ Bi, (3.71)

N i
k,2(x, 0) = 0, x ∈ Ci. (3.72)

3.3.4 Asymptotic expansion of HADC according to two deformation parame-
ters

In this subsection, we expand the solution of theHADCmodelwhen twodeformation parameters(αb and αt) are applied, and match the first six terms of the asymptotic expansion.
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We write the solution η of eqs. (3.29) to (3.31) as a six term asymptotic expansion:

η(x, t) = η0(x, t)+αbη0,1(x, t)+α2
bη0,2(x, t)+αtη1,0(x, t)+α2

t η2,0(x, t)+αtαbη1,1(x, t)+O(α2
b +α2

t ),

where the first subscript indicates the order of twist deformation and the second subscript indi-cates the order of bend deformation.The transformed diffusion tensor βtb can be decomposed into four terms: an identity matrix, apure bending term, a pure twisting term, and a coupling-effect term.
βtb = Di

Id+

4α2
bz

2 0 −2αbz
0 0 0

−2αbz 0 0

+

α2
t y

2 + 1 −α2
t yx αty

−α2
t yx α2

tx
2 + 1 −αtx

αty −αtx 1

+

−4αbαtyz 2αbαtxz 0
2αbαtxz 0 0

0 0 0

 .

(3.73)If we switch to applying firstly the twisting transformation, and then bending transformation, thefirst three terms will be unchanged, and only the coupling effect term will be different.Replacing eq. (3.73) into the transformed Laplace operator, we obtain
∇ · βi

tb∇ = ∇ · Di∇+ αbK
i
b,1 + α2

bK
i
b,2 + αtKt,1 + α2

tK
i
t,2 + αbαtDi(−4yz∂xx + 4xz∂xy). (3.74)

We define a new second-order differential operator for the coupling effect term:
Ki

tb,1,1 := Di(−4yz∂xx + 4xz∂xy). (3.75)
Similarly, using eq. (3.73), the transformed gradient operator is:

βi
tb∇ = Di∇+ αbG

i
b,1 + α2

bG
i
b,2 + αtG

i
t,1 + α2

tG
i
t,2 + αtαbDi

−4yz∂x + 2xz∂y
2xz∂x

0

 . (3.76)
We define

Gi
tb = Di

−4yz∂x + 2xz∂y
2xz∂x

0

 . (3.77)
In the same manner, the transformation operator T (x) can also be divided into four terms:
Ttb(x) =

x+

αbz
2

0
0

+

x(cos(αtz)− 1)− y sin(αtz)
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0

+

αbz
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αbz

2 sin(αtz)
0

 . (3.78)
When we expand it to the second-order term:

T (x) = x+ αbPb,1 + α2
bPb,2 + αtPt,1 + α2

tPt,2 + αtαb

 0
z3

0

 , (3.79)
using Taylor expansion to trigonometrical functions. The error bound of the coupling effect term isof the second-order of αtz, whereas the error bound of the pure twisting term is higher, of the thirdorder.We define a new vector

Ptb,1,1 :=

 0
z3

0

 . (3.80)
After matching the order of deformation parameters, we obtain that η0 is equivalent to the so-lution of eqs. (3.44) to (3.46), η0,1, η1,0 are equivalent to the solution of eqs. (3.47) to (3.49) and η0,2,

η2,0 are equivalent to the solution of eqs. (3.50) to (3.52):
η0 ≡ ηb,0 ≡ ηt,0, η0,1 ≡ ηb,1, η0,2 ≡ ηb,2, η1,0 ≡ ηt,1, η2,0 ≡ ηt,2.

For αtαb, the solution η1,1 depends on three lower order solutions η0, η0,1 and η1,0:
∂

∂t
ηi1,1 = ∇ · Di∇η1,1 +Ki

t,1η
i
0,1 +Ki

b,1η
i
1,0 +Ki

tb,1,1η
i
0 − f(t)ug ·Ptb,1,1, x ∈ Ci, (3.81)

Di∇ηi1,1 · ni = −(Gi
t,1η

i
0,1 +Gi

b,1η
i
1,0 +Gi

tb,1,1η
i
0) · ni, x ∈ ∂Ci, (3.82)

ηi1,1(x, 0) = 0, x ∈ Ci. (3.83)
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3.3.5 Asymptotic expansion of Bloch-Torrey PDE according to two deforma-

tion parameters
Similar to the asymptotic expansionof theHADCmodel, wewrite the solutionN(x, t)of eqs. (3.24)to (3.28) as a six-term expansion:

N(x, t) = N0(x, t)+αbN0,1(x, t)+α2
bN0,2(x, t)+αtN1,0(x, t)+α2

tN2,0(x, t)+αtαbN1,1(x, t)+O(α2
b+α2

t ),

where the first subscript indicates the order of twist deformation and the second subscript indicatesthe order of bend deformation.Similarly, we only need to treat the transformed permeability coefficient.The expansion of transformed permeability coefficient is:

µij
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(3.84)

We define the coupling permeability coefficient as
µij
tb,1,1 := κij(−4yznx

inx
i + 4xznx

iny
i). (3.85)

After matching the order of deformation parameters, we obtain
N0 ≡ Nb,0 ≡ Nt,0, N0,1 ≡ Nb,1, N0,2 ≡ Nb,2, N1,0 ≡ Nt,1, N2,0 ≡ Nt,2.

For αbαt, the solution N1,1 depends on N0, N0,1 and N1,0:
∂

∂t
N i

1,1 = BTiN i
1,1 + (Ki

b,1 − ıγf(t)g ·P0,1)N
i
1,0 + (Ki

t,1 − ıγf(t)g ·P1,0)N
i
0,1

+ (Ki
tb,1,1 − ıγf(t)g ·P1,1)N

i
0, x ∈ Ci, (3.86)

Di∇N i
1,1 · ni = −Dj∇N j

1,1 · ni, x ∈ Fij , (3.87)
Di∇N i

1,1 · ni = κij(N j
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1,1) + µij
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0) · ni, x ∈ Fij , (3.88)

Di∇N i
1,1 · ni = −(Gi

t,1N
i
0,1 +Gi

b,1N
i
1,0 +Gi

tb,1,1N
i
0) · ni, x ∈ Bi, (3.89)

N i
1,1(x, 0) = 0, x ∈ Ci. (3.90)

3.3.6 Asymptotic expansion using Matrix Formalism and numerical imple-
mentation

To compute efficiently the asymptotic expansion, we aim to apply Matrix Formalism represen-tation for the asymptotic expansion. The solutions of zeroth order terms of HADC and Bloch-TorreyPDE asymptotic expansion η0 andN0 are identical to the solutions on the canonical geometry. So wecan naturally decompose these terms into the Laplace basis with the same interfaces and boundaryconditions. For the solutions of first and second-order terms accompanied by a non-homogeneousboundary condition, they can be transformed into homogeneous case. We decompose these high-order solutions on the same Laplace eigenfunctions, consider the forcing terms on the boundariesand interfaces as a perturbation, and add the projection of the forcing terms onto the Laplace eigen-basis into the matrix exponentials. By construction, we can decompose the solution η and N intothe Laplace basis of canonical configuration, and write the time-dependent coefficient vector as anexpansion of six terms:
η(x, t) ≈ Φ(x)ζ(t), N(x, t) ≈ Φ(x)T (t),

whereΦ(x) is the eigenfunctions and
ζ(t) = ζ0(t) + αbζ0,1(t) + α2

bζ0,2(t) + αtζ1,0(t) + α2
tζ2,0(t) + αtαbζ1,1(t) +O(α2

b + α2
t ),

T (t) = T0(t) + αbT0,1(t) + α2
bT0,2(t) + αtT1,0(t) + α2

tT2,0(t) + αtαbT1,1(t) +O(α2
b + α2

t ).
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Another concern regarding RAM limitation is that the solution for each asymptotic order relieson the solution of a lower order. Solving them individually necessitates the storage of intermediatesolutions for each order at every time step. To address this issue, one approach is to concatenatethese PDEs into one system of PDEs. The solution of this system of PDEs is

ζall = [ζ0, ζ0,1, ζ1,0, ζ0,2, ζ1,1, ζ2,0]
T
, T all = [T0,T0,1,T1,0,T0,2,T1,1,T2,0]

T
.

After solving it, we can break it into pieces again and obtain the final result. Further details aboutthe numerical implementation are found in appendix A.2.The numerical computations of the asymptotic expansions in Matrix Formalism representationare already integrated into SpinDoctor[87, 92]. We use SpinDoctor to create the geometries, gener-ate finite element (FE) meshes, and compute the orders 0, 1, and 2 asymptotic expansions.Firstly, we use SpinDoctor to create a canonical geometry, containing several straight cylindri-cal axons parallel to the z-axis and an extracellular space wrapped around the axons. Then a finiteelementmesh is generated for the canonical geometry. The deformed geometries will have finite el-ement meshes that are the analytical deformations of the canonical finite element mesh, describedin eqs. (3.6) and (3.7).The finite element discretization is based on continuous piece-wise linear basis functions (the
P1 finite elements), with a numerically efficient implementation from[153].The eigen-decomposition and matrix exponential steps are identical to the previous chapter.

3.4 Numerical results
The numerical validation of the asymptotic expansions of the Bloch-Torrey PDE and the HADCmodel will be conducted in this section. The geometry we use is composed of 20 cylindrical axonsand a tightly wrapped ECS, as depicted in fig. 3.1. The radii of the axons are between 0.25µm and

2µm, with a mean value of 0.7µm. This range selection is based on the histological study of axonsize[154, 155]. The volume fraction of the ECS is 50.4%. The height of all the compartments is 20µm.The diffusion coefficients are set to Daxon = DECS = D0 = 2 × 10−3mm2/s and the permeabil-ity coefficient is set to κ = 10−5m/s, which is the permeability value for axonal membranes[37,122]. The gradient sequence is PGSE(5ms, 15ms) and the gradient strength is b-value=500 s/mm2

(g-value=145mT/m) and b-value=1000 s/mm2 (g-value=205mT/m), within the range of commercialused MRI scanner gradient strength (up to 300mT/m)[156].The reference values are either the ADC obtained by solving the HADC model (eqs. (3.2) to (3.4))on the deformed geometry Ω or the diffusion MRI signal obtained by solving the Bloch-Torrey PDE(eqs. (1.27) to (1.31)) on the deformed domain using Numerical Matrix Formalism. Both of thesereference values are obtained using SpinDoctor. To ensure a fair comparison, We fix the lengthscale cut-off Ls to 1.5µm. Given that the HADC model is based on an impermeable geometry as-sumption, the number of eigenfunctions corresponding to the same length scale cut-off is greaterthan that for the Bloch-Torrey PDE with permeable interfaces, as we saw in the previous chapter.For the asymptotic expansion which deals with Laplace eigenfunctions on canonical configuration,the corresponding number of eigenfunctions isNeig = 917 for Bloch-Torrey PDE andNeig = 922 forthe HADC model. For the reference results obtained by using Laplace eigenfunctions on deformedconfiguration, the corresponding number of eigenfunctions Neig increases as the deformed angleincreases. In table 3.1, we list the required Neig for each configurations.Because pure bending and pure twisting are two special cases of the last case, in practice, weonly need to solve the asymptotic expansion in the case when both two deformations are appliedand set one deformed angle to zero to obtain one deformation result.
[αt, αb] canonical [0, 0.05] [0, 0.07] [0.05, 0] [0.07, 0] [0.05, 0.05] [0.07, 0.07]
κ = 10−5 917 945 956 927 936 951 958
κ = 0 922 949 958 934 940 952 961

Table 3.1: Corresponding number of eigensNeig to a length scale cut-off Ls = 1.5µmwith differentpermeability values and deformed angles on the simulation domain. The unit of permeability κ ism/s.
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3.4.1 HADC model

First, we show the effects of bending and twisting in multiple gradient directions for the HADCmodel. Being that 0th order term η0 gives the ADC of the canonical configuration, η1 and η2 couldbe considered as two corrections. In all the plots that follow, the ADC is normalized by the intrinsicdiffusion coefficient 2× 10−3mm2/s.In fig. 3.2we showADCand the contribution from 0th, 1st and 2nd order terms inmultiple gradientdirections in 3 dimensions. For bend deformation, we can see that 1st order term provides maximalnegative correction along the z direction. On the other hand, 2nd order term provides maximalpositive correction along the x − z plane. As a result, the ADC figure will be thicker in x directionscompared with canonical case and be lower in the axial direction.For twist deformation, 1st and 2nd provide different maximal correction directions, because ofthe different orders of Taylor expansion of trigonometrical functions. This will change themaximumADC direction. The final ADC is titled toward to maximal correction direction of the 2nd order cor-rection. When both two deformations are applied, the effects of high order correction terms looklike the convolution of bend and twist effects.

Figure 3.2: The components of the HADC asymptotic model in 120 gradient-directions, which areuniformly distributed on the sphere. The black dots indicate the ADC values. The distances fromthe origin of the dots as well as the colors are proportional to the ADC (normalized by the intrinsicdiffusion coefficient D0 = 2 × 10−3mm2/s). The gradient sequence is PGSE(5ms, 15ms). Top: thebend deformation with αb = 0.07. Middle: the twist deformation with αt = 0.07. Bottom: bend thentwist deformation with [αb, αt] = [0.07, 0.07]. From left to right: ADC, contribution from 0th, 1st and
2nd order terms.

For the clarity of display, we show further results, which concern the accuracy of our asymptoticmodel, using two dimensional plots, where a uniform distribution of gradient directions is takenfrom the x−z plane (y = 0). The reference value is the ADC obtained by solving the HADCmodel onthe deformed geometry Ω. The error of the asymptotic model is the difference between differentorder approximations and the reference value.In fig. 3.3, we show four curves: the reference value, the asymptotic model (the second-orderapproximation), the zeroth order approximation (the ADC from the canonical geometry), and the



3.4. NUMERICAL RESULTS 73
first-order approximation (sum of the zeroth and first-order terms). We see that frequently, forbend deformation, the first-order correction is an over-correction on η0 and that our second-ordercorrection brings the result closer to the reference value. As the deformation parameter increases,the difference between our asymptotic model and the reference value increases, as expected. Wenote that even though η0 is the same function on the canonical geometry for both the bend andtwist deformations, after integrating over the surface of deformed geometry, its contribution to theADC is different depending on the specific deformation. This causes that the computed zeroth orderADC is different for each deformation despite the fact that η0 is the same function on the canonicalgeometry C.

Figure 3.3: 2D HARDI simulations of the ADC in 60 gradient-directions, which are uniformly dis-tributed in the x − z plane (y = 0). The ADC values are normalized by the intrinsic diffusion coef-ficient D0 = 2 × 10−3mm2/s and labeled on the gray circles. The displayed angle (from 0 to 360degrees) is the angle between positive x-axis and the diffusion gradient direction. The blue, red,yellow lines represent 0th, 1st and 2nd order approximations, respectively. The reference value isshown in purple. The gradient sequence is PGSE(5ms, 15ms). Top left: αb = 0.05; Top middle:
αt = 0.05 (where the first-order, second-order approximations and the reference value are indis-tinguishable); Top right: [αb, αt] = [0.05, 0.05] Bottom left: αb = 0.07; Bottom middle: αt = 0.07;Bottom right: [αb, αt] = [0.07, 0.07].

In fig. 3.4, we show the relative errors of the 0th, 1st and 2nd order approximations, normalizedby the reference values. At αb = 0.05, the maximum 2nd order approximation error is 11%, andthe maximum 0th order approximation error is 35%. At αb = 0.07, the maximum 2nd order approx-imation error is 11%, and the maximum 0th order approximation error is 65%. At αt = 0.05, themaximum 2nd order approximation error is 2%, and the maximum 0th order approximation error is18%. At αt = 0.07, the maximum 2nd order approximation error is 4%, and the maximum 0th orderapproximation error is 30%. At [αb, αt] = [0.05, 0.05], themaximum 2nd order approximation error is2%, and the maximum 0th order approximation error is 39%. At [αb, αt] = [0.07, 0.07], the maximum
2nd order approximation error is 9%, and the maximum 0th order approximation error is 50%.Next, we show in fig. 3.5 the relative errors for the axons compartment and for the ECS sepa-rately. For axons compartment, the maximum relative errors lie in x-axis, where the ADC values arethe smallest (less than 0.2). In general, the axons compartment is much less accurately modeled
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Figure 3.4: The relative ADC error between 0th, 1st and 2nd order approximations and the referencevalue in 60 gradient directions, which are uniformly distributed in the x−z plane (y = 0). The labeledvalues on the gray circles are given in percent. The gradient sequence is PGSE(5ms, 15ms). The dis-played angle (from 0 to 360 degrees) is the angle between positive x-axis and the diffusion gradientdirection. The blue, red, yellow lines represent 0th, 1st and 2nd order approximations, respectively.Top left: αb = 0.05; Top middle: αt = 0.05; Top right: [αb, αt] = [0.05, 0.05] Bottom left: αb = 0.07;Bottom middle: αt = 0.07; Bottom right: [αb, αt] = [0.07, 0.07].

than the ECS compartment (which is more isotropic), except the case αt = 0.07.
3.4.2 Bloch-Torrey PDE

Now we validate our asymptotic model for the Bloch-Torrey PDE in the same geometries. Weshow firstly the deformation effects on the diffusion MRI signals. In fig. 3.6 we show the normalizedsignals at b = 1000 s/mm2 in the canonical geometry, as well as in the bend and twist deformedgeometries. We can observe that the maximum diffusion MRI signal will decrease in the presenceof any kind of deformation, compared to the canonical configuration. When both two deformationsare applied, it is clear that the signals HARDI plot is titled.In fig. 3.7, we depicted the diffusion MRI signals and each order approximations in x-z plane. Itis evident that the second-order approximation is close to the reference signal, except the case of
[αb, αt] = [0.07, 0.07].In fig. 3.8, we show the relative errors between the 0th, the 1st, the 2nd order approximationsand the reference value, for b = 1000 s/mm2. For the bend deformation, the 0th and the 1st orderapproximations are indistinguishable for αb from 0.05 to 0.07, whosemaximum relative error anglesalign with x-axis. Therefore, at least a second-order approximation is needed to obtain an accuratesimulation. The overall relative error of 2nd approximation is under 5.6% and the relative error inx-axis direction is well reduced.For the twist deformation, in the case ofαt = 0.05, the relative error by first-order approximationis about the same level as zeroth order approximation. Thus a higher order approximation is alsorequired. The overall relative error of 2nd approximation is under 1.6%.When both two deformations are applied, the first-order approximation does not have signifi-
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Figure 3.5: The relative ADC errors between the reference solution and the asymptotic model in 60gradient directions in the x− z plane (y = 0), in all compartments (blue line), in the axons (red line),and in the ECS (yellow line). The labeled values on the gray circles are given in percent. The dis-played angle (from 0 to 360 degrees) is the angle between positive x-axis and the diffusion gradientdirection. The gradient sequence is PGSE(5ms, 15ms). The volume fraction of ECS is 50.4%. Top left:
αb = 0.05; Top middle: αt = 0.05; Top right: [αb, αt] = [0.05, 0.05] Bottom left: αb = 0.07; Bottommiddle: αt = 0.07; Bottom right: [αb, αt] = [0.07, 0.07].

cant improvement because of the bending deformation. For [αb, αt] = [0.07, 0.07], the relative errorin x-axis is the same level for all three approximations, which means that second-order approxima-tion is not accurate enough to approximate this extent of deformation.In fig. 3.9, we show the relative errors of the asymptotic model for the axons compartment andfor the ECS separately, for b = 500 s/mm2 and b = 1000 s/mm2. For bend deformation, the relativeerrors of axons and ECS are at the same level.
3.4.3 Convergence order of the asymptotic models

