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Thesis summary in English

The execution time of a task depends both on the input data, which define the sequence of
instructions executed, and on the execution platform, which determines the duration of these
instructions. In the context of real-time critical systems (e.g. avionics, spatial), it is crucial to
know the Worst-Case Execution Time (WCET) of the tasks in order to guarantee that they all
meet their timing constraints, which ensure a safe execution of the system (e.g. deadline). The
WCET problem has already been studied in a lot of research works but they must be updated to
take into account the recent hardware evolutions. Therefore, for more than a decade, multi-core
architectures have been at the center of many research works. Indeed, manufacturers prefer them
over single-core architectures because they offer performance, energy and space gains. However,
timing verification is more challenging for these architectures due to the presence of shared resources
that are sources of interference. Contentions appear when at least two cores simultaneously attempt
to access a same resource. In this case, some tasks may take longer than expected to use the shared
resource. This additional delay must be taken into account in the WCET of the tasks although it
is difficult to predict the number of contentions that may occur and their moment.

The first part of the thesis focuses on the multi-phase task model, which can be used during the
scheduling and the interference analyses to compute the contentions with more precision. Indeed,
tasks are no longer represented as a single temporal block but divided into several phases, each of
which represents a portion of the task execution. With this model, accesses are no longer considered
to be performed from the beginning to the end of the task but rather in a subset of the phases. This
model was introduced prior to the thesis but we propose a more generic multi-phase model that we
use to conservatively compute the number of accesses that may be performed in the phases for any
multi-phase profile. We present 3 formal correctness criteria which guarantee that the method to
compute the accesses in the phases is safe, and that the implementation of the model in the code,
using synchronizations, is correct given a static schedule.

The second part proposes techniques to design and optimize multi-phase profiles from their
execution traces. The first technique is based on Kernel Density Estimation (KDE) that is used to
cluster the instructions performing accesses in phases. We also present optimization and correction
methods to maximize the efficiency of the profile during the interference analysis, along with a
method to select synchronizations. Then, as our problem is multi-criteria and admits a lot of
solutions, we propose two methods based on Genetic Algorithms (GA) respectively to create and
to optimize multi-phase profiles. The design techniques presented are compared and evaluated
using two case studies.

The last part addresses the static scheduling of multi-phase tasks in multi-core architectures.
The problem is presented with an ILP formulation that considers both the tasks dependencies and
the effects of contentions to minimize the worst-case response time of the system. Then, we propose
heuristics with different strategies to take advantage of the multi-phase model and to include the
effects of contentions. We performed a statistical study over a large number of synthetic multi-
phase tasks systems in order to compare the methods in different configurations and to prove the
efficiency of the multi-phase model. The experiments end with two case studies that confront the
heuristics to more realistic multi-phase profiles and bigger systems.
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Résumé de la thèse en français

Le temps d’exécution d’un programme varie en fonction de ses entrées, qui définissent la
séquence des instructions exécutées et de la plateforme d’exécution qui détermine la durée de ces
instructions. Dans le contexte des systèmes temps-réel critiques (avionique, spatial...), il est crucial
de connaître le temps d’exécution pire-cas des tâches, ou Worst-Case Execution Time (WCET),
afin de garantir qu’elles respectent les contraintes temporelles qui régissent le bon fonctionnement
du système comme la date d’échéance. De nombreuses recherches ont déjà étudié la prédiction du
temps d’exécution et le WCET mais elles doivent être mises à jour pour tenir compte des évolutions
matérielles. Ainsi, depuis plus d’une décennie, beaucoup de ces recherches ciblent les architectures
multi-cœur qui sont plébiscitées par les industriels (meilleures performances, efficacité énergétique,
gain de place...). Cependant, la présence de ressources partagées entre plusieurs cœurs fait ap-
paraître des interférences lorsqu’ils tentent d’y accéder de façon concurrente. Certaines tâches
peuvent alors attendre plus longtemps que prévu pour être servies par la ressource. L’analyse tem-
porelle doit prendre en compte ces délais bien que la quantité d’interférences et leurs dates soient
compliquées à prédire.

La première partie de la thèse s’intéresse à l’utilisation d’un modèle de tâche plus précis qui
peut être utilisé durant l’ordonnancement et l’analyse d’interférences appelé modèle multi-phase.
Il consiste à représenter une tâche non plus sous la forme d’un seul bloc temporel mais divisée en
plusieurs phases. Par conséquent, au lieu de considérer que les accès d’une tâche peuvent s’effectuer
du début à la fin de cette tâche, on peut compartimenter ces accès dans les phases et ainsi calculer
les interférences à l’échelle plus fine des phases. Ce modèle a déjà été utilisé avant la thèse mais
nous proposons une formalisation plus générique ainsi qu’une méthode pour calculer de façon
conservative le nombre d’accès dans les phases de n’importe quel profil multi-phase d’une tâche.
Nous introduisons aussi 3 critères de correction pour garantir que la méthode de calcul des accès
est sûre et que l’implémentation du modèle multi-phase dans le code, à l’aide de synchronisations,
est correcte d’après un ordonnancement statique donné.

La deuxième partie propose des techniques de construction et d’optimisation de profils multi-
phase à partir des traces d’exécution d’une tâche. La première technique utilise l’estimation de
densité par noyau avec pour objectif de grouper les instructions effectuant des accès dans des phases.
À cette technique s’ajoutent des optimisations et corrections pour maximiser l’efficacité du profil
durant l’analyse d’interférences, ainsi qu’une méthode pour sélectionner des synchronisations. Par
la suite, nous proposons 2 méthodes basées sur des Algorithmes Génétiques (GA) respectivement
pour créer et optimiser des profils. En effet, les GA sont adaptés aux problèmes multi-critères
avec un large espace de solutions. Nous utilisons deux cas d’études pour comparer et évaluer les
méthodes présentées.

La dernière partie s’intéresse à l’ordonnancement statique des tâches multi-phase sur les archi-
tectures multi-cœur. Le problème est présenté avec une formulation ILP considérant des dépen-
dances entre tâches et les possibles effets des interférences pour minimiser le pire temps de réponse
du système. Ensuite, nous proposons des heuristiques avec différentes stratégies pour tirer profit
du caractère multi-phase des tâches et inclure les effets des interférences. Enfin, nous menons une
étude statistique avec des systèmes synthétiques pour comparer les méthodes dans différentes con-
figurations et mesurer l’efficacité du modèle multi-phase. L’étude se poursuit avec 2 études de cas
pour confronter les heuristiques à des formes de profils plus réalistes et de plus gros systèmes.
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Chapter 1

Introduction

Contents
1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1 Context
A real-time system is a system whose correctness depends both on the logical results it produces

and on the time at which the results are produced [1]. For example, the pressure sensor of an
avionic system must be re-executed periodically because the pressure changes over time. Hence,
the data read at a given time instant will be considered unreliable at some point in the future. For
this reason, real-time tasks are generally subject to timing constraints expressed by their release
date, i.e. the date from which the task can be executed, their deadline, i.e. the time instant at
which the results of the tasks must be produced and their period, i.e. the interval between two
release dates. In the context of a critical application, it is required to verify that each task will
always meet its deadline in order to guarantee its correctness. This guarantee can be verified by
computing the Worst-Case Execution Time (WCET) of the tasks [2]: an upper bound on their
execution time. The execution time depends on the inputs of the task that define which sequence
of instructions (i.e. execution trace) is executed and on the execution platform that determines
the set of instructions and their execution time. The difficulty to compute a tight (i.e. close to the
real value) and safe (i.e. that is not under-estimating the real value) WCET has increased over the
years due to the addition of complex micro-architectural features [3]. These features are mainly
designed to improve the average execution time because performance gain is important for most
of the usages. Nonetheless, it is prejudicial to WCET analysis. The reason is that the modelling
of such mechanisms adds complexity and deteriorates the predictability. Still, WCET analysis is a
necessary step in the development of safety-critical real-time systems to guarantee that a deadline
miss cannot occur. At the same time, these systems are required to carry out an increasing number
of functionalities which justifies the employment of accelerator mechanisms.

In this context, single-core platforms are outdated and industry looks towards multi-core archi-
tectures [3, 4] even for critical applications [5, 6, 7]. The main benefits of using multi-core architec-
tures are that they allow multiple tasks to run simultaneously so their computational capacity is
better and they also improve energy efficiency and space utilization. Moreover, as multi-core is now
the standard architecture, they represent most of the large series manufactured so they are also
more interesting economically. Regarding WCET analysis, these architectures pose additional chal-
lenges compared to single-core ones due to the presence of shared resources. Indeed, in multi-core
platforms, several tasks can be executed in parallel and have access to shared hardware components
such as the main memory, caches or I/O peripherals. Simultaneous accesses from different tasks to
the same resource may cause its saturation and lead to interference when a task has to wait until

10
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the resource can serve its request. This situation inevitably affects the execution time of the task
but is not taken into account in usual WCET analyses. Moreover, the timing of interference events
is highly unpredictable if no mitigation strategy is implemented. Hence, considering the effects of
interference in the WCET is challenging. This is pointed out by several certification authorities in
a common document named CAST-32A [8] published in 2016.

2 Contributions
Multi-core interference induces additional delays to take into account during WCET analysis

due to the presence of shared resources. Some experiments showed that these delays can increase
the WCET by a factor of up to 2.96 [9]. Their mitigation is a difficult problem because there exists
many sources of such interference (caches, interconnect, memory) that depend on the considered
architecture, and a variety of approaches can be explored to either eliminate or limit them.

A first distinction needs to be made between a dynamic and a static timing analysis approach.
On the one hand, dynamic timing analyses are executing the program under study on the target
architecture or a simulator to measure the execution time of the program. As the worst-case
path is generally not known beforehand, a safety margin is applied using probability techniques
because there is no guarantee that the real WCET has been measured. On the other hand, static
timing analyses are not executing the software but they combine information from the code of the
program and from the hardware to provide the WCET estimate. This thesis relies on static timing
analysis approaches since, as opposed to the dynamic approach, it is possible to guarantee that
the WCET estimate is safe (i.e. equal to or higher than the real WCET). However, the main
drawback of static methods is the tightness of their estimations as they tend to over-estimate the
maximum execution time in order to guarantee the system safety in any execution scenario. Indeed,
static analyses generally consider a lot of cases that can appear throughout the system execution
based on the combination of software and hardware states. Abstract models are used to capture
a conservative approximation of these states so the combination of the approximations aggravate
the final over-estimation.

One method to cover the worst-case interference scenario in a schedule is to multiply the WCET
of the tasks by a factor which accounts for the effect of the possible contentions. Otherwise, the
analyses must compute a bound on the number of possible accesses that tasks may perform to each
shared resource and derive the maximum number of contentions that the tasks can suffer given a
schedule. A solution to increase the precision of the interference computation is to consider new
abstraction models to represent the tasks with a finer grain. This is the objective of the multi-phase
representation of tasks that splits the tasks into multiple phases so that the interference can be
computed at the phase level instead of the task level. Initially, tasks were only cut into 2 or 3
phases and required substantial code modifications to enforce the model during execution [10, 11].
More recently, some works have proposed to lift these restrictions and to rely directly on existing
code [12, 13] to build the phases. This thesis is based on this approach to address the multi-core
interference problem. The contributions rely on a generic multi-phase model of tasks from which
we derive properties to guarantee a safe analysis and a conservative computation of the worst-case
interference scenario. In addition, we propose new methods to create and optimize the multi-phase
representation of tasks from their binary code.

We also studied several scheduling techniques to find how to benefit the most from the multi-
phase representation in order to reduce the makespan of a schedule. Again, both dynamic and
static approaches exist for this problem. Dynamic approaches make scheduling decisions during
the execution of the systems, based on the current date and state of the tasks. Doing so allows
the system to efficiently adapt to online events and to task execution time variability. However,
providing timing guarantees is challenging in this case (even with single-core architectures) because
the behavior of the system is hard to predict in advance. As a consequence, static solutions are
generally preferred over dynamic solutions for critical systems. We also chose to use a static ap-
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Figure 1.1: Main steps from the static analysis of the program to the computation of the system
schedule

proach to this problem. Most of the existing static scheduling techniques are either based on the
usual single-phase task model or rely on the 2 or 3-phases models [10, 11] that lack generality and
are mainly used to completely eliminate interference. Accounting for contentions in a schedule in
a conservative manner can actually yield better makespan improvements than eliminating interfer-
ence, according to [14]. We adopted this philosophy to design our scheduling methods because it
is more suitable to a generic multi-phase model where the presence of phases without accesses is
not constrained nor guaranteed, unlike in the 2 and 3-phases models.

Figure 1.1 presents the main steps a framework can perform in order to implement a multi-
phase task system according to a schedule based on the binary code of the tasks composing the
system. The contributions of the thesis are located between the Profile Construction step in green
and the Profile Implementation step in purple. Chapter 2 introduces the WCET problem with the
main techniques to compute the WCET in single-core architectures and explains why they need to
be adapted for multi-core platforms due to the apparition of new sources of interference (see red
rectangle, Figure 1.1). The chapter ends with the state of the art approaches to mitigate the effects
of multi-core interference during temporal analyses. Chapter 3 begins with an informal explanation
of the benefits and challenges of the multi-phase task model before presenting a formal and generic
definition. Then, it proposes a set of properties that allow to safely account for the accesses that
may occur in each phase of a task (see green rectangle, Figure 1.1) and to correctly implement
the multi-phase model. The properties are independent from the method used to generate the
multi-phase profile of the task under study. Following this contribution, Chapter 4 introduces new
techniques to build a multi-phase profile. In addition, it presents optimizations to improve the
trade-off between the effort to enforce the execution of the model and the reduction of the over-
estimation of contentions in the schedule (see orange rectangle, Figure 1.1). Chapter 5 compares the
design techniques and optimizations using two case studies. Chapter 6 presents the contributions
of the thesis to the multi-core scheduling problem using the multi-phase model (see blue rectangle,
Figure 1.1). We propose an ILP formulation of the problem as well as a list of heuristics with
different strategies. Finally, Chapter 7 begins by evaluating the potential of the multi-phase model
over the single-phase model using the ILP formulation to compute optimal schedules. Then, a
comparative study of the scheduling techniques of Chapter 6 is conducted in which we also discuss
the influence of the shape of the profile on the computation of interference. The chapter ends by
applying the heuristics on two case studies.



Chapter 2

State of the art: worst-case execution
time problem and multi-core
scheduling

Contents
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4 Employing meta-heuristics and machine learning techniques to sched-
ule tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Meta-heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

This chapter introduces the Worst-Case Execution Time (WCET)problem and the state of the
art approaches to address it. The first section is dedicated to static WCET analysis with single-
core architectures where no inter-core interference can occur. It presents the main approaches to
compute the WCET of a task and mentions some issues to understand the limitations and the
difficulty of WCET analysis. This analysis is sometimes used as a baseline before extending it
to multi-core architectures in the literature. The second section highlights the limitations of the
existing WCET analyses when the system is executed on a multi-core architecture. Indeed, most
of these analyses target single-core architectures. Then, we present a list of existing approaches,
including multi-core scheduling techniques, to handle interference on shared components, as well
as their limitations in order to understand how the work of this thesis addresses some of them.
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Figure 2.1: Distribution of execution times of a dummy program in number of processor cycles.

1 Single-core architectures

1.1 Correctness of safety-critical systems

Safety-critical systems are systems whose failure may provoke unacceptable and catastrophic
events that can severely endanger humans or the environment (e.g. in avionics, space or nuclear
contexts). In order to be commercialized, these systems must comply with regulations managed by
certification authorities such as the European union Aviation Safety Agency (EASA) to demonstrate
their safety and reliability. In the context of real-time systems, correctness not only depends on the
results produced but also on the time at which they are produced. The real-time constraints are
generally defined with deadlines derived from the system they control and systems are categorized
according to the consequence of missing a deadline. In this thesis, we only consider Hard Real-
Time (HRT) systems in which missing a single deadline results in a total failure of the system and
is prohibited. For such systems, it is necessary to compute the WCET of the tasks, an upper bound
on their maximum execution time, in order to later prove that they cannot miss their deadline.

1.2 Execution time of a task

The execution time of a task depends both on the input data and on the execution platform.
A naive way to determine the WCET of a task is to execute it with all the possible inputs for all
the possible initial states of the architecture on which it will execute and to store the end-to-end
measurements. Then, it is possible to represent the distribution of the execution times measured
as depicted in Figure 2.1 for an arbitrary program (i.e. the distribution does not come from a real
case). From this distribution we can determine the Best-Case Execution Time (BCET), i.e. the
lower bound of the execution time, the Average-Case Execution Time (ACET) and the Worst-Case
Execution Time (WCET) of the task. However, such an exhaustive test is intractable in practice
for real systems not only because it is very complicated to derive all the possible inputs but also
because these input data, multiplied by the number of initial hardware states to consider, represent
an intractable number of tests to perform. Moreover, one must consider the complexity of setting
an initial hardware state and feeding input data with precision.

Still, there exists measurement-based approaches to WCET estimation that execute the tasks
on the target hardware or on a simulator. Only a subset of inputs are executed and then, the
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maximum observed execution times can be combined with safety margins in order to obtain the
overall WCET estimation. However, there is no guarantee that the WCET is not underestimated
because we generally do not know the worst-case execution path so we cannot know if the worst-case
execution time has been measured.

Such a guarantee can be offered by a static analysis, which does not execute the task but
combines software and hardware analyses to cover all the possible execution paths of the task and
derive an upper bound of the WCET. However, static analyses are usually more difficult to conduct
because of the complexity of the code and of the hardware that may also contain advanced features
(e.g. out-of-order execution, branch predictor...) that are challenging to model. A trade-off must
be found between precision and complexity. In this thesis, we focus on static methods to conduct
the timing analysis of programs.

1.3 Static analysis

Static analysis methods aim at determining the WCET of a task without executing the code.
The analysis relies on a abstract model of the hardware architecture and on the set of possible
control flow paths of the task. The two are combined to determine how the architecture may
impact the code execution. Then, it is possible to derive an upper bound of the real WCET (the
worst-case execution path is potentially infeasible). The main drawback of static analysis is its
computational complexity because all the possible hardware states must be considered at each
point of the control flow and for any set of input data in order to guarantee conservative bounds
on the execution time. This requires efficient yet conservative abstract models of the code and the
hardware components. Indeed, such models must consider a trade-off between keeping as much
useful information as possible to ensure tightness and approximating some data to limit the analysis
complexity. A static analysis relies on several sub-analyses. We can divide them into three steps:

1. The control flow analysis that retrieves the possible execution paths of the program, possibly
including loop bounds.

2. The processor behaviour analysis that computes the impact of each hardware component on
the execution time of the instructions.

3. The bound computation that combines the information of the two former steps to estimate
the WCET.

Listing 2.1: a C function as example

int example (int a)
{

if (a < 10){
a ++;

}
else if(a > 10){

a--;
}
return a;

}

Control-flow analysis The control-flow analysis retrieves the necessary information on the exe-
cution paths of the task. Most of the time, this analysis is based on the Control Flow Graph (CFG)
of the program. This is a directed graph that represents the possible execution paths of the pro-
gram. Each node of the CFG is a Basic Block (BB), which is a sequence of instructions with
exactly one entry point and one exit point. The edges represent the possible control flow of the
program between the BBs. It is better to perform the control flow analysis from the disassembled
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entry

 BB 1 (00008244) 

00008244 str fp, [sp, -#4]!
00008248 add fp, sp, #0
0000824c sub sp, sp, #12
00008250 str r0, [fp, -#8]
00008254 ldr r3, [fp, -#8]
00008258 cmp r3, #9
0000825c bgt 00008270

 BB 2 (00008270) 

00008270 ldr r3, [fp, -#8]
00008274 cmp r3, #10
00008278 ble 00008288

 BB 5 (00008260) 

00008260 ldr r3, [fp, -#8]
00008264 add r3, r3, #1
00008268 str r3, [fp, -#8]
0000826c b 00008288

 BB 3 (00008288) 

00008288 ldr r3, [fp, -#8]
0000828c mov r0, r3
00008290 add sp, fp, #0
00008294 ldr fp, [sp], #4
00008298 bx lr

 BB 4 (0000827c) 

0000827c ldr r3, [fp, -#8]
00008280 sub r3, r3, #1
00008284 str r3, [fp, -#8]

exit

Figure 2.2: Control Flow Graph of function example

Listing 2.2: assembly code of
function example� �

1

2 str fp, [sp, #-4]!
3 add fp, sp, #0
4 sub sp, sp, #12
5 str r0, [fp, #-8]
6 ldr r3, [fp, #-8]
7 cmp r3, #9
8 bgt .L2
9 ldr r3, [fp, #-8]

10 add r3, r3, #1
11 str r3, [fp, #-8]
12 b .L3
13 .L2:
14 ldr r3, [fp, #-8]
15 cmp r3, #10
16 ble .L3
17 ldr r3, [fp, #-8]
18 sub r3, r3, #1
19 str r3, [fp, #-8]
20 .L3:
21 ldr r3, [fp, #-8]
22 mov r0, r3
23 add sp, fp, #0
24 ldr fp, [sp], #4
25 bx lr� �

code of the program rather than from the source code since the latter does not take into account
the potential compiler optimizations so the real control-flow may differ from what is analyzed.
An example function in C is given in Listing 2.1. The corresponding ARM disassembly code is
written in Listing 2.2 and Figure 2.2 is the CFG of the program obtained using OTAWA [15], a
static WCET analysis tool. From this CFG it is possible to retrieve all the execution paths of the
program. Additional information can be added to tighten the WCET estimates by limiting the set
of paths to explore:

• Loop bounds: it is necessary to set an upper bound on all loops, otherwise an infinite WCET
will be derived that corresponds to the infinite repetition of a loop. The more precise the
bounds, the tighter the WCET estimation.

• Targets of indirect branches: for example, when using pointer calls, the possible paths to
consider depend on the possible targets of the call. Failure to detect the targets of a call may
lead to the underestimation of the WCET.

• Infeasible or mutually exclusive paths: these are control flow paths that cannot be taken by
the program during its execution. For example, when two if-then-else structures follow each
other and have conditions relying on the same variables, it is interesting to study the possible
combinations of their variables values. If a particular combination of condition values (e.g;
true for the first if and false for the second if) cannot be obtained by varying the variables
values, then the corresponding path is infeasible. An infeasible path can also be a path
through dead code.

This information can be obtained automatically by analyzing the code [16, 17, 18] but the analysis
may lack precision when the control-flow structures are complex (e.g. nested loops with if-then-else
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structures). Therefore, most of the WCET frameworks allow user annotations to specify e.g. loop
bounds where analysis is unable to derive automatically produce their results.

In the thesis, we consider that no infeasible paths analysis is performed. This assumption has
implications that are discussed in Chapter 4 Section 1.2.3.

Processor behaviour analysis The computation of the execution time for an individual instruc-
tion requires to analyze the processor behaviour. The hardware state is given by the state of its
components (e.g. memories, bus, pipeline) that changes throughout the execution paths. Abstract
interpretation allows to model the state of hardware components with conservative approximations
such that the successive states are computed with limited computations. For example, we can
conduct a cache analysis to determine the instructions guaranteed to be present or absent in the
cache at each point of the program [19]. Usually, such an analysis is composed of 3 sub-analyses:

• The MUST analysis checks that a memory block is always present in the cache at a specific
program point. If it is the case, then the contents (instruction or data) in this memory block
are classified as Always-Hit (AH) meaning that the access to this instruction will always result
in a hit.

• The MAY analysis checks if a memory block has a possibility to be in the cache. This analysis
allows to classify instructions or data as Always-Miss (AM) if its memory block cannot be in
the cache.

• The PERSISTENCE analysis is not always conducted but increases the precision of the
analysis. It checks if, after being loaded, a memory block is not evicted before it is needed
again and classifies instructions as persistent. This is useful in the context of loops for example
when an instruction is not present at the first iteration but will always result in a hit in the
subsequent iterations.

The instructions that can not be classified as AH, AM or persistent are set to Not Classified (NC).
In order to compute the execution time of the basic blocks, an analysis of all the components

involved in the execution (e.g. pipeline, branch prediction...) is necessary. As processors become
more complex, the analyses make more conservative hypotheses, which tend to reduce the tightness
of the WCET estimation.

WCET computation The most common techniques to combine the flow and timing information
gathered during the two former steps are:

• Tree-based Technique [20, 21]: this technique builds a syntax tree that represents the structure
of the program. The leaves of the tree are basic blocks while the other nodes are either
"sequence", "loop" or "if" control-flow structures. The syntax tree is traversed in a bottom-up
manner: the execution time of the leaves (computed during the processor behaviour analysis)
are combined according to rules defined for each control-flow structure until the root of the
tree. For example, the resulting execution time bound of an "if" node is the maximum
execution time of its branches. A limitation of the method is that the control-flow structure
of the binary code may not correspond to the structure of the source code due to compiler
optimizations.

• Path-based Technique [22, 23]: the longest path is searched among all the possible paths of
the program. In the presence of many conditional statements, the number of paths grows
exponentially. Hence, the analysis becomes intractable unless using some heuristic search to
only study a subset of the paths but then there is no guarantee to find the longest path.

• Implicit Path Enumeration Technique (IPET) [24, 25]: this technique builds a set of con-
straints from the CFG of the program that are then used to formulate an Integer Linear
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Programming (Integer Linear Programming (ILP)) problem. Basically, each basic block i
has a time constant ti which is the upper bound of its execution time (determined by the
processor behaviour analysis) and a count variable xi that expresses the number of time it
is executed. The latter variables are subject to constraints that express the control flow of
the program, and the objective function maximizes

∑
i∈BBs xi × ti to obtain an upper bound

of the WCET. The major drawback of this method is the use of ILP, whose resolution time
grows quickly with the number of constraints and variables.

1.4 Limitation of static analyses

Although static methods provide a safe WCET estimate, a recurrent issue is the tightness of
the estimate, i.e. how close the estimate is to the real WCET. The over-estimation comes partially
from the abstract interpretation that inevitably makes conservative assumptions in order to cover
all the possible paths (the abstract states are approximations of possible real states). However, it
also comes from the processor behaviour model that can be based on partial information about the
hardware characteristics (e.g. latency of some operations, arbitration policies...) and incomplete
or imprecise flow facts (e.g. loop bounds, branch targets...). In summary, the tightness of a WCET
estimation is degraded by the accumulation of conservative assumptions that are necessary to
guarantee its soundness.

2 Multi-core architectures

2.1 Emergence of the multi-core architectures

For more than a decade, single-core architectures improvements have been slowing down: per-
formance gains from miniaturization requires a lot of effort and it becomes difficult to continue in-
creasing the clock frequency due to important power issues (consumption and heat dissipation) [4].
At the same time, the demand for performance continues as industrials want to integrate more
and more features in their systems (e.g. automotive industry with autonomous vehicles), with a
growing interest for energy efficiency. Multi-core architectures offer a good solution to address the
performance needs in this context. A multi-core architecture is a processor with several independent
processing units, named cores. The advantages of multi-core compared to single-core architectures
are:

• Parallelism: several programs can be executed simultaneously, so more instructions can be
executed per second.

• Power efficiency: more instructions per watt can be executed.

• Space utilization: the cores coexist on the same chip and can share some components (e.g.
memory).

• Heterogeneity: several types of cores can be placed so that the trade-off between energy and
computation efficiency can be optimized. For example, a high performance core can execute
computationally expensive tasks while other tasks can use energy efficient cores.

• Centralization: the coexistence of cores in the same chip allows a centralized control over
them.

Therefore, multi-core architectures offer a performance leap and are often preferred over single-
core, particularly for complex embedded systems where numerous single-core platforms are required
to execute the applications. The adoption of multi-core platforms is then also promising for critical
systems such as avionics [6] where multiplying the number of single-core platforms is an inefficient
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Figure 2.3: A simultaneous access to the main memory bus causing an interference.

solution to face the increasing number of requirements and functionalities. Moreover, chips manu-
facturers encourage the use of multi-core architectures for critical systems because the single-core
processors now represent a small proportion of their production.

2.2 Challenges of WCET analysis for multi-core systems

Although multi-core architectures have already replaced single-core architectures in many em-
bedded systems, their adoption for safety-critical systems faces important barriers due to pre-
dictability issues [5]. Indeed, different programs are executed on several cores that share some
hardware components such as caches, memories or buses. Hence, they may try to access the same
component at the same time, creating contentions (also referred to as interference). In this case,
an arbitration mechanism decides which core is served first and delays the others. We call this
delay an interference penalty or a memory contention duration in the remainder of the thesis. An
example of contention is depicted in Figure 2.3. CPU0 and CPU1 both use the interconnect to
access the main memory, but only one can be served at a time. In this example, CPU1 is waiting for
CPU0 to complete its memory transaction. Such a delay is not taken into account when computing
the WCET of the task running on CPU1 but the total additional delay that can occur must be
bounded in order to guarantee the safety of the system. Precisely determining the amount and the
moment when contentions happen is difficult. This uncertainty is prejudicial to the predictability
of the system and then to the tightness of its timing analysis. Several certification authorities from
Europe, America and Asia have published together an informational position paper CAST-32A [8]
(originally in 2014 and revised in 2016) and then their own guidelines such as [26] dedicated to
the use of multi-core processors in avionic systems. They argue that an interference-aware safety
analysis must be conducted for HRT systems: the interference channels must be identified, clas-
sified according to the acceptability of the interference they may produce, and then mitigation
mechanisms must be implemented to guarantee that these channels cannot cause system failure.

3 Considering and mitigating the effects of interference
Research on timing verification techniques for multi-core platforms is not recent according to

a survey [27] whose oldest papers are from 2006. The number of papers addressing this topic has
increased throughout the years showing that many questions remain open.

3.1 Impact of multi-core interference on the execution time

Several papers have investigated the sources of interference in multi-core architectures [28, 9,
29]. The main sources are: shared buses, I/O peripherals, shared caches or main memories where
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Figure 2.4: Example highlighting the difference between Time Division Multiple Access (TDMA)
and Round Robin (RR) bus arbitration.

different cores may compete to access the resource. In addition to interference from simultaneous
requests served in sequence, shared caches are subject to another type of interference where task
may evict the data of another task executing on a different core. In this thesis we consider multi-
core architectures such as the one presented in Figure 2.3 where cores have local private memories
(e.g. private L1 caches or scratchpads) and are connected to the main memory by a shared bus.
We focus on shared memory bus interference but the techniques that we present can be adapted
and applied to any type of interference.

In [9], Pellizzoni et al. compare the WCET of applications in isolation and in the presence of
interference. They measure an increase of up to 2.96 times the maximum time observed in isolation
by saturating the main memory using a Direct Memory Access (DMA) component. The difference
between the WCET in isolation and the one in the presence of interference may be even greater
using static analyses because it is very challenging to predict the behaviour of tasks executing in
parallel on other cores. For this reason, some pessimism is introduced in order to cover the worst-
case scenario. Such pessimism is detrimental to the schedulability of a system because it increases
the amount of time that must be provisioned for each task to be executed.

In [30], the authors model a variety of possibly shared resources (caches, interconnect, main
memory...) with different possible arbitration policies. They directly compute a response time
bound for each task based on their execution traces without considering the WCET in isolation.
This work, later extended in [31] and [32], is a comprehensive study with explicit interference
modeling that provides precise and safe estimates. Nonetheless, relying on all the execution traces
of all the tasks in a system is intractable for realistic applications. Therefore, the traditional two-
step approach is often preferred: first, tasks are analyzed in isolation to compute their WCET and
the number of access they may perform and then a response time analysis that bounds the effects
of interference is conducted with respect to a given schedule.

3.2 Isolation-based techniques

One approach to completely eliminate contentions in a system is the use of software or hardware
isolation mechanisms. The advantage of these methods is that they are independent from the
schedule of the task system because the worst-case scenario is identical whether or not another
task is executing in parallel (i.e. the WCET is the same as computed by a static analysis in
isolation). This isolation can be ensured by using bus arbitration policies such as Time Division
Multiple Access (TDMA) where each core periodically has a dedicated time slot to access the bus
as in [33, 34, 35], Round-Robin (RR) [36, 37], or compatible with both policies [38]. Although
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bounding additional delays is easier with TDMA arbitration, it is not work-conserving as opposed
to RR. Thus, when a core has no pending request the bus is idle even if the next core is waiting to
access the bus. Figure 2.4 depicts a scenario of access requests from two cores and how they are
served by RR and TDMA at the top and at the bottom respectively. We use the granularity of the
requests in this example but one core may actually perform several requests per slot depending on
the time to perform one access and the duration of a time slot. We see that the work-conserving
nature of RR allows it to serve request a0 and a3 immediately and to serve a4 just after a3
even if it comes from the same core because C1 has not yet issued a5 when the slot serving a3 is
finished. As a result, a5 is served faster by TDMA than by RR. Generally, these arbitration policies
improve the predictability and facilitate the timing analysis but they also result in an important
under-utilization of the resources due to their context-independent nature. Indeed, by default the
worst-case analyses pessimistically assume that each access suffers the worst-case delay. To address
this issue, isolation is combined with other techniques to provide more context and more precise
bounds on the number of access requests performed in a time window. For example, [36] proposes
a method to compute this bound for each core assuming that tasks have already been assigned to
cores. In addition, [9] uses a more elaborated task model to derive this bound from arrival curves
(this model is described in more details in the next section).

The bound on the number of access requests can also be enforced directly by dividing the
memory bandwidth among the cores. The principle is that each core has an initial memory budget
that is consumed each time it performs an access and that is replenished periodically. The memory
budget can be updated by monitoring performance counters for example. If a task requests an access
but the budget of its core is exhausted then the task is suspended and resumed at the beginning of
the next regulation period. MemGuard [39] implements such a reservation system that is also able
to redistribute unused bandwidth from a core to the others in order to efficiently use the memory
bandwidth. However, the system relies on dynamic predictions so this redistribution may not
be adapted to HRT systems. Indeed, a misprediction can cause a shortage of bandwidth budget
for a task that may then miss its deadline. In [40], the bandwidth reservation servers consider
both memory and computation time bandwidths. Therefore, the execution in a core is suspended
whenever one of its budgets is empty. The schedulability analysis is performed in 2 steps: first
a local analysis ensures for each server that its tasks are schedulable and then the analysis is
performed on the entire system considering all the servers. In spite of an increased precision and
more flexibility than TDMA, the main drawback of these methods still are the performance of the
system that cannot fully benefit from the advantage of multi-core architectures.

3.3 Advanced task models

Another approach is to model tasks as a succession of temporal slots, called phases, representing
a portion of the code task execution. By analyzing the code portion that may be executed in a
phase it is possible to bound its execution time and the number of access requests that can occur
during its execution. This multi-phase task model increases the precision of the interference analysis
because individual accesses are no longer considered to occur at anytime during the task execution
but only in one or a subset of the phases. In [9], the phases are called superblocks and the authors
derive arrival curves to bound the memory access requests for sequences of superblocks that can
cover several tasks. These arrival curves are then used to compute the maximum delay due to
interference of the superblocks with a dynamic programming approach and according to different
bus arbitration policies.

The PRedictable Execution Model (PREM) is introduced in [10]. In its initial form, PREM
proposes to decompose the tasks in two phases: first a memory phase that performs all the memory
transfers between the memories local to the core (caches or scratchpads) and the shared memory
such that the results of the previous computation are written in the shared memory and all the
instructions and data that can be used during the execution are loaded in the local memory, and
second an execution phase that executes the task without performing any memory access (outside
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the core private memory). This model was originally designed for single-core platforms to prevent
interference between I/O peripherals and the core in a shared interconnect during data transfers.
In short, the peripherals are only allowed to use the interconnect when the core is executing an
execution phase or if it is idle. However, as pointed out by the authors, the model can be applied
to multi-core systems to avoid that cores use the interconnect at the same time. The PREM model
was later extended in [11] with the Acquisition Execution Restitution (AER)) model: in addition
to the acquisition and execution phases that correspond to the PREM phases, an extra memory
phase (restitution) at the end of the task writes the computation results into the shared memory.
This new model specifically targets multi-core architectures.

