
École doctorale no 72 : Sciences Pour l’Ingénieur

Thèse de Doctorat

préparée au sein de CRIStAL, Inria Lille et
du Laboratoire d’Informatique de Grenoble

pour obtenir le grade de docteur délivré par

l’Université de Lille

Spécialité : Informatique

présentée par

Alexandre Bérard

le 15 juin 2018

Neural Machine Translation

Architectures and Applications

Directeur : Olivier Pietquin
Co-directeur : Laurent Besacier

Jury

Philippe Langlais, Professeur à l’Université de Montréal Rapporteur
Béatrice Daille, Professeur à l’Université de Nantes Rapporteur
François Yvon, Professeur à l’Université Paris Sud Examinateur
Pascale Sébillot, Professeur à l’INSA de Rennes Examinateur
Marc Tommasi, Professeur à l’Université de Lille Examinateur
Olivier Pietquin, Professeur à l’Université de Lille Directeur
Laurent Besacier, Professeur à l’Université Grenoble Alpes Co-directeur

“A Lannister always pays his debts.”

Abstract

This thesis is centered on two main objectives: research replication and adaptation of Neural
Machine Translation techniques to new tasks. Our efforts towards research replication have led
to the production of two resources: MultiVec, a framework that facilitates the use of several tech-
niques related to word embeddings (Word2vec, Bivec and Paragraph Vector); and a framework
for Neural Machine Translation that implements several architectures and can be used for reg-
ular MT, Automatic Post-Editing, and Speech Recognition or Translation. These two resources
are publicly available and now extensively used by the research community.

We extend our NMT framework to work on three related tasks: Machine Translation (MT), Au-
tomatic Speech Translation (AST) and Automatic Post-Editing (APE). For the machine transla-
tion task, we replicate pioneer neural-based work, and do a case study on TED talks where we
advance the state-of-the-art. Automatic speech translation consists in translating speech from
one language to text in another language. In this thesis, we focus on the unexplored problem
of end-to-end speech translation, which does not use an intermediate source-language text tran-
scription. We propose the first model for end-to-end AST and apply it on two benchmarks:
translation of audiobooks and of basic travel expressions. Our final task is automatic post-
editing, which consists in automatically correcting the outputs of an MT system in a black-box
scenario, by training on data that was produced by human post-editors. We replicate and extend
published results on the WMT 2016 and 2017 tasks, and propose new neural architectures for
low-resource automatic post-editing.

Keywords neural machine translation, automatic post-editing, automatic speech translation,
sequence to sequence learning, encoder-decoder, attention-based models, deep learning, neural
networks, word embeddings

ii

Résumé

Cette thèse est centrée sur deux principaux objectifs : l’adaptation de techniques de traduction
neuronale à de nouvelles tâches, et la reproduction de travaux de recherche existants. Nos ef-
forts pour la reproductibilité ont résulté en la création de deux ressources : MultiVec, un outil
permettant l’utilisation de plusieurs techniques liées au word embeddings (Word2vec, Bivec
et Paragraph Vector); ainsi qu’un outil pour la traduction neuronale, qui implémente plusieurs
architectures permettant la traduction automatique, la post-édition automatique, ou la recon-
naissance vocale ou traduction de la parole. Ces deux ressources sont disponibles librement et
utilisées de manière intensive par la communauté scientifique.

Nous modifions notre outil de traduction neuronale afin de travailler sur plusieurs tâches : la
Traduction Automatique (TA), Traduction Automatique de la Parole, et la Post-Édition Au-
tomatique. Pour la tâche de traduction automatique, nous reproduisons des travaux fondateurs
basés sur les réseaux de neurones, et effectuons une étude de cas sur des TED Talks (sous-titres
de conférences), où nous faisons progresser l’état de l’art. La traduction de la parole consiste
à traduire la parole dans une langue vers le texte dans une autre langue. Dans cette thèse,
nous nous concentrons sur le problème inexploré de traduction de la parole end-to-end, qui ne
passe pas par une transcription textuelle intermédiaire dans la langue source. Nous proposons
le premier modèle de traduction de la parole end-to-end, et l’évaluons sur deux problèmes : la
traduction de livres audio, et la traduction d’expressions de voyage basiques. Notre tâche finale
est la post-édition automatique, qui consiste à corriger de manière automatique les sorties d’un
système de traduction dans un scénario “boı̂te noire”, en apprenant à partir de données produites
par des post-éditeurs humains. Nous reproduisons et étendons des résultats publiés dans le cadre
des tâches de WMT 2016 et 2017, et proposons de nouvelles architectures neuronales pour la
post-édition automatique dans un scénario avec peu de ressources.

Mots-clés traduction automatique, réseaux de neurones artificiels, apprentissage profond, tra-
duction automatique de la parole, post-édition automatique, modèles d’attention, plongements
de mots.

iii

Remerciements

Je tiens à remercier Laurent Besacier et Olivier Pietquin, qui ont co-dirigé cette thèse. Ils m’ont
donné des conditions de travail exceptionnelles, dans des équipes fantastiques. Ils étaient tou-
jours présents, aussi bien d’un point de vue moral que scientifique, tout en me laissant une liberté
quasi-totale sur mon travail de recherche.

Je remercie Philippe Langlais et Béatrice Daille pour leur lecture attentive et pour leurs critiques
précieuses sur mon travail de thèse.
Je remercie également Marc Tommasi, Pascale Sébillot et François Yvon d’avoir participé au
jury et assisté à la soutenance, et pour leurs nombreuses questions et remarques constructives.
Une mention spéciale à François Yvon, qui a également lu cette thèse et produit un rapport
particulièrement utile et exhaustif.

Un grand merci à mes collègues et amis de l’équipe SequeL à Lille, qui ont contribué à une
superbe ambiance, au sein d’une équipe absolument excellente d’un point de vue scientifique.
Je remercie tout particulièrement les doctorants: Julien, Jean-Bastien, Florian, Ronan, Daniele,
Merwan, Hadrien, Frédéric, Marta et Tomáš.

Je remercie mes collègues et amis du Laboratoire d’Informatique de Grenoble, qui m’ont ac-
cueilli en leur sein, sans absolument aucune discrimination d’équipe!

Un grand merci à mes parents, qui m’ont toujours encouragé à poursuivre mes études, sans
jamais m’y contraindre.

Et enfin, je remercie surtout Carole pour son soutien moral sans faille.

iv

Contents

Abstract ii

Résumé iii

Acknowledgements iv

Introduction 1

I State of the Art 9

1 Machine Translation and Automatic Post-Editing 10
1.1 Machine Translation . 10

1.1.1 Definition . 10
1.1.2 Evaluation . 11
1.1.3 Statistical Machine Translation . 13
1.1.4 Neural Machine Translation . 17

1.2 Automatic Post-Editing . 21
1.2.1 Definition . 21
1.2.2 Evaluation . 22
1.2.3 Statistical Post-Editing . 22
1.2.4 Neural Post-Editing . 26
1.2.5 Tasks and Resources . 28

2 Neural Networks 30
2.1 Fundamentals . 30

2.1.1 Definition . 30
2.1.2 Machine Learning Basics . 33
2.1.3 Optimization . 36
2.1.4 Training Neural Networks . 43
2.1.5 Automatic Differentiation . 48

2.2 Text Embeddings . 50
2.2.1 Word Embeddings . 50
2.2.2 Crosslingual Embeddings . 55
2.2.3 Sequence Embeddings . 57

v

Contents vi

3 Sequence to Sequence Models 60
3.1 Recurrent Neural Networks . 60

3.1.1 Vanilla RNN . 60
3.1.2 Backpropagation Through Time . 62
3.1.3 Long-Short-Term Memory . 64

3.2 Sequence to Sequence Model . 66
3.2.1 Description . 66
3.2.2 Loss Function . 68
3.2.3 More Details . 69

3.3 Attention Models . 70
3.3.1 Global Attention . 71
3.3.2 Local Attention . 73

3.4 Various Improvements . 74
3.4.1 The Unknown Word Problem . 74
3.4.2 Improve Decoding . 77

3.5 New NMT models . 80

II Contributions 82

4 Neural Machine Translation 83
4.1 MultiVec . 83

4.1.1 Description and Usage . 85
4.1.2 Implementation Details . 87
4.1.3 Experiments . 89

4.2 Seq2seq . 93
4.2.1 Description . 93
4.2.2 Implementation Details . 95
4.2.3 Use Example . 99

4.3 MT Experiments . 101
4.3.1 News Translation (WMT14) . 101
4.3.2 TED Talks (IWSLT14) . 112

5 Speech Translation 119
5.1 Neural Speech Translation of Synthetic Data 120

5.1.1 Model Description . 120
5.1.2 Synthetic Corpus . 123
5.1.3 Experiments . 125
5.1.4 Improvements . 127

5.2 Extraction of a New AST Corpus . 130
5.2.1 Alignment . 131
5.2.2 Final Corpus . 134

5.3 Speech Translation of Audiobooks . 135
5.3.1 Data and Pre-Processing . 135
5.3.2 End-to-End Models . 136
5.3.3 Experiments . 138

6 Neural Post-Editing 147

Contents vii

6.1 Task Description . 147
6.1.1 Definitions . 147
6.1.2 Data & Evaluation . 149
6.1.3 Experimental Protocol . 151

6.2 Research Replication . 152
6.2.1 Translation-based Post-Editing . 152
6.2.2 Op-based Post-Editing . 157

6.3 New Models . 161
6.3.1 Hard Attention . 161
6.3.2 Multi-Source Post-Editing . 163
6.3.3 Experiments . 165

Conclusion 171

Bibliography 175

A Neural Machine Translation 184
A.1 MultiVec . 184

A.1.1 Word2Vec Tricks . 184
A.1.2 Architecture and API . 185

A.2 Seq2seq . 190
A.2.1 TensorFlow . 190
A.2.2 Architecture and API . 196

Introduction

In the recent years, Natural Language Processing has witnessed two major revolutions. First,
thanks to their “Word2vec” techniques, Mikolov et al. (2013a) democratized the use of word
embeddings, universal vector representations of words that are automatically estimated from
text data. This drastically changed NLP by relaxing the need for careful feature engineering and
expensive linguistic knowledge.
Then, Bahdanau et al. (2015) and Sutskever et al. (2014) introduced Deep Neural Networks for
Machine Translation (and other sequential tasks). These techniques now achieve considerably
better results in high-resource Machine Translation than the former Phrase-Based MT standard.
Many other fields, related to Machine Translation (e.g., Speech Recognition, Automatic Post-
Editing, Automatic Summarization, etc.) have started to move towards these new methods,
which show promise but also pose many new challenges.

This thesis is centered on two main objectives: adaptation of Neural MT techniques to new tasks
and research replication. Our efforts towards research replication have led to the production of
two resources: MultiVec, a framework that facilitates the use of several techniques related to
word embeddings (Word2vec, Bivec and Paragraph Vector); and a framework for Neural Ma-
chine Translation that implements several architectures and can be used for regular MT, Au-
tomatic Post-Editing, and Speech Recognition or Translation. These two resources are publicly
available and now extensively used by the research community.

We use (and extend) our NMT framework to tackle three related tasks: Machine Translation,
where we focus on replicating published results; Automatic Speech Translation, for which we
present the first end-to-end model; and Automatic Post-Editing, where we replicate existing
work and propose new architectures.

We structure this introduction around our four contributions (in bold), each time detailing the
context and giving a quick overview of the existing methods, and then of the contributions
themselves.

Neural Machine Translation

Machine Translation (MT) consists in automatically translating text from one language to an-
other. Generally, the MT task is limited to translating single sentences, independently of the
surrounding text. The progress in the field is measured thanks to evaluation campaigns (e.g.,
WMT), which distribute training data, and measure the translation quality of the participating
systems with a careful evaluation methodology: e.g., automatic evaluation on a held-out test set
with metrics like BLEU (Papineni et al. 2002).

1

Introduction 2

Context Until recently, the state-of-the-art technique for general domain Machine Translation
was Statistical Machine Translation (SMT), and more precisely Phrase-Based Machine Trans-
lation (PBMT) (Koehn et al. 2003). This is a statistical model which is trained on thousands
or millions of translated sentence pairs (produced by humans). PBMT actually combines sev-
eral statistical models in a complex pipeline. A language model, estimated on large amounts of
target-language data, enforces fluency in the target language. A large probability table is also
built that assigns probability scores to pairs of words or phrases. This phrase table is built by
combining word-alignments of the training corpus produced by the IBM Models (Brown et al.
1993). Several other features can be included that penalize too long or too short outputs, or that
discourage long-distance reordering of words compared to the input. All these features are com-
bined in a log-linear probability model, whose weights are tuned using yet another technique
(Och 2003). Phrase-based Machine Translation was the standard until recently (and still is in
some tasks), in part thanks to the availability of high-quality open-source implementations of
the aforementioned techniques (Koehn 2010; Och et al. 2003).

Sutskever et al. (2014) proposed a new, radically different technique for Machine Translation,
based on Deep Neural Networks (LeCun et al. 2015; Schmidhuber 2015). This ”sequence to
sequence” model encodes the source sequence into a fixed-size representation using a recurrent
neural network (the encoder). Then, another recurrent neural network (the decoder) generates
a new sequence in the target language, conditioned on this representation. Alternatively, the
decoder can use a different representation of the input sequence at each time step, thanks to
an attention mechanism (Bahdanau et al. 2015). This latter technique helps the model handle
longer sequences by letting the decoder look at any symbol in the input sequence.

The main particularity of these models is that they are trained end-to-end, with parallel data only.
Instead of having many components, each trained on a specific task (with their own training
objective), which are loosely combined at decoding time, we train a single model to maximize
a single translation objective. Except for the data pre-processing / post-processing pipeline
(tokenization mostly) and the evaluation metrics, none of the components of the former SMT
approach are needed anymore.

Another major difference is the flexibility of these approaches. PBMT does a strong assump-
tion: each word or phrase is translated as one or several word or phrases, generally in the same
vicinity. The only assumption that NMT does is that words are generated from left to right,
conditioned on the previously generated words and on a “representation” of the input sequence.
This opens many possibilities, such as multi-source translation (Zoph et al. 2016a), multi-task
training (Luong et al. 2016), multilingual translation (Johnson et al. 2016), ensemble decoding
(Sutskever et al. 2014), or character-level translation (Lee et al. 2016).

Neural Machine Translation has since then supplanted PBMT in the WMT translation shared
task (Bojar et al. 2016; Sennrich et al. 2016b). It has been deployed in production at Google (Wu
et al. 2016) and SYSTRAN (Crego et al. 2016), and now boasts almost human-level performance
in certain high-resource tasks (Hassan et al. 2018; Wu et al. 2016).

A state of the art of SMT and NMT is given in Section 1.1. A more detailed account of neu-
ral networks and sequence to sequence models is given in Chapter 2 (neural networks) and
Chapter 3 (sequential models).

Challenges Even though Machine Translation has achieved considerable progress thanks to
these breakthroughs, there still exist a number of open problems. Koehn et al. (2017) shed light
on a specific problem of neural-based approaches: the need for large amounts of data. Not all

Introduction 3

of MT is about general domain translation in high resources settings. PBMT is still the state-
of-the-art technique in low-resource scenarios. Another problem that they expose is the lack
of interpretability of these models compared to PBMT (where an output word can be traced
back to the exact source words that generated it). A problem that we address is the (lack of)
reproducibility of research results, and the availability of high-quality implementations of NMT
techniques for the research community. Reproducibility is a problem in NMT (and Deep Learn-
ing in general), as the papers often lack technical details, and a single wrong hyperparameter
value can give widely different results. The official implementations (if any) of the techniques
described in the literature come in a large variety of programming languages and Deep Learning
frameworks (Caffe, CNTK, DyNet, Keras, (Py)Torch, TensorFlow, Theano, etc.) The technical
details are often obfuscated, the implementations do not always work as advertised, and trained
models are rarely available. Models sometimes take days or even weeks to train, which hinders
reproducibility (especially in the academia, where the compute resources are lower than in the
industry).

Contributions Our contributions to NMT are the following: we implement several techniques
from the literature (Bahdanau et al. 2015; Jean et al. 2015a; Luong et al. 2015b) in a single
framework,1 based on TensorFlow (Abadi et al. 2015). This framework facilitates research
replication and experimentation, as it proposes a full MT pipeline: pre-processing, training
(single-task, multi-task), decoding (beam search, ensemble) and evaluation. The hyperparame-
ters are entirely configurable thanks to configuration files and command-line parameters. This
helps experimenting with different model architectures. We replicate pioneer work on English
to French translation (Bahdanau et al. 2015; Jean et al. 2015a) and distribute the trained models.

Finally, we perform extensive experiments (with our framework) in lower-resource scenarios:
German to English translation of TED talks, where we beat the previous SOTA results (P.-S.
Huang et al. 2018); and French to English translation on the tiny BTEC corpus. Our NMT
framework is described in Section 4.2, and our experiments are detailed in Section 4.3. Our
results on BTEC are presented in Chapter 5 as part of our work on Speech Translation.

Speech Translation

We also worked on two tasks that are related to Machine Translation: Automatic Speech Transla-
tion (AST), and Automatic Post-Editing (APE). Even though these two tasks have been explored
in the past, they were still relatively untouched by the NMT revolution. Automatic Speech
Translation consists in translating segments of speech from one language, either to text or to
speech in another language. In this thesis, we are focused on speech-to-text translation.

Context Current methods for Automatic Speech Translation couple two main modules: an
Automatic Speech Recognition system (ASR), and a Machine Translation system (MT) (Kumar
et al. 2015; Post et al. 2013). Optionally, if one wants to produce speech in the target language,
a third module of Text-to-Speech (TTS) can be plugged in. Commercial products like Skype
Translator already include this kind of technology (for real-time translation of conference calls).

We explore a new kind of approach: End-to-End Speech Translation, where a single encoder-
decoder model is trained to read source-language speech and to output target-language text. This

1http://github.com/eske/seq2seq

http://github.com/eske/seq2seq

Introduction 4

is possible by adapting the attention-based models that have become popular in ASR (Bahdanau
et al. 2016; Chan et al. 2016; Chorowski et al. 2015). The kind of data needed for training an
end-to-end AST model is different from the standard approach. It consists in pairs of speech
segments in one language, with their translation in the target language.

There are several advantages to doing end-to-end AST. This could drastically change the way
data for speech translation is collected, especially in very low-resource scenarios. For instance,
in the project DARPA TRANSTAC (speech translation from spoken Arabic dialects), a large
effort was devoted to the collection of speech transcripts. A prerequisite to obtain transcripts
was often a detailed transcription guide for languages with little standardized spelling. If end-
to-end speech-to-text translation obtains satisfactory results, we might consider collecting data
by asking bilingual speakers to directly translate target-language samples in their mother tongue.
This would be applicable to any unwritten language.

Another advantage is the potential for more compact and faster systems. We also hope that
this might increase accuracy, by removing the accumulated errors of chaining two systems.
However, in high-resource settings, this kind of approach is likely to be inferior to the standard
cascaded approach, whose ASR and MT systems can be trained on larger amounts of data. We
expect that techniques like Multi-Task training and Pre-training (the encoder and decoder can be
trained on different tasks) will ultimately make end-to-end speech translation competitive, even
in this scenario.

Contributions First, we design and implement an attention-based model for AST, inspired
from the “Listen, Attend and Spell” (LAS) model for ASR (Chan et al. 2016). As this is similar
to standard NMT, we can conveniently implement and experiment with this model in our frame-
work. As a proof of concept in (Bérard et al. 2016a), we evaluate this approach on a synthetic
dataset. We build this dataset from French-English BTEC (Basic Travel Expression Corpus),
using a high-quality commercial TTS (Voxygen) to generate speech from the French segments.
To the best of our knowledge, this is the very first end-to-end speech translation model in the
literature.2

Our second contribution is an improvement of this model, following some design choices from
Weiss et al. (2017), a follow-up work (by Google) of our previous contribution. They train an
end-to-end AST model on the Fisher-CALLHOME corpus of Spanish-English telephone con-
versations (Post et al. 2013).3 We train our new model on a public corpus of audiobooks, which
was built by Kocabiyikoglu et al. (2018). This corpus is the result of an automatic alignment
between the LibriSpeech corpus for ASR (containing audiobooks and their transcriptions), and
Project Gutenberg (a large library of public domain e-books). We obtain promising results on
this challenging “Augmented LibriSpeech” corpus, and establish the first baselines for AST, MT
and ASR on this new corpus (that we invite others to challenge). We also extend our experiments
on the synthetic BTEC corpus. These contributions are presented in Chapter 5.

2Another work, by Duong et al. (2016), precedes us, but they either take phonemes as input (and not raw speech),
or solve an alignment task (not translation).

3They obtain very promising results, but they do not release their implementation, and the corpus that they use is
not freely available.

Introduction 5

Automatic Post-Editing

Another task that we tackle is Automatic Post-Editing (APE). The goal of this task is to auto-
matically improve the outputs of a Machine Translation system in a black-box scenario. This
means that we do not have access (or even knowledge) to the inner workings of this system, but
only to its outputs.

A possible use case is when a translation agency wants to correct the systematic errors of a
commercial MT system on which they do not have any control (e.g., Google Translate), or when
they want to improve its translation quality on a specific domain (e.g., pharmaceutical domain).
The training data consists in examples of outputs by this system, which have been manually post-
edited by professional translators. In addition to the translation hypothesis and its post-edited
version, we also have access to the source-language segment that generated this translation.

The motivation is that human post-editing is now a common practice in translation agencies.
Machine Translation is now good enough, that it is more profitable for human translators to
post-edit a translation hypothesis, rather than translating the source sentence manually from
scratch. Post-editing reduces translation time and even increases the quality of the translations
(Green et al. 2013). As human translators generate post-editing data, we should be able to use
this data to facilitate their subsequent work. We can do so by training an automatic post-editing
system with this data, which can be used as a first pass post-editing step for future segments. A
state of the art of Automatic Post-Editing is presented in Section 1.2.

In the past three years, the Workshop on Machine Translation (WMT) has hosted a shared APE
task (Bojar et al. 2017, 2016, 2015). They provide a post-editing training set, containing triples
of source segments, translation hypotheses by an unknown MT system, and post-editing ground
truths produced by a human translator. Research teams are invited to submit systems to the task,
which are then compared to each other by an evaluation on a held-out test set: with automatic
metrics like TER (Snover et al. 2006), and manual evaluation by humans.

Context Conventional methods for Automatic Post-Editing treat this problem as a Machine
Translation problem, where the source is the translation hypothesis, and the target is its post-
editing reference. Until recently, APE solutions involved a Statistical Machine Translation
(SMT/PBMT, e.g., Moses), which is trained on monolingual post-editing data. Simard et al.
(2007) were the first to propose to use SMT to post-edit the outputs of a rule-based system
(RBMT). Later on, Béchara et al. (2011) proposed a way to also make use of the source-language
sentence. However, their technique (which concatenates MT words with aligned source words)
results in a very large and sparse vocabulary, and the results are not very convincing. Statistical
Post-Editing (SPE) has achieved limited success and is effective in the most favorable condi-
tions: RBMT post-editing (Simard et al. 2007), or domain adaptation (Potet et al. 2012a).

With the advent of NMT methods, the field has started to shift towards Neural Post-Editing.
Junczys-Dowmunt et al. (2016a) combine two NMT models in an ensemble: a monolingual
post-editing model, and a translation model (that takes advantage of the source-language se-
quence). By training these models on a large synthetic corpus that they built, they obtained ex-
ceptional results on the 2016 shared APE task (Bojar et al. 2016). Libovický et al. (2016) train
an NMT model that predicts edit operations (insertions, deletions and keep) instead of words.
This model beats the MT and SPE baseline on the 2016 APE task, even though it uses only real
post-editing data. Then, Junczys-Dowmunt et al. (2017a) propose a multi-source Neural APE
model, which reads both the MT sequence and the source sequence (with two encoders). This

Introduction 6

model, also trained with large amounts of synthetic data, obtains even more impressive results.
Variants of this model (Chatterjee et al. 2017; Junczys-Dowmunt et al. 2017b) obtained the best
scores in the 2017 shared APE task (Bojar et al. 2017).

Contributions We implement two techniques from the state of the art in our NMT framework:
the large multi-source model from (Junczys-Dowmunt et al. 2017a), and the op-based model
from (Libovický et al. 2016). We replicate and analyze their results on the 2016 and 2017 APE
tasks. We also evaluate these systems in different settings, with access to varying amounts of
training data, from 12k segments of real PE data, up to more than 4M segments of synthetic
data. We show that (Junczys-Dowmunt et al. 2017a)’s method also achieves positive results in
realistic APE conditions (with smaller amounts of data).

Finally, we extend the op-based model from (Libovický et al. 2016), by proposing model ar-
chitectures that are better suited for post-editing: a task-specific attention mechanism, and a
better way (than multi-source APE) to integrate the source sequence. We complete a thorough
evaluation, and observe that these op-based techniques are worse than (Junczys-Dowmunt et
al. 2017a)’s in medium-to-high resource settings, but offer a better alternative in low-resource
settings. These contributions are presented in Chapter 6.

MultiVec

Mikolov et al. (2013a) proposed a set of efficient neural network models for computing vector
representations of words. While similar techniques have existed for a while (Y. Bengio et al.
2003; Collobert et al. 2011), a number of tricks (plus the fact that they are linear models) made
it possible for these models to be trained on extremely large amounts of data. Mikolov et al.
(2013a) released the source code of their “Word2vec” toolkit, which probably facilitated the
adoption of these techniques by the community.

Word embeddings are useful in many NLP classification tasks (Collobert et al. 2011). Their main
advantages are that they are non-task dependent (they encode a lot of syntactic and semantic
information), and they are trained in an unsupervised way (from monolingual data). This means
that embeddings can be trained on large amounts of data and distributed for use in various
downstream NLP tasks (e.g., sentiment analysis), where smaller amounts of supervised data are
available. This can be understood as powerful and effortless feature engineering.

Artetxe et al. (2017), Gouws et al. (2015), Luong et al. (2015a), Mikolov et al. (2013b), Zhang
et al. (2014), and Zou et al. (2013) propose techniques for computing multilingual word embed-
dings, i.e., embeddings in several languages that share the same vector space. They are useful
for Machine Translation, and other multilingual tasks (e.g., crosslingual classification). Zhang
et al. (2014) and Zou et al. (2013) propose to use bilingual embeddings as additional features
for Phrase-based Machine Translation. Artetxe et al. (2018) and Lample et al. (2017) propose
techniques to do unsupervised Neural Machine Translation (i.e., MT without parallel data), us-
ing unsupervised bilingual embeddings. Section 2.2 gives a detailed overview of the state of the
art on word embeddings and sequence embeddings.

Contributions We propose MultiVec,4 a framework which implements several techniques
from the literature for computing distributed representations of words or sequences of words.

4http://github.com/eske/multivec

http://github.com/eske/multivec

Introduction 7

It allows the user to train word embeddings with the CBOW and Skip-Gram models (Mikolov
et al. 2013a), sentence embeddings with the Paragraph Vector algorithm (Q. V. Le et al. 2014),
and bilingual embeddings with Bivec (Luong et al. 2015a).

The goal of MultiVec is to regroup multiple techniques from the state of the art in a single toolkit,
to facilitate their use and research replication.5 The existing implementations of the concerned
techniques can be obfuscated (e.g., the C code of the original Word2vec), lack documentation,
or are not as fast as they could be. MultiVec is written in C++, which makes it more modular
and easier to extend than the original Word2vec. It is also as fast as Word2vec, and better
documented. Models can be trained thanks to an extensive command-line interface. We also
propose a Cython wrapper, which allows the user to train and make use of existing models from
Python.

We validate MultiVec on a series of benchmarks: crosslingual document classification, senti-
ment analysis, and analogical reasoning; and distribute the source code for these benchmarks.
MultiVec is publicly available on GitHub, and was promulgated in a publication to LREC
(Bérard et al. 2016a). It has been used in multiple research projects, including: Servan et al.
(2016)’s work on MT evaluation metrics, work on quality estimation (N.-T. Le et al. 2016), and
crosslingual plagiarism detection (Ferrero et al. 2017). The MultiVec toolkit and our validation
experiments are presented in Section 4.1.

Overview

This thesis is divided in two parts of three chapters each: Part I gives the state of the art,
and Part II describes our contributions. An appendix also gives additional (optional) reading
material, in particular regarding our toolkits.

Chapter 1 gives an overview of Statistical Machine Translation and Neural Machine Translation
(Section 1.1), and of the state of the art in Automatic Post-Editing (Section 1.2). Chapter 2
gives a broad description of neural networks and how to train them (Section 2.1), and word
embeddings (Section 2.2). Chapter 3 describes recurrent neural networks (Section 3.1), and
sequence to sequence models for machine translation (Sections 3.2, 3.3, and 3.4).

Chapter 4 presents the MultiVec toolkit (Section 4.1), and our NMT framework (Section 4.2), as
well as replication experiments that we performed on Machine Translation (Section 4.3). Chap-
ter 5 details our work on End-to-End Automatic Speech Translation. Section 5.1 presents our
proof-of-concept model for Automatic Speech Translation on a synthetic dataset. Section 5.2
describes the Augmented LibriSpeech corpus of audiobooks for Speech Translation. Section 5.3
extends our experiments to this corpus. Our work on Neural Post-Editing is presented in Chap-
ter 6. Section 6.1 presents the task and datasets that we use. Section 6.2 describes our replication
work. Finally, Section 6.3 details our new architectures for APE and experimental results.

5Our initial goal was to use bilingual sentence embeddings as state representations in reinforcement learning for
automatic post-editing. However, we were unable to obtain satisfying results due to the too large action space (and
to the difficulty of the task and the lack of data), and decided to use Neural Machine Translation instead (which had
just come out).

Introduction 8

Publications

• Alexandre Bérard, Christophe Servan, Olivier Pietquin, and Laurent Besacier (2016b).
“MultiVec: a Multilingual and Multilevel Representation Learning Toolkit for NLP.” in:
LREC

• Alexandre Bérard, Olivier Pietquin, Laurent Besacier, and Christophe Servan (2016a).
“Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation.”
In: NIPS End-to-end Learning for Speech and Audio Processing Workshop

• Christophe Servan, Alexandre Bérard, Zied Elloumi, Hervé Blanchon, and Laurent Be-
sacier (2016). “Word2Vec vs DBnary: Augmenting METEOR using Vector Representa-
tions or Lexical Resources?” In: COLING

• Alexandre Bérard, Olivier Pietquin, and Laurent Besacier (2017). “LIG-CRIStAL System
for the WMT17 Automatic Post-Editing Task.” In: WMT - Shared Task Papers

• Marcely Zanon Boito, Alexandre Bérard, Aline Villavicencio, and Laurent Besacier (2017).
“Unwritten Languages Demand Attention Too! Word Discovery with Encoder-Decoder
Models.” In: ASRU

• Alexandre Bérard, Laurent Besacier, Ali Can Kocabiyikoglu, and Olivier Pietquin (2018).
“End-to-End Automatic Speech Translation of Audiobooks.” In: ICASSP

• Pierre Godard, Marcely Zanon Boito, Lucas Ondel, Alexandre Bérard, François Yvon,
Aline Villavicencio, and Laurent Besacier (2018). “Unsupervised Word Segmentation
from Speech with Attention.” In: Interspeech

Part I

State of the Art

9

Chapter 1

Machine Translation and Automatic
Post-Editing

In this chapter, we give an overview of the state-of-the-art methods for Machine Translation, and
the related task of Automatic Post-Editing. We define both tasks, their training data, and eval-
uation metrics; and we describe two categories of techniques: Statistical Machine Translation,
and the more recent Neural Machine Translation.

1.1 Machine Translation

1.1.1 Definition

Machine Translation encompasses all the techniques that automatically translate (with software)
text or speech from one language to another. In this thesis, we study text-to-text translation,
which we (somewhat abusively) call Machine Translation (MT); and speech-to-text translation,
which we call Automatic Speech Translation (or AST).

Most MT techniques are at the sentence level. The task consists in: given a sentence in one
language, find a translation of this sentence in the target language. Also, in this work we assume
that the entire sentence is available at once (contrary to computer-aided translation, or real-
time MT). Machine Translation generally assumes a word segmentation of its input, obtained
by a process called “tokenization”. Punctuation symbols, words or numbers are considered
as separate “tokens”. Some techniques perform more aggressive segmentation (e.g., splitting
compound words), or even work at a subword-level or character level.

There are several categories of techniques for (text-to-text) Machine Translation:

• Rule-based MT (RBMT) methods use a set of rules, hand-built and/or automatically ex-
tracted. These rules construct an intermediate (more abstract) representation of the input
sentence, and then map this representation to the target language. This kind of approach
can give good results, but it requires a lot of engineering and costly linguistic resources.
These methods also lack flexibility as they are often difficult to port to new domains or
new languages.

10

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 11

• Statistical MT (SMT), and more specifically Phrase-based MT (PBMT) consists in train-
ing several statistical models on text corpora to extract features (phrase table, language
model, etc.) and combining these features into a single model. Contrary to RBMT, the
training data here is unstructured as it consists of monolingual texts and translated texts.
SMT gets rid of many linguistic considerations that are ubiquitous in RBMT (e.g., mor-
phological analysis, parsing, etc.) and does very few assumptions about the structure of
languages.

• Neural MT (NMT), introduced fairly recently, uses artificial neural networks to learn MT
models from parallel data. The main difference with the SMT approach is that these
models are often trained end-to-end, and make even less assumptions about their inputs
(e.g., monotonicity). Also, while SMT methods are very shallow (there is no semantics
involved), NMT models learn abstract representations of their inputs.

SMT and NMT are corpus-based techniques. This means that they use statistical models that
are automatically trained on corpora of texts. Generally, they make use of parallel corpora,
which contain pairs of translated sentences in the source and target languages. Sometimes,
monolingual data in the target language is also used (often in larger amounts).

In this section, we give a quick description of PBMT, which was considered as the state-of-the-
art until recently. Then we give an overview of existing methods in Neural Machine Translation
(NMT). The NMT methods that are most relevant to our work, namely sequence to sequence
models, are described more in details in Chapter 3.

1.1.2 Evaluation

After prototyping and training a new MT model, an important step is its evaluation: to val-
idate/invalidate certain design choices and further improve the model, or to compare against
other models. For this purpose, as with other machine learning tasks, it is advisable to split the
available (parallel) data into three sets: a training set on which the model is directly optimized;
a development set (dev) which is used to validate design choices and manually or automatically
tune the hyperparameters; and a test set for final comparison against the state of the art.

Another important question which comes to mind is how to measure the performance of a given
model on the dev and test sets. To do so, we can ask humans to review the translation hypotheses,
or use an automatic evaluation metric.

A test (or dev) set contains pairs of sequences: a source language sentence, and a target language
reference sentence (the reference, ground truth or gold standard). We call a translation hypoth-
esis or candidate the automatic translation of a source test sentence into the target language by
a given MT model.

Human judgment Depending on the resources at hand, a common practice is to ask profes-
sional translators to review the translation hypotheses (of the test set), or to crowd-source the
evaluation using platforms like Amazon Mechanical Turk.

Some strategies for human evaluation are:

• Direct assessment: human judges are asked to score each translation candidate on a given
scale (e.g., between 1 and 5). They can be asked to give a fluency and an adequacy score.

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 12

• Ranking: human judges are asked to rank several candidate translations (from different
models) from best to worst.

• Post-Editing effort: time (or some other effort measure) taken by a human translator to
post-edit a translation candidate into a correct translation (according to clearly defined
quality standards).

These methods require some amounts of normalization between judges (judges may not agree,
and some judges may be harsher than others). Furthermore, the exact same method needs to
be used to compare systems: a score on its own does not mean anything. Human methods
are also costly and time consuming, which makes them unfit for quick research iteration and
hyperparameter tuning. These methods are often used to compare several models in-house, and
in shared tasks (in workshops or conferences) where several systems are submitted at once.

Automatic metrics When prototyping models, a preferred solution is to use automatic evalu-
ation metrics. A translation metric compares each translation hypothesis against one or several
gold-standard references (the target side of the dev/test set). Several metrics have been designed
to correlate as close as possible to human judgment.

BLEU (Papineni et al. 2002), a corpus-level metric, is arguably the most popular evaluation
metric for MT. It measures a geometric average of n-gram precisions, multiplied by a brevity
penalty which penalizes too short candidates. An n-gram is a sequence of n consecutive tokens.1

The BLEU score between a set of hypotheses D and corresponding references D′ is computed
as follows:

BLEU(D,D′) = BP(D,D′) exp(
1

4

4∑
k=1

log pk(D,D′)) (1.1)

pk(D,D′) =
1 + correctk
1 + totalk

(1.2)

correctk =
∑

s,s′∈(D,D′)

∑
t∈Gk(s)

min(Gk(s)[t],Gk(s′)[t]) (1.3)

totalk =
∑
s∈D

∑
t∈Gk(s)

Gk(s)[t] (1.4)

BP(D,D′) = min(1, e
1− |D||D′|) (1.5)

In pk, the numerator computes a sum of k-gram counts in each hypothesis clipped by the k-
gram count in the corresponding reference (i.e., it counts the number of correct k-grams). The
denominator counts the total number of k-grams in the hypothesis set. Gk(s) is the set of distinct
k-grams in s, and Gk(s)[t] is the number of occurrences of k-gram t in s. |D| is the number of
words in the hypothesis set. Because BLEU only evaluates n-gram precision, and not recall, very
short translations can have high scores. To compensate for this, BLEU adds a brevity penalty
BP(D,D′), which penalizes hypotheses which are shorter than the reference.

BLEU is also designed to be compatible with multiple references. When several translation
references are available, we want to give high scores to hypotheses that are close to any of the
references. In this case, Gk(s′)[t] in Equation 1.2 corresponds to the maximum occurrence count

1A token is anything delimited by whitespaces, after tokenization: generally a word, a number or a punctuation
symbol.

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 13

of n-gram t in all references. In Equation 1.5, |D′| is computed by summing the lengths of the
shortest references.

A BLEU score of zero means no correspondence with the reference, while a score of one (or
100%) means an exact match between the hypothesis and the reference. Exact matches are rare,
and BLEU scores are generally well below 100%. A big problem with BLEU is that it only
looks for exact n-gram matches with a reference. However, a translation can be perfect without
having any word in common with a given reference translation.

METEOR (Banerjee et al. 2005) improves BLEU by allowing synonyms or word stems to
match. Contrary to BLEU, it takes precision and recall into account. It works at the unigram
level, while encouraging monotonous alignments. METEOR correlates better with human judg-
ment than BLEU, but it is slower to compute and requires access to linguistic resources that are
not available for every language (e.g., WordNet).

Translation Edit Rate (TER) (Snover et al. 2006) is the minimum number of basic edit operations
needed to transform the hypothesis to the gold-standard reference. The available operations are:
insertion or deletion of a word, substitution of a word by another, or changing the position (shift)
of a group of words. TER is mostly used in post-editing scenarios (HTER), where the available
reference is a human post-edited version of the hypothesis (Snover et al. 2009).

1.1.3 Statistical Machine Translation

Definition The concept of statistical machine translation was first introduced in 1949 by War-
ren Weaver, who saw translation like a problem of cryptography:

“One naturally wonders if the problem of translation could conceivably be
treated as a problem in cryptography. When I look at an article in Russian, I say:
‘This is really written in English, but it has been coded in some strange symbols. I
will now proceed to decode.’ ”

Brown et al. (1993) brought this idea to life, by creating the IBM models. Say we want to build
a system that translates from French to English. Using Bayes’ rule, the conditional probability
of translating a French sentence f into an English sentence e can be expressed as follows:

P (e|f) =
P (e)P (f |e)

P (f)
(1.6)

The goal of the translation system is to find the English sentence e which maximizes the con-
ditional probability P (e|f). The probability, P (f) is independent of e, we thus arrive to what
Brown et al. (1993) call the “fundamental equation of SMT”:

e? = argmax
e∈S

P (e)P (f |e) (1.7)

When translating a new sentence f to English, we look for the English sentence e? (among the
set S of all possible strings) that maximizes this product of probabilities.

This is an instance of the noisy channel model. The problem was formulated by Brown et al.
(1993) as follows:

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 14

“We further take the view that when a native speaker of French produces a string
of French words, he has actually conceived of a string of English words, which he
translated mentally. Given a French string f , the job of our translation system is to
find the string e that the native speaker had in mind when he produced f .”

The problem is thus reversed by the noisy channel model: instead of modeling the probability
P (e|f) that a French sentence f produces an English sentence e, P (f |e) measures the likelihood
that the native speaker produced the output string f , given the English string e that he had
originally in mind.

The advantage of modeling machine translation in this manner, is that it splits the problem in two
distinct problems: the generation of fluent English language, and the translation from English
to French. The probability P (e) is the language model probability. It ensures that the output is
fluent English. P (f |e) is the translation model probability. The job of the translation model is
to find an adequate translation, regardless of its fluency. An important challenge in SMT is to
build an efficient search algorithm, which finds the English sentence that maximizes the product
of these two probabilities, or a close enough approximation (the decoding algorithm).

Language model The target language model is completely independent of the source lan-
guage, which means that it can be trained using monolingual data in the target language (English
in the example). Such data is much more common than bilingual data. The language model is
thus potentially much better informed about the English language than any translation model
trained with bilingual data could be.

The probability of a word sequence w1, w2, . . . , wn can be expressed as follows:

P (w1, w2, . . . , wn) = P (w1)× P (w2|w1)× · · · × P (wn|w1, . . . , wn−1) (1.8)

Most language models do a k-gram independence assumption, which results in:

P (w1, w2, . . . , wn) =

n∏
i=1

P (wi|wi−k+1, · · · , wi−1) (1.9)

Where k is the order of the language model. The language model makes the assumption that the
probability of observing a word at a given position, only depends on the k − 1 previous words.
It is thus easier to estimate the probability of a new sequence, than when considering the entire
context. For example, in a trigram model, the conditional probability P (wi|wi−2, wi−1) can be
estimated as follows:

P (wi|wi−2, wi−1) =
count(wi−2, wi−1, wi)

count(wi−2, wi−1)
(1.10)

count(wi, . . . , wk) is the number of occurrences of the sequence wi, . . . , wk in the training
data. In practice, more complex models are used (like back-off models), which attribute non-
null probabilities to unseen n-grams. Unseen n-grams are very likely at test time, because of
Zipf’s law (even more so with high n-gram orders).

IBM models The reason why SMT needs parallel data, is for training the translation model.
Brown et al. (1993) propose 5 different word-based translation models. The so-called IBM
models are based on a word-level alignment of the sentences.

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 15

In word-based SMT, each source word may generate several target words. A word-level align-
ment is a one-to-many relation j → aj between the source sentence and the target sentence,
which defines by which source word, each target word was generated. To allow the insertion of
target words which are not actually aligned to any source word, a dummy NULL token is added
at position 0 in the source sentence.

Remember that our system is translating from French to English, but the noisy channel model
reverses the translation direction. In the translation model, the source language is English and
the target language is French. Figure 1.1 shows an example of word-alignment of a French
sentence with an English sentence.

NULL0 The1 program2 has3 been4 implemented5 .6

Et1 le2 programme3 a4 été5 mis6 en7 application8 .9

FIGURE 1.1: Example of word-alignment from English to French (from Michael Collins’ lec-
ture on IBM models)

The probability of a translation, is the sum of the probabilities of all possible alignments:

P (f |e) =
∑
a

P (f, a|e) (1.11)

The probability of an alignment depends on the IBM model that is used. In the simplest model
(IBM 1), the probability of aligning two words fj and eaj depends only on their translation
probability t(fj |eaj).

P (f, a|e) =
ε

(lf + 1)le

|e|∏
j=1

t(fj |eaj) (1.12)

Where le is the length of the English sentence e, lf the length of the French sentence f , and ε is
a normalization constant.

However, this model does not take into account the position of the words that are aligned. The
first French word is as likely to be aligned with the first English word as with the last. IBM
Model 2 includes an alignment probability, which models the probability P (j|i, lf , le) of align-
ing an English word at position i with a French word at position j. In IBM Models 1 and 2,
the alignment of a French word does not take into account the alignment of the other words in
the sentence. All French words may be aligned to the same English word (and all other English
words aligned to nothing). IBM Model 3 includes a fertility model, which models the number
of French words each English word is aligned to. IBM Model 4 and 5 bring other improve-
ments, such as improving the reordering model, by taking into account the movement of several
consecutive words together.

The translation probabilities t(fj |eaj) and alignment probabilities P (j|i, lf , le) are taken from
probability tables that are built using the training data. However, the training data consists of
sentence-aligned texts, which need to be aligned at the word-level in order to produce these
tables. This is a chicken-and-egg problem, and it is solved by the Expectation-Maximization al-
gorithm, which updates the parameters of the model iteratively, so as to maximize the alignment
probability of the training data. Here is a quick outline of how the EM algorithm works:

1. Initialize the parameters of the model (e.g., with uniform probabilities).

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 16

2. Align the training data with the model.

3. Estimate model parameters from the aligned data.

4. Repeat steps 2 and 3 until convergence.

Initially, all alignments are as likely. But actual translations generally co-occur more often in the
training data than non-translations. For example, “kangaroo” and “kangourou” will probably be
aligned more often than “squirrel” and “kangourou”. Thus, at the parameters estimation step,
the probability t(kangourou|kangaroo) will be greater than t(kangourou|squirrel), which
will result in a better alignment at the next iteration.

Since the estimation of the model parameters is purely based on co-occurrence, the larger the
parallel corpus used as training data, the better the translation model (greater vocabulary cover-
age and more reliable alignments). A popular implementation of the IBM models is GIZA++
(Och et al. 2003).

Phrase-based model While the IBM models are still used for word-level alignment, word-
based translation has been supplanted by other methods. Word-based translation has some
shortcomings. In particular, it is unable to deal with many-to-many translations. For instance,
the French phrase “casser sa pipe”, would translate literally as “break his pipe” (a more correct
translation would be “buy the farm” or “kick the bucket”).

Phrase-based translation, by Koehn et al. (2003), is the state-of-the-art method in SMT. It is
very similar to word-based translation, except that instead of independent words, small units of
consecutive words, called phrases, are translated. A phrase translation table is built by merging
word-based alignments in both directions (English to French and French to English). These
alignments are produced by a word aligner like GIZA++ (Och et al. 2003). Table 1.1 shows
examples of entries in a phrase translation table, for the French phrase “bien sûr”. Such phrase
tables can be extremely large (several gigabytes when stored as text).

Translation ēi Probability φ(f̄i|ēi)
of course 0.5
naturally 0.3

of course , 0.15
, of course , 0.05

TABLE 1.1: Examples of phrase translation table entries for French phrase “bien sûr”.

The first version of the model, by Koehn et al. (2003), is defined as usual with a noisy channel
model:

e = argmax
e∈e∗

P (f |e)P (e) (1.13)

P (e) is a standard language model, augmented with a length factor to fix the bias of language
models toward short translations. P (f |e) is the phrase-based translation model. The English
sentence e is decomposed into I phrases ēi, which are translated into French phrases f̄i. The
English phrases are reordered to form the output sequence e:

P (f |e) =

I∏
i=1

φ(f̄i|ēi)d(ai − bi−1) (1.14)

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 17

d(ai − bi−1) = α|ai−bi−1−1| (with α ≤ 1) is the distortion probability, which penalizes the
phrase reorderings in the English sentence. ai is the start position (in terms of words) of phrase
ēi, and bi the end position of ēi−1. φ(f̄ |ē) is the translation probability of phrase ē into phrase
f̄ , which comes from the phrase translation table.

State-of-the-art phrase-based MT is implemented by the open source framework Moses (Koehn
2010). A log-linear model is used to include more features:

p(e|f) = exp
n∑
i=1

λihi(e, a, f) (1.15)

hi are the features (e.g., language model, phrase model, distortion model, word penalty), and λi
are their respective weights. The weights are usually automatically tuned, so as to maximize the
BLEU score on the development set, with tools like MERT (Och 2003).

1.1.4 Neural Machine Translation

Statistical Machine Translation, and in particular Phrase-Based MT was the state-of-the-art
method for MT a couple of years ago. Recently, a new category of methods called ”Neural
Machine Translation” has started to appear, and has progressively replaced SMT. The main dif-
ference with SMT is that these models are trained end-to-end. A single deep neural network
reads the input sequence, and produces an output sequence. The parameters of this model are
optimized so as to maximize the likelihood of the training data.

Introduction Schwenk (2012) trains feed-forward networks to compute continuous represen-
tation of phrases, which are used to rescore pairs in a PBMT system’s phrase table. This addi-
tional score can be used as a feature in the log-linear model (in addition to the standard phrase
table scores). Cho et al. (2014b) propose a similar approach based on Recurrent Neural Net-
works (RNNs).

The first end-to-end neural-based approach is (Sutskever et al. 2014), which applies not only to
MT but to any sequence to sequence task. It consists in a first Recurrent Neural Network (the
encoder) which reads the input sequence and encodes it into a fixed-size vector, and a second
RNN (the decoder) which does target language modeling conditioned on this representation.
The model is trained end-to-end on parallel data, without monolingual data.

Bahdanau et al. (2015) improve this method, by adding an attention mechanism. They observe
that the encoder-decoder approach has trouble translating long sequences, because the encoder
is forced to encode arbitrarily long sequences as a fixed-size representation. To deal with this
problem, the target language model is conditioned on an attention model, which can look any-
where in the input sequence at each time step. We detail both these approaches, which are the
basis of our work, in Chapter 3.

Contrary to PBMT, these methods work at the word-level. Phrases in SMT are a way to take
local context into account. In NMT, the entire context is summarized into a single attention
vector. Furthermore, NMT gives decent results with a greedy decoding approach, where the
target sequence is generated word by word from left to right (by conditioning only on the current
decoder state, and not on the future). PBMT cannot do without a more complex search algorithm
(generally beam search).

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 18

Since then, Neural Machine Translation has supplanted SMT as the state-of-the-art (Junczys-
Dowmunt et al. 2016a; Luong et al. 2015c), now beating PBMT in MT competitions (Bojar et
al. 2016; Sennrich et al. 2016b). As a result, NMT models have been deployed in the industry,
for example at Google (Wu et al. 2016) and at SYSTRAN (Crego et al. 2016).

Out-of-vocabulary words In (Bahdanau et al. 2015) and (Sutskever et al. 2014), training and
decoding complexity is linear with respect to the number of possible target tokens (vocabulary
size). For efficiency reasons, Bahdanau et al. (2015) limit the source and target vocabularies to
a shortlist of the most frequent 30k words. Out-of-vocabulary words are replaced by a special
UNK symbol. This can strongly degrade translation quality, as the encoder may have trouble
producing a proper representation of the input sequence, and many UNK tokens may be generated
at test time.

A partial solution is to use a larger vocabulary size, but even with large vocabularies many
unknown tokens can be encountered at test time (e.g., proper nouns, numbers, spelling mistakes,
etc.) Jean et al. (2015a) propose a “sampled softmax” technique, which makes the model’s
complexity constant with respect to vocabulary size.

Other (complementary) solutions consist in replacing the generated UNK symbols, with the cor-
responding (if any) unknown word in the input, or by a translation of this word obtained with a
dictionary. A solution is to use the word-level alignment produced by the attention mechanism
(Jean et al. 2015a). However, this is difficult as a single target word may be aligned to multiple
source words (soft alignment). Another solution, by Luong et al. (2015c) is to output special
UNK tokens (UNK -1, UNK 0, etc.) that encode the relative position of the aligned source token
(which is available at training time with a GIZA++ word alignment).

However, the best results to date are obtained with subword units (Gehring et al. 2017b; Shazeer
et al. 2017; Wu et al. 2016). Any word can be read or generated as a combination of several sub-
word units. Those are automatically extracted from the training set using data-driven techniques
like Byte-Pair Encoding (Sennrich et al. 2016c) or Google’s Word Piece Model (Wu et al. 2016).

Other works, like Lee et al. (2016) or Kalchbrenner et al. (2016) go even further and do character-
level translation. This completely removes the need of unknown word replacement techniques
as any word can be created as a combination of its constituent characters. An advantage of
character-level translation is that there is less data sparsity due to having capital letters: in word-
level or subword-level MT, “The” and “the” account for two different vocabulary tokens. Also,
this removes the need of doing word tokenization as pre-processing and de-tokenization as post-
processing (whitespaces are considered as characters).

SOTA results The original model proposed by Bahdanau et al. (2015) is small compared
to current state-of-the-art NMT models. The best results on large training sets (like WMT14
English-French or English-German) are obtained with much larger models.

Luong et al. (2015c) get similar results as the best performing SMT model (Durrani et al. 2014)
on WMT14 En→Fr by using a deep model (6 LSTM layers) without attention. They ensemble 8
independently trained models, and use a strategy to replace unknown words in the output. Each
model takes about ten days to train on 8 high-end GPUs.2

2Bahdanau et al. (2015) takes about ten days on a single GPU.

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 19

Zhou et al. (2016) use an even deeper encoder and decoder, with 16 LSTM layers in total. They
use residual connections, which makes training easier in multi-layer recurrent models. They
get a +3 BLEU increase over Luong et al. (2015c). Wu et al. (2016) train a similarly sized
model that uses subword units instead of words, and refine training with reinforcement learning
(optimization directly w.r.t. the evaluation metric). This latter model takes 6 days to train on
96 K40 GPUs. With an ensemble of 8 models, they get an increase of +0.8 BLEU compared to
Zhou et al. (2016). They also train models on Google production data (which are now deployed
inside Google Translate), and report almost human-level performance (in particular with French
to English and English to Spanish).

A number of other neural network architectures have also been proposed that strongly depart
from the recurrent models of Sutskever et al. (2014) and Bahdanau et al. (2015).

Vaswani et al. (2017) present the Transformer, a neural network which does not make use of
RNNs at all. It consists in many layers that have several self-attention heads. This means that
each layer can look anywhere in the previous layer. They manage to obtain state-of-the-art
results on WMT14, with a single model (no ensemble) which takes one order of magnitude less
computation time that its competitors: 3.5 days of training on 8 P100 GPUs.

Gehring et al. (2017b) propose a convolutional sequence to sequence model, which is much
faster at test time (about 10 times) than Wu et al. (2016). It also gets the best results to date
on WMT14 En→Fr, with a BLEU score of 41.6 (with an ensemble of 10 models). This is 0.5
BLEU above Wu et al. (2016). However, a single model takes 37 days to train on 8 GPUs.

Kalchbrenner et al. (2016) stack the encoder and decoder on top of each other, and allow longer
outputs by padding the input sequence with dummy symbols. The encoder and decoder use
several convolutional (non-recurrent) layers. The ByteNet model uses dilation between the con-
volutional layers, which results in an exponentially increasing receptive field.3 Thanks to this
large receptive field, it can do without RNNs and does not use an attention mechanism. Because
the model’s complexity is linear w.r.t. the input length (contrary to attention-based NMT), it can
translate at the character level in reasonable time.

Multilingual NMT An advantage of deep NMT models is that the encoder produces an ab-
stract representation of the input sequence. This hints at the possibility of an interlingua, i.e.,
some sort of universal language (our encoder’s state) in which a sentence in any language can
be encoded, before being translated to another language.

In SMT, one model needs to be trained for each language pair, which gives n× (n− 1) models
where n is the number of languages. This is not possible for all language pairs, as parallel data
is not available in sufficient amounts for most of them. In this case, a pivot-based approach is
used, where a pivot language acts as a bridge between two other languages. For example, to
translate from English to Ukrainian, one can translate from English to Russian (large amounts
of parallel data), and then from Russian to Ukrainian (linguistic proximity). A problem with
this approach is that most often English is chosen as this pivot language (because training data
is scarce for other language pairs), even though it is very distant linguistically-speaking from
the source and target language. This can lead to a large loss of information and translations with
a low adequacy.

3In a given encoder (or decoder) layer, each state looks at several states from the previous layer (using convolu-
tions). While the first encoder layer looks at n consecutive states, the next layers look at states that are exponentially
further apart (as the dilation rate increases).

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 20

Firat et al. (2017) propose an approach for multilingual machine translation, where the num-
ber of parameters is linear with respect to the number of languages (and not to the number of
language pairs). The basic idea is that a single encoder can be trained for each language, and
shared across many language pairs (and similarly for the decoder). A single attention mecha-
nism is shared across all language pairs. The scores of the multilingual model are close to those
of the single models, and even better in low-resource settings (where only small amounts of
parallel data are available).

Johnson et al. (2016) propose to use the same model as Wu et al. (2016), but for multilingual MT.
The same encoder and the same decoder are shared between many language pairs. The idea is
very simple: a single word-piece vocabulary is created and shared between all languages. All the
training data is concatenated, and an extra token is added to the beginning of the source sequence
to choose the target language. The authors observe promising results on Google production data:
slightly degraded results on high-resource language pairs (e.g., English-French), but improved
results on low-resource pairs. Furthermore, this model is able to translate in language pairs
which had no parallel data during training (zero-shot translation).

Comparison with SMT Isabelle et al. (2017) released a challenge set for evaluating MT mod-
els, containing a number of hand-selected difficult translation cases between English and French.
They observe that the best performing NMT systems (Wu et al. 2016) still make some systematic
errors. In particular, NMT systems are much worse than PBMT systems at translating idioms.
They also always fail to get the order of arguments right with French verbs like “manquer”
(where the subject and the object are reversed compared to its English translation “miss”).

Koehn et al. (2017) show that NMT performance is much more sensitive to the amount of train-
ing data than SMT. They train many English→Spanish NMT and SMT (Phrase-Based) sys-
tems with varying amounts of parallel data (from 0.4M to 356M words). They observe (on a
news test set) that NMT starts outperforming SMT when there are more than 15M words in
the training set. When using all the parallel data available, NMT even beats an SMT system
that uses a huge (2 billion words) language model. However, with small amounts of data (less
than 1M words) NMT performance is catastrophic (BLEU scores close to zero), while SMT ob-
tains decent BLEU scores (≈ 18 BLEU). Furthermore, SMT can easily harness larger volumes
of monolingual data via its language model, which gives significant improvements, especially
in low-resource settings. The authors also observe that NMT is less robust to out-of-domain
translation: model trained on parallel data from one specific domain (e.g., movie subtitles) and
evaluated on another domain (e.g., medical domain).

Östling et al. (2017) do similar observations. They train several models (German, Czech, French
or Spanish to English) on small amounts of data: a subset of the Bible with 130k words, or
Watchtower (a religious magazine) with 70k words. Compared to SMT, NMT scores are disas-
trous, in particular with the smaller Watchtower training set. A common observation of Koehn
et al. (2017) and Östling et al. (2017) is that NMT tends to sacrifice adequacy for fluency: it is
frequent to observe fluent, understandable NMT output that is completely unrelated to the input.
SMT tends to do the reverse, defaulting to word-by-word translation or even recopying its input
when too little information is available.

Neural Machine Translation in low-resource settings is still an open problem.4 A common
approach to mitigate this problem is to do transfer learning. In (Zoph et al. 2016b), a French to

4This was the main topic of the 2017 JSALT summer workshop: https://duyvuleo.github.io/
ws17mt/

https://duyvuleo.github.io/ws17mt/
https://duyvuleo.github.io/ws17mt/

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 21

English model is trained on large amounts of training data. This model is then used to initialize
other models, which have very small amounts of training data, but where the target language
is also English (e.g., Urdu to English). With this pre-training approach, they obtain similar
performance on these low-resource language pairs as a robust SMT system (trained on the same
data). The multilingual approach presented earlier is also a solution, as it allows translation
in language pairs that have no parallel data. Johnson et al. (2016) also show that finetuning
this multilingual model with small amounts of parallel data, in an unseen language pair, greatly
improves the translation quality for this language pair.

Artetxe et al. (2018) and Lample et al. (2017) propose unsupervised NMT models, i.e., models
that do not use any parallel data. Both approaches are very similar: they use pre-trained word
representations in the source and target language that share the same vector space (Artetxe et al.
2017; Conneau et al. 2017a). They also do back-translation, where the model is used to translate
target language (monolingual text) to the source language, and then trained to reconstruct this
target language sequence by reading the automatically generated source language sequence.

1.2 Automatic Post-Editing

In addition to Machine Translation, we are interested in the related field of Automatic Post-
Editing (APE). Until recently, the techniques to solve this problem were mostly based on Statis-
tical Machine Translation (SMT). Neural-based techniques have started to appear that achieve
promising results. A challenge for such methods is the relatively small amount of training data
compared to MT (generally in the order of 10k sentences).

1.2.1 Definition

Manual Post-Editing consists in taking the output of a Machine Translation system, and rework-
ing it so that it meets some translation quality standards.5 It has become a common practice
for human translators (e.g., in translation agencies) to use an MT system to obtain a first, often
imperfect, translation of the sequence they wish to translate, and then to manually modify this
translation to correct its imperfections. Green et al. (2013) do an analysis of post-editing on
three language pairs (English to Arabic, German and French), and observe that doing manual
post-editing using an SMT system (2012 version of Google Translate) is cost effective compared
to translating from scratch. According to (Green et al. 2013), post-editing reduces translation
time and even increases the quality of translations.

Alternatives to this approach are translation memories, where the human translator looks for
similar examples in a large database of previous translations; or computer-aided translation,
where the human translator is interactively assisted by an MT system (e.g., with word translation
suggestions).

Translation work-flows that include manual post-editing may result in the generation of poten-
tially large amounts of new data, in the form of sentence triples: source sentence, MT hypothe-
sis, and human post-edited version of this hypothesis. It can be desirable to use this new data to
improve the MT system. There are several ways of doing so:

5Post-Editing can be done on any machine-generated output, e.g., handwriting recognition or speech recognition.
In the context of this thesis, we are interested in Post-Editing of Machine Translation output.

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 22

• Re-train the MT system from scratch by adding the new data to the training corpus.

• Incrementally train the MT system with the new data (Hardt et al. 2010). This requires an
MT system which can be incrementally trained (which is not the case with vanilla PBMT).

• Train a second system which takes as input the outputs of the MT system, and outputs
improved translations.

The first two options require having access to the inner workings of the original MT system,
which is not always possible, in particular when using commercial MT systems like Google
Translate or SYSTRAN.

The third option is called Automatic Post-Editing (APE), because it basically consists in learning
to imitate what a human post-editor does. It is the only way of automatically correcting the
errors of an MT system in a black-box scenario, i.e., when we do not have access to its decoding
process. Analogously to Machine Translation, there are three main types of APE approaches:
Rule-based Post-Editing, Statistical Post-Editing (SPE), and Neural Post-Editing (NPE).

1.2.2 Evaluation

Like Machine Translation, Automatic Post-Editing quality can be automatically measured with
the BLEU metric. However, an automatic metric which makes better sense is the Translation
Edit Rate (TER). When applied in the context of post-editing, i.e., when the reference translation
is a post-edited version of the MT hypothesis (and not an unrelated translation of the source
sentence), TER is called HTER (for Human TER). Snover et al. (2006) show that the correlation
of HTER with Human Judgments exceeds all other metrics: BLEU, METEOR, Human BLEU or
Human METEOR. Intuitively, HTER can be seen as a way to extract the post-editing operations
that the human translator did on the translation hypothesis, in order to reach a gold-standard
post-edited version. It basically measures the post-editing effort by counting the number of
words that the post-editor had to shift, delete, insert or substitute (it is a lower bound of the
number of basic operations he had to execute).

In the automatic post-editing literature, the preferred evaluation metric is HTER (or TER when
comparing to standard translation references), and sometimes BLEU is also shown for indica-
tion.

1.2.3 Statistical Post-Editing

Statistical Post-Editing (SPE) was the most popular approach until recently. The basic idea is
that automatic post-editing can be seen as a translation task, where the source language is “bad
English” and the target language is “good English”. As such, it can be implemented using the
same techniques as in Statistical Machine Translation.

