
HAL Id: tel-04459274
https://theses.hal.science/tel-04459274

Submitted on 15 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of learned video coding schemes
Théo Ladune

To cite this version:
Théo Ladune. Design of learned video coding schemes. Signal and Image processing. INSA de Rennes,
2021. English. �NNT : 2021ISAR0023�. �tel-04459274�

https://theses.hal.science/tel-04459274
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’INSTITUT NATIONAL DES
SCIENCES APPLIQUÉES RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Traitement du signal

Par

Théo Ladune

Design of Learned Video Coding Schemes

Thèse présentée et soutenue à Rennes, le 18 octobre 2021

Unité de recherche : VAADER, IETR/INSA

Thèse No : 21ISAR 24 / D21 - 24

Rapporteurs avant soutenance :

Jenny Benois-Pineau Professeur, Université de Bordeaux, France
Marc Antonini Directeur de Recherche CNRS, Université de Nice-Sophia Antipolis, France

Composition du Jury :

Président Frédéric Dufaux Directeur de recherche CNRS, Centrale Supelec, France
Examinateur Jenny Benois-Pineau Professeur, Université de Bordeaux, France
Examinateur Marc Antonini Directeur de Recherche CNRS, Université de Nice-Sophia Antipolis, France

Directeur de thèse Olivier Déforges Professeur, IETR/INSA, France
Co-directeur de thèse Pierrick Philippe Ingénieur Recherche, Orange, France
Encadrant de thèse Wassim Hamidouche Maître de Conférence, IETR/INSA, France

Invitée :

Co-encadrante de thèse Lu Zhang Maître de conférence, IETR/INSA, France

ACKNOWLEDGEMENTS

First and foremost, I would particularly like to thank Pierrick Philippe, my PhD supervisor

from Orange. I am extremely grateful for the considerable amount of time he has dedicated

to me, during which he has provided me with so many advices, recommandations and

ideas. Our insightful discussions have been extremely valuable to me and are the source

of some of the findings of this thesis.

I am grateful to Jenny Benois-Pineau and Marc Antonini for having accepted to review

this manuscript. I also thank the other jury members for accepting to be part of the jury.

I would also like to thank all my colleagues from Orange, who played in key role in

the accomplishment of this thesis. In particular, I am indebted to Patrick Boissonade and

Rémi Rouaud for the design and the maintenance of the GPU cluster. Without them, it

would not have been possible to carry out all the work presented in this manuscript. A

special thanks goes to Corentin Kervadec, which has made my stay at Orange even more

enjoyable. I have greatly benefited from the valuable exchanges I have had with Félix

Henri, Gordon Clare, Matthieu Gendrin and Stéphane Pateux about video coding and

deep learning. Finally, I would like to express my gratitude to Didier Tattevin for being

always available and for the particular attention he has showed to me, particularly during

the Covid-19 outbreak.

I want to thank my PhD supervisors from the VAADER team, Wassim Hamidouche, Lu

Zhang and Olivier Déforges for their assistance, especially during the writing of articles

and of this manuscript. Our monthly meetings have always been the opportunity to receive

relevant comments and interesting ideas.

My final thanks go to Lisette, to my friends and to my parents.

iii

RÉSUMÉ EN FRANÇAIS

Contexte

LA quantité toujours croissante de données transmises sur Internet représente une

contribution significative au changement climatique. Avant même la pandémie

de la Covid-19, la vidéo représentait environ 80 % du trafic internet [1]. De plus, la

consommation de vidéos a encore progressé lors de la pandémie, obligeant des plateformes

comme Netflix à réduire la qualité des vidéos afin d’éviter un engorgement du réseau

[2]. Selon certaines estimations, la diffusion de vidéos sur Internet est d’ores et déjà

responsable de 1 % des émissions mondiales de gaz à effet de serre [3], soit l’équivalent

d’un pays comme l’Espagne. Réduire la quantité de données nécessaire à la transmission

ou au stockage des vidéos pourrait permettre de réduire les émissions de carbone du

streaming vidéo, dans la mesure où un effet rebond (paradoxe de Jevons) est évité [4].

Depuis les années 90, les algorithmes de compression vidéo visent à réduire la taille

d’une vidéo tout en garantissant une qualité acceptable pour les utilisateurs. Bien qu’ini-

tialement motivés pour répondre aux limitations de débit imposées par les infrastructures

existantes, réduire l’impact environnemental du streaming video est une motivation sup-

plémentaire pour concevoir de nouveaux algorithmes de compression. Différents standards

de compression vidéo ont été développés par des organismes de standardisation tels que

le Moving Picture Experts Group (MPEG) et l’International Telecommunication Union

(ITU-T). Chaque génération de standards (AVC en 2003, HEVC en 2013 et VVC en 2020)

présente des améliorations incrémentales qui offrent des gains en compression significatifs,

permettant de diviser par deux le débit d’une vidéo à qualité égale.

Ces algorithmes de compression conventionnels traitent les vidéos au travers d’opéra-

tions successives, généralement linéaires. De plus, les codeurs conventionnels sont conçus

de manière incrémentale, occasionnant une optimisation séparée de leurs différentes

opérations. Récemment, les réseaux de neurones sont devenus une réponse populaire

à de nombreuses problématiques, grâce à leur capacité à modéliser toute fonction au

travers d’un processus d’optimisation. Dans le contexte de la compression, cela permet de

réaliser des opérations plus riches et non linéaires. Ces différentes opérations peuvent être

v

conjointement optimisées afin de mieux minimiser la taille de la vidéo et les dégradations

visuelles entraînées par sa compression.

Des travaux récents montrent déjà que les schémas de compression d’image basés

sur des réseaux de neurones sont compétitifs avec les meilleurs codeurs conventionnels.

Dans ces approches, les réseaux de neurones apprennent les fonctions transformant une

image vers une représentation compressée et vice-versa. Cependant, la présence d’une

dimension temporelle fait de la compression vidéo une tâche encore difficile pour les

approches neuronales. Néanmoins, la réduction de la taille des vidéos est la problématique

à laquelle il faut répondre. Dans ce but, cette thèse étudie la conception de codeurs vidéo

neuronaux, afin de profiter de leurs capacités prometteuses. Étant donné la nouveauté de

ce sujet, le codeur proposé est conçu à partir d’une page blanche et chacun de ces éléments

est considéré et motivé.

Partie I – Contexte et état de l’art

La première partie de la thèse présente les notions importantes relatives à la compression

d’image et de vidéo. Ces notions sont illustrées à travers leur implémentation par les

systèmes de compression conventionnels ainsi que les codeurs d’images neuronaux.

Chapitre 1 : Fondamentaux de compression vidéo

Les algorithmes de compression vidéo visent à réduire le nombre de bits nécessaires à

l’envoi de séquences d’images. En effet, les valeurs brutes des pixels d’une séquence vidéo

représente une quantité prohibitive de données. Par exemple, une vidéo haute définition

est constituée d’une succession de 24 à 60 images par seconde typiquement. Chaque image

est composée de 1920×1080 pixels, où la couleur de chaque pixel est codée par un triplet

de valeurs 8 bits. Ainsi, le débit nécessaire à la transmission des pixels bruts est de :

24 images
1 s

×
1920×1080 pixels

1 image
×

3×8 bits
1 pixel

≃ 1.20 Gbit/s. (1)

Une vidéo n’est pas une collection de pixels aux valeurs aléatoires, mais présente au

contraire une forte organisation spatio-temporelle. Différentes techniques de compression

sans perte exploitent cette structure afin de réduire la taille des vidéos, sans pour autant

perdre d’information. Ces techniques sont implémentées par un encodeur, qui encode la

vidéo dans un flux binaire, et par un décodeur, qui décode du flux binaire la vidéo initiale.

vi

Tout d’abord, les algorithmes de codage entropique exploitent les propriétés statis-

tiques d’une vidéo en assignant moins de bits aux combinaisons de pixels les plus probables.

Supposons que x= (x1, . . . , xN) soit une variable aléatoire discrète suivant une distribution

q, représentant un message à transmettre. Par exemple, x représente les N pixels compo-

sant une seconde de vidéo. D’après le théorème de Shannon [5], le débit optimal R⋆ est

exprimé au travers de l’entropie H, définie comme :

R⋆ = H (x)=Ex∼q

[

− log2 q(x)
]

. (2)

Dans l’équation ci-dessus, chaque message (chaque seconde de vidéo) est représenté

par un code binaire de longueur − log2 q(x). En pratique, la distribution q est souvent

inconnue, ce qui nécessite d’estimer q au travers d’une approximation p. L’erreur causée

par l’utilisation d’une approximation entraîne un débit R supérieur à R⋆ :

R−R⋆ =

Longueur de code estimée
︷ ︸︸ ︷

Ex∼q

[

− log2 p(x)
]

−

Longueur de code optimale
︷ ︸︸ ︷

Ex∼q

[

− log2 q(x)
]

. (3)

Ainsi, la performance du codage entropique dépend de la qualité de l’approximation p.

Néanmoins, la dimension d’une séquence vidéo (plusieurs millions de pixels par seconde)

empêche d’estimer une distribution multidimensionnelle des pixels. En conséquence, les

différents pixels sont supposés indépendants et transmis successivement :

p(x)=
N∏

i=1
pi(xi). (4)

Bien que nécessaire afin d’implémenter un algorithme de codage entropique, cette hy-

pothèse n’est jamais vérifiée en pratique. Cela entraîne un surcoût de débit, qui augmente

avec la dépendence statistique entre les pixels de la vidéo. Pour réduire ce surcoût de

débit, deux types d’opérations sont appliqués sur les vidéos.

• Les prédictions visent à réduire les redondances entre les pixels déjà transmis x<i

(mémorisés au décodeur) et ceux à transmettre. Les pixels à transmettre sont prédits

(à l’encodeur et au décodeur) grâce à x<i, et seule la partie non-prédite est envoyée ;

• Les transformées sont appliquées sur tous les pixels afin de réduire les dépendences

statistiques.

Les standards de compression vidéo emploient prédictions et transformées en amont du

codage entropique, permettant de réduire le débit d’un facteur trois [6]. D’après l’équation

vii

(1), le débit est donc abaissé à quelques centaines de Mbit/s, ce qui reste supérieur au débit

de quelques Mbit/s utilisés en pratique pour le la transmission de vidéos. Pour atteindre

un tel débit la reproduction exacte de la vidéo originale n’est pas possible.

La compression avec pertes permet de considérablement abaisser le débit au prix de

la perte d’information. Typiquement, cette perte d’information est réalisée au travers

d’une étape de quantification, réduisant la précision des valeurs transmises. Elle entraîne

une dégradation potentiellement perceptible (distorsion), mesurée par l’intermédiaire de

différentes métriques (erreur quadratique, MS-SSIM [7]). Le compromis entre débit R et

distorsion D doit être considéré avec attention en fonction du cas d’usage. Il est souvent

formulé comme l’optimisation d’une fonction de coût débit distorsion J exprimée à l’aide

un Lagrangien, dont le multiplicateur λ établit le compromis entre débit et distorsion :

min Jλ = D+λR. (5)

La Figure 1 montre l’utilisation de techniques de compression sans perte (prédiction P,

transformée T et codage entropique AE et AD), couplée avec une quantification Q. Ces

principes constituent la base des algorithmes de compression. Ils sont repris aussi bien

par les standards de compression conventionnels, présentés dans le Chapitre 2, que par

les schémas de compression basés apprentissage développés dans le reste de ce manuscrit.

FIGURE 1 : Compression avec pertes d’un message x avec un modèle de probabilité p.

Chapitre 2 : Algorithmes de compression vidéo conventionnels

Depuis les années 90, le Moving Picture Experts Group (MPEG) et l’International Te-

lecommunication Union (ITU-T) ont proposé plusieurs standards de compression vidéo.

Advanced Video Coding (AVC) [8] a été finalisé en 2003, suivi par High Efficiency Video

Coding (HEVC) [9] en 2013 et récemment Versatile Video Coding (VVC) [10] en 2020.

Les standards successifs de MPEG/ITU ont continûment amélioré un même paradigme,

désigné dans ce manuscrit comme la compression vidéo conventionnelle.

viii

Commençons par décrire la façon dont les systèmes de compression conventionnels

traitent une image seule, appelée une image intra (I). L’image est tout d’abord partitionnée

en différents blocs. Chacun des blocs est ensuite prédit d’après les blocs de l’image déjà

transmis. Puis, le résidu (erreur de prédiction) est transmis par un processus de codage

composé d’une transformée, d’une quantification et d’un codage entropique. Les étapes de

prédiction et de transformée présentent deux caractéristiques importantes :

• Elles sont linéaires, offrant ainsi une complexité limitée ;

• Différentes prédictions et transformées sont disponibles. Les plus adaptées pour le

bloc sont choisies par l’encodeur afin d’optimiser le coût débit distorsion.

Pour des raisons pratiques, les différentes étapes sont optimisées séparément, ce qui peut

entraîner des choix sous-optimaux par rapport à une optimisation globale du système.

La dimension temporelle d’une vidéo présente de nombreuses redondances, qui doivent

être réduites afin d’abaisser le débit total. Pour ce faire, une prédiction temporelle, im-

plémentée par un algorithme de compensation de mouvement, est mise en place. Un

mouvement translationnel est appliqué à un bloc de référence issu d’une autre image,

préalablement transmise. Ce mouvement indique les déplacements entre le bloc de réfé-

rence et le bloc à coder. Comme il doit être transmis au décodeur, sa valeur et sa précision

sont déterminées pour optimiser le coût débit distorsion. Une prédiction bi-directionnelle

est souvent implémentée afin d’améliorer la precision de la prédiction. Elle repose sur une

moyenne de deux compensations de mouvement intermédiaires. Enfin, le résidu issu de la

prédiction temporelle est transmis de manière similaire aux images intra.

Les blocs de référence sont issus d’un ensemble restreint d’images de références, défini

par la structure de codage. La Figure 2 présente un exemple de structure de codage appelée

Random Access. Une image s’appuyant sur d’autres images déjà reçues, est appelée une

image inter. On différencie ensuite les images P (utilisant une seule image de référence),

des images B (utilisant deux images de référence). La structure de codage doit répondre

à un certain nombres de contraintes pratiques. Par exemple, l’utilisation d’images de

références futures introduit une latence dans le processus de décodage qui peut être

prohibitive pour certaines applications (par exemple en visioconférence).

Les systèmes de compression vidéo conventionnels se doivent de répondre à un large

éventail de contraintes telles que la complexité ou la latence. En conséquence, les principes

exposés dans le Chapitre 1 sont implémentés avec des limitations : opérations linéaires,

ix

FIGURE 2 : Configuration de codage Random Access.

nombre de références limité et optimisation séparée des différentes étapes. Néanmoins,

la présence à chaque étape de différents modes de réalisation permet de réaliser des

opérations adaptées aux signaux à compresser. Le Chapitre 3 montre comment les réseaux

de neurones peuvent être utilisés pour concevoir un système de compression d’image

fixe. En particulier, la capacité des réseaux de neurones à représenter des opérations

non-linéaires et à être optimisés globalement est exploitée pour obtenir de meilleures

performances de compression.

Chapitre 3 : Apprendre à compresser des images

Les réseaux de neurones sont un outil mathématique permettant de représenter n’importe

quelle fonction [11]. Ils sont composés d’une succession d’opérations linéaires et non

linéaires, dont les paramètres sont appris au cours d’un processus d’optimisation appelé

entraînement. Notons y= f (x;θ) la fonction réalisée par un réseau de neurones qui relie

une entrée x à une sortie y à l’aide de paramètres θ. Le but du réseau est que y corresponde

à la sortie désirée yob j. Pour ce faire, il est nécessaire de trouver les paramètres optimaux :

θ⋆ = argmin
θ

Ex
[

J
(

f (x;θ), yob j

)]

, (6)

J est la fonction de coût, qui mesure l’écart entre la sortie attendue et celle observée.

Les paramètres θ sont appris au travers d’un algorithme itératif de descente de gradient

stochastique. À l’itération numéro n, plusieurs exemples x sont tirés aléatoirement depuis

un ensemble d’entraînement. La sortie du réseau ainsi que la fonction de coût sont

calculées pour chacune des entrées, puis la fonction de coût est moyennée. Enfin, les

paramètres θn du réseaux sont mis à jours de la manière suivante :

θn+1 = θn −η∇θEx
[

J
(

f (x;θ), yob j

)]

, η ∈R. (7)

x

Depuis 2017 et les travaux de Ballé [12] et Theis [13], les autoencodeurs sont la

méthode la plus populaires pour implémenter des systèmes de compression basés ré-

seaux de neurones. La Figure 3 présente l’architecture d’un autoencodeur, pourvue de

2 sous-réseaux réalisant respectivement la transformée d’analyse ga et de synthèse gs.

Habituellement, les autoencodeurs sont entraînés pour que leur sortie x̂ soit la plus proche

possible de l’entrée x, tout en imposant des contraintes sur la représentation latente

y. Cela permet d’apprendre une représentation latente pertinente et expressive, offrant

un domaine de représentation mieux adapté que celui du domaine vidéo initial. Dans le

contexte de la compression, la contrainte imposée sur y a pour vocation de limiter son

entropie, c’est-a-dire son débit.

FIGURE 3 : Architecture d’un autoencodeur.

La Figure 4 présente un schéma de compression d’image basé sur un autoencodeur.

La variable latente y obtenue grâce à la transformée d’analyse ga est quantifiée, puis

transmise au décodeur via un codage entropique. Enfin, la transformée de synthèse gs

permet d’obtenir l’image décodée x̂ depuis les latentes quantifiées. Afin de mener à bien

l’étape de codage entropique, un modèle de probabilité p des variables latentes doit être

disponible. C’est le rôle d’un troisième réseau de neurones, entraîné pour représenter

la distribution de ŷ. Tous les paramètres du schéma de compression (ga, gs et p) sont

optimisés conjointement afin de minimiser une fonction de coût débit distorsion :

Lλ =Ex
[

d(x, x̂)−λr(ŷ)
]

, (8)

où d mesure la distorsion, r mesure le débit associé aux variables latentes, et λ est la

contrainte de débit permettant d’équilibrer débit et distorsion.

Ainsi, un schéma de compression d’image basé apprentissage est composé de trois

éléments principaux : une transformée d’analyse, de synthèse et un modèle de probabilité

des variables latentes. Une grande partie des travaux menés depuis 2017 vise à améliorer

ces trois éléments, à travers des architectures mieux adaptées. Dans le cadre de cette

thèse, un nouveau modèle de probabilité a été proposé. Il permet de mieux représenter la

distribution des variables latentes et donc d’abaisser leur débit de 6 % [14].

xi

FIGURE 4 : Schéma de compression d’image basé sur un autoencodeur. Q dénote la
quantification, AE et AD le codage arithmétique avec p le modèle de probabilité.

La Figure 5 présente les performances d’un codeur d’image basé autoencodeur (AE),

avec le modèle de probabilité proposé. Pour mieux apprécier les résultats, les résultats de

différents standards de compression (JPEG, HEVC et VVC), sont également présentés. Ces

résultats démontrent que la compression d’image basée apprentissage est compétitive avec

VVC, le dernier standard de compression. Cela est d’autant plus encourageant au vu de la

jeunesse des approches basées apprentissages, qui ont atteint ce niveau de performances

en l’espace de quelques années et dont les résultats ne cessent de progresser.

Tout au long de ce chapitre, les autoencodeurs se sont révélés être des architectures

génériques, performantes pour transmettre différent types de signaux. Ainsi, ces archi-

tectures sont les briques de base des différents systèmes de compression vidéo présentés

dans les chapitres suivants.

0 0.25 0.5
26

28

30

32

34

36

38

Débit [bit par pixel]

Q
u

al
it

é
en

P
S

N
R

[d
B

]

Courbes débit distorsion, ensemble de validation CLIC 2020

JPEG
HEVC
VVC
AE

FIGURE 5 : Performance d’un système de compression d’image basé autoencodeur (AE).

xii

Partie 2 – Compression vidéo basée apprentissage

La seconde partie de cette thèse propose de concevoir un codeur vidéo neuronal. Tout

d’abord, le cahier des charges du codeur ainsi qu’un cadre expérimental réaliste sont

définis. Ensuite, les différentes composantes du codeur sont étudiées.

Chapitre 4 : De la compression d’image à la compression vidéo

En 2019, des travaux précurseurs [15] ont proposé d’étendre directement les autoencodeurs

de compression d’image pour traiter de façon groupée T images de vidéo . Cependant, ces

approches requièrent un nombre élevé de paramètres et présentent des défauts inhérents

au traitement par groupe d’images. En effet, il est nécessaire d’attendre d’avoir T images à

traiter pour commencer le codage, entraînant une latence de T images. Puisque ces défauts

ne sont pas compensés par des performances encourageantes, la grande majorité des

travaux ultérieurs (y compris ceux présentés dans ce manuscrit) ont adopté le paradigme

conventionnel d’un traitement image par image. Cependant, cela impose une étape de

prédiction temporelle pour réduire les redondances. En pratique, elle est effectuée par

compensation de mouvement, de manière similaire aux codeurs conventionnels.

L’ajout d’une étape de compensation de mouvement amène à un schéma de compression

en trois étapes, présenté dans la Fig. 6. Supposons que xt soit une image à coder et que deux

images de références x̂p, x̂ f soient disponibles. Tout d’abord, il est nécessaire d’estimer

le mouvement entre xt et les références puis de le transmettre au décodeur. Ensuite, la

compensation de mouvement calcule la prédiction temporelle x̃t. Finalement, seule la

partie non-prédictible est transmise pour obtenir l’image reconstruite x̂t.

FIGURE 6 : Compression d’une image inter.

Les autoencodeurs sont utilisés ici comme des outils génériques permettant de trans-

mettre les différentes quantités en jeu (informations de mouvement, partie non-prédictible).

La meilleure façon de transmettre xt étant donné sa prédiction x̃t est étudiée dans le

xiii

Chapitre 5. Puis, le Chapitre 6 se concentre sur l’estimation et la transmission des infor-

mations de mouvement, afin d’obtenir une prédiction temporelle précise. Afin d’évaluer

les différentes solutions proposées, une situation réaliste de codage vidéo est choisie : la

tâche de compression vidéo du Challenge on Learned Image Compression (CLIC) 2021 [16].

L’objectif de ce challenge est de compresser 100 vidéos haute définition à un débit moyen

de 1 Mbit/s tout en obtenant la meilleure qualité, mesurée au travers d’une métrique

objective nommée MS-SSIM.

Pour le moment, les meilleures implémentations des standards de compression conven-

tionnels (HM pour HEVC et VTM pour VVC) demeurent les solutions de compression

vidéo les plus performantes. Ainsi, elles sont utilisées comme ancrage pour attester de la

pertinence des résultats proposés. Puisque le challenge ne comporte pas de contrainte sur

la structure de codage, une configuration Random Access (voir Fig. 2) issue des conditions

de test de VVC est utilisée [17].

La configuration Random Access nécessite de savoir traiter des images avec zéro, une

ou deux références, c’est-à-dire des images I, P et B. De ce fait, nous proposons d’entraîner

nos systèmes afin de coder des triplets d’images, comme illustré par la Fig. 7. Enfin,

la totalité des paramètres du système est optimisée de manière conjointe au travers

de l’optimisation de la fonction de coût suivante, composée de la somme du coût débit

distorsion des images successives :

Lλ =Ex

[
∑

t

d(xt, x̂t)+λr(x̂t)
]

. (9)

Pour répondre au challenge, la métrique de distorsion d est logiquement basée sur le

MS-SSIM.

FIGURE 7 : Configuration de codage pour l’entraînement.

xiv

Chapitre 5 : Exploitation d’une prédiction

La majorité des systèmes de compression vidéo, aussi bien conventionnels que basés

apprentissage, utilise le codage résiduel afin diminuer les redondances entre les images

successives. Lorsqu’une prédiction est disponible, elle est soustraite à l’image à coder afin

d’obtenir le résidu qui est ensuite transmis. Néanmoins, les réseaux de neurones sont en

mesure de mieux exploiter une prédiction qu’au travers d’une simple soustraction. C’est

ce qui est démontré dans ce chapitre.

Une prédiction reproductible, sans information de mouvement, est utilisée pour per-

mettre de comparer différentes méthodes d’exploitation de la prédiction. Ainsi, étant

donné deux images de références x̂p, x̂ f , la prédiction temporelle x̃t utilisée est :

x̃t =βx̂p + (1−β)x̂ f =
{

1
2

(

x̂p + x̂ f

)

pour les images B,
(

β= 1
2

)

x̂p pour les images P.
(

β= 1
) (10)

La tâche de codage d’une image inter est tout d’abord formalisée . Des informations

depuis une quantité présente à l’encodeur xenc, sont envoyées afin d’obtenir xout au

décodeur. Dans le même temps, une quantité xdec, déjà présente au décodeur (par exemple

une prédiction) contient des informations pertinentes. Un schéma de codage inter idéal

évite de transmettre les informations de xenc déjà présentes dans xdec. Dans le cas du

codage résiduel, la suppression des informations commune entre xenc et xdec se fait au

travers d’une soustraction, dont le résultat est ensuite fourni à un autoencodeur :

xout = xdec +
autoencodeur

︷ ︸︸ ︷

gs(Q(ga(xenc −xdec
︸ ︷︷ ︸

résidu

))) . (11)

Une fois transmis, le résidu est combiné avec xdec au travers d’une addition. Effectuer

le mélange via une addition et une soustraction présente deux défauts :

• Ce n’est pas nécessairement la combinaison la mieux adaptée ;

• Cela nécessite des quantités compatibles : image et différence d’images.

Pour remédier à ces défauts, nous proposons une nouvelle architecture appelée codage

conditionnel [18], présentée Fig. 8. Une transformée d’analyse ga prend en entrée les

informations présentes à l’encodeur et au décodeur et calcule une variable latente y

xv

représentant l’information à transmettre, présente à l’encodeur mais pas au décodeur :

y= ga(xenc,xdec). (12)

Comme ga est un réseau de neurones, ses opérations successives permettent de réaliser

un mélange plus riche qu’une simple soustraction.

En codage résiduel, l’information présente au décodeur xdec est combinée avec la sortie

de la transformée de synthèse gs via une addition. Le codage conditionnel utilise une

nouvelle transformée de conditionnement gc qui sert à incorporer les informations de xdec

à la sortie xout. Pour ce faire, gc extrait une nouvelle variable latente yc :

yc = gc (xdec) . (13)

Il est important de noter que la variable latente yc issue de la transformée de condi-

tionnement est calculée au décodeur et ne nécessite donc pas de transmission. Enfin, la

transformée de synthèse gs prend en entrée les deux variables latentes pour calculer la

sortie désirée :

xout = gs (y,yc) . (14)

FIGURE 8 : L’architecture du codage conditionnel.

L’architecture des transformées d’analyse ga et de synthèse gs demeurent (quasi) iden-

tique à celle utilisée en compression d’image. La nouvelle transformée de conditionnement

gc utilise la même architecture que ga. Enfin, dans le contexte de l’exploitation d’une

xvi

prédiction, les quantités xenc, xdec et xout se traduisent en :

xenc = xt image à coder,

xdec = x̃t prediction temporelle,

xout = x̂t image décodée.

(15)

Les performances du codage conditionnel sont évaluées sur la tâche de compression

décrite dans le Chapitre 4. Afin de servir d’ancrage, un autoencodeur habituel est entraîné

à coder des résidus. Pour mieux apprécier ces résultats, les performances de HEVC, avec

compensation de mouvement, sont fournies au travers de deux implémentations : x265

(preset medium) et le HM. Si le HM est la meilleure implémentation disponible, x265

demeure très utilisé dans la littérature [19]-[21].

Les résultats des différents codeurs sont présentés Fig. 9. Le codage conditionnel

diminue le débit de 29 % par rapport au codage résiduel, démontrant son intérêt.

0 1 2 3 4 5 6
10

12

14

16

18

20

22

Débit [Mbit/s]

Q
u

al
it

é
en

M
S

-S
S

IM
d

B
[d

B
]

Courbes de débit distorsion

HM
x265

Conditionnel
Résiduel

FIGURE 9 : Performances du codage conditionnel.

Les performances du système sont encore améliorées en ajoutant une précision de quan-

tification adaptée au type d’image (I, P ou B). En effet, laisser l’algorithme d’apprentissage

fixer la précision de quantification permet de diminuer le débit de 10 %.

Ainsi, ce chapitre a permis d’augmenter significativement les performances du codage

résiduel habituellement employé. Cependant, la prédiction temporelle sans information

de mouvement n’est pas suffisamment précise et pénalise les performances. Le chapitre 6

se concentre donc sur la réalisation d’une meilleure prédiction.

xvii

Chapitre 6 : Calcul d’une prédiction temporelle

Inspiré par les codeurs vidéos conventionnels, la prédiction temporelle est obtenue grâce à

une compensation de mouvement bi-directionnelle. Pour calculer cette prédiction, chacune

des deux images de références (x̂p et x̂ f) dispose d’un flux optique (vp et v f). Un flux

optique est une carte de mouvement en deux dimensions, indiquant pour chaque pixel le

déplacement horizontal et vertical entre l’image à prédire xt et sa référence. Ensuite, une

opération de warping w permet d’appliquer les flux optiques à leur référence respective.

Enfin, les références compensées sont assemblées au travers d’une somme pondérée par β

pour obtenir la prédiction finale x̃t t.

x̃t =

Compensation de x̂p
︷ ︸︸ ︷

β⊙w(x̂p;vp) +

Compensation de x̂ f
︷ ︸︸ ︷

(1−β)⊙w(x̂ f ;v f), ⊙ est un produit pixel par pixel. (16)

Dans ce chapitre, nous allons concevoir MNet, un réseau de neurones pour estimer et

transmettre les informations nécessaires à la prédiction (vp, v f et β). Ce réseau vient en

amont du processus de compensation, lui-même situé avant le réseau CNet, chargé du

codage conditionnel de xt connaissant la prédiction x̃t. La Figure 10 présente ce processus.

FIGURE 10 : Schéma de codage vidéo présentant une compensation de mouvement.

Dans certaines approches de la littérature [19], [21], MNet est composé d’un réseau

d’estimation de flux optique pré-entraîné (SpyNet [22]), suivi d’un autoencodeur dédié à sa

transmission. D’autres approches suggèrent que MNet peut être un simple autoencodeur,

capable d’estimer et de transmettre les flux optiques directement sans réseau d’estimation

dédié [23]-[25]. Dans un soucis de simplicité, cette seconde méthode est choisie.

Quelle que soit la méthode retenue, l’entraînement d’un schéma de codage avec infor-

mations de mouvement n’est pas aisé [23]. En particulier, l’obtention de flux optiques au

décodeur nécessite souvent d’adapter l’entraînement, avec des réseaux pré-appris ou en

intégrant d’autres termes que le débit et la distorsion dans la fonction de coût. Dans les

xviii

deux cas, cela peut dévier l’optimisation de l’objectif débit distorsion visé, dégradant les

performances. Pour contourner ce problème, nous proposons un nouveau mode de codage

appelé Skip mode [26] afin d’encourager l’apprentissage d’informations de mouvement.

Le schéma de codage de la Fig. 10 est amélioré au travers de l’ajout du Skip mode,

présenté dans la Fig. 11. Ce mode de codage permet d’effectuer une copie directe de certains

pixels de la prédiction, au lieu d’être exploitée par CNet. Ainsi, plutôt qu’optimisée au

travers CNet, la prédiction peut être apprise directement au travers d’une copie, ce qui

stabilise considérablement l’apprentissage. Le choix du mode de codage est réalisé pixel par

pixel grâce au mode le codage α. Enfin, l’image décodée est reconstruite en additionnant

les contributions de CNet et du Skip mode :

x̂t =
CNet

︷ ︸︸ ︷

c (α⊙xt,α⊙ x̃t)+
Skip mode

︷ ︸︸ ︷

(1−α)⊙ x̃t, ⊙ est un produit pixel par pixel. (17)

FIGURE 11 : Schéma de codage vidéo avec le Skip mode.

Le mode de codage α doit être transmis au décodeur. Pour ce faire, il constitue une

sortie supplémentaire de l’autoencodeur MNet, au côté des informations nécessaires à la

prédiction. Afin de diminuer le débit, MNet implémente l’architecture de codage condition-

nel développée dans le Chapitre 5. En effet, les deux images de référence présentes au

décodeur permettent au codage conditionnel d’interpoler des informations de mouvement

(au décodeur) sans nécessairement transmettre d’information depuis l’encodeur.

L’entièreté du schéma de codage (MNet et CNet) est entraîné pour optimiser une

fonction de coût débit distorsion, comme présenté dans le Chapitre 4. La Figure 12 montre

les gains en compression obtenus par l’ajout de MNet (avec codage conditionnel) et du Skip

mode. Au total, cela permet de diminuer le débit de 34 % et d’atteindre des performances

en ligne avec celles du HM, l’implémentation la plus performante du standard HEVC.

Néanmoins, différentes expériences ont mis en lumière certaines limitations du schéma

xix

proposé, concernant particulièrement l’estimation des mouvements. L’amélioration du

MNet sur ce point permettrait vraisemblablement d’augmenter de manière importante les

performances du codeur vidéo proposé. Malgré ces limites, ce codeur vidéo basé apprentis-

sage offre des performances encourageantes dans diverses configurations de codage. Pour

cette raison, il a été soumis comme candidat pour la tâche vidéo du challenge CLIC 2021.

Le Chapitre 7 détaille notre participation à ce challenge.

0 1 2 3 4
10

12

14

16

18

20

22

Débit [Mbit/s]

Q
u

al
it

é
en

M
S

-S
S

IM
d

B
[d

B
]

Courbes de débit distorsion

HM
x265

Mouvement
Pas de mouvement

FIGURE 12 : Performances apportée par l’ajout d’information de mouvement.

Chapitre 7 : Vers une compression vidéo utilisable en pratique

Pour la première fois, le challenge CLIC 2021 a proposé une tâche de compression vidéo

afin de comparer les systèmes de compression conventionnels et ceux basés apprentissage.

L’objectif de ce challenge est de compresser 100 vidéos haute définition à un débit moyen

de 1 Mbit/s tout en obtenant la meilleure qualité, mesurée au travers du MS-SSIM. Afin de

promouvoir des systèmes réalistes, la métrique de la compétition inclut une pénalité sur

la taille des décodeurs. Ainsi, le décodeur conçu dans le Chapitre 6 comporte 27 millions

de paramètres, ce qui réduit d’environ 8 % son débit autorisé pour les vidéos.

Les règles du challenge ne portent que sur la moyenne du débit et de la qualité. En

conséquence, les performances totales peuvent être améliorées en ajustant séquence par

séquence le compromis débit distorsion. Pour ce faire, deux moyens sont mis en place : la

compétition de structure de codage et la compétition de débit. Le codeur conçu dans les

xx

chapitres précédents est en mesure de compresser des images I, P et B. Il est donc possible

d’organiser ces trois types d’image à volonté, afin de déterminer séquence par séquence la

structure de codage optimale.

Pour le moment, tous les codeurs basés apprentissage décrits dans cette thèse sont

mono-débit. Pour une entrée donnée, les mêmes opérations sont effectuées, amenant la

transmission de la même variable latente. Pour obtenir une compétition de débit, il serait

nécessaire de mettre en compétition différents systèmes mono-débit ce qui nécessiterait le

stockage des différents décodeurs. Cependant, cela entraînerait un nombre de paramètres

trop importants selon les règles du challenge. Afin de profiter de la compétition de débit,

le codeur conçu dans le Chapitre 6 est modifié pour faire varier son débit grâce à un petit

nombre de paramètres supplémentaires. Afin d’adresser N débits différents, le codeur est

doté de N précisions de quantification différentes. Chacune de ces précisions est optimisée

pour l’un des N débits. À l’exception des précisions de quantification, les autres paramètres

du codeur (MNet et CNet) sont communs à tous les débits.