Initially, the phased models were only used to statically compute an interference-free schedule
by preventing memory phases (acquisition and restitution) from executing simultaneously. Some of
these works are listed in Table 2.1 (see page 25) but the list is not exhaustive. Different strategies
have been studied over the years. Many works use this model to extend previous works that
used TDMA. They propose strategies to efficiently fill the slots attributed to each core with the
memory phases in order to improve the schedulability of the system under study. For example,
in [41], several scheduling strategies are compared and they observe that prioritizing the scheduling
of memory phases over computation phases yields the best results. They add that the results are
even better when computation phases are scheduled with Earliest Deadline First (EDF) on each
core afterwards. They also try schedulers without TDMA bus arbitration where memory phases
are scheduled globally (and EDF is used to schedule tasks locally on the cores). For this scheduling
scheme, they conclude that least-laxity first is the best policy to schedule the memory phases.
A further proposition to efficiently use the memory bus is to create two partitions in the local
memory such that, while a computation phase executes with one partition, the data to execute
the next computation phase can be loaded using a DMA. The idea is firstly proposed for a single-
core processor but the authors argue that their work can be extended to multi-core architectures
using a TDMA bus [42] such that the data transfers cannot interfere with each other. Later, they
directly address multi-core architectures without using TDMA but presenting a global scheduling
algorithm [43].

In [44], the authors transform PREM tasks with 3 phases into a Resource Constrained Project
Scheduling (RCPS) problem. This type of problem organizes the completion of activities (e.g. in
a project or an industrial production process) with limited resources, resource usage constraints
(e.g. capacity), and precedence constraints between activities. As the phases execute on the same
processor non preemptively, the authors propose to view the set of cores as one take-give resource
with a capacity equal to the number of cores in the considered architecture. When a task executes
its first memory phase it takes one unit of the take-give resource (i.e. one core of the execution
platform). When the last memory phase has completed its execution, the resource unit is released
(i.e. the core either is idle or begins the execution of another task). This allows to extend an
existing technique [45] addressing the RCPS problem whose results are close to optimal solutions
retrieved using an ILP formulation.

The contentions-free constraint is sometimes lifted such as in [14] that compares both 2 and
3-phases models scheduled with different configurations and with or without tolerating contentions.
Their results show that letting memory phases overlap and accounting for the worst-case delays due
to contentions actually reduces the Worst-Case Response Time (WCRT) of the system compared
to when the memory phases are isolated. Likewise, [46] proposes to schedule AER tasks with an
RR bus using an ILP and a heuristic by considering both the case with and without interference.
As explained in [47], performing the interference analysis of a schedule is complicated by the
interdependence between the execution intervals of the tasks, that define which tasks scheduled
in parallel can interfere, and the number of contentions that the tasks can suffer. Indeed, during
an interference analysis, the duration of the tasks are inflated by a timing penalty corresponding
to the maximum number of their accesses that can be interfered. However, by extending the
duration of the tasks we may also change the set of tasks that can contend with them and delay
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their successors. Hence, the interference analysis must be recomputed until a fix point is reached.
Instead, [47] presents an algorithm to compute the contentions faster by adding tasks progressively
in the schedule. It uses a time cursor starting at date 0 that jumps to the next end of task at
each iteration to compute the contentions so that it never has to go backwards to recompute some
contentions. Although developed independently, we use a similar algorithm in this thesis in order
to perform interference analyses.

Although PREM and AER models are convenient to suppress interference and ensure pre-
dictability, they have important drawbacks. First, the code must comply with the model of mem-
ory and computation phases: either the code is written specifically to use this model or it must be
transformed. Numerous techniques have been proposed to transform functions to their multi-phase
model using compilation tools [48, 49, 50, 51, 44, 14, 52] but they still require important modifi-
cations, which is an issue for legacy code. Moreover, the first memory phase has to load all the
instructions and data that could be used during the execution phase. Therefore, the data loaded
that is not used during the task execution may occupy a large part of the available storage space
(and may be too large to fit into the local memory) and still occupies the bus during the memory
transfers. Recently, two models have emerged that are more adapted to legacy code because they
propose to derive a multi-phase representation from the binary code directly: the Static Analysis
of Memory Access Profiles (StAMP) [13] method builds phases that correspond to "well-formed"
regions in the code and the Time Interest Points (TIPs) method [53, 12] builds phases around in-
structions that may perform memory accesses. In [53], an ILP formulation is presented to schedule
multi-phase tasks so that the makespan is minimized in the presence of contentions. However, there
is only one task per core and no dependencies between the tasks.

3.4 Creating a multi-phase task model from its code

In addition to their suitability for legacy code, the TIPs and StAMP methods do not restrict
the number of phases or force the alternation of memory and execution phases. They allow to
build other profile shapes that can be adapted for scheduling optimizations that tolerate memory
contentions. In order to take into account the contentions in the schedule, these methods require
a safe and precise accounting of the potential accesses performed in each phase to conduct an
interference analysis.

In the StAMP method [13], phases are directly derived from Single-Entry Single-Exit (SESE)
regions of the code that are identified after an analysis of the CFG. The authors propose to use a
node-centric definition of SESE instead of the usual edge-centric version because this allows a more
fine-grained division of the code. The Worst-Case number of Memory Accesses (WCMA) and the
partial WCET of each phase are both computed using IPET. The direct link between code regions
and phases is both a strength and a weakness. Indeed, the authors note that dynamic scheduling
strategies could benefit from knowing the code portion under execution. In the meantime, some
control-flow structures strongly limit the possibilities to create phases. In their experiments, the
authors found tasks where only one very long phase was surrounded by very short other phases so
the multi-phase model may not behave differently than the single-phase model in this case.

The creation of phases involves more complex computations with the TIPs method [53, 12]
because it is based on the analysis of the execution traces of the tasks. Since such an analysis may be
intractable for real programs, the authors propose to enumerate the traces from a lightweight version
of the CFG called TIPsGraph. The TIPsGraph represents only the instructions that may perform
an access, named Time Interest Points (TIPs), along with the possible control flow between them.
The TIPs can be extracted from a cache analysis with a static analysis tool such as OTAWA [15].
The other instructions are abstracted into the edges of the TIPsGraph by computing partial WCETs
indicating the maximum execution time between the source node to the destination node of the
edge. Figure 2.5 shows the TIPsGraph of the example function of Listing 2.2. The numbers next
to each edge indicate the WCET of the transitions computed from the instructions that are not
represented.
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Figure 2.5: TIPsGraph of the example program in Listing 2.2

This representation is later used to enumerate the execution traces of the task, resulting in an
abstraction that exhibits only the necessary information to compute the accesses in each phase: the
possible sequences of instructions that may perform memory accesses (TIPs) and their worst-case
date. In order to create phases from this abstraction, it is proposed to extract phases that are
guaranteed to perform no memory access in each trace based on the worst-case date of TIPs and
their worst-case memory access latency. Then, the phases created for each trace are combined and
adjacent phases smaller than a parameter δ are merged together (whether they perform accesses or
not). This generates profiles in which phases of size around δ perform accesses and larger phases
do not perform accesses. By varying δ, one is able to generate varied profiles for a given task.

4 Employing meta-heuristics and machine learning techniques to
schedule tasks

Due to the potentially high number of possibilities to map and schedule tasks in a multi-
core platform, ILP-based methods are fit only for small systems with few tasks and cores while
the proposed heuristics are greedy and tend to exploit one solution rather than exploring other
possibilities. In order to cover a larger space of solutions, some works have employed meta-heuristics
and machine learning methods.

4.1 Meta-heuristics

As opposed to heuristics, meta-heuristics techniques do not depend on the considered problem.
Many of them are nature-inspired. For example, Ant Conly Optimization (ACO) mimics the way
ants communicate with pheromones using several agents that cooperate to explore a space. Also,
Simulated Annealing (SA) simulates a process used in metallurgy to slowly cool metals such that
their crystalline structure reaches a near optimal energy state. A recent survey [54] points out the
proliferation of these algorithms in research works. They identified 540 different meta-heuristics,
385 of which have appeared in the last ten years. They also observe that several of these meta-
heuristics are very similar. According to them, the most popular meta-heuristics are Particle Swarm
Optimization (PSO), Genetic Algorithm (GA) and SA.



Table 2.1: List of approaches to tackle interference through schedulability analysis

Source Task system Task model Contentions-free Method Remarks

[60] DAG 3 phases yes scheduling Different bus access policies compared with TDMA
[61] periodic PREM yes scheduling TDMA bus, promotion of memory phases over computation phases
[41] periodic PREM yes scheduling TDMA bus, separate scheduling policies for memory phases and

execution phase
[42] sporadic PREM (3 phases) yes scheduling TDMA bus, partition of local memory to anticipate the load of

next tasks to execute using DMA
[43] sporadic PREM (3 phases) yes scheduling Extends [42] by global scheduling without TDMA arbitration
[62] periodic PREM (3 phases) yes scheduling ILP + heuristic that gives priority to write phases over read phases
[63] periodic PREM (3 phases) yes scheduling Promotion of memory phases over computation phases
[46] DAG AER yes/no scheduling Round-Robin bus, ILP + heuristic, scenario with or without mem-

ory phases overlapping are both considered
[44] take-give PREM (3 phases) yes scheduling Converts the problem to a resource-constrained project scheduling

problem
[64] DAG single-phase not considered scheduling Uses Monte-Carlo Tree Search to explore the scheduling possibili-

ties
[65] DAG single-phase not considered scheduling Uses Monte-Carlo Tree Search combined with Deep Reinforcement

Learning
[51] sporadic PREM yes TDMA bus, tasks are optimally split into a DAG of intervals based

on the PREM model according to the priorities assigned
[66] periodic single-phase/PREM no WCRT analysis ILP to reduce the pessimism when computing interference delays
[67] sporadic PREM (3 phases) no WCRT analysis Compares different arbitration policies for the memory controller
[68] DAG single-phase not considered scheduling List scheduling with rules that prioritize tasks along the critical

path
[14] DAG PREM/AER yes / no scheduling Comparison of different scheduling schemes
[69] periodic single-phase no mapping ILP + heuristics to define allocation strategies that reduce inter-

ference
[70] DAG single-phase not considered scheduling Scheduling with Deep Reinforcement Learning
[71] periodic AER no WCRT analysis Bounds the number of bus contentions suffered by AER tasks know-

ing the tasks that may execute in parallel.
[53] TIPs no scheduling ILP considering one task per core
[72] periodic PREM yes scheduling Memory phases are scheduled by an ILP or a heuristic, computa-

tion phases are scheduled with EDF
[73] DAG single-phase not considered scheduling Scheduling with reinforcement learning
[37] sporadic AER no WCRT analysis Round-Robin bus
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Meta-heuristics have been employed in many forms of scheduling problems even before the
2000’s including multi-core scheduling problems. For example, [55] uses a GA to assign tasks
to cores and schedule them in an heterogeneous architecture with the objective to minimize the
makespan of the system (i.e. the end date of the last task executed). A GA is a population-based
method that reproduces natural selection processes (crossover, mutation) to explore and select
promising solutions, called chromosomes. In [56] the GA is only used to assign priorities to tasks
and a heuristic is managing the assignation of tasks to cores. In [57] and [58] some heuristics
are directly integrated into respectively a GA and a PSO algorithm in order to accelerate their
convergence. The meta-heuristics are also used for multiple objective optimization problems such
as in [59] where the objective is to find a trade-off between the makespan of an application, and
the resources needed to execute it using ACO.

4.2 Machine Learning

Another alternative to traditional heuristics is the use of Machine Learning (ML) techniques.
They allow to adapt easier to changing environments by learning from past decisions and their
effects. A survey on machine learning techniques to improve energy efficiency can be found in [74]
but they also appear to minimize the schedule makespan in DAG scheduling problems. In [75],
given a task order, a Deep Reinforcement Learning (DRL)-based method is used to assign the tasks
to cores in an heterogeneous architecture. The state of the system is represented by the earliest
start time of the tasks on each processor. Capturing information of the DAG is important for the
performance of the ML-based methods so [70, 76, 73] use Graph Neural Networks (GNN) that can
directly work on graphs and extract their information.

ML techniques can also be combined with meta-heuristics. Yano et al. [77] study how to schedule
a DAG in a clustered many-core processor by taking into account the different communication times
if tasks are scheduled in the same cluster (using a bus) or not (using a Network-on-Chip). The
GA encodes the communication channel used by the tasks to communicate. Each solution of the
GA is then used by a Reinforcement Learning (RL) technique to determine the best scheduling
order. Finally, the tasks are assigned to cores with a heuristic and the makespan of the solution
under study is computed to assess its quality. In [65], a RL technique is used in a Monte-Carlo
Tree Search (MCTS). This meta-heuristic explores a decision tree and uses simulations to reach
final states (i.e. a compete schedule in our problem) from selected nodes in order to evaluate their
quality with respect to the considered problem. Thanks to the statistics from simulations results,
the algorithm can progressively choose only the best solutions. In order to make MCTS converge
faster, a DRL technique is added to select the most promising branches when expanding the tree
and for the simulations.

5 Conclusion
Extending single-core WCET analyses to multi-core platforms is challenging due to the presence

of shared components that are the source of interference between the cores. Static methods for
single-core architectures already suffer from precision issues and the unpredictability of interference
aggravates the over-estimation for multi-core architectures.

For this reason, numerous research works address the mitigation of the effects of interference.
Some of them consider isolation approaches but they result in an important under-utilization of
the resources. In order to resolve this issue, advanced tasks models such as PREM and AER have
been developed that represent tasks with an alternation of memory and execution phases (2 or 3
phases). It is then possible to build interference-free schedules by forbidding memory phases from
being executed at the same time on different cores.

More recently, new multi-phase models directly built from the code of the tasks have been
proposed. The idea is to generalize the PREM and AER models by building tasks with an arbitrary
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number of phases. The worst-case number of memory accesses in the phases must be accounted
for in a conservative manner so that an interference analysis can be conducted on the schedule to
compute the possible effects of interference. We follow this approach in this thesis.

Many works have proposed solutions to schedule tasks systems on multi-core platforms. How-
ever, few of them consider a generic multi-phase model to represent the tasks and take into account
the effects of interference while tolerating contentions in the schedule. The solution space to sched-
ule tasks in multi-core platforms is potentially very large as it includes both the mapping of tasks
to cores and the choice of the order or the dates of the tasks. Therefore, some works employed
meta-heuristics or machine learning methods to explore the solution space more efficiently. To the
best of our knowledge, none of them considered multi-phase tasks and the effects of interference,
which further enlarge the solution space.
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The previous chapter introduced the WCET problem, the challenges posed by multi-core plat-
forms that limit the transposition of the methods initially designed for single-core architectures, and
gave an overview of the state of the art techniques to mitigate the effect of the memory interference
during the interference analysis. This chapter initiates the focus of the thesis on the multi-phase
task model as an approach to address the memory interference problem. The first part provides
some insights about the benefits of using this model with a preliminary discussion about its limits,
then the model is defined formally and a method to correctly account for the number of accesses
in the phases is presented along with a description of the consequences of the interference analysis
on the model.

1 Introduction to the multi-phase representation

1.1 Advantage of the multi-phase representation

The occupancy of a core by a task is traditionally represented as a single time slot that covers
its WCET as shown by Figure 3.1a with a system of three tasks τ i, τ j and τk scheduled on two
cores. In the following, we call this representation the single-phase representation. The interference
analysis is conducted after the schedule of tasks is built (or after their priorities have been chosen)
and bounds the maximum amount of interference that each task may suffer according to the tasks
that may execute in parallel and their respective number of accesses. Using this model, the amount
of interference is computed at the task granularity level: an access can be performed from the

28
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Figure 3.1: Task system represented with the single-phase model.
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Figure 3.2: Task system represented with the multi-phase model.

beginning to the end of its task because the model does not keep track of more precise information.
The result of the interference analysis on the three tasks is given by Figure 3.1b: the 15 accesses of
task τ i and the 6 accesses of τ j may all be interfered by the accesses of τk, but at most 21 accesses
of τk (15+6 from the two other tasks) may suffer contentions. The red rectangles at the end of
the tasks represent the worst-case timing penalty due to the potential interference suffered by each
task.

The multi-phase model proposes to represent the tasks as a sequence of phases, called a profile,
to improve the precision of the analysis. Indeed, it is possible to restrict the possible timing of
an access to a subset of the phases composing the tasks so that it is not accounted for in all the
task. It is worth noting that each phase represents a portion of the task execution but is not
directly representing sequences of instructions. Therefore, the number of accesses for a phase is
the worst-case number of accesses that may be performed within the timing interval defined by
this phase, whatever the execution trace of the task. Figure 3.2a displays the same tasks as in
Figure 3.1a but using the multi-phase model: the accesses are distributed in the different phases
and in this example the sum for each task equals the total number of accesses accounted for with
the single-phase model. Using this abstraction, the interference analysis can be performed at the
phase level in a fine-grained manner as depicted in Figure 3.2b. The eight accesses of the first
phase of τ i are no longer interfered because no phase is executing in parallel, and some phases
have a worst-case interference scenario with less contentions than the accesses that they perform
(e.g. 2 possible contentions over 15 accesses for the first phase of τ j). In this case, the multi-phase
representation allows to reduce the total amount of contentions and the makespan of the system
(42 contentions and 98 time units with the single-phase model in Figure 3.1b and 24 contentions
and 92 time units with the multi-phase model in Figure 3.2b).

1.2 Computing the worst-case number of accesses in each phase

Existing methods such as TIPs [12] or StAMP [13] divide the tasks according to the program
structure, based on the worst-case date of instructions performing accesses for the former and on
SESE regions for the latter (see chapter 2 section 3.4 for more details). Another approach to the
problem is to arbitrarily divide the task into phases and then to safely account for the accesses that
can be performed in each phase. Regardless of the chosen approach, this chapter provides formal
correctness criteria to ensure that the accesses are safely accounted for in the phases where they
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0x8244: str	fp, [sp, #-4]!
0x8248: add	fp, sp, #0

0x824c: sub	sp, sp, #12

0x8250: str	r0, [fp, #-8]

0x8254: ldr	r3, [fp, #-8]

0x8258: cmp	r3, #9

0x825c: bgt 0x8270

0x8260: ldr	r3, [fp, #-8]

0x8264: add	r3, r3, #1

0x8268: str	r3, [fp, #-8]

0x826c: b 0x8288


0x8270: ldr	r3, [fp, #-8]

0x8274: cmp	r3, #10

0x8278: ble 0x8288

0x827c: ldr	r3, [fp, #-8]

0x8280: sub	r3, r3, #1

0x8284: str	r3, [fp, #-8]


0x8288: ldr	r3, [fp, #-8]

0x828c: mov	r0, r3

0x8290: add	sp, fp, #0

0x8294: ldr	fp, [sp], #4

0x8298: bx	lr

Figure 3.3: A code and its corresponding traces representation.

can occur and that the actual system implementation corresponds to the model and upholds its
hypotheses.

The computation of the accesses in each phase relies on information gathered during a static
analysis of the binary code of the task: firstly the list of instructions that may perform an access
and secondly the time intervals covering the possible execution dates of these instructions. Such in-
formation can be obtained by retrieving all the execution traces of the task from its CFG. However,
relying on the complete set of execution traces may be intractable in practice. As an alternative,
the TIPs framework [12] proposes to enumerate the traces of a task from a light version of the
CFG called TIPsGraph. A TIPsGraph only represents the sequences of instructions performing
accesses and their worst-case date. In the following, we call abstract execution traces the paths
enumerated from the TIPsGraph because one abstract trace may represent several execution traces
of the task (due to the instructions that are not represented in the TIPsGraph). We use these ab-
stract execution traces in the remaining of this chapter because they exhibit only the information
we require.

As an example, we continue to work on the simple task of Listing 2.2, whose TIPsGraph was
already depicted by Figure 2.5 in the last chapter. Figure 3.3 represents the abstract execution
traces of the task derived from its TIPsGraph as proposed in the TIPs framework on the left hand
side, and the code of the task on the right side. In our traces abstraction, each node represents the
execution of an instruction that may perform a memory access in a particular trace. The colors link
the nodes to the instruction they represent in the code using different colors: nodes 0x8244, 0x8250
and 0x8254 are executed in all the traces while 0x8268 and 0x8284 are executed in two distinct
traces only. Moreover, the duration of an edge corresponds to the WCET of all the possible paths
between its source and its destination nodes. Therefore, the nodes are placed at their worst-case
execution date and without additional information from the model, we must assume that they can
be executed at any moment before this date. As an example, the green and red rectangles in the
figure cover the interval where respectively the green and the red node can be executed.

In Figure 3.4, 2 additional representations are introduced for the same example of task:

• 1 possible execution of the task for each trace, where nodes are depicted with crosses instead
of circles. The correspondence between the circles and crosses are depicted with dashed lines.
Notice that each cross is placed before its corresponding circle, as these denote the worst-case
date of the access.

• a multi-phase representation composed of 4 phases that are annotated with the worst-case
number of accesses that can be performed during their execution.
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Figure 3.4: Traces of the TIPsGraph in Figure 2.5 and a possible multi-phase profile for the task

In order to compute the accesses in a phase, we first compute the number of accesses that
each trace can perform within this phase. Then, as only one trace can be executed at a time,
the number of accesses in the phase is the maximum of the accesses that can occur during the
execution of a trace. Let’s take the second phase as an example, we assume that each represented
node performs at most one access except the exit node. The nodes cannot be executed after their
worst-case date. Hence, the trace at the top can perform up to 3 accesses in this phase because as
opposed to 0x8244, instructions 0x8250, 0x8254 and 0x8268 have a date higher than the start date
of the phase. Similarly, the trace in the middle can perform at most 3 accesses and the bottom
one at most 2 accesses in this phase. Therefore, we conservatively assume that 3 accesses can be
performed in the second phase.

This abstraction causes a consequent over-approximation of the number of accesses. For in-
stance, the last node of each trace must be accounted for in each phase. Hence, the total number
of accesses using the multi-phase model is 6 while if we were using the single-phase model, at most
4 accesses would be performed by the task (by the middle or top traces). This undermines the
performance of the multi-phase model. In order to reduce the execution span of the nodes, so that
the number of phases where they are accounted for is limited, we must lower bound their execution
date. A lower bound on the execution date could be provided by computing the best-case execution
date of the instructions, but such information cannot be computed directly with the results of a
WCET analysis so we adopt the solution proposed in [53] based on synchronizations. Basically, we
decide to set minimum dates for some selected nodes in the traces.

This is depicted in Figure 3.5 where the synchronizations, represented by black nodes, fix the
execution date of the synchronized instructions. Here, the nodes are synchronized on their worst-
case execution date so the crosses are at the same date as their corresponding circle nodes. This
allows to reduce the set of phases where the red and green instructions may be executed (along with
their successors). This time, only 1 access can be performed in the first phase because thanks to the
synchronization of instruction 0x8250, only 0x8244 may perform an access in this phase for all the
traces. Therefore, the multi-phase task performs at most 4 accesses, which is the same amount as if
we used the single-phase model. Note that it is guaranteed that no access can be performed in the
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Figure 3.5: Traces of the TIPsGraph in Figure 2.5 and a possible multi-phase profile for the task,
synchronizations are represented with black nodes.

last phase, so this phase cannot cause or suffer from contentions. Some experiments in Chapters 5
and 7 will demonstrate that even when the count of accesses is over-approximated, the multi-phase
model can still lead to a tighter worst-case interference prediction than when using the single-phase
model because the interference analysis is performed at the phase granularity, which offers more
precision than the task granularity.

1.3 Summary

To summarize, the multi-phase model is able to reduce the over-estimation on the number
of contentions for a task system by lowering the granularity at which the memory accesses are
represented. However, accounting for the number of accesses in each phase requires to lower bound
the execution date of certain nodes and limit the number of phases where they must be accounted
for, using either their BCET or synchronizations. An efficient selection of these synchronizations
reduces and may eliminate the access over-approximation in the task compared to if the task was
represented using the single-phase model.

2 Formal model
The previous section introduced the core concepts of the multi-phase model and gave a first

insight of the challenges it poses in order to provide a correct, safe and yet more precise interference
analysis. In the following, we formalize the multi-phase model in order to provide criteria that
guarantee the correctness of its implementation. In other words, the correctness criteria that are
proposed throughout this part ensure that the program will always execute in conditions that are
covered by our analysis hypotheses.
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Notation Definition

τ i task i
ϕi

k phase k in the representation of τ i

ϕi
k.d start date of ϕi

k without interference
ϕi

k.dur duration of ϕi
k without interference

ϕi
k.m maximum number of memory accesses performed within ϕi

k

ti
j abstract execution trace j of task τ i

ηi
j,k node k in trace ti

j

ηi
j,k.it instruction represented by ηi

j,k

ηi
j,k.d worst-case execution date of ηi

j,k without interference
ηi

j,k.m maximum number of memory accesses performed by ηi
j,k

ηi
j,k.sync True if the node is synchronized, i.e. cannot be executed before ηi

j,k.d

wced(ins) the worst-case execution of the instruction ins across all traces
slast(ηi

j,k) last synchronized node before ηi
j,k in trace ti

j

ti
j |ϕi

k

restriction of trace ti
j to ϕi

k, i.e. the set of nodes in ti
j that may execute during ϕi

k

2.1 Architecture model

We consider a multi-core architecture C = {Ck|0 ≤ k < Nc} composed of Nc homogeneous
cores. The cores access a shared memory using a shared bus that can serve one request at a time
with a FIFO arbitration policy. Additionally, we assume that an ongoing access to the bus cannot
be preempted. Therefore, the work focuses on the bus as the only source of interference.

2.2 Tasks model

We consider a system T of real-time tasks τ i (i ≥ 0). Each task has two distinct representations:

• the multi-phase representation, or profile: the task is described as a sequence of phases, whose
duration is at least equal to the WCET of the task. Moreover, each phase has a maximum
number of memory accesses.

• the traces representation: the execution traces are the possible sequences of instructions
executed by the task.

The multi-phase representation is convenient to schedule the tasks and perform the interference
analysis while the traces are used as an intermediate representation between the code and the
multi-phase representation. It is used to compute the worst-case number of accesses in the phases
and select synchronizations in order to implement the model in the code of the task.

The multi-phase representation of τ i is denoted Pi = {ϕi
k |0 ≤ k < Φi} with Φi the number of

phases. Each ϕi
l is defined by:

• ϕi
l.d: its start date.

• ϕi
l.dur: its worst-case duration in isolation (without interference).

• ϕi
l.m: the worst-case number of memory accesses that may be performed within [ϕi

l.d, ϕi
l.d +

ϕi
l.dur[.

The date of ϕi
0, which is also the start date of task τ i without interference, is set when the static

schedule of the system is built or the priorities of the tasks are set. Then, for each ϕi
l (l > 0) the

start date is defined by:
ϕi

l.d = ϕi
0.d +

∑
0≤q<l

ϕi
q.dur (3.1)
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Alternatively, we can define recursively the start date of each phase (except the first one) by:

∀l > 0, ϕi
l.d = ϕi

l−1.d + ϕi
l−1.dur

In order to compute the worst-case number of memory accesses performed during a given phase
(i.e. ϕi

k.m), the code portions of τ i that may be executed during ϕi
k must be identified and analyzed.

To do so, we introduce Ti = {ti
j |0 ≤ j < T i} the set of abstract execution traces of τ i. Each trace

corresponds to a possible execution of τ i (corresponding to a particular set of inputs) and is a
sequence of nodes ηi

j,k representing instructions with 0 ≤ k < N i
j the node’s index in its sequence.

ηi
j,0 is the entry point of task τ i and each node is defined by:

• ηi
j,k.it : the instruction represented by ηi

j,k.

• ηi
j,k.m ∈ N : the worst-case number of memory accesses performed by one execution of ηi

j,k.it.

• ηi
j,k.d : the worst-case execution date of ηi

j,k.it in trace ti
j .

An instruction is not just understood as an element of the core Instruction Set Architecture
(ISA) (e.g. the ADD instruction), but as a particular instruction in the binary code of the task.
Thus, nodes from different traces may reference the same instruction instr in the code. We say
that such nodes are equivalent: ηi

j,k ∼ ηi
j′,k′ ⇐⇒ ηi

j,k.it = ηi
j′,k′ .it = instr. Moreover, we define

the equivalence class of any instruction instr as Ni
equiv(instr) =

⋃
ti
j∈Ti{ηi

j,k ∈ ti
j |ηi

j,k.it == instr}
and wced(instr) as the worst-case execution date of the instruction instr across all the traces so
wced(instr) = maxηi

j,k
∈Ni

equiv(instr)(ηi
j,k.d).

2.3 Synchronizations

As it stands, the model guarantees that a node ηi
j,k can execute in the interval [ηi

j,0.d, ηi
j,k.d], i.e.

from the start date of the task to its worst-case execution date, because no minimum execution date
is specified. Therefore, its accesses (ηi

j,k.m) must be accounted for in all the phases that start before
the worst-case date of the node so all the phases ϕi

l such that ϕi
l.d ≤ ηi

j,k.d. Although it ensures a
safe account of accesses in the multi-phase model, it also induces huge access over-approximations.
Therefore, we propose to synchronize some nodes to limit this over-approximation: a code inserted
in the program before the instruction represented by the node ensures that the instruction cannot
be executed before its worst-case date. The synchronization code can be added by the programmer
directly in the source code of the tasks, by the compiler as part of a low-level compilation pass, or
during an automatic code re-engineering process to adapt legacy code to the multi-phase model.
Because the synchronization of a node ηi

j,k.d actually consists in applying the synchronization to the
instruction it represents, we must consider all the nodes of the equivalence class of this instruction
to implement the synchronization. Moreover, since the model uses worst-case dates, the date chosen
for all nodes in an equivalence class must be the maximum date amongst them.

To keep track of the synchronized nodes, we add the boolean attribute ηi
j,k.sync which is true

if the node is synchronized and false otherwise.
Using these synchronizations, the accesses performed by any node must only be accounted for

in the phases that:

1. finish after the last synchronization prior to the node, AND

2. start before the worst-case date of the node.

This is illustrated in Figure 3.6, which depicts 3 execution traces (ti
0, ti

1 and ti
2) and 2 possible

profiles for a task τ i. Synchronized nodes are depicted in black in the traces. The red (resp. green)
rectangle shows the time window in which the accesses of node ηi

2,3 (resp. ηi
1,7) must be accounted
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Figure 3.6: Three traces and two profiles for task τ i

for. In the first profile, the accesses of ηi
1,7 must be considered in phases ϕi

2 and ϕi
3, whereas in the

second profile, they would only be considered in ϕi
2.

It is important to note that since ηi
j,k.d is a worst-case date, if node ηi

j,k is synchronized, then
its execution date is exactly1 ηi

j,k.d. We denote slast(ηi
j,k) the last synchronized node before ηi

j,k in
trace ti

j . By convention, we set slast(ηi
j,k) = ηi

j,k when ηi
j,k.sync.

To account for the tasks schedule, for all tasks τ i, the entry node (on any trace ti
j) is synchronized

and its worst-case execution date is set to the start of the first phase of the profile:

Property 1. ∀i, j : ηi
j,0.sync ∧ (ηi

j,0.d = ϕi
0.d)

The worst-case date of any other node ηi
j,k with k > 0 is defined according to the date of the

last synchronized node on its trace:

Property 2. ηi
j,k.d = ηi

j,s.d +
∑

s≤t<k

wcet(ηi
j,t.it, ηi

j,t+1.it)

where wcet(ηi
j,t.it, ηi

j,t+1.it) is the WCET between instructions ηi
j,t.it and ηi

j,t+1.it, and ηi
j,s is

slast(ηi
j,k) if ¬ηi

j,k.sync and slast(ηi
j,k−1) otherwise.

A node ηi
j,k can only be executed in the interval [slast(ηi

j,k).d, ηi
j,k.d]. As we saw in the example

of Figure 3.6, this interval may overlap with several phases of the task profile.
We denote ti

j |ϕi
l

the set of nodes in trace ti
j that may be executed within [ϕi

l.d, ϕi
l.d + ϕi

l.dur[,

called the restriction of trace ti
j to phase ϕi

l:

ti
j |ϕi

l

= {ηi
j,k|(ηi

j,k.d ≥ ϕi
l.d) ∧ (slast(ηi

j,k).d < ϕi
l.d + ϕi

l.dur)}

The notion of restriction of a trace to a phase is illustrated in Figure 3.7 on 3 traces over phase ϕi
1.

Lets focus on ti
0 and identify the nodes that can be executed in ϕi

1, which compose the restriction of
ti
0 to ϕi

1. Firstly, node ηi
0,2 is synchronized at a date covered by ϕi

1, so this node will execute only in
ϕi

1. Moreover, ηi
0,3 and ηi

0,4 are not synchronized but may execute from after ηi
0,2 to their worst-case

date. Hence, they are accounted for in ϕi
1. Finally, ηi

0,5 is synchronized after the end of ϕi
1 so it

cannot be executed in this phase. Therefore, the restriction of ti
0 to ϕi

1 is ti
j |ϕi

1

= {ηi
0,2, ηi

0,3, ηi
0,4}.

1With a precision of a few cycles depending on the implementation of the synchronization mechanism.
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Figure 3.7: Restrictions of traces ti
0, ti

1 and ti
2 to phase ϕi

1.

2.4 Maximum number of accesses in a phase

The number of accesses that may be performed during a phase for an individual trace is equal
to the sum of the accesses of the nodes from this trace that may be executed in the phase. During
the execution of a task, only one trace executes (which one depends on the execution context): as a
consequence, the worst-case number of accesses performed during a phase is equal to the maximum
number of accesses that may be performed by any execution trace during that phase.

Property 3. The worst-case number of accesses that may be performed during phase ϕi
l, denoted

ϕi
l.m, is equal to the maximum of accesses per trace during phase ϕi

l:

ϕi
l.m = max

0≤j<T i
(

∑
ηi

j,k
∈ti

j|ϕi
l

ηi
j,k.m)

Correctness criterion 1. The formula of Property 3 provides a conservative estimation of the
number of memory accesses that can occur during the phases of a multi-phase profile.

Since nodes may span over multiple phases, the number of accesses counted task-wise may be
overestimated, even when some nodes are synchronized. However, nodes from a trace which span
over multiple phases may be "covered" by other nodes from another trace performing more accesses
on a given phase. For example, in Figure 3.7, if we consider that each node performs 1 access, trace
ti
2 is the local worst trace on ϕi

3 with 4 nodes performing accesses and trace ti
1 is the local worst

trace on ϕi
2 with 3 nodes performing accesses. On phase ϕi

1, traces ti
0 and ti

1 both have 3 nodes
performing accesses. In such circumstances, although node ηi

0,4 spans over ϕi
3, ϕi

2 and ϕi
1, it does

not contribute to any over-approximation.
We quantify the task-wise over-approximation of memory accesses compared to the 1-phase

model, by computing the difference between the sum of accesses accounted for in each phase, and
the worst trace-wise number of accesses.

Property 4. The memory access over-approximation in a multi-phase profile of a task τ i compared
to its 1-phase representation is equal to:

M = (
∑

0≤l<Φi

ϕi
l.m) − max

0≤j<T i
(

∑
0≤k<N i

j

ηi
j,k.m)
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The access over-approximation rate of a profile is defined by:

∆ = (M/ max
0≤j<T i

(
∑

0≤k<N i
j

ηi
j,k.m))

3 Interference analysis
In this section, we consider a task system for which an analysis has provided a multi-phase

model as well as a selection of synchronized nodes for each task. We assume that this task system
is scheduled statically (the ϕi

0.d for each τ i are selected and the start dates of the other phases
are computed using equation 3.1), and that an interference analysis is applied to compute and
account for the effect of potential interference between the tasks phases, assuming the timing-
compositionality of the target processor [78].

3.1 Consequences of the interference analysis

In practice, during the interference analysis, each phase that potentially suffers from interference
is extended using a time penalty, and the next phases are postponed accordingly. This extension
may violate assumptions that were made on the correspondence between phases and traces: in
particular the restrictions of traces to phases that were computed prior to the interference analysis
may no longer be correct, resulting in the possibility that some contentions between cores may
happen in phases in which they were not accounted for.

