
HAL Id: tel-04459277
https://theses.hal.science/tel-04459277

Submitted on 15 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling, approximation and simulation using smooth
splines on unstructured meshes

Michelangelo Marsala

To cite this version:
Michelangelo Marsala. Modeling, approximation and simulation using smooth splines on unstruc-
tured meshes. Numerical Analysis [math.NA]. Université Côte d’Azur, 2023. English. �NNT :
2023COAZ4099�. �tel-04459277�

https://theses.hal.science/tel-04459277
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

Modélisation, approximation et simulation
à l’aide de splines régulières sur des

maillages non structurés

Michelangelo MARSALA
Université Côte d’Azur, Inria AROMATH

Présentée en vue de l’obtention du grade de
docteur en Mathématiques d’Université
Côte d’Azur

Dirigée par: Bernard MOURRAIN
Codirigée par: Angelos MANTZAFLARIS

Soutenue le : 15 Décembre 2023

Devant le jury, composé de :
Carlotta GIANNELLI, Professeure asso-
ciée, Università di Firenze, Florence
Carla MANNI, Professeure, Università di
Roma "Tor Vergata", Rome
Angelos MANTZAFLARIS, Chargé de
recherche, Inria d’Université Côte d’Azur,
Sophia-Antipolis
Bernard MOURRAIN, Directeur de
recherche, Inria d’Université Côte d’Azur,
Sophia-Antipolis
Giancarlo SANGALLI, Professeur, Univer-
sità di Pavia, Pavie
Thomas TAKACS, Chargé de recherche, Jo-
hann Radon Institute for Computational and
Applied Mathematics, Linz

Modélisation, approximation et simulation à l’aide de splines
régulières sur des maillages non structurés

♦

Modeling, approximation and simulation using smooth splines
on unstructured meshes

Michelangelo MARSALA

Jury

Rapporteurs:

• Carlotta GIANNELLI, Professeure associée, Università di Firenze, Florence

• Thomas TAKACS, Chargé de recherche, Johann Radon Institute for Computational
and Applied Mathematics, Linz

Examinateurs:

• Carla MANNI, Professeure, Università di Roma "Tor Vergata", Rome

• Giancarlo SANGALLI, Professeur, Università di Pavia, Pavie

Directeurs:

• Angelos MANTZAFLARIS, Chargé de recherche, Inria d’Université Côte d’Azur,
Sophia-Antipolis

• Bernard MOURRAIN, Directeur de recherche, Inria d’Université Côte d’Azur, Sophia-
Antipolis

v

Abstract
In this thesis we investigate novel spline constructions over unstructured meshes to be applied
for modeling purposes, approximation problems and in the numerical resolution of partial
differential equations.

Being able to describe accurately a complex shape is not an easy task in geometric modeling,
and it becomes even harder if we need the result to be suitable for numerical simulations.
This is the challenge which motivated the topic of this work: explore new spline constructions
that have potential to reproduce faithfully complicated geometries and, at the same time, are
suitable to run isogeometric analysis experiments.

First we present the derivation of a globally G1 smooth family of surfaces, defined by
smoothing masks, approximating the well-known Catmull-Clark subdivision surface scheme.
The resulting surface is a collection of Bézier patches, which are biquintic and join with
G1 smoothness around extraordinary vertices and bicubic elsewhere. Each Bézier point is
computed using a locally defined mask which ensures, by means of quadratic gluing data, G1

regularity around extraordinary vertices of the corresponding patches.
We continue with the description of a set of basis functions generating the space of biquintic

G1 spline over a quadrangular mesh. The basis is represented in terms of biquintic Bézier
polynomials on each quadrilateral face. Starting from the equation defining the G1 relations
between two patches, achieved by quadratic gluing data functions, we perform an extraction
procedure in order to obtain the values of the control point defining the different elements.

The latter basis functions, due to their definition, turn out not to be analysis-suitable.
Driven by this, we investigate a new construction of G1 spline basis functions with bidegree
5 suitable for isogeometric analysis simulations. The construction is made considering knot
vectors composed of knots of multiplicity 5 and imposing C1 regularity at the inner part of the
resulting patches. Similarly to the earlier case, the coefficients defining the different functions
are obtained by an extraction technique plus knot insertion.

The previous constructions are then used to solve two practical problems: the conversion
of CAD models into smooth spline objects and the resolution of the shallow-water equation.
The conversion is performed by fitting a point cloud representing a discretized model of the
original CAD geometry, while the shallow-water equation is solved in the case of shallow lakes
whose shape is faithfully approximated by a planar quad mesh.

Lastly, we present the definition of three cubic C2 quasi-interpolation operators over arbitrary
triangulations. The quasi-interpolants are locally generated by simplex spline basis functions
defined on each triangle of the triangulation, which is subdivided according to the Wang-Shi
split. The coefficients defining the operators in the simplex basis are computed easily by
solving an Hermite problem, whose differential data is either given in input or reconstructed
by using local cubic polynomials attached to the different features of the triangulation.

Key words: spline constructions, multipatch domains, gluing data, extraordinary vertices,
isogeometric analysis, approximation theory

vii

Résumé
Dans cette thèse, nous étudions de nouvelles constructions de splines sur des maillages non
structurés à appliquer à des fins de modélisation, à des problèmes d’approximation et à la
résolution numérique d’équations aux dérivées partielles.

Pouvoir décrire avec précision une forme complexe n’est pas une tâche facile en modélisation
géométrique, et cela devient encore plus difficile si nous avons besoin que le résultat soit adapté
aux simulations numériques. C’est le défi qui a motivé le sujet de ce travail : explorer de
nouvelles constructions de splines qui ont le potentiel de reproduire fidèlement des géométries
compliquées et qui, en même temps, sont adaptées à l’exécution d’expériences d’analyse
isogéométrique.

Nous présentons tout d’abord la dérivation d’une famille de surfaces globalement G1 lisses,
définies par des masques de lissage, approchant le schéma bien connu de la surface de subdivision
de Catmull-Clark. La surface résultante est une collection de points de Bézier, qui sont
biquintiques G1 autour de sommets extraordinaires et bicubiques ailleurs. Chaque point de
Bézier est calculé à l’aide d’un masque défini localement qui assure, au moyen de données
de collage quadratique, la régularité G1 autour des sommets extraordinaires des patchs
correspondants.

Nous poursuivons avec la description d’un ensemble de bases générant l’espace des splines G1

biquintiques sur une maille quadrangulaire. La base est représentée en termes de polynômes
de Bézier biquintiques sur chaque face du quadrilatère. sur chaque face du quadrilatère. A
partir de l’équation définissant les relations G1 entre deux patchs, obtenue par des fonctions
de données de collage quadratique, nous effectuons une procédure d’extraction afin d’obtenir
les valeurs du point de contrôle définissant les différentes bases.

Ces dernières bases, en raison de leur définition, s’avèrent ne pas être adaptées à l’analyse.
C’est pourquoi nous étudions une nouvelle construction de fonctions de base spline G1 avec un
bidegree 5 convenant aux simulations d’analyse isogéométrique. La construction est réalisée
en considérant des vecteurs de nœuds composés de nœuds de multiplicité 5 et en imposant
une régularité C1 dans la partie interne des patchs résultants. Comme pour la construction
des bases précédentes, les coefficients définissant les différentes fonctions sont obtenus par une
technique d’extraction et d’insertion de nœuds.

Les constructions précédentes sont ensuite utilisées pour résoudre deux problèmes pratiques:
la conversion de modèles CAD en objets splines lisses et la résolution de l’équation des eaux
peu profondes. La conversion est obtenue en ajustant un nuage de points représentant un
modèle discrétisé de la géométrie CAD originale, tandis que l’équation des eaux peu profondes
est résolue dans le cas de lacs peu profonds dont la forme est fidèlement approximée par un
maillage quadratique planaire.

Enfin, nous présentons la définition de trois opérateurs quasi-interpolants cubiques C2 sur
des triangulations arbitraires. Les quasi-interpolants sont générés localement par des fonctions
de base spline simplex définies sur chaque triangle de la triangulation, qui est subdivisée selon
la division de Wang-Shi. Les coefficients définissant les quasi-interpolants dans la base simplex

viii

sont calculés facilement en résolvant un problème d’Hermite, dont les données différentielles
sont soit données en entrée, soit reconstruites en utilisant des polynômes cubiques locaux
attachés aux différentes caractéristiques de la triangulation.

Mots-clés: constructions de splines, domaines multipatch, données de collage, vertices
extraordinaires, analyse isogéométrique, théorie de l’approximation

ix

Acknowledgements
This PhD thesis has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 860843.

xi

Contents
Introduction 1

Brief history of splines . 1
Context of the thesis . 2
Overview . 5
Publications . 6
Implementations . 6

1 Preliminaries 7
1.1 B-spline functions . 7

1.1.1 Definitions and properties . 7
1.1.2 B-spline curves . 8
1.1.3 Tensor-product B-spline surfaces . 10

1.1.3.1 Smooth joints between B-spline patches 11
1.1.4 NURBS . 12
1.1.5 Fundamental algorithms . 13

1.1.5.1 Knot insertion . 13
1.1.5.2 Degree elevation . 14

1.2 Beyond tensor-product . 14
1.2.1 Splines on triangulations . 14

1.2.1.1 Barycentric coordinates . 14
1.2.1.2 Triangular Bernstein polynomials 15
1.2.1.3 Bézier surfaces . 16

1.2.2 A brief summary of simplex splines . 17
1.3 Splines on meshes . 19

1.3.1 Splines on triangular planar meshes . 19
1.3.2 G1-smooth splines over topological quad meshes 20

1.4 Subdivision surfaces . 21
1.4.1 Definitions and properties . 21
1.4.2 An overview on classical subdivision surfaces 22

1.4.2.1 Catmull-Clark scheme . 22
1.4.2.2 Doo-Sabin scheme . 23
1.4.2.3 Loop scheme . 23
1.4.2.4 The Butterfly scheme . 23

1.5 Isogeometric analysis . 24
1.5.1 PDEs: strong and weak formulation 24

1.5.1.1 Strong and weak formulation of some classical PDEs 27
1.5.2 Galerkin’s method and isogeometric spaces 28
1.5.3 PDEs on manifolds . 29

xii Contents

2 A G1 approximation of Catmull-Clark surfaces 31
2.1 Bicubic Approximate Catmull-Clark (ACC3) and degree elevated (ACC5) . . 31
2.2 G1 constraints on Bézier patches . 33
2.3 Explicit Bézier masks derivation . 34

2.3.1 Bézier masks of order one . 35
2.3.2 Bézier masks of second order . 38

2.3.2.1 Deriving M1,1 by assigning M2,0: circulant system approach . 38
2.3.2.2 Deriving M2,0 by assigning M1,1: direct approach based on ACC5 43

2.3.3 Third and fourth order Bézier masks 44
2.3.4 Treatment of boundaries . 44

2.4 Analysis of the solutions and numerical results 46
2.4.1 Comparing the different schemes . 46
2.4.2 Complex meshes . 49
2.4.3 Comparison with ACC3 surface and Catmull-Clark limit surface 52

3 Geometrically smooth functions for point cloud fitting 55
3.1 G1 spline space on a mesh M . 55
3.2 Basis extraction . 56

3.2.1 The set BV of vertex basis functions 57
3.2.1.1 Construction of basis functions associated to an inner EV . . 57
3.2.1.2 Basis functions at an inner regular vertex 61
3.2.1.3 Basis functions linked to extraordinary and regular boundary

vertices and corners . 62
3.2.2 The set BE of edge basis functions . 62

3.2.2.1 Construction of basis functions connected to an extraordinary
edge . 63

3.2.2.2 Basis functions belonging to an inner regular edge 63
3.2.2.3 Boundary edge basis functions 64

3.2.3 The set BF of face basis functions . 64
3.3 Analysis of the basis and space dimension . 64
3.4 Numerical experiments . 67