La Figure 13 montre les gains en qualité obtenus à travers la compétition de débits et

de structures de codage. Ce graphe présente également les scores obtenus par 3 approches

conventionnelles : 2 implémentations d’HEVC (x265 et HM) et une implémentation de

VVC (VTM). Si la compétition apporte un gain significatif de +0.47 dB, les performances

restent en retrait par rapport aux approches conventionnelles (HM, VTM).

E2E x265 E2E E2E HM VTM
15

16

17

18

19

20

16.92

18.10

19.13

16.88
17.14 17.35

Q
u

al
it

é
en

M
S

-S
S

IM
d

B
[d

B
]

Qualité au débit cible du challenge, ensemble de validation

Ancrage
Pas de compétition
Compétition débit

Compétition débit et structure

FIGURE 13 : Intérêt de la compétition. E2E désigne les systèmes basés apprentissage.

Il est intéressant de constater que les résultats présentés dans le Chapitre 6 (Fig. 12)

montrent que le codeur basé apprentissage est a égalité avec le HM, ce qui n’est plus

le cas ici. La différence majeure est qu’à présent, la compétition de stratégies de codage

xxi

est intégrée dans les résultats. La grande variété de choix de codage disponibles dans le

HM et le VTM permet d’effectuer une compétition accrue, qui augmente les performances

de manière importantes. Le codeur basé apprentissage ne bénéficie pas autant de la

compétition, car il présente un nombre plus faible de stratégies de codage disponibles.

Enfin, la taille d’un décodeur conventionnel est environ 100 fois plus faible que celle d’un

décodeur basé apprentissage, ce qui laisse d’autant plus de place pour la représentation

compressée des vidéos, permettant une meilleure qualité.

Après quelques ajustements pour permettre un encodage et décodage cross-platform, le

codeur vidéo basé apprentissage a été proposé comme candidat au challenge. Étant donné

les très bonnes performances du VTM, ce dernier a également été soumis comme candidat

par nos soins. L’intégralité des résultats du challenge sont présentés Fig. 14. Onze codeurs

ont été soumis au challenge, dont 5 systèmes entièrement basés apprentissage. Les autres

sont basés sur des codeurs vidéos conventionnels avec éventuellement des modules de

post-traitement basés apprentissage.

E
2E

_T
_O

L

E
2E

n
on

so
u

m
is

A
N

C
_T

_O
L

10
12

14
16

18
20

15.07

18.37 18.81 18.94 19.19 19.30

12.83 12.99
14.27 14.51

15.48

17.31

Q
u

al
it

é
en

M
S

-S
S

IM
d

B
[d

B
]

Résultats définitifs du challenge CLIC 2021

Basé codeurs conventionnels
Codeur E2E

Codeur E2E non soumis

FIGURE 14 : Les entrées nommées correspondent à nos soumissions. E2E désigne les
systèmes basés apprentissage

Les résultats du challenge fournissent plusieurs enseignements. Tout d’abord, les

approches conventionnelles sont actuellement les plus performantes. C’est même notre

soumission ANC_T_OL basée VTM, sans aucun module basé apprentissage, qui remporte

xxii

le challenge. Parmi la catégorie des codeurs basés entièrement apprentissage, le codeur

E2E_T_OL conçu dans le cadre de cette thèse obtient les meilleures performances. Cela

légitime les différents choix techniques motivés dans cette thèse.

Conclusion et perspectives

Cette thèse a reconsidéré entièrement les schémas de compression vidéo existants afin

de concevoir un codeur vidéo basé apprentissage. Différentes contributions (architecture

de codage conditionnel, ajout d’un mode de codage) ont permis d’obtenir un codeur vidéo

basé apprentissage performant, compétitif avec les algorithmes conventionnels (HEVC)

sous différentes configurations de codage. Ces résultats démontrent la pertinence des

approches basées apprentissage. De plus, la rapidité des progrès de ce type de codeur laisse

à penser qu’ils dépasseront bientôt, par un affinement de leurs éléments constituants, les

algorithmes conventionnels.

Ainsi, tout au long de cette thèse, différents axes d’amélioration des performances

ont été entrevus. Il a été mis en évidence que l’estimation de mouvement par le MNet

est un élément sensible du système. Ce composant pourrait être amélioré au travers de

l’utilisation de techniques issues de la littérature dédiée à l’estimation de flux optiques

(cost volume). De plus, dans ce travail, les systèmes de compression vidéo sont entraînés à

l’aide d’une configuration de codage comprenant 3 frames (voir Fig. 7). Adapter le codeur

en le ré-entraînant pour sa configuration de codage cible améliorerait certainement les

performances.

Les algorithmes conventionnels de compression mettent en place une compétition

entre différents modes de codage, ce qui leur permet d’effectuer des opérations adaptées

au signal à transmettre. Si certains éléments du codeur proposé vont dans ce sens (Skip

mode, précision de quantification variable), l’adaptation au contenu des systèmes basés

apprentissage demeure trop limité. Pour autant, la nature même des réseaux de neurones

est de s’adapter aux données d’entraînement. Ainsi, entraîner un codeur sur une séquence

vidéo particulière permettrait d’obtenir un codeur optimal, même si les paramètres du

codeur sont alors à transmettre avec la vidéo. Des travaux récents [27], [28] ont montré

que cette idée semble prometteuse.

Enfin, les codeurs présentés dans cette thèse ont été conçu avec peu de contraintes

de complexité et comportent à ce titre plusieurs dizaines de millions de paramètres. Sur

du matériel dédié, il est tout de même possible d’encoder et de décoder plusieurs images

xxiii

720p par seconde. Néanmoins, les architectures proposées sont symétriques et requièrent

donc autant de puissance de calcul pour l’encodeur que pour le décodeur. En pratique,

le décodeur est souvent embarqué dans de nombreux appareils à faible consommation

d’énergie (téléphone, set-top boxes). Mettre en place de nouvelles architectures asymé-

triques serait un pas important vers une utilisation pratique des schémas de codage basés

apprentissage.

xxiv

TABLE OF CONTENTS

Acknowledgements iii

Résumé en français v

List of Figures xxxi

List of Tables xxxv

Introduction 1

Context . 1

Structure of the thesis . 2

Contributions . 3

I Context and State of the Art 5

1 Fundamentals of Video Coding 7

1.1 Introduction . 7

1.2 Lossless coding . 8

1.2.1 Optimal rate and information theory . 8

1.2.2 Arithmetic coding . 9

1.2.3 Practical limitations of arithmetic coding 10

1.2.4 Predictive coding . 12

1.2.5 Transform coding . 13

1.2.6 Conclusion . 14

1.3 Lossy compression . 14

1.3.1 Discarding information . 15

1.3.2 Distortion metrics . 16

1.3.3 Rate-distortion optimization . 17

1.4 Conclusion . 18

xxvi

2 Traditional Video Coding Algorithms 21

2.1 Introduction . 21

2.2 Hybrid image coding . 21

2.2.1 Representing the colour: the RGB and YUV colour spaces 21

2.2.2 Overview of the video coding structure 22

2.2.3 Intra prediction . 23

2.2.4 Transform . 24

2.2.5 CABAC: Context Adaptive Binary Arithmetic Coding 26

2.3 From coding still images to video sequences . 26

2.3.1 Inter prediction . 26

2.3.2 Coding structure . 28

2.4 Conclusion . 29

3 Learning to Compress Images 31

3.1 Introduction . 31

3.2 Basics of neural networks . 31

3.2.1 Building a neural network . 31

3.2.2 Training a neural network . 32

3.2.3 Convolutional neural networks . 34

3.3 Learning-based lossy image coding . 35

3.3.1 Autoencoders . 35

3.3.2 Training a learned coding scheme . 37

3.3.3 Initial architecture . 39

3.3.4 Training and rate-distortion results . 41

3.4 Advanced learned coding schemes . 42

3.4.1 Hyperprior to refine the probability model 42

3.4.2 Auto-regressive probability model . 46

3.4.3 Attention modules for better networks 48

3.4.4 Binary Probability Model . 50

3.5 Visualisations . 52

3.6 A word on complexity . 54

3.7 Conclusion . 55

xxvii

II Learned Video Coding 57

4 From Learned Image Coding to Learned Video Coding 58

4.1 Introduction . 58

4.2 Temporal dependencies reduction . 58

4.2.1 Need of an explicit motion compensation 58

4.2.2 inter frame coding with neural networks 60

4.2.3 Motion estimation, transmission and compensation 61

4.2.4 Transmitting the unpredicted part . 62

4.3 Experimental conditions . 62

4.3.1 CLIC 21 video track . 62

4.3.2 Anchors . 63

4.3.3 Coding configuration . 63

4.3.4 End-to-end training . 63

4.4 Conclusion . 65

5 Exploitation of a Prediction 67

5.1 Introduction . 67

5.2 Baselines and experimental conditions . 67

5.2.1 Naive prediction . 67

5.2.2 Learned and traditional baselines . 68

5.2.3 Training and testing the baselines . 68

5.3 Conditional coding . 69

5.3.1 Motivations . 69

5.3.2 Conditional coding principles . 71

5.3.3 Implementation and rate-distortion performance 72

5.3.4 Visualisation . 72

5.4 Latent domain residual coding . 75

5.5 Do we need a dedicated intra frame coder? . 78

5.6 Variable quantization steps . 79

5.6.1 Motivation and implementation . 79

5.6.2 Experimental results . 80

5.7 Conclusion . 82

xxviii

6 Computation of a Temporal Prediction 83

6.1 Introduction . 83

6.2 Coding scheme featuring a prediction step . 83

6.2.1 Bidirectional prediction . 83

6.2.2 Motion information at the decoder side 85

6.3 Skip mode: an additional coding mode . 87

6.3.1 Principles . 87

6.3.2 Training . 89

6.3.3 Behaviour . 90

6.3.4 Rate-distortion results . 93

6.4 Conditional coding for the MNet . 94

6.4.1 Principles . 94

6.4.2 Training and rate-distortion results . 95

6.4.3 Visualisations . 96

6.5 Comprehensive evaluation of the final system 98

6.5.1 Different coding configurations . 98

6.5.2 MNet limitations . 99

6.6 Conclusion . 102

7 Towards Practical Video Coding 105

7.1 Introduction . 105

7.2 CLIC21 video track . 105

7.2.1 Challenge presentation . 105

7.2.2 Sequence-wise competition . 106

7.3 Rate competition . 107

7.3.1 With mono-rate coders . 107

7.3.2 Design of a multi-rate coder . 109

7.3.3 Training . 110

7.3.4 Rate-distortion results . 111

7.4 Participation to the CLIC21 video track . 111

7.4.1 Proposed systems . 111

7.4.2 Challenge results . 113

7.5 Conclusion . 115

xxix

Conclusions and Future Work 117

Thesis objectives . 117

Future works . 119

Bibliography 121

A List of Publications 131

B Additional Details on Learned Image Coding 135

B.1 Training recipe . 135

B.1.1 Training dataset . 135

B.1.2 Details on the training stage . 135

B.2 Additional information regarding the test stage 136

B.2.1 Inference dataset . 136

B.2.2 Coding standards as anchors . 136

B.3 Detailed ARM architecture . 136

B.4 Residual blocks and attention modules . 138

B.5 Comprehensive architecture of a state-of-the-art image coder 139

B.6 Additional visual examples . 141

C Training dataset for learned video coding 147

C.1 Requirements . 147

C.2 Dataset composition . 147

D Comprehensive Experimental Details for CNet 149

D.1 Residual autoencoder . 149

D.2 Quantization gains . 149

E Comprehensive Experimental Details for MNet 153

E.1 Architecture . 153

E.2 Additional examples of optical flows . 153

E.3 Bidirectional prediction weighting and disocclusions 156

xxx

LIST OF FIGURES

1 Schéma bloc d’une compression avec pertes. viii

2 Configuration de codage Random Access. x

3 Architecture d’un autoencodeur. xi

4 Schéma de compression d’image basé sur un autoencodeur. xii

5 Performance d’un système de compression d’image basé autoencodeur (AE). xii

6 Compression d’une image inter. xiii

7 Configuration de codage pour l’entraînement. xiv

8 L’architecture du codage conditionnel. xvi

9 Performances du codage conditionnel. xvii

10 Schéma de codage vidéo présentant une compensation de mouvement. . . . xviii

11 Schéma de codage vidéo avec le Skip mode. xix

12 Performances apportée par l’ajout d’information de mouvement. xx

13 Intérêt de la compétition. E2E désigne les systèmes basés apprentissage. . . xxi

14 Les entrées nommées correspondent à nos soumissions. E2E désigne les

systèmes basés apprentissage . xxii

1.1 Arithmetic coding of 3 successive messages into a single number c. 10

1.2 Lossless coding block diagram. 15

1.3 A uniform scalar quantizer Q with a quantization step ∆= 1. 16

1.4 Lossy coding block diagram. 16

1.5 Influence of noise repartitions for PSNR and MS-SSIM. 18

2.1 Partitioning of an intra frame in HEVC. Reproduced from [35]. 22

2.2 Block diagram of the coding of a block. 23

2.3 The 35 intra prediction modes of HEVC. 24

2.4 The 64 two-dimensional frequential basis of the DCT-II for a 8×8 signal. . . 25

2.5 Random access and Low-delay P coding configuration. 28

3.1 The LeakyReLU and Sigmoid non-linearity functions. 32

3.2 Different feature maps extracted from an input image. 35

xxxi

3.3 The autoencoder architecture. 36

3.4 Distributions of the latent variable. 39

3.5 Architecture of a typical learning-based image coder. 40

3.6 Rate-distortion comparison between a GDN-based and a linear system. . . . 43

3.7 The 116th feature map for two different pictures. 43

3.8 Image coding scheme with a hyperprior. 45

3.9 Performance of the hyperprior-based coding scheme. 46

3.10 Visualisations of the hyperprior. 47

3.11 Image coding scheme featuring both hyperprior and ARM. 48

3.12 Performance brought by adding an ARM to an hyperprior-based system. . . 49

3.13 Rate-distortion results of a more advanced architecture 49

3.14 Signalling process of a centered latent variable ŷ. 51

3.15 Performance of the binary probability model 52

3.16 Visual comparison between a learned coder and the VTM. 53

3.17 Average rate-distortion cost as a function of the training time for different

architectures. 55

4.1 Conceptual processing pipeline of an inter frame. 60

4.2 Random Access coding configuration, with a GOP size of 8. 64

4.3 The training coding configuration. 64

5.1 Autoencoder-based residual coding scheme. 69

5.2 Comparison of the different baselines . 70

5.3 The conditional coding architecture. 71

5.4 Conditional coding performance . 73

5.5 Low-rate conditional coding . 74

5.6 High-rate conditional coding . 76

5.7 Latent-domain residual . 77

5.8 Latent residual coding performance. 78

5.9 All Intra coding performance. 79

5.10 Feature-wise quantization gains. 80

5.11 Performance and analysis of the quantization gains. 81

6.1 Bi-directional temporal prediction. 84

6.2 Video coding scheme with an actual motion compensation step. 85

xxxii

6.3 Two main trends for the MNet architecture. 86

6.4 Coding mode selection α for a B-frame from the CLIC sequence TelevisionClip_1080P-

4c94. 88

6.5 Block diagram of a coding scheme featuring the Skip mode. 88

6.6 The MNet architecture. 89

6.7 The inputs and outputs of MNet. 90

6.8 Motion compensation through a bidirectional prediction process. 92

6.9 CNet and Skip mode contributions. This frame costs 15 037 bits, for a quality

of MS-SSIMdB = 22.60 dB. The PSNR is equal to 38.46 dB 93

6.10 Rate-distortion results for coding schemes featuring motion information. . . 94

6.11 The conditional coding MNet architecture. 95

6.12 Conditional coding (CC) for MNet, rate-distortion results. 96

6.13 Low-rate MNet conditional coding . 97

6.14 Rate-distortion results for different coding configurations. 99

6.15 Example of an inaccurate optical flow. 100

6.16 Consequences of an inaccurate prediction . 101

7.1 CLIC sequence-wise rate-distortion . 108

7.2 Sequence-wise rate competition with mono-rate coders. 108

7.3 Principles of CNet multi-rate quantization gains. 109

7.4 Encoder quantization gains for two rate constraints. 111

7.5 Sequence-wise competition for a multi-rate system. Cpt stands for competition.112

7.6 Performance of different systems with a focus on the quality at the challenge

target rate. 113

7.7 Leaderboard on the challenge test set. 114

B.1 Examples from the professional and user-generated datasets. 137

B.2 Architecture of the Auto-Regressive Module and the hyperprior/ARM fusion

component. 138

B.3 Residual block and a residual attention module. 139

B.4 The analysis and synthesis transforms ga and gs. 140

B.5 The hyperprior analysis and synthesis transforms ha and hs. 141

B.6 Visual comparison for the image 46c1831600829ae8b30c6b06557424ef. . . . 142

B.7 Visual comparison for the image ad249bba099568403dc6b97bc37f8d74. . . 143

B.8 Visual comparison for the image 08052112d0151f7c9ac4879f838d5a0c. . . . 144

xxxiii

B.9 Visual comparison for the image 400984b87394ada6d9627ed918908986. . . 145

B.10 Visual comparison for the image 72e19343f46a447bea2206c368a9692a. . . . 146

D.1 The analysis and synthesis transforms ga and gs. 150

D.2 The hyperprior analysis and synthesis transforms ha and hs. 151

D.3 Encoder quantization gains Γ
enc
f

for different rate targets. 152

E.1 MNet analysis and synthesis transforms ga and gs. 154

E.2 MNet hyperprior analysis and synthesis transforms ha and hs. 155

E.3 Additional examples of optical flows from the sequence Sports_1080P-08e1,

extracted from the CLIC21 validation set. 156

E.4 Example of β handling a disocclusion. 157

E.5 Additional examples of β performing dissoclusion. 158

xxxiv

LIST OF TABLES

3.1 BD-rates of the different coding schemes. 56

4.1 Summary of the different learned video coders in the literature. 61

5.1 Different configurations for the conditional coding ablation. 73

5.2 BD-rates of the different coding schemes. 82

6.1 Different configurations for the MNet conditional coding ablation. 97

6.2 BD-rates of the different coding schemes. 103

7.1 CLIC21 leaderboard results validation set. 114

C.1 Composition of the training dataset . 148

xxxv

INTRODUCTION

Context

THE ever-growing quantity of data conveyed over the Internet has a substantial impact

on climate change. Even before the Covid-19 outbreak, video data represented around

80 % of the internet traffic [1]. Furthermore, the pandemic has made video consumption

progress even further, obliging some streaming services (Netflix and YouTube) to reduce

the video quality in order to avoid network congestions [2]. According to some estimates,

video streaming already accounts for 1 % of the overall greenhouse gas emissions [3],

resulting in the same impact than a country like Spain. As such, reducing the amount

of data required to transmit or store videos could reduce the carbon emissions of video

streaming, as long as the so-called rebound effect or Jevons paradox is avoided [4].

From the 90s onwards, video compression algorithms aim to reduce the size of videos

while maintaining an acceptable quality for the users. Even though the primary motivation

for compression algorithms was to cope with the limited bandwidth imposed by existing

infrastructures, mitigating the environmental impact of online video streaming provides

an additional motivation to design better compression algorithms. Video compression

standards have been designed by standardization organisms such as the Moving Picture

Experts Group (MPEG) and the International Telecommunication Union (ITU-T). Each

generation of standards (AVC in 2003, HEVC in 2013 and VVC in 2020) introduced

incremental refinements leading to substantial compression gains i.e. halving the rate

required for equivalent quality.

These traditional coding algorithms process videos through successive operations,

which are often linear. Given the incremental design of traditional coders, their operations

are optimized separately. In recent years, deep neural networks have been used to solve

a variety of problems, thanks to their ability to model virtually any function through a

cost function optimization. In the context of compression, this allows to perform richer,

non-linear operations which are jointly optimized to minimize both the size of the video

and the visual degradations brought by its compression.

Recent works show that neural-based still image compression can be competitive

1

with state-of-the-art coding standards, by learning the functions mapping back and forth

the image to a compressed representation. Due to the additional challenges brought

by the temporal dimension, video coding remains a more demanding task for neural-

based approaches. Yet reducing the size of video sequences is the actual issue to tackle.

Consequently, this thesis studies the design of neural-based video compression schemes,

to leverage the promising abilities of neural networks. Given the novelty of this field,

the proposed neural-based coding scheme starts from a blank page and each element is

reconsidered and motivated.

Structure of the thesis

Part I – Context and state of the art

The first part of the thesis presents important notions for image and video compres-

sion. Then, these notions are illustrated by their implementation in traditional coding

algorithms and neural-based image coders.

Chapter 1 introduces the main concepts of lossless and lossy compression from an

information theory standpoint. The usage of predictions, transforms and

entropy coding is justified. Rate-distortion optimization is presented to

balance the size and quality of compressed videos.

Chapter 2 illustrates the habitual implementation of the concepts expounded in the

first chapter by traditional compression algorithms e.g. HEVC and VVC.

Chapter 3 starts with a presentation of deep neural networks. Then, they are used

to implement a neural-based image coder, which is successively refined to

reach state-of-the-art performance.

Part II – Learned video coding

The second part of the thesis offers to design a neural-based video coder from a blank page.

The requirements of the coder and a realistic experimental framework are introduced.

Then, the different components of the coder are thoroughly studied.

2

Chapter 4 motivates the requirements of the proposed neural-based video coder. A

real-life video coding situation and relevant anchors are proposed to assess

the performance of the neural coder.

Chapter 5 reconsiders the exploitation of a prediction. Using neural networks abilities,

a novel architecture called conditional coding is motivated to better leverage

prediction than residual coding.

Chapter 6 adds motion information to the neural coder to compute a more accurate

prediction. The optimization of the motion-related components is fostered

through the introduction of an additional coding mode. Finally, conditional

coding is also implemented for motion information.

Chapter 7 evaluates the resulting neural-based coder through the participation to a

video compression challenge. Due to the challenge constraints, the proposed

coder is modified to operate under a continuous and variable rate constraint.

Contributions

The work carried out in this thesis contains several contributions to the field of learned

image and video compression.

• Enhance entropy coding with a more expressive probability model;

• Reconsider the usage of residual coding to exploit prediction;

• Propose a generic architecture to leverage decoder-side information;

• Introduce an additional coding mode to both improve performance and ease the

optimization of motion-related components.

More generally, this thesis presents a method to design a flexible neural-based video

coder, competitive with modern video coding standards.

3

PART I

Context and State of the Art

5

CHAPTER 1

FUNDAMENTALS OF VIDEO CODING

1.1 Introduction

VIDEO coding algorithms aim to reduce the number of bits required to transmit or

store sequences of images. Indeed, transmitting raw values of all pixels in the video

would require a prohibitive amount of bits to be sent. For instance, a high-definition video

is made of successive images composed of 1920×1080 pixels, where each pixel is usually

represented as three 8-bit values indicating its colour, while the number of images per

second often varies between 24 to 60. Therefore, conveying the raw pixel values requires

to transmit:

24 images
1 s

×
1920×1080 pixels

1 image
×

3×8 bits
1 pixel

≃ 1.20 Gbit/s. (1.1)

This bandwidth exceeds the usual capacity of computing devices and highlights the

need to reduce the number of bits representing a video. This is made possible by the fact

that most videos exhibit a spatio-temporal structure. Different techniques leverage this

organization to code videos with fewer bits, without losing any information. First, entropy

coding algorithms exploit the statistical properties of videos by assigning less bits to the

more probable pixel combinations. Second, invertible mathematical operations such as

predictions and transforms are performed to reduce redundancies among video pixels.

These techniques compose the lossless coding framework presented in the first part of this

chapter.

In many cases, the size of a losslessly coded video exceeds the available bit budget of

practical applications. Lossy coding algorithms allows to reach further data size reduction,

at the expense of information loss. Due to this loss, the compressed video exhibits some

form of distortion compared to the original one. This distortion is measured and balanced

against the rate reduction offered, in a process called rate-distortion optimization. The

second part of this chapter introduces the different notions related to lossy coding.

7

Part I, Chapter 1 – Fundamentals of Video Coding

1.2 Lossless coding

1.2.1 Optimal rate and information theory

This section lays out the information theory framework for lossless coding. Let the message

to code be a discrete random variable s= (s1, . . . , sN) composed of N symbols following a

distribution q, such as an N-pixel image. Lossless coding performs a reversible mapping

from the message s to a set of K bits b= (b1, . . . , bK). The process of mapping the message

into a bitstream is called encoding and is performed by an encoder. Similarly, the decoder

performs the inverse mapping, decoding the bitstream back to the initial message. To

decrease the number of transmitted bits, the mapping is designed to leverage statistical

properties of the distribution q. Indeed, the Shannon’s source coding theorem states that

the optimal number of bits for b is equal to the information I of the message:

I(s)=− log2 q(s), with I(s) in bits. (1.2)

Consequently, the most frequent messages are represented with fewer bits. When

transmitting many successive messages drawn from q (e.g. successive N-pixel images),

the average number of bits for the messages is called the rate. It is expressed in bits per

message which translates in practice to bits per pixel, bits per image, bits per second, etc.

Equation 1.2 yields that the minimal rate R⋆ is expressed through the Shannon entropy

H [5], defined as:

R⋆ = H (s)=Es∼q [I (s)]=Es∼q

[

− log2 q(s)
]

. (1.3)

In most cases, the underlying data distribution q is unknown. As such, it is not possible

to compute I(s) to determine the optimal mapping for each message. This issue is overcome

by estimating q through an approximation p. Each message is now mapped to a stream of

− log2 p(s) bits. Thus, the rate R needed to code messages drawn from q becomes:

R =Es∼q

[

− log2 p(s)
]

. (1.4)

The estimate p is an approximation of q, causing a non-optimal mapping. The resulting

8

1.2. Lossless coding

rate overhead is often expressed by DKL, the Kullback-Leibler divergence:

R−R⋆ =

Estimated code length
︷ ︸︸ ︷

Es∼q

[

− log2 p(s)
]

−

Optimal code length
︷ ︸︸ ︷

Es∼q

[

− log2 q(s)
]

(1.5)

=Es∼q

[

log2 q(s)− log2 p(s)
]

= DKL (q || p) .

The Kullback-Leibler divergence measures the mismatch between two probability

distributions. This highlights that achieving efficient lossless coding comes down to

performing accurate modelling of the data distribution of s.

1.2.2 Arithmetic coding

Entropy coding algorithms are used to implement the mapping from a message to a stream

of bits, based on the estimated distribution p. Among them, Huffman coding [29] reaches

the theoretical rate expressed in Eq. (1.4) only when all the probabilities p (s) are equal

to the inverse of a power of two. This constraint on the distribution p often leads to a

greater mismatch between q and p, increasing the rate overhead. Arithmetic coding [30]

is more effective as it handles a probability model not constrained to inverse powers of

two. It maps multiple messages into a single number w ∈ [0,1[, allowing the practical rate

to converge to the theoretical one when the number of messages increases.

To illustrate the arithmetic coding process, let us suppose that a message s has a

set of possible values Ωs with a finite number of elements denoted as card(Ωs). Figure

1.1 depicts the arithmetic coding algorithm. Each message is sequentially encoded by

subdividing an interval [u,v[, initialized at u = 0 and v = 1. At each step, this interval

is divided into card(Ωs) segments, one for each possible values of s, denoted as s(j). The

length l j of each segment is proportional to the probability of its corresponding value:

l j =
1

v−u
· p

(

s(j)
)

(1.6)

Finally, the interval boundaries u,v are set to the ones of the interval corresponding

to the current message value and the next message is processed. Once the messages are

processed, w is set to a value in [u,v[and converted to b, a set of bits. b must have enough

bits so that any base-2 values starting with the bits b belongs to [u,v[.

9

Part I, Chapter 1 – Fundamentals of Video Coding

u = 0 v = 1
0.2 0.5 0.6

s(0) s(1) s(2) s(3)Step 1

u = 0.2 v = 0.5
0.26 0.35 0.38

s(0) s(1) s(2) s(3)Step 2

u = 0.2 v = 0.26
0.212 0.23 0.236

s(0) s(1) s(2) s(3)Step 3

w ∈ [0.236,0.26[

Final step w = 0.2421875= 00111112

Figure 1.1: Arithmetic coding of 3 successive messages into a single number c. Each
message has 4 possible values: Ωs =

{

s(0),s(1),s(2),s(3)
}

, whose respective probability are
2
10 , 3

10 , 1
10 and 4

10 . At the end of the arithmetic coding process, the value w = 0.2421875
represents the three successive messages

{

s(1),s(0),s(3)
}

.

1.2.3 Practical limitations of arithmetic coding

The arithmetic algorithm might be intractable in practice. Indeed, if s represents a 8-bit

greyscale image with N pixels, the number of possible values is card(Ωs)= 256N . Dividing

an interval into that many segments is not practicable. One of the solutions to mitigate

this issue is to rely on a factorized probability model, where the symbols composing s are

assumed independent, modelled with their own distribution pi:

p(s)=
N∏

i=1
pi(si). (1.7)

This allows the arithmetic coding process to be conducted symbol-wise instead of

message-wise. A message is now composed of a single scalar symbol, instead of N symbols.

Continuing the example, arithmetic coding now works pixel-by-pixel, dividing the interval

into card(Ωs) = 256 segments at each step, which can be performed in practice. Some

real-life arithmetic coders, e.g. the Context Adaptive Binary Arithmetic Coding (CABAC)

[31], makes the additional assumption that the symbol takes binary value, leading to an

even smaller number of possible values: card(Ωs)= 2. This requires a binarization step,

which decomposes each symbol into several binary values.

10

1.2. Lossless coding

Despite being necessary to perform arithmetic coding, the assumption of symbols

independence almost never holds in practice and results in a suboptimal probability model

leading to a significant rate overhead. Let us illustrate the rate overhead through the

lossless coding of a greyscale N-pixel image x= (x1, . . . , xN). The minimal rate required to

transmit the pixels is obtained thanks to Eq. (1.3):

R⋆ = H (x)= H (x1, . . . , xN) . (1.8)

Yet, the pixels of x cannot be jointly coded due to the practical concerns previously

raised. Instead, the pixels are independently coded and their probability models are

assumed independent. This leads to the following rate:

R =
N∑

i=1
H (xi)≥ R⋆ = H (x1, . . . , xN) . (1.9)

The rate overhead brought by the assumption of independent pixels can be expressed

through the mutual information I [32]:

R−R⋆ =
N∑

i=1
H (xi)−H (x1, . . . , xN) (1.10)

= DKL(p(x1, . . . , xN) ||
N∏

i=1
p(xi))

= I(x1, . . . , xN)≥ 0.

As illustrated by the Kullback-Leibler divergence, the mutual information assesses the

degree to which random variables are independent. If the variables are independent, there

is no mutual information and no rate overhead. However, one pixel in a video sequence

is likely correlated to its neighbouring pixels. This results in a non-negligible mutual

information, increasing the rate.

To lower the resulting rate, bijective functions are applied to x prior to arithmetic cod-

ing. The purpose of these functions is to remove as much statistical redundancy as possible

among x components, reducing the mutual information. The next two sections introduce

two complementary techniques for redundancy removal, based either on prediction or on

transform.

11

Part I, Chapter 1 – Fundamentals of Video Coding

1.2.4 Predictive coding

In practice, a N-pixel video sequence x= (x1, . . . , xN) is often decomposed into smaller sets

of pixels, in order to make its processing more convenient. One natural decomposition

is to split the video image-by-image and into small blocks of pixels. Yet, this leads to a

rate overhead, illustrated on a toy example where the video x is split into two sets of

pixels. The first M pixels xdec = (x1, . . . , xM) of the video have already been transmitted (i.e.

available at the decoder) while the others pixels xenc = (xM+1, . . . , xN) are still to be sent.

According to Eq. (1.10), transmitting xenc without leveraging the information contained

in xdec leads to a rate increase of I (xdec,xenc).

Predictive coding palliates the effects of independent arithmetic coding for each set of

pixels through a two-step process. First, the pixels xenc are predicted thanks to the already

transmitted pixels x̃enc = f (xdec), so that the decoder is able to reproduce the prediction.

Second, x̃enc and xenc are combined through a bijective function m to obtain a prediction

residual r = m (xenc, x̃enc). Usually the function m is a simple difference between the

prediction and the symbols to transmit i.e. r= xenc − x̃enc. With an ideal prediction, the

prediction residue r does not longer contain information predictable from xdec, meaning

that xdec and r are independent. The residue r is transmitted instead of xenc, yielding an

optimal rate without overhead:

R⋆ = H (xdec)+H (r)=
R⋆

︷ ︸︸ ︷

H (xdec,r)+
=0

︷ ︸︸ ︷

I (xdec,r) . (1.11)

Since the function m is bijective, no information is lost when transmitting the predic-

tion residue r instead of xenc, that is: H (xdec,xenc)= H (xdec,r). Following the transmis-

sion of xdec and r, the prediction is computed at the decoder side and the original pixel

xenc is retrieved from r and x̃enc.

Predictive coding aims to remove statistical dependencies between the two sets of

pixels, so that sending xdec and xenc separetely does not bring a rate overhead. However,

it does not target the statistical dependencies within each pixel blocks. According to Eq.

(1.10), the pixel-by-pixel arithmetic coding of the residue r = (rM+1, . . . , rN) results in a

rate overhead of I (rM+1, . . . , rN) bits. This additional rate is targeted by transform coding,

which aims to remove statistical relationship inside each pixel block. As such, the role of

the prediction and of the transform is complementary. It is theoretically possible to feed

the entire video to a transform (i.e. xenc = x and xdec =;), so that the transform removes

12

1.2. Lossless coding

all the statistical relationship within the image, making the prediction step irrelevant. It

is also possible to rely only on the prediction step, by predicting and transmitting each

pixel xi successively, using all the previously sent pixels: xenc = {xi} and xdec = {x1, . . . , xi−1}.

In this case, it is the transform which becomes irrelevant. In practice, using both the

prediction and the transform through a relevant partitioning of the video often leads to

better performance.

1.2.5 Transform coding

While predictive coding focuses on removing statistical relationships between pixel blocks,

transform coding targets the dependencies inside a set of pixels. Let us suppose that the

current pixel block is a H×W greyscale image x= (x1, . . . , xHW). It is losslessly compressed

using arithmetic coding. As such, the H×W symbols are independently processed, yielding

a rate overhead derived from Eq. (1.10):

R−R⋆ = I(x1, . . . , xHW). (1.12)

This issue is addressed by reducing the statistical dependencies among the pixels, leading

to a lower mutual information. To this end, a bijective transform g is applied to x.

Without loss of generality, the distribution of x is assumed to be centered, with a co-

variance matrix denoted as Σx. Let us make the additional assumption that the transform

is linear, such as it is expressed through a matrix A:

y= g (x)=Ax, with A ∈RHW×HW . (1.13)

The covariance matrix of y can now be expressed as:

Σy =E
[

(Ax) (Ax)⊤
]

=AE
[

xx⊤]

A⊤ =AΣxA⊤. (1.14)

Since Σx is real-valued and symmetric, there exists a matrix A, composed of the

eigenvectors of Σx, which results in Σy being diagonal. Therefore, the different symbols of

y are decorrelated i.e. there is no linear relationship between them. If the image follows

a Gaussian distribution, this also translates into independent symbols [5] for y. In this

case, the rate overhead expressed by the mutual information in Eq. (1.12) is null. For

non-Gaussian data, decorrelating the symbols reduces, but does not remove the statistical

dependencies, still lowering the rate overhead.

