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Summary

This thesis tackles one of the main challenge for satellite based navigation to be
used in safety critical applications: the integrity level of trust one can put in the
navigation solution provided by Global Navigation Satellite System (GNSS) as stand
alone or with augmentations including inertial sensors.

The level of trust is well characterized as standard requirements in every safety of
life applications and is usually defined in terms of probability to have a position
error larger than an alarm limit without an alert. This metric is then compared to
an acceptable integrity risk.

A first step in this challenge is to characterize a position error. For that we brake
down the global error into individual errors so that each can be explained in a
physical way. This is what has been developed in Chapter 2. In this chapter, a
statistical analysis was conducted to characterize not only the magnitude of the
individual errors but also the level of correlations. The correlation considered are
the correlations between individual errors and the correlations of individual errors
with respect to the user location (correlation between stations). Then the impact
of individual errors at the position level is investigated and some important results
are that the satellite orbit and clock errors are correlated and that in the case
of standalone single frequency positioning, the ionosphere delay after correction is
the dominant effect in the vertical direction. As we investigated the impact in
the position domain, we also considered the combination of the American Global
Positioning System (GPS) with Galileo satellites and evaluated the performance.

This first step provides a very sophisticated covariance model of satellite pseudo
range errors which is location dependent (a regional covariance matrix of pseudo
range errors) and we decided to apply this regional matrix to a residual based
Receiver Autonomous Integrity Monitoring (RAIM) algorithm. The result is a better
integrity performance (better trust in the position accuracy) than with the legacy
RAIM approach without increasing the risk of errors larger than the protection
levels. The price to pay would be to broadcast the regional covariance matrix to
users which will induce additional operational costs to the infrastructure.

Then in a third part we investigated the integrity performance of GNSS when aug-
mented with either a Space Based Augmentation System (SBAS) or a Ground Based
Augmentation System (GBAS). The dual constellation dual frequency GBAS was
particularly investigated and the performances using different smoothing techniques
were assessed. One of the major source of threat is the strong ionosphere gradients
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that were already observed in the past. Therefore its impact in GBAS was one
of the focus of this thesis. GBAS single frequency and single constellation is vul-
nerable to large gradient and therefore we investigated special ionosphere gradient
monitor based on double difference carrier phase observations from the ground ref-
erence receiver. An exhaustive analysis shows the performance that can be achieved
using such a monitor and an optimal architecture that can increase the detectability
performance to a very high value without inducing additional costs. A sensitivity
analysis to design parameters have been conducted and shows the parameter space
that have a high stability with respect to errors in the parameters.

In a fourth part we define and analyze an integrity concept for GNSS with inertial
hybridization tackling also the complex problem of integrity for positioning while
using non linear filtering. Different sensitivity analysis are conducted and the ap-
proach considered in this part can easily be generalized for any filtering techniques.

Most of the sequential approaches investigated in this thesis make use of stochastic
processes. The most important assumption is tho have Gaussian processes. When
considering more general process distribution, we still considered that this process is
overbounded by a Gaussian distributed one. This approach fits very well the nominal
behavior of errors as they usually can be modeled using Gaussian distributed pro-
cess. Therefore the integrity concepts is adapted to nominal behavior of errors and
therefore the approach using diffusion processes is sufficient to develop a formalism
for an integrity concept.

Another approach is to consider more sophisticated processes like those with jump.
This would perfectly model the non detected fault modes that cannot be covered by a
nominal Gaussian distributed process. This approach will necessitate to understand
the distribution of occurrences of jumps and the distribution of their magnitude.
The integrity concept would therefore have a very general form and will better suit
the real world.

This thesis investigates the different integrity aspects that need to be considered from
the characterization of the physical effects at pseudo range level to their propagation
to the position domain. This work was concentrated in integrity measure for a
nominal operation of GNSS with augmentation, but some fault modes considerations
were also investigated and for the special case of non linear filters provides a novel
approach of integrity.
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1. Introduction

The Global Positioning System (GPS) originally designed for restricted military
applications is now in almost all mobile communication devices. Knowing ones po-
sition is a prerequisite for starting a journey. This elementary service is the basis
of all GPS receivers. The first receivers where just giving a rough approximation of
the position in latitude, longitude and height. Now every hand-held GPS receiver is
able to locate the user in a map and using additional information, the GPS is able
to guide the user from a location to another one minimizing the fuel consumption or
minimizing the travel time. Additional information like traffic situation in real time
enable the GPS receiver to select the fastest itinerary avoiding traffic jams. Addi-
tional sensors information can support the localization and navigation functions.

Along with the development of this traditional navigation service, another possible
use of GPS is the support to the so called Location Based Services (LBS). And this
is an exploding market. The general principle of LBS is to propose services fitting
the best the user needs. In its journey, the user may be interested in having the
weather predictions in the targeted location or simply want to know where he can
find the closest restaurant or the closest hotel. As the user is overwhelmed by too
much information, location based information is an intelligent way to fit it to his
real needs.

Knowing were we are and knowing in which direction we want to go have been
always the prerequisite for starting a journey. This ancient principle is still relevant
today.

From the sextant to the most recent Global Navigation Satellite Systems (GNSS),
the primary information a navigator needs is to determine his or her localization in
order to plan the direction he or she has to follow.

The first idea of using satellites as mean of navigation started at the beginning of
the space adventure with the localization of Sputnik using the Doppler frequency
and the knowledge of the position of 2 antennas on the ground. It appeared that the
inverse problem i.e. positioning the ground antenna using satellites is a much easier
problem and also a much accurate one. The first satellite navigation system called
TRANSIT composed of two satellites was using 2 frequencies and the Doppler shift
to determine the position of a user. This system developed in 1958 stayed operational
until 1996.

In 1973, GPS a new satellite based navigation system program is started based
not only on Doppler but also on direct pseudo-range estimation. The performance
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Chapter 1 Introduction

in terms of accuracy are very high. The system was performing so well that the
US Department of Defense (US DoD) decided to worsen the accuracy by adding a
Selective Availability (SA) consisting of intentionally adding noise in the on-board
satellite clocks to avoid enemies to use the open service for military purposes.

The first augmentation system consisting of differential GPS were developed in order
to bypass the selective availability problem. In fact it offered the opportunity to
develop carrier phase based solutions by providing double difference carrier phase
positioning. This work was mainly supported by geodetic research institutions for
which a cm or even millimeter accuracy was required to study for example tectonic
plates displacements or simply to provide a precise topographic maps with precise
survey points.

This level of accuracy was beyond the expectations for a global navigation system.
Finally The US DoD decided to switch the SA off the 1st of May 2000. One of
the motivations was to enable the use of GPS for civil aviation which expressed its
interest from the early stage of the GPS deployment. An example of motivating
the use of GPS for civil aviation was the incident of Korean Air Lines Flight #902
flying by mistake in the USSR air space on the 20th of April 1978 and intercepted
and shot down by the Soviet Air Defense. The violation of the air space could have
been avoided using GPS.

What was thought being an easy task to enable GPS for civil aviation, looking at
the level of accuracy that could be reached using carrier phase positioning, was in
fact a tremendous challenge when dealing with positioning integrity and confidence
with low level of risk. It appears to be a fruitful research area and is the principal
motivation for this thesis.

The problems can be summarized in the following way: For static applications like
geodetic survey for example for which the position could be averaged during a very
long period, outliers have only a very limited impact in the expected position. But
for aviation applications, the user is interested in an instantaneous position and
not in an averaged position. In that case an outlier in the position estimate can
potentially drive to a catastrophic behavior of the aircraft especially during critical
phases of flight under low visibility conditions. The required performance for dif-
ferent phases of flight are summarized in Figure Tab. 1.1. This table is extracted
from [ICA06] and shows the metrics used to qualify navigation systems for differ-
ent phases of flight from the less stringent (En-route) to the most stringent ones
(Category I precision approach with a decision height of 200 ft.).

Integrity, Continuity and Availability are the key parameters for safety of life appli-
cations. NAVSTAR GPS cannot guaranty the performance of the positioning system
and just provide a commitment to raise the unhealthy flag for a given GPS satellite
being in a fault mode within 6 hours. This is for any phase of flight unacceptable.
The avionic system must be informed about an integrity issue of a satellite within
6 seconds for non critical phases of flight and down to CAT I1. For a CAT II to

1Category I, II, III is a level of precision approach for aircraft corresponding to a low visibility
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Introduction

Typical operation Accuracy

horizon-

tal

95%

Accuracy

vertical

95%

Integrity Time

to

alert

Continuity Availability

(%)

En-route 3.7 km N/A 1 − 1 ×
10−7/h

5 min 1 − 1 × 10−4/h

to

1 − 1 × 10−8/h

99 to 99.999

En-route, Terminal 0.74 km N/A 1 − 1 ×
10−7/h

15 s 1 − 1 × 10−4/h

to

1 − 1 × 10−8/h

99 to 99.999

Initial approach,

intermediate

approach,

non-precision

approach,

departure

220 m N/A 1 − 1 ×
10−7/h

10 s 1 − 1 × 10−4/h

to

1 − 1 × 10−8/h

99 to 99.999

Approach

operation with

vertical guidance

(APV-I)

16.0 m 20 m 1−2×10−7

in any

approach

10 s 1 − 8 × 10−6

per 15 s

99 to 99.999

Approach

operation with

vertical guidance

(APV-II)

16.0 m 8 m 1−2×10−7

in any

approach

6 s 1 − 8 × 10−6

per 15 s

99 to 99.999

Category I

precision approach

16.0 m 6 to 4 m 1−2×10−7

in any

approach

6 s 1 − 8 × 10−6

per 15 s

99 to 99.999

Table 1.1.: Navigation requirements for the civil aviation [ICA06]

CAT III precision approach it is of 1 or 2 seconds (see [AIR01] for a definition and
explanation of the approach categories).

Stand-alone GPS cannot provide enough reliability to be used for safety of life
applications. Based on this statement, augmentation systems to mitigate navigation
threats were unavoidable.

Historically, the Large Area Differential GPS able to cover the US Airspace was
first envisaged beginning of the 90s. The resulting Wide Area Augmentation System
(WAAS) program was implemented and put in service in 2003. This system provides
additionally to satellite outage monitoring also differential corrections and resulting

condition (CAT 1 corresponds to a decision height of 200 ft. which is the altitude at which the
pilot should see the runway, 100 ft for CAT II and 0 ft. for CAT III) For CAT III the pilot
should activate the automatic landing system.
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Chapter 1 Introduction

ranging error bounds enabling the user to calculate its protection levels, key concept
that will be discussed later.

Additionally to WAAS, a Receiver Autonomous Integrity Monitoring (RAIM) has
been suggested in the case WAAS is not available. In the multi-constellation con-
figuration, RAIM provide a very cheap and efficient integrity monitoring especially
when associated with an Integrity Support Message (ISM) providing a priori sta-
tistical parameters of the constellations in use. This ISM concept associated to an
Advanced RAIM algorithm is an actual research focus. It seduces by the high level
of performance potentially achieved by using multiple constellation based consis-
tency check and only a very light ground infrastructure for the generation of the
ISM message.

In order to serve other air spaces, a compatible system was developed in Europe and
is called EGNOS (European Geostationary Navigation Overlay Service) and cover
the ECAC (European Civil Aviation Conference) region and is extending towards
the south to cover in a near future Africa and towards the east to ensure an overlap
with Asian wide area augmentation system. A generic name defines each of these
systems which is SBAS (Space Based Augmentation System).

This system provides an acceptable navigation service for all phases of flight except
for precision approach under low visibility conditions.

For CAT II-III, it is necessary to provide a navigation solution with low vertical
alert limit (10 m) with an integrity risk of 10−7 and a time to alarm of 1 to 2
seconds. This level of requirements requires a local augmentation system able to
correct or monitor all possible errors that can drive to an unacceptable position
error and to flag faulty ranges instantaneously. The first certified GBAS (Ground
Based Augmentation System) has been installed in Bremen airport and provides
CAT I performance also known as GAST-C (GBAS Approach Service Type C).

The challenge is to provide CAT III performance using a single frequency based
GBAS also called GAST D (GBAS Approach Service Type D). This system based on
dual smoothing method [NSP10] has been deeply investigated [BDLK10b, BDF+10,
BRMP11, RTC08, NSP10, HM07, HM09, SK12] and is in some areas (of a relatively
quiet ionosphere) almost ready to be deployed and certified.

GAST-D operations are intended to be conducted using an automatic landing sys-
tem. In this case, the whole GBAS Auto-land system need to fulfill the CS-AWO
(Certifications Specifications for All Weather Operations) of a CAT III Auto-land
System which have been derived from the specifications for the use of a CAT III ILS
(Instrument Landing System)[JAA03].

In comparison with ILS, GBAS proposes a service volume and therefore more flex-
ibility in the definition of the approach trajectory. The drawback of GBAS is that
the error model depends on many different effects that are for most of them random
in nature and not directly observable (ionosphere gradients, multipaths, interfer-
ence). Furthermore the availability of the data communication link may be lost due
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1.1 Safety Critical Applications and Challenges for Satellite Navigation

to signal interference or blocked by an other aircraft especially during the last phase
of landing. All these effects may result in the loss of service continuity during the
very last phase before landing. Therefore it is necessary to couple GBAS with an
Inertial Navigation System (INS) in order to fill in the possible GBAS gaps with
inertial navigation solution. To simplify the GNSS/INS fusion problem, the train
application have been selected in this thesis.

The purpose of this thesis is to characterize the error sources of GNSS, that can have
an hazardous impact in the positioning solution, to support and complement the
research conducted by the navigation community for the use of satellite navigation
for safety of life applications.

The thesis is organized as follows:

In the rest of this chapter we will set the problem tackled in this thesis and the most
important definitions and notations

Chapter 2 and 3 provide the GNSS error characterization and a receiver based
integrity monitoring without augmentations

Chapter 4 describes the work done in the augmentation scheme case with respect
to error characterization and integrity monitoring.

Chapter 5 describes the integrity concept when using in addition to GNSS, inertial
sensors. This Chapter includes not only the error propagation theory but also the
inertial sensor error monitoring and a curvature change detector for trains.

A conclusion and future work recalling the main achievements of the thesis and the
problems remaining and those new problems/opportunities generated by this work
will close this thesis.

1.1. Safety Critical Applications and Challenges for

Satellite Navigation

This thesis focuses on the safety critical applications for which navigation or posi-
tioning plays an important role.

We will focus mostly on aviation and for the last part of the thesis on rail application.

Aviation didn’t wait for satellite navigation to enable aviation navigation. For all
phases of flight, traditional navigation systems are already existing using naviga-
tion aids like DME (Distance Measuring Equipment), VOR (VHF Omnidirectional
Range), NDB (Non Directional Beacon) and using airborne based navigation as for
example barometric altimeter or a radar altimeter and for commercial aircraft use
of INS. The previous equipment are foreseen for en route down to non precision
approach. For precision approach, ILS is the technology enabler since already 40
years and provide safe approach and landing under low visibility conditions.

7



Chapter 1 Introduction

Why search for another solution if the aviation community has already all means of
navigation that are needed?

Two main drawbacks of the traditional navigation aids limits its attractiveness: its
expensive maintenance and operating costs and its incapacity of handling doubling
air traffic without substantial increase of investment costs.

Satellite navigation not only provides solutions to the main drawbacks of the tradi-
tional navigation aids but it also serves unlimited users and provides with a unique
receiver a navigation service from en route down to CAT III precision approach and
landing.

What is the challenge then, if satellite based navigation is already established and
integrated in almost all hand-held smart phones?

The challenge is to ensure integrity of the position solution. Global Navigation
Satellite Systems are facing various types of ranging errors and each of these errors
may introduce if not monitored unacceptable biases in the position. The problem is
to bound these errors with a very low probability of missed detection (10−7). Another
problem concerns the weakness of the signal power, that makes them vulnerable to
all kinds of radio frequency interference. This effect though is not an integrity issue
as most of the time when the signal is experiencing radio frequency interference, the
receiver loose the lock and makes the ranging source unavailable. But it affects the
continuity of the service and therefore also its availability for a given phase of flight.

1.2. Problems Addressed in this Thesis

The first problem tackled by the thesis is the characterization of GNSS ranging
errors which consists of setting up an inventory of possible errors that can impact
position accuracy and the analysis of their magnitudes based on data collection from
ground reference stations.

This thesis introduces the notion of instantaneous pseudo range error (IPRE) which
is a statistical value obtained by comparing the pseudo range error after corrections
with a reference post processed data including the accurate position of the receiver.

A statistical analysis is conducted to characterize different error sources and to study
their impact in the positioning error. The analysis includes also the correlations
between individual errors for fixed locations and their spatial correlations.

The IPRE is then applied to a receiver autonomous integrity monitoring algorithm
for which a generalized test statistic is suggested that considers also correlations
between pseudo ranges.

The second problem tackled in this thesis is the design of an ionosphere gradient
monitor for GBAS based on a double difference carrier phase monitor architecture.
Based on first investigations by Khanafseh ([KYP+10]), a further investigation and
generalization has been conducted in this thesis.
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The third problem tackled in this thesis is the hybridization of GNSS solutions
with Inertial measurement unit to overcome the lack of continuity. In this part a
stochastic error model of inertial sensors has been intensively investigated and a
fault free error bound have been suggested. Furthermore a curvature detector based
on 3 different combinations of inertial sensor information has been submitted to the
European Patent Office.

1.3. Definitions and Notations

1.3.1. Definitions

The notions of Integrity, Continuity, Availability of the GNSS system are defined in
[RTC06] and in [ICA06] and are recalled hereafter:

Integrity “A measure of the trust that can be placed in the correctness of the
information supplied by the total system. Integrity includes the ability
of a system to provide timely and valid warnings to the user (alerts).”
extracted from [ICA06] page 3.59

Continuity “The continuity of a system is the ability of the total system (com-
prising all elements necessary to maintain aircraft position within the
defined airspace) to perform its function without interruption during
the intended operation. More specifically, continuity is the probability
that the specified system performance will be maintained for the dura-
tion of a phase of operation, presuming that the system was available at
the beginning of that phase of operation and was predicted to operate
throughout the operation.” extracted from [RTC06] page 13.

Availability “The availability of a navigation system is the ability of the system
to provide the required function and performance at the initiation of
the intended operation. Availability is an indication of the ability of
the system to provide usable service within the specified coverage area.
Signal availability is the percentage of time that navigational signals
transmitted from external sources are available for use. Availability is
a function of both the physical characteristics of the environment and
the technical capabilities of the transmitter facilities.” extracted from
[RTC06] page 13.

Additionally to these 3 performance indicators are the following derived terms:

Horizontal Alert Limit “The Horizontal Alert Limit (HAL) is the radius of a circle
in the horizontal plane (the local plane tangent to the WGS-84 ellipsoid),
with its center being at the true position, that describes the region that
is required to contain the indicated horizontal position with the required
probability for a particular navigation mode (e.g. 10−7 per flight hour
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for en route), assuming the probability of a GPS satellite integrity failure
being included in the position solution is less than or equal to 10−4 per
hour” extracted from [RTC06] page 14.

Vertical Alert Limit “The Vertical Alert Limit (VAL) is the half the length of a seg-
ment on the vertical axis (perpendicular to the horizontal plane of WGS-
84 ellipsoid, with its center being at the true position, that describes the
region that is required to contain the indicated vertical position with
a probability of 1 − 2 × 10−7 per approach, for a particular navigation
mode, assuming the probability of a GPS satellite integrity failure being
included in the position solution is less than or equal to 10−4 per hour.”
extracted from [RTC06] page 14.

Horizontal Protection LevelFault Detection “The Horizontal Protection LevelFault Detection

(HPLFD) is the radius of a circle in the horizontal plane (the local plane
tangent to the WGS-84 ellipsoid), with its center being at the true posi-
tion, that describes the region assured to contain the indicated horizontal
position. It is a horizontal region where the missed alert and false alert
requirements are met for the chosen set of satellites when autonomous
fault detection is used. It is a function of the satellite and user geom-
etry and the expected error characteristics: it is not affected by actual
measurements. Its value is predictable given reasonable assumptions
regarding the expected error characteristics.” extracted from [RTC06]
page 14.

Vertical Protection LevelFault Detection “The Vertical Protection LevelFault Detection (VPLFD)
is half the length of a segment on the vertical axis (perpendicular to the
horizontal plane of WGS-84 ellipsoid), with its center being at the true
position, that describes the region assured to contain the indicated ver-
tical position when autonomous fault detection is used. It defines the
vertical region where the missed alert and false alert requirements are
met for the chosen set of satellites when autonomous fault detection is
used.” extracted from [RTC06] page 14.

Time-To-Alert “The maximum allowable time elapsed from the onset of the navi-
gation system being out of tolerance until the equipment enunciates the
alert.” extracted from [ICA06] page 3.59

Attempts to provide mathematical definitions have been conducted and some of
them are still in use today: Protection level concepts , Integrity Monitoring [ICA06,
NSP10, RTC08, RTC06]. Taking into account that the threats are non station-
ary, an attempt to characterize these threats based on historical observations have
been investigated [LPD+03, LPE+04, LPWE04, DB04, DBRP10, MBD09, MBJ+09,
MJB08a, MJB+08b], evil wave forms [Phe01, PAE00, PMP+01] . Usually the char-
acterization ends with the behavior of a threat taken independently from each other.
A statistical approach of the problem has been conducted only to provide simple
threat space, based on a worst case scenario for the ionosphere or in form of UERE
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(User Equivalent Range Error) budgets [Kov00, Zap02, Bou98, WBH06].

1.3.2. Notations

We adopt the following notations: Matrices and vectors are represented in bold fonts.
Matrices are represented using capital letters and vectors small letters. Upper scripts
are related to satellites, lower scripts to user.

ρ(s)
u is the pseudo range observation relative to satellite s and user u. When using

multiple frequencies, we distinguish the pseudo range observations between
frequencies by adding the frequency in the index ρ

(s)
L1,u for example for L1.

We use the frequencies L1, L2 and L5 for GPS and E1, E5a and E5b for
Galileo. When indexed by time, we use k and as discrete time variable, and
t as continuous time variables. For example the pseudo range observation
relative to Galileo satellite s and receiver u for the frequency E1 at epoch k is
written ρ

(s)
E1,u,k. These notations can be simplified if there is no ambiguity (to

avoid long expressions).

φ(s)
u is the carrier phase observation and we use the same conventions as for the

pseudo range observation.

λf is the carrier wave length related to the frequency f . When not specified it is
related to the L1 frequency

N
(s)
k is the integer number of phase cycles between receiver u and satellite s

r(s)
u is the geometric range between satellite s and receiver u

r(s) is the position vector of the satellite s in ECEF (Earth Centered Earth Fixed)
coordinate system

n is the number of visible satellites

nC is the number of visible satellites from constellation C

G is the geometry matrix composed of the components of the unit line of sight
vector in ENU (East North Up) coordinate system.

W is the weighting matrix of the pseudo range vector. Unless differently specified
it is the inverse of the covariance matrix of the pseudo range vector.

∆2φ
(kl)
ij is the double difference phase observation: ∆2φ

(kl)
ij =

(
φ

(k)
i − φ

(l)
i

)
−
(
φ

(k)
j − φ

(l)
j

)

N
(kl)
ij is the double difference integer number of phase cycles between receiver i and

satellite k. When needed to be specified, the frequency indicator of the carrier
is associated to N

bij is the baseline vector between receiver i and receiver j

X̂ is an estimate of the random variable X (after all possible corrections)
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Chapter 1 Introduction

X̊ is the true value of X (usually not accessible but can be estimated thanks to
post processed data)

∆X is the error (or deviation to a reference) of the random variable X (∆X =
X̂ − X̊)

We use the following mathematical notations:

E [X] is the expectation of the random variable X with respect to the law of X

V [X] is the variance of the random variable X with respect to the law of X.

P [A] is the probability that an event A happens

P [A |B ] is the conditional probability that an event A happens under the condition
that the event B happened.

E [∆X |X ] is the conditional expectation of the random variable ∆X conditioned
by the occurrence of the event X = x

X̌ = X − E [X] for a random variable X

12



2. Characterization of Effects that
Impact Position Accuracy

Position accuracy using multi-lateration can be improved in two ways: To improve
the geometry of the ranging sources with respect to the user (geometry based im-
provement) and to improve the ranging performance by reducing the ranging errors
thanks to a better modeling of residual errors (pseudo range based improvement).

An extensive analysis of pseudo range error impacting GPS has been done in [Kov00].
In this paper a very complete ranging error list with the estimated magnitude (table
4, in [Kov00]) have been proposed. But this budget is an averaged one. As we will
see in the present chapter, the ranging errors are user location dependent for some
of them and elevation dependent.

2.1. Introduction to GNSS (Example of

GPS)[KLMP06]

The positioning problem using GNSS consists of determining the distance between
multiple ranging sources (from visible satellites) and a receiver. The distance is
based on the estimated signal propagation time (see Fig. 2.1). Prior to combining
the ranging sources to form the system of n equations with 4 unknowns, it is neces-
sary first to synchronize the ranging sources. Therefore each satellite is broadcasting
together with its navigation message, an estimation of the satellite clock offset to
the GNSS system time in form of a second order polynomial coefficients. The user
clock offset to the GNSS system time is considered as the fourth unknown of the
problem. The GNSS system time is an averaged time taking into account atomic
clocks on satellites and on ground. The ground processing facility of GNSS deter-
mines simultaneously both the navigation message and the satellite clock correction
parameters.

We call the pseudo range observation, the estimated code delay which is the cumu-
lative output of the DLL (Delay Lock Loop) of the receiver. This is the elementary
information to be used in the calculation of the position of the receiver.

Additionally to the pseudo range observation, the carrier phase observation is the
cumulative output of the PLL (Phase Lock Loop) of the receiver. The phase ob-
servation is ambiguous due to the unknown number of full cycles from satellite to
receiver.
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Chapter 2 Characterization of Effects that Impact Position Accuracy

satellite k

receiver u

signal transmitted at t1

signal received at t2

replica generated

replica shifted

t1 t2

τ (k)
u

Figure 2.1.: GNSS ranging principle: The satellite is generating a signal that is
transmitted at time t1 and a receiver receives the signal at time t2. The receiver
generate a replica of the signal including the known PRN code and this replica is
correlated with the received signal in order to determine τ (k)

u . At this stage, the
time of transmission and the time of reception are calculated using 2 different non
synchronized clocks, therefore the corresponding range is a “pseudorange” and not
a “range”. Therefore also it is necessary to have at least 4 satellites and not 3 as
the receiver clock delay to GNSS system time is considered as the fourth unknown
of the navigation and timing problem.
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2.2 Single Frequency Single Constellation Stand Alone Positioning Service

The geometry matrix is a linearized transfer matrix from the position of the user to
the set of pseudo ranges. Each row represents the unit vector component from the
user to a satellite. The last value of the row being set to 1 to map the user clock
bias (to system time) in the pseudo range domain, considering that the estimated
pseudo ranges are simultaneously calculated by the receiver.

2.2. Single Frequency Single Constellation Stand

Alone Positioning Service

2.2.1. Pseudo Range Estimation

The observation equation is based on the propagation time of the signal from satellite
k to receiver u.

Let’s call τku this time, and let’s consider the pseudo range calculation at received
time t:

ρ(k)
u = c

(
tu (t) − t(k)

(
t− τku

))
(2.1)

where c is the speed of light, ti (t) is the reception time of the signal given by the
receiver clock and tk

(
t− τku

)
is the transmission time of the signal given by the

satellite clock.

The times of transmission and the time of receptions are erroneous and are provided
by different clocks that are not synchronized with each other.

We use the convention adopted in ([ME06], page 148-149):

tu (t) = t+ δtu (t) (2.2)

t(k) (t) = t+ δt(k) (t) (2.3)

where δtu is the receiver clock off set to the GNSS time and δt(k) is the satellite
clock offset to the GNSS time.

We rewrite equation 2.1:

ρ(k)
u = c

(
τ (k)
u + δtu (t) − δt(k)

(
t− τ (k)

u

))
(2.4)
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Chapter 2 Characterization of Effects that Impact Position Accuracy

In this equation δt(k) is modeled as a second order polynomial whose coefficients
are estimated by the GNSS ground processing facility and are broadcast in the
navigation message. during τ (k)

u , the variations of δt(k) is negligible. Therefore we
can write: δt(k)

(
t− τ (k)

u

)
≈ δt(k) (t). We consider δt(k) to be a random variable,

thus the approximation should be revisited. We consider that during a short period
of time τ (k)

u , the process δt(k) is a continuous stationary process. Let’s suggest a
suitable model for τ (k)

u :

cτ (k)
u =

(
u(k)
u

)T ·
(
r(k)

(
t− τ (k)

u

)
− ru (t)

)
+ I(k)

u + T (k)
u + E (k)

u (2.5)

with

u(k)
u being the unit vector from receiver u to satellite k

r(k)
(
t− τ (k)

u

)
being the position vector of satellite k at epoch t− τ (k)

u

ru (t)being the position vector of the receiver u at epoch t (three dimensional un-
known of the problem)

I(k)
u the ionospheric delay in meter

T (k)
u the tropospheric delay in meter

E (k)
u the residual pseudo ranging errors.

The complete model of the pseudo range observation can be written as follows:

ρ(k)
u =

(
u(k)
u

)T ·
(
r(k)

(
t− τ (k)

u

)
− ru (t)

)
+ c

(
δtu − δt(k)

)
+ I(k)

u +T (k)
u + E (k)

u (2.6)

For simplicity, we discard the time variable of the individual components.

Let assume that the position of the static user is well known thanks to a long time
precise geodetic survey, τ (k)

u represents the duration for the signal to travel from
the satellite to the user antenna phase center. If the signal would propagate in
the vacuum without any reflection, this duration would be exactly the geometric
distance divided by the speed of light.

The user wants to have access to the geometric range (the first term of the right
hand side of equation 2.6). For that the ionosphere delay, the troposphere delay and
the ephemeris and satellite clock errors must be corrected.

The navigation message consists of all information the user need to get for improving
the pseudo range performance and that are independent from the user location (each
satellite sends the same message regardless where the user is located). The user
calculates an estimation of the ionosphere delay using the Klobuchar model [Klo85,
Klo96] whose parameters are broadcast in the navigation message. The satellite orbit
estimation and the time corrections are the main part of the navigation message.
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2.2 Single Frequency Single Constellation Stand Alone Positioning Service

The troposphere delay is estimated using a model. No additional parameter is
broadcast in the navigation message due to a strong variability of the troposphere
conditions with time and space. Broadcasting a worldwide troposphere map with a
high update rate would be bandwidth consuming. The performance benefit of such
a processing facility is economically not justified.

The troposphere delay is compensated using a tropospheric model implemented in
the receiver like for example the one defined in the MOPS (Minimum Operational
Performance Standard) model [RTC06].

The position of the satellite at t− τ (k)
u is estimated using the ephemeris information

contained in the navigation message.

The receiver corrects as best as he can each error contribution, the remaining errors
is called the instantaneous pseudo range error.

2.2.2. Determination of the Position Using the Pseudo Range
Estimation

The user calculates its 3D position and the receiver clock bias using 4 satellites
solving the following system of equations in xu, yu, zu, δtu:

ρ(1)
u =

√
(x(1) − xu)

2 + (y(1) − yu)
2 + (z(1) − zu)

2 + cδtu

ρ(2)
u =

√
(x(2) − xu)

2 + (y(2) − yu)
2 + (z(2) − zu)

2 + cδtu

ρ(3)
u =

√
(x(3) − xu)

2 + (y(3) − yu)
2 + (z(3) − zu)

2 + cδtu

ρ(4)
u =

√
(x(4) − xu)

2 + (y(4) − yu)
2 + (z(4) − zu)

2 + cδtu

(2.7)

let’s call xu =
(
rTu δtu

)T
the 4 dimensional unknown vector whose components are

the user position (in 3 dimensions) and the receiver clock bias. This system of
equations is non linear. Direct methods of solving such a system exists but for
simplification we choose to linearize this system around an initial approximate of
the user position and solve this system in an iterative way considering a first order
development of the non linear equations. This iterative method is named Newton-
Raphson method and is broadly used in practice. It appears that even when the
initial estimate is chosen as the center of the earth, the method converge to an
accurate solution after only 4 iterations.

Let’s take an initial estimate of the user position called x̃u, then we express the un-
known vector xu = x̃u+Dxu which is the estimate plus an increment to this estimate.

Let’s define fk (xu, yu, zu, δtu) = fk (xu) =
√

(x(k) − xu)
2 + (y(k) − yu)

2 + (z(k) − zu)
2+

cδtu.
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Chapter 2 Characterization of Effects that Impact Position Accuracy

We have fk (xu) = fk (x̃u +Dxu). As fk is derivable and considering Dxu ≪ x̃u we
can write a first order development of fk as follows:

fk (x̃u +Dxu) ≈ fk (x̃u)+
∂fk (x̃u)

∂xu
Dxu+

∂fk (x̃u)

∂yu
Dyu+

∂fk (x̃u)

∂zu
Dzu+

∂fk (x̃u)

∂δtu
Dδtu

(2.8)

The estimated pseudo ranges are calculated based on the initial estimate x̃u:

ρ̃(k)
u = fk (x̃u) (2.9)

So we have:

ρ(k)
u = ρ̃(k)

u − x(k) − x̂u
‖x(k) − x̃u‖

Dxu− x(k) − x̂u
‖x(k) − x̃u‖

Dyu− x(k) − x̂u
‖x(k) − x̃u‖

Dzu+cDδtu (2.10)

Let’s define Dρ(k)
u = ρ̃(k)

u − ρ(k)
u , the above equation can be written as follows:

Dρ(k)
u =

x(k) − x̂u
‖x(k) − x̃u‖

Dxu +
y(k) − ŷu

‖x(k) − x̃u‖
Dyu +

z(k) − ẑu
‖x(k) − x̃u‖

Dzu − cDδtu (2.11)

This equation is the linearized positioning equation. In the practice the linearization
approximation works quite well whenever the user-satellite distance is much larger
than the position increments after each iterations. Even taking the center of the
earth as initialization point, we have observed that the linearization approximation
enables the convergence to the user position solution.

If we take the example of 4 observations we have the following system of equations:




Dρ(1)
u

Dρ(2)
u

Dρ(3)
u

Dρ(4)
u




︸ ︷︷ ︸
Dρ

=




x(1)−x̂u

‖x(1)−x̃u‖
y(1)−ŷu

‖x(1)−x̃u‖
z(1)−ẑu

‖x(1)−x̃u‖ −1

x(2)−x̂u

‖x(2)−x̃u‖
y(2)−ŷu

‖x(2)−x̃u‖
z(2)−ẑu

‖x(2)−x̃u‖ −1

x(3)−x̂u

‖x(3)−x̃u‖
y(3)−ŷu

‖x(3)−x̃u‖
z(3)−ẑu

‖x(3)−x̃u‖ −1

x(4)−x̂u

‖x(4)−x̃u‖
y(4)−ŷu

‖x(4)−x̃u‖
z(4)−ẑu

‖x(4)−x̃u‖ −1




︸ ︷︷ ︸
G4×4




Dxu
Dxu
Dxu
cDδtu




︸ ︷︷ ︸
Dx

(2.12)

The new position increment is obtained by inverting this equation. This operation
is allowed because G4×4 is invertible. The reason for that is because the unit vectors
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to the four satellites are not colinear (the user is pointing to different directions to
different satellites). We can therefore write:

Dx = G−1
4×4Dρ (2.13)

Equation 2.13 can be generalized for n ≥ 4 observations by taking rather than

G−1
4×4 the pseudo inverse matrix defined by

(
GT

4×nGn×4

)−1
GT

4×n and we obtain the
following generalized linear position equation:

Dx =
(
GT

4×nGn×4

)−1
GT

4×nDρ (2.14)

In this equation, all observations have the same weight. It is often considered see
for example [SC101]that the observations coming from satellites with low elevation
angles are experiencing larger ranging errors than the observations coming from
satellites with high elevation angle (due for example to larger multipath, receiver
noise, tropospheric and ionospheric errors). This statement is validated in section
sec. 2.2.10. In [SC101], an elevation model of error standard deviation function of
the elevation angle is provided and for each observation (and each corresponding
elevation angle), a measurement co-variance matrix is generated Cn×n. In order to
improve the accuracy of 2.14, we introduce a weighting matrix to the measurements
Dρ taking into account the expected errors for each pseudo range, giving more
weight to the measurements with high elevation than the measurements with low
elevations. One possible weighting matrix can be defined as the inverse of the error
co-variance of the measurements: Wn×n = C−1

n×n. Equation 2.14 is transformed in
its weighted form:

Dx =
(
GT

4×nWn×nGn×4

)−1
GT

4×nWn×nDρ (2.15)

2.2.2.1. From pseudo range error to position error

In the section above, the linearization applies to iteration increments, using the
properties that the pseudo range increments ‖Dρ‖ are very small compared to the
full ranges ‖ρ‖. If we replace the range increments with the deviations to the truth
‖∆ρ‖, we have the same property. The magnitude in this case is defined with respect
to the L2 norm as we consider this time the deviations to the truth as being random
variables. The relationship between the pseudo range deviations (error relative to
a reference pseudo range) and the position deviations (error relative to a reference
position) follows the same law described by Equation 2.15:

∆x =
(
GT

4×nWn×nGn×4

)−1
GT

4×nWn×n∆ρ (2.16)
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This equation provides the error propagation rule from the pseudo range to the
position domain.

2.2.2.2. The Dilution of Precision

Let us consider pseudo range and position errors as random vectors following a
normal distribution. The variance of the position error can be expressed from 2.16
and considering G and W being deterministic matrices.

By definition the variance of ∆x noted V [∆x]is:

V [∆x] = E
[
∆x∆xT

]

in this formulation we consider ∆x as being a centered normal distributed vector.
If not , we replace ∆x by ∆x − b with b being the mean vector of ∆x.

V [∆x] = E

[(
GTWG

)−1
GTW∆ρ

((
GTWG

)−1
GTW∆ρ

)T]

V [∆x] = E
[(

GTWG
)−1

GTW∆ρ∆ρTWG
(
GTWG

)−1
]

G and W being deterministic matrices we have:

V [∆x] =
(
GTWG

)−1
GTWE

[
∆ρ∆ρT

]
WG

(
GTWG

)−1

We have E
[
∆ρ∆ρT

]
= C = W−1, thus V [∆x] simplifies to:

V [∆x] =
(
GTWG

)−1
(2.17)

We see that the variance of the position error vector (also the variance of the po-
sition vector) is defined as a geometric term and a term depending on the ranging
performance.

We define the dilution of precision matrix by setting the weighting matrix W to the
identity matrix:

Q =
(
GTG

)−1
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Q depends only on the relative directions of the satellites with respect to a given
user location and gives the information about the geometry of the satellites-user
configuration.

We therefore can define the following dilution of precision terms. If we set (qij)i,j∈{1,...,4}
the elements of Q, we have:

• Horizontal DOP or HDOP =
√
q11 + q22

• Vertical DOP or VDOP =
√
q33

• Position DOP or PDOP =
√
q11 + q22 + q33

• Time DOP or TDOP =
√
q44

• Geometric DOP or GDOP =
√
q11 + q22 + q33 + q44

THE REST OF THIS CHAPTER REPRESENTS A PERSONAL CONTRIBU-
TION

2.2.3. The Concept of Instantaneous Pseudo Range Error
(IPRE)

Let us represent a component x after receiver corrections by x̂ (can be interpreted
as the receiver estimate of x) and the “true” (unknown) value of x by x̊. Equation
2.6 can be written as follows:

ρ̊(k)
u =

(
ů(k)
u

)T ·
(
r̊
(
t− τ̊ (k)

u

)
− r̊u (t)

)
+ c

(
δ̊tu − ˚δt(k)

)
+ I̊(k)

u + T̊ (k)
u (2.18)

In the same way we have:

ρ̂(k)
u =

(
û(k)
u

)T ·
(
r̂(k)

(
t− τ (k)

u

)
− r̂u (t)

)
+c

(
δt̂u − δt̂(k)

)
+ Î(k)

u + T̂ (k)
u + Ê (k)

u (2.19)

In this equation we assume E̊ (k)
u = 0.

We also assume that ů(k)
u ≈ û(k)

u . By differentiating 2.19−2.18, and by setting for
each component x, ∆x = x̂− x̊ we obtain:

∆ρ(k)
u =

(
u(k)
u

)T ·
(
∆r(k)

(
t− τ (k)

u

)
− ∆ru (t)

)
+c

(
∆δtu − ∆δt(k)

)
+∆I(k)

u +∆T (k)
u +∆E (k)

u

(2.20)

We will call this equation the fundamental error equation. It has to be mentioned
that ∆ru (t) and ∆δtu are considered in the same way as the user position and user
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Chapter 2 Characterization of Effects that Impact Position Accuracy

clock offset to be the unknown of the positioning error problem (by linearity of the
multi-lateration equations).