A simple example is given in Figure 3.8 which represents in (a) the trace and a multi-phase
profile of τ i in isolation (we suppose that this task has only one trace in the example). Node ηi

0,4
is synchronized so ϕi

0 may perform up to 4 accesses and ϕi
1 5 accesses. The task is scheduled on

core 0 (C0) in parallel with task τ j scheduled in core 1 as shown in (b) and an interference analysis
is performed to bound the possible delays due to contentions for each phase: ϕi

0 may suffer 4
contentions and ϕi

1 5 contentions in the worst-case. The maximum contention delays corresponding
to the results of the interference analysis are represented with red hatched rectangles. Then, (c)
represents the trace (nodes as circles) and a possible execution of this trace (nodes as crosses). In
this possible execution, it happens that in the end only ηi

0,2 is interfered by τ j but ηi
0,3 still occurs

before its worst-case date. We can observe that although at most 4 accesses were supposed to occur
in ϕi

0 according to the interference analysis in (b), three additional accesses of ηi
0,4, ηi

0,5 and ηi
0,6 are

actually performed in this phase. These 3 additional accesses were supposed to occur only in ϕi
1 so

we did not account for them when computing the maximum penalty of ϕj
0. Therefore, the result of

the interference analysis is unsafe because ϕj
0 can actually suffer from (and inflict to other tasks) 3

additional contentions in the worst case.
One solution is to recompute the number of accesses in the phases and the potential contentions

until a fix point is reached. However, this solution is computationally expensive and degrades the
over-approximation of accesses if the synchronizations are not modified. In the example, ϕi

0 now
needs to account for the 9 accesses of the trace but 4 of these accesses are already accounted for
in ϕi

1 so we must consider that they can interfere with the accesses of both ϕj
0 and ϕj

1. Another
solution that we propose is to change the synchronization date of ηi

0,4 so that it remains in ϕi
1 and

the accesses accounted for in each phase stays as in (a) and (b). The disadvantage of this solution

Table 3.1: Notations introduced in the section

Notation Definition

ϕi
l.p timing penalty added to ϕi

l due to potential interference
ϕi

l.d
# post-analysis date of ϕi

l, i.e. date in the presence of interference
ηi

j,k.d# post-analysis date of ηi
j,k, i.e. worst-case execution date in the presence of interference
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Figure 3.8: Consequences of the interference analysis on the model of task τ i.

is that although it preserves the over-approximation of accesses, by delaying the synchronization
of ηi

0,4 we also degrade the average execution time of the task. However, promoting the worst-case
scenario over the average-case performance can be acceptable for HRT systems.

The solution is explained with another example depicted in Figure 3.9 that displays trace ti
2

and the profile from Figure 3.7, at three stages of the analysis:

• (a) depicts the trace and phases before the interference analysis. We have:
ti
2|ϕi

0

= {ηi
2,0, ηi

2,1} ; ti
2|ϕi

1

= {ηi
2,2, ηi

2,3} ; ti
2|ϕi

2

= {ηi
2,4, ηi

2,5} ; ti
2|ϕi

3

= {ηi
2,6, ηi

2,7, ηi
2,8, ηi

2,9}

Additionally, we consider that for this task, ϕi
1.m = 2 and ϕi

2.m = 2.

• (b) shows the same trace and profile after the interference analysis (assuming other tasks in
the system): the effect of interference is materialized by timing penalties on the phases (the
red rectangles after each phase). ti

2|ϕi
1

, ti
2|ϕi

2

and ti
2|ϕi

3

are different than in (a):

ti
2|ϕi

0

= {ηi
2,0, ηi

2,1} ; ti
2|ϕi

1

= {ηi
2,2, ηi

2,3, ηi
2,4, ηi

2,5} ; ti
2|ϕi

2

= {ηi
2,5, ηi

2,6, ηi
2,7, ηi

2,8, ηi
2,9} ;

ti
2|ϕi

3

= {ηi
2,8, ηi

2,9}

As a consequence, the worst-case amount of accesses that can happen during phases ϕi
1 and

ϕi
2 is higher than what was assumed and therefore their interference penalty and those of the

tasks scheduled in parallel are no longer conservative.

• (c) represents a solution to respect the model’s assumptions of (a): the synchronized date of
ηi

2,4 (resp. ηi
2,6) is set to the new starting date of ϕi

2 (resp. ϕi
3), which is the unique phase in

which it was accounted for in (a). With this slight modification, the restrictions of ti
2 to each

phase are identical to the ones in (a) and the ϕi
l.m that was computed in isolation for each

phase remains correct.
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Figure 3.9: A trace and its corresponding phases representation : (a) in isolation, (b) after the
interference analysis, red rectangles are the timing penalty added for each phase, (c) after a cor-
rection on nodes dates.

3.2 Enforcing the model’s assumptions and the analysis results

Since the duration and start dates of phases can be changed as a result of the interference
analysis, new attributes are added to the formal model of the phases:

• ϕi
l.p ≥ 0 is the timing penalty added to ϕi

l due to potential interference. It is a conservative
bound computed during the interference analysis.

• ϕi
l.d

# is the post-analysis date of ϕi
l, i.e. its start date taking into account the potential

interference in the system.

After the interference analysis, the start date of some tasks may be postponed due to interference
that delays previous tasks. ϕi

0.d# is thus fixed by applying the interference analysis results to the
initial schedule. The start dates of all other phases ϕi

l describing the execution of τ i are computed
as:

ϕi
l.d

# = ϕi
0.d# +

∑
0≤q<l

(ϕi
q.dur + ϕi

q.p) (3.2)

Correctness criterion 2. The synchronization dates in the final implementation of tasks must at
least be equal to the start date of the corresponding phase: for each synchronization node ηi

j,k ∈ ti
j |ϕi

n

,

the synchronization date is set to at least ϕi
n.d#. This way it is guaranteed that nodes after ηi

j,k

cannot execute and thus produce accesses before the start of ϕi
n.

It seems straightforward that, by construction, a task set implemented using this rule is guaran-
teed to fulfill the assumptions made during the interference analysis. Indeed, during the execution
of the system, memory accesses will only occur at times that were accounted for during the analy-
sis, and thus the amount of interference cannot be larger in practice than what was accounted for.
However, although this implementation rule directly guarantees that accesses are not performed
before the phases in which they are accounted for, it may be harder to convince oneself that they
cannot occur later than the end of these phases. Consequently, and given the potentially critical
nature of the tasks modelled in the multi-phase representation, we provide in the remainder of the
section a formal proof of the correctness of this implementation scheme w.r.t. the result of the
interference analysis. Once again, this is completely agnostic of the analysis method, as long as it
correctly provides a conservative bound on the interference level.
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We denote ηi
j,k.d# the post-analysis worst-case date of node ηi

j,k. The post-analysis dates of
nodes are upper bounds on the worst-case execution dates of nodes in the presence of interference.
We start by characterizing those bounds in our formal model (Properties 5, 6 and 7), and then use
them to prove the correctness of the implementation of a multi-phase model of tasks.

First, the post-analysis execution date of the entry point of each task τ i is the post analysis
start date of its first phase ϕi

0.

Property 5. For any task τ i: ∀j < T i, ηi
j,0.d# = ϕi

0.d#

Second, correctness criterion 2 has the following consequences for the post-analysis execution
date of any synchronized node ηi

j,k (except the entry point) of any task τ i:

• If the phase ϕi
n in which the node was supposed to be executed is postponed due to interference

penalties on previous phases, the node cannot be executed before the post-analysis start date
of ϕi

n.

• If previous synchronized nodes see their execution dates postponed, the synchronization date
of ηi

j,k must be postponed accordingly, and thus computed from the post-analysis date of the
previous synchronized node ηi

j,s. In this case, we must consider the interference that can take
place between ηi

j,s and ηi
j,k. If there exists one or more phases that span entirely between the

two nodes, their penalties are added to the post-analysis date of ηi
j,k (which is conservative).

Moreover, by convention we count in the post-analysis date of ηi
j,k the entire amount of

penalty of the phase to which it belongs (which is also conservative since it accounts for the
interference that can occur on each access in the phase prior to the synchronization node,
and on each access that may occur until the next synchronization node).

Property 6. For any synchronized node ηi
j,k of any trace ti

j of task τ i:
(k > 0 ∧ ηi

j,k.sync ∧ (ηi
j,k ∈ ti

j |ϕi
n

) ∧ (ηi
j,s = slast(ηi

j,k−1)) ∧ (ηi
j,s ∈ ti

j |ϕi
m

))

⇒ ηi
j,k.d# = max(ϕi

n.d#, ηi
j,s.d# +

∑
s≤l<k

wcet(ηi
j,l.it, ηi

j,l+1.it) +
∑

m<b≤n

ϕi
b.p)

Correctness criterion 3. The synchronization dates in the final implementation of tasks must
not be set to a value higher than the date computed in Property 6.

Finally, for any non-synchronized node, its post-analysis date accounts for the possible postpon-
ing of the previous synchronized node ηi

j,s. Note that the potential interference occurring between
them has been accounted for entirely in the post-analysis date of the previous synchronized node.

Property 7. For any non-synchronized node ηi
j,k of any trace ti

j of task τ i:
(¬ηi

j,k.sync ∧ (ηi
j,s = slast(ηi

j,k))) ⇒ ηi
j,k.d# = ηi

j,s.d# +
∑

s≤l<k

wcet(ηi
j,l.it, ηi

j,l+1.it)

4 Proof of correctness
We now prove that any task system which respects the 3 correctness criteria is correct w.r.t.

the results of the interference analysis i.e. cannot generate interference that was not accounted for.
First, the difference between the start date of a synchronized node ηi

j,k before and after the
interference analysis is bounded by the difference between the start date of the phase ϕi

l in which it
is executed, before and after the interference analysis, added to the maximum amount of interference
that can occur in ϕi

l.

Lemma 1. ∀ηi
j,k: (ηi

j,k.sync ∧ (ηi
j,k ∈ ti

j |ϕi
l

)) ⇒ ηi
j,k.d# − ηi

j,k.d ≤ ϕi
l.d

# − ϕi
l.d + ϕi

l.p
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Proof. We will prove by induction that the property is true for all synchronized nodes. If ηi
j,k is the

entry node of τ i, the proof is direct using Properties 1 and 5. Otherwise, using Property 6, ηi
j,k.d#

is either equal to ϕi
l.d

# or must be computed from the previous synchronized node on trace ti
j . Let

ηi
j,s = slast(ηi

j,k−1), and assume that the property is true for ηi
j,s. Then,

• If ηi
j,k.d# = ϕi

l.d
#:

since ηi
j,k ∈ ti

j |ϕi
l

, by definition ηi
j,k.d ≥ ϕi

l.d, and thus ηi
j,k.d# − ηi

j,k.d ≤ ϕi
l.d

# − ϕi
j .d.

• Otherwise:
ηi

j,k.d# = ηi
j,s.d# +

∑
s≤a<k

wcet(ηi
j,a.it, ηi

j,a+1.it) +
∑

m<b≤l

ϕi
b.p. Using Property 2, we get:

ηi
j,k.d# − ηi

j,k.d = ηi
j,s.d# − ηi

j,s.d +
∑

m<b≤l

ϕi
b.p. The induction hypothesis gives us: ηi

j,s.d# −

ηi
j,s.d ≤ ϕi

m.d#−ϕi
m.d+ϕi

m.p, where ϕi
m is the phase in which ηi

j,s executes. If m = l (i.e. both
nodes execute in the same phase) the property is directly proven for node ηi

j,k. Otherwise,
m < l and then ϕi

l.d
# − ϕi

l.d = ϕi
m.d# − ϕi

m.d +
∑

m≤b<l

ϕi
b.p (using Equations 3.1 and 3.2), and

thus the property is also proven.

By induction, we just proved that the property holds for all synchronized nodes.

We are now ready to prove the correctness property:

Theorem 2. For any task system that respects correctness criteria 1, 2 and 3, for any ηi
j,k of

any task τ i, if ηi
j,k spans over a phase ϕi

l after the interference analysis, then ηi
j,k was necessarily

accounted in the restriction of trace ti
j to ϕi

l before the analysis:
∀0 ≤ j < T i, ∀0 ≤ k < N i

j , ∀0 ≤ l < Φi :
[slast(ηi

j,k).d#, ηi
j,k.d#] ∩ [ϕi

l.d
#, ϕi

l.d
# + ϕi

l.dur + ϕi
l.p[ ̸= ∅ ⇒ ηi

j,k ∈ ti
j |ϕi

l

Proof. The case where ηi
j,k is the entry node is direct. For all other nodes we consider separately

the case of synchronized nodes and of non-synchronized nodes.
Case 1: ηi

j,k.sync is true:
By convention, slast(ηi

j,k) = ηi
j,k. Let us assume ϕi

l such that ηi
j,k.d# ∈ [ϕi

l.d
#, ϕi

l.d
# +ϕi

l.dur+ϕi
l.p[.

Let us denote ϕi
z the phase such that ηi

j,k ∈ ti
j |ϕi

z

(z is unique because ηi
j,k is synchronized).

We want to prove that l = z. Using Property 6, either ηi
j,k.d# = ϕi

z.d# or it is greater. If it
is equal, then directly ϕi

l = ϕi
z because phases of the same task do not overlap. Otherwise, if

z > l then ηi
j,k.d# > ϕi

z.d# ≥ ϕi
l.d

# + ϕi
l.dur + ϕi

l.p which contradicts the assumption. So z

would have to be less than l. Now, since ηi
j,k ∈ ti

j |ϕi
z

, ηi
j,k.d − ϕi

z.d < ϕi
z.dur. At the same time,

ηi
j,k.d# ≥ ϕi

l.d
# ≥ ϕi

z.d# + ϕi
z.dur + ϕi

z.p, so ηi
j,k.d# − ϕi

z.d# ≥ ϕi
z.dur + ϕi

z.p. This contradicts
Lemma 1, from which we conclude that l = z. This concludes the proof for case 1.
Case 2: ηi

j,k.sync is false:
Let ϕi

l such that [slast(ηi
j,k).d#, ηi

j,k.d#] ∩ [ϕi
l.d

#, ϕi
l.d

# + ϕi
l.dur + ϕi

l.p[ ̸= ∅. Let us denote ϕi
m the

phase to which slast(ηi
j,k).d# belongs, and assume by absurd that ηi

j,k ̸∈ ti
j |ϕi

l

. Then by definition

either (slast(ηi
j,k).d > ϕi

l.d + ϕi
l.dur) or (ηi

j,k.d < ϕi
l.d).

If slast(ηi
j,k).d > ϕi

l.d + ϕi
l.dur: then m > l, and thus using Property 6: slast(ηi

j,k).d# ≥ ϕi
m.d# ≥

ϕi
l.d

# + ϕi
l.dur + ϕi

l.p, which contradicts the original assumption.
If ηi

j,k.d < ϕi
l.d, then using Property 2: slast(ηi

j,k).d +
∑

s≤t<k

wcet(ηi
j,t.it, ηi

j,t+1.it) < ϕi
l.d. Then, we

can deduce:
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slast(ηi
j,k).d# +

∑
s≤t<k

wcet(ηi
j,t.it, ηi

j,t+1.it) < ϕi
l.d + slast(ηi

j,k).d# − slast(ηi
j,k).d

P rop. 7⇒ ηi
j,k.d# < ϕi

l.d + slast(ηi
j,k).d# − slast(ηi

j,k).d

⇒ ηi
j,k.d# < ϕi

l.d + slast(ηi
j,k).d# − slast(ηi

j,k).d +
l−1∑

b=m+1
ϕi

b.p

Lemma 1⇒ ηi
j,k.d# < ϕi

l.d + ϕi
m.d# − ϕi

m.d + ϕi
m.p +

l−1∑
b=m+1

ϕi
b.p

⇒ ηi
j,k.d# < ϕi

m.d# + ϕi
m.p +

l−1∑
b=m+1

ϕi
b.p +

l−1∑
b=m

ϕi
b.dur

⇒ ηi
j,k.d# < ϕi

l.d
#

which contradicts the initial hypothesis. We conclude that necessarily ηi
j,k ∈ ti

j |ϕi
l

.

5 Conclusion
This chapter introduced the core concepts of the multi-phase model and then formally defined

it. We proposed 3 correctness criteria that guarantee that the implementation of a task system
described in the multi-phase model is correct w.r.t. a chosen interference-aware static schedule.
These criteria are very simple and are agnostic to the method used to create the profile. It makes
them easy to verify and offers room for optimizations in the analysis of tasks in order to derive a
profile as we will see in Chapter 4.

These two aspects can be presented as optimization problems. Indeed, we observed in our
experiments that the results of the interference analysis on a task system is highly impacted by the
shape of the multi-phase profiles representing the tasks. Hence, the multi-phase model can both
improve or degrade the worst-case interference scenario computed with the single-phase model,
depending on the way the tasks have been divided in phases. However, this impact is not known
when the profile is under construction so it is only possible to favor some characteristics that
generally yield gains.

At the same time, the implementation of a synchronization mechanism has not been addressed
in this thesis, but it may represent an obstacle to the implementation of the multi-phase model.
The three correctness criteria that allow to bound the number of accesses in each phase do not
make assumptions on the way synchronizations must be implemented, which leaves room for many
solutions. In this chapter, we defined equivalent nodes as all the nodes that represent the same
instruction and we stated that synchronizations are applied on equivalence classes. Therefore, our
definition of equivalent nodes complies with synchronization mechanisms that are not aware of
context information (e.g. the trace that is being executed or the current iteration in a loop). By
extension, it also complies with context-aware mechanisms. However, in order to fully benefit from
a context-aware mechanism, the definition of equivalent nodes should be extended in order to define
different synchronization dates for the same instruction.

The definition of equivalence also rules the impact of synchronizations on the traces. Indeed,
when one of the equivalent nodes synchronized is not already at the synchronization date, its
trace requires modifications on the date of certain nodes. Another aspect to consider regarding
the synchronization mechanism is the impact of the synchronization code. If the binary code is
modified then the static analysis of the code is no longer valid: we need to account for the additional
instructions in the WCET and perform a new instruction cache analysis if needed. A solution to
avoid the new instruction cache analysis is to store all the instructions of the task in a scratchpad
before its execution. In the same way, if the code or the synchronization date must be loaded from
a shared memory, the additional accesses must be accounted for. We let these implementation
questions open: in the following we only consider the adjustments required on the traces that may
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be necessary before re-applying the correctness criteria.
Following the method to correctly compute the accesses in the phases of a task, there are still

three interdependent aspects to address: choosing a multi-phase profile, selecting synchronizations
such that their number is acceptable with respect to their impact on the code, and trying to reduce
the over-estimation of the worst-case number of contentions. These issues are addressed in the next
chapter.
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From the binary code to the
multi-phase representation of a task
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The last chapter introduced the formal definitions of the multi-phase model. Then, we presented
a conservative method to account for the accesses in each phase, provided a technique is able to
derive a profile and a selection of synchronizations for the task. In this chapter, we propose different
techniques to create phases from traces, select synchronizations, and optimize the resulting profile.
We only suppose that the traces of the task have been retrieved using a static analysis of its binary
code. A comparative study of the techniques presented in this chapter is conducted in Chapter 5.

A simple heuristic method based on Kernel Density Estimation (KDE) is presented in the first
part of the chapter. The advantage of this method is that it is able to cluster the accesses of a task
in phases. Once the phases have been created, the selection of synchronizations is a crucial step
because it rules the number of accesses that each phase must account for by limiting the interval
in which each memory access can occur. Hence, we propose a method to select synchronizations
that reduces the over-approximation of the number of accesses in each phase. This process must be
conducted carefully because implementing the synchronizations impacts the code in several ways.
As a result, we adopt a generic approach to select synchronizations, compliant with a variety of
implementation schemes.

In addition, after some preliminary experiments, some optimization passes have been developed
to increase the efficiency of the created profiles, with respect to the interference analysis. In
particular, the optimization methods target three means to optimize a profile: increasing the time
when no accesses can be performed, packing the accesses together in phases to increase the precision
of the interference analysis and reducing the access over-approximation inherent to the shape of
the profile.

44
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Figure 4.1: Construction of a multi-phase profile from its binary code.

Finally, as several interdependent parameters are at play when creating a profile, this process
can be viewed as a multi-objective optimization problem with a large solution space if we consider
both the creation of phases and the selection of synchronizations. Hence, two new methods to build
a profile are proposed based on a Genetic Algorithm (GA), which allow to explore more solutions
and to compute a trade-off between the objectives. The first method starts from the traces of
the tasks as for the KDE-based technique. On the other hand, the second method starts from an
initial profile, so it is proposed as a means to optimize existing profiles while keeping the original
characteristics of the profile.

The whole process of building a multi-phase profile presented in this chapter is described in
Figure 4.1. The numbers are referring to the sections where each technique is described. Firstly,
the static analysis of the program allows to derive the traces representation of the task. This step
is based on state of the art techniques of the literature and is not discussed in this chapter. Then,
either a KDE heuristic or a GA presented in this chapter can be applied on the traces to obtain a
first sequence of phases. Finally, the optimization and correction step further improves the initial
profile and checks that it is correct. It is also conducted either by simple heuristics or by another
GA.

1 A simple heuristic to compute a multi-phase profile from the
traces representation of a task

This section proposes a technique to compute a multi-phase profile from the set of traces of a
task. The core of the technique relies on the application of Kernel Density Estimation (KDE) on
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Figure 4.2: Kernel Density Estimation applied on a random distribution.

a distribution of the worst-case dates at which the accesses of a task can be performed.

1.1 Creating the phases from nodes using Kernel Density Estimation

We start by presenting the basic concepts of KDE in section 1.1.1, and then explain how we
applied it to create phases from the traces of a task in the subsequent sections.

1.1.1 Kernel Density Estimation (KDE)

Let’s consider a set of n independent and identically distributed (i.e. with the same probability
distribution) observed data points forming a sample {x0, x1, ..., xn} from a distribution X with
unknown density probability function f(x). We can estimate f(x) using the KDE method. This
estimator is defined by:

f̂h(x) = 1
nh

n∑
i=1

K
(x − xi

h

)
(4.1)

with K a kernel (e.g. uniform, Gaussian or Epanechnikov) and h > 0 the bandwidth or smoothing
parameter.

KDE is sometimes called continuous histogram, the reason is visible in Figure 4.2. The idea
is to sum the kernels of the observations to obtain the continuous underlined probability density
function.

1.1.2 Application of KDE to build phases

The intuition behind the use of KDE is that, using the dates of instructions that may perform
accesses, we can derive a continuous function that compiles all these dates and describes clusters
of accesses. The clusters can be directly used to create phases and form a profile.

In practice, the set of worst-case dates of accesses in the traces is used as an input sample to
obtain the associated continuous function describing when the accesses of the task may occur (in
the worst-case). Then, the phases can simply be delimited by the position of the local extrema of
this function (defining the positions of the clusters).
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Algorithm 1 KDE-based algorithm to build a multi-phase profile
Require: h ; kernel
1: sample = []
2: Pi = []
3: for ti

j ∈ Ti do
4: for ηi

j,k ∈ ti
j do

5: push(sample, ηi
j,k.d)

6: end for
7: end for
8: f̂h(x) = KDE(sample, h, kernel)
9: extrema = getExtremaDates(f̂h(x), 0, WCET (τ i))

10: date = 0
11: phaseIdx = 0
12: for e ∈ extrema do
13: phaseBudget = e − date
14: ϕi

phaseIdx = createPhase(date, phaseBudget)
15: Pi.push(ϕi

phaseIdx)
16: phaseIdx = phaseIdx + 1
17: date = date + phaseBudget
18: end for
19: return Pi

Algorithm 1 presents the function transforming the traces representation of a task τ i to a multi-
phase profile using KDE. The parameters are the bandwidth h and the kernel function to be used
by the KDE method. By default, we use a Gaussian kernel (this parameter is recognized to have a
minor effect on the estimation [79, 80] and the choice of h is discussed in the next paragraph). In
lines 3 to 7, the algorithm collects the worst-case dates of nodes from all traces of τ i. These dates
are then used to compute the corresponding probability density function f̂h(x) (line 8). In line 9,
a function retrieves the extrema of f̂h(x) in the interval [0, WCET (τ i)[. Eventually, a phase is
created between each consecutive extrema and added to the new profile of the task (lines 12 to 18).

Figure 4.3 shows the application of the KDE-based method on a task with 5 traces, with a
bandwidth factor of 50 cycles (which corresponds to the duration of a memory access in the analysis
of the task). The 5 traces of the task are depicted by horizontal lines with nodes representing the
memory instructions (each instruction is assigned an index visible in the figure), the KDE function
is plotted in blue with vertical lines to indicate the positions of minimum (in red) and maximum
(in green) extrema that were used to delimit the phases at the bottom of the figure.

Influence of the smoothing parameter h. The smoothing parameter highly impacts the
results of KDE, in particular it impacts the bias and the variance of the estimator. A high value
(over-smoothing) hides a lot of information, because it makes f̂h(x) cover a large neighborhood of
x, inducing a high bias and a low variance. On the contrary, a low value (under-smoothing) may
create artificial variations on the curve. For example, Figure 4.4 shows the KDE-based profile of
the same task as Figure 4.3 but with a bandwidth of 30 cycles instead of 50 cycles. We observe
that the number of phases increases due to the higher number of extrema in the function.

There exists some automatic methods to define h such as Scott’s rule where h = n(−1/(d+4))

or Silverman’s rule where h = (n(d + 2)/4)(−1/d+4) [79] with n the number of observations and d
the number of dimensions (1 in our case). For our problem, the h value determines the number of
clusters and phases. On the one hand, it is important to highlight the details of the distribution
to isolate accesses so h has to be relatively low. On the other hand, highlighting too many details
is unnecessary as in Figure 4.4 where some phases are not useful and only increase the number of
required synchronizations.
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Figure 4.3: KDE-based profile and the traces of a task with bandwidth 50 cycles.
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Figure 4.4: KDE-based profile and the traces of a task with bandwidth 30 cycles.

Imbalance of the weight of instructions in the sample of dates It is worth noting that
an instruction represented n times across the traces is also represented n times in the sample of
dates used to apply KDE, even if the dates across the traces are identical. Consequently, if an
instruction appears at the same date in different traces, it increases the number of observations
of the sample and the chances that a phase is created at this date. Such situation is beneficial
when the over-represented instruction is synchronized because it prevents many nodes from being
executed in several phases, with only one synchronization added to the code.

1.2 Selecting synchronizations

The selection of synchronizations is a necessary step to control the maximum number of accesses
in each phase of a profile, hence it is also a good leverage to limit the access over-approximation
of the multi-phase model. Ideally, each node performing an access could be synchronized so that
the accesses would only be feasible in a unique phase of the profile. However, it is important to
reduce the number of synchronizations so that the size of the corresponding additional code remains
limited. This section presents and discusses the rules applied to select the synchronizations. The
first rule is applied before creating the phases, in order to reduce the complexity of the analysis.
The others are applied once the phases have been computed with the KDE-based algorithm. These
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Figure 4.5: A simple CFG with a loop that has 0 to 2 iterations, and the corresponding traces in
the right side. At the top the traces considering all the loop iterations and at the bottom the only
trace that will be considered during the analysis.

rules can also be applied to any existing profile, obtained with any other method.

1.2.1 Simplification of the traces through synchronization

The presence of loops (resp. if-statements) increases the number of traces to consider because
all the possible number of iterations (resp. all the possible branches) must be considered. We
propose to simplify the traces to reduce the analysis complexity. The simplification is based on the
synchronization of the node that post-dominates the considered loop or if-statement, i.e. the node
located after the considered control-flow structure, and through which all the traces with some
nodes in this structure pass.

Let’s take Figure 4.5 as an example. The top of the figure depicts three traces ti
2, ti

1 and ti
0 that

represent the execution of the loop in the left side of the figure with respectively 2, 1 and 0 iterations.
The loop exit instruction i5, represented by ηi

2,9, ηi
1,5 and ηi

0,3, post-dominates instructions i3 and
i4 in the loop and the loop head instruction i2 (i.e. any path from the first instruction i0 including
i2, i3 or i4 also passes through i5 to reach the exit instruction i6). If we synchronize instruction i5
to its worst-case date (ηi

2,9.d), then it is possible to only consider trace ti
2 that has the maximum

number of iterations because:

• ti
2 represents the information of the loop contained in the other traces.

• Instruction i5 is executed at the same date in the three traces (because we synchronize it at
ηi

2,9.d) and also has the same successors with the same dates.

In the following we systematically apply this simplification when the traces are enumerated.
Some synchronizations selected during subsequent steps can be desynchronized, i.e. the lower
bound on the execution date specific to the instruction is removed. However the synchronizations
defined during the traces enumeration are never desynchronized. Otherwise, the traces that can be
ignored using the synchronizations would no longer be represented, so it would not be possible to
guarantee that the model encompasses all possible executions of the task.

1.2.2 Systematic synchronization algorithm

A variety of methods can be employed to implement synchronizations, as the three correctness
criteria of Chapter 3 do not make any assumptions. In order to remain as generic as possible in our
hypotheses we propose to assume a context-independent mechanism, i.e. a mechanism that always
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Algorithm 2 syncNodesHeuristic
Require: Ti ; Pi

1: phasesSyncs = getSynchroCandidates(Ti,Pi) ▷ get the nodes complying with rule 3
2: phIdx = 0
3: while phIdx < Φi do
4: syncCandidates = phasesSyncs[phIdx]
5: for ηi

j,k in syncCandidates do
6: if ηi

j,k.sync then
7: continue ▷ rule 2
8: else
9: synchronizeNode(ηi

j,k)
10: end if
11: end for
12: end while

synchronizes at the same date, regardless of the execution context. Such a mechanism could be
implemented with a simple busy-wait loop as mentioned in [53].

In this section we propose a set of rules and a heuristic to select synchronizations nodes and
synchronization dates such that the access over-approximation (see definition in Property 4 of
Chapter 3) is limited and the resulting traces remain correct. Moreover, we present a basic syn-
chronization heuristic that aims at preventing a maximum of nodes from being accounted for in
several phases to limit the access over-approximation while respecting the synchronizations that
were selected during the enumeration of traces. For this purpose, the three following rules are
proposed:

Synchronization Rule 1. The synchronizations selected prior to the design of the profile or
retrieved from the previous analyses (e.g. during the traces enumeration) cannot be desynchronized.

Synchronization Rule 2. The selection of synchronizations is restricted to nodes that are outside
loops because the synchronization of instructions repeated in a same trace requires a context-aware
mechanism.

Synchronization Rule 3. For each trace, at least the first node in each phase is synchronized.

Algorithm 2 describes the basic heuristic to select synchronizations in compliance with the
rules. Firstly, the nodes complying with rule 3 are retrieved by calling the getSynchroCandidates
function (line 1). Then, we iterate through the phases to get their list of nodes to synchronize
(line 4). For each node of syncCandidates the if-then-else structure beginning at line 6 processes
the node under study (ηi

j,k): if the node is already synchronized (by previously processing an
equivalent node) the synchronization is removed, otherwise the node and all its equivalents are
synchronized on the same date (see Algorithm 4).

Algorithm 3 is used to get the minimal list of nodes complying with rule 3 for each phase.
Formally, it selects for each phase ϕi

l and for each trace ti
j , the node ηi

j,n whose date is within the
phase and the closest to ϕi

l.d. It returns a list made of these nodes. The algorithm scans each trace
to detect the first node in each phase that is not in a loop (rule 2). The variables n and p are
respectively the index of the current node and the current phase. Until the last node of the current
trace, the first if ensures that p points to the right phase (this could be a predecessor of this phase
if no node could be synchronized in it). The else if (at line 11) checks that the current node is
within the phase and not in a loop (at line 11). If so, the node is pushed to the list of synchronized
nodes of the current phase and we go to the next phase by increasing p so that only one node per
trace is appended to synchros[p]. The final else (line 14) simply goes to the next node in the case
where the current node cannot be synchronized.
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Algorithm 3 getSynchroCandidates
Require: Ti ; Pi

1: synchros = []
2: for ϕi

p in Pi do
3: synchros.push([])
4: end for
5: for ti

j in Ti do
6: n = 0 ▷ Index of the current node
7: p = 0 ▷ Index of the current phase
8: while n < N i

j do
9: if ηi

j,n.d ≥ ϕi
p+1.d then

10: p + +
11: else if (ϕi

p.d ≤ ηi
j,n.d < ϕi

p+1.d) ∧ (¬isInLoop(ηi
j,n)) then

12: synchros[p].push(ηi
j,n)

13: p + +
14: else
15: n + +
16: end if
17: end while
18: end for
19: return synchros

1.2.3 Synchronizing a node

When a node is selected to be synchronized, synchronization code is inserted before the instruc-
tion it represents in the binary. Because we assume a context-independent synchronization, all the
nodes representing a synchronized instruction (i.e. equivalent nodes) must have the same synchro-
nization date. As a result, a synchronization impacts the date of nodes in the traces where the
instruction is present. Therefore, we introduce some additional synchronization rules to correctly
manage the consequences of a synchronization in the traces:

Synchronization Rule 4. Equivalent nodes are always synchronized or desynchronized together
so: ∀ηi

l,m ∈ Ni
equiv(ηi

j,k.it), ηi
l,m.sync = ηi

j,k.sync

Synchronization Rule 5. The synchronization date of a node ηi
j,k is the worst-case date of the

instruction it represents in all traces: ηi
j,k.sync =⇒ ηi

j,k.d = wced(ηi
j,k.it).

Moreover, we recall that if a node ηi
j,k is not synchronized then the duration between its date and

the date of its predecessor ηi
j,k−1 is always equal to the partial WCET between the two instructions

(see Property 7 in Chapter 3):

∀ηi
j,k, s.t. ¬ηi

j,k.sync : ηi
j,k.d − ηi

j,k−1.d = wcet(ηi
j,k−1.it, ηi

j,k.it)

Figure 4.6 represents a single trace ti
0 with ηi

0,2 synchronized in two situations: the top and
bottom representations depict respectively the trace before and after the synchronization of ηi

0,4.
We assume that a node equivalent to ηi

0,4 has a later date in another trace (wced(ηi
0,4.it) > ηi

0,4.d)
so ηi

0,4 must be shifted to the right when it is synchronized. This date modification also affects ηi
0,5

because as it is not synchronized, the WCET between ηi
0,4.it and ηi

0,5.it remains identical.
Algorithm 4 presents how a node and its equivalent are synchronized in compliance with the

synchronization rules. The synchronization date retrieved at line 1 is the worst-case execution date
of the instruction across all traces. If the synchronization date is superior to the current date of
the node (line 3), then we need to update the execution date of the node and of its successors to



1. SIMPLE MULTI-PHASE DESIGN HEURISTIC 52

Algorithm 4 synchronizeNode
Require: ηi

j,k

1: sync_date = wced(ηi
j,k.it)

2: for ηi
j′,k′ in Ni

equiv(ηi
j,k.it) do

3: if ηi
j′,k′ .d < sync_date then

4: diff = sync_date − ηi
j′,k′ .d

5: t = k′

6: while t < N i
j′ ∧ ¬(ηi

j′,t.sync) do
7: ηi

j′,t.d = ηi
j′,t.d + diff

8: end while
9: ηi

j′,k′ .sync = 1
10: end if
11: end for

maintain the WCETs between the nodes until reaching the next synchronized node whose date
cannot change according to the first rule. The operation is done in the while at line 6. The shift
value is computed at line 4 from the date of the node to synchronize. In order to desynchronize a
node ηi

j,k the operation is somewhat inverted: the successor nodes until the next synchronization
are shifted towards inferior dates so that the new date of ηi

j,k is:

ηi
j,k = slast(ηi

j,k).d +
ηi

j,k−1∑
ηi

j,l
=slast(ηi

j,k
)
wcet(ηi

j,l.it, ηi
j,l+1.it)

It is important to note that postponing the synchronization date of a node ηi
j,k to wced(ηi

j,k.it)
has no effect on theWCET of the task. First, if the equivalent nodes to synchronize are at the
same date, then none is postponed during their synchronization so theWCET is not changed. We
propose to study the other case (i.e. at least one of the equivalent nodes has a different date than
the others) in the remainder of the section.

If two equivalent nodes ηi
j,k and ηi

l,m do not have the same date, then they have either a different
number of predecessors or their predecessors are not all equivalent 2 by 2 (i.e. ∃h < k, ¬(ηi

j,h ∼
ηi

l,h)). We assume that infeasible paths are not discarded during the enumeration of the traces, so
the set of instructions that can be executed just after ηi

j,k.it is the same regardless of the execution
context (i.e. regardless of the trace). Therefore, there exists an equivalent node ηi

l′,m′ from a
different trace than ti

j whose successor ηi
l′,m′+1 is equivalent to ηi

j,k+1.