3.4.1 Point cloud by analytic function evaluation 68
3.4.2 Point cloud from ACC3 surfaces . 73
3.4.3 Quadrilateral mesh generation, parametrization and fitting 78
3.4.4 Comparison with C0 fitting . 80

4 Analysis-suitable G1 bases for isogeometric analysis 83
4.1 General formulation of G1 conditions . 84
4.2 Construction of the basis . 86

4.2.1 Vertex basis functions: the set Bt
V . 87

4.2.1.1 Construction of basis functions corresponding to an inner EV 87
4.2.1.2 Bases linked to boundary EVs 88
4.2.1.3 Basis functions at regular vertices and corners 88

4.2.2 Edge basis functions: the set Bt
E . 90

4.2.2.1 Extraordinary edge basis functions 90
4.2.3 Face basis functions: the set Bt

F . 98
4.3 Analysis of the basis and space dimension . 99

Contents xiii

4.4 Numerical experiments . 99
4.4.1 L2 projection . 100
4.4.2 Poisson’s equation . 102
4.4.3 Biharmonic equation . 103

5 A pipeline from CAD models to spline representation 107
5.1 Control cage generation from MCAD geometry 107
5.2 Control cage adjustment . 111
5.3 Point cloud sampling . 111
5.4 From CAD to G1 . 112

6 Free natural vibrations of a shallow lake 121
6.1 Problem statement . 121

6.1.1 The test case . 122
6.1.2 The general case . 123

6.2 Simulations on real lake data . 123
6.2.1 Rogagua lake . 124
6.2.2 Orta lake . 124

7 Cubic C2 spline quasi-interpolants on arbitrary triangulations 131
7.1 The spline space S23(△WS3) . 131
7.2 Hermite interpolation in S23(△WS3) . 133
7.3 The spline space S23(TWS3) . 136
7.4 Construction of quasi-interpolants . 138

7.4.1 Consistent local Hermite data . 138
7.4.2 Quasi-interpolant from exact Hermite data 140
7.4.3 Construction with Hermite data from averaged polynomials 141
7.4.4 Construction with Hermite data from local weighted least-squares poly-

nomials . 143
7.4.5 Error estimates . 145

7.5 Numerical experiments . 146
7.5.1 Polynomial of degree four . 146
7.5.2 Franke’s function . 148
7.5.3 Sigmoid function . 150
7.5.4 Function with three peaks . 152
7.5.5 Function on a pentagon domain . 154

Conclusion and perspectives 157

Bibliography 159

1

Introduction
Describing accurately a complex shape in terms of its main geometric features is a major
challenge in geometric modeling. The latter aims at providing compact and efficient models
for approximating or representing precisely geometric objects, favoring the exploitation of such
models in simulation and optimization processes.

In this thesis, we investigate the construction of new smooth spline spaces over meshes and
their applications in geometric modeling, approximation theory and IsoGeometric Analysis
(IGA)-based numerical simulations.

Spline representations make a step towards this objective, by describing smooth shapes in
terms of control points, which express the features of such parametrized surfaces. Thanks
to their simple definition and malleability, splines are applied in a wide range of different
topics; one of their main usage can be found in Computer-aided Design and Manufacturing
(CAD-CAM) where, typically, surfaces are trimmed and glued together in patchworks to
establish the entirety of a geometric object’s shape. As a consequence, shape descriptions
emerge that might lack precision, showing leaking patches, stretched components, and other
deviations that don’t align with the desired geometry of the objects.

An alternative approach explored to tackle this challenge is the utilization of subdivision
surfaces. Beginning with a coarse mesh that governs the surface’s geometric characteristics, a
subdivision process is sequentially employed to achieve progressively finer meshes, ultimately
converging toward a limit surface. Subdivision creates smooths objects but, unfortunately,
they correspond to an infinite set of spline rings nearby an Extraordinary Vertex (EV) of the
initial mesh. Moreover, the surface exhibits unwanted oscillations around EVs.

As another option to model smooth spline objects over meshes of any topology we have
multipatch constructions. In this approach, the sought geometry is defined as a collection of
single spline functions joining each other with a prescribed smoothness. The tangent plane
continuity, or G1 continuity, extensively investigated in the past few decades, is a proper
example of commonly utilized smoothness in multipatch geometries.

Other types of regularity, e.g. standard Cr, are more feasible when dealing with triangulations
where the continuity can be simply achieved by using macro-elements split. This approach is
common in the construction of quasi-interpolation operators or B-spline-like bases.

The investigation of novel smooth spline constructions over unstructured meshes is a revived
topic due to its importance for isogeometric analysis discretizations. In fact, high quality
results can be achieved by using G1 basis functions when running numerical simulations to
solve partial differential equations, also when dealing with challenging high-order equations.

Brief history of splines

From their first appearance back in 1946 in Schoenberg’s paper [Sch46], spline constructions
have raised great interest for their simple formulation and wide spectrum of applications. In
the early 1960s, Bézier, thanks to Bernstein’s work [Ber12], defined the homonymous curves
and applied them for CAD at French automaker Renault; around the same years de Casteljau,

2 Introduction

employee of Citroën, developed a numerically stable algorithm for evaluating the above curves.
In [CS66] splines were described as linear combination of "fundamental spline functions";

these functions, subsequently renamed B-splines, were deeply investigated, for example,
in [Mar70; Boo72]. During these years there were already some results for tensor-product
splines, but their most innovative application at that time was in the context of subdivision
surfaces early introduced by Catmull and Clark in [CC78], giving rise to a new fruitful line of
research in CAD.

Also, further developments on triangular domains made their entrance: among the many
works concerning the development on this topic we cite [Fre71; PS77; Far79]. The age from 1980
to late 1990s had as main character multivariate spline constructions and their applications.
A novel construction dated in those years were box-splines, about which we mention, for
instance, [Boe84; CLR84] and the classic monographs [BHR93]; moreover, in [Loo87] Loop
presented an innovative subdivision scheme whose limit surface is a box-spline.

The so-called geometric continuity began to be utilized in computer graphics, thanks to new
works of the time such as [Far82], as well as innovative spline-like constructions of which we
quote [Pot93; Rei97].

Until then, geometric modeling and numerical simulations had little in common. In fact,
engineers were implementing finite element methods for solving partial differential equations
approximating the domain by polygonal meshes. Before 2005 there were already few works
proposing numerical treatments of PDEs based on spline constructions, but the seminal
paper proposing to unify the two can be identified with the work by Hughes, Cottrell and
Bazilevs [HCB05], in which, for the first time, it was rigorously described how to use CAGD
tools to efficiently solve differentials problems. Undoubdably this is, to date, one of the most
prolific research area in numerical analysis: isogeometric analysis was born.

Context of the thesis

Dealing with smooth objects having complex geometry is not an easy task. One of the mostly
used tools to perform geometric modeling are tensor-product B-splines. These functions
enjoy good properties, such as local support, nonnegativity, partition of unity; moreover, they
form a basis for the space of piecewise polynomials, on a certain rectangular region of the
plane, with fixed maximal degree d. Similar constructions presenting analogous properties
to the tensor-product case can be achieved on triangular partitions of the plane by using
the so-called triangular Bernstein polynomials (see, e.g., [Far86; LS07]). Thanks to the
interesting characteristics of these functions, they are widely involved in geometric modeling:
in fact, in order to reproduce an object in terms of spline surfaces it is only necessary to
trace out a piecewise linear approximation of the sought geometry, defining its control net.
Nowadays, the literature presents high number of extensions of B-spline constructions in
order to satisfy the most varied applications: among all the works we recall Hierarchical
B-splines [Kra97; BC13], Generalized B-spline [KS99; MPS11], T-splines [Sed03; TMH21],
Tchebycheffian B-spline [Maz04; RMS23], Truncated Hierarchical B-splines (THB) [GJS12;
Eva18] and Locally refined B-splines (LR) [DLP13; Bre13]. Many studies have also been
focusing on analysing spline spaces, providing dimension formulas (or upper bounds for
the latter) and basis computations. A recurring problem in applications is whether using
constructions with high degree, which provide more freedom feasible to obtain smoother results
but slower to evaluate numerically, or lower degree splines which are more computationally
friendly but allow less flexibility. A possible trade off is the use of spline objects with inner

Context of the thesis 3

knots or opt for multipatch constructions.
In the case of planar triangulations, high smoothness spline constructions of relatively low

degree can be achieved by using the so-called macro-structures. Famous examples are the
Clough-Tocher split [CT65; LS07; Sab85] and the Powell-Sabin 6 and 12 splits [AS02; PS77;
LS07; SS06]; of common interest are spline quasi-interpolants construction over such domains
as [GS18; Spe13a; Spe13b; MS07]. Other spline quasi-interpolation operators are presented,
for example, in [Bar08; DRS13; LMS08; Buf16], while hierarchical spline variants have been
proposed in [Bra16; GJM20; SM16].

An excellent alternative to overcome this degree-regularity dispute is also provided by
subdivision surfaces. A subdivision scheme is an iterative algorithm that produces, “at infinity”,
smooth objects called subdivision surfaces, when applied to an input coarse mesh of general
topology. The smoothness of the limit surface depends on the weights defining the scheme
itself and it is analyzed carrying out a spectral analysis on the subdivision matrix, i.e. a matrix
containing the weights of the scheme. It is a common issue in subdivision to have a drop of
regularity in the subdivision surface nearby the so-called extraordinary or irregular vertices;
moreover, in the vicinity of the above extraordinary points, the subdivision surface cannot be
represented using a finite number of B-spline patches. The first, and well-known subdivision
scheme, is the Catmull-Clark scheme [CC78] acting on quadrilateral meshes, while we have the
Loop scheme [Loo87] as initiator for subdivision on triangular meshes: both limit surfaces are
C2 continuous in regular regions and C1 while approaching the irregular vertices, and they can
both be directly evaluated thanks to elegant closed formulas presented in [Sta98; Sta01]. In
recent years, a new class of subdivision schemes, called guided subdivision, has been published,
in which the input mesh is used as guide to construct very smooth limit surfaces; in fact,
this approach allows to get C2 continuous limit surface around extraordinary vertices. Some
of the first results in this respect are [KP17a; KP17b] and [KP23]. However, also in these
situations the final surface has no finite description in terms of B-spline functions. To overcome
this problem one could choose constructions which approximate the limit surface of a certain
subdivision scheme with one or multiple B-spline patches: examples are [Li11] regarding the
Loop subdivision and the works [Pet00; LS08] or the novel construction in Chapter 2 of this
thesis, where smooth approximations of the Catmull-Clark limit surface are provided.

Multipatch approach proves to be an excellent allied when dealing with complex geometries.
In these constructions the shape is obtained as a collection of several different spline patches of
possibly different degree and topology by means of the so-called geometry map. An interesting
advantage of this structure is producing watertight objects of complicated shapes without
resorting, for example, to trimming. On the other hand, if we require the multipatch geometry
to be suitable for numerical simulations, we need to impose high regularity between its adjacent
patches. If we look for C1 constructions, among the several existing works we cite [NP16;
TSH17] and references therein, where bicubic constructions are provided for unstructured
quad meshes; moreover, the latter also provide basis functions extraction to be applied for
isogeometric simulations when dealing with T-splines. Regarding basis computations on general
quad meshes, a problem that arises is the dimensional dependence from the geometry. As
shown, for instance, in [Kap15], the dimension of a C1 spline space depends on the geometry
itself; this is a big limitation we would like to avoid.