In this section, the convention used to define the error is as follows: ∆X = X̂−X=
estimate-reference
The IPRE (instantaneous pseudo range error) ∆ρ(k)

u (t) can be expressed in terms
of individual errors based on the equation 2.19:

IPRE (t) = −Clk (t) + Eph (t) + Iono (t) + Trop (t) + MN (t) (2.21)

with the following notations:

Clk (t) , c∆δt(k) is the vector of instantaneous satellite clock error,

Eph (t) ,
(
u(k)
u

)T ·
(
∆r(k)

(
t− τ (k)

u

))
is the vector of instantaneous ephemeris error,

Iono (t) , ∆I(k)
u is the vector of instantaneous ionospheric error,

Trop (t) , ∆T (k)
u is the the vector of instantaneous tropospheric error,

MN (t) , ∆E (k)
u is the vector of instantaneous receiver noise and multipath error

IPRE (t) is by definition the contribution of all these individual vector errors.

If necessary we can also group Clk (t) and Eph (t) into the ODTS (Orbit Determi-
nation and Time Synchronization Error). We set ODTS (t) , Eph (t) − Clk (t)

UERE =

√√√√ 1

N

N∑

k=1

IPRE2
k (2.22)

The Root Mean Squared (RMS) over time of the IPRE is defined in this thesis as
the User Equivalent Range Error (UERE). However, the exploration of the time
varying IPRE rather than its RMS, as we will see later in this chapter gives a much
deeper insight into the error behavior. This is made possible thanks to the temporal
pseudo range observations of the satellites.

2.2.4. Methodology

The main problem is to determine the true quantities to be used as reference. This
is a difficult problem to be solved in real time as usually GNSS is the most accurate
navigation system. But if we replace true values by precise reference values, then
one can just use a sort of reference measurement system and define the error as a
deviation of estimated values from this reference:

Error(t)= Estimate(t) – Reference(t).
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2.2 Single Frequency Single Constellation Stand Alone Positioning Service

The idea here is to use as estimates the correction models implemented in the receiver
or broadcasted by the satellites and as reference, the post processed IGS files1.
Tab. 2.1 resumes the configuration used for our scenario:

Identifier Full name Estimation/
Correction

Reference Sampling period
of reference

Clk Satellite clock
delay

Navigation
message

SP3 files 15 min

Eph Ephemeris error Navigation
message

SP3 files 15 min

Iono Residual
ionosphere delay

Navigation
message +
Klobuchar
model

IONEX files 2 hours

Trop Residual
troposphere
delay

MOPS model [5]
+ Niell’s
mapping
function [6]

SINEX files 2 hours

MN Multipath and
receiver noise
error

No estimation Results of the
use of TEQC
program [4]

Period of
Observation files
(30 sec)

Table 2.1.: Practical error component definition

Some explanation of Tab. 2.1 are necessary:

To determine the reference of each individual effect, post processed IGS products
have been used: SP3 for precise orbit and clocks of GNSS satellites, IONEX for
precise ionospheric maps, SINEX for precise tropospheric maps.

The receiver does not correct the multipath error using models. The multipath
and receiver noise error are estimated using a linear combination of code and phase
observations in L1 and L2.

Post-processed files except for MN are standard IGS-files taking into account a
given time sampling period. We decided to take 15 minutes as the overall sampling
period for our study. Thus for Iono and Trop we had to interpolate data to 15
minutes interval. We used for both linear interpolations, which means that short
period effects (under 2 hours) for Iono and Trop are not representative because the
ionospheric and tropospheric maps are provided with a sampling period of 2 hours
(see Tab. 2.1).

1The International GNSS Service (IGS) is a network of worldwide distributed GNSS stations
hosted by different institutions and agreeing to provide raw measurements to dedicated central
processing facilities to produce different products in form of files as enumerated in this chapter.
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2.2.5. Database

The work described in this section is my personal contribution.

One year observation files (2003) of 7 different IGS stations (see Tab. 2.2) have been
used.

Code City Latitude in [°] Longitude in [°] Altitude in [m]

albh Victoria (Canada) 48.390 236.51 32
lhas Lhassa (China) 29.657 91.104 3622

mcm4 Ross Island (Antarctica) -77.838 166.67 98
ntus Singapore 1.3458 103.68 79
nya1 NY-Alesund (Norway) 78.930 11.865 84
obe2 Wessling (Germany) 48.1 11.3 651
pots Potsdam (Germany) 52.38 13.07 174

Table 2.2.: Selected IGS station locations

Figure 2.2.: Geographic locations of studied IGS stations

2.2.6. UERE Calculus

This graphic has been obtained by calculating for each station the RMS value of the
IPRE series:

UERE =

√√√√ 1

N

N∑

k=1

IPRE2
k (2.23)

With N being the number of samples for which a valid IPRE could be estimated.
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2.2 Single Frequency Single Constellation Stand Alone Positioning Service

Figure 2.3.: UERE (RMS) for studied IGS stations and comparison with a standard
UERE from [CCH+06] page 322.

From these first results (Fig. 2.3), we can see the high dependency of UERE with
the location of the user. The UERE is four times bigger at Singapore than at NY-
Alesund for a single frequency absolute positioning receiver. We will see in the next
results that the magnitude of the UERE follows the dominant error here the Iono.

2.2.7. Temporal Analysis of Individual Range Errors

Based on measurements gathered from the seven IGS stations mentioned earlier,
each individual error is estimated for each epoch.

Fig. 2.4, Fig. 2.5 and Fig. 2.6 represent the evolution in time of the individual and
total error using measurements of a GNSS receiver located at Oberpfaffenhofen
(near Munich) (station Obe2). Each satellite is represented using one color. If we
look at the individual errors (Fig. 2.5 and Fig. 2.6) we can subdivide them in three
categories:

1. The satellite dependent errors: Clk and Eph belong to this category. We can
distinguish colors which emphasize a common behavior of these errors with
respect to the corresponding satellite.

2. The environment dependent errors: Iono and Trop belong to this category: We
can’t distinguish colors but we can see a general behavior very well represented
for Trop error with a sinusoidal effect of one year period.

3. The Gaussian like errors: NM belongs to that category: we can’t distinguish
colors, the distribution of data follow the same law. Only standard deviation
seems to vary.
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Figure 2.4.: IPRE (t) at Obe2 (Oberpfaffenhofen) based on one year measurements
in 2003. “Mean” and “std” mean respectively the mean and the standard deviation
of the considered data (IPRE), “RMS” means the root mean squared and “sam-
ples” means the number of samples considered to calculate the different statistical
values.

Gaps in the data corresponds to a lack of observations for the corresponding epochs.

2.2.8. Correlations Between Individual Errors

From Instantaneous errors, we use the following formulas to calculated the correla-
tion factors and we used for a good visual representation a gradual color scale.

The covariance between two random variables x and y is calculated as follows:

cxy =
1

N

N∑

i=1

(xi − x̄) (yi − ȳ) (2.24)

with x̄ = 1
N

∑N
i=1 xi.

The correlation is calculated as follows:

rxy =
cxy√
cxx

√
cyy

(2.25)
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Figure 2.5.: Clk (t),Eph (t),Iono (t) and Trop (t) at Obe2 based on one year mea-
surements in 2003

Fig. 2.7 shows a weak correlations between errors except for satellite clock and
ephemeris errors for which a correlation of 30% can be observed. A physical corre-
lation has to be excluded since satellite clock bias and orbital deviations of satellites
are totally independent effects. If independent instruments could measure these
two effects, we would certainly find no correlation. But this is unfortunately not
the case, clock bias and perturbation factors of the satellite orbit are determined
together and are in a relation through a system of equations. It is better to talk
about a correlation generated by the processing facility on the ground.

2.2.9. Individual Error Correlations Between Stations

In the following, we consider instantaneous results calculated for each station. As
for correlations between errors, we represent correlation factors using color scales.
The correlation factor is calculated using data coming from the same satellite. This
imposes that a satellite should be seen during a certain time by both considered
stations. No results are available for (mcm4, nya1), (mcm4, pots), (mcm4, albh)
and (mcm4, obe2) for which no satellites have been seen at the same time by these
stations (which is understandable because of the location of mcm4 (Antarctica)
compared to the locations of the other ones.

From these results, space correlations of errors are characterized. For Iono and Trop,
regional effects can be seen. For Iono, albh shows negative correlations with other
stations which can be explained simply by the diurnal effect of the ionosphere (see
Tab. 2.3 and Fig. 2.2 for comparison of geographic situation of stations). For Trop,
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Figure 2.6.: MN (t) at Obe2 based on one year measurements in 2003

the seasonal effect plays the main role here. North hemisphere and south hemisphere
have inverted seasons and if we look at ntus, (south hemisphere), the correlations
seem to be inverted with the stations situated in the northern hemisphere. As
expected no correlations have been found for MN error. Clk error is totally correlated
which is obvious because this error is a property of the considered satellite. We could
expect the same for Eph error and it is surprisingly not so. In fact what we call
ephemeris error is not the absolute orbit error of the satellite but it’s projection to
the line of sight which is the only component that plays a role in the pseudo-range
error. Thus Eph will vary with the relative position of the station in comparison
with the considered satellite and this will generate decorrelations.

2.2.10. Individual Errors Function of the Elevation Angle

The method used is always considering instantaneous errors. The elevation is ob-
viously a characteristic parameter of the error. Intuitively, the propagation errors
are going to be larger when the elevation angle is lower, due to the width of the
atmosphere crossed by the signal. But to be able to make a statistical analysis,
i.e. to calculate the bias (mean), the random (standard deviation) and the total
(RMS), we need to use classes of elevation angles (El). Thus for each class (of 5°)
it is possible to collect enough data to produce sufficient representativity.

Negative biases can be obtained because errors are in this work defined as deviation
from a reference. A measurement can be below or above this reference and thus will
influence the sign of the instantaneous error.

A mask angle of 10° has been used.
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Figure 2.7.: Correlations between individual errors at Obe2

These evolutions are well known and do not differ from what has been generally
accepted in the literature [Zap02, Kov00]. Nevertheless, if we focus on the behavior
of the bias and the standard deviation part, we can see that these evolutions are
not always the same: for Trop and MN, the bias is negligible which means that
the dispersion constitutes the major part of the error. If we consider that biases
correspond to deterministic errors, this means that Trop is well corrected using
MOPS model at Obe2 when averaging one year measurements, and MN error can
be considered almost totally random at Obe2 as the bias seems not to depend
on the elevation angle. The random part shows a strong dependency with the
elevation angle. As expected, variance of MN is higher for small elevation angle.
The separation in noise and multipath errors as function of elevation angle will be
interesting to analyze. Iono diagram shows that in single frequency receivers not
using differential measurements, this error is the largest one. The deterministic part
of the ionosphere delay (characterized by systematic errors or bias) is relatively high
for any elevation angle and this characterizes the limitation of the Klobuchar model
to correct the total ionospheric delay. Clk and Eph function of elevation angle have
not been represented here because they obviously don’t depend on the elevation
angle.
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Figure 2.8.: Geographical correlations of errors based on one year measurement in
2003

2.2.11. Individual Error Contributions to Position Error

From the single user-satellite range error equation 2.20, that we recall hereafter, we
have for each r:

we build up its vector form considering all pseudo range observations:

IPREu = ∆ρu = (uu)
T ·(∆r (t− τ u) − ∆ru (t))+c (∆δtu − ∆δt)+∆Iu+∆T u+∆Eu

(2.26)

where each row represents the pseudo range related to one satellite in view.

This is the multi-lateration error equation where the unknowns are the user position
error ∆ru (t) and the user clock error ∆δtu.
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Figure 2.9.: Error sources vs. elevation angle at Obe2 station from 1.1.2003 to
31.12.2003

This linearized equation can also be written as follows:

IPREu = ∆ρu = G∆xu (2.27)

Where the vector ∆xu =
(
∆rTu ∆δtu

)T
is the error in the user position and in the

user clock.

By taking the individual errors per satellite we can analyze their contribution to the
position error.

The pseudo inverse equation is derived from Equation 2.16 and can be written as
follows:

∆xu =
(
GTWG

)−1
GTW · IPREu (2.28)
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Let’s define S =
(
GTWG

)−1
GTW, and let’s decompose the IPREu vector into its

individual elements:

∆xu (t) = −SClk (t) + SEph (t) + SIono (t) + STrop (t) + SMN (t) (2.29)

Each element represents its contribution to the user position error. For simplicity,
we decided to work with raw data (without filtering the measurements) and all
observations have been used. In parallel, we determined the 2σ ellipsoid envelops
for each individual error and the IPRE as if the distribution would be Gaussian
centered on corresponding biases. One of the objectives is to determine the deviation
from normal distributions of real error distributions; another one is to determine
qualitatively the dominant error.

Figure 2.10.: Individual errors contribution to position error at Obe2 using one
year of measurements in 2003 including a 2σ error envelope. From top left to
bottom right we have the Clk, Eph, Iono, Trop, MN and IPRE projections to the
position domain

Fig. 2.10 represents the position error a user of a single frequency receiver would ex-
perience if he stays at the location of the considered IGS station (here Obe2) during
one year. In this figure, we can see the contribution of individual errors to the user
position. For each error, we have determined statistically the standard deviation in
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3 directions and the bias also in three directions. Then we set the ellipsoid centered
at the bias and as semi major axes in 3 directions the corresponding standard devi-
ation multiplied by 2 (2σv error envelope). We can see that some errors correspond
very well to a 3D Gaussian distribution (Clk, Eph, and MN). For Trop and Iono,
we can see another type of distribution and the ellipsoid can hardly represent such
a distribution. To explain this phenomenon, we can say that considering satellites
on visibility, the horizontal component of propagation error will be compensated
because satellites are almost equivalently distributed in the horizontal plan. The
vertical component cannot be compensated because the elevation angle of satellites
is always positive (satellites are up in the sky not down on earth!). This is different
to pseudo range level for which propagation errors are bigger for low elevation angle.

Now let’s keep only the 2σ ellipsoid envelop for each error and let’s analyze the
results for each seven stations considered in our study.

Figure 2.11.: Repartition of the 2σ error envelop using one year of measurements
in 2003 for the selected IGS stations. From top left to bottom: Nya1, Albh, Obe2,
Lhas, Ntus and Mcm4
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Here we can see how the dominant error plays a role in the horizontal and vertical
position error. In black we can see the IPRE contribution to position error which is
simply the overall position error. The horizontal position error is mostly influenced
by the Clk or the Iono error in regions where ionosphere activity is important. We
don’t see horizontally a privileged error direction (envelops are almost circular) but
the vertical error, as expected, is larger than the horizontal one. The main conclusion
of Fig. 2.11 is that the Iono error drives the vertical position error and the ephemeris
error seems to experience a systematic bias in the vertical direction. This effect is
investigated in the next section.

2.3. Single Frequency Dual Constellation Stand

Alone Positioning Service

In this chapter we are going to investigate the accuracy of GPS, Galileo and the
combination GPS+ Galileo. For GPS, we consider the estimation of errors (orbit
determination and time synchronization error, ionospheric error, tropospheric er-
ror and multipath+noise error) by using real navigation messages and observations
from IGS stations and taking post processing data as our reference . For that, we
considered 3 IGS station locations: one in the equatorial region (ntus in Singapore)
another one in a mid latitude region (obe2 in Germany) and a third one inside the
polar circle (nya1 in Norway). The period of measurements used is the year 2003.
The Galileo constellation has been simulated using foreseen UERE budget projected
into the directions user to satellites and the foreseen almanacs. For both constella-
tions, we used the same multipath scenario.
In a first part, we will define the field of our study and the scenario used for both
GPS and Galileo constellations. In a second part, we recall the mathematical back-
ground providing the general formula to be applied and in a third part, we analyze
the results obtained for GPS and Galileo separately and for the combined GPS +
Galileo scenario. We conclude this section by recalling the important results we
obtained.

2.3.1. Field of study

The year 2003 has been taken as our period of measurement for GPS. As written
in the introduction, this concerns 3 IGS stations presented in Tab. 2.3. A single fre-
quency absolute positioning receiver has been simulated. For GPS we used BPSK(1)
in L1 and for Galileo the binary offset carrier BOC(1,1) modulation [BG02] for the
same center frequency.

These locations have been used for both GPS and Galileo constellations.

Tab. 2.4 represents the assumptions used to produce the individual errors for GPS.
By defining the error as a reference value minus the computed one with help of a
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Country Latitude Longitude Altitude
[0.5ex] Germany 48.1o 11.3o 651m
Norway 78.9o 11.9o 84m
ntus Singapore 1.35o 104o 79m
[1ex]

Table 2.3.: IGS locations

Estimation Reference Sampling period
[0.5ex] RINEX NAV SP3 15 min
Klobuchar IONEX 2 hours

model
MOPS model SINEX 2 hours
– Synthetic 15 min

scenario

Table 2.4.: Measurement assumptions for GPS

correction model or using the parameters broadcasted by the satellites.
In Tab. 2.4 the notations are as defined in section sec. 2.2 where we set the combined
Eph and Clk error as the Orbit Determination and Time Synchronization (ODTS)
error.

Estimation Reference Sampling period
[0.5ex] – Random 15 min

Generator [Zap02]
Klobuchar IONEX 2 hours

model
MOPS SINEX 2 hours

model
– Synthetic 15 min

scenario

Table 2.5.: Simulation assumptions for Galileo

Tab. 2.5 represents the assumptions used to estimate the individual errors for Galileo.
The main difference from the previous table is the ODTS random generation of errors
using the UERE budget of [Zap02]. The synthetic scenario used for multipath is
defined as follow. The reference propagation delay are those used for GPS but
applied with the Galileo satellite positions. For better comparison we used the same
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correction models in both GPS and Galileo. The synthetic scenario is common for
GPS and Galileo and is defined in the next subsection.

The Galileo case

For that case we used the foreseen UERE Budget for Galileo [BPH05a] which con-
sidered an ODTS error standard deviation of 0.67 m. Because the bias level was
not specified, we took a centered Gaussian distribution with 0.67 m of standard
deviation as input for our random generator. This means that no regional effect of
the user location has been taken into account in the ephemeris error.

Practically, for each satellite in view, we took a sample every 15 min; the time series
is given in the Fig. 2.14. The blanks in the figures are intentionally put in order to
fit with the lack of data for GPS. This is done in order to combine easily both sets
of data for the combined GPS+Galileo scenario.

The use of a centered Gaussian noise model for ODTS is an approximation available
for a relatively low sampling frequency. This is done in order to consider the ODTS
error decorrelated from two consecutive time steps for a given satellite

obe2 nya1 ntus

Bias (m)

GPS -1.014 -1.040 -1.033

GAL(*) 0.003 -0.002 -0.001

COM(*) -0.422 -0.455 -0.454

σ (m)

GPS 1.636 1.656 1.610

GAL 0.671 0.671 0.670

COM 1.278 1.310 1.285

RMS (m)

GPS 1.924 1.956 1.913

GAL 0.671 0.671 0.670

COM 1.346 1.387 1.363

(*) GAL for Galileo and COM for combined GPS+Galileo
Table 2.6.: Statistical results for ODTS error at pseudo range level

Tab. 2.6 shows small differences in bias and standard deviation for GPS due to the
ephemeris error because of a short regional dependency due to the geometry of the
constellation. The ephemeris error is the satellite orbit error projected into the
direction of user to satellite. It has not been taken into account for Galileo because
we did not want to decompose the ODTS error into more fundamental errors. But for
that some questions have still to be solved like the level of the deterministic part of
the error and the stochastic part. The low level of ODTS error for Galileo is of course
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one point that should be verified. To be fair in our comparison, one should take
into account the foreseen UERE budget for GPS when Galileo will be available that
means one should consider a comparison with the modernized GPS performances.
The aim of our study is to introduce the concept of IPRE in both measurements and
simulation, as Galileo measurements are not available yet, we chose to use the GPS
measurements to prove the efficiency of this approach. In Fig. 2.12 we can see the
probability density function of the ODTS error with respect to the level of accuracy
of GPS based on measurements and Galileo based on simulations.
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Figure 2.12.: Probability densities of ODTS error

2.3.2. The multipath synthetic scenario

We chose to simulate the multipath and receiver noise error for both GPS and
Galileo constellation in order to compare both constellations using the same base of
comparison. As the multipath environment of IGS stations is difficult to model, we
used a synthetic environment as follow. The multipath scenario chosen is a single
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ground reflection echo with an attenuation of -3 dB with respect to the line of sight
signal.

A choke ring antenna [Fuh01] has been used with different right and left hand circular
polarization gain, assuming that the reflected signal is 100% left hand polarized. In
Fig. 2.13 is represented schematically the multipath scenario. In this figure LOS is
the line of sight signal, El is the elevation angle and h is the height of the receiver
antenna with respect to the ground (h=2 m in our scenario). The echo delay is
given by 2hsin(El).

L O S

E c h o

E l

h

Figure 2.13.: Multipath scenario for GPS and Galileo

Given the level of C/N0 for both GPS [PSJ96] and Galileo [CZ02] [HGI+02] it is
possible to provide the input for a multipath and receiver noise generator assuming
the use of an example of receiver parameters (receiver bandwidth of 20 MHz and a
correlator spacing of 0.1 chip) (see Tab. 2.7).

2.3.3. Mathematical model

In this section we use the same method and the same notations as described in
sec. 2.2.

The IPRE (t)vector is based on the pseudo range errors from GPS observations,
Galileo observation and the concatenation of GPS and Galileo observations in the
combined scenario.

G is in the case of the combined scenario a 5×5 matrix. The fifth column corresponds
to the receiver clock bias with respect to the Galileo system time whose values are
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Elevation
angle [°]

Relative
power of
Echo [dB]

Delay of
echo [ns]

GPS
BPSK(1)
C/N0 [dBHz]

Galileo
BOC(1,1)
C/N0 [dBHz]

90o -32.57 13.34 48.20 53.20

85o -32.57 13.29 48.20 53.20

80o -32.28 13.14 47.91 52.91

75o -31.31 12.89 47.80 52.80

70o -31.82 12.54 47.45 52.45

65o -29.42 12.09 47.05 52.05

60o -28.27 11.55 46.48 51.48

55o -29.24 10.93 45.91 50.91

50o -28.27 10.22 44.93 49.93

45o -24.54 9.43 43.73 48.73

40o -24.60 8.58 43.10 48.10

35o -22.82 7.65 41.43 46.43

30o -22.99 6.67 40.46 45.46

25o -22.65 5.64 39.14 44.14

20o -19.04 4.56 37.94 42.94

15o -18.69 3.45 36.27 41.27

10o -16.28 2.32 35.07 40.07

5o -13.59 1.16 33.52 38.52

Table 2.7.: Parameters of the multipath scenario

set to 0 for GPS related rows and to 1 for Galileo related rows. The fourth column
is as previously defined with 0 for the Galileo related rows and 1 for the GPS related
raws. Therefore we consider for the combined scenario a 5D unknown vector (3 for
the spatial localization, the receiver clock bias with respect to GPS system time
and the receiver clock bias with respect to Galileo system time). We could keep the
unknown to 4 if we use the GPS Galileo Time Offset (GGTO).

In this chapter we don’t weight the measurements so we consider W as the identity
matrix and therefore will drop out of the position equations.

We consider the minimized GDOP method to select the 4 or 5 observations among all
satellites and then to perform the propagation of pseudo range error to the position
domain. The definition of GDOP is given in sec. 2.2.

The selection method is such that we test all combinations of 4 or 5 observations
among all satellites in view that minimize the trace of the matrix Q . Let us call
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G∗ the 4 × 4 or the 5 × 5 optimal geometry matrix, we have:

G∗ = argmin
G

{
tr
((

GTG
)−1

)}
(2.30)

The position error equation is then

∆xu (t) = G∗−1IPRE (t) = G∗−1ODTS (t)+G∗−1Iono (t)+G∗−1Trop (t)+G∗−1MN (t)

(2.31)

2.3.4. The errors at pseudo range level

In this section we present the results obtained for GPS and Galileo for each type
of error. The statistical results give also the results for the combined GPS+Galileo
which is obtained by fusion of both sets of data. All these procedures have been
implemented in NAVSIM, the End to End navigation simulator of DLR [FES+00].
The possibilities given by this new functionality to proceed to an error calculation
by using "reference - correction" from both measurements or from simulations using
models or by using a random generator of noise, offers the possibility to simulate
the performances of a given application or a navigation system using the concept of
IPRE as presented in sec. 2.2. Thanks to the generation of time series of individual
errors, it is possible for a given constellation to proceed to an error calculation at
the pseudo range level and as will be developed in the next section at the position
level.

2.3.4.1. The ODTS error

Except for multipath and receiver noise error, the methodology used is the same as
in [BPH05b]. we chose to present the ODTS error at Oberpfaffenhoffen near Munich
(obe2), the results obtained from the other stations are similar and differs only by
the direction of projection to the line of sight from satellite to user location.

In Fig. 2.14 we plot the ODTS error for each satellite for GPS and Galileo. Each
satellite is represented by a specific color. Taken independently, these satellites
experience independent ODTS errors. Some of the GPS satellites are experiencing
biases of more than 1 meter which has been observed also for the 2 other stations.
These biases due to the fact that the navigation message is using the phase center
of the sending antenna as the origin of the Keplarian parameters and the precise
orbits for some of the satellites are using the center of gravity of the satellite.
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Figure 2.14.: ODTS error vs. time for GPS and Galileo

2.3.4.2. The ionospheric error

In this subsection, we represented the ionospheric error for the station near the equa-
tor (ntus in Singapore). This choice is motivated by the high level of ionospheric
activity in that region. This causes the ionospheric error to be the dominant effect
affecting the pseudo range performance. As observed in sec. 2.2, the IPRE distribu-
tion is driven by the ionospheric error.

Figure 2.15.: Ionospheric error vs. time for GPS and Galileo

Fig. 2.15 represents the ionospheric error after correction with the Klobuchar model.
The magnitude of error is here very large and for both the bias and the standard
deviation.

As the same conditions have been taken for GPS and Galileo satellites, the same
type of results should be obtained. The difference comes from the different number
of satellites in the constellations (30 for Galileo and 24 for GPS) and for the different
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line of sight projections (the distribution of satellites in the sky is not the same for
GPS and for Galileo).

The ionospheric error for Galileo satellites is the error that the pseudo ranges would
have experienced if the constellation would have been available in 2003 at ntus
(Singapore). We recall that the ionospheric error could have been corrected using
another correction model (NeQuick) but the Klobuchar model has been chosen for
comparison purposes. The results are quite similar with what has been obtained for
GPS. This is as expected because this effect impacts the GPS signals in the same
way as it impacts the Galileo signals. The only difference is due to the geometry of
the constellation i.e. the distribution of elevation angles (the model does not take
into account the impact of the azimuth angle).

obe2 nya1 ntus

Bias (m)

GPS 1.752 0.310 9.241

GAL 1.760 0.233 9.332

COM 1.756 0.267 9.292

σ (m)

GPS 2.403 1.184 7.513

GAL 2.413 1.233 7.477

COM 2.409 1.212 7.493

RMS (m)

GPS 2.974 1.224 11.910

GAL 2.987 1.254 11.958

COM 2.981 1.241 11.937

Table 2.8.: Statistical results for ionospheric error at pseudo range level

An important disparity of results can be observed in Tab. 2.8. The main remark
concerning this error source is that it is not a constellation dependent error. Only a
slight difference can be observed in high latitude. For that a possible explanation is
the relatively low elevation angle of the observed satellite. The consequence is the
higher sensitivity of the error to the elevation angle due to the mapping function
used. The consequence is that the slightest difference in the mean elevation angle
can produce a higher deviation of the magnitude of the error both at bias and at
standard deviation level. Fig. 2.16 shows a superimposition of probability density
functions

2.3.4.3. The tropospheric error

For both constellations, we used the SINEX files from IGS stations and as correc-
tion model the MOPS model associated with the Niell’s mapping function [Nie96]
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Figure 2.16.: Probability densities of ionospheric error

to transform the azimuth tropospheric delay to the slant delay. In this subsection,
we use the results of nya1 for the graphical representation. The same comment as
for the ionospheric delay can be made.

Fig. 2.17 represents the tropospheric error for the GPS and Galileo constellations.
One can easily see the impact of the elevation angle in the magnitude of the error.
The upper bound corresponds to the envelop of tropospheric error for maximal
elevation of satellites. This is for nya1 not necessary the zenith because of the
inclination of orbits of satellites (56o for Galileo).

The tropospheric environment is taken the same for both constellations and only
the differences in geometry plays a role.

Tab. 2.9 gives the statistical results for the tropospheric error for each configuration
and each IGS station. The level of this error seems to be quite low in comparison
with the ionospheric error. The correction model associated with the Neill’s mapping
function is fitting the real tropospheric delay well. Even for ntus (Singapore) where
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Figure 2.17.: Tropospheric error vs. time for GPS and Galileo

obe2 nya1 ntus

Bias (m)

GPS -0.314 -0.288 -0.633

GAL -0.336 -0.291 -0.640

COM -0.327 -0.289 -0.637

σ (m)

GPS 0.333 0.258 0.512

GAL 0.354 0.264 0.517

COM 0.345 0.261 0.514

RMS (m)

GPS 0.458 0.387 0.814

GAL 0.488 0.393 0.822

COM 0.475 0.390 0.819

Table 2.9.: Statistical results for tropospheric error at pseudo range level

the partial water vapor pressure can reach high levels and thus can generate a wet
tropospheric delay difficult to model, the level of bias and standard deviation of the
errors stay in an acceptable range in comparison with the ionospheric error.

It is interesting to see from Fig. 2.18 the perfect superimposition of the probability
density functions. The elevation angle distributions for the 3 configurations has
even less influence than for the ionospheric error. To resume, the propagation middle
impacts the constellations in the same way. Unless using different correction models,
the ionospheric and the tropospheric errors have for both constellations and thus
for the combined GPS+ Galileo the same magnitude.
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Figure 2.18.: Probability densities of tropospheric error

2.3.4.4. The multipath and receiver noise error

For both constellations, we used the synthetic environment defined above. It was
possible using the random multipath generator of NAVSIM to provide the following
results for both bias and standard deviation function of the elevation angle for GPS
and Galileo. This model respects for both GPS and Galileo the dependency with
the elevation angle.

We used a third order polynomial regression to fit the bias function of the elevation
angle (see Fig. 2.19) and a fourth order polynomial regression to fit the standard de-
viation function of the elevation angle (see Fig. 2.20). We proceed then to a random
generation of multipath and receiver noise error for each satellite using its elevation
angle and the Gaussian distribution corresponding. The results obtained are pre-
sented for both constellations in Fig. 2.21.

Fig. 2.21 represents the multipath and receiver noise error for GPS and Galileo
satellites. By using the synthetic model, considering a single ground reflection, no
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Figure 2.19.: Bias of multipath and receiver noise error function of the elevation
angle

dependency with the azimuth angle has been taken into account.

The multipath and receiver noise error is lower for Galileo than for GPS. This
is mainly due to the characteristics of the BOC signal and its ability to mitigate
multipath error. In fact, the use of a narrow correlator and the characteristics of the
BOC signal itself provide a multipath error envelop function of the multipath delay
lower than for the GPS C/A code which has a BPSK modulation at 1.023 × 106

chips per seconds. The Receiver noise error plays also an important role assuming
that the Galileo system should provide a higher power of signal and thus a higher
C/N0 than GPS. Here again, this should be updated with the specifications of the
modernized GPS. And a new simulation should take into account the modernized
GPS constellation to take advantage of the future satellite blocks.

From Tab. 2.10, we can see that the results correspond to what was expected. These
results obtained for GPS have been compared with those obtained from real mea-
surements (see[EM99]for a detailed method used to estimate multipath and receiver
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Figure 2.20.: σ of multipath and receiver noise error function of the elevation angle

noise error based on observation files of the considered IGS station) and the level
of multipath and receiver noise error fit the results obtained with our simulation.
Also the errors function of the elevation angle shows a similar profile as for the
measurements. This model is of course available only when considering a sampling
period not less than 15 minutes. For shorter periods, one has to take into account
an auto-correlation effect due to the non changing configuration for successive mea-
surements.

As expected from our multipath and receiver noise error generator, the probability
density functions of Fig. 2.22 are Gaussian like distributions. The Galileo constel-
lation has a sharper distribution and here again as in all other cases, the combined
GPS+Galileo is between the two other curves.

2.3.4.5. The Global IPRE

By using Eq. 2.21 we obtain easily the results for the global Instantaneous Pseudo
Range Error.
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Figure 2.21.: Multipath and receiver noise error vs. time for GPS and Galileo

Tab. 2.11 resumes the results obtained for the global pseudo range error. These
results are coherent with respect to the results of [BPH05a] and [BHS05a]. The
high level of IPRE at ntus Singapore is due to the ionospheric error which drive
both the Galileo and the GPS pseudo range errors. Another remark concerns the
level of IPRE for the combined GPS and Galileo constellations. It seems to be
always a compromise between the errors found for GPS and the errors found for
Galileo. The results obtained are coherent with this averaging effect. But because
the ionospheric error level is almost the same for both constellations, the IPRE for
the combined constellation shows also a similar level of relative magnitude.

In Fig. 2.23 we can see that the curves have the same shape but present different
shifts in the right part of the probability density functions. The consequence is the
augmentation of both the bias and the standard deviation from the best to the worst
case: we find respectively the Galileo constellation, the combined GPS+ Galileo and
the GPS constellation.

2.3.5. The impact of IPRE at position level

In this section, we are going to present the impact of the IPRE at the position level
at obe2. The results obtained for the other IGS stations does not give new results
and thus we restrain our study to that station. The method used to determine
the position error is the "all in view" algorithm. No significant differences have
been observed by using the minimum GDOP method. At least the results does not
justify the immense additional processing time to select and to calculate the GDOP
for all possible combinations of 4 satellites among n satellites in view where n can
reach 18 for the combined GPS+ Galileo constellation. Our study is focused on the
impact of IPRE at position level. For the study of the impact of individual errors
see [BPH05a].
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obe2 nya1 ntus

Bias (m)

GPS 0.101 0.106 0.106

GAL 0.089 0.096 0.093

COM 0.095 0.101 0.099

σ (m)

GPS 1.081 1.069 1.078

GAL 0.291 0.290 0.294

COM 0.782 0.772 0.777

RMS (m)

GPS 1.086 1.074 1.083

GAL 0.305 0.306 0.309

COM 0.787 0.779 0.784

Table 2.10.: Statistical results for multipath and receiver noise error at pseudo
range level

2.3.6. The 3D IPRE error at the position level

Fig. 2.24 gives a good overview of the performances reached for each configuration by
observing the delimitation of the axis. In fact we used a ±4σ delimitation along the
three axis around the mean values of the results. One should pay attention to the
different scales used for horizontal and vertical axis. For all cases, the distribution
of points is more scattered in the vertical direction.

2.3.7. Probability density functions of position errors along each
axis

The aim of this section is to study the probability density functions of the position
error with respect to each axis. This gives us a better overview of the relative
performances of constellations. Similar results have been obtained for the two other
IGS stations used.

In Fig. 2.25 (bottom), the PDF curve of the combined GPS+Galileo in the vertical
direction tends to be closer to the PDF of Galileo than in the horizontal directions
see Fig. 2.25 (top left and right). This is an interesting result since the vertical
error is often the limiting factor to fulfill the requirements of a given application.
Is it enough to say that a combined GPS+ Galileo constellation tends to better
correct the vertical error? This point should be investigated further taking into
account a decomposition of the position error into individual error contribution
to the positioning error and to compare their PDF along each axis. What is also
interesting from these results is that the accuracy order is preserved from the pseudo

49



Chapter 2 Characterization of Effects that Impact Position Accuracy

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M+N error in m

P
ro

ba
bi

lit
y 

de
ns

ity
 in

 1
/m

Probability density functions ofM+N error in pseudo range level at "nya1"

using GPS alone
using Galileo alone
using GPS+Galileo

Figure 2.22.: Probability densities of multipath and receiver noise error

range level to the position level. This indicates that the geometry of the constellation
has a similar impact even if the combination GPS+Galileo gives a better GDOP
thanks to a better repartition of visible satellites. In other words, the improvement
of the GDOP is not sufficient to correct the loss in the pseudo range accuracy to be
better than the Galileo accuracy in the position level.

2.3.8. Conclusion

This chapter gives two different applications of the use of the IPRE concept: the
traditional method considering measurements of IGS stations and the simulation
method using random generation of individual errors using an a priori UERE budget.
The results obtained confirms what is expected for Galileo and for a combined GPS+
Galileo constellation. The combination of both constellations even if it gives better
results than the GPS alone is still below the accuracy expected for Galileo. The
combination accuracy is bounded by both the accuracies of GPS and Galileo. But
in fact the availability of both constellations gives more chance to track at least 4
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obe2 nya1 ntus

Bias (m)

GPS 2.347 1.113 9.533

GAL 1.325 -0.150 8.580

COM 1.755 0.403 9.009

σ (m)

GPS 2.968 2.262 7.500

GAL 2.497 1.495 7.447

COM 2.752 1.973 7.486

RMS (m)

GPS 3.784 2.521 12.130

GAL 2.827 1.503 11.361

COM 3.264 2.013 11.713

Table 2.11.: Statistical results for the IPRE at pseudo range level

satellites in conditions like positioning in urban canyon for example where only a
small zone of sky is visible. Another advantage is the improvement of the availability
of RAIM algorithms, providing not only the detection of faulty satellites but also
their exclusion giving thus more robustness to the navigation system i.e. more
integrity. This argument for the combined Galileo and GPS constellation has many
different applications and will involve a lot of interest especially in Safety of life
applications. However, if a user is interested more in the accuracy, then the use of
Galileo alone will provide certainly the best results because pseudo ranges are less
erroneous. Probably in a majority of applications, a compromise has to be found
between high accuracy and high integrity/availability. The combined GPS+Galileo
constellation would give the best results in both accuracy and integrity when the
GPS satellites are tending to provide the same level of performance at the pseudo
range level as the Galileo system is going to do and this is what would be planed
using the modernized GPS constellation.

2.4. Example: the GNSS Orbit Errors

In this section, we are considering the special case of ephemeris error as we observed
in the precedent sections that the projection of the orbital error in the position
domain showed a bias in the vertical direction that was actually not expected.

In this section we are going to look more in details the characteristic of this kind of
error and try to explain the origin of the observed bias.

The user while receiving the navigation message from the visible satellites, calculate
first the position of the satellite according to the Keplerian parameters contained in
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Figure 2.23.: Probability densities of IPRE

the message in the Earth Centered Earth Fixed (ECEF) coordinate system. These
Keplerian parameters are determined on ground by a network of monitoring sta-
tions observing the same satellite (using an Inverted GNSS approach with reference
stations playing the role of satellites and the considered satellite position being the
unknown of the multilateration problem). These parameters are determined for a
specific time called the time of ephemeris (toe). This is the reference time for which
the Keplerian parameters best describe the real satellite position. This set of pa-
rameters is updated every two hours and the position of the satellite is calculated
at any time by propagating this set of parameters as detailed in the GPS ICD 200C
document.
The International GNSS Service provides several products generated by post pro-
cessing from large number of observations at different reference stations. These post
processed data are very precise and are generally used as a reference to calculate
the individual error sources of the pseudo-range (rapid and ultra rapid precise orbits
and final orbit for ephemeris errors and SV clock errors, precise ionosphere maps in
IONEX format for ionosphere error...). For the ephemeris error, the use of precise
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Figure 2.24.: 3D position error at obe2 using the GPS constellation

final satellite orbits and clock provided by the sp3 files is considered.

2.4.1. The sp3 reference data

IGS provides precise final orbits and clock information in sp3 format. The content
of these files are ECEF coordinates of all GPS satellites every 15 minutes. These
data are based on post-processed measurements considering precise orbital models
and forces applied to the satellite. Furthermore the processing of a large number of
observations for each satellite from a network of precisely located stations contributes
to decrease the uncertainty of the orbit.

2.4.2. Phase Center Center of Gravity Offset (PCCGO)

For some of GNSS satellites, the sp3 files uses as a reference for the position of the
satellites the center of mass of the satellite rather than the phase center of the trans-
mission antenna as it is for the broadcasted navigation message. For these satellites,
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Figure 2.25.: Probability densities of position error along West-East

the ephemeris error (estimated minus reference) should apply this correction. This
is what we define as the phase center-center of gravity offset (PCCGO). This offset
is provided for all GPS satellites in a satellite body centered coordinate system for
example from the National Geo-spatial Intelligence Agency based on post process-
ing GPS observations from 17 identified reference stations. This PCCGO must be
applied in order to compare broadcasted ephemeris and precise ephemeris. These
corrections are given in a satellite body centered coordinate system. ∆x, ∆y, ∆z
represent respectively the along track, cross track and radial component of the offset.
These offsets differs from one satellite to another.