However, the results with this approach are mixed. The general consensus is that SPE is useful
in the two following scenarios:

• Post-Editing of Rule-based MT output (Simard et al. 2007);

• Domain adaptation: porting a general-domain MT system to a more specific domain
(Potet et al. 2012a).

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 23

A common problem in academic research for Automatic Post-Editing is the unavailability of
corpora of sufficient size. Some existing post-editing corpora are: Potet et al. (2012b) and
Turchi et al. (2016, 2017). They are often in the order of ten to twenty thousand sentence
triples, several orders of magnitude smaller than the parallel corpora used in MT. The post-edited
side is sometimes obtained through crowd-sourcing (Potet et al. 2012b), as the intervention of
professional translators is prohibitively expensive.

There are two main approaches in SPE: monolingual and multi-source APE.

Monolingual APE Simard et al. (2007) train a phrase-based machine translation system to
translate from MT output to human post-edited output. This is an instance of monolingual post-
editing, where the source-language sentence is not used. They study statistical post-editing of
a Rule-based MT (RBMT) system, on two datasets: English to French and French to English
translation of job ads. This data comes from a website called Job Bank, maintained by the
Canadian government, where potential employers can post job ads. Because of the Canadian
law, all these ads need to be available both in English and French. For this reason, a Rule-based
MT system is used, followed by manual post-editing. Simard et al. (2007) use the translations
produced by these post-editors to train two SPE systems, whose input is the imperfect translation
produced by the website’s RBMT system. These (non-public) datasets contain about 31k triples
(source, RBMT output, PE reference) for English-to-French MT, and 39k triples for French-to-
English, with on average 11-14 words per segment.

Simard et al. (2007) make the following observations:

• SPE when applied to the outputs of the baseline RBMT system (RBMT+SPE) strongly
improves translation quality (as measured by BLEU and TER).

• Training a PBMT system from scratch on the Post-Editing data (source language to post-
editing reference) also improves translation quality compared to the RBMT baseline, even
though the RBMT+SPE configuration is still better. This suggests that the baseline RBMT
system is not very strong.

• Cascading the PBMT and SPE models does not improve translation quality. Possible
explanations for this are that the PBMT system is much stronger than the RBMT baseline
(thus harder to improve); or that SPE is not adequate for recovering SMT errors. It is
important to note that, while the SPE system is trained with outputs of the PBMT system,
the target remains the same RBMT post-edited output. This setting is called simulated
Post-Editing: the post-editing target is not a true post-editing of the input, but a proxy
reference translation. This latter translation is potentially very different from the input,
which makes the APE task more difficult.

• When applied to a PBMT system trained on out-of-domain data, domain-specific SPE
actually improves translation quality, and by a large margin, even though we are far from
the specialized PBMT and the RBMT+SPE results.

The subsequent literature on Statistical Post-Editing confirms the hypothesis that SPE is good
for domain adaptation and post-editing of RBMT output; but not so good for post-editing of
general-domain SMT outputs (Chatterjee et al. 2015a; Potet et al. 2012a; Wisniewski et al.
2015).

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 24

Potet et al. (2012a) perform a study of Statistical Post-Editing of PBMT French to English out-
puts, with a PE corpus of news data (Potet et al. 2012b). They explore two scenarios: same
domain post-editing, and post-editing to a new domain (domain adaptation). Their conclusions
are that SPE does not improve the results in a general domain setting, no matter the amounts of
PE data (even when adding large amounts of simulated PE data). In a domain adaptation set-
ting however, SPE brings large improvements. Yet, domain adaptation techniques, like PBMT
retraining with the new data, or training an additional phrase table on the new data bring larger
improvements. These latter approaches of course assume that we have access to the parameters
of the baseline PBMT system (not a “black-box” APE scenario).

Another approach for SPE which differs from (Simard et al. 2007), is the multi-source approach
of (Béchara et al. 2011).

Multi-source SPE The previously proposed approaches for SPE were monolingual: they only
used the MT output and tried to improve it. However, in many cases, this information might not
be enough to get a correct translation. If the MT output is too messy, there might be missing
words, or mistranslated words that are impossible to recover, or any other loss of information.

In human post-editing, the translator often has access to the source language sentence, which
allows her to recover translation adequacy errors, in addition to fluency errors. It can be desirable
for an APE system that it also be able to make use of this information (which is always available
at training and test time).

Simard et al. (2007) hint at this possibility, by proposing to either incorporate the source lan-
guage sentence as a new feature in the log-linear model; or to do a combination of an MT system
with an APE system at test time (e.g., with re-ranking).

Béchara et al. (2011) propose a simple solution, which merges the source and MT sequence into
a single sequence of word pairs, and translates this sequence to the post-editing reference.

To do so, they first align the source side and the MT side of the training set at the word-level
using GIZA++. This alignment model can be used to align future sentence pairs (at test time).
Then the MT side of the training corpus is pre-processed to replace each word f’ by f’#e,
where e is the aligned source word. An SPE model is trained to translate from this new input
(which combines both MT and source) to the post-editing reference (f’#e→ f). A problem
with this approach, is that it leads to extreme data scarcity: the vocabulary size goes from 9k to
71k, very large compared to the total number of words in the training corpus. Many “words”
appear only once in the training set, and many out-of-vocabulary words can be encountered at
test time. To reduce this problem, the authors replace the non-translated f’#e words inside
the SPE output with f’ (which is already a word in the target language). They also propose a
thresholding method, which replaces f’#e with f’ (reverts to monolingual SPE), at training
and test time, when the alignment score between f’ and e is below some threshold.

Béchara et al. (2011) apply this technique on simulated PE data of software user help. They
observe a large improvement over the SMT and SMT + monolingual SPE baselines on French-
to-English translation. On English-to-French however, the SPE systems (monolingual and bilin-
gual) always degrade the SMT baseline. A limitation of their experiments is that they do simu-
lated post-editing: the PE reference is actually a reference translation, which is potentially very
far from the MT hypothesis. Also, the baseline SMT system is trained by the authors themselves
on the same data (a small corpus of software help) using cross-validation. This SMT system is

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 25

very small by most standards (also, it does not use any external language model). This may
make their results non-transferable to larger state-of-the-art SMT systems.

Béchara et al. (2011) do a detailed analysis of the outputs of their SPE systems, in order to iden-
tify where the improvements/degradations come from. To do so, they compute TER statistics
between the SPE outputs and the PE reference: average number of insertions, deletions, sub-
stitutions and shifts. They observe that the successful English SPE system obtains fewer shifts,
insertions and substitutions than the baseline, suggesting that it is good at improving reordering
(shifts) and lexical choices (substitutions and insertions). However, it tends to produce longer
translations (which results in more deletions by TER). The unsuccessful French SPE system on
the other hand tends to reduce the length of the MT candidates by deleting too many words.

Recent work Chatterjee et al. (2015b) do a comparison of both approaches on several lan-
guage pairs. For this purpose, they use Post-Editing data from Autodesk (software user help).
The data contains 14k PE triples for six language pairs having English as source (Czech, French,
Polish, Italian, Spanish, German). The authors also use additional data to train similarly sized
language models for all target languages (2.5M sentences per language). In this setting, both
the monolingual approach (Simard et al. 2007) and the bilingual approach (Béchara et al. 2011)
significantly improve translation quality compared to the MT baseline (between 3 and 5 TER
points). The bilingual approach brings statistically significant (p < 0.05) improvements over
the monolingual approach for 5 out of 6 language pairs. Furthermore, the oracle which consists
of picking the best of the two is even better (-2 TER points on average), which suggests that
both approaches are complementary and could be combined. An interesting and rather counter-
intuitive observation is that the relative TER improvements are higher for the best-performing
language pairs.

Since the 2015 edition, the Workshop on Machine Translation (WMT) includes an Automatic
Post-Editing task.

Chatterjee et al. (2015a) apply SPE to an English-to-Spanish corpus of news with 11k triples
(WMT15 shared task) and do not manage to beat the MT “do-nothing” baseline. They try several
techniques, including (Simard et al. 2007), (Béchara et al. 2011), new phrase-based features
(phrase similarity, reliability and usefulness), a phrase-table pruning strategy (which removes
non-reliable phrase pairs) and language models of different sizes (small PE, medium-size in-
domain, and large out-of-domain). None of these techniques lead to a significant improvement
in scores compared to the MT baseline. Their best configuration shows however a 0.6 TER
improvement over the SPE baseline of Simard et al. (2007). They also propose a new corpus-
level evaluation metric for APE:

Precision =
Improved

Improved + Deteriorated
(1.16)

A sentence is considered as improved if its TER (w.r.t. PE reference) has decreased (compared
to the MT baseline), and it is considered as deteriorated if the TER has increased.

Possible explanations as to why APE is harder in this setting, compared to the Autodesk set-
ting are that the data is of lower quality (obtained by crowd-sourcing, instead of professional
translations) and that the news domain is harder than the specific domain of software user help
(Autodesk). This latter explanation would support the idea that SPE is especially good in spe-
cific domain settings.

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 26

Wisniewski et al. (2015) also fail to get improvements over the MT baseline on this corpus. Pal
et al. (2015) manage to get a very slight improvement over the baseline, by using a monolingual
SPE system, with careful data pre-processing (stemming) and building the phrase table from
several word alignments: GIZA++, TER-based alignment, and METEOR-based alignment.

Most subsequent work in automatic post-editing, in particular in the 2016 and 2017 editions of
the Workshop in Machine Translation, is based on Neural Machine Translation techniques.

1.2.4 Neural Post-Editing

Junczys-Dowmunt et al. (2016b) and Pal et al. (2016) are the first two contributions that propose
to use Neural Machine Translation techniques for Automatic Post-Editing.

Pal et al. (2016) train a basic attention-based NMT model (Bahdanau et al. 2015) on a large post-
editing corpus. The corpus contains 312k sentence triples of English-to-Italian translation of
news and Europarl data by Google Translate (strong baseline) followed by manual post-editing
(non-public data). Their system is monolingual, in the sense that it does not use the source
(English) side. Yet, they achieve significant improvements compared to the Google Translate
baseline and compared to an SPE (phrase-based) baseline. These are very promising results.
However, the training corpus is extremely large by post-editing standards.

Junczys-Dowmunt et al. (2016a) do bilingual neural-based post-editing, in the context of the
shared APE task of WMT 2016. The training corpus contains 12k triples of post-edited English-
to-German translations in the IT domain. They obtained the best results on the task, by a large
margin, beating the MT baseline by more than 3 TER points (5.5 BLEU). Their approach con-
sists in training two NMT models: one model to translate from English to post-edited German
(MT from scratch), and one to translate from imperfect German to post-edited German (PE
model). Both models are combined at test time by averaging their log-probabilities. The key
point for the success of their approach is the use a very large synthetic PE corpus, which is
obtained by “round-trip translation”. The building process of this corpus is illustrated by Fig-
ure 1.2.

• They first get a huge corpus of monolingual German crawled from the web (Common
Crawl), with more than one billion sentences.

• This corpus is filtered to keep only well-formed sentences: starting with capital letter,
ending with punctuation, minimum 30 letters.

• Then a language model is estimated on the target side of the PE data. This language
model is used to compute probabilities for each sentence in the German corpus. The 10M
sentences with the highest scores are kept: this filters the corpus to keep only in-domain
data.

• Large phrase-based German-to-English and English-to-German systems are trained on all
the available parallel data from the WMT IT-domain translation task. The 10M filtered
German sentences are translated to English and then back to German using the SMT mod-
els. This gives a synthetic corpus of 10M triples, where the original German sentence is
used as PE reference, the English translation as source-language sentence, and the German
round-trip translation as MT hypothesis.

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 27

12k (MT,PE,SRC)

1B (DE)

WMT (EN, DE)

filtering

LM (PE)

TER stats (MT,PE)

DE→EN SMT

EN→DE SMT

10M (SRC)

10M (MT)

10M (PE)

4M + 500k

(MT,PE,SRC)

FIGURE 1.2: Building process of the large “4M + 500k” synthetic corpus for automatic post-
editing (Junczys-Dowmunt et al. 2016b). “1B” is the German Common Crawl corpus, “WMT”
is a large parallel corpus available for the translation task of WMT 2016. “12k” is the real
post-editing corpus. “10M (SRC)” is obtained by translating “10M (PE)”, and “10M (MT)” is

obtained by translating “10M (SRC)” (round-trip translation).

• To get post-editing statistics close to those of the training corpus (same number of dele-
tions, insertions, etc.), the authors get the 500k closest triples in terms of TER statistics
as a medium-size synthetic PE corpus, and the 4M best triples as a large size (but noisier)
PE corpus.

Their models are trained first on the large 4M corpus. Then, they finetune the models on the
smaller and cleaner 500K corpus, to which they concatenate the real PE corpus (oversampled
20 times). Then, four instances of the MT and APE models are trained, and used in an ensemble
of 8 models. Another feature is added to the log-linear model that counts the number of new
words introduced in the APE output. This Post-Editing-Penalty (PEP) discourages candidates
that are too different from the MT hypothesis. The weights of the 9 features are tuned using
MIRA (Hasler et al. 2011), which looks for a set of weights that maximizes the BLEU score of
the dev set. Thanks to this large model, Junczys-Dowmunt et al. (2016b) obtain unprecedented
results on the APE task.

However, so large amounts of monolingual and parallel data are rarely available. One could
wonder how the trained PBMT system on English to German would perform if applied to the
source side of the APE corpus (translation from scratch). Also, this approach is tedious and
requires large computation power: round-trip translation of 10M sentences with PBMT systems,
and training 8 large NMT models.

Op-based APE Libovický et al. (2016) train a neural-based APE system, whose target is
not a sequence of words, but a sequence of edits operations. These operations are extracted
by computing the shortest edit path between the MT hypothesis and the PE reference. The
available operations are: keep current word, delete it, or insert a new word. An advantage of this
approach is that it is easy, even with little training data, to learn the identity, i.e., an APE system
that does nothing and keeps the MT hypothesis as it is. Word-based Neural Post-Editing, on
the other hand, can easily degrade the MT hypothesis if trained with too little data. Libovický
et al. (2016) manage to slightly improve over the MT baseline, but get much lower scores than
Junczys-Dowmunt et al. (2016b).

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 28

Multi-source APE Chatterjee et al. (2017) submitted a multi-source Neural Post-Editing sys-
tem to the shared APE task of WMT 2017, which obtained the best score on this task (Bojar
et al. 2017). This approach is very similar to Junczys-Dowmunt et al. (2016b), because it uses
the same synthetic training data. However, instead of using an MT system and an APE system
in a log-linear model (separate training, joint evaluation), they do joint training with a multi-
encoder model (Zoph et al. 2016a). The decoder takes as input attention vectors over the source
sequence (SRC encoder) and attention vectors over the MT hypothesis (MT encoder).

When training an NMT model to translate the source sentences from scratch (SRC to PE), they
observe that:

1. The NMT model performs worse than the baseline MT model, with BLEU evaluation
w.r.t. PE reference.

2. It actually performs better when the reference translation is used as target (and not the
post-edited MT hypothesis, which favors the MT baseline). This evaluation tends to in-
dicate that such large amounts of parallel data6 are enough to retrain an MT model that
performs much better than the baseline (thus making APE unnecessary).

State-of-the-art results on the WMT 2016 data,7 are obtained by Hokamp (2017). They use
the same models as Junczys-Dowmunt et al. (2016b), but with several other features as part
of a log-linear model: a factored model (with part-of-speech tags, and dependency parsing),
and a multi-source model which just concatenates the source sequence with the MT hypothesis
(and uses a single encoder). They also train an “aligned-MT” model which translates from MT
hypothesis to PE reference, where each MT word is replaced by the corresponding SRC word,
using the word-level alignment produced by the NMT model. This model also obtains state-of-
the-art results on the Quality Estimation task (predicting for each word in the MT hypothesis
whether it is good or bad) (Bojar et al. 2016).

1.2.5 Tasks and Resources

Several Post-Editing resources are publicly available. A characteristic of APE is that successful
models are usually trained on domain-specific data, and even more specifically, outputs from a
precise MT system. The implication is that the APE resources are specific to a given APE task
(post-editing system X in domain Y), and are rarely used for other tasks (contrary to MT).

Table 1.2 references some existing resources for automatic post-editing that are publicly avail-
able. The French-English corpus of Potet et al. 2012b was obtained by automatically translating
news data with a state-of-the-art PBMT system (Potet et al. 2010), and post-editing the hy-
potheses with crowd-sourcing (Amazon Mechanical Turk). Potet et al. 2012a trained Statistical
Post-Editing systems on this same data, and were unable to beat the “do-nothing” baseline. This
is possibly due to the noisy nature of the post-edits, and to the too general domain (news).

Another popular resource is Autodesk (Zhechev 2012).8 It consists in automatically translated
software documentation (IT domain), with Autodesk’s in-house PBMT system. The post-editing
references were produced by professional translators. This is a large corpus by APE standards,
with 30k to 410k triples in 14 language pairs (with English as source). Chatterjee et al. 2016

6The authors train an NMT model on the synthetic parallel data only. The scores could be even higher by training
with the parallel data that Junczys-Dowmunt et al. (2016b) used to extract their parallel corpus.

7These results were not presented as part of the shared task of the workshop.
8https://autodesk.box.com/Autodesk-PostEditing

https://autodesk.box.com/Autodesk-PostEditing

Chapter 1 – State of the Art: Machine Translation and Automatic Post-Editing 29

Corpus Languages Domain Size Post-Edits
Specia et al. 2010 En-Es Legal 4k Pro

Specia 2011 Fr-En/En-Es News 2.5k/1k Pro
Zhechev 2012 En-Ch/Cs/Fr/De... IT 30k-410k Pro

Potet et al. 2012b Fr-En News 11k Crowd
Bojar et al. 2015 En-Es News 12k Crowd
Bojar et al. 2016 En-De IT 13k Pro
Bojar et al. 2017 En-De/De-En IT/Medical 13k/26k Pro

WMT 2018 En-De IT 15k Pro
Synthetic data

Junczys-Dowmunt et al. 2016b En-De IT 4M + 500k –
Negri et al. 2018 En-De/En-It Multi 7M/3M –

TABLE 1.2: Publicly available resources in Automatic Post-Editing. Table extracted from
(Negri et al. 2018).

used a subset of this resource to perform a thorough evaluation of existing SPE techniques in
several language pairs.

More recently, several APE datasets have been released in the context of the shared APE tasks
of the Workshop on Machine Translation (Bojar et al. 2017, 2016, 2015). The English-Spanish
data from the 2015 edition was in a general domain, and the post-edits were obtained from
non-professional translators. None of the systems submitted to the task were able to beat the
“do-nothing” baseline. The 2016 and 2017 editions were more successful, as the data was in a
specific domain (IT), and neural-based techniques have started to appear.

A new trend is to use large amount of synthetic post-editing data to train large neural post-editing
systems. The synthetic corpus by Junczys-Dowmunt et al. 2016b was obtained by round-trip
translating monolingual German data (translating to English and back to German). A particu-
larity of this corpus is that it was filtered to be close the true data distribution of the 2016 APE
task (Bojar et al. 2016). More recently, Negri et al. 2018 released a large synthetic corpus for
English-to-German and English-to-Italian post-editing. This is a “simulated PE” setting, where
parallel corpora are used. The source-language sequences were automatically translated to the
target language, creating the MT segments. The reference translations from the parallel corpus
are used as post-editing references.

This corpus is in a general domain (actually, it contains data from multiple domains) and it
targets two different MT systems (a PBMT and an NMT system). It will be interesting to see
whether general domain data can be harnessed to improve domain specific Automatic Post-
Editing.

The upcoming APE shared task (WMT 2018) will feature a new challenge: automatic post-
editing of two different MT systems. There are two test sets: one that was obtained with the
historical PBMT system, and one that was obtained with an NMT system. The domain remains
the same, and the source-language data is sampled from the same distribution. In addition to the
training data that was available in the two previous editions, 15k new triples are made available
whose MT hypotheses were produced with NMT.

Chapter 2

Neural Networks

In this chapter, we are going to delve into a class of statistical models called “Artificial Neural
Networks”, by giving a tiny bit of theory as well as practical considerations. As of recently, deep
neural networks (often containing many more parameters than training points) have become a
particularly viable solution to many natural language processing problems, including machine
translation. This chapter constitutes a necessary basis to understand the neural machine transla-
tion models that are used in this thesis.

2.1 Fundamentals

2.1.1 Definition

Artificial Neural Networks are biologically inspired computational models. Similarly to the
brain, they are composed of many cells (neurons), connected to each other with modifiable
weights (analogous to brain synapses).1 They are useful in machine learning, because there
exist optimization algorithms that can adapt these weights, in such a way that the neural network
approximates a useful function.

Artificial Neuron An artificial neuron has several inputs and a single output. Its input either
comes from other neurons, or is given by its environment. The neuron (sometimes called neural
unit, or unit) computes a weighted sum of these inputs using modifiable weights (also called
parameters). A modifiable bias can also be added to this input.

This linear function of the inputs is then processed by the unit, through an activation function g.

z = (
n∑
i=1

xi × wi) + b = w>x+ b (2.1)

a = g(z) (2.2)

wherew ∈ Rn and b ∈ R are the parameters of the model, x is the input of the neuron (generally
presented as a vector of size n), and a its output.

1The analogy stops here. Neurons and synapses in the human brain are much more complex than this simple
computational model.

30

Chapter 2 – State of the Art: Neural Networks 31

Perceptron The perceptron (Rosenblatt 1957) is a very simple artificial neural network. Fig-
ure 2.1 gives a graphical representation of the perceptron model. It is composed of a single
neural unit whose activation function is the unit step function, defined as follows:

g(z) = 1(z > 0) (2.3)

g(z) =

{
1 if z > 0

0 if z ≤ 0
(2.4)

x1

x2

tanh

xn

z
..
.

w1

w2

wn

b

FIGURE 2.1: Perceptron

Intuitively, the perceptron fires a signal (g(z) = 1) if its input is above some threshold, and
no signal (g(z) = 0) otherwise. A non-zero bias b can be interpreted as having a non-zero
threshold: z > 0 ⇐⇒ w>x+ b > 0 ⇐⇒ w>x > −b.

Feed-forward Neural Network One strong limitation of the perceptron model is that it can
only compute linear functions. There is a more powerful family of models called “multi-layer
perceptrons” or more commonly “feed-forward neural networks.”

A feed-forward neural network is composed of several layers of neurons, and operates in a
directed fashion: each layer reads from the previous layer and sends its output to the next layer.
The input layer (first layer) takes its input from the environment (vector x1, . . . , xn). Then, there
can be any number of hidden layers, and a last layer whose output values are the final outputs of
the network. The perceptron is a single-layer feed-forward network.

In a network with L layers, the input z[k]i of the ith unit in the kth layer, and its activation a[k]i are
computed as follows:

z
[0]
i = xi (2.5)

∀k ≥ 1 z
[k]
i =

n[k−1]∑
j=1

W
[k]
ij z

[k−1]
j + b

[k]
i (2.6)

a
[k]
i = g[k](z

[k]
i) (2.7)

yi = a
[L]
i (2.8)

n[k] is the size of the kth layer, g[k] its activation function. W [k]
ij is the weight that connects the

ith unit of the kth layer with the jth unit of the (k − 1)th layer. x1, . . . , xnx are the inputs of the
network, and y1, . . . , yny its outputs (nx = n[0] and ny = n[L]).

Chapter 2 – State of the Art: Neural Networks 32

Figure 2.2 shows a two-layer feed-forward neural network (i.e., a model with a single hidden
layer), with a single output value.

Equations 2.6 and 2.7 can be written in a more compact way with products of matrices. If we
write x = x1, . . . , xnx as the input vector, the computation in a feed-forward network with L
layers can be done as follows:

z[0] = x (2.9)

∀k ≥ 1 z[k] = W [k]z[k−1] + b[k] (2.10)

a[k] = g[k](z[k]) (2.11)

y = a[L] (2.12)

n[k] is the size (number of units) of the kth layer, n[0] = nx is the size of the input vector, and
n[L] = ny the size of the output vector. W [k] ∈ Rn[k]×n[k−1]

and b ∈ Rn[k]
are the parameters

(weight matrix and bias vector) of the kth layer.

The vectorized version is generally the preferred way. It is a more compact way of defining
and programming a large neural network. Vectorized computation is extremely efficient on
specialized hardware compared to explicit sums.

x1

xn

ŷ..
.

W
[1]
1,1

b
[1]
1

b
[1]
2

W
[1]
3,n

b
[1]
3

W
[2]
1

W
[2]
2

W
[2]
3

b[2]

FIGURE 2.2: Example of feed-forward neural network with a single hidden layer of size three,
and a single output unit.

We have seen that the perceptron can only compute linear functions. Feed-forward networks are
not more expressive, unless using non-linear activation functions.

The Universal Approximation Theorem (Haykin 1994; Hornik et al. 1989) states that for any
continuous function defined in a compact subset of Rm, there exists a feed-forward network
with one hidden layer and a finite number of hidden units that can approximate this function
up to the desired precision. This is under the assumption that the feed-forward network uses an
activation function which is non-constant, continuous, bounded and monotonically-increasing
(e.g., tanh or sigmoid).

Chapter 2 – State of the Art: Neural Networks 33

For this reason, feed-forward neural networks are said to be universal approximators. How-
ever, the universal approximation theorem does not state anything about the learnability of such
network, which can be challenging.2

Activation function The activation function used in the perceptron model is the unit step
function (or Heaviside step function): f(z) = 1(z > 0) ∈ {0, 1}.

Other candidates, which are most often used in neural networks, are:

1. Identity function (linear activation): f(z) = z ∈ (−∞,∞)

2. Sigmoid or logistic function (soft step) is often used for the last layer as an alternative to
the unit step function, to provide a probabilistic output:

f(z) = σ(z) =
1

1 + e−z
∈ (0, 1) (2.13)

3. Hyperbolic Tangent:

f(z) = tanh(z) =
ez − e−z
ez + e−z

∈ (−1, 1) (2.14)

4. Rectifier (used in Rectified Linear Units, or ReLU):

f(z) = z+ = max (0, z) ∈ [0,∞) (2.15)

The sigmoid is generally used for the output layer in binary classification problems. The hy-
perbolic tangent and the rectifier are preferred choices for the hidden layers. The last three
activations are non-linear, which makes those good candidates to approximate complex func-
tions.

2.1.2 Machine Learning Basics

As explained by Mitchell (1997): “A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if its performance at tasks in T, as
measured by P, improves with experience E.”

Machine learning is the study of all techniques that allow computer programs (like neural net-
works) to learn from experience (typically real-world data), so as to better perform on a given
task (e.g., machine translation). Neural networks are good candidates for machine learning
models, as they are very expressive and modular, and their weights can be learned thanks to
optimization algorithms that we shall see later.

Machine Learning Tasks There are three broad categories of Machine Learning tasks:

• Supervised Learning: there is an input (an object, generally a vector, or sequence of
vectors), and a clear identified output (often called label).

2The theorem states the existence of such network. Finding this network is an entirely different problem.

Chapter 2 – State of the Art: Neural Networks 34

– Classification consists in finding the correct category for some input object. Exam-
ples of classification tasks are recognizing the main object in an image, or predicting
the next word in a sentence. In binary classification, we choose between two classes,
e.g., cat or not cat. In multi-class classification, we pick a label in a set of classes,
e.g., cat, dog, bunny, or mouse.

– Regression is similar to classification, but instead of predicting a categorical output,
we predict a continuous value (e.g., movie rating).

– Structured prediction is a generalization of classification to sequential outputs, i.e.,
instead of predicting a single label, we predict a sequence of labels. Machine Trans-
lation can be modeled as a structured prediction problem.

• Unsupervised Learning: we only get unlabeled inputs, and look for a hidden structure
within these objects, i.e., some ways of explaining the data distribution.

– Representation Learning / Dimensionality Reduction. Here the output we are in-
terested in is an object of the same type as the input, but compressed in some way
(i.e., of smaller size). Often, this involves some sort of transfer learning: the learned
representation is used as a semantically richer or more concise representation of the
input, in a classification or regression task.

• Reinforcement Learning: an agent evolves in an environment (e.g., a game of chess) and
has to take actions (chess moves) that lead him to new states (new configurations of the
chess board) and potentially give him rewards (e.g., victory or defeat). The goal is to find
a policy (a mapping from states to actions) which maximizes the expected cumulative
reward of the agent.

In this thesis, we are essentially interested in supervised learning settings, in particular classi-
fication or structured prediction tasks. We will therefore delve into these particular aspects of
machine learning.

Train, dev and test sets The purpose of machine learning algorithms is to learn from data.
More specifically, in supervised learning, the data consists of many examples, which are pairs
of inputs and their corresponding labels.3 We assume that this data is not simply noise but that
it has some structure, that it has been generated by some natural process. The goal is to find
a function that maps the input objects to their label (an approximation of the natural process
responsible for generating the data). With this learned function (which we call model), we are
able to make predictions about future (unlabeled) events that follow the same data distribution.

While learning by heart (by storing all the examples) may seem like a viable solution, we actu-
ally want our model to perform well on new examples, i.e., to be able to generalize. When given
a point that it has never seen before, the model should be able to predict its label correctly.

That is why it is a common practice to split the available data into three data sets:

• The training set is used to train the model (i.e., find the best set of weights and biases).

• The dev set (or ‘development set’, or ‘validation set’) can be used for model selection
(choosing the best model in a set of candidates), deciding when to stop training, or hyper-
parameter tuning (e.g., choosing the number of layers and units).

3Depending on the task (classification, regression, structured prediction), the label can be categorical, continuous
or sequential. Likewise, the input can take all sorts of forms.

Chapter 2 – State of the Art: Neural Networks 35

• The test set is used to evaluate the final performance of a model (e.g., to compare with
other state-of-art results). It should not be used to further improve this model.

The dev and test sets generally contain a few thousand examples each, i.e., enough examples to
obtain statistically significant estimates of the performance of the model. The train set contains
as much data as possible, as the generalization capacity of a model strongly depends on how
many training examples it has seen.

FIGURE 2.3: Test error with respect to model complexity. Too complex models overfit, while
too simple models underfit. This figure comes from http://scott.fortmann-roe.

com/docs/BiasVariance.html

(A) “Ideal case”: the model fits the data,
but not too much (it does not try to fit

outliers, or noisy points)

(B) Overfitting: the model fits exactly the
training points, at a risk of poor generalization

to new unseen points.

FIGURE 2.4: Decision boundaries of the triangle and circle classes with different bias/variance
trade-offs

Bias and variance a.k.a. underfitting and overfitting When evaluating the performance of
a statistical model, the error can be decomposed in two terms: a bias term, which is due to the
inability of the model to approximate the true distribution of the data (underfitting, e.g., trying to
fit a non-linear dataset with a linear model); and a variance term, which is due to the model being
too sensitive and fitting the noise in the training set (overfitting). As illustrated by Figure 2.3,
more complex models (e.g., models with more hidden layers) tend to have a lower bias but a
larger variance.

http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html

Chapter 2 – State of the Art: Neural Networks 36

Figure 2.4 shows the decision boundaries of two models in a binary classification problem (tri-
angle and circle classes). The first model is unable to correctly classify the entire training set.
However, it is more robust to noise and can potentially achieve better scores on unseen data. The
model on the right fits exactly all training points but the decision surface is very convoluted, and
will probably perform poorly on new points (overfitting).

When designing a machine learning model, it is important to find a good trade-off between bias
and variance. Depending on the problem at hand: difficulty of the problem, size of the dataset,
amount of noise, different neural model sizes may be appropriate.

The usual way to diagnose an overfitting problem, is to compare the performance of the model
on the training set and on the dev set. If the performance on the dev set is much worse than on
the train set (and they both come from the same distribution), then it might be overfitting. In this
case, the model is probably too large or there is not enough data. There also exist techniques that
can reduce model variance without increasing model bias too much, like explicit regularization,
artificial data augmentation, or early stopping.

On the other hand, if the performance on the training set is bad, the model is probably underfit-
ting, and should either be made larger or trained longer.

2.1.3 Optimization

Objective function In supervised learning, in order to train a neural network, we need to
define an objective function. The objective function, or cost function gives an estimate on how
good the model is at doing the desired prediction task.

A necessary condition of the objective function is that it should be differentiable with respect
to the model parameters, so that we can use a family of optimization methods called gradient
descent, which we shall describe shortly.

The most commonly used objective functions in neural networks are the Negative Log-Likelihood,
and the Mean Squared Error.

Mean Squared Error (MSE) is most common when doing regression, i.e., when the labels are
continuous. It is the average of the squares of the differences between the predictions of the
model and the true labels:

JMSE(θ) =
1

m

m∑
j=1

(y(j) − ŷ(j))2 (2.16)

where m is the size of the training set, y(j) is the label of the jth training example, and ŷ(j) is the
output of the model when taking x(j) as input.

θ corresponds to the entire set of model parameters (weights and biases). The cost depends on
θ because different parameter values will lead to different outputs ŷ (we omit the θ from ŷθ for
sake of conciseness). The goal of optimization is to find the set of parameters θ? that minimizes
this cost:

θ? = arg min
θ
J(θ) (2.17)

Chapter 2 – State of the Art: Neural Networks 37

When doing binary classification (labels belong to one of two classes), we often maximize the
Likelihood of the training set, which is the estimated probability of its labels according to the
model:

J(θ) =
m∏
j=1

pθ(y
(j)) (2.18)

pθ(y) = ŷy(1− ŷ)(1−y) =

{
ŷ if y = 1

1− ŷ if y = 0
(2.19)

We dropped the superscript (j) for sake of clarity. pθ(y) is the probability of label y according
to the model. ŷ is the probability of label 1, and because the probabilities sum to one, 1 − ŷ is
the probability of label 0.

Because we want the model to give high probabilities to the correct labels (and as a by-product
low probabilities to the wrong ones), it makes sense to look for the set of parameters θ that
maximizes this quantity.

We generally prefer minimizing the Negative Log-Likelihood, defined in Equation 2.20. This
is equivalent to maximizing the likelihood (because the natural logarithm is monotonically in-
creasing), but more convenient: the gradient is easier to compute, and there are less numerical
errors due to multiplying small numbers together. Furthermore, the negative log-likelihood is
identical to a quantity know in information theory as cross-entropy:

JNLL(θ) = − 1

m

m∑
j=1

y(j) log ŷ(j) + (1− y(j)) log (1− ŷ(j)) (2.20)

When doing multi-class classification, ŷ is not a scalar anymore, but a vector with as many
elements as there are classes.

With neural networks, this is generally done by using an output layer of size N , where N is the
number of classes, with the identity as activation function. This gives a vector of unnormalized
scores for each class. To obtain a probability distribution (i.e., scores that sum to one), we add a
softmax layer:

z = W [L]a[L−1] + b[L] (2.21)

ŷ = softmax(z) (2.22)

ŷi =
ezi∑N
k=1 e

zk
(2.23)

The decision rule is to pick the class whose score is the highest:

c = arg
N

max
i=1

ŷi = arg
N

max
i=1

zi (2.24)

The negative log-likelihood objective can be extended to the multi-class setting.

There are two ways of defining the labels y(i): with one-hot vectors, i.e., vectors of size N with
a one at a specific position, and zeros everywhere else. For example, with (cat, mouse, bunny,
dog), the label for cat would be (1, 0, 0, 0), the label for mouse (0, 1, 0, 0), etc.

Chapter 2 – State of the Art: Neural Networks 38

In the “one-hot vector case”, the negative log-likelihood is computed as follows:

JNLL(θ) = − 1

m

m∑
j=1

N∑
i=1

y
(j)
i log ŷ

(j)
i (2.25)

JNLL(θ) = − 1

m

m∑
j=1

y(j)> log ŷ(j) (2.26)

The other solution is to assign a value in {1, N} to each label. If we define id(j) as the index of
label y(j), the cost function is computed as follows:

JNLL(θ) = − 1

m

m∑
j=1

log ŷ
(j)
id(j) (2.27)

We define the loss function L(ŷ, y) as the objective function applied on a single example with
label y, when the model prediction is ŷ:

• Binary cross-entropy loss:

y ∈ {0, 1} ŷ ∈ (0, 1) (2.28)

L(ŷ, y) = −(y log ŷ + (1− y) log (1− ŷ)) (2.29)

• Multi-class cross-entropy loss:

y ∈ {0, 1}N ŷ ∈ (0, 1]N
N∑
i=1

yi =
N∑
i=1

ŷi = 1 (2.30)

L(ŷ, y) = −
N∑
i=1

yi log ŷi = −y> log ŷ (2.31)

• Square loss:

y ∈ R x ∈ R (2.32)

L(ŷ, y) = (ŷ − y)2 (2.33)

Gradient descent Once a cost function is properly defined, we need to optimize this function,
i.e., automatically find the set of parameters θ with the lowest cost on the train set. To do this,
we can use an optimization algorithm called gradient descent.

It consists in repeatedly running the following update rule over parameters θ:

θ ← θ − α∂J(θ)

∂θ
(2.34)

J(θ) =
1

m

m∑
j=1

L(ŷ(j), y(j)) (2.35)

θ ← θ − α 1

m

m∑
j=1

∂L(ŷ(j), y(j))

∂θ
(2.36)

Chapter 2 – State of the Art: Neural Networks 39

where α is a hyperparameter called learning rate, or step size. The negative gradient −∂J
∂θ gives

the direction of the update, while α specifies how much we should move in this direction.

θ can be represented as a vector containing all the parameters of the model (concatenation of all
flattened weight matrices and bias vectors). The gradient ∂J(θ)∂θ has the same shape: it contains
the partial derivative of the cost function with respect to each parameter. The update rule is
applied element-wise.

In Figure 2.1 (A), the derivative of the cost function with respect to parameter w is positive
(slope of the tangent line). When applying the gradient descent update rule (Equation 2.34),
we decrease w, and get closer to the minimum value of the objective function. By applying the
update rule several times, we eventually get to the global minimum.

When the cost function is convex, like Figure 2.1 (A), with the right step-size, gradient descent
is guaranteed to converge to a global minimum.

However, with most neural networks the cost function is highly non-convex. Very often, it has
numerous local minima (or saddle points), which are very difficult to localize. Figure 2.1 (B)
shows a function with a local minimum: if the weight is initialized with a small value (left of
the plot), gradient descent will probably get stuck there, and never reach the global minimum at
the right of the plot.

In the figures, the models have a single parameter w. In practice, neural networks can have
millions of parameters, which makes it impractical to analyze or visualize the cost function.

(A) Gradient descent of a convex cost function (B) Gradient descent of a non-convex function
with a local minimum

TABLE 2.1: Gradient descent of unidimensional objective functions of different shapes

Stochastic gradient descent Batch gradient descent can be very costly, because it requires
computing the gradients on the entire training set. With large neural networks and/or large
training sets, this can be infeasible because of time or memory constraints.

An alternative is stochastic gradient descent, which consists in computing gradients of the loss
on a single training example, and applying the update rule immediately:

θ ← θ − α∂L(ŷ(j), y(j))

∂θ
(2.37)

Chapter 2 – State of the Art: Neural Networks 40

This gradient is a noisy estimate of the true gradient, which can cause training to be quite
unstable. A pass through the entire training set is called an “epoch”. A single application of the
update rule is called an “update”, an “iteration” or a “step”. Figure 1 describes the full SGD
algorithm. The stopping condition can also be a pre-defined number of epochs or iterations. We
can also evaluate the performance of the model on the dev set more frequently and stop training
in the middle of an epoch if the model has stopped improving.

It is important to shuffle the training set before starting training, to avoid biasing the updates
too much because of regularities in the training set (e.g., if we present only cat instances before
showing dogs, the model will learn to predict cats regardless of its input). It is even recom-
mended to re-shuffle the training set at each new epoch (Y. Bengio 2012).

Data: Shuffled training set Dtrain of size m, and dev set Dtest

Result: Optimized model parameters θ
Initialize θ to random values;
while dev error keeps decreasing do

foreach example (x(j), y(j)) ∈ Dtrain do
Compute ŷ(j) using x(j);

Compute dθ = ∂L(ŷ(j),y(j))
∂θ ;

Apply θ ← θ − α× dθ;
end
Compute error on dev set Dtest;

end
Algorithm 1: Stochastic Gradient Descent Algorithm

SGD has some interesting properties:

• Because of its noisy nature, SGD can sometimes escape local minima or saddle points,
where batch gradient descent always gets stuck.

• It is less memory hungry, compared to vectorized batch gradient descent.

• It converges faster in most cases (it requires less epochs). This is mostly due to the re-
dundant nature of real-world datasets. Say our training set D is extremely redundant, and
contains three copies of the same dataset D̃. With batch gradient descent, a single epoch
on D is equivalent to a single epoch on D̃ with a learning rate three times as large. With
SGD, this is equivalent to three epochs on D̃.

• Incremental training: it is possible to train the model on the fly while receiving new
training examples (online training), or continue training a previously trained model with
new training examples (pre-training/finetuning). We can also stop training at any time
and get a working model (e.g., in the middle of an epoch). This comes in handy with
extremely large training sets, where we might want to stop training before the end of the
first epoch.

Mini-batch gradient descent Stochastic gradient descent can be very slow, because it does
not make use of parallelization, which is the main benefit of modern hardware. Moreover, with
noisy training sets, SGD can be very unstable and give unpredictable results.

Chapter 2 – State of the Art: Neural Networks 41

A variant of SGD is mini-batch gradient descent, where instead of doing an update for each
training example, we group training examples in mini-batches of pre-defined size s:

θ ← θ − α1

s

s∑
j=1

∂L(ŷ(j), y(j))

∂θ
(2.38)

This combines the advantages of both batch and stochastic gradient descent: larger batch sizes
are less unstable than SGD because the gradient estimate is more accurate, and we can con-
trol speed and memory usage by choosing the right batch-size. Mini-batch gradient descent
is much faster, because we can compute the gradients for the entire mini-batch at once using
parallelization.

There exist many strategies for creating the mini-batches. The simplest approach is to shuffle
the training set at the beginning of an epoch (or only once at the beginning of training), and
group consecutive examples in the same mini-batch.

In practice, this is the preferred method for training neural networks. In the literature, the term
“SGD” often refers to mini-batch SGD. Common batch sizes range from 16 to 256 (in this work,
we generally use 32 or 64). In Deep Neural Networks, it has been observed that large batch sizes
tend to give models which do not generalize as well (Keskar et al. 2017).

Example: Logistic regression Logistic regression is like the perceptron model, except that it
uses the logistic function (sigmoid) as activation function. This means that instead of an integer
in {0, 1}, it predicts a real number in (0, 1).

input: x ∈ Rn label: y ∈ {0, 1} output: p ∈ (0, 1) (2.39)

parameters: w ∈ Rn, b ∈ R (2.40)

z = w>x+ b (2.41)

p = σ(z) (2.42)

To use logistic regression as a classification model, we must couple it with a decision rule
that says: if the output number p is greater than some threshold (generally 0.5), pick class 1,
otherwise pick class 0. This output can be interpreted as a probability. Higher values mean
higher confidence of the model that object x belongs to class 1.

In tasks where we only want to predict class 1 when absolutely certain (to reduce false positives),
we can raise the threshold. Say class 1 means “individual x is cancer-free”, a false positive can
be catastrophic.

Another advantage of using a sigmoid instead of a hard step function like in the perceptron, is
that it is differentiable, and we can use cross-entropy as the loss function:

L = −(y log p+ (1− y) log (1− p)) (2.43)

If we want to train logistic regression with gradient descent, we must calculate the partial deriva-
tives: dL

db and ∂L
∂w . To do so, we apply the chain rule:

∂L
∂w

=
dL
dz

∂z

∂w

dL
db

=
dL
dz

dz

db
(2.44)

Chapter 2 – State of the Art: Neural Networks 42

with,

∂z

∂w
= x

dz

db
= 1

dL
dz

= p− y (2.45)

This gives:

∂L
∂w

= (p− y)× x dL
db

= (p− y) (2.46)

The update rule is then straightforward:

w ← w − α 1

m

m∑
j=1

(p(j) − y(j))× x(j) (2.47)

b← b− α 1

m

m∑
j=1

(p(j) − y(j)) (2.48)

where m is either the size of the train set (batch gradient descent) or the size of the current
mini-batch (SGD).

Logistic regression is a linear model. This means that it is only able to find classes that are
linearly separable. To come back to the example in previous section. The decision surface is a
line (or a hyperplane in higher dimensions), which gives a high bias when trying to fit datasets
that are not linearly separable.

There are tricks which make possible the use of linear regression with more complex datasets.
For instance, the kernel trick consists in doing a non-linear transformation of the input features
x, resulting in a model which is not linear with respect to the initial features. Another trick is
to make x very large by including many features, as a dataset may become linearly separable in
higher dimensions.

Regularization Regularization is any method, which when applied during training can reduce
the overfitting effects of the model, generally at the cost of increased model bias (larger train
cost).

L2 regularization, also called “weight decay” in the field of neural networks is an example of
regularization technique. It consists in adding a regularization term to the objective function:

J̃(θ) = J(θ) +
λ

2
||θ||2 (2.49)

||θ||2 = θ>θ =
∑
i

θ2i (2.50)

In the update rule, this gives:

θ ← θ − α∂J(θ)

∂θ
− λθ (2.51)

θ ← (1− λ)× θ − α∂J(θ)

∂θ
(2.52)

This regularization scheme tends to give model parameters of smaller magnitude. The hyperpa-
rameter λ controls the amount of regularization.

Chapter 2 – State of the Art: Neural Networks 43

Another technique is L1 regularization:

J̃(θ) = J(θ) +
λ

2
||θ||1 (2.53)

||θ||1 =
∑
i

|θi| (2.54)

L1 regularization can lead to sparse solutions, i.e., weights with many zero values. It is often
used with logistic regression to perform feature selection: when having many more features than
needed, L1 regularization will drive “useless” weights to zero. At test time we can remove the
corresponding features altogether, and get a more compact model.

There are also a number of techniques that result in implicit regularization.

A commonly used technique is early stopping. The complexity of a neural network increases
during training. At the beginning of training, it generally computes very simple functions. The
more training iterations, the more it learns complex patterns in the data. When plotting the
training loss and dev loss with respect to training time (i.e., the number of iterations), we often
observe that the training loss keeps decreasing, the dev loss decreases for a while and then starts
increasing. A simple way to avoid overfitting, is to stop training at this time (when dev loss is at
its lowest value).

Another way to perform implicit regularization is with data augmentation, i.e., adding more
data. In some cases, we can also artificially increase the size of the training set. For example,
when learning to recognize digits, we can perform random perturbations to the input images,
like small rotations, or cropping. The model should be able to learn that an eight rotated by a
small angle is still an eight.

2.1.4 Training Neural Networks

Backprop Back-propagation (LeCun et al. 2012; Rumelhart et al. 1988) is an algorithm for ef-
ficiently computing the gradients in a directed neural network (such as feed-forward networks).

It consists of a simple application of the chain rule in calculus, which breaks down the derivative
of a composition of several functions as product of derivatives:

dz

dx
=
dz

dy

dy

dx
(2.55)

(f ◦ g)′ = (f ′ ◦ g) · g′ (2.56)

To apply the update rule for layer k, we want to compute the derivative of the loss function
with respect to parameters W [k] and b[k]. For sake of clarity, we will write these gradients as
dW [k] = ∂L

∂W [k] , and db[k] = ∂L
∂b[k]

By applying the chain rule, we get:

dW [k] = dz[k] ⊗ a[k−1] db[k] = dz[k] (2.57)

dz[k] =

{
g[k]
′
(z[k])�W [k+1]dz[k+1] if k < L

∂L
∂z[L] if k = L

(2.58)

Chapter 2 – State of the Art: Neural Networks 44

where ⊗ denotes an outer product (x⊗ y)ij = xi × yj , and � denotes an element-wise product
(x� y)i = xi × yi.
dz[L] = ∂L

∂z[L] is the gradient of the loss with respect to the output of the last layer (before
activation). For binary classification, where the output function is g[L] = σ and with a cross-
entropy loss, we get:

dz[L] = ŷ − y (2.59)

The backpropagation algorithm consists in a forward pass, where we compute the outputs and
activations of each layer, starting from the input layer, ending with the output layer. Then, in a
backward pass, we start by computing the gradients of the loss with respect to the output of the
last layer, and end with the input layer. Once all the gradients with respect to the model weights
are computed, we can do an SGD update of the weights.

Algorithm 2 describes backprop for feed-forward neural networks in details. Figure 2.5 illus-
trates this algorithm as a computation graph, with a forward pass and a backward pass.

Data: a[0] = x and y, current w[k] ∀k ∈ {1, L}
Result: dW [k] ∀k ∈ {1, L}
// forward pass
for k ← 1 to L do

Compute z[k] = W [k]a[k−1] and a[k] = g[k](z[k]);
end
// backward pass

Compute dz[L] using ŷ = a[L] and y;
Compute dW [L] = dz[L] ⊗ a[L−1];
for k ← L− 1 to 1 do

Compute dz[k] = g[k]
′
(z[k])�W [k+1]dz[k+1];

And dW [k] = dz[k] ⊗ a[k−1];
end
Algorithm 2: Backpropagation algorithm applied to a feed-forward neural network. For
sake of clarity, we omit the biases

Forward : x ... z[k], a[k] ... z[L], ŷ = a[L]
a[k−1] a[k] a[L−1]

Backward : dz[k], dW [k], db[k] dŷ, dz[L], dW [L], db[L]...
dz[k] dz[L]

a[k−1], z[k] ŷ, a[L−1], z[L]

FIGURE 2.5: Backpropagation algorithm. In the forward pass, the outputs of each layer are
computed one after another (they are needed for the evaluation of the loss function and of the
gradients). In the backward pass, we start by computing the gradients of the loss function for
the last layer of the network, and use these gradients to compute the gradients of the previous

layer, and so on.

Adaptive learning rate In the gradient descent algorithm, the gradient of the loss function
gives the direction in which we should move the weights to decrease the train loss. The ampli-
tude of the update (how far in this direction we should move) is dictated in part by the magnitude
of the gradient, but also by the learning rate α or step size.

Chapter 2 – State of the Art: Neural Networks 45

A higher learning rate generally results in faster convergence. However, if the learning rate is
too high, we can move too far in some directions and training can diverge altogether (exploding
gradient). Also, with a high learning rate, when reaching the end of training (when getting close
to a local minimum), the weights can bounce around the local minimum and never reach this
point.

There are simple tricks with SGD: one can initialize the learning rate to the largest value pos-
sible which does not make training diverge (by trial and error), and then gradually decrease the
learning rate to zero throughout training, with a method called learning rate decay:

αt =
1

1 + γ × t × α0 (2.60)

where γ is the decay rate, which controls how fast the learning rate should decay to zero. α0

is the initial learning rate. t is the current time step, which can be the number of epochs or the
number of SGD steps. Another method is exponential decay: αt = γt × α0

This works quite well in practice, but still requires a lot of hand engineering to find the best
initial value and the optimal decay strategy. It is also inefficient to have the same step size for
all the weights, while the loss function may have a very different curvature depending on the
dimension (e.g., very flat along some dimensions, and very steep along other dimensions).

Some training algorithms which are popular in neural networks are: Momentum (Sutskever et
al. 2013), AdaDelta (Zeiler 2012), AdaGrad (Duchi et al. 2011), RMSProp and Adam (Kingma
et al. 2015).

The idea of Momentum is the following: say the cost function that we are trying to minimize has
a valley shape. It has a very flat downward slope along one dimension, and rises very abruptly on
both sides along another dimension. If our initial learning rate is too high, we risk going over the
cliffs and diverge. If it is too small, going down the slope can take forever. With the momentum
algorithm, our updates gain “momentum” after each step, i.e., if the sign of the gradient does
not change, the gradient along this dimension “accelerates” (Ng 2017; Zeiler 2012). This is
often compared with a ball going down a slope: the more the ball rolls, the faster it goes, until
reaching the end of the slope. This is accomplished with moving averages:

vdw ← β1 × vdw + (1− β1)dw (2.61)

w ← w − αvdw (2.62)

where β1 ∈ [0, 1) is a hyperparameter. Larger values correspond to more momentum (averaging
over more updates), while β1 = 0 corresponds to pure SGD (no momentum). A typical choice is
β1 = 0.9, which corresponds to averaging over ≈ 10 values. Going back to our valley example,
we can now use a much larger learning rate, because the average of the gradient in the direction
of the cliffs will be close to zero (alternating between large negative values and large positive
values), while the average of the gradients in the direction of the slope will be positive.

RMSprop maintains a moving average of the squares of the gradients:

sdw ← β2 × sdw + (1− β2)dw2 (2.63)

w ← w − α dw√
sdw

(2.64)

Chapter 2 – State of the Art: Neural Networks 46

This increases the amplitude of the update for dimensions where the gradient is consistently
small (regardless of the sign), and decreases the amplitude for large gradients. Intuitively, this
can be seen as some kind of normalization of the gradient, so that the same learning rate can be
used in all directions.

Adam (which we often use in our work), combines both momentum and RMSprop in a single
algorithm. It has four hyperparameters, α, β1, β2, and ε with default values (as specified by
the authors) of α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8. The default values are often
fine (Adam is less sensitive to changes of hyperparameters than SGD), even though the learning
rate α can sometimes be changed. It is sometimes combined with simple learning rate decay
strategies, e.g., exponential decay by half every epoch.

Initialization Before starting training with SGD (or any other method), we need to initialize
the parameters of the neural networks, i.e., decide of an initial value for each weight matrix and
bias vector.

It is crucial to set the initial weights to non-zero values in order to break the symmetry of the
neural network. If all weights are zero, then all the units in a given layer compute the same
value (zero), and the gradient feedback is identical for all these units. This results in layers of
n identical units, which is equivalent to layers with a single unit. That is why the weights are
generally initialized to random values. The bias vectors can be (and usually are) initialized to
zero.

A common practice is to initialize the weights to small values, centered around zero. This
maximizes the chances of neurons firing values close to zero. This is desirable when using the
hyperbolic tangent as an activation function, because we fall into the linear regime of the func-
tion (derivative close to 1), while too large values can give near-zero derivatives. On the other
hand, the initial weights should not be too small, because the gradient updates are proportional
to the neuron activations. A trade-off that is often used is a random initialization from a normal
distribution with a zero mean and a standard deviation of 0.01.

A good initialization scheme can sometimes drastically improve convergence speed, and some-
times even leads to better local minima.

LeCun et al. (2012) recommend initializing the incoming weights of a neuron to a random
distribution (uniform or normal) with mean zero, and a standard deviation of 1√

in
, where in

is the number of input units for this neuron. For instance, we can initialize with a uniform

distribution in [−
√

3
in ,

√
3
in]. The advantage of this initialization scheme is that this ensures

that the variance of the output of a unit is the same as the variance of its input. This helps
avoiding the exploding gradient problem.

With Rectified Linear Units (ReLU) it is recommended to use a standard deviation of
√

2
in

instead (He et al. 2015; Ng 2017), because Var(relu(x)) = Var(x)
2 .

Glorot et al. (2010) propose a slightly more motivated initialization scheme, sometimes called
“Glorot” or “Xavier” initialization. They show that to satisfy both constraints that the output
variance be the same as the input variance (forward pass), and that the variance of the out-
put gradient be the same as the variance of the input gradient (backward pass), we must have
Var(w) = 1

in = 1
out (where in is the number of input connections to this unit, while out is

the number of output connections). Because we do not always have in = out, we cannot al-
ways satisfy both constraints, so we meet halfway with Var(w) = 2

in+out . This is achieved

Chapter 2 – State of the Art: Neural Networks 47

by uniform sampling in [−
√

6
in+out ,

√
6

in+out], or by sampling from a normal distribution with

standard deviation σ =
√

2
in+out .

Another solution, which alleviates the need of a careful initialization, is batch normalization
(Ioffe et al. 2015). It consists in actively normalizing the inputs of each layer in the network.

At a given layer with inputs x1, · · · , xm, for each input xi, batch normalization computes an
estimate of its variance σ2i and mean µi over the current mini-batch (x

(1)
i , . . . , x

(D)
i). Then it

normalizes each value in the batch: x̂(j)i =
x
(j)
i −µi
σ2
i

. A problem is that by constraining the inputs
to have a zero mean and a unit variance, we limit the representation power of the network: each
unit is constrained to stay in its linear regime. The authors alleviate this problem by introducing
new trainable parameters βi and γi, where the new input value is yi = γix̂i + βi. This restores
the representation power of the model, because it can now learn γi and βi so that batch norm
computes the identity: yi = xi (same as no batch norm). The default behavior though, with
initial values of γi = 1 and βi = 0 is to normalize the inputs, which increases training speed by
falling into the linear regime of the (non-linear) activation functions.

When using this technique, the weight initialization scheme is less important, and a larger learn-
ing rate can be used with less risk of exploding gradient (divergence of the cost function). At
test time we use statistics computed over the entire training set, by maintaining an exponentially
weighted average of the mean and of the variance during training (Ioffe et al. 2015; Ng 2017).

Regularization: Dropout Dropout (Srivastava et al. 2014) is a regularization technique for
neural networks, which consists in randomly dropping neurons at training time.

Each layer has a hyperparameter p ∈ (0, 1], which is the keep probability, i.e., the probability of
keeping each unit in this layer. We sometimes define 1− p as the dropout rate.

Dropout can be implemented with a mask of zeros and ones of the same size as the layer. A new
mask is sampled for each item in a mini-batch, from a Bernouilli distribution with probability p.
The mask is then multiplied element-wise to the activations of the layer, effectively zeroing out
some activations:

r ∼ Bernouilli(p) (2.65)

z = Wx+ b (2.66)

a =
1

p
× r � g(z) (2.67)

where g(z) ∈ Rn is the activation of this layer, r ∈ {0, 1}n is the current dropout mask, a is the
resulting activation which is passed to the next layer. During back-propagation, the gradient is
naturally not propagated to the canceled-out units. The activation is scaled by 1

p , which ensures
that the expected value of a is the same with or without dropout.

Dropout cannot be applied at test time, because it would require averaging over all the possible
networks (exponentially many), which is intractable. Instead, we scale the activations at training
time by 1

p , and disable dropout at test time: a = g(z).

Dropout is equivalent to training exponentially many “thinned” networks, with extensive weight
sharing, and averaging them at test time. This has a strong regularization effect. By dropping
units at random, dropout limits co-adaptation in the network. This means that a given unit in

Chapter 2 – State of the Art: Neural Networks 48

a layer with dropout cannot rely too much on the outputs of the other units in the same layer,
because they are likely to be dropped. Instead, it has to compute an interesting function on its
own.

Common values for p are between 0.5 and 0.8. A rule of thumb is to apply less dropout to the
first layers, and more dropout to the final layers.

2.1.5 Automatic Differentiation

Y. Bengio (2012) recommends structuring the computation in a neural network as a flow graph.
We can define a neural network as a directed graph, with nodes corresponding to neurons or
layers. Each node computes an operation (e.g., dot product with a weight matrix, or ReLU
activation), and outputs a new value that can be passed to other nodes. Similarly, during the
backward pass of back-propagation, information flows along the same edges but in the reverse
direction. The advantage of defining a neural network as a graph, is that one can specify the
gradient computation for each node, by defining a forward and a backward function for this node.
It is then very easy to prototype new networks, by adding or removing layers, or modifying the
size of a given layer. This method contrasts with a hard-coded hand computation of the gradient,
which is much more tedious and prone to errors.

Deep Learning libraries like TensorFlow (Abadi et al. 2015) go one step further, by doing sym-
bolic computation. The programmer defines a graph of symbolic expressions where each node
corresponds to some operation. The graph can then be executed multiple times by substituting
the input nodes with actual values. Here is how to define a simple graph in TensorFlow which
takes a vector of size two as input, and computes a scalar by linear regression:

import tensorflow as tf
x = tf.placeholder(tf.float32, shape=[1, 2]) # input node
y = tf.placeholder(tf.int32, shape=[1]) # target for linear regression
w = tf.get_variable('w', shape=[2, 1]) # weight matrix of size [2, 1]
b = tf.get_variable('b', shape=[1]) # bias vector of size [1]
z = tf.matmul(x, w) + b # w x + b
cost = tf.losses.mean_squared_error(labels=y,

predictions=tf.squeeze(z, axis=1))

Here we have defined an input node x, model variables w and b, and an output node z which is
a symbolic expression with arguments x, w and b. The node cost computes a mean squared
error between output node z and input node y (corresponding to a target value, which needs to
be provided by the program).

The first dimension of x, y and z corresponds to the batch size (here we use 1, but this is usually
larger).

Variables are special nodes in the sense that they are mutable: they have a value which survives
between different executions of the graph. This comes in handy to implement model parameters
(weights and biases) which need to be updated during training. On the other hand, at each
execution of the graph new values for x and y have to be specified.

Once the graph has been defined, here is how to initialize it and run it:

tf.InteractiveSession() # create a new session
tf.global_variables_initializer().run() # initialize w and b to rand values

Chapter 2 – State of the Art: Neural Networks 49

x_value = [[0.81, -0.34]] # some dummy input data
z_value = z.eval(feed_dict={x: x_value}) # compute y with given input data

x, w, b and y are symbolic nodes of the graph, and can be substituted with any value (of the right
shape) in a call to eval via the parameter feed dict. Here, z value contains the output of
node z (as a NumPy array) when running the graph and substituting x with x value.

A big advantage of symbolic computation is that these frameworks can perform automatic differ-
entiation. TensorFlow provides an operation tf.gradients which computes the gradients
of some operation in the graph (e.g., cost) with respect to the model parameters (w and b).
TensorFlow even provides high-level operations which directly apply the SGD update rule (or
another training algorithm):

define a new operation in the graph for the update rule of SGD
train_step = tf.train.GradientDescentOptimizer(learning_rate=0.5).minimize(cost)
learn to predict 0.2 from [0.81, -0.34] (batch of size 1)
train_step.run(feed_dict={x: [[0.81, -0.34]], y: [0.2]})

This latter operation will update the model variables w and b by applying the SGD update rule
with the defined cost function. Here we use a mini-batch of size one as a toy example, but
typically the values for x and y would be multi-dimensional. Here we can see that all the
complexity of gradient descent and back-propagation is hidden away by the TensorFlow library.

Thanks to this, anyone can prototype new neural network architectures, without requiring a deep
knowledge of calculus, or the specifics of neural network optimization. One only has to pick a
training algorithm which is known to work well (e.g., Adam) and try different hyperparameter
values by trial and error.

Furthermore, such code can run very efficiently (in parallel) on specialized hardware like GPUs,
with very little intervention from the user. Internally, the source code is compiled to low-level C
and CUDA code by TensorFlow, which would be extremely tedious to do by hand.

To sum-up, the advantages of using a framework like TensorFlow are: automatic differentiation,
fast prototyping thanks to access to high-level operations (e.g., dropout, Adam optimizer, etc.),
and fast code which runs on GPUs with little to no modifications. Appendix A.2.1 gives a more
detailed description of TensorFlow.

Chapter 2 – State of the Art: Neural Networks 50

2.2 Text Embeddings

When training neural networks that take words or sequences of words as input, the first step is
often to compute a continuous representation of these words. This is often done by mapping
each word to a vector, using a lookup table (Y. Bengio et al. 2003). The vectors associated
to words are called “word embeddings”, or more rarely “distributed representations” or “word
vectors”.

This lookup table can be a trainable parameter of the model (i.e., initialized randomly and trained
jointly with the rest of the model), or it can be pre-trained or pre-defined. The former solution
is usually preferred with deep models that have access to large amounts of supervised data
(e.g., Machine Translation of common language pairs). However, in many tasks, the amount of
supervised training data is too small to learn so many parameters (without over-fitting). The pre-
ferred approach then is either to use hand-engineered features (or features from an engineered
pipeline), as used to be very common in natural language processing; or pre-trained word em-
beddings on another task with more training data (transfer learning).

Word embeddings are often obtained by optimizing language modeling tasks, where the training
data consists of monolingual text, available in huge amounts for many languages.