Property 8. Let’s consider ηi
j,k and ηi

l,m s.t. ηi
j,k ∼ ηi

l,m and ηi
j,k.d ̸= ηi

l,m.d. Then:

∃ηi
l′,m′ , l′ ̸= j, m′, (ηi

j,k ∼ ηi
l′,m′) ∧ (ηi

j,k+1 ∼ ηi
l′,m′+1) (4.2)

t

Figure 4.6: A trace with and without its node ηi
0,4 synchronized.
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Figure 4.7: 3 traces and a profile with an optimization on the synchronizations used for ti
0.

By consequent, if ηi
j,k is postponed due to its synchronization, we are guaranteed to find an

equivalent node ηi
l′,m′ that executes at date wced(ηi

j,k.it), whose successors are a series of nodes that
are equivalent to the successors of ηi

j,k. Postponing ηi
j,k.d and the dates of its successors accordingly

would thus only make these two traces coincide until the end, so the WCET of the task cannot
change due to the synchronization of a node.

1.2.4 Optimizing the selection of synchronizations

The systematic selection of synchronizations is beneficial during the design of a profile because
it is fast and efficient to limit the access over-approximation. Nonetheless, it also selects syn-
chronizations that have no effect on the count of accesses, while we want to limit their number.
Figure 4.7 shows an example of an efficient selection of synchronizations with three different traces.
Note that ti

0 has very few accesses compared to the other traces. If we applied the systematic
selection method, all its nodes except ηi

0,1 would be synchronized while if we synchronize only ηi
0,2

the number of accesses in each phase does not change. For instance, ti
1 performs up to 4 accesses

in ϕi
1 which is also the number of accesses that ti

0 can perform (from ηi
0,2 to ηi

0,5), so synchronizing
ηi

0,3 has no effect on the accesses number of ϕi
1.

Algorithm 5 presents an optimization that identifies such redundant synchronizations and re-
moves them. The idea is to assess for each synchronized node if its desynchronization would increase
the number of accesses in a predecessor of the phase where it is synchronized. It is not necessary to
go back to the first phase of the profile but only to the phase containing the previous synchroniza-
tion because this synchronization prevents the accesses from being performed in a prior phase. The
function iterates backwards through the phases of Pi using idxPhase. For each phase, it retrieves
the synchronized nodes within the phase using function getSyncIn that is presented by Algorithm 6
thereafter. Then, the for at line 5 iterates through the synchronized nodes retrieved in order to
assess if they can be desynchronized. As equivalent nodes are synchronized and desynchronized
together, they are processed at the same time so we prevent the algorithm from studying the same
set of equivalent nodes multiple times by storing the instructions that have already been studied
in the list visited (line 9). If a set of equivalent nodes has already been processed, the if at line 6
passes to the next synchronized node to study.

In the for from line 11, the algorithm looks at all the equivalent nodes ηi
l,m under study to

assess if their desynchronization on their trace ti
l may increase the number of accesses in the current

phase ϕi
idxP hase. First, it computes the number of accesses in ϕi

idxP hase performed by ti
l denoted

accs (line 12). If ηi
l,m were to be desynchronized, this would be the number of additional accesses

from ti
l that the predecessor phases finishing after slast(ηi

l,m).d would have to account for. Thus, the
while at line 14 checks if the number of accesses for these predecessor phases ϕi

idxP haseLast (those
finishing after slast(ηi

l,m).d) without ηi
l,m’s synchronization is not superior to their current number

of accesses (line 17). If so, the desynchronization is cancelled by setting noAddOverApp to False
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Algorithm 5 optimSyncSelection
Require: Ti ; Pi

1: idxPhase = Φi − 1
2: while idxPhase > 0 do
3: sync_nodes = getSyncIn(ϕi

idxP hase,Ti)
4: visited = []
5: for ηi

j,k in sync_nodes do
6: if ηi

j,k.it ∈ visited then
7: continue
8: end if
9: visited.push(ηi

j,k.it)
10: noAddOverApp = True
11: for ηi

l,m in Ni
equiv(ηi

j,k.it) do
12: accs =

∑
ηi

l,p
∈ti

l|ϕi
idxP hase

ηi
l,p.m

13: idxPhaseLast = idxPhase
14: while (slast(ηi

l,m).d < ϕi
idxP haseLast.d) ∧ (noAddOverApp) do

15: idxPhaseLast = idxPhaseLast − 1
16: currTraceAcc =

∑
ηi

l,p
∈ti

l|ϕi
idxP haseLast

ηi
l,p.m

17: if currTraceAcc + accs > ϕi
idxP haselast.m then

18: noAddOverApp = False
19: end if
20: end while
21: if ¬noAddOverApp then
22: break
23: end if
24: end for
25: if noAddOverApp then
26: desynchronize(ηi

j,k)
27: end if
28: end for
29: idxPhase = idxPhase − 1
30: end while

and the algorithm passes to the next synchronized node (see the break at line 22). Otherwise, if
noAddOverApp is still True after that all the equivalent nodes have been studied, then they are all
desynchronized (line 26).

Algorithm 6 is used to retrieve the synchronized nodes within a given phase. It consists in
iterating through the nodes composing the traces (line 4) to push the synchronized nodes whose
synchronization date is within the phase into list syncNodes (line 5). The list syncNodes is
returned at the end of the function.

1.3 Correction and optimization of the profile

This section describes methods that are applied after the creation of a profile. These methods
enforce the correctness criteria presented in the previous chapter and some user-defined properties
as for instance the minimum duration of a phase. Moreover, they favor some characteristics that
increase the multi-phase model performance during the interference analysis. Initially the opti-
mizations were developed specifically to be applied on the phases created with the KDE technique,
but they can be applied to any existing profile.
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As these methods change the dates of phases, synchronizations must be re-selected and the
number of accesses in the phases recomputed once they have been applied.

1.3.1 Enforcing the minimum duration of phases

In order to harmonize the profiles of the tasks, it can be interesting to specify a minimum dura-
tion for the phases. We denote this parameter δ in the following. This parameter has a consequent
impact on the scheduling and on the interference analysis results so it must be tuned with precau-
tion. When the minimum duration is too high the profiles may be too close to the single-phase
representation and limit the benefit of the multi-phase representation. On the contrary, a minimum
duration that is too low will allow profiles with a lot a phases, on which the over-approximation
of accesses is more difficult to control for two reasons: (1) it requires more synchronizations to
prevent nodes from being executed in several phases, while we wish to keep the number of the
synchronizations low and (2) there are more chances that some of the over-approximation cannot
be controlled by the selection of synchronizations (see Section 2.3.1).

In addition, if the duration of phases in the profiles is not harmonized, there are more chances

Algorithm 6 getSyncIn
Require: ϕi

p ; Ti

1: syncNodes = []
2: for ti

j ∈ Ti do
3: k = 0
4: while (k < N i

j) ∧ (ηi
j,k.d ≤ ϕi

p+1.d) do
5: if (ηi

j,k.sync) ∧ (ηi
k,j ∈ ti

j |ϕi
p

) then

6: syncNodes.push(ηi
j,k)

7: end if
8: k = k + 1
9: end while

10: end for
11: return syncNodes

2
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Figure 4.8: The profiles of two tasks before and after a pseudo-harmonization process.
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that we find situations in which the multi-phase model accounts for more accesses than the single-
phase model. Typically, the multi-phase model is less efficient when a long phase is in parallel with
a lot of short phases whose total count of accesses is superior to the count of accesses of the long
phase. The problem is that the interference analysis must consider that the accesses of the long
phase may contend with any of the short phases in parallel. Harmonizing the duration of phases
in the profiles makes this situation less probable. See as an example Figure 4.8 that depicts τ i and
τ j respectively scheduled on core 0 and core 1, with different profiles for τ i at the top and at the
bottom. At the top, the phases of τ i are much shorter than those of τ j . The interference analysis
must assume that the long phases of τ j may create contentions with all the short phases of τ j that
have accesses. Therefore, the two blue phases are responsible for 12 possible contentions in τ i while
they have a total of 5 accesses. Suppose that a minimum duration has been set for the phases
and that it resulted in the new profile of τ i at the bottom: the green phases and then the orange
phases are merged together. In this situation, the blue phases are responsible for only 7 possible
contentions in τ i which significantly decreases the end date of τ i.

In order to enforce the minimum duration of phases, the correction method iterates over the
phases and whenever ϕi

j .dur < δ, then the phase budget is increased by δ − ϕi
j .dur. If ϕi

j+1 is
completely covered by ϕi

j following this operation, then it is deleted. Otherwise, ϕi
j+1.d is postponed

according to the increase of ϕi
j .

1.3.2 Accounting for the memory access latency in isolation

Previously, we accounted for the nodes in the phases assuming that an access is performed
instantaneously at the date of its node. Indeed, nodes are represented at their worst-case date
or at their synchronization date and we account for a node in a trace according to this date but
without taking into account the latency of the corresponding memory accesses. Because of this
latency, a node at the end of a phase can actually perform some of its accesses during the next
phase. According to the configuration of the other traces on these two phases, we may have to
account for this access in both of them, which increases the over-approximation of accesses in the
model. The situation is illustrated in Figure 4.9 representing in blue an original profile computed
using any technique and the output of the successive correction and optimization passes in green.
The orange rectangles represent the worst-case memory latency for each node. With the initial
profile in blue, node ηi

1,3 is accounted for only in ϕi
2 but may perform its accesses in ϕi

3.
It is possible to increase the number of accesses in ϕi

3 to account for ηi
1,3 but then the over-

approximation of accesses increases. Instead, this correction pass ensures that a given node cannot
span over several phases due to its memory accesses latency by increasing the duration of phases
if necessary: if for a node ηi

j,k accounted for in a phase ϕi
m we have ηi

j,k.m × l > ϕi
m.d + ϕi

m.dur

with l the worst-case latency of one access, then we increase the ϕi
m.dur to cover the left hand term

and correct ϕi
l+1 accordingly. Back to Figure 4.9, the correction (a) increases the duration of ϕi

2
so ηi

1,3 can only perform its accesses in ϕi
2 in the green profile. Consequently, ϕi

3.d is postponed to
ηi

j,k.d + ηi
j,k.m × l.

1.3.3 Maximizing the span of empty phases

The presence of phases that do not perform accesses, called empty phases in the following, and
specifically the amount of time they take in the task execution can increase the performance of
the multi-phase model because they cannot interfere with other phases scheduled in parallel. We
propose two operations to maximize the time without accesses in a profile:

1. Set the start date of phases to the date of their first node performing an access. This operation
is particularly interesting if the previous phase is an empty phase because the end of the empty
phase can be postponed so that its duration increases.
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In Figure 4.9, on the initial blue profile, phase ϕi
1 has no accesses so it is very interesting to

schedule a maximum of phases with some accesses in parallel in order to avoid contentions.
However, this phase ends before the next access so the scheduler cannot benefit from some
extra time without accesses. By setting the start date of ϕi

2 to the date of the first node
already in the restriction of the phase (nodes ηi

2,2 and ηi
1,2) as depicted by situation (b), we

can fully benefit from the time without accesses in ϕi
1 on the green profile.

2. Create a new empty phase from an existing phase when there is sufficient time without
accesses at its end. For each phase, if the time interval between the end of its last worst-case
memory access and the end of the phase is superior to δ, then a new empty phase covering
this interval is created.
For example, ϕi

0 finishes after the maximum accesses latency of the nodes in its restriction
from ηi

0,1, ηi
1,1 and ηi

2,1. Therefore, the duration of ϕi
0.dur is reduced with operation (c) such

that an additional phase without accesses is created at its end. This new empty phase is not
visible on itself in the green profile because it is merged with ϕi

1.

Following the two operations, we see that ϕi
1.dur has increased so it is easier to schedule phases

that perform accesses in parallel so that they are accesses are no interfered.

2 Enlarging the exploration space and handling multiple criteria
with meta-heuristics

In the previous section, a heuristic produces a profile on which several optimization passes are
applied to improve its efficiency regarding scheduling or interference analysis, based on preliminary
experiments. The developed optimization passes show that it is complex to take into account the
over-approximation, the number of synchronizations, the presence of empty phases or the packing of
accesses with a single heuristic. Moreover, reducing the number of synchronizations may sometimes
increase the over-approximation, so in this case, a trade-off must be found.

Therefore, we propose to employ meta-heuristics to create or reshape a multi-phase profile.
Meta-heuristics are generic algorithms that can provide near-optimal solutions to optimization

 : 2  : 0  : 2  : 2

 : 2  : 0  : 2  : 2

Before
correction

After
correction

t

bc worst-case 

memory 

latency

a

Figure 4.9: A profile before (blue) and after (green) applying corrections on the dates of phases.
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problems. They are often used for complex problems when the exact solution cannot be obtained
in a reasonable time or if the solution space is too large. In particular, we need a meta-heuristic that
can explore a large space of solutions (because there are many ways to divide a task in phases) for a
multi-objective optimization problem with many potential local optima. As discussed in Chapter 2
Section 3, there is a lot of meta-heuristics employed in research. The properties of our problem
is leading to population-based methods that are more explorative [81]. In this family, the most
popular algorithms are Particle Swarm Optimization (PSO) and Genetic Algorithms (GA). We
implemented the latter which is very intuitive and is more adapted to problems with many local
optima, partly due to the mutation of existing solutions.

2.1 General implementation of Genetic Algorithms

GAs are based on natural selection and genetic theories. The idea is to maintain a population of
individual solutions, named chromosomes, over several iterations that are called generations. Each
chromosome is composed of a vector of genes that encode a solution. The population evolves using
mutation and crossover operations applied to the chromosomes that modify the values of genes.
Chromosomes are evaluated at each generation so that they can be selected to be combined and
form new chromosomes, or to evict those that represent the less interesting solutions.

We propose two techniques based on GAs: one that creates a profile and another that improves
an existing profile. Firstly, Section 2.1.1 explains the advantages of GA approaches for our problem
and presents the general implementation of the GA and its operators that are used in the two
techniques. Then, Section 2.2 details the first technique that creates a profile from the traces of a
task and Section 2.3 presents the other GA-based technique that reshapes existing profiles.

Initialization

Evaluation

NO

YES
Termination

criterion
met ?

Selection of
parents

Crossover with
selected parents

Mutation on the
offspring

Evaluation of the
new chromosomes

Selection of
chromosomes to

replace

Figure 4.10: The steps of a Genetic Algorithm.
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2.1.1 Introduction to Genetic Algorithms

The generic GA algorithm is represented in Figure 4.10. Firstly, the population is initialized
and a first evaluation is performed to compute the fitness value of each chromosome. Then, the
algorithm enters a running loop with 4 successive steps: (1) the selection evicts some chromosomes
from the population and chooses others for the next step; (2) the selected chromosomes are recom-
bined during crossover to create new chromosomes inserted in the population; (3) the mutation step
modifies the values of some genes in the chromosomes and (4) the fitness value of the chromosomes
is recomputed.

In the following, we denote Ψg the population of generation g (g ≥ 0). Each population
is composed of a set of X chromosomes χg

k (0 ≤ k < X) defined by their sequence of genes
χg

k = {γg
k,j |0 ≤ j < Γ}.

2.1.2 Evaluation

The chromosomes are evaluated using a fitness function specific to each problem, that gives a
fitness score expressing how good they are regarding the considered problem. The fitness functions
used for our two GA techniques are given respectively in Sections 2.2.3 and 2.3.4.

2.1.3 Selection

The selection operator is used twice during each iteration of the GA:

1. To select the parent chromosomes before performing the crossover operation.

2. At the end of an iteration, to select the chromosomes from the current generation to keep in
the new generation.

The following paragraphs describe two common selection policies for GA that we have used.

Steady-state selection. The steady-state selection method selects the best chromosomes of the
population. The drawback is that these solutions may be a local maximum, so in that case, this
selection method maintains the genetic algorithm in the local maximum.

Fitness proportionate selection. With the Fitness Proportionate Selection method, also called
Roulette Wheel Selection, the higher the fitness of a chromosome, the higher the chance for it to be
selected. This allows to further explore some poor solutions which may actually have more potential
than the local best ones. The method is described by Algorithm 7. Function compute_prob at
line 6 takes as argument a chromosome χg

k and returns a probability pk such that:

pk = fk∑X−1
t=0 ft

with X the size of the population and ft the fitness of chromosome χg
t .

Lines 5 to 10 build the roulette wheel from the fitness values of the chromosomes in the popu-
lation: the higher the fitness, the greater the surface covered by the chromosome on the wheel so
the higher the probability to be selected. At line 12, the roulette wheel is set in motion to draw
a random number k. Then, the chromosome covering the interval where k belongs is selected as a
parent. The operation is repeated until all the necessary parents have been selected.

2.1.4 Crossover

The crossover operator consists in creating offspring chromosomes from a set of parent chromo-
somes selected beforehand by taking alternatively some of their genes. This allows to transfer the
characteristics of the parents to the offspring. The two crossover methods that we use are presented
in the next 2 sub-paragraphs:
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Single-point crossover With the single-point crossover method, one crossover point is chosen
randomly. The new chromosome (offspring) is then composed of the genes of the first parent until
the crossover point and the remaining genes are copied from the second parent as depicted in
Figure 4.11.

To present the operation formally, let χg
k and χg

l be two distinct chromosomes selected to
perform a crossover, their offspring chromosome, denoted χg+1

off is defined as follows:

1. a random index randIdx is drawn with a uniform law

2. ∀0 ≤ j < randIdx : γg+1
off,j = γg

k,j : the randIdx first genes are copied from parent k to the
offspring

3. ∀randIdx ≤ j < Γ : γg+1
off,j = γg

l,j : the remaining genes are copied from the second parent

Multi-point crossover The single-point crossover can be generalized to select k > 0 points: the
genes of the offspring take alternatively the values of their parents between the selected crossover
points.

Algorithm 7 The Fitness Proportionate Selection algorithm
Require: Ψg ; nb_parents_mating

1: wheel = []
2: selected_parents = []
3: last_prob = 0
4: j = 0
5: while j < X do
6: pj = compute_prob(χg

j , Ψg) ▷ See formula below the algorithm
7: wheel.push(pj + last_prob)
8: last_prob = pj

9: j = j + 1
10: end while
11: while size(selected_parents) < nb_parents_mating do
12: k = random(0, 1)
13: p = 0
14: while wheel[p] < k do ▷ Search the matching chromosome index
15: p = p + 1
16: end while
17: parent = χg

p−1
18: selected_parents.push(parent)
19: end while
20: return selected_parents

True True False True True False True FalseFalse False

True True False False False
offspring :

parents :
randIdx randIdx

randIdx

Figure 4.11: The steps of a Genetic Algorithm
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2.1.5 Mutation

Mutation is applied to offspring chromosomes (produced by crossover operations) to randomly
change the value of a gene and boost the exploration of the genetic algorithm. In the following,
an adaptive strategy is used in which the chromosomes with a low fitness have more chance to see
their genes mutate than the others. In practice, we separate the chromosomes in two groups, one
for chromosomes with a fitness value above the average of the current generation and the others
in the second group. Then, the chromosomes of the group with the highest fitness mutate with a
lower probability than the chromosomes of the other group.

2.1.6 Termination

It is possible to stop the computation using a convergence criterion. For example, the GA can
be stopped if:

• The highest fitness score in the population is constant (or does not vary enough) for a number
of generations.

• There are some identical solutions in the population.

However, a known limitation of the GA is its tendency to converge towards local optima. In-
deed, as for many meta-heuristics, a trade-off must be found between exploration, i.e. covering a
maximum of the solution space, and exploitation, i.e. remaining in the neighborhood of promis-
ing solutions and find the best. Exploitation tends to overcome exploration when mutation and
crossover operators do not introduce enough diversity. Therefore, relying on a convergence criterion
for problems with a large solution space is not advised because there are high chances that the
algorithm falls in a local optimum. Instead, we set a fixed number of iterations that is determined
empirically. Another advantage is that it is easier to control the computation time.

2.2 Traces-based GA

Now that we have covered the basics of GA, we introduce our first GA for multi-phase pro-
file creation. This GA builds a profile and selects synchronizations based on the set of memory
instructions selected during the static analysis of the task, i.e. the instructions that compose the
execution traces of the task.

2.2.1 Chromosome encoding

A chromosome is a list of boolean genes representing all the nodes from all the traces of the task.
The nodes whose corresponding gene is True are used to create phases and select synchronizations.
The solution space, i.e. the possible combinations of phases and synchronizations that can be built
from the nodes in the traces, is potentially large. Therefore, 3 versions to decode the chromosomes,
i.e. to convert them into profiles, are proposed with different degrees of assistance from heuristics:

• Version all: the phases and the synchronizations directly define the profile, a memory in-
struction whose gene is True is synchronized at its worst-case date and all synchronization
dates are used to create phases.

• Version allOptim: the phases and synchronizations are created in the same way as the all
version, but the optimization presented in Section 1.2.4 (Algorithm 5) is used to remove
redundant synchronizations.

• Version onlyPhases: the chromosome is only used to create the phases and the synchroniza-
tions are selected using the systematic selection (Algorithm 2), then Algorithm 5 is applied
to remove redundant synchronizations.
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The GA takes as input the minimum duration of a phase δ, so for any decoding version, if the
duration between two synchronization dates is inferior to this value, then only one phase is created
instead of two. Once the phases and synchronizations have been set, the worst-case number of
accesses in each phase is computed and the optimization pass is applied to create empty phases by
splitting existing phases (see Section 1.3.3).

The onlyPhases version respects all the synchronization selection rules because it uses the
systematic selection algorithm.

The two other versions use the genes values to select synchronization so they do not follow
rule 3 that by itself constitutes a selection method. However, the other rules are respected:

• Rule 1: the genes corresponding to synchronized nodes selected prior to the design of the
profile are initialized to True and cannot be modified so they must be synchronized in the
represented profile.

• Rule 2: the genes corresponding to nodes inside loops are initialized to False and cannot be
modified so they cannot be synchronized in the represented profile.

• Rules 4 and 5: the nodes are synchronized using Algorithm 4 so that equivalent nodes are
synchronized together and at the same date (i.e. the worst-case date of the instruction they
represent).

2.2.2 Initialization of the population

A good initial population of chromosomes can reduce the time needed to reach good solutions
and it influences the quality of the final results. We need enough synchronizations to limit the
access over-approximation but their number must remain limited. A trade-off can be found during
the initialization by setting the probability of choosing True or False for the genes value of the
initial chromosomes. We empirically set the probability of choosing True to 0.2 and of choosing
False to 0.8.

2.2.3 Fitness

The fitness function relies on three criteria:

• The over-approximation of accesses in the profile. It is important to limit the over-
approximation in order to maintain the multi-phase model performance. The fitness score
associated to this criterion is computed from the access over-approximation rate ∆ as defined
in Property 4 of Chapter 3:

fit_ovApp = 1
e∆ (4.3)

The range of variation of the access over-approximation rate is very large. The first population
generally contains chromosomes where it is several hundreds of % but these solutions can be
subsequently improved through the generations. This formula makes sure that the score
remains between 0 and 1, and the exponential greatly rewards the improvements regarding
this criterion.

• The number of synchronizations nb_sync. As said before, the number of synchronizations
must be kept as low as possible. The fitness score associated to the number of synchronizations
is computed using the number of memory instructions in the traces set, which is also the
number of genes Γ:

fit_sync = (Γ − nb_sync)/Γ (4.4)

Once again, this score lies between 0 and 1 but in practice it never reaches 1. As only genes
can be synchronized, fit_sync is positive.
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• The proportion of time guaranteed without memory access. The more time without
accesses in the profile, the more potential to avoid contentions in the schedule. The fitness
score corresponding to this criterion is computed as:

fit_empty = empty_dur/WCET (τ i) (4.5)

with empty_dur the total duration without accesses in the profile and WCET (τ i) the WCET
of the task.

The global fitness of the chromosome is then:

fitness = a × fit_ovApp + b × fit_sync + c × fit_empty (4.6)

with a ≥ 0, b ≥ 0 and c ≥ 0 defining the weight of each criterion.

2.2.4 Balancing the three criteria

As mentioned above, the range of variation of the over-approximation is very large so the GA
takes a long time before finding solutions that are able to limit this criterion compared to the
others. Therefore, another 2-steps strategy is adopted. Each step is conducted for one half of the
number of generations:

1. a = 1 and b = c = 0: only the over-approximation criterion is optimized. This first phase
allows to stabilize the GA with a population of solutions where the over-approximation of
accesses is already at a reasonable level.

2. a, b and c take the value chosen by the user: in this second phase, the two other criteria are
also part of the optimization problem so that the algorithm can exploit the solutions from
the first phase. As the over-approximation has already received attention, a can be set to a
low value compared to b and c so that the GA focuses on the number of synchronizations and
the duration without accesses.

2.2.5 Selection

The parents selection is performed using the Fitness Proportionate Selection method. Any
chromosome can be parent, which contributes to the diversity of the population, but in the long
term, only the best solutions remain. The steady-state method is used to select and keep the best
individuals of the population at the end of each iteration.

2.3 Phases-based GA

Here, as opposed to the traces-based GA, the purpose of the GA is not to build a profile from
scratch but rather to improve the characteristics of an existing one by merging some phases. The
objective is to reduce the over-approximation of accesses or reduce the number of synchronizations
that are required to implement the profile without degrading the worst-case interference scenario
computed later by the interference analysis. As the over-approximation grows, the number of
contentions grows artificially compared to the single-phase equivalent.

2.3.1 Merging phases to lower the over-approximation of accesses

The over-approximation of accesses can be limited by a clever selection of the synchronizations.
However, other factors are at play. Figure 4.12 illustrates in red a situation where an optimal choice
of synchronization (adding new synchronizations cannot reduce the count of accesses in any phase)
cannot eliminate the over-approximation of accesses. The single-phase model would account for 13
accesses corresponding to the execution of trace t2

0, but the red profile has a total of 15 accesses. This
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Figure 4.12: Three traces and a profile. Synchronized nodes are in black and the value in each
phase gives its worst-case number of accesses.

over-approximation of accesses cannot be eliminated by selecting more synchronizations. Therefore,
it comes from the way the profile is divided: we see that ti

1 is performing most of its accesses during
the first phases while for ti

2 there are more at the end of the profile. It is possible to identify the
sources of over-approximation by separating the traces between two sets:

1. The set of traces that perform the most accesses in the whole task, named global max traces
that is invariant for the profile.

2. The set of traces that perform the most accesses in a particular phase, named local max traces
which varies throughout the profile.

The number of accesses performed by the global max traces during the task execution is equal to
the maximum number of accesses in the single-phase representation. Then, the over-approximation
of accesses appears when at least one global max trace is not among the local max traces in a given
phase (i.e. it performs less accesses than another trace in this phase). Back to Figure 4.12, we see
that the global max trace is ti

2 with 13 accesses. The multi-phase profile P0 in red accounts for
15 accesses because ti

1 locally performs 2 accesses more than ti
2 in ϕi

1, so ti
1 is the local max trace

in ϕi
1. A solution to eliminate the access over-approximation is to merge phases ϕi

1, ϕi
2 and ϕi

3 to
produce the P1 profile in purple. Profile P1 has no access over-approximation because the global
max trace (ti

2) is always among the local max traces.

2.3.2 Initial profile

As mentioned above, this GA is not able to build a profile from scratch. Instead, it uses an
initial profile and searches how to fuse the phases to reshape the profile and obtain a better solution.
Since this GA can only merge phases, the initial profile has the highest number of phases that a
solution can contain. Therefore, we must ensure that the initial profile has enough phases so that
the GA can explore a large solution space. Moreover, the quality of the initial profile influences
the quality of the GA results.

In the following, we denote Pi
init, with Φi

init phases, the initial profile of task τ i.

2.3.3 Chromosome encoding

A chromosome, or solution, χg
k = {γg

k,j |0 ≤ j < Γ} represents a possible profile of the task τ i.
Each gene γg

k,j is a boolean that is true if the corresponding phase ϕi
j ∈ Pi

init is fused with the next
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Algorithm 8 Function decoding a chromosome to return its corresponding multi-phase profile
1: procedure ChromToProf(χg

k,Pi
init,Ti)

2: Pi
k = newProfile()

3: jinit = 0 ▷ index of the current phase in Pi
init

4: while jinit < Φi
init do

5: toMerge = [getPhase(Pi
init, jinit)]

6: while γg
k,jinit

do
7: toMerge.push(getPhase(Pi

init, jinit))
8: jinit = jinit + 1
9: end while

10: newPhase = merge(toMerge,Ti)
11: addPhase(Pi

k, newPhase)
12: jinit = jinit + 1
13: end while
14: return Pi

k

15: end procedure

phase ϕi
j+1 in the encoded profile. Note that because there are as many genes as phases in the

initial profile we have Γ = Φi
init. Figure 4.13 represents 2 chromosomes and their corresponding

profiles. For the chromosome on the left, the first three phases of the initial profile are merged and
it is the two first and the two last ones for the other chromosome.

Algorithm 8 presents the ChromToProf function that decodes a chromosome χg
k to obtain its

profile Pi
k. Firstly, the new profile Pi

k is initialized without phases with function newProfile. jinit

is used to denote the index of the current phase in Pi
init and of its corresponding gene in χg

k. We
use function getPhase(Pp, idx) to retrieve the idxth phase of Pp. The first while at line 4 uses
jinit to iterate through the phases of the initial profile. A list of phases to merge together named
toMerge is initialized with the current phase as only element. The second while at line 6 detects
if there is a sequence of phases to merge from the current phase (i.e. a sequence of genes whose
value is True) and store this sequence in toMerge. Then, function merge returns a phase whose
date is equal to the first phase in toMerge and whose duration is

∑
ϕi

k
∈toMerge ϕi

k.dur. The number
of accesses in the new phase is computed using Ti. Indeed, a simple addition

∑
ϕi

k
∈toMerge ϕi

k.m

is too conservative because if an access is accounted for in several of the merged phases (creating
over-approximation) then it is accounted for several times in the new phase.

2.3.4 Fitness

In our problem, the fitness function must find a trade-off between the optimization of the profile
and the preservation of its good properties. This trade-off is expressed using 4 distinct criteria, two
of them being dedicated to the optimization and the two remaining aiming at preserving the good

True True False False True False True False

decode operation

Figure 4.13: Decoding operation for two chromosomes
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properties of the profile. First, the two optimization criteria are the same as for the Traces-based
GA:

• the over-approximation of accesses as defined by Property 4: the higher the over-
approximation value, the more potential contentions compared to the single-phase model.

• the number of synchronizations used in the profile: we want to reduce their number.

Additionally, preserving the good properties of the initial profile is challenging firstly because iden-
tifying these properties is difficult and secondly because the combination of several good properties
may actually not produce good results. Nonetheless, we propose two criteria to preserve the initial
profile properties:

• The proportion of time guaranteed without access. As opposed to the traces-based
GA, this criterion cannot be improved by this GA because it works on existing phases that it
can only merge so it cannot create empty phases. However, we want to avoid the elimination
of the empty phases present in the initial profile.

• The variability of phase durations. This variability has an impact on the efficiency of
a profile during the interference analysis (an investigation is conducted later in Chapter 7).
To measure this variability we use the Gini index that indicates the statistical dispersion of
a distribution. This index is often used to measure inequalities in economics. It equals 0
when all the values in the distribution are equal (perfect parity) and goes up to 1 when only
one value is not 0 (perfect inequality). As we could not determine an ideal Gini value for a
given profile during preliminary experiments, we use the Gini value of the initial profile as a
reference for the resulting profile. In other words, we try to remain as close as possible to the
value of the initial profile.

The fitness scores of each criterion are:

• Over-approximation: fit_ovApp = 1 − ∆ with ∆ the access over-approximation rate as
defined in Property 4 of Chapter 3. We do not use an exponential because, contrary to the
Traces-based GA, the initial method is supposed to have controlled the value so we consider
that ∆ ≤ 1.

• Number of synchronizations: fit_sync = (nb_sync_init − nb_sync)/nb_sync_init with
nb_sync_init and nb_sync the number of synchronizations respectively in the initial and
the current profile.

• Proportion of empty duration: fit_empty = (empty_init−empty)/empty_init with empty_init
and empty the proportion of duration without accesses respectively in the initial and the cur-
rent profile.

• Variability of the durations: fit_var = 1 − |Gini_init − Gini| with Gini_init and Gini the
Gini index value respectively in the initial and the current profile.

The overall fitness equation is given by the weighted sum of the criteria fitness scores:

fitness = a × fit_ovApp + b × fit_sync + c × fit_var + d × fit_empty (4.7)

2.3.5 Tuning the weight of each criterion

Tuning the weights of the criteria allows to set the trade-off between optimization and preserva-
tion. This trade-off is determined empirically because it is specific to each tasks system (according
to the characteristics of the code), and to the initial methods used. The idea is to set the high-
est weight to the optimization criterion that has the most improvement potential and setting the
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preservation weights according to the proportion of change that is authorized to achieve the im-
provement. For example, if an initial profile has a high over-approximation value but also many
empty phases, it is necessary to set the highest weight for a in order to lower the over-approximation
level but d must also be significant so that as many empty phases as possible are kept.

2.3.6 Crossover and Selection

This GA uses the single-point crossover method. The multi-point crossover is not more efficient
according to preliminary results maybe because the solution space is less important than for the
Traces-based GA. Also, it uses the same selection strategy as in the Traces-based GA, i.e. the Fit-
ness Proportionate Selection to select parents and the Steady State Selection to keep chromosomes
for the next generation.

3 Conclusion
Using the formalization presented in Chapter 3, we are able to compute the worst-case number

of accesses in any multi-phase profile given the traces representation of a task. This opens up a
new field of possibilities to divide a task, in addition to the TIPs or StAMP techniques. However,
the design of a multi-phase profile must be performed with the scheduling and interference analyses
in mind so that the profile is efficient to reduce the makespan of the schedule in the presence of
interference. We proposed a heuristic method based on Kernel Density Estimation (KDE) that is
applied to the distribution of the worst-case dates of accesses so that we can create phases according
to the intervals where there are the least or the most accesses locally. The advantage of relying
on the dates of accesses is that it is easier to pack the accesses in phases and to select efficient
synchronizations (i.e. common to a majority of traces) so that the over-approximation is easier to
limit.

The selection of synchronizations is crucial to limit the over-approximation of accesses. A
heuristic is proposed to select them in a systematic manner for each trace so that no node can
span over several phases. However, although this heuristic is efficient to tackle the access over-
approximation, it selects redundant synchronizations that are synchronizations whose presence
does not modify the count of accesses in the phases. Therefore, we also presented an optimization
that can be applied after the heuristic to eliminate such synchronizations and reduce the impact of
the multi-phase model implementation in the code. This impact depends on the synchronization
mechanism used. For example, taking into account the cost of retrieving the synchronization dates
varies according to whether they are stored in a local or a remote memory. In the first case,
as we assumed in this chapter, the dates may be loaded in a local memory or a scratchpad so
that synchronizations may only add a few cycles to the execution time of the task. However, in
the second case, a new cache analysis would be required to account for the additional accesses,
and the number of accesses in the phases would also be modified. Some profile corrections and
improvements are also proposed that can be applied to any existing profile. They correct the dates
of phases so that the memory latency of accesses is taken into account, and realign the dates of
phases on the date of their accesses so that the clusters of accesses are better enclosed in phases and
the duration of potential empty phases is increased. These empty phases are interesting because
they cannot produce contentions so they are particularly efficient when scheduled in parallel with
phases that have a lot of memory accesses.

The different aspects discussed when designing or optimizing profiles are difficult to take into
account at the same time. Therefore, we propose to adopt Genetic Algorithms (GA), a meta-
heuristic that can explore more solutions and combine multiple criteria in its fitness function. In
a first version, we propose to design a profile from the traces of a task as for the KDE-based
method. This Traces-based GA must find a trade-off between the number of synchronizations, the
proportion of time without accesses and the over-approximation of accesses in the profile. However,
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synchronizations are not always sufficient to eliminate the over-approximation. Another source of
access over-approximation is inherent to the profile itself because accesses can occur in different
parts of the profile depending on the trace. For instance, if two traces each have a cluster with N
accesses that are respectively the maximum count of accesses in two consecutive phases, then it
is interesting to merge the two phases so that the count of accesses locally is not 2N but just N.
Therefore, another GA is used to optimize a profile by fusing some phases together so that the final
profile has less access over-approximation and less synchronizations, without degrading too much
the properties of the initial profile. With this second GA version, one can realize that it is complex
to identify good properties for a multi-phase profile. The preservation of the initial properties is
ensured by a measure of the dispersion of the duration of the phases and by the proportion of time
without access. However, the efficiency of these metrics to represent the good properties of a profile
is debatable. In preliminary experiments, some other metrics were evaluated but it is complex to
determine to what extent they influence the results of a scheduling and interference analysis.