2.4.3. Measurements of orbit errors

A first step consists of calculating the position of the satellites from broadcasted
ephemeris data into ECEF coordinates (see Fig. 2.26). This step is detailed in the
GPS interface control document(ICD) and is briefly explained in the appendix 4
of the document [ARI00]. In fact, the positions of the satellites using broadcasted
ephemeris data correspond to the position of the phase center of the sending antenna.
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A second step consists of applying the PCCGO to the satellite position calculated
in the first step. The PCCGO must first be expressed also in the ECEF coordinate
system.
The third and last step consists of calculating the difference between the precise
ephemeris and the corrected broadcasted ephemeris. The result is expressed in
both ECEF coordinate system and in a satellite body frame coordinate system. A
motivation for the error in the satellite body frame coordinate system is to better
identify non conservative errors (those errors that are growing after each satellite
revolution).

2.4.4. PCCGO in ECEF coordinate system

The satellite position is expressed in ECEF coordinate system. Therefore PCCGO
must be also expressed in ECEF coordinate system. From the Keplerian parameters
provided in the broadcasted ephemeris (see [ARI00]), it is possible to define the
rotations to be used for the RAC/ECEF transformation. First of all let us define
the general 3D rotation matrix around each principal axis. Let us suppose that the
rotation angle is θ

R1(θ) =




1 0 0

0 cos (θ) sin (θ)

0 − sin (θ) cos (θ)


 .

R2(θ) =




cos (θ) 0 − sin (θ)

0 1 0

sin (θ) 0 cos (θ)


 .

R3(θ) =




cos (θ) sin (θ) 0

− sin (θ) cos (θ) 0

0 0 1


 .

let us call IACR the unit vector in the satellite body frame coordinate system corre-
sponding to the Along track, Cross track and Radial directions (ACR). Let us call
IECEF the unit vector in the ECEF coordinate system. The relation between these
two coordinate systems can be defined as follows:

IECEF = R3 (−Ωc) · R1 (−I) ·R3 (−uc) · IACR (2.32)

Where uc is the corrected argument of latitude, I is the angle of inclination and Ωc

the corrected right ascension of the ascending node calculated as follow:

Ωc = Ω0 +
(
Ω̇ − Ω̇e

)
tk − Ω̇e · toe (2.33)
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Figure 2.26.: Orbit representation using Keplerian parameters
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Where Ω0 is the right ascension of the ascending node at reference time, Ω̇ is the
change rate of the right ascension; Ω̇e is the change rate of the earth’s rotation;tk is
the calculation time; and toe is the reference time of the ephemeris parameters.

The new vector PCCGO in ECEF coordinate system can be expressed for each
satellite by applying the rotations defined above see [ME06] for more details.

PCCGOi
ECEF = R3

(
−Ωi

c

)
·R1

(
−I i

)
· R3

(
−uic

)
· PCCGOi

ACR (2.34)

2.4.5. Measurement results

The period of measurement considered is from 11th of October 2009 Midnight till
31st of October 2009 at 11:45. We used a sampling period of measurement of 15
minutes and the orbit error analysis is done at orbit level as a first step and then
considers a user reference position at Oberpfaffenhofen in Germany for their projec-
tion in the line of sight to study the impact at pseudo range level.
During the period of measurements, 3 satellites where declared unavailable during
at least 1 epoch. We decided not to consider these satellites in our analysis. These
satellites have the pseudo random noise (PRN) numbers:1,8,24. Satellite number
1 was even unavailable during the complete period of measurements. These PRN
numbers are identification numbers for each GNSS satellite. As all satellites are
broadcasting using signals at the same frequency the user receiver need to identify
the satellite to track the signal and therefore correlate with each available codes.
This is usually what is applied for code division multiple access (CDMA) systems
In Fig. 2.27 and Fig. 2.28, we plotted first the error in radial, along track and cross
track (RAC) coordinate system without correcting the PCCGO for each satellite
and in the second graphic, we plotted the error after correction.

The resulting remaining bias seems to be corrected only for the radial direction.
Although this is the main contribution to the position error budget, It is surprising
that biases remain in both other directions. As the PCCGO didn’t correct for these
biases, a possible explanation of this result in along track especially is the high un-
certainty of the satellite position in this direction. The high velocity of a satellite
provides a proportionally high uncertainty in the direction of the speed vector which
can impact a potential user especially when the satellite is at low elevation for which
the projection of the along track component contribution of the error is the highest.
Nevertheless this need to be investigated more in details.

In order to have a better idea of the error behavior, we selected one good and one
bad satellite with respect to their remaining orbit errors. We choose to focus on
PRN#4 (bad) and PRN#7 (good).
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Figure 2.27.: Orbit mean error without correction in RAC coordinate system for
the period 11-31 October 2009
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Figure 2.28.: Orbit mean error with correction in RAC coordinate system for the
period 11-31 October 2009
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2.4.5.1. Orbital error analysis in satellite body frame

Orbital errors show as expected different types of behavior between directions (ra-
dial, along track, cross track) and also differences between satellites (see Fig. 2.29).

It appears that the data show periodicity. If we zoom in one day (Oct. 11 2009
for example), these periodicities appears to be correlated with the period of the
satellite orbit. Fig. 2.30 represent the radial error. If we look in details it appears
that 2 effects are superimposed: The orbital periodicity of half a day and the dataset
sampling period (2 hours).

PCCGO does not improve the accuracy in the along track direction. One of a
possible reason for that is the high level of uncertainty in the direction of the satellite
motion. Still it does not explain the reason for the systematic bias. Another probable
reason is the satellite clock uncertainty. In fact the along track error is directly
influenced by the true anomaly which is strongly depend on the speed of the satellite.
With a speed of almost 4 km/s, this means that a very small uncertainty will be
magnified in a large amount.

The cross track component as the along track has only a limited impact in the
pseudo range error budget. The error seems to be also corrected, with a remaining
residual bias of 1 to 2 meters. There is clearly a deterministic effect that still can be
eliminated in the navigation message. Maybe for that, it would be necessary either
to increase the update rate of the orbit parameters or to add additional parameters
to the model. A cost benefit analysis would help to take the right decision in order
to improve the performance of the overall system.

After investigations, it appears that PRN#4 is a block IIA satellite with operational
date Nov. 22, 1993 (one of the oldest operational satellite) using a rubidium clock
(switch from cesium to rubidium frequency standard from Sept. 13 to Sept. 21
1998).
Concerning PRN#7, it appears that this satellite belongs to block II-RM providing
civilian signals L1C and L2C with operational date: Mar. 24, 2008 this is one of
the newest satellite with a rubidium clock as master clock. These information can
be found under ftp://tycho.usno.navy.mil/pub/gps/gpsb2.txt

2.4.5.2. Projection in the line of sight

In order to analyze the impact of the orbit error in a pseudo range calculation, one
has to choose a position of a user (for example Oberpfaffenhofen in Germany with
the following longitude, latitude and height respectively 11.3000 48.1000 651.0000
m) and for this user, determine at each time the line of sight vector. We just have
to project the orbit error in the line of sight by applying a scalar product and we
analyze the result. We consider an elevation mask of 5 degrees.

Fig. 2.31 and Fig. 2.32 are to be compared with Fig. 2.27 and Fig. 2.28. It stresses the
fact that the sole reduction of the radial error by extracting the PCCGO provides
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Figure 2.29.: Orbit errors in body frame reference system for PRN 4 and PRN 7
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Figure 2.30.: Radial error for PRN#7 on Oct. 11 2009
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Figure 2.31.: Orbit error projected in the pseudo range before correction of the
PCCGO
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Figure 2.32.: Orbit error projected in the pseudo range after correction of the
PCCGO

a very satisfactory result. The Along track and the cross track components of the
orbit error are a lot reduced after projection in the line of site direction.
One could study these biases for different locations of user. The conclusion should
not change fundamentally because the principal contribution of the orbit error at
pseudo range level will still remain the radial one.
As a conclusion for this section, the PCCGO correction is necessary in order to
eliminate the major bias contributor to the orbit error. But the PCCGO is not the
only bias source, it appears that there are still deterministic errors that are although
not constant are still providing a deterministic pattern. This should be subject to
additional investigations and propositions for orbit model improvements should be
suggested. This activity is beyond the scope of this thesis.

2.5. Code Carrier Smoothing Algorithm

In the previous sections, only raw pseudo range observations of the L1 C/A code
signal were used. A GNSS receiver uses a DLL and a PLL to characterize the signal
channel and estimate both the magnitude and the rate of change of the pseudo
range. The accumulated Doppler constitute the phase observation of the signal
received and provide an additional information for the user. A phase expressed in
integer number of cycles and a fraction of a cycle is provided to the user. It appears
that the fraction part of the cycle is very precise and the range calculated using
this phase is very precise especially because the level of multipath and receiver noise
is approximately ten times smaller than the level of multipath and receiver noise
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experienced by the pseudo ranges generated by the code measurements.

The idea of using both Code and Phase measurements to improve precision and
accuracy was first suggested by Ronald Hatch in [Hat82].

The Hatch filter is recalled here:

Let us call ρ(k)
u,n and Φ(k)

u,n the code range (resp. phase range) of the signal coming

from satellite k to the user u at epoch n, and ρ̃
(k)
u,n−1 the smoothed code range at

epoch n − 1. The smoothed code range at epoch n is defined iterativelly using the
following equation:

ρ̃(k)
u,n = αρ(k)

u,n + (1 − α)
[
ρ̃

(k)
u,n−1 +

(
Φ(k)
u,n − Φ(k)

u,n−1

)]
(2.35)

with α = 1
τ

and with τ being the time constant of the filter. All components of the
equation are using the distance unit i.e. meter.

Let’s write the observation equations:

ρ(k)
u = r(k)

u + c
(
δtu − δt(k)

)
+ I(k)

u + T (k)
u + E (k)

u (2.36)

This equation is directly derived from 2.6.

And for the phase observation translated in a pseudo range unit we have:

Φ(k)
u = λφ(k)

u − λφ(k) + λN (k)
u + c

(
δtu − δt(k)

)
− I(k)

u + T (k)
u + η(k)

u (2.37)

with φ(k)
u being the phase of the signal at user level, φ(k)the phase of the signal while

leaving the transmitting antenna of the satellite, N (k)
u the integer number of cycles

from satellite to user (called the integer ambiguity), η(k)
u the phase multipath and

thermal receiver noise, λ the carrier wavelength and the other notations as defined
in sec. 2.2. The negative sign for the ionosphere delay in 2.37 is because the phase
is advanced when the signal crosses the ionosphere with the same magnitude as for
the code delay.

2.5.1. Continuous Form of the Hatch Filter Equation

The Hatch filter 2.35 can then be fed with the observation models described above:

Let us call ρ̃(k)
u (t) the smoothed code with the phase at the epoch t.
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The Hatch filter can be written as follows:

ρ̃(k)
u (t+ dt) = αρ(k)

u (t+ dt) + (1 − α)
[
ρ̃(k)
u (t) +

(
Φ(k)
u (t+ dt) − Φ(k)

u (t)
)]

(2.38)

We choose to represent the continuous form of the filter in order to use the theory
of stochastic differential equation. In that case α = dt

τh
with τh the time constant of

the Hatch filter.

Equation 2.38 can be rewritten as follows:

ρ̃(k)
u (t+ dt) =

dt

τh
ρ(k)
u (t+ dt)+

(
1 − dt

τh

) [
ρ̃(k)
u (t) +

(
Φ(k)
u (t+ dt) − Φ(k)

u (t)
)]

(2.39)

We assume that between t and t + dt, the ionosphere, troposphere delays and the
clock delays to GPS time (satellite and receiver) are constant.

The last term of equation 2.38 can be written in the following form:

Φ(k)
u (t+ dt) − Φ(k)

u (t) = λ
(
φ̇(k)
u − φ̇(k)

)
dt+ dηt (2.40)

With ηt being an auto-regressive first order process AR(1) taking into consideration
time correlations and that can be written as the solution of the following stochastic
differential equation in continuous form:

dηt = − 1

τη
ηtdt+ σηdWt (2.41)

This process is also called a centered Ornstein-Uhlenbeck (OU) process (with pa-
rameters 1/τη and ση) representing a more realistic noise model than the usual white
Gaussian Noise process. The parameters should be chosen such that they over-bound
the true receiver noise process.

We then replace this expression in 2.38 and obtain the following equation:

dρ̃(k)
u (t) =

[
1

τh

(
ρ(k)
u (t+ dt) − ρ̃(k)

u (t)
)

+ λ
(
φ̇(k)
u − φ̇(k)

)]
dt+ dηt (2.42)

All other terms are negligible.
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We rearrange equation 2.42

dρ̃(k)
u (t) =

1

τh

[(
ρ(k)
u (t+ dt) + λτh

(
φ̇(k)
u − φ̇(k)

))
− ρ̃(k)

u (t)
]
dt+ dηt (2.43)

In this expression we can recognize a variation of an Ornstein-Uhlenbeck (OU)
process with parameters

(
θ, µ, σρ̃

)
with

θ =
1

τh

µ =
(
ρ(k)
u (t+ dt) + λτh

(
φ̇(k)
u − φ̇(k)

))

σρ̃ = σ (η)

The particularity of this OU-process is that the mean is time dependent and the
driving noise is also an OU-process with parameters

(
1
τη
, 0, ση

)
.

We can also decompose ρ(k)
u (t+ dt) to let appear the timely varying values and the

noise with respect to the pseudo range at a prior time epoch t:

ρ(k)
u (t+ dt) = r(k)

u (t)+dr(k)
u (t)+c

(
δtu − δt(k)

)
(t)+I(k)

u (t)+T (k)
u (t)+E (k)

u (t) (2.44)

We use the property that the ionosphere and the troposphere delays do not change
during dt and the noise E (k)

u (t) is stationary which implies that the process is in-
variant with respect to a shift in time. These assumptions can be revisited during
the study if we consider ionosphere storms for example introducing strong temporal
gradients.

Finally we can simplify 2.44:

ρ(k)
u (t+ dt) = ρ̄(k)

u (t) + dr(k)
u (t) + E (k)

u (t) (2.45)

With ρ̄(k)
u (t) = r(k)

u (t) + c
(
δtu − δt(k)

)
(t) + I(k)

u (t) + T (k)
u (t)

We keep the “deterministic” part of the code observation in the first term of the
Hatch filter and the “noise” part is extracted from this first term.

We consider a more generalized form of the code noise E (k)
u (in the same way as for

the phase noise) and set E (k)
u (t) dt = dEt, where Et being an AR(1) process with

parameters
(

1
τE

, 0, σE
)
.

dEt = − 1

τE
Etdt+ σEdVt (2.46)
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We can rewrite the first order development of the Hatch filter equation as follows:

dρ̃(k)
u (t) =

1

τh

[(
ρ̄(k)
u (t) + dr(k)

u (t) + λτh
(
φ̇(k)
u − φ̇(k)

))
− ρ̃(k)

u (t)
]
dt+

1

τh
Etdt+dηt

(2.47)

with Etdt = −τEdEt + τEσEdVt

Finally we have:

dρ̃(k)
u (t) =

1

τh

[
µ(k)
u (t) − ρ̃(k)

u (t)
]
dt+

τE
τh

(−dEt + σEdVt) + dηt (2.48)

with µ(k)
u (t) =

(
ρ̄(k)
u (t) + dr(k)

u (t) + λτh
(
φ̇(k)
u − φ̇(k)

))

2.5.2. Resolution of the Hatch Filter Equation

We will treat the only case where the noise is Gaussian distributed.

In that case the solution of the Hatch filter equation is also Gaussian distributed
for any given epoch t. It is sufficient to calculate the mean and the variance of the
process for each epoch. We can calculate the correlation with respect to time of the
process solution of the stochastic differential equation (SDE).

ρ̃(k)
u (t) =

t
ˆ

0

dρ̃(k)
u (s) + ρ̃(k)

u (0) (2.49)

We apply the Itō Lemma (see [Oks07]) to the function f
(
ρ̃(k)
u (t) , t

)
= ρ̃(k)

u (t) e
t

τh

df
(
ρ̃(k)
u (t) , t

)
=

1

τh
e

t
τh ρ̃(k)

u (t) dt+ e
t

τh dρ̃(k)
u (t) (2.50)

df
(
ρ̃(k)
u (t) , t

)
=

1

τh
e

t
τh µ(k)

u (t) dt+ e
t

τh

[
τE
τh

(−dEt + σEdVt) + dηt

]
(2.51)

Let’s consider the initial time corresponding to the first observation of the satellite
(either when the satellite appears at the horizon or after recovering a satellite after
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a loss of lock of the signal). We also assume that between the initial time to the
actual epoch t there is no loss of signal lock.

the integral from 0 to t of df is:

ρ̃(k)
u (t) e

t
τh = ρ̃(k)

u (0)+

ˆ t

0

e
s

τh µ(k)
u (s)

ds

τh
+

ˆ t

0

e
s

τh

[
τE
τh

(−dEs + σEdVs) + dηs

]
(2.52)

We develop the expression for dEt and dηt.

we apply the Itō Lemma to the functions fE (Et, t) = Ete
t

τE and fη (ηt, t) = ηte
t

τη .

dfǫ (Et, t) =
1

τE
e

t
τE Etdt+ e

t
τE dEt (2.53)

We recall that dEt = − 1
τE

Etdt+ σEdVt

Equation 2.53 becomes:

dfE (Et, t) = σEe
t

τE dVt (2.54)

We can integrate from 0 to t and obtain:

Ete
t

τE = E0 +

ˆ t

0

σEe
s

τE dVt (2.55)

we divide the left and right side by e
t

τE and we finally obtain:

Et = E0e
−t
τE + σE

ˆ t

0

e
s−t
τE dVs (2.56)

(σE does not depend on s and therefore can be extracted from the integral).

Using the same method we obtain:

ηt = η0e
−t
τη + ση

ˆ t

0

e
s−t
τη dWs (2.57)

Let’s consider the initial time corresponding to the first observation of the satellite
(either when the satellite appears at the horizon or after recovering from a loss of
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lock of the signal). We also assume that between the initial time to the actual epoch
t there is no loss of signal lock.

the integral from 0 to t of df is:

ρ̃(k)
u (t) e

t
τh = ρ̃(k)

u (0) +

ˆ t

0

e
s

τh µ(k)
u (s)

ds

τh
+

ˆ t

0

e
s

τh

[
τE
τh

(−dEs + σEdVs) + dηs

]

(2.58)

The last integral term can be developed:

Let’s apply the integration by parts formula:

ˆ t

0

e
s

τh

[
τE
τh

(−dEs + σEdVs) + dηs

]

︸ ︷︷ ︸
C

=
[
e

s
τh

[
τE
τh

(−Es + σEVs) + η
]]t

0︸ ︷︷ ︸
A

−

−
ˆ t

0

e
s

τh

[
τE
τh

(−Es + σEVs) + ηs

]
ds

τh︸ ︷︷ ︸
B

(2.59)

We replace Et and ηt by their expressions (Equations 2.56 and 2.57) in A and B:

A = e
t

τh

[
τE
τh

(−Et + σEVt) + ηt

]
+
τE
τh

E0 − η0 (2.60)

A = e
t

τh

[
τE
τh

(
−E0e

−t
τE − σE

ˆ t

0

e
s−t
τE dVs + σEVt

)
+ η0e

−t
τη + ση

ˆ t

0

e
s−t
τη dWs

]
+
τE
τh

E0−η0

(2.61)

After simplification we obtain:

A =
τE
τh

E0

(
1 − e

t
τh

− t
τE

)
−η0

(
1 − e

t
τh

− t
τη

)
+
τE
τh
σEe

t
τh

(
Vt −

ˆ t

0

e
s−t
τE dVs

)
+σηe

t
τh

ˆ t

0

e
s−t
τη dWs

(2.62)

or:

A =
τE
τh

E0

(
1 − e

− t
τ⋆

E

)
−η0

(
1 − e

− t
τ⋆

η

)
+
τE
τh
σEe

t
τh

(
Vt −

ˆ t

0

e
s−t
τE dVs

)
+σηe

t
τh

ˆ t

0

e
s−t
τη dWs
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(2.63)

with τ ⋆E = τhτE

τh−τE

and τ ⋆η = τhτη

τh−τη

We can simplify Vt−
´ t

0
e

s−t
τE dVs, indeed by applying the integration by parts formula

to the second term, we have:

Vt −
ˆ t

0

e
s−t
τE dVs = Vt −

[
e
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τE Vs

]t

0
+

1

τE

ˆ t

0
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τE Vsds
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+
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τE
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0
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1

τE
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e
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τE Vsds

=
1

τE
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0

e
s−t
τE Vsds (2.64)

We finally express A as follows:

A =
τE
τh

E0

(
1 − e

− t
τ⋆

E

)
− η0

(
1 − e

− t
τ⋆

η

)
+
σE
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e
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0

e
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τE Vsds+σηe

t
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0

e
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τη dWs

(2.65)

We are going now to develop the expression of B:

B =

ˆ t

0

e
s
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(
τE
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(2.66)

B = −E0
τE
τ 2
h
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τ⋆

E ds+
σE
τ 2
h
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B = −τE
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τE

τh − τE
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τ⋆
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)
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σE
τ 2
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by combining equations 2.65 and 2.68, we obtain (C = A− B):

C = E0
τE

τh − τE

(
1 − e
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τ⋆

E

)
− η0

τh
τh − τη

(
1 − e
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τ⋆
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+
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e
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)
(2.69)

we divide each side of equation 2.58 by e
−t
τh and obtain:

ρ̃(k)
u (t) = ρ̃(k)

u (0) e
−t
τh +

ˆ t

0

e
s−t
τh µ(k)

u (s)
ds
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+ Ce
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τh (2.70)

with
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We assume that all random variables are over-bounded by Gaussian distributions
and ρ̃(k)

u (0) , E0, η0, dVt and dWt for all t are independent.

As a consequence, ρ̃(k)
u (t) is Gaussian distributed for each epoch t and therefore

it is sufficient to determine its expectation and variance to determine the whole
distribution. We want to estimate E

[
ρ̃(k)
u (t)

]
and V

[
ρ̃(k)
u (t)

]
for any t.

E
[
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u (t)
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]
e

−t
τh +
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with
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The variance is by definition V
[
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u (t)
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(2.74)

We apply an integration by parts for the terms in dWs and dWu in order to let
appear classical Riemann integrals.

We have
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So we have
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(2.76)

And after simplification of the last term we obtain:
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Taking into account the fact that the random variables are independent, a cross
product of two different random variables or integral of random variable will have

its expectation being zero. In fact this assumption is for ˇ̃ρ
(k)

u (0) and for Ě0 not true
because the filter take the code measurements as a starting point. In fact these
variable are not only dependent, they are taken as the same. Let’s consider for more
generality, that they are processed independently.
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See in Appendix the analytical form of E [P 2
t ].

Finally we can express the variance of the Hatch filter with respect to the param-
eters of the problem. As this expression is very long, we don’t rewrite it here (See
Appendix C)

2.6. Conclusion

This chapter describes the characterization of the individual errors for stand alone
global positioning services and their impact in positioning performances. The ma-
jor contribution made is the introduction of the notion of IPRE and its statistical
analysis when used for single constellation GPS [BPH05a] and dual constellation
using GPS and Galileo [BHS05a, BHS05b]. This notion is going to be applied for
integrity monitoring algorithm developed in the next chapter and for the differential
correction modes using augmentation to GNSS constellation.
Additionally we developed a closed form of the Hatch filter performance function
of the time constant of the filter, the variance of the code and phase multipath
and noise and the time using the general theory of stochastic differential equations
applied to Gaussian overbounds of the errors.
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3. Investigation of Autonomous
Fault Detection

3.1. Introduction

The IPRE (Instantaneous Pseudo Range Error) provides not only a level of instanta-
neous error but also a "look up table" from which a co-variance matrix of satellites on
visibility can be extracted. The method will be detailed later in this chapter. This
means that at each time step, the user is able to calculate an empirical co-variance
matrix of the visible satellites based on one year measurements from an IGS station.
The generated look up table is defined regionally (around the station used for data
collection). This means that the satellite configuration (which repeats itself almost
every day for GPS) is assumed not to change within a radius of approximately 50
km around the co-variance measurement site. We will see in the next section why
it is so important to be inside this area. A first part of this chapter will consist of
presenting the standard Receiver Autonomous Integrity Monitoring (RAIM) algo-
rithm and the assumptions considered then a second part will consist of modeling
the co-variance matrix of pseudo range noise for a given location. A second part
will be dedicated to the description of the RAIM algorithms used in this chapter
with a special emphasize on the integration of a generalized noise model. In a third
part, we will present the simulation test cases that have been chosen. In a last part,
we will present the results and we will draw some conclusions of the impact of a
GPS/Galileo constellation on RAIM availability and performances.

3.2. RAIM algorithm

As a minimum configuration of a receiver for aviation, the GNSS receiver should
provide a standalone single frequency GPS RAIM algorithm and a good description
of this algorithm can be found in [SC101]. A summary of the description is given
hereafter (see [CCH+06] for more details).
There are 3 different functions that are expected from a RAIM algorithm: to detect
possible faulty pseudo ranges, to exclude the faulty pseudo ranges and to provide a
fault free confidence measure in the position domain to fulfill some alert limit and
integrity risk requirements. We will focus mainly on the fault free confidence measure
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function of the RAIM algorithm in this chapter based on chi-squared distribution
technique as developed in[WE95] [BC98].

The standard RAIM algorithm uses an over-determined solution (more than 4 mea-
surements) to perform a self-consistency check on the satellite measurements.

Starting with the linearized GNSS measurement equation as described in sec. 2.2:

ρ = Gx+ ∆ρ (3.1)

Where x is the four (or five, when using Galileo
(
x1 x2 x3 δtGPS δtGal

)T
with

(
x1 x2 x3

)
being the spatial coordinate of the user, δtGPS being the receiver

bias to the GPS system time and δtGal being the receiver bias to the Galileo system
time). ∆ρ is the Gaussian overbound of the pseudo range error vector and ρ is the
vector of pseudo ranges.

The vector of observations can be described as the sum of a first term function of
the unknown position and receiver clock delay and a residual error of observations.

A weighted least square estimate of the unknown vector is expressed as follows:

x̂ =
(
GTWG

)−1
GTWρ = Sρ (3.2)

W = C−1 is the weighting matrix with C being the covariance matrix of the pseudo-
range error.

ρ̂ = Gx̂ (3.3)

The position error made when using the least squares algorithm is given by

eWGS84 = ∆x = x̂− x

eWGS84 = Sρ− x

eWGS84 = S(Gx+ ∆ρ) − x

eWGS84 = S∆ρ

Because x is given in the WGS84 ECEF referential, the error is defined in this
referential too. And since it is more convenient to work in the user local coordinate

76



3.2 RAIM algorithm

system (East North Up) (ENU) a transformation (rotation) TENU
WGS84 needs to be

applied.

eENU = TENU
WGS84eWGS84

Thus

eENU = TENU
WGS84S∆ρ

eENU = M∆ρ (3.4)

With M = TENU
WGS84S. This expression allows us to define both ehENU the horizontal

error vector and evENU the vertical error vector such that

ehENU =


 eENU(1)

eENU(2)




And

evENU = eENU(3)

Moreover it comes,

V [eENU ] = TENU
WGS84SCSTTENUT

WGS84

And we note

V [eENU ] =




σ2
eE

σeEeN
σeEeU

σeEedt

σeN eE
σ2
eN

σeN eU
σeN edt

σeU eE
σeUeN

σ2
eU

σeUedt

σedteE
σedteN

σedteU
σ2
edt




Since the measurement noise covariance matrix is considered to be general, we can no
longer separate the expected positioning errors into dilution of precision parameters
and UERE. We choose to express new confidence parameters,

• the expected global accuracy is:
√
σ2
eE

+ σ2
eN

+ σ2
eU

+ σ2
edt

• the expected position accuracy is:
√
σ2
eE

+ σ2
eN

+ σ2
eU

• the expected horizontal accuracy is:
√
σ2
eE

+ σ2
eN

• the expected vertical accuracy is:

σeU

• the expected time accuracy is:

σedt
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3.2.1. Generalized single fault detection [Gas05]

One of the most important RAIM function is to be able to detect faulty satellites
using self-consistency check of visible pseudo ranges. For that purpose, we will use,
like in the RAIM method developed in ([CCH+06] pp. 346-353), the least squared
residual as a test statistics.

the least square residuals can be expressed by:

w = ρ− ρ̂ = ρ− Sρ = [In − S] ρ = Qρ (3.5)

When no faults are observed the over-bounded Gaussian distribution of each element
of w is centered around zero. A fault in one satellite is modeled as a bias in the
satellite range.

replacing ρ by its expression in equation 3.1 we have:

w = Q∆ρ (3.6)

so we have:

w = Qρ = Q∆ρ (3.7)

we then proceed with a parity transformation of the observation vector. This trans-
formation can be obtained using a QR decomposition of the geometry matrix G.
The matrix obtained by this transformation P called the parity transformation ma-
trix is a (n − 4) × n matrix and we set p = Pρ. The rows of P has the following
properties:

• they are mutually orthogonal

• they are of magnitude one

• they are mutually orthogonal to the column of G

So with these properties, if ∆ρ has independent random elements and are normally
distributed, then:

p = Pw (3.8)

p = P∆ρ (3.9)

78



3.2 RAIM algorithm

pTp = wTw (3.10)

For error detection, it is easier to work with p than with w. But working with
p reduces the dimension of the tests but necessitate to make a QR decomposition
which can be for large number of visible satellites intensive processing. Working
with w has the disadvantage of having measurements in it which makes the error
detection not straight forward but the processing time is reduced.

It has been demonstrated that if C = σ2I the square norm of the residuals follows a
χ2 law with N −4 degrees of freedom ([Bro92]). The problem in our case is that the
diagonal elements of the covariance matrix of noise are different for each satellite
and that the range errors are correlated. Thus the assumption that ‖w‖2 is following
a χ2 law is no longer true.

But, since the covariance matrix C is by definition definite positive, we can do a
Cholesky decomposition of it. So it exists one unique non-singular lower triangular
matrix A such that:

C = AAT

According to this property, we can define a new vector of measurement noise, ε′,
following a normal N (0, IN) law such that ε follows the same law as Aε′. Moreover
it comes:

ρ = Gx+ ∆ρ

ρ = Gx+ A∆ρ′

A−1ρ = A−1Gx+ ∆ρ′

ρ′ = G′x+ ∆ρ′

From this new measurement model, where V [∆ρ′] = I we can form new LS residuals,

w′ = ρ′ − ρ̂′

w′ = A−1w

Thanks to the definition of ∆ρ′, the square norm of the random variable w′ is
following a χ2 distribution with N −4 degrees of freedom. We are now able to select
the error detection threshold Td by inverting the cumulative density function (CDF)
of ‖w′‖2.
This transformation is my personal contribution and the adaptations of classical
methods of RAIM in the rest of this chapter is also my personal contribution.
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3.2.2. Protection levels (see definition in chapter 1)

To compute the protection levels we have to see first how an error affects the LS
residuals vector w′,

w′ = A−1Q∆ρ

‖w′‖ = ∆ρTQTA−TA−1Q∆ρ

‖w′‖ = ∆ρTQw′∆ρ

α

β

East

North "eigen" North

"eigen" East

eE

eN

ēE

ēN

Ellipse Ek

kσ2
1eN

kσ2
1eN

ehENU

ehENU

True user position

Figure 3.1.: Failure impact on the horizontal user position

A faulty satellite is characterized by a bias b in its pseudo range. We note E[∆ρ] = θ
the expectation value of the random pseudo-range noise vector. If there is a failure
in one1 of the visible satellites it comes:

θ =




0
...

b
...

0




1We only consider one satellite failure in our analysis, this hypothesis is of course a bit restrictive
because in real operational conditions the environment may induce several biases on measure-
ments.
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with b in the ith satellite. Thus

‖w′‖2 = Qw′(i, i)b2

b is set as an unknown. A test based on assumed integrity risk and continuity re-
quirements will define the minimum detectable bias that fulfill these requirements
and this is the basis for the protection level estimation.

3.2.3. Horizontal Protection Level

If we consider the horizontal solution error ehENU , it can be shown that (equation
3.4)

‖ehENU‖2 = (M(1, i)2 + M(2, i)2)b2

Thus

‖ehENU‖2 =
M(1, i)2 + M(2, i)2

Qw′(i, i)
‖w′‖2

where M = TENU
WGS84S The quantity

√
M(1,i)2+M(2,i)2

Qw′ (i,i)
is called the horizontal slope (H-

Slope) and the i index tells us that it is dependent on the satellite we have supposed
to fail. So, with the no noise assumption (ε = θ) the horizontal value that we can
protect is

HPL = max
i=1...N

HSlope(i) × Td

In this equation Td represent the detection threshold for the test statistic: If the
test statistic remains below this threshold, it means that no error is detected and
we assume that there is no detectable fault. If the test statistic is larger than this
threshold, then we declare that there is a faulty satellite in the set of visible ones.
This detection threshold is determined using the probability of false alarm that the
system is required not to overcome (requirement for a given operation).

But in reality the noise will spread the horizontal solution around the previous
value. This spreading effect is represented in Fig. 3.1 by the ellipse. The definition
of the HPL induces that there is a missed alert when the horizontal solution error
is lower than the HPL value because of a too noisy environment. Let Pmd denote
this probability of missed detection.

Pmd = 1 − p

Where p is the probability to be inside the ellipse. Thus the value of HPL should
be set to the distance between the user true position and the furthest point from
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Figure 3.2.: Horizontal Protection Level practical value [You01]

the origin inside the ellipse. This means that the HPL should theoretically be the
radius of the circle centered at the true position which is tangent to the ellipse.
Analytically, this value is complicated to obtain and we use the estimation proposed
in [You01].

The idea is to be a little bit more conservative than by considering the tangent to
the ellipse and take, instead of the furthest point inside the ellipse, the furthest
point of the smallest rectangle that contains the noise ellipse. This rectangle is
represented in Fig. 3.2. The value of HPL is found by a vector decomposition of the
OM1 distance (OM1 = ‖−−−→

OM1‖).
−−−→
OM1 =

−→
OC +

−→
CA+

−−→
AM1 (3.11)

Thus,

‖OM1‖2 = ‖−→
OC‖ + ‖−→

CA‖ + . . .

. . . +‖−−→
AM1‖ + 2

−→
OC.

−→
CA+ . . .

. . . +2
−→
OC

−−→
AM1 + 2

−→
CA

−−→
AM1

With (see Fig. 3.2):
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3.2 RAIM algorithm

• OC = ARP

• CA = kσ1eN

• AM1 = kσ1ee

•
−→
OC · −→

CA = OC · CA sin(β − α)

•
−→
OC · −−→

AM1 = OC · AM1 cos(β − α)

•
−→
CA · −−→

AM1 = 0

So,

HPL =

√√√√√√√√

ARP 2 + k2σ2
1ee

+ k2σ2
1eN

+ . . .

. . .+ 2kARP [σ1eN
| sin(β − α)| + . . .

· · · + σ1ee | cos(β − α)|]

With,

k =
√

−2 log(1 − p)

3.2.4. Vertical Protection Level

In similar way we can define a V Slope linking the test statistic to the norm of the
vertical solution error,

‖evENU‖ = V Slope(i)‖wn‖

Where V Slope(i) =
√

(M(3,i)2)(N−4)
Qw′ (i,i)

. The upper-bound value for ‖evENU‖ is,

‖evENU‖ ≤ max
i=1...N

V Slope(i)

The VPL value in a no noise environment can be obtained thanks to,

V PL = V Slopemax × Td

In considering the noise, the VPL value is much easier to evaluate than the HPL
because the vertical error is one-dimensional Gaussian variable.

evENU ∼ N (evENU , σ
2
eU

)

In our case we fix

evENU = V Slopemax × Td (3.12)
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Thus the expression of VPL can be defined by

V PL = V Slopemax × Td + α(Pmd) × σeU
(3.13)

where α(p) represents the threshold for which we have all realization of a N (0, 1)
law below this threshold with a probability p. Thus we have,

p = Pr(X ≤ α) =

ˆ α

∞
pdf(x)dx (3.14)

where pdf(x) is the probability density function for a N (0, 1) law:

pdf(x) =
1√
2π
e− 1

2
x2

(3.15)

Thus,

p =

ˆ α

∞

1√
2π
e− 1

2
x2

dx (3.16)

The probability of missed detection is the probability to have the VPL value below
the vertical error. This means that,

p = 1 − Pmd

We have,

Pmd = 1 −
ˆ α

∞

1√
2π
e− 1

2
x2

dx (3.17)

Pmd =
1

2
−
ˆ α

0

1√
2π
e− 1

2
x2

dx (3.18)

1 − 2Pmd = 2

ˆ α

0

1√
2π
e− 1

2
x2

dx (3.19)

1 − 2Pmd = erf(
α√
2

) (3.20)

where erf(u) = 2√
π

´ u

0
e−t2dt. Hence we found the expression of α(Pmd):

α(Pmd) =
√

2erf−1(1 − 2Pmd) (3.21)

And finally,

V PL = V Slopemax × Td + . . .

. . .+
√

2erf−1(1 − 2Pmd) × σeU

THE REST OF THIS CHAPTER IS A PERSONAL CONTRIBUTION
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3.3 Regional covariance matrix of pseudo range errors

3.3. Regional covariance matrix of pseudo range

errors

The model of covariance matrix usually taken as input for the majority of RAIM
algorithms is a simple but usually said representative model of pseudo range error.
As given in the introduction, one of the aims of this work is to make this covariance
matrix as much representative as we can of the real pseudo range noise faced by a
single frequency receiver. We do not only take into account the variations according
to the elevation angle but also the cross correlations of the pseudo range errors de-
rived from two satellites with different azimuth and elevation angles. In this section,
we will first introduce the error measurements using the concept of IPRE (Instanta-
neous Pseudo Range Error) developed in [BPH05b] and then the practical method
used to develop the regional covariance matrix of pseudo range noise. We will end
this section by giving an Example of covariance matrix calculated at a given epoch
at Oberpfaffenhofen near Munich (Germany).

3.3.1. The statistical analysis

The results from one year measurements of the IPRE vs. time (see precedent chapter
for the expression of the IPRE) of all visible satellites for each time step is the basis
to generate the covariance matrix of errors. We have a statistical process (IPRE)
depending on three variables: the epoch, the elevation angle (El) and the azimuth
(Az). An approach per class is adopted here and all visible satellites are considered.
The idea here is to use all available measurements from all satellites and to distribute
these measurements into 3 D classes (IPRE, El, Az). In order to get a representative
statistics, we merge all observations at all epochs and for all satellites together. This
means that we consider classes of elevation angle, classes of azimuth angle and classes
of IPRE. In a first step we distribute all the measurement samples into classes.

Variables Lower bound Upper bound Class width

IPRE −15 m 15 m 0.25 m

Elevation 5° 90° 5°

Azimuth 0° 360° 10°

Table 3.1.: Field of variables

We want to generate the covariance matrix of the variable (IPRE |El, Az ): The
IPRE given the elevation angle and the azimuth. The covariance study will be done
with respect to (El, Az). The covariance is an inter (El, Az) class covariance with
respect to the IPRE variable (see Tab. 3.1 for the range of the variable classes).
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nijk is the number of points belonging to the class i of elevation angle, the class j of
azimuth and the class k of IPRE.

Let’s take two satellites on visibility A and B whose elevation and azimuth classes
are (i, j) and (i′, j′) respectively, the covariance between these satellite errors is
calculated as follows:

Cov (A,B) =
1

Niji′j′

∑

k

√
nijkni′j′k

(
IPREk−

IPREij

)(
IPREk − IPREi′j′

)
(3.22)

with

Niji′j′ =
∑

k

√
nijkni′j′k

IPREij =
1

Nij−

∑

k

nijkIPREk

Nij− =
∑

k

nijk

This approach differs from the classical covariance of time series variables. The
reason for that is that considering time series rather than the approach per IPRE
class would have induced a huge period of measurement to have a representative
statistics. This expression provides a 4D look up table (For each 2D point in the
(El, Az) space, the covariance matrix is the covariance of the IPRE of that point
with respect to the IPRE of any other point (El, Az) point in the (El, Az) space)
that will be used to constitute the covariance matrix of observations for each epoch.