There exist many techniques for computing word embeddings, but the most popular is probably
Word2vec (Mikolov et al. 2013c). We will focus on this particular set of techniques, while pro-
viding some context, and elaborating on a few variants and extensions. We will cover three types
of embeddings: vanilla (monolingual) word embeddings as computed by Word2vec; crosslin-
gual embeddings, i.e., word embeddings in different languages but sharing the same vector
space; and continuous representations of entire sentences (sentence embeddings).

2.2.1 Word Embeddings

Distributional Semantics Most methods for computing word embeddings are based on the
Distributional Hypothesis, which says “you shall know a word by the company it keeps” (Firth,
1957). This means that we can infer the meaning of a word by observing the words that often
appear close to it. This hypothesis gave rise to a number of so-called “distributional methods”
(or “count-based” methods).

These methods consist in representing words as vectors of co-occurrence counts. For example,
in Latent Semantic Analysis, we construct a term-document matrix, where each entry is the
number of occurrences of a given word in a given document. With this representation, each
word is represented as a sparse vector (i.e., where most of the values are zero) whose size is the
number of documents in the corpus. Then, matrix factorization methods like SVD can be applied
on this large sparse matrix to perform dimensionality reduction, and obtain smaller (but dense)
vectors. With such a representation, words can be compared by computing the cosine similarity
between their vectors. Words that are similar (semantically or syntactically) will often get a high
cosine similarity.

Other methods, like HAL (Hyperspace Analogue to Language) build a term-term co-occurrence
matrix, where each value is the number of close occurrences of two words in a text corpus. This
is obtained by sliding a fixed-size window in the text, and increasing the count for each pair of
words that appears in the same window. Like LSA, the dimensionality of this representation can
be reduced using SVD.

Chapter 2 – State of the Art: Neural Networks 51

These “count-based” methods contrast with the so-called “prediction-based” methods, which
consist in training a model to predict words in a text.

Neural Language Model Y. Bengio et al. (2003) introduce a “neural probabilistic language
model”. It consists in a neural network which, given some local context, can predict the next
word in a sentence.

Given a window size n, the algorithm takes as input words wt−n+1, . . . , wt−1, and tries to
predict word wt. It computes the following functions:

xt = (E(wt−n+1), . . . , E(wt−1)) (2.68)

yt = Wxt + U tanh (d+Hxt) + b (2.69)

P (wt|wt−1, · · · , wt−n+1) =
eywt∑|V |
i=1 e

yi
(2.70)

where E ∈ R|V |×m is a matrix that maps each word in the vocabulary V to a vector of size
m (the lookup table introduced earlier). xt ∈ Rm(n−1) is a concatenation of the input words’
vectors. W ∈ R|V |×m(n−1), U ∈ R|V |×h, H ∈ Rh×m(n−1) and b ∈ R|V |, d ∈ Rh are trained
parameters of the model, where h is the hidden layer size, and |V | the vocabulary size.

An interesting thing to note, is that the matrixE ∈ R|V |×m, sometimes called embedding matrix,
contains a single real-valued vector of size m for each word in the vocabulary. These vectors
are trained parameters of the model, which means that they are initialized randomly and then
optimized to maximize the prediction accuracy of the model.

Intuitively, one can expect these vectors to contain interesting information about the words they
embed, because this information is the only available data for the model to do its predictions. Y.
Bengio et al. (2003) did not seem to be interested in these vectors, but rather in the predictions
of the language model.

Word2vec Mikolov et al. (2013a) propose a language model which is similar to Y. Bengio
et al. (2003), but much faster to train. This makes training possible on extremely large corpora
of text and gives very good quality embeddings.

Contrary to Y. Bengio et al. (2003), the goal of Mikolov et al. (2013a) is not really to learn a
model that can predict words, but rather the word representations that are produced as a by-
product of this training. Mikolov et al. (2013a) show that the word embeddings that are learned
by their models are universal enough to be used in many other NLP tasks, with little adaptation.
This is an instance of transfer learning, as we take the parameters of a model on a given task
(here language modeling), and reuse them in other (related) tasks.

The authors present two types of models: the Continuous Bag-of-Words model (CBOW), and
the Skip-Gram model (SG). Figure 2.6 illustrates these two models.

CBOW takes as input a window of words (or context): Ct = wt−S , . . . , wt−1, wt+1, . . . , wt+S ,
and learns to predict the middle word wt. Skip-gram does the reverse: it takes a single word wt,
and learns to predict each word in its context Ct.

Chapter 2 – State of the Art: Neural Networks 52

Ct

wt−1

wt−2

wt+1

wt+2

wt Ct

wt−1

wt−2

wt+1

wt+2

wt

FIGURE 2.6: Illustration of the CBOW model (left), and Skip-Gram model (right). In CBOW,
the input embeddings of the context words are averaged into a context vector, which is used to
predict the middle word wt. In Skip-Gram, the middle word wt is used to predict all words in

a window.

Here is how Skip-Gram predicts the probability of word j given word i (we refer to words by
their index in the vocabulary):

zik = v>i v
′
k (2.71)

p(j|i) = softmax(zij) =
ezij∑|V |
k=1 e

zik
(2.72)

where vi ∈ Rn is the input embedding of word i, and v′k ∈ Rn is the output embedding of word
k. These are trained parameters of the model, which can be represented as embedding matrices
E ∈ R|V |×n and E′ ∈ R|V |×n where n is the embedding size, and |V | is the vocabulary size.
At the end-of-training, matrix E contains vector representations of each word in the vocabulary,
i.e., word embeddings, which can be used in other NLP tasks.

The training loss for a given word wt and its context window Ct is computed as follows:

L(Ct|wt) = −
∑
wk∈Ct

log p(wk|wt) (2.73)

The problem with Equation 2.72, is that a sum over the entire vocabulary
∑|V |

k=1 e
zik needs

to be computed for each word in the training corpus (times the number of training epochs).
The complexity of the training algorithm is O(|V | × |D| × S) where |V | is the size of the
vocabulary, |D| is the number of words in the training set, and S the size of the context window.
This quickly becomes infeasible with large vocabulary sizes and large training sets (which often
come in pairs). Mikolov et al. (2013c) propose two different training objectives to reduce this
complexity: Hierarchical Softmax, which uses a Huffman tree to encode the vocabulary, and has
a complexity ofO(log2 |V |×|D|×S); and Negative Sampling with a complexity ofO(|D|×S).

Negative sampling changes the task altogether: instead of predicting words as a multi-class clas-
sification problem (with a softmax function), we now train a logistic regression model (binary
classification) to distinguish true target words (words from the context window) from randomly
sampled words from a noise distribution. For each positive example (each word in the window),
we draw k negative examples. The loss for a word wt and its context Ct is computed as follows:

Chapter 2 – State of the Art: Neural Networks 53

p(j|i) = σ(zik) =
1

1 + e−zij
(2.74)

L(j|i) = − log p(j|i) +
∑
x∈neg

log p(x|i) (2.75)

L(Ct|wt) =
∑
j∈Ct

L(j|i) (2.76)

where neg is a set of k negative examples, drawn randomly for each new word j. The probability
distribution used for negative sampling is a smoothed unigram distribution estimated over the
training set:

P (w) =
#w0.75∑

w′∈V #w′0.75
(2.77)

where #w is the number of occurrence of w in the training set. The 0.75 exponents are arbitrary
values chosen by the authors, which give a little more chance to rare words.

Algorithm 3 presents the Skip-Gram algorithm with Negative Sampling in details (SGNS). We
omit the parallelism details, and invite the reader to look at the source code for more information.

Input: Subsampling rate γ, minimum vocabulary count, number of epochs, dimension of
the embeddings n, initial learning rate α0, number of negative examples k,
maximum window size Smax

Data: Training set D, with one sentence per line (|D| words in total)
Result: Word embeddings E ∈ R|V |×n
Build vocabulary V and remove too infrequent tokens;
Compute smoothed unigram distribution over entire vocabulary;
/* Repeat the following for each new epoch */
foreach sentence in training set do

Remove out-of-vocabulary words from sentence;
Apply subsampling to remove random frequent tokens from sentence;
foreach word wt in sentence do

Sample a new window size S between 1 and Smax;
foreach word in context Ct = wt−S , . . . , wt+S(\wt) do

Sample k words from unigram distribution;
Compute loss using Equation 2.76;
Compute gradients with respect to E and E′;
Compute new learning rate;
Update E and E′ using SGD update rule;

end
end

end
Algorithm 3: Skip-Gram with Negative Sampling (SGNS). Some of the steps in this al-
gorithm (subsampling, vocabulary filtering, dynamic window size) are detailed in Ap-
pendix A.1.1, in addition to other tricks that the authors used in their “Word2vec” imple-
mentation (e.g., asynchronous training).

Mikolov et al. (2013a) observed that word embeddings capture interesting linguistic regularities.
For instance, we can observe that v(cars) − v(car) ≈ v(apples) − v(apple). Intuitively, the
vector v(cars) − v(car) embeds the concept of plural number. Similar observations can be

Chapter 2 – State of the Art: Neural Networks 54

made with many other syntactic relationships (e.g., tenses, adjective/noun relationship, etc.), but
even more interestingly, with many semantic relationships. For example, v(king)− v(man) ≈
v(queen)− v(woman), which seems to show that the vectors embed the concepts of royalty,
and gender.

Following this observation, the authors propose a new benchmark for evaluating the quality of
word embeddings. This task is called “analogical reasoning”. Given a number of quadruplets
(a, b, c, d), where “a is to b what c is to d” (e.g., king, man, queen, woman), the task consists in
finding d from (a, b, c).

To find d, a solution is to compute the vector y = v(b)− v(a) + v(c), and to look for the word
whose vector is the closest, according to cosine similarity to y:

d? = arg max
w∈V

cos(v(w), y) (2.78)

cos(x, y) =
x>y

‖x‖‖y‖ (2.79)

For this task, Mikolov et al. (2013d) provide a dataset with 19 558 such quadruplets, with five
types of semantic relationships, and nine types of syntactic relationships. Algorithms for com-
puting word embeddings can be compared by measuring their precision on this dataset, i.e., the
number of times where d? = d divided by the number of quadruplets.

Levy et al. (2014) observe better results on this task when using a multiplicative combination
instead:

d? = arg max
w∈V

cos(w, c)cos(w, b)

cos(w, a) + ε
(2.80)

where ε = 0.001 prevents division by zero. Here cos(x, y) actually means the cosine similarity
between v(x) and v(y). This formula only works with cosine similarities between 0 and 1. To
enforce this, the authors apply x = x+1

2 on the result of Equation 2.79.

GloVe Pennington et al. (2014) present GloVe, an algorithm for computing word embeddings.
They maximize a similar objective as Word2vec’s Skip-Gram, but where the global statistics
of the corpus are used: instead of predicting the probability of having word j in the context of
word i, they predict the global co-occurrence count Xij . To do so, they define a least squares
objective, which they optimize with SGD by iterating over the co-occurrence matrix:

J =
∑
i,j∈V

f(Xij)(v
>
i v
′
j + bi + b′j − logXij)

2 (2.81)

f(x) =

{
(x/xmax)α if x < xmax

1 otherwise
(2.82)

where X ∈ R|V |×|V | is a co-occurrence matrix, obtained by sliding a window of size 2 × S in
the training set, and counting the number of times word i appears in the context of word j. The
function f is introduced to reduce the impact of rare co-occurrences, which tend to be noisy and
carry less information. The cut-off xmax = 100 is used to avoid giving too much weight to very

Chapter 2 – State of the Art: Neural Networks 55

frequent occurrences. This term is analogous to the smoothed unigram distribution in SGNS,
with the same smoothing value α = 0.75.

This model obtains competitive results with Word2vec’s SGNS. Pennington et al. (2014) report
significantly better results with their approach, on word similarity, word analogy and named en-
tity recognition tasks, with much faster training. However, Levy et al. (2015) show on similarity
and analogy tasks that SGNS consistently outperforms GloVe (albeit by a small margin).

GloVe and Word2vec are currently the two main contestants in the literature for state-of-the-art
word embeddings.

Mikolov et al. (2013c) provide pre-trained models for English that were trained on a large news
corpus (100B tokens). Pennington et al. (2014) distribute pre-trained models on English Com-
mon Crawl (42B or 840B tokens), Wikipedia (6B tokens), or Twitter (27B tokens).

Distributional Methods Baroni et al. (2014) compare prediction-based methods (like Word2vec)
with count-based methods (like PPMI + SVD), and observe better results with prediction-based
methods on a variety of tasks.

Levy et al. (2015) contradict these results by tuning count-based methods (PPMI and PPMI +
SVD) to incorporate the same tricks as Word2vec, and show that these methods obtain similar
performance on several tasks.

PPMI (Positive Point-Wise Mutual Information), in the context of distributional semantics con-
sists in building a co-occurrence matrix MPMI ∈ R|V |×|V |, where each entry in the matrix is
computed as follows:

PPMI(w, c) = max(0, log
#(w, c)|D|

#w#c
) (2.83)

where #w is the total count of word w in the training set, |D| is the total number of words
in the training set, and #(w, c) is the number of co-occurrences of words w and c (within a
certain range). Levy et al. (2015) emulate SGNS’s k negative samples by using shifted PPMI.
Also, similarly to the smoothed unigram distribution used in SGNS, they smooth the context
distribution in PMI (with the same α = 0.75).

SPPMIα(w, c) = max(0, log
#(w, c)

∑
c #cα

#w#cα
− log k) (2.84)

The dimension of this co-occurrence matrix can be reduced using SVD. This is not necessary,
but useful for obtaining compact representations. Levy et al. (2015) observe that it is actually
detrimental to use the “correct” version of SVD. They obtain better results when taking E = Ud
instead of ESV D = Ud · Σd, where Md = Ud · Σd · V >d is the decomposition obtained with
truncated SVD.

2.2.2 Crosslingual Embeddings

In multilingual tasks, like Machine Translation or crosslingual document classification, we can
be interested in using pre-trained embeddings for two (or more) languages. However, techniques

Chapter 2 – State of the Art: Neural Networks 56

that compute embeddings, like Word2vec or GloVe, are trained on monolingual data, and only
output embeddings for a single language. A naive approach would be to train monolingual em-
beddings for two languages on monolingual text in each language. However, such embeddings
would be in independent vector spaces. Because they are initialized randomly, there is abso-
lutely no guarantee that similar words in both languages (e.g., “cat” in English and “chat” in
French, or even “lion” in English and “lion” in French) will have similar representations.

There are two kinds of approaches for training crosslingual embeddings:

• Joint training: using supervised data, like bilingual lexicons or parallel data, we can train
two monolingual models jointly, so that they share the same vector space.

• Mapping: we can train two models independently on monolingual data, and then find a
linear mapping between the two models (using a bilingual lexicon for example).

Joint training Luong et al. (2015a) propose a method, called Bivec, for learning word em-
beddings in two languages jointly. It does so by using a large parallel corpus. For each pair of
sentence in the corpus, the sentences are aligned at the word-level, either by a GIZA-like tool
(Och et al. 2003), or with a monotonous alignment. Then, it trains two Skip-Gram or CBOW
models (one for each language) that interact with each other.

With regular Skip-Gram, an SGD update corresponds to training the model to predict a context
wordwk ∈ Ct from an input wordwt. In Bivec, we have two models with their own embeddings
and vocabularies V 1 and V 2, and each training step considers two (aligned) pairs of words
w1
t ∈ V 1, w2

t ∈ V 2 and w1
k ∈ V 1, w2

k ∈ V 2.

Each training step corresponds to four SGD updates: one monolingual update and one crosslin-
gual update for each model. Monolingual updates correspond to predicting w1

k from w1
t (or w2

k

from w2
t). Crosslingual updates correspond to predicting w2

k from w1
t (and updating each model

accordingly), and similarly with w1
k from w2

t .

Gouws et al. (2015) propose a similar method, which trains two monolingual models jointly, by
summing their training loss. They add a crosslingual loss term to the training objective, which
is a L2 loss between the bag-of-words sentence vectors of sentence pairs in a parallel corpus.
Unlike (Luong et al. 2015a), this method can use large monolingual texts for training, with a
smaller parallel corpus to enforce the alignment between the vector spaces.

Mapping Given two sets of independently trained word embeddings, in two different lan-
guages, Mikolov et al. (2013b) propose a technique to learn a mapping between the two vector
spaces. They do so by using a bilingual lexicon D, and looking for (with SGD):

W ? = arg min
W

|D|∑
i=1

‖Wxi − zi‖2 (2.85)

where |D| is the size of the lexicon and (xi, zi) is the ith word pair from the lexicon. W ∈ Rn×n
maps xi to the same vector space as zi.

Artetxe et al. (2017) propose a technique which surpasses all previous methods, and which is
almost entirely unsupervised. It consists in building an initial bilingual lexicon containing only
numerals, then similarly to Mikolov et al. (2013b), learn a mapping from one vector space to

Chapter 2 – State of the Art: Neural Networks 57

the other using this lexicon. Once this mapping is obtained, they build a larger bilingual lexicon
(using the trained embeddings), and learn a better mapping. By iterating like this until conver-
gence, Artetxe et al. (2017) obtain a good quality mapping between two embedding spaces, with
very little supervision (only the assumption that both languages use the same numeral system).

Such embeddings are used in later work by the same authors (Artetxe et al. 2018), to do un-
supervised Neural Machine Translation (i.e., MT with no parallel data), with very encouraging
results.

Conneau et al. (2017b) propose a similar method, which does not need any supervision at all
(not even digits), and gives better results than Artetxe et al. (2017) on a word translation task.
It builds a first mapping by doing adversarial training, where a generator learns to map from
one embedding space to the other, and a discriminator learns to predict from which embedding
space a given vector originates. Then, this mapping is refined using an iterative method similar
to Artetxe et al. (2017).

2.2.3 Sequence Embeddings

Methods like Word2vec or GloVe learn word embeddings, i.e., representations of individual
words. However, many tasks in NLP do not only take single words as input, but entire sequences
of words of variable length.

Bag of words The most basic approach for representing sequences of words like sentences or
documents, is to sum the representations (one-hot vector, or word embedding) of each word in
the sequence. This results in a fixed size representation. Given a sentence s = w1, · · · , wT , and
a word embedding matrix v : w → Rn, the representation of s is trivially computed as follows:

vs = v(w1) + v(w2) + . . .+ v(wT) (2.86)

There are some problems with this approach. First, all words are weighed equally, i.e., stop
words like “the” weigh as much as content words. Also, this representation is invariant to word
order, e.g., vw1w2 = vw2w1 . This can be problematic as two sentences with a different word
order can have a very different meaning.

Surprisingly, this simple method often obtains very good results on downstream NLP tasks, and
more sophisticated methods have a lot of trouble doing better. This can be explained by the
fact that the word embeddings that are used are generally trained on very large corpora of texts,
and are thus of very good quality. Furthermore, in many NLP tasks, we can get decent results
without actual language understanding.

Ferrero et al. (2017) apply a weighting scheme on word embeddings, which attributes constant
pre-defined weights to words depending on their part-of-speech tags. More important words in
a sentence get higher weights, resulting in a better representation overall. They get a significant
improvement on a plagiarism detection task.

Paragraph vector Q. V. Le et al. (2014) propose a method called “paragraph vector”, which
extends Word2vec’s CBOW model to produce representations of entire sentences or paragraphs.

Chapter 2 – State of the Art: Neural Networks 58

For each sentence (or sequence of words) in the training set si = wi1, . . . , w
i
T , the PV-DM

(Paragraph Vector Distributed Memory) model learns to predict each word wit using its context
Cit = wit−s, . . . , w

i
t+s\wit, and an additional trained bias vector bi which is unique to the current

sentence:

zit = (bi +
∑
w∈Cit

v(w))>v′(wit) (2.87)

zit is the unnormalized score for word t in sentence i. Like Word2vec’s CBOW and Skip-
Gram model, this value is given as input to a softmax layer to estimate a probability distribution
over the entire vocabulary, or to logistic regression to distinguish between positive and negative
examples. In addition to CBOW’s input and output embeddings (v and v′), this model has an
additional bias parameter bi ∈ Rn, which is unique per sentence si. At the end of training, this
vector can be used as a representation for sentence si. Intuitively, because the window Ct does
not cover the entire sentence, we can expect bi to provide contextual information about the entire
sentence, which helps the model predict wt.

There are two modes for obtaining the representation of a given sentence:

• Batch (offline) mode, where all sentences are already available at training time. After
training, a representation bi is available for each sentence in the training set.

• Online mode (which the authors call “inference stage”): given a new sentence that was not
used in training, a pre-trained model can be used and finetuned on this new sentence. To
do so, all model parameters except the bias parameter bi are frozen (i.e., we do not update
them with SGD), and we iterate using SGD on the words of the new sentence multiple
times until convergence.

The authors report remarkably good results on a sentiment analysis task. However, it was re-
ported later in Mesnil et al. (2014), when their source code was made available, that they were
due to a mistake in the experiments: the datasets were not shuffled, which made it extremely
easy for their model to distinguish between positive and negative examples.

Thought vectors Kiros et al. (2015) propose an unsupervised method called “Skip-Thought”
for computing universal representations of sentences. The idea is similar to Skip-Gram, but
instead of predicting single words, this model predicts entire sentences.

The model is trained on a large corpus of ordered sentences, made of 11,038 books (74M sen-
tences in total). Given a sentence, the model learns to predict the previous sentence and the next
sentence in an ordered text.

To do so, the model first encodes the input sentence using a Recurrent Neural Network (RNN),
a type of neural network that we will see in the next chapter. This encoder reads the sentence
word by word, encodes each word using a trained embedding matrix, and updates its recurrent
state step-by-step until reaching the end of the sequence. The final state of the encoder is a fixed-
size representation of the variable-size input sequence. This representation is used as input by
two decoders (one RNN each) to predict the previous sentence (word by word) and the next
sentence. The training objective is a sum of cross-entropy losses for each word in the previous

Chapter 3 – State of the Art: Sequence to Sequence Models 59

and next sentence. By optimizing this sentence-prediction task, the encoder learns to compute
useful representations of the input sequence that can be used in downstream NLP tasks.

To validate the quality of the sentence representations, the authors perform a number of exper-
iments on NLP transfer tasks, including Semantic Relatedness (figuring out whether two sen-
tences are semantically related or not), paraphrase detection (given a pair of sentences, decide
whether or not they are paraphrases), and several classifications tasks like sentiment analysis.

The Skip-Thought model is pre-trained on books, and its features are then used as input to a
logistic regression model trained on the given task (with supervised data). These benchmarks
confirm the universality of the skip-thought vectors, showing that they transfer to many different
tasks with little supervision (only a linear model).

InferSent Conneau et al. (2017a) propose a sentence embedding model which is trained on
a supervised task: Natural Language Inference. This task consists in predicting whether two
sentences are entailments, contradictions, or “neutral”.

The authors obtain better results than Skip-Thought on several NLP tasks, and with much faster
training time and less training data (570k supervised sentences vs. 74M unsupervised ordered
sentences).

This approach shows that it is possible with some supervised tasks to obtain sentence represen-
tations that are universal enough to apply to other NLP tasks. This contrasts with observations
from Hill et al. (2016), who observed poor quality embeddings (non-transferable) with several
supervised tasks, including Neural Machine Translation.

Chapter 3

Sequence to Sequence Models

Now that we have introduced feed-forward networks and how to train them, we are going to
explore a particular class of artificial neural networks that is particularly useful for dealing with
sequences (e.g., text sequences). We will first introduce these recurrent neural networks, and
then describe the most popular neural network for machine translation at the time of writing:
seq2seq. We will also present some of the improvements that have been proposed in the literature
and which we use in this thesis, in particular the so-called attention mechanisms.

3.1 Recurrent Neural Networks

As we have seen in the previous chapter, feed-forward neural networks are limited to fixed-size
inputs.

To deal with variable-length inputs, like sequences of words, we generally have to make strong
assumptions: use only local context with fixed-size windows of text (e.g., Word2vec); limit the
length of the input to some maximum size, and pad shorter inputs with dummy symbols; or
assume that the order of words does not matter, and sum the embeddings of each word in the
input sequence (bag-of-words).

The solution that is largely preferred for dealing with sequential inputs (or sequential outputs) is
Recurrent Neural Networks (or RNNs). They naturally adapt to any input length, and can keep
contextual information about their input (a sort of memory).

3.1.1 Vanilla RNN

Definition The Vanilla RNN, or Elman Network (Elman 1990), illustrated in Figure 3.1, takes
as input a sequence of vectors x1, . . . , xT ∈ RT×m. The RNN is composed of a state st ∈ Rn,
which is updated at each new input xt, and encodes information about past inputs. The state of
an RNN is updated as follows:

st = tanh(Wrecst−1 +Winxt + b) (3.1)

where Wrec ∈ Rn×n,Win ∈ Rn×m and b ∈ Rn are trainable parameters of the RNN. Depend-
ing on the implementation, the length T of the input can be fixed or variable (static RNN vs.

60

Chapter 3 – State of the Art: Sequence to Sequence Models 61

zt

st

xt

W

FIGURE 3.1: Vanilla RNN with state st, input xt and output zt.

dynamic RNN). When doing mini-batch SGD, we group several inputs in the same batch. To
parallelize computation (vectorization), we pad all points in a batch to the maximum length in
the batch, so that the entire batch can be stored as a tensor of shape (b, T,m), where b is the
batch size.

The initial state s0 can be set to zero, or it can be a trainable parameter of the model.

Use cases The states of the RNN can be understood as representations of the input sequence
at each time step, (st encodes sequence x1, . . . , xt). This representation can be used inside a
feed-forward neural network, or another recurrent neural network to compute functions of the
input.

Here are some examples of Natural Language Processing tasks where RNNs are useful:

• Language Modeling (LM), i.e., predicting the next symbol in a text sequence. It can be
achieved as follows:

zt = Wvocst + bvoc (3.2)

pt = softmax(zt) (3.3)

E =
T∑
t=1

L(pt−1, xt) (3.4)

Wvoc ∈ R|V |×n is a projection to the target vocabulary size. pt ∈ R|V | computes a
probability for each word in the vocabulary. The error E is the sum of the losses for the
prediction of each word xt in the sequence (given history x1, . . . , xt−1). L is typically a
cross-entropy loss. Some examples of similar tasks (with a prediction at each time step)
are Part-of-Speech tagging or Word Sense Disambiguation.

• Sentiment Analysis usually consists in predicting a rating (e.g., 1 or 0: positive or nega-
tive) for a text sequence (e.g., a movie review). Contrary to language modeling a single
scalar is produced after reading the entire input sequence.

z = w>outsT + bout (3.5)

r = σ(z) (3.6)

E = L(r, y) (3.7)

Chapter 3 – State of the Art: Sequence to Sequence Models 62

y1

s1

x1

s0 s2

y2

x2

... sT

yT

xT

W W W

FIGURE 3.2: Unrolled RNN: similar to a feed-forward network, where each layer corresponds
to a time step.

with wout ∈ Rn and bout ∈ R. The error E is the loss between the predicted rating r and
the target rating y. If the rating is categorical (positive or negative), L is a cross-entropy
loss. If the rating is continuous (between 0 and 1), L is typically a squared loss. Some
examples of similar tasks (where a single label is predicted) are document classification,
spam detection or language identification.

• Machine Translation or Speech Recognition consist in reading a variable-length sequence
and predicting another variable-length sequence (usually with a different length). This
case can be addressed by using an encoder-decoder architecture, where one RNN is used
to encode the input sequence, and another RNN uses this representation to output a new
sequence. We will study this specific case in the next section.

The same optimization techniques as with feed-forward networks (SGD) apply to RNNs, which
take the gradients of the error function with respect to the model parameters.

3.1.2 Backpropagation Through Time

Backpropagation Through Time (BPTT) is the application of backprop to recurrent neural net-
works. It consists in unrolling the RNN (illustrated in Figure 3.2) as if it were a feed-forward
network with as many layers as there are time steps. Then, backprop can be applied to propagate
the gradients from the last time step to the first time step.

The main difference with feed-forward networks is that all ‘layers’ share the same parameters
(weights and bias). Figure 3.3 illustrates backpropagation through time. The error feedback ∂Et

∂st
at a given time step is back-propagated to the earlier time steps, so that the contributions of all
previous inputs x1, . . . , xt to the error term Et are taken into account.

TensorFlow proposes two kinds of implementations of RNNs: static RNNs, which have a max-
imum number of time steps T and are statically unrolled when compiling the graph. This is
implemented as a feed-forward network with T layers and hard weight sharing. The implemen-
tation is straightforward, however compilation time can be large, and this is not very flexible
because the number of time steps is fixed. TensorFlow also provides dynamic RNNs, which are
“dynamically” unrolled, i.e., the number of time steps does not need to be known until runtime.

Vanishing and Exploding gradient Vanilla RNNs suffer from some severe drawbacks:

Chapter 3 – State of the Art: Sequence to Sequence Models 63

s1

x1

s0 s2

x2

. . . sT

xT

E1 δE1

δs1

δs2
δs1

E2 δE2

δs2

δs3
δs2

δsT
δsT−1

ET δET

δsT

FIGURE 3.3: Backpropagation Through Time in a statically unrolled vanilla RNN. E1, . . . , ET
are the errors computed at each time step (in some tasks we only get E = ET), and ∂E1

∂s1
, . . . , ∂ET∂sT

are the corresponding gradients.

• They are unable to store long-term information. Because the entire state st is updated at
each time step, new information tends to quickly overwrite previously stored information.

• They are notoriously difficult to train (Hochreiter et al. 1997; Pascanu et al. 2013). Once
unrolled, they are like extremely deep neural networks, which causes problems of vanish-
ing and exploding gradient.

To illustrate the latter point, let’s detail the computation of the gradients with BPTT.

The gradient of the error E with respect to the model parameters θ = (Wrec,Win, b) can be
decomposed as follows (Pascanu et al. 2013):

E =
T∑
t=1

Et (3.8)

∂E
∂θ

=
∑ ∂Et

∂θ
(3.9)

Let’s consider only the error term Et. With the chain rule, we obtain:

∂Et
∂θ

=
∑

1≤k≤t

∂Et
∂st

∂st
∂sk

∂+sk
∂θ

(3.10)

where ∂+sk
∂θ is the partial derivative of sk with respect to θ when keeping sk−1 constant:

∂+sk
∂θ

= (
∂+sk
∂Wrec

,
∂+sk
∂Win

,
∂+sk
∂b

) = (1− s2k)


sk−1

xk

1

(3.11)

The Jacobian matrix ∂st
∂sk

is computed as follows (Pascanu et al. 2013):

∂st
∂sk

=
∏
k<i≤t

∂si
∂si−1

=
∏
k<i≤t

Wrecdiag(1− s2i) (3.12)

where diag converts its vector parameter (of size n) into a diagonal matrix (of size n× n).

Chapter 3 – State of the Art: Sequence to Sequence Models 64

Figure 3.3 illustrates this product of gradients in the backward pass of BPTT. This is the main
culprit for the vanishing and exploding gradient. Let’s imagine that we are doing sentiment
analysis of movie reviews. We read a sequence where the kth word is “boring” (very negative)
and all other words are neutral. We get a single error signal ET after reading the entire sequence.
If our prediction is that this movie was excellent (predicted rating r close to 1), then the model
parameters need to be updated in order to obtain better predictions (the movie was obviously
not excellent). The contribution of word xk (“boring”) to the error ET appears in the gradient
as term ∂ET

∂sT
∂sT
∂sk

∂+sk
∂θ (see eq. 3.10). The computation of ∂sT∂sk

involves a product of T − k terms
(see eq. 3.12). If Wrec has small values and T − k is large, then ∂ET

∂Wrec
will be close to zero.

This means that Wrec does not change at the next SGD update, and we are stuck in an endless
loop (vanishing gradient). On the other hand, if Wrec has large values, then ∂ET

∂Wrec
can take

exponentially large values, which makes Wrec diverge to infinity (exploding gradient).

More intuitively, in the mono-dimensional case, we get ∂sT∂sk
= wT−krec

∏T
i=k (1− s2i). If wrec <

1, the exponential term wT−krec quickly vanishes to zero as T − k increases, and quickly explodes
to infinity if wrec > 1. Pascanu et al. (2013) show that this can also happen in the high-
dimensional case.

Gradient clipping Pascanu et al. (2013) proposed a solution to the exploding gradient prob-
lem in recurrent neural networks. It consists in clipping the gradients so that their norm does not
exceed some preset threshold δ:

g ← ∂E
∂θ

(3.13)

‖g‖ ←
√∑

i

g2i (3.14)

g ← g × δ

max(‖g‖, δ) (3.15)

where g is a flattened list of all gradients (i.e., all gradient tensors in ∂E
∂θ are flattened and con-

catenated). This gradient clipping strategy works well in practice, and is often enough to negate
the exploding gradient problem. The hyperparameter δ can be chosen by observing statistics
of the average norm of the gradients. But Pascanu et al. (2013) have found that training is not
very sensitive to choices of δ (provided that it is small enough to prevent the gradients from
exploding).

3.1.3 Long-Short-Term Memory

Description We have seen that vanilla RNNs are particularly sensitive to the vanishing and
exploding gradient problems, which makes them very difficult to train; even more so with long
sequences, or when the time-lag between events and the corresponding error feedback is large.
They also have trouble storing information over long periods of time.

The Long Short-Term Memory or LSTM (Hochreiter et al. 1997) has been shown to be more
robust to longer sequences. Figure 3.4 illustrates the difference between LSTMs and vanilla

Chapter 3 – State of the Art: Sequence to Sequence Models 65

ct−1 × + ct

ft
×

ot
tanh it

ht−1 ht

xt xt

ht−1 ht

tanh

FIGURE 3.4: Illustration of an LSTM cell (left) and a Vanilla RNN cell (right). ct is the state
of the LSTM and ht is its output. Vanilla RNNs use their state as output. This illustration

originates from Christopher Olah’s blog (“Understanding LSTM Networks”)

RNNs. Instead of updating its internal state at each time step, and risking to overwrite important
information, LSTMs control information flow with several gates:

ft = σ(Wfxt + Ufht−1 + bf) (3.16)

it = σ(Wixt + Uiht−1 + bi) (3.17)

ot = σ(Woxt + Uoht−1 + bo) (3.18)

ct = ft � ct−1 + it � tanh(Wcxt + Ucht−1 + bc) (3.19)

ht = ot � tanh(ct) (3.20)

where Uf , Ui, Uo, Uc ∈ Rn×n and Wf ,Wi,Wo,Wc ∈ Rn×m and bf , bi, bo, bc ∈ Rn are train-
able parameters of the model. The � operator computes an element-wise product.

Equations 3.16, 3.17, 3.18 describe respectively the forget gate, the input gate and the output
gate. Equation 3.19 describes how the internal state ct of the LSTM is updated, and Equa-
tion 3.20 describes how the output of the LSTM is computed.

The forget vector ft ∈ (0, 1)n controls how much information from the previous state ct−1
passes through to the new state. The input vector it controls how much new information (from
input xt) should be let through. And finally, the output vector ot controls how much information
from the current state should be made available as the LSTM’s output. Contrary to RNNs, the
internal state ct is not available to the outside of the cell. Only the output of the LSTM ht is
used in other parts of the model (e.g., to make new predictions). Compared to vanilla RNNs,
LSTMs have four times as many parameters, and their state is twice as large (we need to store
ct and ht).

There are two main ingredients to the success of the LSTM (compared to RNNs):

• The so-called “Constant Error Carousel” (Hochreiter et al. 1997), which is illustrated as
a straight line between ct−1 and ct in Figure 3.4. We see in term ct = ft � ct−1 + · · ·
from eq. 3.19, that there is no non-linear transformation of the previous state. Contrary
to RNNs, the gradient is not multiplied by Wrec at each time step (see eq. 3.12), which
can make the gradient vanish or explode.1 For this reason, LSTMs suffer much less from
the vanishing gradient problem than vanilla RNNs. Thanks to the constant error carousel

1Even though it is multiplied by ft, this is less problematic as ft is often very close to 1 (except for dimensions
we want to forget), and can take different values at each time step.

Chapter 3 – State of the Art: Sequence to Sequence Models 66

(not exactly constant since the forget gate was introduced, by Gers et al. (1999), but close
enough), the gradient flows more easily to earlier time steps, and it becomes easier to learn
long-term dependencies.

• The gates control information flow, and help the LSTM store information on longer peri-
ods of time. Thanks to the output gate, the LSTM can remember information in its state
for later use, and only output it when the time is right. The forget gate makes it possible
for the cell to forget information that it does not need anymore.

Gated Recurrent Units GRUs (Cho et al. 2014a) are a popular alternative to LSTMs. They
are similar to LSTMs but the input and forget gate are merged into a single update gate (zt). The
output gate is removed, and replaced with a slightly different reset gate (rt), which controls how
much of the previous state should be used in the computation of the input. Contrary to LSTMs,
GRUs directly output their state.

zt = σ(Wzxt + Uzht−1 + bz) (3.21)

rt = σ(Wrxt + Urht−1 + br) (3.22)

ht = zt � ht−1 + (1− zt)� tanh(Whxt + Uh(rt � ht−1) + bh) (3.23)

Because it has fewer gates, and a smaller state (it uses its own internal state as output), the GRU
has less parameters and is slightly faster than the LSTM. There is no general consensus as to
which one is better.

3.2 Sequence to Sequence Model

Recurrent neural networks can read a sequence of vectors or symbols, and compute a represen-
tation of this sequence which is useful to a prediction task. An example of such task is language
modeling: given the start of a sentence, predict the next word.

In this section, we are interested in sequence to sequence prediction tasks. This means that
we want to predict variable-length sequences, conditioned on another variable-length sequence.
Machine Translation, Speech Recognition/Translation, and Automatic Post-Editing all fall into
this category.

Sutskever et al. (2014) propose a general framework for sequence to sequence prediction. It
consists of two RNNs: an encoder, which reads the input sequence; and a decoder which predicts
an output sequence. This framework, illustrated by Figure 3.5, is the basis for most of the
subsequent contributions in Neural Machine Translation. This section presents this basic model,
then we describe some extensions. We focus on the Machine Translation task, even though this
kind of model can be used for any “sequence to sequence” task.

3.2.1 Description

Notations The training set consists in a list of (x, z) pairs, where x = x1, . . . , xT is a source
sequence of length T ; and z = z1, . . . , zT ′ is a target sequence of length T ′. Given x we learn
to predict z.

Chapter 3 – State of the Art: Sequence to Sequence Models 67

V and V ′ are the source and target vocabularies, and |V | and |V ′| their respective size. E ∈
R|V |×m and E′ ∈ R|V ′|×m are the source and target embedding matrices. These matrices are
initialized randomly and trained jointly with the other parameters of the model.

Source and target symbols shall be identified by their index in the vocabulary, i.e., xi = j means
that xi is the jth word in V . E(j) ∈ Rm is the embedding vector of symbol j (the jth row in
matrix E).

Encoder The encoder is an RNN, which reads the entire input sequence x and updates its
state:

hi = updateenc(hi−1, xi) (3.24)

hi is the state of the RNN cell at time step i. The initial state h0 is initialized at random, or it can
be a trained parameter of the model. updateenc is the transition function of the RNN (which
can be any type of cell, e.g., LSTM or GRU). With a vanilla RNN we get:

hi = tanh(Wrechi−1 +WinE(xi) + b) (3.25)

where Wrec ∈ Rn×n, Win ∈ Rn×m and b ∈ Rn are trained parameters of the model.

The final state of the encoder hT ∈ Rn is a fixed-size representation of the input sequence. This
representation hopefully contains enough information about x to help the decoder predict z. The
decoder’s state is initialized with this representation: s0 = tanh(WinithT +binit). Alternatively,
if both the encoder and the decoder have the same cell size, the decoder’s state can be directly
initialized with the encoder’s state: s0 = hT .

There is a subtlety when implementing the update function for LSTMs. LSTMs actually pro-
duce two vectors at each time step: a state ci and an output hi. Both the output and the state
are used by the LSTM to update its state. But only the output hi is visible from the outside of
the LSTM. For sake of brevity, we omit the ct parameter in the update formulae. The implied
formulation for LSTMs is:

hi, ci = update(hi−1, ci−1, xi) (3.26)

Decoder The decoder is another RNN, which predicts a sequence of output symbols ẑ1, . . . , ẑT ′′
as follows:

st = updatedec(st−1, E
′(ẑt−1)) (3.27)

yt = generate(st ⊕ E′(ẑt−1)) (3.28)

ẑt = arg
|V ′|

max
i=1

(yti) (3.29)

where⊕ is the concatenation operator (x⊕y = [x1, . . . , xn, y1, . . . , ym]). ẑ0 = BOS is a special
beginning-of-sentence symbol. During training, the output length T ′′ is the same as target length
T ′. At evaluation time — where target sequence z is not available and T ′ is unknown — the
decoder stops updating its state and predicting symbols once it has produced a special end-of-
sentence symbol: ẑT ′′ = EOS. Note that for the model to learn when to output this special
symbol, the target sequences should always end with zT ′ = EOS.

Chapter 3 – State of the Art: Sequence to Sequence Models 68

h1 h2 h3

Une voiture bleue

encoder

s1s2s3s4

Abluecar</S> <S>

decoder

FIGURE 3.5: Illustration of a basic “sequence to sequence” model (Sutskever et al. 2014). A
first RNN (the encoder) reads the input sequence, and a second RNN (the decoder) outputs a
new sequence. The decoder is initialized with the final state of the encoder, which is a fixed
size representation of the input sequence. The decoder stops when reaching a special end-of-

sequence symbol.

generate takes as input the current decoder state st and maps it to a vector yt of size |V ′|, which
contains a score for each symbol in the target vocabulary. The decoder outputs the symbol ẑt
with the highest score. updatedec can be the transition function of any RNN cell (e.g., GRU or
LSTM). With a vanilla RNN and a simple linear projection, we get:

st = tanh(W ′recst−1 ⊕W ′inE′(ẑt−1) + b′) (3.30)

yt = Wvocst + bvoc (3.31)

where W ′rec ∈ Rn×n, W ′in ∈ Rn×m, b′ ∈ Rn, Wvoc ∈ R|V ′|×n, and bvoc ∈ R|V ′| are trained
parameters of the model. See Figure 3.5 for an illustration of this encoder-decoder architectures.

3.2.2 Loss Function

For the model to make useful predictions, it has to encode useful information about the input
sequence x into the encoder’s hidden state s. Indeed, the only information that the decoder has
access to is the last hidden state of the encoder.

The probability of target sequence z given source sequence x according to the model is:

P (z|x) =

T ′∏
t

p(ẑt = zt|x) (3.32)

p(ẑt = j|x) = softmax(ytj) =
eytj∑|V ′|
k=1 e

ytk
(3.33)

where ytj is the jth element of vector yt. We minimize a cross-entropy objective L over an entire
batch D of sentence pairs, which is the average of the log-probabilities of each target sentence

Chapter 3 – State of the Art: Sequence to Sequence Models 69

given the source sentence:

loss(x, z) = − logP (z|x) = −
T ′∑
t

log p(ẑt = zt|x) (3.34)

L =
1

|D|
∑

(x,z)∈D

loss(x, z) (3.35)

3.2.3 More Details

Teacher forcing In practice, during training we always feed the target (ground truth) sym-
bol zt−1 to the decoder instead of the previously generated symbol ẑt−1, i.e., Equation 3.27
becomes:

st = updatedec(st−1, E
′(z̃t−1)) (3.36)

z̃t−1 =

{
zt−1 if training
ẑt−1 if decoding

(3.37)

where z̃0 = BOS. This technique is called teacher forcing (Williams et al. 1989).

Without teacher forcing, training is difficult. The outputs of the decoder are conditioned on
its previous outputs. Once it does a mistake, it can quickly diverge from the target translation,
which makes the later word-level feedback irrelevant.

Even though it helps with training, teacher forcing can cause problems at test time. The model
is accustomed to being shown “perfect” inputs. Once it starts doing mistakes, it can quickly
degenerate to rubbish output, because it is fed with sequences it has never seen during training
and does not know how to handle. Some contributions propose alternative training methods that
expose the decoder to noisy input (S. Bengio et al. 2015; Goyal 2016; Ranzato et al. 2016).

Reversed input Sutskever et al. (2014) found that reversing the source sequence, such that
x = xT , . . . , x1 helped achieve better scores.

The authors explain this phenomenon by the fact that this shortens the minimum gradient path,
by bringing the first symbols of the source sequence closer to the first output symbols.

The decoder acts as a language model: its current state gives a representation of the output
sequence up to the current word. Once it has generated a few words, it becomes easier for the
decoder to generate new words by looking at this representation. However, the first output words
are harder to predict, because there is no context except the source sentence. Making the first
source words “closer” (by reading them last, and keeping a fresh memory of them) may help
with predicting these first few output words, which are crucial for generating the next words.
This probably only works because there is generally some kind of monotonicity in the problems
we consider (e.g., in English to French translation, the first target words are likely to correspond
to the first source words).

Multi-layer encoder and decoder To achieve state-of-the-art results in a Neural Machine
Translation application, Sutskever et al. (2014) use LSTM units — which are better at learning
long-range dependencies than vanilla RNNs.

Chapter 3 – State of the Art: Sequence to Sequence Models 70

h1
1 h1

2 h1
3

h2
1 h2

2 h2
3

Une voiture bleue

+

encoder

s11s12s13s14

s21s22s23s24

Abluecar</S>

decoder

FIGURE 3.6: Illustration of a sequence to sequence model with a 2-layer encoder and a 2-
layer decoder. The encoder’s first RNN reads the input sequence, and a second RNN reads the
outputs of the first RNN. The final states of the encoder are concatenated and used to initialize
the decoder. The decoder’s first layer reads the previously generated symbols. The second layer

reads the outputs of the first layer and generates new symbols.

They achieve the best results by using a deep encoder and a deep decoder, which stack multiple
layers of LSTMs. This is best illustrated by Figure 3.6. For example, a two-layer encoder can
be defined as follows:

h
[1]
i = update[1]enc(h

[1]
i−1, E(xi)) (3.38)

h
[2]
i = update[2]enc(h

[2]
i−1, h

[1]
i) (3.39)

The decoder can be initialized with the last state of the last layer h[2]T . It can also use a concate-
nation of the last states of all encoder layers:

s
[1]
0 = tanh(W

[1]
init(h

[1]
T ⊕ h

[2]
T) + b

[1]
init) (3.40)

3.3 Attention Models

In the vanilla sequence to sequence model, the encoder reads the entire source sequence and
computes a fixed-size representation hT ∈ Rn. It is difficult to encode an arbitrarily large
amount of information into a fixed-size vector. Bahdanau et al. (2015) show that this kind of
model produces worse results as the input length increases.

Also, the decoder is only initialized with this fixed-size representation, and does not have access
to it afterwards. This means that the computation path and the gradient path (between the first
input word and the last output word) have a length of T + T ′. Even though LSTMs are known
for being good at handling long-range dependencies, and do not suffer much from the vanishing
gradient problem, the length of the gradient path does have a non-negligible impact.

Chapter 3 – State of the Art: Sequence to Sequence Models 71

h1 h2 h3

Une voiture bleue

encoder

s1s2s3s4

Abluecar</S> <S>

decoder

c2

0.1
0.3

0.6

attention

FIGURE 3.7: Illustration of a sequence to sequence model with attention. Instead of just
initializing the decoder with the last state of the encoder, the decoder can look anywhere in the
sequence of hidden states using an attention mechanism. At each time step, this attention model
generates a context vector which summarizes the input sequence, depending on the current state
of the decoder. This context vector can be used to update the state of the decoder (input feeding)

and to help generate a new symbol.

A solution to this problem is to use an attention model, which allows the decoder to look at the
input sequence at any time.

3.3.1 Global Attention

Attention-based decoder Bahdanau et al. (2015) propose to enhance the decoder with an
attention mechanism. This model is illustrated by Figure 3.7. Equations 3.27 and 3.28 are
modified as follows:

ct = look(st−1, (hi)
T
i=1) (3.41)

st = updatedec(st−1, E
′(z̃t−1)⊕ ct) (3.42)

yt = generate(st ⊕ E′(z̃t−1)⊕ ct) (3.43)

ẑt = arg
|V ′|

max
i=1

(yti) (3.44)

The decoder uses its current state st−1 to look at the sequence of encoder hidden states h1, . . . , hT
and compute a context vector ct ∈ Rn. This context vector is used by the decoder to update its
state and to generate its next output symbol.

The ct argument to the updatedec function (eq. 3.42) is optional. This method is called “input-
feeding” by Luong et al. (2015b), and supposedly helps the decoder remember where it has
already looked. Bahdanau et al. (2015) also use this input feeding approach in their RNNsearch
model, even though they do not name it.

Chapter 3 – State of the Art: Sequence to Sequence Models 72

FIGURE 3.8: Example of alignment from (Bahdanau et al. 2015) obtained with their
RNNsearch model. The x-axis and y-axis correspond to the source and target sequence (re-
spectively). Each square shows the attention weight αti (black = 0, white = 1) between

output word t and input word i (or rather the corresponding hidden state hi).

Attention function The look function consists in a feed-forward network that takes as input
the current state of the decoder st−1 and predicts a weight for each of the encoder’s hidden states
hi:

ct = look(st−1, (hi)
T
i=1) =

T∑
i=1

αtihi (3.45)

αti = softmax(rti) =
erti∑T
k=1 e

rtk
(3.46)

rti = v>att tanh(Watt(hi ⊕ st−1) + batt) (3.47)

where vatt ∈ Rk, Watt ∈ Rk×2n and batt ∈ Rk are trained parameters of the model. The
softmax function ensures that the weights αti are a probability distribution over the input length,
i.e.,

∑T
i αti = 1 and ∀i, αti ∈ (0, 1]. Other attention models differ as to how they compute the

scores rti. Some take additional information as input (Cohn et al. 2016); or use a different
aggregation function, like multiplicative attention (Luong et al. 2015b). The additive attention
model described here is the most commonly used one, and we call it “global attention” (as it can
look anywhere), or “vanilla attention”.

The parameters of the attention model are trained jointly with the rest of the model, so as to
minimize the translation loss. Very often, this results in an informative attention model, which
will put more weight on the input words (or more precisely their hidden state hi) that are useful
for predicting the next word ẑt. Intuitively, this results in a soft-alignment between the input
sequence and the output sequence. Figure 3.8 shows an example of such alignment from (Bah-
danau et al. 2015).

Chapter 3 – State of the Art: Sequence to Sequence Models 73

Multiplicative attention Luong et al. (2015b) propose a similar attention mechanism, which
uses a different aggregation method (product instead of concatenation) for computing scores rti:

rti = hiWattst−1 Watt ∈ Rn×n (3.48)

Bidirectional encoder Bahdanau et al. (2015) use a bidirectional encoder. Instead of a single
RNN, two RNNs which read the input sequence in both directions (from left to right, and from
right to left) are stacked on top of each other. The encoder hidden states hi are a concatenation
of the outputs of both RNNs:

~hi = updatefwd(
~hi−1, E(xi)) (3.49)

~hi = updatebwd(
~hi+1, E(xi)) (3.50)

hi = ~hi ⊕ ~hi (3.51)

where ~h0 and ~hT+1 are initialized with zeros, or with ~hinit ∈ Rn and ~hinit ∈ Rn, which are
trained parameters of the model.

This removes all concern about the direction in which the input sequence should be read. An-
other advantage is that all encoder states contain context information about the entire sequence:
~hi encodes information about all words up to xi, and ~hi encodes information about all words
from xi to xT . It should be noted that while each encoder state hi encodes the entire sentence,
there is a stronger focus on current word xi and its immediate context, due to the fact that RNNs
remember short-term information better.

3.3.2 Local Attention

Global attention models can be computationally expensive. At each time step t, the decoder has
to compute a score over all T encoder hidden states. This results in a decoding complexity of
O(T × T ′), while the vanilla (attention-less) sequence to sequence approach has a complexity
of O(T + T ′).

Luong et al. (2015b) propose a different attention mechanism, which only looks into a fixed-size
window of encoder states, thus achieving a linear complexity w.r.t. output size T ′.

It first uses current decoder state st−1 to compute a position pt in the input sequence where it
should look:

pt = T × σ(v>att tanh(Wattst−1)) (3.52)

σ(x) =
1

1 + e−x
(3.53)

The logistic function σ returns a value between 0 and 1, which tells how close to the start (0)
or to the end (1) of the input sequence the decoder should look. This value is multiplied by the
length of the input sequence to get the absolute position pt.

Chapter 3 – State of the Art: Sequence to Sequence Models 74

Now, instead of considering all the hidden states, the attention mechanism only looks at the
hidden states within the window W = [pt − d, pt + d], where d is a hyperparameter of the
model.2 This reduces the complexity of the attention model from O(T × T) to O(2d× T).

For any position k outside of the window, αtk = 0. The other weights αti are computed as
follows:

α′ti =
erti∑

k∈W ertk
(3.54)

αti = α′ti × exp(−(i− pt)2
2σ2

) (3.55)

Similarly to Equation 3.45, a probability distribution is estimated over the hidden states by using
the softmax function. The main difference is that we do not consider the entire sequence of
hidden states, but only the states within the attention window. Then, these weights are multiplied
by a Gaussian distribution centered around pt. This gives more weight to the central hidden
state hpt , and less weight to the states which are further away from position pt.3 The standard
deviation σ is set empirically to d/2.

3.4 Various Improvements

In addition to the attention mechanism, a number of other improvements have been made to the
vanilla sequence to sequence model.

3.4.1 The Unknown Word Problem

One weakness of Neural Machine Translation models, which was highlighted by Bahdanau et al.
(2015), is the so-called unknown word problem.

Table 3.1 shows results obtained with an NMT system compared to SMT. We see that the NMT
system is far behind, except when we remove all test sentences with unknown words in them
(in either source or target side), in which case it gets slightly better than SMT. This shows that
NMT is far more sensitive to unknown symbols than SMT.

There are two reasons for this. First, there are much more unknown words in the first place. In
SMT, the phrase table stores probabilities for each phrase that was seen at least once (there is no
limit to the number of such entries). In NMT, for computational efficiency, we use a shortlist of
the most frequent tokens (generally between 30k and 100k), and transform any other symbol to
UNK (special unknown word token).

But more importantly, NMT models are unable to rewrite the input words like SMT does. At all
times, an SMT system knows which word(s) it is currently translating. If such word(s) do not
appear in the phrase table, it just copies them in the output. It is very useful in the case of proper
nouns or numbers for example.

2In (Luong et al. 2015b), for English-German word-based MT, d is empirically set to 10.
3This term is important as it is the only way for the model to learn to predict the position pt (i.e., learn the

parameters Watt and batt). Otherwise, ∂L
∂Watt

is zero.

Chapter 3 – State of the Art: Sequence to Sequence Models 75

Model All No UNK
RNNsearch (NMT) 28.45 36.15

Moses (SMT) 33.30 35.63

TABLE 3.1: Table from Bahdanau et al. (2015). BLEU score of their NMT approach on
WMT 2014 en → fr test set, compared to the SMT baseline. The “No UNK” column corre-

sponds to the BLEU scores when removing all test sentences with unknown words.

Furthermore, NMT learns a representation of the input sequence. If the input is polluted by to
many UNK symbols, the model won’t be able to learn a useful representation.

Sampled softmax One of the reasons why there is a lot of UNK symbols in the training and
evaluation data, is the size of the vocabulary. Indeed, for performance reasons, a vocabulary
shortlist is often used — of 30k source words and 30k target words in Bahdanau et al. (2015).
Using the entire training vocabulary (i.e., all the words that appear at least once in the train
set), is generally infeasible. Jean et al. (2015b) propose a modification of the softmax layer in
the decoder and of the loss function, so that the training complexity does not depend on the
vocabulary size. This sampled softmax method trains using a fixed-size subset of the entire
vocabulary at each time step. As a result, only the parameters corresponding to the target word,
and a set of negative words are updated.

Replacement of unknown words Another solution, which seems obvious when one knows
how SMT works, is to provide the NMT system with a similar mechanism for recopying un-
known words. Instead of producing an UNK symbol, we could look in the input sequence and
find out which word we are translating, and then just copy this word.

Jean et al. (2015b) propose to use the global attention model to identify which word is being
translated (the word with the highest attention weight), and either recopy this word, or find a
translation in a large dictionary.

This technique can be used conjointly with the sampled softmax method. However, as Jean et al.
(2015b) noted, the gain for doing so is reduced, because the larger the vocabulary, the less the
model sees UNK symbols at training time, and the less likely it is to output them at test time.

Luong et al. (2015c) propose techniques which do not rely on the attention mechanism. Their
most successful technique is called PosUnk. It starts by aligning the source and target side
of the training set with an unsupervised aligner (e.g., GIZA++). Then, instead of replacing
unknown target words with a single UNK symbol, we find the relative position of the source
word to which they are aligned. There is a special unknown word token for each such relative
position: UNK(-1) if the aligned word is one word to the left, UNK(0) if it is at the exact same
position, etc. By pre-processing the training data as such, the decoder learns to output special
unknown word symbols which carry positional information. Then, as a post-processing step, we
can replace each symbol by the source word at the relative position.

As a side note, while these methods are able to remove UNK symbols from the output; they do
not solve the problem of having too many UNK symbols in the input. Having many such symbols
in the input sequence hinders the model, as it may be unable to learn a correct representation of
the source sequence. This often results in gibberish output, or entire sequences of UNK symbols,
in which case a post-processing solution is not enough.

Chapter 3 – State of the Art: Sequence to Sequence Models 76

Subword units Another way of solving this problem is to use smaller units than words. Sen-
nrich et al. (2015) propose an elegant solution based on Byte Pair Encoding. The vocabulary is
comprised of the most frequent subword units in the train set. A subword unit can be anything
from a single character to an entire word. A special symbol is appended to the subwords which
do not correspond to word suffixes (e.g.,), so that we know to concatenate them with the next
subword (e.g., hog and warts form hogwarts).

This allows the model to read and generate any word. This is useful with agglutinative languages
like Finnish or Turkish; or with inflected languages, like Spanish or French. In the case of
inflections, a subword corresponding to the word stem, and a subword corresponding to the
inflection are likely to be in the vocabulary. The inflected word can be formed by concatenating
those (e.g., hav and ing). In case of agglutination, words can be formed by a concatenation of
affixes. For example, neun , hundert , und and elf give neunhundertundelf (nine
hundred eleven in German). The subword vocabulary also contains the most frequent syllables
in the vocabulary (e.g., ing, in, the, etc.), which makes it easy to form any word in this
language rather efficiently. In the worst case scenario, words can be formed by a concatenation
of their letters (e.g., numbers, foreign words or misspelled words).

The algorithm for finding these subword units is iterative. It starts with a list of all single
characters in the train set (which allow by themselves to reconstruct any unknown word). Then,
it looks for the pair of existing character n-grams whose concatenation is the most frequent (for
example e + d -> ed is very frequent). It continues to do so until it has reached a number of
n-gram pairs (e.g., 30k), or when it cannot find new pairs. The result is a list of merge operations,
which take two frequent n-grams and form a longer n-gram.

Once this list is obtained, words can be transformed into subwords by first splitting them into
a sequence of their constituent characters (initial n-grams), and then successively, and greedily,
applying merge operations (the most common ones first) on pairs of n-grams, until no such
merge is possible.

Say our sorted list of merge operations is as follows:

1. t </w>
2. s t</w>
3. l u
4. e st</w>
5. b lu

Here is an example with bluest (</w> marks the word boundary):

b l u e s t </w>
b l u e s t</w>
b l u e st</w>
b lu e st</w>
b lu est</w>
blu est</w> = blu_ est

The result is a segmentation of bluest into blu and est. Another advantage of this method
is that the generated vocabulary also contains entire words, at least the most common ones. As a
result, the average sentence length does not change much, which can be desirable as the model’s
time and memory complexity depends on the length of the input and output sequences.

Chapter 3 – State of the Art: Sequence to Sequence Models 77

3.4.2 Improve Decoding

Beam search decoder At test time, we would like to find the output sequence w? with the
highest probability according to the model:

w? = arg max p(w|x) (3.56)

p(w|x) =

|w|∏
t

p(wt|w1, . . . , wt−1,x) (3.57)

p(wt = j|w1, . . . , wt−1,x) = softmax(ytj) =
eytj∑|V ′|
k=1 e

ytk
(3.58)

However, exploring the entire space of hypotheses is infeasible (since there are |V ′|T possible
hypotheses). Surprisingly, the greedy solution often gives very good results. It consists in
decoding from left to right, and picking at each time step the token with the highest score:

ŵ = ŵ1, . . . , ŵT (3.59)

ŵt = arg max p(·|ŵ1, . . . , ŵt−1,x) = arg
|V ′|

max
i=1

yti (3.60)

Another approach, which gives slightly improved results is to use a beam search algorithm. At
each time step, we keep the n best hypotheses, and expand these hypotheses at the next time
step.

There are several variants of the beam search decoder. For efficiency reasons, we may want to
stop looking for new hypotheses once enough finished hypotheses have been found. A hypoth-
esis is considered as finished if it contains the end-of-sentence token. After the pruning step,
if the current beam contains a finished hypothesis, we do not need to continue expanding this
hypothesis. It is removed from the set of running hypotheses (and added to a set of finished
hypotheses), and the maximum beam size is reduced by one.

One common problem with beam search decoding is that it tends to favor shorter sentences.
Because the score of a hypothesis is the sum of the log probabilities of all its words, a longer
sentence will often have a lower score. A popular solution is to do length normalization, i.e.,
normalize the scores of the hypotheses by a value which depends on their length (Wu et al.
2016):

lp(w) = (
1 + µ

|w|+ µ
)η (3.61)

score(w) = lp(w) log p(w) (3.62)

where η and µ are hyperparameters of the model, and |w| is the length of sequence w.

When η = 0, then lp = 1 this corresponds to no length normalization. In the simplest case with
length normalization, η = 1 and µ = 0, which corresponds to lp = 1/|w|. Parameter µ is often
set to 0.

These normalized scores are only used at the end of beam search decoding, for rescoring the
finished hypotheses (generally n of them).

A coverage penalty can also be used (Wu et al. 2016):

Chapter 3 – State of the Art: Sequence to Sequence Models 78

cp(x,w) = β ×
T∑
i

log(min(

|w|∑
t

αti, 1.0)) (3.63)

score(w) = lp(w) log p(w) + cp(x,w) (3.64)

where αti is the alignment probability between source word xi and output wordwt, as computed
by the attention model. β is a hyperparameter of the model, which controls the strength of the
coverage penalty factor.

While the attention mechanism ensures that an output word’s total probability mass is 1 (because
of the softmax normalization), some source words may very well align to no output word at all,
i.e., ∃i,∑|w|t αti ≈ 0. This coverage penalty favors hypotheses where each source word’s total
probability mass is high, i.e., hypotheses where most source words are covered by the attention
model.

Chorowski et al. (2016) propose a similar coverage penalty term, and hypothesize that this may
help the decoder avoid looping endlessly over the same outputs. It is a frequent failure mode in
NMT. When the decoder has a high confidence in a group of tokens, it sometimes outputs these
tokens again and again. By favoring hypotheses where each source word has a translation, we
may avoid such edge cases.

Wu et al. (2016) test different values for η and β. They empirically set µ to 5, and use a beam
size of 8. They found that on a large WMT14 en → fr task, coverage penalty and length
normalization are important to obtaining the best results. They settle with η = 0.2 and β = 0.2,
which gives the best BLEU score on the dev set (1 point above the baseline without length
normalization and coverage penalty). Note that (η, β) = (0, 1) achieves the same BLEU score
(no length normalization, and maximum coverage penalty); and that (η, β) = (1, 0) achieves
almost the same score (full length normalization, no coverage penalty).

In SMT, because the language model and translation model consider only short range dependen-
cies, the beam search decoder is crucial to obtaining decent translations. The chosen beam size
is generally the highest possible, while keeping a good decoding speed. In Moses for instance,
the default beam size is 100. In NMT, the beam search decoder improves over a greedy decoder,
but only slightly (by at most one or two BLEU points). The size of the beam is most often
between 2 and 12. Larger beam sizes are almost always detrimental.