To overcome this issue, one could go for other types of regularity such as the tangent plane
continuity (or geometric continuity, or G1 continuity). G1 smoothness is easier to enforce than
C1 regularity when dealing with extraordinary vertices, and it returns comparable results with

4 Introduction

respect to C1 constructions in both visual quality and performances in numerical simulations.
As suggested by the name, this continuity ensures that neighbouring patches share the same
tangent plane when crossing their common edge. This result is achieved by using C1 functions
called gluing functions, which are defined along the edges of the considered geometry and
solely depend on the valences of the two vertices identifying the edge; we have examples of
different gluing data functions in [BMV17; BMX20; BH14].

Representing objects of complex shapes is common in CAD industry. Unfortunately, CAD
representations present imperfections in the geometry which are unpleasant: in fact, such
objects might present trimmed faces as well as gaps between neighbouring patches, making them
non suitable for numerical experiments. In real applications, having proper representations of
smooth objects which are also eligible for simulations is a must nowadays: that’s a reason why
one of the most prolific research topic in multipatch geometries is about isogeometric analysis
suitable constructions.

From the seminal paper [HCB05] dated back in 2005 and the subsequent monograph [CHB09],
isogeometric analysis has gained great interest. IGA is an efficient Galerkin-based method
to numerically solve partial differential equations whose main idea lays on the isogeometric
paradigm: it consists in reproducing in an exact way the domain of interest for our simulation
via spline functions and use the same basis utilized in the representation of the domain to
solve the target partial differential equation. Many papers provide challenging improvements
in efficiency when compared to standard Finite Elements approaches, where the solution is
obtained by using a set of local polynomial bases defined on a discretization of the selected
domain. Particularly interesting are the constructions of G1-smooth B-spline basis functions
to run numerical simulations on challenging multipatch geometries, that is the case when
dealing with real-life applications. It is impossible to briefly give the proper credit to all the
existing works on the topic; among all we refer to [JQ14; Wan18; ZQ19] for analysis-suitable
G1 bases on triangular meshes and to [CST16; KST18; KTC22; TT23] for basis functions
defined over quadrilateral meshes. We also mention [Hug21] for a more general description of
multipatch discretizations and [Ver23] for a comparison of smooth basis constructions. Adaptive
constructions on multipatch domains are also available, e.g. [BG15; Bra20; Bra23a; Bra23b],
where the basis functions are locally refined around particular features of the considered
geometry. Moreover, regarding G1 spline basis functions on meshes with mixed topology we
mention [MVV16; Gro24]. Lately, isogeometric analysis has been also used to solve partial
differential equations using the so-called Boundary Element Method (BEM), where the search
for a solution of a given equation in a certain domain is translated into some integral concerning
only the boundary of the domain of interest. This approach gives rise to the IGA-BEM method,
which can be more efficient than the standard approach in certain situations; examples are the
works [Hel17; Kos18; Fal18] and references therein.

Motivated by the previous aspects, the objective of this thesis is to present novel smooth spline
constructions on unstructured meshes that are both easy to construct and manipulate, and
that produces high quality objects approximating complex shapes. We reach this goal by using
multipatch spline geometries, whose control points are obtained from simple closed formulas
ensuring smooth connections between patches. Being also interested in numerical simulations,
we focus our interest on constructions providing spline objects that are also suitable for IGA-
based numerical resolution of partial differential equations, i.e. possessing good approximation
properties. In particular, this has been achieved investigating the construction of smooth basis
functions that generate the sought spline space.

Overview 5

Overview

This thesis is organized in the following chapters:

• Chapter 1 recalls basics concepts and results which are necessary for the description
of the novel constructions of this work; it also introduces the notation we will use
throughout the thesis. In detail, the notions of B-spline curve and surface are introduced
as well as a multivariate generalization given by simplex spline formulation. It also
contains an overview on subdivision surfaces and on the numerical treatments of PDEs
via isogeometric analysis approach.

• Chapter 2 is dedicated to the explicit construction of a G1 Bézier surface obtained by
means of smoothing masks on a quadrilateral mesh. After presenting the constraints
ensuring the sought regularity, an explicit case-by-case solving strategy is deeply inves-
tigates. The chapter ends with several numerical experiments that demonstrate the
quality of the novel proposal.

• Chapter 3 is devoted to the description and study of a set of basis functions generating
the space of G1 splines over a quad mesh. Following the topology of the given mesh,
the different functions are obtained by solving simple linear systems derived from
the equations defining the geometric continuity across two adjacent patches. Various
numerical experiments confirm their power in point cloud fitting problems.

• Chapter 4 introduces an analysis-suitable extension of the basis functions developed
in Chapter 3. This new formulation allows a space refinement through knot insertion
which makes the construction suitable for the numerical solution of partial differential
equations, as stated by the presented results.

• Chapter 5 gives a practical application of the constructions introduced in Chapters 2
to 4: it concerns a complete pipeline to convert CAD models to G1 spline objects. The
translation is achieved by fitting a point cloud, extracted from the input CAD model,
with the G1 basis functions we propose; this conversion also makes the resulting geometry
suitable for numerical simulations. Several computational tests confirm the above.

• Chapter 6 presents another use of the tools developed in Chapters 2 to 4 regarding the
free vibrations of a shallow lake. The equation strongly depends on the geometry of the
lake’s bathymetry, which we accurately reproduce by fitting a point cloud underlying its
shape thanks to our G1 basis functions. The cases of two real lakes are used to show the
efficiency of this approach.

• Chapter 7 contains the constructions of three cubic C2 quasi-interpolation operators
defined over a general triangulation. The quasi-interpolants are locally spanned by a
simplex spline basis obtained by subdividing each triangle according to the Wang-Shi
split, and their associated linear functionals are simply derived solving an Hermite
problem. The approximation quality of the different operators is shown by the proposed
numerical examples.

6 Introduction

Publications

The contributions of the thesis are based on the following works:

• [MMM22] G1-Smooth biquintic approximation of Catmull-Clark subdivision
surfaces, with Angelos Mantzaflaris and Bernard Mourrain, in: Computer Aided Geo-
metric Design. https://doi.org/10.1016/j.cagd.2022.102158.

• [MMM24] G1 spline functions for point cloud fitting, with Angelos Mantzaflaris
and Bernard Mourrain, in: Applied Mathematics and Computation. https://doi.org/
10.1016/j.amc.2023.128279.

• [MMM23] Analysis-suitable G1 bases on quadrilateral meshes, with Angelos
Mantzaflaris and Bernard Mourrain, in preparation.

• [Mar23] From CAD to representations suitable for isogeometric analysis: a
complete pipeline, with Angelos Mantzaflaris, Bernard Mourrain, Sam Whyman and
Mark Gammon, preprint. https://hal.science/hal-04185850.

• [MMS23] Maximally smooth cubic spline quasi-interpolants on arbitrary trian-
gulations, with Carla Manni and Hendrik Speleers, submitted for publication.

Implementations

The results present in this thesis have been obtained by using the following languages/libraries:

• The construction of the G1 surfaces, as well as the basis functions, were obtained
using Julia language [Bez17]. The developed codes are available in the repository
https://gitlab.inria.fr/AlgebraicGeometricModeling/G1Splines.jl.

• The least squares fitting and the IGA simulations have been carried out using the
G+Smo library [Man20; Lan15; Jüt14]. The developed codes are available at
https://github.com/gismo/gismo.

• The quasi-interpolation operators have been implemented in MATLAB language [MAT20].

https://doi.org/10.1016/j.cagd.2022.102158
https://doi.org/10.1016/j.amc.2023.128279
https://doi.org/10.1016/j.amc.2023.128279
https://hal.science/hal-04185850
https://gitlab.inria.fr/AlgebraicGeometricModeling/G1Splines.jl
https://github.com/gismo/gismo

7

Chapter 1
Preliminaries
This chapter is dedicated to the basic concepts in the fields of approximation theory, Computer
Aided Geometric Design and numerical simulation of partial differential equations. We start
introducing B-spline basis functions, as well as B-spline curves, and then move on to the
definition of bivariate tensor-product B-spline. Fundamental geometric algorithms to deal
with B-spline object will be also provided, e.g. the knot insertion and the degree elevation
algorithm. Later on, making use of the idea of geometric continuity, spline constructions on
unstructured domains like quadrilateral mesh or triangulation are presented. Subdivision
schemes, a powerful tool to reconstruct smooth surfaces starting from a coarse mesh, are also
introduced together with an overview of classical schemes in the literature. Finally, in the
context of numerical simulation of partial differential equation, the concepts of isogeometric
analysis will be introduced.

1.1 B-spline functions

A basis spline function, better known as B-spline, is a piecewise polynomial function of a
certain degree whose polynomial pieces join in order to achieve the desired global regularity.
There are several ways to define a B-spline, e.g. truncated power functions or blossoming; here
we use the Cox-de Boor recurrence formula, which also gives an efficient algorithm for their
implementation. We refer the reader to [Boo78; PT95; PBP02] for further details and proofs
of the properties presented in this subsection.

1.1.1 Definitions and properties

Let t = {t0, . . . , tm} be a sequence of m+1 non-decreasing numbers, i.e. ti ≤ ti+1, i = 0, . . . ,m,
called knot vector and whose elements are referred as knots. The i-th B-spline of degree d Ni,d

is defined as
Ni,d(t) =

t− ti
ti+d − ti

Ni,d−1(t) +
ti+d+1 − t

ti+d+1 − ti+ 1
Ni+1,d−1(t), (1.1)

where

Ni,0(t) =

{
1 if ti ≤ t ≤ ti+1 ,
0 otherwise.

The quotients in (1.1) may happen to be of the form 0/0, which we define to be 0. For brevity
we often write Ni,d instead of Ni,d(t). Figures 1.1 and 1.2 present a set of quadratic and cubic
B-spline basis obtained from an uniform and non-uniform knot vector, respectively.

B-spline functions enjoy interesting properties:

8 Chapter 1 Preliminaries

• Local support : Ni,d(t) = 0 if t /∈ [ti, ti+d+1),

• Nonnegativity : Ni,d(t) ≥ 0 ∀ i, d, t,

• Partition of unity : for an arbitrary knot span, i.e. the interval [tj , tj+1), we have

j∑
ℓ=j−d

Nℓ,d(t) = 1 ∀ t ∈ [tj , tj+1),

• In a given knot span [tj , tj+1) we have at most d+ 1 non-zero B-spline basis functions,
namely Nj−d,d, . . . , Nj,d,

• Except for the case d = 0, Ni,d(t) reaches exactly one maximum value,

• Derivatives formula: the k-th derivatives of a basis function is given by

N
(k)
i,d (t) =

d

ti+d − ti
N

(k−1)
i,d−1 (t)−

d

ti+d+1 − ti+1
N

(k−1)
i+1,d−1(t), (1.2)

• At a knot Ni,d(t) ∈ Cd−µ, where µ is the multiplicity of the knot.

Figure 1.1. Quadratic B-splines defined on the uniform knot vector t = {0, 1, 2, 3, 4, 5}.