Fig. 3.3 is a graphical representation of the 4D look up table for a given epoch. in z
axis is the value of the covariance term of a considered (Elevation, Azimuth) repre-
sented by a the red arrow with respect to any other (El, Az) point in the space. The
blue arrows represent for a given epoch the location of the other visible satellites for
a given epoch and the magnitude in the z axis at the blue arrow location represent
the covariance term between the satellite located at this location with respect to the
satellite located at the red arrow level. This look up table is available for a region
around the considered IGS station for which the constellation of satellites at every
epoch is considered the same. This "regional" covariance matrix of noise observ-
ables depends also on the correction algorithms considered in the model of single
frequency receiver. In our case we considered the Klobuchar model for ionosphere
delay correction and the MOPS model for the troposphere delay correction.
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3.4. Simulation scenarios

The error model has been generated for a single frequency absolute positioning
receiver using the MOPS tropospheric correction model at Oberpfaffenhofen (near
Munich) during the year 2003, no filtering of pseudo range has been made. We
define 3 test cases used as input of RAIM algorithm:

• TC1=Generalized covariance matrix with measured variances and covariances

• TC2=Diagonal covariance matrix with measured variances for all satellites in
view

• TC3=Diagonal covariance matrix with constant variance (maximal value of
all satellites in view)

We use 2 constellation scenarios:

• C1=GPS alone

• C2=GPS+ Virtual Galileo Constellation

The Virtual Galileo Constellation (VGC) is adopted in our study. It consists of the
GPS constellation observed at two different epochs (offset of 2 hours) [Fen05] in
order to easily simulate an additional constellation for which the look up table of
the regional covariance matrix would apply (see Fig. 3.4). The aim of this scenario
is to see the impact of increasing the number of satellites with respect to the RAIM
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Figure 3.4.: Virtual Galileo Constellation [Fen05]

performance.

3.5. Results of the simulations

In this section, we are going to comment the HPL and VPL obtained for different
test cases and different constellations configurations as defined above. We considered
one day of measurements with a sampling period of 1 minute. A RAIM simulator
(RaimSim) developed by DLR under a C/C++ environment has been used to pro-
cess the data. The graphics are obtained using MATLAB.

Fig. 3.5 and Fig. 3.6 shows clearly an improvement of the protection levels. The
Vertical component is of particular interest since this parameter is generally the
most critical one because the air navigation requirements from APV1 to CAT. III
(as specified in Tab. 1.1) are always considering very stringent vertical alarm limit.

Fig. 3.7 shows for a combined GPS+Galileo constellation that the improvement from
TC2 to TC1 is not so obvious. The high level of fluctuations for TC1 is showing
a limit of our model. A test using a different time offset (between GPS and VGC)
should be done to state whether the covariance matrix or the geometry matrix are
badly conditioned.

Fig. 3.8 shows the same type of behavior as previously. Nevertheless the use of a
diagonal matrix with an elevation dependency is giving good results in comparison
with TC3 which is obviously a too conservative case.
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Figure 3.5.: HPL for all test cases and using GPS only

In Fig. 3.9 and Fig. 3.10 we can observe the impact of augmenting the number of
visible satellites in the protection levels. As expected C2 gives better results for
both HPL and VPL. The C2 curve is shifted with comparison to the C1 curve, this
was done to take into account the 2 hours offset between GPS and VGC.

3.6. Discussion of the Results

The results obtained are encouraging in the sense that a better knowledge of the error
behavior of pseudo range observables implies a better estimation of the protection
levels. This better knowledge of the error is a result of a measurement campaign of
the covariance matrix during one year. In the actual form of our 4D look up table,
The availability of this matrix cannot exceed a certain area. That’s why we choose
to denominate it as a "regional" covariance matrix. By taking a dual constellation
GPS and Galileo, and considering that Galileo observables are facing the same level
of pseudo range noise, the protection levels are decreasing just by considering more
satellites on visibility. The hypotheses considering only one faulty satellite could be
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Figure 3.6.: VPL for all test cases and using GPS only

discussed when 2 constellations are taken into account. In fact the probability of
a multiple failure is higher and thus should be considered in the future. It would
be interesting to consider a lower level of noise for Galileo as specified in [Zap02].
In that case, a combined covariance matrix of noise has to be set. In any case
the generalized RAIM algorithms using a Cholesky decomposition of the covariance
matrix is a promising technique and is ready to take the advantages of using the
Galileo constellation.

3.7. Conclusion and major contribution

In this chapter, we introduced the impact of a better knowledge of the range er-
ror behavior (using a regional generalized covariance matrix approach based on the
IPRE concept described in the first chapter) with respect to residual based RAIM
performances. This constitutes the major contribution made with respect to a resid-
ual based RAIM approach and the major results have been summarized in [BG05].
An additional investigation was made for RAIM when the pseudo ranges are deferen-
tially corrected using local reference station [NBHP07]. This approach is generalized
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Figure 3.7.: HPL for all test cases and using GPS + VGC

and detailed in the next chapter.
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Figure 3.8.: VPL for all test cases and using GPS + VGC
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4. GNSS Positioning Integrity using
Augmentations

4.1. Introduction

The IPRE concept is extended to include also differential correction methods for
both SBAS and GBAS. In this chapter we consider augmentation systems to the nav-
igation satellite systems whose main objective is to improve accuracy and integrity
of the pseudo-ranging performance. In this chapter, the IPRE concept developed
in chapter 2 is adapted to the SBAS-corrected pseudo ranges and the performance
are evaluated. In a second part of this chapter, GBAS based on dual constellation
dual frequency scenario is investigated and the performances are assessed. And in a
third part, an ionosphere gradient monitor is investigated in depth with a proposal
for an architecture.

4.2. SBAS Performance Assessment using IPRE

4.2.1. Introduction

European GALILEO, the modernized GPS or advanced augmentation systems like
the American WAAS or the European EGNOS announces the establishment of new
applications and services with a higher expectations for positioning accuracy, in-
tegrity and continuity. For special applications, e.g. precision approaches in avi-
ation, very stringent requirements on the system performance are already defined,
which can be reached only by the complementary utilization of the above mentioned
systems. For the establishment of a suitable environment to combine monitoring as-
pects of different systems the DLR Institute of Communications and Navigation
has developed in cooperation with the German aerospace company Jena-Optronik
GmbH the so called Experimentation and Verification Network (EVNet) over the
last three years.
This section presents a performance processing facility using a Network Integrity
Monitoring Platform applied to EGNOS.

This section is organized as follows:
In the first part a description of the EVNet will be done followed by the description
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of the Network Integrity Monitoring Platform. In a third part we will describe
the algorithms applied for our study: A first case without EGNOS by using RAIM
algorithms and a second case using EGNOS.
We will then present the results obtained and we will conclude with the performances
obtained and about the applicability of this Network Integrity Monitoring Platform
for Galileo.

4.2.2. Experimentation and Verification Network (EVnet)

The EVNet is a combined system of hardware and software components to acquire,
monitor, distribute and archive GNSS raw data as well as additional information like
e.g. meteorological data via internet connections. Besides, this network offers the
ability to test and tune new processing algorithms and methods under consideration
of specific user and application oriented requirements (e.g. error bounds, integrity
level).

The network consists of the following four main elements:

• A set of at maximum 50 Sensor Stations at different locations worldwide;

• A Central Processing and Control Facility (CPCF) act as heart of the whole
system facility, controlled by different administrator and operator authorities
and responsible for all communications aspects between the involved compo-
nents;

• An External Processing Facilities on different locations, which can be inte-
grated to distribute the computing power of high computing applications and
that offer the opportunity for external partners of the EVnet to bring in own
processing software products;

• A set of user components (Customers or Clients) which can get an access on
data and products broadcasted by the CPCF.

As shown in Fig. 4.1 data streams coming from the sensor stations at first pass the
Central Processing and Control Facility (CPCF). There a broadcasting system is
running that acts as a device to receive and distribute data streams to different
clients like "normal" user components or external processing facilities. The broad-
caster software is an enhanced and adapted version of the ICECAST streamer (ICE-
CAST is a well known free streaming server for the distribution of audio streams).
Depending on the user requirements these streams can be processed to higher level
products and disseminated to the clients using the same common distribution mech-
anism, too. Therefore internal (CPCF Processing Center) or external (External Pro-
cessing Facilities) computing power can be used. The administration of all services
is controlled by a combined administrator and operator tool.

The operating tool offers the access to real-time data streams on a per-sensor level.
In addition to this, the operator can set permission rights for all data streams
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Figure 4.1.: EVnet main components

coming from the sensors or from the processing facilities on a per-user level. To
automatically store real-time data streams or specific subsets of the data an archive
with a capacity of nearly 3 TByte is implemented. This archive also provides a
WWW front-end which allows the download of archived data via a conventional
browser. A more detailed description of the architecture and the technical realization
of each of the components can be found in [NSKH04]. To support the performance
analysis described in this paper and to provide required monitoring architecture for
the distribution of GNSS as well as augmented data, the EVnet was tuned to be
operated for the reception, processing, and distribution of data coming from spatial
distributed combined GPS/EGNOS receivers on the following 4 locations (see also
Fig. 4.2):

Table 4.1.: Used EVnet stations (rough coordinates)

Location Country Latitude Longitude

Neustrelitz North-Germany 53o 13o

Munich South-Germany 48o 11o

Toulouse France 44o 1o

Kiruna Sweden 68o 20o
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Figure 4.2.: Station Network

Each of these sensor stations is equipped with a Javad EGGD two frequency high
rate GPS/GLONASS receiver located as mentioned in Tab. 4.1. Additional equip-
ment comprises environmental sensors to acquire meteorological data and IT com-
ponents like e.g. Server-PC, UPS (unbreakable power supply), and Console Server.
During the measurement campaign the EVnet kernel station software at each sensor
location permanently sent data in the following format to the CPCF see Tab. 4.2.

4.2.3. The Network Integrity Monitoring Platform

The Network Integrity Monitoring Platform (NIMP) allowing real time monitoring
in a near future (used in a post processing mode for the moment) is allocated to an
external processing facility as shown in Fig. 4.3.

The tasks fulfilled by this Platform are summarized in Fig. 4.4. The red arrows
represent the outputs corresponding to final or intermediate results. The black
arrows represent the logical link between modules of the NIMP or the input required
by the NIMP. Let’s describe each part:
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Table 4.2.: Supported data at each sensor level

Type of data Description Data Rate

GPS raw data CA-code raw pseudo-range [m] 50 Hz

P1-code raw pseudo-range [m]

P2-code raw pseudo-range [m]

L1 raw carrier phase [cyc]

L2 raw carrier phase [cyc]

L1 raw Doppler [cyc/s]

L2 raw Doppler [cyc/s]

CA signal to noise ratio [dB]

L1 signal to noise ratio [dB]

L2 signal to noise ratio [dB]

CA amplitude [none]

L1 amplitude [none]

L2 amplitude [none]

EGNOS data EGNOS correction data 1 Hz

4.2.3.1. Outputs of the NIMP

The main outputs are the fault free protection levels and their relation with an
application requirements. These are essentially provided under the form of Stanford
diagrams (developed by the GPS Lab of Stanford University and described further
in this chapter see caption of Fig. 4.6) and also but not represented here as time
series. Then some intermediate outputs could also be provided like: Time series
of pseudo range errors at each station and for a given mode of processing (single
frequency, dual frequency, with Satellite Based Augmentation System corrections,
with Ground Based Augmentation System using Carrier Smoothing or -Real Time
Kinematics). These time series of pseudo range errors could be used outside the
NIMP for monitoring the quality of measurements over time or simply to estimate
the accuracy of a given mode. Another intermediate output is a 4D Look Up Table
containing a 2 by 2 covariance terms (this will be developed later in this chapter)
for which a graphical representation is the so called covariance space of pseudo
range error generated by one satellite. Another one represents the so called regional
covariance matrix of pseudo range error that can be generated for each epoch for a
given constellation geometry (elevation and azimuth of the satellites on visibility).
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Figure 4.3.: EVNet with The Network Integrity Monitoring Platform

4.2.3.2. Inputs of the NIMP

From the EVNet we are able to access in a near real time as written above the
observations (code and phase) for each monitored station. With the navigation
files and the geostationary satellite messages for SBAS, they represent the necessary
inputs for the platform.

4.2.3.3. The IPRE module

This module is the implementation of the algorithms described in sec. 2.2.

4.2.3.4. The statistic analysis part (modules: IPRED, 4DLUT and RCMPRE)

The results from one week measurements of the IPRE vs. time of all visible satellites
for each time step is stored in an IPRE Database (IPRED) and is used as the basis
to generate the covariance matrix of error.

The IPRE database is then used to build up a 4D look up table (4DLUT) that will
be used to constitute the Regional Covariance Matrix of Pseudo Range Error (RCM-
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Figure 4.4.: The Network Integrity Monitoring Platform

PRE) for each epoch and for each given set of satellites on visibility as described in
sec. 3.3.1.

Fig. 4.5 represents in z axis the value of the covariance term of a the pseudo range
error of visible satellites (black diamonds) in the covariance space generated by a
specific satellite (red diamond). This look up table is available for a region around
the considered EVNet station for which the constellation of satellites at every epoch
is considered the same. This "regional" covariance matrix of noise observables de-
pends also on the correction algorithms considered in the model of single frequency
receiver. In our case we considered the Klobuchar model for ionosphere delay cor-
rection and the MOPS model (see [RTC06]) for the troposphere delay correction for
the case without EGNOS.

4.2.3.5. The XPL module

The XPL module performs VPL and HPL for any given mode of operation. The
protection levels considered are generally the so-called “fault free” protection levels
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Figure 4.5.: Example of a covariance space surface generated by one satellite for a
given epoch using IPRE with EGNOS corrections at Oberpfaffenhofen

but will be extended to protection levels for fault detection and exclusion using
RAIM. Still the algorithm for RAIM is presented in detail in the following section.

4.2.4. Description of the EGNOS Protection Levels

Satellite based augmentation system (SBAS) like EGNOS, WAAS, and MSAS en-
hance GPS by providing differential correction messages and additional ranging
signals. Similar to the US system WAAS EGNOS employs geostationary satellites
(GEO) to broadcast its service messages by modulating them onto GPS L1 C/A
like ranging signals. Once EGNOS is fully operational it will consist out of three
geostationary satellites. Currently, EGNOS is in the operational readiness review
phase [LWG05] while ESTB is still providing corrections via the SBAS satellite
AOR-E (Atlantic Ocean Region East). During the time measurements where car-
ried out AOR-E broadcasted the most meaningful corrections to the observations
and therefore only those were considered.

From the user point of view EGNOS improves positioning accuracy of GPS satel-
lites above the service area and provides information about the reliability of the
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position solution. The principle steps applied by the user will be shortly reviewed
here whereas [RTC06] serves as a detailed reference. The accuracy improvement
is obtained by applying ionospheric I, long term satellite ∆uSV and fast satellite
clock corrections. The ionospheric delays Iv provided by EGNOS describe the delay
the signal would experience in vertical direction and the user applies an elevation
dependent mapping function I = m(E)Iv to obtain the delay of the i-th satellite sig-
nal. The long term corrections include both differential ephemeris ∆rsv and satellite
clock corrections. In case of a large change of ephemeris errors satellite velocity and
clock drift corrections can be broadcast. However, for the considered time period
AOR-E transmitted only clock and radial ephemeris corrections what only slightly
decreases navigation accuracy. As can be seen in

SISRE =
√

(0.980R− Clk)2 + 0.1412(A2 + C2)

the radial satellite errors R mainly affects the signal in space range errors (SISRE)
and the along track and cross track components have only a small impact on po-
sitioning accuracy [WR03, PSJ96]. Together with the fast pseudorange corrections
PRC the messages form a consistent set where the long term corrections are slowly
changed in order to produce only small navigation errors if messages could not be
received.

In addition EGNOS also sends information about the reliability of the accuracy the
user observes. This is established through over bounding the errors by Gaussian
distributions what establishes the user to obtain the variance of the kth satellite
with

σ2
k = σ2

k,flt + σ2
k,UIRE + σ2

k,tropo + σ2
k,air,

where σ2
k,flt account for the accuracy provided through fast and long term correction

and their decorrelation. σ2
k,UIRE can also be computed from the transmitted EGNOS

messages and reflects the ionospheric errors whereas σ2
k,tropo is defined in [RTC06].

σ2
k,air which depends on receiver noise and multipath errors was computed from the

observations. With the K variances σ2
k a diagonal weighting matrix Wi,i = σ2

k is set
up that is used in a weighted least squares position solution [EWP+96].

To compute a position confidence bound, commonly referred to as protection level,
the variances are propagated dependent on the actual geometry to the position
domain. In vertical direction the obtained standard deviation d in the position
domain of the Gaussian overbound is then multiplied by Kv (e.g. 5.33) to achieve
the wished level of integrity (e.g. 10−7)

V PL = KV · d.

To get a representative status of the performances of EGNOS, we considered ob-
servations during mid of march 2006. Since EGNOS was at this time not fully
operational, message type 2 was replaced by type 0, which corresponds to a don’t

103



Chapter 4 GNSS Positioning Integrity using Augmentations

use flag for safety critical applications. For the recorded EGNOS messages some
testing seemed to be conducted, as for the long term corrections from 22:00 to 24:00
UTC the issue of data (IOD) of some messages indicated the applicability of old
GPS ephemeris data. For this reason the messages during these periods were not
taken into account. With the observed data we obtained for the accuracy of the
measured pseudo range σρ ≈ 1.5m.
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Figure 4.6.: Histogram of vertical protection level (VPL) versus vertical position
error (Stanford plot) obtained for the EVNet station located in Oberpfaffenhofen
during 4 days in March with PRN 120 for KV = 5.33.

The integrity performance of EGNOS is shown in Fig. Fig. 4.6. As illustrated, the
positioning algorithm is in a proper navigation state, if the horizontal position error
and the protection level is below the alarm limit (here 40m). Since at no time the
protection level has been lower than the actual error, neither Misleading Information
(MI) nor undesired hazardous MI (HMI) have been present to the user. However,
the position has been flagged as ”don’t use” for APV-I operations for 15149 epochs
which corresponds to an availability of 95.6 percent.
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4.2.5. Results for one week measurements

THE WORK DESCRIBED IN THIS SECTION IS MY PERSONAL CONTRIBU-
TION.

In this part, we briefly represent the results of our measurements corresponding to
the period of 4 days using 1 second of epoch intervals.

4.2.5.1. Position error distribution with EGNOS

In this section, the position error has been calculated using the observation data of
each station and the results are as follows.
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Figure 4.7.: Probability density functions of the position error (East in blue, North
in green and Vertical in red) obtained for the selected EVNet stations

From these results (see 4.7a to 4.7d), we can conclude that the vertical error com-
ponent has the highest variance which is coherent to what we usually observed.
Generally the distributions are usually slightly biased. This can be easily explained
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Figure 4.8.: Probability density functions of the ionospheric residual error with and
without EGNOS obtained for the EVNet station located at Oberpfaffenhofen.

by the short period of observation, which cannot be considered as representative of
the averaged behavior.
While comparing the results between stations, it appears that the accuracy at the
Kiruna Station is slightly better than for the other stations especially for the hori-
zontal component. One explanation is the high number of satellites visible at this
high latitude and with a relatively low elevation angle which imply a short hori-
zontal dilution of precision. Nevertheless the vertical dilution of precision is higher
and we would have expected a higher error in the vertical direction with respect
to the other stations. But one has to take into account not only the geometry of
the constellation but also the level of pseudo range noise which can impact a lot
the the position error. One has to consider the level of multipath which is highly
depending on the environment of the antenna. A general remark concerns the weak
improvement of the accuracy while using EGNOS (PRN 120). But as mentioned
earlier, the ephemeris corrections where not applied during the considered period of
measurement. The improvement is mainly due to the ionospheric corrections as can
be observed in Fig. 4.8
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4.2.5.2. Fault free vertical protection levels with and without EGNOS

Protection levels without EGNOS In this part the protection levels were calcu-
lated without considering EGNOS corrections. This gives a level of pseudo range
error higher than with EGNOS especially concerning the ionospheric residual error.
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Figure 4.9.: Stanford plot for VPL without EGNOS for the selected EVNet stations
using KV = 5.33

Without the use of EGNOS and the variance of errors is high, this has the conse-
quence to provide large protection levels. As expected GPS alone can provide the
level of integrity corresponding to APV-I. The availability of APV-I is hardly more
than 70% (see 4.9a to 4.9d).

Protection levels with EGNOS EGNOS provides corrections to satellite pseudo
ranges. This system has the advantage of reducing the major contributions to satel-
lite pseudo range biases which are the ionosphere delays and the satellite orbits and
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clock errors. As a result, the corresponding IPRE are much reduced at a level that
enables precision approach services. Although the service does not provide mislead-
ing information, the availability of APV-I performance is still insufficient (see 4.10a
to 4.10d).
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Figure 4.10.: Stanford plot for VPL with EGNOS for the selected EVNet stations
using KV = 5.33.

4.2.6. Conclusion

It was illustrated that the implementation of the Experimentation and Verification
Network provides the possibility to acquire, process and distribute high rate GNSS
raw data. This enables new approaches concerning the rapid performance assessment
of GNSS raw data. The development of specific processing algorithm as part of the
EVNet itself or as part of routines integrated into external processing facilities and
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their easy on the fly integration offers the possibility to use the EVNet within the
scope of validation purposes and the development of local elements for existing and
future GNSS.

4.3. GBAS Dual Frequency GPS-Galileo Performance

Analysis

4.3.1. Introduction

It is well known that severe ionosphere gradient is the main threat for GBAS while
considering precision landing of CAT III. The use of Dual frequency techniques
can mitigate this threat and even suppress it. Two smoothing techniques have
been studied see [KPRE06]. This section will investigate the impact of Galileo
constellation in the availability of CAT III performances with respect to different
ionosphere gradient scenarios and considering the smoothing techniques defined in
[KPRE06]. A first part of the subsection will introduce the general assumptions
considered in the simulations and the scenario of the simulations. A second part
will recall the smoothing techniques and the satellite selection strategy. The third
part will present the results of the simulation and the analysis. At the end we
will draw some conclusions with respect to future dual frequency, dual constellation
GBAS architectures.

4.3.2. GBAS Architecture and Hypothesis

4.3.2.1. GBAS Architecture

Future GBAS systems will use multi-frequency multi-constellation to enable preci-
sion landing of category III. Different configurations are considered but the general
architecture standardized in [RTC04] although for single frequency GBAS, will be
kept for dual frequency GBAS. It is supposed that the ground subsystem is monitor-
ing both GPS and Galileo constellations and provides the corrections of all satellites
in view to the user. A short description of the architecture is presented in Fig. 4.11.

The use of 2 constellations and 2 frequencies will automatically increase the infor-
mation to be sent to the user through the VHF Data Broadcast (VDB) link. It
is assumed that the maximum capacity of broadcast through the VDB link is not
reached and that the general structure of the message is not modified.

4.3.2.2. Constellation hypothesis

For our simulation, GPS will use 28 satellites (corresponding to almanac data in
2005) and Galileo is plan to have 30 satellites (use of the most recent planned

109



Chapter 4 GNSS Positioning Integrity using Augmentations

Figure 4.11.: GBAS Baseline Architecture

almanac data)

4.3.2.3. Error model

For Galileo, the error models considered are derived from [Zap02]. While comparing
with GPS standard values [RTC04] it appears that the error levels are in the same
order of magnitude as for Galileo (see Fig. 4.12).

To avoid the impact of the error model in the analysis of the results, we decided to
use for Galileo and for GPS the same error models i.e the one provided in [Zap02].

4.3.3. Dual Frequency Smoothing Filters

Two smoothing techniques defined in [KPRE06] are considered: The ionosphere
free smoothing and the divergence free smoothing technique. We recall below these
algorithms. The adaptation is made to support GPS with 28 satellites and Galileo
with 30 satellites. Concerning the used frequencies, for GPS, it is assumed the use of
L1 and L5 for which we have access to code and phase and for Galileo, it is assumed
the use of E1 and E5a. The choice of Galileo E5a is motivated for receiver design
reasons fL5 = fE5a for the combined constellation case.

The general low pass filter architecture represented in Fig. 4.13 and inspired by
[KPRE06] is a general representation of a filter for GNSS. The Hatch filter intensively
studied in chapter 2 can be schematically represented using the same scheme.
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Figure 4.12.: Residual error for single frequency vs. elevation

Ψ is a raw code observation or a combination of code observations expressed in meter.
Θ is a raw phase observation or a combination of phase observations expressed in
meter. Before using the low pass filter, it is important to suppress all the possible
biases or the highly correlated effects. Therefore the first operation is to get ride of
the geometry range and the change of range due to the movement of the user relative
to the satellite. χ is the “geometry free combination”. The geometry is retrieved
after the smoothing by adding again the phase combination.

Ψ

Θ

++

+−

χ χ̃ Ψ̃
Filter

Figure 4.13.: General low pass filter architecture

4.3.3.1. General Expression of the Carrier Smoothing

In discrete time domain, the smoothing filter can be written in a recursive way:

χ̃k+1 =
τ − ∆t

τ
χ̃k +

∆t

τ
χk+1 (4.1)
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where τ is the smoothing time constant.

We can express this formula as a differential equation:

χ̃k+1 − χ̃k =
−∆t

τ
χ̃k +

∆t

τ
χk+1 (4.2)

∆χ̃k
∆t

= −1

τ
χ̃k +

1

τ
χk+1 (4.3)

We then can express the time continuous form of this formula in Laplace domain:

sL (χ̃ (t)) − χ̃ (0) = −1

τ
L (χ̃ (t)) +

1

τ
L (χ (t)) (4.4)

were L (χ̃ (t)) is the Laplace transform of χ̃ (t).

If we consider χ̃ (0) = χ (0) = χ0 we obtain the following formula which is also the
characteristic of a low pass filter:

L (χ̃ (t)) =
1

τs + 1
L (χ (t)) +

τ

τs+ 1
χ0 (4.5)

The inverse Laplace transform (noted L−1) of this equation give the evolution in
time domain of the filter:

χ̃ (t) = L−1
(

1

τs + 1

)
∗ χ (t) + χ0L−1

(
τ

τs+ 1

)
(4.6)

where ∗ represents the convolution operator.

χ̃ (t) =
1

τ
exp

(
− t

τ

)
∗ χ (t) + χ0 exp

(
− t

τ

)
(4.7)

We can use the definition of the convolution of two functions f and g:

f ∗ g (t) =

ˆ t

0

f (t− r) g (r) dr (4.8)
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We set f (t) = exp
(
− t
τ

)
and g (t) = χ (t)

so we have:

χ̃ (t) =
1

τ

ˆ t

0

exp
(
r − t

τ

)
χ (r) dr + χ0 exp

(
− t

τ

)
(4.9)

We see that when t is “large” enough, the second term of this equation is negligi-
ble with respect to the first term. In this case, we obtain the same expression as
in [KPRE06]. In our approach we consider also the transition phase of the filter
therefore this term is not neglected.

We use the same notations as in [KPRE06] for the transfer function we have:

F (s) =
1

τs + 1
(4.10)

So the smoothed code measurement can be written as follows:

L
(
Ψ̃ (t)

)
= F (s) L (χ (t)) + τF (s)χ0 + L (Θ (t)) (4.11)

This is a general expression for the filter which can apply for all combinations con-
sidered in this thesis.

4.3.3.2. Single Frequency Carrier Smoothing Filter

As already presented in Chapter 3, the single frequency carrier smoothing tech-
nique or Hatch filter reduces the level of code noise significantly by using the phase
observation difference in time. In this case we would have:

Ψ = ρL1 (4.12)

and we have:

Θ = ΦL1 (4.13)

χ = Ψ − Θ = ρL1 − ΦL1 (4.14)
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The observation equations can be written in a simplified form as follows:

ρL1 = µ+ IL1 + EL1 (4.15)

where µ represents the non frequency depend terms including the the geometric
range, the troposphere delay and the clock offsets, EL1 represents the code error
residuals (essentially the code noise and multipath) and IL1 represents the first
order ionosphere delay experienced by the code on L1.

equivalently we have:

ΦL1 = µ− IL1 +NL1 + ηL1 (4.16)

where NL1 represent the distance corresponding to the integer cycle ambiguity ex-
perienced by the phase on L1, ηL1 represent the phase error residuals (essentially
the phase noise and multipath).

In our case, the input of the filter can be written as follows:

χ = 2IL1 + EL1 −NL1 (4.17)

In this expression, we neglect the phase error ηL1 because we have ηL1 ≪ EL1

So in Laplace domain the output of the filter can be written as follows (we omit t
and we simplify F (s) into F ):

L (χ̃) = 2FL (IL1) + FL (EL1) − L (NL1) + τFχ0 (4.18)

We consider that the integer ambiguity does not change with respect to time, which
assumes that there is no loss of lock and no cycle slips during the filtering process.

So finally the code smoothed can be written as follows:

L
(
Ψ̃
)

= L (ρ̃L1) = L (µ) + (2F − 1) L (IL1) + FL (EL1) + τFχ0 (4.19)
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4.3.3.3. Divergence Free (D-Free) Smoothing Filter

We keep the code in L1 and we provide a phase combination of both frequencies as
follows:

Ψ = ρL1 (4.20)

Θ = ΦL1 − 2

α
(ΦL1 − ΦL5) (4.21)

with α = 1 − f2
L1

f2
L5

This combination provides a suitable propriety which is presented hereafter:

We recall that the first order ionosphere delay is proportional to the inverse of the
frequency squared:

IL1 = A
f2

L1
with A being a constant and symmetrically IL5 = A

f2
L5

.

The carrier phase observation is defined as follows:

ΦL1 = µ− A

f 2
L1

+NL1 + ηL1 (4.22)

after development and simplification of Equation 4.21, we obtain:

Θ = µ+ IL1 +NL1 − 2

α
(NL1 −NL5) + ηL1 − 2

α
(ηL1 − ηL5) (4.23)

We have then

χ = EL1 −NL1 +
2

α
(NL1 −NL5) (4.24)

For the same reason as before, the carrier phase residual combination is neglected
when compared to the code residual error.

Compared to Equation 4.17, the Ionospheric term is fully canceled before the filter.
This has the advantage of getting rid of the ionosphere divergence introduced by
the temporal smoothing. Therefore this smoothing type is called divergence free
smoothing.
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The other steps of the filter can be modeled as follows:

L (χ̃) = FL (EL1) − L (NL1) +
2

α
(L (NL1) − L (NL5)) + τFχ0 (4.25)

L
(
Ψ̃
)

= L (ρ̃L1) = L (µ) + L (IL1) + FL (EL1) + τFχ0 (4.26)

Compared to the single frequency smoothing filter, we have no ionospheric diver-
gence any more.

4.3.3.4. Ionosphere Free (I-Free) Smoothing Filter

In this smoothing filter the ionosphere is eliminated from both the phase and the
code observation by applying an ionosphere free combination.

Ψ = ρL1 − 1

α
(ρL1 − ρL5) (4.27)

Θ = ΦL1 − 1

α
(ΦL1 − ΦL5) (4.28)

Using the same notations as before, we have:

ρL1 = µ+
A

f 2
L1

+ EL1 (4.29)

ρL5 = µ+
A

f 2
L5

+ EL5 (4.30)

so,

Ψ = µ+
A

f 2
L1

− 1

1 − f2
L1

f2
L5

(
A

f 2
L1

− A

f 2
L5

)
+ EL1 − 1

α
(EL1 − EL5) (4.31)

and after simplifications we obtain:

Ψ = µ+ EL1 − 1

α
(EL1 − EL5) (4.32)
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In this combination, the ionosphere is “virtually” eliminated. In fact, this linear
combination cancels out the first order ionosphere delay.

We can observe at this stage one of the drawback of this method: the combination
of decorrelated code noise and multipath can reach several meters. much higher
than the single frequency residual code noise.

For the phase observation, we use the same combination as for the code and obtain:

Θ = µ+NL1 − 1

α
(NL1 −NL5) + ηL1 − 1

α
(ηL1 − ηL5) (4.33)

The code minus carrier after neglecting the phase noise combination can be written
as follows:

χ = Ψ − Θ = EL1 − 1

α
(EL1 − EL5) −NL1 +

1

α
(NL1 −NL5) (4.34)

The other steps of the filter can be modeled as follows:

L (χ̃) = FL
(

EL1 − 1

α
(EL1 − EL5)

)
−L (NL1)+

1

α
(L (NL1) − L (NL5))+τFχ0 (4.35)

L
(
Ψ̃
)

= L (ρ̃L1) = L (µ) + FL
(

EL1 − 1

α
(EL1 − EL5)

)
+ τFχ0 (4.36)

We observe that the ionosphere delay is eliminated and the code noise combination
is filtered to a certain level depending on the characteristic of the noise process and
the time constant of the filter.

4.3.4. Vertical Protection Level Equation and Availability
Equation

The critical dimension is the vertical component of the position. There are two
reasons to focus on this direction:

1. Requirements for precision approach are essentially related to the vertical guid-
ance.

2. The vertical dilution of precision is generally predominant when compared to
the two other perpendicular directions.
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The equation is based on the vertical protection level equation already developed
for single frequency GBAS (see [RTC04]).

VPL = kffmdσV (4.37)

where σV is the standard deviation of the Gaussian overbound of the vertical error
and kffmd is the multiplication parameter derived from the fault free probability of
missed detection.

σV =

√√√√
n∑

i=1

S2
Vert,iσ

2
i (4.38)

S =
(
GTWG

)−1
GTW (4.39)

SVert,i is the projection of the ith pseudo range in the vertical direction.

S is the pseudo-inverse matrix of the observation equation.

σi is the standard deviation of the Gaussian overbound of the fault free pseudo range
residual error relative to satellite i.

These errors are estimated after smoothing and after differential corrections.

4.3.4.1. VPL for D-Free

For D-free, the spatial component of the ionosphere gradient is not eliminated and
appears as a bias in the residual error. As described in [KPRE06], either a perfect
monitoring of the ionosphere gradient can be made and the protection levels can
be increased in order to take into account the inflation of the ionosphere gradient
or there is no perfect monitoring of the ionosphere gradient and in that case the
integrity can’t be guaranteed at all. An interesting integrity concept was proposed
by Hiroyuki Konno in his paper [KPRE06]. He suggested adding the bias due to
the spatial ionosphere gradient in the VPL in the case of a perfect monitoring of the
ionosphere gradient. Thus the VPL can be written in the following form:

VPLH0 = kffmd

√√√√
n∑

i=1

S2
Vert,i

(
σ2

Dfree-gnd,i + σ2
Trop + σ2

Dfree-air,i

)

︸ ︷︷ ︸
A

+
M∑

j=1

SVert,j
∂Ij
∂x

d

︸ ︷︷ ︸
B

(4.40)
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In this equation, the standard deviations σDfree-gnd,i and σDfree-air,i correspond to the
residual errors for the divergence free smoothing solution after application of differ-
ential corrections. M is the number of affected satellites (affected by a gradient), d
is the estimated horizontal distance between the user and the GBAS reference point,
and ∂Ij

∂x
is the spatial ionosphere gradient relative to affected satellite j.

It is important to notice that “perfect” monitoring means with a very “small” un-
certainty because all uncertainties in B will necessary be modeled as random value
and has to be moved to A and inflated to be consistent with the acceptable prob-
ability of missed detection (kffmd). This protection level concept will necessary be
updated to take into account the monitoring uncertainty. It is possible, that finally
the protections levels resulting from this consideration will even be higher than the
protection level of the ionosphere free combination.

4.3.4.2. VPL for I-Free

For I-free, the first order ionosphere delay is eliminated. In that case, the protection
level equation will be based on a nominal error inflation only (the B term in VPL
equation for D-Free is canceled). But the price to pay is an increase of σIfree−gnd
and σIfree−air which are based on code multipath and code noise combinations in
two different frequencies.

VPLH0 = kffmd

√√√√
n∑

i=1

S2
Vert,i

(
σ2

Ifree-gnd,i + σ2
Trop + σ2

Ifree-air,i

)
(4.41)

In this equation, σIfree-gnd,i and σIfree-air,i represent the standard deviation of the
Gaussian overbound of respectively the residual ground receiver error and the resid-
ual airborne receiver error after applying the ionosphere free smoothing and the
differential corrections.

4.3.5. Performance Metric

For all presented algorithms, the availability considers only the VPL compared to the
VAL (as defined in chapter 1) for CAT III (5.3 m) representing the Cat III “ILS- look
alike”. This assumes no failure at any satellite of the constellation. In the reality one
has to consider an a priori probability of satellite failure. Nevertheless the impact
of a satellite failure for a combined Galileo-GPS constellation is limited thanks to a
large number of visible satellites. This is not the case for a single constellation for
which a failure in one satellite can drive to availability problem.
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4.3.6. Spatial Ionospheric Gradient Scenario

While considering divergence free smoothing, the ionosphere residual error due to
spatial ionosphere gradient can’t be eliminated. For our simulations, we define the
ionosphere scenario as follows (see Fig. 4.14):

Figure 4.14.: Ionospheric Gradient Model. The ionospheric gradient represents
the slope of the front which is the ionosphere delay difference between the highest
and the lowest level ∆Ifrontdivided by the front width.

In a single layer ionosphere model, the ionosphere medium is equivalent to a layer
located at 350 km above the earth surface and concentrates the whole electron
density. The intersection of the line of sight signal with the ionosphere layer is
called the ionosphere pierce point (IPP). We consider the following scenario: Each
visible satellite (from user and ground receiver) generates 2 IPPs (one relative to the
airplane ligne of sight and the other one relative to the ground reference station).
The total electron content TEC difference between both ligne of sights induces an
ionosphere residual error. The altitude of the ionosphere equivalent layer is negligible
with respect to the altitude of the satellite; therefore the baseline between user and
receiver is considered equivalent to the position difference of the IPPs.

The distribution of the total electron content (TEC) gradients at the ionosphere
equivalent layer is generally not homogeneous. A detail investigation of the physical
behavior of these gradients needs to be done but is not the aim of this work. In
this chapter a conservative approach will consider a spatial ionosphere gradient
defined in an area (sector) centered in the IPP of the most critical satellite (i.e. the
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satellite providing the largest impact on user position) of the all in view constellation.
Fig. 4.15 describes this approach. An ionosphere gradient is defined with respect to
a given satellite, the frequency of the ranging signal and a pair user- ground sation
with a known baseline distance. It is the ionosphere delay difference divided by the
baseline distance and it is expressed in [mm/km].

Figure 4.15.: Ionospheric Threat Scenario with IPPu being the IPP at user level
with respect to the most critical satellite (arrow tail), IPPg the IPP for the ground
station with respect to the same most critical satellite (arrowhead). The arrows
represent the baseline vector with respect to each satellite. The red arrows corre-
spond to the affected satellites.

A worst case for the airplane landing direction considers a trajectory in the opposite
direction to the defined sector of affected satellites. The angle defining the sector
will be considered as a parameter in our simulation (30°) and characterized by an
azimuth range centered in the azimuth angle of the critical satellite.

4.3.7. Simulation Scenario

The objective of this work is to test for any satellite geometry and for a worst
case ionosphere gradient if the GBAS system performances can fulfill the CAT III
requirements.

For simplification and in order to limit the dimension of the problem, the position of
the user remains constant during the 10 days of simulation, the ionosphere threat is
considered stationary (no temporal gradient is considered). Only the satellites are
moving using downloaded almanacs for GPS and modeled almanacs for Galileo.
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While considering divergence free smoothing, the ionosphere residual error due to
spatial ionosphere gradient remains in the residual. The ionosphere scenario defined
above is considered.

Another important aspect is the design of the time stability of the carrier smoothing
filter. Fig. 4.16 shows a sequence of pseudo range residual measurement after iono-
sphere free smoothing. The red line represents the residual range error of satellite 3
of the Galileo constellation which has the highest range error when visible. When
the satellite raise from the horizon (5° elevation mask), the filter begins to smooth
the pseudo range. After a certain time, the smoothing filter is stable. It appears
that around 100 second latency is necessary in order to have an error below 1m. This
100 seconds latency will therefore be used in our study i.e. new satellites appearing
in the horizon will be considered in the navigation solution only after 100 seconds
of smoothing. We considered for both frequencies a carrier phase noise modeled
as a white Gaussian noise of 1cm standard deviation. We didn’t assume any cycle
slip and the integer ambiguity is constant in any 0.5 second of the simulation. The
consecutive time difference will therefore eliminate the integer ambiguity.
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Time stability design of the carrier smoothing algorithm

Figure 4.16.: Pseudo range residual error after ionosphere free smoothing for each
visible satellites using a smoothing time of 100 seconds. The pseudo range residual
in red corresponds to a new acquired satellite starting with a a residual error of 3
meters and converging to residual error of around 0.5 m at the end of the simulation
period.
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4.3.8. Simulation Setup

The simulations to compute the protection levels and availability of the GBAS sys-
tem were taken at time steps of 0.5 seconds for a period of ten days from December
17th, 2005 to December 27th, 2005. The assumed position of the GBAS station
was chosen to be at Blagnac Airport in Toulouse, France (Latitude: 43.5786 North,
Longitude: 1.3760 West, Height: 220m). The simulation considered a fixed user
position (Lat 43.6730 N, Long 1.3164 W, Height 449 meters) (constant baseline:
5km, but constellation varying). For calculating residual errors, the requirements
appropriate for CAT III were assumed, i.e. four available GBAS reference stations,
the GBAS Service Level F, the airborne accuracy designator B, and the airframe
multipath designator B. The satellite positions used for the simulations were in the
case of GPS taken from a YUMA almanac file, and in the case of Galileo from the
last available planed almanac data.