The state of the decoder carries information about the entire past output, and it can look any-
where in the input sequence. This gives enough context to the decoder to make an informed
decision about which word to generate, without worrying about future words. Also, the model
is trained with greedy decoding in mind, i.e., it is optimized at the word level; and during train-
ing we feed the decoder with its past greedy outputs. This may be the reason why beam search
decoding does not perform so well, and can even be detrimental with higher beam sizes.

Language model In SMT, the noisy-channel model allowed us to combine a translation model
with a language model (Brown et al. 1993). Later, a more general log-linear model was pro-
posed, which combined any number of features whose weights could be tuned (Koehn 2010).

The translation model focuses on maximizing translation adequacy, but could alone result in
very crude output (with low fluency). On the other hand, the language model ensures that the

Chapter 3 – State of the Art: Sequence to Sequence Models 79

output is fluent in the target language, without having to worry about the source sentence. Both
models specialize in two different things, and combining them can help recover from the errors
of individual models. One other advantage of this approach is that the language model can be
trained on larger amounts of monolingual data, which can be very helpful when little parallel
data is available to train the translation model.

It is very tempting to use a similar approach in NMT. We can combine the translation model
that we described in the previous sections, with a language model trained on monolingual data.
However, the benefit is less obvious than in SMT. Indeed, the decoder itself acts as language
model, because it learns a probability distribution over sequences in the target language (the
probability of a word is conditioned on the previously generated words). Still, the encoder-
decoder is trained with parallel data, and an external language model is a way to incorporate
more (monolingual) data.

The beam search decoder proceeds as before, but estimates the log probability of a word given
the hypothesis’ past words as follows:

log p(wt|w1, . . . , wt−1,x) = log pMT (wt| . . .) + γ × log pLM (wt|wt−2, wt−1) (3.65)

where pLM is the conditional probability of a word given the previous two words as estimated
by a trigram language model. γ is a hyperparameter which puts more or less emphasis on the
language model.

This technique is described as “shallow fusion” by Gulcehre et al. (2015). In this work, an
external neural language model is used.

In Bahdanau et al. (2016) an n-gram language model is integrated in the same way. However, the
decoder is at the character-level. They transform the word-level language model into a character-
level one by using a weighted finite state transducer. In this instance (speech recognition), the
external language model was essential to obtaining good results.

Ensembles Most state-of-the-art results are obtained with ensembles of models (Luong et al.
2015c; Sutskever et al. 2014; Wu et al. 2016; Zhou et al. 2016). This generally consists in
training a number of instances of the same model (typically between 4 and 8), and averaging
their log-probabilities.

In a beam search decoder, the log-probability of a word is computed as follows:

log p(w) =

N∑
i

λi log pi(w) (3.66)

where pi(w) is the softmax probability of word w according to the ith model in the ensemble,
and N is the size of the ensemble. By default, λi = 1

N . However, these weights can be tuned on
the dev set, with tools like MERT (Och 2003), so as to give more weight to models which are
the most beneficial to the ensemble. In the context of NMT, ensembles generally bring a large
improvement to evaluation scores (often several BLEU points). Because the training algorithm
is stochastic (different weight initialization, train set shuffling), different models can have very
different weaknesses and strengths. Averaging these models will likely average out the errors of
single models.

Chapter 3 – State of the Art: Sequence to Sequence Models 80

Sometimes, when it is too expensive to re-train new models from scratch, one may use different
checkpoints of the same training instance (provided they are not too close); or take the same
checkpoint and finetune it in N new training instances (Jean et al. 2015b).

Another slightly different method — which may be use conjointly with ensembles — is to take
different checkpoints of the same training instance, and average all their parameters element-
wise. Of course, this does not work with checkpoints from different training instances (like
ensembles), as training is stochastic and averaging parameters won’t result in meaningful values.
The gain from using this method is consistent, but often smaller than using ensembles (Junczys-
Dowmunt et al. 2016b; Sennrich et al. 2017).

The log-linear formulation from Equation 3.66 can be used with any combinations of models —
provided that they have the same target vocabulary. One can combine several instances of the
same model with different models altogether (e.g., language models).

3.5 New NMT models

At the time I started writing this thesis, RNNsearch (Bahdanau et al. 2015) was arguably the
most popular neural machine translation model. A variant of this model, namely GNMT has
been deployed in Google Translate (Wu et al. 2016), and now achieves considerably better
results than their previous statistical machine translation model. All of our work is based on
the RNNsearch model and variants of it.

Yet, new models have been proposed recently that perform even better than RNNsearch, with
significantly lower training times. The most promising models for general machine translation
are now ConvS2S (Gehring et al. 2017b) and Transformer (Vaswani et al. 2017).

These two models use the same “encoder-decoder” structure as seq2seq, but do away with recur-
rent neural networks. While RNNs are very expressive and could theoretically encode any type
of sequential information, they are slow to train due to two main reasons: they do not parallelize
very well because of their autoregressive nature,4 and they suffer from the vanishing gradient
problem.

ConvS2S uses many convolutional layers to encode the input and output sequence. Its encoder
produces a sequence of states of the same length as the input sequence, where each state en-
codes information about most of the sequence (because at each layer, convolutions aggregate
information from nearby positions). The decoder can look at any of these states thanks to an
attention mechanism. Transformer uses many layers with self-attention, where each layer can
look anywhere in the previous layer. Contrary to RNNs these two models are unable to com-
pute positional information. For this reason, positional embeddings are also given as input (in
addition to word embeddings). These two models also use careful initialization or layer normal-
ization (Ba et al. 2016) to stabilize training, along with residual connections (He et al. 2015) to
facilitate gradient flow.

Thanks to teacher forcing (because we do not have to wait for the model’s previous prediction
to train a particular decoder time step), these models can be trained in a non-autoregressive
manner, which largely speeds up training. Furthermore, the gradient can flow very quickly from
any position in the last decoder layer to any position in the first encoder layer. This makes
it possible to increase the depth of the network, and hence improve its expressivity without

4Computation at a given time step depends on computations at the previous time steps.

Chapter 3 – State of the Art: Sequence to Sequence Models 81

suffering from the vanishing gradient problem. Thanks to recent advances by Ott et al. 2018, a
state-of-the-art English to French model can be trained in about 20 hours on 8 GPUs.

Part II

Contributions

82

Chapter 4

Neural Machine Translation

This chapter details our contributions to the field of Neural Machine Translation (NMT). It
contains essentially replication work. The first section is about our implementation of word
embeddings methods, and a series of experiments to validate this implementation. The second
section will describe our framework for Neural Machine Translation. And finally, we will detail
our replication work on Neural Machine Translation along with some original results.

The next two chapters will describe our contributions in the related fields of Automatic Speech
Translation and Automatic Post-Editing.

4.1 MultiVec

MultiVec1 (Bérard et al. 2016a) is a toolkit written in C++, which can compute vector repre-
sentations for words (word embeddings), and sequences of words (sentences, paragraphs). It
can also learn word embeddings in a shared vector-space between two languages (bilingual em-
beddings), using a parallel corpus as training data.2 It implements several techniques from the
literature, including the CBOW and Skip-Gram models from Word2vec (Mikolov et al. 2013a),
with the Hierarchical Softmax and Negative Sampling training objectives (Mikolov et al. 2013c).
It also implements the Paragraph Vector algorithm that can compute embeddings for sequences
(Q. V. Le et al. 2014); and the Bivec algorithm for learning bilingual embeddings from parallel
data (Luong et al. 2015a).

Algorithms Here is a detailed list of the algorithms that are available inside MultiVec, along
with their acronym and a short description. Some of these algorithms are described more in
depth in the state of the art (see Section 2.2).

• Word2vec (Mikolov et al. 2013c) is a set of efficient algorithms to learn word embeddings
from a large monolingual corpus. Words have an input embedding vector and an output

1MultiVec is available for download at this address: https://github.com/eske/multivec
2We initially developed MultiVec for own use for Automatic Post-Editing. We wanted a fast way of computing

rich crosslingual representations of sequences, to represent states in a sequential post-editing process. However,
our initial goal of using Reinforcement Learning techniques for Automatic Post-Editing did not lead to any positive
result, and we turned our attention to the newly discovered Neural Machine Translation techniques.

83

https://github.com/eske/multivec

Chapter 4 – Contributions: Neural Machine Translation 84

embedding. The probability of some word given some context is estimated by computing
the dot product between the input vector representation of this context, and the output
embedding of this word. This score is then normalized, either by doing a softmax over
the entire vocabulary, logistic regression (negative sampling), or hierarchical softmax.
Mikolov et al. (2013a,c) describe several techniques, which we implemented in MultiVec:

– CBOW (Continuous Bag-of-Words): the model is trained to predict each word in
a sentence by using its surrounding words (context). The input embeddings of the
context words are averaged, summed, or concatenated. This context is multiplied
by the output embedding of the target word. This gives a score, which is used to
estimate the probability (according to the model) of this word given the context
words.

– SG (Skip-Gram) is a reversed version of CBOW. From a single word, the model is
trained to predict all the context words.

– Negative Sampling: this is a training objective that can be used conjointly with
the CBOW model (CB-NS), or with Skip-Gram (SG-NS). Instead of predicting the
target word by computing a probability distribution over the entire vocabulary (soft-
max), we sample negative examples (random words), and train the model to identify
positive examples (the actual word) from negative examples (the sampled words).
Negative sampling does logistic regression, whose complexity does not depend on
vocabulary size (contrary to a softmax classifier).

– Hierarchical Softmax (HS) is another training objective where the vocabulary is
structured as a binary Tree, and the probability of a word can be decomposed as
the probability of the corresponding path in the tree. Hierarchical softmax has a log-
arithmic complexity w.r.t. vocabulary size (vs. linear growth for regular softmax).

• Paragraph Vector (Q. V. Le et al. 2014) is a set of algorithms for computing vector repre-
sentations of text sequences.

– PV-DM (Distributed Memory): this model is similar to CBOW, but also computes
a unique vector for each sentence in the training corpus. When predicting words
in a given sentence, the vector of this sentence is included into the context vectors
(along with the input embeddings of the context words). Like in regular CBOW, the
context vectors can be averaged, summed, or concatenated.

– PV-DBOW (Distributed Bag-of-Words): this is a variant of Paragraph Vector, where
the model is trained to predict each word in a sentence by using this sentence’s vector
only (similar to Skip-Gram).

– Online/Batch PV: the above two methods can be used in two modes. In batch mode,
all the sentences whose representation we want to compute are available at once.
In online mode, a model is first trained on a text corpus, and can then be used to
compute representations of new sentences as they come. This is done by freezing all
the parameters of the model, except for the vector of the given sentence, and train
with SGD for a fixed number of iterations, on this sentence only.

• Bivec (Luong et al. 2015a): this algorithm combines two monolingual models, and uses
a parallel corpus to perform monolingual updates (e.g., a source word is used to predict
another source word), and crosslingual updates (e.g., a source word is used to predict a
target word). At the end of training, source language words and target language words
share the same vector space. By default, Bivec does a uniform (monotonous) word-based
alignment between each pair of sentences. Both the CBOW and Skip-Gram models can
be used, as well as the Hierarchical Softmax and Negative Sampling training objectives.

Chapter 4 – Contributions: Neural Machine Translation 85

• Bilingual Paragraph Vector: Bivec can be easily combined with Online Paragraph Vector.
Once a bilingual model has been trained, its two monolingual components can be used to
compute the representations of a pair of sentences.

Several other implementations of Word2vec3 have been proposed since then, including Face-
book’s FastText library,4 and Gensim.5

MultiVec has several other useful features:

• We provide the implementation of a couple of benchmarks for word embedding evalua-
tion: analogical reasoning, sentiment analysis, and crosslingual document classification.

• Bilingual models can be saved and used as two monolingual models.

• A Cython wrapper makes it easy for Python programmers to call the MultiVec API from
Python.

• Models can be trained easily thanks to an extensive command-line interface.

• The implementation is extremely fast, on par with Word2vec, but much less obfuscated.

• Word embeddings can be exported in the same format as Word2vec (text or binary).

• A number of similarity measures are made available: similarity between two words (co-
sine similarity or distance), or between two sequences (bag-of-words cosine similarity,
soft word error rate, etc.)

In this section, we present the framework in more details, starting with an overview of its overall
architecture and command-line interface. Then we give some non-trivial implementation details.
Finally, we evaluate the performance of the toolkit on several tasks, and compare it against the
official implementations of the considered techniques.

4.1.1 Description and Usage

Description The multivec/ directory contains the main source code (in C++) of the frame-
work. In word2vec/, we also provide the original implementation of Word2vec, which we
modified to have the same command-line interface as MultiVec. We also provide an improved
binary for evaluating embeddings on the analogical reasoning task.

The benchmarks/ directory contains scripts for running the evaluation benchmarks: senti-
ment analysis, crosslingual document classification, and analogical reasoning.

Finally, the cython/ directory contains the code for the Python wrapper. This is only a thin
wrapper around the C++ library. This means that most functions run just as fast as if they were
called from C++.

One property of MultiVec is that it is a standalone library (like Word2vec). The only software
dependencies it has are a recent C++ compiler (GCC or Clang), CMake, and Cython and NumPy

3https://code.google.com/archive/p/word2vec/
4https://github.com/facebookresearch/fastText
5https://radimrehurek.com/gensim/

https://code.google.com/archive/p/word2vec/
https://github.com/facebookresearch/fastText
https://radimrehurek.com/gensim/

Chapter 4 – Contributions: Neural Machine Translation 86

if you want to use the Python wrapper. Compilation is straightforward, and instructions can be
found Appendix A.1 or on the project’s web page. For better portability, we chose to implement
our own rudimentary serialization features (for saving and retrieving models), and simple vector
arithmetic, rather than depending on external libraries.

The source code of MultiVec is structured as two major classes: MonolingualModel and
BilingualModel. A bilingual model contains two monolingual model instances, with their
own vocabulary and weights. When training a bilingual model, we do monolingual updates
(that modify the corresponding monolingual model), and crosslingual updates (that modify pa-
rameters in both models). More details about the architecture of the toolkit are given in the
appendix.

There are several advantages of structuring our code this way. First, monolingual models do not
depend on the bilingual models (we can easily strip all the “bilingual” features from the toolkit).
Then, bilingual models can be exported as two separate monolingual models (e.g., for using
monolingual distance features, or online paragraph vector). Finally, it would be relatively easy
to implement other crosslingual embedding algorithms like (Artetxe et al. 2017; Lample et al.
2017; Mikolov et al. 2013b).

These two classes define a number of public methods (e.g., train, load, save, sent vec,
etc.), which are accessible both from the command-line interface and the Python wrapper. How-
ever, some features, like distance functions are only accessible from the Python wrapper.

Command line Like Word2vec, MultiVec can be used to train new models from the command
line. We provide two binaries for this purpose: bin/multivec for monolingual models and
bin/multivec-bi for bilingual models. We give here a summary of the command line
features that are available. For a more complete account, you can look in the appendix, or on
the project’s main page.

Given a training file data/news.en, with one sentence per line, tokenized at the word level6

(and optionally lowercased), a monolingual model can be trained as follows:

train and save a monolingual model
bin/multivec --train data/news.en --save models/news.bin

This trains a CB-NS model with the default settings. A Skip-Gram model can be trained with
the option --sg, and the Hierarchical Softmax objective can be used with --hs. To only save
the vectors, use the --save-vectors option. This writes the vectors in a text file, following
the Word2vec format.

To use the PV-DM algorithm in batch mode (i.e., compute embeddings for each sentence in the
training set), use the --sent-vector flag:

train and save paragraph vectors
bin/multivec --train data/news.en --sent-vector \
--save-sent-vectors models/news.sent.vec

6The scripts scripts/prepare-data.py or scripts/tokenizer.perl can be used for this purpose.

Chapter 4 – Contributions: Neural Machine Translation 87

Bilingual models are trained with the bin/multivec-bi program. Instead of a single train-
ing file, it takes a pair of files (a parallel corpus) with the --train-src and --train-trg
options:

train and save bilingual model
bin/multivec-bi --train-src data/news.en \
--train-trg data/news.de \
--save models/news.en-de.bin -v

By default, MultiVec does a uniform word-based alignment between parallel sentences. Op-
tionally, a word alignment of the training corpus can be provided with the --alignment
option. The --beta option controls the strength of crosslingual updates compared to monolin-
gual ones. The source and target models can be saved individually as monolingual models with
--save-src and --save-trg, and loaded later with the bin/multivec program or the
Python wrapper.

4.1.2 Implementation Details

We detail some techniques that we used to obtain similar training speed as Word2vec. The
latter is written in C and implements various tricks that make it extremely fast, at the cost of an
obfuscated source code. We want to achieve a good trade-off between the clarity of higher-level
programming (object-oriented programming), and the raw speed of the toolkit.

Vector library Word2vec stores the model parameters as basic float[] arrays. This makes
the code verbose and hard to understand, as any operation on vectors (e.g., multiplying a vector
by a scalar) requires writing an explicit for loop.

In the OOP paradigm of C++, it is easy to define a Vector class that supports basic vector arith-
metic, thanks to operator overloading. However, our initial vector implementation turned out to
be much slower than explicit for loops. Indeed, an expression like x += a * y compiles as
two for loops: one for the multiplication by scalar a, and another for the addition/assignment.

A solution to this problem, which is often used in C++ linear algebra libraries, is the so called
expression templates. Basically, it consists in using the C++ templates to build a static tree of
expressions, which is compiled as a single for loop (loop fusion). We used this technique to
improve our simple vector class, so that it performs on par with C-style for loops. Our imple-
mentation supports the following vector operations: Euclidean norm, multiplication/division by
a scalar, element-wise addition/subtraction by another vector of the same size, and dot product
between two vectors. We did not want to use an external linear algebra library, as we did not
find any standalone library that was sufficiently small, easy to install and portable.

Asynchronous training Like Word2vec, MultiVec can make use of multi-core CPUs by span-
ning multiple threads, each taking care of its own part of the training file. Surprisingly, even
though all threads share the same memory, Word2vec does not care about thread safety. Several
threads can read and write at the same location in memory, resulting in some amount of noise
as some SGD updates are lost or overlap with others. As observed by Y. Bengio et al. (2003) in

Chapter 4 – Contributions: Neural Machine Translation 88

the context of a Neural Language Model, such an asynchronous implementation does not seem
to impact training performance.

In MultiVec, this is implemented as a chunkify function, which reads the entire training file,
and delimits it into “chunks”, so that all chunks have the same number of lines. We do not
actually split the file into several files, nor do we store the file into memory (training files are
often too large to fit in memory), but just store the starting position of each chunk on disk. Then,
as many threads as there are chunks are created. Each thread runs its own training procedure that
reads the corresponding chunk from disk, line-by-line, and trains for a given number of epochs.
All threads share the same memory, and can access and modify model parameters concurrently.

As a measure of comparison, we also tried to enforce thread safety by using mutexes.7 Each
parameter matrix (input weights and output weights) has its own instance of std::mutex.
Whenever a thread needs to read or update parameters, it locks the corresponding mutex, effec-
tively preventing other threads from accessing the same parameters. We measure the training
speed of CB-NS using this approach, and the accuracy of the trained embeddings on the ana-
logical reasoning task. Table 4.1 shows that enforcing thread safety introduces a substantial
overhead, with a catastrophic slowdown when using 16 threads. Furthermore, it does not seem
to improve the performance of the learned embeddings on the analogy task.

Fast random generator MultiVec (and Word2vec) need access to a random number source.
Random numbers are needed for initializing the model parameters (input and output weights),
and then during training for subsampling (random dropping of words depending on their fre-
quency), for selecting the window size and for negative sampling (random selection of negative
examples depending on their frequency). While random weight initialization is done only once
and is not a bottleneck, the other functions are run at a higher frequency.

As a side note, there is another source of stochasticity, which is the asynchronous implementa-
tion of SGD. Threads do not always run at the same speed, and there is no guarantee as to the
order of SGD updates. Overlapping updates because of our non thread-safe implementation can
even add more random noise.8

There areO(epochs×|D|) calls to rand for subsampling and window size selection (where |D|
is the number of words in the training corpus). The real bottleneck is with negative sampling,
with O(epochs× |D| ×neg) calls for CBOW and O(epochs× |D| ×C ×neg) for Skip-Gram
(neg is the number of negative samples, and C is the average window size). This is only a factor
n (dimension of the embeddings) away from the complexity of the training algorithm (in terms
of basic additions or multiplications). For this reason, fast pseudo-random number generation is
essential. We use the following function:

inline unsigned long long rand(unsigned long long max) {
thread_local long long thread_id =

std::hash<thread::id>()(this_thread::get_id());
// unique seed for each thread
thread_local unsigned long long next_random(time(NULL) + thread_id);
next_random = next_random * 25214903917ull + 11;
// with this generator, the most significant bits are bits 47...16

7This an object that can be in two states: locked or unlocked. Whenever a thread tries to lock a mutex that is
already locked, it blocks until the mutex is unlocked by the thread that owns it.

8A consequence is that MultiVec gives different results across training instances, even when using the same seed
for the pseudo-random generator.

Chapter 4 – Contributions: Neural Machine Translation 89

return (next_random >> 16) % max;
}

This function returns a value between 0 and max− 1. The thread local specifier creates a
single random generator per thread (which is shared across calls to rand). This ensures thread-
safety, without the overhead of locking access to the random generator whenever we are using it.
This is the same pseudo-random generator as used by Word2vec, which we wrap in a function
for better readability.

We compare this implementation against a naive use of std::rand, and a more robust (and
standard) implementation that uses a Mersenne Twister (std::mt19937), which we also wrap
inside a similar function.

Table 4.1 shows that std::rand is extremely slow, in particular with multiple threads. This
is due to the fact that its implementation in GCC enforces thread safety in a blocking way (with
mutexes). On the other hand, the high-quality Mersenne Twister generator from the standard
library is only slightly slower that the custom Linear Congruential Generator used by Word2vec.
Our evaluation on the analogical reasoning task shows no difference, so we keep the faster
version.

The negative sampling algorithm samples words from the vocabulary according to their unigram
distribution. To efficiently sample from this distribution, we adopt the same trick as Word2vec.
A large table of fixed size (1e8) is built, where the index of each word in the vocabulary is
copied a number of times which is proportional to its frequency. It is then easy to sample from
this distribution by doing uniform sampling over the entire table.

Time benchmark To compare the training speed of our framework with different implemen-
tation choices, we do the following benchmark: we train CB-NS models on the English side
of News Commentary, with 10 iterations. For each method, we train 10 models, and average
their training time (not counting initialization and saving), and accuracy on the analogy task.
We repeat this on two different machines, one with a 4-core CPU, and one with a 16-core CPU.
Table 4.1 shows the average training time of the methods we tried. In terms of accuracy, all the
methods obtain similar performance.

We see that methods that enforce thread safety by using mutexes (Sync SGD and std::rand)
are extremely slow, in particular with 16 threads. There does not seem to be an accuracy im-
provement when using a thread-safe implementation of SGD.

Discretizing the results of the exponential function inside a table, like Word2vec (to avoid having
to repeatedly call std::exp) only reduces training time by a tiny fraction, at the cost of making
the code less readable. Finally, the custom rand function (like Word2vec) is slightly faster than
using the random generators from the standard library.

Thus we keep the “Baseline” row from Table 4.1 as our final implementation, as it gives the best
trade-off between code clarity and training speed.

4.1.3 Experiments

We perform a set of experiments to benchmark the training speed of our toolkit in different
conditions, and to compare its performance against its competitors. As it re-implements the

Chapter 4 – Contributions: Neural Machine Translation 90

Model
4 Threads (i5) 16 Threads (Xeon)

Precision @1
Time (s) Relative Time (s) Relative

Word2vec 33 -18% 22 -10% 17.9%
Baseline 41 24 18.5%
(1) Exp table 40 -3% 23 -3% 18.3%
(2) Proper rand 43 +5% 25 +4% 18.5%
(3) Vanilla vec 63 +54% 38 +58% 18.4%
(4) std::rand 106 ×3 247 ×10 18.3%
(5) Sync SGD 235 ×6 854 ×35 18.4%
(3) + (4) + (5) 363 ×9 1257 ×52 18.2%

TABLE 4.1: Training time of the CBOW-NS model, with different implementation choices.
The models are trained on the English side of News Commentary (5M words, lower-
cased). The training times (in seconds) are averaged over ten runs. dim=100, iter=10,
negative=10, win size=5, subsampling=1e-3, min count=5. The preci-

sion is over the analogical reasoning task (see next subsection for a description).

exact same techniques as other models in the literature, it should obtain the same results as the
official implementations of these methods. The first task is the analogical reasoning task, to
evaluate the CBOW and Skip-Gram models (against Word2vec). Then we do sentiment analysis
to evaluate our implementation of Paragraph Vector. Finally, we evaluate our implementation of
Bivec on the crosslingual document classification task.

Analogical Reasoning We evaluate our toolkit on the Analogical Reasoning Task as described
in (Mikolov et al. 2013d). The authors provide a dataset containing five different types of se-
mantic questions, and nine types of syntactic questions, with a total of 19 558 questions. A
question is a tuple (word1, word2, word3, word4) in which word4 is related (semantically
or syntactically) to word3, in the same way that word2 is related to word1. A famous ex-
ample is (king,man, queen,woman). It has been observed that C(king) − C(man) ≈
C(queen) − C(woman). This task evaluates the ability of the model to capture several kinds
of linguistic regularities. For instance, other types of questions include state-city relationships
or adjective-adverb relationships.

The accuracy as measured in this task is the percentage of questions for which the closest word
in the vocabulary toword3−word1+word2 according to the cosine similarity is exactlyword4
(precision at one).

As shown in Table 4.2, Word2vec and MultiVec with the same settings get very similar results.
Interestingly, bilingual models seem to perform significantly better, even on a monolingual task.
The number of epochs was intentionally halved in the bilingual case, to make sure that this
result is not simply due to a higher number of updates. Interestingly, the CBOW model seems to
perform better on syntactic questions, while Skip-Gram is much better on semantic questions.

We also observe that MultiVec is almost as fast as Word2vec. All the models are trained on the
same 16-core CPU (Intel Xeon).

There are some limits to this task: there are not many question types and the scores that we com-
pute are unbalanced. Some question types have many more examples than others. For example,
80% of all semantic questions are about city-state relationships. There are also more syntac-
tic questions than semantic ones. While our analogy program also prints a score for each

Chapter 4 – Contributions: Neural Machine Translation 91

Method Model Dim Syntactic (%) Semantic (%) Total (%) Time (min)

Word2vec
CBOW

100 47.4 24.8 37.5 21
300 48.2 25.6 38.3 66

SG
100 44.8 33.1 39.7 88
300 44.5 38.6 41.9 280

MultiVec
CBOW

100 47.7 27.4 38.8 22
300 48.7 27.9 39.6 66

SG
100 45.1 33.8 40.1 92
300 44.8 39.3 42.4 278

Multivec-Bi
CBOW

300
52.6 39.1 46.6 161

SG 47.5 42.6 45.3 478

TABLE 4.2: Results (precision @1) of the analogical reasoning task, on Word2vec’s
questions-words.txt. The models were trained on the English side of WMT14 (117M
words) for 20 iterations, “Multivec-Bi” is our bilingual implementation, trained on English-
German WMT14 for 10 iterations. Training time is given in minutes. The initial learning
rate is 0.05 for Skip-Gram models, and 0.1 for CBOW models. The other parameters are:
negative=10, win size=5, subsampling=1e-4, min count=5. The vocabu-

lary, of size 176k, covers 18 936 questions. The evaluation is lowercased.

Toolkit Method Training data Error rate (%) Time (s)

Word2vec
batch PV-DM

train + test (non-shuf) 7.2±2.6 720

train + test
11.6±0.1 429

MultiVec

11.8±0.1 473

online PV-DM
train 12.0±0.1 381 + 700

WMT14 20.4±0.3 614 + 701

bag-of-words
train 13.0±0.1 358

train + test 12.0±0.1 471
WMT14 19.9±0.2 601

TABLE 4.3: Results of the sentiment analysis task on the IMDb dataset (averaged over three
runs). The batch models were trained on the IMDb training and test data. The online models
were trained on either the IMDb training data or on the English side of the WMT14 English-
German parallel corpus (117M words). The settings are: PV-DM (CBOW) with 40 iterations,
15 negative samples, a dimension of 100, a window size of 5, a learning rate of 0.1 and a
subsampling rate of 10−4. The large WMT models are trained for 10 iterations only. The first
row of the table is obtained on non-shuffled data (with hierarchical softmax, and a window size

of 10), which makes it invalid (Mesnil et al. 2014).

question type, and balanced scores (average of all question type scores), we report unbalanced
scores, for easier comparison with other results in the literature.

Also, the scores highly depend on the size of the vocabulary. Questions that are out-of-vocabulary
are skipped (when any of the four words is absent from the vocabulary). Because we compute
the cosine similarity between the query and all words in the vocabulary, and get the word with
the highest score, smaller vocabularies have an advantage (it is more likely that we pick the
wrong word in a larger set of words). This makes comparison difficult between models that
were trained on different datasets.

Chapter 4 – Contributions: Neural Machine Translation 92

Sentiment Analysis We evaluate our implementation of paragraph vector on the sentiment
analysis task. The same experimental protocol as (Q. V. Le et al. 2014) is used.9 The IMDb
dataset contains 100 000 documents. 50 000 of those are labeled with a positive or negative
label, and 50 000 are unlabeled. The representations of 25 000 labeled documents are used as
training examples for a logistic regression classifier. The remaining 25 000 labeled documents
are used as test examples.

Table 4.3 reports the results of the different models. We compare the batch Paragraph Vector
implementation provided by Q. V. Le et al. (2014) with our batch and online implementations.
We also report results obtained by simply averaging word embeddings (bag-of-words). We
observe that the Paragraph Vector models are only slightly better than a simple bag-of-words.
Models that are out-of-domain (trained on WMT data only) are much worse, with an error rate
around 20%. The online version of Paragraph Vector is only slightly worse than the batch
version, even though it is trained on less data (75 000 documents against 100 000).

As Mesnil et al. (2014) remarked, the excellent results in the original paper are not reproducible.
The authors provided an implementation of their method, which obtains similarly good results
as reported in the paper, but only when applied on a non-shuffled dataset (examples are sorted
according to their label). The first row of Table 4.3 illustrates this. It seems like hierarchical
softmax is able to encode some sort of positional information in the embeddings, which the
classifier can make use of to cheat.

Crosslingual Document Classification To evaluate the quality of our bilingual word embed-
dings, we reproduce Klementiev et al. (2012)’s experiments on the crosslingual document clas-
sification task. This task consists in classifying documents in a language using a model that was
trained with documents from another language. Like Klementiev et al. (2012) and Luong et al.
(2015a), 1000 documents from the RCV corpus are used for training, and 5000 documents for
testing. Each document belongs to one of 4 categories.

Like Luong et al. (2015a), we train bilingual word embeddings on the English-German Europarl,
using the same settings. Document representations are then computed by doing a weighted
sum of word embeddings, according to pre-defined word frequencies (TF-IDF). A perceptron
classifier is then trained on the source-language documents and evaluated on target-language
documents.10

We compare bilingual models trained with Bivec and MultiVec. We also show results obtained
by computing document representations with online paragraph vector. To do so, we export the
previously trained bilingual model to source and target models, which are then used to compute
paragraph vector representations for source and target documents.

Table 4.4 shows similar results for both MultiVec and Bivec. Paragraph vector does no better
than the bag-of-words representation, but the results confirm that our approach for computing
bilingual paragraph vectors is sound.

9A training script and a modified version of Word2vec was provided by the authors on the Word2vec Google
group.

10The data splits and training scripts were provided by the authors.

Chapter 4 – Contributions: Neural Machine Translation 93

Dim Toolkit Method
Accuracy [%]

en→de de→en

40
Bivec

bag-of-words
86.1 74.4

MultiVec-Bi
88.1 75.3

online PV-DM 88.4 77.6

128
Bivec

bag-of-words
89.0 78.6

MultiVec-Bi
88.9 76.4

online PV-DM 88.2 79.1

TABLE 4.4: Results obtained within the framework of the CLDC task using the RCV corpus.
en→ de means that we train on English data and test on German data; de→ en is the reverse.
The settings are the same as those in (Luong et al. 2015a): skip-gram model, 30 negative

samples, 10 epochs.

4.2 Seq2seq

This section presents our framework for Neural Machine Translation. The framework is imple-
mented in Python on top of TensorFlow (Abadi et al. 2015), a symbolic math library, partic-
ularly useful for programming neural networks. Our code is mostly original, but reuses some
components of TensorFlow’s seq2seq example, and some scripts from other sources: like Moses
pre-processing scripts (Koehn 2010), or BPE extraction scripts from (Sennrich et al. 2016c).

We will start with a quick description of our framework, then we will give some implementation
details that we find interesting. And finally, we will give an example of model configuration,
and instructions on how to train and use models. The next section will give a few experimental
results that we obtained using this framework.

4.2.1 Description

Features Seq2seq implements encoder-decoder models for Neural Machine Translation, as
well as models for other tasks that we tackled (e.g., Automatic Speech Translation and Auto-
matic Post-Editing). Its features are, but are not restricted to:

• Encoder-decoder models with global attention (Bahdanau et al. 2015), local attention
model (Luong et al. 2015b). Support for multiple layers of LSTM or GRUs, bidirectional
encoders, and various decoder architecture (Sennrich et al. 2017).

• Beam search and ensemble decoding, also possibility to average the weights of several
models (Junczys-Dowmunt et al. 2016b).

• Multi-Source training with multiple encoders and multiple attention mechanisms (Zoph
et al. 2016a).

• Multi-Task training with models that share an encoder or a decoder (Luong et al. 2016).

• Pyramidal speech encoder (Chan et al. 2016) and convolutional speech encoder (Weiss
et al. 2017).

• Character-level encoder and decoder (Lee et al. 2016).

Chapter 4 – Contributions: Neural Machine Translation 94

The main program (seq2seq.sh) takes a YAML configuration file as first argument, which
defines the values of the model hyperparameters (training data, model destination, architecture,
model size, etc.) Then, the user specifies an action to take: train, decode, evaluate or align.
Training mode can resume training if the model directory already exists, or starts training from
scratch. When training a new model, a directory is created that contains all the information
necessary for using the model and replicating the experiment. Decoding mode takes an existing
model (it assumes a model already exists at the specified location), and translates the given
text corpus. Evaluation mode is similar, but it also evaluates the outputs against a reference
translation using automatic metrics (e.g., BLEU). Alignment mode uses the attention model to
plot an alignment between the input and the output sequence.

Architecture The translate/ directory contains the main source code of seq2seq. The
scripts/ directory contains scripts for tokenization, BPE segmentation, speech feature ex-
traction, vocabulary creation, training monitoring, etc.

We split the logic of seq2seq into several Python files. There is a main program that is responsi-
ble for parsing the command line arguments and the configuration files, and for calling high-level
routines depending on the user’s wishes (train, decode, evaluate). The TranslationModel
class defines the non-TensorFlow logic of a model. It holds the training and evaluation data,
and defines high-level methods for training, decoding, evaluating, saving or loading a model.
MultiTaskModel can have several instance of the former and follows the same public inter-
face. Its train method picks a random model at each training step and does an update on the
corresponding model. Another file (models.py) contains the functions for creating Tensor-
Flow graph blocks (e.g., encoder, decoder, training loss, etc.) The Seq2SeqModel class is the
bridge between TranslationModel and the TensorFlow graph. It is responsible for creating
the graph, and it defines methods for getting the next batch, doing an SGD update, or decoding a
batch. It is important to know that a static TensorFlow graph is first created by the constructors
of TranslationModel and Seq2SeqModel. Then, it is initialized, either at random or by
loading an existing checkpoint. Only then training or decoding can proceed by sending data into
the graph.

Appendix A.2.1 gives a description of the TensorFlow features that are useful to understanding
our code. We also give a more detailed overview of the architecture of the project and of the
structure of the TensorFlow graph (in Appendix A.2.2).

Hyperparameters are passed around from the main program up to the functions responsible for
creating the graph parts, using special dictionaries whose elements can be accessed as attributes
(e.g., config.cell size). The configuration file can define one or several encoders, and a
decoder. Each of these can redefine their own value for each hyperparameter (e.g., cell size).
Encoders and decoders are identified by a name attribute, which is used to name the model vari-
ables and defines the extension for the training files. For instance, if the encoder is named “en”,
then seq2seq will look for train.en, dev.en and vocab.en, and the encoder’s embedding
matrix will be named embedding en. If a hyperparameter is not redefined in the experiment’s
config file, seq2seq looks for its default value inside config/default.yaml. Some hy-
perparameter can be modified thanks to command-line options (e.g., batch size and beam size),
which have the highest precedence.

Reproducibility is made easier by our framework. It logs a lot of information during training,
like timestamps, configuration, graph variables (names and dimension), and the results of a
periodic evaluation on the dev set. The log file of a given experiment already tells a lot about
the model, which may facilitate its replication. When training a model, seq2seq also saves the

Chapter 4 – Contributions: Neural Machine Translation 95

configuration files of the experiment in the model directory, as well as the vocabulary files. It
also makes an archive of the current version of the source code and saves it in the target directory.

4.2.2 Implementation Details

We now describe a few of the capabilities of seq2seq and give implementation details that we
find interesting.

Padding For efficient training and decoding on GPUs, multiple sentences are grouped in a
batch. Each of their symbols are first mapped to an integer id that corresponds to an index in the
vocabulary. We group sentences of similar length together to improve training speed (Bahdanau
et al. 2015). Because a batch is represented as a tensor, all sequences in a batch must have
the same length. For this reason, we pad shorter sentences with dummy symbols. Then, in
the TensorFlow graph, we use masks (tensors of zeros and ones) to inform the model about
the true sequence length. For instance, we do not want the attention model to look at dummy
hidden states (that are beyond the actual length of the input sequence). We also do not want
the cross-entropy training loss to take dummy outputs (after the end-of-sentence marker) into
account.

Attention decoder Contrary to most early implementations on TensorFlow, our attention de-
coder is dynamic. This means that the sequence length does not need to be defined at the
graph creation, but can have a different value for each new batch (the length of the longest
sequence in the batch). The graph is dynamically unrolled to the correct length thanks to the
tf.while loop function. This is much faster than having a single static graph with a large
sequence length, and more convenient than having different static graphs for different sequence
lengths (“bucketing” approach).

Pre-training trick Pre-training a model on some dataset and then finetuning on an another
dataset is made easy by our framework. The user only has to change the path to the training files
in the configuration file, and then resume training. We would recommend however to change the
model’s target directory, and load the pre-trained model(s) with the --checkpoints option.

It is also possible to do partial variable sharing. For instance, we may want to train a French-
to-English machine translation model with large amounts of data. And then use this model to
initialize a German-to-English machine translation model, which we train with smaller amounts
of data. Pre-training can help converging faster, acts as an implicit regularizer, and sometimes
converges to a better solution. In this case, only the decoder is shared between the two models.
To run this scenario, the user only has to create two configuration files, which share the same
decoder configuration (same name and same settings). When the first model has finished train-
ing, the user can initialize the second model with the first model using the --checkpoints
option. Only the variables that share the same name will be loaded, and the other variables will
be initialized at random. A model can be pre-trained with several models by providing several
arguments to the --checkpoints option (e.g., one that shares the same encoder and one that
shares the same decoder).

The implementation of this feature is actually straightforward. We named the graph variables
carefully (using tf.variable scope), to include the name of the encoder or the decoder to

Chapter 4 – Contributions: Neural Machine Translation 96

which they belong to. This way, when loading a checkpoint from a model that had an encoder
with the same name as the current model’s encoder, the encoder variables are initialized with its
values.

When finetuning, the user can choose to freeze some parameters (e.g., the embeddings). This
can help to avoid overfitting when finetuning on a small dataset.
This is possible with a freeze variables list in the configuration file. Any variable whose
name appears in this list will not be updated by SGD.

Multi-task training We use the same variable naming strategy for multi-task training, com-
bined with TensorFlow’s variable ‘reuse’ capability. In TensorFlow, when trying to create a
variable that already exists in the graph (which has the same name), we can seamlessly use the
previous variable.

When several tasks are specified in the configuration file (see Appendix A.2.2 for examples),
seq2seq creates one instance of TranslationModel for each task. Each task creates its own
bricks in the graph (encoder, decoder, attention, loss, etc.) Thanks to automatic reuse, variables
that were already created by a previous model are reused and automatically shared across tasks.

Multi-task training is then done by alternating updates between tasks (Luong et al. 2016).
The train method of MultiTaskModel repetitively picks a random model, and calls its
train step method.

Beam search decoder Our beam search decoder is a modified version of a third-party imple-
mentation.11 The advantage of this implementation is that it runs entirely in the TensorFlow
graph, and that it can decode entire batches at once. However it is quite minimalist, and we
added some features.

The running hypotheses are stored in a tensor of shape [batch size, beam size,
current step] that contain sequences of token ids. Because the decoder’s state is condi-
tioned on its past outputs, each hypothesis has a different decoder state. The current decoder
states are stored in a tensor of shape [batch size, beam size, state size]. Simi-
larly, we store the current score (sum of log probabilities of all tokens) of each hypothesis, and
a mask that keeps track of finished hypotheses (containing an EOS token).

state = tf.tile(tf.expand_dims(initial_state, axis=1), [1, beam_size, 1])

scores = tf.log([[1.] + [0.] * (beam_size - 1)])
scores = tf.tile(scores, [batch_size, 1])

ids = tf.tile([[utils.BOS_ID]], [batch_size, beam_size])
hypotheses = tf.expand_dims(ids, axis=2) # current beam
mask = tf.ones([batch_size, beam_size], dtype=tf.float32)

for i in range(max_len):
ids = tf.reshape(ids, [batch_size * beam_size])
state = tf.reshape(state, [batch_size * beam_size, state_size])

state, logits = time_step_fun(state, ids, i)

state = tf.reshape(state, [batch_size, beam_size, state_size])

11https://github.com/vahidk/EffectiveTensorflow

https://github.com/vahidk/EffectiveTensorflow

Chapter 4 – Contributions: Neural Machine Translation 97

logits = tf.reshape(logits, [batch_size, beam_size, vocab_size])
token_scores = log_softmax(logits, axis=2)

mask1 = tf.expand_dims(mask, axis=2)
mask2 = tf.one_hot(indices=[[utils.EOS_ID]], depth=vocab_size)
token_scores = token_scores * mask1 + (1 - mask1) * (1 - mask2) * -1e30

scores = tf.expand_dims(scores, axis=2) + token_scores
scores = tf.reshape(scores, [batch_size, vocab_size * beam_size])

returns tensors of shape [batch_size, beam_size]
scores, indices = tf.nn.top_k(scores, k=beam_size)

token id and beam id of each selected hypothesis
beam_ids = indices // num_classes
token_ids = indices % num_classes

state = batch_gather(state, beam_ids)
hypotheses = batch_gather(hypotheses, beam_ids)
mask = batch_gather(mask, beam_ids)

hypotheses = tf.concat([hypotheses, tf.expand_dims(token_ids, axis=2)],
axis=2)

mask *= tf.to_float(tf.not_equal(token_ids, utils.EOS_ID))

hypotheses = hypotheses[:, :, 1:] # remove BOS symbol

In this version, the graph is statically unrolled (python for-loop). At each time step, the state
and ids tensors are reshaped before being passed to the decoder’s time step function. The trick
here is to treat all running hypotheses as elements in a batch. The decoder returns a new state and
a logits tensor, which contains scores for each possible expansion of each hypothesis in the
beam. We compute log softmax scores for these logits, and add them to their respective hypoth-
esis scores. We get a set of beam size × vocab size candidates. Then, we use tf.nn.top k
to get the indices (and values) of the ‘beam size’ best scores. These will constitute a new set
of hypotheses. These indices have a shape of [batch size, beam size] and range from
0 to (vocab size × beam size − 1). They can be decomposed into a beam id (the index in the
beam of the hypothesis that was expanded), and a token id (the index of the new token in the
vocabulary). Then we select the decoder states, mask and hypotheses that correspond to these
beam ids. Finally, we append the new token ids to the current hypotheses, and update the mask
to account for potentially newly finished hypotheses.

Compared to this implementation, we add several features:

• Instead of a static loop, we use a dynamic tf.while loop. This is much faster to
compile, and we can set the maximum length dynamically (e.g., depending on the input
length). If all the hypotheses in the current beam are finished (i.e., they all contain an EOS
token), we stop decoding early (thanks to the dynamic stopping condition of the while
loop). This makes decoding much faster, in particular in an online setting where the batch
size is 1.

• A huge problem with the default implementation is that it continues expanding the fin-
ished hypotheses. This can be a problem if a finished hypothesis has a very good score. It
can expand into several identical hypotheses with good scores preventing more interesting
hypotheses to expand. At the end, we potentially get a set of short identical hypotheses
(except for the symbols after the first EOS). To solve this problem, we force the decoder to

Chapter 4 – Contributions: Neural Machine Translation 98

expand the already finished hypotheses with EOS symbols only (by adding a large score
penalty to the other expansions). This way, a finished hypothesis cannot be duplicated.
Furthermore, these extra symbols are not taken into account into the total score of a hy-
pothesis. This makes it impossible for finished hypotheses to be removed from the beam
(which is equivalent to reducing the beam size by one each time a new finished hypothesis
is selected).

• Length normalization: after the while loop, we rescore the translation hypotheses by di-
viding the log scores by hypothesis length (power some tunable weight). This gives more
chance to longer hypotheses.

• Ensemble decoding: we call the time step function for each model in the ensemble, and
average their log probabilities. We also store the decoder states of all models in the en-
semble for the next time step.

Ensemble For ensemble decoding, we create an instance of Seq2SeqModel for each model
in the ensemble, under a different variable scope. This means that all variables in a model will
have a special prefix in their name (e.g., model 1/), which differentiates them from equivalent
variables in other models from the ensemble. Then, the variables are initialized by loading the
checkpoints (one checkpoint for each model in the ensemble) and mapping their variable names
to the new names (with a prefix). The advantage of this implementation is that it is easy to
combine the outputs of several models in a single graph operation, and decoding can run entirely
on the GPU. This is also straightforward to integrate into our TensorFlow implementation of
beam search.

Generate, update and look In attention-based sequence to sequence models, it is unclear
in which order the generate, update and look operations should be run. The update operation
takes the previous state, the last computed context and the previous symbol and outputs a new
state. The look operation uses the current state to create a new context vector. And the generate
operation takes the current state, the current context and the previous symbol and outputs a new
symbol.

The two main approaches are: look then update then generate (Bahdanau et al. 2015; Jean et al.
2015a), or look then generate then update (Jean et al. 2015b). The latter one, though slightly
more complex to implement makes a bit more sense in our opinion.

Both approaches have limitations. In the first one, because the next symbol is generated last, the
state that is used to compute the next attention context is not up to date with this symbol. In the
second one, the state that is used for generating the next symbol has not been updated with the
latest context vector. Our general observation is that the second approach of generating a new
symbol before updating the state performs better. Jean et al. 2015b do the same observation.

A solution that we find elegant is the conditional GRU by Sennrich et al. (2017). It uses two
GRU cells whose states are intertwined. The first state is updated with the latest symbol, then
this state is used to compute a new context vector, which is used to update the second state, and
finally this state and the up-to-date context vector are used to generate a new symbol. This can be
understood as doing: update, look, update again and then generate. Our framework implements
these three approaches, which can be controlled thanks to parameters in the configuration files.

Chapter 4 – Contributions: Neural Machine Translation 99

4.2.3 Use Example

We now give a basic example on how to use seq2seq. More examples and configuration files
are available on the project’s web page.12 The first step is to download the training data and to
pre-process it. The next step is to train a model with seq2seq (on a GPU). Once a model has
finished training, it can be used for translating new examples.

How to use seq2seq Use scripts/prepare-data.py to pre-process the data into tok-
enized train, dev and test corpora, with optional lowercasing, length filtering, punctuation nor-
malization, and byte-pair encoding. The script also creates vocabulary files that are necessary
for mapping tokens (words, characters or subword units) to token ids and conversely. Once this
data is pre-processed, a configuration file for the experiment needs to be created. The main pa-
rameters are the names of the encoder and decoder, the max sequence length, the data and model
directories, the training algorithm, learning rate, batch size and saving/evaluation frequency.

Then, start training with ./seq2seq.sh config file --train -v, preferably on a
machine with a GPU, and inside a screen session, so as to be able to go back to the process
even after leaving the parent terminal. GPU usage can be monitored thanks to the nvidia-smi
command. Training progression can be observed on the standard output, or into a log file inside
the model directory.
Special scripts are useful to monitor training performance: get-best-score.py parses the
log file and looks for the best score according to given metric. plot-loss.py can take several
log files as parameter and plot their training loss, dev loss or other metrics like BLEU according
to training steps. With the --text or --auto flags, it shows a table in text mode, which
allows monitoring and model comparison even without a display server (e.g., over SSH).

Training won’t stop on its own, unless a maximum number of steps or epochs have been con-
figured. With large experiments, it can be more convenient to let the experiment run for an
indefinite period of time, and then to manually interrupt training when the performance does not
seem to improve anymore or starts getting worse. Seq2seq evaluates the model periodically on
the dev set according to user-defined metrics (e.g., BLEU), and saves checkpoints (snapshot of
the model variables at a given time) when it achieves the best performance.13

Once training is complete, the model can be used for decoding or evaluated on a test set, thanks
to the --decode or --evaluate options. By default, these options will select the best
checkpoint according to chosen evaluation metric. Several model instances can also be trained,
and combined at decoding time with the --ensemble flag and the --checkpoints option.

BTEC example Here is an example of configuration on BTEC (Basic Travel Expression Cor-
pus), which achieves very good results:

label: 'BTEC baseline'

cell_size: 256
attn_size: 256
embedding_size: 128

12https://github.com/eske/seq2seq
13By default, it keeps the latest checkpoint (so that we can resume training if interrupted), and 4 checkpoints that

correspond to the 4 best scores to date.

https://github.com/eske/seq2seq

Chapter 4 – Contributions: Neural Machine Translation 100

bidir: True # bididirectional encoder
cell_type: GRU # GRU or LSTM
weight_scale: 0.1 # normal init with stddev=0.1

data_dir: data/BTEC
model_dir: models/BTEC
batch_size: 32

optimizer: adam # training algorithm
learning_rate: 0.001

steps_per_checkpoint: 2000 # saving freq (number of batches)
steps_per_eval: 2000 # dev set evaluation frequency

batch_mode: standard # epoch shuffle + sort batches
read_ahead: 10 # number of batches to sort
max_len: 25 # max number of input and output words
max_steps: 30000 # stop after this many SGD steps

encoders:
- name: fr # source files extension

decoders:
- name: en # target files extension
conditional_rnn: True # conditional GRU
pred_deep_layer: True # dense layer before vocab proj

use_dropout: True # use dropout when training
rnn_input_dropout: 0.2
word_dropout: 0.2 # drop src and trg words at random

The read ahead parameter reads this many batches ahead of time, sorts the sequences by
target length and regroups sequences of similar length in the same batches. The advantage
of this approach is that this reduces the amount of padding that is needed. Training speed is
increased, because the average max length in a batch is smaller.

We pre-process the (already tokenized) BTEC data, by lowercasing and producing a word-based
vocabulary with no size limit:

scripts/prepare-data.py raw_data/BTEC/train fr en data/BTEC \
--no-tokenize --vocab-size 0 --lowercase \
--dev-corpus raw_data/BTEC/dev \
--test-corpus raw_data/BTEC/test

To train a model with this configuration, the user only has to run this command (preferably in a
screen so that she can keep interacting with it):

./seq2seq.sh config/BTEC.yaml --train -v

Chapter 4 – Contributions: Neural Machine Translation 101

This creates a models/BTEC directory, and starts logging training information on the stan-
dard output and in models/BTEC/log.txt. Training will automatically stop after 30 000
SGD steps, but the user can also manually stop the process if she’s satisfied with the model’s
performance on the dev set. After 10 000 steps (about 17 full epochs and 20 minutes of training
on a small GTX 750 Ti GPU), the dev BLEU score is 49.3. After this point the model starts
overfitting: the training loss continues decreasing while the dev loss starts increasing.14

Then, to decode the test set (using the best checkpoint so far), the user can run the following
command. This prints the translation hypothesis on the standard output.

./seq2seq.sh config/BTEC.yaml --decode data/BTEC/test.fr \
--beam-size 8

Or to evaluate directly, and store the results of decoding inside test.mt:

./seq2seq.sh config/BTEC.yaml \
--evaluate data/BTEC/test.{fr,en} \
--beam-size 8 --output models/BTEC/test.mt

4.3 MT Experiments

This section presents experimental results (replicated or original) that we obtained on Neural
Machine Translation with our framework. We worked on two different tasks: English-to-French
translation of news with the large WMT14 corpus, and German-to-English translation of subti-
tles with the smaller IWSLT14 corpus.

4.3.1 News Translation (WMT14)

The WMT 2014 (Workshop on Machine Translation) English-to-French translation task is a
popular benchmark in the Neural Machine Translation literature (Bahdanau et al. 2015; Cho
et al. 2014b; Gehring et al. 2017b; Jean et al. 2015a; Johnson et al. 2016; Shazeer et al. 2017;
Sutskever et al. 2014; Vaswani et al. 2017; Wu et al. 2016; Zhou et al. 2016).

The full training data contains 36M sentence pairs, with approximately 2B words for language
modeling. However, most of this data was automatically crawled from the web and is quite noisy.
Cho et al. (2014b) use a data selection technique (Axelrod et al. 2011) to select a subset of 12M
parallel sentences (348M French words) and 418M French words for language modeling. The
advantage of this training set is that it is smaller and cleaner, thus easier to train with. The first
results on NMT were obtained with this training set. However, the best results to date on this
task are obtained with the full 36M corpus (Gehring et al. 2017b; Shazeer et al. 2017; Vaswani
et al. 2017).

The development set is a concatenation of the newstest2012 and newstest2013 datasets,
and the test set is newstest2014. Table 4.5 shows data statistics about the filtered corpus.
The evaluation is performed with tokenized BLEU, i.e., the target of the evaluation is the target

14The best BLEU score we have managed so far on BTEC dev with greedy decoding is 53.2 (with a different
model).

Chapter 4 – Contributions: Neural Machine Translation 102

Corpus Total Lines
English French

Words Average Words Average
Train 12.1M 304M 25.2 348M 28.8
Dev 6003 138k 23.0 155k 25.9
Test 3003 71k 23.7 81k 27.0

TABLE 4.5: WMT14 English-French corpus statistics.

side of the test corpus tokenized at the word-level by Moses’ tokenizer.perl script.15 The
evaluation is case sensitive, which means that a word starting with a lowercase letter, and the
same word starting with a capital letter are not considered identical.

We replicate pioneer work from Bahdanau et al. (2015) and Jean et al. (2015a), and also try other
techniques like Byte Pair Encoding (Sennrich et al. 2016c) and conditional GRU (Sennrich et al.
2017). The goal of this set of experiments is to validate our implementation and to show the
reproducibility of the aforementioned results. We also wish to perform a more in-depth analysis
of these results, in particular by looking at the training progression and the outputs of the models.
However, training on this dataset is very expensive (about a week on a high-end GPU with the
models we tried). Because of resource and time limitations, we are not able to present more
results. We go more in depth in the next subsection with a smaller dataset.

Models We implement and train an exact copy of Bahdanau et al. (2015)’s RNNsearch model.16

We also apply the same technique as Jean et al. (2015a) to replace the output UNK tokens.

We use a bidirectional encoder with GRU cells of size n and source embeddings of size m. This
results in a sequence of hidden states h1, . . . , hT ∈ R2n. The last backward encoder state is used
as initial state for the decoder, after a non-linear transformation: s0 = tanh(Winit

~h1 + binit)
where Winit ∈ Rn×n and binit ∈ Rn.

ct =
T∑
i

αtihi αti =
erti∑T
k=1 e

rtk
rti = v>atttanh(Watt(hi ⊕ st−1) + batt) (4.1)

st = GRU(st−1, E
′(z̃t−1)⊕ ct) (4.2)

x′t = st ⊕ E′(z̃t−1)⊕ ct (4.3)

yt = Wvoc ·max(W1x
′
t + b1,W2x

′
t + b2) + bvoc (4.4)

where ⊕ does a vector concatenation. Watt ∈ Rk×3n, vatt ∈ Rk and batt ∈ Rk are the pa-
rameters of the attention model. E′ ∈ R|V ′|×m is the target embedding matrix. W1,W2 ∈
R
n
2
×(3n+m) and b1, b2 ∈ R

n
2 are the parameters of the maxout layer. max does an element-wise

maximum between its two arguments.17 Wvoc ∈ R|V ′|×
n
2 and bout ∈ R|V ′| do a linear projection

of the output of the maxout layer to vocabulary size |V ′|. yt is a vector containing unnormalized

15Actually, all the data is already tokenized, and distributed on: http://www-lium.univ-lemans.fr/
˜schwenk/nnmt-shared-task/. For BLEU evaluation, the standard multi-bleu.perl is used (Koehn
2010).

16Official implementations, which use Theano, are available here: https://github.com/
lisa-groundhog/GroundHog and here: https://github.com/mila-udem/blocks-examples

17This is a convenient way of implementing maxout, which takes the maximum of every two consecutive values
in a vector.

http://www-lium.univ-lemans.fr/~schwenk/nnmt-shared-task/
http://www-lium.univ-lemans.fr/~schwenk/nnmt-shared-task/
https://github.com/lisa-groundhog/GroundHog
https://github.com/lisa-groundhog/GroundHog
https://github.com/mila-udem/blocks-examples

Chapter 4 – Contributions: Neural Machine Translation 103

scores for each item in the vocabulary. The decoder can output a new symbol by taking the
argmax of this vector (greedy decoding), or compute a probability distribution over the entire
vocabulary using a softmax layer. z̃t−1 is either the previously generated token (at decoding
time), or the previous target token (teacher forcing). We optimize a cross-entropy loss between
the softmax output and the target translations. The loss is normalized by batch size, but not by
the number of time steps.

Like Bahdanau et al. (2015), we use a cell size of n = 1000, an embedding size ofm = 620 and
an attention size of k = 1000. We initialize all (non-bias) parameters with a centered normal
distribution with σ = 0.01, except for recurrent weight matrices (inside the GRUs), which are
initialized to random orthogonal matrices.

We use AdaDelta with a learning rate of 1.0 and a batch size of 80. We manually stop training
when performance on the dev set does not seem to be improving anymore. We cycle through
the entire training set, by reading the next 1600 sentence pairs, sorting them by target length,
grouping them into 20 batches, and iterating randomly through this set of batches. This limits
the amount of padding and reduces the average sentence length.

We also use gradient clipping with a maximum global norm of 1.0. We do not use any dropout
as the training set seems large enough not to overfit.18 We save and evaluate our model (with a
greedy decoder) every 10 000 SGD steps, and keep the checkpoint with highest BLEU score on
the dev set for final evaluation on the test set.

We use vocabulary shortlists with the 30k most frequent source and target words, and replace
out-of-vocabulary words with a special UNK token. We set the maximum length to 50 words for
source and target sequences. Longer sequences are truncated. We add an extra EOS token to
each source and target sequence and pad the sequences to fit the maximum length in the batch
with extra EOS symbols.19 Source sequence reversing (Sutskever et al. 2014) is unnecessary
because of the bidirectional encoder and the attention model.

This baseline model (called “AdaDelta” in the tables) is identical to Bahdanau et al. (2015)’s
RNNsearch model. We also train variants (with a different decoder or training algorithm) that
are described later.

UNK replacement Following Jean et al. (2015a), we extract a bilingual dictionary using
fast align (Dyer et al. 2013), and use this dictionary at decoding time to replace unknown
words. Each time an UNK token is generated, we use the attention mechanism to get the source
symbol with the largest weight:

i = arg max
i∈{1,...,T}

αti (4.5)

align(z̃t) = xi (4.6)

Like Jean et al. (2015a), if xi starts with a lowercase letter, then we look for a translation in
the bilingual dictionary, and substitute the UNK token by this translation. If no translation is
available, or the word does not start with a lowercase letter (more likely to be a proper noun or
number), then we replace with the source word xi itself.

18In all our experiments we do 3 full epochs at most, which seems hardly enough to overfit.
19We use a mask of zeros and ones in the attention model to avoid looking at the padding tokens (the attention

model can look at the first EOS but not beyond). Similarly, the training loss does not take into account the tokens
generated after the first EOS.

Chapter 4 – Contributions: Neural Machine Translation 104

Jean et al. (2015a) do not detail how they obtain this bilingual dictionary. We use fast align
with the default settings to get alignments in both directions for the WMT14 training data.
Then we symmetrize the alignments using atools with the grow-diag-final-and sym-
metrization heuristic (Koehn 2010). Then we simply build an English-to-French dictionary by
using a simple procedure: for each English word, we get the French word which is most often
aligned to this English word.

Modifications We also train a variant of RNNsearch that uses Adam (Kingma et al. 2015)
instead of AdaDelta (Zeiler 2012) for optimization. This algorithm achieves considerably better
convergence speed (at least with RNNsearch). We start with a learning rate of 0.0002 (the
standard value of 0.001 is too high) and halve it every half epoch. In the table of results, this
approach is called “Adam”.

We also use the conditional GRU from Sennrich et al. (2017) and use a dense non-linear layer of
size 620 instead of the maxout layer from (Bahdanau et al. 2015). Also, instead of using the last
backward state for decoder initialization, we average all encoder hidden states. Finally, instead
of being initialized to zero, the first states of the encoder are trained parameters. We call this
approach “Adam + CGRU”.

Finally, we train the same model but with subword units instead of words. For this purpose,
we train a joint Byte-Pair Encoding model (Sennrich et al. 2016c) on a concatenation of source
and target training data, with 30 000 merge operations. We transform all the data (train, dev,
and test) into subword units using this joint BPE model. We use the same source and target
vocabulary (with approximately 35k BPE units) and share the embeddings matrix between the
encoder and decoder (E = E′). We call this model “Adam + CGRU + BPE”. We merge these
subword units before performing BLEU evaluation against the (word-based) target side of the
dev set. Compared to the word-based model which generates sequences of up to 50 words, we
increase the limit to 60 BPE units. We found that this was necessary for the model to be able to
generate long sequences, as the BPE sequences are 15% longer on average.

Finally, similarly to Jean et al. (2015a), we take our best checkpoint (of “Adam + CGRU + BPE”),
and continue training with pure SGD (without Adam), while keeping the embeddings fixed. We
start with a learning rate of 1.0 that we decay by half every quarter epoch. We stop training
when the dev loss does not seem to be improving. We call this model “SGD finetuning”.

Results Table 4.6 shows our results, along with comparable models from the literature and
SMT baselines. Finally, we also show for comparison the best results to date on this task (with
single models).

We observe that our baseline copy of RNNsearch achieves the same results as those presented
in the original paper (Bahdanau et al. 2015). However, it lags a little bit behind Jean et al.
(2015a)’s version of this model. We see that our versions of RNNsearch that uses Adam for
training achieve comparable results. Using subword units instead of words (Adam + CGRU
+ BPE) achieves a large boost in translation quality, even better than RNNsearch with UNK
replacement. This model is about as good as the large-vocabulary model of Jean et al. (2015a),
and much better than a baseline SMT model with comparable amounts of training data (Cho
et al. 2014b).