1.1.2 B-spline curves

Let {Pi}ni=0 be a set of n + 1 points in R2 or R3 called control points and {Ni,d} the d-th
degree B-spline functions defined on the knot vector t = {a, . . . , a︸ ︷︷ ︸

d+1

, td+1, . . . , tm−d−1, b, . . . , b︸ ︷︷ ︸
d+1

}

1.1 B-spline functions 9

Figure 1.2. Cubic B-splines defined on the nonuniform knot vector t = {0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5}.

consisting of m + 1 knots. Unless stated otherwise, we assume that a = 0 and b = 1. A
B-spline curve of degree d is defined by

C(t) =

n∑
i=0

PiNi,d(t), 0 ≤ t ≤ 1,

where the number of control points n+ 1 is given by the relation n = m− d− 1. The polygon
formed by the {Pi} is called the control polygon. Figure 1.3 shows an example of B-spline
curves. The properties of B-spline curves, which will be now listed, follow directly from the
properties of the basis functions Ni,d presented in Section 1.1.1:

• In the case n = d and t = {0, . . . , 0, 1, . . . , 1}, the curve C(t) is a Bézier curve. This
means that it can be rewritten as

C(t) =

n∑
i=0

PiB
i
d(t), with Bi

d(t) =

(
d

i

)
ti(1− t)d−i (1.3)

the Bernstein polynomials of degree d,

• Convex hull : the curve is contained in the convex hull of its control polygon,

• Endpoints interpolation: it results

C(0) = P0, C(1) = Pn,

• Affine invariance: the affine transformation of a B-spline curve is obtained just trans-
forming its control points,

• Local modification: moving a control point Pi only affects C(t) in the interval [ti, ti+d+1),

• The control polygon provides a piecewise linear approximation of the curve,

10 Chapter 1 Preliminaries

• Variation diminishing : the curve crosses any plane at most as many times as it intersects
its control polygon,

• Derivatives formula: using (1.2), the k-th derivatives of a B-spline curve can be computed
by the formula

C(k)(t) =

n−k∑
i=0

P
(k)
i Ni,d−k, where P

(k)
i =

Pi k=0,
d−k+1

ti+d+1−ti+k

(
P

(k−1)
i+1 −P

(k−1)
i

)
k>0,

• C(t) ∈ Cd−µ at a knot of multiplicity µ.

(a) (b)

Figure 1.3. Cubic B-spline curve on t = {0, 0, 0, 0, 1/3, 1/2, 1/2, 2/3, 1, 1, 1, 1} (a) and degree 7 Bézier curve
(b) obtained from the same control polygon with coinciding endpoints (red).

1.1.3 Tensor-product B-spline surfaces

The simplest bivariate B-spline construction is given by the tensor-product extension. It is
obtained by taking a net of control points {Pi,j}n,ri=0,j=0, defining the control net, and the
product of the univariate B-spline functions {Ni,d}ni=0, of degree d over the knot vector t and
degree q over the knot vector s, i.e. {Nj,q}rj=0. More precisely, the B-spline surface S(t, s) of
bidegree (d, q) is given by

S(t, s) =
n∑

i=0

r∑
j=0

Pi,jNi,d(t)Nj,q(s), 0 ≤ t, s,≤ 1,

with t and s defined similarly as in Section 1.1.2.
Figure 1.4 illustrates an example of bivariate tensor-product B-spline basis functions from

which the B-spline surface in Figure 1.5 is obtained. It benefits from the same properties of
B-spline curves, here shown for completeness:

1.1 B-spline functions 11

(a) (b)

Figure 1.4. Single biquadratic B-spline basis function (a) and entire bases set (b) defined on t × s, with
t = s = {0, 0, 0, 1/2, 1, 1, 1}.

• if n = d, r = q, t = s = {0, . . . , 0, 1, . . . , 1}, then S(t, s) is a Bézier surface,

• Convex hull : if (t, s) ∈ [t̃i, t̃i+1) × [sj̃ , sj̃+1), then S(t, s) belongs to the convex hull of
the points Pi,j , ĩ− d ≤ i ≤ ĩ and j̃ − q ≤ j ≤ j̃,

• Corner points interpolation: it results

S(0, 0) = P0,0, S(1, 0) = Pn,0, S(0, 1) = P0,r, S(1, 1) = Pn,r,

• Affine invariance: an affine transformation is applied to the B-spline surface by applying
it to the control net,

• Local modification: if the control point Pi,j is moved, S(t, s) only changes in the rectangle
[ti, ti+d+1)× [sj , sj+q+1),

• The control net forms a piecewise planar approximation of the surface,

• Derivatives formula: the general formula returning the (k, l)-th derivative of a B-spline
surface is given by

∂k+l

∂kt∂ls
S(t, s) =

n−k∑
i=0

r−l∑
j=0

P
(k,l)
i,j Ni,d−k(t)Nj,q−l(s), with P

(k,l)
i,j = (q−l+1)

P
(k,l−1)
i,j+1 −P

(k,l−1)
i,j

sj+q+1 − sj+l
,

• S(t, s) is d− µ (respectively q − µ) times differentiable in the direction t (s) at a knot t
(s) of multiplicity µ.

1.1.3.1 Smooth joints between B-spline patches

Let us consider here two adjacent B-spline surfaces of bidegree (d, q)

SL(u, v) =

n,m∑
i,j=0

PL
i,jNi,d(u)Nj,q(v) and SR(u, v) =

n,m∑
i,j=0

PR
i,jNi,d(u)Nj,q(v).

12 Chapter 1 Preliminaries

Figure 1.5. Biquadratic B-spline surface and its control net (red) obtained by using the basis functions
in Figure 1.4.

We say that the patches SL(u, v) and SR(u, v) join Cr continuous if the points

PL
n−r,l, . . . ,P

L
n,l = PR

l,0, . . . ,P
R
l,r (1.4)

constitute the control polygon of some Bézier curve of degree r ∀ l = 0, . . . ,m. In particular,
C0 continuity just requires that PL

m,l = PR
0,l for all l = 0, . . . ,m.

Tensor-product schemes are very easy to use in presence of a regular rectangular net. However,
in real life we have to deal with general quadrangular shapes. In this setting imposing higher
smoothness conditions between adjacent patches e.g. C1 smoothness is not straightforward; in
fact, the C1 relations between control points across an edge form a linear system of 3(d+ 1)
equations whose rank depends on the geometry of the quadrilaterals (see [BM17; Kap15] for
more details). A simpler type of continuity which can be used in these situations is the so
called tangent plane continuity or G1 continuity. In words, we say that two patches join G1

smoothly if they can be reparametrized so that their first derivatives are identical along a
common boundary curve; in Section 1.3.2 we will properly define this geometric continuity in
the context of splines over topological quad meshes.

1.1.4 NURBS

Non Uniform Rational B-spline, or NURBS, curves and surfaces, are an extension of the
concepts in Section 1.1.2 and Section 1.1.3 which allow more flexible. Their more interesting
feature is the ability to exactly reproduce section of conics, which was not possible with
B-spline objects.

Formally, a NURBS curve of degree d is defined by

C(t) =

n∑
i=0

wiPiNi,d(t)

n∑
i=0

wiNi,d(t)

, 0 ≤ t ≤ 1,

1.1 B-spline functions 13

where the basis functions {Ni,d}ni=0 are defined over the knot vector t an in Section 1.1.2 and
{wi}ni=0, wi ∈ R, are the weights associated to the control points {Pi}ni=0. The higher the
value of the weight, the closer the curve will be to the corresponding control point. In case of
negative weights the curve results moved away from its associated control point.

Analogously, we define a NURBS surface of bidegree (d, q) on the knot vectors t and s
as Section 1.1.2 by

S(t, s) =

n∑
i=0

r∑
j=0

wi,jPi,jNi,d(t)Nj,q(s)

n∑
i=0

r∑
j=0

wi,jNi,d(t)Nj,q(s)

, 0 ≤ t, s ≤ 1.

Both NURBS curves and surfaces enjoy similar properties and formulas to the B-spline case;
see, e.g., [PT95] for a more in-depth look at the topic.

1.1.5 Fundamental algorithms

When dealing with B-splines it may be convenient, in some computation, to reformulate their
algebraic expressions but without affecting the actual shapes. Two tools providing this kind of
transformation are given by the knot insertion algorithm and degree elevation algorithm.

1.1.5.1 Knot insertion

Let C(t) =
∑n

i=0PiNi,d(t) be a B-spline curve defined on the knot vector t = {t0, . . . , tm}.
Suppose we want to insert a knot t̄ ∈ [tk, tk+1) in the vector t defining the new knot vector
t̄ = {t̄0 = t0, . . . , t̄k = tk, t̄k+1 = t̄, t̄k+2 = tk+1, . . . , t̄m+1 = tm}; if St and St̄ identify the
vector spaces of B-spline curves on t and t̄ respectively, clearly results that St ⊂ St̄ and
dim (St̄) = dim (St) + 1. Hence C(t) has a representation on t of the form

C(t) =
n+1∑
i=0

QiN̄i,d(t),

where N̄i,d are the B-spline basis functions on t̄. The new control points Qi can be calculated
either by direct computation, i.e. solving the linear system

n∑
i=0

PiNi,d(t) =
n+1∑
i=0

QiN̄i,d(t)

in the unknowns Qi, or using geometric identities given by the properties in Section 1.1.2.
Both ways lead to the solution

Qi = αiPi + (1− αi)Pi−1, where


1 i ≤ k − d,
t̄−ti

ti+d−ti
k − d+ 1 ≤ i ≤ k,

0 i ≥ k + 1.

When dealing with curves with no inner knots, the repeated knot insertion algorithm coincides
with the de Casteljau algorithm for Bézier curves. In case of surfaces, the same algorithm
can be applied separately first to the control points along the direction t and then to control
points along the direction s, or vice versa.

14 Chapter 1 Preliminaries

1.1.5.2 Degree elevation

The goal of this algorithm is to identify a B-spline curve of degree d as an element of a curve
space of higher degree d+ 1. As for the knot insertion algorithm, this procedure do not affects
the geometry of the curve. Now let C(t) =

∑n
i=0PiNi,d(t) be a B-spline curve of degree d

on the knot vector t. Since C(t) is a piecewise polynomial curve, it is possible to elevate its
degree to d + 1 just by elevating the degree of its basis functions. Thus, there must exist
control points Q̂i and a knot vector t̂ such that

n∑
i=0

PiNi,d(t) =

n̂∑
i=0

Q̂iNi,d+1(t).

If the vector t has the form t = {0, . . . , 0︸ ︷︷ ︸
d+1

, t1, . . . , t1︸ ︷︷ ︸
µ1

, . . . , tm, . . . , tm︸ ︷︷ ︸
µm

, 1, . . . , 1︸ ︷︷ ︸
d+1

}, with µ1, . . . , µm

the multiplicity of inner knots, in order to maintain the same regularity as the initial curve at
the knots it must result that n̂ = n+m+1 and t̂ = {0, . . . , 0︸ ︷︷ ︸

d+2

, t1, . . . , t1︸ ︷︷ ︸
µ1+1

, . . . , tm, . . . , tm︸ ︷︷ ︸
µm+1

, 1, . . . , 1︸ ︷︷ ︸
d+2

}.

Again, the new control points can be computed by using the properties of B-spline curves
in Section 1.1.2 thus obtaining

Q̂1 = (1− α̂i)Pi + α̂iPi−1, with α̂i =
i

d+ 1
, i = 0, . . . , d+ 1.

To degree elevate a B-spline surface it is sufficient to apply the algorithm separately to the
control points of the net aligned to the two directions t and s.

1.2 Beyond tensor-product

The tensor-product structure is easy to deal with, but in real applications domains are not
always rectangular. In this section we will introduce spline constructions over more general
domains, that is triangulations and topological quad meshes. Moreover, we introduce the
concept of geometric continuity, which is a widely used kind of regularity in multipatch
approaches.