One solution to take into account the interdependence between the shape of the profiles and the
results of the interference analysis is to iterate over a cycle composed of profile design, scheduling
and interference analysis steps so that the interference analysis results are used as a feedback to
reshape the profiles and improve the results of the subsequent interference analysis. However, an
extensive analysis of which characteristics actually influence the results of the interference analysis
is required so that a precise interpretation of the feedback can be performed, to guide the next
design step. Such an analysis has been attempted but the results were highly dependent on the
type of tasks and the way they were scheduled. Another solution would be to employ learning
techniques so that a method could determine a near-optimal shape for each task without iterating.
The training would also require the identification of the parameters influencing the interference
analysis results but the system could learn by itself how to interpret and tune these parameters to
improve the shape of a profile.

The next chapter compares the different design techniques presented in this chapter by as-
sessing their efficiency to reduce interference when a basic scheduling algorithm is used without
optimization.
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The previous chapter presented three new approaches to build a multi-phase profile. This
chapter confronts these approaches to the TIPs approach [12] from the state of the art, by applying
them on several case studies. Two aspects are studied: first the statistics of the profiles obtained
for each task system and second the gain obtained when scheduling the task system with the
multi-phase profiles compared to when using the single-phase model of tasks. The first aspect
focuses mainly on the number of synchronizations to inject in the code and the resulting over-
approximation, which are related to the number of phases. The second aspect is assessed by
scheduling the tasks with a basic algorithm and performing an interference analysis, and then
looking at the makespan of the schedule in the presence of interference.

A good design method is both easy to implement and efficient to reduce the number of con-
tentions in the schedule. Intuitively, such a method creates enough phases to represent the execution
and the possible contentions with precision but with a minimum number of synchronizations and a
low access over-approximation. The solution to this trade-off is not unique because it depends on
the considered task system and architecture. Therefore, we compare the design methods with two

69
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case studies so that the reader can figure out which method is more adapted to a given configuration
(architecture and task system).

The first section presents the two case studies and the remainder of the chapter is organized in
two parts to separate the two aspects that we consider in our comparison.

1 Case studies
The first case study is a benchmark that is used in the WCET research community and the

second is a synthetic system generated specifically for the comparison (the methodology is described
thereafter).

The traces representation of a task is required to compute the worst-case number of accesses
in each phase. In this thesis, we derive the traces representation of a task from a static analysis of
the code using the Time Interest Points (TIPs) methodology described in [53] and [12] to build a
TIPsGraph, a light version of a CFG that essentially represents the instruction performing memory
accesses (see Chapter 2 section 3 for more details).

In the following, the dependencies between the tasks of T are specified using a DAG G = (T, E)
in which vertices are the tasks of T and each edge ei,j ∈ E between τ i and τ j indicates that τ i

must be completed before τ j can start.
The two case studies are presented successively thereafter.

1.1 Rosace

Rosace is a flight controller application presented in [82]. We do not include the environment
simulation tasks in the experiments because there is a disproportion between their WCET and the
WCET of the control and command tasks.

The tasks have been analyzed with OTAWA [15] to extract their CFG and perform a cache
analysis. We considered a target hardware architecture composed of an ARM-based multi-core
processor in which each core features a L1 LRU data cache, and an instruction scratchpad which
holds the totality of the code needed by the core to execute. We considered a memory latency of
50 cycles for non-cached accesses.

Rosace is a multi-periodic application, so we convert the task system into a DAG of single-period
tasks over one hyperperiod following the methodology of [83]. The resulting DAG is composed of
77 tasks.

1.2 Synthetic tasks system

The static analysis of a task system requires a consequent effort to prepare the code (e.g.
adding flow-fact annotations, splitting or modifying the code to make it analyzable or speed up
the analysis). In addition to an existing benchmark, the evaluation of the methods has been
conducted from a set of 20 synthetic tasks whose traces representation are derived from 20 synthetic
TIPsGraphs. The synthetic TIPsGraph generation not only allows to skip the code analysis step,
but also offers control on the output traces. We used this control to build traces that are more
complex to analyze than Rosace so that it is easier to observe differences between the evaluated
methods to design a profile.

The generation begins from a single initial node (the program entry point), from which one of
the following structures is created according to their respective probabilities pseq, ploop, and pif :

1. A sequence: a simple sequence of 5 to 10 nodes with exactly one entry and one exit point

2. A loop: a loop with 1 to 4 inner nodes, 3 to 6 iterations and an exit from the header or from
the last inner node in the loop
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3. An if-then-else: creates new leaf nodes, their number if chosen randomly between 2 and 3
(only one for the other structures)

The probabilities to choose the structures have been set to pseq = 0.7, ploop = 0.2 and pif = 0.1 and
the number of nodes to create in a structure is picked randomly, as is the local WCETs between
the nodes that are chosen in the interval [50, 300]. The process is repeated for each new leaf node
until the cumulative WCET from the entry point to the new leaf exceeds a duration that has been
picked randomly in the interval [500, 10000] for each task.

The DAG of the synthetic tasks has been generated by expanding vertices without successors
either with parallel sub-graphs (as in a fork operation) with a probability of 0.7 or a series of new
vertices with a probability of 0.3 until the number of nodes matches the number of tasks. We force
the first expansion to be parallel in order to enable the use of multiple cores since the beginning
and at some points, nodes have the same successor, e.g. in a join following a fork.

2 Generation of the profiles
This section explains the configuration of each method to build the profiles from traces. Each

method has been applied with δ ∈ [1000, 500, 200, 100, 50] cycles (the minimum duration of a
phase) to give different profiles from one method. The methods we used are those introduced in
the previous chapter along with the TIPs method from the state-of-the-art [12], described in more
details in Chapter 2 section 3.

2.1 Generation with the traces-based GA method

To set the parameters of the GA, we first used values in the same order of magnitude as previous
works and then progressively tuned them during several trials:

• Number of chromosomes in the population Nchr = 25. This allows to decode and evaluate
the chromosomes of a population with a reasonable computation time while representing a
variety of solutions.

• Mutation probabilities plow_fitness = 0.2 and phigh_fitness = 0.05. The phigh_fitness value
of 0.05 is often used in other works without adaptive mutation strategy, but 0.2 is a high
value for plow_fitness because we want to quickly explore other solutions using low fitness
chromosomes.

• Number of parents to keep in each generation keep_parents = 15. Hence, a majority of
solutions remains from one generation to another to bring stability.

• Number of parents mating at each generation nmating = 4.

Then, in order to set the number of generations of the GA, we experimented several values
and observed the variation of the criterion that can vary the most which is the access over-
approximation. The tests were conducted with the all version that has the largest exploration
space and on the Synthetic benchmark. Figure 5.1 shows the results of the experiment. The trend-
line indicates that the access over-approximation stabilizes after 2000 generations. Therefore, the
number of generations was set to 5000 so that the access over-approximation criterion is stabilized
within the 2500 first iterations alone.

2.2 Optimization with the phases-based GA method

We apply the phases-based GA on the profiles produced using the KDE-based and the TIPs
heuristics separately for δ = {1000, 500, 200, 100, 50} cycles. They are called respectively tips+ga
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Figure 5.1: Average access over-approximation for different number of generations (traces-based
GA version all applied on the synthetic benchmark).

and kde+ga in the following. The weights of the fitness function are different between Rosace and
the synthetic tasks, they have been determined empirically.

For Rosace, the initial profiles have a very low over-approximation level and include many
empty phases with a low δ. This is due to the fact that the traces are similar (the same instruction
sequences are found in several traces with only a few differences) and, as a result of synchronizations,
the worst-case access dates tend to occur at the same date, which favors the presence of empty
phases. Hence, reducing the over-approximation is not a priority so we can focus on reducing the
required synchronizations while keeping a maximum of the empty phases. The weights are : 1 for
the over-approximation, 6 for the number of synchronizations, 1 for the variability of durations and
3 for the empty duration.

Regarding the Synthetic benchmark, the access over-approximation is more important so we do
not prioritize an optimization criterion over the other. Likewise, the two preservation criteria have
the same weight. However, the first goal of the GA is the optimization of the profile so we chose
to set a higher weight for the optimization criteria: 2 for the over-approximation and the number
of synchronizations, 1 for the variability of durations and the empty duration.

The other parameters of the GA are common for each tasks system and have been set empirically
in order that the GA has enough time to explore and exploit the solutions: there are 200 generations,
with 15 chromosomes per population, 10 chromosomes are transferred from a generation to another
and 4 are mating during crossover.

3 Statistics of the generated profiles
In this section, we compare the statistics of the generated profiles with four metrics:

• Number of phases: we do not know how many phases a profile must have in order to outper-
form the single-phase model. However, we know that generally, the more phase there are, the
more difficult it is to tackle the access over-approximation and the more synchronizations are
required.

• Number of synchronizations: they are essential to limit the access over-approximation but we
want to limit their number to reduce the impact on the code.

• Number of synchronizations per phase: it puts into perspective the two previous metrics that
are correlated.
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• Access over-approximation rate: we use a formula that is more adapted to a system-wise
study than the formula used in Property 4:

nbAccMulti =
∑

τ i∈T

(
∑

ϕi
j∈Pi

ϕi
j .m) (5.1)

nbAccSingle =
∑

τ i∈T

( max
0≤j<T i

(
∑

0≤k<N i
j

ηi
j,k.m)) (5.2)

ovApp = ((nbAccMulti − nbAccSingle)/nbAccSingle)) × 100 (5.3)

With this formula, we have a better idea of how many additional accesses are present in the
multi-phase system compared to the single-phase one than if we simply average the values of
all tasks. For example, consider two tasks performing up to 10 and 100 accesses respectively
and whose multi-phase profile accounts for 12 and 110 accesses. Then, the access over-
approximation rates are respectively 20% and 10% with an average value of 15%, but with
formula 5.3, the over-approximation is 10,91%. It gives less weight to the over-approximation
of the task with 12 accesses as it represents a lower amount of accesses than the other task,
thus the system-wise over-approximation is more representative.

The metrics are interdependent so a fair comparison of the methods requires to take all of them
into account. First, they are presented individually and then a summary section synthesizes the
results.

3.1 Number of phases
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Figure 5.2: Number of phases in the profiles.

Figure 5.2 displays the number of phases in the profiles of the Synthetic benchmark and Rosace
for each method. We observe that the three traces-based GA methods (see Chapter 4 Section 2.2.1
page 61) create approximately the same number of phases in both the Synthetic benchmark and
Rosace profiles. For the Synthetic benchmark, the tips and kde methods always create the most
phases and their number grows faster than the traces-based GA. The phases-based GA always
reduces the number of phases and obtains a similar number as the traces-based GA methods when
δ ≥ 200.
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For Rosace, the tips creates the most phases and even when the phases-based GA is applied,
tips+ga has more phases than kde. The traces-based GA versions have almost always the same
number of phases, which is the lowest except when δ = 50 cycles where kde has slightly less phases
(along with kde+ga).

3.2 Number of synchronizations
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Figure 5.3: Number of synchronizations in the profiles.

The number of synchronizations is depicted in Figure 5.3. For the Synthetic benchmark, the
traces-based GA versions that directly use the chromosomes to select synchronizations (all and
allOptim) have more synchronizations than onlyPhases version when δ > 100 cycles. Moreover,
when δ > 200 cycles, tips and kde select approximately the same number of synchronizations as
the traces-based GA versions, but when δ ≤ 200 cycles they select more synchronizations and the
difference increases as δ increases. This is due to the rapid increase of the number of phases for tips
and kde. However, the gap is not as important as with the number of phases. The phases-based
GA are efficient to reduce the number of synchronizations of the initial profiles: the reduction is
between 4.89% (with δ = 1000 cycles) and 19.87% (with δ = 200 cycles) when it is applied on tips
profiles, and between 7.92% (with δ = 1000 cycles) and 32.71% (with δ = 200 cycles) when it is
applied on kde profiles.

For Rosace, as tips has the most phases it also requires the most synchronizations. The phases-
based GA does not reduce the number of synchronizations of the tips profile when δ ≥ 500 cycles,
but the reduction is of 24.51% with δ = 100 cycles. When applied to kde, the reduction varies from
1.32% with δ = 1000 cycles to 14.05% with δ = 100 cycles. The traces-GA versions have the same
number of synchronizations.

3.3 Number of synchronizations per phase

As we studied both the number of phases and the number of synchronizations, it is interesting
to see the number of synchronizations per phase shown in Figure 5.4. First, the number of phases
increases more rapidly than the number of synchronizations in the profiles for all the methods. This
highlights that some synchronizations are more important than others so they are selected when
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Figure 5.4: Number of synchronizations per phase in the profiles.

δ = 1000 cycles and they remain efficient when δ is lower (they avoid the use of other redundant
synchronizations).

With the Synthetic benchmark, tips and kde both have a better ratio than the others but this
is because they create much more phases. This is highlighted by the phases-based GAs that always
have a worse ratio than their initial profiles, even with less synchronizations. When comparing the
traces-based GA versions, all is the least efficient when δ > 100 cycles but then it has the same
efficiency as the others. Indeed, when δ is high, many of the phases created by a chromosome are
merged with others to respect the minimum duration. However, the synchronizations associated to
the phases merged remain because the optimization to remove redundant synchronizations is not
applied.

With Rosace, there is no difference between the traces-based GA versions which all have the
lowest number of synchronizations per phase. We observe that sometimes the phases-based GA
have a lower value than their initial profile so they removed more synchronizations than they merged
phases.

3.4 Access over-approximation

Finally, Figure 5.5 presents the access over-approximation rate for the two case studies. For
Rosace, the over-approximation is always below 3.5% and even at 0% for all the methods when
δ ≥ 500 cycles. We see that the phases-based GA reduces the over-approximation of the initial
profiles in most cases but the difference is small because the initial values are already low.

Regarding the Synthetic benchmark, except for the onlyPhases method that is very stable, the
access over-approximation increases when δ decreases. This shows that the selection of synchro-
nizations cannot eliminate the over-approximation alone and that it is dependent on the shape
of the profile (i.e. the phases) created beforehand. onlyPhases maintains a same level of access
over-approximation whatever δ because it uses the synchronizations selection heuristic which al-
lows it to find a subset of solutions with a low over-approximation faster than the other versions.
Then, it can focus on the other fitness criteria. On the contrary, the other versions must explore
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Figure 5.5: Access over-approximation rate in the profiles.

multiple solutions to select synchronizations on similar or identical profiles so they converge slower
to the best trade-off. Compared to kde, tips better handles the access over-approximation when δ
decreases because it already has a low value of around 2% with δ = 1000. The phases-based GA
is very efficient to reduce this over-approximation: the reduction is between 22.39% (with δ = 100
cycles) and 74.36% (with δ = 500 cycles) when it is applied on tips profiles, and between 31.00%
(with δ = 50) and 88.89% (with δ = 1000 cycles, when the initial profile already has a low value)
when it is applied on kde profiles.

3.5 Summary

Throughout the study of the four metrics, we observed that tips and kde create generally more
phases than if we use one of the GA versions. As a consequence, they always require more synchro-
nizations to tackle the access over-approximation than onlyPhases that uses the same algorithms
to select and optimize the synchronizations. Moreover, with the Synthetic benchmark, the high
number of phases also causes more access over-approximation inherent to the phases themselves,
that cannot be eliminated by selecting more synchronizations. The onlyPhases GA version seems
to have the best trade-off between the criteria because it has in average the less synchronizations
and the access over-approximation is stable. In the following, we only present this version of the
GA in the results.

4 Efficiency regarding the interference analysis
In this section, the profiles obtained with each method are scheduled using a simple heuristic.

Then, we apply the interference analysis and compare the results with each profile generation
method. We deduce which one best reduces the effect of interference in the analysis.

4.1 Scheduling and interference analysis

The scheduler selects a task from a list of ready tasks (i.e. without predecessor or for which
all predecessors have already been scheduled), schedules it ASAP on the core having the minimum
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makespan on its partial schedule, updates the list of ready tasks, and iterates until all tasks have
been scheduled.
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Figure 5.6: CPC priority assignment example.

Additionally, when the list of ready tasks is updated, we apply one of 3 sorting policies, thus
determining priorities on the tasks:

• releaseDate gives the priority to the task whose predecessors finish the sooner

• minBudget (resp. maxBudget) gives the priority to the task with the minimum (resp. the
maximum) budget where the budget of τ i is

∑
ϕi

j∈Pi ϕi
j .dur (see Chapter 3 section 2.2)

• CPC (Concurrent Provider and Consumer model) assigns priorities to tasks following the
method of [68]. In a nutshell, the following rules are applied: (1) the nodes belonging to
the critical path of G have the highest priority, (2) nodes that can execute in parallel of the
critical path (but can delay nodes in the critical path) are assigned a lower priority, and (3) if
multiple (non-critical) parallel paths can delay the same node of the critical path, the nodes
belonging to the longest path get a higher priority than the nodes of the other paths. An
example is shown in Figure 5.6. The red nodes composing the critical path have the highest
priority. Then, as g can delay the execution of c, it gets the second highest priority. Finally,
f can be delayed by j (cost 2) and by h followed by i (cost 1+2=3), so h and i get a higher
priority than j.

Once the schedule has been computed, an interference analysis is performed to account for the
effects of memory contentions with the cost of a contention equal to the duration of a memory
access in isolation (i.e. 50 cycles). A usual objective with DAG task systems is to minimize the
makespan of the schedule. Therefore, for each test, we compute the gain between the makespan
obtained with the multi-phase (makespan_multi) and single-phase (makespan_single) models in
percent as follows:

gain = ((makespan_single − makespan_multi)/makespan_single) ∗ 100 (5.4)

with makespan_single and makespan_multi the makespan of the schedule with the single-
phase model and the multi-phase model respectively.

Each system under study is scheduled with the three different sorting policies and then we only
retain the schedule that has the best gain value.
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Figure 5.7: Makespan gain between the multi-phase and the single-phase representation (Synthetic).

4.2 Results

Figure 5.7 represents the gain in makespan for the profiles of the Synthetic benchmark when
scheduled on 2 and 3 cores. We observe that the gain of the multi-phase model is always higher
when the system is scheduled on 3 cores than on 2 cores. However, the impact of δ on the gain is not
linear. For some methods such as onlyPhases, it does not really change the results. Therefore, in
addition to Figure 5.7 we present the maximum gain for each method on 2 and 3 cores in Table 5.1.

On 2 cores, onlyPhases has the lowest average gain whatever the number of cores. The difference
with the other methods is lower on 3 cores than on 2 cores. Regarding the phases-based GA, it
systematically improves the gain when it is applied on kde profiles. However, applied to tips the
resulting profile has a slightly lower gain in average than the initial one although it sometimes
outperforms it (e.g. with 3 cores and δ = 50 cycles). The tips profiles are in average the best on 2
cores, but on 3 cores it is kde+ga although kde is less efficient than tips.

Table 5.1: Maximum gain of the methods according to the number of cores (Synthetic).

cores (#) onlyPhases kde kde + ga tips tips + ga

2 3.27 4.07 4.35 4.47 4.39
3 7.81 7.99 8.49 8.35 8.30

The results for Rosace are given in Figure 5.8 and we also present the maximum results per core
in Table 5.2. For this case study, the gain increases when δ decreases for all the methods. Hence,
in this case, decreasing δ is interesting to improve the efficiency of the multi-phase model but a
trade-off must be found with the number of synchronizations to implement which also increases.
As opposed to the results with the Synthetic benchmark, even if kde+ga improves the gain of kde,
it never outperforms tips that is often the best method regardless of the value of δ. However, the
gain of tips+ga is always less than 1 point under the gain of tips (maximum difference is 0.97).
Additionally, the results of onlyPhases are close to those of tips+ga and it has the best gain when
δ = 200 cycles.

In short, in terms of makespan gain for our 2 case studies, tips is in average the best method
and kde among the worst to create profiles. The phases-based GA increases the gain of kde profiles
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Figure 5.8: Makespan gain between the multi-phase and the single-phase representation (Rosace)

Table 5.2: Maximum gain of the methods according to the number of cores (Rosace).

cores (#) onlyPhases kde kde + ga tips tips + ga

2 9.27 6.62 7.01 10.19 10.00
3 14.67 12.36 12.65 15.58 14.63

such that kde+ga sometimes even outperforms tips. However, applied to Rosace, the gain of the
profiles is slightly decreased with a few exceptions. The traces-based GA (i.e. version onlyPhases)
has a low gain when applied to the Synthetic benchmark, but achieves comparable results to those
of tips+ga with Rosace.

5 Summary
The tips profiles are in general among the most efficient in terms of makespan gain. However,

kde provides good initial profiles for the phases-based GA with the Synthetic benchmark because
the resulting profiles can outperform tips. Applied to tips profiles, the phases-based GA produces
profiles that are slightly less efficient in terms of gain than the original profiles but they still use
less synchronizations. The results of onlyPhases on the Synthetic benchmark are similar to those
of kde but on Rosace they are close to those of tips and tips+ga although the profiles generated by
this method also use less synchronizations.

Table 5.3: Ratio gain / number of synchronizations (×100) for each method according to δ.

δ Rosace Synthetic
(cycles) onlyPhases kde kde + ga tips tips + ga onlyPhases kde kde + ga tips tips + ga

1000 2.07 1.21 1.22 1.23 1.16 1.63 1.62 1.82 1.69 1.73
500 2.74 1.13 1.19 1.24 1.25 1.50 1.29 1.72 1.41 1.67
200 2.06 0.92 1.06 0.85 0.97 1.39 0.95 1.52 1.05 1.33
100 1.65 0.92 1.04 0.79 0.96 1.35 0.80 1.27 0.92 1.11
50 1.40 0.97 1.15 1.01 1.05 1.36 0.71 1.02 0.76 0.97
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In order to better evaluate the trade-off between the number of synchronizations and the gain
of each method, Table 5.3 presents the ratio between the gain and the number of synchronizations
(multiplied by a factor 100). With the Synthetic benchmark, when δ ≥ 200 cycles the kde+ga
method has the best ratio value and for δ < 200 it is onlyPhases. With Rosace, onlyPhases is
always the best method according to this metric. Moreover, its minimum value with δ = 50 cycles
is higher than the best value for the other methods regardless of δ. In addition, we observe that
except for Rosace when δ = 1000 cycles, the phases-based GA systematically improves the trade-off
obtained with its initial profile. This shows that the GA methods generally find a better trade-off
between the over-approximation and the number of synchronizations than the other methods.

6 Conclusion
The objective of this chapter is to compare the design methods presented in the previous chapter

and the TIPs method from the state of the art. The experiments are conducted on two case studies
so the results of the comparison cannot be generalized. However, we identified some trends.

In the first part of the experiments, we observed that the simple heuristic methods (i.e. kde and
tips) generally create more phases than the GA approaches. Indeed, the traces-based GA creates
the least phases and the phases-based GA is able to significantly reduce their number when applied
on kde or tips. Due to the higher number of phases, the simple heuristics also require a higher
number of synchronizations to control the access over-approximation. Thanks to the phase merges,
the phases-based GA manages to reduce this over-approximation on the Synthetic benchmark. The
initial profiles already had a low over-approximation for Rosace so the phases-based GA did not
make a difference for this aspect.

In the second part, the profiles are used to schedule the case studies on 2 and 3 cores. The tips
method generally generates profiles that better reduce the makespan of the system than profiles
generated by other methods. We observed that the phases-based GA slightly reduces the gain of tips
in average but improves systematically the gain of kde. The results of kde+ga were even better than
tips for the Synthetic benchmark on 3 cores. The traces-based GA yields more gain with Rosace
than with the Synthetic benchmark compared to the other methods. The results of the scheduling
experiment must be interpreted in conjunction with those of the first part to evaluate how the
methods handle the trade-off between the makespan gain and the number of synchronizations. The
results showed that onlyPhases was the most efficient in general, and that the phases-based GA
managed to improve this trade-off in almost all the cases.

Therefore, the GA methods are efficient to create a profile from traces and to improve existing
profiles. Their main benefit is the reduction of the number of synchronizations but they also yield
good gain results. These results can be further improved if we identify some other criteria that
influence the gain of a multi-phase profile over the single-phase representation. Such new criteria
could be easily integrated in the fitness function of the GAs while their integration in the other
heuristics (e.g. tips, kde) would be more difficult.

Throughout these experiments, we used a simple scheduling algorithm that schedules the tasks
ASAP according to a pre-set order which was sufficient to compare the efficiency of the design
methods. The results on the 2 case studies show that the multi-phase model was better than the
single-phase model to reduce the effects of the interference analysis on the makespan, regardless
of the method used to generate the multi-phase profiles (the gain was always positive). We could
increase this gain by designing scheduling techniques that take into account the effects of contentions
and work specifically at the phase granularity level may yield better gains.
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In the previous chapters, we presented new techniques to derive a multi-phase profile from the
binary code of a task and evaluated them. In order to evaluate their impact on the makespan of the
task systems, we used a basic list scheduling algorithm. Although this simple algorithm is sufficient
and fair to compare the different methods to build a profile, the multi-phase model efficiency may
be increased by the use of more elaborate scheduling algorithms that take into account the effects
of contentions to take decisions or benefit from the phases granularity.

In this chapter, we address the multi-core scheduling problem for multi-phase task systems. As
pointed out in the related work (see Table 2.1), many papers already addressed this problem but
among those who consider memory contentions, few of them use multi-phase models other than
AER or PREM and tolerate, or even assume that some contentions exist. Therefore, we propose
to consider the generic multi-phase model that we described in Chapter 3 and to build a static
schedule with the objective to minimize its makespan in the presence of interference.

Some ILP formulations with multi-phase models have already been proposed. The formulation
proposed for the TIPs model is the closest to our problem but it assumes non-periodic tasks without
dependencies and each core can only host one task. We propose an ILP formulation that relies on
the multi-phase model defined in Chapter 3, with dependencies between tasks. The formulation
also takes into account the possible contentions between the phases scheduled in parallel.

The ILP suffers from scalability issues so we also propose some heuristics that account for the
effects of interference in the schedule. These heuristics adopt different strategies: some of them
explore the possible tasks ordering while others focus on the possible start dates of tasks. In
addition, they either account for contentions when scheduling the tasks, i.e. on partial schedules,
or only on complete schedules.

Moreover, the chapter presents an optimization to apply on existing schedules that tries reducing
the amount of contentions in the model. This optimization detects phases that distribute too much
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contentions and attempts to merge phases to reduce the amount of contentions, which may in turn
lead to a reduction of the overall makespan.

1 Problem definition

Notation Definition

τ i task i
G DAG defining tasks’ dependencies
E set of edges (dependency relations) of G
preds(τ i) set of predecessors of τ i

succs(τ i) set of successors of τ i

C set of cores composing the architecture
Ck core with index k
ωi

k True if τ i is mapped to Ck

ρi
j True if τ i and τ j are mapped to the same core

ϕi
k phase k in the representation of τ i

ϕi
k.d start date of ϕi

k without interference
ϕi

k.dur duration of ϕi
k without interference

ϕi
k.m maximum number of memory accesses performed within ϕi

k

ϕi
l.p timing penalty added to ϕi

l due to potential interference
ϕi

l.d
# post-analysis date of ϕi

l, i.e. date in the presence of interference
χi,j_k,l True if the intervals covered by ϕi

j and ϕk
l overlap

θi,j_k,l True if ϕi
j starts before the end of ϕk

l

ϕi
Φi .d

# end date of τ i in the presence of interference
ϕi

j .γ number of potential contentions suffered by ϕi
j

ϕi
j .γk number of potential contentions suffered by ϕi

j

from Ck

Table 6.1: Notations

We target the following static scheduling problem: given a set of homogeneous cores connected
to a shared memory through a First-In First-Out (FIFO) bus and a system composed of data-
dependent tasks specified as a Directed Acyclic Graph (DAG), schedule the tasks on the cores
in order to minimize the interference-aware makespan of the system. In this problem instance,
we consider non-preemptive tasks only, and tasks are not partitioned to the cores prior to the
scheduling phase.

The multi-core architecture and the dependencies between the tasks are defined formally as in
the experiments of Chapter 5. The six first lines of Table 6.1 recall these notations and the remainder
is introduced in the following. In the remainder of the document, we call dependency-free tasks the
tasks that have no predecessors and no successors (i.e. (preds(τ i) = ∅) ∧ (succs(τ i) = ∅)).

Our objective is to build a schedule S of the tasks of T on the cores composing C.
For each core Ck, we define the following attributes in S:

• S(Ck): the schedule on Ck which is a sequence of phases, ordered by their starting date.

• S(Ck).end: the end date of the last phase scheduled on Ck.

The makespan of the task system under schedule S is makespan(S) = maxCk∈C(S(Ck).end).
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2 ILP Formulation
We now provide an ILP formulation of the problem. In this formulation we use bold font to

denote the variables of the ILP system, ILP.1 is the objective function of the ILP formulation and
the other equations numbered ILP.X are the constraints.

We first introduce variable mksp denoting the makespan of the task system. It appears in the
objective function that minimizes the makespan:

minimize mksp (ILP.1)

We use ϕi
Φi.d

# to denote the end date of τ i, which is the end date of its last phase:

ϕi
Φi.d

# = ϕi
Φi−1.d

# + ϕi
Φi−1.dur + ϕi

Φi−1.p (ILP.2)

.
The makespan of the system is greater than the end date of all tasks:

∀τ i,mksp ≥ ϕi
Φi.d

# (ILP.3)

Moreover, each task τ i starts after date 0 and after the end of all its predecessors:

∀τ i,ϕi
0.d

# ≥ 0 (ILP.4)

∀τk ∈ preds(τ i),ϕi
0.d

# ≥ ϕi
Φk.d

# (ILP.5)

Following the definition of the start date of a phase in Chapter 3 section 3.2 (equation 3.2), we
can express the date of each subsequent phase as:

∀τ i, ∀0 ≤ j < Φi − 1,ϕi
j+1.d

# = ϕi
j.d

# + ϕi
j .dur + ϕi

j.p (ILP.6)

We use boolean variable ωi
k to express the mapping of task τ i: ωi

k = 1 if and only if τ i is
mapped on Ck. Each task is mapped to a unique core so we add the constraints:

∀τ i :
∑

0≤k<Nc

ωi
k = 1 (ILP.7)

We also introduce variable ρi
j that is equal to 1 if and only if τ i and τ j are mapped to the same

core:
∀τ i, τ j ,ρi

j =
∑

0≤k<Nc

ωi
k ∧ ωj

k

Because of the conjunction ∧, the above equation is not linear. Therefore, we have to use a new
variable Ωi,j

k = ωi
k ∧ ωj

k and add the following equations:

∀τ i, τ j , 0 ≤ k < Nc,

Ωi,j
k ≤ ωi

k (ILP.8)

Ωi,j
k ≤ ωj

k (ILP.9)

Ωi,j
k + 1 ≥ ωi

k + ωj
k (ILP.10)

Therefore, the equation becomes:

ρi
j =

∑
0≤k<Nc

Ωi,j
k (ILP.11)
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C1

C0
t

Figure 6.1: 3 tasks scheduled on 2 cores

In the following, any other conjunction will be converted to a linear form in the same way. For
clarity reasons, we do not provide the details for the other linearizations of conjunctions.

Two phases may contend with each other if they are scheduled on different cores and their
execution intervals overlap. We introduce the boolean variable χi,j_k,l that is true if the intervals
covered by ϕi

j and ϕk
l overlap:

χi,j_k,l ⇔ ¬((ϕk
l+1.d

# ≤ ϕi
j.d

#) ∨ (ϕi
j+1.d

# ≤ ϕk
l .d

#))
χi,j_k,l ⇔ (ϕi

j.d
# < ϕk

l+1.d
#) ∧ (ϕk

l .d
# < ϕi

j+1.d
#)

The overlapping is illustrated by Figure 6.1. Phase ϕk
0 overlaps with ϕi

2 but not with ϕj
0 so

χk,0_i,2 = χi,2_k,0 = 1 and χk,0_j,0 = χj,0_k,0 = 0.
We need to decompose the equivalence relation into several constraints into the ILP system.

That is why we define θi,j_k,l as:

θi,j_k,l ⇔ ϕi
j.d

# < ϕk
l+1.d

#

so that the equivalence becomes

χi,j_k,l ⇔ θi,j_k,l ∧ θk,l_i,j (ILP.12)

θi,j_k,l is defined using the big-M notation and a cancellation variable βi,j_k,l:

∀τ i, τ j , 0 ≤ j < Φi, 0 ≤ i < Φk,

1 + ϕi
j.d

# ≤ ϕk
l+1.d

# + M(1 − θi,j_k,l) (ILP.13)

ϕi
j.d

# ≥ ϕk
l+1.d

# − M(1 − βi,j_k,l) (ILP.14)
βi,j_k,l + θi,j_k,l = 1 (ILP.15)

The overlapping of 2 phases is forbidden if their tasks (resp. τ i and τk) are scheduled on the
same core (ρi

k = 1). Therefore:
χi,j_k,l ≤ 1 − ρi

k (ILP.16)
In order to compute the time penalty of ϕi

j , we multiply the number of contentions it may
receive (ϕi

j.γ) by the cost of one penalty denoted penalty_cost, so we have:

∀τ i, 0 ≤ j < Φi,ϕi
j.p = ϕi

j.γ × penalty_cost (ILP.17)
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ϕi
j.γ is the sum of the contentions that may be caused by tasks on all the cores:

∀τ i, 0 ≤ j < Φi,ϕi
j.γ =

∑
0≤k<Nc

ϕi
j.γk (ILP.18)

with ϕi
j.γk the number of contentions that ϕi

j may experience from tasks scheduled on core k. As
we consider a shared memory bus following a FIFO policy, ϕi

j.γk is bounded by ϕi
j .m:

∀τ i, 0 ≤ j < Φi, 0 ≤ k < Nc,ϕ
i
j.γk = min(ϕi

j .m,
∑

τ l∈T

∑
0≤q<Φl

ϕl
q.m × (χi,j_l,q ∧ ωl

k)) (6.1)

the term (χi,j_l,q ∧ ωl
k) states that ϕi

j receives contentions from ϕl
q if and only if ϕl

q is mapped
to core k and overlaps with ϕi

j .
Finally, to linearize the minimum operator, we use the following equations with αi

j,k ∈ {0, 1}
guaranteeing that one of the proposed values is taken:

∀τ i, τ j , 0 ≤ j < Φi, 0 ≤ k < Nc,

ϕi
j.γk ≤ ϕi

j .m (ILP.19)

ϕi
j.γk ≤

∑
τ l∈T

∑
0≤q<Φl

ϕi
j .m × (χi,j_l,q ∧ ωl

k) (ILP.20)

ϕi
j.γk ≥ (

∑
τ l∈T

∑
0≤q<Φl

ϕi
j .m × (χi,j_l,q ∧ ωl

k)) − M × αi
j,k (ILP.21)

ϕi
j.γk ≥ ϕi

j .m − M(1 − αi
j,k) (ILP.22)

3 Heuristics
As we will show in chapter 7, the ILP resolution time does not scale up when the number of

tasks or phases grows. In this section, we present several alternative scheduling heuristics.
In the following algorithms, we use function computeContentions(S) that computes the values

of the ϕi
j .d# by applying formula (6.1) page 85 on each phase ϕi

j of S.

3.1 Greedy policies

We present 2 scheduling policies that are implemented as part of a list scheduling algorithm:
the algorithm selects a task from a list of ready tasks, schedules it following the policy, updates the
list of ready tasks, and iterates until all tasks have been scheduled. In order to select one of the
ready tasks to schedule, we use the same four priorities defined in Chapter 5 section 4.1: readyDate,
minBudget, maxBudget and CPC.