When using an ensemble of large-vocabulary models (several instances of the same model
whose predictions are averaged), along with their UNK replacement technique, Jean et al. (2015a)

Chapter 4 – Contributions: Neural Machine Translation 105

Model Data Vocab Test BLEU +UNK
SMT

Baseline Moses (Cho et al. 2014b) 12M + LM All 33.3
SMT SOTA (Durrani et al. 2014) 36M + LM All 37.0

RNNsearch
Bahdanau et al. (2015)

12M
30k

28.5
Jean et al. (2015a) 30.0 33.1
Large Vocab (Jean et al. 2015a) 500k 32.7 34.6
AdaDelta (default)

12M
30k

29.2 31.1
Adam 29.9 31.9
Adam + CGRU 30.6 32.8
Adam + CGRU + BPE

35k (BPE)
34.7

SGD finetuning 34.8
State-of-the-Art

Deep-Att (Zhou et al. 2016)
12M 30k 35.9

36M

80k
37.7

GNMT (Wu et al. 2016)
37.9

32k (WPM)
39.0

Transformer (Vaswani et al. 2017) 41.0
ConvS2S (Gehring et al. 2017a) 40k (BPE) 40.5

TABLE 4.6: Results of different MT models on the WMT14 English-to-French translation task
(test set). The 12M training set (which we use) is a filtered version of the larger 36M train-
ing set. The table shows three categories of approaches (from top to bottom), SMT models,
attention-based models, and larger state-of-the art models. The test BLEU scores are obtained
with a beam search decoder. The last column shows the test BLEU score obtained when apply-
ing the unknown-word replacement technique. Only attention-based word-based methods are
eligible. The Vocab column shows the size of the target vocabulary size. WPM corresponds to
a Word Piece Model (Wu et al. 2016), and BPE to Byte Pair Encoding (Sennrich et al. 2016c),
two kinds of subword techniques. Cho et al. 2014b and Durrani et al. 2014 used language
models estimated respectively on 16M lines (418M French words), and 3B lines (49B French

words).

obtain a BLEU score of 37.2. A similar model model by Luong et al. (2015c) obtains 36.9 on
the 12M training set, and 37.5 on the full 36M training set.20 This is comparable to the best
SMT results to date on this task (Durrani et al. 2014), obtained with the full 36M training set
and the enormous Common Crawl corpus for language modeling (49B words).

Since then, much larger models have been developed that take advantage of the full training
set, and achieve a huge boost in translation quality (Gehring et al. 2017b; Shazeer et al. 2017;
Vaswani et al. 2017; Wu et al. 2016; Zhou et al. 2016). However, these models require orders of
magnitude more computation power to train.

Table 4.6 shows results obtained with single models only (not ensembles). GNMT achieves a
score of 41.2 when used in an ensemble of 8 models (+ Reinforcement Learning finetuning), and
ConvS2S obtains 41.6 with an ensemble of 10 models. This is, to the best of our knowledge,

20This model uses a deep encoder and decoder with LSTMs, but no attention model. It also uses an unknown-word
replacement technique.

Chapter 4 – Contributions: Neural Machine Translation 106

1 2 3 4 5 6 7 8 9 10 11 12
28.8

29

29.2

29.4

29.6

29.8

30

Beam size

D
ev

B
L
E
U

η: 1.0
η: 0.8
η: 0.4
η: 0.0

FIGURE 4.1: BLEU score of the “Adam + CGRU + BPE” model on WMT14 dev set depending
on beam size, and length normalization coefficient (η). It is important to note that the y-axis
does not start at 0, but at 28.8, which is the BLEU score obtained with greedy decoding (i.e., a

beam size of 1).

the best score to date on this task. However, a single GNMT model takes 6 days to train on 96
NVIDIA K80 GPUs, and a single ConvS2S model takes 37 days to train on 8 GPUs.21

A model that shows great promise is the Transformer (Vaswani et al. 2017). It obtains a single
model score of 41.0, very close to the ensemble performance of the best models to date. Even
more interestingly, a large Transformer takes 3.5 days to train on 8 NVIDIA P100 GPUs, an
order of magnitude less than GNMT or ConvS2S.

An interesting thing to note from the table is that using subword units (BPE or WPM) brings a
consistent improvement over word-based translation, even with UNK replacement techniques.
Also, using the larger 36M corpus seems to improve the results, both in NMT (Zhou et al. 2016)
and SMT (Durrani et al. 2014). However, as the corpus is noisier, this may require larger models
and longer training to take advantage of (and as a consequence, more computation power). When
training RNNsearch with Adam, we do approximately 3 full epochs on the 12M training set.
This would correspond to a single epoch on the noisier 36M training set.

All results in Table 4.6 use beam search decoding, with a varying beam size.22 Our own results
are obtained with a beam size of 8. Our beam search decoder reduces its beam size by one each
time it finds a new finished hypothesis (with an EOS token), resulting in exactly 8 candidates at
the end of decoding. We normalize the 8 final scores by hypothesis length (number of tokens),
and rerank the hypotheses. This corresponds to a length penalty (η) of 1.0. The scoring formula
is: score(w1, . . . , wT) =

∑
log p(wt)
T η , where T is the number of tokens up to (including) the first

EOS token.

Figure 4.1 shows the BLEU scores of our best model (“Adam + CGRU + BPE”) on the dev
set, depending on the beam size and length penalty η used during decoding. We see that, while

21This is highly above our resources. As a measure of comparison, our Adam+CGRU+BPE model took 4 days to
train on a single NVIDIA Titan X.

22Jean et al. (2015a) use a beam size of 12 with length normalization. Wu et al. (2016) use a more sophisticated
beam search decoder with tuned coverage penalty, length penalty and early pruning. Vaswani et al. (2017) and Zhou
et al. (2016) use smaller beam sizes of 5 and 3 respectively.

Chapter 4 – Contributions: Neural Machine Translation 107

BLEU scores are not very sensitive to beam size, length normalization is important. An expla-
nation is that the unnormalized score of a hypothesis is the product of the probabilities (or sum
of log probabilities) of each of its words. This strongly disadvantages longer hypotheses, which
results in unnaturally short translations (compared to greedy decoding), which are penalized by
BLEU’s brevity penalty.

The best scores are obtained with a length penalty of 1.0, and a beam size between 6 and 12.
When using no length normalization (η = 0.0), BLEU scores tend to decrease with larger beam
sizes. When measuring the brevity penalty of BLEU (which penalizes shorter translations), we
observe indeed that the η = 1 curve has the same length ratio of 0.96 all through. On the other
hand, the η = 0 (unnormalized) curve’s length ratio drops from 0.96 to 0.93, which explains the
drop in BLEU scores.

The base length ratio of 0.96 can be explained by the fact that the model is trained to output
sequences with a maximum length of 60 subword units. It does not know how to produce longer
sequences. We evaluated the performance of the same model (beam size of 8, η = 1) on the dev
set with sequences of 60 tokens at most (5607 sentences pairs out of 6003 for the real dev set).
The BLEU score is then 30.6 (vs. 29.9), and the length ratio is 0.993, very close to 1. We see
that with the proper length normalization scheme, the beam search decoder is able to produce
sequences of the right length.

Analysis Figure 4.2 shows the evolution of dev BLEU score and training loss during training
for four models: the baseline RNNsearch model trained with AdaDelta or Adam, our modified
model that uses a conditional GRU, and our BPE model. The training loss of the BPE model
is not directly comparable to the other two, as the sequences are longer on average. We see
that the model trained with Adam converges much faster than AdaDelta, and to a better BLEU
score. Using a conditional GRU for the decoder (CGRU) slightly increases the model’s perfor-
mance. We observe similar performance as the CGRU decoder when using a single GRU with a
“generate first” strategy and a maxout layer (not shown here).

Figure 4.3 shows the test BLEU score (with beam search) of these three models, depending
on target sequence length. We see that their BLEU scores quickly degrade when the sequence
length exceeds 50 words. This is due to the fact that they are trained with a maximum source
and output length of 50 words (60 subwords for the “Adam + CGRU + BPE” model), and do not
know how to generate longer sequences (even when increasing the maximum output length at
decoding time). The decrease in BLEU scores is due to the brevity penalty component of BLEU
that penalizes shorter hypotheses. We see that the models are robust to long sequences, provided
that they were trained with examples of long sequences.

Figure 4.4 shows examples of alignments by the “Adam + CGRU” and “Adam + CGRU + BPE”
models. Even though the attention model is trained in an unsupervised manner (the only su-
pervision is the target sequence, we do not have a ground truth alignment), it is able to learn a
sensible soft-alignment between the source and the output. It is able to capture simple word re-
ordering, like closed factory with usine fermée, and to align phrases, like be back
with être de retour, or said with a dit que. When the decoder produces an UNK to-
ken, it seems like the attention model is able to align it with the correct symbol in the input.

It is interesting to note that to produce the ons suffix to imaginons, the attention model
looks at the ’s symbol following let, which is the contraction of us (the subject of the
verb). On the other hand, to output montrent, the model does not have to look at the cor-
responding stats subject. A possible explanation for this is that the decoder has already

Chapter 4 – Contributions: Neural Machine Translation 108

0 50000 100000 150000 200000 250000 300000 350000
steps

0

5

10

15

20

25

30

De
v

BL
EU

50

60

70

80

90

100

110

De
v

Lo
ss

Adam + CGRU + BPE
Adam + CGRU
Adam
RNNSearch (AdaDelta)
Dev BLEU
Dev Loss

FIGURE 4.2: Evolution of dev BLEU score and training loss during training. A training step
corresponds to a full mini-batch of 80 sentences. Since the Adam+CGRU+BPE method has
a different target, its training loss is not directly comparable to the other two methods. The
training loss is not divided by the number of target tokens, which explains why this method
gets a higher loss (longer sequences). With the Adam models, the learning rate is decayed by

half every 70k steps.

10 20 30 40 50 60 70
Reference words

10

15

20

25

30

35

BL
EU

Adam + CGRU + BPE
SMT
Adam + CGRU
Adam
RNNSearch (AdaDelta)

FIGURE 4.3: Test BLEU score as a function of reference sentence length (in terms of words).
Each point whose x-value is a corresponds to a bin of sentences of length a − 4 to a (the first
point corresponds to sentences of length 1 to 5, and the last one 76 to 80). Since the test set
contains 3003 sentences and most of the sentences are between 10 and 50 words, the extremities
of the graph are noisier. At decoding time, we set the maximum source and output length to
80 for the word-based models (vs. 50 during training), and 100 for the BPE-based models (vs.
60 during training). It turns out that increasing the maximum sequence length has a negligible

effect on BLEU scores. The SMT baseline is that of (Cho et al. 2014b).

Chapter 4 – Contributions: Neural Machine Translation 109

produced statistiques, and thus its state already contains information about the number
of the subject. We observe the same thing with elle and heureuse. This is not the case for
imaginons, where no subject has been produced yet, and the decoder has no other choice but
to look in the input sequence to find the subject of the verb.

Surprisingly, the attention model often gives high weights to the end-of-sentence symbol (last
column in the pictures). A possible explanation for this is that the last state of the encoder
contains information about the entire sequence, and is a good substitute when the attention
model is unsure. We could argue that in a bidirectional encoder, all encoder states contain
information about the entire sequence. This may be true, but this information is split into a
forward and backward state. This discontinuity probably makes this kind of ‘concatenated’ state
harder to interpret. The last forward state on the other hand supposedly contains an abstract
representation of the entire sentence. The backward states are less natural, as they read the
sequence from right to left, which may result in poorer representations.

Figure 4.5 gives examples of outputs by these two models (word-based and BPE-based).

We see that the unknown word replacement technique often gives satisfying results, in particular
with proper names (Zénith and M83). However, it sometimes fails when the attention model
is mistaken (example 1), or when the dictionary is wrong (example 6 with flush). Even when
it works, the dictionary method has limits as it does not take into account the context of the
word. For example it translates scared with peur (a verb with a noun), or she...upset
with elle...bouleversé (should be bouleversée). Even though these translations are
wrong, they are better than UNK symbols. The BPE-based method does not need this technique,
as it can read and generate any word. For example, we see in example 1 that contrary to the
word-based method, the BPE-based method is able to translate $ 32.9 billion by splitting
the numbers. Sometimes, the BPE-based model hallucinates new words that don’t exist, like
effondée in example 7.

Chapter 4 – Contributions: Neural Machine Translation 110

Sh
e

sa
id

sh
e

wa
s

" ha
pp

y
to be ba

ck
" . </

S>

Elle
a

dit
qu'
elle

était
"

heureuse
de

revenir
"
.

</S>

Sh
e

sa
id

sh
e

wa
s

" ha
pp

y
to be ba

ck
" . </

S>

Elle
a

dit
qu'
elle

était
"

heureuse
d'

être
de

retour
"
.

</S>

Bu
t

st
at

s
sh

ow
th

at
I 'm a bl

ac
k

sh
ee

p
wh

en
it co

m
es

to <U
NK

>
. </

S>

Mais
les

statistiques
montrent

que
je

suis
un

mouton
noir

lorsqu'
il
s'

agit
de

<UNK>
.

</S>

Bu
t

st
_

at
s

sh
ow

th
at

I 'm a bl
ac

k
sh

e_
ep wh

en
it co

m
es

to Ha
l_

lo
_

we
en

. </
S>

Mais
les
st_
ats

montrent
que

je
suis

un
m_

out_
on

noir
quand

il
arrive

à
Hal_

lo_
ween

.
</S>

No
w

, le
t

's im
ag

in
e

th
at

Ti
ta

n
bu

ys
a clo

se
d

fa
ct

or
y

fro
m

<U
NK

>
. </

S>

Maintenant
,

<UNK>
que

Titan
achète

une
usine

fermée
de

<UNK>
.

</S>

No
w

, le
t

's im
ag

in
e

th
at

Ti
t_

an bu
_

ys a clo
se

d
fa

ct
or

y
fro

m
Go

od
_

ye
ar

. </
S>

Maintenant
,

imagin_
ons
que
Tit_
an

ach_
ète
une

usine
fermée

de
Good_

year
.

</S>

FIGURE 4.4: Examples of alignments on the WMT14 test set by the best word-based (left)
and subword-based (right) models, with a beam size of eight. The alignment is not forced,
which means that the target side (on the left of the graphs) is the output of the model, and not
the translation reference. White squares correspond to an alignment score of zero, while black
squares correspond to a score of one. Out-of-vocabulary symbols are replaced by an <UNK>
symbol. The subword units are delimited by an underscore. For example: Tit and an give

Titan

Chapter 4 – Contributions: Neural Machine Translation 111

1. The backlog in the aerospace division was $ 32.9 billion as of September 30 ,
unchanged from December 31 .

L’ arriéré dans la division aérospatiale était de a milliards de dollars à
compter du 30 septembre , soit inchangé depuis le 31 décembre .

The back|log in the aero|space division was $ 3|2.9 billion as of September 30 ,
unchanged from December 31 .

L’ arri|éré dans la division de l’ aéro|spatiale s’ élevait à 3|2,|9 milliards de
dollars à compter du 30 septembre , soit le 31 décembre .

2. You have a wonderful baby and enjoy the fun .

Vous avez un bébé merveilleux et profitez du plaisir .

You have a wonderful baby and enjoy the fun .

Vous avez un bébé merveilleux et appréci|ez le plaisir .

3. The shows are eagerly expected by the time they reach a provincial Zénith (
theatre) .

Les spectacles sont attendus avec impatience au moment où ils atteignent un
Zénith provincial (théâtre) .

The shows are e|ag|erly expected by the time they reach a provincial Z|éni|th (
theatre) .

Les spectacles sont attendus avec impati|ence au moment où ils atte|ignent un
Z|éni|th provincial (théâtre) .

4. And this shape is definitive of the entire piece : it is a series of physical
representations of drawings .

Et cette forme est définitive de toute la pièce : il s’ agit d’ une série de
représentations physiques de dessins .

And this shape is defin|itive of the entire piece : it is a series of physical
representations of drawings .

Et cette forme est définitive de toute la pièce : il s’ agit d’ une série de
représentations physiques de dessins .

5. Of these , 200 have still not found a new job .

De ce nombre , 200 n’ ont toujours pas trouvé de nouveaux emplois .

Of these , 200 have still not found a new job .

De ce nombre , 200 n’ ont toujours pas trouvé de nouveaux emplois .

6. The aim of the assault is to flush the M23 out of the hills overlooking Bunagana
.

Le but de l’ assaut est d’ d’ les M23 des collines qui donnent sur . .

The aim of the assault is to fl|ush the M|23 out of the hills overlooking
Bun|ag|ana .

Le but de l’ ass|aut est de fl|â|ner le M|23 sur les collines sur|plom|b|ant
Bun|ag|ana .

7. She came home from school scared and upset to be the first among her friends .

Elle est venue à la maison peur et bouleversé d’ être la première parmi ses amis
.

She came home from school scar|ed and up|set to be the first among her friends .

Elle est venue à la maison de l’ école qui s’ est eff|on|dr|ée et qu’ elle a été
le premier à être la première de ses amis .

8. The building damaged by the fire contained four apartments , but there was nobody
at home when the fire started .

Le bâtiment endommagé par le feu contenait quatre appartements , mais il n’ y
avait personne à la maison lorsque le feu a commencé .

The building damaged by the fire contained four apartments , but there was
no|body at home when the fire started .

Le bâtiment endommag|é par le feu contenait quatre appartements , mais il n’ y
avait personne à la maison quand le feu a commencé .

FIGURE 4.5: Examples of beam search outputs on the test set by our word-based and BPE-
based models. In each item, the first and second line are the word-based input and output. The
third and fourth line are the BPE-based input and output. The ‘|’ symbol delimits BPE units.
UNK tokens in the output that have been replaced are in bold, along with the source word to

which they are aligned. Source words that are out-of-vocabulary are also underlined.

Chapter 4 – Contributions: Neural Machine Translation 112

Corpus Total Lines
German English

Words Average Words Average

IWSLT14
Train 153k 2.69M 17.5 2.84M 18.5
Dev 6969 122k 17.6 129k 18.5
Test 6750 126k 18.6 131k 19.4

TED 1.81M 34.4M 18.9 36.4M 20.0
OpenSubtitles 40.1M / 430M 286M 7.0 3.21B 7.5

TABLE 4.7: IWSLT14 corpus statistics. TED is initially an English-language monolingual
corpus. We generated the German side by back-translation. OpenSubtitles, which we use for

language modeling, consists in two monolingual German and English corpora.

4.3.2 TED Talks (IWSLT14)

We now perform a series of experiments on a German-to-English translation task. This task
consists in translation of subtitles of TED and TEDx talks. The data was released in the context
of IWSLT 2014 evaluation campaign.23

We use the same data split (train, dev and test) as Ranzato et al. (2016). Several recent contribu-
tions have evaluated their NMT models on this corpus (Bahdanau et al. 2017; P.-S. Huang et al.
2018).

This dataset is small by MT standards: 153k sentence pairs for the training set, and 7k each
for the dev and test sets. We also use monolingual datasets for language modeling or data
augmentation. For this purpose, we use the English TED monolingual corpus,24 which contains
36M words. We remove any line that also appears in the target side of the IWSLT14 dev or test
sets (to avoid biasing the evaluation). We also use the large OpenSubtitles corpora (for English
and German), which are in a similar domain as the IWSLT corpus (subtitles of movies and TV
shows). Table 4.7 gives detailed statistics about these resources. We see that the TED corpus
has a very similar average segment length as the IWSLT corpus. This is understandable as
they both come from the same source (subtitles of TED talks). OpenSubtitles has much shorter
occurrences on average. This is due to the fact that it contains many dialogues (from movies),
while TED talks are essentially monologues.

All the data is already tokenized. For fair comparison with the existing literature (Bahdanau
et al. 2017; Ranzato et al. 2016), the evaluation is done with tokenized case insensitive BLEU.
For this reason, we lowercase all the data. For the IWSLT parallel data, we use the same pre-
processing script as Ranzato et al. (2016).25

SMT baselines As a baseline, we train several phrase-based machine translation models using
Moses (Koehn 2010). The first model, named ‘SMT’ uses the default Moses settings, with a
trigram language model estimated on the target side of the parallel corpus. We also train two
SMT models that use additional monolingual data for the language model. The ‘SMT + LM’
model uses a trigram language model estimated on the English side of the TED corpus (36M
words), concatenated to the target side of the IWSLT corpus. The ‘SMT + Large LM’ model
uses a language model of order 5, which is estimated on the large OpenSubtitles dataset (3.2

23The IWSLT14 corpus is available here: https://wit3.fbk.eu
24The English TED corpus is available here: http://opus.nlpl.eu/TED2013.php
25Ranzato et al. (2016)’s source code and pre-processing scripts are available here: https://github.com/

facebookresearch/mixer

https://wit3.fbk.eu
http://opus.nlpl.eu/TED2013.php
https://github.com/facebookresearch/mixer
https://github.com/facebookresearch/mixer

Chapter 4 – Contributions: Neural Machine Translation 113

billion words). Finally, as a measure of comparison with NMT, we also train a baseline SMT
system on BPE-segmented data (‘SMT + BPE’). All the SMT models are tuned on the dev set
with MERT (using the mert-moses.perl script).

NMT models The ‘Basic’ NMT model is a simplified (and smaller) version of Bahdanau et al.
(2015)’s RNNsearch. Its (bidirectional) encoder and decoder use LSTM cells instead of GRUs
(we found LSTMs to perform better on this task), with a cell size of n = 256 and an embedding
size of m = 128. The encoder and decoder’s initial states are set to zero.26 And we do away
with the maxout layer in the decoder. Instead, we do a linear projection to the embedding size,
followed by a linear projection to the vocabulary size. Finally, the previous time step’s prediction
is not used for predicting the next symbol (only for updating the LSTM).

Equation 4.4 is modified as follows:

st−1 : LSTM’s output ct : attention vector (4.7)

yt = WvocWout(st−1 ⊕ ct) + bvoc (4.8)

where Wout ∈ Rm×3n, Wvoc ∈ R|V ′|×m, and bvoc ∈ R|V ′|, with |V ′| the target vocabulary size.
yt is a vector of unnormalized scores for each item in the target vocabulary, which can be used
for greedy prediction (argmax), or to estimate a probability distribution over the vocabulary
(softmax). This simple linear projection to embedding size is useful to reduce the number of
parameters (instead of a direct projection to vocabulary size). It also makes weight tying possible
(Press et al. 2017), where the output embedding matrix E′ is used in place of Wvoc (we do not
actually do this).

Contrary to RNNsearch, we use a “generate first” strategy, where we generate the next symbol
before updating the LSTM’s state. We found this strategy to perform better than the reverse.

The model is trained with Adam, with a batch size of 32 and a learning rate of 0.001. The
maximum source (German) sequence length is 45 words, and the maximum target (English)
length is 47 (which covers 99% of all training sentences). All parameters (except biases) are
initialized to a centered normal distribution with σ = 0.1. The source and target vocabularies
contain the most frequent 30k tokens each.

We also train a variant of this model with dropout regularization (‘Basic + dropout’). We use a
dropout rate of 20% on the input of the LSTMs (both in the encoder and decoder). We also drop
source and target words at random during training with a probability of 0.2 (their embeddings
are replaced with zero). We tried to apply dropout in other places (on the output of the LSTMs,
or in the attention model), but this was not useful, and sometimes even detrimental. Variational
dropout (Gal et al. 2016) was not useful either.

The ‘Advanced’ model is identical except for its decoder, which uses a conditional LSTM (Sen-
nrich et al. 2017). It also replaces the linear projection layer (Wvoc) with a non-linear layer of
the same size (with a bias vector, and a tanh activation).

Then, we train the same model but with BPE units instead of words (‘BPE’ model). 30k joint
BPE merge operations are extracted from the IWSLT training data (by concatenating the source
and target side). Then all the data is segmented using this BPE model. This gives a joint
German-English vocabulary of size 27k.27 The same embedding matrix is shared between the

26We found that initializing the decoder’s state with the encoder’s last state, like RNNsearch does, was not useful.
27Following Sennrich et al. (2016c)’s recommendations, we exclude BPE units that appear less than 10 times in

the training files. This helps avoid segmentations in one language that are unknown in the other language.

Chapter 4 – Contributions: Neural Machine Translation 114

encoder and the decoder (E = E′). The maximum sequence length is set to 52 subword units
for German and 50 subword units for English (also to cover 99% of the training corpus).

We try two version of this model: one with the same size as the previous models (n = 256), and
a larger one (n = 512), called ‘BPE XL’. The larger model also uses a larger dropout rate of 0.4
on the LSTM’s inputs (we keep the same word dropout).

The ‘BPE to char XL’ model is the same model, but with characters as target (and BPE units
as source). The maximum output sequence length is set to 200. The target character-level
vocabulary contains 140 tokens, including the whitespace character, that the model is trained to
predict like any other character.

We train the word-based models and ‘BPE’ model for 200k steps. The ‘BPE XL’ model is
trained for 400k steps and the ‘Char XL’ model for 800k steps. Some models are trained on
larger amounts of synthetic data (see below). Those are trained for twice as long as the models
trained on real data only, with a maximum of 800k steps. We sometimes stop early manually,
when the performance has obviously stopped improving.

Monolingual data The training corpus is rather small (153k sentence pairs). However, we
have access to large amounts of monolingual data (1.8M TED English sentences). In NMT,
there exist two main approaches for improving a model with target-language data:

• Training an external language model (Gulcehre et al. 2015). This can be a statistical
language model or a recurrent neural network. This model can be combined with the
translation model at decoding time, using a log-linear model (shallow fusion). Gulcehre
et al. (2015) also propose a ‘deep fusion’ scheme, where they concatenate the decoder
states of a translation model with those of neural language model, and finetune this merged
model.

• Producing synthetic parallel data to increase the size of the training corpus. Sennrich et
al. (2015) propose to use monolingual data as the target side of a parallel corpus. As the
source side, they either use a single dummy symbol for each sentence, or back-translate
the entire corpus using another MT system. This synthetic corpus is concatenated to the
real training corpus and shuffled.

We prefer using the second approach, as it is easier to implement (it requires no change in the
code), and can work at any granularity level (words, characters or subwords). The first approach,
on the other hand, would require training language models at each granularity level. Yet, these
two approaches may be compatible (e.g., back-translation of a medium-sized monolingual cor-
pus, and language modeling on a large corpus), which could be interesting to investigate as
future work.

For back-translation, we train a baseline SMT system from English to German (reverse direc-
tion), on the IWSLT train set. The language model (of order 3) is estimated on a concatenation
of the German side of IWSLT and the German OpenSubtitles corpus (286 million words). Then,
we use this SMT system to translate the English TED monolingual corpus to German (1.8 mil-
lion sentences). This gives a synthetic German-English parallel corpus of TED talks, which is
an order of magnitude larger than the initial training corpus. We concatenate this corpus with
the initial corpus oversampled 10 times. The final parallel corpus contains about 3.3 million sen-
tence pairs. This oversampling strategy is roughly equivalent to that of (Sennrich et al. 2015),

Chapter 4 – Contributions: Neural Machine Translation 115

Model Data
Dev BLEU

SGD steps
Greedy Beam search

Basic

153k

26.6 28.5 24k
Basic + dropout 28.3 29.7 104k
Advanced 29.5 30.8 184k
BPE 31.6 32.9 200k
BPE XL 32.7 34.0 300k
Ensemble of 5 35.4 36.7 –
BPE to char XL 32.8 34.3 792k
Advanced

153k + 1.8M

30.0 31.3 252k
BPE 31.8 33.2 292k
BPE XL 32.9 34.1 396k
BPE to char XL 33.0 34.4 792k

TABLE 4.8: Results of different NMT models on the IWSLT14 dev set. We do beam search
with a beam size of 8 and length normalization. The ensemble combines 5 instances of ‘BPE
XL’. The last column gives the number of SGD steps before reaching the best dev BLEU score.

where they resample at each new epoch a new subset of the back-translated corpus to match the
size of the true corpus.

We retrain the same ‘Advanced’ and ‘BPE’ configurations on this larger training set (for twice
as long).

Results Table 4.8 shows the BLEU scores of our NMT models on the dev set, using greedy
decoding or beam search decoding with a beam size of 8. We see that adding dropout to the
‘Basic’ model gives a large boost in BLEU scores. Figure 4.6 shows the dev BLEU score
(greedy) of our models during training. We observe indeed that the only model that does not
use dropout overfits dramatically, as its performance starts decreasing after only 24k step (about
5 epochs). Simply adding 20% dropout removes this overfitting problem, at the cost of slightly
slower training. The more advanced model that uses a deeper decoder achieves a higher BLEU
score (+1 BLEU). Using subwords instead of words also gives a large boost in BLEU scores.

Our best results are obtained with the large BPE and BPE-to-Char models. The latter seems to
perform slightly better, at the cost of a much longer training time. Training our models on the
large back-translated corpus does not give a significant increase in scores.

Table 4.9 shows the BLEU scores of our approaches on the test set, along with the SMT base-
lines, and other results published in the literature. Interestingly, NMT models beat the phrase-
based baseline, even with a very large language model. This indicates that NMT can be useful
even with medium size corpora.

Like the WMT14 task, we observe a BLEU increase when using Jean et al. (2015a)’s unknown
word replacement technique, and using subwords gives even better results. Our BPE-based
models beats the previous best score on the task by P.-S. Huang et al. (2018). Our BPE-to-
Char model gets a +2 BLEU over the best published result. Combining five BPE models in an
ensemble gives a large boost, with +4 BLEU compared to the best published result (obtained
with a single model).

This suggests that the REINFORCE training objective from (Ranzato et al. 2016), the Actor-
Critic model from (Bahdanau et al. 2017), and the Neural Phrase-based MT model of (P.-S.

Chapter 4 – Contributions: Neural Machine Translation 116

Model Data
Test BLEU

Greedy Beam search
MIXER (Ranzato et al. 2016)

153k

20.7 21.8
LL (Bahdanau et al. 2017) 25.8 27.6
AC + LL (Bahdanau et al. 2017) 27.5 28.5
NPMT (P.-S. Huang et al. 2018) 28.6 29.9
NPMT + LM (P.-S. Huang et al. 2018) – 30.1
SMT

153k
–

27.4
SMT + BPE 25.4
SMT + LM 153k + 1.8M 26.7
SMT + Large LM 153k + 430M 28.1
Advanced

153k

26.7 28.3
Advanced + UNK replace 27.3 28.8
BPE XL 29.8 31.2
Ensemble of 5 32.7 34.1
BPE to Char XL 30.6 32.2
Advanced

153k + 1.8M

27.2 28.4
Advanced + UNK replace 27.9 28.9
BPE XL 30.2 31.6
BPE to Char XL 30.8 32.3
Google Translate (Wu et al. 2016) – – 37.4

TABLE 4.9: BLEU scores on the IWLST14 test set. The Google Translate baseline is obtained
thanks to Google Translate API. We send it the raw test set (non-tokenized and non-lowercased)

and post-process its output by tokenizing and lowercasing it before evaluation.

0 50000 100000 150000 200000 250000
steps

15

20

25

30

De
v

BL
EU

BPE XL + TED
BPE-Char XL
BPE XL
BPE
Advanded
Basic + dropout
Basic

FIGURE 4.6: BLEU scores on the IWSLT14 dev set of our NMT models during training. The
last 3 models are word-based, and all models use dropout except for the last one (‘Basic’). The
x-axis corresponds to the number of SGD steps performed, i.e., the number of batches of size

32 processed (100k steps corresponds to approximately 21 full epochs).

Chapter 4 – Contributions: Neural Machine Translation 117

i d o n ' t k n o w w h a t t h e y t h i n k a b o u t m e , b u t i c a n l i v e w i t h i t .</S>
ich

weis
nicht
was
sie

von
mir

halten
,

aber
damit
kann

ich
leben

.
</S>

wi
r

wo
lle

n

ni
ch

t

, da
ss

de
r

ira
n

di
e

bo
m

be

ba
ut

. </
S>

we

don

't

want

iran

to

build

the

bomb

.

</S>

di
es

e
gr

au
en

bo
x_

en la
uf

en
ni

ch
t

m
it

wi
n_

do
w_

s-
_

so
ftw

ar
e

; sie ba
sie

re
n

au
f

ei
ne

r
ko

m
pl

et
t

an
de

re
n

te
ch

no
lo

gi
e

. </
S>

these
gray

boxes
don

't
work
with

windows
software

;
they

're
based

on
a

completely
different

technology
.

</S>

FIGURE 4.7: Examples of (non-forced) alignments on the IWSLT test set, by our ‘BPE-Char
XL + TED’ model (top), and ‘BPE XL + TED’ model (bottom). The top alignment is reversed

so as to better see the character sequence (which corresponds to the target).

Huang et al. 2018) should be compared against stronger baselines. It would be interesting to try
Bahdanau et al. (2017)’s Actor Critic model on subword-level machine translation. Interestingly,
our word-based NMT baseline obtains a BLEU score of 28.3, not very far from Bahdanau et al.
(2017)’s log-likelihood baseline (also word-based). This is not so surprising as both models are
very similar (bidirectional encoder with 256 units).

The Google Translate baseline obtains a staggering +3 BLEU over our best model. This sug-
gests a large margin of improvement on this task. It is important to note that Google Translate
uses a much larger model (GNMT), which is trained on large amounts of parallel data (Wu et
al. 2016).28 Yet, this BLEU score does not do GNMT justice as the Google Translate pipeline
does its own pre-processing and post-processing (to be fairer, we should perform case-sensitive
detokenized evaluation).

Figure 4.7 gives some examples of outputs and alignments by our models. Interestingly, the BPE
to character model is able to find clear word boundaries. The attention models are also able to
deal with German verb order (which often comes after the object). For example, to build is
successfully aligned with baut, and think with halten. We see in the bottom right example
that the subword model is able to recopy words that it does not know: windows-software
is split into 4 subword units and translated as two words.

28It is also not completely unlikely that the test data is part of GNMT’s training corpus, which could bias the
results.

Chapter 4 – Contributions: Neural Machine Translation 118

Model Greedy Beam search
BPE XL 17.9 19.0
Ensemble of 5 20.6 21.9
BPE XL + TED 18.6 19.8
BPE to Char XL 18.9 20.3
BPE to Char XL + TED 19.1 20.4
SMT

–
17.7

SMT + Large LM 19.5
MILA NMT (Jean et al. 2015b)

–
26.4

MILA Ensemble 28.4
Google Translate (Wu et al. 2016) – 36.1

TABLE 4.10: BLEU scores on news-test 2015. The MILA results are from the best perform-
ing NMT models on the WMT 2015 German-to-English news translation task. We took their
submitted outputs and post-processed them to be compatible with our evaluation (lowercased
and tokenized BLEU). These models are trained on large amounts of news data (4.5M sentence

pairs). The same post-processing was applied to Google Translate’s outputs.

Out-of-domain translation Table 4.10 shows the results of our models, when evaluated on
the WMT15 test set, which is in the news domain (out-of-domain translation). We see that our
NMT models trained on TED talks perform considerably worse than the state-of-the-art models
on this task (which were trained on large amounts of in-domain data).

However, they obtain comparable results to the baseline SMT models (that are trained on the
same parallel data). Our ensemble model even performs considerably better than an SMT model
that uses a very large language model. This contrasts with observations from Koehn et al. (2017)
that NMT is catastrophic in out-of-domain translation.

Chapter 5

Speech Translation

In addition to Machine Translation, we explored the related task of Automatic Speech Transla-
tion. Prior to our own work, neural sequence to sequence models had not yet been applied to
this task (or only to sub-problems like alignment), which made it a good fit for research study.
We also had developed a framework for NMT that could be easily extended to other sequence
to sequence tasks.

Speech translation consists in translating spoken language, either to text or speech in another
language. Current speech translation systems integrate (loosely or closely) two main modules:
source language speech recognition (ASR) and source-to-target text translation (MT) (Kumar
et al. 2015; Post et al. 2013). In these approaches, the source language text transcript appears as
mandatory to produce a text hypothesis in the target language. Optionally, a third module can
be added which reads the translated text aloud using speech synthesis.

In this work, we are solely interested in text output. By “speech translation”, we always mean
automatic translation of recorded audio in a language to text in another language. ASR can be
seen as a specific case of speech translation, where the source language and the target language
are the same.

One major advantage of the sequence to sequence models is that they can take anything as in-
put and as output, provided that they are sequences. Similar models have been used for speech
recognition, where the input is a sequence of audio feature vectors, and the output is the text
transcription (Bahdanau et al. 2016; Chan et al. 2016; Chorowski et al. 2015). It is relatively
straightforward to port this kind of model to do end-to-end speech translation, i.e., speech trans-
lation without transcription. The encoder reads the speech input and builds a (hopefully univer-
sal) representation from it. This representation is then read by the decoder, which can be trained
to output a transcription, or a translation directly.

Conventional ASR systems cannot be so easily adapted to do speech translation, because they
do monotonicity assumptions, i.e., they generate output symbols by reading the input from left
to right. However, the attention-based sequence to sequence models (trained with a negative log-
likelihood objective) do no such assumption. The decoder can look anywhere in the sequence
of encoder annotations (global attention), and it does not care about the format of the input,
provided that the representation computed by the encoder is abstract enough.

There are several advantages to doing end-to-end speech translation (without transcription).
Relaxing the need for source language transcription would drastically change the data collection
methodology in speech translation, especially in under-resourced scenarios. For instance, in the

119

Chapter 5 – Contributions: Speech Translation 120

former project DARPA TRANSTAC (speech translation from spoken Arabic dialects), a large
effort was devoted to the collection of speech transcripts. A prerequisite to obtain transcripts was
often a detailed transcription guide for languages with little standardized spelling. Now, if end-
to-end approaches for speech-to-text translation are successful, one might consider collecting
data by asking bilingual speakers to directly utter speech in the source language from target
language text utterances. Such an approach has the advantage to be applicable to any unwritten
(source) language.

Furthermore, we can expect improvements from such a system, compared to cascading two
systems. When chaining two (or more) individual models, their errors pile up. The downstream
MT system, if trained on (clean) parallel data only, might not be robust to the noisy output of
the upstream ASR system. Hopefully, the end-to-end approach would also require less hand
engineering, and less training time than the conventional ASR-MT pipeline.

However, there are also limits. When chaining two models, it is easier to build two strong
baselines, because in most language pairs there is much more transcription and translation data
available, than transcriptions aligned with translations.

We can mitigate this problem by using tricks to make use of this data, such as multi-task train-
ing, where the encoder is shared with a transcription task, or the decoder is shared with a text
translation task. It is also possible to build synthetic data by automatically translating the tran-
scriptions, or by using speech synthesis over the source side of a parallel corpus.

In the first subsection, we present our early work on end-to-end speech translation on a synthetic
corpus. The next subsection describes the construction of a new corpus for speech translation,
based on audiobooks. The last subsection extends our work on speech translation to this new
corpus.

5.1 Neural Speech Translation of Synthetic Data

5.1.1 Model Description

We propose a similar model to the LAS (Listen, Attend and Spell) model (Chan et al. 2016).
This model was used for speech transcription (ASR), and we propose to adapt it for direct speech
translation. In principle, it is very straightforward to take audio frames as input, instead of words
or characters. However, a number of adjustments are needed for the model to learn anything and
to be trained in a reasonable time. We apply this model on a synthetic speech translation corpus.
This work was published as a short paper titled “Listen and Translate: A Proof of Concept for
End-to-End Speech-to-Text Translation” (Bérard et al. 2016a).1

Encoder The encoder takes as input a sequence of pre-computed feature vectors: f1, . . . , fT ∈
Rr. This sequence corresponds to frames in the audio signal, it has a much smaller time res-
olution than words or even characters (with our feature extraction process, a single vector cor-
responds to a frame of 10 ms). Because the complexity of the attention model is linear with
respect to the input length, we need a way to make these sequences shorter.

The solution that Bahdanau et al. (2016) and Chan et al. (2016) propose for ASR, which we
implement and evaluate on the speech translation task, is a deep pyramidal encoder. The encoder

1At the NIPS Workshop on End-to-End Learning for Speech and Audio Processing, in Barcelona (Spain).

Chapter 5 – Contributions: Speech Translation 121

h1
1 h1

2
. . . h1

T−1 h1
T

h2
1

h2
T
2

. . .
encoder

c2 attention

s2 s1s3s4

Abluecar</S> <S>

decoder

FIGURE 5.1: Simplified illustration of the pyramidal encoder-decoder model. The inputs are
vectors of MFCCs (pre-computed features). The decoder looks at the hidden states of the last

encoder layer (the shortest one).

has several layers of LSTMs, each layer shorter than the previous one, resulting in a much
shorter sequence. The decoder reads from the top of the pyramid (the shortest layer). Figure 5.1
illustrates this pyramidal encoder (described in details shortly).

Before the first LSTM, we use two fully connected layers of size l and m. This helps computing
better features, which is important for the encoder to produce a representation which is abstract
enough to translate from. This gives a sequence x of the same length as the input sequence f
and of dimension m.

f
[2]
i = tanh (W [1]fi + b[1]) (5.1)

xi = f
[3]
i = tanh (W [2]f

[2]
i + b[2]) (5.2)

W [1] ∈ Rl×r,W [2] ∈ Rm×l, b[1] ∈ Rl and b[2] ∈ Rm (where l and m are the size of the input
layers, and r the feature size).

The pyramidal encoder has two hyperparameters: the depth k (or number of layers), and the
stride b. The output of the encoder is a sequence of annotations of length T̂ = T/bk−1. In
our experiments, we use three layers with a stride of two. This reduces the length of the input
sequence by a factor of 4:

Chapter 5 – Contributions: Speech Translation 122

h
[1]
i = update[1](h

[1]
i−1, xi) (5.3)

h̃
[1]
i =

1

2
(h

[1]
2i−1 + h

[1]
2i) (5.4)

h
[2]
i = update[2](h

[1]
i−1, h̃

[1]
i) (5.5)

h̃
[2]
i =

1

2
(h

[2]
2i−1 + h

[2]
2i) (5.6)

hi = update[3](h
[3]
i−1, h̃

[2]
i) (5.7)

The Equations 5.4 and 5.6 correspond to time pooling, and are responsible for the time length
reduction of the sequences. This means that we average every pair of consecutive annotations
produced by a given layer. In the case where the input sequence length is not a multiple of two,
the last annotation is used on its own. It is also possible to just skip encoder states instead of
averaging them.

For simplicity, the previous equations are shown for unidirectional LSTMs. In practice we stack
three layers of bidirectional LSTMs of size n in each direction, where each new layer reads both
the backward and the forward states from the previous layer:

~h
[k]
i = update

[k]
fwd(

~h
[k]
i−1, h̃

[k−1]
i) (5.8)

~h
[k]

i = update
[k]
bwd(

~h
[k]

i+1, h̃
[k−1]
i) (5.9)

h
[k]
i = ~h

[k]
i ⊕ ~h

[k]

i (5.10)

Note that we use the same input h̃[k−1]i for both the backward and the forward LSTM. This
corresponds to a concatenation of forward and backward annotations from the previous bidirec-
tional layer (averaged over two time steps). The final encoder annotations used by the decoder
are hi = Wbidirh

[3]
i , where Wbidir ∈ Rn×2n.

Decoder We use a two-layer LSTM decoder with attention. We initialize the decoder states

with s[1]0 = tanh(W
[1]
inith−1) and s[2]0 = tanh(W

[2]
inith−1), where h−1 = ~h

[1]

1 ⊕ ~h
[2]

1 ⊕ ~h
[3]

1 is a
concatenation of the last states of all backward layers.

The next states of the decoder are computed as follows:

s
[1]
t = update

[1]
dec(s

[1]
t−1, E

′(z̃t−1)) (5.11)

s
[2]
t = update

[2]
dec(s

[2]
t−1, s

[1]
t) (5.12)

During training, z̃t−1 is the previous symbol in the reference sequence (teacher forcing). During
evaluation, z̃t−1 is the predicted symbol at the previous time step. E′ ∈ R|V ′|×m′ is the target
embedding matrix, where |V ′| is the target vocabulary size.

We compute an attention context ct ∈ Rn (over the encoder annotations hi), which is concate-
nated to the LSTM’s output s[2]t , and mapped to the target vocabulary size:

yt = Wvoc(s
[2]
t ⊕ ct) + bvoc ct = look(s

[1]
t ⊕ s

[2]
t , (hi)

T̂
i=1) (5.13)

Chapter 5 – Contributions: Speech Translation 123

where Wvoc ∈ R|V ′|×(n+n′) and bvoc ∈ R|V ′|, with n the encoder cell size, and n′ the decoder
cell size.

This vector yt ∈ R|V ′| contains unnormalized scores for all words in the target vocabulary.
The greedy decoder just picks the word at each time step with the highest score. For training
and beam search decoding, a probability distribution is estimated over the entire vocabulary by
normalizing with a softmax function:

p(z̃t = j|yt−1, st−1, (hi)T̂i=1) = softmax(ytj) (5.14)

Convolutional attention We use the same attention model as Chorowski et al. (2015), which
uses a convolution filter to take into account the attention weights at the previous time step. This
helps the model learn to do a monotonous alignment. On an Automatic Speech Recognition
Task (ASR) like Chorowski et al. (2015), this is particularly relevant as alignments are always
monotonous. In Speech Translation between two close languages like French and English, we
expect the alignment to be close to monotonous. Providing this extra information to the attention
mechanism might help the model in the early stages of training.

rti = v>att tanh(Watt(hi ⊕ s[1]t ⊕ s
[2]
t) + batt + ftiµatt) ft = F ∗ αt−1 (5.15)

αti = softmax(rti) (5.16)

Watt ∈ Rk×(n+2n′), batt, vatt, µatt ∈ Rk, and F ∈ R2a+1 are trained parameters of the atten-
tion model, where n is the encoder cell size, n′ the decoder cell size and a is the size of the
convolution filter. The convolution is computed as follows:

ftj =

j+a∑
i=j−a

Fi × α̂t−1,i (5.17)

α̂t−1,i =

{
αt−1,i if 1 ≤ i ≤ T̂
0 otherwise

(5.18)

αt−1 ∈ RT̂ is the vector of attention weights from the previous time step. α̂t−1 is the same
vector padded with zeros, for the convolution to result in a sequence of the right length (T̂).

5.1.2 Synthetic Corpus

As we did not have any good-sized speech translation parallel corpus (i.e., a set of triples
with speech segment, transcription and translation in another language), we generated one with
speech synthesis. We decided to use the French→English BTEC corpus, which is a small paral-
lel corpus with less that 20k segments.

BTEC (Basic Travel Expression Corpus) is very clean and contains short sentences (10 words on
average), with a small vocabulary (9218 unique tokens on the French side, 7186 on the English
side). Because end-to-end speech translation is a hard task (and unexplored), we wanted to place
ourselves in favorable (but still low-resource) conditions. The BTEC corpus seemed to be a very
good candidate for this.

Chapter 5 – Contributions: Speech Translation 124

Corpus
Total French (per segment) English (per seg)

segments hours frames chars words chars words

BTEC
train 19972 15:51 276 50 10 42 9.5
dev 1512 0:59 236 40 8.1 33 7.6
test 933 0:36 236 41 8.2 34 7.7

TABLE 5.1: Size of the French-English BTEC corpus. The training corpus contains 189k
English words and 201k French words. The character counts take whitespaces into account.
The speech side is synthetic (obtained through TTS), and the frames are of 40 ms with a step
size of 10 ms. The counts are for the Agnes speaker. The full corpus used for training the AST
models is actually 6 times this size, as we use TTS for all 19 972 segments with 6 different

speakers and concatenate all the data.

Table 5.1 shows corpus size information. The test set was initially separated into two test sets of
size 469 and 464, which we eventually merged into a single test set for ease of experimentation.
This corpus also has multiple references: 7 references per source sentence in the test set, and
16 references per source sentence in the dev set; which we use for BLEU evaluation. This is
a very small corpus by MT standards. Even though the setting is somewhat artificial, we were
interested to see how NMT methods (which are notoriously data-hungry) would manage on this
dataset.

Synthetic speech was generated using Voxygen,2 a commercial speech synthesis system, for 4
different female voices (Agnes, Marion, Helene, Fabienne) and 3 different male voices (Michel,
Loic, Philippe). It is important to note that this is corpus-based concatenative speech synthesis
(Schwarz 2007) and not parametric synthesis. Hence, for each speaker’s voice, speech utterances
are generated by concatenation of units mined from a large speech corpus (generally around
3000 sentences/speaker). This means that despite having very little intra-speaker variability in
our speech data, there is a realistic level of inter-speaker variability. To challenge the robustness
of our system to inter-speaker variability, we concatenate the training data for 6 speakers, and
leave the last speaker (Agnes) for evaluation (on separate dev and test sets).

Pre-processing All the text data is tokenized with the Moses tokenizer and lowercased. In our
experiments, we use tokenized uncased BLEU for evaluation (Word Error Rate for ASR).

Like Chan et al. (2016), as input for our speech model, we segment the speech raw data into
frames of 40 ms, with a step-size of 10 ms, and extract 40 MFCCs for each frame, along with
the frame energy. This results in vectors of size 41.

Other works in ASR or speech translation sometimes use more features (Bahdanau et al. 2016;
Chorowski et al. 2015), by including the first order and second order derivatives, but our first
tests did not exhibit any benefit from doing this. Because our training set is very small, we do
not want to give to the model more information than absolutely necessary (to avoid overfitting).
Furthermore, more features means larger models and longer training times, and much larger
datasets (in terms of memory footprint), which is the main reason why we settled for 41 features.

We use the Yaafe library to extract these features (Mathieu et al. 2010). It is less maintained, but
easier to delve into than the well-known Kaldi. It also works with Python, which is very useful
for prototyping.

2www.voxygen.fr

www.voxygen.fr

Chapter 5 – Contributions: Speech Translation 125

The audio side of our corpus is encoded in a simple binary format that we designed. It is
composed of a small header of two 32 bits signed integers (2 × 4 bytes), corresponding to the
number of audio segments (N), and the dimension (r) of the features for these entries (usually
41). This header is then followed by all the segments. A segment is encoded as a single 32 bits
signed integer corresponding to the number of audio frames Tk in this segment, followed by as
many frames. A frame is an array of r 32 bits floating-point values (r× 4 bytes). Thus, the total
size in bytes is: 8 + 4×∑N

k (1 + r × Tk).

No additional alignment file needs to be kept. Like usual in machine translation, the alignment
information is implicitly encoded by the position of the entries. There are 933 lines in the
English side of the test set. There are also 933 entries in the corresponding French audio feature
file, and its kth entry is aligned with the kth line in the English text file.

5.1.3 Experiments

Model settings Our base model for speech translation has a pyramidal encoder of three bidi-
rectional LSTM layers with n = 256 units in each direction. There are no source embeddings,
as the encoder takes as input a pre-computed sequence of vectors (of 40 MFCCs + frame en-
ergy). We also use two fully connected layers of size l = m = 256 between the input features
and the first layer of the encoder.

The decoder predicts sequences of words, and it has two LSTM layers of size n′ = 256, with
embeddings of size m′ = 256.

As a baseline, we also train text translation models. We want to see how they manage against
SMT, and whether it makes sense to use NMT on such a small and specialized corpus. NMT
results also give us an oracle on cascaded neural AST performance, assuming perfect ASR.

The NMT model is identical to the AST model, except for its encoder. The encoder reads words
(instead of audio frames), with an embedding size of m = 256, and two bidirectional LSTMs
of size n = 256 in each direction. Also, we use a basic global attention model (Bahdanau et al.
2015) without convolutions.

Training settings For training, we use Adam with an initial learning rate of 0.001 (Kingma
et al. 2015), and a mini-batch size of 64. We apply dropout during training on the inputs of
each LSTM (Zaremba et al. 2014) with a rate of 0.5. We also apply dropout on the outputs of
each input layer, and on the initial state [s

[1]
0 , s

[2]
0] of the decoder. Regularization is essential to

avoid overfitting, especially considering the small size of the training corpus. All parameters
(including embeddings) are initialized to TensorFlow’s defaults: Xavier uniform initialization.

We train our models for 20k steps, which takes less than 2 hours for the text models, and roughly
8 hours for the speech models (on a single GTX 1070). We save a new checkpoint of the model
every 2000 steps, and evaluate its performance on the dev set. At the end of training, we keep
the checkpoint whose BLEU score on the dev set is the highest.

Results Table 5.2 shows the results of our Machine Translation experiments. The SMT base-
line is trained with Moses on the BTEC training data (with default settings, and a trigram lan-
guage model) and tuned using MERT on the dev set. We see that our best NMT system, an

Chapter 5 – Contributions: Speech Translation 126

Corpus
BLEU score

Greedy Beam search +LM +Ensemble SMT
dev 42.5 43.6 45.1 51.6 54.3
test 40.4 41.4 42.9 47.5 47.6

dev (16 refs) 53.4 55.0 57.5 65.3 66.2
test (7 refs) 48.9 50.4 52.2 57.8 56.6
train.1000 78.4 80.5 82.9 89.6 76.6

TABLE 5.2: Results of the Text Translation task on BTEC, under different settings of the
decoder. “Greedy” uses a greedy decoder. “Beam search” uses a beam search decoder with a
beam size of 8. “LM” adds an external trigram language model estimated on the target side of
BTEC train. “Ensemble” uses a log-linear model with 5 NMT models trained independently (+
LM). The train corpus used in evaluation is a subset of 1000 sentences from BTEC train. For
all the non-ensemble configurations, the best model out of 5 is used (according to its score on
dev). The SMT baseline is a phrase-based model (Moses) trained on BTEC train, and tuned on

BTEC dev.

Corpus Speaker
BLEU score

Greedy Beam search +LM +Ensemble Baseline
dev

Agnes
30.1 32.3 33.5 40.2 43.7

test 29.1 31.3 31.9 37.9 40.9

dev (16 refs)
Agnes 38.3 40.9 43.2 51.2 56.0
Michel 43.1 46.3 47.9 54.5 55.7

test (7 refs)
Agnes 35.6 37.9 39.3 46.0 49.7
Michel 39.0 41.4 42.7 48.6 49.2

train.1000 Michel 53.8 60.8 61.8 82.6 60.5

TABLE 5.3: Results of the speech translation experiments on BTEC. The models are trained
with 6 different speakers (including Michel). Agnes is not used for training. The Ensemble
configuration uses 5 models trained independently. The baseline system (last column) uses a
pipeline Google Speech ASR + SMT system trained on BTEC. The WER scores obtained by

the baseline ASR system range between 23% and 26%.

ensemble of 5 models with a language model (the same LM model as the SMT baseline),3 gives
similar results in terms of BLEU as the SMT system. This is rather surprising, considering the
small training set, and observations by Koehn et al. (2017) that NMT is not very good in low-
resource settings. Also, even though the models seem to overfit quite a lot (see “train.1000”
scores), this does not seem to be a problem during evaluation.

Table 5.3 shows the results of our Speech Translation experiments. The baseline is a cascaded
system, which uses Google Speech API for transcription, followed by an SMT system trained
with Moses on BTEC and tuned on BTEC dev. The SMT system is slightly different than the
MT baseline. Google Speech API outputs text without punctuation, except when actually pro-
nounced. For this reason, we strip the source side of the BTEC train corpus from all punctuation
and train an SMT system to output target-language text with punctuation.

Our best end-to-end AST results are obtained with an ensemble of 5 AST models and a trigram
language model. All models (including the language model) are combined at decoding time (in
the beam search decoder) by summing their log-probabilities at each time step. We see that the

3The language model’s log probabilities are included into the log-linear model, like the 5 models in the ensemble.

Chapter 5 – Contributions: Speech Translation 127

(A) Text translation alignment (B) Speech translation alignment

TABLE 5.4: Alignments performed by the attention model on an example from the dev set.
The alignments are forced, which means that we force the models to output the ground truth
sequence (teacher forcing). The target of the model is on the left, while the input is at the top.
Values on a given row sum to one (softmax normalization), and darker shades correspond to

attention weights closer to 1 (white is 0).

BLEU scores for the known speaker Michel are equivalent to those of the baseline. The results
on a new speaker (Agnes) are behind, but still encouraging, considering that we did not use any
speaker adaptation technique.

Figure 5.4 shows alignments performed by the attention models of the text translation and speech
translation models. These are forced alignments (using teacher forcing) on an example from
the dev set. We see that the attention mechanism roughly aligns the output words with the
corresponding part in the speech signal (“how much” aligns with “combien”).

5.1.4 Improvements

Following this work on the synthetic BTEC corpus, we sought to improve our models on the MT
and AST tasks. Weiss et al. (2017) propose a number of improvements for Automatic Speech
Translation. In particular, they output sequences of characters, and not words. Their encoder
is also different from the LAS pyramidal encoder: they use several layers of convolutions to
reduce the length of the input sequence, and then a non-pyramidal multi-layer LSTM. They
achieve very good results (better than a cascaded baseline) on a real-world corpus of recorded
telephone conversations (Fisher-CALLHOME). We apply some of their architecture changes to
the synthetic BTEC corpus.

Character-based AST We propose two character-based models for AST, one with a pyrami-
dal encoder, and one with a convolutional encoder.

The encoder of the first model is similar to the model presented earlier (see Section 5.1.1):
two input layers of size l = m = 256, followed by a pyramidal encoder with three layers of
bidirectional LSTMs of size n = 256 and average time pooling with a stride of two.

The main difference to the previous model is with the decoder. It has two layers of LSTMs of
size n′ = 256. It outputs characters, with a vocabulary of size 43 and a maximum sequence

Chapter 5 – Contributions: Speech Translation 128

length of 120 characters (including whitespaces). We use character embeddings of size m′ =
64.4 Unlike the previous model, we adopt a “generate first” strategy, where the next token z̃t is
generated before updating the decoder’s state. Also, the current attention context vector is used
for updating the decoder’s state (in addition to the previous state and the previous symbol):

ct = look(s
[2]
t−1, (hi)

T̂
i=1) (5.19)

yt = Wvoc(s
[2]
t−1 ⊕ ct) + bvoc (5.20)

s
[1]
t = update

[1]
dec(s

[1]
t−1, E

′(z̃t)⊕ ct) (5.21)

s
[2]
t = update

[2]
dec(s

[2]
t−1, s

[1]
t) (5.22)

To limit overfitting, we use dropout with a rate of 0.4. Dropout is applied on the inputs of the
LSTMs, on the decoder’s initial state (just before the dense layer), on the outputs of the encoder’s
input layers, and in the attention model (on the encoder’s hidden states and the decoder state).

We use Adam for training, with default settings and a batch size of 64. We train for 100k steps,
with a BLEU evaluation on the dev set every 1000 steps, and keep the best performing check-
point for final evaluation. All the model parameters are initialized to TensorFlow’s defaults, i.e.,
a Xavier initialization scheme (except for the bias vectors, which are initialized to zero). This
model is called “Pyramidal” in Table 5.5.

Convolutional Encoder for AST We train a second model that uses a different encoder, bor-
rowing some ideas from Weiss et al. (2017). Following the two input layers, we use a stack
of two convolutional layers. These convolutions use a time-wise stride of two, which divides
the length of the sequence by two after each layer. Like with the pyramidal encoder, the input
sequence is reduced to 1/4th its initial length. Following these layers, we stack three standard
(non-pyramidal) bidirectional LSTMs of size n = 256.

More precisely, the shape of the input features is T × r, where r = 41. The two input layers
are of size l = 256 and m = 128 (with a bias vector, and a tanh activation), which results in
features of shape T ×m. Then, we use a first convolutional layer, with 16 filters of shape 3× 3,
with zero-padding and a stride of 2 w.r.t. both dimensions. This results in a tensor of shape
T
2 × m

2 × 16. Then a second convolutional layer, with 16 filters of shape 3× 3× 16 results in a
new tensor of shape T

4 × m
4 × 16. We flatten this tensor to a T

4 × 4m = T̂ × m̂ tensor, which is
then passed to a stack of three bidirectional LSTMs of size n = 256.

Note that our encoder is conceptually much simpler than (Weiss et al. 2017). Our convolutions
are linear, we do not use a convolutional LSTM, and there are no dense layers between the
LSTM layers. The decoder and training scheme are identical to the pyramidal model. We call
this model “Convolutional” in Table 5.5. We also train a variant of this model that uses a single-
layer conditional LSTM for the decoder (Sennrich et al. 2017), instead of a two-layer LSTM
(model “Convolutional-Cond”).

Character-based NMT For comparison, we also train a word to character model on the BTEC
text translation task. The encoder reads words, with word embeddings of size m = 128 and a

4It makes sense to use smaller embeddings, as characters encode much less information than entire words.

Chapter 5 – Contributions: Speech Translation 129

bidirectional LSTM of size n = 256 in each direction. Like the two AST models, the encoder’s
backward and forward states are concatenated and mapped to vectors of size 256 (with a linear
projection), which are then read by the attention mechanism. The initial states of the encoder
are also set to zero. Contrary to the previous models, we average all the hidden states of the
encoder (w.r.t. time axis) to initialize the decoder.

We use the same cond-LSTM decoder as with the “Convolutional-Cond” variant of our AST
model, with the same character-level vocabulary (43 symbols), maximum sequence length (120)
and embedding size (m′ = 64). We call this model “LSTM-Char”.

We use dropout with a rate of 0.2 on the source embeddings, the attention model, the inputs and
the outputs of the LSTMs, and the initial state of the decoder. We also drop target characters at
random during training with a probability of 0.2.5

Non-recurrent encoder for NMT We also train a word-based model with a radically different
architecture. Instead of using recurrent neural networks in its encoder, we use convolutions. The
idea is that we do not need to build a representation of the entire input sequence, when we have
an attention mechanism that can look anywhere in the input sequence. This is inspired by the
Transformer model (Vaswani et al. 2017), which does not use any recurrent neural network, but
many dense layers with attention mechanisms that can look anywhere in the previous layer.

The encoder uses word embeddings of size 256. Because we do not encode the sentence with
an LSTM, we want to give more representation power to the embeddings. We also use position
embeddings of size 64, which encode the absolute position of each symbol in the input sequence.
This is important, as contrary to RNNs, which read the sequence from left to right and are able to
encode positional information, simple convolutions do not have this capacity (except at a local
level). The position embedding matrix has size 25× 64, as the maximum sequence length is 25.

The sequence of word representations (each of size m = 256 + 64 = 320) is processed by two
convolutional layers. Similarly to the speech encoder, we use 16 convolution filters of size 3×3.
We use a stride of 2 w.r.t. feature axis, but no stride for the time axis (we do not want to reduce
the length of the sequence). This is followed by another linear convolution layer with 16 filters
of size 3× 3× 16. This results in a sequence of shape T × 1280, which is directly read by the
decoder’s attention model (without being processed by a RNN). These vectors are also averaged
w.r.t. time axis and used to initialize the decoder.

The decoder is a conditional LSTM of size n′ = 256, with word embeddings of size m′ = 128,
and a dense output layer of size d = 128 (before the linear vocabulary projection). The word-
based models tend to overfit more than character-based ones, so we use dropout with rate 0.4
on the word embeddings, the inputs of the RNNs, the initial state of the decoder, the decoder’s
dense layer, and in the attention mechanism. We train the model with Adam and a batch size of
32. All the model’s weights (except bias vectors) are initialized to a centered normal distribution
with standard deviation 0.1.

The results of this model on the BTEC MT task are shown in Table 5.5 (model “Conv-Word”).

Results Table 5.5 shows the BLEU scores of our models on the BTEC MT task, and on the
AST task.

5This is implemented by zeroing out the entire embedding vector for those characters. The “dropped’ characters
are still used in the computation of the loss. This is similar to dropout on the embeddings, but more aggressive.

Chapter 5 – Contributions: Speech Translation 130

Task Model
Dev BLEU Test BLEU

Steps
Greedy Beam Greedy Beam

AST
Pyramidal 34.8 38.3 33.9 36.8 56k (×64)

Convolutional 35.0 38.3 33.4 35.7 53k (×64)
Convolutional-Cond 34.1 36.8 32.8 35.0 80k (×64)

MT
Conv-Word 53.2 53.7 47.8 48.8 27k (×32)
LSTM-Char 51.9 53.2 47.4 49.2 64k (×64)

LSTM-Char ensemble (5) 54.8 56.0 49.7 51.0 –

TABLE 5.5: Results of our best performing models on the BTEC Automatic Speech Translation
task (AST), and on the Machine Translation task (MT). The dev and test data for is on the
unknown speaker Agnes. The ensemble combines 5 instances of the same model (trained from
scratch). All the AST models output characters. The beam search decoder uses a beam size
of 8 with length normalization. The numbers in parentheses in the last column are the batch
sizes. Our previous best test BLEU scores on end-to-end AST were 37.9 (ensemble) and 31.9

(single) (see Table 5.3). The best NMT score was 47.5 (ensemble) (see Table 5.2).