1.2.1 Splines on triangulations

We start this subsection introducing a local reference system, namely the barycentric coordinates
system, that is much more useful than the usual Cartesian coordinates when dealing with
triangles. Later, they will be used to define the so-called Triangular Bernstein polynomials and
Bézier surfaces on a triangle. The notions presented in this subsection rely on [BS16; LS07].

1.2.1.1 Barycentric coordinates

Suppose △ is a nondegenerate triangle in R2 with vertices p1,p2,p3. It will be useful to write
△ = ⟨p1,p2,p3⟩. Every point x ∈ R2 has a unique representation in terms of its barycentric
coordinates (β1, β2, β3) with respect to △ such that

x = β1p1 + β2p2 + β3p3, with β1 + β2 + β3 = 1.

1.2 Beyond tensor-product 15

p1

p2

p3

x

43

41

42

(a)

+ + +

+ + −+ − − − + −

− − +

− + ++−+

p1 p2

p3

(b)

Figure 1.6. Geometric interpretation of barycentric coordinates (a) and subregions of R2 defined by their
signs (b).

If the point x lies inside the triangle △, then its barycentric coordinates are all positive;
otherwise, some of them will result to be negative. Let △1 be the subtriangle △1 = ⟨x,p2,p3⟩
and similarly △2 = ⟨x,p3,p1⟩, △3 = ⟨x,p1,p2⟩ (cf. Figure 1.6); it results that

βi =
|△i|
|△| , i = 1, 2, 3,

where |△| indicates the signed area of the triangle △. Moreover, if x1 and x2 are two points
in R2 and △ their reference triangle, the barycentric directional coordinates (δ1, δ2, δ3) of the
vector x2 − x1 are defined as the difference of their corresponding barycentric coordinates.

1.2.1.2 Triangular Bernstein polynomials

Given a triangle △, we define the triangular Bernstein polynomials of degree d as

Bi,j,k
d (x) =

d!

i!j!k!
βi1β

j
2β

k
3 , ∀ i+ j + k = d,

where (β1, β2, β3) are the barycentric coordinates of the point x w.r.t. △. Figure 1.7 presents
an example of these polynomials in the case d = 3. It is important to note that along each edge
of a triangle, up to reordering of the indices, the triangular Bernstein polynomial coincides
with the univariate Bernstein polynomial (1.3). They also possess properties which are similar
to the univariate case, see Section 1.1.1. These properties are:

• Nonnegativity : Bi,j,k
d (x) ≥ 0, x ∈ △,

• Partition of unity : ∑
i+j+k=d

Bi,j,k
d (x) = 1, ∀x ∈ R2,

• Recurrence relation:

Bi,j,k
d (x) = β1B

i−1,j,k
d−1 (x) + β2B

i,j−1,k
d−1 (x) + β3B

i,j,k−1
d−1 (x),

16 Chapter 1 Preliminaries

(a) (b)

Figure 1.7. A cubic triangular Bernstein polynomial (a) belonging to the set of 10 cubic triangular Bernstein
polynomials (b).

with (β1, β2, β3) the barycentric coordinates of the point x w.r.t △ and Bi,j,k
d (x) = 0 in

case of negative indices i, j, k,

• Degree elevation:

Bi,j,k
d (x) =

i+ 1

d+ 1
Bi−1,j,k

d−1 (x) +
j + 1

d+ 1
Bi,j−1,k

d−1 (x) +
k + 1

d+ 1
Bi,j,k−1

d−1 (x), (1.5)

• Directional derivatives: if u is a vector in R2 with barycentric directional derivatives
(δ1, δ2, δ3) w.r.t. △, it holds that

DuB
i,j,k
d (x) = d

[
δ1B

i−1,j,k
d−1 (x) + δ2B

i,j−1,k
d−1 (x) + δ3B

i,j,k−1
d−1 (x)

]
.

• Unimodal behavior : for i ≥ 1, j ≥ 1, k ≥ 1 it results that DuB
i,j,k
d (x) = 0 for any

direction u and x ∈ △ if and only if

x =
ip1 + jp2 + kp3

d
=: ξi,j,k.

The points ξi,j,k are called Greville points or domain points. The domain points are
uniformly distributed over the triangle, and they can be triangulated by linking each
pair of domain points ξi1,j1,k1 and ξi2,j2,k2 such that

|i1 − i2|+ |j1 − j2|+ |k1 − k2| = 2. (1.6)

1.2.1.3 Bézier surfaces

Let Pi,j,k ∈ R3, i+ j + k = d. A Bézier surface is defined as

S(x) =
∑

i+j+k=d

Pi,j,kB
i,j,k
d (x),

where Pi,j,k are its control points. Connecting these points as in (1.6) we obtain the control
net of S(x). Figure 1.8 shows an example of cubic Bézier surface.

They enjoy analogous properties to those of the tensor-product case:

1.2 Beyond tensor-product 17

Figure 1.8. Cubic Bézier surface and its control net (red).

• Convex hull : S(x) is contained in the convex hull of its control points Pi,j,k,

• Corner points interpolation: S(1, 0, 0) = P3,0,0, S(0, 1, 0) = P0,3,0, S(0, 0, 1) = P0,0,3,

• Directional derivatives formula: let u ∈ R2 be a vector. The m-th directional derivative
is given by

D
(m)
u S(x) =

d!

(d−m)!

∑
i+j+k=d−m

∆m (Pi,j,k)B
i,j,k
d−m(x), m ≤ d,

where ∆m (Pi,j,k) := P
[d−m]
i,j,k are the quantities obtained applyingm steps of the triangular

de Casteljau algorithm to the control points of S(x), i.e.

P
[l−1]
i,j,k = β1P

[l]
i+1,j,k + β2P

[l]
i,j+2,k + β3P

[l]
i,j,k+1,

and (β1, β2, β3) the barycentric coordinates of x.

• Degree elevation: by using (1.5), we obtain∑
i+j+k=d

Pi,j,kB
i,j,k
d (x) =

∑
i+j+k=d+1

P̂i,j,kB
i,j,k
d+1 (x),

where
P̂i,j,k =

i

d+ 1
Pi−1,j,k +

j

d+ 1
Pi,j−1,k +

k

d+ 1
Pi,j,k−1

and Pi,j,k = 0 if i < 0 or j < 0 or k < 0.

1.2.2 A brief summary of simplex splines

Simplex splines represent an extension to the multivariate case of classical B-spline functions.
In fact, they benefit from the same malleability and similar properties to the univariate case.
This subsection is based on [LMS22], while we point to, e.g. [PBP02], for the proofs of the
properties listed here.

18 Chapter 1 Preliminaries

To define formally a m-variate simplex spline of a given degree d, let Ξ = {ξ1, . . . , ξn+1}
be a sequence of possibly repeated points (called knots) in Rm, with n = d+m. We assume
that the convex hull of Ξ is nondegenerate, i.e. volm (⟨Ξ⟩) > 0. Consider now any simplex
in Rn, σ = {ξ̄1, . . . , ξ̄n+1} with voln(σ) > 0, satisfying the following projection property
(cf. Figure 1.9):

π : Rn −→ Rm, π(ξ̄i) = ξi, i = 1, . . . , n+ 1.

Hence, the (normalized) simplex spline MΞ can be defined as

MΞ : Rm −→ R, MΞ(x) =
voln−m(σ ∩ π−1(x))

voln(σ)
.

ξ1 ξ2 ξ3 ξ4x

ξ̄1

ξ̄2

ξ̄3

ξ̄4

x

z

y

π

MΞ

Figure 1.9. Univariate MΞ as projection of a tetrahedron over a line.

They benefit from properties analogous to the univariate case, such as

• Local support : MΞ has support ⟨Ξ⟩,
• Nonnegativity : MΞ(x) ≥ 0, ∀x ∈ ⟨Ξ⟩,
• Normalization: MΞ has unit integral,

• Knot dependence: MΞ only depends on Ξ; in particular, the ordering of the knots is
not affecting the simplex spline. It is also independent of the choice of the simplex σ,

• Derivatives formula: if u ∈ Rm s.t.
∑

i aiξi = u,
∑

i ai = 0, then

DuMΞ = (d+m)
d+m+1∑
i=1

aiMΞ\ξi ,

• Recurrence formula: for any x ∈ Rm s.t.
∑

i biξi = x,
∑

i bi = 1, it results

MΞ(x) =
d+m

d

d+m+1∑
i=1

biMΞ\ξi(x),

1.3 Splines on meshes 19

as well as the knot insertion algorithm (similarly to Section 1.1.5): for any y ∈ Rm s.t.∑
i ciξi = y,

∑
i ci = 1, we have

MΞ =

d+m+1∑
i=1

ciMΞ∪y\ξi .

If m = 1, then MΞ is the normalized univariate B-spline of degree d with knot vector Ξ. If
m = 2, i.e. the bivariate case, we define knot lines the lines in the complete graph of Ξ, which
provide a polygonal partition of ⟨Ξ⟩. Furthermore, in this setting the simplex spline MΞ is
a polynomial of degree d = #Ξ − 3 in each region of this partition, and across a knot line
MΞ ∈ Cd+1−µ, with µ the number of knots that lie on the considered knot line (counted with
multiplicity).

1.3 Splines on meshes

This section is devoted to present the construction of smooth spline objects over quad and
triangular meshes: in particular, we present the constraints defining C1 continuity across a
triangular planar mesh and the more general G1 smoothness for splines over quadrilateral
meshes.

1.3.1 Splines on triangular planar meshes

Similarly to the case of rectangular B-spline patches, we present here the Cr continuity
conditions between adjacent triangular patches. Let △L = ⟨p1,p2,p3⟩ and △R = ⟨p4,p3,p2⟩
be two adjacent triangles on which the polynomials

SL(x) =
∑

i+j+k=d

PL
i,j,kB

i,j,k
d (x), SR(x) =

∑
i+j+k=d

PR
i,j,kB

i,j,k
d (x)

are defined. Then SL(x) and SR(x) join Cr-smooth if and only if

PR
m,j,k =

∑
ĩ+j̃+k̃=m

PL
ĩ,k+j̃,j+k̃

B ĩ,̃j,k̃
m (p4),

j + k = d−m,

m = 0, . . . , r.
(1.7)

The relation (1.7) is the triangular variant of (1.4) in the tensor-product setting. C0 continuity
only requires that PL

i,j,0 = PR
i,j,0, for all i+ j = d, while, in addiction, C1 smoothness implies

that the pair of triangles

⟨PL
i,j,1,P

L
i+1,j,0,P

L
i,j+1,0⟩, ⟨PR

i,j,1,P
R
i+1,j,0,P

R
i,j+1,0⟩,

for each i+ j = d− 1, are coplanar. Even when dealing with triangulations imposing (global)
Cr continuity between adjacent triangles is not straightforward and resorting to geometric
continuity can be a valid alternative (see [PBP02]).

We conclude the subsection introducing the definition of spline space over a triangulation.
Let T be a triangulation of a polygonal domain Ω ∈ R2, i.e. a partition of Ω consisting of
non-overlapping triangles. The spline space of degree d on T with Cr continuity is defined as

Srd (T) :=

{
s ∈ Cr(Ω) : s

∣∣∣
△i

∈ Pd, △i ∈ T
}
,

where we identify with Pd the space of polynomials in two variables and total degree d.

20 Chapter 1 Preliminaries

1.3.2 G1-smooth splines over topological quad meshes

Here we introduce the concept of splines over topological quad meshes, with a particular
focus on geometrically smooth spline spaces. In order to define these objects, the concepts
of quadrilateral mesh, together with its features, as well as transition map and gluing data
functions will be introduced.