3.1.1 As Soon As Possible scheduling (ASAP)

The As Soon As Possible (ASAP) policy takes the current partial schedule (initially empty)
and builds as many schedules as there are cores in C by selecting a task and scheduling it as soon
as possible on each of the cores. It then selects the partial schedule that has the lowest makespan
and moves on to the next task. The interference analysis is performed only once all the tasks have
been scheduled. Consequently, this is the simplest and the fastest algorithm of all the presented
heuristics.
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3.1.2 Starting Date Enumeration (SDE)

The ASAP strategy is not always the best choice to minimize the makespan in the presence of
interference. For instance, Figure 6.2 shows 3 different ways to schedule a new task (the orange one)
on core C1. At the top, when scheduling the task as soon as possible, the phase with 10 accesses
overlaps with 2 other phases in parallel and creates in the worst case 13 (8+5) contentions on core
0 (depicted in red). In the schedule below, we postponed the task start date to the end of the phase
with 8 accesses so that the 10-accesses phase may only create 5 contentions, and this choice yields a
reduction of the makespan. In the last schedule at the bottom, the task is postponed even more, to
the next phase date in parallel, so that no contention can appear, yielding the smallest makespan.
Following that idea, we developed the Starting Date Enumeration (SDE) heuristic that attempts
to schedule the current task at several dates on each of the cores and performs an interference
analysis for each possibility before selecting the one that minimizes the makespan.

Algorithm 9 describes SDE. It takes as inputs the current task to schedule, τ i, and the current
partial schedule S, on which an interference analysis has been performed. The enumeration of
the possible start dates for τ i is limited to the interval JminDate, maxDateK in which minDate
is the earliest possible start date of τ i due to precedence constraints, and maxDate is the current
makespan of the partial schedule. For each core Ck (line: 4), function parallelDates extracts the
start and end dates of phases scheduled on the other cores, which fall in the JminDate, maxDateK
interval. Then, τ i is iteratively scheduled at each of these dates on Ck in S (line: 7), and only the
result yielding the smallest makespan (after interference analysis) is kept (line: 9). In the end, τ i

is scheduled on the core and at the date that yielded the best makespan.
It is worth mentioning that SDE attempts to place the new task only based on the date of

its first phase. The computational complexity is already high but it would be much higher if the
principle was also extended to the other phases of the profile.

3.2 Iterative Priority Scheduling Heuristic (IPH)

The Iterative Priority Heuristic (IPH), detailed in Algorithm 10, is an adaptation of the main
algorithm of [45]. This algorithm has already been successfully adapted to the AER model in [44],
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Figure 6.2: 3 different placements for a new task: the numbers within phases indicate their worst-
case number of accesses and the red hatched rectangles are the additional penalty due to possible
interference.
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Algorithm 9 SDE
Require: τ i ; S

1: minDate = maxτh∈preds(τ i)(ϕh
Φh .d#)

2: maxDate = makespan(S)
3: bestMakespan, bestSched = +∞, S
4: for Ck in C do
5: dates = parallelDates(S, Ck, minDate, maxDate, τ i)
6: for d in dates do
7: S′ = scheduleTask(S, Ck, τ i, d)
8: computeContentions(S′)
9: if makespan(S′) < bestMakespan then

10: bestMakespan = makespan(S′)
11: bestSched = S′

12: end if
13: end for
14: end for
15: return bestSched

but our task model is more generic and some assumptions made in [44] are not applicable here. As
a consequence Algorithms 10 and 11 were adapted from [45] to address the multi-phase model and
create IPH.

The principle of this algorithm is to test iteratively different combinations of tasks priorities,
called priority vectors, while converging to the best makespan, given by the objective variable Obj
until no progress is made. In the initialization, we build the initial best schedule Sbest using our
ASAP greedy heuristic. Then, Sbest is used to build the initial target interval JLB, UBK (line 1) and
Obj is chosen as the median value of this target interval. The initial values of the bounds do not
have a huge impact on the algorithm performance because the interval is re-adjusted throughout
the iterations, but setting them close to a viable objective can save a few initial iterations. In order
to speed up the computations, we used and when necessary, adapted, the following optimizations
that were present in the original algorithm of [45]:

1. Using a symmetric instance of the scheduling problem because scheduling backwards may
open other scheduling options, that is why we distinguish the two graphs Gforward and
Gbackwards (line 5) and the priority vectors on both directions (line 34).

2. Implementing the algorithm in parallel so that several priority vectors are tested at the same
time by separate threads.

3. Using a hash set to store the priority vectors that have already been tried to avoid repetitions
(line: 6).

4. The priority vector is modified using information about conflicting tasks that prevent each
other to be scheduled before Obj (line: 33).

The two first optimizations were directly implemented in our heuristic. We adapted the third
optimization to exploit the fact that two different priority vectors may produce the same scheduling
order because of tasks dependencies. For example, if we consider tasks A, B and C with B and
C successors of A, then assigning priorities 3, 2, 1 to respectively A, B and C yields the same
scheduling order (A then B then C) as when assigning priorities 2, 3, 1 because task A must be
executed before B and C has a priority inferior than B. Therefore, instead of saving the priority
vectors in the hash set, our algorithm computes and saves an equivalence class of the priority
vectors given the dependencies of the system (i.e. the scheduling order of the tasks) (line: 11).
We also adapted the fourth optimization so that, when there is no conflicting tasks, the algorithm
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Algorithm 10 IPH
Require: G = (T, E),C

1: UB, LB,Sbest = init(G,C)
2: Obj = (LB + UB)/2
3: failCount = 0
4: Gforward = G
5: Gbackward = reverse(G)
6: prioHashSet = {}
7: init_prio = [UB − ϕi

0.d#]∀τ i∈T

8: sQueue = [(Gforward, Obj, init_prio)]
9: while (LB < UB) ∧ (sQueue ̸= []) do

10: (Gc, Obj, prio) = sQueue.pop()
11: hash = Hash(eq_class(prio, Gc))
12: if hash ∈ prioHashSet then
13: continue
14: end if
15: prioHashSet.add(hash)
16: S = findSchedule(Gc,C, Obj, prio)
17: if makespan(S) < makespan(Sbest) then
18: Sbest = S
19: if UB > makespan(S) then
20: UB, LB = update(UB, LB,S)
21: end if
22: Objnew = UB − 100
23: priority = [Obj − ϕi

0.d#]∀τ i∈T

24: else
25: failCount + +
26: if failCount ≥ log2(|T |) then
27: LB = LB + (UB − LB)/4
28: failCount = 0
29: end if
30: Objnew = ⌈min(UB, 1.1 × Obj)⌉
31: end if
32: prio1 = [Obj − prio[i]]∀τ i∈T

33: prio2 = modPrio(prio,S)
34: Gc1, Gc2 = switchOrder(Gc, Gbackward, Gforward)
35: sQueue.push({Gc1, Objnew, prio1})
36: sQueue.push({Gc2, Objnew, prio2})
37: end while
38: return Sbest

relies on the amount of contentions to modify the priority vector. However, relying on contentions
in a more systematic way did not yield any improvement of the results.

At each iteration, the algorithm calls function findSchedule (described in Algorithm 11 that
we detail later) to build a schedule S from scratch using a task system Gc, a vector prio that gives
priorities to the tasks, and an objective Obj for the makespan of the schedule (line: 16). Once S is
built, the algorithm compares its makespan with the makespan of the best schedule found so far:
Sbest. If it is inferior, schedule S is saved as the new Sbest, the UB and LB are updated (line: 20)
in order to lower the makespan objective in the next iteration, and changes are made to the task
priorities to reflect the order of the starting dates of tasks in S (lines: 19-23). If it is superior to Obj
however, Obj is increased in order to give some more slack to the algorithm in the next iteration,
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and LB is increased as well if the algorithm has failed enough times (lines: 25-30). The algorithm
then iterates, until either LB reaches UB or it runs out of new priority vectors to test.

There are several constants impacting the computation cost of the algorithm that are defined
in an empirical way:

• Line 22: Objnew, the next objective is set to UB−100. The value must not be too ambitious to
allow findSchedule to find suitable schedules and the convergence towards the best priority
vectors. As the minimum contention duration that we applied in our tests is 50 cycles, the
number of contentions to avoid in order to improve the makespan is reasonable and 100 is
also an order of magnitude below the duration of the tasks we scheduled who had a WCET
superior to 1000 cycles (and sometimes superior to 20000 cycles).

• Line 26: log2(|T |) bounds the number of consecutive attempts of findSchedule without
finding a better schedule than Sbest before increasing LB. This bound must be high enough
to let findSchedule reach Obj but is also responsible for stopping the search when it is not
possible. The number of tasks in the system impacts the size of the solution space. In our
experiments (Chapter 7), we had from 4 to 329 tasks so the log2 allows enough attempts for
small systems of a few tasks and not too much for the systems with many tasks.

• Line 30: whenever a failure occurs, the objective is increased by at least 10% of its value
(bounded by the current UB). This value has been kept from the original algorithm in [45].

One important point here is that the heuristic does not test all possible combinations of task
priorities: at each iteration the current priority vector is modified, and the resulting vector is used
in the next iteration if it has not already been used in a prior iteration. The way the algorithm
modifies the priority vector does not guarantee that all priority combinations will be explored. In
fact the objective of the heuristic is precisely to converge to a solution without having to explore
all the combinations.

Algorithm 11 describes the findSchedule function. This function iteratively creates a schedule
S of the tasks of Gc on C, using tasks priorities prios and an objective value Obj for the makespan
of S. A set of tasks ready to be scheduled (i.e. whose predecessors have already been scheduled) is
maintained, and at each iteration, the ready task with the highest priority is selected for scheduling
(line: 4). The selected task τ i is scheduled following a given policy (in our experiments we used
ASAP) and an interference analysis is performed on the resulting partial schedule S′ (line: 6).
Note that the priority vector does not define the mapping of the tasks so the scheduling policy is
responsible for choosing the cores where tasks are scheduled. If makespan(S′) falls within objective
Obj, the algorithm updates the set of ready tasks and iterates with the next ready task (line: 18). If,
however, the partial schedule spans more than Obj cycles, the algorithm is allowed to de-schedule
some tasks that are put back in the set of ready tasks in order to make room for τ i before Obj
(line: 9). The de-scheduled tasks are the tasks that start after the end of the last predecessor of
τ i and before Obj − WCET (τ i), as well as all their (already scheduled) successors. Tasks that
start after this date and are not successors of de-scheduled tasks are not put back in the ready set,
but are directly rescheduled following the ASAP policy, in respect of their potential dependencies,
in order to benefit from the free intervals in the schedule left empty by the de-scheduled tasks
(lines: 11-14). Task τ i is then scheduled ASAP (line: 15). Even if objective Obj is still unmet,
the algorithm then goes on to the next task to schedule, hoping that further de-schedulings in the
next iterations will allow to meet the objective. The de-scheduling of tasks significantly affects
the execution time of the algorithm compared to a greedy solution, and can create an infinite loop
under certain circumstances. In order to prevent it, an exploration budget (defined in line: 2)
guarantees that the main scheduling loop will not iterate more than a fixed number of times, even
though some tasks remain to be scheduled. If the number of iterations reaches the budget, the
algorithm exits the loop and falls back to a greedy strategy (line: 21) for the tasks that remain to
be scheduled. Tuning the budget value thus allows to trade execution time for precision.
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Algorithm 11 findSchedule

Require: Gc, C, Obj, prios
1: readyTasks = initRT (Gc)
2: budget = α × |T | ▷ α is tuned according to the size of the task system
3: while (readyTasks ̸= ∅) ∧ (budget > 0) do
4: τ i = getNext(readyTasks, prios)
5: d = maxτh∈preds(τ i)(ϕh

Φh .d#)
6: S′ = scheduleASAP (S,C, τ i, d)
7: computeContentions(S′)
8: if makespan(S′) > Obj then
9: resched, desched, Stemp = unsched(S, d, Obj, τ i)

10: readyTasks = readyTasks ∪ desched
11: for τ j in resched do
12: Stemp = scheduleASAP (Stemp,C, τ j , d)
13: budget = budget − 1 ▷ τ j is scheduled again
14: end for
15: S′ = scheduleASAP (Stemp,C, τ i, d)
16: computeContentions(S′)
17: end if
18: updateRT (readyTasks, τ i)
19: budget = budget − 1 ▷ accounting for τ i

20: end while
21: while readyTasks ̸= ∅ do
22: τ i = getNext(readyTasks, prios)
23: d = maxτh∈preds(τ i)(ϕh

Φh .d#)
24: S′ = scheduleASAP (S′,C, τ i, d)
25: updateRT (readyTasks, τ i)
26: end while
27: computeContentions(S′)
28: return S′

As for Algorithm 10, we define a constant α (line 2) that sets the number of rescheduling
operations allowed to reach the objective. We set α = 3 for tasks systems with less than 26 tasks
so that up to 75 tasks can be reschedule and α = 1.2 for the others which allows 394 rescheduling
operations for the biggest task system which is already consequent.

3.3 Monte-Carlo Tree Search scheduling (MCTS)

Monte-Carlo Tree Search (MCTS) is a search method that incrementally builds a tree of partial
solutions being extended by leaves until reaching a complete solution (i.e. a leaf from which no
further action can be taken). Monte-Carlo random simulations are used to grow the tree in the
best direction. This algorithm is often applied in games in order to select the best move against an
opponent. More generally, it is applied on exploratory problems when the traditional tree search
methods are not efficient. Initially the tree has a single node that corresponds to the initial state of
the solution, in which no action has been taken (e.g. an empty schedule in our problem, the initial
position of pieces for a board game). Then, we can add new nodes to the tree by choosing actions
from the current state. The main steps of MCTS are:

1. Selection: the algorithm selects a promising path to explore further.

2. Expansion: the tree is expanded by choosing a possible action from the selected node.
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Selection Expansion Simulation Propagation

End state

Figure 6.3: Steps of Monte-Carlo Tree Search.

3. Simulation: actions are picked randomly from the expanded node until reaching an end state
where no further action can be taken. A reward is computed to assess how good the reached
state is, regarding the problem under study.

4. Propagation: the reward of the simulation step is back-propagated to update the statistics of
the selected nodes.

Decision problems such as MCTS must find the proper balance between exploitation and ex-
ploration:

• Exploitation consists in choosing the best action identified so far, considering that the data
gathered is reliable and sufficient.

• Exploration consists in choosing an action to discover new solutions, considering that the
data available is insufficient to choose the best action.

Hence, MCTS must run a sufficient number of simulations from each nodes so that their reward
can be considered reliable. There are multiple methods to select a node, for instance it is possible
to select the node with the highest reward, or the node with the highest number of visits and
the highest reward (see the survey [84]). However, the most common selection method consists in
computing the score of a node i using the Upper Confidence Bound (UCB) equation, which we use
in the remainder of the thesis:

UCBi = ωi

ni
+ c

√
ln nparent

ni
(23)

with ωi the sum of the simulation results that have been back-propagated to i, ni the number of
simulations that passed through i, nparent the number of simulations that were performed from the
parent node of i and c the exploration parameter.

The value of c is dependent on the problem, it balances the weight of the exploration score
compared to the exploitation score of a node. The idea is that if few simulations passed through
a node compared to the others, then we have little confidence on its exploitation score and we
need new simulations passing through it. The logarithm smoothes the impact of the number of
simulations on the exploration score so that the exploitation score is preponderant at some point.
Generally, the default value of c is

√
2.

In the multi-core scheduling problem, an action is a couple (i, j) where i is the index of the next
task to schedule and j is the core on which the task is scheduled. The date at which the tasks are
scheduled is not part of the action because it would make the exploration space too large to get a
good result in a reasonable time, and the implementation is not trivial as the set of possible dates
depends on the already scheduled tasks. Instead, the solution we retained is to always choose the
ASAP date. An end state is reached whenever there are no more ready tasks to schedule.
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According to the definition of an action, the solution space is composed of all the possible
tasks orders for all the possible ways to map tasks to cores. Moreover, we want to account for the
effects of interference to take decisions but performing an interference analysis is computationally
expensive. In short, the solution space is potentially very large and the cost of simulations makes
the exploration too long compared to the other scheduling heuristics. For this reason, we adapted
the usual MCTS algorithm inspired by the implementation in [65] where MCTS is actually executed
as many times as there are decisions:

1. Initially the root node represents an empty schedule, the MCTS is launched for a fixed number
of iterations

2. At the end of the iterations, the child node of the current tree root with the highest UCB
score is chosen as the next scheduling decision.

3. This node also becomes the new root of the tree, if there are other tasks to schedule then
another MCTS is launched to choose the next decision (back to step 1)

This relocation of the root node allows to quickly cut the search space, which is an efficient way
to limit the exploration effort. It is worth noticing that the scores of each node are kept from one
MCTS run to another so that each run contributes to the decision of the subsequent runs. The
number of iterations for each run must be set according to the size of the search space.

In addition, we propose to stop the simulations after N random decisions, so before reaching
an end state, in order to reduce their computation time. The partial schedules with the lowest
makespan must be the most rewarded but we must also take into account that some of them
may actually have scheduled shorter tasks than others to operate a fair comparison. Hence, the
makespan is weighted by the sum of the WCET of the tasks that have been scheduled. The reward
of a simulation is:

reward = − makespanpartial∑
∀τ i∈scheduled weight(τ i) (24)

with makespanpartial the makespan of the partial schedule, scheduled the set of scheduled tasks
and weight(τ i) a function that returns the normalized WCET of the task in the system.

The negative sign ensures that a high makespan is penalized. Only the WCET of the tasks is
used to refine the estimation, while the amount of avoided interference or the remaining accesses
in the tasks that are not yet scheduled could also help to increase the precision. However, it is
difficult to predict which accesses in a task will create contentions when the task is not scheduled
yet, even more when computing the interference at the phase level granularity. Our preliminary
attempts to include an estimation of the interference remaining in the reward function produced
poor results.

3.4 Merging Optimization

In certain situations, the multi-phase model may incur an overestimation of the number of
contentions during the interference analysis. In the example depicted in Figure 6.4, the yellow
phase may contend with the three phases in parallel. As a result, the interference analysis will
count 3 contentions coming from the yellow phase for each of these phases, resulting in 9 contentions
in total. In practice this is impossible, as the yellow phase only performs 3 accesses in total. In
order to reduce this pessimism, we developed a phase merging algorithm that can be applied on a
partial or complete schedule. This optimization detects local situations in which merging together
multiple phases of a task would reduce the overestimation of the number of contentions during the
interference analysis.

In practice, the optimization looks for phases ϕi
j (called saturated phases in the following) that

create more than (|C| − 1) × ϕi
j .m contentions to phases in parallel during the interference analysis.
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Figure 6.4: An example of local overestimation of contentions.

This formula was chosen as another trade-off between speed and precision. Once a saturated phase
is discovered, the algorithm looks for phases scheduled in parallel and assesses whether or not it
would be beneficial to merge them together. Indeed, the local benefits of merging phases (w.r.t. a
given saturated phase) can be outweighed by the effects of the merge on adjacent tasks. This can
be illustrated using Figure 6.4 :

• At the top of the figure, the maximum number of contentions each phase may suffer is :

– min(5, x + 3) for the green phase.
– min(6, 3) = 3 for the purple phase.
– min(4, 3) = 3 for the red phase.
– min(x, 5) for the grey phase.
– min(3, (5 + 6 + 4)) = 3 for the yellow phase.

So if the phases are not merged, the interference analysis counts 9+min(x, 5)+min(5, x+3)
contentions in total for the two cores.

• At the bottom, when the phases are merged, this number is :

– min(15, x + 3) for the blue phase.
– min(x, 15) for the grey phase.
– min(3, 15) = 3 for the yellow phase.

So the interference analysis counts min(15, x + 3) + min(x, 15) + 3 contentions in total.

Therefore, if the value of x is strictly greater than 6, the merge is not globally beneficial. For
example:

• If x = 6, there are 9+min(6, 5)+min(5, 9) = 19 contentions when the phases are not merged
and min(15, 9) + min(6, 15) + 3 = 18 contentions otherwise, so the merge allows to reduce
the over-estimation of the number of contentions.

• If x = 7, there are 9 + min(7, 5) + min(5, 10) = 19 contentions when the phases are not
merged and ùo, (15, 10) + min(7, 15) + 3 = 20 contentions otherwise, so the merge actually
increases the over-estimation of the number of contentions.

Algorithm 12 describes the merging optimization. As for the SDE algorithm, computing the
contentions several times is necessary to identify the saturated phases and to assess whether or not
a merge is profitable. The algorithm retrieves the list of all scheduled phases and iterates over it
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until a saturated phase ϕi
j is found. When a phase is saturated, the algorithm enters the inner

while loop (line 6) to try some merges. The merges are attempted using candidates, the list of
phases in parallel of ϕi

j , that is retrieved by function getPhasesWithin (line 8). Then, function
getMergeablePhases searches for two phases of candidates that are in the same task, consecutive
and have not been studied before (if so they are present in alreadyAttempted). When no such
phases have been found, the inner while is exited with a break (line 11). Otherwise, the phases are
added to the alreadyAttempted list and a new schedule S′ is created with the two phases ϕk

l and
ϕk

l+1 merged using function mergePhases that also recomputes the contentions. If the makespan
of S′ is better than S then the merge is confirmed at line 16.

Note that the number of accesses in a phase resulting from the merging of 2 other phases is
set conservatively to the sum of the accesses in the 2 merged phases. However, in some cases, it
could be profitable to recompute the number of accesses of the new phases from the traces of the
task because the over-approximation of accesses may be reduced. Indeed, an access accounted for
in both the merged phases can happen only once in the new phase.

The ASAP-based greedy heuristic described in Section 3.1 does not compute the contentions in
the system before the schedule is produced. As a result, the scheduling decisions are not impacted
by potential merges, so we can apply our merging optimization only once the full schedule has been
constructed. On the other hand, the SDE algorithm is interference-aware, so calling the merging
optimization at each scheduling step can influence its decisions. In the remainder of the document,
whenever the merging optimization is used, it is used after the scheduled is produced with the
ASAP policy, and during its construction with the SDE policy. We do not apply the optimization
with IPH because it does not improve the trade-off between the computation speed and its efficiency
to reduce the makespan of the schedule.

Algorithm 12 mergeOptimization

Require: τ i ; S; start; end
1: phases = getPhasesIn(S, start, end)
2: idx = 0
3: while idx < size(phases) do
4: ϕi

j = phases[idx]
5: alreadyAttempted = []
6: while isSaturated(S, ϕi

j) do
7: end = ϕi

j .d# + ϕi
j .dur + ϕi

j .p

8: candidates = getPhasesWithin(S, ϕi
j .d#, end)

9: ϕk
l , ϕk

l+1 = getMergeablePhases(candidates, alreadyAttempted)
10: if ϕk

l == null then ▷ no phases left that can be merge together in candidates
11: break
12: end if
13: alreadyAttempted.push((ϕk

l , ϕk
l+1))

14: S′ = mergePhases(S, ϕk
l , ϕk

l+1)
15: if makespan(S′) < makespan(S) then
16: S = S′

17: end if
18: end while
19: idx = idx + 1
20: end while



4. CONCLUSION 95

4 Conclusion
In this chapter, we consider the problem of scheduling a system of data-dependent tasks rep-

resented with the multi-phase model and assuming an homogeneous multi-core architecture. The
problem is introduced by an ILP formulation with the objective of minimizing the makespan of the
schedule in the presence of interference. Then, a set of heuristics is proposed.

The scheduling heuristics and the ILP have been designed for homogeneous cores, but they can
be easily adapted to heterogeneous architectures. Indeed, in such a case the process of analyzing the
code of a task and building its profile must be repeated for each core kind. Then, the scheduling
heuristic would only use the different profiles of each task according to the core on which it is
scheduled. However, we chose to prohibit tasks preemptions because it may have a important
impact on our assumptions for the model and we did not have enough time to assess this impact
and then to adapt our heuristics. We may need to introduce new properties and correctness
criteria or to modify the existing ones (in Chapter 3). Indeed, supporting preemption may require
additional constraints on the selection of synchronizations and new rules to count the accesses in
the phases.

The presented heuristics each have their own strategy to explore the scheduling possibilities.
Firstly, ASAP schedules pre-ordered tasks as soon as possible in each core and retains the schedule
with the minimum makespan without considering contentions. SDE also uses a pre-defined order
of tasks but attempts to schedule them at several dates on the cores and perform an interference
analysis on the partial schedules to compare before making its decision. It is worth noting that it
does not make predictions about the impact of its choices on future decisions. The IPH heuristic
adopts another strategy by exploring the set of possible tasks orderings. Each considered task
order is scheduled with the ASAP heuristic and an interference analysis is used to find new orders
that can improve the overall makespan. Finally, in the last heuristic, the problem is encoded into
a decision tree where a decision consists in scheduling one of the ready tasks on one of the cores.
Thus, the algorithm searches for the best order and mapping of the tasks using MCTS. In order to
speed up the execution, the simulations used to assess the potential of each possible decision are not
building complete schedules. However, the reward function is designed to offer a fair comparison
of the partial schedules by including information on the tasks remaining to schedule.

Each heuristic can explore a limited set of the possibilities to schedule the system, either because
it considers the possible dates of the tasks but not their order or inversely. Moreover, they differ
in the way they account for contentions to take decisions: ASAP and IPH do not consider them at
all (until the schedule is entirely built), SDE and MCTS compute them on partial schedules, and
MCTS goes further by comparing different partial schedules, accounting for the scheduled tasks.
The next chapter compares the efficiency of each heuristic to minimize the makespan of a task
system in different contexts (number of cores, interference penalty...) and with a variety of profile
shapes.
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In the previous chapter, an ILP introduced the problem of scheduling multi-phase tasks in
multi-core platforms taking into account contentions. While the problem already admits a large
solution space when considering single-phase tasks, the presence of phases enlarges this solution
space. Indeed, there are multiple ways for two tasks to contend with each other according to the
subset of their phases that interfere. In the first part of the chapter, we compare the multi-phase
and single-phase models using the ILP to obtain optimal solutions. The tasks systems are generated
synthetically by varying different parameters such as the shape of the profile, the access rate or the
presence of empty phases. We also compute the schedules using the scheduling heuristics presented
in the last chapter to observe how far they are from optimal solutions. As the ILP solving time
increases quickly with the number of tasks and phases to schedule, this first part only considers
small task systems.

In the second part, we extend the experiments to larger task systems, only using the schedul-
ing heuristics. Each heuristic has its own strategy to explore the space while keeping a limited
computational complexity. We compare how they perform regarding several characteristics of the
task systems and try to explain their behavior. Moreover, we study the general influence of the pa-
rameters used to generate the synthetic tasks, which may guide techniques to generate multi-phase
profile efficiently.

The third part of the experiments applies the heuristics on two case studies to show how they
perform with realistic applications. Moreover, the multi-periodic nature of the two applications
allows us to evaluate the heuristics with new metrics.

96
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1 Synthetic tasks
The evaluation of the multi-phase model against the traditional single-phase model requires

to test a large set of profiles with different characteristics and shapes that we could encounter
in practice. In order to build such a sample of profiles we employ synthetic multi-phase profiles
generators.

1.1 Generation of multi-phase tasks systems

Each task system is generated from some characteristics of the multi-phase profiles that we
identified as having a potential a impact on the results:

• The number of tasks in the system.

• The number of phases in the profiles.

• The number of accesses per cycle.

• The temporal shape of the profile, describing how the duration of each phase is chosen.

• The accesses shape of the profile which, similarly to the temporal shape, defines how the
accesses are distributed in the phases.

• The ratio between the average duration of short and long phases that indicates how many
short phases may be scheduled in parallel to a long phase in average.

• The proportion of empty phases (i.e. phases without any accesses) in the profile. Indeed,
the presence of phases without accesses in profiles is expected in practice e.g. due to cache
effects, and is likely to benefit the multi-phase model as discussed in Chapter 4.

• The access over-approximation rate as described in Property 4 of Chapter 3. It is applied
at the task-level, so we do not know which phases in a profile are responsible for the over-
approximation. With this parameter, we are able to observe the influence of the precision of
the multi-phase profiles on the constructed schedule.

The creation of a task system is a two step process. Firstly, the system generator creates the
tasks with their own number of phases such that each task composing the system may have a
different number of phases (and WCET), but in average the number of phases is equal to the input
value. Then, the tasks system generator calls the profiles generator to create the phases of each
task. The number of accesses and the duration of each phase are assigned by the generator using
pre-defined policies that rely on random probability laws. They represent different ways of shaping
a profile according to how the duration and the number of accesses are assigned to the phases.
We think that these generation policies can influence the results of the scheduling and interference
analyses. However, they may not allow to represent all the possible profile shapes that we may
encounter in practice.

There are 2 types of temporal shapes that are defined by the probability laws used to draw the
durations of the sequence of phases :

1. Normal (N): each duration is drawn from a single normal law, with a unique average value
and a standard deviation defined such that the durations are around the same value but may
also be quite different. Two examples of profiles generated with the Normal policy are given
in Figure 7.1.

2. Bi-Normal (BN): the durations are drawn from two distinct normal laws that have a different
average value such that there are short and long phases. Moreover, a long phase is systemat-
ically followed by a short phase while a short phase can be followed by another short phase.
Figure 7.2 shows 2 profiles generated with this policy.
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Figure 7.1: Two profiles generated with the Normal duration policy.
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Figure 7.2: Two profiles generated with the Bi-Normal duration policy.

The Bi-Normal type may correspond to profiles that successfully packed clusters of accesses in
some phases or, on the contrary, that feature intervals with few accesses. With the Normal type,
such a situation may also appear since there are phases that are shorter than others. However, the
difference between the durations is smaller, as if the profile was describing the task execution with
less precision.

Similarly, concerning the accesses shape, we defined 3 manners to distribute the accesses into
the phases corresponding to 3 different access shape policies:

1. Normal (N): the access rate of phases are drawn from a unique normal law, centered on the
average access rate of the task given as input to the generator. Therefore, two phases with
the same duration have approximately the same number of accesses.
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2. Uniform (U): given the average access rate and the durations of the phases, the total number
of accesses in the profile is computed and then the number of accesses in each phase is drawn
from an uniform law such that the sum equals the total number of accesses. Hence, two
phases with very different durations may have the same number of accesses.

3. Beta-Uniform (βU): same method as Uniform, but the process is separated for short and long
phases such that the average access rate in short phases is equal to β times the average access
rate in long phases. Note that it does not directly rule the number of accesses in the phases.
For example, if β = 2, there is not necessarily twice as many accesses in total in short phases
as in long phases, because long phases generally occupy a greater proportion of the WCET
of the task.

In the following, the shape of a synthetic profile is defined by the combination of its temporal
and its access shape type used by the generators to create it. This shape is then designated by a
pair temporal_shape_acronym+access_shape_acronym (e.g. BU+U).

The generation of a profile begins by the generation of a list of durations using the temporal
shape type. Then, the number of accesses in the phases is chosen according to the access rate of
the task, its WCET and the access shape type. Once the duration and accesses of each phase have
been chosen, a correction pass is performed to ensure that, for any phase, the sum of the duration
of its accesses does not exceed its duration. Otherwise, some accesses are given to other phases
until this condition is fulfilled. If the constraint is still not respected, the duration of the phase
with too many accesses is increased.

The βU access shape requires to compute and affect separately the accesses of short and long
phases, so the variables dedicated to computing the number of accesses are duplicated.

In order to compare the multi-phase and single-phase models, the multi-phase profiles are
converted to their single-phase equivalent by summing the duration and the number of accesses in
each phase. Then, the number of accesses with the single-phase model is adjusted according to the
access over-approximation parameter.

1.2 Generation of tasks dependencies

In the experiments using synthetic systems, we rely on single-periodic tasks that are released
synchronously at date 0 among all cores. The task dependencies are defined by a DAG. Therefore,
for each test, we generated a DAG with the same method as for the experiments of Chapter 5.

Table 7.1: Description of the tests input parameters.

Parameter Description

Number of cores the number of cores available in the architecture.
Access cost cost of an access to the main memory without interference in cycles.
Penalty factor the multiplier applied to the access cost to compute the interference time penalty.
Temporal shape the policy to generate the durations of the phases.
Access shape the policy to generate the number of accesses into the phases.
Over-approximation the proportion of additional accesses into the multi-phase representation compared

to the single-phase one in %.
Number of tasks the number of tasks to schedule.
Number of phases the average number of phases per task.
Access rate the average number of accesses performed within a interval of 10 000 cycles.
β the ratio between the average number of accesses in short and long phases

(only used for the βU accesses policy).
Empty phases the proportion of empty phases, i.e. phases that do not perform any accesses,

composing each profile in average (%).
(pser, ppar) the couples of probabilities used to generate tasks dependencies (DAG),

(0, 0) means no dependencies.
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1.3 Tests parameters and metrics

1.3.1 Parameters

The parameters defining each test and their description are listed in Table 7.1. For each exper-
iment, the same table will be presented with the pool of values of the parameters that were used
to build the task systems. The values of parameters that characterize a profile have been chosen
after analyzing the profiles obtained with real applications such as those studied in the case studies
experiment in Section 2.

We use the penalty factor parameter to tune the cost of contentions as a multiple of the cost of
an access in isolation. Indeed, the memory latency of an access in the presence of interference can
be several times the cost of an access in isolation due to indirect effects, e.g. in the pipeline [85].
Setting the penalty factor to 1 is therefore the most optimistic assumption for an architecture, which
usually is an unfavorable assumption for our experiments. Hence, we conduct our experiments with
a penalty factor of 1 and 3, which correspond respectively to an optimistic and a more realistic
assumption.

In all the tests, the BN temporal shape has been obtained with short phases being in average 3
times shorter than long phases. Preliminary experiments demonstrated that increasing this factor
(up to 6) did not influence the results, so we focused on other parameters.

Some combinations of parameters are impossible, such as for the β parameter that can only
be specified when using the βU policy (but still measurable for any profile generated with the BN
policy), or the ratio between long and short durations that is not available with the N temporal
shape. Each feasible combination of the parameters is tested 5 times to obtain the complete set of
tests.

1.3.2 Tests execution and metrics

The execution of a test consists in three steps. First, we generate the set of multi-phase
profiles corresponding to the input parameters. Second, we schedule the multi-phase tasks and
their equivalent single-phase counterpart. Then, we perform an interference analysis using function
computeContentions (introduced in Chapter 6 Section 3) on both schedules.

The objective of the scheduler in each test case is to minimize the makespan of the schedule as
defined by the objective equation of the ILP formulation. The metrics used in this section are:

• Makespan: the makespan of the schedule in the presence of interference, i.e. the date from
which all the tasks of the system have been executed.

• Contentions: the worst-case number of contentions in the whole schedule, computed by the
interference analysis.

For each metric m presented, we define the notion of gain comparing the m value in a given schedule
to the m value in a baseline schedule:

gain = (m_value_baseline − m_value_schedule)/m_value_baseline.

Moreover, we call a positive test with respect to a metric m and a baseline a test for which
gain ≥ 0.

1.4 Comparison with optimal multi-phase

In this section, we use the ILP formulation of Chapter 6 Section 2 to schedule synthetic task
systems on 2 or 4 cores with both the multi-phase and single-phase models. Thanks to the ILP we
obtain optimal schedules that are used to show the potential of the multi-phase model to reduce
the over-estimation of the makespan after the interference analysis. We also compare the optimal
schedules with those obtained by applying the scheduling heuristics defined in the previous chapter.
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As our problem does not scale well using the ILP, we generated a sample with small task
systems and with a few phases per task. The number of phase per task is constant for this sample
(it is not only an average value among the tasks) due to the small size of the systems generated.
In half of the tests, the tasks have no dependencies so the ILP has full freedom to place the tasks
at its advantage. The other parameters and their values are given in Table 7.2.

Table 7.2: Tests input parameters.

Parameter Description

Nb cores {2, 4}
Access cost {50} cycles
Penalty factor {1, 3}
Temporal shape {N, BN}
Access shape {N, U, βU}
Over-approximation {0} %
Nb tasks {4, 5, 6}
Nb phases {4, 5, 6}
Access rate {25, 50, 75} accesses per 10k cycles
Ratio long / short {1, 3}
β {1.0, 1.5, 2.0}
Empty phases {0, 20} %
(pser, ppar) {(0, 0), (0.3, 0.7)}

We used the academic version of Gurobi 9.5.1 [86] to solve the ILP formula. The computa-
tion of contentions greatly degrades the solving time of the ILP, so we set a timeout to 6 hours.
Consequently, 4521 systems have been successfully scheduled with the multi-phase model which
represents 76% of the tests attempted. With 2 cores, the proportion of timeouts is 11% but it goes
up to 43% with 4 cores.