Next, we show the convergence order of the asymptoticmodels. In fig. 3.10, we show the relativeerrors in the direction-averaged ADC of 0th, 1st, and 2nd approximations, as αb and αt decrease. Thefirst-order approximation yields almost the same errors as the zeroth-order approximation for benddeformation. We see a lower error level for our second order asymptotic model.In fig. 3.11, we show the relative errors in the direction-averaged signal of 0th, 1st, and 2nd ap-proximations, as αb and αt decrease, for b = 1000 s/mm2. We see a convergence order of 3, O(α3),for our second order asymptotic model.Finally, in fig. 3.12, we show the convergence of our asymptoticmodels with b-value is first-order,
O(b).
3.4.4 Computational time comparison

In terms of the computation time, the asymptotic offers two benefits when conducting the sim-ulations with multiple deformation parameter values. First, the Laplace decomposition just needs
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Figure 3.6: Normalized diffusion MRI signal at b-value = 1000 s/mm2, in 120 gradient-directions,which are uniformly distributed on the sphere. The distances from the origin of the black dotsas well as the colors are normalized by S0, equivalent to the volume of the simulation domain. Thegradient sequence is PGSE(5ms, 15ms). The diffusionMRI signals of the canonical configuration (lefttop). The signals of the bend deformation by asymptotic model, with αb = 0.05 (right top). The sig-nals of the twist deformation by asymptotic model, with αt = 0.05 (left bottom). The signals of twodeformations by asymptotic model with [αb, αt] = [0.05, 0.05] (right bottom).

to be done once. In contrast to the classical Matrix Formalism, where changing the deformationangles necessitates regenerating the Laplace eigenbasis, the asymptotic approach is based on thecanonical configurations, which saves time in this step. Second, although solving the systemof ODEs(or computing the matrix exponential) is more time-consuming than the classical way because thelarger matrix size is related to the asymptotic order, it also requires only a single computation. Afterobtaining and storing the solution for each asymptotic order, calculating the diffusion MRI signal orADC for various deformed configurations is immediate.To show this efficiency, we compare the computational time of the classical Matrix Formalismand the asymptotic expansion on the same geometry in fig. 3.1 with the same experimental settings.There are 335,284 elements and Nnode = 99, 414 nodes in total, of which 52,563 nodes in the ECS.All the simulations are performed on a computing server with 20 cores of frequency 2.4 GHz, andRAM of 256GB. The operating system is Rocky Linux 8 and the Matlab version is R2021a. All thesimulations are performed on a Dell laptop with 6 cores of frequency 1.1 GHz and RAM of 32GB/@.The operating system is Windows 11 and the Matlab version is R2022b.Table 3.2 shows the computational times of the Laplace eigendecomposition with different con-figurations, using the same routine as the previous chapter. Numerical Matrix Formalism needs toperform the Laplace eigendecomposition on each deformed configuration, whereas the asymptoticexpansion only needs to perform once on the canonical configuration.Table 3.3 shows the computational times of the matrix exponential computations in one gradi-ent direction with different settings. The number of eigenfunctions is set to Neig = 1, 000. We cansee from the table that the asymptotic expansion is much slower than the Numerical Matrix For-malism. It takes around 36 times longer to compute one value compared to the Numerical MatrixFormalism because the matrix size is six times bigger. However, the asymptotic expansion requirescomputing the matrix exponentials just once for each sequence setting. After that, signal computa-tions for different deformed configurations become instant. Thus, when various deformed anglesare simulated, both two methods will consume similar time. In the table, we also include the cost ofsolving the Bloch-Torrey PDE directly using finite elements rather than computing eigenfunctions,labeled “FE”. It is much more costly than either of the two eigenfunction based methods, if multiplediffusion encoding gradient directions and shells are needed.
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Figure 3.7: The diffusion MRI signal by 0th, 1st and 2nd order approximations and the reference in60 directions gradient-directions in the x−z plane (y = 0). The diffusion MRI signal is normalized bythe initial signal S0. The labeled values on the gray circles are the normalized signal values from 0 to1. The displayed angle (from 0 to 360 degrees) is the angle between positive x-axis and the diffusiongradient direction. The b-value = 1000 s/mm2 and the gradient sequence is PGSE(5ms, 15ms). Theblue, red, yellow, purple lines represent 0th, 1st, 2nd order approximations and reference signal,respectively. Top (from left to right): αb = 0.05, αt = 0.05 and [αb, αt] = [0.05, 0.05]; Bottom (fromleft to right): αb = 0.07, αt = 0.07 and [αb, αt] = [0.07, 0.07].

Computational time (seconds)
[αt, αb] Neig = 1, 000 Neig = 1, 500 Neig = 2, 000HADC κ = 10−5 HADC κ = 10−5 HADC κ = 10−5

Canonical 219 258 367 490 455 725
[0, 0.05] 216 290 319 548 426 799
[0.05, 0] 205 297 314 512 438 781

[0.05, 0.05] 216 292 303 534 471 834
Total (NMF) 856 1137 1303 2084 1790 3139

Total (asymptotic) 219 258 367 490 455 725
Table 3.2: Computational times of Laplace eigen-decomposition with different deformation angles,given in seconds. The unit of permeability κ is m/s. The full set contains Nnode = 99, 414 nodes.
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Figure 3.8: The relative signal error between 0th, 1st and 2nd order approximations and referencevalue in 60 directions gradient-directions in the x− z plane (y = 0). The labeled values on the graycircles are given in percent. The displayed angle (from0 to 360 degrees) is the angle betweenpositivex-axis and the diffusion gradient direction. The b-value = 1000 s/mm2 and the gradient sequence isPGSE(5ms, 15ms). The diffusion MRI signal is normalized by the initial signal S0. The blue, red,yellow lines represent 0th, 1st and 2nd order approximations, respectively. Top (from left to right):
αb = 0.05, αt = 0.05 and [αb, αt] = [0.05, 0.05]; Bottom (from left to right): αb = 0.07, αt = 0.07 and
[αb, αt] = [0.07, 0.07].

b NMF asym FE
[αt, αb] [0,0] [0,0.05] [0.05,0] [0.05,0.05] [0,0]500 2.4 2.4 2.3 2.3 186 7341000 3.6 3.5 3.5 3.5 189 1363

HADC 1.1 0.9 0.4 0.5 105 579
Table 3.3: Computational times of the Numerical Matrix Formalism (NMF) method, and the asymp-totic expansion, given in seconds. The number of eigenfunctions is Neig = 1, 000. The encoding
gradient direction is fixed in [

√
3/3,
√
3/3,
√
3/3]

T . The gradient sequence is PGSE(5ms, 15ms). Wealso include the cost of solving the Bloch-Torrey PDE directly using finite elements rather than com-puting eigenfunctions in canonical configuration, labeled “FE” The units are κ:m/s and b: s/mm2.
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Figure 3.9: The relative signal errors between the reference solution and the asymptotic modelin 60 gradient directions in the x − z plane (y = 0), in all compartments (blue line), in the axons(red line), and in the ECS (yellow line). The labeled values on the gray circles are given in percent.The displayed angle (from 0 to 360 degrees) is the angle between positive x-axis and the diffusiongradient direction. The gradient sequence is PGSE(5ms, 15ms). The volume fraction of ECS is 50.4%.Left: αb = 0.05. Middle: αt = 0.05. Right: [αb, αt] = [0.05, 0.05]. Top: b = 500 s/mm2. Bottom:b = 1000 s/mm2.

Figure 3.10: The direction-averaged ADC relative error (in percent) against the deformation angle.The yellow, red and blue circles represent zeroth order, first-order and second-order approxima-tions, respectively. The lines with the same color are the linear fitting functions. Top: ADC relativeerror against bend angle; Middle: ADC relative error against twist angle; Right: two angles with thesame values applied.



80CHAPTER 3. ASYMPTOTIC EXPANSIONOFDIFFUSIONMRI ANDADCACCOUNTING FORGEOMETRICALDEFORMATIONS

Figure 3.11: The direction-averaged signal relative error (in percent) against deformation angle.Theyellow, red and blue circles represent zeroth order, first-order and second-order approximations,respectively. The lines with the same color are the linear fitting functions. Top: Signal relative erroragainst bend angle; Middle: Signal relative error against twist angle; Right: two angles with the samevalues applied.

Figure 3.12: The direction-averaged signal relative error (in percent) against b-values. The yellow, redand blue circles represent zeroth order, first-order and second-order approximations, respectively.The lines with the same color are the linear fitting functions. Top: Signal relative error against b-value, with αb = 0.05; Middle: Signal relative error against b-value, with αt = 0.05; Right: Signalrelative error against b-value, with αb = 0.05 and αt = 0.05.
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3.5 Discussion

We analyzed the Bloch-Torrey PDE and the HADC model in the context of geometrical defor-mations starting from a canonical configuration, focusing on two analytically defined deformations,bending and twisting. We derived asymptotic models of the diffusion MRI signal and the ADC wherethe asymptotic parameter indicates the extent of the geometrical deformation. We computed nu-merically the first three orders of the asymptotic models, the zeroth order model based on thecanonical configuration, and two orders of corrections.In section 3.4, we have shown the accuracy levels of the second-order asymptoticmodels for fourgeometrical deformations. From fig. 3.1 we can see that at the smaller deformation values, αb =
0.05 and αt = 0.05, there are already visually significant deformations compared to the canonicalgeometry. It seems that this range of values is sufficient tomodel significant deviations from straightcylinders and is therefore biologically relevant to describe the geometry of the brain white matter.At the higher values that we simulated, αb = 0.07 and αt = 0.07, the asymptotic models resulted inmuch higher errors, but by visual inspection, this larger range of values seems beyond the level ofgeometrical deviations from straight cylinders that we can expect in the brain white matter.We have shown that for biologically relevant geometrical deviations, the ADC and the diffusionMRI signal are accurately described as the sum of a zeroth order value (signal or ADC from thestraight cylinders) and two orders of corrections. We showed that a first-order correction is notsufficient to improve on the zeroth order model, at least two orders of corrections are needed tosignificantly improve on the zeroth order model. With the second-order corrections, the asymp-totic models are second order accurate in the geometrical deformation parameters. In addition,the model errors were shown to come mainly from the axons, with the errors from the ECS com-partment a much smaller source of error.Through HARDI plot, We observe that: (1) The bending deformation causes the HARDI plot in x-zplane to become thicker; (2) The twisting deformationwill rotate the direction ofmaximal ADC,whichmight potentially introduce challenges in orientation estimation; (3) Applying both two deformationssimultaneously, the final effect is the superposition of them.Compared to traditional approaches computing diffusionMRI signals on deformed domains, theproposed asymptotic expansions only need to solve the PDE once on the canonical geometry andcan yield the results immediately for all the combination of deformation angles, which facilitate thestudy of deformation effects. Thismethod can be used to quantitatively examine how realistic axonsshapes affect the microstructure estimation in the brain white matter.The purpose of this work is to contribute to relating the diffusion MRI signal more directly withthe tissue geometrical parameters. The idea is that the diffusion MRI signal and ADC differencesbetween nearby voxels and regions of interest can be modeled by second-order corrections due togeometrical deformations with respect to a canonical configuration of straight brain white matterfibers. Even though the two correction terms we described in this paper are in the forms of partialdifferential equations and hence are complicated to solve, an intriguing possible future direction isthe use of machine learning algorithms to directly map diffusion MRI signals to some geometricaldeformation parameters relevant to the brain white matter fibers in the regions of interest.
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Chapter Overview

In this chapter, we investigate the underlying cause of the breakdown of the 1/
√b power-lawscaling in the brain gray matter. Following the investigation, we propose a novel soma size andcompartment volume fractions estimation approach.This work is inspired by the numerical study on the signal behavior of individual realistic neuronsat high b-values in[5]. By fixing the gradient strength and varying the diffusion time (using PGSE with

δ = ∆), Fang et al.[5] observed that the direction-averaged neuron signal will change its concavityin the region where 1/√b power-law is expected. From this observation, potential biomarkers werederived from this signal inflection point (IP). In the PhD thesis of Chengran Fang[3], he presenteda simulation-driven supervised learning framework for microstructural imaging, which uses the in-flection point-derived biomarkers (and alternatively, a large number of signal values) as inputs toMulti-layer Perceptrons (MLPs). Also from that PhD thesis are the following needed elements forthis thesis described in section 4.1: the experimental settings, the constructions of the NeuronSet,the Synthetic Voxels Set, and the spline interpolation method.
83
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In this work, we first examine the signal behaviors of various geometrical shapes using PGSEsequences with fixed δ and ∆ (δ < ∆) and adjusting the gradient strength. This choice is more inaccordance with practical MRI experimental settings than the fixed gradient strength setting above.We found that individual neurons still show the same signal pattern as observed in[5]. Thus, we canidentify the IP-derived biomarkers in the fixed δ,∆ setting as well. In addition, we found that singlespheres exhibit a similar signal pattern as individual neurons, hence we would like to link the signaldeviation in realistic neurons to the presence of spherical structures. To be able to accurately com-pute IP-derived biomarkers, we derive their mathematical expressions using the Numerical MatrixFormalismmethod. Then, by analyzing the relationship between IP-derived biomarkers and volumefractions and soma size, we demonstrate that:
1. In the single sphere case, the b-value at the inflection point is uniquely determined by thesoma radius, with a monotonic relationship;
2. For the case of a single sphere combined with a bundle of sticks, the y-intercept of the linearfit at the inflection point is related to the soma volume fraction;
3. In the case comprising a single sphere, sticks, and one free diffusion compartment, the signalvalue at the inflection point correlates with the volume fraction of the free diffusion compart-ment.

These investigations suggest that we can retrieve the soma size and volume fractions informationfrom IP-derived biomarkers.To demonstrate the ability to use the IP-derived biomarkers for practical microstructure estima-tion, we propose an exhaustive search method, using similar parameters to the Synthetic VoxelsSet constructed in[3]. On the single neuron dataset, we evaluate an iterative method based on theIP-derived biomarkers. On a synthetic test set and on an in vivo dataset, we evaluate this exhaustivesearch method. It is shown that the estimated values are similar to those of the SANDI model andthe exhaustive search method based on using a large number of direction-averaged signal values.This work contributes to the interpretation of the deviation from the 1/
√b power-law scaling athigh b-values in the brain graymatter with IP-derived biomarkers corresponding to physicallymean-ingful parameters, and leveraging this understanding for microstructure estimation. Compared tosignal-based estimation, the estimation errors by the biomarker-based estimation are at the samelevel. Because it requires only three biomarkers as inputs instead of signal values of multiple shells,the estimation takes less time.Certain sections from this chapter have been published in the paper[4]. This includes

1. the experimental settings, the constructions of the NeuronSet, the Synthetic Voxels Set, andthe spline interpolation method, described in section 4.1 (which originated in the PhD thesisof Chengran Fang[3]);
2. the exhaustive search method in section 4.3.2;
3. the estimation results on the Synthetic Voxels Set in section 4.4.2
4. the in vivo parameters estimation in section 4.4.3.

The rest of the chapter is new to this thesis and has not been published elsewhere.

4.1 Introduction
In the brainwhitematter, a recent study by Veraart et al.[64, 65] found that the direction-averagedsignals

S ≡
∫
∥ug∥=1

Sdug

decay at a linear rate with the inverse of the square root of the b-values, 1/√b, at high gradientstrength. This behavior, called 1/
√b power-law scaling, is prevalent in the brain white matter. Sub-sequent explanation of this observation is achieved through the numerical simulations on sticks,
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cylinders as well as realistic neurites phantoms[110, 157]. However, in the brain gray matter, a devi-ation from this 1/√b power-law scaling is observed. Several explanations have been proposed forthis deviation. The three primary ones are: (1) the curvature of neurites[158], (2) the presence ofsoma[28], and (3) the significant water exchange between neurites and the extracellular space[100].In a recent work[5], Fang et al. conducted a numerical study on individual realistic neurons andtheir neurite branches, using PGSE sequences with δ = ∆, keeping the gradient strength constantand adjusting the pulse duration δ. It was revealed that: (1) For the neurite branches, the 1/

√bpower-law scaling holds true and the slope of this linear fit exhibits a correlation with the inverseof the square root of the intrinsic diffusion coefficient 1/√D0; (2) In contrast, S of neurons exhibitsa change of the concavity. Thus, potential biomarkers were proposed based on the inflection point(IP) of the direction-averaged signal curve.In follow up work, in the PhD thesis of Chengran Fang[3], he presented a simulation-driven su-pervised learning framework for microstructural imaging, showing the potential applications of theinflection point derived biomarkers. In order to fit the in vivo dataset, the IP-derived biomarkersare defined based on the signal curve using a fixed PGSE sequence and varying gradient strength,which is different from the original paper[5]. He constructed a Synthetic Voxels Set from realisticneurons and usedmultilayer perceptrons (MLPs) to approximate the underlyingmappings between(1) a large number of signals or (2) IP-derived biomarkers plus ADC and microstructure parameters.The objective of this chapter is to further investigate the relationship between the IP-derivedbiomarkers and the volume fractions and soma size, then employ the findings for estimation. Differ-ent sequence configurations might result in different relationships. Because practical experimentsusually employ PGSE sequences with fixed δ and∆, adjust only the gradient strength, we adopt thelatter definition of IP-derived biomarkers from[3]. Figure 4.1 depicts the S of an individual realisticneuron as a function of 1/√bwithin the regimewhere the 1/√b power-law scaling is expected, usinga fixed PGSE sequence PGSE(8ms, 49ms)with varying gradient strength. Four IP-derived biomarkersare:
• x0: the x-coordinate of the inflection point;
• y0: the y-coordinate of the inflection point;
• c0: the y-intercept of the power-law fit at the inflection point;
• c1: the slope of the fit.
This chapter addresses the challenges of interpreting signals in relation tomicrostructures in thebrain gray matter and seeks to provide insights into the design of microstructure estimation algo-rithms. We analyze the relationship between these four IP-derived biomarkers and volume fractionsand soma size. To conduct accurate estimation in practice, we use an exhaustive search methodrather than optimization algorithms or machine learning algorithms such as MLPs. The reason forthis choice is that the exhaustive search approach eliminates the need for difficult computations ofnonconvex fitting. Our library will use similar parameters to the Synthetic Voxels Set constructed inthe work[3].In the remainder of this section, wewill present the simulation-driven supervised learning frame-work proposed in the thesis of Fang[3], including the in vivodata, the construction of Synthetic VoxelsSet, and the computation of IP-derived biomarkers using spline interpolation. Detailed informationregarding the MLP configurations can be found in appendix B.2. We will employ the same datasetsto validate our exhaustive search method and compare its performance with the simulation-drivensupervised learning framework in a later section.

4.1.1 MGH CDMD data and experimental settings
We first introduce the in vivo data and corresponding experimental settings. All subsequentinvestigations and estimations will be presented using these experimental parameters.The MGH Connectome Diffusion Microstructure Dataset (CMCD)[156] is a publicly accessibledataset designed to serve as a test platform for the new diffusion MRI microstructure models work-ing at high gradient strengths. The diffusion MRI data are acquired from 26 healthy participants onthe 3T ConnectomeMRI scanner (Magnetom CONNECTOM, Siemens Healthineers). The experimentsettings are:
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Figure 4.1: Four inflection point derived biomarkers values. The inflection point is characterizedas the location where the concavity of the signals changes. The simulation is performed on theneuron “20171005A01” from neuromorpho.org[159] using SpinDoctor. Different from the originalpaper[5], the curve is plotted with fixed sequence PGSE(8ms, 49ms) and varying gradient strengths.Signal values are normalized by the neuron volume and averaged over 32 uniformly distributeddiffusion-encoding gradient directions. The black dots indicate values computed by Numerical Ma-trix Formalism.