We see that our new best single model on AST outperforms the previous best single model by 5
BLEU points, falling just 1 BLEU point off our previous ensemble result.

On NMT, the improvement is even more impressive, our best single model outperforms the
previous ensemble result by almost 2 BLEU points. An ensemble of 5 models now obtains a
BLEU score of 51, which is 3.5 points above the previous best NMT result (ensemble of 5), and
3.4 points above the SMT baseline.

These large improvements are mostly due to the following changes: character-level decoding,
“generate first” strategy, and a more powerful decoder. The character-level models tend to overfit
much less, and we hand-tuned (on the dev set) the dropout level and the size of the models to
limit overfitting while keeping the models as large as possible. This way, we were able to train
the models for much longer without overfitting. We also removed some unnecessary elements
that obfuscated the model with no obvious improvements: the convolutional attention model
and the external language model.

Interestingly, the atypical “Conv-Word” model for NMT achieves very good scores, for a frac-
tion of the training time of the character-based models. The sentences from BTEC often have
a very simple grammatical structure, which the attention mechanism (combined with the de-
coder’s language model) can manage on its own. However, it is unsure whether this result
would transfer to other, more complex, MT tasks (unless using multiple non-linear layers with
multiple attention heads like the Transformer).

5.2 Extraction of a New AST Corpus

The results presented in the previous section were obtained on a synthetic corpus. Even though
the results are promising, they are not sufficient to validate the efficacy of our end-to-end models.
The text corpus (BTEC) contains extremely short sentences, with a very limited vocabulary
compared to real-world corpora.

The main limit of this study is that the audio side of the corpus was obtained with speech
synthesis and with a small number of speakers. With such a limited variability, it is easy for
a large neural network to learn by heart a mapping from audio frames to words or characters.

Chapter 5 – Contributions: Speech Translation 131

Our evaluation on an unknown speaker mitigates these doubts. We see that our model is able to
accurately translate speech from an unknown speaker, which means that even if it learned how
to read audio frames by heart, it is still able to generalize to unseen audio frames.

To continue this study and apply our speech translation techniques to a real-world scenario,
we looked for non-synthetic speech-to-translation datasets. These resources are very scarce,
and those that exist are quite small. There is the Fisher-CALLHOME corpus of recorded tele-
phone conversations (Spanish→English) (Post et al. 2013), which Weiss et al. (2017) use in their
follow-up work. But a part of this corpus is owned by the LDC and not available to us.

There exist many audio transcriptions in the public domain and also text translations, sometimes
of the same content. One notable example is audiobooks. The free resource “LibriSpeech”
contains a thousand hours of audiobooks that are in the public domain, aligned with the original
written books. On top of that, there is “Project Gutenberg” which offers free access to public
domain books. Many such books have been translated in several languages.

Kocabiyikoglu et al. (2018) proceeded to find the intersection of these two resources, so as
to produce a sentence-aligned corpus of speech, text transcriptions and text translations, from
English to French. This section presents this work, as well as the final extracted corpus.67

Another resource, which is left for future work, is the TED talks. Cettolo et al. (2012) provide a
corpus of TED talk subtitles aligned with their translations in other languages, which is part of
the yearly IWSLT evaluation campaign.8 The TED talks themselves (audio and video) are also
available online.9 Rousseau et al. (2014) processed this resource and created a corpus for ASR.10

These two corpora could be aligned so as to produce a speech translation corpus. Furthermore, it
could be interesting to use the video as additional input and do multimodal machine translation.
A well-performing machine translation of subtitles along with audio and video could prove a
useful real-world application (e.g., to translate upcoming TED talks).

5.2.1 Alignment

LibriSpeech Augmented LibriSpeech (Kocabiyikoglu et al. 2018) is the intersection of Lib-
riSpeech (Panayotov et al. 2015) with several public-domain e-book repositories (including
Project Gutenberg).

LibriSpeech is a resource for ASR that was built from LibriVox,11 a free database of public
domain audiobooks, spoken by volunteers through crowd-sourcing (originally not intended for
ASR). The original English-language books that are used for the recordings come from Project
Gutenberg.12

6This work was performed while the main author was doing his Master’s thesis in GETALP (LIG), under the
supervision of Laurent Besacier. I had no part in this work: I only took part in some of the discussions and helped
disseminate the corpus. The end goal was to use this dataset to continue the experiments done in (Bérard et al.
2016a). This work resulted in the creation of a resource that was published at LREC 2018 (Kocabiyikoglu et al.
2018), and a follow up work of (Bérard et al. 2016a) that was published at ICASSP 2018 (Bérard et al. 2018).

7Augmented LibriSpeech: https://persyval-platform.univ-grenoble-alpes.fr/DS91/
detaildataset

8https://wit3.fbk.eu/ and http://opus.nlpl.eu/TED2013.php
9https://www.ted.com/talks

10http://www-lium.univ-lemans.fr/en/content/ted-lium-corpus
11https://librivox.org/
12http://www.gutenberg.org/

https://persyval-platform.univ-grenoble-alpes.fr/DS91/detaildataset
https://persyval-platform.univ-grenoble-alpes.fr/DS91/detaildataset
https://wit3.fbk.eu/
http://opus.nlpl.eu/TED2013.php
https://www.ted.com/talks
http://www-lium.univ-lemans.fr/en/content/ted-lium-corpus
https://librivox.org/
http://www.gutenberg.org/

Chapter 5 – Contributions: Speech Translation 132

corpus hours per-speaker female male total
minutes speakers speakers speakers

dev-clean 5.4 8 20 20 40
test-clean 5.4 8 20 20 40
dev-other 5.3 10 16 17 33
test-other 5.1 10 17 16 33

train-clean-100 100.6 25 125 126 251
train-clean-360 363.6 25 439 482 921
train-other-500 496.7 30 564 602 1166

TABLE 5.6: Description of each subset of the LibriSpeech corpus. This table is extracted from
(Panayotov et al. 2015). The train-clean subset is split in two so as to let the user choose the

corpus size most suited to his needs (460 hours is a lot to deal with in many applications).

The creators of LibriSpeech carefully segmented the speech signal and aligned it with the
English-language books (at the chapter-level and sentence-level). English sentences were lower-
cased, stripped of special symbols and punctuation, and labeled as “transcriptions”. The original
(unprocessed) books are also available as part of LibriSpeech.

LibriSpeech is composed of 1568 books, with a total of 5831 chapters, spoken by over two
thousand different speakers. One of the goals of this resource was to have as many speakers
as possible. Speakers were limited to a maximum of 25 minutes of speech, to avoid major
imbalances.

Panayotov et al. (2015) trained an ASR model on Wall Street Journal (WSJ), and computed the
average Word Error Rate of this model on each of the speakers. LibriSpeech was split in two:
a “clean” part that gathers the best-scored speakers, and an “other” part that gathers the noisier
data (either lower quality recordings, or more challenging transcriptions). Then, these two parts
were split into disjoint train, dev and test sets. Table 5.6 shows detailed statistics about the
different subsets that are the result of this split.

Finding French Translations The first step to build the Augmented LibriSpeech corpus was
to find French-language books corresponding to the English-language books used in LibriSpeech.
First, the English book titles were automatically translated to French using DBPedia (a pub-
lic knowledge base that contained the “official” translation of most titles). Then, an index of
French-language public domain e-books was used to find web links matching these titles.13

This, along with manual search on several public domain e-book websites, resulted in a total of
315 different books in French, corresponding to 1818 chapters in LibriSpeech. These books are
mostly novels, but some are plays, poems, fables, treaties or religious texts. Then, the English
and French books were split into matching chapters (regular expressions were used to identify
chapter boundaries). This resulted in a set of 1423 pairs of chapters, from 247 books.

Sentence Alignment Then, these chapters were aligned at the sentence level using a sentence
aligner called hunalign (Varga et al. 2005). This program takes an unaligned parallel corpus
(i.e., a pair of documents that are translations of each other), segmented at the sentence-level,
and uses a bilingual dictionary (Moore 2002) along with sentence-length information (Gale et
al. 1993) to find an alignment between source and target sentences. This results in a set of pairs
of sentences, more commonly referred to as “parallel corpus”.

13http://noslivres.net/

http://noslivres.net/

Chapter 5 – Contributions: Speech Translation 133

Kocabiyikoglu et al. (2018) built a large bilingual dictionary of 128 000 entries, by merging
several open source dictionaries. They also pre-processed the French and English text by: 1)
removing clutter and normalizing symbols with regular expressions, 2) splitting into sentences
using NLTK, 3) stemming (removing suffixes) to reduce vocabulary sparsity and facilitate dictio-
nary matches by hunalign. With this pre-processing done, they used hunalign with the extracted
dictionary to find an alignment. Once the alignment found, they reverted the sentences to their
unstemmed form.

Speech Alignment The text alignment was done between the original English books used in
LibriSpeech and the French-language translation (or original version) of these books. However,
the speech segments provided in LibriSpeech correspond to English transcriptions that do not
necessarily match the segmentation done by NLTK and hunalign.

First, Kocabiyikoglu et al. (2018) aligned the English-language transcriptions with the English
side of the parallel corpus, using mweralign, a program for realigning texts in the same language
that have a different segmentation. This alignment resulted in a new segmentation of the English
transcriptions, which are correctly aligned with the French translations.

However, this new segmentation is unaligned with the actual speech segments from LibriSpeech
(i.e., a single transcription does not correspond to a single speech segment anymore). For this
reason, all the speech segments of a chapter were concatenated into a single file, and aligned (at
the frame-level) with the transcriptions using the gentle toolkit.14 Once this alignment done, it
is straightforward to segment this single file into speech segments that are aligned with the new
segmentation of the transcriptions.

At the end of this process, there are a little over 131k quadruplets of speech segments, with
their transcription (clean), raw English text (untokenized and unnormalized), and raw French
translation. This corresponds to a total of 236 hours of speech, from 1408 chapters, belonging
to 247 different books. In each of these tuples, Kocabiyikoglu et al. (2018) also add an automatic
translation of the English text, using Google Translate.

Table 5.7 shows some examples of English transcriptions along with their French translations,
randomly sampled from this corpus.

Evaluation Kocabiyikoglu et al. (2018) manually evaluated the quality of the corpus by sam-
pling 200 sentences from 4 different chapters: 2 chapters whose average alignment score (by
hunalign) was close to the global average, 1 chapter with higher than average score, and 1 chap-
ter with a worse than average score. They asked three annotators to rate the speech alignments
on a 1 to 3 scale, and the text alignments on a 1 to 5 scale. The average speech alignment score
is very close to three (2.89), which validates the quality of the audio alignments performed with
gentle. The per-chapter text alignment ratings correlate with their average hunalign scores.15

This suggests that the alignment scores produced by hunalign are a good way of assessing the
quality of the alignments (and possibly filtering the alignments according to their quality).

14https://github.com/lowerquality/gentle
15The average human ratings are 4.64, 4.28, 3.86 and 3.58, and the hunalign scores are 1.34, 1.14, 0.96 and 0.66.

https://github.com/lowerquality/gentle

Chapter 5 – Contributions: Speech Translation 134

English French Google Translate
they returned to the hotel
at the door franz ordered
the coachman to be ready at
eight

à la porte , franz donna l’
ordre au cocher de se tenir
prêt à huit heures .

ils sont retournés à l’ hôtel ;
à la porte , franz a ordonné
au cocher d’ être prêt à huit
heures .

the ideal of oppression was
realized by this sinister
household

l’ idéal de l’ oppression
était réalisé par cette do-
mesticité sinistre .

l’ idéal de l’ oppression a
été réalisé par ce foyer sin-
istre .

were simply running
around blindfolded ned
land was just pronouncing
these last words when we
were suddenly plunged
into darkness utter dark-
ness

nous marchons , nous nav-
iguons en aveugles ... ” -
- ned land prononçait ces
derniers mots , quand l’ ob-
scurité se fit subitement ,
mais une obscurité absolue
.

nous courons simplement
autour des yeux : ” ned
land ne faisait que pronon-
cer ces derniers mots quand
nous étions tout à coup
plongés dans l’ obscurité ,
l’ obscurité totale .

TABLE 5.7: Examples of sentence tuples in Augmented LibriSpeech. Left: English transcrip-
tion. Middle: automatically aligned French translation (extracted from a book). The transcrip-
tions do not contain any punctuation symbols (as is usual in ASR). Right: automatic translation

of the English (raw) text by Google Translate.

5.2.2 Final Corpus

The main motivation for building this corpus is to use it as a public benchmark for End-to-End
Automatic Speech Translation. To encourage the reproducibility of research and facilitate the
comparison of results, Augmented LibriSpeech was split into “official” train, dev and test sets.

This corpus is particularly challenging, as the segments are quite long on average, the vocabulary
is large, and the language can be very specialized, formal, and sometimes archaic. The alignment
process is noisy, and sometimes results in inaccurate alignments, which makes the corpus even
more difficult. For this reason, the tuples were sorted according to their “alignment quality”,
a combination of the alignment score by hunalign and a score obtained with a crosslingual
similarity measure from (Ferrero et al. 2016). Augmented LibriSpeech was split into two subsets
according to these scores: a clean part and a noisier part (not unlike the data split done in
LibriSpeech).

One hundred hours of speech were used to build a “clean” training set. Another 2 hours and a
little less under 4 hours of clean speech were used to build a development set and a test set. The
remaining (noisier) 123 hours were put in a more challenging set, yet still potentially useful,
named “other”.

The chapters inside the dev and test sets were carefully selected to respect the following rules:

• The chapters should be unique (absent from the other subsets).

• The speakers should be unknown from the training set (this limitation in not true for
“other” however).

• The books should have several other chapters inside the training set (to make the task less
challenging).

Chapter 5 – Contributions: Speech Translation 135

corpus segments words hours avg len (s) spkrs books chapters avg score
train 47271 961k 100:00 7.62 728 240 1232 1.44
dev 1071 18.7k 2:00 6.73 12 9 17 1.40
test 2650 36.3k 3:44 6.57 16 10 22 1.39

other 61369 1.21M 122:46 7.20 648 232 1091 0.96

TABLE 5.8: Information about each subset of the Augmented LibriSpeech corpus. The train,
dev and test corpora are cleaner, with higher quality alignments on average. The score in the
last column is the alignment score produced by hunalign (averaged over the entire subset). The

“avg len” column gives the average time length in seconds of speech segments.

• The chapters should belong to the “clean” part of the original LibriSpeech (i.e., with a
good speech quality and not too challenging English transcription).

Finally, the test set was manually inspected to remove all inaccurate alignments. Table 5.8 shows
detailed statistics about the final subsets.16

5.3 Speech Translation of Audiobooks

In this section, we apply our speech translation models to the audiobook corpus. As this task
is much harder, we propose new techniques, which we also evaluate on the BTEC corpus as
a measure of comparison to the previous results. We also train MT and ASR models. This
work was published at ICASSP,17 as a paper titled “End-to-End Automatic Speech Translation
of Audiobooks” (Bérard et al. 2018).

5.3.1 Data and Pre-Processing

Like in Section 5.1.2, audio files were pre-processed using Yaafe (Mathieu et al. 2010), to extract
40 MFCC features and frame energy for each frame, with a step size of 10 ms and window
size of 40 ms. We tokenize and lowercase all the text, and normalize the punctuation, with
the Moses scripts.18 For BTEC, the same pre-processing as in the previous section is applied.
Character-level vocabularies for LibriSpeech are of size 46 for English (transcription) and 167
for French (translation). The decoder outputs are always at the character-level (for AST, MT
and ASR). For the MT task, we translate from English transcriptions to French translations. The
transcriptions are pre-processed into BPE units (Sennrich et al. 2016a). We limit the number
of merge operations to 30k, which gives a vocabulary of size 27k. The MT encoder for BTEC
takes entire words as input.

Table 5.9 gives detailed information about the size of each corpus. We perform all our ex-
periments using “train” only (without “other”). We double the size of the training set by con-
catenating the French data with the Google Translate data. The source side (speech for AST,
transcriptions for MT) is simply duplicated. For ASR, we keep the training set as it is.

16More information can be found about the GitHub page of the corpus: https://github.com/alicank/
Translation-Augmented-LibriSpeech-Corpus

17International Conference on Acoustics, Speech, and Signal Processing, Calgary (Canada).
18http://www.statmt.org/moses/

https://github.com/alicank/Translation-Augmented-LibriSpeech-Corpus
https://github.com/alicank/Translation-Augmented-LibriSpeech-Corpus
http://www.statmt.org/moses/

Chapter 5 – Contributions: Speech Translation 136

Corpus
Total Source (per segment) Target (per seg)

segments hours frames chars words chars words
train 1

47271 100:00 762 111 20.3
143 28.2

Augmented train 2 126 24.6
LibriSpeech dev 1071 2:00 673 93 17.4 110 22.0

test 2048 3:44 657 95 17.7 112 22.5

BTEC
train 19972 15:51 276 50 10 42 9.5
dev 1512 0:59 236 40 8.1 33 7.6
test 933 0:36 236 41 8.2 34 7.7

TABLE 5.9: Size of the Augmented LibriSpeech and BTEC corpora, with the average frame,
character and word counts per segment. Whitespaces are also counted as characters. The
source side of BTEC actually has six times this number of segments and hours, because we
concatenate multiple speakers (synthetic voices). LibriSpeech “train 1” (alignments) and “train

2” (automatic translation) share the same source side.

5.3.2 End-to-End Models

The Automatic Speech Translation model on Augmented LibriSpeech is almost identical to the
“Convolutional-Cond” model presented in Section 5.1.4 (“Improvements”). The main differ-
ences are its size (larger cell size and embeddings), the structure of the decoder (which has
a dense output layer, and uses the previous symbol for predicting the next symbol), and the
training scheme (smaller batch size, smaller dropout, larger sequence length).

Speech Encoder We use the same convolutional speech encoder as in the previous section.
The model takes a sequence of MFCCs of length T , which is passed to a stack of two non-linear
layers (the same transformation is applied to all vectors in the sequence), resulting in a sequence
of T vectors of size m. This sequence of vectors is then processed by two convolutional layers,
with 16 filters of size 3 × 3 and a stride of two w.r.t. time axis and feature axis. This results in
a new sequence of shape T

4 × 4m = T̂ × m̂. Then, this shorter sequence of features is used
as input to a stack of three bidirectional LSTMs, which results in a sequence of annotations
h1, · · · , hT̂ , where each annotation hi is a concatenation of a forward and a backward state:

hi = (~h
[3]
i ⊕ ~h

[3]

i) ∈ R2n, with n the encoder cell size.

Contrary to the AST models on BTEC, these concatenated states are used by the attention mech-
anism as they are (they are not mapped to size n). We average all these states into a single vector,
which is used to initialize the decoder.

Character-level decoder We use a character-level decoder composed of a conditional LSTM
(Sennrich et al. 2017), followed by a dense layer of size d.

s
[1]
t = update

[1]
dec(s

[2]
t−1, E

′(z̃t−1)) (5.23)

ct = look(s
[1]
t , (hi)

T̂
i=1) (5.24)

s
[2]
t = update

[2]
dec(s

[1]
t , ct) (5.25)

x′t = s
[2]
t ⊕ ct ⊕ E′(z̃t−1) (5.26)

yt = Wvoc tanh(Woutx
′
t + bout) + bvoc (5.27)

Chapter 5 – Contributions: Speech Translation 137

ENGLISH SPEECH

(MFCCs)

ENGLISH TEXT

(BPE)

ENGLISH TEXT

(CHARACTERS)

FRENCH TEXT

(CHARACTERS)

AST
MTASR

FIGURE 5.2: Multi-Task training of English-to-French AST, English-to-French MT and En-
glish ASR. The same speech encoder can be shared between AST and ASR, and the same
character-level decoder can be shared between MT and AST. This can be exploited by pre-
training the AST encoder and decoder on MT and ASR tasks, or multi-task training on the

three tasks at once.

where update[1] and update[2] are two LSTMs with cell size n′. look is a vanilla global attention
mechanism (Bahdanau et al. 2015), which uses a feed-forward network with one hidden layer of
size k. E′ ∈ R|V ′|×m′ is the target embedding matrix, with m′ the embedding size and |V ′| the
vocabulary size, Wvoc ∈ R|V ′|×d, bvoc ∈ R|V ′|, Wout ∈ Rd×(n′+2n+m′), bout ∈ Rd. As always,
z̃t−1 is either the previous ground truth symbol (teacher forcing), or the prediction of the model
at the previous time step (when decoding).

Multi-task training As illustrated by Figure 5.2, the same speech encoder (acoustic model)
can be used both for AST and ASR, and the same character-level decoder (language model) can
be used for AST and MT.

We train ASR and MT models whose architecture is compatible with our AST model. Thanks to
these two models, we have a baseline cascaded speech translation model, where the MT model
is used to translate the outputs of the ASR model.

We also train a separate AST model that we initialize with these two pre-trained models: the
encoder parameters are initialized with the parameters of the ASR model’s encoder, while the
decoder parameters are initialized with the MT model’s. We call this model “Pre-trained AST”.
The only parameters that are not pre-trained (therefore initialized at random) are those that link
the encoder with the decoder: the attention model and the transformation from encoder’s final
state to decoder’s initial state.

We also train a Multi-Task model, which combines all three models (with shared encoders and
decoders) and trains on the three tasks at once. Finally, we do a combination of both settings,
where a multi-task model is initialized with pre-trained MT and ASR models (“Pre-trained
Multi-Task”).

Each task has its own training loss and its own training set and dev set. At each training step, we
pick a task at random, with probability 0.6 for AST (the main task), and 0.2 for ASR and MT
(auxiliary tasks). Then, we read the next batch from this task’s training set, and do a mini-batch
SGD update on this task’s loss. This is a similar multi-task setting as Luong et al. (2016). Every
500 steps on each task, we evaluate this task’s performance on its dev set, using BLEU for MT
and AST, and WER for ASR. We keep the best checkpoint according to AST performance.

Chapter 5 – Contributions: Speech Translation 138

Model Total Time Total steps Best dev loss
ASR 320h 500k 18.0 (0.28 BPC)
MT 44h 80k 68.6 (0.90 BPC)

End-to-End AST 356h 378k 78.0 (1.02 BPC)
Pre-trained AST 135h 140k 74.6 (0.98 BPC)
Multi-Task AST 382h 232k 75.4 (0.99 BPC)

Pre + Multi-Task AST 152h 101k 74.0 (0.97 BPC)

TABLE 5.10: Training time of our models on Augmented LibriSpeech. The “Pre + Multi-Task”
model was trained on a Quadro P6000 (with 24 GB of memory). The MT model was trained

on a GTX 1070 (8 GB), and all the other models were trained on a GTX 1080 Ti (12 GB).

We had to find matching AST, MT and ASR architectures, which explains why our single-task
models do not always have the best possible performance. We performed most of our hyperpa-
rameter hand-tuning on the BTEC AST and MT tasks (see improvements section), while trying
to maximize the scores on both tasks. Then we ported our models to Augmented LibriSpeech,
by essentially increasing their size.

5.3.3 Experiments

Model Settings Our BTEC models use an LSTM size of n = n′ = 256, while the LibriSpeech
models use a cell size of n = n′ = 512, except for the speech encoder layers whose cell size
of n′ = 256. We use character embeddings of size m′ = 64 for BTEC, and m′ = 128 for
LibriSpeech. The MT encoders are shallower, with a single bidirectional layer. The source
embedding size for words (BTEC) and subwords (LibriSpeech) is respectively m = 128 and
m = 256.

The input layers in the speech encoders have a size of l = 256 for the first layer andm = 128 for
the second. The LibriSpeech French decoder (MT and AST) has an output layer size of d = 512,
and the English decoder (ASR) uses d = 256. For BTEC, we do not use any non-linear output
layer, as we found that this led to overfitting.

Training settings We train our models with Adam (Kingma et al. 2015), with a learning rate of
0.001, and a mini-batch size of 64 for BTEC and LibriSpeech MT, and 32 for LibriSpeech AST
and ASR (because of memory constraints). We use dropout with a rate of 0.2 for LibriSpeech
and 0.4 for BTEC. Dropout is applied on the inputs of the LSTMs, on the initial state of the
decoder, in the attention model, and on the outputs of the encoder’s two input layers (for ASR
and AST). In the MT tasks, we also apply dropout on the source embeddings with rate 0.2, and
drop target symbols at random with probability 0.2.

Because of GPU memory limits, we set the maximum length to 1400 frames for LibriSpeech
audio input (600 for BTEC), and 300 characters for its output (120 for BTEC). This covers about
90% of the training corpus. Longer sequences are kept but truncated to the maximum size. We
evaluate our models on the dev set every 1000 mini-batch updates (500 for Multi-Task training)
using BLEU for AST and MT, and WER for ASR, and keep the best performing checkpoint
for final evaluation on the test set. Table 5.10 gives the total training time of our LibriSpeech
models.

Chapter 5 – Contributions: Speech Translation 139

Results Table 5.11 presents the results for the ASR and MT tasks on BTEC and Augmented
LibriSpeech. The MT task (and by extension the AST task) on Augmented LibriSpeech (trans-
lating books) looks particularly challenging, as we observe BLEU scores around 20%.19

Model
ASR (WER ↓) MT (BLEU ↑)
Dev Test Dev Test

B
T

E
C greedy 16.2 14.9 51.9 47.4

beam search 15.9 13.8 53.2 49.2
ensemble (2) 13.1 11.3 54.7 50.7

L
ib

ri
Sp

ee
ch greedy 21.0 19.9 21.2 19.2

beam search 18.8 17.9 21.2 18.8
ensemble (2) 14.8 14.2 21.8 19.3

Google Translate 24.4 22.2

TABLE 5.11: MT and ASR results for BTEC and Augmented LibriSpeech. We use a beam
size of 8 and ensembles of 2 models trained from scratch. The dev and test data for BTEC is

on the unknown speaker Agnes.

We also evaluated our LibriSpeech ASR model on the official LibriSpeech “test-clean” and
“test-other” datasets, for comparison with other results in the literature. The ensemble of two
models obtains a WER of 18.5 on test-clean and 38.4 on test-other. There is a huge gap with
the baseline WER scores of 6.6 and 22.5 that Panayotov et al. (2015) obtain with a DNN model
trained on 100h of LibriSpeech. The main reason for this staggering gap in performance, is that
we use a completely different architecture and training objective, which are not optimized for
ASR but for MT. For instance, there is no monotonicity constraint or prior, which is a strong
disadvantage against classic ASR models.

Tables 5.12 and 5.13 present the results for the AST task on LibriSpeech and BTEC. Contrary to
Weiss et al. (2017), in both BTEC and LibriSpeech settings, best AST performance is observed
when a symbolic sequence of symbols in the source language is used as an intermediary repre-
sentation during the speech translation process (cascaded system). Pre-training and multi-task
learning20 improve AST performance, at a fraction of the training time. However, the training

19Google Translate is also scored as a topline (22.2%).
20If source transcriptions are available at training time.

Model
Dev BLEU Test BLEU

Steps
Params

Greedy Beam Greedy Beam Ensemble (million)
Cascaded 15.2 15.5 14.6 14.6 15.9? 6.3 + 15.9

End-to-End 12.2 13.0 12.3 12.9

15.8†
369k

9.4
Pre-trained 13.1 14.1 12.6 13.3 129k
Multi-task 13.3 14.3 12.9 13.6 206k

Pre + Multi-task 13.1 14.0 12.8 13.4 95k

TABLE 5.12: AST results on Augmented LibriSpeech. ? chains an ensemble of two ASR
models with an ensemble of two NMT models (see Table 5.11). The non-cascaded ensemble‡

combines all four models. When doing an ensemble with the best 2 models, we get a BLEU
score of 15.2. With the best 3 models, we get 15.7. We do beam search with a beam size of
8 and length normalization. All the ensemble results use a beam search decoder. The “steps”
column gives the number of SGD updates that were performed before reaching the best dev
BLEU score (greedy). We trained the models for an indefinite period of time, and manually

interrupted training when dev set performance stopped improving.

Chapter 5 – Contributions: Speech Translation 140

Model
Dev BLEU Test BLEU

Steps
Params

Greedy Beam Greedy Beam Ensemble (million)
Bérard et al. (2016a) 30.1 32.3 29.1 31.3 37.9† 12k 10.4

Cascaded 40.1 42.4 38.9 40.7 43.8 7.9 + 3.4
End-to-End 34.1 36.8 32.8 35.0

43.9‡
80k

6.7
Pre-trained 37.9 40.4 33.7 36.3 58k
Multi-Task 37.7 40.4 34.6 37.4 60k

Pre + Multi-task 37.0 40.3 35.1 37.6 41k

TABLE 5.13: Results of the AST task on BTEC. † was obtained with an ensemble of 5 models.
The non-cascaded ensemble‡ combines the end-to-end, pre-trained, multi-task and pre-trained
+ multi-task models. When ensembling the two best AST models, we get a BLEU score of
42.7. With three models, we get 43.7. As a measure of comparison with †, an ensemble of 5
instances of the end-to-end model gives a Test BLEU score of 41.1. Contrary to Section 5.1.3,

we only give mono-reference scores.

0 100000 200000 300000
steps

0

2

4

6

8

10

12

De
v

BL
EU

End-to-End
Pre-trained
Multi-Task
Pre-trained + Multi-Task

FIGURE 5.3: Greedy dev BLEU scores while training of four models for end-to-end AST of
audiobooks. For the Multi-Task models, we only count the updates done on the AST task. The
pre-trained models were actually trained for much longer if we count the training time of the

MT and ASR models.

time of the pre-trained ASR and MT models needs to be taken into account (61k steps for MT
and 490k steps for ASR). A useful property of our end-to-end models is that they are much more
compact (at decoding time) than the cascaded model.

When combining several models in an ensemble, we obtain close performance to that of the
cascaded baseline. However, our ASR baseline is rather weak (as demonstrated by our evalua-
tion on LibriSpeech test-clean). A cascaded system that uses a more conventional ASR system
would probably achieve better performance. Assuming perfect ASR, we would get a BLEU
score of 19.3 on the Augmented LibriSpeech test set (performance of the NMT model), or 22.2
using a strong commercial NMT system.

The AST results presented on Augmented LibriSpeech demonstrate that our augmented corpus
is useful, although challenging, to benchmark end-to-end AST systems on real speech at a large
scale. We hope that our baselines (both for AST and MT) will be challenged in the future.

Figure 5.3 shows the progression of dev BLEU scores during training for our four LibriSpeech
AST settings. We see that pre-training helps the model converge much faster. Eventually, the

Chapter 5 – Contributions: Speech Translation 141

20000 40000 60000 80000
steps

30

40

50

60

70

W
ER

 (A
SR

)
14

15

16

17

18

19

20

21

BL
EU

 (M
T)ASR mono

ASR multi
MT mono
MT multi

FIGURE 5.4: Augmented LibriSpeech dev BLEU scores for the MT task, and WER scores for
the ASR task, with the initial (mono-task) models, and when multi-task training picks up.

End-to-End system reaches a good solution, but after three times as many updates. Multi-Task
training does not seem to be helpful when combined with pre-training.

Figure 5.4 shows the progression of ASR and MT performance when training single models, and
when we continue training these models as part of a multi-task training procedure (i.e., while
sharing parameters with the AST task, and alternating SGD updates). Because the multi-task
procedure focuses on the AST task (60% of all updates are done on this task), the MT and ASR
results degrade slightly. Yet, we observe that the speech encoder and text decoder are still able
to generalize well to other tasks.

Examples Table 5.14 gives examples of outputs by our AST models on LibriSpeech (the sin-
gle end-to-end model, and the ensemble model).

Interestingly, the models seem to mishear certain words. For instance, “eyed” is translated as
“mourions”, the French translation of “died” (phonetically very close to “eyed”). Similarly, it
seems to mistake “narrowly” for “narrow alley” (which translates as “passage”).

We observe that the French language model is not very good. For example, “much superior” is
translated as “beaucoup supérieure”, which is a word by word translation and not fluent French.
This could probably be improved with more target language data (e.g., with multi-task training).
On the other hand, the models seem very good at predicting punctuation symbols.

By looking at the transcriptions and French translations, we start to see why this is a diffi-
cult task. Some turns of phrase look quite “bookish” and almost archaic (“have you to depend
upon”). For all three examples, we checked the speech input, and it matches perfectly the En-
glish transcription. The absence of punctuation in the English transcription makes it ambiguous
and rather hard to understand. This may have an impact on the quality of the cascaded system
and the multi-task models.

Figure 5.5 gives examples of alignments obtained by the attention mechanism of our Lib-
riSpeech AST (pre-trained), ASR and MT models. We see that even though there is no mono-
tonicity prior, the ASR model has learned to do a monotonous alignment. The AST attention
is able to handle speech segmentation and local word reordering (see the alignment of “groupe
domestique”). Both models are able to detect when the sentence actually starts (by ignoring the
silence at the beginning).

Chapter 5 – Contributions: Speech Translation 142

but my sister must know you she must in case of need have you to depend upon
– je veux , vous dis-je , que
ma soeur vous connaisse ;
je veux qu’ elle puisse au
besoin compter sur vous .

ma soeur doit vous
connaı̂tre ; elle doit , en cas
de fait , avez-vous entendu
parler ?

mais ma soeur doit vous
connaı̂tre ; elle doit , en cas
de besoin , avez-vous à de-
scendre ?

we eyed one another narrowly in passing and with no favour
nous nous jetâmes un coup
d’ oeil peu amical .

nous mourions en passant ,
et sans faveur .

nous avons eu un autre
passage en passant et sans
faveur .

to the civil inquiries which then poured in and amongst which she had the pleasure
of distinguishing the much superior solicitude of mister bingleys she could not make
a very favourable answer
quand elle entra dans la
salle à manger , elle fut as-
saillie de questions parmi
lesquelles elle eut le plaisir
de noter la sollicitude toute
spéciale exprimée par mr .
bingley .

pour les inquiétudes
civilisées qui portaient
alors et parmi lesquelles
elle avait le plaisir de
distinguer la sollicitude
beaucoup plus supérieure
de m. bingley , elle ne pou-
vait pas faire une réponse
très favorable .

aux enquêtes civiles qui
s’ enfonçaient et parmi
lesquelles elle avait le
plaisir de distinguer la
sollicitude beaucoup
supérieure de m. bingley
, elle ne pouvait pas faire
une réponse très favorable .

TABLE 5.14: Examples of outputs on the Augmented LibriSpeech test set, by the end-to-end
model (middle column), and the ensemble model (right column). The top row is the English

transcription, and the left column is the reference French translation.

ce g r oupe domes t i que é t a i t admi r ab l e . t h a t dome s t i c g r o up wa s wo r t h y o f a dmi r a t i o n .

c e g r o u p e d o m e s t i q u e é t a i t a d m i r a b l e .
that

domestic
group
was

worthy
of

admiration
</S>

FIGURE 5.5: Examples of forced alignments performed by the pre-trained AST model (top
left), the ASR model (top right), and MT model (bottom). To better visualize the character-
level outputs, the alignments are reversed: the x-axis corresponds to the target sequence and

the y-axis to the source sequence.

Chapter 5 – Contributions: Speech Translation 143

Model AST BLEU MT BLEU ASR WER
Single models 35.0 49.2 13.8

Pre-trained 36.3
Pre-trained + Multi-Task 37.6 46.1 15.3

Multi-Task 37.4 43.8 17.2
Multi-Task joint 37.3 46.8 17.8
Ensemble (all) 45.1

TABLE 5.15: Results of different Multi-task models on BTEC test, on the AST, MT and ASR
tasks (with beam search decoding). The ensemble combines the 5 previous models. The “single

models” row actually corresponds to three different models (AST, MT and ASR).

Multi-task We go a little more in depth and explore different multi-task training strategies on
BTEC AST.

Table 5.13 reports the scores of a multi-task model which is initialized with pre-trained ASR
and MT models (pre-trained + multi-task setting). It also shows the scores of an end-to-end
AST model (mono-task and not pre-trained), and a pre-trained AST model (mono-task). We
observed that pre-training helps the model converge faster, and to a slightly better score than the
end-to-end model. However, combining pre-training with multi-task training did not seem to be
useful.

We now train a multi-task model that is not pre-trained (all parameters are initialized at random),
and compare its performance against the other settings in Figure 5.6.

Because we have a 3-fold parallel corpus (with speech segments aligned with their transcription
and translation), we can train the AST, MT and ASR models jointly. This can be done by
building a single large joint model (with two encoders and two decoders), and computing a
training loss for each of the tasks. The joint loss is a weighted sum of the three tasks’ losses:
Ljoint = 0.6×LAST + 0.2×LMT + 0.2×LASR. By optimizing Ljoint we train the model on
the three tasks at once. This is different from our previous multi-task training procedure, where
we had three models with their own loss and optimized one after another.

Table 5.15 compares the performance of these different training strategies on the AST task, and
on the auxiliary ASR and MT tasks. Figure 5.6 shows their training progression (dev BLEU as
a function of SGD steps).

We see that the “Multi-task” and “Joint Multi-Task” models obtain similar AST performance
and are equally fast to converge. Even though the joint model is more elegant, the multi-task
framework of (Luong et al. 2016) is more convenient, as the different tasks can be trained with
different data (which we have not tried). The joint multi-task model seems better on the auxiliary
MT task. This may be an artifact of the (arbitrary) choice of task ratios. Finally, we see that the
“pre-trained” and “pre-trained + multi-task’ models are faster to train, although they converge
to similar scores. The multi-task model that is also pre-trained performs better on the auxiliary
tasks than the non pre-trained version.

By combining all these models into an ensemble of 5 models, we obtain our best score to date
on the BTEC AST task: 45.1 BLEU, 1.3 points above the cascaded baseline.

Cold-start problem One big problem that we had with AST and ASR on Augmented Lib-
riSpeech was to make the models converge. We often observed a long period at the beginning

Chapter 5 – Contributions: Speech Translation 144

0 20000 40000 60000 80000 100000
steps

5

10

15

20

25

30

35

De
v

BL
EU

End-to-End
Pre-trained
Pre-trained + Multi-Task
Multi-Task
Joint Multi-Task

FIGURE 5.6: Progression of BTEC Dev BLEU scores of different AST models during training.
The “pre-trained” model is a mono-task model (like “end-to-end”), but initialized with the
parameters of existing MT and ASR models. The “pre-trained + multi-task” model combines
this with multi-task training on AST, ASR and MT. “Multi-task” is initialized at random (like
“end-to-end”) but trained on the three tasks. “Joint multi-task” has a single training loss which

is the sum of the AST, ASR and MT losses.

0 5000 10000 15000 20000 25000 30000
steps

0

10

20

30

40

50

De
v

BL
EU

25

50

75

100

125

150

175

200

De
v/

Tr
ai

n
Lo

ss

Dev BLEU
Dev Loss
Train Loss

FIGURE 5.7: Progression of the dev BLEU score and dev/train loss of an attention-based ASR
model trained on Augmented LibriSpeech, at the beginning of its training. We chose to show

BLEU (and not WER) as it better illustrates the cold-start problem.

Chapter 5 – Contributions: Speech Translation 145

of training where the training loss seemed to plateau (and the dev BLEU score stayed at zero),
which gave us little hope as to the future convergence of the model. This “cold-start” problem is
illustrated by Figure 5.7. It turns out that, most of the time, if we wait long enough, the training
loss gets past this plateau and starts decreasing again and the dev set performance starts increas-
ing. This cold-start problem gets worse with more sophisticated encoders. For example, when
we tried using non-linear convolutions (with a ReLU activation), the models took much longer
to converge (even with batch normalization).

We think that this problem may be related to the attention mechanism.21 The attention model
is the main means of gradient propagation back to the encoder layers.22 Because the input
sequence is very long, if the attention model gets the alignment wrong, the gradient feedback is
very likely to flow to the wrong place (or everywhere, but with a very small magnitude). This
makes training the encoder very difficult. Conversely, it is very hard for the attention mechanism
to learn a proper alignment when its input is just random noise.

Figure 5.8 shows that the attention model starts improving around the same time that we get past
the training loss plateau (between 8k and 10k steps). At 6k steps, it has only figured out where
the speech signal begins. Between 8k and 10k steps, the alignment starts to be more localized
and monotonous. At 12k steps, the attention model has completely figured out the monotonous
alignment, and there is almost no difference with the alignment at 80k steps. And yet, the Word
Error Rate decreases from 90.1 (at 12k steps) to 25.9 (at 80k steps).

We think that in the early stage of training, our ASR model basically learns an English language
model, without making use of the speech signal at all. At some point where the language model
is good enough, the attention model starts improving. Then, the gradients can correctly flow up
to the right place in the encoder, and the acoustic model can start to improve.

The dev cross-entropy plateaus around 110 (nats per sentence), which corresponds to ≈ 1.7
bits/character. This looks like a typical number for the entropy of a language model on the
English language.23 This supports our idea that what the ASR model does at this point is just
language modeling (not conditioned on the input sequence at all).

We could probably facilitate the training of such models by giving a prior on monotonous align-
ments. If the attention model is constrained in some way to do a monotonous alignment at
the beginning of training, then the gradients can be back-propagated correctly early on, and we
could maybe avoid the cold-start problem.

Future work We have several leads for improving this work in the future.

• Fixing the cold-start problem. Some ideas in this direction are to:

– Modify the attention mechanism to bias it towards monotonous alignments: with
local attention (Luong et al. 2015b), convolutional attention (Chorowski et al. 2015),
or by giving it positional information (Cohn et al. 2016).

21Thanks to Antonis Anastasopoulos, who suggested the idea.
22Apart from the decoder’s initial state, this is the only thing that links the encoder and the decoder together. The

attention model is supposed to ease training by providing a shorter path for the gradients.
23Brown et al. (1992) gives an upper bound for the entropy of printed English of 1.75 BPC, obtained with a

word trigram language model estimated on the Brown corpus. The current winner of the Hutter Prize (http:
//prize.hutter1.net/), obtains an entropy of 1.22 BPC on the English Wikipedia.

http://prize.hutter1.net/
http://prize.hutter1.net/

Chapter 5 – Contributions: Speech Translation 146

FIGURE 5.8: Forced alignments of the same segment performed by the attention mechanism
of an ASR model (on LibriSpeech) at different stages of training (at 4k, 6k, 8k, 10k, 12k and
80k steps). The source spoken sentence is “their eclipse is never an abdication” (from the dev

set).

– Add a term in the training loss that penalizes non-monotonous alignments. This
term could multiplied by a weight that decays with time, so that in the long-term the
model can learn to do non-monotonous alignments.

– Pre-process the speech data to remove blanks at the beginning and at the end (this
could facilitate a monotonous alignment).

– Do a better initialization and/or use batch-norm (or layer-norm). The difficulty with
training the attention model and the acoustic model is maybe due to a vanishing
gradient problem.

• Training a more expressive AST model, with non-linear convolutions and more layers
(Weiss et al. 2017). A prerequisite for this step is to have fixed the cold-start problem (as
“deeper” models are even harder to train).

• Exploring more multi-task scenarios, for example with additional ASR and MT data, or
with more auxiliary tasks (image captioning, lip reading, parsing, grammar correction,
etc.)

• Training a stronger cascaded baseline (e.g., with a baseline ASR model trained with
Kaldi), for a more rigorous comparison.

• Training AST models that do not use the synthetic Google Translate target, and possibly
use the noisier “other” corpus. This would probably be more difficult, as the alignments
are noisier, and the translation is often not very straightforward (due to the nature of the
training set).

Chapter 6

Neural Post-Editing

This chapter presents our contributions to the Automatic Post-Editing field (APE). As a re-
minder, APE consists in automatically improving the outputs of a Machine Translation system
(MT), where this MT system is considered as a black-box, i.e., we do not have any view or
control of its inner workings. We generally get instances of translation hypotheses generated
by this system, along with their manually post-edited version by a human, and train a system to
imitate this post-editing process. For a more detailed description of this task and of the previous
contributions, see Section 1.2.

The first section defines the problem and the notations that we use. It also describes the datasets
and evaluation methodology of the tasks that we seek to solve. The second section replicates
several results from the literature on neural post-editing. The third section describes our original
contributions to this domain: new neural post-editing architectures, along with an experimental
validation and an analysis of these techniques.

6.1 Task Description

6.1.1 Definitions

Translation-based models As we have seen in Section 1.2, most solutions to Automatic Post-
Editing cast this problem as a Machine Translation problem.

A machine translation model takes as input a sequence of symbols (most often words, some-
times phrases, subwords or characters), and outputs a sequence of symbols in another language.
Machine translation models are trained with instances of such translations: generally pairs of
sentences in the source language with their reference translation (human-made) in the target
language.

However, the automatic post-editing task has a number of differences with machine translation:

1. Two input sequences are generally available: the translation hypothesis (that we will refer
to as MT), and the original sentence in the source language (SRC).

2. Different metrics are used for automatic evaluation: in MT, popular metrics are BLEU
(Papineni et al. 2002) or METEOR. In APE, the most popular metric is HTER (Snover
et al. 2006).

147

Chapter 6 – Contributions: Neural Post-Editing 148

3. A post-editing hypothesis is expected to be relatively close to the original MT hypothesis.
Post-editing references are produced by humans, who aim to minimize the number of edits
with respect to the MT hypothesis (as there is a direct correlation with the time spent post-
editing). HTER rewards PE hypotheses that are a few edits away from this reference, and
by extension, PE hypotheses which are not too far away from the original MT hypothesis.

4. The training corpora in APE are several orders of magnitude smaller than those available
in Machine Translation: an MT corpus (or parallel corpus) can have millions of sentence
pairs (e.g., Europarl, UN, etc.), while APE corpora generally contain a few thousands
tuples (Potet et al. 2012b; Turchi et al. 2016, 2017). Since Neural Machine Translation
often necessitates large amounts of data (Koehn et al. 2017), this constitutes a difficulty if
we wish to apply such techniques to APE.

We call “translation-based”, automatic post-editing models which output brand new sequences
of words (or other units), i.e., models that treat APE as a machine translation problem, where
the source language is MT, and the target language is PE (post-edited MT). We will refer to the
outputs of such a system as PE hypotheses (or APE), and the gold standard to strive for as PE
references.

Most contributions in APE belong to this category. However, several modifications have been
proposed to handle each of the points mentioned earlier. Multi-source statistical post-editing
was proposed by Béchara et al. (2011). Multi-source neural post-editing is also possible by us-
ing a multi-encoder architecture, with multiple attention heads (Junczys-Dowmunt et al. 2017a;
Zoph et al. 2016a); or a log-linear combination of a translation model with a post-editing model
(Junczys-Dowmunt et al. 2016b). The closeness between MT input and PE output can be en-
forced with tricks like Post-Editing Penalty (Junczys-Dowmunt et al. 2016b), or hard attention
(Junczys-Dowmunt et al. 2017a). The small amounts of training data can be mitigated by us-
ing synthetic data, like simulated PE data (Negri et al. 2018; Potet et al. 2012a), or round-trip
translations (Junczys-Dowmunt et al. 2016b).

Op-based models Another way to force the models to stay relatively close to the MT input, is
to predict edit operations instead of new sequences of words.

This way of doing Automatic Post-Editing is probably closer to the reality of Post-Editing (by
humans). Indeed, a human post-editor does not rewrite the translation hypothesis from scratch,
but rather chooses which words to keep or remove, or new words to insert.

Our work is based on (Libovický et al. 2016), who train a model to predict edit operations
instead of words. They predict 4 types of operations: KEEP, DEL, INS(word), and EOS (the
end of sentence marker). This results in a vocabulary with three symbols plus as many symbols
as there are possible words to insert (about the same size as an MT vocabulary).

A benefit of this approach is that, even with little training data, it is straightforward to learn the
identity function, i.e., the MT baseline. Predicting a sequence of KEEP symbols is equivalent
to keeping the MT hypothesis as it is. This is useful, as we want to avoid a scenario where the
APE system is weaker than the original MT system and only degrades its output.1 However, this
approach also has shortcomings that we shall see in the remainder of this work.

1This is not as easy as it seems. The APE literature contains many negative results, where the APE system
degrades the MT hypotheses instead of improving them (Bojar et al. 2015; Potet et al. 2012a; Wisniewski et al.
2015). The MT baseline, generally an SMT system trained with large amounts of data, is often hard to beat.

Chapter 6 – Contributions: Neural Post-Editing 149

We will refer to these methods as “op-based”. We will refer to the output (i.e., a sequence of
post-editing operations) of such a system as OP; and to the post-processed output (where each
edit op has been applied to the input sequence) as PE.

Example If the MT sequence is <The cats is grey>, and the OP sequence is <KEEP
INS(cat) DEL KEEP KEEP INS(.)>, this equals the following sequence of operations:
keep <The>, insert <cat>, delete <cats>, keep <is>, keep <grey>, insert <.>
The result is the post-edited sequence <The cat is grey .>

We pre-process the data to extract such edit sequences by following the path with the smallest
edit distance, where KEEP has a cost of zero, and INS and DEL have a cost of one. This is
easily implemented by using a Levenshtein Distance algorithm (the same dynamic programming
algorithm that is used for computing WER), with a substitution cost of +∞. We did not find
any advantage of incorporating substitutions: this doubles the size of the vocabulary, and the
automatically extracted substitutions are often noisy.2 Also, when performed by a human post-
editor, a substitution actually corresponds to two atomic operations: a deletion and an insertion.

Algorithm 4 shows how we apply a sequence of edit operations to an MT hypothesis, to output
a new post-editing hypothesis. There is a pointer to the current word being post-edited, which
moves each time we read a KEEP or DEL operation. The insert operations insert a new symbol
without moving the pointer. At line 6, we ensure that the pointer cannot move beyond the length
of the MT hypothesis. If we cannot apply an operation (KEEP or DEL) because the pointer has
reached the end of the hypothesis, then we interrupt post-editing and discard the next operations.
At line 14, in case the post-editing sequence is too short, we complete the output with the MT
symbols that are beyond the pointer. This is equivalent to padding the incomplete post-editing
sequence with KEEP symbols. To delete a symbol, we need an explicit DEL operation.

The goal of these two heuristics is to “fix” broken post-editing sequences, by defaulting to the
safe identity behavior. When training an NMT model to do post-editing, we often observe many
broken outputs at the beginning of training. At the end of training, the post-editing sequences
are generally sane (≈ 99% of the time).

6.1.2 Data & Evaluation

A number of post-editing corpora were made available (Potet et al. 2012b; Turchi et al. 2016,
2017). Such corpora generally contain aligned triples of sentences (SRC, MT, PE). Contrary to
MT, post-editing corpora are often domain specific and cannot be used in other tasks.3

We choose to work in the framework of the APE tasks of the Workshop on Machine Translation
(2016 and 2017 editions).4 They consist in English-German Post-Editing in two translation
directions. The datasets that are made available in the context of these tasks (Turchi et al. 2016,
2017) are described below. For each task, a train set, a dev set, and a test set are provided.5 See
Table 6.1 for information about the size of each dataset. Bojar et al. (2017, 2016) describe these
tasks, along with the systems that were submitted and their results.

2The edit operations are extracted automatically so as to minimize the number of operations, without any linguis-
tic consideration. Substitutions often concern words that are unrelated.

3An Automatic Post-Editing task consists in improving the outputs of a given MT system on a given domain.
4http://www.statmt.org/wmt17/ape-task.html
5The PE side of the test set was not distributed until after the end of the competition.

http://www.statmt.org/wmt17/ape-task.html

Chapter 6 – Contributions: Neural Post-Editing 150

1 def post_edit(hypothesis, edit_ops):
2 i = 0 # index of current word being post-edited
3 output = [] # result of the post-editing
4 for op in edit_ops:
5 if op is KEEP or op is DEL:
6 if i >= len(hypothesis):
7 break
8 if op is KEEP:
9 output.append(hypothesis[i])

10 i += 1
11 else: # op is an insertion or EOS
12 output.append(op)
13

14 output += hypothesis[i:] # symbols after i
15

16 return output

Algorithm 4: Function which takes as input an MT hypothesis and a sequence of edit oper-
ations, and outputs a new (post-edited) hypothesis.

Task Train Dev Test 2016 Test 2017 Additional
en→ de 23k (12k + 11k) 1000 2000 2000 4M + 500k
de→ en 25k 1000 – 2000 –

TABLE 6.1: Size of each available corpus for the 2017 edition of the APE Task (number
of (SRC,MT,PE) sentence tuples). The additional data is synthetic (Junczys-Dowmunt et al.
2016a). The “4M” and “500k” datasets actually contain respectively 4.39M triples and 526k

triples.

English to German This corpus (en → de) was made available for the 2016 edition of the
shared APE task, with a training set of 12k triples. New data was added (11k triples) to the
training set for the 2017 edition. Table 6.2 gives an example of sentence tuple in this corpus.
We generated the OP side by computing the shortest edit path between MT and PE.

The MT segments were obtained by translating IT domain data6 with a strong SMT system7

(Bojar et al. 2017). The post-edited segments were obtained thanks to a manual revision of the
MT segments by professional translators, using the PET post-editing tool (Aziz et al. 2012). All
the data, including dev and test data comes from the same source. This task spanned on both the
2016 and 2017 editions of the Workshop on Machine Translation (there are two test sets).

In addition to this real-world PE data, Junczys-Dowmunt et al. (2016a) built a large synthetic
APE corpus. This corpus was obtained by round-translating a large monolingual dataset from
German to English and back to German (using two large SMT systems). They also used a
language model and TER statistics to sort this data according to its proximity to the real PE
data distribution. This results in a large corpus of 4M triples, and a smaller but better quality
(closer to the real data) corpus of 500k triples. This corpus was built (and released) as part of
the authors’ submission to the 2016 APE task. It was officially available for the 2017 edition as
additional data.

6The source segments were provided by TAUS (https://www.taus.net/) and come from an IT vendor.
7Developed in the context of the QT21 project: http://www.qt21.eu/

https://www.taus.net/)
http://www.qt21.eu/

Chapter 6 – Contributions: Neural Post-Editing 151

SRC Selection color boxes appear next to each selected item
in the panel .

MT Auswahlfelder neben jeder ausgewählten Element im
Bedienfeld angezeigt werden .

PE Auswahlfelder werden neben jedem ausgewählten Element im
Bedienfeld angezeigt .

OP KEEP INS(werden) KEEP INS(jedem) DEL KEEP KEEP KEEP KEEP
KEEP DEL KEEP

TABLE 6.2: Example of sentence tuple from the WMT17 en → de APE corpus. The OP
segments were generated by us (by taking the shortest edit distance.)

SRC Bei versehentlichem Kontakt sofort mit viel frischem
Wasser spülen .

MT In case of accidental contact with either the skin
immediately with much pull wire .

PE In case of accidental contact rinse immediately with
fresh water .

OP KEEP KEEP KEEP KEEP KEEP INS(rinse) DEL DEL DEL DEL KEEP
KEEP INS(fresh) INS(water) DEL DEL DEL KEEP

TABLE 6.3: Example of sentence tuple from the WMT17 de→ en APE corpus.

German to English A corpus in the opposite translation direction (de→ en) was made avail-
able for the 2017 edition, with a training set containing 25k triples. Table 6.3 gives an example
of sentence tuple in this corpus. The same pipeline was used as with the previous corpus (SMT
system followed by manual post-editing). However, the data comes from the pharmaceutical
domain.

These two corpora are used jointly by the Quality Estimation task,8 which consists in predicting
the HTER of an MT hypothesis (without knowing the reference), or to predict “bad” or “correct”
labels for each word. In the English-to-German datasets, there are approximately 20% of “bad”
words (as estimated by HTER) (Bojar et al. 2017). The German-to-English datasets have less
errors, with approximately 12% of bad words. All the work that we present here is on the
English-to-German task.

6.1.3 Experimental Protocol

Evaluation The main evaluation metric is HTER, and an additional (informative) evaluation
is performed with BLEU. Both evaluations are case sensitive, and done against the tokenized
post-editing reference.

• BLEU is a precision-based metric. It counts the proportion of n-grams which are also
present in the reference, with a brevity penalty to penalize too short sentences.

• TER (Translation Edit Rate) is an edit-based metric. It counts the smallest number of
edit operations (word insertions, deletions and substitutions, and phrase shifts) needed to
change the hypothesis so that it matches the reference.

8http://www.statmt.org/wmt17/quality-estimation-task.html

http://www.statmt.org/wmt17/quality-estimation-task.html

Chapter 6 – Contributions: Neural Post-Editing 152

This metric is called HTER (Human TER) when the reference is a human post-edited
version of the hypothesis.

HTER correlates very well with human judgment (Snover et al. 2006), however it is gener-
ally too expensive in MT, because it requires a human to post-edit every newly generated
translation hypothesis. In Automatic Post-Editing, the human post-editing reference is
always available, which makes it an evaluation metric of choice.

• Another way of assessing the quality of an APE system is to measure the number of
sentences that have been modified, and the number of sentences that have improved or
deteriorated (according to sentence-level HTER). Chatterjee et al. (2017) propose a “Pre-
cision” metric, which counts the number of improved sentences divided by the number of
sentences whose HTER has changed:

Precision =
Improved

Improved + Deteriorated
(6.1)

6.2 Research Replication

We replicated two main works of Neural Automatic Post-Editing. The first, by Junczys-Dowmunt
et al. (2017a), is a translation-based model which uses large amounts of synthetic data. This
model was able to obtain unprecedented results on the WMT16 APE task. We also test this
model in other conditions than those presented by the authors, in order to evaluate its robustness
to low-resource settings. The second work, by Libovický et al. (2016), is an op-based model
(the first that we know of), which gives promising results in a low-resource setting.

6.2.1 Translation-based Post-Editing

Models Junczys-Dowmunt et al. (2016a) proposed a neural post-editing model, which com-
bines a translation model (SRC → PE), with a monolingual post-editing model (MT → PE) in
an ensemble. By training these models on a large amount of synthetic post-editing data, they
obtained excellent results on the 2016 APE task, and won the contest by a large margin.

Then, Junczys-Dowmunt et al. (2017a) proposed an improvement of this model, which uses two
encoders and two attention models to read both the source (SRC) and the translation hypothesis
(MT) at the same time (see Figure 6.1). This model was trained on the same data, and gives a
large improvement over the combination of mono-source models.

We proceeded to replicate this model (M-CGRU), along with the monolingual model (CGRU)
that they present in the same paper.

The architecture of the monolingual model is very similar to other models that we presented in
the previous chapters. It has a bidirectional GRU encoder that reads the MT input, segmented
as BPE units. The forward and backward states are concatenated, and are read by the attention
mechanism. These hidden states are also averaged time-wise and used to initialize the decoder
(with a linear projection and a tanh activation).

Chapter 6 – Contributions: Neural Post-Editing 153

The decoder is a conditional GRU (Sennrich et al. 2017) which outputs BPE units. It has two
GRU cells that work together:

s
[1]
t = GRU[1](s

[2]
t−1, E

′(z̃t−1)) (6.2)

ct = look(s
[1]
t , (hi)

T
i=1) (6.3)

s
[2]
t = GRU[2](s

[1]
t , ct) (6.4)

x′t = s
[2]
t ⊕ ct ⊕ E′(z̃t−1) (6.5)

yt = Wvoc tanh(Woutx
′
t + bout) + bvoc (6.6)

where GRU[1] and GRU[2] are two cells of size n. The context vector ct ∈ R2n is computed by
a vanilla global attention mechanism (Bahdanau et al. 2015), which uses a feed-forward network
with one hidden layer of size k.
E|V

′|×m is the target embedding matrix, with m the embedding size and |V ′| the target vocab-
ulary size. At training time z̃t−1 is the previous ground truth symbol (teacher forcing). At test
time, z̃t−1 is either the argmax of yt−1 (greedy decoding) or the output of the beam search de-
coder. E′(z̃t−1) maps this symbol to an embedding vector of size m. Wout ∈ Rm×(3n+m), and
Wvoc ∈ R|V ′|×m. yt ∈ R|V ′| contains a score for each item in the target vocabulary.

As illustrated by Figure 6.1, the bilingual model (M-CGRU) has two bidirectional GRU en-
coders, one for MT and one for SRC. They result in two sequences of hidden states (hi)

T
i=1 and

(h′j)
T ′
j=1. Their average states are concatenated and used to initialize the CGRU decoder:

hi = ~hi ⊕ ~hi h′j = ~h′j ⊕ ~h
′
j (6.7)

h−1 = (
h1 + . . .+ hT

T
)⊕ (

h′1 + . . .+ h′T ′

T ′
) (6.8)

s
[1]
0 = tanh(W

[1]
inith−1 + b

[1]
init) (6.9)

s
[2]
0 = tanh(W

[2]
inith−1 + b

[2]
init) (6.10)

where T and T ′ are respectively the lengths of the MT and SRC sequences. ~hi is the ith hidden
state of the MT encoder’s forward encoder. ~hi is the ith backward state, and ~h′j and ~h

′
j are the jth

forward and backward states of the SRC encoder.

There are two attention heads, one for each encoder. Their context vectors c1t = look1(s
[1]
t , (hi)

T
i=1)

and c2t = look2(s
[1]
t , (h

′
j)
T ′
j=1) are simply concatenated (ct = c1t ⊕ c2t) and used to update the

decoder’s state and predict the next symbol (following Equations 6.4 and 6.5).

Data Junczys-Dowmunt et al. (2017a) train their models on the en → de data from the
WMT16 APE task. They also use the synthetic data that was produced by Junczys-Dowmunt
et al. (2016a).

All the data (SRC, MT and PE) is truecased and then segmented into BPE units. We use the
same truecasing model and joint BPE model as the authors.9 We merge the BPE units from the
system’s outputs and detruecase the segments before running the evaluation.

9Distributed by the authors on: https://marian-nmt.github.io/examples/postedit/

https://marian-nmt.github.io/examples/postedit/

Chapter 6 – Contributions: Neural Post-Editing 154

c2t

h′1 h′T ′

SRC encoder

c1t

h1 hT

MT encoder

ct

stst−1 st+1

PE decoder

FIGURE 6.1: Bilingual model for Neural Post-Editing, with an MT encoder and an SRC en-
coder, and two attention heads whose context vectors are concatenated. The PE decoder can
look anywhere in the translation hypothesis and source-language sequence to do its predictions.

We train models with corpora of different sizes: small, medium, large, XL and XXL (see Ta-
ble 6.4). The XL and XXL models use all the synthetic data available, and are comparable
(respectively) to Junczys-Dowmunt et al. (2017a) and Chatterjee et al. (2017). While the XL
models use only the data available for the 2016 edition (12k segments of real PE data, plus syn-
thetic data), the XXL model makes use of all the real PE data available for the 2017 edition (11k
additional real PE segments).

In addition to these large models, we also train smaller models that use less data. The “Large”
setting uses all the real PE data available, along with the medium-size synthetic corpus (500k).
The “Medium” and “Small” settings are more challenging, as they use only real PE data: the
23k segments available for the 2017 edition, and the 12k segments from the 2016 edition.

For the “Small”, “Medium” and “Large” (smaller-than-XL) settings, we follow Sennrich et al.
(2016a)’s recommendations10 and only keep the BPE units whose frequency in the train set is
above a threshold of 5. This is important to avoid segmenting the dev and test data with BPE
units that are unknown at training time. Because the large BPE model provided by the authors
was estimated on all the data available, and we are using only a subset of this training data, it is
likely that many BPE units are out-of-vocabulary.

As we use less BPE units, we get smaller vocabularies and longer sequences on average (more
aggressive segmentation). Table 6.4 gives the size of each corpus once pre-processed. To be able
to share the MT and PE embeddings, we use the same vocabulary, extracted by concatenating
the MT and PE sides of the training corpus.