1.4.1 ILP multi-phase vs single-phase

The distribution of the gain values obtained by the ILP multi-phase compared to the ILP single-
phase is represented in Figure 7.3. The extreme values are not represented for readability reasons:
the gain varies from -66.49% to 69.38% and the average value is 9.42%. Moreover, 96.19% of the
results of the multi-phase ILP were positive, i.e. at least as good as the single-phase ILP. As
these results have been obtained with only small instances of the problem, we cannot draw general
conclusions. However, we note that the gap between the two models tends to increase with the
number of cores since the experiments with 2 cores have an average gain of 8.88% while it is 10.85%
for the tests with 4 cores.

1.4.2 ILP multi-phase vs heuristics

Table 7.3 shows the average gain and the proportion of results where each heuristic applied
with the multi-phase model was at least as good as the ILP solving respectively the multi-phase
and the single-phase model. All the heuristics are in average less than 10% worse than the optimal
multi-phase result and IPH is only 3.71% worse on 2 cores and 5.02% worse on 4 cores. When the
merging optimization was used, ASAP and SDE were even able to beat the multi-phase ILP (in
respectively 2.5% and 3.3% of the tests) because of the new profiles generated by the optimization.
We do not propose a version of the ILP with possible merges because this would considerably
increase its complexity and solving time. We also see that our heuristics applied on multi-phase
profiles are at least as good as the optimal solution for the equivalent 1-phase profiles in more than
63% of the experiments (up to 90.51% for IPH with 2 cores). Finally, IPH finds the optimal multi-
phase schedule in 7.31% and 1.29% of these (simple) experiments respectively on 2 et 4 cores. A
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Figure 7.3: Makespan gain of multi-phase ILP vs single-phase ILP. in %

Table 7.3: Share of positive results (gain makespan ≥ 0) and average makespan gain value for all
heuristics with multi-phase compared to ILP with multi-phase or single-phase

Gain vs ILP multi Gain vs ILP single
cores heuristic share pos. (%) av. gain (%) share pos. (%) av. gain (%)

2 IPH 7.31 -3.71 90.51 5.17
SDE 2.70 -5.69 73.77 3.20
SDE + merge 6.34 -5.05 77.47 3.83
ASAP 2.15 -7.77 63.77 1.11
ASAP + merge 5.15 -6.76 70.50 2.12
MCTS 5.12 -4.12 88.84 4.78

4 IPH 1.29 -5.02 88.06 5.82
SDE 1.37 -5.77 81.29 5.07
SDE + merge 3.06 -5.43 83.87 5.42
ASAP 0.56 -9.35 64.84 1.50
ASAP + merge 1.69 -8.42 70.40 2.42
MCTS 1.58 -5.58 86.69 5.27

hierarchy between the heuristics is emerging but the following tests on a larger and more complex
experimental sample will allow to discuss this hierarchy in more details.

1.5 Heuristics evaluation

In this experiment, we use the scheduling heuristics on synthetic tasks systems with more tasks
and phases than what was permitted by the ILP. The parameters of the experiments are given in
Table 7.4: there are 20 or 25 tasks per test and the tasks have either 15 or 20 phases in average. In
total, 29,500 tasks systems have been generated and used in this sample. The tasks are scheduled
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Table 7.4: Tests input parameters.

Parameter Description

Nb cores {2, 4}
Access cost {50} cycles
Penalty factor {1, 3}
Temporal shape {N, BN}
Access shape {N, U, βU}
Over-approximation {0, 5, 10, 15, 20, 25, 30} %
Nb tasks {20, 25}
Nb phases {15, 20}
access rate {25, 50, 75}
β {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}
Empty phases {0, 20} %
(pser, ppar) {(0.3, 0.7)}

with ASAP, SDE+merge, IPH and MCTS using the multi-phase model and then using the single-
phase model equivalent (taking into account the over-approximation) with ASAP and IPH. The
merge optimization is only applied to SDE because it has the greatest effect on this heuristic, but
it is too costly in terms of computation time to apply to all the heuristics.

The objective is to compare the efficiency of the heuristics according to different parameters,
and also to see if one profile shape is better than another according to our tests.

First, the presentation of the results is focused on the differences between the profiles shapes
(duration and accesses) in the next Section 1.5.1. The other aspects are presented without distin-
guishing the shapes in the subsequent sections.

1.5.1 Shapes evaluation

In this section, the tests are used to understand how the shape of a profile can influence the
results of the interference analysis. This shape is controlled by the policy used to generate the
durations and accesses in each synthetic tasks system, and each combination of the two policies
offers a unique way to characterize a profile. Tables 7.5 and 7.6 show respectively the average
proportion of positive tests and the average gain value in terms of makespan for all the possible
pairs of duration+access shapes.

Note that the results of all the scheduling heuristics are taken into account here but the results
and their interpretation also hold when they are taken separately.

Table 7.5: Share of positive tests regarding the makespan for the different profile shapes compared
to single-phase IPH

cores max share of positive tests (gain ≥ 0)
ov-app Dur. BN Dur. N

(#) (%) Acc. N Acc. U Acc. βU Acc. N Acc. U

2 0 63.31 83.19 82.32 66.38 82.17
5 54.13 81.32 79.77 59.53 79.83
10 45.37 79.03 77.58 55.23 77.43

4 0 73.89 88.46 88.06 78.61 89.72
5 60.37 87.53 85.17 69.10 86.18
10 47.96 83.46 81.72 61.53 83.10

Sample BN temporal type When using the BN temporal policy, profiles are composed of long
phases followed by groups of short phases (see the two examples in Figure 7.2). With this shape,
short phases are easily scheduled with only one phase in parallel for each other core.
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Table 7.6: Average makespan gain value for the different profile shapes compared to single-phase
IPH

cores max average gain (%)
ov-app Dur. BN Dur. N

(#) (%) Acc. N Acc. U Acc. βU Acc. N Acc. U

2 0 0.45 4.03 3.69 1.73 3.92
5 -0.02 3.59 3.23 1.19 3.47
10 -0.50 3.18 2.85 0.78 3.05

4 0 0.82 6.15 5.32 2.97 5.49
5 0.12 5.34 4.50 2.10 4.62
10 -0.67 4.55 3.78 1.41 3.92

From Tables 7.5 and 7.6, we observe that the U accesses type is the more adapted to the BN
temporal type. Indeed, with the N access type, short phases generally have less accesses than the
long ones, so even if they have only one contender per core in parallel (often a long phase), all their
accesses may create contentions. Long phases have chances to create less contentions than their
number of accesses when they are scheduled in parallel with a task that has a lower access rate.

On the contrary, with the U access type, phases are often scheduled in parallel with other
phases that have less accesses whatever if they are short or long (even if the access rates of the
tasks scheduled in parallel are similar). Therefore, the possibilities to avoid contentions are more
frequent which explains the difference in the results that we obtained.

To sum up, our tests suggest that a profile with an alternation between long and groups of
short phases is not efficient when the short phases have less accesses than the long ones (as with
the N Access Policy). Indeed, in this case, most of the short phases create contentions with all their
accesses because the phases in parallel have approximately the same number of accesses in general.
Therefore, a profile design method that creates a profile that resembles the BN temporal shape
must ensure that some short phases have more accesses than long ones to "save" some accesses
from suffering contentions. Using the βU temporal type, Section 1.5.2 studies how the gain evolves
when the access rate of short phases is higher than that of long phases.

Sample N temporal type The N temporal type creates phases without considering short or
long durations (see Figure 7.1). Although a difference between the durations may appear locally,
there is less chances that a phase is in parallel with only one other phase which entirely covers it.

As for the BN temporal type, the results of Tables 7.5 and 7.6 indicate that the U access type
outperforms the N one. In the case of the N access policy, the phases have a similar number of
accesses because their duration is also similar. Therefore, the phases generally create as many
contentions as their number of accesses so the results of the interference analysis are close to those
obtained with the single-phase model. A method that creates phases with similar durations should
then ensure that there are enough differences between the number of accesses in the phases to
create profitable situations for the multi-phase model.

Conclusion From our investigation on the shapes we can deduce that, regardless of the variability
of the phases duration (i.e. the temporal shape), a method should design the phases so that they
have a very different number of accesses. Indeed, it favors situations where the phases with the
highest number of accesses cannot create contentions with all their accesses while these contentions
would exist using the single-phase model (depending on the access over-approximation). We can
also observe in Tables 7.5 and 7.6 that the results of BN+U and N+U are close to each other, even
if the first slightly outperforms the second in most of the cases.
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Figure 7.4: Share of positive results in terms of makespan according to the access over-
approximation for 2 interference penalty values compared to single-phase IPH.
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Figure 7.5: Share of positive results in terms of contentions according to the access over-
approximation for 2 interference penalty values compared to single-phase IPH.

1.5.2 Influence of the other parameters on the efficiency of the multi-phase model

Influence of the target architecture: interference penalty and number of cores The
effects of interference can be increased by varying the interference penalty and the number of cores.
The latter impacts the number of possible concurrent memory accesses in the interconnect. When
an additional core is added, a memory access can be delayed by an additional interference penalty.

Regarding the makespan gain (Figure 7.4), we observe that the hierarchy between the schedulers
changes according to the interference penalty. In Figure 7.4a with an interference penalty of 50
cycles, the order of efficiency is IPH, ASAP, SDE and MCTS even if with 2 cores, SDE slightly
outperforms ASAP when the access over-approximation rate is superior to 10%. However, when
the interference penalty is set to 150 cycles (i.e. the most realistic assumption), SDE and MCTS
are better than ASAP. We observe that SDE is even at the same level as IPH with a low access
over-approximation.

The gain in contentions depicted by Figure 7.5 shows that IPH is the heuristic with the least
gain in contentions, except with 4 cores and a penalty of 150 cycles where this is ASAP. The
best heuristic for this metric is SDE, followed by MCTS. These results demonstrate that the gain
in contentions is not directly correlated to the makespan gain, particularly when the effects of
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interference are limited. For SDE, the interference analysis is performed each time a task is added
so it is actually based on the new contentions that the task may create on the schedule. The impact
on the makespan for the whole schedule is not known or considered. Therefore, the tasks that have
been postponed to reduce the number of contentions locally may create too much slack time and
indirectly degrade the overall makespan.

The average makespan gain is represented by Figures 7.6 and 7.7 respectively against single-
phase ASAP and IPH. We can make the same observations as with the share of positive results:
SDE and MCTS are the least efficient heuristics when the penalty is 50 cycles but their gain is
improving when the penalty is increased. With a 150 cycles penalty, the gain of the multi-phase
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Figure 7.6: Average makespan gain vs ASAP single-phase according to the access over-
approximation.
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Figure 7.7: Average makespan gain vs IPH single-phase according to the access over-approximation.
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reaches 15.86% using IPH against single-phase ASAP, while the maximum is 7.47% against single-
phase IPH.

In a nutshell, IPH is the most adapted to reduce the makespan of the task systems while SDE is
the most efficient to reduce contentions. The reason is that SDE tends to take short-term decisions
that mainly reduce the contentions. However, it is sometimes better to accept more contentions
locally to reduce the makespan of the entire system. When the effects of contentions are more
important (i.e. a higher number of cores or a greater interference penalty), avoiding contentions is
more correlated to reducing the makespan of the schedule so SDE becomes more efficient to reduce
the makespan.

Influence of the tasks system characteristics

Table 7.7: Share of positive results and average gain value considering the makespan for all heuristics
with multi-phase compared to ASAP single-phase according to the access rate.

acc. rate (# per share positive results (%) average gain (%)
10k cycles) ASAP SDE IPH MCTS ASAP SDE IPH MCTS

25 84.32 71.38 93.76 62.81 2.97 2.38 6.16 1.24
50 80.00 81.89 88.93 67.63 3.26 4.77 6.03 2.28
75 71.46 88.97 92.60 74.33 2.41 8.37 7.58 3.86

Influence of the access rate Table 7.7 compares the results of the schedulers according to
the access rate of the tasks systems (whatever the over-approximation levels). The results show
that SDE is particularly efficient to manage task systems with memory intensive tasks. MCTS also
yields better results when the access rate increases. For the two other heuristics the results are not
as clear, the share of positive results decreases when the access rate increases for ASAP but not
necessarily for IPH. There is no tendency either regarding the average gain for these two heuristics.

These results recall those of the gain in terms of contentions depicted in Figure 7.5 where
we already observed that SDE and MCTS were the most capable of reducing contentions in a
schedule. When the access rate increases, the gains in makespan and in contentions are more
correlated because the timing penalties due to contentions in the whole schedule can represent a
higher proportion of the overall cores occupancy after the interference analysis.

Table 7.8: Share of positive results and average gain value considering the makespan for all heuristics
with multi-phase compared to ASAP single-phase according to the proportion of empty phases.

empty phases share positive results (%) average gain (%)
(%) ASAP SDE IPH MCTS ASAP SDE IPH MCTS

0 71.87 74.05 88.80 61.85 1.93 3.78 5.41 1.44
20 85.32 87.44 94.72 74.66 3.83 6.57 7.77 3.48

Influence of the empty phases Table 7.8 compares the results of the schedulers according
to the presence of empty phases (20%) or not. IPH is already achieving almost 90% of positive tests
without empty phases so their presence increases the rate by 6 points. For the other heuristics, the
increase is between 13 and 14 points approximately. The average gain also increases significantly
in the presence of empty phases, and SDE has the greatest improvement.
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Figure 7.8: Makespan gain vs IPH single-phase (%) given the input β value (penalty = 150 cycles).

Influence of β Figure 7.8 shows the average gain of the schedulers compared to the IPH
single-phase schedule according to the β value (only for the BN+β-U tests with a penalty of 150
cycles). We also plotted for each average gain the error bar with a 95% confidence interval.

We observe an important decrease from β = 1.0 to β = 1.5 and then the average gain increases
with β from β = 2.0 with ASAP and from β = 2.5 for SDE and IPH. In order to explain these
results, we must keep in mind that β is applied to the access rate but not directly to the number
of accesses in short and long phases, and that the overall duration of short phases represents a
minor proportion of the WCET of the generated tasks. Therefore, when β = 1.0, long phases have
much more accesses than short phases and it is frequent that the accesses of these long phases are
not all creating contentions. However, when β increases a bit, short phases have a total number of
accesses still inferior but closer to the number of accesses in long phases, so there is less chances
that long phases cannot create contentions with all their accesses. Once the accesses in short phases
is close to the accesses in long phases, the short phases can in turn create less contentions than
their number of accesses so the results are improving.

In the BN+U tests, where β is not considered to choose the number of accesses in the phases,
the β value measured was varying between 1.47 and 7.92 with an average value of 2.86.

1.5.3 Computation time

Table 7.9: Average computation time for the different heuristics

tasks phases per task Average computation time (s)
(#) (#) ASAP SDE IPH MCTS

20 15 < 1 55 334 359
20 < 1 112 499 533

25 15 < 1 88 596 688
20 < 1 172 911 945

all tests < 1 105 574 620

Table 7.9 gives the average computation time of the heuristics according to the number of tasks
in the system and the average number of phases. When comparing the difference between ASAP
and the others, we see that performing interference analyses is very expensive. Moreover, we see
that, as opposed to MCTS and IPH, SDE is more sensitive to the number of phases than the
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number of tasks because the number of interference analyses that it performs to schedule each
task depends on the number of phases in parallel. On the contrary, MCTS and IPH explore tasks
orderings or mappings so the number of interference analyses to perform depends on the number
of tasks.

2 Case studies : Rosace and Papabench
This section proposes to apply the scheduling heuristics on two case studies: Rosace [82], the

multi-periodic flight controller already used in Chapter 5, and Papabench [87] that is derived from
an open-source UAV control application.

2.1 Tasks profiles

The first activity consisted in producing multi-phase profiles. As for the experiments of Chap-
ter 5, for the static analysis of the code we considered a target hardware architecture composed of
an ARM-based multi-core processor (2, 3 or 4 cores) in which each core features a L1 LRU data
cache, and an instruction scratchpad which holds the totality of the code needed by the core to
execute. The memory latency is still 50 cycles for non-cached accesses.

The profiles and the task system of Rosace are the same as those used in Chapter 5. The
design of profiles for Papabench was more difficult because some of its tasks have many traces due
to consecutive conditional structures with several cases. In order to reduce the complexity of the
analyses, some of the original tasks have been split to ease the profiles generation, so Papabench
(resp. Rosace) is composed of 329 tasks (resp. 77 tasks). The two tasks with the most traces
for Papabench have respectively 62502 and 153013 traces which makes the computation of the
worst-case number of accesses in their phases and the selection of synchronizations very expensive
computationally. Therefore, the GA techniques presented in Chapter 4 were too costly for the two
tasks with the most traces even with δ = 1000 cycles and we do not present results with these
profiles in this section. The results are firstly presented with the TIPs profiles that yielded the
best results but we also propose some results with KDE (Table 7.13) to provide some comparison
points.

2.2 DAG scheduling

In the first part of the experiments, both benchmarks have been converted from multi-periodic
task systems to DAGs of single-period tasks, following the methodology of [83] as in chapter 5: we
consider each job for one hyperperiod of the system as a separate task, but we do not use release
dates and consider only the activation rhythms.

2.2.1 Results

The two benchmarks have been scheduled with IPH, SDE (+ merge) and ASAP on 2, 3 and
4 cores. MCTS has not been used due to the high number of tasks to schedule in both the case

Table 7.10: Statistics of Papabench profiles according to the employed design method.

KDE TIPs
δ sync phases ov-app sync phases ov-app

(#) (#) (%) (#) (#) (%)

1000 6 225 3 323 10.47 5 622 2 755 4.01
500 8 460 5 573 15.10 12 937 4 788 4.73
200 13 101 10 607 31.60 24 891 9 009 7.45
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Table 7.11: Results of heuristics to schedule Papabench tasks with TIPs profile.

penalty = 50 cycles penalty = 150 cycles
nb gain gain gain gain
cores δ makespan (%) contentions (%) makespan (%) contentions (%)

vs ASAP vs IPH vs ASAP vs ASAP vs IPH vs ASAP

ASAP 2 1000 7.17 -0.64 8.32 9.15 3.37 17.58
500 8.31 0.58 18.37 10.90 5.23 25.72
200 9.07 1.41 24.71 11.93 6.33 28.96

3 1000 4.81 1.18 14.18 6.13 1.60 7.32
500 6.37 2.88 22.35 7.94 3.49 17.75
200 6.96 3.41 23.68 9.00 4.61 13.18

4 1000 4.66 1.25 19.85 5.13 1.41 13.96
500 6.24 2.88 25.62 7.97 4.36 18.16
200 6.84 3.51 27.43 9.01 5.44 19.61

SDE 2 1000 -2.36 -10.98 47.13 9.94 4.21 57.06
+ merge 500 0.96 -7.38 54.73 13.61 8.11 64.70

200 0.75 -7.61 40.59 12.85 7.31 62.83
3 1000 -5.05 -9.06 30.50 7.44 2.98 59.58

500 -1.39 -5.26 37.88 12.03 7.79 64.45
200 -1.02 -4.86 38.46 9.88 5.53 68.35

IPH 2 1000 12.86 5.52 14.25 13.02 7.49 25.28
500 14.18 6.95 25.85 16.31 10.99 35.08
200 14.97 7.81 31.29 16.12 10.79 38.56

3 1000 8.88 5.56 30.97 10.96 6.67 38.59
500 9.98 7.36 39.56 14.91 10.80 37.37
200 9.59 6.18 35.28 14.51 10.38 49.37

4 1000 7.80 4.28 42.53 11.62 8.15 42.51
500 9.42 6.26 44.13 13.83 10.44 47.20
200 9.63 6.65 45.61 14.52 11.16 47.74

studies that is too important. Indeed, the algorithm could not enumerate and store all the possible
branches of the tree to explore without crashing due to an insufficient RAM capacity. Only the best
ready tasks sorting policy in terms of makespan gain is listed for SDE and ASAP for readability. We
scheduled the 1-phase model with both ASAP and IPH as IPH tends to perform better than ASAP.
Moreover, as for the previous experiments, we used both a 50 cycles and 150 cycles interference
penalty to represent respectively the most optimistic scenario and a more realistic one.

The results for the TIPs profiles are presented in Table 7.11 for Papabench and in Table 7.12
for Rosace. A first observation is that the multi-phase model globally yields better results than the
1-phase model, with a makespan gain up to 16.31% for Papabench (IPH on 2 cores with δ = 500
cycles and a penalty of 150 cycles) and 24.00% for Rosace (SDE on 4 cores with δ = 200 cycles and
a penalty of 150 cycles).

For Papabench, IPH always performs the best improvements from 7% to 16% compared to the
1-phase ASAP and between 4% and 11% compared to the 1-phase IPH. When the penalty is 50
cycles, SDE is the worst heuristic and its makespan is often higher than if the tasks are represented
with the single-phase model (i.e. gain < 0). However, with a 150 cycles penalty per contention,
SDE is more efficient than ASAP with a gain ranging from nearly 7% to 13% for the makespan.
For Rosace, SDE is more efficient because the gain is always positive and often close to ASAP with
50 cycles of penalty, and it is even the best heuristic when the penalty is 150 cycles. Decreasing
the value of δ generally yields better results when using ASAP or SDE but this is not systematic.
For example, with Papabench the results with δ = 500 cycles is the best for IPH on 3 cores. This
may be partially due to the significant gap of the access over-approximation rate between δ = 500
and δ = 200 cycles which rises from 4.87% to 7.45% according to Table 7.10.

The two tables also display the gain in terms of contentions. For Papabench (resp. Rosace), this
gain ranges from 6.92% to 64.36% (resp. 2.42% to 55.80%) compared to 1-phase ASAP scheduling.
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Table 7.12: Results of heuristics to schedule Rosace tasks with TIPs profile.

penalty = 50 cycles penalty = 150 cycles
nb gain gain gain gain
cores δ makespan (%) contentions (%) makespan (%) contentions (%)

vs ASAP vs IPH vs ASAP vs ASAP vs IPH vs ASAP

ASAP 2 1000 2.42 0.76 9.03 2.31 1.28 3.80
500 3.26 1.10 13.82 5.86 4.87 11.83
200 4.90 2.77 22.35 9.15 8.19 18.93

3 1000 4.71 -0.04 2.42 5.01 2.83 3.98
500 6.96 2.32 9.79 6.48 4.33 7.12
200 8.71 4.16 14.28 8.65 6.56 9.88

4 1000 11.18 3.17 5.94 13.23 0.83 9.70
500 13.65 5.86 11.59 14.89 2.73 13.22
200 15.78 8.18 17.15 16.80 4.92 16.76

SDE 2 1000 0.90 -1.32 15.82 10.75 9.81 39.66
+ merge 500 3.78 1.63 31.20 13.28 12.36 55.20

200 2.85 0.67 37.11 17.04 16.17 50.69
3 1000 1.11 -3.82 10.79 9.39 7.31 51.99

500 5.17 0.44 23.82 12.34 10.32 44.12
200 7.64 3.03 26.23 17.55 15.65 44.12

4 1000 7.37 -0.99 14.58 20.36 8.98 55.80
500 13.87 6.09 20.88 20.54 9.19 35.48
200 15.54 7.92 26.31 24.00 13.14 40.11

IPH 2 1000 4.26 2.12 7.10 4.87 3.87 10.21
500 5.70 3.59 14.32 9.20 8.24 21.86
200 7.22 5.14 21.48 11.79 10.86 25.28

3 1000 6.64 1.98 3.71 5.19 3.01 34.67
500 9.05 4.52 10.54 8.95 6.86 24.95
200 10.64 6.18 17.09 11.32 9.28 27.49

4 1000 14.68 6.98 0.27 15.56 3.50 23.46
500 17.35 9.90 7.27 17.82 6.08 45.18
200 19.04 11.73 9.90 19.69 8.21 48.58

This means that on top of reducing the makespan of the computed schedules, our heuristics,
coupled with the multi-phase model, are able to significantly improve the timing predictability of
the scheduled applications because there is less variability in the number of contentions that may
occur in the system (i.e. the maximum interference scenario is closer to the average case scenario).
SDE is the best heuristic to reduce contentions, even when it obtains negative makespan gains,
which is coherent with what we observed with the synthetic systems. As a recall, we observed that
SDE tends to postpone too much the tasks based on local data, which is detrimental for the overall
makespan when the cost of contentions is not high enough.

Table 7.13 shows the results of Rosace and Papabench for the KDE profiles, only with a penalty
of 150 cycles. As expected following the observation of the comparative study of Chapter 5, the
results are not as good as for the TIPs. Still, the gain is important in some cases: it ranges from
2.42% to 14.14% for Rosace and from 4.31% to 15.84% for Papabench.

With δ = 1000 on 2 cores, the time required to schedule Papabench (resp. Rosace) with ASAP
was 1 minute (resp. less than 1 second) while this was nearly 8 hours when applying SDE (resp.
43 seconds) and 6 hours (resp. 3 minutes) to run IPH with up to 31 threads (resp. 19) computing
a solution at a time.
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Table 7.13: Results of heuristics to schedule Rosace and Papabench tasks with KDE profile with a
penalty equal to 150 cycles.

Rosace Papabench
nb gain gain gain gain
cores δ makespan (%) contentions (%) makespan (%) contentions (%)

vs ASAP vs IPH vs ASAP vs ASAP vs IPH vs ASAP

ASAP 2 1000 2.73 1.71 2.93 7.39 2.04 4.81
500 5.44 4.44 9.34 8.39 3.80 10.04
200 6.89 5.91 14.94 10.58 6.28 18.21

3 1000 4.14 1.94 1.69 4.31 -0.31 9.84
500 6.26 4.11 6.65 5.34 0.77 11.72
200 5.28 3.10 3.33 7.60 3.14 15.81

SDE 2 1000 8.49 7.52 38.36 8.92 3.19 54.91
+ merge 500 10.49 9.54 45.76 10.14 4.43 56.38

200 14.14 13.23 46.51 10.52 4.83 52.95
3 1000 9.20 7.11 43.43 6.62 2.11 63.14

500 11.23 9.19 35.86 8.10 3.67 63.34
200 13.18 11.19 47.91 8.51 4.10 59.09

IPH 2 1000 3.52 2.50 18.93 11.35 5.71 31.62
500 8.12 7.15 13.20 12.90 7.36 28.17
200 9.36 8.40 17.25 15.84 10.48 41.27

3 1000 3.79 1.58 9.22 10.42 6.09 46.48
500 7.05 4.92 20.46 10.71 6.40 30.28
200 7.55 5.43 33.29 13.54 9.37 51.27

Table 7.14: Makespan gain of Papabench (TIPs profile) with IPH according to the timeout value
on 2 cores.

δ timeout(hours) gain vs IPH(%) gain vs ASAP (%)

500 1 0.58 8.31
2 1.30 8.97
3 3.80 11.28
4 3.80 11.28
5 6.95 14.18

1000 1 3.50 11.41
2 4.72 12.53
3 5.08 12.86
4 5.08 12.86
5 5.08 12.86

However, as IPH is an iterative heuristic, it is able to find the best result or at least a satisfying
result within the early iterations. Table 7.14 shows the gain of Papabench with IPH for different
δ and timeout values on 2 cores. We can see that the time to converge to the best solution
increases when δ decreases. This is because there are more phases on which the contentions must
be computed so the interference analyses take longer to execute (Papabench grows from 2755 to
9009 phases according to Table 7.10). With δ = 1000, the gain quickly reaches the best value
displayed in Table 7.11 and it is already close to this value with 2 hours, whereas time has a great
impact on the results for δ = 500. Therefore, setting a timeout for IPH can significantly degrade
its efficiency especially when the the task set is large because there are more solutions to explore.
This issue is mitigated by the fact that we target static scheduling techniques, which are performed
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before the system is put in service so their execution time usually is not an issue. However, under
certain industrial constraints, computing (or recomputing) a static schedule must be done in a
limited period of time (e.g. 24 hours to find a bug, correct it, recompile, reschedule and re-verify
the system before it is put in production again). In these particular contexts, a trade-off must be
found between the duration of the scheduling algorithm and the quality of the resulting schedule.

2.3 Multi-periodic scheduling

For this second part of the case study, we consider the multi-periodic nature of the tasks (with
release dates and deadlines). In this context, the makespan of the system is no longer a relevant
metric. However, the gain in terms of contentions, whose effect is sometimes inhibited in the
first part of the experiments, may in the contrary exhibit interesting properties of the multi-phase
model. Indeed, the main metric employed to evaluate scheduling methods for periodic systems is
the schedulability: the system is deemed schedulable if all the tasks end before their deadline which
is a requirement for HRT. In the context of multi-core platforms, interference can compromise the
schedulability of a periodic system so the reduction of the number of contentions by the multi-phase
model may also improve the schedulability of the system.

We only conducted the tests using ASAP and SDE because as discussed previously, IPH is a
very slow heuristic while these tests require to compute many schedules (with different processor
frequencies). MCTS is not used for the same reason as in the previous part.

2.3.1 Metrics

We propose to use two new metrics in order to assess the performance of the multi-phase model
over the single-phase model regarding schedulability:

• the minimum processor frequency from which the system is schedulable called min frequency:
this metric must be minimized to show that even a processor with a low frequency can run
the task system safely.

• the minimum difference between a task end date and its deadline called min slack to deadline:
on the contrary, the higher this value, the greater the margin before falling into an unsafe
schedule.

Table 7.15: Schedulability analysis of Rosace and Papabench for the TIPs profile with an interfer-
ence penalty of 50 cycles.

Papabench Rosace
nb δ min freq (kHz) min slack to deadline min freq (kHz) min slack to deadline
cores single multi single multi single multi single multi

ASAP 2 1000 8 600 8 200 5 992 7 042 2 100 2 100 860 910
500 8 150 8 442 2 050 1 610
200 8 150 7 942 2 000 2 010

3 1000 8 300 7 950 4 722 15 530 1 800 1 700 888 2 283
500 7 900 17 316 1 700 2 633
200 7 900 15 666 1 650 3 583

SDE 2 1000 8 600 8 500 5 992 3 040 2 100 2 050 860 1 497
500 8 100 13 685 2 050 1 835
200 8 500 12 125 2 000 2 799

3 1000 8 300 7 600 4 722 19 313 1 800 1 650 888 2 884
500 8 000 7 698 1 650 2 984
200 7 800 19 967 1 600 4 270



2. CASE STUDIES : ROSACE AND PAPABENCH 114

Table 7.16: Schedulability analysis of Rosace and Papabench for the KDE profile with an interfer-
ence penalty of 50 cycles

Papabench Rosace
nb δ min freq (kHz) min slack to deadline min freq (kHz) min slack to deadline
cores single multi single multi single multi single multi

ASAP 2 1000 8 600 8 300 5 992 8 989 2 100 2 050 860 1 610
500 8 200 10 239 2 050 1 410
200 8 300 9 739 2 050 1 910

3 1000 8 300 8 100 4 722 13 055 1 800 1 700 888 2 433
500 8 000 15 563 1 700 2 483
200 8 000 15 413 1 700 2 733

SDE 2 1000 8 600 8 300 5 992 9 974 2 100 2 050 860 1 111
500 8 800 -3 841 2 050 1 766
200 8 800 -2 944 2 000 2 186

3 1000 8 300 7 700 4 722 17 336 1 800 1 750 888 1 810
500 7 800 14 464 1 650 2 999
200 7 900 1 326 1 600 3 840

These two metrics indicate how effective a method is to provide a schedule with sufficient safety
margins, by reducing the overestimation inherent to static timing analyses. The two metrics also
provide an indication on the potential energy savings that a method can provide. Indeed, decreasing
the operating frequency allows to save energy by reducing the dynamic power consumption of the
whole platform.

2.3.2 Results

Tables 7.15, 7.16 and 7.17 show the results of the schedulability analysis of Rosace and Pa-
pabench when the interference penalty is respectively once the cost of a memory access in isolation
for the two first tables (i.e. the most optimistic assumption for an architecture) and three times
this cost for the third (i.e. a more realistic assumption). The minimum slack to deadline is always
computed at the minimum frequency obtained with the single-phase model, so a negative value in
the multi-phase column means that the multi-phase model was not schedulable at this frequency.

According to Table 7.15, for Papabench on 2 cores ASAP is in average better than SDE regarding
the minimum frequency although the best gain for ASAP is 5.23% while it is 5.81% for SDE.
However, SDE outperforms ASAP in the minimum slack to deadline observed for δ ≤ 500, with a
maximum gain of 128% (compared to 41% for ASAP). In the other cases (Rosace included), SDE
is generally both better than ASAP regarding the minimum frequency and the minimum slack to
deadline with a gain for the min slack to deadline up to 323% for Papabench (on 3 cores and with
δ = 200 cycles). Indeed, as a recall, SDE tends to focus on local situations on the schedule which
was detrimental when using DAG systems because the local decisions were not beneficial to reduce
the overall makespan in particular when the cost of contentions was low. However, with multi-
periodic systems, jobs must meet their own deadlines, which can be perceived as local problems
where SDE is the most efficient.

Table 7.16 shows the results when the systems are scheduled with KDE profiles instead of TIPs.
We also observe the superiority of ASAP to schedule Papabench on 2 cores over SDE, and SDE
is even worse than the single-phase ASAP schedule when δ < 1000 cycles. The minimum slack to
deadline is then negative for these two cases because one job misses its deadline. However, we also
see that SDE is better than ASAP on 3 cores. For Rosace, the results between the two heuristic
are similar regarding the minimum frequency with 2 cores: the reduction is only 2.38% and up to
4.76% with SDE when δ = 200 cycles. However, the minimum slack to deadline is better with SDE
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Table 7.17: Schedulability analysis of Rosace and Papabench for the TIPs profile with an interfer-
ence penalty of 150 cycles

Papabench Rosace
nb δ min freq (kHz) min slack to deadline min freq (kHz) min slack to deadline
cores single multi single multi single multi single multi

ASAP 2 1000 11 100 10 650 163 13 492 2 900 2 800 660 1 560
500 10 450 16 342 2 750 3 360
200 10 450 16 942 2 750 3 660

3 1000 11 900 11 500 2 422 22 080 3 050 2 750 888 6 083
500 7 900 26 716 2 750 6 355
200 7 900 19 816 2 700 6 505

SDE 2 1000 11 100 10 300 163 25 070 2 900 2 600 660 5 505
500 10 400 17 754 2 550 6 055
200 10 300 29 743 2 500 7 054

3 1000 11 900 9 900 2 422 51 691 3 050 2 650 888 6 296
500 9 900 51 268 2 550 8 830
200 10 100 10 655 2 450 8 763

that achieves a gain up to 332% while it is 208% for ASAP (on 3 cores with δ = 200 cycles for both
of them).

As observed with the DAG scheduling results, decreasing δ tends to increase the gain of the
multi-phase model over the single-phase model, but the correlation seems less important. Indeed,
any job may make the system not schedulable so a single task profile that is less efficient at a lower
δ value can degrade the gain for all the system. For example, Papabench with the KDE profiles has
a lower schedulability than its single-phase counter part when using SDE and with δ < 1000 cycles
because of one task misses its deadline while the deadline was respected with δ = 1000 cycles.

Table 7.17 shows the results when the interference penalty is 150 cycles, so three times the
cost of an access in isolation. The minimum slack to deadline gain of the multi-phase has greatly
increased. For example, the maximum gain for this metric is 18 147% for Papabench on 2 cores with
the SDE heuristic (δ = 200) because of the very low value obtained with the single-phase model
(163 cycles). Another observation is that, except regarding the minimum frequency for Papabench
on 3 cores where ASAP reduces the minimum frequency of 34%, SDE always performs better than
ASAP with this penalty value for the two metrics under study. For Rosace, the maximum frequency
reduction of SDE is 14% on 2 cores and 20% on 3 cores, and the minimum slack to deadline gain
is up to 894% also with SDE (3 cores and δ = 200).

2.3.3 Summary

The results show for these two benchmarks that the multi-phase model is in most of the cases
more suited than the single-phase model to schedule a multi-periodic system. Indeed, the minimum
processor frequency at which the multi-phase representation is schedulable is generally lower and
it offers higher safety margins (i.e. a higher minimum slack to deadline). The difference is more
important when the interference penalty is increased.

Moreover, SDE can offer a consequent safety margin because it is good at optimizing local
situations as making jobs respecting their deadline.
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3 Conclusion
The ILP formulation has severe scalability issues because it accounts for the effects of interfer-

ence at the phase level. However, it shows the potential of the multi-phase model that is better
than the single-phase model in more than 95% of the performed tests. Moreover, the comparison of
optimal schedules with the multi-phase or the single-phase model shows that for small systems the
makespan gain is near 10% when using the muti-phase model. The heuristics aldo produce better
schedules than the optimal single-phase one in average. In around 90% of the tests, IPH obtains
at least the same makespan and its average gain is superior to 5%.