13

Part I, Chapter 1 – Fundamentals of Video Coding

The decorrelation matrix A is orthogonal i.e. A−1 =A⊤, ensuring the bijective nature of

the transform and allowing to retrieve the original image at the decoder side, after the

arithmetic coding step:

x= g
−1 (y)=A⊤y. (1.15)

This transform is known as the Karhunen-Loève Transform (KLT) [33]. Although

limited to the removal of linear relationships, variations of this transform such as the

Discrete Cosine Transform (DCT) are widely used in video coding. It should be noted that

non-linear transforms could remove additional statistical relationships. This could be

achieved by neural networks, which are known to effectively model non-linear transforms.

1.2.6 Conclusion

Lossless coding performs a reversible mapping from a message to a bitstream. Theo-

retically, leveraging the statistical properties of the message allows to reach a minimal

number of bits, expressed by the message entropy.

In practice, the message is a video, which is usually decomposed into smaller sets

of pixels corresponding to successive images, often additionally partitioned into blocks

of pixels. These smaller sets of pixels are transmitted one after another as successive

independent messages. The mapping from a message to a bitstream is performed through

arithmetic coding, which assumes that the different symbols composing the message are

independent. Yet, neither the messages nor their symbol are independent, leading to a

significant rate overhead compared to the video entropy.

This issue is addressed by performing two complementary operations on the messages:

prediction and transform. Predictive coding aims to remove dependencies between the

successive sets of pixels, while transform coding fosters the independence between the

symbols of a given set of pixels. To ensure the coding process remains lossless, these

bijective operations are implemented at the encoder, and their inverses at the decoder.

Figure 1.2 presents a typical example of a lossless encoding and decoding process.

1.3 Lossy compression

Modern lossless video coding algorithms offer a rate reduction up to a factor of three

[6], often resulting in a rate of a few hundred of Mbit/s. The usual rate target for a

video sequence is far smaller, being in the order of a few Mbit/s for a 1080p video. To

14

1.3. Lossy compression

Figure 1.2: Block diagram for the lossless coding of a message x with a probability model
p. The function P corresponds to prediction and function T corresponds to transform. AE
and AD stand for arithmetic encoding and decoding.

this end, lossy coding removes information from the video before its transmission. This

decreases the symbols entropy, allowing for lossless transmission at a lower rate. Yet,

this information loss introduces distortion i.e. differences between the original and the

compressed data. The trade-off between rate and distortion needs to be adjusted according

to the application.

1.3.1 Discarding information

Discarding information is achieved by using a non-bijective (i.e. non-invertible) surjective

function g during the encoding process. Indeed, such function is allowed to map several

different inputs to an identical output. This increases the probability of the different

possible output values, lowering the resulting entropy:

y= g (x)⇒ H (y)< H (x) , for a non-bijectiveg. (1.16)

The typical example of a function discarding information is the uniform scalar quan-

tization Q (see Fig. 1.3), which maps any number x ∈R to the closest multiple of ∆ ∈N:

Q∆ (x)=∆ round
(x

∆

)

. (1.17)

The quantization parameter ∆ is called the quantization step. Setting a bigger value of ∆

increases the amount of discarded information.

Besides quantization, others stages of the coding process can also be made lossy

by relaxing the constraint on the bijective nature of the operations. For instance, the

Principal Component Analysis (PCA) is a transform reducing the data dimensionality. It

is similar to the KLT but the PCA matrix is composed of a subset of the most important

eigenvectors of the data covariance matrix. The PCA is a lossy transform, discarding the

15

Part I, Chapter 1 – Fundamentals of Video Coding

−2 −1 1 2

−2

−1

1

2

x

Q (x)

Figure 1.3: A uniform scalar quantizer Q with a quantization step ∆= 1.

less relevant dimensions of the signal. Figure 1.4 presents a lossy coding scheme using

both a quantization step and a non-invertible transform step. Since the transform is no

longer constrained to be bijective, T
−1 is not guaranteed to exist. As such, the encoder and

decoder transforms are respectively denoted Ta and Ts.

Figure 1.4: Lossy coding of a message x with a probability model p.

1.3.2 Distortion metrics

Discarding some information during the encoding process decreases the rate, at the

expense of decoding a distorted version of the original data. The error between the original

data x and the decoded data x̂ is called the distortion denoted as D (x, x̂). Among all

the existing distortion metrics, two are considered in this manuscript. First, the Mean

Squared Error (MSE):

D (x, x̂)=MSE(x, x̂)=
1
N

N∑

i=1
(xi − x̂i)

2 , (1.18)

with N the dimension of x and x̂. For images and videos, it is common to translate the

MSE (the distortion) into the Peak Signal to Noise Ratio (PSNR), which is to be maximized:

PSNR (x, x̂)= 10log10
max2

MSE(x, x̂)
. (1.19)

16

1.3. Lossy compression

The constant max is the maximum possible value for x i.e. 255 for 8-bit images and videos

considered in this work. The PSNR translates the quality of the reconstruction x̂ compared

to the original data x.

The PSNR only considers pixel-wise error i.e. the energy of noise introduced in com-

pressed images. Yet, the human visual system is not equally sensitive to the presence of

noise in an image. Indeed, we are more tolerant when the noise occurs in high-contrast

areas, while we are more sensitive to noisy low-contrast areas.

This is the reason behind the second quality metric used in this work: the Multi-Scale

Structural Similarity Metric (MS-SSIM) [7]. This metric computes statistics on the entire

image, at different scales, to better assess the perceived degradations due to the presence

of noise. In short, the MS-SSIM measures whether the overall structure of the image

is conserved i.e. a low-contrast area should not become a high-contrast one due to noise

presence. The MS-SSIM returns a quality score ranging from 0 (worst quality) to 1 (best

quality). Throughout this work, the MS-SSIM is often expressed on a logarithmic scale:

MS-SSIMdB (x, x̂)=−10log10 (1−MS-SSIM(x, x̂)) . (1.20)

Figure 1.5 presents how the repartition of the same amount of noise is qualified by the

PSNR and the MS-SSIM. In Fig. 1.5b, the noise is added to a low-contrast area (the girl’s

face). In Fig. 1.5c, the noise is added to a high-contrast area (the beanie). Since the noise

added has approximately the same energy, the PSNR remains the same. However, the

MS-SSIM penalizes significantly the introduction of noise in low-contrast areas. Adding

the same amount of noise exclusively to high-contrast areas is better tolerated by the MS-

SSIM, which is consistent with the human visual system. While some distortion metrics

are more advanced than others, there is no perfect one and the choice of the distortion

metric remains the subject of many discussions.

1.3.3 Rate-distortion optimization

The objective of lossy coding can be turned into the minimization of the distortion under a

rate constraint of Rc bits:

min D (x, x̂) subject to R (x̂)< Rc, (1.21)

17

Part I, Chapter 1 – Fundamentals of Video Coding

(a) Original image (b) Noise on the face
PSNR= 16.51 dB

MS-SSIMdB = 6.65 dB

(c) Noise on the beanie
PSNR= 16.83 dB

MS-SSIMdB = 10.76 dB

Figure 1.5: Influence of two different noise repartitions evaluated with two qual-
ity metrics: PSNR and MS-SSIMdB (higher means better). Example image is
ad249bba099568403dc6b97bc37f8d74 from the test set of the Challenge on Learned

Image Compression 2020 [16].

where D (x, x̂) is the distortion between the original data x and the compressed one x̂,

and R (x̂) is the rate associated to the transmission of x̂. This optimization task is usually

solved through Lagrangian optimization where the distortion term is balanced against

the rate term. Using a Lagrangian formulation, the problem becomes:

min Jλ = D (x, x̂)+λR (x̂) , (1.22)

where λ is called the Lagrange multiplier. Thanks to the Lagrangian formulation [34],

each solution of Eq. (1.22) for a given Lagrange multiplier λ corresponds to an optimal

solution of the original Eq. (1.21) under a particular rate constraint Rc.

The value of Jλ is called the rate-distortion (RD) cost. Optimization of the RD cost

is universally used in video coding. For instance, each coding possibility (choice of the

prediction and transform) is rated with its RD cost. Similarly, learning-based approaches

presented in this manuscript are trained to minimize a RD cost.

1.4 Conclusion

This chapter has introduced the theoretical framework for lossy video compression. Pre-

dictions and transforms are performed to obtain a compact representation of the video,

more suited for compression. The encoding is then made lossy by selecting the information

18

1.4. Conclusion

that has to be kept, through a quantization step or a non-bijective transform. Finally, the

information is mapped to a bitstream using a lossless coding algorithm such as arithmetic

coding.

Lossy compression algorithms aim to minimize the distortion under a given rate con-

straint. This is achieved by optimizing a rate-distortion cost, expressed using a Lagrange

formulation. The next two chapters introduce two implementations of lossy compression—

traditional and learning-based one—both following closely the theoretical framework

presented in this chapter.

19

CHAPTER 2

TRADITIONAL VIDEO CODING

ALGORITHMS

2.1 Introduction

FROM the 90s onwards, standardization organisms such as the Moving Picture Experts

Group (MPEG) and the International Telecommunication Union (ITU-T) have intro-

duced several video coding standards. Advanced Video Coding (AVC) [8] was finalized in

2003, followed by High Efficiency Video Coding (HEVC) [9] in 2013 and recently Versa-

tile Video Coding (VVC) [10] in 2020. These standards address the decoding process (i.e.

from the bitstream to the decoded video). The encoder is required to produce a bitstream

compliant with the decoding algorithm, resulting in an encoding process which tends to

mirror the behaviour of the decoder.

The successive MPEG/ITU standards have continuously improved a coding algorithm

based on the same paradigm, which is refered to as traditional video coding in this work.

This chapters introduces how MPEG/ITU standards practically implement the principle

expounded in Chapter 1 for individual images and video sequences.

2.2 Hybrid image coding

This section describes how traditional video coders compress a standalone image. In video

coding, a standalone image is often called an Intra (I)-frame, since it focuses exclusively

on the removal of the statistical dependencies within the image.

2.2.1 Representing the colour: the RGB and YUV colour spaces

A colour image is modelled by expressing each pixel value into a colour space. For instance,

the RGB colour space decomposes a colour into three primary colours: red, green and blue.

21

Part I, Chapter 2 – Traditional Video Coding Algorithms

Video sequences usually use the YUV colour space, due to its better correlation with the

human visual system. Indeed, humans are more sensitive to variation of luminance (the

quantity of light) than to variation of colours. As such, the YUV colour space dedicates the

Y component to the representation of the luminance and leaves the colour representation

for the U and V components.

Since the human visual system is less sensitive to the colour, a pre-processing step

often reduces the resolution of the UV colour components prior to the compression process.

This allows to reduce the rate with little visual degradations. For example, the YUV 420

format used in this work refers to a Y component of size N ×N for a U and V components

of size N
2 × N

2 . In some cases, particularly for still images compression, the UV components

are not sub-sampled. Such data format is called YUV 444. Since the Y channel represents

most of the rate, the rest of this chapter focuses on the Y channel compression. The U and

V channels are often independently coded using the same principles than the Y channel.

2.2.2 Overview of the video coding structure

In order to process an image, traditional coders split it into non-overlapping blocks of

variable size and shape. Gathering pixels with similar properties within a block allows to

perform adapted operations (prediction and transform) on this block. Figure 2.1 illustrates

the partitioning of an I-frame: some large blocks gather low-frequency areas (background)

while smaller ones isolate the edges of the players. Each block is processed with a differ-

ent prediction and transform, yet all blocks follow a coding pipeline similar to the one

introduced in Chapter 1.

Figure 2.1: Partitioning of an intra frame in HEVC. Reproduced from [35].

Figure 2.2 presents the coding pipeline for a block x. It consists of a prediction step

(P) to reduce statistical dependencies between the current block and previously coded

22

2.2. Hybrid image coding

ones. Then a transform step (T) removes spatial redundancies inside the block. Finally a

quantization step (Q) selects the information transmitted using arithmetic coding.

Figure 2.2: Block diagram of the coding of a block x using the reference pixels xdec to
compute the prediction P. T is an invertible linear transform, Q a quantization operation.
The arithmetic encoding and decoding (AE and AD) rely on a probability model p.

Video encoders implement multiple coding choices i.e. different ways of partitioning,

predicting or transforming the signal. During the coding process, different coding choices

are evaluated and the one minimizing the rate-distortion cost is selected. The competition

mechanism enables the coder to arbitrate among very different behaviours according to

the rate constraint. Thanks to the wide range of coding choices, competitive performance

can be achieved on a large range of rate targets and video contents.

2.2.3 Intra prediction

For intra frames, the purpose of the (intra) prediction step is to remove the redundancies

between the block x and the previously transmitted blocks, which serve as reference. Since

the blocks are encoded in a lexical order, the reference pixels available at the decoder xdec

to perform the prediction are located on the left and above of x.

Multiple intra prediction modes are available, which correspond to different functions

f when computing the prediction x̃ = f (xdec). Figure 2.3 gives an illustration of the 35

different prediction modes available in HEVC [9], illustrated for 8×8 blocks. Among them,

33 are directional prediction modes aiming to propagate directional patterns. The 2 others

compute either a gradient (Planar mode) or predict the mean value (DC mode). All the

intra prediction modes compute linear operations on the reference pixels.

Once the prediction x̃ is available, it is subtracted from the block to code to obtain

a residue r = x− x̃. Thanks to the prediction, the residue exhibits less redundancies

regarding its spatial or temporal neighbours, reducing the rate. As multiple prediction

modes are available, the selected one must be signalled to the decoder.

23

Part I, Chapter 2 – Traditional Video Coding Algorithms

(a) Planar and DC modes

(b) Angular Modes

Figure 2.3: The 35 intra prediction modes of HEVC, illustrated on the Y channel of a 8×8
block. Reproduced from [35].

2.2.4 Transform

While the (intra) prediction step reduces the dependencies between the current block and

its neighbours, the transform step aims to reduce the statistical redundancies within the

block. This is achieved through a linear transform of the residual block r.

Section 1.2.5 has introduced the KLT, which is the optimal linear transform. The KLT

of a N ×N residual block (reshaped as a vector of N2 elements), is an N2 ×N2 matrix,

resulting in N4 multiplications for one block. For complexity considerations, video coders

trade this optimal two-dimensional transform for 2 one-dimensional transforms, applied

successively on the rows and columns of the residual block. The transform resulting from

these 2 one-dimensional transforms is called a separable transform and requires only

2N3 multiplications. Yet, lowering the number of computation scomes at the price of

sub-optimality. Indeed, separable transforms only remove statistical correlations across

the horizontal and vertical axis and do not decorrelate pixels in the other directions (e.g.

along the diagonals).

From the legacy image coding standard JPEG [36] to the recent VVC, one of the most

used transforms is the Discrete Cosine Transform of type II (DCT-II) [37]. It is based on

the average statistical properties of natural images, which are known to closely follow

a first order auto-regressive model. In such model, a pixel value xn is assumed to be a

24

2.2. Hybrid image coding

combination of the neighbouring pixel xn−1 and a noise term ǫn:

xn = ρxn−1 +ǫn, (2.1)

with ρ the correlation between xn and xn−1, ǫn is an independent noise. When ρ→ 1, the

KLT yields the DCT-II, a one-dimensional transform, decomposing a signal x ∈RN into N

frequential basis Bk, k ∈ {0, . . . N −1}:

Bk(n)=
ξ(k)
p

N
cos

(
(2n+1)kπ

2N

)

, (2.2)

with n, k = ∈ {0, . . . N −1} and ξ(k)=
{

1 if k = 0,
p

2 otherwise.

Applying the DCT-II successively on the rows and columns of a block gives an equivalent

two-dimensional transform, whose basis are shown in Fig. 2.4 for N = 8.

Figure 2.4: The 64 two-dimensional frequential basis of the DCT-II for a 8×8 signal.

More recent works focus on the statistical properties of the residual blocks, according

to the type of prediction used to obtain them [38]. This allows to derive adapted transforms,

such as the Discrete Sine Transform of type VII (DST-VII), which are implemented in

HEVC and VVC. As for the partitioning and the prediction step, the transform type is

selected through the minimization of the rate-distortion cost.

Once the residue has been transformed, a scalar quantization step Q takes place to

discard information in order to lower the entropy of the residue. The amount of discarded

information is parameterized by the quantization step ∆, which is itself set through the

quantization parameter (QP): ∆∝ 2
QP
12 .

25

Part I, Chapter 2 – Traditional Video Coding Algorithms

2.2.5 CABAC: Context Adaptive Binary Arithmetic Coding

At the end of the encoding process, all the values required for the decoding process are

transmitted using the Context Adaptive Binary Arithmetic Coding (CABAC) algorithm.

This encompasses signal data (i.e. the quantized and transformed residue) and multiple

side-information such as the partitioning, the prediction mode or the transform type.

Due to the practical consideration presented in the previous chapter, the arithmetic

coder operates only on binary messages, requiring all the values to be binarized beforehand.

The probability model of a binary message is parameterized through a single parameter

P ∈ [0,1], corresponding to the probability of being equal to one. One benefit of the CABAC

is to adjust P throughout the encoding process by adapting P to the context of the message.

For instance, having many consecutive messages equal to 1 increases P. Since there

are different sorts of message (residue, motion vectors, intra prediction mode), several

independent contexts are used simultaneously, each one dedicated to a type of message.

2.3 From coding still images to video sequences

A video sequence exhibits a significant level of statistical dependencies along the temporal

axis. As such, leveraging the relevant information contained in already sent frames allows

to lower the amount of data to send for the current frame to code. Frames which depend

on previously transmitted frames are called inter frames. Inter frame coding closely

follows the processing described for intra frames. Inter frames are partitioned into blocks,

which are processed using the prediction-transform-quantization pipeline, followed with

arithmetic coding to transmit the selected information. However, an important additional

prediction mode is available: the inter prediction.

2.3.1 Inter prediction

While the intra prediction focuses on the removal of spatial relationship between blocks,

the inter-prediction targets temporal redundancies. It is achieved through a process

called motion compensation. It usually applies a translational motion to a reference block,

extracted from one of the already transmitted frames. The motion is parameterized by a

motion vector v=
(

vx,vy

)

, indicating the horizontal and vertical displacements between

the block to code and its reference block. The motion vector value and accuracy is selected

to optimize the rate-distortion cost. It is sent to the decoder to ensure proper decoding.

26

2.3. From coding still images to video sequences

Modern coders refine the motion compensation process through bi-directional pre-

diction. It consists in feeding two reference blocks (from two already received frames)

alongside two motion vectors to the motion compensation process. The final predicted

frame is the weighted average of the two motion compensations. This allows to improve

the relevance of the prediction by reducing its noise, as illustrated in the following toy

example. Let us suppose that a prediction operation w is applied on two reference blocks

x̂p and x̂ f using their respective motion vectors vp and v f . The prediction function allows

to retrieve the block to code xt up to noise terms ǫp and ǫ f :

w(x̂p;vp)= xt +ǫp ; w(x̂ f ;v f)= xt +ǫ f . (2.3)

The terms ǫp and ǫ f denote two independent noises, whose variance σ2
w is assumed to

be identical since they are obtained through the same prediction process w. These two

intermediate predictions are combined through a sum weighted by β ∈ [0,1]. This yields

the bi-directional prediction x̃:

x̃t =βw(x̂p;vp)+ (1−β)w(x̂ f ;v f)= xt +βǫp + (1−β)ǫ f . (2.4)

The bi-directional prediction weighting β allows to select the contribution of each

reference block. Typically, the value of β is taken from a discrete set of possible values.

Very often, β is set to 1
2 , but other values can be useful in peculiar cases e.g. fading

transitions from one scene to another. The purpose of the bi-directional prediction is to

decrease the noise in the prediction error r. From Eq. (2.4) it comes that the prediction

error is:

r= xt − x̃t =βǫp + (1−β)ǫ f . (2.5)

Since ǫp and ǫ f are independent noises with and identical variance σ2
w, the energy of the

prediction error is:

σ2
r =β2σw + (1−β)2σw = (2β2 −2β+1) σw ≤σw ∀ β ∈ [0,1] . (2.6)

As such, the energy of the prediction error is smaller when using two reference blocks.

27

Part I, Chapter 2 – Traditional Video Coding Algorithms

2.3.2 Coding structure

Encoders select the reference blocks from a restrained set of already transmitted frames,

called reference frames, which are defined by the coding structure. The coding structure is

a fixed repetitive pattern, often called a Group of Pictures (GOP). The number of frames in

a GOP indicates the maximal temporal distance available for an inter prediction. Among

the inter frames, a distinction is made between B-frames and P-frames. While B-frames

have two reference frames available, P-frames have a single one.

Besides the performance aspect, the coding structure has to comply with a significant

set of practical constraints. In most video streaming use cases, the Random Access (RA)

coding configuration is used. This coding structure is depicted in Fig. 2.5a. The intra

period which corresponds to the number of inter frames between two intra frames sets the

maximum latency before the first decoded frame is displayed. Indeed, when an user wants

to access a video (e.g. on his TV), the content can only be accessed within an I-frame. The

common test conditions (CTC) of VVC [17] conditioned the intra period on the frame-rate

in order to approximately have one I-frame per second. For instance, the VVC CTC states

that a video at 30 frames per second has an intra period of 32 frames.

Some peculiar use cases such as video conferencing impose strong latency constraints.

As it is not practical to wait for future frames to be decoded, specific coding structures are

designed to compress frames without relying on future frames. This reduces the latency

at the expense of compression efficiency. Such structures include the low-delay P (LDP)

configuration, presented in Fig. 2.5b.

(a) Random access coding configuration. The GOP size is 8 and the intra period is 16.

(b) Low-delay P coding configuration.

Figure 2.5: Random access and Low-delay P coding configuration.

28

2.4. Conclusion

2.4 Conclusion

This chapter has introduced traditional video coding, which implements the operations

motivated from a source coding perspective in the first chapter: prediction, transforms,

quantization and arithmetic coding. The traditional video coding scheme is a particular

implementation of the lossy video coding framework. This traditional implementation has

to address a large set of constraints (complexity, handcrafted and linear operations), that

restricts the compression performance. Moreover, each step of the coding scheme has to

be separately designed through potentially misaligned proxy metrics, which can yield to

suboptimal results.

The next chapter introduces deep neural networks (DNN) as a novel set of tools for

image and video coding. Thanks to their ability to represent non-linear operations designed

to optimize any (differentiable) functions, DNNs relax the constraints on the different

steps of the compression process. Furthermore, DNNs enable end-to-end optimization of

the whole coding scheme. Consequently, DNN-based coding scheme should reach further

coding performance.

29

CHAPTER 3

LEARNING TO COMPRESS IMAGES

3.1 Introduction

NEURAL networks have recently seen a surge in their popularity and are at the

heart of state-of-the-art systems for many different applications, such as image

classification, natural language processing or generative modelling. This is due to the

neural network ability of being an universal function estimator [11], allowing them to

fulfil virtually any tasks. Neural networks consist of a succession of linear and non-linear

operations, whose parameters are set to optimize a particular objective function. This

allows to design powerful non-linear functions, achieving better performance than the

more simple handcrafted (usually linear and optimized through proxy metrics) functions.

In the context of compression, neural networks are used as transforms, predictions and

probability models. This chapter introduces the concepts and techniques of learning-based

image compression, which will be extended to video coding in the next chapters. The first

half of this chapter presents the main operations performed by neural networks as well as

their training process. The second half of the chapter discusses neural networks applied to

image coding. The overall framework of learned image coding is explained. Then, different

implementations are proposed, successively increasing the coding scheme performance.

3.2 Basics of neural networks

3.2.1 Building a neural network

A neural network performs a function y= f (x), mapping an input x to an output y. Such

mapping can consist in labelling an image into different categories, removing noise in

an input or obtaining a compressed representation, suited for arithmetic coding. All the

neural networks presented in this manuscript are modelled as a succession of functions f i

31

Part I, Chapter 3 – Learning to Compress Images

called layers. The network output is obtained by applying successively all the layers:

y= f (x)= fL ◦ fL−1 ◦ . . .◦ f1 (x), (3.1)

where y is the network output and L ∈N denotes the number of layers. The organization

and the operations performed by all the layers are called the network architecture. Each

layer f i outputs a hidden state hi, i.e. a vector acting as an internal representation of

the input data. The hidden states represent prominent features of the data e.g. edges

or textures for images. In most cases, a layer f i is decomposed as a linear operation,

represented by a matrix Wi and a bias bi, followed by a non-linear operation σi:

hi = f i (x)=σi (Wix+bi) . (3.2)

Some of the most common non-linearities σ such as the Leaky Rectified Linear Unit

(ReLU) or the sigmoid functions are illustrated in Fig. 3.1.

−4 −2 2 4

−4

−2

2

4

x

LeakyReLU(x)

(a) LeakyReLU(x)=max(ǫx, x) with ǫ≪ 1.

−4 −2 2 4

−1

1

x

Sigmoid(x)

(b) Sigmoid(x)= 1
1+ e−x

Figure 3.1: The LeakyReLU and Sigmoid non-linearity functions.

The values of the matrix Wi, the bias bi, as well as the optional parameters of σi, form

the layer parameters, denoted as θi. The set of all the layers parameters constitutes the

network parameters θ = {θ1, . . . , θL}. The values of all the parameters are set during the

training stage, according to the function f (x;θ) the network aims to model.

3.2.2 Training a neural network

The training objective is to find the optimal set of parameters θ⋆ to represent the desired

function. Ideally, this function maps an input x to an output y= f (x;θ), which has to be

close to the desired output yob j. Moreover, the network must generalize to (i.e. perform

well on) all inputs x drawn from a distribution q, such as the natural images distribution.

32

3.2. Basics of neural networks

These requirements yield the following optimization problem:

θ⋆ = argmin
θ

L (θ)= argmin
θ

Ex∼q

[

J
(

f (x;θ), yob j

)]

, (3.3)

where L is the loss function to minimize and J is a per-example cost, measuring the

network performance on one single example. The minimization problem is solved using

an iterative gradient descent algorithm [39]. After a random initialization of the network

parameters θ0, the parameters are updated as follows:

θn+1 = θn −η∇θL (θ) , η ∈R. (3.4)

Here, ∇θL (θ) denotes the gradient of the loss function with respect to the network

parameters θ. This equation states that at each step, the parameters are updated towards

the steepest descent of the average loss function. The learning rate η sets the displacement

magnitude. In theory, the gradient descent algorithm converges towards the optimal set of

parameters θ⋆ as long as the loss function is convex [40].

Two issues arise in practice. First, there is no guarantee that the loss function is

convex. Second, it is not possible to compute the exact expectation of the per-example cost

J over the whole distribution of x. The first issue remains an open problem, sometimes

tackled through the adaptation of the network architecture, which affects the convexity

of f . The second issue is solved using the Stochastic Gradient Descent (SGD) [39], which

estimates the gradient based on a reduced subset of samples
{

x(i), i = 1, . . . ,B
}

, called a

batch. As a result, the average loss function becomes:

L (θ)=
1
B

B∑

i=1
J

(

f (x(i); θ), y(i)
ob j

)

. (3.5)

Estimating the derivative of the loss with respect to each network parameter is

achieved using the backpropagation algorithm [11]. It consists in propagating the gradient

backward, from the output to the input layers. This is often called the backward pass.

By analogy, the process of computing the network output y= f (x;θ) is called the forward

pass. Let us illustrate the backward pass on the L-layer network described in Eq. (3.1).

For the sake of brevity, the final network output y is supposed to be scalar and each layer

f i is assumed to have a single scalar parameter θi and a scalar hidden state hi. The loss

33

Part I, Chapter 3 – Learning to Compress Images

gradient with respect to a parameter θi is expressed using the chain rule as:

∂L

∂θi

=
∂L

∂y
×

∂y

∂hL−1
×
∂hL−1

∂hL−2
× . . .×

∂hi+1

∂hi

×
∂hi

∂θi

. (3.6)

The successive multiplications represent the gradient propagation from the output layer

to the i-th layer. This equation highlights a major constraint of neural networks training:

all layers as well as the loss function must be (piece-wisely) differentiable with respect to

both their input and their parameters.

3.2.3 Convolutional neural networks

A layer composed of a generic matrix multiplication followed by a non-linearity, as de-

scribed in Eq. (3.2) is called a fully connected layer. Similarly, a neural network made

of fully connected layers is a Fully Connected Network (FCN). It is the most generalist

network type and can theoretically learn to perform any function, with sufficent number of

parameters and layers. However, the FCN universality suffers from an increased complex-

ity. Let us consider the case where the network input is a N ×N greyscale image. Suppose

that the first layer of the network is a fully connected layer without dimensional reduction

i.e. represented by a matrix W ∈RN2×N2
. Then, each row of W contains N2 parameters,

used only once to weight each input pixels in order to compute a single output pixel. This

results in a prohibitive number of parameters e.g. more than 4 billion parameters for a

single layer applied on a 256×256 input image.

The number of parameters is imposed by the dependence on the spatial position. Indeed,

each output pixel of a fully connected layer is obtained by its own set of parameters, applied

on all input pixels. As such, detecting the same feature for all N ×N input pixels requires

to learn a dedicated set of N ×N parameters for each output pixel, even though the task

to perform is identical for all pixels. This issue is solved by trading the generic matrix

multiplication for a convolution between the input pixels and a small set of parameters

called a kernel. A unique kernel is slid over the input, computing each output pixel through

a weighted sum of the neighbouring pixels. As such, the convolutional layer is invariant to

translation [11]. That is, the same processing is applied regardless of the position of the

input pixels within the image. Insightful convolutional layers visualisations are available

in [41].

The output of the convolution with one kernel is called a feature map. It is a filtered

version of the input, aiming to extract relevant features (e.g. edge detection). Usually,

34

3.3. Learning-based lossy image coding

more than one feature is extracted from the input by applying F different convolutional

kernels in parallel. Successive convolutional layers are often applied to refine the extracted

features. In order to process a three-dimensional input (F feature maps with a N × N

spatial dimension), each kernel is three-dimensional and composed of F ×k×k weights.

Fig. 3.2 presents different feature maps extracted from an input image.

(a) Input image. (b) A feature map extracting
vertical edges.

(c) A colour-related feature
map.

Figure 3.2: Different feature maps extracted from an input image. Red and blue denote
respectively positive and negative values.

Thanks to the small spatial dimension of the kernel (usually k ∈ {3,5,7,9}), the number

of parameters remains reasonable. Besides the reduction of the memory footprint, this

eases the training of the network. Indeed the same parameters are applied multiple times

on an image, making their average gradient less noisy. Moreover, convolutional layers

present additional interesting properties. Sharing the convolution parameters across

all spatial positions enables the processing of variable size inputs. Finally, convolutions

provide a simple means of performing spatial downsampling or upsampling of the input

data. Downsampling is easily achieved by sliding the convolution kernel with a non-

unitary stride. Upsampling is often implemented through sub-pixel convolutions [42] or

transposed convolutions [43].

3.3 Learning-based lossy image coding

3.3.1 Autoencoders

Since Ballé [12] and Theis’ work [13] in 2017, most learned compression systems [44]–[49]

operate using autoencoders. Autoencoders are specific neural network architecture,s whose

purpose is to find a latent representation y of an input data x. Ideally, y is a meaningful

35

Part I, Chapter 3 – Learning to Compress Images

low-dimensional representation of x, which encodes the most important properties of the

input. Beside compression, this simplified representation can be used for a wide variety of

task e.g. it is a more convenient input for classification or noise removal.

To compute the latent representation, an autoencoder is composed of two sub-networks:

the analysis and the synthesis transforms, presented in Fig. 3.3a. First, the analysis

transform ga maps an image-domain input x to a latent domain variable y. Then the

synthesis transform gs maps back the latent variable y to the input domain by computing

x̂. To foster the learning of a meaningful representation, constraints are imposed on the

latent variable y [11]. In the context of compression, the constraint targets the entropy

(i.e. the rate) of the latent variable.

(a) A vanilla autoencoder.

(b) Autoencoder-based image coding scheme. Q denotes a uniform scalar quantization function, AE
and AD stand for arithmetic encoding and decoding with p the latent probability model.

Figure 3.3: The autoencoder architecture.

Similarly to autoencoders, lossy compression schemes aims to obtain a low-entropy

representation encoding the most important features of the input. As such, autoencoders

are a straightforward architecture to implement learned compression systems. The anal-

ysis is fed with the input image, computing a latent variable to be losslessly sent to the

decoder. At the decoder, the synthesis uses the latent variable to reconstruct the input as

accurately as possible. Such learning-based systems are presented in Fig. 3.3b.

In order to be efficiently sent to the decoder, the latent variable is losslessly compressed

using arithmetic coding. Consequently, the processing pipeline of a compression autoen-

coder features two additional components: a quantization step and a latent probability

model. The quantization step is present since arithmetic coding only operates on discrete

36

3.3. Learning-based lossy image coding

data. The latent probability model is required to allocate less bits to the most proba-

ble latent variable values. The synthesis and analysis transforms are not constrained

to be the inverse of each other. Thus, the quantization step is not the sole lossy step

in the coding pipeline: the analysis transform also removes information. The resulting

autoencoder-based architecture yields a coding scheme similar to the abstract lossless

coding pipeline presented in Fig. 1.4. The analysis ga and synthesis gs transforms repre-

sent the transforms Ta and Ts in Fig. 1.4. So far, no prediction step is used in the learned

coding scheme.

3.3.2 Training a learned coding scheme

The analysis, the synthesis and the probability model are implemented with neural

networks, whose parameters are learned during a training stage. This enables the joint

optimization of the entire coding scheme, in an end-to-end fashion. This is different from

traditional approaches, where each step (prediction, transform, arithmetic coding) is

separately and incrementally optimized potentially leading to suboptimal systems.

Yet, according to Eq. (3.6), the training process requires each operation of the coding

scheme to be differentiable with respect to its input. This is not the case for the arithmetic

coding algorithm which operates on discrete data. Additionally, the quantization step

derivative is defined almost everywhere, but is always equal to zero (see Fig. 1.3). Using

it as such would prevent the gradient propagation to the other layers, as the chain rule

equation (3.6) would feature multiplications by zero. In the literature, three main methods

are proposed to circumvent the quantization differentiability issue during the training:

• the straight-through estimate [13] sets the quantization derivative to 1 during the

backward pass while still performing the rounding operation in the forward pass;

• the soft quantization [50] approximates the quantization with a differentiable func-

tion (sum of sigmoids) for both forward and backward passes;

• the additive noise [12], [46] models the quantization by adding an independent

uniform noise for the forward and backward passes. At high rate, this is known to

mimic the quantization effect [32].

Once the training stage is done, all three methods use the real quantization to actually

compress images. All the systems presented in this manuscript rely on the additive

uniform noise model for their training, as it usually offers better performance. Indeed,

37

Part I, Chapter 3 – Learning to Compress Images

recent works [51] hint that it may be due to the regularization effect of the stochastic

noise addition, helping the learning of relevant and expressive latent variables. In this

setting, the quantized latent variable ŷ is replaced by the relaxed latent variable ỹ:

ỹ= y+u, with the noise u∼U

(

−
1
2

,
1
2

)

. (3.7)

Arithmetic coding operates exclusively on discrete data and is thus non-differentiable.