• Two PGSE sequences are applied. The pulse duration δ = 8ms, and two different betweenpulse duration∆ = [19, 49]ms. The echo time TE = 77ms;
• Eight gradient strengths are used, g-values=[31, 68, 105, 142, 179, 216, 253, 290]mT/m, corre-sponding to b-values [72, 346, 825, 1509, 2400, 3491, 4789, 6292] s/mm2 for∆ = 19ms and
[204, 981, 2340, 4279, 6800, 9902, 13584, 17848] s/mm2 for∆ = 49ms;

• 32 diffusion encoding directions uniformly distributed on a sphere for b < 2400 s/mm2 and64 uniform directions for b ≥ 2400 s/mm2.
The acquired image parameters are: field of view (FOV) = 216× 216mm; slice thickness = 2mm;and voxel size = 2× 2× 2mm3.The diffusion MRI data were already pre-processed to correct gradient non-linearity, eddy cur-rents, and susceptibility-induced distortions. The estimated median signal-to-noise ratio (SNR) is21[156, 160]. MGH CDMD recorded only the real part of the signals for some subjects. Further de-tails regarding data acquisition and processing can be found in the initial publication associatedwiththis dataset[156].Accordingly, the simulated experiments are designed based on the in vivo dataset in use:
• Two PGSE sequences PGSE(8ms, 19ms) and PGSE(8ms, 49ms) are applied, referred in the fol-lowing as the short and long sequences;
• 64 gradient strengths ∥g∥ linearly space between 0 and 290 mT/m are simulated;
• 32 diffusion encoding gradient directions ug uniformly distributed on a hemisphere are used,which are equivalent to 64 directions on a sphere because the signals are anti-symmetric;
• The simulations are performed using theNumerical Matrix Formalism. The length scale cut-off
Ls is chosen to be 1.5µm, which corresponds to a characteristic time scale of 76µs;

• The intrinsic diffusion coefficient D0 is set to be 3× 10−3mm2/s;
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• Interfaces are supposed to be impermeable.
The initial condition is assumed to be a uniformly distributed density. The signals are normalizedby the initial density, denoted as S(∥G∥,ug, δ,∆). The direction-averaged signals are computed asthe average value over all the 32 diffusion encoding directions:

S(∥G∥, δ,∆) =
1

32

32∑
i=1

S(∥G∥,ug, δ,∆). (4.1)

4.1.2 NeuronSet

The quality of the estimation using MLP is tightly coupled with the quality of the diffusion MRIsignal data in the training set. Furthermore, accurate microstructural parameters are required forthe validation as well. To be able to acquire high-fidelity data, it is desired that simulations areperformed on neurons with realistic shapes. In [4], a neuron database, named NeuronSet, was es-tablished using digitally reconstructed real human neurons sourced from neuromorpho.org[159],via an automatic generator. This dataset is now available at https://github.com/SpinDoctorMRI.To ensure diversity and avoid potential biases arising from similarities in shapes, NeuronSet includesneurons covering a wide range of brain regions and encompassing a diverse range of shapes. Thisdataset contains simulation-ready surface meshes of 1,163 real human neurons and 50 glia, inde-pendently recorded by 11 laboratories, stored in 11 archives, and reported on 22 papers[161–182].For simplicity of notation, we refer to both neurons and glia as neurons in the following since theyhave the same neuronal shapes.To be able to perform the simulations (compute the signals and their second-order derivatives),surface meshes will be transformed into volumemeshes. This process is done by Tetgen[121] usingSpinDoctor. Figure 4.2 displays the distributions of the number of triangles on surface meshes andthe number of nodes on volume meshes. The average numbers of faces and nodes are around
150, 000 and 80, 000, respectively. The maximum number of nodes is 200, 000, which is within thecapability of our computer.
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Figure 4.2: Distributions of surface meshes and finite element meshes information of the NeuronSetwhich contains 1213 neurons. Left: The distribution of the number of triangles; Right: The distribu-tion of the number of nodes. The blue solid line is the probability density function of the distributionscalculated by Seaborn[183].
In addition, the volume meshes will be used to accurately measure the neuron’s shape informa-tion. The soma is represented as a sphere with a radius of Rsoma. Thus, its volume is approximatedas Vsoma ≃ 4πR3soma/3 and the volume fraction of soma is fsoma = Vsoma/Vneuron, where Vneuron is theneuron volume. The volume fraction of neurite is fneurite = (Vneuron − Vsoma)/Vneuron.Figure 4.3 shows the distributions of these four different morphological parameters of the 1, 213neurons in the NeuronSet. The soma radius ranges from 2 to 28 micrometers, with the majority ofneurons having a soma radius of 8 or 21 micrometers in this one-neuron dataset. More than 50%of neurons have a fsoma value between 40% and 60%.

https://github.com/SpinDoctorMRI
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Figure 4.3: Distributions of morphological parameters of the NeuronSet which contains 1, 213 cells.All the morphological parameters are measured on the finite elements meshes. Top left: The distri-bution of neuron volume; Top right: The distribution of soma volume; Bottom left: The distributionof Rsoma; Bottom right: The distribution of fsoma. The blue solid line is the probability density func-tion of the distributions calculated by Seaborn[183].

4.1.3 Synthetic Voxels Set

The Synthetic voxels set is constructed based on the following assumptions:
• The blood vessels compartment and the stationary water are negligible because their volumefractions in the brain gray matter are relatively small;
• The intracellular compartment is modeled as a combination of neurons randomly selectedfrom the NeuronSet. Each neuron comprises a soma and neurites, all of which are correctlyinterconnected;
• Due to the complexities of accurately packing neurons into extracellular space (ECS) andmain-taining a volume fraction close to the actual value, as well as the intensive computational costsfor simulating the permeability effects, the signal contribution from ECS is modeled as oneisotropic Gaussian diffusion compartment. To reduce the model complexity, its diffusion co-efficient is fixed to be the same value of the intrinsic diffusion coefficient, D0;
• Water exchange between neurons and the free diffusion compartment is negligible. There-fore, each neuron and ECS are disconnected.
The Synthetic voxels set is constructed by randomly selectingM neurons from the NeuronSet tomake 145,000 artificial intercellular spaces. The numberM ranges from 1 to 500 and there are noduplicate neurons by choice. Each combination ofM neurons is then supplemented with 10 differ-ent free diffusion compartments whose diffusion coefficient is fixed to D0 but the volume fractionfollows a Gaussian distribution N (µ = 0.5, σ2 = 0.252). The choice of the Gaussian distribution isempirical. In total, 1.45 million distinct artificial brain voxels are made.
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Since the orientation of the neurons has no impact on the direction-averaged signal, all the com-partments in one voxel are uncoupled. Therefore, the signal is simply represented as the sum ofall the contained compartments. Suppose an artificial brain voxel contains M neurons and a freediffusion compartment, the direction-averaged signal inside one voxel is expressed as

Svoxel(δ,∆, ∥G∥) = fneuron ×
∑M

i=1 Vi · Si∑M
i=1 Vi

+ ffree × e−D0b, (4.2)
where the subscription i indicates the i-th cell, Vi is the neuronal volume,Si is the direction-averagedsignal, and D0 is the intrinsic diffusion coefficient. fneuron and ffree are the volume fraction of theneuron and free compartment, respectively. The sum of them is 1.The microstructural parameters of the synthetic voxel can be determined by the contained neu-rons. Here, we focus on the volume fractions and the soma radius. Given the neuroanatomicalparameters of one synthetic voxel ofM neurons, the soma volume fraction is

fsoma = fneuron
∑M

m=1 V
msoma∑M

m=1 V
mneuron

, (4.3)
the neurite volume fraction is

fneurite = fneuron
∑M

m=1 V
mneurite∑M

m=1 V
mneuron

, (4.4)
and the volume-averaged soma radius is

Rsoma =
∑M

m=1 V
msomaRmsoma∑M

m=1 V
msoma

. (4.5)
Figure 4.4 presents the distributions of the volume fractions and volume-averaged soma radiusin the Synthetic voxels set. fsoma and fneurite are not very correlated after adding the free diffusioncompartment. Two peaks of Rsoma are 10µm and 18µm.

0.0 0.2 0.4 0.6 0.8 1.0
Volume fraction

0

1

2

3

De
ns

ity
 o

f d
at

as
et

 [%
] Compartment

soma
neurite
free

0.0 0.2 0.4 0.6 0.8
Soma volume fraction

0.0

0.2

0.4

0.6

0.8

Ne
ur

ite
 v

ol
um

e 
fra

ct
io

n

0 5 10 15 20 25 30

Volume averaged soma radius [ m]
0

5000

10000

15000

20000

25000

C
ou

nt
 o

f n
eu

ro
n 

m
es

he
s

Figure 4.4: The distributions of the volume fractions and volume-averaged soma radius in the Syn-thetic voxels set. Left: The distributions of fsoma, fneurite, ffree. Middle: The joint distributions of fsomaand fneurite. Right: The distributions of Rsoma. The Synthetic voxels set contains 1.45 million artificialvoxels, where ffree follows a Gaussian distribution N (µ = 0.5, σ2 = 0.252), fsoma and fneurite arederived from realistic neuron meshes. The contour lines in the joint distributions contain 50%, 75%,and 90% of the data points.

4.1.4 Spline interpolation
The spline interpolation is used for:
• TheMLPs are trainedusing 64 gradient strengths, in order to bedesigned as a dataset-independentframework. To perform estimation on the in vivo data, 8 measured signals need to be inter-polated into 64 signals;
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• The IP-derived biomarkers need to be computed using spline interpolation.
Because a vanilla cubic spline suffers a large fluctuation, which may cause inaccuracy and pro-duce spurious inflection point, the fourth-order B-spline interpolation implemented in Scipy[184] isadopted. To moderate the fluctuation, the Gaussian phase approximation is applied when b-valuesare smaller than 35 s/mm2, which provides two boundary conditions which are the continuity of thefirst and second-order derivatives at the lowest b-values blow:

S
′
(1/
√blow) = 2ADC

√
b3lowe−ADC·blow , (4.6)

S
′′
(1/
√blow) = 2ADC · b2low(2ADC · blow − 3)e−ADC·blow . (4.7)

At the high b-value end bhigh, the “natural” boundary condition[185] is adopted:
S
′′
(1/
√bhigh) = 0. (4.8)

The boundary conditions help moderate the fluctuation of the interpolation and allow to sampleof gradient strength up to its maximum value in the real data and find the inflection point. Figure 4.5demonstrates the measured and interpolated signals. It is worth mentioning that if the inflectionpoint exceeds the maximum gradient strength, it will be capped at the maximum value, due to theconsiderable extrapolation error of this method.
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Figure 4.5: Fourth-order B-spline interpolation of direction-averaged signals. Red circles representthe direction-averaged signals at eight non-zero b-values measured from a voxel of the second sub-ject (sub_002) in MGH CDMD. The voxel index is (19, 25, 73). A vanilla cubic spline interpolationrepresented by the dotted black line suffers a large fluctuation. The inflection point is marked bythe green cross. The orange dash line represents the power-law fit at the inflection point. By incor-porating the three boundary conditions annotated in the boxes, the fourth-order B-spline methodinterpolates the eight measured signals giving the solid blue line.

4.2 Analysis of the deviation of power-law scaling in gray mat-
ter

To start, we examine the direction-averaged signal behavior at high b-values for different ge-ometries, from simple shapes, such as sticks, cylinders, and spheres, to realistic neurons, as shownin fig. 4.6. Two numerically reconstructed neurons from NeuronSet are used. The first one is locatedin the fronto-insula region, labeled as “neuron1”, which has a radius of 15.65µm and a soma volumefraction of 83%. The second one is located in the occipital lobe, labeled as “neuron2”, which has a
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Figure 4.6: Finite element meshes of two numerically reconstructed neurons from NeuronSet. Fromleft to right: The whole neurons, the soma part, and the neurites part. The neuron is cut manually inBlender and its volume is conservative. Top row: The name of the neuron is “28o_spindle21aFI” (fromthe allman archive, located in the fronto-insula region). Its soma radius is 15.65µm and its somavolume fraction is 83%; Bottom row: The name of the neuron is “H17-06-012-14-08-03_680980293_m”(from the allen archive, located in the occipital lobe). Its soma radius is 5.5µm and its soma volumefraction is 91%.
radius of 5.5µm and a soma volume fraction of 91%. This analysis employs fixed PGSE sequenceand varying ∥G∥, which differs from[5].In fig. 4.7, we plot the direction-averaged signals using two sequences for eight cases: (1) a bundleof sticks, (2) one sphere, (3) one sphere + sticks (4) a collection of infinity long cylinders, (5) connectedneuron, (6) disconnected neuron, (7) soma part and (8) neurites part. The direction-averaged signalof sticks has an analytical expression:

Ssticks =

∫ 1

−1

e−D0bz
2

dz =

√
π

4D0berf(
√
D0b) (4.9)

where erf(·) is the error function. For the other shapes, S is computed by the Matrix Formalism. Weobserve that:
1. The 1/

√b power-law scaling holds true for all tubular structures, from simple shapes suchas sticks and straight cylinders to realistic neurite branches, implying that the curvature andbranching won’t break this relationship. For sticks, at high b-values, erf(√D0b) ≈ 1, thus wehave Ssticks ≈
√
π/4D0b, which results in the power-law relationship;

2. At ultra-high b-values, the signal of the collection of cylinders starts to become sensitive tothe perpendicular diffusion inside the neurite, resulting in deviation from the linear relation-ship[66];
3. All the shapes containing spherical structures do not exhibit the power-law in the range wherewe should observe it. Furthermore, for all of them, we notice the signals will change the con-cavity at a specific point, suggesting that the inflection point is related to the inclusion of spher-ical structures;
4. As the diffusion time increases, the point of concavity change occurs at a higher b-value;
5. Signal of the whole neuron is similar to those of the case comprising one sphere and sticks;
6. The signals from disconnected neurons are similar to those from the connected neurons, in-dicating that water exchange between the soma and neurites has minimal influence on theglobal signal behavior pattern.
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(a)

(b) (c)
Figure 4.7: S against 1/√b. Top: Results for simple shapes, using the long sequence, The blue,red, purple, green, and brown lines represent the case of (1) one sphere with a radius of 15.65µm,labeled ‘Sphere1’, (2) ‘Sphere1’+sticks, (3) one sphere with a radius of 5.5µm, labeled ‘Sphere2’, (4)‘Sphere2’+sticks and (5) a collection of cylinders with radii from 0.5µm to 1.5µm; Bottom left: Resultsfor realistic shapes, using the short sequence; Right: Results for realistic shapes, using the longsequence. The blue, red, purple, green, brown, gray, light blue, and yellow lines represent the caseof (1) connected neuron1, (2) disconnected neurons1, (3) the soma of neuron1, (4) the neurites ofneuron1, (5) the connected neuron2, (6) the disconnected neuron2, (7) the soma of neuron2 and (8)the neurite of neuron2. The black line is the pure sticks case. Themarkers indicate values computedby Numerical Matrix Formalism.

4.2.1 IP-derived biomarkers

In the previous subsection, we demonstrate that the presence of spherical structures will causethe deviation of the 1/
√b power-law scaling. In the following, we adopt the same definition of thefour IP-derived biomarkers in section 4.1 and investigate the relationship between these biomark-ers and the soma size and volume fractions. Notably, among these four IP-derived biomarkers,only three are truly independent. The slope c1 can be computed by (y0 − c0)/x0. Mathematically,the x-coordinate of the inflection point x0 corresponds to the gradient strength value making thesecond-order derivative of S against 1/√b equal to zero. The y-coordinate y0 is the correspondingnormalized signal value and the slope c1 is the corresponding first-order derivative value. The y-intercept c0 signifies that, starting from the inflection point, the signals begin to decay at their peakrate c1, and this trend continues as the gradient strength approaches infinity.

Because of the high b-values resonance, the second-order derivative of S perhaps has multiplezeros. In that case, we take the lowest b-values point as the target inflection point, where the first-order derivative of S against 1/√b is maximum.
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4.2.2 Mathematical computation of IP-derived biomarkers from Numerical

Matrix Formalism

In this subsection, we provide the mathematical expressions of the four IP-derived biomarkers,
x0, y0, c1 and c0, using Numerical Matrix Formalism. Compared to find them by fourth-order splineinterpolation, these expressions ensure precise computation of these biomarkers during numericalanalysis.

Using the first Neig smallest Laplace eigenfunctions (ϕi)i=1,...,Neig
, the diffusion MRI signals of

PGSE(δ,∆) have the expression as below by the Numerical Matrix Formalism:
S(∥G∥,ug, δ,∆;Neig) =

(
1T
Nnode,1

MP
)
H(∥G∥,ug, δ,∆)

(
P TM1Nnode,1

) (4.10)
= TT

0 H(∥G∥,ug, δ,∆)T0,

where ·T is the transposed conjugate, 1Nnode,1 is an all-one vector,M is the mass matrix, and P isthe coefficient of Laplace eigenfunctions in the P1 finite element functions. We denote the initialmagnetization coefficient on the Laplace eigenfunctions as T0 ≡ P TM1Nnode,1, which is indepen-dent of the imposed gradient sequence. H(∥G∥,ug, δ,∆) is expressed as
H(∥G∥,ug, δ,∆) = e−δ(L−ıγ∥G∥W (gu)) · e−(∆−δ)L · e−δ(L+ıγ∥G∥W (gu)), (4.11)

whereL is a diagonal matrix of Laplace eigenvalues, ∥G∥ is the gradient strength, gu is the diffusionencoding gradient direction andW (ug) is the projection of encoding gradient termonto the Laplaceeigenfunctions:
W (gu) = sin(ϕ)(cos(θ)Ax + sin(θ)Ay) + cos(ϕ)Az, (4.12)

Ar
kl =

∫
x∈Ω

rϕk(x)ϕl(x)dx, (k, l) ∈ {1, 2, . . . , Neig}2, r ∈ {x, y, z}, (4.13)
with

gu = [sin(ϕ) cos(θ), sin(ϕ) sin(θ), cos(ϕ)]
T
. (4.14)

The matricesL andW are symmetric. The details of the Numerical Matrix Formalism represen-tation can be found in chapter 2.
For ease of notation, we introduce a new variable q, defined as q = γ∥G∥. For PGSE, the √bholds a linear relation with q:

√b = δ
√
∆− δ/3γ∥G∥ = δ

√
∆− δ/3q. (4.15)

Here, we representH as the product of a matrixG and its transpose conjugate:
H = GTG, (4.16)

withG defined as
G = e−0.5·(∆−δ)L · e−δ(L+ıqW ). (4.17)

In the case of δ and∆fixed, and the gradient strength ∥G∥ varying, the direction-averaged signalsexclusively depend on the gradient strength and can be written as
S(∥G∥) = 1

4π

∫ π

0

∫ 2π

0

S(∥G∥,ug)dθdϕ (4.18)
= TT

0

1

4π

∫ π

0

∫ 2π

0

HdθdϕT0 (4.19)
= TT

0

1

4π

∫ π

0

∫ 2π

0

GTGdθdϕT0. (4.20)
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The first-order derivative of S with respect to 1/

√b is
dS

d(1/
√b) =

dS

dq

dq

d(1/
√b)

= −q2δ
√

∆− δ/3
dS

dq

=
−q2δ

√
∆− δ/3

4π
TT

0

(∫ π

0

∫ 2π

0

d(GTG)

dq
dθdϕ

)
T0

=
−q2δ

√
∆− δ/3

4π
TT

0

(∫ π

0

∫ 2π

0

GT dG

dq
+

(
GT dG

dq

)T

dθdϕ

)
T0.