Settings Our XL and XXL models have the same size as Junczys-Dowmunt et al. (2017a)’s
CGRU and M-CGRU models: we use GRUs of size n = 1024, embeddings of size m = 512,
and an attention mechanism of size m = 2048. We use the same amount of dropout (0.2 on the
GRU’s inputs and outputs). We also drop source and target symbols at random during training
with a probability of 0.2.

10The details and the scripts are available here: https://github.com/rsennrich/subword-nmt

https://github.com/rsennrich/subword-nmt

Chapter 6 – Contributions: Neural Post-Editing 155

Corpus Content Segments
Vocab size Average

SRC MT PE PE length
Small 12k 12k 7602 26.6

Medium 23k 23k 11181 24.2
Large 500k + 23k 986k 34505 39327

21.8XL 4M + 500k + 12k 5.16M 39028 39770
XXL 4M + 500k + 23k 5.38M 40583 40844 41110

TABLE 6.4: Size of all the data splits that we use for training translation-based automatic post-
editing models, on the en → de task. The last column gives average BPE counts per segment
in the PE side of the dev set. In the “Large”, “XL” and “XL” datasets, the real PE corpus (12k or
23k) is oversampled 20 times. In the “Small” and “Medium” settings, a single joint vocabulary

is used for SRC, MT and PE. For “Large” and “XL”, we share the MT and PE vocabularies.

Our smaller-than-XL models use a larger dropout rate of 0.4 (but the same amount of word
dropout). The “Large” models is half as large, with GRUs of size n = 512, embeddings of size
m = 256, and an attention model of size k = 1024. The “Medium” and “Small” models are
again half as large (but both of equal size).

To avoid overfitting, the smaller-than-XL models do not have a non-linear output layer (x′t is
directly mapped to the vocabulary size in eq. 6.6). Also, we share the embedding matrix between
the MT encoder and the PE decoder. The “Small” and “Medium” models go even further, and
use the embedding matrix for vocabulary projection (Wvoc = E′) (Press et al. 2017).

Our implementation has a few simplifications compared to Junczys-Dowmunt et al. (2017a)’s
implementation.11 While the authors stop training automatically using a “patience” parameter,12

we stop manually once we observe that dev set performance does not improve anymore (except
for our smaller models that are trained for a fixed number of steps). Contrary to the authors, we
do not use layer normalization, and we do not save a moving average of the model’s weights.

Like the authors, we train using Adam, with a learning rate of 0.0001 and a batch size of 64. We
save the model and evaluate its performance on the dev set every 10k steps. We select the best
model according to its TER score on the dev set (using greedy decoding).13 For training, we
read 100 batches ahead of time and sort their content according to target sequence length. This
increases training speed as batches contain sentences of similar size, which reduces the amount
of padding that is necessary. We initialize all the weights (except biases) to a centered normal
distribution with σ = 0.01.

The smaller-than-XL models use a batch size of 32, a learning rate of 0.001, and a look ahead of
10 batches. We run the evaluation on the dev set every 1000 steps. The “Large” and “Medium”
models are trained for 150k steps, and the “Small” model for 75k steps.

Like Junczys-Dowmunt et al. (2017a), we use a maximum sequence length (input and output)
of 50 BPE units. The “Small” model has a maximum output length of 60, because its sequences
are longer on average.

11Available here: https://marian-nmt.github.io/
12Training is interrupted if the best score (dev loss) has not improved for 10 checkpoints.
13The authors select the best model according to its dev loss, with beam search decoding.

https://marian-nmt.github.io/

Chapter 6 – Contributions: Neural Post-Editing 156

Results Table 6.5 compares the performance of different decoding strategies on the dev set.
We see that for all model sizes, the beam search decoder (with a beam size of 12 and length nor-
malization) brings a large improvement in TER scores over greedy decoding. Averaging several
checkpoints from the same training instance, like (Junczys-Dowmunt et al. 2016b, 2017a) also
gives a consistent improvement.

Finally, we see that using an ensemble of 4 models (with beam search decoding) gives a huge
boost in TER scores, in particular for the smaller models. Ensembling the averaged checkpoints
(last column) does not seem to be better than ensembling the best checkpoints.

Table 6.6 gives the TER and BLEU scores of these techniques on Test 2016 and Test 2017. Our
single-model scores are obtained with beam search decoding from averages of 4 checkpoints.
We average single-model scores from 4 different runs. The ensemble scores are obtained by
ensembling 4 non-averaged models.

We see that our implementation of the CGRU and M-CGRU models compares favorably with
(Junczys-Dowmunt et al. 2017a) on the XL dataset, even though it is simplified (no layer-norm
and no moving average). When using all the training data available for the 2017 edition (XXL
model), we obtain similar results to Chatterjee et al. (2017)’s single model.14 This is not sur-
prising as their approach is very similar (multi-encoder, trained with the same data).

More surprisingly, our single XXL model’s performance is not very far off from that of Junczys-
Dowmunt et al. (2017b), even though they use an ensemble of 4 M-CGRU models that are
trained on much more data (an additional 15M synthetic corpus is used). They seem to get a
slight improvement in scores when running the APE system twice, i.e., feeding the output of a
first pass to a second pass of automatic post-editing. We did not observe any improvement when
doing this with our models.

Interestingly, our smaller-than-XL models obtain very decent results, even though they use much
smaller amounts of data. This contradicts our prior belief that positive results on APE using
neural translation-based methods, by Junczys-Dowmunt et al. (2016a), had only been possible
by using huge amounts of synthetic data. We are able to show that Neural APE is a good
approach (at least on this task), even with realistic amounts of PE data and a reasonable training
budget.15 Figure 6.3 shows that our Medium model is able to do a sensible alignment between
its PE output and the SRC and MT inputs, even though it was trained with only 23k segments
(e.g., dar/stellt with represents).

Even the “Small” ensemble, which uses only 12k segments of data is able to outperform the
MT and SPE baselines by a large margin. Yet, we see a large difference in scores between the
“Small” and “Medium” models. This suggests that the gap between 12k and 23k segments is
consequential. To confirm this, we see that the XXL models largely outperform the XL models,
even though they just have 11k extra segments of real PE data (out of more than 4M synthetic
segments).

Table 6.7 shows the number of modified sentences on Test 2017, by different APE models, as
well as the number of improved and deteriorated sentences. We consider a sentence as modified
if the APE output is not identical to the MT input.
A sentence is improved if: TER(APE,PE) < TER(MT,PE), and deteriorated if the TER is
strictly greater.

14Their ensemble of models is the winner of the 2017 edition.
15The XL and XXL model took 150 hours to train on a single GTX 1080 Ti. The single Small, Medium and Large

models took respectively 11h, 23h and 30h.

Chapter 6 – Contributions: Neural Post-Editing 157

Model
Dev TER

Steps
Greedy Beam search Average Ensemble Ensemble + Average

XXL 20.5 19.7 19.7 – – 510k
XL 21.6 21.0 20.6 – – 640k

Large 22.7 22.2 21.8 21.1 21.0 140k
Medium 24.0 23.3 22.9 21.9 22.0 118k

Small 26.3 25.5 24.9 23.7 23.8 45k

TABLE 6.5: Comparison of different decoding strategies for APE on the en → de dev set.
The beam search decoder has a beam size of 12. The ensembles contain 4 models. The non-
ensemble results for smaller-than-XL models are averaged over 4 runs (the same 4 models
used for ensembling). The “average” column corresponds to averaging the weights of the 4
best checkpoints (according to greedy TER) of each model. For the “XL” and “XXL” models
we average 8 checkpoints. The “steps” column is the average number of SGD steps (over 4

runs) before reaching the best performance on the dev set.

XXL XL Large Medium Small MT
0.00

0.05

0.10

0.15

0.20

0.25

0.30

TE
R

Shifts
Substitutions
Deletions
Insertions

FIGURE 6.2: TER statistics on Test 2017 by our translation-based APE models (single av-
eraged XL and XXL models, and ensembles of Large, Medium and Small models). The
right-most bar is the MT baseline (“do-nothing” scenario). The height of a colored segment
represents the ratio of this type of error over the number of reference words. The total height

of a bar is the TER of the corresponding model.

All our single-models modify approximately the same number of sentences. However, when
trained with more data, they improve more and deteriorate fewer sentences (higher precision).
Interestingly, the ensembles tend to modify fewer sentences than the single models. The single
“Small” model is actually detrimental as it produces more deteriorated sentences than improved
ones (precision lower than 50%). Its TER and BLEU scores on Test 2017 are also worse than
the MT baseline. It is only beneficial when used in an ensemble. Figure 6.2 shows the statistics
of each type of TER operation (insertion, deletion, substitution and shift) of our different models
on Test 2017.

6.2.2 Op-based Post-Editing

We were also interested in extending the work from Libovický et al. (2016). This was the only
successful work on Neural APE that we knew of that used only real PE data (i.e., very limited

Chapter 6 – Contributions: Neural Post-Editing 158

Model Data
Dev Test 2016 Test 2017

TER BLEU TER BLEU TER BLEU
Bojar et al. (2017, 2016)

MT Baseline – 24.8 62.9 24.8 62.1 24.5 62.5
SPE Baseline Small/Medium – – 24.6 63.5 24.7 63.0

Junczys-Dowmunt et al. (2017a)
AMU - CGRU

XL
22.0 68.1 22.3 66.9

AMU - M-CGRU 20.8 69.3 20.7 68.6 – –
ensemble (4) 20.1 70.2 19.9 69.4

Junczys-Dowmunt et al. (2017b) – WMT 2017 (2nd)
AMU - ensemble (4)

XXXL
† 19.7 70.6 19.3 70.3 19.8 69.4

ensemble (4)2 – – 19.2 70.5 19.8 69.5
Chatterjee et al. (2017) – WMT 2017 (1st)

FBK - single
XXL

19.8 70.7 – – 20.3 69.1
ensemble (8) 19.2 71.9 19.3 70.9 19.6 70.1

Our results
CGRU

XL
22.3 68.1 22.5 66.9 22.5 66.8

M-CGRU
20.6 69.9 20.8 68.8 21.2 67.8

XXL 19.7 70.7 19.9 70.0 20.0 69.3
M-CGRU

Large
21.8 67.9 21.5 67.2 21.9 66.3

ensemble (4) 21.1 68.7 20.9 68.0 21.3 67.2
M-CGRU

Medium
22.9 66.1 22.4 66.0 22.9 64.6

ensemble (4) 21.9 67.5 21.6 67.0 21.9 66.0
M-CGRU

Small
24.9 63.5 24.7 62.9 25.1 61.7

ensemble (4) 23.7 64.9 23.7 64.0 23.8 63.4

TABLE 6.6: Scores of different translation-based model on the WMT16 and WMT17 en→ de
APE tasks. The scores are obtained with a beam search decoder of size 12. Our smaller-
than-XL non-ensemble results are averaged over 4 different training runs. The XXXL† dataset
contains even more synthetic data, with 21M segments in total. The SPE Baseline is a mono-
lingual PBMT model (Simard et al. 2007), and the MT Baseline corresponds to keeping the

MT hypothesis as it is.

Model Modified Improved Deteriorated Precision
FBK Ensemble (8) 1607 1035 334 75.6%
AMU Ensemble (4) 1583 1040 322 76.4%
Large 1474 872 327 72.7%

Medium Ensemble (4) 1539 854 427 66.7%
Small 1510 694 532 56.6%
XXL 1607 1025 361 74.0%
XL 1604 942 407 69.8%

Large Average 1538 850 402 67.9%
Medium 1605 802 517 60.8%

Small 1616 650 656 49.8%

TABLE 6.7: Number of modified and improved/deteriorated sentences by our APE models on
Test 2017. The full corpus has 2000 sentences. The FBK and AMU baselines are the winners
of the 2017 APE Task (Chatterjee et al. 2017; Junczys-Dowmunt et al. 2017b). Their statistics

are taken from (Bojar et al. 2017).

Chapter 6 – Contributions: Neural Post-Editing 159

in th
e

gr
ap

h
, ea

ch
ba

r
re

pr
es

en
ts

an in
di

vi
du

al
fra

m
e

of th
e

do
cu

m
en

t
. </

S>

im
Diagramm

stellt
jeder

Balken
einen

einzelnen
Frame

des
Dokuments

dar
.

</S>

(A) SRC→ PE alignment

kl
ick

en
Si

e
im Di

ag
ra

m
m

je
de

s
Ba

lk
_

en
s

st
el

lt
ei

ne
n

ei
nz

el
ne

n
Fr

am
e

de
s

Do
ku

m
en

ts
. </

S>

im
Diagramm

stellt
jeder

Balken
einen

einzelnen
Frame

des
Dokuments

dar
.

</S>

(B) MT→ PE alignment

FIGURE 6.3: Examples of forced alignments by the SRC → PE and MT → PE attention
mechanisms of our Medium M-CGRU model.

amounts of data). This was also the first contribution to propose to train a model that predicts
edit operations (op-based model).

We first replicated their results on the WMT 2016 APE task (i.e., “Small” setting, Test 2016
evaluation). The authors describe their contribution in two tasks: automatic post-editing and
multimodal translation. However, they are much more focused on the latter, and the paper lacks
many technical details about their APE model.

Our work is not an exact replication of their work, as we use different parameters as the authors.
Nevertheless, we strived to obtain similar results, by using similar techniques and by following
the same experimental protocol: same task and datasets, and same data pre-processing and post-
processing (with edit operations).

Data Table 6.8 describes the datasets that we use to train our op-based models. Libovický
et al. (2016) use only the “Small” real PE corpus that was available for the 2016 edition. We
train models in this setting to compare our results with theirs. We also train the same models
with the Medium and Large datasets, to see how these techniques improve with more data, and
how they compare against the translation-based models tested previously. We do not apply any
pre-processing, except for the edit-op extraction described in the previous section. Contrary to
the previous subsection, in the “Large” dataset, we oversample the real PE data 10 times (and
not 20 times).

Our models are trained by minimizing the cross-entropy between the predicted sequences of edit
operations, and the ground truth sequences of edit operations (that we automatically extracted).
However, the TER and BLEU evaluation is performed against the untouched PE reference, after
a post-processing step that transforms our sequences of edit operations to sequences of words.

Model description Our model is a basic attention-based sequence to sequence model. The
encoder is a bidirectional LSTM that reads words, and the decoder is a single LSTM that outputs

Chapter 6 – Contributions: Neural Post-Editing 160

Corpus Content Segments
Vocab size Max length

SRC MT OP SRC MT OP
Small 12k 12k 9336 18985 9076

33 37 45
Medium 23k 23k 11923 27093 13949

Large 500k + 23k 756k 30000 40 40 50

TABLE 6.8: Size of the data splits that we use for training op-based post-editing models on
the en → de task. In the “Large” dataset, the real corpus (23k) is oversampled 10 times. The
“max length” column is the maximum sequence length that we set in our models for this type

of input, chosen to cover 99% of the training corpus.

edit operations. We use a “generate first” strategy, which consists in generating the next symbol
before updating the state:

ct = look(st−1, (hi)
T
i=1) (6.11)

yt = Wvoc(st−1 ⊕ ct ⊕ E′(z̃t−1)) + bvoc (6.12)

st = updatedec(st−1, ct ⊕ E′(z̃t)) (6.13)

where (hi ∈ R2n)Ti=1 is the sequence of hidden states produced by the encoder, E′ ∈ R|V ′|×m
is the target embedding matrix, and Wvoc ∈ R|V ′|×(3n+m) maps the output of the decoder to
vocabulary size. At training time, z̃t is the ground truth symbol. At test time, it is the prediction
of the model (argmax of yt or beam-search decoding).

The initial states of the encoder’s LSTMs are trainable parameters of the model. The decoder’s
state is initialized with the average of the encoder’s hidden states (concatenation of forward and
backward states), followed by a linear projection to the right size and a tanh activation.

We use LSTM cells of size n = 128, embeddings of sizem = 128, and a global attention model
(Bahdanau et al. 2015) of size k = 128.

The model parameters (except biases) are all initialized to a centered normal distribution with
σ = 0.1.

Contrary to the authors, we train our models with pure SGD, with a batch size of 32 and an
initial learning rate of 1.0. We decay the learning rate by 0.95 every epoch starting at the fourth
epoch. We found SGD (with a carefully chosen learning rate and decay strategy) to outperform
Adam on this task. Adam shows very early overfitting effects, while SGD seems to act as some
sort of regularization. We apply dropout on the inputs of the LSTMs with a 50% rate. We also
do dropout on the decoder’s initial state (before the linear projection).

We train two kinds of models: a monolingual model, which only uses the translation hypothesis
MT; and a multi-source model, like Libovický et al. (2016), which uses both MT and SRC. Like
in previous subsection, the multi-source model has two bidirectional encoders, and two attention
mechanisms whose context vectors are concatenated. The average hidden states of both encoders
are also concatenated and used to initialize the decoder’s state.

Experiments and results Table 6.9 shows the results of our op-based models on the WMT
2016 task.

Chapter 6 – Contributions: Neural Post-Editing 161

We see that our “Small” models compare favorably with the similar (multi-source) model by
Libovický et al. (2016). Using both the SRC and MT inputs in a multi-encoder model does not
seem to be useful, as the TER and BLEU scores are almost identical to those of the mono-source
model. The “Small” models are only slightly better than the MT baseline (which keeps the MT
hypothesis unchanged). Their TER scores are also slightly better than those of the monolingual
Statistical Post-Editing baseline (Simard et al. 2007).

Adding more data (Medium and Large settings) seems to improve the results, though much less
dramatically than with the translation-based models of previous subsection.

Model Data
Dev Test 2016

TER BLEU TER BLEU
MT Baseline – 24.8 62.9 24.8 62.1
SPE Baseline Small – – 24.6 63.5

Libovický et al. (2016)
Small

24.4 – 24.3 63.3
Mono-source 24.2 64.3 24.2 63.5
Multi-source 24.2 64.3 24.2 63.4
Mono-source

Medium
23.9 64.9 23.7 64.2

Multi-source 24.0 64.7 23.8 64.0
Mono-source

Large
23.3 66.4 23.3 65.7

Multi-source 23.4 65.9 23.2 65.2

TABLE 6.9: Replication of the results from Libovický et al. (2016) on the WMT16 APE task,
and comparison with models trained with larger amounts of data. Our results are obtained with

greedy decoding, and averaged over 4 different runs.

6.3 New Models

In this section, we propose improvements to the op-based model of Libovický et al. (2016), and
perform more extensive experiments. We propose a new task-specific attention mechanism, and
a different architecture for incorporating the source sequence (SRC).

6.3.1 Hard Attention

Context Most Neural Post-Editing methods (Junczys-Dowmunt et al. 2016a, 2017a; Libovický
et al. 2016) use a global attention mechanism, akin to Bahdanau et al. (2015).

This attention model is a feed-forward network that takes as input the current state of the decoder
st−1 and predicts a weight for each of the encoder’s hidden states hi:

rti = v>att tanh(Watt(hi ⊕ st−1) + batt) (6.14)

αti = softmax(rti) (6.15)

with Watt ∈ Rk×3n, batt ∈ Rk and vatt ∈ Rk. The softmax function ensures that the weights
αti constitute a probability distribution over the input length, i.e.,

∑T
i αti = 1 and ∀i, αti ∈

(0, 1]. Some attention models differ as to how they compute rti. Some attention models use
additional information (Cohn et al. 2016); or a different aggregation function, like multiplicative
attention (Luong et al. 2015b). The model presented above is however the most popular attention

Chapter 6 – Contributions: Neural Post-Editing 162

model in NMT and Neural Post-Editing (Chatterjee et al. 2017; Junczys-Dowmunt et al. 2016a;
Libovický et al. 2016).

These weights are then used to compute a weighted average of the encoder’s hidden states:

ct = lookglobal(st−1, (hi)
T
i=1) =

T∑
i=1

αtihi (6.16)

The decoder uses this attention vector ct to help predict the next symbol z̃t and update its state.

The parameters of the attention model Watt, batt, vatt are trained jointly with the rest of the
model, so as to minimize the translation loss. Very often, this results in an informative attention
model, which will put more weight on the input words (or more precisely their hidden state) that
are useful for predicting the next word. Intuitively, this results in a soft-alignment between the
input sequence and the output sequence.

Hard attention In our op-based framework, we do not predict words, but edit operations.
Because an edit operation always applies to a specific word in the MT input sequence, we can do
stronger assumptions on the MT→ OP alignment.

Instead of a soft unconstrained attention mechanism which can look at the entire input, we
propose to use a hard attention mechanism, which directly aligns current decoder state st with a
single MT word xi and its encoder state hi.

The t → i alignment is straightforward: i is the number of KEEP and DEL symbols in the
decoder’s history (z̃1, . . . , z̃t−1) plus one:

i = 1 +
t−1∑
k=1

1(z̃k = DEL) + 1(z̃k = KEEP) (6.17)

lookhard(st−1, (hj)
T
j=1) = hi (6.18)

where z̃k is the token generated by the OP decoder at the kth time step (or the kth ground truth
symbol during training), and (hj)

T
j=1 is the sequence of hidden states produced by the MT en-

coder. Actually, this is not a trained model (it has no trainable parameter), but more of a heuristic.

Following the example presented in Section 6.1 "The cats is grey", if the decoder’s past
output is "KEEP DEL INS(cat)", the next token to generate is naturally aligned with the
third input word (i = 3). The decoder has decided to keep "The" and to replace "cats" with
"cat". Now, it has to decide what to do with the third word "is" (delete it, keep it, or insert
a new word before it).

Junczys-Dowmunt et al. (2017a) also propose a hard attention model for automatic post-editing.
However, their model is not as straightforward as it applies to translation-based post-editing,
and it does not seem to be better than global attention. In addition to generating words in the
output, they generate special STEP symbols that move a pointer in the source sequence.

Chapter 6 – Contributions: Neural Post-Editing 163

Model Data
Dev Test 2016 Test 2017

TER BLEU TER BLEU TER BLEU
MT Baseline – 24.8 62.9 24.8 62.1 24.5 62.5
SPE Baseline Small/Medium 24.6 63.5 24.7 63.0
Mono global

Small
24.2 64.4 24.1 63.7 24.2 63.3

Mono hard 23.4 66.3 23.3 65.5 23.4 64.7
Mono global

Large
23.3 66.4 23.1 65.7 23.3 65.1

Mono hard 22.9 66.9 22.8 66.2 23.0 65.5

TABLE 6.10: Comparison of global-attention models with hard-attention models. All the mod-
els shown here are monolingual (they do not use the source sequence SRC). These results are
obtained with a beam search decoder, with a beam size of 6 and length normalization. We
average the 4 best checkpoints of each model. The results are averaged over 4 different runs.

Experiments To compare our hard attention with the global attention mechanism, we train
similar models to the op-based models of Section 6.2.2. We use the exact same architecture,
hyperparameters and training settings, except for the attention, which is replaced by our “hard
attention” heuristic. Table 6.10 shows the results of our experiments on the en→ de APE task.

We see that our mono-source models with hard attention fare much better than the global atten-
tion one. The gap is smaller when more training data is available, because the global attention
model is able to learn a better alignment.

Figure 6.4 shows examples of alignments performed by the global attention mechanism. We
observe that when the global attention model is trained on a small amount of data (“Small” 12k
dataset), the alignment is very fuzzy. When more training data is available (“Large” dataset), the
soft alignment becomes more focused and seems to draw closer to our “hard” alignment. But
even then, we get better TER and BLEU scores with a hard attention.

The use of a hard attention mechanism makes particular sense in low-resource scenarios, where
the model is unable to learn a meaningful soft alignment.

6.3.2 Multi-Source Post-Editing

Multi-Encoder In automatic post-editing, two source sequences are generally available: the
machine translation hypothesis that is being post-edited (MT), and the original source-language
sequence (SRC). While it is tempting to only use the MT hypothesis, the source sentence is
often necessary to ensure translation adequacy.

As we have seen in the previous section, one way of handling multi-source inputs is to have mul-
tiple encoders, and to combine their representations before giving them as input to the decoder
(Junczys-Dowmunt et al. 2017a; Libovický et al. 2016; Zoph et al. 2016a).

To do so, we use two encoders (MT and SRC), and a decoder with two attention heads:

c1t = look1(st−1, (hi)
T
i=1) (6.19)

c2t = look2(st−1, (h
′
j)
T ′
j=1) (6.20)

ct = c1t ⊕ c2t (6.21)

Chapter 6 – Contributions: Neural Post-Editing 164

Kl
ick

en
Si

e
im Di

ag
ra

m
m

je
de

s
Ba

lk
en

s
st

el
lt

ei
ne

n
ei

nz
el

ne
n

Fr
am

e
de

s
Do

ku
m

en
ts

. </
S>

Im

<KEEP>

<KEEP>
jeder

Balken
<KEEP>
<KEEP>
<KEEP>
<KEEP>
<KEEP>

dar
<KEEP>

</S>

(A) Global attention (Small)

Kl
ick

en
Si

e
im Di

ag
ra

m
m

je
de

s
Ba

lk
en

s
st

el
lt

ei
ne

n
ei

nz
el

ne
n

Fr
am

e
de

s
Do

ku
m

en
ts

. </
S>

(B) Global attention (Large)

Kl
ick

en
Si

e
im Di

ag
ra

m
m

je
de

s
Ba

lk
en

s
st

el
lt

ei
ne

n
ei

nz
el

ne
n

Fr
am

e
de

s
Do

ku
m

en
ts

. </
S>

(C) Hard attention

FIGURE 6.4: Alignments performed by global attention models trained with varying amounts
of data (Small and Large datasets), and hard attention.

where (hi ∈ R2n)Ti=1 and (h′j ∈ R2n)T
′

j=1 are respectively the sequences of hidden states pro-
duced by the MT and SRC encoders, and st−1 is the current state of the decoder. The look2

function is always a global attention: lookglobal. The look1 function can be either lookglobal or
lookhard.

Chained Encoders We propose a chained architecture, which combines two encoder-decoder
models (see Figure 6.5). A first model SRC → MT, with a global attention mechanism, tries to
mimic the translation process that resulted in MT (from SRC). The attention vectors of this first
model summarize the part of the SRC sequence that led to the generation of each MT token. A
second model MT → OP learns to post-edit and uses a hard attention over the MT sequence, as
well as the attention contexts over SRC computed by the first system (see eq. 6.22). Both models
are trained jointly, by optimizing a sum of both losses (see eq. 6.24).

ct = tanh(Hc′i + b) + hi (6.22)

c′i = lookglobal(s
′
i, (h

′
j)
T ′
j=1) (6.23)

where t → i is our hard alignment heuristic, which maps the current decoder state and history
to a position i in the MT sequence. s′i is the ith state of the MT decoder, (hj)

T ′
j=1 is the sequence

of hidden states produced by the SRC encoder, and hi is the ith hidden state of the MT encoder.
H ∈ R2n×2n, and b ∈ R2n are trained parameters of the model.

We use the same embedding matrix E ∈ R|V |×m in the MT decoder and in the MT encoder. To
make sure that the MT decoder’s output sequence and the MT encoder’s input sequence are the
same, we always force-feed the ground truth symbols to the MT decoder (teacher forcing). This
is possible because the MT sequence is also available at test time (contrary to the OP sequence).

Chapter 6 – Contributions: Neural Post-Editing 165

c′i

h′
1

h′
j

hT ′

SRC encoder

s′is′i−1 s′i+1

MT decoder

ct

hi

hard at-
tention

global
attention

MT encoder

stst−1 st+1

OP decoder

FIGURE 6.5: Illustration of the chained model for automatic post-editing. It has two bidirec-
tional encoders that read the SRC and MT sequences, and two decoders that output MT and OP
sequences. We maximize two training objectives: a translation objective (SRC → MT) and a
post-editing objective (MT → OP). The OP decoder uses hard attention with the MT encoder

(t→ i), and uses the corresponding global attention context c′i over SRC.

The training loss that we minimize is a combination of both cross-entropy losses. This allows
us to train the translation model and the post-editing model jointly:

L = 0.5× L(SRC→ MT) + L(MT→ OP) (6.24)

The gradients are also back-propagated from the OP decoder up to the SRC encoder, through the
chained attention mechanism (eq. 6.22).

6.3.3 Experiments

We train three kinds of models: monolingual models with hard attention (which we have shown
to be superior to global attention), multi-encoder models, and chained-encoder models. The
latter two models use a global attention mechanism for SRC → OP (multi) and SRC → MT
(chained), and hard attention for MT→ OP.

Each of these architectures is trained in three different data settings: Small, Medium and Large
(see Table 6.8). This gives a total of 9 different models. We train 4 instances of each model that
we combine in ensembles. Single-model scores are averaged over these 4 runs.

We use the same hyperparameters, training settings and datasets as in Sections 6.2.2 (replication
of Libovický et al. (2016)) and 6.3.1 (global attention against hard attention).

The only differences between the Small, Medium and Large settings are the maximum sequence
length (see Table 6.8), the total training time, and learning rate decay. For the Small and Medium
models, we start with a learning rate of 1.0, and multiply it by 0.95 every epoch starting from
the 4th epoch. For the Large models (where epochs are longer), we decay the learning rate by
0.8 every half epoch starting from the 2nd epoch.
The Small models are trained for 40k steps, the Medium ones for 60k steps, and the Large ones

Chapter 6 – Contributions: Neural Post-Editing 166

Model Data
Dev TER

Steps
Greedy Beam Average Ensemble Ens + Avg

Mono (Hard)
Large

23.0 22.8 22.9 22.3 22.4 117k
Chained 22.2 22.0 21.9 21.6 21.7 172k

Multi 22.4 22.0 22.0 21.9 21.9 132k
Mono (Hard)

Medium
23.1 23.0 23.0 22.9 22.8 20k

Chained 22.6 22.4 22.4 22.0 22.0 47k
Multi 23.0 22.9 23.0 22.6 22.4 22k

Mono (Hard)
Small

23.5 23.4 23.4 23.2 23.2 14k
Chained 23.4 23.3 23.2 23.1 23.1 24k

Multi 23.4 23.3 23.2 23.1 23.1 14k

TABLE 6.11: Comparison of different decoding strategies for op-based APE on the en →
de dev set. The beam search decoder has a beam size of 6, with length normalization. The
ensembles contain 4 models. The non-ensemble results are averaged over 4 runs (the same 4
models used for ensembling). The “average” column corresponds to averaging the weights of
the 4 best checkpoints (according to greedy TER) of each model. The “steps” column is the

average number of SGD steps (over 4 runs) before reaching the best dev performance.

for 200k steps. We evaluate the models on the dev set every 1000 SGD steps, and keep the
checkpoints that have the best greedy TER.

Figure 6.6 gives examples of alignments by our multi-source op-based models. We see that the
SRC→ OP global attention mechanism from the multi-encoder model (Figure 6.6b) is unable to
align the source sequence with the output sequence of edit operations. This is not so surprising,
as edit operations apply to the MT input only, and it is difficult to link them with SRC symbols
without appropriate MT context. The reader would have a hard time doing this alignment herself
without looking at the MT sequence. In other words, a SRC→ OP alignment makes little sense.
Because of this, the SRC encoder probably receives irrelevant feedback during training, and is
unable to compute a good representation of the source input sequence.

On the other hand, the SRC → MT attention mechanism from the chained model is able to do
a good alignment (Figure 6.6d), which is easier as this is a “basic” machine translation task.
Figure 6.6c shows the dot product between the (soft) SRC → MT alignment and the (hard)
MT→ OP alignment in the chained model. This is how the OP decoder sees the SRC input. This
alignment seems more informative and may help the decoder to make relevant lexical choices,
based on the original sentence.

Table 6.11 compares the scores of our models on the dev set, with different decoding techniques.
Surprisingly, we see that there is a very minor improvement when using beam search, when
averaging the weights of several checkpoints, or when using ensembles of models. This is a big
difference with translation-based post-editing, where beam search decoding and ensembles give
a large boost in post-editing quality. A possible explanation for this is the strong class imbalance
between the KEEP operation and the other operations.

Table 6.15 gives statistics about the most common edit operations in the training set, and in
the outputs of our ensemble model (medium-chained). We see that the training set contains
a vast majority of KEEP symbols (67%). Because of this imbalance, the models are unlikely
to generate other symbols than KEEP (especially insertions, whose probability mass is very
stretched). When combining several models in an ensemble, or using beam search decoding,
output sequences that contain only KEEP symbols are even more likely to be generated. Our
chained model generates 92.7% of KEEP symbols (on dev) with greedy decoding, 93.0% with

Chapter 6 – Contributions: Neural Post-Editing 167

Kl
ick

en
Si

e
im Di

ag
ra

m
m

je
de

s
Ba

lk
en

s
st

el
lt

ei
ne

n
ei

nz
el

ne
n

Fr
am

e
de

s
Do

ku
m

en
ts

. </
S>

Im

<KEEP>

<KEEP>
jeder

Balken
<KEEP>
<KEEP>
<KEEP>
<KEEP>
<KEEP>

dar
<KEEP>

</S>

(A) Hard alignment between MT input
and OP output.

In th
e

gr
ap

h
, ea

ch
ba

r
re

pr
es

en
ts

an in
di

vi
du

al
fra

m
e

of th
e

do
cu

m
en

t
. </

S>
(B) Soft alignment between SRC
input and OP output in the Multi-

encoder model.
In th

e
gr

ap
h

, ea
ch

ba
r

re
pr

es
en

ts
an in

di
vi

du
al

fra
m

e
of th

e
do

cu
m

en
t

. </
S>

(C) Dot product between the
SRC → MT (Fig. 6.6d) and
MT → OP (Fig. 6.6a) attention
matrices in the Chained model.

In th
e

gr
ap

h
, ea

ch
ba

r
re

pr
es

en
ts

an in
di

vi
du

al
fra

m
e

of th
e

do
cu

m
en

t
. </

S>

Klicken
Sie
im

Diagramm
jedes

Balkens
stellt
einen

einzelnen
Frame

des
Dokuments

.
</S>

(D) Soft alignment between SRC input and MT input
in the Chained model (translation model).

FIGURE 6.6: Forced alignments (with teacher forcing) performed by our Medium Chained and
Multi-Encoder models on the en→ de dev set.

Chapter 6 – Contributions: Neural Post-Editing 168

beam search decoding, and 93.6% with ensemble decoding. Table 6.14 shows the number of
sentences that are modified, improved or deteriorated on Test 2017 by our models. We see
indeed that the ensembles tend to modify much fewer sentences than the single models.

We also observe from Table 6.11 that training with more data has a less dramatic effect that
with translation-based post-editing. We did not train models on the full synthetic corpus, but we
suspect that the improvement (if any) would be minor.

Table 6.12 gives the results of our techniques on Test 2016 and Test 2017. We see that all of our
models outperform the MT and SPE baselines, even single models in low-resource conditions.
Yet, none of our models come even close to the SOTA result of Chatterjee et al. (2017), a
translation-based model trained with all the synthetic data available. In general, the chained
model is superior to the multi-encoder model, except in the “Large” data setting, where they
obtain identical results. The multi-source (multi-encoder and chained) models are superior to
the mono-source (hard attention) model, except in the “Small” data setting. 12k segments of
data is maybe not enough to train a good SRC encoder. Finally, the ensembles bring a minor but
consistent improvement over the single models.

Table 6.13 compares our “chained” ensemble models against the translation-based “M-CGRU”
models from Section 6.2.1. We see that translation-based post-editing outperforms op-based
post-editing in the “Large” and “Medium” settings.16 The M-CGRU model is able to better
take advantage of larger training sets, and gets improved results with beam search decoding and
ensembling. In the “Small” data setting, our op-based model outperforms the translation-based
ensemble. This suggests that op-based post-editing is a good alternative in low-resource settings.

Op-based post-editing also takes less computing power to train.17 The “chained” models can be
trained on a low-end GPU, and took respectively 2h30,18 4h,19 and 17h19 to train in the Small,
Medium and Large settings.

16With single models, our op-based method is superior in the Small and Medium settings. With greedy decoding,
it is superior in all three settings.

17Also at test time, as we can do away with ensembles and beam search decoding.
18On a single GTX 750 Ti
19On a single GTX 1070

Chapter 6 – Contributions: Neural Post-Editing 169

Model Data
Dev Test 2016 Test 2017

TER BLEU TER BLEU TER BLEU
MT Baseline – 24.8 62.9 24.8 62.1 24.5 62.5
SPE Baseline Small/Medium – – 24.6 63.5 24.7 63.0
FBK - single

XXL
19.8 70.7 – – 20.3 69.1

ensemble (8) 19.2 71.9 19.3 70.9 19.6 70.1
Single models

Mono (Hard)
Large

22.9 66.9 22.8 66.2 23.0 65.5
Chained 21.9 68.1 21.7 67.3 22.1 66.5

Multi 22.0 67.9 21.8 67.2 22.2 66.5
Mono (Hard)

Medium
23.0 66.8 22.7 66.3 23.1 65.2

Chained 22.4 67.4 22.3 66.6 22.6 65.9
Multi 23.0 66.9 22.6 66.4 23.0 65.4

Mono (Hard)
Small

23.4 66.3 23.3 65.5 23.4 64.7
Chained 23.2 66.4 23.2 65.6 23.4 64.7

Multi 23.2 66.4 23.2 65.5 23.5 64.6
Ensembles of 4

Mono (Hard)
Large

22.3 67.3 22.4 66.6 22.5 66.0
Chained 21.6 68.5 21.4 67.6 21.8 66.9

Multi 21.6 68.4 21.4 67.7 21.7 67.1
Mono (Hard)

Medium
22.9 66.8 22.5 66.5 22.8 65.5

Chained 22.0 67.9 22.0 66.9 22.3 66.2
Multi 22.6 67.2 22.3 66.6 22.5 65.9

Mono (Hard)
Small

23.2 66.5 23.1 65.9 23.2 65.0
Chained 23.1 66.6 23.0 65.8 23.2 64.8

Multi 23.1 66.7 22.9 65.9 23.1 65.0

TABLE 6.12: Scores of different op-based models on the WMT16 and WMT17 en→ de APE
tasks. The scores are obtained with a beam search decoder of size 6. Our non-ensemble results
are averaged over 4 different training runs. The SPE Baseline is a monolingual PBMT model
(Simard et al. 2007), and the MT Baseline corresponds to keeping the MT hypothesis as it is.

The FBK baseline is the winner of the 2017 APE Task (Chatterjee et al. 2017).

Model Data
Test 2016 Test 2017

TER BLEU TER BLEU
M-CGRU

Large
20.9 68.0 21.3 67.2

Chained 21.4 67.6 21.8 66.9
M-CGRU

Medium
21.6 67.0 21.9 66.0

Chained 22.0 66.9 22.3 66.2
M-CGRU

Small
23.7 64.0 23.8 63.4

Chained 23.0 65.8 23.2 64.8

TABLE 6.13: Comparison between the translation-based “M-CGRU” models (see Sec-
tion 6.2.1) and the op-based “Chained” models. All these results are obtained with ensembles

of 4 models and beam search decoding.

Chapter 6 – Contributions: Neural Post-Editing 170

Model Modified Improved Deteriorated Precision
FBK Ensemble (8) 1607 1035 334 75.6%
Large 1146 744 189 79.7%

Medium Ensemble (4) 972 645 138 82.4%
Small 628 408 89 82.1%
Large 1538 748 244 75.4%

Medium Average (4) 1094 652 213 75.4%
Small 777 433 169 71.9%

TABLE 6.14: Number of modified and improved/deteriorated sentences on Test 2017, by our
“chained” APE models. The full corpus has 2000 sentences. The FBK baseline is the winner

of the 2017 APE Task (Chatterjee et al. 2017).

Token Count
Percent-

age
KEEP 326581 66.93
DEL 76725 15.72
" 5170 1.06
, 3249 0.67

die 2461 0.50
der 1912 0.39
zu 1877 0.38

werden 1246 0.26
Sie 1209 0.25
den 1195 0.24

Token Count
Percent-

age
<KEEP> 18745 93.56
 545 2.72

" 197 0.98
> 130 0.65
, 72 0.36
zu 48 0.24
wird 21 0.10
an 21 0.10

werden 20 0.10
. 12 0.06

Dele-
tions

Count
Percent-

age
, 3857 0.79

die 3010 0.62
Sie 2797 0.57
" 1848 0.38

der 1697 0.35

Dele-
tions

Count
Percent-

age
Sie 52 0.26
, 52 0.26

werden 33 0.16
de 24 0.12
wird 24 0.12

TABLE 6.15: Top 10 edit ops in the target side of the training set for en→ de (left), and most
generated edit ops by our ensemble of medium-chained models on the dev set (right). The
bottom tables show the 5 most deleted symbols (target of the DEL op) in the training set (left),

and in the output of our system (right).

Conclusion

This thesis focused on two broad objectives: review and replication of reported results from the
literature in Neural Machine Translation (NMT); and applying NMT techniques to three related
tasks: Machine Translation, Speech Translation, and Automatic Post-Editing.

Research Replication

Our replication work led to the implementation of two large libraries: MultiVec, and Seq2seq.

MultiVec implements several techniques for computing vector representations for text: Mikolov
et al. (2013a)’s CBOW and Skip-Gram models, Luong et al. (2015a)’s model for bilingual em-
beddings, and Q. V. Le et al. (2014)’s Paragraph Vector. MultiVec is blazingly fast (as fast as
Word2vec) and its modular C++ code is aimed at being easily understood and extended. It al-
lows easy and efficient training of models, thanks to a command-line interface and a Python
wrapper. Furthermore, it exposes several functions in its API for manipulating trained models
(e.g., to continue training a model, save it to another format, compute a distance between words
or sequences, etc.) We also distribute pre-processing and benchmarking scripts.

Seq2seq is an improvement of TensorFlow’s “seq2seq” NMT example. We replicated the exact
attention-based model from Bahdanau et al. (2015), as well as improvements from Jean et al.
(2015a), Luong et al. (2015b), and Sennrich et al. (2017, 2016c). It also implements techniques
for Automatic Speech Recognition (Chan et al. 2016), and Automatic Post-Editing (Junczys-
Dowmunt et al. 2017a; Libovický et al. 2016), as well as our architectures for AST and APE.
Seq2seq supports beam search decoding, ensemble decoding and multi-task training. It facil-
itates experimentation and research replication thanks to a system of configuration files and
detailed logging.

In addition to implementing the aforementioned techniques, we performed a number of exper-
iments to validate our implementations, and replicate reported results from the literature. We
share the trained models and the pre-processing scripts, as well as the configuration files for
retraining these models.

In particular, we trained models on the WMT 2014 task of English→French translation of news.
We were able to replicate pioneer work from Bahdanau et al. (2015) and Jean et al. (2015a).
We also replicated results on the WMT 2016 Automatic Post-Editing task: a large “translation-
based” model by Junczys-Dowmunt et al. (2017a) which is trained on synthetic data; and a
smaller “op-based” model by Libovický et al. (2016).

171

Conclusion 172

Original Results

As part of our NMT framework, we developed architectures that allowed us to present original
contributions in three related tasks: Machine Translation, End-to-End Speech Translation, and
Automatic Post-Editing.

Machine Translation We worked on three Machine Translation corpora of varying size:

• WMT 2014, for English to French translation of news (12M segments). In addition to
replicating existing results, we also trained subword-level models, which achieve com-
petitive results with Jean et al. (2015a)’s large-vocabulary approach with unknown-word
replacement. While this technique is not new, we provide a useful baseline on this corpus
(which is a popular benchmark in NMT). We also compared the effects of using Adam
versus AdaDelta for training.

• IWSLT 2014, German to English translation of TED talks (150k segments). We applied
existing techniques for NMT that had not yet been applied to this task. By doing so, we
were able to obtain state-of-the-art results on this corpus, outperforming by 4 BLEU points
the previous best NMT result (by 2 points when not using ensembles) and by 6 points a
strong SMT baseline. We were able to show that, contrary to Koehn et al. (2017)’s claims,
NMT is also a strong alternative in medium-resource settings.

• BTEC, French to English translation of basic travel expressions (20k segments). This task
is easy (very short and simple sentences), but the corpus is very small by MT standards.
By doing an extensive architecture search, we were able to outperform the SMT baseline
by a large margin (3 BLEU points).

Speech Translation We modified existing attention-based architectures for ASR (Chan et al.
2016), and applied them to Speech Translation. We presented the first results in the literature
for End-to-End AST. While our initial work was on a synthetic corpus (built by using TTS
on the French-side of BTEC), we later extended our work on a real corpus of audiobooks.
Augmented LibriSpeech (Kocabiyikoglu et al. 2018) is a new resource that was built by aligning
the LibriSpeech ASR dataset (containing English-language audiobooks and their transcriptions),
with French translations of the same books (extracted from Project Gutenberg). We designed
AST models that we trained on this dataset, and experimented with different Multi-Task training
strategies. We presented the first AST, MT and ASR results on this dataset.

Automatic Post-Editing For this specific problem, we worked in the context of the WMT
2016 and 2017 tasks. We extended the work of Junczys-Dowmunt et al. (2017a), by training
similar translation-based models in various data conditions. We showed that these models, even
though they work best when trained with large amounts of (synthetic) data, are also viable in
lower-resource settings. Then, we extended the work of Libovický et al. (2016), by proposing
improved architectures for their op-based post-editing technique. We obtained a large increase
in scores by constraining the attention mechanism to look at the exact symbols that are being
post-edited. We also proposed a “chained-encoder” architecture that makes a better use of the
source-language sequence than the usual multi-encoder architectures. We compared this type
of op-based model against the state-of-the-art translation-based methods, and showed that while
it is inferior in medium to high-resource settings, it presents a good alternative in low-resource
scenarios.

Conclusion 173

Future work

In this section, we present ideas for future work (in the short-term or long-term), in the three
tasks that we explored.

Machine Translation In the short-term, we would like to try the Transformer model (Vaswani
et al. 2017) on low-resource settings (and other tasks). Current results with this model are
outstanding, but in high-resource conditions only. We would also like to try NMT in more low-
resource scenarios, and try to disprove Koehn et al. (2017)’s assumptions that NMT is worse
than SMT in these settings.20

In the long-term, we think that NMT will take the following trends: low-resource or zero-
resource NMT using unsupervised methods and transfer learning (maybe with multilingual MT);
multilingual NMT (it is so much more convenient to have a single model for all language pairs);
character-level machine translation (current BPE units work fine but are completely arbitrary);
and multi-task learning.

A fun research idea would be to try to train NMT models by using images of text as input (e.g.,
scanned text or just typeset text in several fonts). This would be closer to how humans read text,
and would present an interesting challenge. Also, this presents nearly infinite possibilities for
data augmentation (different fonts, rotations, cropping, etc.)

Speech Translation In the short-term, we should focus on reducing the cold-start problem
that we observed when training attention-based ASR and AST models. We have several ideas
in this direction, like constraining the attention model to be close to monotonous (at least at
the beginning of training), or giving it ways to learn a monotonous alignment more easily (e.g.,
with positional information). Once this problem solved, we will be able to train bigger mod-
els, which may obtain considerably better results. Other short-term goals are to train stronger
cascaded baselines on Synthetic BTEC and Augmented LibriSpeech. We also should train AST
models that do not use the Google Translate references (but only the automatically extracted
alignments). On the other hand, we could make use of the noisier data from the Augmented
LibriSpeech (“other” dataset).

In the longer term, we think that a corpus of TED talks aligned with their translated subti-
tles would constitute an interesting resource, even more so if it is aligned with the video. We
also think that more Multi-Task strategies should be tried out. We could add auxiliary tasks,
like language modeling, lip reading (from TED videos), or MT from other languages. The en-
coder and/or decoder could be trained (with pre-training and/or multi-task training) using data
from these tasks, and not only our AST corpus. For instance, when doing AST from English
to French, we could train the English acoustic model on English ASR data (e.g., the larger
LibriSpeech), and the French decoder with parallel data (MT) or monolingual data (language
modeling). Potentially larger amounts of parallel data can be extracted from Project Gutenberg
if we do not align with LibriSpeech. If we are in a low-resource scenario, with an unwritten lan-
guage as input, and a high-resource language as target (e.g., French), we could train the decoder
on an auxiliary MT task where French is the target language (e.g., English to French).

20This is actually hard to “prove”, as NMT is very unconstrained, and new architectures or hyperparameter values
can very well void previous (negative) observations. Koehn et al. (2017)’s models can be overfitting for all we know.

Conclusion 174

Automatic Post-Editing We suspect that APE will become less useful as we get stronger MT
models, and better techniques for low-resource NMT and domain adaptation. As a possible
direction, we would like to explore character-level models for Neural APE (op-based or neural-
based), using NMT models like Lee et al. (2016)’s.21

Reinforcement Learning can be used to optimize APE models on the evaluation metrics directly
(TER or BLEU), using the REINFORCE algorithm (Ranzato et al. 2016) or Actor-Critic meth-
ods (Bahdanau et al. 2017). Our attempts at applying REINFORCE to op-based models did not
yield any improvement, but it might be more successful with translation-based APE.

An interesting short-term experiment would be to train an APE model with its own outputs. This
could be used as a technique for artificial data augmentation, which could help with regulariza-
tion, and maybe improve multiple-pass post-editing.

We also think that other forms of synthetic data should be explored. The synthetic corpus pro-
duced by Junczys-Dowmunt et al. (2016a) is a very useful resource, and helped obtain the best
results to date on this task, however we think that this is not a very realistic APE scenario. The
corpus is domain specific (and cannot be used in other APE tasks), and was obtained thanks
to large amounts of monolingual and parallel data, not available in many language pairs. It is
possible that the same models could achieve excellent results with less “expensive” synthetic
data: like monolingual data with artificial noise, or simulated PE (Potet et al. 2012a).

Finally, we would like to test these APE techniques on other public (potentially more challeng-
ing) datasets, like (Potet et al. 2012b)’s French-English dataset, and the data from the WMT
2015 edition of the APE task (where no one was able to beat the MT baseline).

21Varis et al. 2017 already explored this setting, but their results on the 12k corpus are not very good, and could
probably be improved a lot: their dev BLEU score by a BPE-based model is 42.4 (we get 61.7).

Bibliography

Abadi, Martin, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, An-
drew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Łukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dan Man, Rajat Monga, Sherry Moore, Derek Murray, Jon Shlens, Benoit
Steiner, Ilya Sutskever, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Oriol Vinyals,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng (2015). “TensorFlow: Large-
Scale Machine Learning on Heterogeneous Distributed Systems.” In: arXiv.

Artetxe, Mikel, Gorka Labaka, and Eneko Agirre (2017). “Learning Bilingual Word Embed-
dings with (Almost) no Bilingual Data.” In: ACL, pp. 451–462.

Artetxe, Mikel, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho (2018). “Unsupervised Neu-
ral Machine Translation.” In: ICLR.

Axelrod, Amittai, Xiaodong He, and Jianfeng Gao (2011). “Domain Adaptation via Pseudo In-
Domain Data Selection.” In: Computational Linguistics 23.6, pp. 355–362.

Aziz, Wilker, Sheila Castilho, and Lucia Specia (2012). “PET: a Tool for Post-editing and As-
sessing Machine Translation.” In: LREC.

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E Hinton (2016). “Layer Normalization.” In:
arXiv.

Bahdanau, Dzmitry, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau,
Aaron Courville, and Yoshua Bengio (2017). “An Actor-Critic Algorithm for Sequence Pre-
diction.” In: ICLR.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Machine Translation
by Jointly Learning to Align and Translate.” In: ICLR. San Diego, California, USA, pp. 3104–
3112.

Bahdanau, Dzmitry, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, and Yoshua Bengio
(2016). “End-to-End Attention-based Large Vocabulary Speech Recognition.” In: ICASSP,
pp. 4945–4949.

Banerjee, Satanjeev and Alon Lavie (2005). “METEOR: An Automatic Metric for MT Eval-
uation with Improved Correlation with Human Judgments.” In: ACL Workshop on Intrinsic
and Extrinsic Evaluation Measures for Machine Translation and/or Summarization. Vol. 29,
pp. 65–72.

Baroni, Marco, Georgiana Dinu, and Germán Kruszewski (2014). “Don’t count, predict! A sys-
tematic comparison of context-counting vs. context-predicting semantic vectors.” In: ACL,
pp. 238–247.

Béchara, Hanna, Yanjun Ma, and Josef van Genabith (2011). “Statistical Post-Editing for a Sta-
tistical MT System.” In: MT Summit XIII, pp. 308–315.

Bengio, Samy, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer (2015). “Scheduled Sampling
for Sequence Prediction with Recurrent Neural Networks.” In: NIPS.

Bengio, Yoshua (2012). “Practical Recommendations for Gradient-Based Training of Deep Ar-
chitectures.” In: Neural Networks: Tricks of the Trade.

175

Bibliography 176

Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Janvin (2003). “A Neural
Probabilistic Language Model.” In: Journal of Machine Learning Research 3, pp. 1137–1155.

Bérard, Alexandre, Laurent Besacier, Ali Can Kocabiyikoglu, and Olivier Pietquin (2018). “End-
to-End Automatic Speech Translation of Audiobooks.” In: ICASSP.

Bérard, Alexandre, Olivier Pietquin, and Laurent Besacier (2017). “LIG-CRIStAL System for
the WMT17 Automatic Post-Editing Task.” In: WMT - Shared Task Papers.

Bérard, Alexandre, Olivier Pietquin, Laurent Besacier, and Christophe Servan (2016a). “Listen
and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation.” In: NIPS
End-to-end Learning for Speech and Audio Processing Workshop.

Bérard, Alexandre, Christophe Servan, Olivier Pietquin, and Laurent Besacier (2016b). “Multi-
Vec: a Multilingual and Multilevel Representation Learning Toolkit for NLP.” In: LREC.

Bojar, Ondřej, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Shujian
Huang, Matthias Huck, Philipp Koehn, Qun Liu, and Varvara Logacheva (2017). “Findings
of the 2017 Conference on Machine Translation (WMT17).” In: WMT - Shared Task Papers.

Bojar, Ondřej, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias
Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, and Christof Monz (2016).
“Findings of the 2016 Conference on Machine Translation (WMT16).” In: WMT - Shared
Task Papers.

Bojar, Ondřej, Rajen Chatterjee, Christian Federmann, Barry Haddow, Matthias Huck, Chris
Hokamp, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri, Matt Post, Car-
olina Scarton, Lucia Specia, and Marco Turchi (2015). “Findings of the 2015 Workshop on
Statistical Machine Translation (WMT15).” In: WMT - Shared Task Papers.

Brown, Peter F, Stephen A Della Pietra, Vincent J Della Pietra, and Robert L Mercer (1993).
“The Mathematics of Statistical Machine Translation: Parameter Estimation.” In: Computa-
tional Linguistics 19.2, pp. 263–311.

Brown, Peter F, Vincent J Della Pietra, Robert L Mercer, Stephen A Della Pietra, and Jennifer C
Lai (1992). “An Estimate of an Upper Bound for the Entropy of English.” In: Computational
Linguistics 18.

Cettolo, Mauro, Christian Girardi, and Marcello Federico (2012). “Web Inventory of Tran-
scribed and Translated Talks.” In: EAMT.

Chan, William, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals (2016). “Listen, Attend and
Spell.” In: ICASSP.

Chatterjee, Rajen, M Amin Farajian, Matteo Negri, Marco Turchi, Ankit Srivastava, and Santanu
Pal (2017). “Multi-source Neural Automatic Post-Editing: FBK’s participation in the WMT
2017 APE shared task.” In: WMT - Shared Task Papers. Vol. 2, pp. 630–638.

Chatterjee, Rajen, José G de Souza, Matteo Negri, and Marco Turchi (2016). “The FBK Par-
ticipation in the WMT 2016 Automatic Post-Editing Shared Task.” In: WMT - Shared Task
Papers. Berlin, Germany: Association for Computational Linguistics, pp. 745–750.

Chatterjee, Rajen, Marco Turchi, and Matteo Negri (2015a). “The FBK Participation in the
WMT15 Automatic Post-editing Shared Task.” In: WMT - Shared Task Papers, pp. 210–215.

Chatterjee, Rajen, Marion Weller, Matteo Negri, and Marco Turchi (2015b). “Exploring the
Planet of the APEs: a Comparative Study of State-of-the-art Methods for MT Automatic
Post-Editing.” In: ACL 3, pp. 156–161.

Cho, Kyunghyun, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio (2014a). “On
the Properties of Neural Machine Translation: Encoder-Decoder Approaches.” In: Proceed-
ings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Transla-
tion, pp. 103–111.

Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio (2014b). “Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation.” In: EMNLP, pp. 1724–1734.

Bibliography 177

Chorowski, Jan, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio
(2015). “Attention-Based Models for Speech Recognition.” In: NIPS, pp. 577–585.

Chorowski, Jan and Navdeep Jaitly (2016). “Towards better decoding and language model inte-
gration in sequence to sequence models.” In: arXiv.

Cohn, Trevor, Cong Duy Vu Hoang, Ekaterina Vymolova, Kaisheng Yao, Chris Dyer, and Gho-
lamreza Haffari (2016). “Incorporating Structural Alignment Biases into an Attentional Neu-
ral Translation Model.” In: NAACL-HLT. Denver, Colorado, USA, pp. 876–885.

Collobert, Ronan, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa (2011). “Natural Language Processing (Almost) from Scratch.” In: Journal of Machine
Learning Research 12, pp. 2493–2537.

Conneau, Alexis, Douwe Kiela, Holger Schwenk, Loc Barrault, and Antoine Bordes (2017a).
“Supervised Learning of Universal Sentence Representations from Natural Language Infer-
ence Data.” In: EMNLP.

Conneau, Alexis, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou
(2017b). “Word Translation Without Parallel Data.” In: arXiv.

Crego, Josep, Jungi Kim, Guillaume Klein, Anabel Rebollo, Kathy Yang, Jean Senellart, Egor
Akhanov, Patrice Brunelle, Aurelien Coquard, Yongchao Deng, Satoshi Enoue, Chiyo Geiss,
Joshua Johanson, Ardas Khalsa, Raoum Khiari, Byeongil Ko, Catherine Kobus, Jean Lorieux,
Leidiana Martins, Dang-Chuan Nguyen, Alexandra Priori, Thomas Riccardi, Natalia Segal,
Christophe Servan, Cyril Tiquet, Bo Wang, Jin Yang, Dakun Zhang, Jing Zhou, and Peter
Zoldan (2016). “SYSTRAN’s Pure Neural Machine Translation Systems.” In: arXiv.

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive Subgradient Methods for On-
line Learning and Stochastic Optimization.” In: Journal of Machine Learning Research 12,
pp. 2121–2159.

Duong, Long, Antonios Anastasopoulos, David Chiang, Steven Bird, and Trevor Cohn (2016).
“An Attentional Model for Speech Translation Without Transcription.” In: NAACL-HLT. 1,
pp. 949–959.

Durrani, Nadir, Barry Haddow, Philipp Koehn, and Kenneth Heafield (2014). “Edinburgh’s
Phrase-based Machine Translation Systems for WMT-14.” In: WMT, pp. 97–104.

Dyer, Chris, Victor Chahuneau, and Noah A. Smith (2013). “A Simple, Fast, and Effective
Reparameterization of IBM Model 2.” In: NAACL.

Elman, Jeffrey L (1990). “Finding Structure in Time.” In: Cognitive Science 14.2, pp. 179–211.
Ferrero, Jérémy, Frédéric Agnes, Laurent Besacier, and Didier Schwab (2017). “Using Word

Embeddings for Cross-Language Plagiarism Detection.” In: EACL.
Ferrero, Jérémy, Frédéric Agnès, Laurent Besacier, and Didier Schwab (2016). “A Multilingual,

Multi-Style and Multi-Granularity Dataset for Cross-Language Textual Similarity Detection.”
In: LREC.

Firat, Orhan, Kyunghyun Cho, Baskaran Sankaran, Fatos T. Yarman Vural, and Yoshua Bengio
(2017). “Multi-way, multilingual neural machine translation.” In: Computer Speech & Lan-
guage.

Gal, Yarin and Zoubin Ghahramani (2016). “A Theoretically Grounded Application of Dropout
in Recurrent Neural Networks.” In: NIPS.

Gale, William A. and Kenneth W. Church (1993). “A Program for Aligning Sentences in Bilin-
gual Corpora.” In: Computational Linguistics.

Gehring, Jonas, Michael Auli, David Grangier, and Yann N Dauphin (2017a). “A Convolutional
Encoder Model for Neural Machine Translation.” In: arXiv.

Gehring, Jonas, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin (2017b).
“Convolutional Sequence to Sequence Learning.” In: arXiv.

Gers, Felix, Jürgen Schmidhuber, and Fred Cummins (1999). “Learning to Forget: Continual
Prediction with LSTM.” In: Neural Computation 12, pp. 2451–2471.

Bibliography 178

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of training deep feed-
forward neural networks.” In: Proceedings of the Thirteenth International Conference on Ar-
tificial Intelligence and Statistics. Vol. 9, pp. 249–256.

Godard, Pierre, Marcely Zanon Boito, Lucas Ondel, Alexandre Bérard, François Yvon, Aline
Villavicencio, and Laurent Besacier (2018). “Unsupervised Word Segmentation from Speech
with Attention.” In: Interspeech.

Gouws, Stephan, Yoshua Bengio, and Greg Corrado (2015). “BilBOWA: Fast Bilingual Dis-
tributed Representations without Word Alignments.” In: ICML.

Goyal, Anirudh (2016). “Professor Forcing: A New Algorithm for Training Recurrent Net-
works.” In: NIPS.

Green, Spence, Jeffrey Heer, and Christopher D. Manning (2013). “The Efficacy of Human Post-
Editing for Language Translation.” In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems.

Gulcehre, Caglar, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loic Barrault, Huei-Chi Lin, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio (2015). “On Using Monolingual Corpora in
Neural Machine Translation.” In: arXiv.

Hardt, Daniel and Jakob Elming (2010). “Incremental Re-training for Post-editing SMT.” In:
AMTA.

Hasler, Eva, Barry Haddow, and Philipp Koehn (2011). “Margin Infused Relaxed Algorithm for
Moses.” In: The Prague Bulletin of Mathematical Linguistics 96, pp. 69–78.

Hassan, Hany, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Fed-
ermann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis, Mu Li, et al. (2018).
“Achieving Human Parity on Automatic Chinese to English News Translation.” In: arXiv.

Haykin, Simon (1994). Neural Networks: a Comprehensive Foundation.
He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Delving Deep into Recti-

fiers: Surpassing Human-Level Performance on ImageNet Classification.” In: Proceedings of
the IEEE International Conference on Computer Vision.

Hill, Felix, Kyunghyun Cho, and Anna Korhonen (2016). “Learning Distributed Representations
of Sentences from Unlabelled Data.” In: NAACL-HLT.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory.” In: Neural
Computation 9.8, pp. 1735–1780.

Hokamp, Chris (2017). “Ensembling Factored Neural Machine Translation Models for Auto-
matic Post-Editing and Quality Estimation.” In: WMT - Shared Task Papers.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (1989). “Multilayer Feedforward Net-
works are Universal Approximators.” In: Neural Networks 2, pp. 359–366.

Huang, Po-Sen, Chong Wang, Dengyong Zhou, and Li Deng (2018). “Towards Neural Phrase-
based Machine Translation.” In: ICLR.

Ioffe, Sergey and Christian Szegedy (2015). “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift.” In: ICML.

Isabelle, Pierre, Colin Cherry, and George Foster (2017). “A Challenge Set Approach to Evalu-
ating Machine Translation.” In: EMNLP.

Jean, Sébastien, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio (2015a). “On Using
Very Large Target Vocabulary for Neural Machine Translation.” In: NAACL-HLT.

Jean, Sébastien, Orhan Firat, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio (2015b).
“Montreal Neural Machine Translation Systems for WMT15.” In: WMT, pp. 134–140.