Since it is a lossless step within the coding pipeline, it is removed during the training

stage, without altering the value of the decoded image. As explained in Section 1.2.2,

arithmetic coding rate can be estimated by the cross entropy:

R =Eŷ∼qŷ

[

− log2 pŷ(ŷ)
]

. (3.8)

Yet, there is no quantized latent variable ŷ during the training stage due to the additive

noise model. Instead, we have the relaxed latent variable ỹ, whose probability density

function (PDF) is:

pỹ(ỹ)=
(

py∗ pu
)

(ỹ)=
∫ỹ+ 1

2

ỹ− 1
2

py(a) da (3.9)

=
∫ỹ+ 1

2

−∞
py(a) da−

∫ỹ− 1
2

−∞
py(a) da

= cy

(

ỹ+
1
2

)

− cy

(

ỹ−
1
2

)

,

with pu the PDF of the continuous uniform distribution introduced in Eq. (3.7). The

above equation allows to express the PDF of the relaxed latent variable through cy, the

cumulative distribution function of the non-quantized latent variable y. Moreover, it

highlights that the pỹ is an interpolation of pŷ, with equality for all integers:

pỹ(n)= pŷ(n), ∀ n ∈Z. (3.10)

Consequently, modelling the non-quantized latent variable distribution py allows to

obtain the distribution of the quantized (and relaxed) latent variable, as illustrated in Fig.

3.4. Finally, the continuous pỹ is used as a proxy of pŷ during the training stage, yielding

the training rate:

Rtrain =Eỹ∼qỹ

[

− log2 pỹ(ỹ)
]

. (3.11)

38

3.3. Learning-based lossy image coding

−3 −2 −1 1 2 3

0.5

1

1.5 py
p ỹ
p ŷ

Figure 3.4: Distribution of the relaxed (p ỹ) and quantized (p ŷ) latent variables.

The coder objective is to minimize both the rate and the distortion. The latter is

denoted as a function d, e.g. the mean-squared error or the MS-SSIM. The rate constraint

is expressed through a Lagrange multiplier λ, yielding the loss function:

Lλ =Ex
[

d(x, x̂)−λ log2 pỹ(ỹ)
]

(3.12)

3.3.3 Initial architecture

Because of their desirable behaviour for image processing, convolutional neural networks

are used to implement the analysis transform ga and the synthesis transform gs. A typical

architecture of a learning-based image coder [12], is presented in Fig. 3.5. Varying the

number of kernels F in the internal convolutions provides a simple—yet effective—way

of trading computational complexity for performance. Since ga and gs are convolutional

transforms, the latent variable y = ga(x) consists of multiple two-dimensional feature

maps. To foster the reduction of the latent variable entropy, the analysis transform

performs a spatial downsampling while the synthesis transform upsamples the latent

variable to restore the original input dimension. For an H×W input image, it is common

[44]–[46] to have latent feature maps with a spatial dimension of H
16 ×

W
16 . In practice, the

number of latent feature maps Fy is set big enough to not constrain the autoencoder (i.e.

the constraint is imposed on the entropy of the latent, not their dimensionality).

An additional benefit of using convolutional transforms is the seamless processing of

colour images. Traditional approaches consider the different colour channels separately.

Here, the convolutional nature of the learned coding scheme allows to naturally process

colour images. Indeed, a colour image (e.g. a RGB image or a YUV video sequence) is seen

by the first convolutional layer as a three-feature-maps input.

The non-linearity function implemented in neural image coder is usually a varia-

tion of the Generalized Divisive Normalization (GDN) [52]. The GDN is designed as a

39

Part I, Chapter 3 – Learning to Compress Images

Figure 3.5: Architecture of a typical learning-based image coder. Conv F ×5×5 denotes a
convolutional layer with F output feature maps and a 5×5 kernel. Q is a scalar uniform
quantizer, AE and AD respectively denote arithmetic encoding and decoding with a
probability model p.

Gaussianizing transform, with the objective of producing a set of marginally independent

Gaussian variables. Here, the Gaussian distribution of the variables is not of primary

interest but the independence between the different latent feature maps is important, as

they are transmitted independently. Let us denote wi(k) the i-th pixel in the k-th feature

map produced by a convolutional layer. The purpose of the GDN operation is to reduce

the statistical dependencies among all the i-th pixels across the F feature maps i.e. for

k = 1, . . . ,F. It is achieved through the following transform:

ui(k)=
wi(k)

(

βk +
F∑

j=1
γk, jwi (j)2

) 1
2

(3.13)

where ui(k) is the output pixel and βk, γk, j ∈R+ are learned parameters. Thus, a GDN

transform requires F2 +F parameters for F feature maps. Similarly, the inverse GDN

40

3.3. Learning-based lossy image coding

(IGDN) is defined as:

ui(k)= wi(k)

(

βk +
F∑

j=1
γk, jwi (j)2

) 1
2

. (3.14)

Unlike the non-linear functions presented in Fig. 3.1, the (I)GDN is not a point-wise

non linearity. As it mixes different inputs with several learnable parameters, the GDN

is able to represent richer functions yielding better rate-distortion performance [12]. It

is worth noting that common deep learning techniques such as the batch normalization

[53] do not bring any improvement on a GDN-based system [46]. This is due to the

normalization effect of the GDN, which is able to center and re-scale the data. For all these

reasons, the GDN and its inverse are found in a substantial number of works [47].

In order to perform arithmetic coding or to estimate the rate during the training

process, a probability model p of the latent is required. To tackle the dimensionality issue

mentioned in Chapter 1, the latent pixels are coded independently:

py(y)=
∏

k,i
pyk,i (yk,i), (3.15)

With yk,i the i-th pixel in the k-th feature map of y. Yet, estimating a probability model pyk,i

for each latent pixel is not desirable. It would require a significant number of parameters

and forbid the processing of variable size inputs (as the dimension of the latent feature

maps depends on the input dimension). Ballé et al. [46] propose to learn one single

probability model pyk
per feature map:

py(y)=
∏

k,i
pyk

(yk,i). (3.16)

Each distribution pyk
is represented by its cumulative cyk

, see Eq. (3.9), parameterized

by a fully connected network. In order to represent a cumulative c (indices omitted for

clarity), the neural network is designed to fulfil the following constraints:

c (−∞)= 0 ; c (∞)= 1 ;
∂c(x)
∂x

≥ 0. (3.17)

3.3.4 Training and rate-distortion results

In order to measure their performance, learning-based coding schemes have to undergo a

training stage. As such, the rate-distortion results achieved by a given architecture vary

significantly according to the training parameters. The appendix B.1 provides additional

41

Part I, Chapter 3 – Learning to Compress Images

information regarding the training parameters. Unless specified otherwise, all the results

presented in this manuscrit result from a personal training by the author in order to

enable consistent results. The learning-based coding scheme presented in Fig. 3.5 is

trained end-to-end, to minimize the rate-distortion cost presented in Eq. (3.12) with the

Mean Squared Error (MSE) as the distortion metric. In order obtain rate-distortion curves

with N = 4 points, N individual systems are learnt under N different rate constraints λ.

The quality of the reconstructed image is measured through the PSNR, and the rate is

expressed in bits per pixel (bpp), computed as:

Rbpp =
−

∑

images log2 p(ŷ)

Number of pixels
. (3.18)

The learned image coder is evaluated on the CLIC 2020 validation set, against existing

image/video coding standards. More details on the evaluation and the anchors are available

in the appendix B.2.

Figure 3.6 presents the rate-distortion performance of the learning-based coding

scheme with F = 192 internal convolution features. The interest of non linear transform is

illustrated by training the exact same system without (I)GDN layers. The Bjøntegaard

rate delta (BD-rate) [54] accurately compares different systems. It measures the variation

of rate required to achieve equivalent quality between two codecs. Compared to a linear

autoencoder, the non-linear behaviour brought by the GDN allows to have a BD-rate of

−40 %, i.e. the rate can be decreased by 40 % while maintaining the same quality (same

PSNR). This proves the relevance of using non-linear transforms. Although the non-linear

systems outperform JPEG, they underperform compared to HEVC and VVC. The next

section details how to improve the system to reach performance competitive with VVC.

3.4 Advanced learned coding schemes

3.4.1 Hyperprior to refine the probability model

According to Eq. (1.5), a mismatch between the latent variable probability model p and

its actual distribution q brings a rate overhead of DKL (q || p) bits. As such, an efficient

way of improving the rate-distortion performance of the system is to reduce this mismatch

through a better probability model estimation. The current probability model introduced

previously presents two main weaknesses. First, it is assumed to be spatially invariant i.e.

42

3.4. Advanced learned coding schemes

0 0.25 0.5 0.75
25

30

35

40

Rate [bpp]

P
S

N
R

[d
B

]

RD curves, CLIC 2020 validation set

JPEG
HEVC
VVC

Non linear
Linear

Figure 3.6: Rate-distortion comparison between a GDN-based and a linear system.

the same model pyk
is used, regardless of the pixel index i. Second, the probability model

remains identical whatever the input image.

Figure 3.7 presents the same latent feature map for two different input images. It

is clear that the statistics (mean value and variance) of the latent variable vary both

according to the spatial dimension and the input image.

Figure 3.7: The 116th feature map for two different pictures.

The hyperprior mechanism [46] proposes to condition the probability model p on

both the spatial position and the input image. This is achieved by conditioning p on the

side information ẑ, called the hyperprior. This hyperprior is sent using an additional

autoencoder, with an adapted analysis transform ha and synthesis transform hs. The

hyperprior analysis transform computes z using the latent variable:

z= ha (y) . (3.19)

43

Part I, Chapter 3 – Learning to Compress Images

The hyperprior z is then quantized and transmitted using arithmetic coding. Its probability

model pz is a feature-wise cumulative function as explained before for the latent variable

y. The hyperprior synthesis transform takes the quantized hyperprior as input to compute

ψ, a vector of parameters conditioning the latent variable distribution:

ψ= hs (ẑ) . (3.20)

In Ballé and Minnen’s initial work [46], [48], the latent distribution parameters consists

of a pixel-wise mean value and standard deviation, ψ =
{

µ,σ
}

. For a latent variable

y ∈RF×H×W , ψ ∈R2F×H×W which correspond to two parameters µi and σi per latent pixel

yi. Consequently, each latent pixel yi is modelled with its probability distribution pyi
,

with a closed form cumulative distribution function, typically a Gaussian or a Laplace

distribution. In this thesis, a Laplace distribution L is used:

pyi
∼L

(

µi,σi

)

. (3.21)

The hyperprior mechanism makes the latent probability model pyi
vary according to

the pixel index i (the spatial dimension). As ψ is computed from the latent variable, it is

dependent on the input image and able to match the image statistics. Figure 3.8 shows an

implementation of the hyperprior-based system, derived from [46]. Since the hyperprior

ẑ is sent as side information, its associated rate has to be taken into account in the loss

function. Equation (3.12) becomes:

Lλ =Ex
[

d(x, x̂)−λ
(

log2 pỹ (ỹ)+ log2 pz̃ (z̃)
)]

. (3.22)

Hyperprior-based systems (Fig. 3.8) are evaluated against fixed probability systems

(Fig. 3.5) with a similar number of internal feature maps F = 192. The rate-distortion

results are shown in Fig. 3.9. The hyperprior-based systems achieve a BD-rate of −32 %

compared to the fixed probability systems, significantly improving the coding performance.

Besides the performance increase, the relevance of the hyperprior can be visually

assessed. As each latent pixel is independently coded, the system must strive to make

them independent to avoid a significant rate overhead. Figure 3.10b presents one feature

map of y, where each latent pixel exhibits a high spatial correlation with its neighbours.

The Fig. 3.10c shows the inter pixel correlation captured by µ by representing y−µ.

Similarly, Fig. 3.10d indicates the structure captured by σ through the visualisation of

44

3.4. Advanced learned coding schemes

Figure 3.8: Image coding scheme with a hyperprior. The cumulative-based hyperprior
probability model is denoted as pz.

y−µ
σ

. This last illustration reveals significantly less spatial correlation than the original

feature map, proving the relevance of the hyperprior.

There is an interesting relationship between modelling the latent variable through an

adaptive probability model and performing adaptive operations on the signal:

yi ∼L(µi,σi)⇔ yi −µi ∼L(0,σi). (3.23)

This equation gives a meaningful interpretation to the quantities µ and σ. The expectation

µ aims to predict the value of the latent variable y, while the standard deviation σ

indicates the incertitude of the prediction. This highlights that µ acts as a prediction

of the signal, conditioned on some previously sent values: the hyperprior z. This latent

domain prediction is a significant improvement over the naive architecture, presented in

Section 3.3.3, which lacks a prediction step.

Unlike the autoencoders previously introduced, the hyperprior autoencoder does not

aim to copy its input. Indeed, the hyperprior autoencoder maps the latent variable y to

the hyperprior z and then to the probability distribution parameters µ and σ. That is,

the input of the (hyperprior) analysis ha and the output of the synthesis hs do not lie

45

Part I, Chapter 3 – Learning to Compress Images

0 0.25 0.5 0.75
25

30

35

40

Rate [bpp]

P
S

N
R

[d
B

]

RD curves, CLIC 2020 validation set

JPEG
HM
VTM

Fixed p

Hyperprior

Figure 3.9: Performance of the hyperprior-based coding scheme.

in the same domain. Even though this is not a conventional autoencoder, such analysis-

synthesis architecture will be called autoencoder in this manuscript. Nevertheless, this

is an important difference with the conventional autoencoders, where the synthesis

output aims to replicate the analysis input e.g. image-domain input and output. One

insightful lesson of the hyperprior mechanism is that the autoencoder architecture is able

to simultaneously:

1. Compute any quantity (in this case probability parameters and in future systems,

motion information, coding mode selection etc.) based on image-domain inputs;

2. Transmit this quantity as a low-entropy latent variable suited for arithmetic coding.

This will be used in all further systems to efficiently estimate and transmit any desired

quantity that has to be computed at the encoder and available at the decoder.

3.4.2 Auto-regressive probability model

The hyperprior probability model performance proves the relevance of modelling each

latent pixel with its own Gaussian or Laplace distribution. Auto-regressive models (ARM)

[48], [49] have been proposed to improve hyperprior-based systems by also conditioning the

latent variable distribution on previously transmitted values. Indeed, the i-th quantized

latent pixel ŷi is likely correlated with the previously transmitted pixels ŷ<i.

46

3.4. Advanced learned coding schemes

(a) Input image. (b) One feature map yi

(c) The centered version yi −µi (d) The centered and normalized version yi−µi

σi

Figure 3.10: Visualisations of the hyperprior.

Adding an ARM module allows to leverage the already received latent pixels to more

accurately model the current pixel distribution parameters ψi =
{

µi,σi

}

. Similarly to the

hyperprior, the ARM enables a latent domain prediction of the image, based on the already

transmitted values. A principle diagram of a coding scheme featuring hyperprior and

ARM mechanisms is shown in Fig. 3.11. The already received latent pixels ŷ<i are fed to

the ARM hr, which extracts relevant information. Finally, information coming from the

hyperprior synthesis hs and the ARM hr are fused using a fusion module f :

ψi = f (hs (ẑ) ,hr(ŷ<i)) . (3.24)

In practice, the ARM is a PixelCNN-like network [55], [56] i.e. a convolutional neural

network with masked kernels processing only causal pixels. Its detailed architecture is

available in appendix B.3. The fusion module is also a PixelCNN-like network, whose

architecture is depicted in appendix B.3.

Figure 3.12 presents the rate-distortion gain brought by the addition of an ARM.

Compared to hyperprior-based system, using both hyperprior and ARM yields a BD-rate

of −7 %. Such results are consistent with the literature [48], [49] where rate gains are

47

Part I, Chapter 3 – Learning to Compress Images

Figure 3.11: Image coding scheme featuring both hyperprior and ARM.

claimed to be around 10 %.

Yet, the ARM makes the entire decoding process sequential, as one latent pixel can

not be processed while all the previous one have been decoded. While the hyperprior

mechanism allows to obtain the probability parameters ψ all at once, the ARM requires to

perform one iteration per (dependent) latent pixels, often leading to a number of iterations

in the order of H ×W. This results in a prohibitive decoding time [57], even though

some approaches aims to decrease the number of dependent pixels [58]. In this work, we

consider that the relatively minor performance gain was not worth the significant increase

in complexity.

3.4.3 Attention modules for better networks

Moreover recent approaches [44], [59]–[61] propose to improve the rate-distortion perfor-

mance through more powerful transforms. This is achieved through residual blocks and

attention modules inside the different transforms of the coding scheme. More information

on these architectures are available in appendix B.4. Residual attention modules and

residual blocks can be seamlessly integrated between the convolutional layers, increasing

the representational capacity of the transforms at the expense of an increase in complexity

and memory footprint. The appendix B.5 presents an attention-based architecture inspired

from Cheng et al. [44]. Its performance is assessed against the plain hyperprior system,

without residual block or attention module. The rate-distortion results are shown in Fig.

48

3.4. Advanced learned coding schemes

0 0.25 0.5 0.75
25

30

35

40

Rate [bpp]

P
S

N
R

[d
B

]

RD curves, CLIC 2020 validation set

JPEG
HM
VTM
ARM

Hyperprior

Figure 3.12: Performance brought by adding an ARM to an hyperprior-based system.

3.13. The attention-based system offers a BD-rate of −31 %, allowing to significantly

outperform HEVC. This highlights the relevance of using more advanced architectures.

It is interesting to note that even such rich architectures exhibit slightly worse perfor-

mance at higher rates. This is a known problem in the literature, which may be due to

the intrinsic nature of the operations performed within the coding pipeline. Indeed, the

transforms ga and gs are not lossless. Constraining the operations to be invertible (i.e.

gs = g
−1
a), have been shown to offer competitive high-rate performance [62] .

0 0.25 0.5
26

28

30

32

34

36

38

Rate [bpp]

P
S

N
R

[d
B

]

RD curves, CLIC 2020 valid. set

JPEG
HM
VTM

Advanced
Baseline

Figure 3.13: Baseline architecture vs. advanced one (see appendix B.5).

49

Part I, Chapter 3 – Learning to Compress Images

3.4.4 Binary Probability Model

The successive introduction of the hyperprior and the ARM indicates that a better proba-

bility model for the latent variable is an important source of performance improvement.

Following this trend, some recent work propose to add more parameters to the probability

model, allowing to more accurately represent the latent distribution. Usually, this is

achieved by using mixtures of Gaussian distributions [63], [64]. One of the early contribu-

tion of this thesis is to propose the binary probability model (BPM): an alternative means

of refining the latent variable probability model [14].

So far, hyperprior-based systems model each latent pixel with a Laplace distribution.

As such, the centered latent pixel ȳi = yi −µi follows:

yi ∼L
(

µi,σi

)

⇔ ȳi ∼L (0,σi) (3.25)

As the most frequent values of ȳi tend to be around zero, it is particularly important to

precisely model the centered latent pixel distribution in this range to avoid a significant

rate overhead. Following this intuition, the binary probability model (BPM) features

additional parameters to explicitly model the probability of ȳi being quantized to the value

−1, 0 or 1. This allows to achieve a more accurate probability model.

The BPM is implemented by modifying the signalling process of each latent variable.

Instead of simply being conveyed at once through arithmetic coding based on a Laplace

distribution, the latent variable is decomposed into different quantities. First, each latent

variable is centered and quantized. For sake of clarity, the latent variable index is omitted

and y stands for any yi. The value to convey is:

ŷ=Q (ȳ) , with ȳ= y−µ. (3.26)

The signalling process of one latent variable is shown in Fig. 3.14. Since ȳ is assumed

centered, it focuses on | ŷ| i.e. amplitude of ŷ while the sign is conveyed has an additional

bit. The signalization of the amplitude is inspired by the binarization scheme of the

CABAC. That is, | ŷ| is decomposed into two binary flags:

G0 = | ŷ| > 0 and G1 = | ŷ| > 1. (3.27)

The flag G0 indicates whether ŷ is greater than 0. Similarly the flag G1 indicates

whether it is greater than one. These two binary flags are transmitted using arithmetic

50

3.4. Advanced learned coding schemes

Figure 3.14: Signalling process of a centered latent variable ŷ.

coding, which requires to model their respective probabilities with two parameters P0

and P1. Finally, if the amplitude is greater than one i.e. if | ŷ| = k > 1, then the value k is

explicitly conveyed. In this case, the probability used for the arithmetic coding of k is:

p (k)= p (| ŷ| = k | | ŷ| > 1)=
2
∫

k+0.5

k−0.5
p ȳ (a)da

∫
1.5

−1.5
p ȳ (a)da

, (3.28)

The probability density function of the centered latent variable p ȳ, is modelled with

a centered Laplace distribution i.e. p ȳ ∼L (0,σ). The BPM can thus be thought of as an

enhancement of the Laplace model, as it introduces two additional parameters (P0 and

P1) to more accurately model the latent distribution, allowing to decrease the rate. The

BPM is implemented through a single modification of hyperprior-based systems, such as

those presented in Fig. 3.8 or in appendix B.5. The two additional parameters P0 and P1

are additionally decoded from the hyperprior ẑ.

The interest of the BPM is assessed by implementing the architecture presented in

appendix B.5 for the Laplace distribution or the BPM. The rate-distortion results are

presented in Fig. 3.15. Compared to the Laplace model, the BPM offers a rate reduction

of −6 %, yielding an image coding scheme competitive with VVC. Since the overall ar-

chitecture remains the same, this performance gain comes with virtually no increase in

complexity. This performance enhancement was published through a conference paper pre-

sented at the IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP) in 2020 [14].

51

Part I, Chapter 3 – Learning to Compress Images

0 0.25 0.5
26

28

30

32

34

36

38

Visualisation

Rate [bpp]

P
S

N
R

[d
B

]

RD curves, CLIC 2020 valid. set

JPEG
HM

VTM
Laplace

BPM

Figure 3.15: Laplace distribution vs. binary probability model (BPM).

3.5 Visualisations

Figure 3.16 presents a visual example of a learned image coder. Detailed visual com-

parisons for different images and rate constraints are available in Appendix B.6. The

original image, shown in Fig. 3.16a is fed to the coder analysis transform, which computes

a latent variable sent to the decoder. The spatial distribution of the latent variable rate is

illustrated in Fig. 3.16d. As expected, the high-frequency areas (edges, text) require more

rate to be transmitted, while low-frequency area (the blurry background) costs very little

rate. Finally, the synthesis transform uses the latent variable to generate the compressed

image presented in Fig. 3.16b.

In order to respect a tight rate constraint, the learned coder discards some information.

It mostly concerns the details, as it is measured as less harmful according to the PSNR

(the training quality metric). For instance, the heavy grain of the original image presents

a heavy grain (visible on the camera) is removed by the compression process to reduce the

rate. Similar visual degradations are observed on the hands, where most of the details

are lost during the compression. For comparison, the visual result obtained by coding

the image with the VTM at a similar rate is presented in Fig. 3.16c, allowing to note

some difference concerning the nature of the visual degradations. Due to its convolution

operations, the learned coder tends to lose most of the sharpness, resulting in smooth

images. On the other hand, the VTM performs a block-based processing which causes

more discontinuities in the compressed image.

52

3.5. Visualisations

(a) Original image x.

(b) Reconstructed image x̂. PSNR = 33.47 dB, Rate = 0.050 bpp.

(c) Image compressed by the VTM. PSNR = 34.08 dB, Rate = 0.053 bpp.

(d) Spatial distribution of the rate.

Figure 3.16: Visual comparison between a learned coder and the VTM. The test image is
400984b87394ada6d9627ed918908986 from the CLIC20 dataset.

53

Part I, Chapter 3 – Learning to Compress Images

3.6 A word on complexity

Most of the improvements introduced in this chapter come at the cost of additional pa-

rameters, increasing both the memory footprint and the complexity. Yet , the number of

parameters of a given design can be tuned by modifying the number of internal convo-

lutional kernels. This enables to modulate the complexity without dramatically altering

the overall architecture. Applying this technique to all the architecture allows to obtain

performance-complexity curves, that exhibits whether a design is intrinsically better at

similar complexity (e.g. whether hyperprior models are better than fixed-pdf models) or if

this is only due to the presence of additional parameters.

Although the number of parameters is an important factor of the overall complexity,

it is not a satisfactory measurement. For instance, a single convolutional layer with lots

of input and output feature maps can have the same number of parameters as many

small successive layers. On appropriate computing devices, it is possible to efficiently

parallelize the big convolutional layer while the successive small ones are inherently

sequential, leading to a more important execution time. The encoding and decoding time

could be a relevant measurement of the complexity. Yet, it omits an important dimension

of learning-based systems: the training stage. Ideally, one would like to compare systems

by measuring their performance and execution time once the training stage has properly

converged. In practice, some systems still improves after weeks of training, resulting in

impractical convergence time.

Consequently, the complexity is measured through the training time. This somehow

reflects the execution time, as one iteration and thus the whole training will be shorter

if the execution time of the architecture is small. The performance of an architecture is

computed by averaging the rate-distortion cost J for different rate-constraint λi:

J =
1
N

N∑

i=1
D+λiR. (3.29)

Figure 3.17 presents loss-training time curves for all the proposed designs, except

the autoregressive-based ones which has already be discarded due to complexity issue.

This graph shows that even at equivalent complexity (equivalent training time), more

advanced approaches (hyperprior, attention, BPM) are consistently better. This proves

that the successive improvements presented in this Chapter perform better due to their

intrinsic quality, and not because they feature more parameters and more training time.

54

3.7. Conclusion

0 3 6 9 12 15 18
Training time (days)

R
at

e-
di

st
or

ti
on

co
st

J

Linear AE
Non-linear AE

Hyperprior
Attention

BPM

Figure 3.17: Average rate-distortion cost (lower is better) as a function of the training time
for different architectures. Architectures are detailed in Table 3.1.

3.7 Conclusion

In this chapter, the main concepts of learned compression have been introduced. The

most common techniques of the literature (hyperprior, ARM, attention mechanism) as

well as one contribution of this thesis (the binary probability model) have been evalu-

ated to assess their coding performance. Table 3.1 summarises the performance gains

brought by the successive improvements and highlights two mains levers of performance

improvement. The first one is the enhancement the analysis and synthesis transforms

through non-linearities and attention modules. The second is the refinement of the latent

probability model using hyperprior, ARM and the binary probability model. The resulting

learned coding scheme achieves a BD-rate of −55.6 % compared to the initial non-linear

autoencoder i.e. it requires 55.6 % less rate to obtain an equivalent quality.

End-to-end training of a coding scheme implementing all these components allows to

reach image coding performance competitive with VVC, achieving a BD-rate of +1.4 %

when compared to VVC. These are compelling results, as VVC represent the state-of-

the-art of the standardized compression algorithms, which uses a conventional approach.

Furthermore, learned approaches are still quickly improving. In a span of a few years,

their performance has gone from JPEG to VVC. Yet, the performance of learned systems

comes at the expense of an important complexity and memory footprint. For instance, the

best performing approaches presented in this chapter require 20 million parameters to

55

Part I, Chapter 3 – Learning to Compress Images

Table 3.1: BD-rates of the different coding schemes. AE stands for autoencoder, ARM for
autoregressive module and BPM for binary probability model.

Codec Non-linear HP ARM Attention BPM BD-rate

Linear AE +63.7 % +285.9 %
Non-linear AE ! Reference +132.5 %
Hyperprior ! ! −32.1 % +56.7 %
ARM ! ! ! −36.7 % +45.0 %
Attention ! ! ! −52.9 % +7.4 %
BPM ! ! ! ! −55.6 % +1.4 %

JPEG +46.2 % +236.6 %
HEVC −44.8 % +28.1 %
VVC −56.9 % Reference

achieve performance on par with VVC. So far, such convolutional networks still requires

high-end computing devices to achieve realistic encoding/decoding time.

Finally, the different designs presented in this chapter turn out to be generic architec-

ture that can be applied to efficiently transmit any two-dimensional signal. As such, these

architectures are the building blocks of the learned video schemes designed in the next

chapters of this manuscript.

56

PART II

Learned Video Coding

57

CHAPTER 4

FROM LEARNED IMAGE CODING TO

LEARNED VIDEO CODING

4.1 Introduction

THE presence of the temporal dimension makes video coding a more challenging task

than still image coding, due to the supplementary statistical redundancies. On one

hand, the well-established traditional video coders remove these redundancies using a

temporal prediction performed through a motion compensation process. On the other hand,

learned video coding is a brand new field allowing to reconsider some historical design

choices of traditional coders. Since the initial work published in 2019, different strategies

of temporal redundancies removal have been considered in the literature.

The first part of this chapter consists of a brief review of the literature to motivate the

usage of motion compensation to remove temporal redundancies. Consequently, the learned

approaches proposed in this thesis are composed of three successive stages: estimating

and transmitting the motion information, computing a temporal prediction based on the

motion information and finally conveying only the unpredicted part. These three stages are

implemented by neural networks. In order to carefully compare among different possible

network architectures, strict experimental conditions are used. The second part of the

chapter presents these experimental conditions, implemented to evaluate the different

proposed systems.

4.2 Temporal dependencies reduction

4.2.1 Need of an explicit motion compensation

Let us model a video sequence V as set of T frames: V = {x1, . . . ,xT}. Each video frame

xt is represented as a tensor of dimension 3×H×W. Early work from 2019 by Habibian

58

4.2. Temporal dependencies reduction

et al. [15] proposes to straightforwardly extend the learned image coding schemes to

video coding. That is, all the T video frames are fed to the analysis transform ga which

computes a single latent variable y representing all the stacked frames. The latent variable

undergoes a quantization step Q and it is sent to the decoder using arithmetic coding. In

the end, the synthesis transform gs reconstructs the T frames in its entirety:

x̂1, . . . , x̂T = gs (ŷ) , with ŷ=Q (ga (x1, . . . ,xT)) . (4.1)

In practice, the analysis and synthesis transforms are implemented using 3D convolu-

tions [65]. We recall that the usual 2D convolutions are fed with F×H×W input data, that

is F two-dimensional feature maps of size H×W . 2D convolutions use several F×kH ×kW

kernels to compute the output feature maps. On the other hand, 3D convolutions process

F ×T ×H ×W inputs, i.e. F three-dimensional feature maps of size T ×H ×W, with T

the number of frames. They use several F ×kT ×kH ×kW kernels to compute the output

feature maps. The additional dimension of their kernel, makes 3D convolutions able to

process the supplementary temporal dimension.

3D convolutions present two main weaknesses. First, compared to the successive

processing of T frames with 2D convolutions, 3D convolutions require kT times more

parameters and multiplications, with kT often greater than 3. Second, the processing

of T frames together prevent to tune the coding structure according to the application

needs. For instance, the coding latency is by design T frames. This can be troublesome

in some context (e.g. in video-conferencing setup), where the latency has to be as low as

possible. In such case, video coders resorts to low-delay coding configurations, featuring a

coding latency of a single frame. These two limitations are particularly concerning as the

3D convolution-based approaches have not been shown to bring compelling performance.

Consequently, this thesis follows most of the publications from the literature and discards

the 3D convolution-based approaches in favour of 2D convolution-based ones, which

process each frame separately. This reduces the complexity and gives more flexibility on

the coding configuration.

Yet, naively processing each frame separately leads to a rate overhead. As motivated

in the first chapter (see Section 1.2.4), a prediction step is introduced to lower the mutual

information between the frames, reducing the rate overhead. In practice, it is achieved

through a motion compensation process, similarly to traditional coders.

59

Part II, Chapter 4 – From Learned Image Coding to Learned Video Coding

4.2.2 inter frame coding with neural networks

The introduction of a motion compensation process leads to the decomposition of the

learned coding schemes in three main steps, presented in Fig. 4.1. The first step is to

estimate and efficiently convey the motion between the frame to code and its references.

Then, the motion compensation takes place to compute a temporal prediction through the

application of the motion information to the reference frames. Lastly, only the remaining

unpredicted part of the frame needs transmission. This unpredicted part exists for two

reasons: either the content is simply unpredictable (a new object appearing on the image for

instance), or the motion compensation step is not accurate enough to achieve a satisfactory

temporal prediction.

Figure 4.1: Conceptual processing pipeline of an inter frame xt relying on two reference
frames x̂p, x̂ f to compute a temporal prediction x̃t.

As presented in the learned image coding chapter, autoencoders are generic tools to

efficiently transmit a quantity from the encoder to the decoder. Thus, they are used to

transmit the motion information as well as the unpredicted part. The other steps are

implemented in several ways in the literature. Table 4.1 summarises the main differences

among existing learned video coders. The motion estimation column indicates how the

motion information is obtained. The Bi-pred column details whether a bi-directional

prediction is available. If not, the coders only relies on P-frames, leading to reduced

compression efficiency. Then, the Image residual entry details how the non-predictable

information is computed and sent to the decoder. The last column indicates whether the

same coder (i.e. the same network with the same parameters) is used for intra and inter

frames, or if a dedicated intra coder is required.

Information presented in Table 4.1 are discussed in the next two sections. The objective

is to identify the limitations of existing learned video coding schemes in order to design a

better learned coder.

60

4.2. Temporal dependencies reduction

Table 4.1: Summary of the different learned video coders in the literature. AE stands for
autoencoder, Bi-pred for bi-directional prediction.

Motion Image Same intra
Estimation Bi-pred. residual and inter coder

Habibian, ICCV 19 [15] 3D convolutions

Djelouah, ICCV 19 [66] PWCNet ! latent residual !

Lu, CVPR 19 [19] SpyNet !

Yilmaz, ICIP 20 [67] SpyNet ! !

Hu, ECCV 20 [20] SpyNet !

Lu, ECCV 20 [68] SpyNet !

Yang, CVPR 20 [69] SpyNet ! !

Golinski, ACCV 20 [23] AE† !⋆

Liu, AAAI 20 [24] AE† !

Agustsson, CVPR 20 [25] AE !

Yang, STSP 21 [21] SpyNet !

Hu, 21 [70] ? latent residual

⋆Not explicitely computed at the encoder-side, but the decoder features residue + prediction.
†Requires an explicit loss term to converge.

4.2.3 Motion estimation, transmission and compensation

Most learned video coders from the literature use a single reference frame, restraining

their performance. In order to obtain a more accurate prediction, bi-directional prediction

is preferred:

x̃t =βw(x̂p;vp)+ (1−β)w(x̂ f ;v f), with β ∈ [0,1] . (4.2)

Here, w denotes the warping function used to apply a motion v to a reference frame

x̂. The two intermediate warpings are combined through a sum weighted by β, the bi-

directional prediction weighting. For the vast majority of works as well as for the work

presented in this thesis, w is a linear warping i.e. pixels of the motion compensated image

are sampled from a linear interpolation of the original image.

In order to compute a relevant prediction, accurate motion information must be avail-

able at the decoder. In most existing schemes, a two-step process takes place.

1. Motion is estimated at the encoder using a pre-trained network such as SpyNet [22]

or PWCNet [71];

2. An autoencoder is used to convey the motion information to the decoder.

61

Part II, Chapter 4 – From Learned Image Coding to Learned Video Coding

An other approach is to straightforwardly estimate and transmit the motion at once

with a single autoencoder. This last method offers the benefit of a simpler design and will

be chosen in this manuscript. Once the motion information is available at the decoder, it

must be applied to the reference frames through the motion compensation function. This

is usually achieved with a bilinear warping. Chapter 6 details how neural networks are

used to estimate, transmit and apply the motion information.

4.2.4 Transmitting the unpredicted part

Once a temporal prediction x̃t is available, only the part of xt missing from x̃t is conveyed.

To this end, x̃t is combined with the frame to code xt through a function m. This function

aims to remove the predictable part from xt, to avoid conveying redundant information.

To this end, traditional video coders, as well as most learned ones rely on residual coding.

That is, m is a simple subtraction in the spatial (image) domain:

m (xt, x̃t)=
Residual
︷ ︸︸ ︷

xt − x̃t . (4.3)

Then, the decoder recovers x̂t as a sum between the prediction x̃t and the transmitted

residual. We will argue in Chapter 5 that performing a simple difference between the

frame to code and its prediction can be improved from a more advanced combination

of these two quantities. Indeed, the representational power of neural networks will be

leveraged to design different mixing operations m. Different designs of m are compared,

to determine the most effective way of leveraging a temporal prediction.