(4.21)

where the first-order derivative ofG with respect to q can be computed by the theorem[186]
dG

dq
= e−0.5·(∆−δ)L

∫ 1

0

e−αδ(L+ıqW )(−ıδW )e−(1−α)δ(L+ıqW )dα. (4.22)
For simplicity in notation, we define one new variable depending on q:

a ≡ 1

4π
TT

0

(∫ π

0

∫ 2π

0

GT dG

dq
dθdϕ

)
T0. (4.23)

Therefore, the first-order derivative dS/d(1/
√b) is expressed as

dS

d(1/
√b) = −q2δ

√
∆− δ/3(a+ aT ) = −2q2δ

√
∆− δ/3ℜ(a). (4.24)

The second-order derivative of S with respect to 1/
√b is

d2S

d(1/
√b)2 =

d

dq

(
dS

d(1/
√b)

)
dq

d(1/
√b)

= q2δ2(∆− δ/3)
d(q2(a+ aT ))

dq

= q4δ2(∆− δ/3)

(
2(a+ aT )

q
+

da

dq
+

(
da

dq

)T
)
.

(4.25)

The derivative da/dq is expressed as
da

dq
=

1

4π
TT

0

(∫ π

0

∫ 2π

0

d

dq

(
GT dG

dq

)
dθdϕ

)
T0

=
1

4π
TT

0

(∫ π

0

∫ 2π

0

dGT

dq

dG

dq
+GT d2G

dq2
dθdϕ

)
T0.

(4.26)

The second-order derivative ofG with respect to q is
d2G

dq2
= e−0.5·(∆−δ)L · (B +BT ), (4.27)

whereB can be computed using the same theorem[186]
B =

∫ 1

0

α

(∫ 1

0

e−βαδ(L+ıqW )(−ıδW )e−(1−β)αδ(L+ıqW )dβ

)
(−ıδW )e−(1−α)δ(L+ıqW )dα. (4.28)

For simplicity in notation, we define two new variables depending on q:
b =

1

4π
TT

0

(∫ π

0

∫ 2π

0

dGT

dq

dG

dq
dθdϕ

)
T0, (4.29)

c =
1

4π
TT

0

(∫ π

0

∫ 2π

0

GT d2G

dq2
dθdϕ

)
T0. (4.30)
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Thus, the second-order derivative d2S/d(1/

√b)2 is expressed as
d2S

d(1/
√b)2 = q4δ2(∆− δ/3)

(
2(a+ aT )

q
+ b+ c+ bT + cT

)
= 2q4δ2(∆− δ/3)

(
2ℜ(a)

q
+ ℜ(b+ c)

)
.

(4.31)

The x-coordinate of the inflection point x0 is the b-value where eq. (4.31) equals to 0:
2ℜ(a)

q
+ ℜ(b+ c) = 0. (4.32)

This formulation of x0 is valid for all kinds of geometries with a fixed PGSE sequence, except inthe presence of the non-equilibrium permeable interfaces. Even though it is difficult to solve directlythis equation due to the complex dependence of a, b, and c on gradient strength, we can numericallycompute it by root-finding algorithms[187].
y0 is the corresponding S value at the b-value of x0:

y0 = S|b=x0
. (4.33)

c1 is the corresponding first-order derivative value of S with respect to 1/
√b at b-value of x0:

c1 =
dS

d(1/
√b) |b=x0

. (4.34)
c0 can be given by

c0 = y0 − c1x0. (4.35)
In summary, to accurately compute the IP-derived biomarkers, we use root-finding algorithmsto find the zero of eq. (4.32), which is x0. Once we obtain the value of x0, y0 and c1 can be calculatedby eq. (4.33) and eq. (4.34) respectively, then c0 can be obtained by eq. (4.35).
Figure 4.8 depicts d2S/d(1/√b)2 and 2ℜ(a)/q+ℜ(b+c) against q, for a single sphere with varyingradius. The inflection point is marked by the transition of 2ℜ(a)/q + ℜ(b + c) from a negative to apositive value. As Rsoma increases, the q value at the inflection point decreases. Additionally, in

the regime near zero, 2ℜ(a)/q + ℜ(b + c) exhibits a quasi-linear behavior, whereas d2S/d(1/√b)2appears more curved, in order of q5. This implies that using spline interpolation to compute theIP-derived biomarkers may be less accurate.

Figure 4.8: d2S/d(1/√b)2 (left) and 2ℜ(a)/q+ℜ(b+ c) (right) against 1/q, using the short sequence.The simulations are performed on a single sphere with varying radii. The markers indicate valuescomputed by Numerical Matrix Formalism.
Thenumerical implementation of the first and second-order derivatives of the direction-averagedsignals using Numerical Matrix Formalism refers to appendix B.1.

Remark 5. The a, b, and c are real numbers in the case of uniformly distributed initial density. Therefore,
in practice, the operator ℜ(·) in eq. (4.32) isn’t necessary.
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4.2.3 Analysis IP-derived biomarkers on simplified shapes

In this subsection, we investigate the relationship between the four IP-derived biomarkers andthe soma size and volume fractions on some simplified shapes. As shown in fig. 4.7, we observethat the signals from the neuron can be roughly approximated as a combination of signals from thesoma and the neurites. Furthermore, the soma can be represented as a sphere and the neuritescan be represented as a bundle of sticks. Throughout this subsection, we use the terms “soma”and “sphere” as synonyms and “neurite” and “sticks” as synonyms. We will examine four simplifiedshapes: a single sphere, a sphere accompanied by sticks, a sphere combined with sticks and a freediffusion compartment, and multiple spheres.
4.2.3.1 One sphere case

The soma is often modeled as a perfect sphere with a radius of Rsoma. Our initial effort is torelate the four IP-derived biomarkers withRsoma in the single sphere case. In that case, the diffusionMRI signals are identical in all the diffusion encoding directions, so we can remove the integral ineq. (4.32).The Laplace operator in spherical coordinates (r, θ, ϕ) can be separated into an axial term andspherical harmonic term
∆ =

∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

∂2

∂φ2

)
. (4.36)

The eigenvalues and eigenfunctions of the Laplace operator with Neumann boundary conditionare expressed as[70]
λnk =

D0α
2
nk

R2soma
, with j′n(αnk) = 0, (4.37)

ϕlnk(r, θ, φ) =
βnk√

2πjn(αnk)
jn(αnk

r

Rsoma )Y
n
l (θ, φ), (4.38)

where j(·)n and j′n(·) are the spherical Bessel function of the first kind of order n and its deriva-
tive, βnk is the L2-norm normalized constant, which can be expressed as βnk = 1

R
3/2soma

√
(2n+1)λnk

λnk−n(n+1) ,
Y n
l (θ, φ) is the spherical harmonics. The eigenvalues are degenerates (2l+1 eigenfunctions for oneeigenvalues), and hold a linear relation with R−2soma, L ∝ R−2soma.We have also the analytical expression of the matrix of the projection of encoding gradient term

W [70]:
Wnk,n′k′ = βnkβn′k′

(n+ n′ + 1) δn,n′±1

(2n+ 1) (2n′ + 1)

λnk + λn′k′ − n (n′ + 1)− n′(n+ 1) + 1

(λnk − λn′k′)
2 (4.39)

It is clear that in this case, the eigenvalues matrix L and encoding gradient projection matrixWonly depend on Rsoma. In fig. 4.9, we illustrate the four IP-derived biomarkers as functions of Rsoma.The blue and red lines represent the results for the short and long sequences, respectively. Fromthe plot, we have the following observations:
1. x0 and c1 are one-to-one mappings with Rsoma, implying that we can retrieve the radius valuefrom either of them;
2. For aRsoma value, the longer the sequence, the smaller the values of x0. Besides, with a longersequence, the relationship between x0 and Rsoma appears increasingly linear;
3. For large radius (R > 20µm), the curve x0 tends to flatten with shorter PGSE sequence, makingit challenging to differentiate between different large radius values;
4. Conversely, c1 remains consistent for 3µm ≤ Rsoma ≤ 10µm across two sequences. With alonger sequence, the mapping between c1 and Rsoma in logarithm also tends toward linearity;
5. y0 and c0 are fluctuated around 0.22 and 0.45, preventing us from establishing one-to-onemappings between y0 or c0 with the radius Rsoma.
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(a) x0 against Rsoma (b) y0 against Rsoma

(c) c1 against Rsoma (d) c0 against Rsoma

Figure 4.9: Four IP-derived biomarkers as functions of Rsoma. The blue and red lines are the resultsusing short and long sequences, respectively. The markers indicate values computed by NumericalMatrix Formalism.
4.2.3.2 One sphere + sticks

A common simplification about neuronal shape is to model the soma as one sphere, and theneurites as a collection of infinitely long sticks[188]. These two compartments are distinct and dis-connected. Its direction-averaged signal can be written as
S = fsomaSsoma + fneuriteSneurite, (4.40)

with fsoma + fneurite = 1. The direction-averaged sphere signal is the same as discussed in the pre-vious subsection, and the sticks signal is given by eq. (4.9). Its first and second-order derivativesare
dSneurite
d(1/
√b) =

√
π

4D0
erf(√D0b)−√be−D0b, (4.41)

d2Sneurite
d(1/
√b)2 = −2D0b2e−D0b. (4.42)

In fig. 4.10, we plot the first and second-order derivatives of sticks compartment against 1/√b.The second-order derivative of the sticks is a strictly negative monotone function. Thus, the stickscompartment does not have an inflection point itself. In the regime of high b-values (1/√b ≤
0.02µm · µs−1/2), the second-order derivative is almost zero (−2D0b2e−D0b ≈ 0), manifesting thepower-law scaling. The first-order derivative converges to√π/(4D0) ≈ 16.18.However, adding the sticks to single sphere will change the relationship between our IP-derivedbiomarkers and morphological parameters. In this case, the x-coordinate of the inflection point isgiven by the expression:

fsoma
(
2ℜ(asoma)

q
+ ℜ(bsoma + csoma)

)
− fneuriteD0δ

2(∆− δ/3)e−D0δ
2(∆−δ/3)q2 = 0. (4.43)
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Figure 4.10: The first-order derivative (left) and second-order derivative (right) of Sneurite as functionsof 1/√b. The dotted black line represents√π/(4D0).

Because of incorporating a negative term into the second-order derivative, x0will be smaller thanin the single sphere case. In fig. 4.11, we illustrate x0 as a function of the radius for various somavolume fraction values, using two sequences. From fig. 4.3, we note that realistic values for fsomarange from 0.1 to 1. We clearly observe this downward shift for spheres with a large radius. Withincreasing the diffusion time, the influence of the soma volume fraction on x0 becomes negligiblefor spheres with small radius.

Figure 4.11: x0 as a function of Rsoma for various values of fsoma. Left: results using short PGSEsequence; Right: results using long PGSE sequence. The blue, green, purple, red, and brown linesrepresent fsoma = [100%, 75%, 50%, 25%, 10%]. The markers indicate x0 values computed by Nu-merical Matrix Formalism.
In fig. 4.12, we plot the other three IP-derived biomarkers against the radius across various somavolume fraction values, using the short sequence. Similarly, as fsoma increases, the c1 curve tendsto flatten, making it challenging to differentiate between larger radius values. Besides, the c0 curveagainst Rsoma maintains the same trend. At very low fsoma, c0 is nearly independent of the radius.In fig. 4.13, we plot the four IP-derived biomarkers against fsoma, across various values of Rsoma,using the short sequence. We can observe that both c1 and c0 show a quasi-linear relationshipwith fsoma. Besides, x0 is quite independent of fsoma. As Rsoma increases, the slope of the c1 curvediminishes, while the slope of c0 remains consistent. Therefore, c0 could be a good indicator for

fsoma. In fig. 4.14, We plot the curves of c1 and c0 when using the long sequence. As diffusion timeincreases, we note a more linear relationship between c0 and fsoma.When δ is sufficiently short, the soma and neurites can be considered as disconnected compart-ments, allowing the values of the four IP-derived biomarkers to be expressed as the sum of thecontributions from each of them. At high b-values, the second-order derivative of Sneurite is nearlyzero and its y-intercept of linear fit is virtually zero. Thus, the contribution of neurites to c0 is negligi-ble. As observed in fig. 4.1, when this shift of the x-coordinate of the inflection point remains withina small range, Ssoma is linear towards 1/√b, ensuring that its contribution to c0 remains unchanged.Therefore, we have c0 ≈ c0,somafsoma, where c0,soma is the y-intercept in the single sphere case.Also, Sneurite decays at a near-constant rate √π/(4D0) in the regime of high b-values. As a
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Figure 4.12: y0 (left), c1 (middle), and c0 (right) as functions of Rsoma, across various values of
fsoma, using the short sequence. The blue, green, purple, red, and brown lines represent fsoma =
[100%, 75%, 50%, 25%, 10%]. The markers indicate values computed by Numerical Matrix Formal-ism.

(a) x0 against fsoma (b) y0 against fsoma

(c) c1 against fsoma (d) c0 against fsoma

Figure 4.13: Four IP-derived biomarkers against fsoma, across various values ofRsoma, using the shortsequence. The brown, red, purple, and green lines represent radius of 5µm, 10µm, 15µm, and 20µm.The markers indicate values computed by Numerical Matrix Formalism. In the c0 plot, The curves
5µm and 10µm coincide each other.

result, the contribution of neurites to c1 is (1 − fsoma)
√

π/(4D0). So, we have c1 ≈ (c1,soma −√
π/(4D0))fsoma +

√
π/(4D0), where c1,soma is the slope of linear fit at the inflection point in thesingle sphere case. The longer the diffusion time, the more linear the c0 and c1. As the diffusiontime increases, c0 and c1 become more linearly related to fsoma.In summary, when using a sequence with infinitely long diffusion time, the one-to-one relation-ship between x0 andRsoma remains, and c0 is linear to fsoma. Hence, using only x0 and c0 is sufficientto determine the soma radius and its volume fraction. Besides, c1 depends on bothRsoma and fsoma.In practice, it is not feasible to use infinitely long sequence. Moreover, as we discuss in the pre-vious subsection, the x0 curve will become less steep toward Rsoma as the diffusion time increases,
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Figure 4.14: c1 (left) and c0 (right) against soma volume fraction, using the long sequence. The brown,red, purple, and green lines represent radius of 5µm, 10µm, 15µm, and 20µm. The markers indicatevalues computed by Numerical Matrix Formalism.

making accurate estimation difficult.
To be able to obtain a more precise estimation based on our IP-derived biomarkers under prac-tical sequence configurations, we proposed an iterative method based on IP-derived biomarkers.We define firstly two groups of functions. For a given x0 value, the function

fx0 : fsoma → R

describes themapping from fsoma toRsoma, determined by eq. (4.43). And for a given c0, the function
fc0 : R→ fsoma

describes the mapping from Rsoma to fsoma. This choice ensures a good initial guess. Figure 4.15adepicts these two functions across various x0 and c0 values by numerical simulations. The solidline and dash line represent fx0
and fc0 , respectively. For each possible combination of (x0, c0),there is a unique intersection between fx0

and fc0 , corresponding to the actual values of Rsomaand fsoma. It guarantees a unique solution for the iterative method. The algorithm begins withan initial estimation of the soma radius R0soma = fx0(1), and calculates the soma volume fractionby f0soma = fc0(R
0). In each iteration, the values of Rsoma and fsoma are alternately updated untilconvergence. The procedure of this algorithm is plotted in fig. 4.15b.

Algorithm 1: Iterative method for estimating Rsoma and fsoma in the case of one sphere +sticks
Data: X-coordinate x0, y-intercept c0, initial values R0soma = fx0(1) and f0soma = fc0(R

0),tolerance ϵ1 and ϵ2, maximum number of iterations N
Result: Estimations f∗soma and R∗

1 n← 0;
2 while n < N and not converged do
3 Rn+1soma ← fx0(f

nsoma);
4 fn+1soma ← fc0(R

n+1soma);
5 if |fn+1

soma − fn
soma| < ϵ1 and |Rn+1

soma −Rn
soma| < ϵ2 then

6 converged← true;
7 n← n+ 1;
8 if converged or n>N then
9 f∗soma ← fn+1soma;
10 R∗soma ← Rn+1soma;
11 return f∗

soma, R∗
soma;
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(a) fx0 and fc0 . (b) Iteration method procedure.
Figure 4.15: Left: The mapping fx0 and fc0 across various x0 and c0 values, computed by numericalsimulations. The solid line represents the mapping fx0 , defined as the mapping from fsoma toRsomafor a given x0 and the dash line represents fc0 , defined as the mapping from Rsoma to fsoma for agiven c0. Right: An illustrative picture on the procedure of the iterative method. Each red segmentrepresents one iteration. The procedure starts from fx0

(1), where on the right end of the red line,and will converge to the intersection point.

4.2.3.3 One sphere+sticks+one free diffusion compartment

One simplified shape assumption about the brain gray matter is to represent it as the combina-tion of three compartments: a single sphere, a collection of sticks, and one free diffusion compart-ment[28]. In that case, the direction-averaged signal is
S = fsomaSsoma + fneuriteSneurite + ffreeSfree, (4.44)

where the signal of the free diffusion compartment is defined as isotropic Gaussian diffusion:
Sfree = e−D0b. (4.45)

Its second-order derivative is
d2Sfree

d(1/
√b)2 = 2D0b2(2D0b− 3)e−D0b. (4.46)

In fig. 4.16, we plot the signals and second-order derivative of the free diffusion compartment.Its inflection point is fixed at [√2D0/3, e
−3/2].In fig. 4.17, weplot the four IP-derivedbiomarkers against ffree, for various pairings of (fsoma, Rsoma)using the long PGSE sequence. It is evident that y0 and c1 are proportional to (1 − ffree). As shownin fig. 4.16, at high b-values (1/√b ≤ 0.015µm · µs−1/2), Sfree is almost zero, as well as the first andsecond-order derivatives, i.e. S ∝ (1− ffree). Thus, we can link ffree to y0.In summary, c1 depends on all these three morphological parameters (Rsoma, fsoma, ffree) andfrom the values of (x0, y0, c1), we can deduce a unique estimate of (Rsoma, fsoma, ffree). We define amultivariate function:

f : (Rsoma, fsoma, ffree)→ (100x0, 10y0, 10c0).

The different coefficients before x0, y0 and c0 are used to make the gradient smoother. A non-zerodeterminant of the Jacobianmatrix suggests the invertibility of f . Consequently, f−1(100x0, 10y0, 10c0)gives a unique solution of (Rsoma, fsoma, ffree). In addition, A determinant significantly deviating from1 indicates that inverting the function f is numerically challenging.
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Figure 4.16: Left: Sfree against 1/√b. Right: second-order derivative of Sfree with respect to 1/
√b.

(a) x0 against ffree (b) y0 against ffree

(c) c1 against ffree (d) c0 against ffree
Figure 4.17: Four IP-derived biomarkers against ffree for various combinations of (fsoma, Rsoma), us-ing the long PGSE sequence. Themarkers indicate values computed byNumericalMatrix Formalism.