Johnson, Melvin, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen,
Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes, and
Jeffrey Dean (2016). “Google’s Multilingual Neural Machine Translation System: Enabling
Zero-Shot Translation.” In: arXiv.

Bibliography 179

Junczys-Dowmunt, Marcin, Tomasz Dwojak, and Hieu Hoang (2016a). “Is Neural Machine
Translation Ready for Deployment? A Case Study on 30 Translation Directions.” In: IWSLT.

Junczys-Dowmunt, Marcin and Roman Grundkiewicz (2016b). “Log-linear Combinations of
Monolingual and Bilingual Neural Machine Translation Models for Automatic Post-Editing.”
In: WMT - Shared Task Papers. Vol. 2. Berlin, Germany: Association for Computational Lin-
guistics, pp. 751–758.

Junczys-Dowmunt, Marcin and Roman Grundkiewicz (2017a). “An Exploration of Neural Sequence-
to-Sequence Architectures for Automatic Post-Editing.” In: arXiv.

Junczys-Dowmunt, Marcin and Roman Grundkiewicz (2017b). “The AMU-UEdin Submission
to the WMT 2017 Shared Task on Automatic Post-Editing.” In: WMT - Shared Task Papers.
Vol. 2, pp. 639–646.

Kalchbrenner, Nal, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and
Koray Kavukcuoglu (2016). “Neural Machine Translation in Linear Time.” In: arXiv.

Keskar, Nitish Shirish, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang (2017). “On Large-Batch Training for Deep Learning: Generalization Gap
and Sharp Minima.” In: ICLR.

Kingma, Diederik and Jimmy Ba (2015). “Adam: A method for stochastic optimization.” In:
ICLR.

Kiros, Ryan, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Torralba, Raquel
Urtasun, and Sanja Fidler (2015). “Skip-Thought Vectors.” In: NIPS. 786.

Klementiev, Alexandre, Ivan Titov, and Binod Bhattarai (2012). “Inducing Crosslingual Dis-
tributed Representations of Words.” In: COLING. December, pp. 1459–1474.

Kocabiyikoglu, Ali Can, Laurent Besacier, and Olivier Kraif (2018). “Augmenting Librispeech
with French Translations: A Multimodal Corpus for Direct Speech Translation Evaluation.”
In: LREC.

Koehn, Philipp (2010). MOSES, Statistical Machine Translation System, User Manual and Code
Guide. Tech. rep., p. 245.

Koehn, Philipp and Rebecca Knowles (2017). “Six Challenges for Neural Machine Translation.”
In: ACL Workshop on Neural Machine Translation.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu (2003). “Statistical phrase-based transla-
tion.” In: NAACL-HLT, pp. 48–54.

Kumar, Gaurav, Graeme Blackwood, Jan Trmal, Daniel Povey, and Sanjeev Khudanpur (2015).
“A Coarse-Grained Model for Optimal Coupling of ASR and SMT Systems for Speech Trans-
lation.” In: EMNLP, pp. 1902–1907.

Lample, Guillaume, Ludovic Denoyer, and Marc’Aurelio Ranzato (2017). “Unsupervised Ma-
chine Translation Using Monolingual Corpora Only.” In: arXiv.

Le, Ngoc-Tien, Christophe Servan, Benjamin Lecouteux, and Laurent Besacier (2016). “Better
Evaluation of ASR in Speech Translation Context Using Word Embeddings.” In: Interspeech.

Le, Quoc V. and Tomas Mikolov (2014). “Distributed Representations of Sentences and Docu-
ments.” In: ICML.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning.” In: Nature 521.7553,
pp. 436–444.

LeCun, Yann, Léon Bottou, Genevieve B. Orr, and Klaus Robert Müller (2012). “Efficient back-
prop.” In: Neural Networks: Tricks of the Trade.

Lee, Jason, Kyunghyun Cho, and Thomas Hofmann (2016). “Fully Character-Level Neural Ma-
chine Translation without Explicit Segmentation.” In: ACL, pp. 1693–1703.

Levy, Omer and Yoav Goldberg (2014). “Linguistic Regularities in Sparse and Explicit Word
Representations.” In: CoNLL, pp. 171–180.

Bibliography 180

Levy, Omer, Yoav Goldberg, and Ido Dagan (2015). “Improving Distributional Similarity with
Lessons Learned from Word Embeddings.” In: Transactions of the Association for Computa-
tional Linguistics 3, pp. 211–225.

Libovický, Jindřich, Jindřich Helcl, Marek Tlustý, Pavel Pecina, and Ondřej Bojar (2016).
“CUNI System for WMT16 Automatic Post-Editing and Multimodal Translation Tasks.” In:
WMT - Shared Task Papers. Vol. 2. 2014, pp. 646–654.

Luong, Minh-Thang, Quoc V Le, Ilya Sutskever, Oriol Vinyals, and Łukasz Kaiser (2016).
“Multi-task Sequence to Sequence Learning.” In: ICLR. San Juan, Puerto Rico.

Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning (2015a). “Bilingual Word Rep-
resentations with Monolingual Quality in Mind.” In: NAACL Workshop on Vector Modeling
for NLP, pp. 151–159.

Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning (2015b). “Effective Approaches
to Attention-based Neural Machine Translation.” In: EMNLP.

Luong, Minh-Thang, Ilya Sutskever, Quoc V. Le, Oriol Vinyals, and Wojciech Zaremba (2015c).
“Addressing the Rare Word Problem in Neural Machine Translation.” In: ACL.

Mathieu, Benoit, Slim Essid, Thomas Fillon, Jacques Prado, and Gaël Richard (2010). “YAAFE,
an Easy to Use and Efficient Audio Feature Extraction Software.” In: ISMIR (International
Society of Music Information Retrieval).

Mesnil, Grégoire, Marc’Aurelio Ranzato, Tomas Mikolov, and Yoshua Bengio (2014). “Ensem-
ble of Generative and Discriminative Techniques for Sentiment Analysis of Movie Reviews.”
In: arXiv.

Mikolov, Tomas, Greg Corrado, Kai Chen, and Jeffrey Dean (2013a). “Efficient Estimation of
Word Representations in Vector Space.” In: ICLR.

Mikolov, Tomas, Quoc V. Le, and Ilya Sutskever (2013b). “Exploiting Similarities among Lan-
guages for Machine Translation.” In: arXiv.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean (2013c). “Dis-
tributed Representations of Words and Phrases and their Compositionality.” In: NIPS, pp. 3111–
3119.

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig (2013d). “Linguistic regularities in contin-
uous space word representations.” In: NAACL-HLT. June, pp. 746–751.

Mitchell, Tom M (1997). Machine learning.
Moore, Robert C (2002). “Fast and Accurate Sentence Alignment of Bilingual Corpora.” In:

AMTA.
Negri, Matteo, Marco Turchi, Rajen Chatterjee, and Nicola Bertoldi (2018). “eSCAPE: a Large-

scale Synthetic Corpus for Automatic Post-Editing.” In: arXiv.
Ng, Andrew (2017). Coursera - Improving Deep Neural Networks: Hyperparameter tuning,

Regularization and Optimization.
Och, Franz Josef (2003). “Minimum Error Rate Training in Statistical Machine Translation.” In:

ACL. Vol. 1001. Stroudsburg, PA, USA: Association for Computational Linguistics, pp. 160–
167.

Och, Franz Josef and Hermann Ney (2003). “A Systematic Comparison of Various Statistical
Alignment Models.” In: Computational Linguistics 29.1, pp. 19–51.

Östling, Robert and Jörg Tiedemann (2017). “Neural machine translation for low-resource lan-
guages.” In: arXiv.

Ott, Myle, Sergey Edunov, David Grangier, and Auli Michael (2018). “Scaling Neural Machine
Translation.” In: arXiv.

Pal, Santanu, Sudip Kumar Naskar, Mihaela Vela, and Josef van Genabith (2016). “A Neural
Network Based Approach to Automatic Post-Editing.” In: ACL. Vol. 2, pp. 281–286.

Bibliography 181

Pal, Santanu, Mihaela Vela, Sudip Kumar Naskar, and Josef van Genabith (2015). “USAAR-
SAPE: An English-Spanish Statistical Automatic Post-Editing System.” In: WMT, pp. 216–
221.

Panayotov, Vassil, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur (2015). “LibriSpeech:
an ASR Corpus Based on Public Domain Audio Books.” In: ICASSP.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wj Zhu (2002). “BLEU: a method for auto-
matic evaluation of machine translation.” In: ACL. July, pp. 311–318.

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio (2013). “On the difficulty of training
Recurrent Neural Networks.” In: ICML.

Pennington, Jeffrey, Richard Socher, and Christopher Manning (2014). “Glove: Global Vectors
for Word Representation.” In: EMNLP. Vol. 12, pp. 1532–1543.

Post, Matt, Gaurav Kumar, Adam Lopez, Damianos Karakos, Chris Callison-Burch, and San-
jeev Khudanpur (2013). “Improved Speech-to-Text Translation with the Fisher and Callhome
Spanish-English Speech Translation Corpus.” In: IWSLT.

Potet, Marion, Laurent Besacier, and Hervé Blanchon (2010). “The LIG Machine Translation
System for WMT 2010.” In: ACL Workshop on Statistical Machine Translation and Metrics.
Stroudsburg, PA, USA: Association for Computational Linguistics, pp. 161–166.

Potet, Marion, Laurent Besacier, Hervé Blanchon, and Marwen Azouzi (2012a). “Towards a
Better Understanding of Statistical Post-Edition Usefulness.” In: IWSLT, pp. 284–291.

Potet, Marion, Emmanuelle Esperança-Rodier, Laurent Besacier, and Hervé Blanchon (2012b).
“Collection of a Large Database of French-English SMT Output Corrections.” In: LREC.
Istanbul, Turkey: European Language Resources Association (ELRA), pp. 4043–4048.

Press, Ofir and Lior Wolf (2017). “Using the Output Embedding to Improve Language Models.”
In: EACL, pp. 157–163.

Ranzato, Marc’Aurelio, Sumit Chopra, Michael Auli, and Wojciech Zaremba (2016). “Sequence
Level Training with Recurrent Neural Networks.” In: ICLR.

Rosenblatt, Frank (1957). The Perceptron, a Perceiving and Recognizing Automaton (Project
Para).

Rousseau, Anthony, Paul Deléglise, and Yannick Estève (2014). “Enhancing the TED-LIUM
Corpus with Selected Data for Language Modeling and More TED Talks.” In: LREC.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1988). “Learning Representa-
tions by Back-Propagating Errors.” In: Cognitive modeling.

Schmidhuber, Jürgen (2015). “Deep learning in Neural Networks: An Overview.” In: Neural
Networks 61, pp. 85–117.

Schwarz, Diemo (2007). “Corpus-Based Concatenative Synthesis.” In: IEEE Signal Processing
Magazine 24.2, pp. 92–104.

Schwenk, Holger (2012). “Continuous Space Translation Models for Phrase-Based Statistical
Machine Translation.” In: COLING, pp. 1071–1080.

Sennrich, Rico, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Haddow, Julian Hitschler,
Marcin Junczys-Dowmunt, Samuel Laeubli, Antonio Valerio, Antonio Valerio Miceli Barone,
Jozef Mokry, and Maria Nadejde (2017). “Nematus: a Toolkit for Neural Machine Transla-
tion.” In: EACL.

Sennrich, Rico and Barry Haddow (2016a). “Linguistic Input Features Improve Neural Machine
Translation.” In: WMT. Vol. 1, pp. 83–91.

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2015). “Improving Neural Machine Trans-
lation Models with Monolingual Data.” In: arXiv, pp. 86–96.

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2016b). “Edinburgh Neural Machine
Translation Systems for WMT 16.” In: WMT - Shared Task Papers. Vol. 2, pp. 371–376.

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2016c). “Neural Machine Translation of
Rare Words with Subword Units.” In: ACL.

Bibliography 182

Servan, Christophe, Alexandre Bérard, Zied Elloumi, Hervé Blanchon, and Laurent Besacier
(2016). “Word2Vec vs DBnary: Augmenting METEOR using Vector Representations or Lex-
ical Resources?” In: COLING.

Shazeer, Noam, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean (2017). “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-
of-Experts Layer.” In: ICLR.

Simard, Michel, Cyril Goutte, and Pierre Isabelle (2007). “Statistical Phrase-Based Post-Editing.”
In: NAACL-HLT.

Snover, Matthew, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul (2006).
“A Study of Translation Edit Rate with Targeted Human Annotation.” In: AMTA. August,
pp. 223–231.

Snover, Matthew, Nitin Madnani, Bonnie J. Dorr, and Richard Schwartz (2009). “Fluency, Ad-
equacy, or HTER? Exploring Different Human Judgments with a Tunable MT Metric.” In:
WMT. Stroudsburg, PA, USA: Association for Computational Linguistics, pp. 259–268.

Specia, Lucia (2011). “Exploiting Objective Annotations for Measuring Translation Post-Editing
Effort.” In: EAMT, pp. 73–80.

Specia, Lucia, Nicola Cancedda, and Marc Dymetman (2010). “A Dataset for Assessing Ma-
chine Translation Evaluation Metrics.” In: LREC.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov
(2014). “Dropout: A Simple Way to Prevent Neural Networks from Overfitting.” In: Journal
of Machine Learning Research 15, pp. 1929–1958.

Sutskever, Ilya, James Martens, George E. Dahl, and Geoffrey Hinton (2013). “On the Impor-
tance of Initialization and Momentum in Deep Learning.” In: ICML, pp. 1139–1147.

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le (2014). “Sequence to Sequence Learning with
Neural Networks.” In: NIPS. Montréal, Canada, pp. 3104–3112.

Turchi, Marco, Rajen Chatterjee, and Matteo Negri (2016). WMT16 APE Shared Task Data.
Turchi, Marco, Rajen Chatterjee, and Matteo Negri (2017). WMT17 De-En APE Shared Task

Data.
Varga, Dániel, Péter Halácsy, András Kornai, Viktor Nagy, László Németh, and Viktor Trón

(2005). “Parallel Corpora for Medium Density Languages.” In: Recent Advances in Natural
Language Processing (RANLP).

Varis, Dusan and Ondrej Bojar (2017). “CUNI System for WMT17 Automatic Post-Editing
Task.” In: WMT - Shared Task Papers 2, pp. 661–666.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin (2017). “Attention Is All You Need.” In: arXiv.

Weiss, Ron J., Jan Chorowski, Navdeep Jaitly, Yonghui Wu, and Zhifeng Chen (2017). “Sequence-
to-Sequence Models Can Directly Transcribe Foreign Speech.” In: Interspeech.

Williams, Ronald J. and David Zipser (1989). “A Learning Algorithm for Continually Running
Fully Recurrent Neural Networks.” In: Neural Computation 1.2, pp. 270–280.

Wisniewski, Guillaume, Nicolas Pécheux, and François Yvon (2015). “Why Predicting Post-
Edition is so Hard? Failure Analysis of LIMSI Submission to the APE Shared Task.” In:
WMT, pp. 222–227.

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith,
Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean
(2016). “Google’s Neural Machine Translation System: Bridging the Gap between Human
and Machine Translation.” In: arXiv.

Bibliography 183

Zanon Boito, Marcely, Alexandre Bérard, Aline Villavicencio, and Laurent Besacier (2017).
“Unwritten Languages Demand Attention Too! Word Discovery with Encoder-Decoder Mod-
els.” In: ASRU.

Zaremba, Wojciech, Ilya Sutskever, and Oriol Vinyals (2014). “Recurrent Neural Network Reg-
ularization.” In: ICLR.

Zeiler, Matthew D. (2012). “AdaDelta: An Adaptive Learning Rate Method.” In: arXiv.
Zhang, Jiajun, Shujie Liu, Mu Li, Ming Zhou, and Chengqing Zong (2014). “Bilingually-Constrained

Phrase Embeddings for Machine Translation.” In: ACL. Vol. 1, pp. 111–121.
Zhechev, Ventsislav (2012). “Machine Translation Infrastructure and Post-Editing Performance

at Autodesk.” In: AMTA Workshop on Post-Editing Technology and Practice (WPTP), pp. 87–
96.

Zhou, Jie, Ying Cao, Xuguang Wang, Peng Li, and Wei Xu (2016). “Deep Recurrent Models
with Fast-Forward Connections for Neural Machine Translation.” In: Transactions of the As-
sociation for Computational Linguistics (TACL) 4, pp. 371–383.

Zoph, Barret and Kevin Knight (2016a). “Multi-Source Neural Translation.” In: NAACL-HLT.
Denver, Colorado, USA.

Zoph, Barret, Deniz Yuret, Jonathan May, and Kevin Knight (2016b). “Transfer Learning for
Low-Resource Neural Machine Translation.” In: EMNLP.

Zou, Will Y, Richard Socher, Daniel Cer, and Christopher D Manning (2013). “Bilingual Word
Embeddings for Phrase-Based Machine Translation.” In: EMNLP October, pp. 1393–1398.

Appendix A

Neural Machine Translation

A.1 MultiVec

A.1.1 Word2Vec Tricks

Word2Vec implements the following tricks, which largely contribute to the training speed and
the quality of the trained embeddings:

• Subsampling: each token is discarded from the training set with a probability that depends
on its frequency (f):

p = max(0,
f − t
f
−

√
t

f
) (A.1)

f =
#w∑
#w′

(A.2)

γ is the subsampling rate, a hyperparameter of the model whose default value is 10−5.
Lower values of γ result in more words being dropped.1 This subsampling strategy drops
more often words that are highly frequent (typically stop words). This decreases training
time as less updates need to be done.

• Asynchronous SGD (Y. Bengio et al. 2003): to speed up training on multi-core CPUs, the
training set is split into several chunks (as many chunks as there are threads), and each
chunk is processed in a separate thread. Each thread reads its own part of the training
file and performs SGD updates on shared weight matrices. In most contexts, it would be
advisable to lock access to the shared parameters while updating them, in order to avoid
race conditions, i.e., inconsistent state caused by several non-atomic operations which
happen at the same time and overlap. However, in the context of stochastic gradient
descent, such race conditions are not detrimental, and thus thread safety is not necessary.
Indeed, SGD is highly stochastic, and random write errors only add up to the stochasticity.
By not enforcing thread safety, we can greatly improve training speed.

1For example, on the English side of News Commentary, values of 10−3, 10−4 and 10−5 result respectively in
27%, 49% and 73% of all words being dropped.

184

Appendix A: Neural Machine Translation 185

• Decreasing learning rate: Word2vec decreases its learning rate linearly usingα = α0∗(1−
t
T) where α0 is the initial learning rate, t is the number of words that have been processed
up to the current step, and T is the total number of words to process during training (i.e.,
the number of words in the train set times the number of epochs). This ensures that the
learning rate reaches zero near the end of training (i.e., after a fixed number of epochs).
Pure SGD is used for training (with a batch size of 1).

• Dynamically sized window: for each word wt, a new window size S is uniformly sam-
pled between 1 and Smax. This is equivalent to weighting the contribution to the loss of
each word in the context window, with larger weights near the center of the window, and
smaller weights at the extremities. Intuitively, words that are further away are less related
and should contribute less to the loss. This implementation also improves training speed,
as training complexity depends on the window size.

• Vocabulary filtering: very infrequent words are removed from the vocabulary at the be-
ginning of training, i.e., words whose count in the training set is below some threshold.
Words that do not appear in the vocabulary are just removed from the training sentences.
This speeds up training by largely reducing the size of the vocabulary. Words that appear
only a couple of times would get very poor embeddings anyway.

• Word2vec also uses a number of low-level speed tricks, like a pre-computed exponential
table and a custom random generator.

A.1.2 Architecture and API

Directory substructure The MultiVec toolkit is divided into several directories, whose func-
tion is described below. Optionally, a data/ directory can be used to store the training files
(text corpora), and a models/ directory to store the trained models (word embeddings or full
models).

• multivec/ contains the main source code of the library, which we will detail shortly.

• word2vec/ contains the source code from the original Word2vec (Mikolov et al. 2013c),
which we modified slightly to match our command-line interface.

• cython/ contains the source code of the Python wrapper. Thanks to this wrapper, the
toolkit can be used from Python code without performance loss, as the back end still runs
in C++.

• benchmarks/ contains scripts for running a number of evaluation benchmarks: analog-
ical reasoning, sentiment analysis and crosslingual document classification.

• scripts/ contains a number of pre-processing and post-processing scripts (e.g., tok-
enization, lowercasing, etc.)

MultiVec structure The MultiVec toolkit relies on two C++ classes: MonolingualModel
and BilingualModel.
A few utility classes are also used: Config and BilingualConfig that hold the hyper-
parameters of the models, HuffmanNode that holds a vocabulary item, and Vec for vector
arithmetic. More precisely, the source code is divided into the following files:

Appendix A: Neural Machine Translation 186

• vec.hpp defines the Vec class, a wrapper around std::vector<float> that sup-
ports basic arithmetic operations between vectors. We define a matrix (mat) as a simple
list of Vec instances (alias to std::vector<Vec>).

• utils.hpp contains the definition of the Config and BilingualConfig classes,
which contain the settings of a model (e.g., dimension, learning rate or window size). It
also defines several utility functions (e.g., for random number generation), and the class
HuffmanNode. This class corresponds to a node in a Huffman Tree, a kind of binary
tree where the leaves are words (in our case), and the most frequent words have a shorter
path from root to leaf.

A word can be encoded as a path in the tree (sequence of zeros and ones, indicating
right or left branches). Each inner node has its own output embedding (stored in the
MonolingualModel::output weights matrix). The probability of following the
left path from a given node i is pi = σ(v>i h) where vi is the embedding of the node, and
h the context vector. The probability of taking the right branch is 1−p. The probability of
a word is decomposed as the probability of its path:

∏
i p
ri
i (1− pi)1−ri . Because the path

length isO(log2 |V |), this reduces the complexity toO(n× log2 |V |), compared toO(n×
|V |) for regular softmax. Huffman Trees are more efficient than balanced binary trees
because they give shorter paths to frequent words, whose probability can be estimated
faster than words that are seen more rarely. For example, when building a tree from the
English side of News Commentary, the word “the” has an encoding of length 4, while the
rare word “zealot” has a path of length 20.

• monolingual.{hpp,cpp} define the MonolingualModel class. It has a configu-
ration, a vocabulary and weight matrices (input and output weights).

The vocabulary is stored as a list (std::vector<HuffmanNode>) of Huffman nodes.
A word is identified uniquely by the position of the corresponding node in this list, which
also gives the position of its input and output embeddings inside the input weights
and output weights matrices. A hash map is also built that maps each word to the
corresponding index (std::unordered map<string, int>).

The model is initialized either with a call to train (which initialize the weights at ran-
dom and then trains with given text file), or with load (which loads an existing model).

train starts by calling read vocab, which reads the training file and builds a vo-
cabulary (i.e., a Huffman Tree and a unigram table used for random sampling of words
according to their frequency). Then, init net is called to initialize the weights of
the model, and chunkify to find the starting position of each file chunk for parallel
training. train chunk is called as many times as there are threads (with the cor-
responding file chunk). This function trains the model by reading its own part of the
training corpus line by line, for a fixed number of epochs. train sentence is called
for each sentence, and train word for each word in the sentence and its local con-
text. train word CBOW is called for the CBOW model, or train word skip gram
when config.skip gram = true.
Online Paragraph Vector is computed by the sent vec method which also makes use of
train word (with additional parameters).

Models can be serialized with save (which saves everything, including the configuration
and vocabulary). To save only vectors in the Word2vec format, save vectors can be
used. The policy parameter controls whether to save the input embeddings, the output
embeddings, or a concatenation or sum of both.

Appendix A: Neural Machine Translation 187

• bilingual.{hpp,cpp} define the BilingualModel class. It has two instances of
MonolingualModel. Its configuration is an instance of BilingualConfig, which
has an additional beta parameter. This controls the strength of crosslingual updates
(β = 1.0 gives as much strength as monolingual ones). The trainmethod takes two files
instead of a single one (a parallel corpus). The entire (bilingual) model can be saved with a
call to save, and its monolingual components can be saved with src model.save and
trg model.save. Optionally, a third file can be passed to train, which corresponds
to a pre-computed word-based alignment of the training corpus, in the fast align
format (Dyer et al. 2013). If this file is not provided, MultiVec does a uniform word
alignment between sentence pairs.

• serialization.hpp is a custom serialization library.2 It defines functions for saving
and loading all types of objects that MultiVec uses (configuration, vocabulary, model
parameters) in a binary format, so that entire models can be saved (and not just their
embedding vectors). This is useful for accessing the features of a model after training it,
like similarity measures, online paragraph vector, or incremental training.

• distance.cpp contains the definition of several methods of MonolingualModel
and BilingualModel for computing the similarity (or distance) between words or se-
quences. These functions can be used thanks to the Python API, or the C++ public API
(not the command line). For example, BilingualModel::similarity can com-
pute the cosine similarity between a word in the source language and a word in the target
language. MonolingualModel::closest can retrieve a list of the closest words in
the vocabulary to given word w.r.t. cosine similarity. soft word error rate com-
putes the Word Error Rate between two sequences, where the cost of the substitution
between two words is their cosine distance (instead of 1).

• main.cpp and main-bi.cpp define the command-line interface of the monolingual
and bilingual models.
They compile as two binaries: bin/multivec and bin/multivec-bi. We will
describe this command-line interface shortly.

• analogy.cpp is a standalone program for evaluating word embeddings on the analog-
ical reasoning task. Contrary to Word2vec’s compute-accuracy.c, it does multi-
threaded evaluation (one topic per thread). It also proposes more options (like case-
sensitive evaluation) and displays more fine-grained results (e.g., balanced accuracy).

Installation The software dependencies of MultiVec are a recent version of g++, CMake, and
optionally Cython and NumPy for the Python wrapper. Here is how to install the dependencies
(on Ubuntu/Debian), and then download and install the toolkit:

sudo apt-get install cmake g++ cython3 python3-numpy
git clone https://github.com/eske/multivec.git
cd multivec
./compile.sh

The binaries are then available inside multivec/bin. To compile the Python wrapper,
run cd cython && make (for Python 2: make python2). This creates a file named

2boost seemed unnecessarily heavy, and we wanted MultiVec to have as few dependencies as possible.

Appendix A: Neural Machine Translation 188

multivec.so inside cython/. To use this library with Python, either run the Python in-
terpreter in this directory, move the file to the working directory, or add the library to the
PYTHONPATH variable:

echo "export PYTHONPATH=`pwd`:\$PYTHONPATH" >> ˜/.bashrc

Command-line interface Like Word2vec, MultiVec can be used to train new models from the
command line. We provide two binaries: bin/multivec and bin/multivec-bi. The -v
or --verbose option prints more information during training (like training progression).

For example, given a training file data/news.en, with one sentence per line, and tokenized
at the word level3 (and optionally lowercased), a monolingual model can be trained as follows:

train and save a monolingual model
bin/multivec --train data/news.en -v --save models/news.bin

This uses the default settings: CB-NS model with dim=100, iter=5, negative=5,
win size=5, min count=5, threads=4. A Skip-Gram model can be trained with the
option --sg, and the Hierarchical Softmax objective (instead of Negative Sampling) can be
used with --hs. All other options (dimension, iterations, etc.) can be modified thanks to
command-line parameters. Run bin/multivec -h to get a list of the available options.

If training is interrupted by the user (CTRL+C), the model is saved before exiting. Training
can then be resumed by loading this model. However, the right learning rate and number of
iterations have to be set manually.

To only save the vectors, use the --save-vectors option. This writes the vectors in a text
file, following the Word2vec format.4 By default, MultiVec uses 4 threads that each read their
own part of the training file, this can be modified with the --threads option.

To use the paragraph vector algorithm in batch mode (i.e., compute embeddings for each sen-
tence in the training set), use the --sent-vector flag:

train and save paragraph vectors
bin/multivec --train data/news.en -v --sent-vector \

--save-sent-vectors models/news.sent.vec \
--save-vectors models/news.vec

This saves one vector per line (aligned with data/news.en), with values in text format sep-
arated by a whitespace. By default, MultiVec uses the PV-DM algorithm (Paragraph Vector
Distributed Memory), which is analogous to CBOW. The --concat parameter can be used
to concatenate context vectors instead of averaging them. It is possible to use the PV-DBOW
algorithm (analogous to Skip-Gram) by combining the --sent-vector and --sg flags.

Given an existing model (with --load), paragraph vector can also be used in online mode to
compute representations for unseen sentences. This is done with --online-sent-vector.
This freezes the other parameters of the model and does SGD on the sentence weights only. For
instance:

3The scripts scripts/prepare-data.py or scripts/tokenizer.perl can be used for this purpose.
4One-line header with vocabulary size and dimension of the embeddings, then one line for each word, containing

the word and the list of embedding values separated by a whitespace.

Appendix A: Neural Machine Translation 189

compute new paragraph vectors using an existing model
bin/multivec --load models/news.bin -v \

--online-sent-vector data/movie-reviews.en \
--save-sent-vectors models/movie-reviews.sent.vec

Bilingual models are trained with the bin/multivec-bi program. Instead of a single train-
ing file, it takes a pair of files (a parallel corpus) with the --train-src and --train-trg
options:

train and save bilingual model
bin/multivec-bi --train-src data/news.en --train-trg data/news.de \

--save models/news.en-de.bin -v

By default, MultiVec does a uniform word-based alignment between parallel sentences. This
means that in bilingual updates, the source context at position A×i

B (where A and B are the
lengths of the source and target sentences) is used to predict the target word at position i. Op-
tionally, a word alignment of the training corpus by fast align (Dyer et al. 2013) can be
provided with the --alignment option. The program scripts/align.sh can be used
to generate such an alignment. The --beta option controls the strength of bilingual updates
compared to monolingual ones (1 means equal strength).

Source and target models can be saved individually as monolingual models with --save-src
and --save-trg. The options --save-src-vectors and --save-trg-vectors can
be used to only save the word embeddings.

Python API The Python library, named multivec, defines MonolingualModel and
BilingualModel classes, with a similar interface as their C++ homonyms.

A new model is created by calling the MonolingualModel initializer with the settings of
the model as keyword arguments. These settings can then be accessed (read or modified) as
attributes of the model. For example:

from multivec import MonolingualModel, BilingualModel

mono_model = MonolingualModel(dimension=100, threads=4,
alpha=0.1, iterations=10)

mono_model.verbose = True

An existing model can be loaded with the load method (a shortcut is to directly give the path
to the model file to the initializer), or a new model can be trained by calling its train method
with the path to the training file:

mono_model.train('data/news.en')
or mono_model.load('models/news.bin')
mono_model.save_vectors('models/news.vec')

Appendix A: Neural Machine Translation 190

To perform incremental training (and not initialize the model parameters to new values), pass
initialize=False to the train method. A number of methods are available to manipu-
late a trained model. To get the vector representation of a given word, use word vec. Use the
policy keyword argument to get the input weights (policy=0), a concatenation of the input
and output weights, a sum of them, or just the output weights (1, 2 or 3).

similarity or distance return the cosine similarity or cosine distance between two words.
closest returns the list of n closest words to given word according to their cosine simi-
larity. Paragraph vector can be computed in an online fashion thanks to sent vec. Simi-
larity measures between sequences are also available, with similarity bag of words or
soft word error rate.

print(mono_model.similarity('paris', 'london')) # 0.834
print(mono_model.closest('france', 2))
[('britain', 0.763), ('germany', 0.754)]

Bilingual models can also be trained and manipulated. A Bilingual Model contains two Mono-
lingual Models that can be accessed as attributes (src model and trg model).

BilingualModel also has several utility functions to manipulate vectors in a crosslingual
way. For example similarity computes the cosine similarity between a source language
word and a target language word. trg closest looks for the target language words that are
most similar to the given source language word.

bi_model = BilingualModel(dimension=100, threads=4,
iterations=10, alpha=0.1, beta=1.0)

bi_model.train('data/news.en', 'data/news.de')
bi_model.src_model.save_vectors('models/news.en.vec')

print(bi_model.similarity('munich', 'münchen')) # 0.83
print(bi_model.trg_closest('thesis', 3))
[('these', 0.67), ('ökonomielehre', 0.57), ('theorie', 0.57)]

A.2 Seq2seq

A.2.1 TensorFlow

A brief overview of TensorFlow was given in the State of the Art. In this subsection, we give a
bit more details and tricks that are useful to understanding our framework.

Graph As a quick reminder, before using a TensorFlow model, one needs to build a static
computation graph. To do so, the TensorFlow Python API provides a number of functions
for adding new operations to the graph. There are three main types of objects: tf.Tensor,
tf.Variable, and tf.Operation. A Tensor is the basic graph unit, which holds the
result of a computation. It has a rank (the number of dimensions), a shape (the size of each

Appendix A: Neural Machine Translation 191

dimension), and a type (typically floating point or integer). It can represent scalars, vectors,
matrices or higher-order tensors. Generally, the first dimension corresponds to the batch size, as
all computations for a single mini-batch are done at once and their results stored into a single
tensor.

A Variable is a special kind of Tensor that can store values (a Tensor forgets its value between
each execution of the graph). It can be defined thanks to the tf.get variable function.
In addition to its shape and type, it also takes an ‘initializer’ parameter, which defines what its
initial value should be (e.g., sampled from a uniform distribution), and a name which identifies
it uniquely. Variables are generally used to represent model parameters (weights and biases).

An Operation represents a graph node that performs computation. It takes as input a number of
Tensors, and outputs a number of Tensors. For example: z = tf.add(x, y) creates a new
‘Add’ operation (which is automatically included into the graph), whose input Tensors are x and
y, and output Tensor is z. Some operations can have side-effects, like printing something to the
screen (tf.Print) or changing the value of a Variable (e.g., tf.assign).

Input tensors Since the graph is directed, it has a number of input Tensors that are not the
result of an operation. Input Tensors can be variables, constant tensors (whose value is defined
at compilation time), or placeholders (whose value is given by the user when running the graph).
For instance, in this code sample we have all three:

x = tf.ones(shape=[2], dtype=tf.float32) # constant [1, 1]
y = tf.placeholder(shape=[None, 3], dtype=tf.float32)
w = tf.get_variable(shape=[3, 2], name='w') # var (rand init)
z = tf.matmul(y, w) + x # tensor of shape [None, 2]

z computes a product between an input matrix and a weight matrix and adds one, which results
in a Tensor of shape [None, 2]. As a side note, adding x in the last line is equivalent to
adding 1, but more flexible as x can be substituted with other values when running the graph.

Tensor shape TensorFlow tries to infer a static shape for each tensor from the preceding oper-
ations, which is obtained thanks to the shape attribute of Tensor objects. In the previous exam-
ple, z.shape would give TensorShape([Dimension(None), Dimension(2)]).
As can be seen in this example, the static shape is only partially known: TensorFlow was able
to infer the second dimension from the ‘MatMul’ operation, but was unable to infer the first
dimension because the shape of the placeholder y was not entirely filled in. The true shape of
a Tensor is available as a one-dimensional Tensor (which also belongs to the graph), thanks to
the tf.shape function. This dynamic shape can be used in other operations, but its actual
value can only be known at run time. The advantage of leaving out some dimensions in a place-
holder (with None) is that we can feed values of varying size at run time. This is useful for
variable-length sequences and dynamic batch size.

Variables and scopes TensorFlow variables can belong to a scope, which defines certain prop-
erties of these variables, like their full name or their default initializer. For example:

with tf.variable_scope('my_scope'):
w = get_variable('my_variable', shape=[3, 4])

Appendix A: Neural Machine Translation 192

Then the newly created w variable will have the unique name ‘my scope/my variable’. If we try
to create a new variable with the same scope and name, then TensorFlow raises an exception,
unless we explicitly tell this scope to reuse previously created variables (with a reuse param-
eter). This feature is convenient for accessing existing variables from anywhere in the code, but
it can be tedious to keep track of all variables that have already been created.

To handle this reuse situation automatically, we defined a wrapper around tf.get variable,
which catches exceptions and calls the function inside a variable scope with reuse=True if
needed. This is crucial for our implementation of multi-task training, where several models
with shared parameters are created. With this trick, we only need to share the scope names and
variable names between the different models, and the corresponding variables are automatically
shared.

Starting from TensorFlow 1.4, a variable scope can set its reuse parameter to tf.AUTO REUSE,
which achieves the same effect as our wrapper.

Using GPUs One of the advantages of TensorFlow is that most of its operations can run seam-
lessly on GPUs. Unless told otherwise, if GPUs are available, TensorFlow will allocate all the
remaining memory of the first GPU and store its variables and run its computation on this GPU.
Some variables may be too large to fit on GPU memory, in particular embedding matrices. In
this case, it can be wise to explicitly tell TensorFlow to store it in RAM (and run this part of the
graph on the CPU). If a machine contains several GPUs, we may also wish to use the second
GPU, or to distribute the model on several GPUs. This is possible by defining the variables and
operations inside a tf.device context. For example, to allocate an embedding matrix on the
CPU:

with tf.device('/cpu:0'): # or '/gpu:0', '/gpu:1', etc.
/cpu:0 = all CPUs
embedding = tf.get_variable('embedding', shape=[30000, 256])

This is actually recommended for embedding matrices, as they can take large amounts of mem-
ory, and the operation for looking up the embedding of a particular item does not run on the
GPU anyway (tf.nn.embedding lookup).

Running the graph Once the graph has been built, it needs to be instantiated inside a session.
A session allocates the resources (e.g., GPU memory) and holds the values of each variable and
intermediate results. The variables of the graph can be initialized (generally to random values)
by running the operation tf.global variable initializer() inside a session. This
is necessary before running any other operation, otherwise TensorFlow raises an exception.

sess = tf.get_default_session()
sess.run(tf.global_variable_initializer())

Any operation or tensor expression can be evaluated thanks to a call to sess.run. To run
operations that depend on placeholders, actual values for these placeholders need to be given as
input to the sess.run function.

In the earlier example, to evaluate the value of tensor z, a value needs to be provided for y as
follows:

Appendix A: Neural Machine Translation 193

y_data = [[3, 2, 0], [5, 7, 1]] # batch size of 2
z_value = sess.run(z, feed_dict={y: y_data})

This gives a NumPy array of shape [2, 2] that corresponds to the result of the computation
of z. An interesting property of this ‘feed dict’ approach is that we can give a value for any
tensor in the graph, not only placeholders, but also tensors that would normally be the result of
an operation.

High-level operations Even though TensorFlow is a general purpose symbolic math library, it
is primarily intended as a machine learning or deep learning library. Hence, it offers a number of
high-level operations that are useful for deep learning. For example, tf.dense takes as input
a tensor and returns the output of a fully-connected layer whose size and activation function are
given as parameters. It automatically creates the corresponding variables: weight matrix, and
optional bias vector. TensorFlow also provides operations for dropout: tf.nn.dropout, or
batch normalization: tf.layers.batch norm. Most of these operations are intended to
work with tensors whose first dimension is the batch size.

Control-flow operations Conditional branching in TensorFlow is not straightforward. Python
if-statements, because they are executed only once at the creation of the graph, only result in
the creation of one branch, which cannot change during the execution of the graph (because the
graph is static).

For example, when training RNNs, there is a technique called “teacher forcing” which consists
in feeding the RNN with the previous ground truth symbol instead of the token that was gener-
ated at the previous time step. However, we want to be able to differentiate between the training
phase (where teacher forcing is enabled) and the decoding phase (where ground truth symbols
are not available). To do so, we use a feed previous boolean. When true, we want the RNN
to take its previous prediction as input, otherwise it should take the target symbol as input.

Here is how we could (wrongly) proceed with a Python if-statement:

if feed_previous:
input_symbol = tf.argmax(output, axis=1)

else:
input_symbol = target_symbol

With this implementation, depending on the truth value of feed previous, a single graph
branch will be created. At run time, only this branch will be executed, even when changing
the value of feed previous. As a side note, if feed previous is a tensor, Python will
evaluate it to True, no matter its actual value (according to Python, everything that is not
False, 0, None, or an empty container, evaluates as True).

The correct implementation, which would allow us to choose the correct behavior at run time, is
the following:

input_symbol = tf.cond(feed_previous,
lambda: tf.argmax(output, axis=1),
lambda: target_symbol)

Appendix A: Neural Machine Translation 194

where feed previous is a scalar boolean Tensor. Then, by feeding True or False to
sess.run, we can control the behavior of the graph (teacher forcing or no teacher forcing).

There is also a tf.case operation which can take several conditions and outputs (like an if
block with elif statements, or switch statement in C++). tf.where(b, x, y) takes
three tensors with the same shape, where b is a boolean tensor. It outputs values of x where b is
true, or values of y where b is false. This is equivalent to: x * tf.to float(b) + y *
(1 - tf.to float(b)).

Loops Python for-loops can be used with TensorFlow, but they result in the creation of a
statically unrolled graph, with a fixed number of time steps. The following code example
unrolls an RNN to a length of max steps. The result is the final state of the RNN (after
reading max steps inputs). Here, inputs has a shape of (batch size, max steps,
input size).

cell = GRUCell(state_size) # RNN cell
state = tf.zeros(shape=[batch_size, state_size]) # initial state
states = []

for time in range(max_steps):
state = cell(inputs[:,time], state) # update RNN state
states.append(state)

as tensor of shape (max_steps, batch_size, state_size)
states = states.stack()
batch_size as 1st dim
states = tf.transpose(states, perm=(1, 0, 2))

There are some problems with this version: the maximum length has to be known (or chosen
arbitrarily) at compilation time. Shorter input batches have to be padded to the maximum length.
This is very inefficient as short inputs will take as much time to process as the longest inputs. A
solution is to create several graphs of different lengths, and run the graph whose length matches
that of the inputs (bucketing). But this is very application-dependent, and compilation time can
be excessively long.

TensorFlow provides access to symbolic loops, whose most general version is tf.while loop.
These loops are dynamically unrolled, i.e., only when executing the graph, and the stopping cri-
terion can be dynamic. Here is how to implement the previous algorithm with a symbolic loop:

time_steps = tf.shape(inputs)[1]
states = tf.TensorArray(dtype=tf.float32, size=time_steps)

def time_step(time, state, states):
state = cell(inputs[:,time], state)
states.write(time, state)
return time + 1, state, states

_, state, states = tf.while_loop(
cond=lambda time, *_: time < time_steps,
body=time_step,

Appendix A: Neural Machine Translation 195

loop_vars=(time, state, states))

as tensor of shape (time_steps, batch_size, state_size)
states = states.stack()
states = tf.transpose(states, perm=(1, 0, 2)) # batch_size as 1st dim

Here, the shape of inputs is (batch size, time steps, input size), where the
second dimension can be dynamic and batch-dependent. In practice, we group sequences of
similar length in the same batch, so as to perform as little computation as needed (time steps
is the length of the longest sequence in the batch).

The first parameter of the while loop is a function that takes as input the same parameters as
time step and returns a boolean scalar tensor, which controls whether the loop should con-
tinue or stop. The second parameter is a Python function, which is executed at each time step and
whose outputs are used as inputs for the next call. The result of the while loop is the result of the
last call. The third parameter is the list of initial values that are given to the first call. The fourth
parameter controls how much computation should be run in parallel, which is a time/memory
trade-off. When training, TensorFlow needs to store results of the forward pass and backward
pass for all time steps, which gives a memory complexity of O(T × n) where T is the length of
the sequence and n the batch size. Because GPUs have a very limited amount of memory (gen-
erally between 4 and 12 GB), this can cause training to crash. The swap memory parameter
allows TensorFlow to move these tensors to the CPU when needed, to save GPU memory.

The time step function can also take as input and return variable-length sequences of tensors
called TensorArray, This allows us to store intermediate results (like the output of the RNN
at each step).

TensorFlow also provides more specialized operations like tf.map fn, or tf.dynamic rnn
(simpler for the example we just described). But the generic while loop provides more control.
We use it for our attention-based decoder.

Debugging Because of the distinction between graph creation and graph execution, debugging
in TensorFlow can be tough.

Most bugs can be solved before run time, by looking at the static shapes of the tensors. To do so,
we only have to set breakpoints (e.g., with pdb or ipdb) in the definition of the graph where the
error happens, and inspect the shapes of the tensors by hand (or use plain old print statements).

Sometimes, the static shape may be fine, but the variable shape components can be faulty (e.g.,
element-wise addition of two tensors with a different batch size). This can often be fixed by
inspecting the value of the dynamic shape at run time.

For this purpose, the operation tf.Print is convenient. It takes a tensor as first argument
that it returns unchanged (identity function), except for a side-effect that prints the values of the
second argument (a list of tensors) whenever the returned tensor is evaluated.

A typical use case is the following:

>>> x = tf.Print(x, [tf.shape(x)], message='shape: ')

Appendix A: Neural Machine Translation 196

Every time tensor x is evaluated, directly or indirectly (e.g., through a call to sess.run(x)),
TensorFlow outputs its value, and prints the value of tf.shape(x) as a side-effect. When
printing values, and not shapes, the matrices can be quite large. For debugging, it is more
convenient to print only the first element in the batch x[0].

A.2.2 Architecture and API

Package structure Our seq2seq framework is divided into several folders: translate/,
which contains the main source code, scripts/ which contains pre-processing, scoring and
monitoring scripts, config/ with the configuration files of the experiments, data/ which
contains the pre-processed training and evaluation data for the experiments, and models/
where the trained models are saved. We also use a raw data/ directory for storing data
archives and raw (non-tokenized) data.

The source code (inside translate/) is structured into several files:

• main .py is the public interface of the framework. It parses configuration files and
command-line arguments, creates a TensorFlow Session and initiates training or decoding.
The script seq2seq.sh provides a convenient way of running this module.

• translation model.py defines the TranslationModel class which contains
the main logic of the program. It is responsible for reading the training data, creating
and initializing the model, training, decoding, and saving checkpoints. It defines several
public methods: train, decode and evaluate which are called by the main program
depending on the user’s commands.

• multitask model.py defines the MultiTaskModel class. It has several instances
of TranslationModel, and its train function alternately trains each of those models
by calling their train step function (multi-task training).

• seq2seq model.py defines the Seq2SeqModel class, which is responsible for build-
ing the TensorFlow graph, and running the graph for training or decoding.

• models.py defines all the functions for creating each block of the graph: multi encoder,
attention decoder, global attention, sequence loss, etc. (see below for a detailed overview
of the graph).

• utils.py contains several utility functions for logging, plotting, reading datasets and
iterating over datasets. It also defines global variables such as the default vocabulary ids
for special tokens (UNK, EOS and BOS symbols).

• evaluation.py defines a number of evaluation metrics, like corpus BLEU, TER or
WER, to compare a set of hypotheses against reference translations. These functions are
used by TranslationModel.evaluate, which is called periodically during train-
ing, or when running seq2seq in evaluation mode.

• beam search.py defines the beam search decoder, which takes as input initial state(s)
and time step function(s). It outputs tensors that compute the result of beam search de-
coding by one or several models (ensemble decoding).

Appendix A: Neural Machine Translation 197

The scripts/ folder contains pre-processing scripts. In particular, prepare-data.py
is useful to transform raw training data into a form fit for seq2seq: file naming, tokenization,
vocabulary creation.5 Seq2seq expects a single data directory (whose path is defined in a config-
uration file), containing tokenized files whose name is a corpus prefix followed by an extension.
The default prefixes for training and evaluation corpora are train and dev, and the default
prefix for the vocabulary files is vocab. The same extension should be used for all files in a
given language. For example, for a French to English model whose encoder and decoder are
named fr and en, and whose data directory is data/, seq2seq would expect the following set
of files: data/{train,dev,vocab}.{fr,en}.

We also developed several scripts for monitoring and obtaining various information about data
or models:

• stats.py: similarly to UNIX’s wc command, counts lines, words and characters, but
also provides additional information: average word or character count, number of unique
words, maximum length that covers 90%, 95% or 98% of all lines, etc. It is useful to
help choosing a vocabulary size and a maximum sentence length (for efficiency reasons)
which cover most of the training set.

• score.py: command-line interface to evaluation.py’s scoring metrics. It takes as
input a hypothesis file (e.g., produced by seq2seq) and a reference file (typically the target
of a parallel corpus), and prints the scores produced by BLEU, or other metrics like TER
or WER.

• get-best-score.py provides a convenient way of looking for information in the log
files produced by seq2seq. The script can take a list of model directories and outputs the
best score of each model (e.g., best BLEU score or best dev loss).

• plot-loss.py takes one or several seq2seq log files and plots the evolution of training
loss, dev loss, or dev score (e.g., BLEU) during training w.r.t. SGD steps. It is useful to
quickly compare models, or to observe overfitting/underfitting (by comparing train loss
with dev loss). It also has a text mode (with --auto or --text flag), which is useful
for plotting on servers than do not have a display (e.g., over SSH).

TensorFlow graph The graph is created by Seq2SeqModel’s constructor. It calls several
functions inside models.py, which are responsible for building each part of the model. Fig-
ure A.1 describes the main blocks of the seq2seq model.

Function multi encoder creates one or several encoders (for multi-source scenarios like
Zoph et al. (2016a)). Its inputs are two placeholders that hold the input sequences (tensors
of shape [batch size, time steps] containing token ids), and their length (tensors of
shape [batch size]). Because all sequences in a batch must have the same length, shorter
ones are padded with dummy </S> symbols. This tensor stores their true length, before
padding. This is used by the bidirectional RNN to know how to reverse the sequences, and
by the attention mechanism not to attend dummy states.

First, the input ids are transformed into vectors using an embedding matrix. The function
tf.embedding lookup looks for an embedding vector using its index. This is more efficient
than doing a dot product between a very large one-hot vector and a dense embedding matrix.

5It uses pre-processing scripts distributed with Moses (Koehn 2010), and Byte Pair Encoding scripts from Sen-
nrich et al. (2016c).

Appendix A: Neural Machine Translation 198

FIGURE A.1: Main blocks in the seq2seq graph

Appendix A: Neural Machine Translation 199

Then, the encoder can perform several transformations of this dense input, like a dropout layer
that either drops entire words or embedding values, fully connected input layers, and convolu-
tion layers that can reduce the time resolution of the sequence. Finally, this sequence is passed
to a recurrent neural network, which can be bidirectional and/or multi-layer (stacked RNNs),
and can use LSTM cell(s) or GRU cell(s). This RNN outputs a sequence of hidden states (the
output of the cell at each time step) and a final state. In addition to these tensors, the decoder
outputs the new length (which can be altered by convolution layers or a pyramidal RNN).

These tensors are taken as input by attention decoder, which also takes a placeholder that
holds the reference translations for training (target side of the parallel corpus). At decoding time,
this placeholder is fed dummy symbols. It also takes a feed previous boolean tensor which
activates teacher forcing (feeding the target symbol to the decoder instead of its own outputs).
The decoder’s while loop calls a time step function repetitively to generate a sequence of
outputs. A similar but more compact function is also used for beam search decoding.

The time step function takes current decoder state and current input (embedded symbol)
and computes a new state and output, by using three functions: look (a wrapper around
global attention), generate, and update. It can look at the hidden states of several
encoders, by using several attention mechanisms and concatenating or summing their context
vectors. This context vector is then used to generate a new output (generate function), which
is stored into a TensorArray. This output, which we also call ‘logits’ contains scores for
each token in the target vocabulary. Then, depending on whether we are training or decoding
(feed previous parameter), we embed the argmax of this output tensor (i.e., the symbol
with the highest score) or the target (ground truth) symbol at this time step, and feed it to the
update function to update the RNN state. The time step function returns the new state, and
new input (embedded symbol), which are used as input for the next time step. The decoder’s
while loop runs this function as many times as there are time steps in the target placeholder
(second dimension). At decoding time, this corresponds to the maximum length set in the con-
figuration file. The first call to time step takes as input an initial state and an initial output.
The initial state is a non-linear transformation of the encoder’s final state (single dense layer with
bias). The initial input is the embedded BOS symbol (Beginning of Sequence), which informs
the decoder that it should proceed to decode the first symbol.

The decoder returns a tensor that contains a score for each item in the vocabulary (of shape
[batch size, max len, vocab size]), as well as the attention weights (useful for vi-
sualization), the initial state and a time step function for beam search decoding.

sequence loss computes a cross-entropy loss between the decoder outputs and the reference
translation. This loss is optimized thanks to SGD or Adam (tf.train.AdamOptimizer).

Most hyperparameters of the model (e.g., RNN cell type and size, embedding size, number of
RNN layers, convolutions, dropout rate) are not simply hard-coded but can be configured. We
will describe shortly how this configuration is done (with config files and command-line argu-
ments). Seq2seq passes these parameters around as AttrDict instances (a kind of dictionary).
Each encoder and decoder has its own dictionary of parameters. For example multi encoder
takes an encoders parameter, which is a list of dictionaries of hyperparameters for each en-
coder. The first encoder’s cell size is encoders[0].cell size. This is convenient, as
many new parameters can be added to the encoders and decoders, without cluttering the func-
tion signatures too much and without having to explicitly pass these parameters to each new
function call.

Appendix A: Neural Machine Translation 200

Configuration Each model’s configuration is defined inside a dedicated YAML configuration
file. The default configuration (the default value of each hyperparameter) is defined inside the
file config/default.yaml.6

Seq2seq first parses this file, and then reads the experiment’s config file. Any parameter that
is redefined overrides the default value. Naturally, the user only has to specify the parameters
whose value differs from the default value.

Several parameters have no default value and should always be defined: the encoder and decoder
names and paths to data and model directories. An example of minimal configuration file is
given below.

label: 'BTEC baseline'

cell_type: GRU
cell_size: 256
attn_size: 256
embedding_size: 128

data_dir: data/BTEC
model_dir: models/BTEC/baseline
batch_size: 32
max_len: 25

optimizer: adam
learning_rate: 0.001
steps_per_checkpoint: 2000
steps_per_eval: 2000
max_steps: 30000

encoders:
- name: fr

decoders:
- name: en

Each encoder and decoder can have their own hyperparameters. There can be several encoders
and several decoders. For these reasons, encoder parameters are defined as a list of dictionaries,
whose name is encoders. Each item in the list (which begins with ‘-’ in YAML) has to define
a name parameter. The decoders parameter follows the same format.

The name of an encoder or decoder determines the training file names (unless a different ext
parameter is specified) and the names of model variables. In the example, the encoder’s em-
bedding variable will be named embedding fr and all other encoder variables will be created
in the encoder fr scope. The source training file is train.fr, unless a different prefix is
specified with train prefix (in the main scope), or a different extension with ext (in the
encoder’s scope).

When encoders and decoders are defined in the main scope of the config file, a single task
is created (mono-task training). To create multiple tasks, a tasks parameter can be defined,

6It is also self-documenting, as a short description of each parameter is given.

Appendix A: Neural Machine Translation 201

which consists in a list of dictionaries, each with a name and its own lists of encoders and
decoders.

tasks:
- name: fr_en

encoders:
- name: fr

decoders:
- name: en

- name: fr_de
encoders:

- name: fr
decoders:

- name: de

The same parameters can be defined at multiple locations. Local parameter definitions have a
higher precedence over global ones. For example, if the main scope contains cell size:
256, and the first encoder contains cell size: 128, then this encoder’s cell size is set to
128, and the decoder’s cell size to 256.

Several of the parameters that we show in the config example (namely max len, cell size,
embedding size and cell type) are encoder and decoder dependent. Different values
can be specified inside the configuration of each encoder and decoder. max len controls the
maximum number of tokens (words or subwords, or characters with a char-based decoder) in
each source and target sequences. Seq2seq truncates sequences that exceed this threshold. When
decoding, this parameter controls the maximum length of the translation hypotheses. Decoding
time is linear with respect to the max length. This parameter is also important to limit training
time, and even more importantly the amount of GPU memory that is used when training. Indeed,
the time and space complexity of the BPTT algorithm is linear with respect to sequence length.

The steps per checkpoint and steps per eval parameters control the number of
SGD updates between two checkpoints, and between two evaluations on the dev set. 2000
steps with a batch size of 32 corresponds to 2000× 32 examples.

A checkpoint is a file that contains the values of all model variables at some point in time during
training. Seq2seq keeps the latest checkpoint, as well as a number of “best checkpoints”, i.e.,
models whose performance on the dev set is the best according to an evaluation metric. This
performance is evaluated every steps per eval steps. To do so, seq2seq temporarily inter-
rupts training, activates decoding mode (teacher forcing off and dropout off), and decodes the
entire dev set. Then, it evaluates the hypotheses against the target side using the evaluation met-
rics defined by the user. The parameter score functions takes a list of evaluation functions
which are defined in evaluation.py. Existing candidates are: dev loss, BLEU, WER (Word
Error Rate), TER, CER (Character Error Rate) and BLEU-1 (unigram BLEU). The first element
in the score functions list is the main scoring function which is used for keeping the best
checkpoints. This is a way of performing “early stopping”, a form of implicit regularization,
which stops training when the performance on the dev set starts degrading (overfitting).

max steps interrupts training once this number of SGD updates have been performed. The
number of epochs (pass through the entire training set) can be controlled thanks to max epochs.
The other parameters are documented inside default.yaml.

Appendix A: Neural Machine Translation 202

Command-line arguments The seq2seq.sh script takes a number of command-line op-
tions that decide what action should be taken exactly. Some of the options can also override
parameter values defined in the configuration files. The first argument should always be a path
to the model’s config file. Then, the user should specify in which mode she wants to run the
program: --train for training mode, or --decode, --eval or --align for decoding,
evaluation or alignment modes. We also provide a --crash-test mode which tries to train
with the longest sequences in the training set, to test whether there is enough GPU memory for
this configuration.

• Training mode: trains a model and saves it in the model dir/ directory, with training
data stored inside data dir/ directory. It resumes training if a model with saved check-
points exists at this location. The --purge flag erases any model that was stored at the
same location, which effectively restarts training from scratch.

Training goes on forever, unless manually interrupted by the user (e.g., with CTRL+C),
or after reaching a specified number of epochs or updates. The --model-dir option
can change the default model directory (useful for training several instances of the same
model without having to change the config file). Seq2seq creates a directory, and copies
all files that are necessary for using the model once trained, or for replicating the exper-
iment (vocabulary files, config files and current source code). Furthermore, a log file is
created, which includes information about model settings (configuration, GPU id), vari-
ables (list of variables and their shapes), and training performance (time, training loss,
periodic evaluation). The --verbose or -v flag logs even more information (useful
for debugging). When running seq2seq in a distant terminal (e.g., with SSH), the screen
command is particularly convenient.7

• Decoding mode: if no argument is specified, interactively decodes the user inputs (or
anything that is sent to the standard input). Otherwise, the first argument should be the
path of the file to decode (several paths in multi-source settings). The --beam-size
option controls the size of the set of hypotheses for beam search decoding. By default,
seq2seq performs greedy decoding (beam size of one). Decoding speed and memory
usage are greatly impacted by batch size, which can be changed for this instance with
--batch-size.

By default, seq2seq loads the best checkpoint. A custom checkpoint can be chosen with
the --checkpoints option. If several checkpoints are given, seq2seq loads each of
them (in reading order), unless the --average or --ensemble flags are toggled. In
this case, TensorFlow either averages all the checkpoint’s variables into a single model, or
builds as many models as there are checkpoints and does ensemble decoding (by averaging
their log-probabilities). The checkpoints option can also be used in training mode for pre-
training.8 By default, seq2seq outputs the translation hypotheses on the standard output.
This behavior can be modified with the --output option which gives the path of the file
where these outputs should be written. All these options can also be used in evaluation
mode.

7screen -S my screen name to launch a new screen, then run any command in it, and type CTRL+A then
D to detach from it. You can go back to a screen anytime with screen -r my screen name. You can stop a
command running inside a screen with CTRL+C. Close the screen for good (if no command is running) with CTRL+D
or exit.

8For example, train a model with the same parameters on a different data set, and initialize a new model with it,
or train a different model on another task that shares some parameters (e.g., the encoder). Special care should be
given to the names of the encoders and decoders in the configuration files (which controls how the parameters should
be shared).

Appendix A: Neural Machine Translation 203

• Evaluation mode: very similar to decoding mode, except that it provides a shortcut for
evaluation. If no argument is specified, it evaluates on the dev corpus (specified in the
config file). Otherwise, a list of files can be given, or a corpus prefix (which should be
located in the data directory). At the end of decoding, seq2seq runs the chosen evaluation
metric(s) (score functions) to compare the translation output with the target side of
the evaluation corpus. Contrary to decoding mode, the hypotheses are not printed on the
standard output.

• Alignment mode: like evaluation mode, but instead of evaluating it decodes line by line
and shows the alignment performed by the attention mechanism, with forced decoding
(i.e., teacher forcing). To perform unconstrained alignment between the input and the MT
output (not the target), the --align option (without any argument) can be combined
with the --decode option.

	Title
	Abstract
	Résumé
	Acknowledgements
	Contents
	Introduction
	Part I : State of the Art
	Chapter 1 : Machine Translation and Automatic Post-Editing
	1.1 Machine Translation
	1.1.1 Definition
	1.1.2 Evaluation
	1.1.3 Statistical Machine Translation
	1.1.4 Neural Machine Translation

	1.2 Automatic Post-Editing
	1.2.1 Definition
	1.2.2 Evaluation
	1.2.3 Statistical Post-Editing
	1.2.4 Neural Post-Editing
	1.2.5 Tasks and Resources

	Chapter 2 : Neural Networks
	2.1 Fundamentals
	2.1.1 Definition
	2.1.2 Machine Learning Basics
	2.1.3 Optimization
	2.1.4 Training Neural Networks
	2.1.5 Automatic Differentiation

	2.2 Text Embeddings
	2.2.1 Word Embeddings
	2.2.2 Crosslingual Embeddings
	2.2.3 Sequence Embeddings

	Chapter 3 : Sequence to Sequence Models
	3.1 Recurrent Neural Networks
	3.1.1 Vanilla RNN
	3.1.2 Backpropagation Through Time
	3.1.3 Long-Short-Term Memory

	3.2 Sequence to Sequence Model
	3.2.1 Description
	3.2.2 Loss Function
	3.2.3 More Details

	3.3 Attention Models
	3.3.1 Global Attention
	3.3.2 Local Attention

	3.4 Various Improvements
	3.4.1 The Unknown Word Problem
	3.4.2 Improve Decoding

	3.5 New NMT models

	Part II : Contributions
	Chapter 4 : Neural Machine Translation
	4.1 MultiVec
	4.1.1 Description and Usage
	4.1.2 Implementation Details
	4.1.3 Experiments

	4.2 Seq2seq
	4.2.1 Description
	4.2.2 Implementation Details
	4.2.3 Use Example

	4.3 MT Experiments
	4.3.1 News Translation (WMT14)
	4.3.2 TED Talks (IWSLT14)

	Chapter 5 : Speech Translation
	5.1 Neural Speech Translation of Synthetic Data
	5.1.1 Model Description
	5.1.2 Synthetic Corpus
	5.1.3 Experiments
	5.1.4 Improvements

	5.2 Extraction of a New AST Corpus
	5.2.1 Alignment
	5.2.2 Final Corpus

	5.3 Speech Translation of Audiobooks
	5.3.1 Data and Pre-Processing
	5.3.2 End-to-End Models
	5.3.3 Experiments

	Chapter 6 : Neural Post-Editing
	6.1 Task Description
	6.1.1 Definitions
	6.1.2 Data & Evaluation
	6.1.3 Experimental Protocol

	6.2 Research Replication
	6.2.1 Translation-based Post-Editing
	6.2.2 Op-based Post-Editing

	6.3 New Models
	6.3.1 Hard Attention
	6.3.2 Multi-Source Post-Editing
	6.3.3 Experiments

	Conclusion
	Bibliography
	Appendix A : Neural Machine Translation
	A.1 MultiVec
	A.1.1 Word2Vec Tricks
	A.1.2 Architecture and API

	A.2 Seq2seq
	A.2.1 TensorFlow
	A.2.2 Architecture and API

	source: Thèse de Alexandre Bérard, Université de Lille, 2018
	d: © 2018 Tous droits réservés.
	lien: lilliad.univ-lille.fr