4.3 Experimental conditions

4.3.1 CLIC 21 video track

The next two chapters carefully consider the design of the motion estimation, transmission

and compensation as well as the more effective means of leveraging the temporal prediction

(i.e. improving the legacy residual coding). In order to accurately assess the different

designs introduced, a real-life video coding task is used: the video track of the Challenge

on Learned Image Compression (CLIC) 2021 [16]. The objective of this challenge is to

compress 100 videos at an average rate of 1 Mbit/s, while getting the highest MS-SSIM.

All videos have 60 frames with a resolution of 720 lines with 30 frames per second.

62

4.3. Experimental conditions

4.3.2 Anchors

For the next two chapters, the different design choices are assessed recent modern video

coders: HEVC and VVC. This decision is motivated by their performance and their flexibil-

ity. So far, the vast majority of the learned systems in the literature are assessed against

a fast encoder implementation of HEVC of HEVC e.g. x265 using the very fast preset.

Consequently, the performance achieved by the best implementations of modern video

coders (such as the HM for HEVC or VTM for VVC) remains an upper bound for learned

approaches [72].

Then, most learned coding schemes tend to implement restrained coding configurations.

Indeed, they are often still limited to P-frames and target higher rates [21], [70], with

a frequent intra period. This makes difficult to achieve proper comparison between the

approaches presented in this manuscript, which targets real-life video coding and the

literature.

4.3.3 Coding configuration

The coding structure is of primary importance to obtain the best rate-distortion trade-off.

The bi-directional prediction, motivated in section 2.3.1, offers a more accurate prediction

which usually results in better coding efficiency. Since, the bi-directional prediction is only

available for B-frames, the coding structure must feature as many B-frames as as possible.

For fair comparisons between the proposed learned coders and existing coders, the

coding structure from the VVC Common Test Conditions [17] are selected. As such, the

Intra Period is set to 32 frames (approximately one intra frame per second at 30 fps).

Since there is no constraint on the latency, the best performing coding configuration is

chosen. This configuration is called the random access configuration and is presented in

Fig. 4.2 (with a GOP size of 8). It presents B-frames wherever it is possible, leading to

better compression results. To further maximise the number of B-frames, a GOP size of 32

is used.

4.3.4 End-to-end training

Random access coding features I-frames, P-frames and B-frames. As such, one need to

process a frame with zero, one or two reference frames with the same set of parameters.

Indeed, at first sight, it is not desirable to have a dedicated intra coder as most existing

systems do in the literature. To this end, the training stage has to prepare the coder

63

Part II, Chapter 4 – From Learned Image Coding to Learned Video Coding

Figure 4.2: Random Access coding configuration, with a GOP size of 8.

to process these different types of frame. Consequently, the coding configuration for the

training is set to the smallest configuration featuring I, P and B-frames: a random access

configuration with a GOP size of 2 as presented in Fig. 4.3. One training example is

therefore composed of a triplet of frames.

Figure 4.3: The training coding configuration.

In order to achieve the highest coding performance, the different components of the

coder are jointly optimized according to the actual rate-distortion objective. To this end,

all the frames within a GOP are successively coded and the following loss is minimized by

the learning algorithm:

Lλ =Ex

[
∑

t

d(xt, x̂t)+λr(x̂t)
]

. (4.4)

To comply with the experimental conditions of the CLIC video track, the distortion metric

d is based on the MS-SSIM. The rate metric r measures the rate required to reconstruct

the frame x̂t at the decoder and the rate constraint λ sets the rate-distortion trade-off.

Framing the optimization task at a GOP level by minimizing the loss function on a

whole GOP allows to more accurately represent the propagation of the compression noise

64

4.4. Conclusion

among frames. This enables the model to learn the impact of having compressed (i.e. noisy)

reference frames, as well as preparing the system to work with compressed references. In

the end, it should result in better performance.

Following the common data format in video compression, each frame is represented in

YUV 420. For convenience, all three channels are converted to the same spatial resolution.

Several methods are explored in the literature [73]. Unlike [73], we choose the simple yet

efficient nearest neighbour upsampling of the U and V channels. Although this method

has a slightly superior computational cost, it is more convenient as it allows to align

the spatial dimensions of U and V with those of the Y channel. As a result, each frame

is presented as a tensor of dimension 3×H ×W, that is three channels with a spatial

dimension of H×W pixels. During training, the frames are crops of size 256×256. The

appendix C details the composition of the training dataset.

4.4 Conclusion

In this introductory chapter, a thorough review of the learned video coding literature has

been carried out. Based on this literature review, a coding strategy has been chosen to

comply with requirements regarding the complexity, the performance and the flexibility of

the coder. The most significant design choice is to perform a frame-by-frame processing,

which in turns implies a motion compensation step. As such, the processing of a single

frame is split into three successive steps: motion estimation and transmission, motion

compensation and sending the remaining unpredicted part.

Throughout the literature review, it has been noted that most existing learned coding

schemes perform these steps using usual tools such as residual coding or pre-trained

motion estimation networks. The two next chapters reconsider these design choices, in

the light of the possibilities offered by neural networks. All the neural-based designs

presented in the following chapters will have to be accurately evaluated. To this end, a

real-life coding task is selected: the CLIC21 video track. In order to ensure the relevance of

the learned coding schemes, state-of-the-art anchors are proposed. To this day, traditional

approaches (HEVC, VVC) remains the best performing systems. For fair comparison with

these anchors, the random access coding configuration of the CTC [17] is chosen. Finally, a

training process is devised to prepare the systems for the target coding configuration.

65

CHAPTER 5

EXPLOITATION OF A PREDICTION

5.1 Introduction

VIDEO coders rely on temporal prediction to identify the statistical relationship within

the data. Once the prediction of a frame is available, it is subtracted to the current

frame to code to remove some of the redundancies. This process is called residual coding

and it is implemented by most traditional and learned coders. Yet, neural networks are

able to learn how to exploit the prediction beyond a simple difference.

This chapter compares different mixing functions between the frame to code and its

prediction. Existing approaches from the literature are compared and a novel architecture

called conditional coding is proposed to enhance the compression efficiency. Finally, we

propose to condition operations in the coding scheme based on the type of the current

frame (I, P or B), increasing the rate-distortion performance.

5.2 Baselines and experimental conditions

5.2.1 Naive prediction

This chapter aims to investigate the most effective means to exploit a temporal prediction.

That is, we are interested in the design of the last step presented in Fig. 4.1 which consists

in transmitting the unpredicted part of the frame. In this context, let us suppose that a

bi-directional prediction process is used to obtain x̃t, a temporal prediction of xt:

x̃t =βw(x̂p;vp)+ (1−β)w(x̂ f ;v f), with β ∈ [0,1] . (5.1)

The function w applies the motion information vp (resp. v f) to the reference frame x̂p

(resp. x̂ f) and β is the bi-directional prediction weighting. For fair comparison between

different methods, the temporal prediction must remain identical. To this effect, a naive

67

Part II, Chapter 5 – Exploitation of a Prediction

prediction without any motion information is used. That is, the prediction is simply a

combination of the raw reference frames:

x̃t =βx̂p + (1−β)x̂ f =
{

1
2

(

x̂p + x̂ f

)

for B-frames,
(

β= 1
2

)

x̂p for P-frames,
(

β= 1
) . (5.2)

For I-frames, x̃t = 0 since they do not have any reference frame available.

5.2.2 Learned and traditional baselines

As presented in Table 4.1, residual coding in the image (i.e. spatial) domain is the usual

method to exploit the temporal prediction. This is also the case in all the ITU/MPEG

video coding standards. Figure 5.1 shows the autoencoder-based residual coding scheme.

It first mixes the current frame and its prediction through a simple subtraction. Then,

only the prediction error xt− x̃t is sent. Its architecture is based on the components known

to perform well for learned image coders (hyperprior, attention modules), with F = 192

internal features. Their exact implementation are available in appendix D.1. To better

appreciate the performance of the learned residual coder, a pure image coder is also

implemented. It relies on exactly the same architecture than the residual coder, except

that it transmits the frame xt without reference.

Different configurations and implementations of traditional coding algorithms are

used as anchors to verify the performance of the learned approaches. First, the All Intra

(image coding only) configuration of HEVC is tested through the HM (HEVC test Model)

16.22. This serves as a lower bound for the required performances of learned approaches.

Indeed, even the learned image coding scheme should outperform HEVC All Intra (as in

Chapter 3). Conversely, we used a fully fledged configuration of HEVC, with an actual

motion compensation, to represent the performance of a modern video coder. This is

achieved using the HM 16.22 and x265 (medium preset). While the former is arguably the

best implementation available, the latter is very often used in the learned compression

literature [19]–[21].

5.2.3 Training and testing the baselines

For the learning-based residual and image coding scheme, the training process follows

the principles described in the learned image coding chapter. Namely, the quantization

is approximated by an additive noise and the rate is measured through the entropy of

68

5.3. Conditional coding

Figure 5.1: Autoencoder-based residual coding scheme. The latent variable probability
model is omitted, Q stands for quantization, AE and AD for arithmetic encoding and
decoding.

the latent variables. As presented in section 4.3.4, each training example is a GOP of size

2 composed of one I-frame, one P-frame and one B-frame and the training process aims

to minimize the rate-distortion cost based on the MS-SSIM. For each coding scheme, N

different rate constraints λ are used to learn N systems operating at different rate targets.

At the beginning of the training, the compressed frames are not relevant enough to be

used as references. Relying on them would result in an irrelevant prediction that would

not allow the optimization algorithm to converge. This is avoided through the usage of

non-compressed reference frames during the first 20 training epochs out of 50.

After training, the systems are evaluated on the CLIC21 validation set, using a Random

Access coding structure with a GOP size of 32 and an intra period of 32. The rate-distortion

results are shown in Fig. 5.2. The learned image coder outperforms the HM in All Intra

configuration. This is coherent with the image coding result presented in Chapter 3. Since

the residual coder has access to a (naive) temporal prediction, it logically outperforms

the image coder. The rest of the chapter aims to investigate ways of better leveraging the

prediction, without changing the way it is computed, defined in Eq. (5.2).

5.3 Conditional coding

5.3.1 Motivations

Let us generalize the task of inter frame coding. Information from an encoder-side quantity

xenc is sent, while a variable xdec containing relevant information is already available at

69

Part II, Chapter 5 – Exploitation of a Prediction

0 1 2 3 4 5 6
10

12

14

16

18

20

22

Rate [Mbit/s]

M
S

-S
S

IM
d

B
[d

B
]

RD curves, CLIC 2021 valid. set, RA config

HM (RA)
x265 (RA)

Residual image
Image

HM (AI)

Figure 5.2: Different baselines comparison. MS-SSIMdB =−10log10 (1−MS-SSIM) is the
quality (higher is better). RA stands for Random Access, AI for All Intra.

the decoder-side (e.g. a prediction or a reference frame). An ideal inter frame coding scheme

is able to leverage all the decoder information. As such, it avoids conveying redundant

information i.e. information from xenc which is already available at the decoder, in xdec.

The main idea of residual coding is that the decoder information can be removed from xenc

by simply subtracting xdec to it. The results of this subtraction is called the residue. It is

conveyed by an autoencoder, through the usual analysis-quantization-synthesis pipeline.

In the end, xdec is added back to obtain the output xout, as in Fig. 5.1:

xout = xdec +
autoencoder

︷ ︸︸ ︷

gs(Q(ga(xenc −xdec
︸ ︷︷ ︸

residue

))) . (5.3)

This equation highlights two weaknesses of residual coding. First, the mixture between

xenc and xdec is limited to a simple subtraction. Second, the fact that xout results from a

final addition between xdec and the autoencoder output requires these quantities to have

compatible nature such as image and image difference. Here, we propose to design a novel

architecture to overcome these two issues. Its purpose is to condition the transmission

of xenc on the decoder information xdec, to transmit as few bits as possible. We call this

architecture conditional coding. It must comply with two design constraints:

1. Learn the optimal combination of xenc and xdec, to identify the information unavail-

able at the decoder, i.e. which has to be transmitted;

70

5.3. Conditional coding

2. Be resilient to any nature of data for xenc, xdec and xout.

5.3.2 Conditional coding principles

The proposed conditional coding architecture is depicted in Fig. 5.3. At the encoder-side,

the analysis transform ga is fed with the concatenation of the feature maps from xenc

and xdec. It computes latent variable y, representing the information to be sent i.e. the

information present at the encoder but missing at the decoder:

y= ga(xenc,xdec). (5.4)

The analysis transform ga is a convolutional network. As such its successive layers

intertwine the encoder and decoder quantities in a more general way than a simple

subtraction. This allows to learn an adapted mixture through the training process.

Figure 5.3: The conditional coding architecture.

In residual coding, the decoder-side information xdec is combined with the synthesis

transform output through an addition. Here, conditional coding uses a new conditioning

transform gc to incorporate the decoder-side information into the output xout. The condi-

tioning transform extracts the relevant information within xdec as additional conditioning

latent variable yc:

yc = gc (xdec) . (5.5)

Since the conditioning latent variable is computed at the decoder-side, it does not

71

Part II, Chapter 5 – Exploitation of a Prediction

require any transmission. Through the training process, the conditioning transform learns

to compute the conditioning latent variable yc in a form that suits the synthesis transform

gs. Indeed, the latent variables of both the analysis and the conditioning transforms are

concatenated before being fed to the synthesis transform, which learns to combine the

encoder and decoder information and computes the desired output xout:

xout = gs (y,yc) . (5.6)

5.3.3 Implementation and rate-distortion performance

The conditional coding mechanism is implemented to replace residual coding. Therefore,

in the context of inter frame coding:

xenc = xt the frame to code,

xdec = x̃t the temporal prediction,

xout = x̂t the decoded frame.

(5.7)

Compared to residual coding, the analysis ga and synthesis gs transforms remain

unchanged, except for the number of input features. For the analysis, residual coding has

a 3-feature input (residual for the Y, U and V channels). Here xt and x̃t are concatenated,

resulting in a 6-feature input (two Y, two U and two V channels). Similarly, the synthesis

transform is now fed with the concatenation of two latent variables, y and yc. The

conditioning transform replicates the architecture of the analysis, with a 3-feature input

(only x̃t). Similarly to the residual coder, all transforms use F = 192 internal feature maps.

The training and the inference are performed as for the residual coder. Figure 5.4

shows the performance of conditional coding compared to residual coding. It significantly

improves the performance, reaching equivalent quality at a rate 30 % lower. This proves the

relevance of performing a richer mixture than a simple difference. Yet, this enhancement

comes at the cost of the additional conditioning transform. In this case, the residual coder

has 15 million parameters, while the conditional one has 21 million parameters.

5.3.4 Visualisation

This section aims to detail the inner behaviour of the conditional coding. To this effect,

the output of the conditional coder is computed while disabling some latent variables

(by setting them to zero). Namely, the analysis and conditioning latent variables are

72

5.3. Conditional coding

0 1 2 3 4 5 6
10

12

14

16

18

20

22

Rate [Mbit/s]

M
S

-S
S

IM
d

B
[d

B
]

RD curves, CLIC 2021 valid. set, RA config

HM (RA)
x265 (RA)

Conditional
Residual image

Image

Figure 5.4: Conditional coding performance.

alternatively set to zero, as explained in Table 5.1. The visual results are presented in Fig.

5.5, in a B-frame coding context.

For now, the prediction x̃t is a simple average of the reference frames. As such, it

presents some artifacts around moving objects e.g. the girl in Fig. 5.5b. This temporal

prediction is fed to to the conditioning transform to obtain the conditioning latent yc =
gc (x̃t). Conversely, Fig. 5.5d presents the synthesis transform gs output when computed

only from the conditioning latent variable, allowing to represent the information contained

in yc. In residual coding, the prediction would be directly added to the synthesis transform

output to obtain the reconstructed frame. Thus, any artifacts present in the temporal

prediction would be found in the output frame. Here, the conditioning transform allows to

remove some of the artifacts. This is particularly visible around the girl’s face (Fig. 5.5d),

where most of the visual degradations visible in the temporal prediction are absent from

the conditioning-only synthesis. This mechanism is particularly useful at low-rate as it

Table 5.1: Different configurations for the conditional coding ablation.

Latent variables Synthesis
Analysis Conditioning operation

Normal ! ! gs (y,yc)
Conditioning only ! gs (0,yc)
Analysis only ! gs (y,0)

73

Part II, Chapter 5 – Exploitation of a Prediction

(a) Original frame to code xt. (b) The temporal prediction x̃t = 1
2

(

x̂p + x̂ f

)

.

(c) Reconstructed frame x̂t = gs (y,yc). (d) Conditioning transform only: gs (0,yc).

(e) Analysis transform only: gs (y,0). (f) Spatial distribution of the rate.

Figure 5.5: Low-rate conditional coding illustrated on a B-frame from the CLIC sequence
Sports_1080P-6710. This frame costs 2 481 bits and has a MS-SSIM of 13.35 dB.

74

5.4. Latent domain residual coding

avoids sending corrective terms through the analysis transform.

Figure 5.5e presents the synthesis of the analysis latent variable y only. This latent

variable is obtained by applying the analysis transform on both the frame to code and

its prediction: y= ga (xt, x̃t). As such, it represents the unpredicted part of the frame i.e.

the correction that has to be sent. In this examples, the unpredicted areas concern mostly

the girl and the ball. The analysis latent is the only quantity requiring to be sent to the

decoder. Consequently, the spatial distribution of the rate (see Fig. 5.5f) shows that bits

are spent only for the areas requiring information from the analysis transform. Finally,

Fig. 5.5c depicts the usual output of conditional coding i.e. when the latent variables from

both the analysis and the conditioning transforms are fed to the synthesis transform.

This illustrates that the combination of the encoder-side and decoder-side information is

properly achieved by conditional coding, without noticeable artifacts (except the obvious

loss in quality due to lossy compression).

Those illustration shows that the decoder-side information x̃t is well exploited by the

proposed conditional coding. Both for lower rates (Fig. 5.5e) and for higher rates (Fig. 5.6e),

the coder conveys only what is not present at the decoder-side.

The set of Figures 5.6 presents the same visualisations as the previous one except

they are obtained from a higher-rate network. When the rate-constraint is decreased, the

analysis latent variable y are allowed to carry more information. This is clearly visible

in Fig. 5.6e, which exhibits more details and is active in more areas than its low-rate

counterpart. This translates into a more important rate, as illustrated through the spatial

rate distribution, in Fig. 5.6f. As the higher-rate network relies more on the analysis

transform, the conditioning transform tends to be less important. For instance, Figure

5.6d shows that it removes less artifacts from the temporal prediction.

5.4 Latent domain residual coding

The main idea of conditional coding is the combination xenc and xdec in the latent domain,

allowing to perform a richer mixture of these quantities. Likewise, the latent-domain

residual approach [66] proposes a similar but not identical method, summarised in Fig.

5.7. In this coding scheme, the analysis transform ga is applied successively on xenc and

xdec, yielding two latent variables:

yenc = ga (xenc) ; ydec = ga (xdec) . (5.8)

75

Part II, Chapter 5 – Exploitation of a Prediction

(a) Original frame to code xt (Identical to Fig.
5.5a).

(b) The temporal prediction x̃t (Identical to Fig.
5.5b).

(c) Reconstructed frame x̂t = gs (y,yc). (d) Conditioning transform only: gs (0,yc).

(e) Analysis transform only: gs (y,0). (f) Spatial distribution of the rate.

Figure 5.6: High-rate conditional coding illustrated on a B-frame from the CLIC sequence
Sports_1080P-6710. This frame costs 33 712 bits and has a MS-SSIM of 21.48 dB.

76

5.4. Latent domain residual coding

Figure 5.7: Latent-domain residual.

Since the latent variable ydec is computed based solely on xdec, it is available at the

decoder without transmission, enabling to compute a latent-domain residue:

r= yenc −ydec. (5.9)

This residue is quantized and sent to the decoder. At the decoder side, ydec is added back

to the quantized residue to retrieve a noisy version of the encoder latent ŷenc, fed to the

synthesis transform gs to compute the desired output:

xout = gs (ŷdec) . (5.10)

As with conditional coding, the encoder and decoder information is mixed in the

latent domain. Like conditional coding, this approach requires additional decoder-side

computation (in order to obtain ydec = ga (xdec)).

Figure 5.8 presents the latent-domain residual coding performance, which offer signif-

icantly better results than spatial-domain residual coding. Yet, latent-domain residual

coding slightly underperforms compared to conditional coding. Two reasons explain why

conditional coding is a more interesting architecture than latent-domain residual coding.

First, the encoder and decoder quantities are still combined through an addition, even

though it takes place in the latent domain. Compared with conditional coding which

simply concatenates the quantities, it may hinder the expressiveness of the combination.

Second, the same analysis transform ga is used at the decoder-side, instead of learning a

specialized conditioning transform gc. Recall that the transform ga aims to reduce the

entropy of its input (due to the rate constraint). When performed at the decoder to achieve

77

Part II, Chapter 5 – Exploitation of a Prediction

latent residual coding, it purposely removes information from the temporal prediction.

This might lead to a suboptimal mixture.

0 1 2 3 4 5 6
10

12

14

16

18

20

22

Rate [Mbit/s]

M
S

-S
S

IM
d

B
[d

B
]

RD curves, CLIC 2021 valid. set, RA config

HM (RA)
x265 (RA)

Conditional
Residual latent
Residual image

Image

Figure 5.8: Latent residual coding performance.

Besides the performance aspect, latent-domain residual coding presents a second

drawback. As xenc and xdec are fed to the same transform ga, with the same parameters,

they must have the same nature and dimension. In the current setup (i.e. xenc =xt and

xdec = x̃t), this constraint is acceptable. As we will see in the next chapter, it will not

be the case for coding of the motion information. In the end, conditional coding is the

most effective and the most flexible architecture to exploit decoder-side information. It

will be implemented in most of the proposed video coding scheme to exploit decoder-side

information as much as possible.

5.5 Do we need a dedicated intra frame coder?

Most existing learned video coders feature a dedicated intra frame coder (see the literature

review in Table 4.1). This is due to the usage of a image-domain residual coding, where

the nature of the conveyed data varies significantly between intra and inter frames. For

inter frames, the autoencoder is fed with a difference image, while intra frames require to

convey image data. Thus, it looks sensible to learn one dedicated coder for each nature

of content. To assess whether a separate intra coder is required, the different systems

previously learned are evaluated in an All Intra configuration. For this experiment, the

78

5.6. Variable quantization steps

image coder constitutes the upper bound for the performance. Indeed, it is only able of

coding intra frames and is thus trained for this task.

Fig. 5.9 shows the All Intra coding results of the different architectures. While the

image-domain residual coder struggles to properly code images, both latent-domain resid-

ual coding and coding coding achieve All Intra performance on par with the pure image

coder. This demonstrates that conditional coding avoids the need of a dedicated intra coder.

Similar conclusions are drawn by Djelouah et al. [66], who states that performing the

combination of encoder and decoder information in the latent domain prevents the need of

designing a dedicated intra coder.

0 1 2 3 4 5 6
10

12

14

16

18

20

Rate [Mbit/s]

M
S

-S
S

IM
d

B
[d

B
]

RD curves, CLIC 2021 valid. set, AI config

Conditional
Residual latent
Residual image

Image
HM (AI)

Figure 5.9: All Intra coding performance.

5.6 Variable quantization steps

5.6.1 Motivation and implementation

During the processing of a video sequence, the role of the analysis transform ga varies

significantly. For intra frames, there is no contribution from the conditioning transform gc

and the frame is transmitted through the latent variable y= ga(x). In the case of an inter

frame, a prediction x̃ is available and the conditioning transform is used. As such, far

less information are sent through the analysis latent variable y, as most of the relevant

information is already available from the conditioning transform.

Since the importance of the analysis latent variable y depends on the frame type, we

propose to apply a linear operation on y, conditioned on the frame type. The proposed

79

Part II, Chapter 5 – Exploitation of a Prediction

method is inspired by the one introduced by Guo et al. for variable rate coders [74] and is

presented in Fig. 5.10. For each frame type f ∈ {I, P, B}, a feature-wise pair of quantization

gains {Γenc
f

,Γdec
f

} is learnt. Each quantization gain Γ ∈RFy with Fy the number of feature

maps composing the analysis latent variable y. The feature-wise quantization gains are

applied prior to quantization at the encoder-side and at the decoder-side after arithmetic

decoding. Seen from the synthesis transform, the received analysis latent is:

ŷ=Γ
dec
f ⊙Q(Γenc

f ⊙y). (5.11)

where ⊙ denotes the feature-wise multiplication and Q the quantization function.

Figure 5.10: Feature-wise quantization gains.

Conceptually, these frame-type dependent quantization gain can be compared to the

∆QP of traditional coders, which sets different quantization accuracies depending on

the frame type and position in a GOP. Yet, the proposed quantization gains offers more

flexibility than the usual ∆QP :

• A different gain is learned per latent feature maps, compared to a single scalar gain;

• There is no constraint imposed such as Γ
dec
f

= 1
Γ

enc
f

;

• The quantization gains can be learned to operate as a switch, enabling or disabling

particular latent feature maps according to the frame type;

• All the quantization gains are set through an end-to-end optimization of the entire

video coding schemes.

5.6.2 Experimental results

The quantization gains are implemented on the conditional coding scheme. While the

conditional coder has 25 million parameters, the three pairs of feature-wise quantization

80

5.6. Variable quantization steps

gains represent a few parameters:

Encoder & Decoder × I, P & B × Fy =Number of parameters

2 × 3 × 256 = 1 536
(5.12)

The training stage of the system is carried out similarly to the other coding schemes

and its results are presented in Fig. 5.11a. For a negligible increase in complexity, the

introduction of quantization gains conditioned on the frame type allows to save 9.6 % rate.

To better understand the behaviour of the quantization gains, Fig. 5.11b shows the

normalized values of Γ
enc for one system. As expected, the quantization gain i.e. the

quantization accuracy is different for the intra frames (I) and the inter frames (P & B).

For a given feature map, its associated quantization accuracy is almost always smaller

for an inter frame than for an intra frame. Together with the rate-distortion results, this

proves the relevance of learning dedicated quantization accuracy according to the type

of the frames. Similar visualisations for all rate targets are presented in Appendix D.3,

where the behaviour of the quantization gains remain similar regardless the rate target.

0 1 2 3 4 5 6
12

14

16

18

20

22

24

Rate [Mbit/s]

M
S

-S
S

IM
d

B
[d

B
]

RD curves, CLIC 2021 valid. set, RA config

HM (RA)
x265 (RA)

Conditional & Γ

Conditional

(a) Quantization gains performance.

16 32 48 64
0

0.25

0.5

0.75

1

Index feature maps of y

Q
u

an
ti

za
ti

on
ga

in
Γ

e
n

c
f

Normalized quantization gains

I
P
B

(b) Encoder quantization gains Γ
enc
f

for f a
I, P or B-frames.

Figure 5.11: Performance and analysis of the quantization gains.

81

Part II, Chapter 5 – Exploitation of a Prediction

5.7 Conclusion

In this chapter, several ways of leveraging a temporal prediction have been investigated

and the conditional coding architecture has been introduced. Table 5.2. summarises the

rate saving brought by each element. Conditional coding couplet with quantization gains

conditioned on the frame type, achieves a BD-rate of −35.9 % over the usual spatial

residual coding i.e. it obtains equivalent quality at a rate 35.9 % lower. This demonstrates

the relevance of the different techniques introduced in this Chapter.

Table 5.2: BD-rates of the different coding schemes in Random Access configuration.

Residual Conditional Q.
BD-rate

Image Latent Coding gains

HM (All Intra)⋆ / +158.2 % +580.3 %

Image +36.7 % +184.0 %
Spatial res. ! Reference +129.0 %
Latent res. ! −21.2 % +71.9 %
Cond. ! −29.3 % +60.8 %
Cond., Γ ! ! −35.9 % +42.9 %

x265 medium† (motion) / −46.0 % +22.8 %
HM† (motion) / −56.3 % Reference

⋆: evaluated at QP 36, 41, 46, 51.
†: evaluated at QP 22, 27, 32, 37.

Besides its compelling results, conditional coding allows to process intra frames and

inter frames with the same parameters, preventing the need for a dedicated intra coder.

Thanks to its performance and flexibility, the conditional coding mechanism has been used

throughout the work carried out in this thesis. Conditional coding was introduced in a

conference paper presented at the IEEE International Workshop on Machine Learning for

Signal Processing (MLSP) 2020 [18].

Yet, the naive temporal prediction of the coding scheme hinders its performance, which

explains the significant gap with HEVC (BD-rate of +42.9 % when compared to the HM).

In order to further improve the compression efficiency, a better temporal prediction has

to be available. To this end, the next chapter focuses on the design of a proper motion

compensation process, which implies to accurately estimate and efficiently transmits

motion information.

82

CHAPTER 6

COMPUTATION OF A TEMPORAL

PREDICTION

6.1 Introduction

VIDEO coders compute a prediction of frames in order to only convey the unpredicted

content. Consequently, achieving a more accurate temporal prediction allows to

reduce the amount of unpredicted content, reducing the overall rate. The successive video

frames usually present similar content with small displacements among frames. As such,

it is possible to compute a relevant prediction by performing a motion compensation,

based on the previously received frames. In order to be accurate, the motion compensation

step relies on motion information which needs to be properly estimated and efficiently

transmitted so that the prediction improves the rate-distortion cost of the codec.

This chapters builds upon the coding scheme designed in the previous chapter based

on a naive prediction. In the first half of the chapter, motion information is integrated into

the existing coding scheme, improving the compression efficiency. Then, the conditional

coding architecture is implemented for the motion information to further increase the

performance. Lastly, the resulting coding scheme is evaluated in details to assess its

strength and weakness.

6.2 Coding scheme featuring a prediction step

6.2.1 Bidirectional prediction

This chapter aims to enhance the coding scheme introduced in the previous chapter.

Let us call CNet, the conditional coder which implements the operation c (xt, x̃t) i.e. it

conveys the frame xt while leveraging a temporal prediction x̃t available at the decoder.

In order to improve the compression performance, we propose to move forward the naive

83

Part II, Chapter 6 – Computation of a Temporal Prediction

prediction of the previous chapter by achieving an actual motion compensation process.

To this end, the coding scheme now transmits some motion information, conditioning the

motion compensation process. In the learned video compression literature, bidirectional

predictions remain less common than simple single-reference prediction. Indeed, only 3

out of the 12 coding schemes presented in Table 4.1 feature a bidirectional prediction. Yet,

Section 2.3.1 and Eq. (2.6) remind that a bidirectional prediction step allows to reduce

the prediction noise, i.e. improving its accuracy and thus the entire coding scheme. As

such, we propose to implement a bidirectional prediction within the coding scheme. Fig.

6.1 details the bi-directional motion compensation step.

Figure 6.1: Bi-directional temporal prediction.

Let us model the frame to code as xt, a C ×H ×W tensor. Bidirectional prediction

computes x̃t, a prediction of xt based on two reference frames, x̂p and x̂ f , and their

respective motion relative to xt. This motion information is represented by two optical

flows vp and v f i.e. motion maps representing the pixel-wise two-dimensional motion from

xt to one of its reference frames. The two optical flows are applied separately on the two

reference frames through w, a warping function which performs motion compensation.

Here, sub-pixel motions are achieved through a bilinear interpolation. As such, w is called

a bilinear warping function. Finally, the two intermediate motion compensated references

are combined through a sum weighted by β ∈ [0,1]H×W , a pixel-wise bidirectional weighting

(see Section 2.3.1). This yields the bidirectional prediction equation:

x̃t =

Compensation from x̂p
︷ ︸︸ ︷

β⊙w(x̂p;vp) +

Compensation from x̂ f
︷ ︸︸ ︷

(1−β)⊙w(x̂ f ;v f), ⊙ is a pixel-wise product. (6.1)

The temporal prediction has to be present at the decoder so that only the unpredicted

content is sent by the encoder. To this end, the two optical flows and the bidirectional

weighting must be conveyed to the decoder. Figure 6.2 presents the overall coding scheme.

84

6.2. Coding scheme featuring a prediction step

The first component, MNet, estimates and conveys the motion information. Then, Motion

Comp. implements the motion compensation described in Eq. 6.1. Finally, CNet performs

the conditional coding of xt conditioned on x̃t, as presented in the previous Chapter.

Figure 6.2: Video coding scheme with an actual motion compensation step.

6.2.2 Motion information at the decoder side

Figure 6.3 presents two means to obtain relevant motion information at the decoder

side. The first one is a two-step method, with a separate motion estimation network

located at the encoder which computes encoder-side motion maps mp and m f . Then, these

motion maps are fed to a motion autoencoder which performs lossy coding and retrieves

decoder-side motion information vp and v f . The bidirectional weighting β is obtained as

an additional output of the motion autoencoder, as in [66].

The second method consists of a single step, based on an autoencoder fed with the

current frame and the reference frames. The autoencoder both estimates the motion and

perform lossy coding i.e. finding a low-entropy representation suited for transmission

allowing to retrieve motion information at the decoder. In the literature, the single-step

approach is only found for P-frame coding [23]–[25]. Since we strive to design a simple

video coder, the single-step approach is chosen and extended to B-frame coding by adding

a supplementary output for β, see Fig. 6.3b. Thanks to this approach, we avoid relying

on a dedicated and pre-trained motion estimation network, which can often results in a

cumbersome training process and heavier systems.

Regardless of the method used to obtain motion information, the training of the overall

coding scheme is not trivial. In particular, obtaining proper motion information at the

decoder is notoriously difficult [23]. In the case of the two-step method, this is tackled by

using an off-the-shelf network for the motion estimation such as SpyNet [22] or PWCNet

85

Part II, Chapter 6 – Computation of a Temporal Prediction

(a) Two-step MNet, with MEst a dedicated motion estimation network.

(b) Single step MNet.

Figure 6.3: Two main trends for the MNet architecture. MEnc and MDec denotes a learned
encoder-decoder pair.

[71]. We argue that integrating pre-trained motion estimation networks is not the ideal

solution for several reasons:

• It brings about additional parameters (e.g. 8 million weights for PWCNet);

• Such networks are mostly trained on synthetic datasets, for which the underlying

motion is known (e.g. MPI-Sintel [75]). They are not necessarily tuned for natural

video content;

• They aim to predict the most accurate motion information as they are often trained

through the minimization of the L2 error of the motion. Yet, the objective of motion

estimation in an actual video coding scheme is not to be the most accurate. Its goal is

to obtain motion information leading to the best rate-distortion cost, once integrated

in the whole coding chain.

Since pre-trained motion estimation networks add supplementary parameters and

require a retraining to be adapted to the video coding objective and content, they are

not used in our coding scheme. On the other hand, the single-step method very often

requires some sort of pre-training or a dedicated loss term to foster convergence [23], [24].

Yet, adding dedicated loss terms to the rate-distortion objective leads to an optimization

86

6.3. Skip mode: an additional coding mode

objective which deviates from the targeted rate-distortion optimization. This might lead

to suboptimal systems. For both convenience and performance-related motivations, we

advocate for an actual end-to-end rate-distortion training, with no pre-trained component

or supplementary loss terms. To this end, an additional coding mode called the Skip mode

is introduced to promote the learning of relevant motion information.

6.3 Skip mode: an additional coding mode

6.3.1 Principles

In this thesis, the coding scheme is enhanced through a supplementary coding mode: the

Skip mode. It is inspired to an existing Skip mode in conventional video coding, where the

temporal prediction is used without the residual. Here, the proposed Skip mode consists

in a pixel-wise copy of the temporal prediction. Offering the possibility of copying the

prediction acts as a strong incentive to learn relevant motion information. Indeed, in

a system without the Skip mode, the motion information is learned to obtain a proper

prediction which performs well when fed to the CNet. Thus, the training of the MNet

happens through CNet, making it more difficult to converge. Here, the Skip mode is a

shortcut: an accurate prediction can now be exploited directly (i.e. by being copied) instead

of going through the CNet. This considerably stabilizes the training process, allowing to

train the whole coding scheme from scratch using the rate-distortion loss.