We start introducing the concept of topological surface M (or mesh) as a collection of faces
and edges together with their adjacency relations. An edge can be glued with at most one
other edge and it cannot be glued with itself. Here we are interested in meshes which contain
only quadrilateral faces and we shall refer to such a structure as quadrilateral mesh. An
essential notion is the valence of a vertex, denoted with N , which is defined as the number of
faces containing the vertex. An interior vertex is said to be regular (RV in short) if its valence
is equal to 4, and it is called irregular (or extraordinary - EV) otherwise.

Let σ0, σ1 be two faces of the mesh M sharing the common edge e; we can associate
to each face a coordinate system, namely (u0, v0) and (u1, v1) on σ0 and σ1, respectively
(see Figure 1.10). Now, we can therefore define the (first order) transition map ϕσ0,σ1 from the
face σ1 to σ0 as the function

ϕσ0,σ1 : R2 −→ R2, (u1, v1) 7−→ (u0, v0) =

(
v1bN,N ′(u1) +O(v21)

u1 + v1aN,N ′(u1) +O(v21)

)
, (1.8)

which characterizes the change of coordinates from σ1 to σ0.

u0

v0u1

v1

σ1 σ0

Figure 1.10. Reference systems on two adjacent patches.

Moreover, the functions in (1.8)

a : e −→ R, b : e −→ R,

are C1 functions called gluing data and they only depend on the two valences N and N ′ of
the vertices identifying the edge e. We have all the ingredient to introduce the definition of
Gr continuity across an edge shared by two patches. Consider a multipatch function f , i.e.
a collections of functions f = (fσ)σ∈M defined over the faces of a mesh M; it is said to be
Gr-smooth if for any two functions fσ0 , fσ1

Jr
e(fσ1)(u1, v1) = Jr

e(fσ0 ◦ ϕσ0,σ1)(u1, v1), (1.9)

where Jr
e indicates the jet (or Taylor expansion) of order r along the common edge e.

1.4 Subdivision surfaces 21

In particular, for the case r = 1 we are mostly interested in, previous (1.9) leads to the
following two relations for each u1 ∈ [0, 1]: f1(u1, 0) = f0(0, u1),

∂f1
∂v1

(u1, 0) = bN,N ′(u1)
∂f0
∂u0

(0, u1) + aN,N ′(u1)
∂f0
∂v0

(0, u1),
(1.10)

where f0 = f |σ0 , f1 = f |σ1 are the restrictions of f on the faces σ0, σ1. Geometrically, (1.10)
means that the functions f0 and f1 share the same tangent plane along their interface, from
where the name tangent plane continuity.

Finally, the spline space of bidegree (d, d) with regularity G1 on a topological quad mesh
M is defined as

S1d(M) :=

{
(fσ)σ∈M : fi = f

∣∣∣
σi

∈ Pd, fi, fj join G1 across e = σi ∩ σj ∀ i, j
}
.

We point to [BMV17; MVV16; Man23] for a deeper insight on geometrically smooth spline
spaces.

1.4 Subdivision surfaces

In this subsection we shortly recall the very basics of Subdivision surfaces: the definition
of mask and subdivision matrix will be introduced as well as the concept of limit surface.
Also, some classical schemes will be recalled and analyzed in order to have a general idea on
how they behave. For a complete and accurate description of subdivision schemes, see, for
example, [PR08; AS10], on which this paragraph is founded.

1.4.1 Definitions and properties

Let us consider a mesh M. The idea behind subdivision is to obtain smooth objects via
iterative refinement of an input mesh; different refinement strategies lead to different limit
objects which differ from both smoothness and shape. Each subdivision scheme is defined by
its masks (or stencils): in general, masks relate to the vertices, edges and faces of the mesh.
A mask is determined by a set of normalized coefficient (called weights), responsible for the
definition of the recursive rule, which is applied to the considered vertex of the mesh and its
first and second neighborhood. We call first neighborhood of a vertex v the set of points directly
connected to v by an edge and, when dealing with quadrilateral meshes, second neighborhood
of v the set of points belonging to the patches sharing v and opposite to it. Figure 1.11
presents an example of subdivision masks with underlined colors for the two neighborhoods.

In order to apply these subdivision operators (i.e. the masks) we make use of the so-called
subdivision matrix, which is a matrix whose columns contains the subdivision masks and its
size depends on the mesh size. If p = p(0) is a initial vector of points and S = S(0) is its
related subdivision matrix, one step of subdivision is obtained by p(1) = p(0)S(0), which can
be generalized to an arbitrary subdivision step as

p(k+1) = p(k)S(0) or p(k+1) = p(0)S(k),

with S(k) the subdivision matrix concerning the k-th subdivision step. The repeated subdivision
converges to a surface called limit surface, whose regularity properties can be deduced carrying
out a spectral analysis on the subdivision matrix defining the scheme.

22 Chapter 1 Preliminaries

(a)

1

4

1

4

1

4

1

4

(b)

3

8

3

8

1

16

1

16

1

16

1

16

(c)

α
β

N

γ

N
β

N

β

N

γ

N

β

N

γ

N

β

N

γ

N

(d)

Figure 1.11. (a): first neighborhood (green) and second neighborhood (blue) of a vertex (red) with valence
N = 5. Masks for a new face point (b), edge point (c) and vertex (d) defining the Catmull-Clark
algorithm. α = 1− 7/4N, β = 3/2N, γ = 1/4N .

1.4.2 An overview on classical subdivision surfaces

The aim of this subsection is to give a visual idea of how different schemes act on meshes, gen-
erating different limit surfaces. We will consider four classical subdivision schemes for surfaces,
namely the Catmull-Clark [CC78], Doo-Sabin [DS78], Loop [Loo87] and Butterfly [DLG90]
schemes.

1.4.2.1 Catmull-Clark scheme

The Catmull-Clark scheme acts on quad meshes. It is an approximating scheme, i.e. the
vertices of the initial mesh are not maintained in the subdivision process, and its limit surface
is devised as a generalization of bicubic B-spline surfaces with C2 regularity everywhere except
at EVs, where it is C1-smooth. Figure 1.12 shows the behaviour of this scheme on a quad
mesh. Moreover, a direct evaluation of the limit surface is possible by using the formulas
provided in [Sta98].

Figure 1.12. Three iterations of the Catmull-Clark scheme starting from the input mesh on the left.

1.4 Subdivision surfaces 23

1.4.2.2 Doo-Sabin scheme

Similarly to the Catmull-Clark scheme, Doo-Sabin rules are defined for quad meshes. It is an
approximating scheme and it is based on a generalization of biquadratic uniform B-splines
producing limit surfaces which are C2 regular everywhere except at EVs, where we have C1

smoothness; it is interesting to note that this scheme produces N -gons around EVs of valence
N (see Figure 1.13). The limit surface evaluation proposed in [Sta98] is applicable also for
this scheme.

Figure 1.13. Three iterations of the Doo-Sabin scheme starting from the input mesh on the left.

1.4.2.3 Loop scheme

The Loop method for subdivision surfaces is an approximating scheme developed for triangular
meshes. It is based on a quartic box spline and the limit surfaces it creates are C2 continuous
in regular regions while around EVs the smoothness drops to C1 (EVs in triangular meshes are
vertices with valence N ̸= 6); Figure 1.14 presents an example of these surfaces. An explicit
evaluation of the Loop limit surfaces can be achieved from [Sta01].

Figure 1.14. Three iterations of the Loop scheme starting from the input mesh on the left.

1.4.2.4 The Butterfly scheme

An example of interpolatory scheme is the Butterfly scheme: in fact, as can be noticed
in Figure 1.15, the vertices of the initial triangular mesh are also vertices of the resulting
subdivided surfaces. The limit surface it generates, as established in [Zor00] several years
after the publication of the method itself, is C1-smooth everywhere but around vertices with
valences N = 3 and N ≥ 8 where it is only continuous.

24 Chapter 1 Preliminaries

Figure 1.15. Three iterations of the Butterfly scheme starting from the input mesh on the left.

1.5 Isogeometric analysis

This last subsection is devoted to the introduction of isogeometric analysis. IsoGeometric
Analysis (IGA) is a highly efficient technique for solving PDEs numerically. Its basic idea,
presented in [CHB09], which unifies the Finite Elements Method (FEM in short) approach and
Computer Aided Geometric Design, is to use the same basis functions for both reproducing
exactly the computational domain, and for the numerical approximation of the PDE; more
precisely, it is involved in the computation of the weak solution of a PDE. We start recalling
some basics on PDEs, like their strong and weak formulation, and then continue introducing
the so-called isogeometric paradigm. The content of this subsection has been extracted
from [CHB09; BS16; Qua16], to which we also refer for the proofs of the results we recall.

1.5.1 PDEs: strong and weak formulation

Partial differential equations are differential equations containing the derivatives (spatial
and/or temporal) of an unknown function. In particular, denote by u the unknown function
in the d+ 1 independent variables x = (x1, . . . , xd) and t, a generic PDE can be denoted as

F
(
t,x, u,

∂u

∂t
,
∂u

∂x1
, . . . ,

∂u

∂xd
, . . . ,

∂p1+···+pd+ptu

∂xp11 . . . ∂xpdd ∂t
pt
, g

)
= 0, (1.11)

with p1, . . . , pd, pt ∈ N and g the set of data on which the equation will depend (e.g. boundary
conditions). We also define the order of a PDE as the maximum order of derivatives appearing
in the equation, i.e. the value assumed by p1 + · · ·+ pd + pt. A PDE written in the form (1.11)
is said to be in its strong or differential form (or formulation). An example of PDE in a strong
form is the following 2D Poisson’s equation:

−∆u = f in Ω, (1.12)

where Ω ⊂ R2 is a bounded domain and we denote by

∆u =
d∑

i=1

∂2u

∂x2i

the Laplace operator or laplacian. In case f = 0, (1.12) is know as Laplace equation. In order
to obtain a unique solution for (1.12), we need to add some extra conditions regarding the
behaviour of the solution on the boundary of the domain ∂Ω; the two standard boundary

1.5 Isogeometric analysis 25

conditions are assigning the value of the solution on ∂Ω (Dirichlet condition) or the value of
the normal derivative of the solution along ∂Ω (Neumann condition). These choices are used
to define the general problem, stated as follow: find u such that

−∆u = f in Ω,

u = hD on ΓD,
∂u

∂n̂
= hN on ΓN ,

where
∂Ω = ΓD ∪ ΓN ,

hD and hN are some given functions,

∂u

∂n̂
= ∇u · n̂

is the normal derivative of u, n̂ is the outward unit normal of ΓN (or ∂Ω in general), the dot ·
represents the standard Euclidean scalar product (possibly also denoted as ⟨·|·⟩), and

∇ : Rd −→ Rd, u 7−→ ∇u =

(
∂u

∂x1
, . . . ,

∂u

∂xd

)
is the gradient operator. There exist in the literature other kinds of boundary conditions
depending on the problem you are facing, e.g. Robin condition; for further details on this
aspect we refer to [Qua16; BS08].