In this chapter, a maximum ionosphere gradient of 350 mm/km is considered.

4.3.9. Simulation Results and Analysis

We present the results of our simulations. Only the case of vertical ionosphere gra-
dient of 350 mm/km has been presented here. This case corresponds to an extreme
ionosphere storm that is rarely observed. The response of GBAS for different con-
figurations (Dual constellation I-free and D-free using best VDOP technique or all
in view) is presented and compared with the use of a single constellation.

4.3.9.1. Single frequency GPS and Galileo GBAS

(a) Single frequency scenario (b) Zoom single frequency scenario

Figure 4.17.: VPL (blue) and VNSE (green) results compared to VAL (red) for
the single frequency scenario using all in view GPS and Galileo satellites
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In 4.17a, we represent the Vertical Alert Limit (VAL), the Vertical Protection Level
(VPL) and the Vertical Navigation System Error (VNSE) (see chapter 1 for the defi-
nition of these parameters) corresponding to the single frequency GBAS scenario. It
has to be noticed that no temporal ionosphere gradient has been simulated. There-
fore the level of noise is low. This scenario is considered as “fault free”.

Nevertheless, the vertical protection level is very often below the vertical error. This
means that a lot of misleading information occurred. The protection level concept
considered in this case cannot protect the user against ionosphere anomalies. A
zoom in a worst case time window shows the limitations of the performances of the
GBAS system while using only one frequency:

4.17b shows clearly a decorrelation between the error and the protection level. Even
without considering a temporal gradient of the ionosphere which would have led to
a drift and a time shift after applying the carrier smoothing filter, the error can
still reach a very high level. And misleading information can lead to hazardous
misleading information (in this sequence of time, the error can reach more than 2
meters).

4.3.9.2. Dual frequency D-Free using GPS and Galileo

(a) D-Free scenario (b) Zoom D-Free scenario

Figure 4.18.: VPL (blue) and VNSE (green) results compared to VAL (red) for
the D-Free scenario using all in view GPS and Galileo satellites

In this scenario, the user is assumed to receive from the VDB link (which is the
data link from the GBAS station to the GBAS users and containing the pseudo
range corrections, the range rate corrections and integrity monitoring information)
the spatial ionosphere gradient monitored on ground.

In this case, the spatial gradient is supposed to be perfectly monitored on ground
and the user considers this effect while calculating his VPL. It appears that even
if the protection level is never exceeded by the vertical error, the gap is sometimes
very short as we can see if we zoom in the worst geometry period:
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The VPL seems to follow quite optimally the vertical error (see 4.18a and 4.18b).
The error is strongly influenced by the spatial ionosphere bias for satellites located
in the sector of influence of the ionosphere storm.

Even if the Gap between the protection level and the user error is small, the ground
monitoring of the ionosphere provides sufficient information to over bound the error
at user level.

By looking in details, the VPL equation as specified above supposes a perfect mon-
itoring of the spatial ionosphere gradient.

4.3.9.3. Dual frequency I-Free using GPS and Galileo

(a) I-Free scenario (b) Zoom I-Free scenario

Figure 4.19.: VPL (blue) and VNSE (green) results compared to VAL (red) for
the I-Free scenario using all in view GPS and Galileo satellites

For the ionosphere free combination, the ionosphere error is completely eliminated
at receiver level. The affected satellites will behave exactly like the other satellites.
The price to pay is a higher level of noise due to the combination of code observations
in L1 and in E5a/L5.

In 4.19a and 4.19b, it can be observed that the error is much lower than the
protection level. A zoom in a worst geometry region shows the evaluation of the
error with respect to the protection level.

In contrary to the D-Free case, there is no apparent correlation between the error
and the protection level. The carrier smoothing filter is providing very good results
and maintains the error below 0.5 meter.

4.3.9.4. I-Free Combination using limited number of visible satellites

For this simulation scenario, we took into consideration limited number of channels:
24 (6 GPS and 6 Galileo dual frequency satellites). Thus we choose among all visible
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GPS satellites 6 satellites and the same for Galileo. The best VDOP test is made
after grouping all satellites.

We considered only the ionosphere free combination for this best VDOP scenario.
Fig. 4.20 and Fig. 4.21 represent the VAL vs. VPL vs. VNSE during the whole
duration of the simulation and after zooming.

Figure 4.20.: I-Free VPL and VNSE using best 6 GPS and best 6 Galileo satellites

Although the level of error remains very low, the protection level exceeds the alarm
limit for CAT III. When low number of satellites is considered, the protection level
is very sensitive to the geometry variations. A zoom in the worst case VPL region
shows better the width of unavailability:

These results show that a reduction of visible satellites provides a poor geometry
and thus a too high protection level.

By varying the maximum number of satellite (12, 14, 16), we show that the protec-
tion level can be improved.

An important aspect consists of removing the satellites that could have a bad quality
of data or for which the probability of outage is very high (see Fig. 4.22).
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Figure 4.21.: Zoom of I-Free VPL and VNSE using best 6 GPS and best 6 Galileo
satellites

4.3.9.5. Availability of Protection Levels

Aviation requirements include availability of required performance. For Cat III, the
service must provide an availability of 99.9 to 99.999% of the time.

This availability include signal availability, navigation integrity and continuity of
the service.

This study considers only the protection level which is a measure of integrity. There-
fore the availability represents only the percentage of time the protection level is
below the alert limit see Tab. 4.3.

For D-Free it appears that for 43 epochs, the VNSE is higher than the vertical
protection level. This is very surprising and need to be investigated further. A
possible cause of that is the effect of the initial deviation of the smoothing filter.

The most robust solution remains the ionosphere free combination using dual fre-
quency. The divergence free combination provides an optimized overbound but
necessitate an ionosphere monitor on ground.
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Figure 4.22.: I-Free protection level using limited number of satellites and best
VDOP

4.4. Single Frequency Ground Ionosphere Gradient

Monitor

THE WORK DESCRIBED IN THIS SECTION IS MY PERSONAL CONTRIBU-
TION

The Ground Based Augmentation System Testbed developed by DLR uses three
receivers with separations of 740, 760 and 770 m from each other (see Fig. 4.32). In
this section we explore the capabilities of the absolute ionosphere gradient monitor
as proposed in [KYP+10] and adapt it for the multi-receiver (>2) case. Initially, we
present the dual baseline ionosphere gradient monitor and we define the variables
and parameters of the problem. Then we investigate the performance achieved
with the existing architecture of 3 receivers. Then, we adapt the monitor for the
existing configuration of the GBAS test bed and analyze the performance results
of this configuration. In the next part of this section, we investigate the special
case of co-linearly distributed receivers and propose optimal separation strategies
when using 3 or 4 aligned receivers. In the last part of the section, we investigate
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Scenario Misleading information (in %) (epochs) Availability (in %)

Single frequency 7.09 (134685) 100

D-free 0.023 (43) 100

I-free 0 100

I-free using best VDOP 0 91.85

Table 4.3.: Availability of protection level for different smoothing strategies. The
second column (Misleading information) is defined as the percentage number of
epochs the error is larger than the protection level. This happens when the system
is not protected against a given threat in this case against strong ionosphere
gradients. The third column (Availability) is the percentage of times the alert
limit for the given phase of flight is larger than the protection level. For single
frequency for

the ionosphere gradient as a diffusion process and determine the sensitivity of the
monitor performance to the errors in the diffusivity coefficient of the ionosphere
gradient. A conclusion summarizes the results obtained and the main contributions
to the thesis.

4.4.1. Dual baseline absolute slant ionosphere gradient monitor

The absolute slant ionosphere gradient monitor proposed in [KYP+10] is based on
single frequency double difference carrier phase observations. Assuming a precise
knowledge of the receivers positions (and thus their baseline separation vector), it
is possible to determine double difference residual biases like the ionospheric decor-
relation between 2 receivers. These biases can be estimated as long as they are not
within the measurement uncertainty to an integer multiple of a wavelength. In the
following, we keep the same notations as in [KYP+10] and describe the dual baseline
absolute slant ionosphere gradient monitor.

We start with the observation equations for the phase observation as already pre-
sented in equation 2.37 that we recall here:

Φ(k)
u = λφ(k)

u − λφ(k) + λN (k)
u + c

(
δtu − δt(k)

)
− I(k)

u + T (k)
u + η(k)

u (4.42)

this equation corresponds to a single pair (satellite k and user u)

The elementary architecture of the double difference carrier phase ionosphere mon-
itor is composed of 2 reference receivers i and j observing a pair of satellites k
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and l. Each reference receiver observe both satellites and we can build up 2 phase
observations for each satellite. We therefore have for each epoch:

Φ(k)
i = λφ

(k)
i − λφ(k) + λN

(k)
i + c

(
δti − δt(k)

)
− I

(k)
i + T

(k)
i + η

(k)
i (4.43)

Φ(k)
j = λφ

(k)
j − λφ(k) + λN

(k)
j + c

(
δtj − δt(k)

)
− I

(k)
j + T

(k)
j + η

(k)
j (4.44)

Φ(l)
i = λφ

(l)
i − λφ(l) + λN

(l)
i + c

(
δti − δt(l)

)
− I

(l)
i + T

(l)
i + η

(l)
i (4.45)

Φ(l)
j = λφ

(l)
j − λφ(l) + λN

(l)
j + c

(
δtj − δt(l)

)
− I

(l)
j + T

(l)
j + η

(l)
j (4.46)

ODTS errors can be eliminated using for each satellite the single difference of obser-
vations from each receiver. We can build from the four equations above the following
2 single difference equations:

∆Φ(k)
ij , Φ(k)

i − Φ(k)
j = λ∆φ(k)

ij +λ∆N (k)
ij + c∆δtij − ∆I(k)

ij + ∆T (k)
ij + ∆η(k)

ij (4.47)

∆Φ(l)
ij , Φ(l)

i − Φ(l)
j = λ∆φ(l)

ij + λ∆N (l)
ij + c∆δtij − ∆I(l)

ij + ∆T (l)
ij + ∆η(l)

ij (4.48)

Receiver biases can then be eliminated by differentiating 4.47 with 4.48 to obtain
the double difference carrier phase equation:

∆2Φ(kl)
ij , ∆Φ(k)

ij −∆Φ(l)
ij = λ∆2φ

(kl)
ij +λ∆2N

(kl)
ij −∆2I

(kl)
ij +∆2T

(kl)
ij +∆2η

(kl)
ij (4.49)

It appears as illustrated in Fig. 4.23 that the single difference can be expressed as the
scalar product of the baseline with the unit vector for the corresponding satellite:

∆Φ(k)
ij = bij · e(k) (4.50)

∆Φ(l)
ij = bij · e(l) (4.51)
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i jbij

e(l)

e(k)

∆Φ(k)
ij

∆Φ(l)
ij

Figure 4.23.: Geometric representation of the double difference carrier phase ob-
servation with e(k) respectively e(l) being the unit vectors from receiver i or j
to satellite k respectively l, bij is the baseline vector from receiver i to receiver

j, ∆Φ(k)
ij respectively ∆Φ(l)

ij being the single carrier phase difference relative to
satellite k respectively l.

So we have:

∆2Φ(kl)
ij = bij ·

(
e(k) − e(l)

)
= bij · ∆e(kl) (4.52)

And replacing ∆2Φ(kl)
ij by bij · ∆e(kl) in 4.49 gives:

bij · ∆e(kl) = λ∆2φ
(kl)
ij + λ∆2N

(kl)
ij − ∆2I

(kl)
ij + ∆2T

(kl)
ij + ∆2η

(kl)
ij (4.53)

The double difference integer ambiguity ∆2N
(kl)
ij can take positive or negative integer

values. We assume in the whole section this term as an unknown and by convention
and in order to fit with notations in [KYP+10] to assume ∆2N

(kl)
ij = −∆2n

(kl)
ij . The

single difference ionosphere gradient ∆I(k)
ij can be expressed using the ionosphere
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spatial gradient α(k)
ij and the norm of the baseline vector bij . We have then ∆I(k)

ij =

α
(k)
ij ‖bij‖. If we assume that the reference satellite l is not affected by a gradient,

we have α(l)
ij = 0 and therefore ∆2I

(kl)
ij = α

(k)
ij ‖bij‖.

If additionally we assume that due to the short baseline considered, the troposphere
has no spatial variations, we have ∆2T

(kl)
ij = 0. Based on these assumptions and by

grouping the “measurable” parameters in the left hand and the unknown parameters
in the right hand, we have:

λ∆2φ
(kl)
ij − bij · ∆e(kl) = λ∆2n

(kl)
ij + α

(k)
ij ‖bij‖ + ∆2η

(kl)
ij (4.54)

The left hand side can be measured at each epoch and is composed of ∆2φ
(kl)
ij the

double difference carrier phase measurement between receiver i and receiver j, the
differential receiver to satellite unit vector ∆e(kl) (which can be determined using
the navigation message of the considered satellites) and the baseline vector between
the receivers bij.

The right hand side of the equation is unknown and corresponds to the sum of the
double difference carrier phase cycle ambiguity ∆2n

(kl)
ij , the ionosphere gradient α(k)

ij

between receiver i and j times the norm of the baseline vector bij, and the double

difference carrier phase residual error ∆2η
(kl)
ij whose distribution is overbounded by

the Gaussian distribution with standard deviation σ
(kl)
ij .

Let’s denote σ(k)
i the standard deviation of the Gaussian over-bounded carrier phase

residual error (noise and multipath) of receiver i for the signal coming from satellite
k. In order to study the sensitivity of the monitor performances to receiver carrier
phase error, we keep the standard deviation of each receiver independent and we

define r(k)
ij =

σ
(k)
j

σ
(k)
i

the standard deviation ratio between receiver j and receiver i (taken

as reference) with respect to satellite k. Let’s call σ(kl)
ij the standard deviation of

the double difference phase error ∆2η
(kl)
ij when considering receiver j, receiver i and

satellite k, satellite l. Then we have the relation:

σ
(kl)
ij =

√
2
(
1 + r

(k)2
ij

)
σ

(k)
i (4.55)

Furthermore, we assume that the phase residual errors are independent from satellite
to satellite with respect to one receiver and independent from receiver to receiver
with respect to one satellite (we assume that the baseline is sufficiently large to
fulfill this assumption). We also assume that the errors or, more precisely, the error
over-bounds are Gaussian distributed.

Since our interest is to monitor the ionosphere gradient component in the direction of
the runway for an aircraft in an “ILS-look alike” approach, it is necessary to project
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the individual test statistics by projecting the baselines in the runway direction as
will be explained later while considering the GBAS test bed located in Braunschweig
airport.

4.4.2. Measurement and Simulation Form of the Test Statistic

The aim of a ionosphere gradient monitor is to detect an ionosphere gradient that
can be a threat for GBAS. Equation 4.54 suggests to use the following test statistic
(see [KYP+10]):

s
(kl)
ij = λ∆2φ

(kl)
ij − bij · ∆e(kl) − λround


∆2φ

(kl)
ij − bij · ∆e(kl)

λ


 (4.56)

where round is the function that rounds to the nearest integer. This form is called
the “measurement form” of the test statistic because it is only based on actual
measurements from receivers and the knowledge of the satellite ephemeris. This is
also what should be implemented for a real time processing of the monitor. The
following form is preferred in the rest of this section because it is better suitable for
a performance and sensitivity analysis and is what we call the “simulation form” of
the test statistic:

s
(kl)
ij = λ∆2n

(kl)
ij +α

(k)
ij ‖bij‖+∆2η

(kl)
ij −λround


λ∆2n

(kl)
ij + α

(k)
ij ‖bij‖ + ∆2η

(kl)
ij

λ




(4.57)

∆2n
(kl)
ij is an integer and it will vanish from s

(kl)
ij .

s
(kl)
ij = α

(k)
ij ‖bij‖ + ∆2η

(kl)
ij − λround


α

(k)
ij ‖bij‖ + ∆2η

(kl)
ij

λ


 (4.58)

The advantage of using the test statistic suggested is the non necessity to solve the
integer ambiguity. The price to pay is to have an ambiguity in the estimation of the
ionosphere gradient α(k)

ij as we will see later.

s
(kl)
ij is defined in the interval Ω =

[
−λ

2
, λ

2

]
. We assume that α(k)

ij takes its values
in the interval [−2000, 2000] mm/km. We implicitly consider that the probability to

have an ionosphere gradient
∣∣∣α(k)
ij

∣∣∣ ≥ 2000 is equal to 0. If we call fη|α the probability

density function of α(k)
ij ‖bij‖ + ∆2η

(kl)
ij , which is a normal distribution with mean

α
(k)
ij ‖bij‖ and a variance σ(kl)2

ij , the probability density function fs|α of sij given that

a gradient α(k)
ij is present can be written as follows:
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fs|α : Ω ⇒ R+

fs|α(x) =
∑
n∈Z

fη|α(x+ nλ) (4.59)

R+ being the half positive real line. Equation 4.59 maps the non centered Gaussian
distribution in the domain of definition of fs|α (Ω). If we partition the line R in
segments of length λ, fs|α is the sum of all segments of the function fη|α defined in
these intervals.

We can show that
´

Ω
fs|α(x)dx = 1 :

ˆ

Ω

fs|α(x)dx =
∑

n∈Z

λ
2
ˆ

− λ
2

fη|α(x+ nλ)dx (4.60)

=
∑

n∈Z

ˆ λ(n+ 1
2 )

λ(n− 1
2 )

fη|α(y)dy (4.61)

=
∑

n∈Z

[
Fη|α

(
λ
(
n +

1

2

))
− Fη|α

(
λ
(
n− 1

2

))]
(4.62)

=Fη|α (+∞) − Fη|α (−∞) (4.63)

=1 (4.64)

with Fη|α being the cumulative density function.

The shape of the distribution is driven by the standard deviation σ(kl)
ij and α(k)

ij ‖bij‖:

For small σ(kl)
ij and α, the shape of the distribution is close to a centered Gaussian

distribution. For large σ(kl)
ij , fs|α is close to a uniform density function with value

1
λ

in the interval of definition of the function. The product α(k)
ij ‖bij‖ defines the

shift of the probability density function inside Ω . Fig. 4.24 is an example of the
probability density function of the test statistics for a very large value (28.67 mm)

of σ(kl)
ij .

The distribution of the test statistic is not Gaussian. The values taken by the test
statistic are reduced in a finite interval Ω, i.e. for constantly growing α(k)

ij ‖bij‖ from
0 to 2λ for example, the maximum of fs|α is growing from 0 up to λ

2
, jumping back

to −λ
2
, increasing again up to λ

2
and jumping back again to −λ

2
and stop at 0.

The non detectable area (central region of sij) is periodic and the detectable set is
periodic too. Therefore we will prefer the term “set of detectable gradients” rather
than “minimum detectable gradients”.
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Figure 4.24.: Density function of the test statistic fs|α when using a double dif-

ference carrier phase residual error standard deviation of σ(kl)
ij = 28.67 mm, an

ionosphere gradient of α = 216 mm/km and a baseline ‖bij‖ = 220m.
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4.4.3. Set of Detectable Ionosphere Gradients

We define the null-hypothesis (H0) as being the hypothesis that α(k)
ij ‖bij‖ is equal

to an integer number of wavelength λ.

Given the probability of false alarm (for numerical application we choose 10−4, for
a detail justification see [KYP+10]) and the test statistic distribution corresponding
to the H0 hypothesis, we can determine the threshold Tfa ∈ Ω as follows:

ˆ Tfa

−Tfa

fs|0(x)dx = 1 − Pfa (4.65)

Where fs|0 is the density of H0.

A gradient α can be detected if the following relation is verified:

ˆ Tfa

−Tfa

fs|α(x)dx ≤ Pmd (4.66)

Where Pmd is the probability of missed detection (for numerical application we
choose 10−4, for a detail justification see [KYP+10]). fs|α is the probability density

function of the H1 hypothesis (defined as the hypothesis of having α
(k)
ij ‖bij‖ not

equal to an integer number of wavelength λ).

The set of α verifying this relation is defined as the set of detectable gradients. This
is a function of the baseline between two receivers, the level of the double difference
carrier phase residual error, the probability of false alarm and the probability of
missed detection. Fig. 4.25 shows the left border of the set of detectable gradients
represented by the abscissa of the maximum of the density function in red divided
by the baseline. When the density function of the H1 hypothesis is shifted in the
right, the function is truncated at λ

2
and the truncated part is thrown to the left.

From the equation above, there exists a factor Kση such that the set of detectable
gradients can be written as follows:

G =
⋃

n∈Z






 λ

‖bij‖
(
n − 1

2

)
,
λn −Kσησ

(kl)
ij

‖bij‖


∪

∪

λn+Kσησ

(kl)
ij

‖bij‖
,

λ

‖bij‖
(
n+

1

2

)





(4.67)

σ
(kl)
ij is the double difference carrier phase error residual standard deviation. It

characterizes the quality of the receiver and antenna. The first term correspond to
the left side of the availability area, and the second corresponds to the right side.
When σ(kl)

ij is increasing, the left border of the first term and the right border of the
second term, do not change, the right border of the first term is decreasing until it
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Figure 4.25.: Probability density function of the H0 hypothesis in blue and H1 in
red. The test statistic sij in the x axis takes values in

[
−λ

2
, λ

2

]
. The location of the

maximum of the H1 density function corresponds to the left border of the set of
detectable gradients multiplied by the baseline. From top to bottom σ

(kl)
ij = 1 to

13 mm with a step of 1 mm and using a baseline of ‖bij‖ = 220m. For σ(kl)
ij = 13

mm, the set of detectable gradient is void.
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vanishes for σ(kl)
ij = λ

2Kση
, in a symmetric way, the left border of the second term is

increasing until the second term vanishes for the same value σ(kl)
ij = λ

2Kση
.

if we replace n by n+ 1, the set G remains unchanged and the second interval in the
union operator for n can be merged with the first interval for n + 1 leading to the
following expression:

G =
⋃

n∈Z






λn+Kσησ

(kl)
ij

‖bij‖
,
λ(n + 1) −Kσησ

(kl)
ij

‖bij‖





 (4.68)

This expression is better suited for further discussion. We obtain the same expression
as in [BDLK10a] by replacing Kση by kffd + kmd. For small values of σ(kl)

ij , Kση and

kffd + kmd are the same. For large values σ(kl)
ij , Kση is greater than kffd + kmd.

A gradient α is detectable by the monitor whose baseline is ‖bij‖ if it fulfills the
following relation for any integer n:

λn +Kσησ
(kl)
ij

‖bij‖
≤ α ≤ λ(n+ 1) −Kσησ

(kl)
ij

‖bij‖
(4.69)

We can see in this expression, that for different baselines, we obtain different areas
of availability of the monitor. For individual monitors, the set of detectability is
periodic with a periodicity λ

‖bij‖ . In the same way the set of undetectable gradients
is also periodic with same periodicity. The periodicity is inversely proportional
to the baseline length of the considered monitor. To detect any gradient in the
[300, 2000] mm/km range, unless σ(kl)

ij = 0, it is necessary to use a combination of
several receiver pairs with different baseline lengths. The objective is to define an
architecture of multiple baselines that can detect all gradients between 300 and 2000
mm/km with the largest σ(kl)

ij . Fig. 4.26, 4.27 and 4.28 give the detection areas for
three different baselines. The largest baseline provides the shortest period of the
gradient detection area. The choice of the baselines is going to be presented in the
next chapter.

4.4.4. ASIGMA Detectability Area

We would like to find the optimal baseline that allows 100% detectability in the
range 300 − 2000 mm/km using the receivers with the highest σ(kl)

ij values. The
availability areas of the monitor ASIGMA1i (Absolute Slant Ionospheric Gradient
Monitor Architecture between receiver RR1 and receiver RRi) are defined using 4.69.

This equation is defined for any integer n. We can observe that if σ(kl)
ij = 0, for any α

there exist an integer n for which λn
‖bij‖ ≤ α ≤ λ(n+1)

‖bij‖ and such an ideal monitor with
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Figure 4.26.: Probability density surface of the H0 hypothesis mapped in the slant
ionosphere gradient range [-2000,2000] mm/km. The planar layer in red represent
the set of detectable gradients considering a probability of false alarm and of
missed detection of 10−4 and a baseline of 221 m

Figure 4.27.: Same as for the previous figure with a baseline of 117 m.
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Figure 4.28.: Same as for the previous figure with a baseline of 61.9 m.

no carrier phase error would have 100% detectability. The minimum of σ(kl)
ij (α) for

which we have 100% of detectability is obtained for α = λn
‖bij‖ ≡ ⌣

αn. The minimum

of σ(kl)
ij (α) for which we have 0% detectability is obtained for σ(kl)

ij = λ
2Kση

≡ ⌢
σ . It is

interesting to notice that this is a constant. This is obtained for α = λ(n+1/2)
‖bij‖ ≡ ⌢

α
i

n.

The function σ
(kl)
ij (α) = gi (α) delimiting the area of availability of the monitor

ASIGMA1i is a periodically piece wise linear function that can be written in the
following form :

σ
(kl)
ij (α) =

⌢
σ

⌢
α
i

n − ⌣
α
i

n

·
(
α − ⌢

α
i

n

)
+

⌢
σ

⌣
α
i

n ≤ α ≤ ⌢
α
i

n (4.70)

σ
(kl)
ij (α) =

⌢
σ

⌣
α
i

n+1 − ⌢
α
i

n

·
(
⌢
α
i

n − α
)

+
⌢
σ

⌢
α
i

n ≤ α ≤ ⌣
α
i

n+1 (4.71)

The period of the monitor is T i =
⌣
α
i

n+1 − ⌣
α
i

n = λ
‖bij‖ . See Fig. 4.29 for a graphical

description of the availability area of the monitor. This representation will be used
during the whole section.

4.4.5. Application to DLR’s GBAS Testbed

The Absolute Slant Ionosphere Gradient Monitor Architecture (ASIGMA) measures
the gradient in the baseline directions which are not necessarily aligned with the
runway. Fig. 4.31 describes this schematically:
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Figure 4.29.: ASIGMA performance metric. Area of availability (white) plotted
using double difference carrier phase error standard deviation versus the slant
ionosphere gradient magnitude. In red is the non detectability area for the given
parameters.

Runway direction

*

*

IPPi

IPPj

β

bij

bij cosβ

Figure 4.30.: Ionosphere gradient monitor projection in the runway direction
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In Fig. 4.30, we assume that a monitor observe the ionosphere gradient between the
IPPi and IPPj that we call αij .

So we have αij = ∆Iij

‖bij‖ . We assume that the front we want to detect is perpendicular
to the runway direction and that the magnitude of the ionosphere gradient of the
front is the ionosphere difference divided by the projected baseline in the runway
direction. This is generally a more conservative approach as the projected baseline
is shorter when β 6= 0.

Runway direction

*
RR2

RR1
β

b12

*

*

θ

b13

RR3

Figure 4.31.: General configuration scheme and notations. bij is the baseline vector
defined by the reference receiver RRi and RRj . β is the angle between b12 and
the runway direction, θ is the angle between the two baselines

From Fig. 4.31 we have α0
12 = α12

cos β
and α0

13 = α13

cos(θ−β)
if we call α0

12 and α0
13 the

gradients in the runway direction.

For each baseline, an absolute ionosphere gradient monitor using the test statistic
as defined in [KYP+10] can be implemented. We assume that these monitors are
independent and that each ionosphere gradient detected by one of them is projected
into the runway direction. One needs to be careful with the fact that the monitor
can’t observe directly the gradient in the runway direction but only the components
in the direction of the baseline. An extreme case is a baseline perpendicular to the
runway. This would drive to an infinite gradient when projected in the direction of
the runway. Therefore the angles θ and β should be kept as close as possible to zero.
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The detectable ionosphere gradients are those fulfilling the following inequalities:

λn+ (kffd + kmd) σ12

b12 cos β
< α0

12 <
λ (n+ 1) + (kffd + kmd) σ12

b12 cos β
(4.72)

λn′ + (kffd + kmd)σ13

b13 cos (θ − β)
< α0

13 <
λ (n′ + 1) + (kffd + kmd)σ13

b13 cos (θ − β)
(4.73)

with n and n’ being independent integers, λ is the wavelength of the considered
signal, kffd is the inflation factor for fulfilling the required probability of false alarm
and kmd is the inflation factor for fulfilling the required probability of missed de-
tection. Details can be found in [KYP+10].These expressions are symmetric with
respect to n and n’.

For our simulations, we used the actual receiver locations of the DLR’s GBAS
Testbed as shown in Fig. 4.32. This GBAS Test bed (stand 2010) is composed
of 3 receivers with a plan to install a 4th one.

Figure 4.32.: GBAS reference receiver location at Braunschweig airport (status
2010)

The locations of the receivers in ECEF coordinate system are given in Tab. 4.4:
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Table 4.4.: Receivers’ locations in ECEF coordinates

Receiver X in m Y in m Z in m

RR1 3840619.039 715604.228 5024909.863

RR2 3840835.113 714861.969 5024848.587

RR3 3841202.939 715429.959 5024488.675

From these locations we can determine the lengths of the baselines as well as the
angles between baselines and runway direction.

There are 2 different approaches for taking benefit of both monitors:

• A slant ionosphere gradient is considered detected if at least one monitor can
detect it (minimize the missed detection probability)

• A slant ionosphere gradient is considered detected only if both monitors si-
multaneously detect it (minimize the false alarm probability)

These two different approaches represent extreme cases for a combined dual baseline
monitor i.e their application gives upper and lower performance bounds.

4.4.6. Simulation and Analysis of Results

The sensitivity of the monitor performance with respect to the receiver accuracy is
plotted in 4.33a and in 4.33b.

The largest baseline b12 provides the largest availability at the GBAS test-bed. As
only the region 300 − 2000 mm/km is relevant for GAST-D [ICA06], we decided
to show only this area in all our results. As geometry screening ([LLP+06, HM07])
would induce an unacceptable level of unavailability of the system, the extreme
ionosphere gradients must be monitored in an efficient way. Studies have been
conducted to analyze the impact of an ionosphere monitor in GBAS applications
([HM09]) and drive to the fact that in certain circumstances an absolute ionosphere
gradient is necessary.

4.33c and 4.33d show the monitor results with the logic as defined in the previous
paragraph. 4.33c shows results of detectability when both monitors can detect
(represented by ∩) and 4.33d shows the detectability area when at least one monitor
can detect (represented by ∪)

Both 4.33c and 4.33d show a loss of periodicity at least for the range of interest.
The availability area is better in 4.33d than in 4.33c, as expected.

The impact of an additional monitor with a different baseline reduces the area of
undetectability. An important aspect is the minimum σ for which 100% of the
gradients in the range 300−2000 mm/km are detectable. This minimum σ ≈ 1 mm
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(a) ASIGMA12 (b) ASIGMA13

(c) ASIGMA12 ∩ ASIGMA13 (d) ASIGMA12 ∪ ASIGMA13

Figure 4.33.: Absolute slant ionospheric gradient monitor availability function of
standard deviation of phase error for baseline or combination of baselines. The
red areas corresponds to non detectability regions of the monitors. The plots
represents the double difference carrier phase standard deviation ση function of
the slant ionospheric gradient α for Pfa = Pmd = 10−4

is shown in 4.33d for the DLR GBAS Testbed. This is an important parameter as
this will provide requirements for the antennas, receivers and level of multipath in
the neighborhood of the antennas. The baseline for the additional antenna should be
chosen in a way that the minimum σ that provides 100% detectability is as large as
possible. From 4.33d, an additional monitor with a maximum detectability around
500 mm/km will improve significantly the minimum allowed carrier phase double
difference residual error to achieve 100% detectability.

4.4.7. Optimal linear distribution of monitors

We consider in this section that the receivers are all aligned and parallel to the
runway. Let m be the total number of receivers with m > 2. Let’s fix the largest
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baseline b1m = B and consider one of the receivers at the edge to be the reference
receiver. Fig. 4.34 shows a schematic description of this configuration.

Figure 4.34.: Schematic description of the linear distribution of receivers and no-
tations

Let us assume that the receivers have all the same performances: σi = σj =
1
2
σ ∀ {i, j} ∈ {1, 2, · · · , m}2 where we have inserted the factor 1

2
for simplifica-

tion of algebraic calculus. We define b1i to be the baseline from receiver 1 to receiver
i. Let’s define the baseline ratio ηi = b1i/B. There are m−1 ratios to be considered
with 0 = η1 ≤ ηi ≤ ηm = 1.

4.4.7.1. Optimal Distribution in the Case of 2 Monitors

The combination of two monitors provide us with an availability area which is a
combination of both parametric curves defined above. The intersection points be-
tween the different lines can be calculated as follow. If we identify the first monitor
with index i and the second one with index j and the integer ambiguity for monitor
i being ni and monitor j being nj : The intersection is given for σi (α) = σj (α). A
first step is to identify the periodicity of the combined monitor: This is the largest
common divisor of the periodicity of both individual ones. This is a function of the
baselines. The largest common divisor is the product of both periods. One property
of these intersecting points is that the border of the availability will switch from one
monitor to the other.

For m = 3, we keep B and η2 as variable. We search the optimal B⋆ of B and η⋆2 of
η2 that maximize the level of double difference carrier phase error and maintaining a
100% detectability of an absolute slant ionosphere gradient in the range 300 − 2000
mm/km. A gradient must be at least detected by one monitor to be considered
within the detection range by the whole system. The second possible combination
(detectability when all monitors detect) is not considered in this section.

The optimal problem, defined through the objective function that we want to max-
imize is taken as the carrier phase error that provides 100% of detectability in the
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range 300 − 2000 mm/km. The aim is to find the baselines that drive to this max-
imum and the value of the objective function at this optimum. The determination
of this optimum is done numerically by considering discrete values for each base-
line. The functions defined by 4.70 and 4.71 are calculated for each discretized
baseline and for each integer values corresponding to the 300-2000 mm/km range.
The monitors are then combined by taking the maximum values of the functions
corresponding to each monitor for each slant ionosphere gradient. For each discrete
value of the baselines we find the minimum of σ (α) for which 100% of detectability
is guarantied. The results are plotted in Fig. 4.35.

Figure 4.35.: Maximum standard deviation carrier phase error (color scale from
0 to 7 mm) that provides 100 % detectability in the range 300 − 2000 mm/km
function of the largest baseline in meter in the x axis and b2/B in the y axis

We can notice in Fig. 4.35 a superposition of symmetric trend with respect to b2/B
and a dis-symmetric trend probably due to the dis-symmetry of the range of slant
ionosphere gradients. For B below 82 meters, there is an independence with respect
to η2. For B ≥ 190 m and η2 = 0.5 (receiver in the middle of the interval), σ takes
very low values and this architecture although symmetrical should be avoided. The
values fund for the optimum are: σ⋆ = 6, 97 mm, B⋆ = 177 m and η⋆2 = 0.387. This
configuration provides the detectability area shown in Fig. 4.36:

The high level of double difference carrier phase noise allowed (σ⋆) can be achieved
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Figure 4.36.: Slant ionosphere gradient detection area form = 3 receivers optimally
linearly distributed.

with a well calibrated antenna. The sitting criteria should take into consideration the
multipath environment as usual. Attention should be paid to the possible multipath
correlation between RR1 and RR2 due to the shorter baseline.

If we apply these results to propose a possible location of a 4th receiver at Braun-
schweig research airport to achieve GAST-D requirements and consider the receivers
RR1 and RR2 for the largest baseline (B ≃ 770 m), the optimal location for RR4

would be 77 m from RR1 and the maximum allowed double difference carrier phase
error standard deviation would be 4, 5 mm to achieve 100% of ionosphere gradient
detectability.

4.4.7.2. Optimal Distribution in the Case of 3 Monitors

For m = 4 and assuming all 4 receivers are aligned. We find the following optimal
surfaces:

The optimum is obtained for σ⋆ = 8, 65 mm, B⋆ = 221 m, η⋆2 = 0.28 and η⋆3 = 0.53.

The result is a maximum tolerable carrier phase error and it provides the detectabil-
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Figure 4.37.: Minimum carrier phase error for 100% gradient detection ση⋆
3

(B, η2)

ity area plotted in Fig. 4.40.

As expected the addition of one receiver provides higher maximum allowable double
difference carrier phase error and the maximum baseline remains acceptable for a
majority of airports.

4.4.7.3. Optimal Baseline Search Algorithm

Let’s consider m being the number of monitors of the ASIGMAm configuration
as drawn in Fig. 4.41. We have stated in [BDLK10a] that ideally each individual
monitor should be parallel to the runway direction. From the previous section, we
observed that the set of detectable gradients is periodic with a periodicity inversely
proportional to the baseline of the considered monitor. The detection area refers in
this section to the local gradient, i.e. the gradient experienced by the monitors.

In this section we assume that the double difference carrier phase residual error is
the same for all monitors. (We assume the same receiver configuration, the same
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Figure 4.38.: Minimum carrier phase error for 100% gradient detection ση⋆
2

(B, η3)

antenna type and the same multipath environment) and we set for simplification:

σ
(kl)
ij = ση

In [BDLK10a] we observe that for 3 and 4 optimally distributed receivers, the 300
mm/km detection is given by the largest baseline (ascending detection border of the
monitor), and the 2000 mm/km detection is ensured by the shortest baseline (first
descending detection border of the monitor).
For 3 receivers and therefore 2 monitors, the largest baseline is suited for the de-
tection at 300 mm/km, but not up to 2000 mm/km. Therefore it is necessary that
at least 2 monitors are in use. Fig. 4.42 is generated using 3 optimally distributed
monitors as already obtained in [BDLK10a]. we can see that the optimal ση that
we note σ⋆η is reached for 300 mm/km and 2000 mm/km in the case of 3 monitors.
We observe the same for 2 monitors (see [BDLK10a]) .

We propose to define a simple formula to calculate the baselines of the monitors
that provide the largest detection area.

We define b1 = B being the largest baseline and bi = ρiB the i-th baseline of
ASIGMAm. We consider that the the baselines are sorted from the largest to
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Figure 4.39.: Minimum carrier phase error for 100% gradient detection σB⋆ (η2, η3)

the smallest one. By convention we define bm as being the smallest baseline.
In [BDLK10a] we observe for three monitors that b⋆3 = ρ2

3B and b⋆2 = ρ3B with
ρ3 = 0.53 approximately. It is tempting to generalize this rule for m monitors by
writing:

∀ i ∈ {1, · · · , m}, b⋆i = (ρm)i−1 B (4.74)

We would have bm = (ρm)m−1 B. From equation 4.69 and from the observation
made above, we have for the right edge of the domain of detection required:

Kσηση = λ− 2000 × 10−6 (ρm)m−1 B (4.75)

and for the left edge:

Kσηση = 300 × 10−6B (4.76)

From these equations, we obtain:

ρm =

(
λ
B

− 300 × 10−6

2000 × 10−6

) 1
m−1

(4.77)
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Figure 4.40.: Slant ionosphere gradient detection area form = 4 receivers optimally
distributed

This expression of ρm is parametrized by the largest baseline B.

This simplifies considerably the optimization problem for m monitors when m ≫ 1.
It is sufficient to make a search along the largest baseline B, the other baselines are
directly calculated using 4.74 and 4.77.

4.4.8. Ionosphere Gradient as a Diffusion Process

Let’s consider the optimal configuration with 4 receivers and the gradient range from
[−2000,+2000] mm/km (see Fig. 4.43for the detectability area).

At the optimal standard deviation of the phase error (The maximum that provides
100% detectability in the area [−2000,−300] ∪ [300, 2000] mm/km). Although it is
not required to extend the monitor detection area to the region [−300, 300] mm/km,
the risk of having an effective gradient resulting in an unacceptable differential error
due to a decorrelation of the gradient observed by the monitor and the effective
gradient experienced by the GBAS system may constraint us to pay more attention
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Figure 4.41.: ASIGMAm configuration using m+ 1 reference receivers (RR). RR0

is set by convention as the reference receiver for all individual monitors, bi is the
baseline between RR0 and RRi. we call B the largest baseline (between RR0 and
RR1)

Figure 4.42.: Set of detectable gradients in green. The minimum ση that provides
full detectability in [300,2000] mm/km gradient range is represented with a bold
black line. In blue the border of the monitor with the largest baseline and in red
the one with the shortest baseline. The baselines used are b⋆1 = 221 m, b⋆2 = 117
m, b⋆3 = 62 m and for that we obtain σ⋆η = 8.65 mm.
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Figure 4.43.: Slant ionosphere gradient detection area form = 4 receivers optimally
distributed

to this area. The justification of this concern is based on the hypothesis usually
admitted by the civil aviation community which describes the ionosphere threat
as a locally constant gradient. In this section we take into consideration a spatial
Taylor expansion of the ionosphere delay in a neighborhood of a reference point.
This approximation is justified only if the effect of the second order expansion is
negligible. The aim of this section is to precisely study the sensitivity of the proposed
ionosphere gradient monitor to second order terms.