The reconstructed frame x̂t is computed by adding the contributions of both the CNet

and Skip mode. This sum is arbitrated by the continuous pixel-wise coding mode selection

α ∈ [0,1]H×W , with H and W the spatial dimension of xt:

x̂t =
CNet

︷ ︸︸ ︷

c (α⊙xt,α⊙ x̃t)+
Skip mode

︷ ︸︸ ︷

(1−α)⊙ x̃t, ⊙ is a pixel-wise product. (6.2)

The coding mode selection applied on the CNet input (at the encoder) to select the

areas of xt that have to be conveyed through the conditional coder. Its role is to zero

areas from xt before coding them through CNet, allowing to save their associated rate.

Conversely, α applied at the decoder side to obtain the Skip mode contribution. The coding

mode selection is continuous, allowing blending between the two coding modes.

Figure 6.4 shows an example of coding mode selection α. In this example, the man’s

hand in the middle as well as the left man’s shoulder are moving fast, resulting in an

87

Part II, Chapter 6 – Computation of a Temporal Prediction

inaccurate temporal prediction. Consequently, this prediction can not be copied from the

Skip mode and these areas rely on CNet to be transmitted (red areas on the mode selection

map). The other areas are well predicted and use mostly the Skip mode (blue areas).

(a) Past reference x̂p. (b) Current frame xt. (c) Future reference x̂ f . (d) Mode selection α.
blue: skip, red: CNet.

Figure 6.4: Coding mode selection α for a B-frame from the CLIC sequence
TelevisionClip_1080P-4c94.

In order to be available at the decoder, α must be transmitted. Since it is applied on

CNet inputs, its transmission must occur prior to CNet. To this end, an additional output

is added to the motion autoencoder MNet to retrieve α at the decoder side. Figure 6.5

presents the block diagram of a coding scheme featuring the Skip mode. CNet implements

the conditional coding mechanism presented in Section 5.3. On the other hand, the

MNet implements the usual analysis-synthesis architecture, shown in Fig. 6.6. The MNet

transforms do not share the same parameters than those of the CNet and their architecture

can be slightly different. To highlight this fact, the MNet transforms are denoted with a

superscript m.

Figure 6.5: Block diagram of a coding scheme featuring the Skip mode.

MNet features all the relevant techniques required to obtain a proper coding network:

hyperprior, attention modules, etc. The analysis gm
a is fed with the frame to code and both

88

6.3. Skip mode: an additional coding mode

reference frames. It computes a latent variable, a compact representation of a relevant

coding mode selection, bidirectional weighting and optical flows. After quantization, this

latent variable is sent to the decoder and fed to the synthesis in order to compute the

coding mode α as well as both optical flows vp, v f and the bidirectional weighting β.

The detailed implementation of MNet is presented in appendix E.1. Its transforms are

implemented using F = 192 internal feature maps, resulting in 15 million parameters for

MNet and 36 million parameters for the entire coding scheme.

Figure 6.6: The MNet architecture.

6.3.2 Training

The entire coding scheme is trained in an end-to-end fashion to minimize the actual

rate-distortion loss. This is particularly important to note that there is no dedicated loss

term for α, β, vp or v f . The MNet autoencoder learns through the rate-distortion cost to

efficiently transmit a relevant and low-rate coding mode selection and motion information.

As such, a simple rate-distortion training allows to perform a relevant partitioning between

Skip mode and CNet. Furthermore, the learning step also enables to automatically share

the rate budget between MNet and CNet.

Yet, there is a subtlety at the beginning of the training. During the first training

iterations, CNet and Skip mode are not ready to compete. Indeed, CNet has to be trained,

while the Skip mode is already able to copy the prediction. For this reason, α is set to zero

on one half of the image and to one on the other half. The zeroed half relies on the Skip

mode, fostering the learning of a relevant motion compensation provided by MNet. The

other half uses only CNet, preparing CNet for the competition with the Skip mode.

89

Part II, Chapter 6 – Computation of a Temporal Prediction

6.3.3 Behaviour

The new quantities introduced in this Chapter are illustrated through a comprehensive

visual example of B-frame coding. The first step is the coding pipeline is the MNet, whose

inputs and outputs are shown in Figure 6.7. MNet inputs are the frame to code xt (Fig.

6.7b) and two reference frames x̂p and x̂ f (Fig 6.7a and 6.7c). MNet uses these inputs to

compute a latent variable, conveyed to the decoder, where the MNet synthesis computes

different outputs: two optical flows vp, v f (Fig. 6.7d and 6.7f), the bidirectional prediction

weighting β (Fig. 6.7g) and the coding mode selection α (Fig. 6.7h).

(a) Past reference x̂p. (b) Original frame to code xt. (c) Future reference x̂ f .

(d) Optical flow vp: motion from
xt to x̂p.

(e) Optical flow representation.
Motion is expressed in pixel.

(f) Optical flow v f : motion from
xt to x̂ f .

(g) Bidirectional prediction weighting β.blue:
warp from x̂ f , red: warp from x̂p.

(h) Coding mode selection α. blue: skip, red:
CNet.

Figure 6.7: The inputs and outputs of MNet.

The optical flows are shown through a colour-based representation as presented in Fig.

6.7e. The intensity of the colour indicates the magnitude of the motion, while the colour

90

6.3. Skip mode: an additional coding mode

itself indicates the direction of the motion. Here, one optical flow represents the motion

from xt to x̂p, while the other represents the motion from xt to x̂ f . As it is often the case,

both optical flows are approximately the opposite of each other. Consequently, the colours

are not identical between the two optical flows as the motion does not go in the same

direction. These two optical flows demonstrate that the proposed system is able to learn

accurate optical flows through a pure rate-distortion training. Indeed, the optical flows are

precise in position, their edges are relevant and the motion direction and magnitude is

accurate. An additional example of optical flows presenting a complex background motion

(zoom) is available in Appendix E.2.

The next set of illustrations in Fig. 6.8 presents the actual motion compensation

step, based on the reference frames, the optical flows and the bidirectional prediction

weighting already introduced in the previous visualisations. Figures 6.8a and 6.8b show

the difference between the frame to code and each of the reference frames. The optical

flows are used to compute two intermediate motion compensated frames, shown in Fig.

6.8d and 6.8e. Finally, the two intermediate motion compensations are gathered through

the sum weighted by β, yielding the final temporal prediction (Fig. 6.8f). The bidirectional

prediction interest is illustrated through the computation of the PSNR relative to the

current frame. Compared to the intermediate motion compensations, the bidirectional

prediction increases the PSNR by around 2 dB. This leads to a prediction with little error,

except for areas with important motion such as the ball, as shown in Fig. 6.8c.

The bidirectional weighting β exhibits an interesting behaviour in Fig. 6.7g. In this

example, most of the frame is composed of motionless background. For these areas, the

value of β is of limited importance, as x̂p and x̂ f are almost identical and both can serve as

reference. Here the system uses β≃ 0.75, which corresponds to most of the medium blue

areas. All the people in the frame are moving. For these areas, the system relies on β≃ 0.5

(in white), decreasing the prediction error by averaging the intermediate predictions.

The thin dark blue and dark red areas around the girl at the foreground allows the

system to elegantly handle disocclusions. Indeed, the girl moves from the left to the right.

As such, the area located at its left side is only visible in the future reference frame x̂ f .

Similarly, the area at the right of the girl is only visible in the past reference x̂p. Using

β ≃ 0 (dark blue) or β ≃ 1 (dark red) enables the usage of a unique reference frame for

the motion compensation process, allowing to properly handle disocclusions. This is an

interesting behaviour, which is not achieved by the weighted prediction of traditional

video coders. More detailed examples of disocclusions are presented in appendix E.3.

91

Part II, Chapter 6 – Computation of a Temporal Prediction

(a) Error before compensation
xt − x̂p.

(b) Error before compensation
xt − x̂ f .

(c) Prediction error xt − x̃t.

(d) Intermediate motion comp.
w(x̂p;vp). PSNR = 28.39 dB.

(e) Intermediate motion comp.
w(x̂ f ;v f). PSNR = 27.91 dB.

(f) Prediction x̃t, computed us-
ing Eq. (6.1). PSNR = 30.25 dB.

Figure 6.8: Motion compensation through a bidirectional prediction process.

Once a temporal prediction is available, the coding mode selection α (Fig. 6.7h) arbi-

trates each pixel between the two coding modes: CNet and Skip. Figure 6.9d shows the

areas selected for the Skip mode. Since the videos are in the YUV colour space, zeroed

areas appear in green. Thanks to the accuracy of the temporal prediction, most of the

reconstructed frame is a simple copy of the prediction, without any transmission. Only

some areas difficult to predict (the ball and the girl) require to be conveyed through CNet

(Fig. 6.9e). Finally, the contributions of both CNet and the Skip mode are summed to obtain

the final reconstructed frame (Fig. 6.9f). As expected, CNet rate distribution (Fig. 6.9b) is

only active for the areas using CNet and not those relying on the Skip mode. Furthermore,

CNet still implements the conditional coding mechanism, allowing to further reduce the

overall rate. Lastly, Fig. 6.9c presents the rate distribution of the MNet. Since it only

conveys side-information (motion, coding mode), its rate is significantly lower than CNet

rate. MNet usually represents less than 5 % of the overall rate.

92

6.3. Skip mode: an additional coding mode

(a) Mode selection α. blue: skip,
red: CNet.

(b) CNet rate, 13 278 bits or
0.015 bit per pixel.

(c) MNet rate, 1 759 bits or
0.002 bit per pixel.

(d) Skip mode (1−α)⊙ x̃t. (e) CNet c (α⊙xt,α⊙ x̃t). (f) Reconstructed frame x̂t.

Figure 6.9: CNet and Skip mode contributions. This frame costs 15 037 bits, for a quality
of MS-SSIMdB = 22.60 dB. The PSNR is equal to 38.46 dB

6.3.4 Rate-distortion results

The performance brought by the addition of motion information and the Skip mode is

presented in Fig. 6.10a. Additionally, performance of systems featuring motion information

but no Skip mode are presented. Recall that the absence of the Skip mode prevents an

actual rate-distortion end-to-end training from scratch. In order to obtain skipless systems,

pre-trained systems with motion information and Skip mode are used as starting points

for the training process. Then, the Skip mode is disabled by forcing α= 1 (CNet only) and

the resulting skipless system is finetuned by extending the training phase.

Throughout the evaluated rate range, systems with a Skip mode are equivalent or

better than systems without one. This further justifies the presence of the Skip mode,

which not only helps the convergence of motion information, but also improves the coding

performance. This improvement is mainly explained by the fact that Skip mode takes the

majority of the frame area, as shown in the preceding visual examples. This leaves CNet

with only a small fraction of the frame, allowing it to be specialized for this smaller set of

data through the learning of more suited parameters, which results in better performance.

At high rate, the presence of motion information significantly improves the compression

93

Part II, Chapter 6 – Computation of a Temporal Prediction

0 1 2 3 4
10

12

14

16

18

20

22

Visualisation

Rate [Mbit/s]

M
S

-S
S

IM
d

B
[d

B
]

RD curves, CLIC 2021 valid. set, RA config

HM (RA)
x265 (RA)

Motion & Skip
Motion

No motion

(a) Performance gain through the addition of motion
information and Skip mode.

0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

Too few
motion info.

Total rate [Mbit/s]

M
N

et
ra

te
[M

bi
t/

s]

MNet rate vs. overall rate.

Motion & Skip
Motion

(b) MNet rate for different total rates.

Figure 6.10: Rate-distortion results for coding schemes featuring motion information.

performance, allowing to outperform the HM. This validates the accuracy of the optical

flow, learned through a pure rate-distortion training. Yet, at low rate, the introduction

of motion information does not lead to better results. A rationale for this behaviour is

presented in Fig. 6.10b, which shows the rate dedicated to MNet as function of the overall

rate. At low-rate, the training converges towards a rate distribution allocating virtually

no rate to the MNet i.e. few information is transmitted about the optical flows, the coding

mode selection and the bidirectional prediction weighting. Given our current MNet, this

may be due to the fact that the motion information retrieved at the decoder is not accurate

enough when operating at a low rate. Consequently, investing bits into motion information

at low rate might lead to a worse rate-distortion trade-off.

To improve the performance of the proposed coding scheme, especially at low rate, the

conditional coding mechanism is implemented for the MNet in the next section.

6.4 Conditional coding for the MNet

6.4.1 Principles

One of the important requirements in the design of the conditional coding mechanism was

its flexibility. Namely, being able to use any decoder-side information to lower the rate

94

6.4. Conditional coding for the MNet

required to transmit any quantity from the encoder to the decoder. Here, we propose to

implement conditional coding for MNet, with the intuition that the reference frames are

capable to infer most of the motion information at the decoder-side. Indeed, having one

past and one future reference allows to interpolate the motion information and thus to

compute relevant optical flows.

Figure 6.11 presents the new MNet architecture, featuring the additional conditioning

transform gm
c . As for CNet, the conditioning transform gm

c replicates the architecture

of the analysis transform gm
a with different number of input and output features. MNet

conditioning transform aims to extract, from the two reference frames, relevant informa-

tion regarding the motion, as well as α and β. Consequently, the MNet analysis gm
a only

transmits the information missing at the decoder, decreasing the rate. The addition of

conditional coding for MNet increases the overall number of parameters from 36 million

to 42 million.

Figure 6.11: The conditional coding MNet architecture.

6.4.2 Training and rate-distortion results

The complete system, featuring conditional coding for CNet and MNet alongside the

Skip mode is trained end-to-end. This yields the rate-distortion results presented in Fig.

6.12a. Adding the conditional coding mechanism to the MNet significantly enhances the

compression performance at lower rate, i.e. lower than 2 Mbit/s. Thanks to conditional

coding, MNet is able to compute relevant motion information at very low rate: even when

MNet rate is around 10 kbit/s, it still significantly increases the rate-distortion results (see

95

Part II, Chapter 6 – Computation of a Temporal Prediction

Fig. 6.12b). Comparatively, systems without conditional coding for MNet are not able to

improve their performance at low-rate, due to the rate constraint being too tight for MNet.

Additionally, it seems that adding conditional coding to MNet, leads its rate to exhibit

a more regular behaviour (Fig. 6.12b). This may hint that conditional coding makes the

convergence of the system easier, which results in a more regular behaviour during the

training stage.

However, conditional coding for MNet slightly decreases the performance at higher rate.

In theory, this should not happen: if conditional coding becomes counter-productive, the

training process should learn to disable the conditioning transform by always computing

null conditioning latent variable. It is not the case in practice, leading to degraded com-

pression performance at higher rate. Yet, we believe that conditional coding is a relevant

technique to improve low-rate performance, while the higher-rate performance issue can

be alleviated through a more suited or longer training policy.

0 1 2 3 4
10

12

14

16

18

20

22

Visualisation

Rate [Mbit/s]

M
S

-S
S

IM
d

B
[d

B
]

RD curves, CLIC 2021 valid. set, RA config

HM (RA)
x265 (RA)

Motion & Skip & CC
Motion & Skip

No motion

(a) Performance gain through the addition of motion
information and Skip mode.

0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

Total rate [Mbit/s]

M
N

et
ra

te
[M

bi
t/

s]

MNet rate vs. overall rate.

Motion & Skip & CC
Motion & Skip

(b) MNet rate for different total rates.

Figure 6.12: Conditional coding (CC) for MNet, rate-distortion results.

6.4.3 Visualisations

In order to illustrate the interest of conditional coding for MNet, a low-rate system

(circled in Fig. 6.12a) compresses a video sequence. To understand the behaviour of

MNet conditional coding, its output is computed while setting either the analysis or the

96

6.4. Conditional coding for the MNet

conditioning latent variable to zero. This ablation is identical to the one proposed in

Chapter 5 for CNet, except that it now concerns MNet. The different configurations of

this ablation are summarised in Table 6.1 and the results are presented in Fig. 6.13 in a

B-frame coding context.

Table 6.1: Different configurations for the MNet conditional coding ablation.

Latent variables Synthesis
Analysis Conditioning operation

Complete ! ! gm
s (y,yc)

Conditioning only ! gm
s (0,yc)

Analysis only ! gm
s (y,0)

(a) Optical flow v f . (b) v f , from conditioning latent
ym

c only.
(c) v f , from analysis latent ym

only.

(d) Mode selection α. (e) α, from conditioning latent
ym

c only.
(f) α, from analysis latent ym

only.

Figure 6.13: Low-rate MNet conditional coding illustrated on a B-frame from the CLIC
sequence Sports_1080P-6710. This frame requires 195 bits for MNet.

The first column presents two quantities: the optical flow v f (Fig. 6.13a) and the

coding mode selection α (Fig. 6.13d). These quantities are obtained through the complete

synthesis transform i.e. by feeding it with both the conditioning latent and the analysis

latent variables. On the second column (Fig. 6.13b and 6.13e), the same quantities are

presented when synthesized from the conditioning latent variable only. Conversely, the

97

Part II, Chapter 6 – Computation of a Temporal Prediction

last column (Fig. 6.13c and 6.13f) shows these quantities when synthesized from the

analysis latent variable. The conditioning-only outputs are almost identical to the normal

one, while the analysis-only outputs are virtually empty. This highlights that most of

the relevant information is contained in x̂p and x̂ f and at the decoder-side without any

transmission. Since no information is conveyed, the MNet rate is extremely low, see Fig.

6.12b. Yet, the motion information as well as α and β remain accurate enough, allowing

to improve the rate-distortion cost even at low rate.

6.5 Comprehensive evaluation of the final system

6.5.1 Different coding configurations

Throughout this chapter, the proposed video coding scheme has undergone successive

enhancements, improving the compression performance and leading to the final proposed

system. It features two conditional coders, MNet and CNet, and an additional Skip mode.

While most design choices have been evaluated on a Random Access configuration (Fig.

2.5a), the training stage of the systems prepares them to code I, P and B-frames. In order

to thoroughly examine the performance of our learned coding scheme, it is evaluated

against HEVC (HM 16.22) under three established coding configurations [17]:

• All Intra (AI): only I-frames are used;

• Low-delay P (LDP): P-frames only, except for the first frame;

• Random Access (RA): usual random access configuration with a gop size of 32 and

an intra period of 32.

Figure 6.14 presents the rate-distortion results of our learned coding scheme, compared

to those of the HM. For all evaluated coding configurations and across the entire rate range,

the learned coding scheme achieves performance on par with the best implementation of

HEVC, a modern video coder. These are compelling results, proving the flexibility and the

relevance of the proposed coder. It is interesting to remark that due to the approximately

symmetrical architecture of the coder, the encoding and decoding speed are comparable.

For the 720p video sequences of the CLIC dataset, both the encoding and decoding run at

a speed of a few frames per second.

It should also be noted that these results are obtained through training for a proxy

problem. Indeed, the training stage consists in coding 3-frame video, similar to a Random

98

6.5. Comprehensive evaluation of the final system

0 2 4 6 8
10

12

14

16

18

20

22

Rate [Mbit/s]

M
S

-S
S

IM
d

B
[d

B
]

RD curves, CLIC 2021 valid. set

HM (RA)
Learned (RA)

HM (LDP)
Learned (LDP)

HM (AI)
Learned (AI) AI

LDP
RA

W
or

se
B

et
te

r

−46

+15
+3

B
D

-r
at

e
(%

)

BD-rate vs. HM

Figure 6.14: Rate-distortion results for different coding configurations.

Access configuration with a GOP size of 2. While it prepares the system for the processing

of I, P and B-frames, it also specializes the coder for this peculiar coding configuration.

Performing a training closer to the desired coding configuration would allow to improve

the compression performance. However, this causes computational issues, as the training

time is proportional to the GOP sizes.

Despite the overall encouraging performance of the learned coder, these results high-

lights some limitations of our coding scheme. On one hand, it significantly outperforms

traditional methods for I-frame coding. One the other hand, when the coding configuration

is also composed of P or B-frames, it simply achieves results on par with traditional

methods. This means that the learned coder has a significant advantage on I-frame coding,

but lose some of this benefit on P and B-frame coding. It might be due to weaknesses in

the motion estimation and transmission process.

6.5.2 MNet limitations

This section aims to evaluate the ability of MNet to estimate and convey relevant motion

information, in order to discover its potential limitations. To this effect, a synthetic video

sequence is introduced and shown in Fig. 6.15a. It features a 4×4 grid of objects, moving

alongside 4 directions, with a motion magnitude of 8, 16, 24 and 32 pixels. For a 1280×720

video sequence at 30 frames per second, such motions correspond to an object crossing the

entire image (horizontally) in 5.3, 2.7, 1.3 and 0.7 seconds.

99

Part II, Chapter 6 – Computation of a Temporal Prediction

8 16 24 32

Up

Down

Right

Left

Motion magnitude [pixel]

M
ot

io
n

di
re

ct
io

n

(a) Motion of xt relatively to x̂p.

(b) Optical flow vp.

(c) Legend for the optical
flow representation. Motion
is expressed in pixel.

Figure 6.15: Example of an inaccurate optical flow.

100

6.5. Comprehensive evaluation of the final system

Figure 6.15b presents the optical flow obtained at the decoder i.e. after estimation

and transmission through the MNet. For the 8-pixel motions, the resulting optical flow

is accurate, regardless the motion direction. When motion amplitudes become more

important, e.g. a 16-pixel motion, the optical flow is properly estimated for horizontal

motions, while vertical ones are no longer captured by the MNet. The system is not able to

compute any optical flow for motion of 24 pixels or more. Finally, the edges of the optical

flows are less accurate when the motion magnitude becomes more important.

This weakness regarding the estimation and transmission of important optical may be

caused by several factors. First, important motions are not often found in video sequences

and therefore in the training set. The lack of relevant example prevents the system from

learning to identify important motion. Then, the proposed architecture for MNet is mostly

derived from an autoencoder. Integrating components from the optical flow estimation

literature such as cost volume elements could lead to better results.

(a) Temporal prediction x̃t. (b) Mode selection α. blue: skip,
red: CNet.

(c) Skip mode contribution
(1−α)⊙ x̃t.

(d) CNet contribution
c (α⊙xt,α⊙ x̃t).

(e) CNet output, analysis latent
yc only.

(f) CNet rate, total is
78 293 bits.

Figure 6.16: Consequences of an inaccurate prediction. This frame costs 80 954 bits, for a
quality of MS-SSIMdB = 10.65 dB. The PSNR is equal to 20.80 dB

A poorly estimated motion leads to an irrelevant temporal prediction (Fig. 6.16a). The

effect of a not accurate prediction is two-fold.

101

Part II, Chapter 6 – Computation of a Temporal Prediction

• Skip mode can not be used since the direct copy of a degraded prediction does not

result in acceptable quality. This is illustrated by the coding mode α in Fig. 6.16b,

and by the Skip mode contribution in Fig. 6.16c. Consequently most of the frame is

transmitted through CNet (see Fig. 6.16d), leading to an increased rate.

• The conditional coder CNet can not rely too much on the conditioning transform,

as the conditioning input (i.e. the prediction) is not accurate enough. As such, most

of CNet output comes from the analysis latent variable, that requires an actual

transmission (see Fig. 6.16e), further increasing the rate. This can be thought of as

intra coding: no relevant information is available in the prediction, resulting in the

complete transmission of the image.

Finally, Figure 6.16f presents the spatial distribution of the rate. The right side of

the image (i.e. the areas with bigger motion) appears brighter, highlighting the relation

between an inaccurate temporal prediction and an increased rate.

6.6 Conclusion

In this chapter, we have enhanced the initial coding scheme composed of a conditional

coder CNet, through the introduction of several motion-based components. An additional

autoencoder MNet is added to estimate and convey motion information, allowing to achieve

a relevant temporal prediction. In order to both foster the convergence and increase the

performance, an additional coding mode called Skip mode is proposed. Finally, compression

efficiency is improved by implementing MNet with the conditional coding architecture.

Table 6.2 summarises the rate spared through the introduction of these different

components. The coding scheme featuring motion information and Skip mode through

MNet with the conditional coding architecture achieves a BD-rate of −33.9 % compared to

the initial motionless system. That is, it obtains equivalent quality requires 33.9 % less

rate. Furthermore, the proposed learned video coder achieves a BD-rate of +3.1 % against

the HM i.e. the best implementation of HEVC available. In the end, we have designed a

learned video coder, competitive with HEVC under different coding configurations. This

demonstrates the relevance of the design choices made for our learned coder.

Despite these compelling results, some elements of the coding scheme could be im-

proved. Based on the performance gap between all intra coding and the other coding

configurations, we believe that MNet is the main weakness of the coding scheme. Obtain-

102

6.6. Conclusion

Table 6.2: BD-rates of the different coding schemes in Random Access coding configuration.
CC denotes conditional coding.

MNet Skip mode MNet CC BD-rate

No motion Reference +42.9 %
Motion ! −7.6 % +24.4 %
Motion & Skip ! ! −17.5 % +14.7 %
Motion & Skip & Cond. ! ! ! −33.9 % +3.1 %

x265 medium† / −14.5 % +22.8 %
HM† / −37.2 % Reference

†: evaluated at QP 22, 27, 32, 37.

ing better motion information, by using more suited architecture inspired from the motion

estimation literature, would likely improve the overall coding performance.

Skip mode was initially introduced for performance purpose within a motionless coding

scheme in a conference paper presented at the IEEE International Workshop on Machine

Learning for Signal Processing (MLSP) 2020 [18]. A following paper, further justified skip

mode to allow for an easier learning of motion information. This paper was presented at

the IEEE International Workshop on Multimedia Signal Processing (MMSP) 2020 [26].

Finally, the implementation of MNet with conditional coding as well as the flexibility of the

overall coder for different coding configuration was presented at the Neural Compression

Workshop, International Conference on Learning Representations (ICLR) 2021 [76].

103

CHAPTER 7

TOWARDS PRACTICAL VIDEO CODING

7.1 Introduction

THE Challenge on Learned Image Compression (CLIC) 2021 [16] was organized as

a workshop of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) 2021. For the first year, a video coding track was proposed in order to compare

learned and traditional coders. The learning-based coder finalized in the previous chapter,

was submitted to the challenge to assess its performance.

Besides the evaluation of our system against other learned coders, this challenge high-

lights the importance of having a flexible coder. Indeed, due to the challenge rules, using

the optimal coding strategy for each video sequence improves the overall performance. To

this end, this chapter proposes different dimensions of coding strategies competition.

7.2 CLIC21 video track

7.2.1 Challenge presentation

The objective of this challenge is to obtain the highest quality (measured with the MS-

SSIM) while compressing 100 high-resolution (720p) video sequences, with a frame rate of

30 frame per second. The overall bit budget given for the challenge is:

decoder size+
data size

0.019
≤ 1 309 062 500 bytes. (7.1)

Since each of the 100 video sequences lasts two seconds, the rate constraint corresponds

approximately to an average rate of 1 Mbit/s. For convenience, the allocated bit budget

constraint is turned into a rate target RT :

RT = Rdec +Rdata, with RT ≃ 1 Mbit/s. (7.2)

105

Part II, Chapter 7 – Towards Practical Video Coding

To discourage the participants to come with huge neural network models, the decoder

size is taken into account in the bit budget. For instance, one decoder of the final model

proposed in Chapter 6 has around 27 million parameters. As such, it requires 108 MBytes

of storage. This yields Rdec = 0.08 Mbit/s lowering the data rate to Rdata = 0.92 Mbit/s:

the impact with respect to the bitrate efficiency (e.g. BD-rate) is in the range of 8 %.

7.2.2 Sequence-wise competition

The challenge rules do not impose sequence-wise constraints concerning the rate or quality

of each individual sequences. Thus, it is possible to improve the overall results through a

relevant sequence-wise quality selection. For instance, sparing a few bits on a sequence

might lead to a minimal quality loss while investing these bits on some other sequence

dramatically improves its quality. This rationale justifies the competition between different

coding strategies for each sequence, in order to optimize an overall rate-distortion cost.

To formalize this problem, let us denote Jλ(vi;C) the rate-distortion cost of the video

sequence vi compressed using the coding strategy C:

Jλ(vi;C)= D(vi;C)+λR(vi;C). (7.3)

Here D and R denote the distortion and the rate associated to the current video and coding

strategy. For each video sequence vi, the objective is to find the optimal coding strategy

C⋆

i
, yielding the minimal rate-distortion cost:

C
⋆

i = argmin
C

Jλ(vi;C). (7.4)

Searching the best coding strategy for all the N video sequences of the dataset allows

to obtain the optimal average rate R and distortion D:

R =
1
N

N∑

i=1
R(vi;C

⋆

i) and D =
1
N

∑

i

D(vi;C
⋆

i). (7.5)

The value of the rate control parameter λ is set empirically so that the resulting rate R

respects the desired rate target.

We propose to perform coding strategies competition using the final system designed

in the previous chapter (i.e. with Skip mode and conditional coding for MNet and CNet).

Recall that several instances of the proposed learned coder have been trained for different

106

7.3. Rate competition

rate target (i.e. different λ). There are two different means of varying its coding strategy:

• Tuning the coding structure i.e. the organization of the I, P and B frames. Since

the systems are prepared to process I, P and B-frames, they can be arranged in any

desired order, enabling the compression of the video using any frames structure;

• Tuning the rate of the compressed video, by choosing one coder-decoder pair among

the different systems available.

So far, a learned coder is mono-rate i.e. it is only able to target one specific rate per

sequence. Indeed, it always performs the same operations for a given input, leading to

the same quantization accuracy and the same data to be transmitted. Therefore, the

competition between N different rates requires to store the parameters of N different

mono-rate decoders, resulting in a overall coding scheme with N times more parameters.

7.3 Rate competition

7.3.1 With mono-rate coders

There is a great diversity of video sequences within the CLIC dataset. Some are almost

motionless, some exhibit few textured areas while others feature important motions or

many high-frequency contents. This results in a wide variety of rate-distortion costs,

presented in Fig. 7.1. The important rate range advocates for rate competition, as a mono-

rate coder can not be optimal for all the sequences. It is possible that the sequences far

from the average rate-distortion point of the coder would benefit from being compressed

with an other coder (i.e. at an other rate-distortion point) in order to improve their quality

(for low-rate sequences) or reduce their rate (for high-rate sequences).

Rate competition is implemented through the coding of all the sequences using all

the previously trained coders, shown in Fig. 7.2a. Seven different mono-rate coders are

available, leading to seven coding choices for each sequence. The best coding strategy (i.e.

the best rate target out of the seven available) is chosen sequence-wise according to Eq.

(7.4). Adjusting the rate control parameter λ allows to obtain the 7-rate competition curve,

which presents a clear improvement over the absence of competition.

Yet, the performance improvement yielded by rate competition comes at the cost of

an increase in the overall decoder size. Indeed, the rate competition between N decoders

requires a decoder rate Rdec = N × 0.08 Mbit/s which contributes significantly to the

107

Part II, Chapter 7 – Towards Practical Video Coding

0 2 4 6
10

15

20

25

30

Average

Rate [Mbit/s]

M
S

-S
S

IM
d

B
[d

B
]

Random Access configuration

Figure 7.1: Sequence-wise rate-distortion for a low-rate learned encoder-decoder pair.

overall rate target or 1 Mbit/s, decreasing the amount of data available for the video

sequences. Figure 7.2b presents the actual benefit of rate competition by measuring the

quality obtained through the competition of N mono-rate coders, when accounting for the

decoders size. The order in which the different decoders are used is indicated in Fig. 7.2a.

For instance, the competition between N = 3 coders relies on the systems whose rate is

R1, R2 and R3.

0 1 2 3
12

14

16

18

20

22

R7
R5

R3

R1

R2

R4

R6

Rate [Mbit/s]

M
S

-S
S

IM
d

B
[d

B
]

RD curves, CLIC 2021 valid. set, RA config

No competition
7-rate competition

(a) Performance of rate competition.

0 1 2 3 4 5 6 7 8
14

15

16

17

Number of rate constraints N

M
S

-S
S

IM
d

B
@

R
at

e
ta

rg
et

R
T

[d
B

]

Rate competition with N rate constraints

Rdec = N ×0.08 Mbit/s

(b) Influence of the model size on the rate target.

Figure 7.2: Sequence-wise rate competition with mono-rate coders.

While rate competition does bring some performance improvement, this benefit is

108

7.3. Rate competition

cancelled by the significant amount of additional parameters required. To fully benefit from

rate competition, the number of additional has to be mitigated in order to be competitive

according to the challenge rules.

7.3.2 Design of a multi-rate coder

In order to benefit from rate competition between N coders, the size of those systems must

remain small. We propose to transform a mono-rate system into a multi-rate one, with a

negligible increase in the number of parameters. For all rates addressed by the multi-rate

system, the main components of the coder remains the same. That is, MNet and CNet

transforms (analysis, synthesis, conditioning and hyperpriors) remain identical, regardless

of the rate target. In the proposed multi-rate system, the single operation conditioned on

the rate target is the CNet quantization gains. In Section 5.6, quantization gains were

used to achieve different quantization accuracies according to the type of the frame (I, P

and B). To obtain multi-rate systems, CNet quantization gains are now also conditioned

on the rate constraint, as proposed in [74]. In order to address N rate constraints, 3×N

pairs of encoder-decoder quantization gains are learned:

Γ
enc
f ,i ,Γdec

f ,i with

{

f ∈ {I,P,B} the frame type,

i ∈ {1, . . . , N} the rate constraint index.
(7.6)

Figure 7.3: Principles of CNet multi-rate quantization gains.

Each quantization gain is a feature-wise gain i.e. Γi, f ∈RFy , with Fy = 256 the number

of feature maps of CNet analysis latent variable y. They are applied to y through feature-

wise multiplication, as presented in Fig. 7.3. Quantization gains allow to obtain additional

rate targets available for a minor increase in the overall number of decoder parameters.

Let us denote M ≃ 27×106 the number of parameters for the decoder of a mono-rate

system. The number of parameters required to address N = 6 different rates becomes:

109

Part II, Chapter 7 – Towards Practical Video Coding

(multi-rate) M+
quantization gains

︷ ︸︸ ︷

N ×3×256 ≪ M×N (mono-rate)
(7.7)

Each additional rate constraint adds only 3×256 = 756 parameters. In the end, ad-

dressing N different rates is achieved with virtually N times less parameters thanks to

multi-rate systems.

7.3.3 Training

With multi-rate coders, the training objective is to prepare the coder to compress I, P

and B frames, under different N rate constraints {λ1, . . . ,λN }. As for mono-rate systems,

the optimization is performed according to a rate-distortion criterion and similarly, each

training example is a 3-frame videos compressed using an IBP configurations. In order to

learn the different quantization gains, each training iteration is composed of the following

steps:

1. Randomly draw a rate constraint index i ∈ {1, . . . , N};

2. Process example with the corresponding quantization gains Γ
enc
f ,i ,Γdec

f ,i (and the other

parameters common to all rate constraints);

3. Gradient descent to minimize the corresponding rate-distortion cost: D+λiR.

Figure 7.4 presents the encoder quantization gains obtained for two rate constraints.

Similarly to mono-rate coders, the encoder gains dedicated to intra frames are more

important which translates into an improved quantization accuracy for the intra frames.

As expected, when the rate constraint becomes tighter, the encoder quantization gains

decreases leading to a less accurate quantization, see Fig. 7.4b.

Moreover, once the training stage is achieved, the resulting coder is able to compress a

video sequence at any continuous rate target, which conveniently allows to freely set the

rate of a sequence. This is achieved through a geometric averaging of the quantization

gains. Let us suppose that one wants to address the continuous rate constraint r ∈ [1, N].