We derive now the so-called weak form of the Poisson’s equation with homogeneous Dirichlet
conditions, that is hD = 0; the derivation of the weak formulation for other PDEs with
eventually different boundary conditions is analogous. To do this, let v be a test function, i.e.
a sufficiently smooth function which vanishes on ∂Ω = ΓD; later on we will properly define
this function. Multiplying both members of (1.12) by v and integrating over Ω we get

−
∫
Ω
∆uv dΩ =

∫
Ω
fv dΩ. (1.13)

By using the vectorial identity

div (ψ∇A) = ψdiv (∇A) +∇A · ∇ψ,

with A a vector field and ψ a scalar function, and the divergence or Gauss theorem∫
Ω

div(A) dΩ =

∫
∂Ω
A · n̂ dγ,

where dγ represents the infinitesimal boundary element of ∂Ω, (1.13) becomes∫
Ω
∇u · ∇v dΩ =

∫
Ω
fv dΩ,

where we used the fact that v is null on the boundary of the domain. Therefore, we arrive at
the following weak formulation of the Poisson’s problem:

find u ∈ H1
0 (Ω) :

∫
Ω
∇u · ∇v dΩ =

∫
Ω
fv dΩ ∀v ∈ H1

0 (Ω), (1.14)

26 Chapter 1 Preliminaries

where, in order to have feasible operations, we take f ∈ L2(Ω) and we set

H1(Ω) :=

{
φ ∈ L2(Ω) :

∂φ

∂xi
∈ L2(Ω), i = 1, 2

}
,

H1
0 (Ω) :=

{
φ ∈ H1(Ω) : φ

∣∣∣
∂Ω

= 0
}
.

In general, we can define the Hilbert space Hk(Ω) as

Hk(Ω) :=
{
φ ∈ L2(Ω) : Dαφ ∈ L2(Ω) ∀α, |α| ≤ k

}
with associated seminorms and norms

|φ|Hk(Ω) =

√√√√∑
|α|=k

∫
Ω
(Dαφ)2 dΩ, ∥φ∥Hk(Ω) =

√√√√ k∑
m=0

|φ|2
Hk(Ω)

,

where α is a multi-index and the derivatives must be understood as distributional derivatives
(cf. [Bre11]). It is interesting to notice that the problem (1.14) is equivalent to the following
variational problem:

find u ∈ H1
0 (Ω) : J(u) = inf

v∈H1
0 (Ω)

1

2

∫
Ω
|∇v|2 dΩ−

∫
Ω
fv dΩ.

To conclude, we introduce now a more compact formulation of the weak form (1.14). Let V
be an Hilbert space (V = H1

0 (Ω) in our case). We can define the bilinear form

a : V × V −→ R, a(u, v) =

∫
Ω
∇u · ∇v dΩ

and the linear functional
F : V −→ R, F (v) =

∫
Ω
fv dΩ

such that the problem (1.14) becomes

find u ∈ V : a(u, v) = F (v) ∀v ∈ V. (1.15)

We need the followings: a bilinear form a : V × V −→ R is said to be

• continuous if ∃ M > 0 such that

|a(u, v)| ≤M∥u∥V ∥v∥V ∀u, v ∈ V ;

• coercive if ∃ α > 0 such that

a(v, v) ≥ α∥v∥2V ∀v ∈ V.

The existence and uniqueness of a solution for the problem (1.15) is ensured by the follow-
ing [BS08, Theorem 2.7.7]

1.5 Isogeometric analysis 27

Theorem 1.5.1 (Lax-Milgram). Let V be an Hilbert space, a(·, ·) : V × V −→ R a continuous
and coercive bilinear form, F (·) : V −→ R a continuous linear functional. Then exist a unique
u ∈ V such that

a(u, v) = F (v) ∀v ∈ V.

When dealing with nonhomogeneous Dirichlet conditions, i.e. hD ̸= 0, the solution can be
decomposed as

u = u0 + uD,

where u0 ∈ H1
0 (Ω) is obtained from (1.14), and uD ∈ H1

D(Ω), with

H1
D(Ω) :=

{
φ ∈ H1(Ω) : φ

∣∣∣
∂Ω

= hD

}
,

is given.

1.5.1.1 Strong and weak formulation of some classical PDEs

The aim of this paragraph is to introduce some classical PDEs, together with their weak
formulations, that we are going to utilize later on in this work; ambient spaces, domains of
definitions and boundary conditions will be properly defined when necessary.

• Biharmonic equation

∆2u = f
weak−−−−−⇀↽−−−−−
strong

∫
Ω
∆u ·∆v dΩ =

∫
Ω
fv dΩ, (1.16)

where ∆2 represents the biharmonic operator defined as

∆2u = ∆(∆u) =

d∑
i,j=1

∂4u

∂x2i ∂x
2
j

.

• Linear time-independent shallow-water equation

h∆u+∇h · ∇u+ κ2u = 0
weak−−−−−⇀↽−−−−−
strong

∫
Ω
h∇u · ∇v dΩ+

∫
Ω
v∇h · ∇u dΩ

+ κ2
∫
Ω
uv dΩ = 0,

(1.17)

with h the bathymetry function and κ2 = σ2/g ∈ R, where g is the gravitational
acceleration and σ the frequency of the oscillations.

• Heat equation

∂u

∂t
= c2∆u

weak−−−−−⇀↽−−−−−
strong

c2
∫
Ω
∇u · ∇v dΩ =

∫
Ω

∂u

∂t
v dΩ, (1.18)

with c ∈ R the conductivity coefficient.

28 Chapter 1 Preliminaries

1.5.2 Galerkin’s method and isogeometric spaces

Galerkin’s approach for IGA is based on the decomposition of the variational problem into
smaller ones defined onto subspaces of the initial space. Formally, let V be an Hilbert space
and Vh, h ∈ R, be a one-parameter family of spaces such that

Vh ⊂ V, dim(Vh) <∞ ∀h > 0.

The Galerkin’s problem (or approximate problem) for (1.15) can be stated as

find uh ∈ Vh : a(uh, vh) = F (vh) ∀vh ∈ Vh. (1.19)

If {ϕi}i∈I , I = {1, . . . ,dim(Vh)}, is a basis of Vh, then it’s enough that relation (1.19) is
satisfied for each basis function, i.e.

a(uh, ϕi) = F (ϕi), i ∈ I. (1.20)

Therefore, since uh ∈ Vh,
uh(x) =

∑
j∈I

ujϕj(x),

with uj , j ∈ I unknown coefficients, (1.20) becomes∑
j∈I

uja(ϕj , ϕi) = F (ϕi), i ∈ I. (1.21)

Denoting with K the stiffness matrix with entries

ki,j = a(ϕj , ϕi),

f the vector of components fi = F (ϕi) and with u the vector of the unknown coefficients
uj , (1.21) is equivalent to the linear system

Ku = f .

For completeness, we also introduce the mass matrix M , whose elements are given by

mi,j = m(ϕj , ϕi), with m(u, v) =

∫
Ω
uv dΩ;

this matrix may appear in the discretization of some variational formulation, e.g. (1.17). The
existence and uniqueness of a solution of the Galerkin’s problem is again ensured by the
Lax-Milgram theorem (1.5.1), since Vh is an Hilbert space (being a closed subspace of V) and
the form a(·, ·) and functional F (·) are the same as in (1.15). Now, let assume that our domain
Ω is given through a spline transformation of the parametric domain Ω̂ = [0, 1]2. This means
that there exist a map G, called geometry map, that is

G : Ω̂ −→ Rm, m = 2, 3, G(ξ) =
∑
i,j∈J

ci,jψi,j(ξ),

where ξ = (ξ1, ξ2), ψi,j : Ω̂ −→ R are spline basis functions of a certain degree d spanning the
space Sd and ci,j ∈ R2 are their control points on a suitable indices set J = {1, . . . ,dim(Sd)},

1.5 Isogeometric analysis 29

ξ2

ξ1

[0, 1]2

ξ2

ξ1

[0, 1]2

G(1)

G(2)

Ω(1)
Ω(2)

Figure 1.16. A multipatch domain Ω consisting of two patches Ω(1),Ω(2) with their associated geometry
mappings G(1),G(2).

such that Ω = G(Ω̂). The founding idea behind isogeometric analysis is that the basis used to
exactly describe the geometry will also serve as basis for the computation of the numerical
solution. This concept brings us to the definition of the isogeometric function space

Vh =
{
vh ∈ L2(Ω) : vh ∈ Sd ◦G−1

}
on which we solve our approximate problem. For an exhaustive description on mathematics of
IGA we refer the reader to [Bei14].

1.5.3 PDEs on manifolds

It is common in applications to deal with physical domains which are not planar. In this
case, we need to reformulate the PDE in terms of operators on manifolds such that the
Laplace-Beltrami operator.

Manifolds are usually described as multipatch domains, i.e. as the union of single patch
Ω(k), each of them defined through a different geometry map G(k), with k ∈ IΩ in some index
set. Figure 1.16 shows this idea when dealing with a shape consisting of 2 patches.

Let us consider the patch Ω(k) of the 2-manifold domain Ω ⊂ R3. The Jacobian J (k) of the
map G(k), defined as

Ĵ (k) : Ω̂ −→ R3×2, ξ 7−→ Ĵ (k)(ξ), Ĵ (k)(ξ) =

[
∂G(k)

∂ξ1
(ξ)

∂G(k)

∂ξ2
(ξ)

]
,

is used to define the first fundamental form of the mapping Ĝ(k)

Ĝ(k) : Ω̂ −→ R2×2, ξ 7−→ Ĝ(k)(ξ), Ĝ(ξ) =
(
Ĵ (k)(ξ)

)T
Ĵ (k)(ξ),

30 Chapter 1 Preliminaries

together with its determinant ĝ(k), which is

ĝ(k) : Ω̂ −→ R, ξ 7−→ ĝ(k)(ξ), ĝ(k)(ξ) =

√
det
(
Ĝ(k)(ξ)

)
.

Let φ(k) ∈ C2(Ω(k)) and φ̂(k)(ξ) =
(
φ(k) ◦G(k)

)
(ξ). Finally, we have all the tools to define

the gradient operator on the patch Ω(k) of the manifold Ω,

∇Ω(k)φ(k)(x) =

[
Ĵ (k)(ξ)

(
Ĝ(k)

)−1
(ξ)∇̂φ̂(k)(ξ)

]
◦
(
G(k)

)−1
(ξ), x ∈ Ω(k), (1.22)

with ∇̂ representing the gradient operator in the parametric space, and the Laplace-Beltrami
operator

∆Ω(k)φ(k)(x) =

[
1

ĝ(k)(ξ)
∇̂ ·
(
ĝ(k)(ξ)

(
Ĝ(k)

)−1
(ξ)∇̂φ̂(k)(ξ)

)]
◦
(
G(k)

)−1
(ξ), x ∈ Ω(k).

(1.23)
Hence, we can reformulate both strong and weak formulations of the PDEs (1.14) (1.16), (1.17)
and (1.18) just replacing the gradient and laplacian operators with, respectively, the gradient
operator on the manifold (1.22) and the Laplace-Beltrami operator (1.23). For further details
on the description of PDEs on manifolds we refer to [DQ15; Far23].

31

Chapter 2
A G1 approximation of Catmull-Clark
surfaces
Catmull-Clark subdivision scheme is undoubtedly the most famous and used scheme to obtain
smooth surfaces from quad meshes. However, the limit surfaces that it generates may not be
smooth enough for applications, e.g. in computer-aided design. The purpose of this chapter
is to present a new, smooth and completely explicit construction of a globally G1 family of
Bézier surfaces, defined by smoothing masks, approximating the Catmull-Clark limit surface.

Starting from the C0 scheme of Loop and Schaefer [LS08], we impose G1 regularity around
EVs by means of quadratic gluing data depending solely on their valences; this procedure leads
to a system of equations of which we explore the space of solutions in order to achieve explicit
formulas for the masks defining the patches’ control points. Finally, we come up with four
different schemes. In order to understand which scheme provides the most regular surface,
we conduct isophotes and curvature analysis on an extensive benchmark, both visually and
numerically. This chapter is based on [MMM22].