4.4.8.1. Diffusion model of the ionosphere Gradient

Let Ix be the ionosphere delay experienced by a satellite-user range located at a
distance x from a reference point considered as the origin of the one dimensional
spatial axis of interest. Let I0 be the ionosphere delay at this reference point. For x
located in a neighborhood of the reference point and provided that the ionosphere
delay is twice differentiable at the reference point, we can write the Taylor expansion
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as follows:

Ix = I0 + x
∂I

∂x
(0) +

x2

2

∂2I

∂x2
(0) + o

(
x3
)

We define the effective gradient as follows:

αeff (x) ≡ Ix − I0

x
(4.78)

which can be written using the Taylor expansion suggested above and by introducing
the same notation for the ionosphere gradient as before (αx) at distance x,

αeff (x) = α0 +
x

2

∂α

∂x
(0) + o

(
x2
)

(4.79)

In the preceding equation, either the monitoring equipment can provide an estima-
tion of the derivative of the ionosphere gradient at the reference point or we have
to consider this as a random variable. Let’s define ∂α

∂x
(0) = ξ0x being a centered

normal random variable with V [ξ0] = σ2
α′

0
. If we neglect the higher order terms for

the expectation and the variance calculus, we have:

E [αeff] = α0

and

V [αeff] =
x2

4
σ2

E0

This approach considers only the derivative of the ionosphere gradient at the refer-
ence point being a random variable. What happens if the derivative of the ionosphere
gradient cannot any more be considered as a constant in the neighborhood for which
the Taylor expansion applies but as a random variable. For simplicity we consider
the derivative of the ionosphere gradient being modeled by a bias term (drift of the
gradient) and a centered White Gaussian Noise process:

dαx
dx

= β + ξx (4.80)

with ξx ∼ N
(
0, σ2

ξ

)
for which the variance σ2

ξ and the bias β are considered constant.
The variation of these parameters will be considered later for the sensitivity analysis.
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yB

Iy

IB

0

Gradient realization
Observed gradient

Ionosphere delay density

Ionosphere delay

Distance to RR0

Effective gradient

Figure 4.44.: Representation of the effective gradient

Let’s write the equation above in a differential form:

dαx = βdx+ σξdBx (4.81)

Where Bx is the one dimension Brownian motion in the direction of interest with

a diffusion coefficient
σ2

ξ

2
. Let Iy be the Ionosphere delay experienced by the signal

coming from a given satellite to the aircraft. Let I0 be the ionosphere delay experi-
enced by the signal coming from the same satellite to the GBAS station. Let y be
the distance between the aircraft and the GBAS reference receiver RR0 (only the
horizontal component) see Fig. 4.44.

From 4.78, we can express Ix−Io taking into account the expression of the infinites-
imal gradient defined by 4.81:

αeff (y) =

´ y

0
αxdx

y
(4.82)

αeff (y) =

´ y

0
(α0 + βx+ σξBx) dx

y
(4.83)

αeff (y) =
yα0 + y2

2
β + σξ

´ y

0
Bxdx

y
(4.84)
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For characterization of the effective gradient, we propose to calculate its expectation
and variance. Let’s call αOeffy the effective ionospheric gradient overbound for an
aircraft located at distance y from the reference receiver. The integral form of
4.81 can be written as follows considering the conservative value αOeffy based on
the maximum value of the diffusion parameters: the maximum drift βmax and the

maximum diffusion coefficient
σ2

ξ max

2
.

αOeffy = α0 +
y

2
βmax +

σξmax

y

ˆ y

0

Bxdx (4.85)

E [αOeffy] = α0 +
y

2
βmax

And the variance:

V [αOeffy] =
σ2
ξmax

y2
E



(
ˆ y

0

Bxdx

)2



By applying the integration by part formula for
´ y

0
Bxdx we obtain:

V [αOeffy] =
σ2
ξmax

y2
E



(
yBy −

ˆ y

0

xdBx

)2



y2

σ2
ξmax

V [αOeffy] = E


y2B2

y +

(
ˆ y

0

xdBx

)2

− 2yBy

ˆ y

0

xdBx




y2

σ2
ξmax

V [αOeffy] = y2E
[
B2
y

]
+ E



(
ˆ y

0

xdBx

)2

− 2yE

[
By

ˆ y

0

xdBx

]

We have E
[
B2
y

]
= y (Property of Brownian motions) and using the Ito isometry,

the second term can be written as follows:

E



(
ˆ y

0

xdBx

)2

 = E

[
ˆ y

0

x2dx

]
=
y3

3
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The integral in the third term can be determined by applying the 1-dimensional
Ito-formula:

d (xBx) = Bxdx+ xdBx

which can be written in an integral form:

yBy =

ˆ y

0

Bxdx+

ˆ y

0

xdBx

or:

ˆ y

0

xdBx = yBy −
ˆ y

0

Bxdx

E

[
By

ˆ y

0

xdBx

]
= E

[
By

(
yBy −

ˆ y

0

Bxdx

)]

E

[
By

ˆ y

0

xdBx

]
= y2 −

ˆ y

0

E [ByBx] dx

E

[
By

ˆ y

0

xdBx

]
= y2 −

ˆ y

0

(x ∧ y) dx = y2 − y2

2

Finally we have:

y2

σ2
ξmax

V [αOeffy] = y3 +
y3

3
− 2y

(
y2 − y2

2

)
=
y3

3

Finally the variance of the effective gradient is:

V [αOeffy] =
y

3
σ2
ξmax (4.86)

We can write the expression of the observed gradient at the monitor level function
of the effective gradient:

α0 = αOeffy − y

2
βmax − σξmax

y

ˆ y

0

Bxdx (4.87)
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These results have been compared with those obtained with simulations and the
results have been plotted in Fig. 4.45. The simulations have been conducted by
generating randomly (using Matlab’s random generator functions) sample paths
solution of equation 4.85. As we can see inFig. 4.45, the theory matches perfectly
with the simulations.
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Figure 4.45.: Validation of αOeffy using simulations with βmax = 0 [mm/km2],
α0 = 300 [mm/km], σξmax = 850 [mm/km2] and Kση = 7.6 (corresponding to
Pmd = Pffd = 10−4)

4.4.9. Propagation of non detectable gradient area

The range [−300,+300]mm/km corresponds to the gradient range that cannot and
until now must not be detected by the absolute slant ionosphere gradient monitor
on ground. This requirement is for the effective gradient, i.e. the one corresponding
to the slant ionosphere residual delay divided by the baseline between the aircraft
and the GBAS location (the reference of the pseudo range corrections). Admitting
that the gradient observed at the GBAS station is the same as the effective gradient
is a strong assumption. In the last section we show that taking a very simple
model of a gradient uncertainty diffusion (Brownian motion) makes available the
assumption of a constant gradient. The undetectable area is increased and becomes[
−300 − (kffd + kmd) σα

√
y
3
, 300 + (kffd + kmd) σα

√
y
3

]
.

If we want to guaranty with 10−9 that the non detectable area of the effective
gradient remains [−300, 300]mm/km, it will be necessary to increase the detectable
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area of the ground monitor to the level

[
−2000,−300 + (kffd + kmd)σα

√
y

3

]
∪
[
300 − (kffd + kmd) σα

√
y

3
, 2000

]
(4.88)

This will give additional constraints for either the location of the monitoring receivers
or the level of acceptable residual noise and therefore the quality of the antennas
and receivers. The largest baseline provides the limitation to −300 to 300 mm/km.
It would be possible to reduce this area by adding a new receiver that build a
larger baseline than what we originally have. Depending on the maximal gradient
dispersion (σα), one should place the receiver at a suited location.

σα

αα0 α0

Figure 4.46.: Enlarged baseline strategy. By increasing the largest baseline, we
can reduce the minimum detectable gradient to count for the diffusion of the
ionosphere gradient at user level

Fig. 4.46 assumes a constant level of receiver performances (σ∆φ). The second strat-
egy consist of reducing the level of double difference carrier phase noise and keeping
the same location of receivers (see Fig. 4.47). These two approaches have an impact
in the monitor architecture and may introduce strong constraints for the GBAS
implementation.

In this area, we assumed a Brownian like diffusion process for the gradient. This
is a an assumption that will need to be checked using real observations. The aim

160



4.4 Single Frequency Ground Ionosphere Gradient Monitor

σα

αα0 α0

Figure 4.47.: Reduced carrier noise strategy. By reducing the double difference
carrier phase error (i.e. by choosing higher performance antennas for example)
we can reduce the minimum detectable gradient to count for the diffusion of the
ionosphere gradient at user level

of this section is to try to analyze the impact of uncertainty in the definition of
the gradient. A sensitivity analysis can show two results: Either the performance
parameters are very sensitive to the diffusion coefficients or they aren’t. If not, this
would mean that it is not necessary to investigate further the level of uncertainty. If
yes, this means that there is a need to investigate further. The further investigations
consist of setting a permanent mini network located in a small size area (a radius
of 10 km) trying to estimate statistically σα especially its dependency with α.

4.4.10. Sensitivity Analysis of the Largest Baseline to σα

For a given σ⋆φ, the detection of the lower bound ionosphere gradient is given by the
monitor with the largest baseline. In that case the lower bound ionosphere gradient
can be written as a function of σ⋆, and the largest baseline B⋆. Let αmin be the lower
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bound of the gradient. Let rewrite the equation giving the border of detectability:

σi (α) =
⌢
σ

⌢
α
i

n − ⌣
α
i

n

·
(
α − ⌢

α
i

n

)
+

⌢
σ

⌣
α
i

n ≤ α ≤ ⌢
α
i

n (4.89)

For n = 0 we have:
⌣
α
i

0 = 0,
⌢
α
i

0 = λ
2B

and
⌢
σ = λ

2(kffd+kmd)
.

We have then:

σ (α) =
λ

2 (kffd + kmd) λ
2B

·
(
α − λ

2B

)
+

λ

2 (kffd + kmd)
0 ≤ α ≤ λ

2B
(4.90)

σ (α) =
B

(kffd + kmd)
·
(
α − λ

2B

)
+

λ

2 (kffd + kmd)
0 ≤ α ≤ λ

2B
(4.91)

σ (α) =
B

(kffd + kmd)
· α 0 ≤ α ≤ λ

2B
(4.92)

We have for the optimal case:

σ⋆φ =
B⋆

(kffd + kmd)
· α⋆min (4.93)

Let α0 = 300 mm/km, we can observe that α⋆min ≈ α0. For the 4 receivers configu-
ration, α⋆min = 297.5 mm/km. We can interpret this margin as being the authorized
diffusion of the ionosphere gradient uncertainty with respect to the distance. If we
set σ⋆α being the authorized diffusion of the gradient uncertainty for the optimal
configuration, we have:

σ⋆α =

√
3/y

kffd + kmd
(α0 − α⋆min) α⋆min < α0 (4.94)

For y = 10 km for example a numerical application for the case of 4 optimally aligned
receivers shows that σ⋆α = 0.1826 mm/km3/2 which is a very small value.

Is it sufficient to protect an aircraft equipped with a GBAS system against large
gradients? A better knowledge of the second ionosphere derivative is necessary
especially for the gradients close to α0. If the ionosphere gradient decorrelation has

162



4.4 Single Frequency Ground Ionosphere Gradient Monitor

a standard deviation larger than σ⋆α, the largest baseline must be extended. In order
not to lose the optimality, a fifth receiver may be necessary to be installed.

Let assume that an independent permanent network of stations provides an estima-
tion of this decorrelation being σ̂α > σ⋆α. The baseline between the reference and
the fifth receiver Bα is a function of the optimal configuration.

From the following relation:

σφ =
b

k
αb

From now on, we set k ≡ kffd + kmd. b is the baseline, αb is the minimum detectable
gradient for the monitor whose baseline is b, and σφ is the standard deviation of the
carrier phase error for the considered receivers, assuming that every receivers have
the same carrier phase error level. The relation between σ̂α and αb is given by:

σ̂α =

√
3/y

k
(α0 − αb)

Thus:

αb = α0 − k

√
y

3
σ̂α

We can express b function of σ̂α:

b =
kσφ

α0 − k
√

y
3
σ̂α

(4.95)

The sensitivity to σ̂α of the baseline is the partial derivative of the baseline with
respect to σ̂α:

∂b

∂σ̂α
= k

√
y

3

kσφ(
α0 − k

√
y
3
σ̂α
)2 (4.96)

We see that b and its derivative with respect to σ̂α tend to infinity when σ̂∞
α = α0

k

√
3
y
.

In fact for high values of b, it is necessary to add other receivers in order to fully
cover the gradient range [αb, α0].
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Figure 4.48.: Baseline in function of maximum distance to aircraft and gradient
uncertainty

4.4.11. Sensitivity Analysis of the Carrier Phase Error to σα

In this section, we consider the architecture of the aligned monitors constant. We
adopt the second strategy: to reduce the carrier phase error in order to enlarge the
range of observability of the gradient monitor. We recall the equation giving the
baseline function of σ̂α:

b =
kσφ

α0 − k
√

y
3
σ̂α

(4.97)

Let’s consider this time the baseline B⋆ as the largest baseline of the monitors. σφ
can be expressed function of σ̂α:

σφ =
B⋆

k

(
α0 − k

√
y

3
σ̂α

)
(4.98)

The partial derivative with respect to σ̂α is:

∂σφ
∂σ̂α

= B⋆

√
y

3
(4.99)

As in the previous chapter σ̂∞
α = α0

k

√
3
y

is a limit case. The unique solution while
fixing all parameters constant is to set σφ = 0. This is of course not possible due to
the residual carrier phase errors that cannot be eliminated.
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Figure 4.49.: Sensitivity of Baseline in function of maximum distance to aircraft
and gradient uncertainty

4.4.12. Estimation of the Ionosphere Gradient Derivative

This section will investigate a method to estimate this second derivative using a
permanent mini-network of receivers.

In the previous chapter, it has been shown that for some values of σα the required
monitor baseline can be very sensitive to this value.

The diversity of ionosphere situations and the lack of observability of effects that
influence the ionosphere total electron content makes it difficult to provide a deter-
ministic behavior of the gradient derivative. Rather than trying to solve the dynamic
equations describing the behavior of the ionosphere, we opt to a statistical approach
using a permanent network of dual frequency reference receivers able to measure
in at least 3 different aligned points close enough to have a good estimate of the
local derivatives of the ionosphere delay but far enough in order to avoid multipath
correlations. This should provide us the measurement equipment for which we will
base our safety analysis.

Depending on the behavior of the ionosphere second spatial derivative, the require-
ments for the ground monitor could be impacted and as a consequence its archi-
tecture would need to be adapted. In fact the largest baseline may have to be
extended.
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Figure 4.50.: Carrier phase error in function of maximum distance to aircraft and
gradient uncertainty

4.4.13. Sensitivity using Error Structures

The aim of this section is to use the error structures developed in [Bou03] to de-
termine the sensitivity of the optimal baseline to non direct observability of the
effective gradient.

Another approach consists of defining the uncertainty in the gradient measured by
the ground monitor as an error that propagates through the model defined by the
following equation:

dαx = σαdBαx (4.100)

The erroneous quantity is σα. The problem we propose to solve is to study the
sensitivity of the baseline and the carrier phase error with respect to an error in this
quantity. For that we use the approach with error structures.

Let’s represent the error on the quantity σα by ∆σα . We recall the expression of b:

b =
kσφ

α0 − k
√

y
3
σα

We first define an error structure on σα: S = ([0, 2 × 10−6] ,B ([0, 2 × 10−6]) ,P,D,Γ : u → u′2)
(see Appendix B). We want to determine the quadratic error on b given the error on
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Figure 4.51.: Sensitivity of Carrier phase error in function of maximum distance
to aircraft and gradient uncertainty

σα. An error on σα could be basically a lack of information provided by a permanent
network. The chain rule provides the following quadratic error on b provided that
b ∈ D.

Γ [b (σα)] =

(
∂b

∂σα

)2

Γ [σα] (4.101)

Γ [b (σα)] =


k
√
y

3

kσφ(
α0 − k

√
y
3
σα
)2




2

Γ [σα] (4.102)

We assume that the variance of σα is independent of α. We should keep this as
a simplification, as the ionosphere is a complex middle that obeys electrodynamics
laws. The investigations of the physical behavior of the ionosphere and its modeling
is not the aim of this thesis.

This means that the sensitivity to an error in σα is simply the first order derivative
of error in b with respect to σα.

∂Γ [b (σα)]

∂Γ [σα]
=


k
√
y

3

kσφ(
α0 − k

√
y
3
σα
)2




2

(4.103)
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This is to be compared with the equation obtained in the previous chapter:

∂b

∂σ̂α
= k

√
y

3

kσφ(
α0 − k

√
y
3
σ̂α
)2 (4.104)

The results are the same (Γ being a variance operator, the expression is squared).
An advantage of using the error structures approach is to be able to find a chain law
for the propagation of the bias using a second order derivative (taking into account
not only the bias but also the Γ). As presented in the chapter 2, the chain rule of
the bias can be expressed as follows:

A [Φ (F1, F2, ..., Fp)] =
∑

i

Φ
′

i (F1, F2, ..., Fp)A [Fi]+
1

2

∑

i,j

Φ”
ij (F1, F2, ..., Fp) Γ [Fi, Fj ]

(4.105)

Applied to b and assuming that σα is the only erroneous variable, we have:

A [b (σα)] =
∂b

∂σα
(σα)A [σα] +

1

2

∂2b

∂σ2
α

(σα) Γ [σα] (4.106)

We have:

∂b

∂σα
= k

√
y

3

kσφ(
α0 − k

√
y
3
σα
)2

and:

∂2b

∂σ2
α

= 2k2 y

3

kσφ(
α0 − k

√
y
3
σα
)3

Thus:

A [b (σα)] = k

√
y

3

kσφ(
α0 − k

√
y
3
σα
)2A [σα] + k2y

3

kσφ(
α0 − k

√
y
3
σα
)3 Γ [σα] (4.107)
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A [b (σα)] = k

√
y

3

kσφ(
α0 − k

√
y
3
σα
)2


A [σα] +

k
√

y
3(

α0 − k
√

y
3
σα
)Γ [σα]


 (4.108)

Assuming that the error on σα is unbiased, due to non-linearity of b, a bias appears
due to the error variance on σα. It is to be noticed that for both Γ and A there is a

singularity for the curve defined by y = 3
(
α0

kσα

)2

In the following we are going to show the numerical results when simulating the
errors on σα using for example a centered normal distribution with a standard de-
viation of 10−9 m/m2. The chain rule of the error propagation is based on a second
order Taylor expansion for both the variance and the bias operator which apply in
a neighborhood of the reference point considered. The graphical representation of
the required baseline with respect to the maximum distance to aircraft and to the
diffusion coefficient of the ionosphere gradient is shown in Fig. 4.52.

Figure 4.52.: Surface of required baseline

4.53a and 4.53b show a strong sensitivity of the required baseline to errors on σα

when approaching the curve defined by y = 3
(
α0

kσα

)2
. Due to a strong non-linearity

while approaching this curve, a bias appears in the required baseline even if the
error on σα is centered.

4.5. Conclusion and major contributions

In the first two sections of this chapter, we investigated the impact of pseudo range
errors with respect to GNSS performances when considering augmentations [BSS05,
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BGN06, BRM08b, MJB+08b, MJB08a, MBD09, DBR09a, BMJ+08, BRM08a, BRWM08,
DBM09, MBJ+09, RBDM09, BDLK10b, DMA+10, DBR09b, DBRP10, HSB+10,
BS05]. SBAS performance has been assessed considering the use of instantaneous
pseudo range error approach. The IPRE concept provides statistics to the NIMP
(Network Integrity Monitoring Platform) that is used to evaluate the performance
of SBAS using accumulated measurements. The third subsection analyses an iono-
sphere gradient monitoring technique candidate for GBAS GAST-D. This consti-
tutes the major contribution made by the author to this chapter [BDF+10, BRMP11,
BM12]. In this part a sensitivity analysis has been made to different parameters to
test the stability of the solution to non precise estimation of the ionosphere gradient
model parameters.
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(a) Error variance of the required baseline

(b) Error bias of the required baseline

Figure 4.53.: Sensitivity analysis of the required baseline assuming an error on
σα = 10−9m/m2
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5. GNSS Positioning Integrity using
Inertial Sensors

THE WORK DESCRIBED IN THIS CHAPTER IS MY PERSONAL CONTRI-
BUTION.

5.1. Introduction

Although GNSS signals are available almost everywhere, there are specific scenar-
ios especially during surface movement of aircraft or for car or train navigation
where the signals are either blocked by obstacles, reflected by surrounding objects
or jammed by radio frequency interference due to other emitting equipment in the
vicinity of the user. Possible additional sensors that can overcome this problem is
the use of inertial measurement units. The inertial measurement units sense the
accelerations in 3 directions and the angle rates also with respect to 3 orthogonal
axis. Alone, the inertial measurement unit provides only a relative position that
drifts with respect to time due to the accumulation of errors while integrating the
acceleration measurements at position level. But in combination with GNSS, the
performance can reach a very high level of accuracy.

The aim of this chapter is to estimate the performance in terms of accuracy and
integrity of a navigation solution based on the use of inertial sensors. Under specific
assumptions and for a 1D problem, a close form of the bias and variance propagation
is suggested.

Inertial error models have been widely discussed in the literature. According to [GE04],
however it is sufficient for low-cost sensors to use a simplified version. Given that
the misalignment of the different measuring axes are known:

ŝ(t) = (1 + sf)s(t) + b(t), (5.1)

where ŝ(t) is the measured sensor output, i.e an angular turn rate or a 1-D acceler-
ation. The true value of this quantity is denoted as s(t). This true quantity can be
used as the input acceleration in simulations. This is possible to simulate different
type of scenarios as for example vibrations or constant acceleration, deceleration.
An ideal sensor would measure directly s (t) but in the model and due to sensor
imperfections, the output of the sensor has a proportional to the true quantity part
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(including a scaling factor sf ) and an additive drift depending on time: b(t). The
latter can be modeled by a constant offset b0 as well as a time varying component
b1(t) and a noise bw.

b (t) = b0 + b1 (t) + bw (5.2)

We can assume that the offset is corrected by an initial calibration of the sensors.
Additionally, the noise is assumed to be Gaussian distributed with zero-mean and
a variance σ2

w. The time-varying component is represented by a 1st-order Gauss-
Markov process which can be expressed mathematically by

ḃ1(t) = −1

τ
b1(t) + nb1 , (5.3)

where τ is the time constant of the Gauss-Markov process and nb1 is a noise which
can be assumed to be Gaussian distributed with zero mean and variance σ2

g . It is
also known as an Ornstein-Uhlenbeck process in financial mathematics with 1

τ
the

rate of mean reversion and with volatility σg (see sec. A.3)

5.2. Error Propagation Equation

5.2.1. The Generator of the Error Diffusion Process

Let’s consider only a one dimensional translational acceleration (without attitude
change). The position of the mobile can be determined using only one accelerometer
or the combination of redundant accelerometers in the direction of the acceleration.
We simplify the Equation (5.1) to obtain:

ŝ(t) = (1 + sf )s(t) + b0 + b1(t) + bw, (5.4)

Let δŝ(t) be the deviation of the measured acceleration with respect to the true
acceleration or the input acceleration:

δŝ (t) = ŝ (t) − s(t) (5.5)

The equation verified by δŝ(t) is derived from Equation 5.4:

δŝ(t) = sfs(t) + b0 + b1(t) + bw (5.6)

The time-varying bias b1(t) is solution of the stochastic differential Equation (5.3).

If we rewrite the equation 5.3 in a differential way (Ito form) and introducing the
one-dimensional Brownian motion Bt we obtain:

db1t = −1

τ
b1tdt+ σgdBgt. (5.7)
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5.2 Error Propagation Equation

The vertical deviation of the speed δv̂ (t) is the integral of the measured acceleration
deviation δŝ (t).

dδv̂t = (sfs (t) + b0 + b1t) dt+ σwdBwt (5.8)

And the vertical position deviation can be written in the following form:

dδx̂t = δv̂tdt (5.9)

Let define Xt = (b1t δv̂t δx̂t)
T as the state vector of our problem.

The Stochastic differential equation can be written in the following form:

dXt = βt (Xt) dt+ σdBt (5.10)

with βt (Xt) =
(
− 1
τ
b1t sfs (t) + b0 + b1t δv̂t

)T
, σ =


 σg 0 0

0 σw 0



T

and dBt =

(dBgt dBwt)
T .

It can be seen that under the considered assumptions Xt is an Ito diffusion process
characterized by a drift βt (Xt) and a diffusion matrix: 1

2
σσT . The Generator of the

diffusion process can be written in the following general form:

Af (x) =
∑

i

βi (x)
∂f

∂xi
+

1

2

∑

i,j

(
σσT

)
i,j

(x)
∂2f

∂xi∂xj
(5.11)

Which in our case can be written as follows:

Af (x) = −1

τ
b1
∂f

∂b1
+[(1 + sf) s (t) + b0 + b1]

∂f

∂δv̂
+ δv̂

∂f

∂δx̂
+

1

2
σ2
g

∂2f

∂b2
1

+
1

2
σ2
w

∂2f

∂δv̂2

(5.12)

for any f ∈ C2
0 (R). (see Appendix A)

175



Chapter 5 GNSS Positioning Integrity using Inertial Sensors

5.2.2. The Kolmogorov Forward Equation (KFE)

The Kolmogorov Forward Equation (described in sec. A.2) gives the law of evolution
of the density of distribution with respect to time:

∂p

∂t
=

1

τ

∂b1p

∂b1

− [sfs (t) + b0 + b1]
∂p

∂δv̂
− δv̂

∂p

∂δx̂
+

1

2
σ2
g

∂2p

∂b2
1

+
1

2
σ2
w

∂2p

∂δv̂2
(5.13)

p (0, x) = f (x) (5.14)

where f is the initial density.

5.2.3. Numerical Resolution of the KFE

In this section we propose a numerical resolution of the KFE.

This equation can be written in the form of 3 flux A, B and C towards each variables:

∂p

∂t
=
∂A

∂b1
+
∂B

∂δv̂
+
∂C

∂δx̂
(5.15)

with

A =
1

τ
b1p+

1

2
σ2
g

∂p

∂b1

B = − [sfs (t) + b0 + b1] p+
1

2
σ2
w

∂p

∂δv̂
C = −δv̂p

This form of the equation let us suggest to use an operator splitting method to solve
the system.[ZMV98, PTVF07].

The numerical scheme we are going to adopt here is as suggested in [PTVF07] a
Crank-Nicholson tridiagonal scheme. This method has shown a high level of stability
as it uses an implicit scheme.

We discretize over all variables of p. Let pni,j,k the probability at discrete time n
for the discrete value i of b1, j of δv̂ and k of δx̂. The operator splitting method
suggest to divide the time from n to n+ 1 in 3 equally spaced intervals:

[
n, n + 1

3

]
∪[

n+ 1
3
, n+ 2

3

]
∪
[
n+ 2

3
, n+ 1

]
.
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5.2 Error Propagation Equation

For each interval we apply one of the splitting operator: This drives to:

p
n+ 1

3
i,j,k − pni,j,k

∆t
=
A
n+ 1

3
i+1,j,k − A

n+ 1
3

i−1,j,k

2∆b1

(5.16)

p
n+ 2

3
i,j,k − p

n+ 1
3

i,j,k

∆t
=
B
n+ 2

3
i,j+1,k −B

n+ 2
3

i,j−1,k

2∆v̂
(5.17)

pn+1
i,j,k − p

n+ 2
3

i,j,k

∆t
= −δv̂j

pn+1
i,j,k+1 − pn+1

i,j,k−1

2∆x̂
(5.18)

For which we set:

Ai+1,j,k =
1

τ
b1i+1

pi+1,j,k +
1

2
σ2
g

pi+1,j,k − pi,j,k
∆b1

Ai−1,j,k =
1

τ
b1i−1

pi−1,j,k +
1

2
σ2
g

pi,j,k − pi−1,j,k

∆b1

Bi,j+1,k = − [sfs (t) + b0 + b1i
] pi,j+1,k +

1

2
σ2
w

pi,j+1,k − pi,j,k
∆δv̂

Bi,j−1,k = − [sfs (t) + b0 + b1i
] pi,j−1,k +

1

2
σ2
w

pi,j,k − pi,j−1,k

∆δv̂

Let’s rewrite the equation 5.16:

p
n+ 1

3
i,j,k −pni,j,k =

∆t

2τ∆b1

(
b1i+1

p
n+ 1

3
i+1,j,k − b1i−1

p
n+ 1

3
i−1,j,k

)
+
σ2
g∆t

4∆b2
1

(
p
n+ 1

3
i+1,j,k − 2p

n+ 1
3

i,j,k + p
n+ 1

3
i−1,j,k

)

(5.19)

by putting all together the terms at n+ 1
3

and by defining rA1 = ∆t
2τ∆b1

and rA2 =
σ2

g∆t

4∆b2
1

we obtain the tridiagonal scheme:

(
rA1b1i−1

− rA2

)
p
n+ 1

3
i−1,j,k+(1 + 2rA2) p

n+ 1
3

i,j,k −
(
rA1b1i+1

+ rA2

)
p
n+ 1

3
i+1,j,k = pni,j,k (5.20)
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by proceeding in the same way for equation 5.17, we obtain:

p
n+ 2

3
i,j,k −pn+ 1

3
i,j,k = −∆t [sfs (t) + b0 + b1i

]

2∆δv̂

(
p
n+ 2

3
i,j+1,k − p

n+ 2
3

i,j−1,k

)
+
σ2
w∆t

4∆δv̂2

(
p
n+ 2

3
i,j+1,k − 2p

n+ 2
3

i,j,k + p
n+ 2

3
i,j−1,k

)

(5.21)

by putting all together the terms at n + 2
3

and by defining rB1 = −∆t[sfs(t)+b0+b1i ]
2∆δv̂

and rB2 =
σ2

bw
∆t

4∆δv̂2 , we obtain the tridiagonal scheme:

(rB1 − rB2) p
n+ 2

3
i,j−1,k + (1 + 2rB2) p

n+ 2
3

i,j,k − (rB1 + rB2) p
n+ 2

3
i,j+1,k = p

n+ 1
3

i,j,k (5.22)

The “True” acceleration s (t) can be considered as the a priori scenario for which we
want to study the error propagation. In the following example, we simulate different
scenarios.

Let’s define rC = − δv̂j ∆t

2∆x̂
the third discrete equation can be written as follows:

rCp
n+1
i,j,k−1 + pn+1

i,j,k − rCp
n+1
i,j,k+1 = p

n+ 2
3

i,j,k (5.23)

Finally from 5.20, 5.22 and 5.23 we build up the expression of the density function
for each discrete point. In the following we represent the graphical representation
of error propagation using a specific scenario.

5.2.4. Numerical results and analysis

We solve the numerical problem using the following parameters:

• σb1 = 1.2 milli-g

• σw = 1 milli-g

• τ = 5 seconds

• sf = 0.1

• s (t) = 0

• σb10 = 0.15m/s2

• σδv̂0 = 0.05m/s this corresponds to a typical vertical velocity based on GBAS
measurement

• σδx̂0 = 1.6m which corresponds to a conservative standard deviation of a GBAS
vertical error
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5.2 Error Propagation Equation

The propagation time considered is Tf = 10 seconds and the following state grid
has been used:

• b1 ∈ [−20σb10 , 20σb10 ] with a step of 40σb10/200

• δv̂ ∈ [−40σδv̂0 , 40σδv̂0 ] with a step of 80σδv̂0/200

• δx̂ ∈ [−30σδx̂0 , 30σδx̂0 ] with a step of 60σδx̂0/200

• t ∈ [0, Tf ] with a step of Tf/100

The dimension of the grid has been chosen as a trade off between high resolution
and computational memory. This is for the moment considered as a fixed grid that
can be improved in a future work using an adaptive grid.

Figure 5.1.: Evolution of the density of the time varying bias of the accelerometer
b1 vs. t

Fig. 5.1 shows the solution of the Kolmogorov forward equation. The integration
time is 10 seconds. The used parameters are τ = 100 seconds and σb1 = 1.2 milli-g
as proposed in [GE04]. We assumed an initial Gaussian distribution of b1 to be
centered with a standard deviation of 5 × 10−2m/s2.

To show the impact of imperfections in the accelerometer, let assume the true ac-
celeration to be a sinusoidal function of time.Fig. 5.2 shows the distribution of the
velocity error with respect to time.
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Figure 5.2.: Evolution of the density of velocity error vs. t

180



5.2 Error Propagation Equation

Fig. 5.3 shows the evolution of the altitude error. We assume that the initial distri-
bution is the one provided by a GBAS (Ground Based Augmentation System) error
distribution. The probability density function taken for GBAS is a very conservative
one. Additionally to this plot, we plot the protection level envelope corresponding
to an integrity risk of 0.5 × 10−7 (represented by the 2 curves). These protection
envelopes are calculated for each time step by integrating from the bottom and from
the top the probability density function at each time step until the required integrity
risk has been reached. An equal allocation for the risk at both side of the PDF has
been assumed.

Figure 5.3.: Evolution of the density of altitude error vs. t using GBAS along
track error over-bound coasted with inertial

A GBAS user receiver provides a 2Hz position solution to a user (usually an aircraft
on approach) located in the vicinity of the GBAS station. In case of a GBAS
outage, it is possible to use inertial sensors to coast the position. The maximum
period of time allowed for coasting is the one that provides a protection level below
the required alarm limit (The maximum tolerable error in the navigation system).
As the inertial measurement unit is an integrator, the error are cumulative and the
maximum level of error corresponds to the maximum coasting time (just before the
next GBAS update).

For each time t, it is possible to find the Gaussian over-bound of the vertical er-
ror, take the maximum standard deviation of all these Gaussian over bounds in
the considered period of time and multiply it with a coefficient to account for the
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maximum allowed integrity risk. As the altitude error is a diffusion process with a
diffusion coefficient greater than one, the maximum values are obtained at t = T (at
the end of the time period). We can see that the protection level is very sensitive
to the integration time. We considered the initial distribution of b1 to be centered
which is not the reality. A non centrality term will automatically introduce a bias
in the altitude error and should be taken into consideration in the protection level
equation.

5.3. The Analytical Evolution of the Expectation and

the Variance

The numerical resolution of the pdf evolution of the diffusion process was not neces-
sary because the error process is a linear Ito diffusion and in that case we know that
the state process is Gaussian distributed for each time t therefore it is sufficient to
know the propagation of the first and second moment of the diffusion process. For
that we can rewrite the Ito equation of the problem as an Ito integral:

dXt = βt (Xt) dt+ σdBt (5.24)

with βt (Xt) =
(
− 1
τ
b1t sfs (t) + b0 + b1t δv̂t

)T
, σ =


 σg 0 0

0 σw 0



T

and dBt =

(dBgt dBwt)
T .

Xt = X0 +

ˆ t

0

βu (Xu) du+ σBt

If we consider the first component of the state vector, we have:

db1t = −1

τ
b1tdt+ σgdBgt

This is in fact an Ornstein-Uhlenbeck process (for continuous time) or an AR(1)
(for discrete time) with equilibrium at 0.

We can show that the integrated process can be written as follows:

b1t = b10e
− t

τ + σg

ˆ t

0

e
u−t

τ dBgu
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5.3 The Analytical Evolution of the Expectation and the Variance

we have the mean and the variance (assuming b0 being a normal distributed random
variable):

E [b1t] = E [b10] e− t
τ and V [b1t] = E

[
(b1t −E [b1t])

2
]

= τ
σ2

g

2

(
1 − exp

(
−2t

τ

))
+

V [b10] e− 2t
τ

The integrated form of the stochastic differential equation can be written as follows:

b1t = b10e
− t

τ + σg
´ t

0
e

u−t
τ dBgu

δv̂t = δv̂0 +
´ t

0
(sfs (u) + b0 + b1u) du+ σwBwt

δx̂t = δx̂0 +
´ t

0
δv̂udu

We propose to calculate the expectation and the variance of the process for each
time step:

E [Xt] = E [X0] + E

[
ˆ t

0

βt (Xt) dt

]
+ σE [Bt]

E [Bt] = 0 and E
[
´ t

0
βt (Xt) dt

]
=
´ t

0
E [βt (Xt)] dt

E [Xt] = E [X0] +

ˆ t

0

E [βt (Xt)] dt

We recall that Xt = (b1t δv̂t δx̂t)
T

´ t

0
E [βt (Xt)] dt =

´ t

0

(
− 1
τ
E [b1t] sfs (t) + b0 + E [b1t] E [δv̂t]

)T
dt

Therefore we have:

E [b1t] = E [b10] e− t
τ

E [δv̂t] = E [δv̂0] + sf
´ t

0
s (u) du+ b0t− τE [b10]

(
e− t

τ − 1
)

E [δx̂t] = E [δx̂0] + E [δv̂0] t+ sf
´ t

0

(
´ r

0
s (u) du

)
dr + 1

2
b0t

2 + τ 2E [b10]
(
e− t

τ + t
τ

− 1
)

The variance of the state process is: V [Xt] = E
[
(Xt −E [Xt]) (Xt −E [Xt])

T
]

We first express the vector Xt−E [Xt] ≡ X̃t function of all parameters of the model:

b̃1t = b10e
− t

τ −E [b10] e− t
τ + σg

´ t

0
e

u−t
τ dBgu

δ̃v̂t = δv̂0 +
´ t

0
(sfs (u) + b0 + b1u) du+ σwBwt − E [δv̂t]

δ̃x̂t = δx̂0 +
´ t

0
δv̂udu− E [δx̂t]
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b̃1t = b̃10e
− t

τ + σg
´ t

0
e

u−t
τ dBgu

δ̃v̂t = δv̂0 + sf
´ t

0
s (u) du+ b0t+

´ t

0
b1udu+ σwBwt − E [δv̂t]

δ̃x̂t = δx̂0 +
´ t

0
δv̂udu− E [δx̂t]

b̃1t = b̃10e
− t

τ + σg
´ t

0
e

u−t
τ dBgu

δ̃v̂t = δ̃v̂0 − τ b̃10

(
e− t

τ − 1
)

+ σg
´ t

0

´ r

0
e

u−r
τ dBgudr + σwBwt

δ̃x̂t = δ̃x̂0 + δ̃v̂0t+ τ 2b̃10

(
e− t

τ + t
τ

− 1
)

+ σg
´ t

0

´ r

0

´ q

0
e

u−q
τ dBgudqdr + σw

´ t

0
Bwudu

b̃1t = b̃10e
− t

τ + σg
´ t

0
e

u−t
τ dBgu

δ̃v̂t = δ̃v̂0 − τ b̃10

(
e− t

τ − 1
)

+ σgηt (τ) + σwBwt

δ̃x̂t = δ̃x̂0 + δ̃v̂0t+ τ 2b̃10

(
e− t

τ + t
τ

− 1
)

+ σgµt (τ) + σwγt

with ηt (τ) =
´ t

0

´ r

0
e

u−r
τ dBgudr, µt (τ) =

´ t

0

´ r

0

´ q

0
e

u−q
τ dBgudqdr and γt =

´ t

0
Bwudu

V [Xt] = E
[
X̃tX̃t

T
]

ij
= cij

c11 = V [b10] e− 2t
τ + τ

σ2
g

2

(
1 − exp

(
−2t

τ

))

c22 = V [δv̂0] + τ 2V [b10]
(
e− t

τ − 1
)2

+ σ2
gV [ηt (τ)] + σ2

wt

c33 = V [δx̂0] + V [δv̂0] t
2 + τ 4V [b10]

(
e− t

τ +
t

τ
− 1

)2

+ σ2
gV [µt (τ)] + σ2

wV [γt]

c12 = −τV [b10]
(
e− 2t

τ − e− t
τ

)
+ σ2

gE

[
ηt (τ)

ˆ t

0

e
u−t

τ dBgu

]

c13 = τ 2V [b10]
(
e− 2t

τ +
t

τ
e− t

τ − e− t
τ

)
+ σ2

gE

[
µt (τ)

ˆ t

0

e
u−t

τ dBgu

]

184



5.3 The Analytical Evolution of the Expectation and the Variance

c23 = V [δv̂0] t
2−τ 3V [b10]

(
e− t

τ − 1
)(

e− t
τ +

t

τ
− 1

)
+σ2

gE [ηt (τ)µt (τ)]+σ2
wE [Bwtγt]

These coefficients define entirely the covariance matrix V [Xt].