In fig. 4.18, we plot the determinant of its Jacobian matrix as a function of ffree for some pair-ings of Rsoma and fsoma, using the long sequence. In a realistic brain tissue voxel, ffree should notexceed 50%. Notably, all determinant values for ffree ≤ 50% are strictly positive. For small radii, thedeterminant is close to 1 and it is not dependent on the volume fractions, implying that inverting
f is straightforward. As Rsoma increases or fsoma decreases, it always exists a unique solution butinverting the function f may become more challenging.
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Figure 4.18: The determinant of the Jacobianmatrix of f against ffree when using the long sequence.From left to right: Rsoma = 5µm, Rsoma = 15µm and Rsoma = 20µm. The brown, red, purple, green,and blue lines represent fsoma = 10%, fsoma = 25%, fsoma = 50%, fsoma = 75% and fsoma = 90%. For
Rsoma = 5µm, all the lines coincide.
4.2.3.4 Multiple spheres case

Within one single voxel, there are a large number of neurons with different soma radii. It canbe modeled as a composite of multiple spheres with different radii, complemented by a bundle ofsticks and one free diffusion compartment. The impact of sticks and the free diffusion compartmenton the four IP-derived biomarkers, especially c0 and y0, are the same as we discussed in previoussubsections.In the multiple spheres case, the x-coordinate of the inflection point x0 satisfies the expressionas below: ∑M
m=1

4
3π(R

msoma)3( 2ℜ(aRmsoma )
q + ℜ(bRmsoma + cRmsoma))∑M

m=1
4
3π(R

msoma)3
= 0. (4.47)

It is the zero of the volume-weighted sum of the function 2ℜ(aRmsoma)/q+ℜ(bRmsoma+cRmsoma). Therefore,
x0 is linked to one kind of volume-averaged radius. This effective soma radius lies between theminimum and maximum radii, and it closely approximates the radius associated with the highestvolume fraction. We define the volume-averaged radius Rsoma as:

Rsoma =
∑M

m=1 (R
msoma)4∑M

m=1 (R
msoma)3

. (4.48)
In fig. 4.19, we illustrate x0 against Rsoma in the two spheres case. We note that although x0and Rsoma do not maintain a one-to-one mapping in this case, x0 still follows the same trend as weobserved in the single sphere case in fig. 4.9a.Throughout the analysis, we conclude that:
1. In one single sphere case, x0 is one-to-onemappingwithRsoma. As the diffusion time increases,the mapping becomes more linear;
2. In the case of one sphere supplemented by a bundle of sticks, c0 exhibits a linear relationshipwith fsoma;
3. In the case of one sphere complemented by a bundle of sticks and a free diffusion compart-ment, when using a sequence with long diffusion time, ensuring that x0 ≤ 0.015µm · µs−1/2
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Figure 4.19: x0 against the volume-averaged soma radius for two spheres case. Each scatter pointrepresents one combination of (R1, R2) ∈ [2, 28]2. The blue and red scatters represent the resultsusing the short and long sequences.

and Sfree ≈ 0, y0 exhibits a linear relationship with ffree. Thus, x0, y0 and c0 are each uniquelycorrelated to Rsoma, ffree and fsoma;
4. c1 shows a dependence on all these three morphological parameters;
5. The determinant of the Jacobianmatrix of themapping f from (Rsoma, fsoma, ffree) to (x0, y0, c0)is invertible, indicating that three IP-derived biomarkers are sufficient to determine the somaradius and volume fraction;
6. In the cases of multiple spheres, the relationship between x0 and volume-averaged radius

Rsoma will follow the same trend observed between x0 and Rsoma in the single sphere case.

4.3 Impact of realistic neuronal shapes and exhaustive search
In the previous section, we show the ability to use the IP-derived biomarkers to estimate somasize and volume fractions for simplified shapes. However, in real estimation, finding the accurateinverse of the mapping f presents challenges due to the following reasons:
1. As we can see in section 4.2, even though the actual neurites branches also exhibit the power-law scaling, their signals are not identical to those of sticks or cylinders. The slope is differentand at ultra-high b-values, the signals will deviate from the linear relationship, which leads toa slightly different neurites contribution to the IP-derived biomarkers;
2. There are multiple somas with varied radii within one voxel, and representing them as onesingle sphere introduces an extra error in IP-derived biomarkers.
To be able to perform precise estimation using these IP-derived biomarkers, we propose an ex-haustive search method with the Synthetic voxels set in section 4.1.3. The intra-neuronal space ismodeled as a combination of several realistic neurons, accommodating both the authentic shapesof neurites and the presence ofmultiple soma radii. The second-order derivative ofSvoxel on the Syn-thetic voxels set is computed by the volume-averaged second-order derivatives of all the neuronssupplementedby the second-order derivative ofSfree. Then four biomarkers (x0,voxel, y0,voxel, c1,voxel, c0,voxel)are retrieved from the zero of d2Svoxel/d(1/

√b)2.In this section, we first plot the IP-derived biomarkers against volume fractions and soma radiuson NeuronSet and 145,000 artificial intercellular spaces, to illustrate the impacts of the two effectsabove. Then, we present the exhaustive search approach.
4.3.1 Impact of realistic neuronal shapes on IP-derived biomarkers

In fig. 4.20, we plot the two IP-derived biomarkers x0 and c0 against the two morphological pa-rameters Rsoma and fsoma on the NeuronSet. We clearly observe the correlations between the IP-
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derived biomarkers and the neuronal parameters. The effect of curvature and branches perturb c0more than x0.

Figure 4.20: Left: x0 against Rsoma on the NeuronSet; Right: c0 against fsoma on the NeuronSet. Theblue cross represents the results by the short PGSE sequence and the red circle represents theresults by the long PGSE sequence.
In fig. 4.21, we plot x0 and c0 against Rsoma and fsoma on 145,000 artificial intercellular spaces.Compared to fig. 4.20, the scatter plots become thicker but maintain the same trends. Addingthe free diffusion compartment will perturb the inflection point and these correlations, resultingin thicker scatter plots.

Figure 4.21: Left: x0 against Rsoma; Right: c0 against fsoma. The blue cross represents the results bythe short PGSE sequence and the red circle represents the results by the long PGSE sequence.

4.3.2 Exhaustive search method
The exhaustive search method relies on a pre-constructed library for estimation. We randomlypicked 0.45 million synthetic voxels in the Synthetic voxel set as the Synthetic test set. We usedthe remaining 1 million voxels to build the Synthetic library set, serving as the pre-built library forexhaustive search.We restrict our exhaustive search to (x0, y0, c0), given that only the fourth IP-derived biomarkeris not independent. The difference between the IP-derived biomarkers of a test voxel, denoted as(x0,test, y0,test, c0,test), and the IP-derived biomarkers of the i-th voxel from the Synthetic library set,denoted as (x0,i, y0,i, c0,i) is defined as:

ϵi =
|x0,test − x0,i|
|x0,i|

+
|y0,test − y0,i|
|y0,i|

+
|c0,test − c0,i|
|c0,i|

. (4.49)
Because multiple combinations of neurons and ffree can give similar IP-derived biomarkers values,we average the parameters from the elements of the Synthetic library set that give the 10 lowest ϵi.Thus, our IP-derived biomarkers-based exhaustive search fitted parameters {Rsoma, fsoma, fneurite}are the averages of 10 values from the Synthetic library set.
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4.4 Estimation results

In this section, we will evaluate our estimation based on IP-derived biomarkers on theNeuronSet,the Synthetic test set, and the in vivo MGH CDMD dataset. On the NeuronSet, we employ the IP-derived biomarker-based iterative method and compare it to the SANDI model. This is due to the
NeuronSet not being sufficiently large enough to conduct a complete library-test split and exhaustivesearch process. On both the Synthetic test set and the in vivoMGH CDMD dataset, we evaluate theexhaustive search within the Synthetic library set and compared it to (1) the SANDI model and (2)an exhaustive search approach within the same Synthetic library set but based on L2 differences at64 direction-averaged signal values.The SANDI model[28] has an analytical signal expression, which allows one to recompute thedirection averaged signals by substituting five SANDI’s estimation parameters p=[fsoma, ffree, Rsoma,
Dneurite, Dfree] into the signal formula. Its signal expression is given in section 1.4.3.To avoid the commonly encountered numerical instabilities due to the difficulty of finding theglobal minimum in optimization procedures, we chose to perform SANDI fitting using an exhaustivesearch approach on a saved signal library. Exhaustive search should be more numerically stablethan a fast optimization method such as AMICO[189]. Also, this makes it possible to compare themodels only, without having to account for errors that come from the optimization procedures. Tomake the library search computationally feasible, we further simplified the problem by fixing both
Dneurite and Dfree to 3× 10−3mm2/s.Thus, the signals library for SANDI is populated along three dimensions: the soma radius dis-cretized on the interval [0, 35]µm in 0.35µm increments, the fsoma and ffree discretized on the interval
[0, 1] in 0.01 (1 percent) increments. The set of three parameters {Rsoma, fsoma, ffree} that gives thesmallest L2 difference at the 64 direction-averaged signal values will be called the SANDI fitted pa-rameters for that voxel. For the estimation on the NeuronSet, ffree is set to 0, so only two parameters
{Rsoma, fsoma} are left.Besides, we compare ourmethod to an exhaustive search applied to the simulated signals, whichuses the same Synthetic library set, but operates directly on the signals. Its fitted parametersRsoma,
fsoma, fneurite are the averages of values from the elements of the Synthetic library set that gavethe 10 lowest L2 differences at the 64 direction-averaged signal values. This comparison can helpillustrate whether the low dimensional data (three IP-derived biomarkers) is as effective as the highdimensional data (64 signals) in estimating the soma size and volume fractions.
4.4.1 On NeuronSet

In fig. 4.22, we plot the estimated soma radius and soma volume fraction against the groundtruth values on theNeuronSet by the biomarker-based iterativemethod shown in fig. 4.15 and SANDIlibrary search, with ffree = 0. The iterative method uses the mappings fx0 and fc0 from the sphere-sticks model. Thus, the main difference between the IP-derived biomarker-based iterative methodand SANDI library search is that the sphere-sticks model uses IP-derived biomarkers computed byNumerical Matrix Formalism, whereas SANDI employs signals under Gaussian phase approxima-tion. At high b-values, due to non-Gaussian diffusion, SANDI signal expression may be less accuratethan the sphere-sticks model. From the plots, it can be inferred that:
1. The overall estimation errors by SANDI are greater than thebiomarker-based iterativemethod;
2. For the biomarker-based iterative method, the long PGSE sequence outperforms the shortPGSE sequence inRsoma estimation, especially for the larger radii. As discussed in the previoussection, for the short PGSE sequence, the curve x0 against Rsoma is less steep for large radii,posing challenges to distinguishing large radius values;
3. Both two sequences give a slight overestimation ofRsoma using the iterativemethod. In fig. 4.7,we can see that the signals by sphere-sticks model are higher than the case of connectedneuron, leading to an overestimation of the soma radius;
4. Using the SANDI library search, the short PGSE sequence tends to give a slight overestimationof Rsoma whereas the long PGSE sequence gives a slight underestimation;
5. SANDI yields a larger bias than the iterative method in terms of fsoma estimation.
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(a) Rsoma by iterative method (b) Rsoma by SANDI

(c) fsoma by iterative method (d) fsoma by SANDI
Figure 4.22: Estimated morphological parameters against ground truth values on the NeuronSet.The blue cross represents the results by the short PGSE sequence and the red circle represents theresults by the long PGSE sequence.

4.4.2 On Synthetic voxels set

Next, we compare the estimation results of these methods on the Synthetic test set. In the Syn-thetic voxels set, we have the ground truth microstructural parameters. We compare the perfor-mance of the exhaustive search using IP-derived biomarkers (1 million elements) with the exhaus-tive search using the simulated signals (1 million elements) and the SANDI signals library (1 millionelements, incremented in Rsoma, fsoma and ffree).In fig. 4.23, we can see that there is a larger bias in fsoma and ffree in the SANDI library fit. TheSynthetic library search based on signals yields the smallest errors among these threemethods andis consistent through two sequences. Our Synthetic library search based on IP-derived biomarkersis unbiased, with slightly larger errors compared to the Synthetic library search based on signals forthe long PGSE sequence, but not as big as the SANDI library search.
we now compare the estimated Rsoma among these three methods. Infig. 4.24, Synthetic librarysearch based on IP-derived biomarkers yields comparable results compared to the Synthetic librarysearch based on signals, and the fittedRsoma errors aremuch smaller than the SANDI library search.There is no bias for the two Synthetic library search, whereas SANDI library search shows significantbias. The results using the long PGSE sequence outperform those the using short PGSE sequencefor all three methods. These results of volume fraction estimation and volume-averaged radiusestimation indicate that the IP-derived biomarker-basedmethod is a good estimator in the Syntheticvoxels set.
Figure 4.23 shows that significant errors occur in SANDI’s estimation of soma and free diffusioncompartment volume fractions. This is not surprising because the soma term in eq. (1.112) has thesame form as the free diffusion term ffreee−Dfreeb, causing an indeterminacy problem. Based on thesum of the two exponentials alone (f1e−D1b + f2e

−D2b), there is no way to tell which exponential
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Figure 4.23: The box plots summarizing the distributions of the absolute errors of fsoma, fneurite, ffree.The estimations are computed by (1) Synthetic library search based on signals, (2) SANDI librarysearch, and (3) Synthetic library search based on IP-derived biomarkers on the Synthetic test set.The Synthetic voxels set has 1.45 million artificial voxels containing neurons and a free diffusioncompartment. The Synthetic test set has 450,000 voxels from the Synthetic voxels set. A box plotdenotes the median, interquartile range, and 1.5 times the interquartile range by the center line,hinges, and whiskers.
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Figure 4.24: The box plots summarizing the distributions of the absolute errors of Rsoma. The es-timations are computed by (1) Synthetic library search based on signals, (2) SANDI library search,and (3) Synthetic library search based on IP-derived biomarkers on the Synthetic test set. A box plotdenotes the median, interquartile range, and 1.5 times the interquartile range by the center line,hinges, and whiskers.

belongs to soma andwhich belongs to the free diffusion compartment. The two exhaustive searcheswithin the Synthetic library set do not suffer from such a problem. We note that in contrast toSANDI, the NODDI model[98] has two diffusion compartments, one is an ECS compartment witha low diffusion coefficient, another is a compartment labeled free water or CSF that has a muchhigher diffusion coefficient. It seems likely that if either of these compartments has a diffusioncoefficient that is close in magnitude to the exponent of the signal term from the spheres, then an
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indeterminacy can happen.Concerning the estimation of the soma radius, fig. 4.24 shows that significant errors occur inSANDI’s estimation of Rsoma, compared to the much smaller errors from the other two approaches.

4.4.3 In vivo parameters estimation
Finally, we compare the threemethods on theMGHCDMDdataset. Specifically, the eight direction-averaged signals from a brain voxel are interpolated to get the 64 signals for SANDI and Syntheticlibrary search base on signals, then we use the interpolated signals to compute the three IP-derivedbiomarkers x0, y0, and c0 for Synthetic library search based on IP-derived biomarkers since directlycomputing the second-order derivative to identify those biomarkers derived from the inflectionpoint isn’t feasible on the in vivo data. We obtain an in-vivo parameter map by applying the threemethods to every brain voxel of a subject in the MGH CDMD. In this subsection, the second subjectin MGH CDMD (sub_002) serves as an exemplar.

4.4.3.1 Fitting brain white matter voxels

To be able to fit voxels that contain primarily axons, we created 20,000 random combinationsof cylinders with radius from the interval [0.2, 5]µm and a free diffusion compartment, and addedthem to the Synthetic library set. Henceforth, the full Synthetic library has 1 million artificial voxelsfrom the Synthetic voxels set plus 20,000 voxels that contain cylinders and a free diffusion compart-ment only. Then we generated a Synthetic Cylinders-only test set that has 10,000 voxels containingrandom combinations of cylinders. We fitted fsoma, fneurite, ffree using SANDI library search and theSynthetic library search based on signals on the Synthetic Cylinders-only test set. In table 4.1, we seethat with SANDI themean of the fitted values are fsoma = 0.14, fneurite=0.86, ffree=0, whereas with theSynthetic library search, fsoma = 0, fneurite=1, ffree=0. This means the Synthetic library search basedon signals will be able to fit axons-only voxels.
fsoma fneurite ffreemean std mean std mean stdSANDI_19 0.14 0.0076 0.86 0.0076 0 0sig_Lib_Search_19 0 0 1 0.00024 0 0.00024SANDI_49 0.14 0.0076 0.86 0.0076 0 0sig_Lib_Search_49 0 0 1 0.00024 0 0.00024

Table 4.1: Fitted fsoma, fneurite, ffree using SANDI library search and the Synthetic library search basedon signals on the Synthetic Cylinders-only test set. The Synthetic Cylinders-only test set has 10,000voxels containing random combinations of cylinders. The Synthetic library set has 1 million artificialvoxels from the Synthetic voxels set plus 20,000 voxels that contain cylinders and a free diffusioncompartment only. The SANDI library has 1 million elements, incremented in Rsoma, fsoma and ffree.

4.4.3.2 In vivo parameter maps

Figure 4.25 shows the volume fractions estimationby Synthetic library searchbasedon IP-derivedbiomarkers, to the scanned data of sub_002. We also include the SANDI library search parametermaps as well as the Synthetic library search based on signals parameter maps.There are no significant differences between the Synthetic library search based on based on IP-derived biomarkers and signals. The Synthetic library search based on IP-derived biomarkers givesa higher soma volume fraction and lower neurite volume fraction compared to the other two meth-ods. Besides, it is less clean. This is because it uses only three inputs. In addition, the computation ofthe IP-derived biomarkers, especially the x0 and y0, is sensitive to noise. Nonetheless, the IP-derivedbiomarkers still manage to give reasonable volume fraction estimations.The maps of fsoma properly highlight the brain gray matter and the cerebral nuclei. In contrast,the maps of fneurite are prominent in the brain white matter, especially the brain white matter tractslocated at the corpus callosum, the corona radiata, and the brain stem.
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Figure 4.25: Parameter maps for MGH CDMD sub_002. The first column is fsoma, the second col-umn is fneurite, the third column is ffree. First row is the exhaustive search on Synthetic librarybased on IP-derived biomarkers at the short diffusion time (δ/∆ = 8/19ms), the second row is theexhaustive search on Synthetic library based on IP-derived biomarkers at the long diffusion time(δ/∆ = 8/49ms), third row is the exhaustive search on Synthetic library based on signals at theshort diffusion time (δ/∆ = 8/19ms), the fourth row is the exhaustive search on Synthetic librarybased on signals at the long diffusion time (δ/∆ = 8/49ms), fifth row is SANDI library search at theshort diffusion time (δ/∆ = 8/19ms), the sixth row is SANDI library search at the long diffusion time(δ/∆ = 8/49ms).

The above results qualitatively demonstrate that the proposed method can yield encouragingestimations even though it only uses three inputs. We further validate the parameter maps by in-vestigating the consistency across diffusion times.
4.4.3.3 Independence of diffusion time

We present the voxel-wise joint distributions for the estimated parameters. All brain white andgraymatter (WMandGM) voxels of sub_002 are included. Due to the lack of real-world ground truth,validating parameter maps remains largely qualitative. Given this limitation, the community has be-gun to seek consistency across acquisition parameters, sequences, and scanners[190–192], insteadof qualitative visual assessment. In our case, we focus on the dependence of the volume fractionsand volume-averaged soma radius on the two diffusion times. Indeed, microstructure imaging aimsto infer the objective properties based on diffusion MRI signals. If the estimated properties largelydepend on the acquisition parameters, the estimation interpretation becomes non-trivial.In fig. 4.26, we show the voxel-wise joint distributions of fsoma, fneurite, ffree for all the threemeth-ods. For fsoma and ffree, the spread of the distributions of the Synthetic library search based onIP-derived biomarkers is wider than for the Synthetic library search based on signals. The estimated
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volume fractions of both SANDI and Synthetic library searches lie on the identity line. The Syntheticlibrary search based on signals produces lower fneurite and higher ffree in the brain whitematter thanSANDI library search.
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Figure 4.26: The voxelwise joint distribution of fsoma, fneurite, ffree at two diffusion times. Top row:exhaustive search within the Synthetic library based on IP-derived biomarkers. Middle row: exhaus-tive search within the Synthetic library based on signals. Bottom row: SANDI library search. All brainwhite and gray matter voxels of sub_002 are included. The x- and y-axes represent the estimatedfractions at (δ/∆ = 8/19ms) and (δ/∆ = 8/49ms), respectively. The black lines are the identity lines.The contour lines represent 50%, 75%, and 90% of the data.