In such case, the encoder and decoder quantization gains are expressed as follows:

Γ f ,r =
(

Γ f ,⌊r⌋
) 1−l ⊙

(

Γ f ,⌈r⌉
) l , with l = r−⌊r⌋. (7.8)

110

7.4. Participation to the CLIC21 video track

16 32 48 64
0

0.25

0.5

0.75

1

Index feature maps of y

G
ai

n
Γ

f
,0

s
e
n

c

I
P
B

(a) Rate constraint λ0 (higher rate).

16 32 48 64
0

0.25

0.5

0.75

1

Index feature maps of y

G
ai

n
Γ

e
n

c
f
,1

I
P
B

(b) Rate constraint λ1 (lower rate).

Figure 7.4: Encoder quantization gains for two rate constraints.

7.3.4 Rate-distortion results

To evaluate the benefits of multi-rate systems, the CLIC dataset is compressed, with

and without rate competition. The results are presented in Fig. 7.5a. The dashed curves

indicate the performance of the systems without rate competition. While the blue one

is obtained through the training of multiple mono-rate coders, the orange curve result

from a single multi-rate system. While the multi-rate system does not cover a rate range

as wide as the mono-rate ones, its performance remains competitive around the rate

target of 1 Mbit/s. Activating rate competition, the multi-rate system reaches performance

competitive with the mono-rate ones, while having a significantly smaller decoder.

Finally, Fig. 7.5b presents the quality at the challenge rate target RT , for mono-rate

and multi-rate systems with competition. As explained before, rate competition with

mono-rate system is not a relevant choice as the size of the additional decoders exceeds

the benefit of rate competition (the blue curve on the graph). This is not the case for

a multi-rate system, where the additional parameters is negligible, making possible to

actually benefit from rate competition. Rate competition using multi-rate system improves

the quality obtained at the challenge rate by +0.26 dB.

7.4 Participation to the CLIC21 video track

7.4.1 Proposed systems

Our submission to the CLIC challenge was a multi-rate system, with rate competition to

achieve better compression performance. By design, this system is able to process I, P and

111

Part II, Chapter 7 – Towards Practical Video Coding

0.5 0.75 1 1.25 1.5
15

16

17

18

19

Rate [Mbit/s]

M
S

-S
S

IM
d

B
[d

B
]

RD curves, CLIC 2021 valid. set, RA config

Mono-rate no Cpt
Mono-rate Cpt

Multi-rate no Cpt
Multi-rate Cpt

(a) Performance of rate competition.

0 1 2 3 4 5 6 7 8
14

15

16

17

18

Number rate constraints N

M
S

-S
S

IM
d

B
@

R
at

e
ta

rg
et

R
T

[d
B

]

Rate competition with N rate constraints

Mono-rate
Multi-rate

(b) Influence of the decoder size on the rate target.

Figure 7.5: Sequence-wise competition for a multi-rate system. Cpt stands for competition.

B-frames. As such, it is possible to organize these types of frame as desired to achieve any

coding structure. This is relevant, due to the wide variety of motion exhibited by the CLIC

videos. Indeed some videos with important motions do not benefit from being coded using

distant reference frames. For such sequences, using a coding structure with a smaller

GOP size mitigates the prediction issues and improves the compression performance.

Coding structure competition is performed sequence-wise and the optimal structure is

chosen according to Eq. (7.4). Since the encoding and decoding speed of the learned coder

remains reasonable (a few frames per second for a 720p video sequence), it is possible to

test a great variety of coding configurations and rates. To assess the performance of the

proposed system, traditional coders are evaluated. In addition to HEVC implementations

(x265 medium and HM), VTM (test model of VVC) is also tested. For fair comparison, the

traditional anchors also performs sequence-wise rate and coding structure competition.

Figure 7.6a shows the different rate-distortion results and Fig. 7.6b presents the MS-SSIM

obtained by each system at the challenge rate target.

The interest of competition is clearly illustrated in these rate-distortion results. Each

additional competition (rate, coding structure) leads to further performance improvement,

yielding an overall increase of +0.47 dB in quality. The resulting learned coder, with full

competition, achieves performances better than x265 medium but worse than the HM.

In Chapter 6, our learned coder has been shown to be on par with the HM, which is no

112

7.4. Participation to the CLIC21 video track

0.5 0.75 1 1.25 1.5
15

16

17

18

19

20

VTM

HM

x265

Rate [Mbit/s]

M
S

-S
S

IM
d

B
[d

B
]

RD curves, CLIC 2021 valid. set

No competition
Rate

Rate, GOP

(a) Different coders with competition.

Lnd x265 Lnd Lnd HM VTM
15

16

17

18

19

20

16.92

18.10

19.13

16.88
17.14 17.35

M
S

-S
S

IM
d

B
@

ta
rg

et
ra

te
(d

B
)

Challenge results of different systems

Anchors
No competition

Rate
Rate, GOP

(b) Challenge results. Lnd stands for learned coder.

Figure 7.6: Performance of different systems with a focus on the quality at the challenge
target rate. GOP stands for coding structure competition.

longer the case with the challenge results presented here. This can be explained by two

main factors.

• Traditional coders (HM, VTM) feature an important number of different coding

strategies: different rate constraints, coding configurations, dedicated tools for cer-

tain contents. This makes them particularly suited for sequence-wise competition.

• The size of traditional decoder is significantly smaller than the learned one, requiring

around 1 MByte of storage (against 100 MBytes for learned decoders). As such, the

decoder rate is negligible, leaving Rdata ≃ 1 Mbit/s for the video sequences (against

Rdata = 0.92 Mbit/s for learned decoders).

7.4.2 Challenge results

Due to its compelling performance, we submitted the VTM alongside the learned coder to

the CLIC video track. The objective of the VTM submission is to represent the state-of-

the-art in traditional video coding.

In order to ensure cross-platform arithmetic encoding and decoding, it is not straightfor-

wardly possible to use the hyperprior mechanism to describe the latent variable probability

distribution. At that time, the proposed coder had to be slightly degraded by using a fixed

113

Part II, Chapter 7 – Towards Practical Video Coding

probability distribution instead of the hyperprior mechanism. Additionally, decreasing

the number of internal convolutional feature maps from 192 to 128 resulted in a better

trade-off between the model size and the compression performance. This leads to the

following proposals the CLIC video track, summarised in the Table 7.1 below.

System
Submission MS-SSIMdB Decoder size

name [dB] [MBytes]

VTM ANC_T_OL 19.13 1

Learned (128 ft., fixed PDF) E2E_T_OL 15.53 43

Learned (192 ft., HP) Not submitted 17.35 108

Table 7.1: CLIC21 leaderboard results validation set. ft. stands for feature maps.

Coders from 11 different participants were proposed to the challenge. Among them, 6

are based on traditional video coders, with some additional learning-based enhancements

(mostly post-processing filters). The other 5 systems are end-to-end learned coders. To

prevent overfitting from the learned systems, a new dataset is used to determine the

challenge winner. Figure 7.7 presents the definitive results of the CLIC 2021 video track.

E
2E

_T
_O

L

E
2E

n
ot

su
bm

it
te

d

A
N

C
_T

_O
L

10
12

14
16

18
20

15.07

18.37 18.81 18.94 19.19 19.30

12.83 12.99

14.27 14.51
15.48

17.31

M
S

-S
S

IM
d

B
@

ta
rg

et
ra

te
(d

B
)

Definitive challenge results on the test set

Based on traditional coders
End-to-end learned coders

Our unsubmitted learned coder

Figure 7.7: Challenge test set leaderboard. The two named systems are our submissions.

114

7.5. Conclusion

The challenge results gives several insightful information regarding learned video

coding. First of all, submissions based on traditional coders significantly outperform

learning-based ones. Indeed, the winner of the challenge is the VTM-based approach we

submitted, without learned component. Among the end-to-end category, our submission

obtains the best performance, even though its performance is altered due to the removal

of the hyperprior mechanism. The actual results of our best learned coder are shown in

green, even though it was not submitted to the challenge. The design choices of this thesis

are thus further justified, since it leads to state-of-the-art a learned video coder.

7.5 Conclusion

This chapter has strived to address a more practical video coding situation through the

participation of a compression challenge. Due to wide variety of video sequences, we have

proposed to resort to coding strategies competition, namely rate and coding structure

competition. Furthermore the decoder size constraint has brought us to come up with

multi-rate systems in order to benefit from rate competition while avoiding an increase in

the decoder size. Thanks to its enhanced flexibility, the proposed coder obtains compelling

results, being ranked first among all the learned systems submitted to the challenge. More

importantly, this chapter has shown than the learned coder can be configured to achieve

different coding strategies. This is an important step towards a more practical use case of

video coding, where real-life constraints (latency, intra period, rate) are more prominent.

This challenge is a snapshot of the video coding landscape in 2021. As all systems

are evaluated using an identical method, results are more comparable than self-reported

performance under different test methods, as it is often the case in the literature. While

learned coding performance is continuously and quickly improving, traditional coders such

as the VTM remains more competitive. So far, traditional coding systems achieve better

performance and present more flexibility due to their many coding strategies available.

For instance, the VTM is able to achieve state-of-the-art performance on a wide-range of

rate. This remains a challenge for multi-rate learned systems.

Through the limited scope of this challenge, the learned multi-rate system meets

most of our expectation, as it allows to use rate competition. In a more realistic setup,

it is desirable to address a larger range of rate using a multi-rate system. Empirically,

the quantization gains conditioned on the rate constraints does not seem to be powerful

enough to operate at widely different rate targets. We believe that other elements of our

115

Part II, Chapter 7 – Towards Practical Video Coding

system would have to be conditioned on the rate constraint in order to obtain a satisfactory

multi-rate system. In traditional video coding, the quantization gains is one of the many

operations (partitioning, prediction mode etc.) conditioned on the rate target.

116

CONCLUSIONS AND FUTURE WORK

Thesis objectives

THE ever-increasing consumption of images and videos has to be met with improved

compression efficiency to mitigate the environmental impact of the infrastructures

required to convey them. To this end, this thesis proposes to study the design of end-to-end

learned video coding schemes. While the tools and techniques required to obtain state-of-

the-art learned image coders are known and presented in Chapter 3, learned video coding

remains a more challenging task. So far, existing coders from the literature underperform

compared to traditional coders such as HEVC and VVC. Furthermore, learned coders

often exhibit less flexibility compared to traditional coders. For instance, they feature a

constrained frame organization or they require a dedicated intra frame coder.

Given the novelty of learned video coding, this thesis has reconsidered the entire design

of a learned video coder. For instance, the computation of a temporal prediction and the

exploitation of this prediction are thoroughly investigated to incrementally build a learned

coder. The design process is carried out with the objective of obtaining a practical video

coder, competitive with traditional approaches when evaluated under different coding

configurations and rate constraints.

Learned compression implements the usual compression techniques (entropy cod-

ing, prediction, transform) with neural networks. In this context, the benefits of neural

networks are two-fold. First, they are able to perform non-linear operations achieving

better results than the linear ones of traditional coders. Second, the different steps of

the compression process can be jointly optimized through an end-to-end learning process,

allowing to further improve the performance.

Learned image coding is tackled in Chapter 3 as the first step towards the design of

learned video coders. The different elements of the compression pipeline are motivated

from an information theory standpoint (Chapter 1) and from their usage in traditional

coders (Chapter 2). The learned image coder proposed in this thesis achieves performance

competitive with the image coding configuration of VVC, the latest video coding standard.

117

The handling of the temporal dimension is discussed in Chapter 4, leading to a

two-step coder. A temporal prediction of the current frame is first computed through

a motion compensation process, based on previously received frames. Then, the prediction

is exploited to only convey the unpredicted part of the current frame. In both traditional

and learned coders from the literature, this is often achieved through residual coding.

Chapter 5 introduces conditional coding to better leverage the prediction. It is designed as

a generic technique to use any decoder-side information available. Conditional coding is

implemented based on components from the learned image coding literature and reduces

the rate by 30 % compared to residual coding. Unlike most learned approaches from the

literature, conditional coding prevents the need for a dedicated intra frame coder, leading

to a more factorized system.

Motion compensation is used to compute a relevant temporal prediction. As such, the

motion between successive video frames has to be accurately estimated and efficiently

transmitted. We propose to perform this two tasks through a single autoencoder. To foster

the convergence of this additional encoder a coding mode is introduced: the Skip mode

which consists in a direct copy of the temporal prediction. Unlike most existing coding

schemes, the addition of the Skip mode allows to learn the overall coding scheme through

an end-to-end rate-distortion training. Finally, conditional coding is implemented to reduce

the motion information rate. The resulting video coder achieves performance competitive

with the best implementation of HEVC under various coding configurations and rate

constraints.

Finally, the proposed coder is assessed through a participation to the video track of

the CLIC 2021 challenge. The coder flexibility is demonstrated by performing sequence-

wise competition of coding structures and rate targets, in order to improve the average

performance on the entire test set. Due to a specific challenge rule on the decoder size, a

multi-rate system is introduced. It allows to target different rates for a video sequence at

the cost of few additional parameters. The resulting coder was submitted to the challenge

and obtained the best score among the end-to-end learned coders.

Additionally, we also proposed a traditional solution for the CLIC 2021, which won

the challenge. This shows that in 2021, traditional coders remains more performant than

learning-based ones when evaluated in a realistic video coding situation. Nevertheless,

our proposed coder is competitive with HEVC, demonstrating the practicability of learned

video coding. Regarding the speed of improvements for learning-based coding schemes,

there is no doubt that these approaches will soon outperform traditional ones.

118

Future works

Further performance improvement

This thesis presents evidence of the neural networks ability to outclass handmade opera-

tions of traditional coders. For instance, this is the case in image coding where learned

approaches already achieve state-of-the-art results, or for conditional coding which outper-

forms residual coding. Yet, learned approaches seem to struggle for one key step of the

coding pipeline: computing a temporal prediction. Indeed, Section 6.5.2 has shown that

MNet fails to capture important motions. We believe that this step could be significantly

enhanced. So far, the motion autoencoder MNet shares the same architecture than the sig-

nal autoencoder CNet. Using known techniques from the optical flow estimation literature,

such as the addition of a cost volume component, might yields important improvements.

All the video coding trainings done in this thesis have been performed using a proxy

coding configuration, composed of one I-frame, one P-frame and one B-frame. The rationale

behind this choice is to prepare the model to process all three types of frame. However,

finetuning the system using the target frame organization would allow to obtain a better

coder, specialized for the desired coding structure.

More practical learned coding

The models presented in this thesis are designed with few complexity constraints, re-

sulting in coders with dozens of million of parameters. In video coding, the complexity

constraint is often tighter on the decoder than on the encoder, since the decoder has to

be embedded in a variety of low-power devices (smartphones, set-top boxes). Yet, learned

coder architectures are often symmetrical. For instance, both the encoding and decoding

speed of the proposed system are around a few frame per second for a 720p video. This

is different from traditional video coding, where the encoding time significantly exceeds

the decoding time. Investigating different balance of complexity between the encoder and

decoder would be a important step towards a real-life usage of learned compression.

Likewise, most of the work carried out on learned compression relies on mono-rate

coders. This requires to store multiple coders to adjust the rate of the video sequences

regarding the available bandwidth. The basic multi-rate coder presented in Chapter 7

offers a solution to this issue. Yet, it is not able to reach competitive performance on a

range of rates as wide as traditional coders. Conditioning more operations and coding

119

modes on the rate constraint would allow to obtain better multi-rate coders.

Content adaptation

In traditional coding, the purpose of the encoding stage is to find the tools which are the

most suited to the current video, within the set of tools provided by the standard. These

tools have been designed beforehand and target different types of signal: low-frequency

signals, screen content signals etc. On the other hand, the nature of neural networks is to

adapt to their training data. As such, performing the training on the data to compress

would allow to obtain an optimal coder for this particular video sequence. Even though the

parameters would have to be sent alongside the video, several recent works have hinted

this idea as a promising means of improving compression efficiency [27], [28].

Performing operations adapted to the signal is one key factor for improvement and

might be one of the explanation regarding the better performance of traditional coders.

Throughout this thesis, several means of adapting the operations to the signal have been

introduced:

• The hyperprior mechanism allows to use an adapted probability model for each

latent pixel;

• The Skip mode offers the choice between two coding modes;

• The quantization gains conditioned on the frame type enable to accurately set the

quantization accuracy.

We believe that offering even more possibilities of adaptation to the signal to compress

would yield an important increase in performance.

120

BIBLIOGRAPHY

[1] Cisco predicts more ip traffic in the next five years than in the history of the inter-

net, 2017. [Online]. Available: https://newsroom.cisco.com/press-release-

content?type=webcontent%5C&articleId=1955935.

[2] Netflix to cut streaming quality in europe for 30 days, 2020. [Online]. Available:

https://www.bbc.com/news/technology-51968302.

[3] The shift project, climate crisis: the unsustainable use of online video, 2020. [Online].

Available: https://theshiftproject.org/en/article/unsustainable-use-

online-video/.

[4] R. York, “Ecological paradoxes: william stanley jevons and the paperless office”,

Human Ecology Review, vol. 13, Dec. 2006.

[5] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley Series in

Telecommunications and Signal Processing). USA: Wiley-Interscience, 2006, ISBN:

0471241954.

[6] T. Nguyen, T. Ma, M. Ikeda, H. Jang, and X. Zhao, Jvet ahg report jvet-r0014: lossless

and near-lossless coding (ahg14), 2020.

[7] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multi-scale structural similarity for im-

age quality assessment”, in in Proc. IEEE Conf. on Signals, Systems, and Computers,

2003, pp. 1398–1402.

[8] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the h.264/avc

video coding standard”, IEEE Transactions on Circuits and Systems for Video

Technology, vol. 13, 7, pp. 560–576, 2003. DOI: 10.1109/TCSVT.2003.815165.

[9] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high efficiency

video coding (hevc) standard”, IEEE Transactions on Circuits and Systems for Video

Technology, vol. 22, 12, pp. 1649–1668, 2012. DOI: 10.1109/TCSVT.2012.2221191.

121

https://newsroom.cisco.com/press-release-content?type=webcontent%5C&articleId=1955935
https://newsroom.cisco.com/press-release-content?type=webcontent%5C&articleId=1955935
https://www.bbc.com/news/technology-51968302
https://theshiftproject.org/en/article/unsustainable-use-online-video/
https://theshiftproject.org/en/article/unsustainable-use-online-video/
https://doi.org/10.1109/TCSVT.2003.815165
https://doi.org/10.1109/TCSVT.2012.2221191

[10] B. Bross, J. Chen, J.-R. Ohm, G. J. Sullivan, and Y.-K. Wang, “Developments in

international video coding standardization after avc, with an overview of versatile

video coding (vvc)”, Proceedings of the IEEE, pp. 1–31, 2021. DOI: 10.1109/JPROC.

2020.3043399.

[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:

//www.deeplearningbook.org.

[12] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image compres-

sion”, in 5th International Conference on Learning Representations, ICLR 2017,

Toulon, France, 2017. [Online]. Available: https://openreview.net/forum?id=

rJxdQ3jeg.

[13] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image compression with

compressive autoencoders”, in 5th International Conference on Learning Representa-

tions, ICLR 2017, Toulon, France, 2017. [Online]. Available: https://openreview.

net/forum?id=rJiNwv9gg.

[14] T. Ladune, P. Philippe, W. Hamidouche, L. Zhang, and O. Déforges, “Binary prob-

ability model for learning based image compression”, in 2020 IEEE International

Conference on Acoustics, Speech and Signal Processing, ICASSP 2020, Barcelona,

Spain, May 4-8, 2020, IEEE, 2020, pp. 2168–2172. DOI: 10.1109/ICASSP40776.

2020.9053997. [Online]. Available: https://doi.org/10.1109/ICASSP40776.

2020.9053997.

[15] A. Habibian, T. van Rozendaal, J. M. Tomczak, and T. Cohen, “Video compression

with rate-distortion autoencoders”, in 2019 IEEE/CVF International Conference on

Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019,

IEEE, 2019, pp. 7032–7041. DOI: 10.1109/ICCV.2019.00713. [Online]. Available:

https://doi.org/10.1109/ICCV.2019.00713.

[16] Workshop and challenge on learned image compression, https://www.compression.cc/.

[17] F. Bossen, J. Boyce, K. Suehring, X. Li, and V. Seregin, “VTM common test conditions

and software reference configurations for sdr video”, in JVET-T2010-v1, Oct. 2020.

[18] T. Ladune, P. Philippe, W. Hamidouche, L. Zhang, and O. Déforges, “Modenet: mode

selection network for learned video coding”, in 30th IEEE International Workshop

on Machine Learning for Signal Processing, MLSP 2020, Espoo, Finland, September

21-24, 2020, IEEE, 2020, pp. 1–6. DOI: 10.1109/MLSP49062.2020.9231841.

122

https://doi.org/10.1109/JPROC.2020.3043399
https://doi.org/10.1109/JPROC.2020.3043399
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://openreview.net/forum?id=rJxdQ3jeg
https://openreview.net/forum?id=rJxdQ3jeg
https://openreview.net/forum?id=rJiNwv9gg
https://openreview.net/forum?id=rJiNwv9gg
https://doi.org/10.1109/ICASSP40776.2020.9053997
https://doi.org/10.1109/ICASSP40776.2020.9053997
https://doi.org/10.1109/ICASSP40776.2020.9053997
https://doi.org/10.1109/ICASSP40776.2020.9053997
https://doi.org/10.1109/ICCV.2019.00713
https://doi.org/10.1109/ICCV.2019.00713
https://doi.org/10.1109/MLSP49062.2020.9231841

[19] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, “DVC: an end-to-end

deep video compression framework”, in IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 2019, 2019, pp. 11 006–

11 015. DOI: 10.1109/CVPR.2019.01126. [Online]. Available: http://openaccess.

thecvf.com/content%5C_CVPR%5C_2019/html/Lu%5C_DVC%5C_An%5C_End-To-

End%5C_Deep%5C_Video%5C_Compression%5C_Framework%5C_CVPR%5C_2019%5C_

paper.html.

[20] Z. Hu, Z. Chen, D. Xu, G. Lu, W. Ouyang, and S. Gu, “Improving deep video com-

pression by resolution-adaptive flow coding”, in Computer Vision - ECCV 2020 -

16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part

II, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds., ser. Lecture Notes in Com-

puter Science, vol. 12347, Springer, 2020, pp. 193–209. DOI: 10.1007/978-3-030-

58536-5_12. [Online]. Available: https://doi.org/10.1007/978-3-030-58536-

5%5C_12.

[21] R. Yang, F. Mentzer, L. V. Gool, and R. Timofte, “Learning for video compression

with recurrent auto-encoder and recurrent probability model”, IEEE J. Sel. Top.

Signal Process., vol. 15, 2, pp. 388–401, 2021. DOI: 10.1109/JSTSP.2020.3043590.

[Online]. Available: https://doi.org/10.1109/JSTSP.2020.3043590.

[22] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial pyramid net-

work”, CoRR, vol. abs/1611.00850, 2016. arXiv: 1611.00850. [Online]. Available:

http://arxiv.org/abs/1611.00850.

[23] A. Golinski, R. Pourreza, Y. Yang, G. Sautière, and T. S. Cohen, “Feedback recurrent

autoencoder for video compression”, in Computer Vision - ACCV 2020 - 15th Asian

Conference on Computer Vision, Kyoto, Japan, November 30 - December 4, 2020,

Revised Selected Papers, Part IV, H. Ishikawa, C. Liu, T. Pajdla, and J. Shi, Eds.,

ser. Lecture Notes in Computer Science, vol. 12625, Springer, 2020, pp. 591–607.

DOI: 10.1007/978-3-030-69538-5_36. [Online]. Available: https://doi.org/

10.1007/978-3-030-69538-5%5C_36.

[24] H. Liu, H. Shen, L. Huang, M. Lu, T. Chen, and Z. Ma, “Learned video compres-

sion via joint spatial-temporal correlation exploration”, in The Thirty-Fourth AAAI

Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative

Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sympo-

sium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY,

123

https://doi.org/10.1109/CVPR.2019.01126
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Lu%5C_DVC%5C_An%5C_End-To-End%5C_Deep%5C_Video%5C_Compression%5C_Framework%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Lu%5C_DVC%5C_An%5C_End-To-End%5C_Deep%5C_Video%5C_Compression%5C_Framework%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Lu%5C_DVC%5C_An%5C_End-To-End%5C_Deep%5C_Video%5C_Compression%5C_Framework%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Lu%5C_DVC%5C_An%5C_End-To-End%5C_Deep%5C_Video%5C_Compression%5C_Framework%5C_CVPR%5C_2019%5C_paper.html
https://doi.org/10.1007/978-3-030-58536-5_12
https://doi.org/10.1007/978-3-030-58536-5_12
https://doi.org/10.1007/978-3-030-58536-5%5C_12
https://doi.org/10.1007/978-3-030-58536-5%5C_12
https://doi.org/10.1109/JSTSP.2020.3043590
https://doi.org/10.1109/JSTSP.2020.3043590
https://arxiv.org/abs/1611.00850
http://arxiv.org/abs/1611.00850
https://doi.org/10.1007/978-3-030-69538-5_36
https://doi.org/10.1007/978-3-030-69538-5%5C_36
https://doi.org/10.1007/978-3-030-69538-5%5C_36

USA, February 7-12, 2020, AAAI Press, 2020, pp. 11 580–11 587. [Online]. Available:

https://aaai.org/ojs/index.php/AAAI/article/view/6825.

[25] E. Agustsson, D. Minnen, N. Johnston, J. Balle, S. J. Hwang, and G. Toderici,

“Scale-space flow for end-to-end optimized video compression”, in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun.

2020.

[26] T. Ladune, P. Philippe, W. Hamidouche, L. Zhang, and O. Déforges, “Optical flow and

mode selection for learning-based video coding”, in 2020 IEEE 22nd International

Workshop on Multimedia Signal Processing (MMSP), 2020, pp. 1–6. DOI: 10.1109/

MMSP48831.2020.9287049.

[27] E. Dupont, A. Golinski, M. Alizadeh, Y. W. Teh, and A. Doucet, “COIN: compression

with implicit neural representations”, CoRR, vol. abs/2103.03123, 2021. arXiv:

2103.03123. [Online]. Available: https://arxiv.org/abs/2103.03123.

[28] T. van Rozendaal, I. A. M. Huijben, and T. Cohen, “Overfitting for fun and profit:

instance-adaptive data compression”, in 9th International Conference on Learning

Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, OpenReview.net,

2021. [Online]. Available: https://openreview.net/forum?id=oFp8Mx%5C_V5FL.

[29] D. A. Huffman, “A method for the construction of minimum-redundancy codes”,

Proceedings of the IRE, vol. 40, 9, pp. 1098–1101, 1952. DOI: 10.1109/JRPROC.1952.

273898.

[30] G. G. Langdon, “An introduction to arithmetic coding”, IBM Journal of Research

and Development, vol. 28, 2, pp. 135–149, 1984. DOI: 10.1147/rd.282.0135.

[31] M. Wien, “Entropy coding”, in High Efficiency Video Coding: Coding Tools and Spec-

ification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 251–282, ISBN:

978-3-662-44276-0. DOI: 10.1007/978-3-662-44276-0_10. [Online]. Available:

https://doi.org/10.1007/978-3-662-44276-0_10.

[32] B. Kleijn, “A basis for source coding”, 2003.

[33] K. R. Rao and P. Yip, The Transform and Data Compression Handbook. USA: CRC

Press, Inc., 2000, ISBN: 0849336929.

[34] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video compression”,

IEEE Signal Processing Magazine, vol. 15, 6, pp. 74–90, 1998. DOI: 10.1109/79.

733497.

124

https://aaai.org/ojs/index.php/AAAI/article/view/6825
https://doi.org/10.1109/MMSP48831.2020.9287049
https://doi.org/10.1109/MMSP48831.2020.9287049
https://arxiv.org/abs/2103.03123
https://arxiv.org/abs/2103.03123
https://openreview.net/forum?id=oFp8Mx%5C_V5FL
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1147/rd.282.0135
https://doi.org/10.1007/978-3-662-44276-0_10
https://doi.org/10.1007/978-3-662-44276-0_10
https://doi.org/10.1109/79.733497
https://doi.org/10.1109/79.733497

[35] K. Reuzé, “Adaptive Coding of Intra Prediction Modes in the Future Video Coding”,

Theses, INSA de Rennes, 2018.

[36] G. K. Wallace, “The jpeg still picture compression standard”, Commun. ACM, vol. 34,

4, pp. 30–44, Apr. 1991, ISSN: 0001-0782. DOI: 10.1145/103085.103089. [Online].

Available: http://doi.acm.org/10.1145/103085.103089.

[37] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine transform”, IEEE Transactions

on Computers, vol. C-23, 1, pp. 90–93, 1974. DOI: 10.1109/T-C.1974.223784.

[38] A. Saxena and F. C. Fernandes, “Dct/dst-based transform coding for intra prediction

in image/video coding”, Trans. Img. Proc., vol. 22, 10, pp. 3974–3981, Oct. 2013,

ISSN: 1057-7149. DOI: 10.1109/TIP.2013.2265882. [Online]. Available: https:

//doi.org/10.1109/TIP.2013.2265882.

[39] S. Ruder, An overview of gradient descent optimization algorithms, 2017. arXiv:

1609.04747 [cs.LG].

[40] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,

Mar. 2004, ISBN: 0521833787.

[41] V. Dumoulin and F. Visin, A guide to convolution arithmetic for deep learning, 2018.

arXiv: 1603.07285 [stat.ML].

[42] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z.

Wang, Real-time single image and video super-resolution using an efficient sub-pixel

convolutional neural network, 2016. arXiv: 1609.05158 [cs.CV].

[43] L. Xu, J. S. Ren, C. Liu, and J. Jia, “Deep convolutional neural network for image

deconvolution”, Advances in neural information processing systems, vol. 27, pp. 1790–

1798, 2014.

[44] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, Learned image compression with

discretized gaussian mixture likelihoods and attention modules, 2020. arXiv: 2001.

01568 [eess.IV].

[45] F. Mentzer, G. D. Toderici, M. Tschannen, and E. Agustsson, “High-fidelity genera-

tive image compression”, in Advances in Neural Information Processing Systems,

H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., vol. 33,

Curran Associates, Inc., 2020, pp. 11 913–11 924. [Online]. Available: https://

proceedings.neurips.cc/paper/2020/file/8a50bae297807da9e97722a0b3fd8f27-

Paper.pdf.

125

https://doi.org/10.1145/103085.103089
http://doi.acm.org/10.1145/103085.103089
https://doi.org/10.1109/T-C.1974.223784
https://doi.org/10.1109/TIP.2013.2265882
https://doi.org/10.1109/TIP.2013.2265882
https://doi.org/10.1109/TIP.2013.2265882
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1609.05158
https://arxiv.org/abs/2001.01568
https://arxiv.org/abs/2001.01568
https://proceedings.neurips.cc/paper/2020/file/8a50bae297807da9e97722a0b3fd8f27-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8a50bae297807da9e97722a0b3fd8f27-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8a50bae297807da9e97722a0b3fd8f27-Paper.pdf

[46] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational image

compression with a scale hyperprior”, in 6th International Conference on Learning

Representations, ICLR 2018, Vancouver, BC, Canada, 2018. [Online]. Available:

https://openreview.net/forum?id=rkcQFMZRb.

[47] Y. Hu, W. Yang, Z. Ma, and J. Liu, “Learning end-to-end lossy image compression:

a benchmark”, IEEE Transactions on Pattern Analysis and Machine Intelligence,

pp. 1–1, 2021. DOI: 10.1109/TPAMI.2021.3065339.

[48] D. Minnen, J. Ballé, and G. Toderici, “Joint autoregressive and hierarchical priors

for learned image compression”, in Conference on Neural Information Processing

Systems 2018, NeurIPS„ Montréal, Canada., 2018, pp. 10 794–10 803. [Online].

Available: http://papers.nips.cc/paper/8275-joint-autoregressive-and-

hierarchical-priors-for-learned-image-compression.

[49] J. Lee, S. Cho, and S. Beack, “Context-adaptive entropy model for end-to-end

optimized image compression”, in International Conference on Learning Repre-

sentations, ICLR 2019, New Orleans, LA, USA, 2019. [Online]. Available: https:

//openreview.net/forum?id=HyxKIiAqYQ.

[50] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte, L. Benini, and

L. V. Gool, Soft-to-hard vector quantization for end-to-end learning compressible

representations, 2017. arXiv: 1704.00648 [cs.LG].

[51] Z. Guo, Z. Zhang, R. Feng, and Z. Chen, Soft then hard: rethinking the quantization

in neural image compression, 2021. arXiv: 2104.05168 [eess.IV].

[52] J. Ballé, V. Laparra, and E. P. Simoncelli, “Density modeling of images using a gener-

alized normalization transformation”, in 4th International Conference on Learning

Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference

Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2016. [Online]. Available: http:

//arxiv.org/abs/1511.06281.

[53] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network training

by reducing internal covariate shift”, in Proceedings of the 32nd International

Conference on Machine Learning, F. Bach and D. Blei, Eds., ser. Proceedings of

Machine Learning Research, vol. 37, Lille, France: PMLR, Jul. 2015, pp. 448–456.

[Online]. Available: http://proceedings.mlr.press/v37/ioffe15.html.

126

https://openreview.net/forum?id=rkcQFMZRb
https://doi.org/10.1109/TPAMI.2021.3065339
http://papers.nips.cc/paper/8275-joint-autoregressive-and-hierarchical-priors-for-learned-image-compression
http://papers.nips.cc/paper/8275-joint-autoregressive-and-hierarchical-priors-for-learned-image-compression
https://openreview.net/forum?id=HyxKIiAqYQ
https://openreview.net/forum?id=HyxKIiAqYQ
https://arxiv.org/abs/1704.00648
https://arxiv.org/abs/2104.05168
http://arxiv.org/abs/1511.06281
http://arxiv.org/abs/1511.06281
http://proceedings.mlr.press/v37/ioffe15.html

[54] G. Bjontegaard, “Calculation of average psnr differences between rd-curves”, in

ITU-T Q.6/16, Doc. VCEG-M33, Mar. 2001.

[55] A. van den Oord, N. Kalchbrenner, L. Espeholt, k. kavukcuoglu koray, O. Vinyals,

and A. Graves, “Conditional image generation with PixelCNN decoders”, in Ad-

vances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,

I. Guyon, and R. Garnett, Eds., vol. 29, Curran Associates, Inc., 2016.

[56] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “Pixelcnn++: improving the

pixelcnn with discretized logistic mixture likelihood and other modifications”, in 5th

International Conference on Learning Representations, ICLR 2017, Toulon, France,

April 24-26, 2017, Conference Track Proceedings, OpenReview.net, 2017. [Online].

Available: https://openreview.net/forum?id=BJrFC6ceg.

[57] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. V. Gool, “Practical full

resolution learned lossless image compression”, in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2019.

[58] D. Minnen and S. Singh, “Channel-wise autoregressive entropy models for learned

image compression”, in 2020 IEEE International Conference on Image Processing

(ICIP), 2020, pp. 3339–3343. DOI: 10.1109/ICIP40778.2020.9190935.

[59] Z. Guo, Z. Zhang, R. Feng, and Z. Chen, Causal contextual prediction for learned

image compression, 2021. arXiv: 2011.09704 [cs.CV].

[60] Z. Zhong, H. Akutsu, and K. Aizawa, “Channel-level variable quantization network

for deep image compression”, in Proceedings of the Twenty-Ninth International

Joint Conference on Artificial Intelligence, IJCAI 2020, C. Bessiere, Ed., ijcai.org,

2020, pp. 467–473. DOI: 10.24963/ijcai.2020/65. [Online]. Available: https:

//doi.org/10.24963/ijcai.2020/65.