We have assumed that b̃10, Bgu, δ̃v̂0, Bwt, δ̃x̂0 are 2 by 2 independent.

As ηt (τ), µt (τ) are function of Bgu we kept the cross products as non necessarily zero
terms.The same applies for Bwt and γt (τ). In fact E [Bwtγt] = t2

2
(see Appendix D

for more details).

We have also:

E [ηt (τ)µt (τ)] = t2τ2

2e
t
τ

+ tτ 3 + 4 tτ
3

e
t
τ

− τ 4e
t
τ

1
8
t4 − 5

2
τ 4 + τ4

2e2 t
τ

+ 3 τ4

e
t
τ

− 1
6
t3τ + 3

2
t2τ 2

(5.25)

(See Appendix D for more details),

E
[
ηt (τ)

´ t

0
e

u−t
τ dBgu

]
= 1

2
τ 2 − τ2

e
t
τ

+ τ2

2e2 t
τ

, E
[
µt (τ)

´ t

0
e

u−t
τ dBgu

]
= − tτ2

e
t
τ

+ 1
2
τ 3 − τ3

2e2 t
τ

.

We can also express the variance of the following expressions:

V [γt] = t3

3

V [ηt (τ)] = tτ 2 − 3
2
τ 3 + 2 τ3

e
t
τ

− τ3

2e2 t
τ

V [µt (τ)] = 1
3
t3τ 2 − t2τ 3 + tτ 4 − 2 tτ

4

e
t
τ

+ 1
2
τ 5 − τ5

2e2 t
τ

Finally we observe that the covariance matrix V [Xt] is not diagonal in the general
case.

We observe that when the random variables in the model of the sensor are all
Gaussian distributed (including the initial point b10, δv̂0 and δx̂0), the state vector
is also Gaussian distributed. Therefore the propagation of the mean and the variance
is sufficient if we want to characterize the whole distribution.

Given all these expressions, we can express the expectation and the variance of
the state vector just function of time t, time constant τ and the parameters of the
problem.

E [b1t] =
µb10

e
t
τ

E [δv̂t] = Istsf + b0t+ µb10τ − µb10τ

e
t
τ

+ µδv0
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E [δx̂t] = IIstsf +
1

2
b0t

2 + µb10tτ − µb10τ
2 +

µb10τ
2

e
t
τ

+ µδv0t+ µδx0

V [b1t] =
1

2
σ2
gτ − σ2

gτ

2e2 t
τ

+
σ2
b10

e2 t
τ

V [δv̂t] = σ2
gtτ

2 − 3

2
σ2
gτ

3 +2
σ2
gτ

3

e
t
τ

− σ2
gτ

3

2e2 t
τ

+σ2
b10τ

2 −2
σ2
b10τ

2

e
t
τ

+
σ2
b10τ

2

e2 t
τ

+σ2
wt+−1

2
σ2
δv0

V [δx̂t] =

1
3
σ2
gt

3τ 2 − σ2
gt

2τ 3 + σ2
gtτ

4 − 2
σ2

gtτ
4

e
t
τ

+ 1
2
σ2
gτ

5

− σ2
gτ

5

2e2 t
τ

+ σ2
b10t

2τ 2 − 2σ2
b10tτ

3 + 2
σ2

b10tτ
3

e
t
τ

+ σ2
b10τ

4

−2
σ2

b10τ
4

e
t
τ

+
σ2

b10τ
4

e2 t
τ

+ 1
3
σ2
wt

3 + σ2
δv0t

2 + σ2
δx0

With the following notations:

µb10 is the mean of the initial Gauss Markov drift

Ist is the integral with respect to time of the “true” acceleration st

sf is the scaling factor for the sensor considered

b0 is the sensor offset

µδv0 is the mean of the initial velocity error

IIst is the double integral with respect to time of the “true” acceleration st

µδx0 is the mean of the initial position error

σb1 is the standard deviation of the Gauss Markov process

σg is the standard deviation of the noise in the Gauss Markov process

σw is the standard deviation of the noise added to the Gauss Markov process

σδx0 is the standard deviation of the initial position error

We define a protection bound with respect to an integrity risk as being the integrity
risk quantile for the position error given by the following equation:

PBkff,δx̂t = |E [δx̂t]| + kff

√
V [δx̂t] (5.26)

where kff is the multiplication coefficient corresponding to the considered integrity
risk requirement.
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For example kff ≈ 5.33 for an integrity risk of 10−7. This concept of protection
bound assumes that the sign of the bias term (first term in equation 5.26) is unknown
therefore a conservative approach will consider an upper bound for this first term
and its absolute value. For a 2D problem, the protection bound is intuitively a
closed smooth contour for which the bias term should be replaced by a norm and
the second term should be defined as follows:

PB2D,kff,δx̂t = ‖E [δx̂t]‖R2 + kff2D

√
V [δx̂t] (5.27)

5.3.1. Sensitivity Analysis to Parameters of the Sensor Model

From the analytical form of the expectation and the variance of the process as defined
above, we investigate the sensitivity of the integrity bounds to the parameters of
the sensor model.

We are going to analyze the sensitivity of the protection bounds to each parameter
of the model while fixing the others to their nominal values. The nominal values are
taken as follows:

τnom = 100 s

µb10,nom = 0 milli-g. Assuming a null-shift of the drift (after calibration)

sf,nom = 0.1

b0,nom = 0 m/s2

µδv0,nom = 0 m/s

IIst,nom = 0 m

µδx0,nom = 0 m

σb10,nom = 1.2 milli-g. This value corresponds to the standard deviation of the drift
after the Gauss Markov Process is stabilized

σg,nom = 1.2
√

2
τ

milli-g.

σw,nom = 1 milli-g

σδx0,nom = 0.5 meter

kff,nom = 5.33

5.3.2. 2D Accelerometer

In this part we assume to have two accelerometers in the along and cross track
directions. We can take as an example the train application.
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Figure 5.4.: sensitivity of the protection level to the integrity risk

We assume these accelerometers are independent. Which means that the principal
axis of the error ellipses are the along and cross track axis.

In other words, if we call σAT and σCT the standard deviation of the error in the
along and cross track direction respectively, the covariance matrix of the 2D error
can be written as follows:

M =


 σ2

AT 0

0 σ2
CT




The bi-variate probability density function can be written as follows:

f (u, v) =
1

2π

1√
detM

exp



−1

2

(
u v

)
M−1


 u

v







The first problem we want to solve is: For a given integrity risk IR, we want to find
the ellipse inside which the integral of the bi-variate probability density function
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Figure 5.5.: sensitivity of the protection level to the initial drift bias

inside the surface of this ellipse is precisely 1 − IR. Taking into account the form
of the matrix M , f can be written as follows:

f (u, v) =
1

2π

1√
σ2
AT + σ2

CT

exp

{
−1

2

(
u2

σ2
AT

+
v2

σ2
CT

)}

Before calculating the integral it is suitable to change the variables: X = u
σAT

and
Y = v

σCT
.

f (X, Y ) =
1

2π

1√
σ2
AT + σ2

CT

exp
{

−1

2

(
X2 + Y 2

)}

We can observe that the iso-density lines are the lines for which X2 + Y 2 = cst.
This describes circles in the (X, Y )plan (ellipses in the (u, v) plan )

It is suitable to proceed to another variable change: from (X, Y ) to (r, θ) with
X = r cos θ and Y = r sin θ
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Figure 5.6.: sensitivity of the protection level to the standard deviation of the
initial drift

f (r, θ) = f (r) =
1

2π

1√
σ2
AT + σ2

CT

exp
{

−1

2
r2
}

We observe that f is only function of the radius r. To calculate the integral of f
in the surface described by a circle centered at 0 and of radius r = R. We proceed
simply by integrating f in concentric rings of thickness dr and of radius r and let
r variate from 0 to R. We are looking for R for which the integral of f is exactly
equal to 1 − IR. In an equation form we have:

ˆ R

0

f (r) (2πrdr) = 1 − IR

1√
σ2
AT + σ2

CT

ˆ R

0

exp
{

−1

2
r2
}
rdr = 1 − IR

190



5.3 The Analytical Evolution of the Expectation and the Variance

Figure 5.7.: sensitivity of the protection level to the initial velocity error bias

We observe that exp
{
−1

2
r2
}
rdr = d

(
− exp

{
−1

2
r2
})

. The integral of the proba-

bility density function in the whole R2 plan is equal to 1 (property of a probability
distribution) so we have to find the normalizing factor k such that

k√
σ2

AT
+σ2

CT

´∞
0

exp
{

−1
2
r2
}
rdr = 1. This gives k =

√
σ2
AT + σ2

CT . Therefore we have

the condition:

(
1 − exp

{
−1

2
R2
})

= 1 − IR

exp
{

−1

2
R2
}

= IR

R =
√

−2 log (IR)

The integral of the bi-variate density function over the surface delimited by the
ellipse with semi axis (RσAT ,RσCT ) is equal to 1 − IR.
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Figure 5.8.: sensitivity of the protection level to the standard deviation of the
initial velocity error

In fact an infinite number of surfaces can provide the same integral. We choose the
one that defines the smallest surface or the one corresponding to an iso-density.

In the following we take the example of a train moving in rectilinear tracks. We
consider the same parameters as before for the acceleration error model except for
the acceleration scaling factor that we now set to sf = 0.1 and we considered an
integrity risk of 10−7 which correspond to kff2D = 5, 68.

We assume a velocity profile as described in Fig. 5.13.

5.3.3. 3D Accelerometer

Let’s call AT,CT, ZT the 3 body frame axis (AT is the along track, CT is the cross
track and ZT so that (AT,CT, ZT )forms a direct reference frame). In this case we
have:
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Figure 5.9.: sensitivity of the protection level to the initial position error bias

M =




σ2
AT 0 0

0 σ2
CT 0

0 0 σ2
ZT




The bi-variate probability density function can be written as follows:

f (u, v, w) =
1

2π

1√
detM

exp





−1

2

(
u v w

)
M−1




u

v

w








The first problem we want to solve is: For a given integrity risk, we want to find
the ellipse inside which the integral of the bi-variate probability density function in
the surface of this ellipse is precisely 1 − IR. Taking into account the form of the
matrix M (diagonal), f can be written as follows:
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Figure 5.10.: sensitivity of the protection level to the standard deviation of the
initial position error

f (u, v, w) =
1

2π

1√
σ2
AT + σ2

CT + σ2
ZT

exp

{
−1

2

(
u2

σ2
AT

+
v2

σ2
CT

+
w2

σ2
ZT

)}

Before calculating the integral it is suitable to change the variables: X = u
σAT

,Y =
v

σCT
and Y = w

σZT
.

f (X, Y, Z) =
1

2π

1√
σ2
AT + σ2

CT + σ2
ZT

exp
{

−1

2

(
X2 + Y 2 + Z2

)}

We can observe that the iso-density surfaces are the surfaces for whichX2+Y 2+Z2 =
cst. This describes spheres in the (X, Y, Z)plan (ellipsoids in the (u, v, w) plan )

It is suitable to proceed to an other variable change: from (X, Y, Z) to (r, θ, φ) with
X = r cos θ cosφ, Y = r sin θ cosφ and Z = r sin φ
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Figure 5.11.: sensitivity of the protection level to the standard deviation of the
Gauss Markov noise

f (r, θ, φ) = f (r) =
1

2π

1√
σ2
AT + σ2

CT + σ2
ZT

exp
{

−1

2
r2
}

We observe that f is only function of the radius r. To calculate the integral of f
in the surface described by a circle centered at 0 and of radius r = R. We proceed
simply by integrating f in concentric spherical shells of thickness dr and of radius
r and let r variate from 0 to R. We are looking for R for which the integral of
f is exactly equal to 1 − IR. The mathematical interpretation of this problem is
presented as follows:

ˆ R

0

f (r)
(
4πr2dr

)
= 1 − IR

2√
σ2
AT + σ2

CT + σ2
ZT

ˆ R

0

exp
{

−1

2
r2
}
r2dr = 1 − IR
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Figure 5.12.: sensitivity of the protection level to the standard deviation of the
drift noise

We observe that exp
{
−1

2
r2
}
r2dr = rd

(
− exp

{
−1

2
r2
})

.

2√
σ2
AT + σ2

CT + σ2
ZT

ˆ R

0

rd
(

− exp
{

−1

2
r2
})

= 1 − IR

2√
σ2
AT + σ2

CT + σ2
ZT

{[
−r exp

{
−1

2
r2
}]R

0
+

ˆ R

0

exp
{

−1

2
r2
}
dr

}
= 1 − IR

2√
σ2
AT + σ2

CT + σ2
ZT

{
−R exp

{
−1

2
R2
}

+

√
π

2
erf (R)

}
= 1 − IR

where erf is the error function.

we define the normalizing factor k such that when R tends to ∞, the integral of the
density should be equal to 1.
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Figure 5.13.: Velocity scenario of a train moving on rectilinear tracks. The scenario
starts at t0, start accelerating at t1 and decelarating at t2 to stop again at t3. We
assume the same constant absolute acceleration and deceleration

2k√
σ2
AT + σ2

CT + σ2
ZT

√
π

2
= 1

We therefore have k =
√
σ2

AT
+σ2

CT
+σ2

ZT√
π

.

The radius corresponding to the the integrity risk IR is therefore solution of the
algebraic equation:

2√
π

{
−R exp

{
−1

2
R2
}

+

√
π

2
erf (R)

}
= 1 − IR

erf (R) − 2R√
π

exp
{

−1

2
R2
}

= 1 − IR

The integral of the trivariate density function over the surface delimited by the
ellipsoid with semi axis (RσAT ,RσCT ,RσZT ) is equal to 1 − IR.

In fact an infinite number of surfaces of integration provides the same result. We
choose the smallest one or the one corresponding to an iso-density. Fig. 5.16Fig. 5.17
show the 3 D protection bounds using the same integrity risk (10−7) of an accelerat-
ing and decelerating train. the cross track and the radial track (CT and ZT ) have
no acceleration and no speed. All 3 accelerometers have the same characteristics.
In the along track, we simulate an acceleration of 1.5 ms−2 during 40 seconds and
in the second plot we simulate a break of −1.5 ms−2 and an initial speed such that
after 40 seconds of constant brake, the train stops.
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Figure 5.14.: Comparison of the along and cross track semi axis with respect to
time using a scaling factor sf = 0.1 (see 5.1) and an integrity risk of IR = 10−7

5.4. Integrity assessment of a generalized non-linear

filtering problem

5.4.1. General Filtering Equation

Let’s assume that the signal process is described (in continuous form) using the
following stochastic differential equation:

dXt = b(Xt)dt+ σ(Xt)dBt (5.28)

where Xt is the state vector of a continuous time stochastic process states (d-
dimensional diffusion process). dBt is a vector of continuous time elementary Brow-
nian motions.
b and σ are deterministic functions of the state Xt and t in a very general case. The
observation process is an m-dimensional diffusion process satisfying the following
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Figure 5.15.: Evolution of the 10−7quantile with respect to time for a given dynamic
scenario

stochastic differential equation:

dZt = h(Xt)dt+ η(Xt)dWt (5.29)

This form is the incremental form of the observation equation. This representation is
preferred for an easier mathematical resolution of the filtering problem, in that case
the measurement equation is a stochastic differential equation for which we can use
the usual formalism of Itō or Stratanovich calculus. Furthermore this form doesn’t
add or loose information with respect to its usual snapshot form. Solving the filtering
problem is equivalent to find the best estimate Xt based on the measurements up
to time t. The measurements or the information gathered up to time t generate a
σ−algebra Gt = σ (Zs, 0 ≤ s ≤ t). Gt is called a filtration and we have the following
property: Gs ⊆ Gt for any 0 ≤ s ≤ t (the quantity of information is increasing with
the measurements).

Under bounding and Lipschitz conditions on the functions {b, h, σ, η}, the filtering
problem has a unique solution (see for example [Xio08] in Chapter 6.4). This solu-
tion is the "best" estimate of the state given the available information up to time
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Figure 5.16.: Evolution of the 10−7quantile with respect to time for an accelerating
train

t. "Best" in the sense of minimizing the least square error. If X̂t represents this
solution, X̂t is Gt−measurable and among all Gt−measurable random processes it is
the one that minimize the least square error.
It is proven that the best estimate for Xt is E [Xt |Gt ], which is the conditional ex-
pectation of Xt given the available information Gt see for example [Xio08] or [Oks07].
Let πt being the conditional probability distribution ofXt given Gt, we have E [Xt |Gt ] =
〈πt, 1〉, where 〈πt, 1〉 is the integral of Xt with respect to the probability measure
πt. If we are interested in the best estimate of a function of the random process
f(Xt) where f is a continuous bounded function. Depending on the properties of f ,

if we call X̂t = E [Xt |Gt ], the relation f̂(Xt) = f(X̂t) is only true if f is linear with
respect to Xt.
The following relation gives the relation between the conditional probability mea-
sure (the distribution we want to estimate) and the expectation with respect to the
probability measure of Xt.

E [f(Xt) |Gt ] = 〈πt, f〉 (5.30)

The filtering problem consists of determining the conditional probability distribution
πt with respect to any function of the signal process Xt given the measurements up
to t ((Zs){0≤s≤t}). After applying consecutively the Girsanov theorem (for change
of probability measures), the Radon-Nickodym derivative and the pendant of the
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Figure 5.17.: Evolution of the 10−7quantile with respect to time for a braking train

Bayesian formula in the filtering theory (the Kallianpur-Striebel formula), we end
up with the normalized filter solution π solution of a stochastic partial differential
equation (The Kushner equation). A detailed description of the approach can be
found in Chapter 5 of [Xio08]. For simplification, we consider f being the identity
function, σ and η independent from Xt and t.

dπ = Lπdt+ π (h−E [h])T
(
ηTη

)−1
(dz −E [h] dt) (5.31)

In this equation we omitted (Xt) for simplification of the equation (we wrote h
rather than h (Xt) for example and π rather than π(t, x)). The L operator is the
generator of the diffusion process solution of the state equation (not conditioned
by the measurements). The expression of this diffusion process for any continuous
bounded function π in the set [0, t ) × Rd with d being the dimension of the state
vector can be expressed as follows (keeping the same notations as in Equation (5.28)
and (5.29))

Lπ (x) =
∑

i

bi (x)
∂π

∂xi
+

1

2

∑

i,j

(
σσT

)
i,j

(x)
∂2π

∂xi∂xj

In this equation, we dropped the time as it is a partial differential equation with
respect to state variables. In Equation (5.31), the term dz−E [h] dt is the infinites-
imal innovation process, which is the quantity of information gained from the new
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measurements with respect to the prediction. If the measurement equation is per-
fectly modeled, the expectation of the innovation process is zero (no miss-modeling
of the measurement equation). In the next section, we are considering a possible
bias as a fault mode and we will see how the filter reacts in different miss-modeling
cases.

5.4.2. Overbounding Concept of the Filtering Equation

For safety of life applications, it is important to bound the errors with an acceptable
probability of hazardous misleading information (integrity risk). For fault free mea-
surements whose error distribution can be bounded using a Gaussian distribution
and considering the bias free models for both the state and the measurement equa-
tions describing the nominal case, the integrity risk quantile of the over-bounding
distribution is the inflated Gaussian over-bounding state and measurement noise.
In the filtering equation, it would correspond to the nominal equations with noise
inflation for both the signal and the measurement models.
Additionally to the fault free mode and Gaussian over-bound, we also need to over-
bound the non-linearity of both the state and the measurement equation using linear
functions. The aim of this procedure is from the general measurement-conditioned
probability density function solution of the Kushner equation (5.31), to find a fam-
ily of over-bounding probability density functions solutions of a family of linear
form of the Kushner equation (Kalman-Bucy filter equation). Each of these lin-
earized filtering equations represent a fault mode equations, whose solution is the
fault mode conditioned probability density functions. These fault modes comprises
miss-modeling of the measurement equations and abnormal behavior of the sensors
provided the measurements. For the state propagation equation, this fault modes
corresponds to miss-modeling of the state equation including the level of state noise.
In this section, we allow non linear and non Gaussian behavior of the true state and
measurement equations, but we limit the over-bounding equations for both measure-
ments and state to linear processes and to Gaussian over-bounding distributions for
both measurement and state equations. This will allow us to apply a Kalman filter
for each fault mode.
We assume that the fault modes considered are mutually independent.
The first principle adopted here is to define a fault mode as being a parameter of
the deterministic part of the models kept at its maximum value keeping the other
parameters to their nominal values.
The fault tree assumption considered here is that each fault mode is equiprobable
to occur with an a-priori probability of being in any of these fault modes being 0.1%
of the total risk. The a-priori probability of being in the fault free case is such that
the sum of all fault free and fault modes probabilities is equal to one.
These figures can be updated taking into account a permanent monitoring of the
probability of occurrence. This approach follows the integrity concept assumptions
usually adopted in the satellite navigation.
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5.4.3. Example of Train Localization

We assume here the problem of localizing a train in his tracks. We assume in a
first approach that the tracks coordinates are known and that at a given epoch, the
position of the train is perfectly known (for example when it is stopped at a reference
point at a train station). In the following we assume all variables, parameters or
equations being related to the over-bounded variables, parameters or equations.
Additionally we consider the discrete time approach of the over-bounding filtering
equations.

We consider the following state vector:

• x
(0)
k being the position of the train along the track (curvilinear abscissa),

• x
(1)
k being the velocity of the train along the track (curvilinear velocity),

• x
(2)
k being the along track acceleration,

• x
(3)
k being the drift of the accelerometer modeled as a first order Gauss Markov

process.

And we consider the following measurement vector:

• z
(0)
k being the 2 dimensional position provided by a GNSS receiver and pro-

jected in the track,

• z
(1)
k being the velocity provided by the same GNSS receiver and also projected

in the direction of the train,

• z
(2)
k being the along track acceleration provided by the along track accelerom-

eter.

We assume in our study, that the train is moving in a perfectly horizontal plane
with the gravity vector being normal to the plan of motion. We also assume that
the miss-alinement errors are negligible. This could be considered covered by the
over-bounding concept presented in the fault modes.
The state equation considers a constant along track acceleration with an additional
noise process over-bounded by a centered white Gaussian noise. The speed and the
position along the track does not assume any additional noise, except the integrated
acceleration noise.

Xk+1 = FXk + Σǫk (5.32)

with

F =




1 dt dt2

2
0

0 1 dt 0

0 0 1 0

0 0 0 1 − dt
τ3




203



Chapter 5 GNSS Positioning Integrity using Inertial Sensors

Σ =




dt2

2
σ2 0

dtσ2 0

σ2 0

0 σ3




and

ǫk =


 dB2,k

dB3,k




We consider the driving noise of the Gauss Markov Process dB3,k being independent
from the state noise dW2,k. The measurement equation in time discrete form is as
follows:

Zk = HXk + ηνk (5.33)

with

H =




1 0 0 0

0 1 0 0

0 0 1 + sf 1




In the sensor fault mode scenarios, we introduce an additive bias in the measurement
equation:

Zk = HXk +B + ηνk (5.34)

with

B =




bx(0)

bx(1)

b0


 ,

with bx(0), bx(1), b0 being a bias in the measured position, a bias in the measured
velocity and the null-shift of the along track accelerometer, respectively. The latter
is considered as a bias in the measured along track accelerometer.

η =




σz0 0 0

0 σz1 0

0 0 σz2



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and

νk =




dW0,k

dW1,k

dW2,k




In this model, b0 corresponds to the null-shift of the along track accelerometer. If
well calibrated, this null-shift should be kept to zero or to a value close to zero.
bx(0) resp. bx(1) is a bias in the measurement of the GNSS position resp. velocity.
These parameters are going to be considered in the fault mode conditions for the
establishment of the along track protection levels. sf corresponds to a scaling factor
modeling a proportional error to the true acceleration.
The non-linearity of the measurements is implicitly present in the projection of the
position and measurement in the track as described in Fig. 5.18 and Fig. 5.19.

Figure 5.18.: Linear projection of a GNSS position along the track. The lines of
projection are parallel. In this case the Gaussian property of the distribution is
kept in the new support.

The non linear projection introduces in the along track direction under certain con-
ditions an inflation of the area of uncertainty (see Fig. 5.19). But we can consider
that the projection is locally linear depending on the curvature and the location of
the error ellipsoid with respect to the track. Furthermore the linear approximation
preserve the Gaussian distribution of the error along the track. This approximation
is available if the radius of the track curvature is sufficiently large with respect to
the distance separating the position distribution provided by GNSS and the track
as illustrated in Fig. 5.20.
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Figure 5.19.: Non Linear projection of a GNSS position distribution in the along
the track direction. The protection level of the position error delimited by the
red circle projects in curved tracks without preserving the Gaussian nature of the
distribution. The distribution remains symmetric though
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Figure 5.20.: Areas of linear and Gaussian preserving projection. The blue disks
represents the areas for which the projections are considered as Gaussian preserv-
ing: E

[
P
(
Z(0)

)]
= P

(
E
[
Z(0)

])
and V

[
P
(
Z(0)

)]
= P

(
V
[
Z(0)

])
. The red area

is the area of non preserving Gaussian distribution. The projection of the position
of a user in the along track direction when the measurement is inside the red area
will be non Gaussian. Outside the red area, the projection in the along track
direction will preserve the Gaussian nature of the distribution.
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5.4.4. Estimation process of the state vector overbound

The overbounding process being solution of a linear filter with white Gaussian noise,
the Kalman-Bucy theory applies and we can derive the usual iterative algorithm:
The predicted state:

X̂i+1|i = FX̂i|i (5.35)

The prediction estimate covariance is:

Pi+1|i = FPi|iF
T +Q (5.36)

Expression of the innovation:

Ỹi+1 = Zi+1 −HX̂i+1|i (5.37)

and the innovation covariance:

Si+1 = HPi+1,iH
T +R (5.38)

The Kalman gain in the very classical form:

Ki+1 = Pi+1,iH
TS−1

i+1 (5.39)

Updated state estimate:

X̂i+1|i+1 = X̂i+1|i +Ki+1Ỹi+1 (5.40)

and the updated estimate covariance matrix:

Pi+1|i+1 = (I −Ki+1H)Pi+1|i (5.41)

5.4.5. Along Track Protection Levels

Let us describe each fault mode (FM) by a set of model parameters. We keep one
parameter to the maximum and the others remain to their nominal values. Each
fault mode has an a-priori probability of occurrence based on the fault tree alloca-
tion. If we call n the fault mode identification, we have a corresponding kn inflation
factor of the Gaussian overbound corresponding to the allocated probability of haz-
ardous misleading information for the mode n. We call X̂i+1|i+1,n the estimation
of the state vector overbound given the measurements up to (and including) epoch
i+1 and given the parameter set of the fault mode n. We define then the protection
levels as follows:

XPLi+1|i+1,n =E
[
X̂i+1|i+1,n

]
+

kn

√
detV

[
X̂i+1|i+1,n

]
(5.42)
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This equation is too general for our problem, because it is here assumed a protection
level for the overall state vector and the kn coefficient corresponds to the state vector
quantile and not only the along track position quantile which is the case we want
to focus on in this section. The along-track protection level (APL) is the PHMI,n

quantile of the along track position for the fault mode n.

APLi+1|i+1,n =E
[
x̂

(0)
i+1|i+1,n

]
+

kn

√
V
[
x̂

(0)
i+1|i+1,n

]
(5.43)

In these equations E, resp. V represent the expectation resp. the variance operator
with respect to the probability measure along the track.
In the following we are going to express the iterative form of these expectation and
variance. Let’s start with the variance:
By definition and keeping the same notation as before,

V
[
X̂i+1|i+1,n

]
= Pi+1|i+1

= (I −Ki+1H)Pi+1|i

= (I −Ki+1H)
(
FPi|iF

T +Q
)

= (I −Ki+1H)
(
FV

[
X̂i|i,n

]
F T +Q

)
(5.44)

The variance is expressed in an iterative way and depends on the parameter of the
fault mode and on the initial covariance.
In the same way, we can express the expectation of the estimate over-bound:

E
[
X̂i+1|i+1,n

]
= E

[
X̂i+1|i

]
+Ki+1E

[
Ỹi+1

]
(5.45)

E
[
X̂i+1|i+1,n

]
= (F −Ki+1HF )E

[
X̂i|i,n

]
+

Ki+1E
[
Zi+1|n

]
(5.46)

In the expectation and variance equations, all matrices are conditioned by the fault
mode considered. For clarity reason, we did not mentioned the index n everywhere.
In the expectation equation, the last term of the right member represent the eventual
biases that the sensor may introduce.
In the measurement equation of the filter over-bound, we had introduced a vector
B corresponding to the eventual bias in the measurement equation. Assuming that
the user does not know that the measurement equation introduces a bias, this bias is
not corrected by the filter and is just attenuated by the Kalman gain (if the Kalman
gain is decreasing with time).
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E
[
X̂i+1|i+1,n

]
= (F −Ki+1HF )E

[
X̂i|i,n

]
+

Ki+1B (5.47)

5.4.6. Results using a simulated scenario

In this section, we show the results of our system we described above. That is we
introduce the applied simulation scenario and discuss the corresponding protection
level envelop. Moreover, we propose our curvature change detection and monitoring
scheme.

5.4.6.1. Scenario

We have set for each parameter a maximum (inflated) and nominal value. The
Tab. 5.1 summarizes this setup.

Scenario Mode

Parameters FF Nom. FF Inflated FM Inflated ID

σ2 [m/s2] 1.7 · 10−3 5 · 10−3 5 · 10−3 0

σ3 [m/s2] 1.7 · 10−3 5 · 10−3 5 · 10−3 0

σz0[m] 2 10 10 0

σz1 [m/s] 5 · 10−2 1.5 · 10−1 1.5 · 10−1 0

σz2 [m/s2] 9.81 · 10−3 2.94 · 10−2 2.94 · 10−2 0

bx(0) [m] 0 0 ±2 1±
bx(1) [m/s] 0 0 ±5 · 10−2 2±
b0 [m/s2] 0 0 ±5 · 10−3 3±

sf 0 0 ±10−2 4±
Table 5.1.: Fault free and faulty scenario parameter definition

The protection levels are calculated in the following way: The global integrity risk
budget is 10−7. We consider that the probability to be in the fault free mode is
0.991 and the a-priori probability to be in any of the other fault modes is 10−3 for
the simulation period considered (in our case 100 seconds). Considering the fault
modes mutually independent and neglecting the probability of multiple faults as a
first assumption. The integrity budget associated to each fault mode is therefore
10−7/Pocc,i with Pocc,i being the probability of occurrence of the fault mode i with
fault mode 0 being by convention the fault free mode. The protection level of the
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along track position of the train is the maximum protection level among all modes.
This maximum is calculated for each epoch.
The dynamic scenario chosen are as follows: The train has a constant speed of 40
m/s, starting at x(0)

0 = 0 except for the fault mode 4+ and 4- (corresponding to
maximum scaling factor for the accelerometer as described in Tab. 5.1) for which we
assume a deceleration of −1.2 m/s2.

5.4.6.2. Protection Level Envelop

The protection levels are calculated as described earlier. Each mode provide a
protection level (in fact two functions of time one representing an upper bound
and the other the lower bound). The inflation factor is function of the integrity
risk allocated to its mode. Assuming the modes independent from each others and
assuming only one fault mode at a time, we can derive a global protection level
based on the envelop of all these upper bounds.

Figure 5.21.: Protection level for each failure mode including the fault free mode.
The global protection level is the maximum between all individual protection levels
for each time step. This is the upper envelop of all protection levels

In Fig. 5.21 we represented for selected fault modes the position protection level.
The envelop of the protection levels is not driven by one mode but by different
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modes depending on the time sequence considered. In this example, 3 phases have
been observed. In the first part of the simulations, the protection level is driven
by the fault free inflated mode (mode 0), the second time period is dominated by
the bias mode in the position (mode 1+) and at the very end of the 100 seconds
simulations, the bias in the velocity is dominant.
This analysis is based on the set of parameters chosen which may not reflected the
general behavior of a filter.

5.4.6.3. Combination With a Curvature Change Detector

In the following section, the physical assessment of the track curvature is introduced
and three different methods are outlined. As we already stated in [BGH+13a], we
define the curvilinear abscissa s (t) as a function of the length of the arc represented
by the track from a reference position to a current point. The velocity vector of the
train is v = ṡeAT and the acceleration vector is:

a =
dv

dt
=
d (ṡeAT )

dt
= s̈eAT + ṡėAT (5.48)

eAT and eCT are the along track and cross track unit vectors. In this expression
and in the rest of this chapter we drop the time t for simplification. The dot above
variables always means the derivative of the given variable with respect to time.
During dt, the point M moved from s to s+ ds and the unit along track vector has
rotated with the angle dψ. This drives to the following relation:

ėAT = ψ̇eCT

Observing that the acceleration vector lies in the osculating plan defined by (eAT , eCT ),
we can decompose the acceleration into 2 components: and taking the same notation
as for the unit vectors, we have:

a (t) = aATeAT + aCTeCT ,

with

aAT = s̈,

aCT = ṡψ̇.

We observe that ṡ = rψ̇, so we have the following expression:

aCT = rψ̇2, (5.49)

with r being the local radius of the trajectory.
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We observe that Equation (5.49) can be expressed in terms of ṡ rather than ψ̇ and
observing that ‖v‖ = ṡ, we have:

aCT =
‖v‖2

r
(5.50)

There is a relation between the speed of the train, the cross track acceleration and
the heading rate for a given trajectory.

We have the following relations:

aCT = rψ̇2 =
‖v‖2

r
(5.51)

In this equation, we can directly sense the cross track acceleration aCT , the heading
rate ψ̇ and indirectly the velocity of the train v (integral of the along track acceler-
ation). This is an important a-priori information that can be used in a test statistic
to decide which direction the train has taken after a switch. By convention we will
choose to work with the curvature rather than with r. Let κ = 1/r the relation
above can be written as follows:

aCT =
ψ̇2

κ
= κ ‖v‖2 (5.52)

In this equation, κ can be obtained in three different ways:

Method 1: κ1 =
ψ̇2

aCT
(5.53)

Method 2: κ2 =

∣∣∣ψ̇
∣∣∣

‖v‖ (5.54)

Method 3: κ3 =
aCT

‖v‖2 (5.55)

All three methods can also be used in a non-stationary scenario, i.e., while the train
is moving. Otherwise the curvature determination might be not defined. That is if
aCT = 0, κ1 is undefined and if ‖v (t)‖ = 0, κ2 and κ3 are undefined.

We analyze the resulting test statistic based on the three curvature determination
methods. To compute κi, i = 1, . . . , 3, we need the heading rate, along-track and
cross-track accelerations. These measurements are distorted by sensor errors. Using
the Stochastic Differential Equations (SDE), we can access the error distribution of
each measurement required to determine the curvature. However, the distribution
of curvatures itself is not simple to derive since we have to obtain the distribution
of a ratio of random variables. The resulting distribution might not be symmetric
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and can be even heavy tailed. In the following, we discuss the expected behavior of
the test statistics.

Naturally, if all measurements would be error-free, all three curvature computations
would deliver the same result κ1 = κ2 = κ3. But due to the randomness of the mea-
surements of aCT (t), ψ̇ (t) and v (t), the obtained curvatures are not equal (random
realization) and not equal in distribution sense.

First test κ1: The measurements of this test can be directly observed, so no inte-
gration of the measurements is required. However, we can see that if the curvature
of the path is zero, i.e., the track is straight, the numerator will take positive random
values following a χ2 distribution and the denominator will take values centered at
0. This induces fat tails in the distribution of κ1. Consequently, it might be not
very promising to use this method for the hypothesis test when the curvature is very
small.

Second test κ2: Here, we observe a ratio between a normally distributed ran-
dom variable and a folded normal distribution (the absolute value of a normally
distributed random variable). In the case of a ratio between two independent, nor-
mally distributed random variables with zero mean, the distribution of the ratio
follows a Cauchy distribution. In the case of non-centered distributions, it has been
demonstrated [Hin69] that the probability density function can be written as follows:

pK∗

2
(κ∗

2) =
α exp

{
1
2
α2

γ
− 1

2
ξ
}

γ3

1

ψ
×
(

2Φ
α

γ
− 1

)
+

+
1

γπψ
exp

{
−1

2
ξ
}
, (5.56)

where

α =
E
[
ψ̇
]

V
[
ψ̇
]κ2 +

E [v]

V [v]

γ =
1

V
[
ψ̇
]κ2

2 +
1

V [v]

ξ =
E
[
ψ̇
]2

V
[
ψ̇
] +

E [v]2

V [v]

ψ =
√
V
[
ψ̇
]
V [v]

and κ∗
2 = ψ̇(t)

v(t)
, and Φ (u) =

´ u

−∞
1√
2π

exp
{
−1

2
z2
}
dz. This expression is not repre-

senting the test statistic of interest κ2 for which no closed form could be found.
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Third test κ3: Similar to κ2, the nominator can be seen as normal distributed ran-
dom variable. However, the denominator is not only linear dependent on a folded
normal distributed random variable, but quadratically dependent. Also in this case
no close solution can be found.

In the remaining section, we assess the distributions of κi, i = 1, . . . , 3 via Monte-
Carlo simulations. As derived before we can compute the probability distributions
of aCT (t), ψ̇ (t) and v (t) depending on the quality of the sensor and on the ini-
tialization performance parameters. It must be noted that the direct use of heavy
tailed distributions can generate instabilities of the test statistics. In this case, the
mean and variance may not exist especially in the case of high densities around zero
for the test statistics denominators.

One possibility is to exclude the samples of aCT (t), ‖v (t)‖ and ‖v (t)‖2 that are close
to zero, or in an interval around zero. The area to exclude using a pretest should not
be too large for one reason essentially: the exclusion reduces the availability of the
test statistics (for each sample falling in the excluded area, the corresponding test
statistics is set as unavailable). But the closer the exclusion bounds are to zero, the
wider the distribution of the test statistics and therefore the smaller the minimum
detectable curvature difference (MDCD).

To classify or identify a certain curvature, we compare our computed curvature with
a threshold curvature. The latter, we have determined by a standard hypothesis
test algorithm (the Neyman-Pearson test). We briefly describe this algorithm in the
following.

First of all, a reliable knowledge of curvature determination error behavior is re-
quired. We denoted this curvature error probability density function as pK(κ). We
assume that this pdf is centered at the true curvature. Then we can define the
distributions for two different track curvature hypotheses that we want to test. For
example, after a switch a train might have two possibilities to move on, i.e., track
segment one with curvature κa or track segment two with curvature κb. In order
to make a decision, we have to define a threshold T against which we compare our
curvature measurements. If our measurement is below the obtained threshold, we
decide for Ha and if it exceeds this threshold, we decide for Hb. To find this threshold
we have to consider the probability of false alarm Pfa = PK(κ > T |Ha). This proba-
bility is a system reliability requirement and accounts for the case, where we decided
for Hb (indicated segment two, while hypothesis Ha was correct). Consequently, the
threshold is given by

T = arg
T

(
Pfa =

ˆ ∞

T

pK(κ|Ha)dκ

)
.

Similar considerations can now be done for hypothesis Hb as well. A probability of
missed detection, i.e., we decided for segment one while the train took segment two,
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is normally defined as

Pmd = PK(κ < T |Hb) =

ˆ T

−∞
pK(κ|Hb)dκ.

Pmd is also a system reliability requirement and normally predefined by the system.
So for a given Pmd, we can find a κm such that

κm = arg
κm

(
ˆ T

−∞
pK(κ|Hm)dκ = Pmd

)
,

where Hm is the hypothesis that the train has taken a track with curvature κm.
Thus, we can define a minimum detectable curvature difference MDCD = κm −
κa for the given system requirements of false alert and missed detection. Both
probabilities, Pmd and Pfa indicate that a wrong decision is made. Since we consider
that the hypothesis Ha while on the track b and Hb while on the track a are equally
“hazardous”, we set Pfa = Pmd = Pwd, where wd stands for wrong decision.

The MDCD is a function of the velocity of the train. Intuitively the larger the
velocity of the train, the smaller the dispersion of the test statistic.

We investigate the MDCD for each test statistic as function of the train velocity at
a switch and for different IMU qualities. In the following investigations, we set our
curvature of hypothesis Ha to κ0 = 10−4 [m−1].