In figs. 4.27a to 4.27c, we show the diffusion time dependence in the estimation ofRsoma for thethree methods. At the lower diffusion time, Rsoma ranges from [8, 13]µm for all the three methods,whereas at the longer diffusion time,Rsoma ranges from [10−18]µm for the Synthetic library search
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based on signals and from [10− 20]µm for SANDI library search.
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(a) Rsoma, Synthetic library search basedon IP-derived biomarkers.
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(b) Rsoma, Synthetic library search basedon signals.
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Figure 4.27: The voxel-wise joint distribution of Rsoma at two diffusion times. All brain white andgray matter voxels of sub_002 are included. The x- and y-axes represent the estimated fractionsat (δ/∆ = 8/19ms) and (δ/∆ = 8/49ms), respectively. The black lines are the identity lines. Thecontour lines represent 50%, 75%, and 90% of the data.
Figure 4.25 demonstrates that the parameter maps given by the proposed are consistent be-tween the short and long diffusion times. For a more quantitative comparison, we plot the voxel-wise joint distribution of the estimated volume fractions at the two diffusion times in fig. 4.26. If theestimation is consistent, the scatter points should lie around the identity line.Finally, figs. 4.27a to 4.27c show the diffusion time dependence of the three methods in estimat-ing Rsoma. This means that the estimation of soma radius on the real data needs to be improved inthe future.

4.5 Discussion

In this chapter, we propose an exhaustive search method for estimating soma size and volumefractions, based on the inflection point of diffusion MRI signals at high b-values. This approachis driven by the observation that the power-law scaling does not hold true in the brain gray matterbecause of the presence of the soma. We identify three independent biomarkers from the inflectionpoint and give their mathematical expressions through the Numerical Matrix Formalism. Throughthe studies on simplified geometries, we demonstrate that these IP-derived biomarkers can link tosoma size and volume fractions.Similar to the simulation-driven supervised learning framework, the proposed method has twodistinct features, compared to diffusion MRI compartment signal models:
1. The representation of intra-neuronal space is more realistic, by including numerically recon-structed neurons;
2. It employs theNumericalMatrix Formalism, whilemost state-of-the-art diffusionMRI compart-ment signal models to date rely on the Gaussian phase approximation. To be able to probefine microstructure, strong gradient strength needs to be applied. However, at high b-values,the Gaussian phase approximation may lose accuracy due to the non-Gaussian diffusion ef-fects.
Compared to signal-based estimation, which necessitates signal values across various b-values,biomarker-based estimation requires only three biomarkers, leading to a potentially rapid estima-tion process. For instance, the biomarker-based estimation would be 2.6 times faster than directlyfitting the SANDI model to 8 measured signals on the MGH CDMD data.
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The main differences between the proposed method and the simulation-driven learning frame-work proposed in[3] are (1) substituting the MLPs with an exhaustive search (2) using three IP-derived biomarkers instead of using four IP-derived biomarkers plus the ADC. In fig. 4.28, we plotthe estimation errors on Synthetic voxels set usingMLPs. It is clear that exhaustive search andMLPsyield very close results. This implies that ADC would not help enhancing volume fractions and somasize estimation. The benefits of exhaustive search are:
• It is easy to implement and robust, avoiding introducing fitting errors, like initialization, orfalling into local optima;
• It does not require training before performing estimation;
• Even though itmay not be as instantaneous asMLPs during the estimation process, exhaustivesearch within an ordered library remains efficient;
• Once we find the 10 elements giving the lowest ϵi, we can acquire all the estimatedmicrostruc-tures, whereas MLPs need to require re-training for each microstructure.
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Figure 4.28: The box plots summarizing the distributions of the absolute errors of fsoma, fneurite, ffreeand Rsoma. The estimations are computed by (1) MLP with signals as inputs and (2) MLP with IP-derived biomarkers plus ADC as inputs. A box plot denotes the median, interquartile range, and 1.5times the interquartile range by the center line, hinges, and whiskers.
We carried out an in-depth performance analysis comparing the IP-derived biomarker-basedestimation with two other approaches, SANDI and Synthetic library search based on signals, onthe NeuronSet, the Synthetic test set, and the in vivo dataset. On the NeuronSet and Synthetic testset, the IP-derived biomarker-based method outperforms SANDI. On the in vivo dataset, IP-derivedbiomarker-based estimation yields similar values but displays more noise compared to the othertwo methods and exhibited diminished performance concerning diffusion time independence. Be-cause IP-derived biomarkers-based estimation is based on only three biomarkers, it is more sen-sitive. There are many factors that may deteriorate the performance of the IP-derived biomarker-based estimation:
1. The signal-to-noise ratio level. At high b-values, the signal-to-noise ratio decreases. The accu-racy of inflection point computation is vital for the estimation;
2. Stationary water. When we construct the Synthetic voxel dataset, we exclude the stationarywater compartment. However, in presence of the stationary water, the c0 will be higher andalso the y0, introducing an extra error;
3. Inherent time-dependency. Biomarker-based estimation requires that the sequence shouldbe long enough to ensure that the inflection point lies within the power-law scaling range and
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that the signal contribution from extra-cellular space is almost negligible. Given a specific se-quence, the method exhibits sensitivity to a particular range of soma radii, making it naturallydependent on diffusion time;

4. We observe that even though we include 20,000 voxels that contain cylinders and a free dif-fusion compartment only, the biomarker-based method could rarely make an estimation on
fneurite larger than 80%, implying that this method is not valid in the brain white matter. As wesee in fig. 4.7, cylinders do not possess the inflection point.
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Chapter Overview

In this chapter, we present a new finite element scheme for diffusion MRI blood flow imagingapplications. The proposed technique addresses the instability issue of simulating perfusion MRIsignal at high blood flow velocity, particularly in arterioles and venules. The new scheme combinesthe Streamline Upwind Petrov-Galerkin (SUPG) method and the theta time discretization method.The idea of the SUPG method is to add an artificial diffusion term only in the flow’s direction, tosmooth out the spurious oscillations arising near areas with sharp gradients. The amplitude ofthis regularization term is controlled by stabilization parameters τk. Numerical simulation resultsdemonstrate that the standard Galerkinmethod leads to spurious oscillations at high blood flow ve-locity whereas the new scheme can provide a stable solution even on a coarse finite elementsmesh.To provide guidance on selecting the stabilization parameters and diameter of elements for τk, weconduct a study evaluating the performance of different combinations of these two parameters.This work is a collaboration with the computational medicine team at the University of Leeds,aiming to extend the existing finite elements solver of the SpinDoctor for diffusion MRI blood flowsimulations.

5.1 Introduction

Another promising application of diffusion MRI beyond brain tissue imaging is the assessmentof the blood perfusion (known as intravoxel incoherent motion (IVIM) MRI) and cardiac blood flowimaging[193–196]. As explored in the first chapter, at lowb-values, diffusionMRI signals are sensitiveto micro-circulation of blood in the cerebral capillary network, which makes the ADC deviate fromthe expected value[197]. This deviation has been widely used to measure the perfusion index in
115
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clinics[198, 199]. In recent years, diffusion tensor imaging (DTI) has seen a growing application inthe cardiac domain, highlighting its versatility in medical imaging[200–204].
Simulating the diffusion MRI involves treating a flow term. The velocity is typically determinedby the Navier-Stokes equation through numerical simulations. It is then often provided as a pre-defined variable for diffusion MRI simulations[204].
When considering blood flow, the Bloch-Torrey PDE becomes a convection-diffusion-reactionPDE, with an imaginary reaction term[115, 205]. This PDE exhibits different behaviors based on theratio of the velocity to diffusion coefficient. When the velocity is comparably low, such as in the cap-illaries, themolecules movement is mainly determined by the diffusion process and a signal patternsimilar to classical diffusion MRI will be produced. On the contrary, when the velocity is comparablyhigh, for example in the arteries or veins, the molecules are mainly transposed by the flow, and inthis case, the numerical simulation would potentially encounter instability issues, reported in[206,207].
Mesh refinement may enhance stability, but it doesn’t always guarantee addressing it, especiallywhen using the standard Galerkin finite element method. It depends on the maximum velocity andthe finite element mesh. In some cases, an extremely finemeshmight be necessary, which could beimpractical due to computational resource constraints. Or in some cases, the mesh is pre-definedandwe could notmodify it. Some studies suggest a local refinement strategy to improve the stabilityand maintain a reasonable size[208, 209]. Another issue is that with the standard Galerkin finiteelement method, spurious oscillations may be produced, leading to nonphysical results[210].
The objective of this chapter is to apply a stabilized simulation scheme for the diffusion MRIaccounting for the blood flow. Many stabilization approaches were proposed to solve the time-dependent convection diffusion equation simulation in the computational fluid dynamics commu-nity, such as the Streamline Upwind Petrov-Galerkin (SUPG) method[210–213], symmetric stabiliza-tion method[214, 215] and Galerkin least-squares method (GLS)[216].
In this work, we present a newfinite element scheme for diffusionMRI simulations that combinesthe Streamline Upwind Petrov-Galerkin method and the theta time discretization method. This newapproach addresses the instability issue observed in diffusion MRI signal computation involvingblood flow. It serves as a powerful simulation tool, paving the way for numerically studying signalbehaviors and designing novelmicrostructure estimationmodels for future blood perfusion studies.We firstly introduce the generalized form of Bloch-Torrey PDE incorporating the convection termand the Péclet number, a metric indicative of the potential for instability. Then, we give the fullexpression of the proposed scheme. We compare the standardGalerkinmethod and the StreamlineUpwind Petrov-Galerkin method via simulations, demonstrating its effectiveness. We conduct ananalysis of the effect of the choice of the stabilization parameters and the diameters of elements onthe performance.

5.2 Bloch Torrey PDE with blood flow term

In this chapter, we focus on blood flow within the intravascular space and disregard the con-tribution of water diffusion inside the extravascular space and the exchange between these twodomains. The intravascular space is modeled as one connected space, denoted Ω, with its bound-ary given by ∂Ω = ∂Ωwall

⋃
∂Ωend. ∂Ωwall is the vascular wall and ∂Ωend is the artificial boundaryon the inlet and outlet sections.

The presence of blood flow induces a change in the acquired phase of spins, introducing a con-vection term to the Bloch-Torrey PDE[205, 217]:
∂

∂t
M(x, t) = (∇D0∇− ıγf(t)g · x− v(x, t) · ∇)M(x, t), x ∈ Ω, (5.1)

whereD0 is the intrinsic diffusion coefficient, v(x, t) represents the velocity field of blood flow, whichshould satisfy∇v(x, t) = 0. This modified Bloch-Torrey PDE is called the generalized form of Bloch-Torrey PDE in some literature[115, 218]. In reality, the velocity field is complex. It varies spatiallyaccording to the vessel section, blood pressure, and viscosity, and its direction can change alongboth parallel and perpendicular axes of the vessel[219].
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For the sake of simplicity, we assume that the vascular wall is impermeable and there is nosurface relaxation thus ∂Ωwall can be modeled as a homogeneous Neumann boundary condition:

D0∇M(x, t) · n(x) = 0, x ∈ ∂Ωwall. (5.2)
We impose also the homogeneous Neumann boundary conditions at both end sections. Toprevent molecules from reaching these artificial boundaries and inducing artificial reflect flows inthe simulation domain, we constrain the initial density to a specific region close to the inlet sectionwithout touching it and make the simulation domain sufficiently long in the direction normal tothe outlet section. This ensures that by the end of the simulation, spins won’t approach the outletsection:

D0∇M(x, t) · n(x) = 0, x ∈ ∂Ωend, (5.3)
M(x, 0) = m0(x), x ∈ Ω, (5.4)

wherem0 is the initial density, located near the inlet section.Another possible boundary condition on the two end sections of the vessel for the convectionequation is the inlet/outlet boundary condition[220]. It assigns one inlet velocity and one outletvelocity on the end sections and the initial condition can be set to uniform in the domain. How-ever, with mass consistently entering and leaving the simulation domain, accurately “tracking” theacquired phase for diffusion MRI becomes challenging. Thus, in this chapter, we do not adopt thisboundary condition. A further investigation of the inlet/outlet boundary condition on diffusion MRIis needed in the future.One remark is that in the presence of the convection, the diffusionMRI signals of PGSE sequenceare usually complex values. Some advanced techniques are needed tomake the phases back to zeroin practice.
5.2.1 Numerical instability for the standard Galerkin method

Considering thebloodflow, the generalized formof Bloch-Torrey PDE is a timedependent convection-diffusion-reaction PDE with an imaginary reactive term. The solution exhibits different behaviorsbased on convection and diffusion terms. A prevalent metric used to predict the behavior is themass Péclet number (Pe)[221], defined as Pe = ∥v∥2h/D0, where h is the characteristic length.When Pe ≪ 1, water molecular movement is mainly affected by the self diffusion effects. Con-versely, when Pe≫ 1, molecules are mainly transported by the flow[222].In this case, the standardGalerkin method will suffer significant instability and spurious oscillations. Refining the mesh re-duces the characteristic length as well as the Péclet number. However, this isn’t always practical.The Péclet number is determined by the local finite element size. To keep the Péclet number low,all the finite elements might experiencing high velocities during the whole simulation time needto be reduced in size by the same scale as velocity increases, leading to significant computationaldemands.In addition, the convective operator is inherently directional. In convection-dominated regions,the solution will align in the direction of the flow or against it. The standard Galerkin method doesnot account for this directionality and thus might produce non-physical oscillations near areas ofvery steep gradients. These oscillations can then propagate throughout the simulation domain andcause a numerical explosion.We illustrate this numerical instability in the simulation section.

5.3 SUPG scheme with theta method
The Streamline Upwind Petrov-Galerkin finite element method is a technique to stabilize theconvection-diffusion equation in convection-dominated regimes for incompressible flows. The term“Petrov-Galerkin” means that the trial and test space are different and the term “streamline upwind”signifies that a stabilization term is added in the direction of the velocity field (the streamline).To begin, we present first the weak formulation of eq. (5.1) by the standard Galerkin method.After discretizing the domain Ω by a set of confirming tetrahedra T h, eq. (5.1) can be transformed
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into a weak formulation of the generalized Bloch-Torrey equation by multiplying a test function wh

and integrating over the domain Ω. The finite element methods are employed now on the finitedimensional spaceWh. The standard Galerkin method uses the same functional space for the trialand test function, to find the discretized solutionMh ∈Wh, such that
(
∂Mh

∂t
, wh) = −(D0∇Mh,∇wh)− (ıγf(t)g · xMh + v · ∇Mh, wh), (5.5)

where wh ∈ Wh, wh|∂Ω = 0 is the test function and (·, ·) is the inner product in the L2-normLebesgue spaces.We consider now θ-scheme as temporal discretization. At the discrete time tn, eq. (5.5) is trans-formed into
(Mh

n , w
h) + θ∆tn

(
(D0∇Mh

n ,∇wh) + (ıγf(tn)g · xMh
n + v · ∇Mh

n , w
h)
)

= (Mh
n−1, w

h)− (1− θ)∆tn
(
(D0∇Mh

n−1,∇wh) + (ıγf(tn−1)g · xMh
n−1 + v · ∇Mh

n−1, w
h)
)
,

(5.6)
where 0 ≤ θ ≤ 1 and ∆t = tn − tn−1 is the time step. For the given parameter, when θ = 1, itcorresponds to the backward Euler scheme and when θ = 0.5 it corresponds to the Crank-Nicolsonscheme. Equation (5.6) can be viewed as a stationary convection-diffusion-reaction equation at tnwith the right-hand side as a source term and the following diffusion, convection, and reaction co-efficients:

D = θ∆tD0, (5.7)
C = θ∆tv, (5.8)
R = 1 + ıγθ∆tf(tn)g · x. (5.9)

To recompense the upwind phenomenon, the SUPGmethod employs a different test functionalspace
V h := {vh : vh(wh) = wh +

∑
k∈T h

τkC · ∇wh;wh ∈Wh}, (5.10)
where τk is the stabilization parameter depending on finite elements. With this test function space,the SUPG method is expressed as

(Mh
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∑
k∈T h

τkθ∆tn(M
h
n ,v · ∇wh)k
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n , w
h)
)

+
∑
k∈T h

τk(θ∆tn)
2
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k
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(5.11)
The literature[223] has proven that for incompressible flow, i.e. ∇C = 0, this formulation iswell-posed for each time-step with the Crank-Nicolson scheme.

5.3.1 Choice of stabilization parameters
How to choose appropriate stabilization parameters is a vital consideration in actual simulations.We can distinguish the convection and diffusion effects by their characteristic time:

tconvection =
hk

∥C∥2
and tdiffusion =

h2
k

D
, (5.12)
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where hk is the diameter of finite element. These definitions are related to Péclet number by Pe =
tdiffusion/tconvection. When tconvection ≤ tdiffusion, the solution is more sensitive to the convection effect.The desired asymptotic behaviors of the stabilization parameters (or characteristic stabilizationtime) τk should be two-fold: (1) In the diffusion-dominated regions where the standard Galerkinmethod is effective, τk should tend to the diffusion characteristic time tdiffusion; (2) In the convection-dominated regions, τk should tend to the convection characteristic time tconvection to stabilize theequation and prevent spurious oscillations. The stabilization parameters typically depend on thediameter of elements, the amplitude of velocity ∥C∥2 and the diffusion coefficient D. In[210], italso suggests taking the reaction term into consideration. However, for our equation eq. (5.1), thediffusion term always dominates the diffusion encoding gradient term in actual experimental set-tings. Consequently, the solution won’t fall into a reaction-dominated region in the presence of thediffusion. Hence, we will not add the reaction coefficient R into the stabilization parameters in ourstudy.Various proposals for τk exist in the literature. We will specifically consider the following three.In[224], τk is suggested to be set as:

τ Ik ∼ (
4

tdiffusion +
2

tconvection )
−1

=
h2
k

θ∆tn(4tnD0 + 2hk∥v∥2)
(5.13)

In[225], τk is suggested to be set as
τ IIk ∼

hk

2∥C∥2
ξ(
mk∥C∥2hk

2D
) =

hk

2θ∆tn∥v∥2
ξ(
mk∥v∥2hk

2D0
), (5.14)

where mk is a constant related to the finite element function. For piece-wise linear (P1) function,
mk = 1/3. And ξ(x) function is

ξ(x) =

{
x, 0 ≤ x < 1,

1, x ≥ 1.