[61] J. Liu, G. Lu, Z. Hu, and D. Xu, A unified end-to-end framework for efficient deep

image compression, 2020. arXiv: 2002.03370 [eess.IV].

[62] L. Helminger, A. Djelouah, M. Gross, and C. Schroers, “Lossy image compression

with normalizing flows”, in Neural Compression: From Information Theory to Appli-

cations – Workshop @ ICLR 2021, 2021. [Online]. Available: https://openreview.

net/forum?id=NQJ9pMf9id.

127

https://openreview.net/forum?id=BJrFC6ceg
https://doi.org/10.1109/ICIP40778.2020.9190935
https://arxiv.org/abs/2011.09704
https://doi.org/10.24963/ijcai.2020/65
https://doi.org/10.24963/ijcai.2020/65
https://doi.org/10.24963/ijcai.2020/65
https://arxiv.org/abs/2002.03370
https://openreview.net/forum?id=NQJ9pMf9id
https://openreview.net/forum?id=NQJ9pMf9id

[63] J. Liu, G. Lu, Z. Hu, and D. Xu, “A unified end-to-end framework for efficient deep

image compression”, CoRR, vol. abs/2002.03370, 2020. arXiv: 2002.03370. [Online].

Available: https://arxiv.org/abs/2002.03370.

[64] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learned lossless image compression

with A hyperprior and discretized gaussian mixture likelihoods”, in 2020 IEEE

International Conference on Acoustics, Speech and Signal Processing, ICASSP 2020,

Barcelona, Spain, May 4-8, 2020, IEEE, 2020, pp. 2158–2162. DOI: 10 . 1109 /

ICASSP40776.2020.9053413. [Online]. Available: https://doi.org/10.1109/

ICASSP40776.2020.9053413.

[65] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human

action recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 35, 1, pp. 221–231, 2013. DOI: 10.1109/TPAMI.2012.59.

[66] A. Djelouah, J. Campos, S. Schaub-Meyer, and C. Schroers, “Neural inter-frame

compression for video coding”, in The IEEE International Conference on Computer

Vision (ICCV), Oct. 2019.

[67] M. A. Yilmaz and A. M. Tekalp, “End-to-end rate-distortion optimization for bi-

directional learned video compression”, 2020 IEEE International Conference on

Image Processing (ICIP), Oct. 2020. DOI: 10.1109/icip40778.2020.9190881.

[Online]. Available: http://dx.doi.org/10.1109/ICIP40778.2020.9190881.

[68] G. Lu, C. Cai, X. Zhang, L. Chen, W. Ouyang, D. Xu, and Z. Gao, “Content adaptive

and error propagation aware deep video compression”, in Computer Vision - ECCV

2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings,

Part II, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds., ser. Lecture Notes in

Computer Science, vol. 12347, Springer, 2020, pp. 456–472. DOI: 10.1007/978-3-

030-58536-5_27. [Online]. Available: https://doi.org/10.1007/978-3-030-

58536-5%5C_27.

[69] R. Yang, F. Mentzer, L. V. Gool, and R. Timofte, “Learning for video compression with

hierarchical quality and recurrent enhancement”, in 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June

13-19, 2020, IEEE, 2020, pp. 6627–6636. DOI: 10.1109/CVPR42600.2020.00666.

[Online]. Available: https://doi.org/10.1109/CVPR42600.2020.00666.

128

https://arxiv.org/abs/2002.03370
https://arxiv.org/abs/2002.03370
https://doi.org/10.1109/ICASSP40776.2020.9053413
https://doi.org/10.1109/ICASSP40776.2020.9053413
https://doi.org/10.1109/ICASSP40776.2020.9053413
https://doi.org/10.1109/ICASSP40776.2020.9053413
https://doi.org/10.1109/TPAMI.2012.59
https://doi.org/10.1109/icip40778.2020.9190881
http://dx.doi.org/10.1109/ICIP40778.2020.9190881
https://doi.org/10.1007/978-3-030-58536-5_27
https://doi.org/10.1007/978-3-030-58536-5_27
https://doi.org/10.1007/978-3-030-58536-5%5C_27
https://doi.org/10.1007/978-3-030-58536-5%5C_27
https://doi.org/10.1109/CVPR42600.2020.00666
https://doi.org/10.1109/CVPR42600.2020.00666

[70] Z. Hu, G. Lu, and D. Xu, “FVC: A new framework towards deep video compression

in feature space”, CoRR, vol. abs/2105.09600, 2021. arXiv: 2105.09600. [Online].

Available: https://arxiv.org/abs/2105.09600.

[71] D. Sun, X. Yang, M. Liu, and J. Kautz, “Pwc-net: CNNs for optical flow using

pyramid, warping, and cost volume”, in IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 2018, pp. 8934–8943.

DOI: 10.1109/CVPR.2018.00931. [Online]. Available: http://openaccess.thecvf.

com/content%5C_cvpr%5C_2018/html/Sun%5C_PWC-Net%5C_CNNs%5C_for%5C_

CVPR%5C_2018%5C_paper.html.

[72] T. Ladune and P. Philippe, “Coding standards as anchors for the CVPR clic video

track”, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops 2021.

[73] H. Egilmez, A. Singh, M. Coban, and M. Karczewicz, “Jvet-u0079: a DNN architec-

ture for intra-frame coding in yuv 4:2:0 format with cross-component prediction”, in

JVET-U0079-v1, Jan. 2021.

[74] T. Guo, J. Wang, Z. Cui, Y. Feng, Y. Ge, and B. Bai, “Variable rate image compression

with content adaptive optimization”, in 2020 IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW), 2020, pp. 533–537. DOI: 10.

1109/CVPRW50498.2020.00069.

[75] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic open source

movie for optical flow evaluation”, in European Conf. on Computer Vision (ECCV),

A. Fitzgibbon et al. (Eds.), Ed., ser. Part IV, LNCS 7577, Springer-Verlag, Oct. 2012,

pp. 611–625.

[76] T. Ladune, P. Philippe, W. Hamidouche, L. Zhang, and O. Déforges, “Conditional

coding for flexible learned video compression”, in Neural Compression: From Infor-

mation Theory to Applications – Workshop @ ICLR 2021, 2021. [Online]. Available:

https://openreview.net/forum?id=uyMvuXoV1lZ.

[77] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image super-resolution:

dataset and study”, in The IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR) Workshops, Jul. 2017.

[78] T. J. A. dataset, Https://jpegai.github.io/3-datasets/.

129

https://arxiv.org/abs/2105.09600
https://arxiv.org/abs/2105.09600
https://doi.org/10.1109/CVPR.2018.00931
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Sun%5C_PWC-Net%5C_CNNs%5C_for%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Sun%5C_PWC-Net%5C_CNNs%5C_for%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Sun%5C_PWC-Net%5C_CNNs%5C_for%5C_CVPR%5C_2018%5C_paper.html
https://doi.org/10.1109/CVPRW50498.2020.00069
https://doi.org/10.1109/CVPRW50498.2020.00069
https://openreview.net/forum?id=uyMvuXoV1lZ

[79] A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and K. Kavukcuoglu,

“Conditional image generation with pixelcnn decoders”, in Proceedings of the 30th

International Conference on Neural Information Processing Systems, ser. NIPS’16,

Barcelona, Spain: Curran Associates Inc., 2016, pp. 4797–4805, ISBN: 9781510838819.

[80] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”,

in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,

Las Vegas, NV, USA, June 27-30, 2016, IEEE Computer Society, 2016, pp. 770–778.

DOI: 10.1109/CVPR.2016.90. [Online]. Available: https://doi.org/10.1109/

CVPR.2016.90.

[81] V. Hosu, F. Hahn, M. Jenadeleh, H. Lin, H. Men, T. Szirányi, S. Li, and D. Saupe,

“The konstanz natural video database (konvid-1k)”, in 2017 Ninth International

Conference on Quality of Multimedia Experience (QoMEX), IEEE, 2017, pp. 1–6.

[82] R. Yang, Y. Yang, J. Marino, and S. Mandt, “Hierarchical autoregressive modeling

for neural video compression”, in 9th International Conference on Learning Repre-

sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, OpenReview.net, 2021.

[Online]. Available: https://openreview.net/forum?id=TK%5C_6nNb%5C_C7q.

[83] A. Mercat, M. Viitanen, and J. Vanne, “UVG dataset: 50/120fps 4k sequences for

video codec analysis and development”, in Proceedings of the 11th ACM Multimedia

Systems Conference, MMSys 2020, Istanbul, Turkey, June 8-11, 2020, L. Toni, A. C.

Begen, Ö. Alay, and C. Timmerer, Eds., ACM, 2020, pp. 297–302. DOI: 10.1145/

3339825.3394937. [Online]. Available: https://doi.org/10.1145/3339825.

3394937.

130

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://openreview.net/forum?id=TK%5C_6nNb%5C_C7q
https://doi.org/10.1145/3339825.3394937
https://doi.org/10.1145/3339825.3394937
https://doi.org/10.1145/3339825.3394937
https://doi.org/10.1145/3339825.3394937

APPENDIX A

LIST OF PUBLICATIONS

Conference papers

Binary probability model for learning based image compression

IEEE ICASSP 2020

Authors: Théo Ladune, P. Philippe, W. Hamidouche, L. Zhang, O. Déforges

Abstract

In this paper, we propose to enhance learned image compression systems with a richer

probability model for the latent variable. Previous works model the latent variable with

a Gaussian or a Laplace distribution. Inspired by binary arithmetic coding, we propose

to signal the latent variable with three binary values and one integer, with different

probability models.A relaxation method is designed to perform gradient-based training.

The richer probability model results in a better entropy coding leading to lower rate.

Experiments under the Challenge on Learned Image Compression test conditions demon-

strate that this method achieves 18 % rate saving compared to Gaussian or Laplace models.

ModeNet: Mode selection network for learned video coding

IEEE MLSP 2020

Authors: Théo Ladune, P. Philippe, W. Hamidouche, L. Zhang, O. Déforges

Abstract

In this paper, a mode selection network (ModeNet) is proposed to enhance deep learning-

based video compression. Inspired by traditional video coding, ModeNet purpose is to

enable competition among several coding modes. The proposed ModeNet learns and con-

veys a pixel-wise partitioning of the frame, used to assign each pixel to the most suited

131

coding mode. ModeNet is trained alongside the different coding modes to minimize a

rate-distortion cost. It is a flexible component which can be generalized to other sys-

tems to allow competition between different coding tools. ModeNet interest is studied

on a P-frame coding task, where it is used to design a method for coding a frame given

its prediction. ModeNet-based systems achieve compelling performance when evaluated

under the Challenge on Learned Image Compression 2020 P-frame coding track conditions.

Optical flow and mode selection for learning-based video coding

IEEE MMSP 2020

Authors: Théo Ladune, P. Philippe, W. Hamidouche, L. Zhang, O. Déforges

Abstract

This paper introduces a new method for inter frame coding based on two complementary

autoencoders: MOFNet and CodecNet. MOFNet aims at computing and conveying the

Optical Flow and a pixel-wise coding Mode selection. The optical flow is used to perform a

prediction of the frame to code. The coding mode selection enables competition between

direct copy of the prediction or transmission through CodecNet.The proposed coding

scheme is assessed under the Challenge on Learned Image Compression 2020 P-frame

coding conditions, where it is shown to perform on par with the state-of-the-art video

codec ITU/MPEG HEVC. Moreover, the possibility of copying the prediction enables to

learn the optical flow in an end-to-end fashion i.e. without relying on pre-training and/or a

dedicated loss term.

Note: This publication received the Best Paper Award at the IEEE MMSP 2020

conference.

Conditional coding for flexible learned video compression

ICLR 2021, Neural Compression workshop

Authors: Théo Ladune, P. Philippe, W. Hamidouche, L. Zhang, O. Déforges

Abstract

This paper introduces a novel framework for end-to-end learned video coding. Image com-

pression is generalized through conditional coding to exploit information from reference

132

frames, allowing to process intra and inter frames with the same coder. The system is

trained through the minimization of a rate-distortion cost, with no pre-training or proxy

loss. Its flexibility is assessed under three coding configurations (All Intra, Low-delay

P and Random Access), where it is shown to achieve performance competitive with the

state-of-the-art video codec HEVC.

Conditional coding and variable bitrate for practical learned video
coding

IEEE CVPR 2021, Challenge on Learned Image Compression workshop

Authors: Théo Ladune, P. Philippe, W. Hamidouche, L. Zhang, O. Déforges

Abstract

This paper introduces a practical learned video codec. Conditional coding and quantization

gain vectors are used to provide flexibility to a single encoder/decoder pair, which is able to

compress video sequences at a variable bitrate. The flexibility is leveraged at test time by

choosing the rate and GOP structure to optimize a rate-distortion cost. Using the CLIC21

video test conditions, the proposed approach shows performance on par with HEVC.

Coding standards as anchors for the CVPR CLIC video track

IEEE CVPR 2021, Challenge on Learned Image Compression workshop

Authors: Théo Ladune, P. Philippe

Abstract

In 2021, a new track has been initiated in the Challenge for Learned Image Compression :

the video track. This category proposes to explore technologies for the compression of

short video clips at 1 Mbit/s. This paper proposes to generate coded videos using the latest

standardized video coders, especially Versatile Video Coding (VVC). The objective is not

only to measure the progress made by learning techniques compared to the state of the

art video coders, but also to quantify their progress from years to years. With this in mind,

this paper documents how to generate the video sequences fulfilling the requirements of

this challenge, in a reproducible way, targeting the maximum performance for VVC.

Note: This publication won the video track of the CLIC 2021.

133

Patent applications

• Prédiction pondérée d’image, codage et décodage d’image utilisant une telle prédiction

pondérée, patent application, FR 2101632, February 2021

• Détermination d’au moins un mode de codage d’image ou d’au moins un mode de

décodage d’image, codage et décodage d’image utilisant une telle détermination,

patent application, FR 2101633, February 2021

134

APPENDIX B

ADDITIONAL DETAILS ON LEARNED

IMAGE CODING

B.1 Training recipe

B.1.1 Training dataset

The learned coding schemes are trained using a training set composed of 500 000 examples.

All training samples are 256×256 crops, extracted from natural images dataset such as

the Challenge on Learned Image Coding (CLIC) dataset [16], the DIV2K dataset [77] and

the JPEG-AI dataset [78]. These datasets are known to feature miscellaneous contents

with diverse resolutions, allowing to learn a generic image coder.

B.1.2 Details on the training stage

The expectation of the loss function is estimated by computing the average loss when

feeding the network with a batch of 8 examples. The number of training iterations (i.e.

network parameters updates) ranges from half a million to two million. While most of

the results are achieved during the first half a million steps, prolongation of the training

enables to grasp a few additional performance.

The value of the learning rate, see Eq. (3.4) is set to η= 10−4. Decreasing the learning

rate throughout the training allows for a better converge of the gradient descent algorithm.

As such, the learning rate is successively decreased to η= 2 ·10−5 and η= 4 ·10−6.

The purpose of the training is to optimize a rate-distortion loss, parameterized through

a rate constraint λ:

Lλ = D+λR. (B.1)

Empirically, replacing the rate-constraint λ with a smaller one λ′ < λ during the first

iterations of the training often results in better performance.

135

B.2 Additional information regarding the test stage

B.2.1 Inference dataset

The performance of the system is evaluated on the CLIC 2020 validation set [16]. It is

composed of 102 natural images with a resolution ranging from 512×384 to 2021×1518.

To provide additional variety, two different categories of images are present in this dataset.

Half is made of photos from professional photographers, featuring sharp and in-focus

edges as well as bokeh effects. The other half is composed of user generated content, which

often exhibits more noise and less sharpness. Figure B.1 presents one example extracted

from each subcategory.

B.2.2 Coding standards as anchors

In order to assess the performance of the learned coding schemes, several existing stan-

dards are used as anchors. The JPEG image coding standard [36] is evaluated with the

following image magick command, relying on libjpeg 6.2:

convert original.png -quality Q compressed.jpeg

Varying the quality parameter Q allows to obtain a rate-distortion curve.

Despite being very popular, JPEG is not a state-of-the-art still image coder. The image

coding configuration of modern video coding standards (HEVC and VVC) achieves better

rate-distortion performance. To ensure a fair comparison, the results of HEVC and VVC

are obtained through one of their best implementation, the HM 16.22 (HEVC Test Model)

and the VTM 10 (VVC Test Model), using the intra coding configuration for RGB 444.

B.3 Detailed ARM architecture

This section details the architecture of the Auto-Regressive Module (ARM) and the fusion

module whose results are presented in Section 3.4.2. Figure B.2a presents the architecture

of the ARM, while Fig. B.2b shows the architecture of the fusion module for the hyperprior

and ARM.

136

(a) Image IMG_0426 from the user-generated dataset.

(b) Image nomao-saeki-33553 from the professional dataset.

Figure B.1: Examples from the professional and user-generated datasets.

137

(a) ARM

(b) Fusion

Figure B.2: Architecture of the Auto-Regressive Module and the hyperprior/ARM fusion
component. MConv F ×5×5 denotes a masked convolutional layer with F output feature
maps and kernels of size 5×5. The kernel of masked convolutions have null parameters
for anti-causal pixels [79] i.e. they only process past (already received) values.

B.4 Residual blocks and attention modules

When training a deep neural network, one may encounter vanishing gradient issues.

Indeed, it often happens that the gradient of each layer with respect to its input becomes

small. This causes the product of the successive gradients to be very close to zero. Con-

sequently the backpropagation algorithm only perform tiny adjustments to the network

parameters and the optimization process yields a suboptimal network.

Figure B.3a introduces the architecture of a residual block, which has been shown to

ease convergence, allowing to obtain more performant systems [80]. This is due to the fact

that a residual block learns a residual mapping:

ResBlock(x)= x+ f (x). (B.2)

Consequently the derivative of the residual block with respect to its input is:

∂ResBlock(x)
∂x

= 1+
∂ f (x)
∂x

. (B.3)

As a result, even if the term ∂ f (x)
∂x becomes too small, the overall residual block derivative

is close to 1, avoiding the vanishing gradient issue.

138

The attention mechanism presented in Fig. B.3b allows the system to focus on the

more relevant extracted features. The middle branch, called the trunk, is responsible for

extracting features from the input, as an usual convolutional networks would do. Yet,

the bottom branch computes attention maps based on the inputs, with values in [0,1]

thanks to the sigmoid function. These attention maps are applied through a pixel-wise

multiplication of the trunk feature maps, allowing to outline the more important features.

Finally, a residual connexion is added to ease the training of the overall architecture.

(a) Residual block.

(b) Residual attention module.

Figure B.3: Residual block and a residual attention module.

B.5 Comprehensive architecture of a state-of-the-art

image coder

Attention modules and residual blocks are combined to design the different transforms

of an hyperprior-based image coder. Figures B.4 and B.5 present the architecture of the

coding scheme, used in Section 3.4.3. This architecture is widely inspired by Cheng et al.

[44] with a few modifications. The overall number of parameters is 20 million.

139

Figure B.4: The analysis and synthesis transforms ga and gs. The number of internal
features F is set to 192, the number of latent features Fy is set to 256.

140

Figure B.5: The hyperprior analysis and synthesis transforms ha and hs. The number of
internal features F is set to 192, the number of hyperprior features Fz is set to 64.

B.6 Additional visual examples

Figures B.6, B.7, B.8, B.9 and B.10 present visual comparisons between a learned im-

age coder and several traditional anchors (JPEG, HM and VTM) under different rate

constraints. Unlike traditional coders, the learned coder does not perform a block based

processing. As such, it avoids blocking artifacts and discontinuities, especially at low rate,

see Fig. B.7. The convolutional nature of the learned coder also avoids other artifacts e.g.

banding (the sky with JPEG at rate R1 in Fig. B.8) or ringing (the sky with HM at rate R1

in Fig. B.8).

The variety of the examples proposed in these Figures demonstrates that the learned

image coder offers visual performance competitive with state-of-the-art traditional coder

such as the VTM. The learned coder handles properly low-frequency areas (the girl’s face

in Fig. B.7 or the sky in Fig. B.8), high-frequency areas (the trees in Fig. B.6 and B.10) as

well as areas with small details (the numbers in Fig. B.9).

141

(a) Original image.

0 0.25 0.5 0.75 1 1.25
24

28

32

36

40

R1

R2

R3

R4

Rate [bpp]

P
S

N
R

[d
B

]

JPEG
HM

VTM
Learned

(b) Rate-distortion curves.

Original JPEG HM VTM Learned

R1

R2

R3

R4

Figure B.6: Visual comparison for the image 46c1831600829ae8b30c6b06557424ef.

142

(a) Original image.

0 0.25 0.5 0.75
24

28

32

36

40

R1

R2

R3

R4

Rate [bpp]

P
S

N
R

[d
B

]

JPEG
HM
VTM

Learned

(b) Rate-distortion curves.

Original JPEG HM VTM Learned

R1

R2

R3

R4

Figure B.7: Visual comparison for the image ad249bba099568403dc6b97bc37f8d74.

143

(a) Original image.

0 0.25 0.5 0.75
24

28

32

36

40

R1

R2

R3

R4

Rate [bpp]

P
S

N
R

[d
B

]

JPEG
HM

VTM
Learned

(b) Rate-distortion curves.

Original JPEG HM VTM Learned

R1

R2

R3

R4

Figure B.8: Visual comparison for the image 08052112d0151f7c9ac4879f838d5a0c.

144

(a) Original image.

0 0.1 0.2
32

34

36

38

40

R1

R2

R3

R4

Rate [bpp]

P
S

N
R

[d
B

]

JPEG
HM
VTM

Learned

(b) Rate-distortion curves.

Original JPEG HM VTM Learned

R1

R2

R3

R4

Figure B.9: Visual comparison for the image 400984b87394ada6d9627ed918908986.

145

(a) Original image.

0 0.5 1 1.5 2
20

22

24

26

28

30

32

R1

R2

R3

R4

Rate [bpp]

P
S

N
R

[d
B

]

JPEG
HM
VTM

Learned

(b) Rate-distortion curves.

Original JPEG HM VTM Learned

R1

R2

R3

R4

Figure B.10: Visual comparison for the image 72e19343f46a447bea2206c368a9692a.

146

APPENDIX C

TRAINING DATASET FOR LEARNED

VIDEO CODING

C.1 Requirements

The parameters of the learned coding schemes are optimized through the minimization of

a rate-distortion cost for successive training examples. As such, the nature of the training

data significantly impacts the performance of the resulting system. At test time, a learned

coder performs well on data similar to the training set, while video sequences exhibiting a

nature too different from the training data leads to worse performance. In this thesis, the

objective is to obtain a generic coder. In particular, the system should perform well on:

• Different natures of video sequences (user-generated contents, professional videos

and synthetic sequences);

• Different resolutions, from 540p to 2160p;

• Different frame rates, from 24 to 60 frames per second.

To this end, the training dataset is constructed by gathering different existing video

datasets.

C.2 Dataset composition

Section 4.3.4 has introduced the coding configuration used during the training stage: each

example is a 3-frame video sequences. To ensure an acceptable memory usage, all examples

are 256×256 crops, extracted from pre-existing video datasets. Table C.1 summarises

the different datasets used to composed the training set. The resulting training set is

composed of 5.2 million video sequences.

147

Table C.1: Composition of the training dataset. UGC stands for user-generated content
and Prof. for professional content.

Dataset Nature
Resolution

Average Number
UGC Prof. Natural Synthetic FPS examples

KoNVid_1k [81] ! ! 540p 28 0.9×106

CLIC2021 [16] ! ! ! 720p 30 1.4×106

YouTube-NT [82] ! ! ! 1080p 25 2.5×106

YUV_4K [83] ! ! 2160p 58 0.4×106

Total 5.2×106

148

APPENDIX D

COMPREHENSIVE EXPERIMENTAL

DETAILS FOR CNET

D.1 Residual autoencoder

This section presents the architecture of the autoencoder used for the residual and image

coding in the context of video compression. In both case, exactly same architecture is

implemented, the difference lies simply on the input. Residual coding input is xt − x̃t i.e.

the subtraction between the frame to code and its prediction. For image coding, the input

is the frame to code xt.

D.2 Quantization gains

Figure D.3 presents the encoder coding gains learned according to different rate con-

straints. Across the entire range of rate, the quantization gains (i.e. quantization accuracy)

of the intra frames is always more important than those of the inter frames. Moreover,

this example allows to illustrate that the system learns to disable some latent feature

maps when the rate constraint becomes too tight. For instance, compare the highest and

the lowest rate systems, respectively the systems a and g. For the high-rate system, the

64 latent feature maps are active. For the low-rate system only the first 25 latent feature

maps are active. The other ones are always equal to zero, allowing to reduce the overall

rate.

149

Figure D.1: The analysis and synthesis transforms ga and gs. The number of internal
features F is set to 192, the number of latent features Fy is set to 256.

150

Figure D.2: The hyperprior analysis and synthesis transforms ha and hs. The number of
internal features F is set to 192, the number of hyperprior features Fz is set to 64.

151

16 32 48 64
0

0.25

0.5

0.75

1
a

I
P
B

16 32 48 64
0

0.25

0.5

0.75

1
b

I
P
B

16 32 48 64
0

0.25

0.5

0.75

1
c

I
P
B

16 32 48 64
0

0.25

0.5

0.75

1
d

I
P
B

16 32 48 64
0

0.25

0.5

0.75

1
e

I
P
B

16 32 48 64
0

0.25

0.5

0.75

1
f

I
P
B

16 32 48 64
0

0.25

0.5

0.75

1
g

I
P
B

0 1 2 3 4 5 6
12
14
16
18
20
22
24

a

b
c

d
e

f
g

Rate [Mbit/s]

M
S

-S
S

IM
d

B
[d

B
]

RD curves, CLIC 2021 valid. set, RA config

Figure D.3: Encoder quantization gains Γ
enc
f

for different rate targets.

152

APPENDIX E

COMPREHENSIVE EXPERIMENTAL

DETAILS FOR MNET

E.1 Architecture

This sections gives the detailed architecture of the MNet autoencoder. For convenience, the

architecture of MNet is extremely similar to the one of CNet. Figure E.1 and E.2 presents

the architecture of the different MNet transforms.

E.2 Additional examples of optical flows

Figure E.3 presents an additional example of optical flows. Here, the camera is zooming

out of the man i.e. the entire background is moving in different directions, resulting in

different colours on the flow visualisations. As the zoom out is centered on the man, the

pixels on the borders of the images move faster than those in the center. This can be seen

through the darker shade of the colours at the border of the optical flows. While the man’s

body remains still, its hands are moving vertically. This is well captured in the optical

flows. Lastly, the text remains at the same place throughout the sequence. This explains

the white areas at the bottom right of the optical flows. This example proves that the

system is able to learn to estimate and transmits complex and multiple motions, as well

as properly segmenting between different areas (background, the man’s hands, the text).

153

Figure E.1: MNet analysis and synthesis transforms ga and gs. The number of internal
features F is set to 192, the number of latent features Fy is set to 64.

154

Figure E.2: MNet hyperprior analysis and synthesis transforms ha and hs. The number of
internal features F is set to 192, the number of hyperprior features Fz is set to 16.

155

(a) Past reference x̂p. (b) Original frame to code xt. (c) Future reference x̂ f .

(d) Optical flow vp: motion from
xt to x̂p.

(e) Optical flow representation.
Motion is expressed in pixel.

(f) Optical flow v f : motion from
xt to x̂ f .

Figure E.3: Additional examples of optical flows from the sequence Sports_1080P-08e1,
extracted from the CLIC21 validation set.

E.3 Bidirectional prediction weighting and disocclu-

sions

Figure E.4 completes the example from Section 6.3.3, where the bidirectional prediction

weighting β handles disocclusions. The girl in the foreground is moving from left to right.

As such, the intermediate prediction (using a single reference) shown in Fig. E.4c and E.4d

present visual degradations either at the left or at the right or the girl i.e. in the areas

occluded in their respective reference frame. Combining the two intermediate predictions

through β allows to select the non-occluded areas from each of them i.e. the areas without

visual degradations. This behaviour is illustrated in Figures E.4e and E.4e. In the end,

this results in a temporal prediction with fewer visual degradations, see Fig. E.4g.

The zoom-out motion of the example presented in Fig. E.3 leads to an interesting

behaviour for β, illustrated in Fig. E.5. Most of the frame uses a β≃ 0.5 which corresponds

to computing the average of both intermediate motion compensations. Yet, the borders

shows β≃ 0 i.e. the border areas rely only on the future reference frame x̂ f to compute the

final temporal prediction. This is due to the zoom-out motion, where the border pixels are

not present in the past reference frame.

156

(a) Frame to predict xt. (b) Bidirectional prediction weighting β.

(c) Intermediate motion comp. w(x̂p;vp). (d) Intermediate motion comp. w(x̂ f ;v f).

(e) Weighted motion comp. β⊙w(x̂p;vp). (f) Weighted motion comp.
(

1−β
)

⊙w(x̂ f ;v f).

(g) Prediction x̃t, computed using Eq. (6.1). (h) Prediction error xt − x̃t.

Figure E.4: Example of β handling a disocclusion.

157

(a) Frame to predict xt. (b) Bidirectional prediction weighting β.

(c) Intermediate motion comp. w(x̂p;vp). (d) Intermediate motion comp. w(x̂ f ;v f).

(e) Weighted motion comp. β⊙w(x̂p;vp). (f) Weighted motion comp.
(

1−β
)

⊙w(x̂ f ;v f).

(g) Prediction x̃t, computed using Eq. (6.1). (h) Prediction error xt − x̃t.

Figure E.5: Additional examples of β performing dissoclusion.

158

Titre : Développement de schémas de compression vidéo basés apprentissage

Mot clés : Compression vidéo, apprentissage profond, traitement du signal

Résumé : La quantité toujours croissante
d’images et de vidéos échangées sur Inter-
net a un impact substantiel sur le changement
climatique. Cet impact peut-être réduit via le
développement de meilleurs algorithmes de
compression, qui visent à réduire le volume
de données représentant les vidéos, tout en
conservant une qualité acceptable pour l’utili-
sateur. Depuis les années 90, des standards
de compression vidéo ont été conçus afin
de diminuer la taille des vidéos via une suc-
cession d’opérations linéaires. Ces standards
sont développés de manière incrémentale, en-
traînant une optimisation séparée des diffé-
rentes opérations. Récemment, les réseaux
de neurones ont émergé comme une réponse
pertinente à un grand nombre de probléma-

tiques, grâce à leur capacité à apprendre des
fonctions non-linéaires au travers d’une optimi-
sation de bout-en-bout. Si la compression neu-
ronale constitue d’ores et déjà l’état de l’art
pour le codage d’images fixes, le codage vi-
déo demeure une tâche plus difficile. Cette
thèse propose de concevoir un codeur vidéo
basé apprentissage, afin de tirer profit des
capacités prometteuses des réseaux de neu-
rones. Étant donné la nouveauté de ce do-
maine, la conception du codeur démarre d’une
page blanche, et les différents éléments le
composant sont étudiés en détail. Au final,
l’évaluation du codeur proposé sur une tâche
de codage vidéo réaliste montre qu’il présente
des performances compétitives avec des stan-
dards de compression modernes.

Title: Design of learned video coding schemes

Keywords: Video Compression, Deep Learning, Signal Processing

Abstract: The ever-growing amount of images
and videos conveyed over the Internet has a
substantial impact on climate change. This im-
pact can be mitigated through the design of
better compression algorithms, which aims to
reduce the size of videos while maintaining an
acceptable quality for the user. Since the 90s,
video coding standards have been devised to
reduce the video size through a succession
of linear operations. Video coding standards
are incrementally designed, leading to a sep-
arate optimization of the different operations.
Recently, neural networks have emerged as
a relevant solution for a wide variety of is-
sues, due to their ability to learn non-linear

functions through an end-to-end optimization
process. While learned approaches already
achieve state-of-the-art performance for still
image compression, video coding remains a
more challenging task. This thesis proposes
to design a learned video coder, to leverage
the promising abilities of neural networks. Due
to the novelty of this field, the design of the
proposed learned coding scheme starts from
a blank page. The different elements of the
coder are thoroughly considered. In the end,
it is shown that the proposed learned coder
is able to achieve performance equivalent to
modern video coding standards in a realistic
video coding setup.

	Acknowledgements
	Résumé en français
	List of Figures
	List of Tables
	Introduction
	Context
	Structure of the thesis
	Contributions

	I Context and State of the Art
	Fundamentals of Video Coding
	Introduction
	Lossless coding
	Optimal rate and information theory
	Arithmetic coding
	Practical limitations of arithmetic coding
	Predictive coding
	Transform coding
	Conclusion

	Lossy compression
	Discarding information
	Distortion metrics
	Rate-distortion optimization

	Conclusion

	Traditional Video Coding Algorithms
	Introduction
	Hybrid image coding
	Representing the colour: the RGB and YUV colour spaces
	Overview of the video coding structure
	Intra prediction
	Transform
	CABAC: Context Adaptive Binary Arithmetic Coding

	From coding still images to video sequences
	Inter prediction
	Coding structure

	Conclusion

	Learning to Compress Images
	Introduction
	Basics of neural networks
	Building a neural network
	Training a neural network
	Convolutional neural networks

	Learning-based lossy image coding
	Autoencoders
	Training a learned coding scheme
	Initial architecture
	Training and rate-distortion results

	Advanced learned coding schemes
	Hyperprior to refine the probability model
	Auto-regressive probability model
	Attention modules for better networks
	Binary Probability Model

	Visualisations
	A word on complexity
	Conclusion

	II Learned Video Coding
	From Learned Image Coding to Learned Video Coding
	Introduction
	Temporal dependencies reduction
	Need of an explicit motion compensation
	inter frame coding with neural networks
	Motion estimation, transmission and compensation
	Transmitting the unpredicted part

	Experimental conditions
	CLIC 21 video track
	Anchors
	Coding configuration
	End-to-end training

	Conclusion

	Exploitation of a Prediction
	Introduction
	Baselines and experimental conditions
	Naive prediction
	Learned and traditional baselines
	Training and testing the baselines

	Conditional coding
	Motivations
	Conditional coding principles
	Implementation and rate-distortion performance
	Visualisation

	Latent domain residual coding
	Do we need a dedicated intra frame coder?
	Variable quantization steps
	Motivation and implementation
	Experimental results

	Conclusion

	Computation of a Temporal Prediction
	Introduction
	Coding scheme featuring a prediction step
	Bidirectional prediction
	Motion information at the decoder side

	Skip mode: an additional coding mode
	Principles
	Training
	Behaviour
	Rate-distortion results

	Conditional coding for the MNet
	Principles
	Training and rate-distortion results
	Visualisations

	Comprehensive evaluation of the final system
	Different coding configurations
	MNet limitations

	Conclusion

	Towards Practical Video Coding
	Introduction
	CLIC21 video track
	Challenge presentation
	Sequence-wise competition

	Rate competition
	With mono-rate coders
	Design of a multi-rate coder
	Training
	Rate-distortion results

	Participation to the CLIC21 video track
	Proposed systems
	Challenge results

	Conclusion

	Conclusions and Future Work
	Thesis objectives
	Future works

	Bibliography
	List of Publications
	Additional Details on Learned Image Coding
	Training recipe
	Training dataset
	Details on the training stage

	Additional information regarding the test stage
	Inference dataset
	Coding standards as anchors

	Detailed ARM architecture
	Residual blocks and attention modules
	Comprehensive architecture of a state-of-the-art image coder
	Additional visual examples

	Training dataset for learned video coding
	Requirements
	Dataset composition

	Comprehensive Experimental Details for CNet
	Residual autoencoder
	Quantization gains

	Comprehensive Experimental Details for MNet
	Architecture
	Additional examples of optical flows
	Bidirectional prediction weighting and disocclusions