In Fig. 5.22), we have plotted the corresponding MDCD vs. the velocity for each
test statistic and for a tactical grade IMU. Similar results for different IMU grades
can be seen in [BGH+13a]. The black horizontal lines represent the standard curva-
tures of tracks observed in Germany. Each standard line starts at v = 0 [km/h] and
stop at the maximal allowed velocity for the corresponding curvature. The larger
the curvature, the smaller the maximal allowable speed. The initial and reference
curvature to be almost zero (a curvature of exactly 0 lends to a singularity). We see
that the lower the velocity, the higher the MDCD. As we can see a very effective
κ2 based test statistic. In fact the combination of high accurate velocity and high
performance heading gyro provides a sharp distribution and therefore a clear signa-
ture when the train change its track. For this tactical grade IMU, κ2 and κ3 are not
crossing in the velocity range [0 − 200] [km/h].

Conclusion and major contributions

In this chapter we have introduced a notion of integrity related to general filters. Our
integrity bounds are based on Gaussian overbounds of both process and measure-
ment noise. Considering different fault modes, we have proposed a new protection
level envelop based on dominating individual protection levels for each fault modes.
This concept considers various system integrity requirements. That is first the over-
all maximum allowable integrity risk that should not be exceeded by large errors,
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Figure 5.22.: Minimum detectable curvature difference with respect to κ0 = 10−4

[m−1] obtained with the three different curvature determination methods κ1, κ2

and κ3 vs. velocity are shown. For comparison, the standard German curvatures
and their max. velocities are indicated by black lines. This plot is valid for a
Pwd = 10−5 and using tactical grade sensors.
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second the error modes to be considered and third the magnitude of each error pa-
rameter for the nominal as well as the maximum assumptions.
The fault free and the fault hypothesis are treated as independent and should build
a partition of the possible events space. This allows us to apply the law of total
probability and the breakdown of the total integrity risk into corresponding single
fault modes risks.
The along track protection level combined with a curvature change detection and
monitoring scheme completes the integrity concept for train navigation on the track
network topology.
We assume dedicated sensors for the corresponding state variables and we consider
the along track positioning problem and the track change detection at switch as two
independent processes. In a future work, we will consider the two problems coupled
in the same system of equation. Furthermore, the sensors redundancy (direct or
indirect) will be considered and optimized in a global information space.

This work has been published in [GBM10, GB12, BGH+13a, BGH+13b, BG13,
CGBR14]
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6. Conclusion and Future Work

6.1. Conclusion

This thesis was addressing the complex problem of evaluating the performance of
satellite navigation systems including augmentations in a broader range than just a
rough estimation of an average position accuracy.

A characterization of the positioning error sources was made based on extensive
analysis of measurements from different reference stations. Then, the impact of these
errors in a stand alone GNSS position solution have been conducted considering
single constellation single frequency scenarios and then dual frequency and dual
constellation scenarios. Additionally to this study, the impact of a residual pseudo
range error in the code carrier smoothing algorithm was analyzed. In this part closed
forms for the smoothed error expectation and variance taking into account a band
limited code and phase noise (modeled both as first order Gauss Markov processes)
have been derived.

Taking into account the properties of the instantaneous pseudo range errors devel-
oped in the first part of this thesis, a tighter measure of integrity was proposed
taking into account not only the magnitude of the pseudo range errors but also the
spatial correlation of the errors between satellites in visibility of a receiver. This
integrity assessment was derived from a stand alone GNSS position solution in the
form of a generalized autonomous integrity monitoring algorithm. It appeared that
the use of a generalized error model can provide smaller protection levels than a
traditional RAIM algorithm for the same requirements in terms of integrity risk
would do.

In a second part of the thesis, augmentations systems for GNSS were considered
and their performances were analyzed. Especially the Ground Based Augmentation
System was deeply investigated. For this system, not only the nominal performance
were analyzed, also the ionosphere ground monitor which is responsible for detecting
very rare but severe ionospheric gradients considered as threats for the integrity of
the GBAS solution have been evaluated. For this special monitor, some innovative
architectures have been suggested taking into account the particular form of the test
statistic distribution.

In a third part of the thesis, the uncertainty propagation of an hybrid GNSS/INS
was considered. For this system, a closed form for the propagation of the error
expectation and variance have been developed and evaluated. A sensitivity analysis
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was conducted to evaluate the impact of different parameters in the overall perfor-
mances. Considering a given integrity risk, the corresponding protection surfaces
are derived here again a closed form could be found under specific assumptions
(translational movements only, no misalignment of accelerometers, neglected Cori-
olis effects...). An original approach for evaluating the inertial navigation integrity
has been suggested and evaluated using typical inertial sensor performances. Based
on this integrity assessment, a novel track change detector for train applications has
been developed and evaluated based on simulations.

In this thesis, protection levels or their generalization form for higher dimensions
called protection surfaces or protection bounds were considered as a measure of the
fault free integrity. A method to evaluate these protection surfaces for different
configurations including filtering has been developed.

Large errors due to the occurrence of an abnormal fault must be treated in a different
way than using the protection level concepts, because their probability of occurrence
does not follow a Gaussian law or may not be overbounded by a Gaussian distribu-
tion. For this type of fault, the system must provide a countermeasure in form of
a fault detector. This concept have been developed in the case of large ionospheric
gradients.

Integrity risks must be mitigated appropriately. In the fault free case, the aim is to
reduce the volatility of the state variables without adding biases. In the faulty case
when the fault is large (not covered by the fault free protection surfaces) and/or the
onset probability of the fault is higher than the allocated probability for this type of
fault, this fault must be detected and isolated with a probability of missed detection
not larger than a specified threshold. The resulting protection surface is considered
as the envelop of all individual protection surfaces. This approach was adopted to
derive a faulty case protection bounds of a combined GNSS/INS solution.

6.2. Future Work

The Galileo constellation is under deployment and although the system architecture
is similar to the GPS constellation, some differences exist: For example, the signal
structure is different, the satellite clocks are of different nature, the satellite orbits
are different and of course the monitoring and processing facilities is also different.
For this new constellation, an intensive threat analysis need to be conducted and
the necessary monitors need to be adapted for this specific case. Only then, this
constellation will be accepted in the navigation solution of a safety critical appli-
cations. A threat analysis center should be developed in order to characterize the
system and should be optimized to enable a fast characterization. Based on such a
system, the integration of the new constellation in safety critical applications will
be done faster and will enable receiver manufacturers to integrate it in their system.
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The provision of multiple frequencies and the integration of new robust constella-
tions in the satellite navigation world enable more efficient self consistency checks.
Therefore new autonomous integrity monitoring algorithms have to be developed
that take into account the variety of constellations and their threats characteristics.
The methodology adopted in this thesis with that respect can serve as a system-
atic approach to decide when a constellation is ready for integration in a navigation
system for critical applications.

Novel RAIM algorithms taking into account error characteristics in a satellite by
satellite and constellation by constellation basis should be developed and considering
the approach presented in this thesis is the case of GPS, should improve considerably
the integrity of the navigation solution.

A multi-constellation and multi-frequency environment will enable also an increase
of performance for SBAS and GBAS. The challenge will be to find an optimal
processing strategy that limits the development and operational costs, that is com-
patible with legacy systems and enable a performance increase. A cost function that
considers all these aspect has still to be developed.

The satellite navigation signals are very weak and very vulnerable to radio fre-
quency interferences like jammers and spoofers. Parallel to the development of new
GNSS/INS hybridization strategies, alternative positioning navigation and timing
(APNT) systems are necessary. These non GNSS based navigation systems should
be able to provide a robust navigation solution when GNSS signals are lost by the
user during a critical operational phase. Again the methodology adopted in this
thesis can serve as a guideline for the development of a robust APNT architecture,
starting by a threat characterization of the new system, designing integrity moni-
tors for the threats that cannot be covered by a fault free case and developing an
integrity scheme that ensures that the system fulfills some required performances.
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A. Properties of Stochastic Diffusion
Equations[Oks07]

An Itō diffusion is a stochastic process Xt satisfying a stochastic differential equation
of the form:

dXt = b (Xt) dt+ σ (Xt) dBt t ≥ 0 ; withX0 = x (A.1)

where Bt is an m-dimensional standard (B0 = 0[m×1]) Brownian motion, b : Rn → Rn

and σ : Rn → Rn×m satisfying the Lipschitz continuous condition (to guarantee
existence and uniqueness of the solution). This solution is noted X0,x

t , t ≥ 0 . The
associated probability measure of Xt is denoted P x. The upper index x means that
the process starts at x.

A.1. Generator of a diffusion process

Let Xt be a time-homogeneous Itō diffusion process in Rn , the infinitesimal gener-
ator A of Xt is defined as follows:

Af (x) = lim
t↓0

Ex [f (Xt)] − f (x)

t
; x ∈ R

n (A.2)

Where t ↓ 0 means t approaching 0 from above. In this equation, Ex represents the
expectation relative to the probability measure P x.We can see that if a process Xt

is solution of A.1 and if f ∈ C2
0 (Rn) (second spatial derivative of f is continuous in

Rn) then f ∈ DA (set of f for which the generator exist for any x ∈ Rn) and:

Af (x) =
n∑

i=1

bi (x)
∂f

∂xi
+

1

2

n∑

i,j=1

(
σσT

)
i,j

(x)
∂2f

∂xi∂xj
(A.3)

In this equation, A is an operator acting on f , the second summation is a double
summation on i and j.

(
σσT

)
i,j

(x) is the (i, j) element of the matrix σσT and

can be function of x. b and σ are defined in Equation A.1. ∂f
∂xi

is the first order

partial derivative of f with respect to the variable xi and ∂2f
∂xi∂xj

is the second order
derivative of f with respect to the variables xi and xj .

See [Oks07] Chapter 7 for the demonstration of this important result.
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A.2. The Kolmogorov Forward Equation

The adjoint of the generator A is denoted A∗ and is defined as follows:

A∗f (x) = −
n∑

i=1

bi (x)
∂f

∂xi
+

1

2

n∑

i,j=1

(
σσT

)
i,j

(x)
∂2f

∂xi∂xj
(A.4)

then if we set p (t, x) the density of (Xt) with the initial condition: p (0, x) = p0 (x)
, p is solution of the partial differential equation:

∂p

∂t
= A∗p and p (0, x) = p0 (x) (A.5)

A.3. The Ornstein-Uhlenbeck (OU-) process

An important process encountered in the thesis is the solution of the following SDE
and is named the Ornstein-Uhlenbeck (OU-) process:

dXt = θ (µ−Xt) dt+ σdWt (A.6)

where θ, µ, and σ are the parameters of the process and Wt is the standard Brownian
motion.

θ is also called the rate of mean reversion and σ the degree of volatility.

The process is stationary, Gaussian and Markovian.

The probability density function of this process satisfy the Fokker-Planck equation:

∂f

∂t
= θ

∂

∂x
[(x− µ) f ] +

σ2

2

∂2f

∂x2
(A.7)

The stationary solution of this equation is the limit when time tends to infinity of
f and is a Gaussian density function with mean µ and variance σ2/ (2θ).

f∞ (x) =

√
θ

πσ2
exp

{
−θ (x− µ)2

σ2

}
(A.8)
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B. Summary of Error
Structures[Bou03]

If Y is a random variable. Let’s define ∆Y the error in Y . We define the following
set of assumptions:

a1. E [∆Y |Y ] and V [∆Y |Y ] are known

a2. Errors are small (∆Y ≪ Y ) to allow the limitation of the Taylor expansion to
the first order

a3. E [∆Y |Y ] and V [∆Y |Y ] are of the same order of magnitude1

Under given conditions on a function f , there is a possibility to derive the law of
propagation of the error (restricted to the law of propagation of the bias and the
variance). The starting point is the second order Taylor expansion.

∆ (f (Y )) = f ′ (Y ) ∆Y +
1

2
f ′′ (Y ) (∆Y )2 + negligible terms (B.1)

Using the definition of the conditional variance, we have:

V [∆ (f (Y )) |Y ] = f ′2 (Y )V [∆Y |Y ]

E [∆ (f (Y )) |Y ] = f ′ (Y )E [∆Y |Y ] + 1
2
f ′′ (Y )V [∆Y |Y ]

(B.2)

An error structure S is defined as follows:

S = (Ω,A,P,D,Γ,DA, A) (B.3)

Where (Ω,A,P) is a probability space, D is a dense sub-vector space of L2 (P)2, Γ is
a positive, symmetric bilinear application from D × D into L1 (Ω,A,P)3 satisfying
the following property:

1This is indeed the bias and the variance that are meant and not the bias and the standard
deviation. See [Bou03] for a detailed justification of this assumption.

2The space L2 (P)is the space of squared Lebesgue integrable functions with respect to the prob-
ability measure P

3This is space of functions for which their absolute value is Lebesgue Integrable
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Chapter B Summary of Error Structures[Bou03]

∀u ∈ Dm, ∀v ∈ Dn, ∀F : Rm → R, ∀G : Rn → R with F and G being of class C1

(continuous derivative) and Lipschitzian (the norm of its derivative is bounded in
R), we have:

Γ [F (u) , G (v)] =
∑

i,j

∂F

∂xi
(u)

∂G

∂xj
(v) Γ [ui, vj] P-a.s. (B.4)

P-a.s. means that it is verified with probability P equal to one (a.s. stand for almost
surely).

Γis such that the bilinear form E [u, v] := 1
2
E [Γ [u, v]] is closed (by convention we set

E [u, u] = E [u] and Γ [u, u] = Γ [u]), which means that the space D equipped with
the norm

‖u‖
D

=
(
‖u‖2

L2(P) + E [u]
) 1

2 (B.5)

is complete.

The error structures used in this thesis are Markovian (which is equivalent to write
that the constant function 1 belongs to D).

Associated to this operator, and under weak additional assumptions described in
[Bou03], the strongly-continuous contraction semigroup (Pt)t≥0 possesses a generator
A that satisfies:

A [F (u)] =
∑

i

∂F

∂xi
(u)A [ui] +

1

2

∑

i,j

∂2F

∂xi∂xj
(u) Γ [ui, uj] P-a.s. (B.6)

∀F : Rm → R of class C2, Lipschitzian and for which, ∀u ∈ Rm A [F (u)] exists.
The set of functions for which the generator exists for every u is denoted DA .
In Equation B.6 A [ui] should be interpreted as the expectation of the error in ui
(actually a bias in ui).

The error structure as defined above provides a method to propagate errors under
the assumptions defined above.

It provides the law to propagate the variance (which depends on a first order func-
tional derivative) and the bias (which includes a second order functional derivative
terms multiplied by the error variance).

A very rich formalism especially applied in Financial Engineering has been developed
since the publication of [Bou03].
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C. Variance of the Hatch filter

C.1. Variance of Dt

with Dt =
´ t

0
e

s−t
τE Vsds− e

−t
τh

τh

´ t

0
e

−s
τ⋆

E

´ s

0
e

u
τE Vududs

V [Dt] = E



(
ˆ t

0

e
s−t
τE Vsds

)2



︸ ︷︷ ︸
V D1t

+
e

−2t
τh

τ 2
h

E



(
ˆ t

0

e
−s
τ⋆

E

ˆ s

0

e
u

τE Vududs

)2



︸ ︷︷ ︸
V D2t

−

− 2
e

−t
τh

τh
E

[
ˆ t

0

e
s−t
τE Vsds

ˆ t

0

e
−s
τ⋆

E

ˆ s

0

e
u

τE Vududs

]

︸ ︷︷ ︸
V D12t

(C.1)

V D1t = E

[
ˆ t

0

e
s−t
τE Vsds

ˆ t

0

e
s′

−t
τE Vs′ds′

]

= E

[
ˆ t

0

ˆ t

0

e
s+s′

−2t
τE VsVs′ds′ds

]

=

ˆ t

0

ˆ t

0

e
s+s′

−2t
τE E [VsVs′] ds′ds

=

ˆ t

0
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0

e
s+s′

−2t
τE (s ∧ s′) ds′ds

=
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0

[
ˆ s

0

e
s+s′

−2t
τE (s ∧ s′) ds′ +

ˆ t

s

e
s+s′

−2t
τE (s ∧ s′) ds′

]
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=

ˆ t

0

[
ˆ s

0

s′e
s+s′

−2t
τE ds′ +

ˆ t

s

se
s+s′

−2t
τE ds′

]
ds

=

ˆ t

0

ˆ s

0

s′e
s+s′

−2t
τE ds′ds+

ˆ t

0

ˆ t

s

se
s+s′

−2t
τE ds′ds (C.2)

We solve this integral using the symbolic package sympy of python and we obtain:

V D1t = tτ 2
ǫ − 3τ 3

ǫ

2
+ 2τ 3

ǫ e
− t

τǫ − τ 3
ǫ

2
e− 2t

τǫ (C.3)
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V D2t = E

[
ˆ t

0

e
−s
τ⋆

E

ˆ s

0

e
u

τE Vududs

ˆ t

0

e
−s′

τ⋆
E
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(C.4)

As before we solve this integral using sympy for python:
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(C.5)

We are going to solve V D12t
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V D12t = E

[
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ds (C.6)

finally we get:

V D12t = tτ 2
ǫ τhe
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C.2. Variance of Pt

with Pt = Wt −
´ t

0

[
1
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︸ ︷︷ ︸
V P1t

+E



(
ˆ t

0

(
1

τη
e

s−t
τη +

1

τh
e

s−t
τh e

−s
τη

)
Wsds

)2



︸ ︷︷ ︸
V P2t

+

1

τ 2
hτ

2
η

E



(
ˆ t

0

ˆ s

0

e
u−s
τη

+ s−t
τh Wududs

)2



︸ ︷︷ ︸
V P3t

−2E

[
ˆ t

0

(
1

τη
e

s−t
τη +

1

τh
e

s−t
τh e

−s
τη

)
WtWsds

]

︸ ︷︷ ︸
V P4t

+

+
2

τhτη
E

[
ˆ t

0

ˆ s

0

e
u−s
τη

+ s−t
τh WtWududs

]

︸ ︷︷ ︸
V P5t

−

− 2

τhτη
E

[
ˆ t

0

(
1

τη
e

s−t
τη +

1

τh
e

s−t
τh e

−s
τη

)
Wsds

ˆ t

0

ˆ s

0

e
u−s
τη

+ s−t
τh Wududs

]

︸ ︷︷ ︸
V P6t

(C.8)

V P1t = t (C.9)

V P2t = E
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(C.10)

Let’s define h (s) = 1
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we have
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Finally we have:
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We use symbolic package of Python (sympy) to find a closed form solution of the
above defined integral and we obtain:
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(C.15)

Expression of V P4t

V P4t = E

[
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0

h (s)WtWsds

]

=

ˆ t

0

h (s) (t ∧ s) ds

=

ˆ t

0

sh (s) ds (C.16)

Finally we have:
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V P4t = t+
τ 2
η τhe

− t
τh

(−τη + τh)
2 + τη

(
−1 + e

− t
τη

)
−

− τηe
− t

τη

(−τη + τh)
2 (−tτη + tτh + τητh) (C.17)

Epression of V P5t

V P5t = E

[
ˆ t

0

ˆ s

0

e
u−s
τη

+ s−t
τh WtWududs

]

=

ˆ t

0

ˆ s

0

ue
u−s
τη

+ s−t
τh duds (C.18)

Finally we have:

V P5t = tτητh +
τ 3
η τhe

− t
τh

−τη + τh
− τ 3

η τhe
− t

τη

−τη + τh
− τ 2

η τh+

+ τ 2
η τhe

− t
τh − τητ

2
h + τητ

2
he

− t
τh (C.19)

Calculation of V P6t

V P6t = E
[
ˆ t

0

(
1
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e

s−t
τη +

1

τh
e

s−t
τh e

−s
τη

)
Wsds
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︸ ︷︷ ︸
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


=
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0
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=
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0
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[
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]
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0

[
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0

u′k (s, s′, u′) du′ +
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s

sk (s, s′, u′) du′
]
ds′ds (C.20)

After solving this integral using the symbolic math toolbox of Matlab we obtain:
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V P6t =
tτ 3
η τhe
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τ 2
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+
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+
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−
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−
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+
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+
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−
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+
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− t
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(C.21)

C.3. Variance of ρ̃(k)
u (t)

Expression of the variance of the code carrier smoothing solution:
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V
[
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D. Expectation of Various Integrals
of Brownian Motions

D.1. Expectation of Xt = Bt

´ t

0 Bsds

E [Xt] = E

[
Bt

ˆ t

0

Bsds

]
(D.1)

We define ∆t = t/n and tk = k∆t. The Riemann sum approximation of Xtis:

Xtn = Btn

n−1∑

k=0

Btk∆t (D.2)

E [Xtn ] = E

[
Btn

n−1∑

k=0

Btk∆t

]
(D.3)

E [Xtn ] = ∆t
n−1∑

k=0

E [BtnBtk ] (D.4)

E [Xtn ] = ∆t
n−1∑

k=0

(tn ∧ tk) (D.5)

where tn ∧ tk = min (tn, tk)

E [Xtn ] = ∆t
n−1∑

k=0

tk (D.6)

E [Xtn ] = ∆t2
n−1∑

k=0

k (D.7)
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E [Xtn ] = ∆t2
n (n− 1)

2
(D.8)

E [Xtn ] =
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n2

n (n − 1)

2
(D.9)

By continuity we have E [Xtn ] → E [Xt] when n → ∞ and

E [Xt] =
t2

2
(D.10)

D.2. Expectation of Xt = ηt (τ )µt (τ )
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we rewrite ηt (τ) and µt (τ) using successive integration by parts formula. Let’s start
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With µt (τ) =
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ηr (τ) dr, we have:
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D.2 Expectation of Xt = ηt (τ)µt (τ)
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E [Xt] =
E
[
´ t

0
Brdr

´ t

0

´ r

0
Bududr

]
− 1

τ
E
[
´ t

0

´ r

0
e

u−r
τ Bududr

´ t

0

´ r

0
Bududr

]

− 1
τ
E
[
´ t

0
Brdr

´ t

0

´ r

0

´ q

0
e

u−q

τ Bududqdr
]

+ 1
τ2E

[
´ t

0

´ r

0
e

u−r
τ Bududr

´ t

0

´ r

0

´ q

0
e

u−q

τ Bududqdr
]

(D.12)

We define ∆t = t/n and tk = k∆t. Xt can be approximated using the Riemann sum
approximation:

Xtn =
X1tn +X2tn

+X3tn +X4tn

(D.13)
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 (D.15)
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E [X1tn ] = ∆t3
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j∑
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(ti ∧ tk) (D.17)
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in the first term of the right side of the equation, (i ∧ k) = k because k 6 i.

n4

t4
E [X1tn ] =

n−1∑

i=0



i−1∑

j=0

j∑

k=0

k +
n−1∑

j=i



i−1∑

k=0

(i ∧ k) +
j∑

k=i

(i ∧ k)






n4

t4
E [X1tn ] =

n−1∑

i=0



i−1∑

j=0

j∑

k=0

k +
n−1∑

j=i



i−1∑

k=0

k +
j∑

k=i

i






We use Python (sympy package) to do the calculations. After expressing E [X1tn ]
we take the limit when n → ∞ to finally find:

E [X1t] =
1

8
t4

We now express E [X2t] given that:
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D.2 Expectation of Xt = ηt (τ)µt (τ)

X2t = −1

τ

ˆ t

0

ˆ r

0

e
u−r

τ Bududr

ˆ t

0

ˆ r

0

Bududr

X2tn = −1

τ

(
n−1∑

i=0

i∑

k=0

e
tk−ti

τ Btk∆t2
)

n−1∑

j=0

j∑

l=0

Btl∆t
2


 (D.21)

In order to avoid any confusion, we choose different summation indexes.

X2tn = −∆t4

τ



n−1∑

i,j=0

i,j∑

k,l=0

e
tl−ti

τ BtlBtk


 (D.22)

E [X2tn ] = −∆t4

τ



n−1∑

i,j=0

i,j∑

k,l=0

e
tl−ti

τ (tl ∧ tk)


 (D.23)

E [X2tn ] = − t5

τn5



n−1∑

i,j=0

i,j∑

k,l=0

e
tl−ti

τ (l ∧ k)


 (D.24)

E [X2tn ] = − t5

τn5

n−1∑

i,j=0

i,j∑

k,l=0

e
tl−ti

τ (l ∧ k) (D.25)

We define r = e
∆t
τ = e

t
τn

n5

t5
E [X2tn ] =

n−1∑

i=0



i−1∑

j=0

i,j∑

k,l=0

rl−i (l ∧ k) +
n−1∑

j=i

i,j∑

k,l=0

rl−i (l ∧ k)


 (D.26)

We are going to omit the terms rl−i (l ∧ k) as we are concentrating our efforts in
partitioning the summations in order that in each partition, we can order l and k
and therefore simplifyl ∧ k.

n−1∑

i=0



i−1∑

j=0

i,j∑

k,l=0

+
n−1∑

j=i

i,j∑

k,l=0




=
n−1∑

i=0



i−1∑

j=0

j∑

l=0

i∑

k=0

+
n−1∑

j=i

j∑

l=0

i∑

k=0



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=
n−1∑

i=0



i−1∑

j=0

j∑

l=0

[
l−1∑

k=0

+
i∑

k=l

]
+

n−1∑

j=i



i−1∑

l=0

+
j∑

l=i




i∑

k=0




=
n−1∑

i=0



i−1∑

j=0

j∑

l=0

[
l−1∑

k=0

{1} +
i∑

k=l

{2}
]

+
n−1∑

j=i



i−1∑

l=0

[
l−1∑

k=0

{3} +
i∑

k=l

{4}
]

+
j∑

l=i

i∑

k=0

{5}





in {1} we have l ∧ k = k

in {2} we have l ∧ k = l

in {3} we have l ∧ k = k

in {4} we have l ∧ k = l

in {5} we have l ∧ k = k

We use Python (sympy package) to do the calculations. After expressing E [X2tn ]
we take the limit when n → ∞ to finally find:

E [X2t] = t2τ 2 +
t2τ 2

e
t
τ

+ 2tτ 3 + 4
tτ 3

e
t
τ

− τ 4e
t
τ − 4τ 4 + 5

τ 4

e
t
τ

we calculate now the expectation of X3t

E [X3t] = −1

τ
E

[
ˆ t

0

Brdr

ˆ t

0

ˆ r

0

ˆ q

0

e
u−q

τ Bududqdr

]

E [X3t] = −1

τ
E



n−1∑

i=0

Bti∆t
n−1∑

j=0

j∑

k=0

k∑

l=0

e
tl−tk

τ Btl∆t
3




E [X3t] = −∆t4

τ
E



n−1∑

i=0

n−1∑

j=0

j∑

k=0

k∑

l=0

e
tl−tk

τ BtiBtl




As in the previous development, we define r = e
∆t
τ = e

t
τn :

E [X3t] = − t4

τn4

n−1∑

i=0

n−1∑

j=0

j∑

k=0

k∑

l=0

rl−kE [BtiBtl ]

E [X3t] = − t5

τn5

n−1∑

i=0

n−1∑

j=0

j∑

k=0

k∑

l=0

rl−k (i ∧ l)
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In the same way as before, we partition the sums in order to have an explicit form
of i ∧ l.

n−1∑

i=0

n−1∑

j=0

j∑

k=0

k∑

l=0

=
n−1∑

i=0



i−1∑

j=0

j∑

k=0

k∑

l=0

+
n−1∑

j=i

j∑

k=0

k∑

l=0




=
n−1∑

i=0



i−1∑

j=0

j∑

k=0

k∑

l=0

+
n−1∑

j=i



i−1∑

k=0

k∑

l=0

+
j∑

k=i

k∑

l=0






=
n−1∑

i=0



i−1∑

j=0

j∑

k=0

k∑

l=0

+
n−1∑

j=i



i−1∑

k=0

k∑

l=0

+
j∑

k=i

[
i−1∑

l=0

+
k∑

l=i

]




E [X3t] = − t5

τn5

n−1∑

i=0



i−1∑

j=0

j∑

k=0

k∑

l=0

{1} +
n−1∑

j=i



i−1∑

k=0

k∑

l=0

{2} +
j∑

k=i

[
i−1∑

l=0

{3} +
k∑

l=i

{4}
]




in {1} we have l ∧ i = l

in {2} we have l ∧ i = l

in {3} we have l ∧ i = l

in {4} we have l ∧ i = i

We use Python (sympy package) to do the calculations. After expressing E [X3tn ]
we take the limit when n → ∞ to finally find:

E [X3t] = −1

8
t4 +

1

3
t3τ − 1

2
t2τ 2 − tτ 3

e
t
τ

+ τ 4 − τ 4

e
t
τ

we calculate now the expectation of X4t

E [X4t] =
1

τ 2
E

[
ˆ t

0

ˆ r

0

e
u−r

τ Bududr

ˆ t

0

ˆ r

0

ˆ q

0

e
u−q

τ Bududqdr

]

E [X4t] =
1

τ 2
E



n−1∑

i=0

i∑

m=0

e
tm−ti

τ Btm∆t2
n−1∑

j=0

j∑

k=0

k∑

l=0

e
tl−tk

τ Btl∆t
3




E [X4t] =
∆t5

τ 2
E



n−1∑

i=0

i∑

m=0

n−1∑

j=0

j∑

k=0

k∑

l=0

e
tm−ti

τ e
tl−tk

τ BtmBtl



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As in the previous development, we define r = e
∆t
τ = e

t
τn :

E [X4t] =
∆t5

τ 2

n−1∑

i=0

i∑

m=0

n−1∑

j=0

j∑

k=0

k∑

l=0

rm−i+l−kE [BtmBtl ]

E [X4t] =
t6

τ 2n6

n−1∑

i=0

i∑

m=0

n−1∑

j=0

j∑

k=0

k∑

l=0

rm−i+l−k (m ∧ l)

In the same way as before, we partition the sums in order to have an explicit form
of m ∧ l.

n−1∑

i=0

i∑

m=0

n−1∑

j=0

j∑

k=0

k∑

l=0

=
n−1∑

i=0

i∑

m=0



m−1∑

j=0

j∑

k=0

k∑

l=0

+
n−1∑

j=m



m−1∑

k=0

k∑

l=0

+
j∑

k=m

k∑

l=0






=
n−1∑

i=0

i∑

m=0




m−1∑

j=0

j∑

k=0

k∑

l=0

+
n−1∑

j=m




∑m−1
k=0

∑k
l=0 +

∑j
k=m

∑m−1
l=0 +

∑j
k=m

∑k
l=m







E [X4t] =
t6

τ 2n6

n−1∑

i=0

i∑

m=0




m−1∑

j=0

j∑

k=0

k∑

l=0

{1} +
n−1∑

j=m




∑m−1
k=0

∑k
l=0 {2}

+
∑j
k=m

∑m−1
l=0 {3}

+
∑j
k=m

∑k
l=m {4}







in {1} we have l ∧m = l

in {2} we have l ∧m = l

in {3} we have l ∧m = l

in {4} we have l ∧m = m

We use Python (sympy package) to do the calculations. After expressing E [X4tn ]
we take the limit when n → ∞ to finally find:

E [X4t] =
1

8
t4 − 1

2
t3τ + t2τ 2 − t2τ 2

2e
t
τ

− tτ 3 +
tτ 3

e
t
τ

+
1

2
τ 4 − τ 4

e
t
τ

+
τ 4

2e2 t
τ
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D.3 Expectation of Xt = µt (τ)
´ t

0
e

u−t
τ dBb1u

The expectation of Xt is the sum of the four expectation previously defined.

E [Xt] = E [X1t] + E [X2t] + E [X3t] + E [X4t] (D.27)

E [Xt] = 1
8
t4 + t2τ 2 + t2τ2

e
t
τ

+ 2tτ 3 + 4 tτ
3

e
t
τ

− τ 4e
t
τ − 4τ 4

+5 τ4

e
t
τ

− 1
8
t4 + 1

3
t3τ − 1

2
t2τ 2 − tτ3

e
t
τ

+ τ 4 − τ4

e
t
τ

1
8
t4 − 1

2
t3τ + t2τ 2 − t2τ2

2e
t
τ

− tτ 3 + tτ3

e
t
τ

+ 1
2
τ 4 − τ4

e
t
τ

+ τ4

2e2 t
τ

(D.28)

E [Xt] = t2τ2

2e
t
τ

+ tτ 3 + 4 tτ
3

e
t
τ

− τ 4e
t
τ

+3 τ4

e
t
τ

− 1
6
t3τ + 3

2
t2τ 2

1
8
t4 − 5

2
τ 4 + τ4

2e2 t
τ

(D.29)

D.3. Expectation of Xt = µt (τ )
´ t

0 e
u−t

τ dBb1u

With µt (τ) =
´ t

0

´ r

0
Bududr − 1

τ

´ t

0

´ r

0

´ q

0
e

u−q

τ Bududqdr

We use an integration par part to express
´ t

0
e

u−t
τ dBb1u

ˆ t

0

e
u−t

τ dBb1u = e
−t
τ

ˆ t

0

e
u
τ dBb1u

ˆ t

0

e
u−t

τ dBb1u = e
−t
τ

[
e

t
τ Bb1t − 1

τ

ˆ t

0

e
u
τ Bb1udu

]

ˆ t

0

e
u−t

τ dBb1u = Bb1t − 1

τ

ˆ t

0

e
u−t

τ Bb1udu

Therefore we have (We omit the b1index in the Brownian motion):

Xt =

´ t

0

´ r

0
BtBududr − 1

τ

´ t

0

´ r

0

´ q

0
e

u−q

τ BtBududqdr

− 1
τ

´ t

0
e

r−t
τ Brdr

´ t

0

´ r

0
Bududr + 1

τ2

´ t

0
e

r−t
τ Brdr

´ t

0

´ r

0

´ q

0
e

u−q
τ Bududqdr

The expectation of Xt is simply:

E [Xt] =

´ t

0

´ r

0
ududr − 1

τ

´ t

0

´ r

0

´ q

0
e

u−q
τ ududqdr

− 1
τ

´ t

0

´ t

0

´ r

0
e

r′
−t
τ (r′ ∧ u) dudrdr′ + 1

τ2

´ t

0

´ t

0

´ r

0

´ q

0
e

r′
−t+u−q

τ (r′ ∧ u) dudqdrdr′
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We use the same procedure as before by considering this time the continuous time
case. The two first terms can be solved directly. For the two other terms it is again
necessary to partition the integrals in order to have an explicit form for r′ ∧u. This
time we won’t detail the procedure as it is similar to the procedure in the discrete
case. Finally by using symbolic calculus we end up with:

E [Xt] = −tτ 2

e
t
τ

+
1

2
τ 3 − τ 3

2e2 t
τ

D.4. Expectation of Xt = ηt (τ )
´ t

0 e
u−t

τ dBb1u

Withηt (τ) =
´ t

0
Brdr− 1

τ

´ t

0

´ r

0
e

u−r
τ Bududr and

´ t

0
e

u−t
τ dBb1u = Bb1t− 1

τ

´ t

0
e

u−t
τ Bb1udu

Xt =

´ t

0
BtBrdr − 1

τ

´ t

0

´ r

0
e

u−r
τ BtBududr

− 1
τ

´ t

0
e

r−t
τ Brdr

´ t

0
Brdr + 1

τ2

´ t

0
e

r−t
τ Brdr

´ t

0

´ r

0
e

u−r
τ Bududr

E [Xt] =

´ t

0
rdr − 1

τ

´ t

0

´ r

0
ue

u−r
τ dudr

− 1
τ

´ t

0

´ t

0
e

r′
−t
τ (r′ ∧ r) drdr′ + 1

τ2

´ t

0

´ t

0

´ r

0
e

r′
−t+u−r

τ (r′ ∧ u) dudrdr′

In the same way as before, we have:

E [Xt] =
1

2
τ 2 − τ 2

e
t
τ

+
τ 2

2e2 t
τ

D.5. Variance of γt (τ )

We recall that γt (τ) =
´ t

0
Bbwudu.

The expectation of γt (τ) is equal to zero. Therefore the variance is simply E
[(
´ t

0
Bbwudu

)2
]

=

t3

3

D.6. Variance of ηt (τ )

We recall that ηt (τ) =
´ t

0
Brdr − 1

τ

´ t

0

´ r

0
e

u−r
τ Bududr

The expectation of γt (τ) is equal to zero. Therefore the variance is:
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D.7 Variance of µt (τ)

V [ηt (τ)] = E
[
ηt (τ)2

]

V [ηt (τ)] =
t3

3
+ E

[
− 2
τ

´ t

0
Brdr

´ t

0

´ r

0
e

u−r
τ Bududr

]

+E
[

1
τ2

´ t

0

´ r

0
e

u−r
τ Bududr

´ t

0

´ r

0
e

u−r
τ Bududr

]

V [ηt (τ)] =
t3

3
− 2

τ

´ t

0

´ t

0

´ r

0
e

u−r
τ (r′ ∧ u) dudrdr′

+ 1
τ2

´ t

0

´ r′

0

´ t

0

´ r

0
e

u′
−r′+u−r

τ (u′ ∧ u) dudrdu′dr′

V [ηt (τ)] = tτ 2 − 3

2
τ 3 + 2

τ 3

e
t
τ

− τ 3

2e2 t
τ

D.7. Variance of µt (τ )

We recall that µt (τ) =
´ t

0

´ r

0
Bududr − 1

τ

´ t

0

´ r

0

´ q

0
e

u−q
τ Bududqdr

The expectation of µt (τ) is equal to zero. Therefore the variance is:

V [µt (τ)] = E
[
µt (τ)2

]

V [µt (τ)] =
E
[(
´ t

0

´ r

0
Bududr

)2
]

+ E
[
− 2
τ

´ t

0

´ r

0
Bududr

´ t

0

´ r

0

´ q

0
e

u−q

τ Bududqdr
]

+E
[

1
τ2

(
´ t

0

´ r

0

´ q

0
e

u−q
τ Bududqdr

)2
]

V [µt (τ)] =

´ t

0

´ r′

0

´ t

0

´ r

0
(u′ ∧ u) dudrdu′dr′

− 2
τ

´ t

0

´ r′

0

´ t

0

´ r

0

´ q

0
e

u−q

τ (u′ ∧ u) dudqdrdu′dr′

+ 1
τ2

´ t

0

´ r′

0

´ q′

0

´ t

0

´ r

0

´ q

0
e

u′
−q′+u−q

τ (u′ ∧ u) dudqdrdu′dq′dr′

V [µt (τ)] =
1

3
t3τ 2 − t2τ 3 + tτ 4 − 2

tτ 4

e
t
τ

+
1

2
τ 5 − τ 5

2e2 t
τ
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Nomenclature

ACR Along track, Cross track, Radial

AOR-E Atlantic Ocean Region East

ASIGMA Absolute Slant Ionospheric Gradient Monitor Architecture

BOC Binary Offset Carrier

BPSK Binary Phase Shift Keying

CDF Cumulative Density Function

CDMA Code Division Multiple Access

CPCF Central Processing and Control Facility

CS-AWO Certifications Specifications – All Weather Operations

DLL Delay Lock Loop

DME Distance Measuring Equipment

DOP Dilution of Precision

ECAC European Civil Aviation Conference

ECEF Earth Centered Earth Fixed

EGNOS European Geostationary Navigation Overlay Service

ENU East North Up

EVnet Experimental and Verification network

GAST-C GBAS Approach Service Type C

GAST-D GBAS Approach Service Type D

GBAS Ground Based Augmentation System

GDOP Geometric Dilution of Precision
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Nomenclature

GGTO GPS Galileo Time Offset

GNSS Global Navigation Satellite System

GPS Global Positioning System

HDOP Horizontal Dilution of Precision

ICD Interface Control Document

IGS International GNSS Service

ILS Instrument Landing System

INS Inertial Navigation System

IPP Ionosphere Pierce Point

IPRE Instantaneous Pseudo Range Error

IPRED Instantaneous Pseudo Range Error Database

ISM Integrity Support Message

KFE Kolmogorov Forward Equation

KFE Kolmogorov Forward Equation

MDCD Minimum Detectable Curvature Difference

NDB Non Directional Beacon

NIMP Network Integrity Monitoring Platform

ODTS Orbit Determination and Time Synchronization

PCCGO Phase Center Center of Gravity Offset

PCCGO Phase Center Center of Gravity Offset

PDOP Position Dilution of Precision

PLL Phase Lock Loop

PRN Pseudo Random Noise

RAC Radial, Along track, Cross track

RAIM Receiver Autonomous Integrity Monitoring
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Nomenclature

RCMPRE Regional Covariance Matrix of Pseudo Range Error

SA Selective Availability

SBAS Space Based Augmentation System

SDE Stochastic Differential Equation

SISRE Signal In Space Range Error

TDOP Time Dilution of Precision

TEC Total Electron Content

UERE User Equivalent Range Error

VDB VHF Data Broadcast

VDOP Vertical Dilution of Precision

VGC Virtual Galileo Constellation

VNSE Vertical Navigation System Error

VOR VHF Omnidirectional Range

WAAS Wide Area Augmentation System

wd wrong decision

WGS84 World Geodetic System 1984
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