Another study on bigger systems showed that the results of SDE and MCTS are dependent on
the correlation between the reduction of the number of contentions and of the makespan. Indeed,
the two heuristics are the most effective techniques to reduce contentions (in this order) because
they take scheduling decisions based on interference analyses performed on partial schedules. Hence,
SDE is almost as efficient as IPH to reduce the makespan with a high timing penalty. However,
when the effects of contentions are limited by the number of cores and the interference penalty value,
the correlation between the gains in makespan and in contentions is weak so SDE and MCTS are
the least efficient to reduce the makespan. The overall superiority of IPH seems to indicate that
exploring the space of possible tasks ordering is more efficient in terms of makespan reduction than
exploring the space of possible start dates. However, as SDE is closer to IPH with a more realistic
timing penalty (i.e. superior to the memory latency in isolation), exploring the set of dates is also
efficient.

Moreover, the experiments with synthetic systems allows to test the efficiency of different profile
shapes. The results indicate that regardless of the variation of the durations of the phases, the
profiles where the number of accesses varies greatly from one phase to another yield the best results.
Indeed, it favors situations where one phase cannot create contentions with all its accesses. For the
same reason, the presence of empty phases in the profiles improves the makespan gain.

Finally, the application of the heuristics on two realistic case studies shows that the multi-phase
model can yield substantial gains in makespan and contentions (up to 24% and 64% respectively)
compared to the single-phase model. In addition, by applying ASAP and SDE on multi-periodic
versions of the case studies, we observe that the multi-phase model can also offer more margins
between the end of tasks and their deadlines.

SDE would benefit from an assessment of the impact of its scheduling choices not only based
on the tasks that are already scheduled but also on those which are to be scheduled later in order
to find a better trade-off between contentions reduction and makespan gain. However, the impact
is highly dependent on the results of an interference analysis which is difficult to estimate without
knowing the schedule, in particular at the phase granularity which increases the set of possible
interference scenario for each task.

In order to address the same issue, we attempted preliminary experiments with MCTS schedul-
ing heuristic where we added simple information about the accesses that each non-scheduled task
can perform in the reward function in addition to their duration. They have not been further
explored because at the end the results of the simulation step of MCTS were too approximate so
the scores of the nodes were not reflecting well their quality. In [65], MCTS is combined with deep
reinforcement learning to choose better nodes and predict the results of the simulations but the
contentions are not taken into account. Integrating the effects of contentions in the prediction could
require to encode the information about their duration coupled with their number of accesses, and
to link the information on the phases to their respective tasks. The machine learning approach is
interesting but requires experience in this domain to design and train the model.



Chapter 8

General conclusion

Timing analyses are a necessary step for hard real-time systems because they must satisfy strict
timing constraints. In particular, the timing analyses are used to derive the Worst-Case Execution
Time (WCET) of the tasks, a safe upper bound on their execution time. At the same time,
the technological improvements targeting the execution platforms are mainly designed to improve
the average-case performance, which deteriorates their predictability. Indeed, these optimizations
increase the variability of the execution time and makes the WCET computation more challenging.
This thesis addresses the problem of timing prediction for multi-core execution platforms. In
particular, we are interested in the prediction of the contentions that can occur in the interconnect
connecting the cores to the main memory. Indeed, the interference analysis that computes the worst-
case interference scenario in a schedule tends to over-estimate the maximum number of contentions
that can occur. This over-estimation is detrimental to the schedulability of real-time systems and
to the sizing of execution platforms that can support the estimated worst-case execution scenario.

1 Contributions
Figure 8.1 shows the main steps to pass from the binary code of a task to the code implementing

its multi-phase profile and the contributions of the thesis to each step. These contributions are
described in the next sections.
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Figure 8.1: Contributions of the thesis.
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1.1 Correction and safety of the multi-phase model

The contributions of the thesis rely on the multi-phase representation of tasks during the
interference analysis. This model was introduced either with strong constraints on the model
(AER [11] and PREM [10]) or coupled with a particular method to obtain the phases (TIPs [12]
and StaMP [13]). Instead, we use a generic formalization of the multi-phase model and present
a method to account for the worst-case number of accesses in each phase of any profile given the
traces representation of the task. Three correctness criteria guarantee that this accounting is safe
and that the implementation of the multi-phase model in the code is correct with respect to a given
schedule. This implementation is ensured by the injection of synchronizations in the code to bound
the possible execution dates of instructions and to ensure that their accesses can only be performed
in certain phases. The implementation of the synchronization mechanism is not addressed in the
thesis, but the correctness criteria are generic so they are compatible with many possibilities.

1.2 Building multi-phase profiles from the execution traces of a task

Chapter 4 presents new methods to build multi-phase profiles. Firstly, a method tries to cluster
the accesses into phases using Kernel Density Estimation (KDE). This method is extended with
additional optimization heuristics to apply in order to improve the precision of the profile and
favor characteristics that reduce the over-estimation of the interference analysis (e.g. the presence
of phases without accesses and a low access over-approximation). This set of heuristics applied
to build a multi-phase profile shows that it is a multi-objective optimization problem with a large
solution space. Hence, we introduced another building method based on Genetic Algorithms (GA).
With this meta-heuristic, it is possible to explore more efficiently the space of solutions and to
evaluate these solutions with multiple criteria at the same time using a fitness function. In our
implementation, the fitness of a profile depends on the access over-approximation, the number
of synchronizations used and the time guaranteed without accesses in the profile. The trade-off
between these criteria is set by tuning their coefficient in the fitness function and can be different
for each system. In addition, a distinct GA-based method is proposed to optimize existing profiles.
This GA uses the same criteria but with an additional criterion measuring the variability of the
phases duration such that, coupled with the proportion of time without accesses, the good properties
of the initial profile are preserved.

These new building methods are compared with the TIPs method in Chapter 5 on two case
studies. According to the makespan of the obtained schedules (with a simple scheduling heuristic),
the profiles generated with the TIPs method generally yield the best makespan gain for the analyzed
case studies. The results cannot be generalized as our two case studies are not representative.
However, we identified strong trends regarding theGA-based methods. First, building a profile with
the traces-basedGA requires less synchronizations than the other methods, so its ratio between the
makespan gain and the number of synchronizations to inject in the code is better. Moreover, the
GA applied on existing profiles was able to reduce the number of synchronizations required in most
cases and sometimes even outperformed the makespan gain of the initial profile. Therefore, the use
of meta-heuristic techniques such as a GA seems effective to take into account several criteria from
the construction of a profile, but also to optimize existing ones.

1.3 Scheduling multi-phase tasks on multi-core platforms

Chapter 6 addresses the problem of statically scheduling multi-phase tasks in multi-core plat-
forms without preemption. The problem is introduced formally by an ILP formulation that takes
into account the effects of contentions and tasks precedence constraints. The phase level granu-
larity offers a lot more possibilities than when using the traditional single-phase representation.
Therefore, the chapter continues by proposing heuristics that have different strategies to efficiently
explore the possible schedules. The ASAP heuristic is the most naive, it simply schedules each task
as soon as possible on the core with the lowest end date and contentions are only computed on
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the final schedule (i.e. they are not used to make the scheduling decisions). On the contrary, SDE
tests different start dates for the tasks on each core and computes the contentions of the partial
schedules under test before making its decision. IPH explores the set of possible scheduling orders
of the tasks and builds a complete schedule using each order explored and the ASAP policy. Then,
it performs an interference analysis to retain only the order that yields the best makespan. Finally,
we propose to use Monte-Carlo Tree Search (MCTS) over the set of possible tasks orderings and
core mappings, with tasks also scheduled as soon as possible. The scheduling decision is based on
a partial interference analysis combined with information on the tasks remaining to schedule.

The last chapter begins by assessing the efficiency of the multi-phase model to reduce the
over-estimation of the interference analysis using the ILP to obtain optimal schedules for both the
multi-phase representation and its single-phase equivalent. The tests show that the multi-phase
model is more efficient in more than 95% of the cases with an average gain near 10% regarding
the makespan. However, these tests are limited to small tasks systems because of the limitations
inherent to the ILP. Indeed, it has a low scalability due to the phase level granularity and the
accounting of contentions so the conclusion cannot be generalized. Still, the heuristics are also all
beating the single-phase optimal schedules in average, and particularly IPH whose average gain is
between 5 and 6%.

Another experiment with larger tasks systems allows to compare the efficiency of different profile
shapes. The results show that, regardless of the variability of the phases duration, the results are
better when the number of accesses in the phases varies. The cause is that if the number of
accesses is approximately the same for two overlapping time intervals from different cores, then
most of the accesses can create contentions. The variability of accesses allows that some phases
with many accesses cannot create contentions with all their accesses. The comparison of the results
for the heuristics showed that IPH was always superior to the others. Moreover, the efficiency of
SDE and, in a lesser degree, of MCTS to reduce the makespan depends largely on the impact of
the contentions. Indeed, the two methods are the most efficient to reduce contentions in all the
cases but this reduction is not transposed to the same extent for the makespan gain when the
interference penalty is low. However, with a higher interference penalty, the makespan gain of SDE
was similar to IPH. Finally, the heuristics are applied on two realistic case studies. The results
confirm the efficiency of the multi-phase model compared to the single-phase model to reduce the
over-estimation of the interference analysis both with a DAG and a multi-periodic system. Indeed,
the makespan gain reaches 16% for one of the case study and 24% for the other. Moreover, we
observe that the gain increases with the number of cores in the architecture considered and when
the interference penalty is more than the cost of an access in isolation, which is a more realistic
assumption.

2 Perspectives
As discussed in the conclusion of Chapter 3, the implementation of synchronizations has not

been addressed during the thesis although the cost of their injection in the code must be taken
into account to ensure that the model can be enforced during the execution of the task. Numerous
techniques can be considered, from the simple injection of busy-wait loops in the code to a global
scheduler. The correctness criteria defined are generic so they do not exclude any possibility, and the
rules used to select synchronizations in Chapter 4 are independent of the execution context (trace
being executed, number of iterations of a loop), which is a restrictive way to select synchronizations
that also complies with context-aware mechanisms.

Regarding the construction of the multi-phase profiles, we looked for good characteristics to
enhance the efficiency of the model for the interference analysis with the definition of the fitness
functions for the two GA in Chapter 4, and then with the comparison of the results for different
profile shapes in Chapter 7. However, the list of good characteristics that we identified is not
extensive and we lack metrics to measure them with more precision. One can identify the influence
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of another characteristic easily by adding it as a new criterion of the GA.
The experiments of Chapter 7 showed that SDE and MCTS, which both work on partial sched-

ules with contentions, lack a component to assess the impact of their choices on future decisions.
Such a component must take into account the dependencies between the tasks or their order to be
able to anticipate which tasks may be scheduled in parallel in the future. The main difficulty is cer-
tainly to predict the potential contentions at the phase granularity level. Indeed, a slight difference
between the predicted and the actual number of contentions occurring for a phase may completely
change the sets of phases contending with each other and result in a poor prediction. Moreover,
our scheduling heuristics are never exploring the possible tasks orderings and the possible dates of
tasks at the same time because taking one or the other already requires a consequent computation
time due to the computation of contentions. However, the two exploration strategies have proven
their efficiency so it would be worth combining them. One possibility is to apply SDE instead of
ASAP when scheduling with a given tasks order for IPH. This solution has been attempted but
the computation time was indeed too high to apply it in all the test cases (including the two case
studies). Similarly, it is possible to extend the exploration space of MCTS by including different
start dates for the tasks with additional decision branches in the tree. Such solution has also been
tried but we encountered problems related to the computational complexity.

The thesis work can also be extended to take into account multiple sources of contentions at the
same time. In this case, the interference analysis must compute the possible contentions and their
cost for each interference source separately and the overall interference penalty can be obtained by
summing the penalties computed for each source.

In addition, we restrained the scheduling problem to architectures with homogeneous cores
without task preemption. As mentioned in the conclusion of Chapter 6, this first restriction can
easily be lifted by considering different profiles to represent a given task for each core type. It
also opens the way to new optimizations that could take into account the trade-off between energy
and performance, in addition to the worst-case interference schedule. We also previously discussed
about preemption which we have not considered to develop our heuristics. Indeed, preemptions
may affect our assumptions and properties regarding the definition of equivalent nodes, the method
to conservatively count the accesses and the synchronization of nodes but we did not have time to
assess their impact and to adapt our heuristics accordingly.
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Chapter 9

Synthèse en français

1 Introduction
L’analyse pire cas de temps d’exécution, ou Worst-Case Execution Time (WCET) [2], est néces-

saire pour un système temps-réel critique (e.g. aéronautique, spatial, médical...) afin de prouver
que, quelque soit le scénario d’exécution, le système ne pourra pas être mis en défaut et causer des
accidents graves. Alors que l’architecture des processeurs évolue constamment pour améliorer leur
performance, l’analyse WCET doit s’adapter à ces évolutions pour fournir des résultats sûrs et le
plus précis possible.

En particulier, le remplacement progressif des architectures mono-cœur par les architectures
multi-cœur [3, 4] est une problématique majeure pour les systèmes critiques puisque ces dernières
permettent un bond technologique mais sont aussi beaucoup moins prédictibles que les mono-cœur.
En effet, dans les architectures multi-cœur, les cœurs partagent généralement des ressources (mé-
moires, bus, périphériques) et peuvent potentiellement accéder à ces ressources au même moment,
créant des interférences. Cela complique davantage la vérification des systèmes critiques. Pour cette
raison, les principales autorités de certification ont publié des documents traitant spécifiquement
des architectures multi-cœur pour faire part de leurs exigences [8].

La thèse s’intéresse à cette problématique de vérification temporelle de programmes temps-
réel sur des architectures multi-cœur. En particulier, elle traite des interférences nées d’accès
concurrents à une même ressource. L’objectif est de réduire la sur-estimation des interférences
qui peuvent avoir lieu pour améliorer la précision de la borne supérieure d’exécution en présence
d’interférences.

2 Temps d’exécution pire-cas

2.1 Estimer le WCET d’une tâche

Le temps d’exécution d’une tâche varie en fonction des données d’entrée de la tâche et de
la plate-forme sur laquelle elle s’exécute. Ainsi, en mesurant le temps d’exécution de la tâche
pour toutes les entrées possibles et tous les états initiaux de la plate-forme d’exécution, on peut
déterminer le WCET.

En pratique, c’est souvent impossible parce qu’il est compliqué d’identifier et de reproduire
exactement toutes ces exécution possibles. Pour y remédier, les techniques d’analyse WCET dy-
namiques exécutent le programme (sur cible ou avec un simulateur) pour un sous-ensemble des
temps d’exécution possibles puis estiment le WCET en utilisant des méthodes probabilistes. Cepen-
dant, il n’y pas de garantie que le WCET estimé n’est pas sous-évalué puisqu’on ne sait pas si le
chemin d’exécution pire cas a été mesuré ou pris en compte.

La thèse repose sur des méthodes d’analyse statiques qui, contrairement aux méthodes dy-
namiques, ne nécessitent pas d’exécution des tâches. Elles reposent sur une analyse du code et
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des composants micro-architecturaux de la cible et permet de couvrir tous les chemins d’exécution
possibles afin d’obtenir une borne d’exécution qui ne peut pas sous-estimer le WCET réel.

2.2 Analyse WCET statique

On peut découper une analyse WCET statique en mono-cœur en 3 grandes étapes:

1. L’analyse du flot de contrôle: elle se concentre sur le code pour extraire les informations
nécessaires à l’analyse sur les chemins d’exécution possibles.

2. L’analyse du comportement du processeur: cette analyse détermine le temps d’exécution des
portions de code qui composent les chemins d’exécution possibles en analysant les états des
composants du processeur et leur évolution.

3. Le calcul du WCET: cette étape combine les informations sur les chemins d’exécution et le
temps d’exécution des instructions sur ces chemins pour trouver le chemin d’exécution au
pire cas.

Pour effectuer ces étapes sans exécuter le code, les analyses statiques utilisent des modèles qui
représentent le code et les composants de l’architecture. L’utilisation de ces modèles nécessite un
arbitrage entre la quantité information qu’ils capturent et leur précision afin que l’analyse ne soit
pas trop complexe à réaliser. Pour cette raison, l’analyse utilise des hypothèses conservatrices sur
l’état des composants et les chemins d’exécution afin d’abstraire certaines informations tout en
s’assurant de couvrir tous les cas d’exécution. Cela peut entraîner une sur-estimation importante
du WCET.

2.3 Adoption des architectures multi-cœur

Les processeurs mono-cœur sont progressivement remplacés par des multi-cœur dans la plupart
des applications industrielles, y compris pour les systèmes critiques [5, 6, 7]. En effet, ces architec-
tures sont plus performantes (parallélisme), elles ont aussi une meilleure efficacité énergétique et
elles permettent par exemple d’utiliser différents types de cœurs pour exécuter un les tâches d’un
système.

Cependant, elles introduisent de nouvelles problématiques du point de vue des analyses tem-
porelles qui sont bloquantes pour leur utilisation dans les systèmes critiques. Dans cette thèse,
nous nous intéressons aux interférences inter-cœurs qui surviennent suite à des accès concurrents
aux ressources partagées. En effet, lorsque plusieurs cœurs demandent simultanément l’accès à une
ressource partagée (e.g. bus mémoire, cache, mémoire principale), un seul est servi et tous les autres
doivent attendre. Ce temps d’attente n’est pas pris en compte dans les analyses WCET classiques
conduites en mono-cœur. Pourtant, il est loin d’être négligeable puisque certaines recherches ont
mesuré des temps d’exécution presque trois fois plus élevés avec que sans ces interférences.

2.4 Prise en compte des interférences dans l’analyse temporelle

L’une des approches utilisées pour prendre en compte ces interférences est l’isolation des cœurs.
En effet, en s’assurant que les cœurs ne peuvent pas accéder aux mêmes ressources en même
temps, on est certain qu’il ne peut pas y avoir d’interférences. Cela peut se faire en choisissant des
politiques d’arbitrage comme Time Division Multiple Access (TDMA) [33, 34, 35] ou Round Robin
(RR) [36, 37] pour lesquelles chaque cœur a périodiquement une fenêtre temporelle pour accéder
individuellement à la ressource partagée. L’inconvénient est que l’analyse WCET va considérer
que pour chaque accès, le cœur doit attendre une période entière avant de pouvoir être servi. Il en
résulte une importante sous-utilisation des ressources. Pour y remédier, des travaux ajoutent des
éléments de contexte afin de ne pas avoir toujours à considérer le même pire cas quelle que soit la
situation [36, 9].
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Toujours dans ce but d’isolation, de nouveaux modèles de tâches ont été proposés. Le modèle
PRedictable Execution Model (PREM) [10] décompose l’exécution des tâches en deux phases: l’une
effectue tous les transferts mémoires entre des mémoires locales à chaque cœur et celles partagées,
et la suivante exécute la tâche en ne se servant que des données et instructions chargées par la
première phase (sans effectuer d’accès supplémentaire à la mémoire partagée). Ce modèle a été
repris en ajoutant une troisième phase à la fin de la tâche qui, comme la première, peut effectuer des
accès (modèle Acquisition Execution Restitution AER [11]) et ainsi écrire en mémoire les résultats
de l’exécution. En ordonnançant les tâches de façon à ce qu’aucune phase mémoire ne s’exécute
en même temps qu’une autre, ou en utilisant un bus TDMA ou RR, on peut garantir un système
sans interférences.

L’inconvénient est que le code est très contraint par ce modèle et qu’il faut charger un grand
nombre de données localement pour être sûr que toutes les données nécessaires à l’exécution de la
tâche sont disponibles avant sa phase d’exécution (i.e. le temps de chargement et l’espace de stock-
age nécessaire sont importants). De plus, garantir un système sans interférences n’est pas forcément
la meilleure façon de réduire le temps de réponse du système. Des travaux proposent donc de con-
sidérer les cas où les phases mémoires peuvent interférer entre elles tout et proposent d’effectuer
des analyses d’interférence pour tenir compte des délais supplémentaires dus aux interférences dans
le pire cas [14, 46].

En s’affranchissant des contraintes de PREM et AER (nombre et type de phases), les méthodes
Time Interest Points (TIPs) [53, 12] et Static Analysis of Memory Access Profiles (StAMP) [13]
proposent deux techniques pour construire des représentations multi-phase directement à partir
du code binaire des tâches. Ces deux méthodes requièrent un décompte sûr du nombre maximum
d’accès pouvant être effectués dans chaque phase avant d’effectuer l’analyse d’interférences.

La thèse s’inscrit dans la continuité de ces méthodes moins contraignantes pour représenter et
ordonnancer les tâches d’un système.

3 Modèle multi-phase: définition formelle et critères de correction

3.1 Définition formelle du modèle: phases et traces

Le Chapitre 3 présente une définition formelle générique du modèle multi-phase. À la représen-
tation sous forme de phases s’ajoute une représentation des traces d’exécution de la tâche qui
permet de vérifier si les phases représentent correctement le modèle en mettant en relation ces deux
représentations.

Les traces sont des suites de nœuds représentant chacun une instruction pouvant effectuer un
accès mémoire. Les transitions entre les nœuds expriment le flot de contrôle et ont une durée
correspondant au WCET local entre les nœuds source et destination. Cette représentation nous
fournit une borne supérieure de la date d’exécution des instructions représentées par les nœuds et
on peut donc estimer sur quelle(s) phase(s) ils peuvent potentiellement s’exécuter puis compter le
nombre maximum d’accès dans chaque phase.

3.2 Synchronisations

Avec le modèle multi-phase, lorsque l’intervalle temporel dans lequel un accès peut être effectué
couvre plusieurs phases alors on doit compter cet accès dans toutes les phases couvertes. Un tel
accès est donc compté plusieurs fois dans la tâche, ce qui n’est pas possible en utilisant le modèle
mono-phase. On appelle sur-approximation des accès la différence entre le nombre total d’accès
dans une représentation multi-phase et son équivalent mono-phase.

Alors que nous avons une borne supérieure de la date d’exécution des nœuds, le modèle con-
sidère par défaut que la borne inférieure est le début de la tâche. Cela dégrade grandement la
sur-approximation des accès car un nœud doit alors être compté dans toutes les phases précédant
sa date d’exécution pire cas. Pour obtenir une borne inférieure plus précise et réduire l’intervalle
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d’exécution possible des instructions, on peut calculer leur BCET mais les outils d’analyse à notre
disposition, centrés sur le WCET, ne permettent pas de le calculer directement. Ainsi, nous util-
isons des synchronisations sur certains nœuds qui les empêchent de s’exécuter avant la date de
synchronisation choisie. Ces synchronisations doivent être injectées dans le code sur les instruc-
tions représentées par les nœuds synchronisés. Elles permettent de mieux contrôler les intervalles
d’exécution des instructions effectuant des accès et donc la sur-approximation du modèle multi-
phase.

3.3 Critères de correction

En détaillant 3 critères de correction, nous montrons comment compter de façon sûre les accès
dans les phases et comment ajuster les dates de synchronisation afin que le décompte des accès
avant d’appliquer l’analyse d’interférence reste valable également une fois qu’elle a été effectuée.

En effet, pour prendre en compte l’effet des interférences, la durée des phases est augmentée par
la pénalité d’interférence qui est proportionnelle au nombre d’interférences qu’elles peuvent subir
selon l’analyse d’interférences. Suite à ce changement, les intervalles couvrant les dates possibles
d’exécution des instructions recouvrent potentiellement d’autres phases que celles identifiées en
isolation, ce qui invaliderait le décompte des accès dans les phases et l’analyse d’interférence elle-
même.

En agissant sur la date des synchronisations, les critères de correction garantissent que l’analyse
d’interférence est valide en tenant compte des pénalités d’interférence à appliquer. Comme ces trois
critères sont indépendants de la méthode choisie pour construire les phases et du mécanisme de
synchronisation implémenté, ils peuvent être appliqués à tout profil multi-phase.

4 Du code binaire à la représentation multi-phase d’une tâche

4.1 Heuristique simple de construction d’un profil

La définition des critères de correction nous a permis de définir de nouvelles méthodes pour
créer et optimiser des profils multi-phase. Nous avons d’abord développé une heuristique pour
créer un profil à partir des traces d’une tâche, basée sur l’estimation de densité par noyau, ou KDE
en anglais. Le principe est de construire une distribution des dates d’accès pire cas de la tâche en
utilisant les traces, puis d’extraire la fonction continue représentant cette distribution en utilisant
KDE afin de créer des phases entre les pics et les creux de la fonction. Il en résulte un profil dont
la date des phases est directement liée à celle des accès, si possible regroupés dans certaines phases.

4.2 Sélection des synchronisations et optimisation du profil

Nous proposons par la suite une méthode pour sélectionner efficacement des synchronisations en
considérant un mécanisme de synchronisation indépendant du contexte d’exécution pour le rendre
le plus général possible. Cette méthode est complétée par une heuristique qui optimise la sélection
en identifiant et supprimant des synchronisations "redondantes" (i.e. dont la présence n’améliore
pas le compte des accès dans les phases). En complément, nous avons implémenté des heuristiques
pour corriger et améliorer l’efficacité du profil construit en favorisant de bonnes caractéristiques
pour l’analyse d’interférences par l’harmonisation de la durée des phases et l’augmentation du
temps passé sans accès.

4.3 Utilisation d’algorithmes génétiques

Cette accumulation d’heuristiques pour façonner un bon profil multi-phase montre que le prob-
lème admet un grand nombre de solutions et qu’on peut s’intéresser à de multiples critères. C’est
pourquoi nous nous sommes aussi tournés vers les méta-heuristiques. Cette famille d’algorithmes
est utilisée pour résoudre des problèmes d’optimisation complexes car elles peuvent donner une
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bonne approximation de la meilleure solution. En particulier, nous avons utilisé des Algorithmes
Génétiques (GA) qui sont basés sur les mécanismes de sélection naturelle. Ils sont faciles à implé-
menter et permettent de traiter des problèmes multi-critères avec un grand espace de solutions.

4.3.1 Créer un profil avec un GA

Le premier algorithme génétique implémenté permet de créer un profil multi-phase à partir
des traces d’exécution d’un programme. Pour construire les phases, le GA utilise les dates pire
cas des instructions effectuant des accès. Cependant, nous proposons 3 versions de l’algorithme
pour sélectionner les synchronisations. La première version se base directement sur les nœuds
dont la date pire cas sert à créer des phases. Pour les deux autres versions, c’est l’heuristique de
sélection des synchronisations développée précédemment qui est appliquée mais seule l’une de ces
deux autres version applique également l’optimisation retirant les synchronisations redondantes.
Les critères d’évaluation des solutions sont: la sur-approximation du nombre d’accès et le nombre
de synchronisations qui doivent être minimisés, ainsi que la proportion de temps sans accès de la
tâche qui doit être maximisée. De plus, nous utilisons une durée de phase minimale qui permet
d’harmoniser la durée des phases.

4.3.2 Optimiser un profil avec un GA

Le deuxième algorithme génétique est appliqué sur des profils existants et essaie de fusionner
des phases consécutives afin d’améliorer leur potentiel. Ces fusions permettent en effet de réduire
mécaniquement la sur-approximation des accès et le nombre de synchronisations nécessaires, qui
sont évalués pour chaque solution. Cependant, il est important de garder les bonnes caractéristiques
du profil initial. C’est pourquoi la proportion de temps sans accès est toujours évaluée ainsi que la
variabilité des durées de phase, qui permet de s’assurer que la structure du profil initial ne varie
pas trop.

5 Étude comparative: concevoir un profil de tâche

5.1 Comparaison des caractéristiques des profils

Les méthodes de conception de profil présentées sont comparées dans le Chapitre 5 avec la
méthode TIPs de l’état de l’art. L’étude est menée en utilisant deux cas d’étude: un cas issu de
l’état de l’art et un autre synthétique. D’après nos résultats, les GAs créent des profils composés
de beaucoup moins de phases que les autres méthodes et qui, par conséquent, nécessitent moins
de synchronisations. Le GA d’optimisation permet lui aussi de réduire le nombre de phases et de
synchronisations dans les profils initiaux.

5.2 Comparaison des gains après ordonnancement

Nous avons aussi généré des profils pour les cas d’étude, et ordonnancé ces systèmes de tâches
pour évaluer les gains obtenus sur le temps de réponse du système en intégrant les interférences.
La méthode TIPs de l’état de l’art est généralement la meilleure de ce point de vue alors que notre
heuristique basée sur KDE est plutôt moins bonne que les autres. Le GA d’optimisation permet
d’améliorer les résultats des profils issus de notre heuristique et dégrade légèrement ceux de la
méthode TIPs. Le GA créant lui-même un profil obtient de bons résultats avec le cas d’étude réel
mais est plutôt comme notre heuristique simple avec le cas synthétique.

5.3 Équilibre entre effort d’implémentation et gain après ordonnancement

En résumé, la méthode TIPs génère les profils ayant le plus de potentiel pour réduire le temps de
réponse au pire cas. Cependant, les profils qu’elle génère utilisent beaucoup plus de synchronisations
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que les méthodes à base d’algorithmes génétiques. Ainsi, les méthodes intégrant un GA soit pour
créer ou optimiser un profil offrent le meilleur compromis entre le gain en temps de réponse et le
nombre de synchronisations à injecter dans le code pour nos deux cas d’étude.

6 Ordonnancement statique de tâches multi-phase sur des plate-
formes multi-cœur

6.1 Définition du problème (ILP)

Pour finir, dans le Chapitre 6 on s’intéresse à l’ordonnancement statique de tâches décrites par
des profils multi-phase (après obtention des profils, par n’importe laquelle des méthodes). Nous
proposons d’abord une formulation Integer Linear Programming (ILP) du problème en prenant
en compte des dépendances entre tâches et les interférences pouvant avoir lieu entre les phases.
L’objectif est de réduire le temps total d’exécution du système.

6.2 Développement d’heuristiques d’ordonnancement

Ensuite, on présente des heuristiques pour pouvoir traiter des systèmes de tâches réalistes que
l’ILP ne pourrait pas résoudre en un temps acceptable. La première heuristique, nommée As Soon
As Possible (ASAP), ne se soucie pas des interférences : chaque tâche est ordonnancée au plus tôt
sur le cœur qui donne le meilleur temps de réponse, dans une logique gloutonne.

Les deux autres heuristiques au contraire intègrent le calcul des interférences pour trouver le
meilleur ordonnancement, mais leur stratégie diffère l’une de l’autre. Starting Date Enumera-
tion (SDE) tente d’ordonnancer les tâches tour à tour (selon un ordre donné) sur tous les cœurs
disponibles avec différentes dates de début puis effectue une analyse d’interférence sur les ordon-
nancements partiels étudiés avant de retenir celui qui donne le meilleur temps de réponse. Quant
à elle, Iterative Priority Heuristic (IPH) explore les ordres dans lesquels les tâches sont sélection-
nées et placées par l’ordonnancement. L’algorithme tente de converger vers le meilleur ordre en
se servant des informations sur les ordres déjà essayées et en calculant les interférences sur les
ordonnancement complets.

Enfin, nous tentons d’utiliser une autre méta-heuristique utilisant une méta-heuristique appelée
Monte-Carlo Tree Search (MCTS). Elle explore les ordres et allocations aux cœurs possibles des
tâches à l’aide d’un arbre et effectue les analyses d’interférences sur des ordonnancements partiels
comme pour SDE. Toutefois, ses calculs incluent le coût des tâches restant à ordonnancer pour
comparer d’une façon plus juste les différents états représentant des ordonnancement partiels lors
de chaque décision.

6.3 Optimisation d’un ordonnancement multi-phase

Nous présentons aussi une heuristique d’optimisation qui peut s’appliquer à un ordonnancement
partiel ou complet existant pour améliorer le temps de réponse. Cette heuristique fusionne des
phases lorsque le modèle multi-phase introduit une forte sur-estimation locale des interférences.

7 Étude comparative: ordonnancement statique sur des plate-
formes multi-cœur

7.1 Comparaison avec l’ILP

Le dernier chapitre (Chapitre 7) compare les résultats des heuristiques d’ordonnancement. La
première partie des expérimentations est effectuée uniquement sur des profils synthétiques générés
de façon à couvrir un large échantillon de profils possibles. On étudie d’abord de petits systèmes de
tâches afin de pouvoir y appliquer l’ILP et obtenir une solution optimale. Cette expérience indique
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que le profil multi-phase est plus efficace que le mono-phase (lui aussi ordonnancé avec l’ILP) dans
plus de 95% des cas et avec en moyenne un temps de réponse diminué de 9.42%. De plus, les
ordonnancements générés par les heuristiques sont eux aussi meilleurs que l’optimal en mono-phase
(dans près de 90% des cas pour IPH et plus de 75% des cas pour SDE). Ces résultats ne sont pas
généralisables à cause de la taille des systèmes étudiés, limitée par le temps de résolution de l’ILP.

7.2 Comparaison avec de plus grands systèmes

Les tests suivants sont effectués sur de plus grands systèmes. Les résultats montrent qu’IPH est
la meilleure heuristique pour réduire le temps de réponse alors que SDE et MCTS sont les meilleures
pour réduire le nombre d’interférences. On remarque que SDE et MCTS sont peu efficaces pour
réduire le temps de réponse lorsque le coût d’une interférence est faible (scénario optimiste), mais
SDE est au même niveau qu’IPH lorsque nous augmentons le coût des interférences (scénario plus
réaliste). Nous étudions aussi l’influence des paramètres de génération sur l’efficacité du modèle
multi-phase à partir de nos résultats.

7.3 Cas d’étude

Ensuite, les heuristiques sont appliquées sur deux cas d’étude issus de l’état de l’art. Les
résultats confirment nos observations sur les tâches synthétiques. Le gain en temps de réponse
atteint 24% lorsque le coût de pénalité est important et avec 4 cœurs tandis que la réduction des
interférences monte jusqu’à presque 65%. L’étude de cas se poursuit en utilisant des systèmes
multi-périodiques. L’objectif n’est plus de réduire le temps d’exécution total du système mais
d’améliorer son ordonnançabilité (i.e. réduire la fréquence processeur à partir de laquelle chaque
tâche respecte ses contraintes temporelles). Dans cette nouvelle expérience, nous montrons encore
une fois l’efficacité du modèle multi-phase qui améliore dans presque tous les cas l’ordonnançabilité
en utilisant ASAP et SDE.

8 Conclusion et perspectives
La thèse propose d’améliorer la prise en compte des interférences inter-cœurs dans les analyses

temporelles statiques qui apparaissent en multi-cœurs. En particulier, les interférences étudiées
sont celles apparaissant lorsque plusieurs cœurs tentent d’accéder en même temps à une mémoire
partagée.

Les contributions sont toutes basées sur un modèle multi-phase générique des tâches qui permet
une représentation plus précise des moments où sont effectués les accès dans une tâche. En résumé,
ces contributions sont:

• Formalisation de critères de correction garantissant que le décompte des accès dans les phases
ainsi que l’implémentation d’un ordonnancement donné sont sûrs par rapport à une sélection
de synchronisations.

• Développement de méthodes de conception et d’optimisation de profils multi-phase, ainsi
que de sélection de synchronisations suivant un mécanisme de synchronisation générique (in-
dépendant du contexte d’exécution).

• Écriture d’une formulation ILP du problème d’ordonnancement multi-cœur avec des dépen-
dances de tâches et la prise en compte des interférences entre les phases.

• Développement d’heuristiques d’ordonnancement multi-cœur adaptées au modèle multi-phase
et prenant en compte les interférences.

Le travail pourrait être étendu par la suite en suivant les pistes suivantes:
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• Développement complet d’une méthode de synchronisation respectant les propriétés intro-
duites dans la thèse.

• Prise en compte d’autres types d’interférences (e.g. périphériques I/O, éviction de données
dans les caches partagés...).

• Extension de l’étude sur l’influence des caractéristiques des profils sur l’efficacité du modèle
multi-cœur pour mieux guider les techniques de conception de profils.

• Ordonnancement avec une architecture multi-cœur hétérogène.

• Sortir de la vision court-termiste des heuristiques d’ordonnancement travaillant sur des or-
donnancements partiels (SDE et MCTS).

• Évaluer l’impact de la présence de préemptions sur les propriétés et hypothèses présentées
dans la thèse.
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