In[226, 227], τk is suggested to be set as
τ IIIk ∼ min

{
hk

pk∥C∥∞
,

h2
k

p4kc
2
inv∥D∥∞

}
= min

{
hk

pkθ∆tn∥v∥∞
,

h2
k

p4kc
2
invθ∆tnD0

}
(5.15)

where pk is the polynomial degree of the finite element function and cinv is a constant from aninverse estimate. For P1 function, we have pk = 1 and cinv = 1.All these three proposals satisfy the asymptotic behaviors of τk but they exhibit a slightly differentin the intermediate regions. We will evaluate and compare these three stabilization parameters inthe following section.Another concern is that for tetrahedral elements, there is not a standard definition of the diam-eter hk. In[228, 229], it is suggested that hk should be chosen as the length of the elements in thedirection of the velocity field, which should be re-calculated at each time step if the velocity is timedependent. Conversely, another study in[210] indicates that the specific direction chosen for thediameter isn’t crucial. In our analysis, we evaluate both diameter definitions and will compare themthrough numerical simulations. The non-directional diameter hk,1 is selected as the diameter of theinscribed sphere within the element, while the directional diameter hk,2 is defined as follows:
hk,2 =

3Vk

2Fk(v)
, (5.16)

where Vk is the volume of the tetrahedral element, and Fk is the average area of the projectionof four tetrahedral faces onto the surface orthogonal to the velocity direction, as shown in fig. 5.1.When the direction of velocity is orthogonal to the face of the element, hk is equal to the height ofthat face.
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Figure 5.1: Projection of tetrahedral faces onto the perpendicular plane of velocity, in the case ofthe velocity is orthogonal to one face. For such a case, the projection of the bottom face is itself andthe projection of the other three faces are labeled as 1, 2 and 3 (depicted in blue), respectively. Theaverage area is equivalent to half the combined area of 1, 2 and 3.

5.4 Simulation
The numerical studies of the generalized Bloch-Torrey PDE using the SUPG method are con-ducted in this section. Due to the constraints of our computational resources, we only simulate onesegment of the vessel, modeled as a straight cylinder with a radius of 2.1µm and a height of 100µm,denoted L, as depicted in fig. 5.2. The intrinsic diffusion coefficient is set to 2× 10−3mm2/s.Velocity is usually assumed to run in the tangent direction to the vessel wall. While the actualenvironment might bemore intricate as discussed in[219]. Here, we adhere to the tangent direction

assumption. Accordingly, we set the velocity direction as [0, 0, 1]T , which aligns with the cylinder’saxial direction. For simplicity, we use a constant velocity. The amplitude of velocity is set to be
∥v∥2 = [10−3, 1.5×10−2, 3×10−2, 4×10−2]µm/µs, corresponding to some typical blood flow velocityvalues inside capillaries, arterioles and venules[230–232].To ensure that the initial density is concentrated near the inlet section at the bottomand remainsa continuous function, we define it as an exponential function:

m0(x) = e−(z−(−L/2+4))2 , (5.17)
as shown in fig. 5.2. At the bottom section, m0(−L/2) = 1.1 × 10−7 ≈ 0. The initial signal is S0 =
24.58.

Figure 5.2: Left: Finite elements mesh of the simulation domain Ω, with a radius of 2.1µm and aheight of 100µm. Right: The initial density on Ω. We adjusted the plot z-coordinate scale to enhanceits visual representation.
To make sure that at the echo time, the spins will not reach the top artificial boundary, we limitthe TE ≤ 2× 103ms and employ the sequence PGSE(1ms, 1ms).
The diffusion encoding gradient direction is set to [0; 0; 1]

T , parallel to the velocity field direction.Indeed, in the x-y plane perpendicular to the velocity, the diffusion encoding gradient term is entirelydecoupled from the convection term, so we only need to consider the convection-diffusion in z-direction. In the simulations, three gradient strengths are used: ∥g∥ = [0, 200]mT/m. In the case of
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∥g∥ = 0mT/m, the equation is reduced to a convection-diffusion equation and the magnetizationshould be real, which will make it easier to detect spurious oscillations.

The temporal discretization scheme is the Crank-Nicolson scheme θ = 0.5. It requires that theratio of time step ∆t times diffusion coefficient to the square of element size should be small, inorder to produce a stable solution in time discretization[233]. Thus, if not specific, we use a timestep of 0.5µs, which is sufficient short.
The finite element mesh is generated by Tetgen[121]. The coarseness of the mesh is controlledby a parameter h. In table 5.1, we list the number of elementsNelement, the number of nodesNnode,and the average inner radius rin,ave for different h values. In the application of brain diffusion MRI,the mesh of h = 1 can already yield an accurate solution.

h 1 0.2 0.1 0.07 0.05
Nnode 4,593 8,981 10,379 11,731 24,783

Nelement 15,411 28,332 38,402 47,266 104,156
rin,ave 0.294 0.238 0.228 0.218 0.160

h 0.03 0.02 0.015 0.12 0.01
Nnode 27,300 31,850 37,972 47,332 57,708

Nelement 120,495 150,437 189,302 235,325 286,228
rin,ave 0.157 0.148 0.140 0.130 0.122

Table 5.1: Number of nodes, Number of elements and the average inner radius [in µm] of the finiteelement meshes with different coarseness parameters.
There is no analytical solution for the generalized Bloch-Torrey PDE. Therefore, we take thestable solutions on the finest mesh as the reference solutions.

5.4.1 Numerical instability of the standard Galerkin method

First, we will show that the standard Galerkin method will encounter instability issues when sim-ulating the convection-diffusion equation.
In fig. 5.3, we plot the magnetization at echo timeM(x, TE) simulated by the standard Galerkinmethod on the finite elements mesh of h = 1, using the four distinct velocity values, with ∥g∥ =

0mT/m. In this case, the magnetization and signals at echo time should be real. With high veloci-ties, the particles are less likely to reach the bottom section due to diffusion. Thus, the diffusion in z-direction is like the free diffusion transported by the flow and the signals should be closed to S0. Wecan observe that in the diffusion-dominated regions (as in the case of ∥v∥2 = 1× 10−3µm/µs), par-ticles disperse more rapidly than transport by the flow. As the flow velocity increases, the particlesare transported together as a group. In the convection-dominated regions (∥v∥2 = 4×10−2µm/µs),we could not obtain stable solutions. Besides, even in the case ∥v∥2 = 3 × 10−2µm/µs, the ampli-tude of magnetization does not exceed 1, spurious oscillations will arise, where negative values arepresent (between z = 0µm and z = 10µm).
In fig. 5.4, we plot the amplitude of transverse magnetization with ∥g∥ = 200mT/m for the twohigh velocities ∥v∥2 = [3 × 10−2, 4 × 10−2]µm/µs. We can still see the spurious oscillations at highvelocities.
In fig. 5.5, we depict normalized signals (divided by S0) as a function of the number of nodes with

∥g∥ = 0mT/m, across different velocity values. In the diffusion-dominated region, the signals are alittle bit higher than S0 due to interactions with the bottom boundary caused by flow. In this case,using the coarsest mesh is already capable of yielding a convergent solution. At high velocities, thesignals simulated on the coarse meshes are not accurate. Moreover, spurious oscillations occur for
∥v∥2 = 1.5× 10−2µm/µs on the two coarse meshes even though we do not observe that from themagnetization plot.

In fig. 5.6, we plot the amplitude, real part, and imaginary part of the normalized signals againstthe number of nodes with ∥g∥ = 200mT/m, across different velocity values. We can see that atlow gradient strengths, the signals have similar amplitude at three high velocities, but different realparts and imaginary parts due to the diffusion-encoding gradient.
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Figure 5.3: Transverse magnetization with various velocities on the finite element mesh of h = 1, atg-value of 0mT/m. The PGSE(1ms, 1ms) sequence is applied. The simulations are performed by thestandard Galerkin finite elements method. From left to right: ∥v∥2 = [10−3, 1.5× 10−2, 3× 10−2, 4×
10−2]µm/µs. A spurious oscillation (negative magnetization values) occurs between 0µm and 10µmfor ∥v∥2 = 3× 10−2µm/µs.

Figure 5.4: Transverse magnetization with various velocities on the finite element mesh of h = 1, atg-value of 200mT/m. The PGSE(1ms, 1ms) sequence is applied. The simulations are performed bythe standard Galerkin finite elements method. From left to right: ∥v∥2 = [3×10−2, 4×10−2]µm/µs.A spurious oscillation occurs between 0µm and 10µm for ∥v∥2 = 3× 10−2µm/µs.

Figure 5.5: Normalized signals by the standard Galerkin method against the number of nodes, with
∥g∥ = 0mT/m. The signals are normalized by S0. The solid, dotted, dashed, and dash-dot linesrepresent the velocity values of 10−3µm/µs, 1.5× 10−2µm/µs, 3× 10−2µm/µs and 4× 10−2µm/µs.

We use the signals from the standard Galerkin method on the finest mesh as our reference, as itprovides stable results in this example. One reminder is that the standard Galerkin method doesn’talways guarantee stable solutions in other cases. In fig. 5.7, we plot the relative errors between thesignals and reference. It is clear that to obtain stable solutions at high velocities, the number ofnodes needs to be more than 27,300.
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Figure 5.6: Amplitude (left), real part (middle), and imaginary part (right) of normalized signals bythe standard Galerkin method against the number of nodes, with ∥g∥ = 200mT/m. The signalsare normalized by S0. The solid, dotted, dashed, and dash-dot lines represent the velocity values of
10−3µm/µs, 1.5× 10−2µm/µs, 3× 10−2µm/µs and 4× 10−2µm/µs.

Figure 5.7: Relative errors by the standardGalerkinmethod against the number of nodes. Left:∥g∥ =
0mT/m, computed by 100%× |S − Sref |/|Sref |; Middle: Real part with ∥g∥ = 200mT/m, computedby 100% × |ℜ(S) − ℜ(Sref )|/|ℜ(Sref )|; Right: Imaginary part with ∥g∥ = 200mT/m, computed by
100% × |ℑ(S) − ℑ(Sref )|/|ℑ(Sref )|. The solid, dotted, dashed, and dash-dot lines represent thevelocity values of 10−3µm/µs, 1.5× 10−2µm/µs, 3× 10−2µm/µs and 4× 10−2µm/µs.

5.4.2 Using SUPG
Next, we employ the SUPGmethod on the simulations. At low velocities, the results by the SUPGmethod should be close to those by the standard Galerkin method, and at high velocities, we expectthat the solutions are stable on a coarse mesh.In fig. 5.8, we plot the magnetization calculated by the SUPG method, with stabilization param-eters τ Ik and directional diameter of elements hk,2, on the finite elements mesh of h = 1 with

∥g∥ = 0mT/m. We can see that after adding the stabilization terms, the magnetization at highvelocities is stable and there are no spurious oscillations.In fig. 5.9, we plot the normalized signals by the SUPG method against the number of nodes,with ∥g∥ = 0mT/m and ∥g∥ = 200mT/m. We can see that after adding the stabilization terms,the signals are stable for all velocities when Nnode ≥ 8, 981, which is a significant improvementcompared to the standard Galerkin method.

5.4.3 Choice of stabilization parameters and diameter of elements
The choice of the stabilization parameters and diameter of elements will affect the performanceof the SUPG method. In fig. 5.10, we plot the signal relative errors using different combinations ofstabilization parameters and diameters of elements, with ∥g∥ = 0mT/m. We use the solutions bythe standard Galerkin method on the finest mesh as the reference solutions, same as the previoussubsection. We observe that not every combination effectively stabilizes the equation. With thedirectional diameters of elements hk,2, only the first stabilization parameter τ Ik produces stableresults. In contrast, for the non-directional diameter hk,1, all three stabilization parameters canstabilize the solution, though with varying efficiency. Specifically, (τ Ik , hk,1) and (τ IIk , hk,1) are betterthan (τ IIIk , hk,1).In summary, generally, the combination (τ Ik , hk,2) is preferable, it could converge on coarse
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Figure 5.8: Transverse magnetization with various velocities on the finite element mesh of h = 1, atg-value of 0mT/m. The PGSE(1ms, 1ms) sequence is applied. The simulations are performed by theSUPG method, with stabilization parameters τ Ik and diameter of elements hk,2. From left to right:
∥v∥2 = [10−3, 1.5× 10−2, 3× 10−2, 4× 10−2]µm/µs.

Figure 5.9: Normalized signals by the SUPG method with stabilization parameters τ Ik and diam-eter of elements hk,2, against the number of nodes. Left: ∥g∥ = 0mT/m. Left: Real part with
∥g∥ = 200mT/m; Right: Imaginary part with ∥g∥ = 200mT/m. The solid, dotted, dashed, anddash-dot lines represent the velocity values of 10−3µm/µs, 1.5 × 10−2µm/µs, 3 × 10−2µm/µs and
4× 10−2µm/µs.

meshes (Nnode = 8, 981). However, for the low blood flow velocity case, this combination convergesslower than (τ Ik , hk,1) and (τ IIk , hk,1) as the number of nodes increases.In fig. 5.11, we plot the signal absolute errors with the three combinations (τ Ik , hk,2), (τ Ik , hk,1)and (τ IIk , hk,1), with ∥g∥ = 200mT/m. We note that on the coarsest meshes (Nnode = 4, 593),only (τ Ik , hk,2) can stabilize the equation. And the other two combinations need a denser mesh(Nnode ≥ 10, 379). The directional diameter of elements yields a better solution on the coarsemeshes. However, an advantage of the undirectional diameter of elements is that when velocityis time-dependent, we do not need to re-compute the stabilization at each step, which may savecomputational time.
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(a) τIk , hk,2 (b) τIIk , hk,2 (c) τIIIk , hk,2

(d) τIk , hk,1 (e) τIIk , hk,1 (f) τIIIk , hk,1

Figure 5.10: Relative errors of the signals by the SUPGmethodwith six different combinations of sta-bilization parameters τ and diameter of element hk, with ∥g∥ = 0mT/m. The solid, dotted, dashed,and dash-dot lines represent the velocity values of 10−3µm/µs, 1.5 × 10−2µm/µs, 3 × 10−2µm/µsand 4× 10−2µm/µs.

(a) τIk , hk,2, real part (b) τIk , hk,1, real part (c) τIIk , hk,1, real part

(d) τIk , hk,2, imaginary part (e) τIk , hk,1, imaginary part (f) τIIk , hk,1, imaginary part
Figure 5.11: Absolute errors of the signals by the SUPG method with three different combinationsof stabilization parameters τ and diameter of element hk, with ∥g∥ = 200mT/m. The solid, dot-ted, dashed, and dash-dot lines represent the velocity values of 10−3µm/µs, 1.5 × 10−2µm/µs,
3× 10−2µm/µs and 4× 10−2µm/µs.
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5.5 Discussion
In this chapter, we extend our diffusion MRI simulator for blood flow imaging. Introducing theconvection term can lead to stability issues in the convection-dominated region. To stabilize theequation, we employ the Streamline Upwind Petrov-Galerkin method to the generalized form ofthe Bloch-Torrey equation. Numerical simulations demonstrate its superiority over the standardGalerkin method, achieving stable results on coarser meshes.In the implementation of the SUPG method, the selection of stabilization parameters τk anddiameter of elements hk is crucial. Our numerical simulations indicate that not all (τk, hk) pairingsare effective in stabilizing the equation. Of the pairings that do stabilize, (τ Ik , hk,2) performs wellon coarse meshes, yet it converges slower at low blood flow velocity, compared to (τ Ik , hk,1) and

(τ IIk , hk,1).



Chapter 6

Conclusions and perspectives

The ultimate objective of this thesis is to offer robust numerical tools for studying diffusionMRI signals and ADC behaviors in a more complex and realistic context, evaluating the existingmicrostructure estimation techniques, such as diffusion MRI compartment signal models, design-ing appropriate diffusion MRI experimental setups, and developing new microstructure estimationmodels.We develop a new formulation of Matrix Formalism, which computes the diffusionMRI signals ofpermeable medium using the impermeable Laplace eigenfunctions. This new formulation decom-poses permeablemagnetization into impermeable Laplace eigenfunctions and treats the permeabil-ity as a perturbation termQproj during the signal computation process. Thus, it saves computationalresources for simulations when adjusting the permeability values, since the eigen-decomposition isonly needed to be performed once. A promising application of this new formulation is to study theimpact of permeability values on the signals or ADC patterns and evaluating diffusion MRI compart-ment signal models that account for permeability. Qproj can be further split into two components:the permeability value and the interface shapes, which relate to the surface-to-volume ratio. More-over, the numerical analysis on diffusionMRI signals illustrates that the signals can be approximatedby an exponential relationship SAPPROX = e−β·κ ·
(
Simp − Sfree

)
+ Sfree, where β is related to inter-face shapes, providing the possibility to probe individually the surface-to-volume ratio of porousmedium and permeability in the future.Asymptotic model accounting for geometrical deformations is another powerful numerical anal-ysis tool. By expanding the transformed diffusion MRI signal and ADC defined on canonical domainas a power series of deformation parameters, one can explicitly link the structure and signals. Inthe small deformation regime, a second-order correction is sufficient to yield good approximations.Minor corrections values imply that the deformations have minimal influence on the signals. Thisinsight can guide the design of experimental settings to minimize the shape imperfections. In thisthesis, we focus on the asymptotic expansions for bending and twisting deformations. Theoreti-cally, this method can also be adapted to other types of deformations with analytical forms, such asundulation, beading, or orientation dispersion in the future.Following the research in[3, 5], we conduct a numerical analysis on the relationship between in-flection point-derived biomarkers and the soma size and volume fractions in the brain gray matterusing the Numerical Matrix Formalismmethod. This analysis directly relates specific signal patternsto certain microstructures. Based on this investigation, we propose an IP-derived biomarkers ex-haustive search method for volume fractions and soma size estimation. We validate this IP-derivedbiomarker-based estimation on both the Synthetic Voxels Set and the in vivo dataset, showing sim-ilar results compared to signals-based estimations. Potential performance improvements of thisIP-derived biomarker-based method include:

1. Combining IP-derived biomarkers from various diffusion MRI sequences. Given that each se-quence is particularly sensitive to a specific range of soma sizes, their combinations can po-tentially broaden the estimation range and enhance estimation reliability;
2. Introducing additional biomarkers. In this work, we focus on three IP-derived biomarkers.Incorporating other biomarkers, derived from the inflection point, like the error in the power-law approximation, or kurtosis tensor, may improve the method’s robustness;
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3. Using manifold learning to approximate the mappings. The mappings from biomarkers tosoma size are effectively low dimensional manifolds. Some advanced machine learning tech-niques may help make a better estimation.
Diffusion MRI simulation with Streamline Upwind Petrov-Galerkin scheme addresses the insta-bility issues in blood flow imaging. Numerical validation shows that the proposed scheme yieldsstable solutions on coarse meshes at large velocities. However, this method has been tested onlyon a simple case, further analysis of realistic velocity field and other inlet/outlet boundary conditionsis essential before the practical applications. To be able to make an appropriate choice, a compre-hensive study on velocity limits[234] and potentially integrating the imaginary reaction term withstabilization parameters is necessary for future research. In addition, to mitigate or even eliminatespurious oscillations in layers from SUPG solutions, a potential work in the future is to integrate theSOLD method into the formulation[229, 235].To conclude, this thesis contributes to numerical simulation methods in diffusion MRI and mi-crostructural imaging.
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Appendix of Chapter 3

A.1 Alternative formula of HADC model
The ADC of compartment Ωi by the HADC model in the original paper[151] is

HADCi = Di − Di∫ TE

0
F (t)

2
dt

∫ TE

0

F (t) hi(t) dt, (A.1)
where

hi(t) =
1

|Ωi|

∫
∂Ωi

ωi(r, t) (ug · n(r)) dsr (A.2)
is a quantity related to the directional gradient of a function ωi that is the solution of the homoge-neous diffusion equation with Neumann boundary condition and zero initial condition:

∂

∂t
ωi(r, t) = ∇Di∇ωi(r, t), r ∈ Ωi (A.3)

Di∇ωi(r, t) · n(r) = DiF (t)ug · n(r), r ∈ ∂Ωi (A.4)
ωi(r, 0) = 0, r ∈ Ωi, (A.5)

n being the outward normal and t ∈ [0, TE].We define a new function
ω̃(r, t) = ω(r, t)− F (t)ug · r. (A.6)

Replacing eq. (A.6) into eqs. (A.3) to (A.5), we obtain the following non-homogeneous diffusion equa-tion:
∂

∂t
ω̃i(r, t) = ∇Di∇ω̃i(r, t)− f(t)ug · r, r ∈ Ωi (3.2 revisited)

Di∇ω̃i(r, t) · n(r) = 0, r ∈ ∂Ωi (3.3 revisited)
ω̃i(r, 0) = 0, r ∈ Ωi, (3.4 revisited)

Using the divergence theorem to the second term of the new function F (t)ug · r, we have∫
∂Ωi

F (t)ug · r (ug · n(r)) dsr = F (t)

∫
Ωi

∇ · (ug · r)ugdr = |Ωi|F (t). (A.7)
Therefore, eq. (A.2) becomes

h̃i(t) =
1

|Ωi|

∫
∂Ωi

ω̃i(r, t) (ug · n(r)) dsr − F (t). (A.8)
And at echo time, the second term equals to Di and the ADC is

HADCi = Di − −Di∫ TE

0
F (t)

2
dt

∫ TE

0

F (t)h̃i(t)dt

=
Di∫ TE

0
F (t)

2
dt

∫ TE

0

F (t)
1

|Ωi|

∫
∂Ωi

ω̃i(r, t) (ug · n(r)) dsrdt.
(A.9)
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A.2 Asymptotic expansion in Matrix Formalism representation
By decomposing each order of the asymptotic expansion of the transformed HADC model intothe Laplace eigenfunctions, multiplying the eigenfunction ϕ(x), and integrating over the whole do-main, we have

dζ0
dt

= −Lζ0 − f(t)J01Neig,1, (A.10)
dζ0,1
dt

= −Lζ0,1 −Cb,1ζ0 − f(t)Jb,11Neig,1, (A.11)
dζ1,0
dt

= −Lζ1,0 −Ct,1ζ0 − f(t)Jt,11Neig,1, (A.12)
dζ0,2
dt

= −Lζ0,2 −Cb,1ζ0,1 −Cb,2ζ0 − f(t)Jb,21Neig,1, (A.13)
dζ2,0
dt

= −Lζ2,0 −Ct,1ζ1,0 −Ct,2ζ0 − f(t)Jt,21Neig,1, (A.14)
dζ1,1
dt

= −Lζ1,1 −Ctb,1ζ0 −Cb,1ζ1,0 −Ct,1ζ0,1 − f(t)Jtb,1,11Neig,1, (A.15)
whereC are correction matrices and J are matrices of transformation,

[Cb,1]nm = 2Di

∫
Ω

z(∂zϕn∂xϕm + ∂xϕn∂zϕm)dx, (A.16)
[Cb,2]nm = 4Di

∫
Ω

z2∂xϕn∂xϕmdx, (A.17)
[Ct,1]nm = Di

∫
Ω

x(∂zϕn∂yϕm + ∂yϕn∂zϕm)− yn(∂zϕn∂xϕm + ∂xϕn∂zϕm)dx, (A.18)
[Ct,2]nm = Di

∫
Ω

xy(∂xϕn∂yϕm + ∂yϕn∂xϕm)− x2(∂yϕn∂yϕm)− y2(∂xϕn∂xϕm)dx, (A.19)
[Ctb,1,1]nm = 2Di

∫
Ω

z(∂xϕn∂yϕm + ∂yϕn∂xϕm)− 2y∂xϕn∂xϕmdx. (A.20)

[J0]nm =

∫
Ω

ug · xϕnϕmdx, (A.21)
[Jb,1]nm =

∫
Ω

ugzz
2ϕnϕmdx, (A.22)

[Jb,2]nm = 0, (A.23)
[Jt,1]nm =

∫
Ω

−yzugx + xzugyϕnϕmdx, (A.24)
[Jt,2]nm =

∫
Ω

−xz2ugx − yz2ugyϕnϕmdx, (A.25)
[Jtb,1,1]nm =

∫
Ω

ugyz
3ϕnϕmdx. (A.26)

We concatenate the solutions of each order as one new time-dependent variable
ζall = [ζ0, ζ0,1, ζ1,0, ζ0,2, ζ1,1, ζ2,0]

T ∈ R6Neig,1,

and denote one new matrix and one vector

Call =


L 0 0 0 0 0

Cb,1 L 0 0 0 0
Ct,1 0 L 0 0 0
Cb,2 Cb,1 0 L 0 0
Ct,2 0 Ct,1 0 L 0
Ctb,1,1 Ct,1 Cb,1 0 0 L

 (A.27)
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Jall
vec =


J0

Jb,1

Jt,1

Jb,2

Jt,2

Jtb,1,1

 · 1Neig,1. (A.28)

The solution ζall can be calculated by solving the following system of ODEs
dζall
dt

= −Callζall − f(t)Jall
vec. (A.29)

and it can be expressed as
ζall(t) = −

∫ t

0

f(s)e−(t−s)Call
Jall
vecds. (A.30)

The HADC is computed by
HADCi =

−Di

|Ωi|
∫ TE

0
F (t)

2
dt

∫
∂Ωi

∫ TE

0

F (t)

∫ t

0

f(s)e−(t−s)Call
Jall
vecdsdt (ug · n(r)) dsr. (A.31)

Compared to the original HADCmodel, this alternative form needs to compute a double integralon f(s) ·F (t) instead of F (s) ·F (t), which requires less finer time steps to maintain a good accuracy.Similarly, for the asymptotic expansion of transformed Bloch-Torrey PDE, we have
dT0

dt
= −LT0 − f(t)J0T0, (A.32)

dT0,1

dt
= − (L+ f(t)J0)T0,1 − (Cb,1 +Qb,1 + f(t)Jb,1)T0, (A.33)

dT1,0

dt
= − (L+ f(t)J0)T1,0 − (Ct,1 +Qt,1 + f(t)Jt,1)T0, (A.34)

dT0,2

dt
= − (L+ f(t)J0)T0,2 − (Cb,1 +Qb,1 + f(t)Jb,1)T0,1 − (Cb,2 +Qb,2 + f(t)Jb,2)T0, (A.35)

dT2,0

dt
= − (L+ f(t)J0)T2,0 − (Ct,1 +Qt,1 + f(t)Jt,1)T1,0 − (Ct,2 +Qt,2 + f(t)Jt,2)T0, (A.36)

dT1,1

dt
= − (L+ f(t)J0)T1,1 − (Ctb,1 +Qtb,1 + f(t)Jtb,1,1)T0

− (Cb,1 +Qb,1 + f(t)Jb,1)T1,0 − (Ct,1 +Qt,1 + f(t)Jt,1)T0,1, (A.37)
where the correction matrices for the flux term are

[Qb,1]nm = −4κij

∫
∂Ω

znx
inz

iϕnϕmdsx, (A.38)
[Qb,2]nm = 4κij

∫
∂Ω

z2nx
inx

iϕnϕmdsx, (A.39)
[Qt,1]nm = 2κij

∫
∂Ω

(ynx
inz

i − xny
inz

i)ϕnϕmdsx, (A.40)
[Qt,2]nm = κij

∫
∂Ω

(y2nx
inx

i − 2xynx
iny

i + x2ny
iny

i)ϕnϕmdsx, (A.41)
[Qtb,1,1]nm = 4κij

∫
∂Ω

(−yznx
inx

i + xznx
iny

i)ϕnϕmdsx. (A.42)
Denoted the combining time-dependent variable as

T all = [T0,T0,1,T1,0,T0,2,T1,1,T2,0]
T ∈ R6Neig,1,

and two new matrices

Qall =


0 0 0 0 0 0

Qb,1 0 0 0 0 0
Qt,1 0 0 0 0 0
Qb,2 Qb,1 0 0 0 0
Qt,2 0 Qt,1 0 0 0
Qtb,1,1 Qt,1 Qb,1 0 0 0

 , (A.43)
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Jall =


J0 0 0 0 0 0
Jb,1 J0 0 0 0 0
Jt,1 0 J0 0 0 0
Jb,2 Jb,1 0 J0 0 0
Jt,2 0 Jt,1 0 J0 0
Jtb,1,1 Jt,1 Jb,1 0 0 J0

 . (A.44)

We obtain a new system of ODEs
dT all
dt

= −
(
Call + ıγ∥g∥f(t)Jall +Qall)T all. (A.45)

At echo time, we have
T all(TE) = e−δ(Call−ıγ∥g∥Jall+Qall) · e−(∆−δ)(Call+Qall) · e−δ(Call+ıγ∥g∥Jall+Qall) · v, (A.46)

where v is a vector of size 6Neig , with all entries being zero except for the first item, which is ρ.
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Appendix of Chapter 4

B.1 Numerical implementationof thefirst and second-order deriva-
tives of signals

The computation of the first and second-order derivatives involves the integral of matrix expo-nentials. To be able to calculate them efficiently, we construct an upper triangular matrix, denotedas C:
C =

[
−δ(L+ ıqW ) −ıδW
0Neig,Neig −δ(L+ ıqW )

]
, (B.1)

where Neig is the number of eigens. The exponential of C is expressed as[236]
eC =

[
e−δ(L+ıqW )

∫ 1

0
e−αδ(L+ıqW )(−ıδW )e−(1−α)δ(L+ıqW )dα

0Neig,Neig
e−δ(L+ıqW )

]
. (B.2)

Define two vectors:
v1 = [INeig,Neig

, 0Neig,Neig
]
T ∈ R2Neig,Neig , (B.3)

v2 = [0Neig,Neig
, INeig,Neig

]
T ∈ R2Neig,Neig . (B.4)

We have
∂G

∂q
= e−0.5(∆−δ)L

(
vT
1 · eC · v2

)
. (B.5)

Thus, by construction, we can calculate the first-order derivative by the action of the matrix expo-nential on one vector without explicitly computing the integral, using ‘expmv’[126].Analogously, to compute the second-order derivative, we construct a new matrixD:

D =

 C

[
0Neig,Neig

0Neig,Neig

0Neig,Neig
−ıδW

]
02Neig,2Neig

[
0Neig,Neig 0Neig,Neig

0Neig,Neig −δ(L+ ıqW )

]
 . (B.6)

The second-order derivative is expressed as
∂2G

∂q2
= 2e−0.5(∆−δ)L

(
vT
3 · eD · v4

)
, (B.7)

where
v3 = [INeig,Neig

, 0Neig,Neig
, 0Neig,Neig

, 0Neig,Neig
]
T ∈ R4Neig,Neig , (B.8)

v4 = [0Neig,Neig , 0Neig,Neig , 0Neig,Neig , INeig,Neig ]
T ∈ R4Neig,Neig . (B.9)

Therefore, the expressions of a,b and c are
133
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a =

∫ π

0

∫ 2π

0

ℜ
(
TT
1,Neig

e−δ(L−ıqW )e−(∆−δ)L
(
vT
1 e

Cv2

)
T1,Neig

)
dθdϕ, (B.10)

b =

∫ π

0

∫ 2π

0

ℜ
(
TT
1,Neig

(
vT
2 (e

C)
∗
v1

)
e−(∆−δ)L

(
vT
1 e

Cv2

)
T1,Neig

)
dθdϕ, (B.11)

c =

∫ π

0

∫ 2π

0

2ℜ(TT
1,Neig

e−δ(L−ıqW )e−(∆−δ)L
(
vT
3 e

Dv4

)
T1,Neig

)dθdϕ. (B.12)
The inflection point is

2a

q
+ b+ c = 0. (B.13)

B.2 MLPs training
In the thesis of Fang[3], he proposed to using MLPs to learn the mappings from IP-derivedbiomarkers plus ADC to the microstructure parameters of interest, fsoma Rsoma and ffree.Consider a set of tuples that is extracted from the Synthetic voxels set, T = {(Xi,Yi), i ∈

{1, . . . , Nsample}} where Nsample (= 1.45 million for Synthetic voxels set) is the number of samples.Refer to a tuple (X,Y ) as a data point. The input of an IP-derived biomarker-based MLP is de-noted byX1, which is the four IP-derived biomarkers x0, c0, c1 and y0 arising from an artificial brainvoxel, plus the ADC. The input of a signal-based MLP is denoted by X2, which is the 64 dierction-averaged signals. The desired output (fsoma, Rsoma or ffree) is denoted by Y . To reduce the learningdifficulty, two individual MLPs are trained, for the volume fractions and the volume-averaged somaradius, instead of combining them as one. The four MLPs are
1. X1 ∈ R5 is the four IP-derivedbiomarkers plus ADCwith∆being 19or 49ms,Y1 = [fsoma, fneurite, ffree]T ∈

[0, 1]
3 represents the volume fractions, and the sum (the L1-norm of output ∥Y ∥1) should beone;

2. X1 ∈ R5 is same as above, Y2 = Rsoma represents the volume averaged soma radius.
3. X2 ∈ [0, 1]

64 is the 64 direction-averaged signals linearly spaced between 0 and 290mT/m,
with∆ being 19 or 49ms, Y1 = [fsoma, fneurite, ffree]T ∈ [0, 1]

3 represents the volume fractions,and the sum (the L1-norm of output ∥Y ∥1) should be one;
4. X2 ∈ [0, 1]

64 is same as above, Y2 = Rsoma represents the volume averaged soma radius.
It is worth noting that the measurements at two diffusion times are analyzed separately. Ac-cording to[237], combining diverse input data or incorporating multi-modal data can enhance therobustness of the estimation.We randomly select one million samples from the Synthetic voxels set to form the the trainingset Ttrain; the rest (0.45 million samples) makes up the test set Ttest which is held out and not usedfor model training. The test set allows us to assess the generalization of a trained MLP[238].An MLP is a nonlinear function h parameterized by its weights θ[238]. The model training is tofind optimal weights θ∗ that minimize the loss function defined by the distance between the MLP’soutput and the desired output

θ∗ = arg ,min
θ

1

#Ttrain
#Ttrain∑
i=1

∥Yi − h(Xi;θ)∥22. (B.14)
Here, the mean squared error (MSE) is chosen as the loss function. The minimization is possibleif an underlying function ζ mapping Xi to Yi exists. Once the optimization converged, the trainedMLPs could be a good approximation of the underlying function, i.e., h(·;θ∗) ≃ ζ in the sense ofminimizing L2-norm in the training set.The function ζ varies with the choice of the microstructure parameters of interest, and the MRphysics determines its existence. One must be careful about the initial normalization, activation
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function, initial weights, and optimization algorithm to reach the convergence[239]. Here, the Gaus-sian error linear unit (GELU)[240] is employed, a ReLU-like activation function that incorporates theproperties of stochastic regularizers such as dropout[241]. The weights θ are initialized using Kaim-ing initialization[242] because of the ReLU-like activation functions. The optimization is performedwith a variant of the Adam optimizer that has a long-termmemory of past gradients to enhance theconvergence[243, 244]. The initial learning rate is 0.01, the batch size is 10,000, and the maximumnumber of epochs is 500. The two parameters (betas) of the Adam optimizer for computing runningaverages of gradient and its square are 0.9 and 0.999.The architecture of an artificial MLP can also significantly affect its performance. Finding a suit-able network architecture for brain microstructure estimation is a subject worth investigating in thefuture. Here a four-layer MLP structure are chosen. Even though it is simple, it can effectively “learn”a wide range of mappings or functions if there are enough nodes[245]. For MLPs using IP-derivedbiomarkers plus ADC as inputs, the selected size of each layer is set to (5, 30, 30, 3) for the volumefractions estimation and (5, 30, 30, 1) for the effective soma radius estimation. For MLPs using sig-nals as inputs, the selected size of each layer is set to (64, 128, 64, 3) for the volume fractions estima-tion and (64, 128, 64, 1) for the effective soma radius estimation. For the volume fractions estimationMLP, to guarantee the outputs are all positive and sum to unity, a softmax function[246] is used asthe output layer. The implementation and training of MLPs are performed with PyTorch[247].In total, eight MLPs (2 kinds of inputs, 2 kinds of outputs, and 2 different sequences) are trainedto find optimal hyper-parameters.
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Titre: Méthodes numériques pour l’estimation de la microstructure du cerveau à partir dedonnées d’IRM de diffusion
Mots clés: EDP de Bloch-Torrey,IRM de diffusion, estimation des microstructures, simulationnumérique
Résumé: Les objectifs de cette thèse sont(1) de présenter de nouvelles méthodesde simulation basées sur l’EDP de Bloch-Torrey, facilitant les études numériques surles paramètres liés à la géométrie, et (2)d’employer ces méthodes proposées pourévaluer les modèles de signal de comparti-ment en IRM de diffusion et pour analyser lesignal d’IRM de diffusion ou le coefficient dediffusion apparent (CDA).Tout d’abord, nous présentons une nouvellereprésentation sous forme de FormalismeMatriciel, qui réutilise les fonctions propres deLaplace imperméables pour calculer les sig-naux perméables. Grâce à cette formulation,nous illustrons que (1) les signaux d’IRM dediffusion ont un taux exponentiel vers la per-méabilité; (2) le CDAmontre un taux de dépen-dance différent à faibles et hautes perméabil-ités; (3) il existe une corrélation entre la per-méabilité et le modèle NEXI.Ensuite, nous développons une expansionasymptotique du second ordre sur deux dé-

formations géométriques analytiques. Àtravers une investigation numérique, nousmontrons que (1) le pliage réduit la diffusiondans la direction de diffusion maximale; (2) ladéformation par torsion change la directionde diffusion maximale.Troisièmement, nous identifions des biomar-queurs dérivés du point d’inflexion (PI) de ladéviation de la loi de puissance 1/
√b dansla matière grise du cerveau. Nous effectuonsune analyse numérique de la relation entre lesbiomarqueurs dérivés du PI, les fractions devolume, la taille du soma, et proposons uneestimation basée sur la recherche exhaustiveefficace en utilisant ces biomarqueurs.Enfin, pour résoudre l’instabilité dans la sim-ulation d’écoulement sanguin en IRM de dif-fusion, nous appliquons le schéma Stream-line Upwind Petrov Galerkin. La validationnumérique montre que cette nouvelle méth-ode est capable de fournir une solution stablepour une vitesse d’écoulement sanguin rela-tivement élevée sur un maillage creux.

Title: Numerical methods to estimate brain micro-structure from diffusion MRI data
Keywords: Bloch-Torrey PDE, diffusion MRI, microstructural imaging, numerical simulation
Abstract: The objectives of this thesis are (1)to introduce novel simulation methods basedon the Bloch-Torrey PDE, facilitating numericalstudies on geometry-related parameters and(2) to employ the proposed methods, to eval-uate the existing diffusion MRI compartmentsignal models, and to analyze diffusion MRIsignal or apparent diffusion coefficient (ADC).First, we present a novel Matrix Formalismrepresentation, which can re-use the imper-meable Laplace eigenfunctions to computethe permeable signals. Using this formula-tion, we illustrate that (1) diffusion MRI sig-nal shows an exponential rate towards perme-ability; (2) Long-time limit ADC shows differentrates of dependence at low and high perme-abilities; (3) there is a correlation between per-meability and the NEXI model.Second, we develop a second-order asymp-totic expansion towards two analytical geo-

metrical deformations. By numerical studies,we illustrate that (1) bending will decrease thesignal value in the maximum diffusion direc-tion; (2) twisting will change the maximum dif-fusion direction.Third, we identify inflection point (IP) derivedbiomarkers from the deviation of the 1/
√bpower-law scaling in the brain graymatter. Weconduct numerical analysis on the relation-ship between the IP-derived biomarkers andvolume fractions and soma size and proposean efficient exhaustive search based on thesebiomarkers.Finally, to address the instability issues in dif-fusion MRI blood flow imaging simulation, weapply the Streamline Upwind Petrov Galerkinscheme. Numerical validation illustrates thatthis new method is able to yield a stable solu-tion for a quite high blood flow velocity on acoarse mesh.
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