2.1 Bicubic Approximate Catmull-Clark (ACC3) and degree
elevated (ACC5)

The bicubic approximate Catmull-Clark scheme of [LS08] is a smoothing scheme reconstructing
a bicubic surface starting from a quad-mesh which approximates the limit surface of the
classical Catmull-Clark subdivision scheme; the application of this scheme to a mesh returns,
on each face, 16 control points defining a bicubic Bézier patch. The surface obtained from
ACC3 is C2 everywhere except in a neighborhood of the EVs, in which it is only C0; moreover,
the vertices generated by ACC3 interpolate the Catmull-Clark limit surface. Usually, similarly
to subdivision schemes, a smoothing scheme is defined through its smoothing matrix S = (M(k)

i,j)
as an operator such that

b = pS, b
(k)
i,j =

∑
ℓ

pℓ

(
M(k)

i,j

)
ℓ
,

where p = (p1, . . . ,pm) ∈ R3×m is the set of mesh vertices and b = (b(k)), where b(k) is the
matrix containing the control points of the k-th patch (see Figure 2.2 for their labeling). The
smoothing matrix contains in its columns the different masks M defining the scheme and in
this construction the weights of a smoothing (or Bézier) mask can be, possibly, negative. We
will refer to smoothing masks using the notation M=[ω•,ω,ω

′]T , where ω• is the weight for
the vertex point and ω = {ωi}Ni=1 and ω′ = {ω′

i}Ni=1 are the weights for its first and second

32 Chapter 2 A G1 approximation of Catmull-Clark surfaces

neighborhoods, respectively. Lastly, in this construction we will consider meshes with isolated
EVs, i.e. surrounded by regular vertices; this assumption is not restrictive since any linked
EVs can be decoupled with one subdivision of the mesh.

N
N+5

2
N+5

1
N+5

2
N+5

(a)

N
N+5

2
N+5

1
2(N+5)

1
N+5

1
N+5

1
2(N+5)

(b)

N
N+5

4
N(N+5)

1
N(N+5)

4
N(N+5)

4
N(N+5)

1
N(N+5)

4
N(N+5)

1
N(N+5)

4
N(N+5)

1
N(N+5)

(c)

Figure 2.1. From (a) to (c): ACC3 masks proposed in [LS08] for face (b̂1,1), edge (b̂1,0 and b̂0,1) and vertex
(b̂1,1) Bézier points, respectively. The coloring refers to Figure 1.11-(a).

To recover regularity around these EVs without affecting the interpolatory property and
C1 (or C2) smoothness of the surrounding regular vertices, linear gluing data and cubic or
even quartic patches do not suffice. Indeed the G1 relations for Bézier patches of bidegree
(3, 3) or (4, 4) propagate up to control points neighboring the regular vertices, affecting then
their properties. To avoid these effects, we will work with gluing data functions of degree
two and biquintic patches, defined by 36 Bézier control points each. As a starting point of
our construction we use the degree elevated masks ACC5, which are obtained after applying
twice the degree elevation algorithm (Section 1.1.5.2) to ACC3 masks; we will use underlined
symbols to denote ACC5 masks i.e. M = [ω•,ω,ω

′]T . For example, the ACC5 masks M2,2 and
M4,0 returning the Bézier points b2,2 and b4,0, respectively, are given by

M2,2 =
1

100

(
M̂0,0 + 6M̂1,0 + 3M̂2,0 + 6M̂0,1 + 36M̂1,1 + 18M̂2,1 + 3M̂0,2 + 18M̂1,2 + 9M̂2,2

)
,

M4,0 =
1

5

(
3M̂2,0 + 2M̂3,0

)
,

where M̂i,j are the ACC3 bicubic masks (see Figure 2.1). Note that the degree elevation is
directly applied on the considered masks to obtain the new weights. The masks for Bézier
points can be written in vectorial form; for instance, the corner point mask M0,0 is given as
follows:

M0,0 ∈ R2N+1 , with M0,0 =
1

N(N + 5)
[N2, 4, . . . , 4, 1, . . . , 1]T =

1

N(N + 5)
[N2,4,1]T ,

(2.1)
where the first coordinate is the weight for the EV, followed by the weights for the vertices
of the first neighborhood and then the second neighborhood; we will adopt this notation
throughout the thesis.

2.2 G1 constraints on Bézier patches 33

2.2 G1 constraints on Bézier patches

As we said in the previous section, our aim is to construct new smoothing masks defining
Bézier patches that join G1 at extraordinary regions. This can be obtained by the description
in Section 1.3.2 as follow: let [aN,N ′ , bN,N ′] be quadratic symmetric gluing data functions [BH14;
HBC08; Hah89]

aN,N ′(u) = a0B
0
2(u) + a2B

2
2(u), where a0 = 2 cos

(
2π

N

)
, a2 = 2 cos

(
2π

N ′

)
,

bN,N ′(u) = −1,

(2.2)

with Bi
d the univariate Bernstein polynomials in (1.3) defined along the edge e shared by

two adjacent patches. Since our construction is developed in the parametric domain, we take
e = [0, 1]; moreover, in the cases we study we will assume that N ′ = 4 so that a2 = 0, that is
an EV is surrounded by regular vertices.

Figure 2.2. Control points labeling in a biquintic patch.

Now, if we specialize (1.10) defining the G1 constraints between two adjacent patches with
f0 and f1 being two biquintic Bézier surfaces and using (2.2), we obtain



5∑
i=0

b(1)
i,0B

i
5(u) =

5∑
i=0

b(0)
0,iB

i
5(u),

5∑
i=0

(
b(1)
i,1 − b(1)

i,0 + b(0)
1,i − b(0)

0,i

)
Bi

5(u) = a0B
0
2(u)

(
4∑

i=0

(
b(0)
0,i+1 − b(0)

0,i

)
Bi

4(u)

)
.

(2.3)

Calling with M(k)
i,j the smoothing mask returning the control point b(k)

i,j belonging to the patch

k, solving (2.3) with respect to M(1)
0,1,M

(1)
1,1,M

(1)
2,1,M

(1)
3,1,M

(1)
4,1,M

(1)
5,0,M

(1)
5,1, after some algebraic

34 Chapter 2 A G1 approximation of Catmull-Clark surfaces

reductions we obtain the following relations to be satisfied:

M(1)
0,1 + M(0)

1,0 = ā0M
(1)
0,0 + a0M

(1)
1,0 , (2.4)

5(M(1)
1,1 + M(0)

1,1) = a0M
(1)
0,0 + 5ā0M

(1)
1,0 + 4a0M

(1)
2,0 , (2.5)

10(M(1)
2,1 + M(0)

1,2) = −a0M(1)
0,0 + 5a0M

(1)
1,0 + 10ā0M

(1)
2,0 + 6a0M

(1)
3,0 , (2.6)

10(M(1)
3,1 + M(0)

1,3) = a0M
(1)
0,0 − 5a0M

(1)
1,0 + 10a0M

(1)
2,0 + 10ā0M

(1)
3,0 + 4a0M

(1)
4,0 , (2.7)

M(1)
4,1 + M(0)

1,4 = 2M(1)
4,0 , (2.8)

M(1)
5,1 + M(0)

1,5 = 2M(1)
5,0 , (2.9)

10(M(1)
3,0 − M(1)

2,0) = M(1)
0,0 − 5M(1)

1,0 + 5M(1)
4,0 − M(1)

5,0 , (2.10)

with ā0 = 2− a0.
Masks verifying (2.4) to (2.10) generate a family of G1 smoothing schemes. From now on

the dependency of the mask from the patch will be specified only when it is different from
patch 1. Particularly interesting is (2.10): if we use quadratic gluing data, the degree of the
left-hand side of (1.10) is ≤ 5 while the right-hand side has degree 4 + 2 = 6. (2.10) reflects
the constraint that the left-hand side has degree ≤ 5: in fact it is saying that even if we
are working with biquintic patches, along the edge we have a quartic curve. Moreover, we
notice that (2.8) and (2.9) are always satisfied by ACC5 masks [LS08, Figure 3] : since we
are in the vicinity of a regular vertex, we know that the ACC5 surface is C2 there; it means
that the first derivatives along opposite directions across the regular vertex are the same, i.e.
M(0)

1,5 − M(0)
0,5 = −(M(1)

5,1 − M(1)
5,0) as M(0)

0,5 = M(1)
5,0, which is in fact (2.9). Then, since the limit

surface is also at least C1 across regular vertices (or C2 in some cases), we have, additionally,
equal second order derivatives along opposite directions i.e. M(0)

1,4 − M(0)
0,4 = −(M(1)

4,1 − M(1)
4,0)

that is exactly (2.8) since M(0)
0,4 = M(1)

4,0.

2.3 Explicit Bézier masks derivation

In this section we are going to solve the system (2.4) to (2.10) to obtain masks for the Bézier
patches ensuring G1 regularity of the resulting surface. The process is done incrementally with
respect to the order of the Bézier mask where the order refers to the sum of the subscripts
of the Bézier mask. In particular, for Bézier masks of order zero, i.e. vertex points, we take
M0,0 = M0,0 as in (2.1) in order to not alterate the interpolating property we have at the
vertices. For Bézier points of order one we will solve (2.4); since the latter involves Bézier
points on different patches all around the EV, (2.4) translates into a circulant system to be
solved. (2.5) presents constraints regarding masks of second order and it can be solved in two
different ways; if we want to solve it with respect to M1,1, since it is related to points around
the EV in different patches similarly to (2.4), it translates into a circulant system. On the other
hand, if we want to solve it with respect to the mask M2,0 it can be directly obtained from
ACC5 masks. Then, (2.6) and (2.7) regarding Bézier points of order three and four, respectively,
can be solved by direct computation in either a symmetric or asymmetric approach. More-
over, the masks M4,0,M5,0,M4,1,M5,1,M2,2,M3,2,M4,2,M5,2,M2,3,M3,3,M4,3,M5,3 as well as
M0,4,M1,4,M2,4,M3,4,M4,4,M5,4,M0,5,M1,5,M2,5,M3,5,M4,5,M5,5 are equal to those of ACC5.
Throughout the construction we assume that the first neighborhood of an EV is composed

2.3 Explicit Bézier masks derivation 35

solely by regular vertices; this assumption is not restrictive, since it is satisfied by applying at
most one step of any 4-split algorithm. Moreover, biquintic Bézier points will be computed
only in the faces adjacent to EVs, otherwise we will use the standard bicubic patch of ACC3.
First we focus on inner EVs and postpone the discussion of boundaries until Section 2.3.4.

(a) (b) (c) (d) (e)

Figure 2.3. Bézier points involved in G1 constraints. (a): disposal of the control points involved in the
left-hand side (circles) and right-hand side (squares) of (2.12) involved in the computation of the
first derivatives. (b)-(c): disposal of Bézier points regarding the left-hand side and right-hand
side of (2.17) and (2.28), respectively, involved in the computation of the second derivatives.
(d)-(e): disposal of the control points utilized, respectively, in the left-hand side and right-hand
side of (2.29) and (2.31) for the computation of the third and fourth derivatives.

2.3.1 Bézier masks of order one

We compute first the masks M1,0 = M(1)
1,0 and M(0)

0,1 using (2.4) as follows. If the valence of
the EV is N = 3, (2.4) is automatically satisfied by ACC5 masks. Then, we do not need to
determine new masks for this relation. Otherwise, for valences N ≥ 5 we have to compute
new masks verifying (2.4); given the mask for the vertex point M0,0 = M0,0 = [α•,α,α

′]T , we
shall compute the mask M1,0 = [β•,β,β

′]T . We observe that the masks M0,1 = M(1)
0,1 and M(0)

1,0

can be obtained by permuting the weights of M1,0. In particular, let C = diag(1, Ĉ, Ĉ) be a
(2N + 1)× (2N + 1) block diagonal matrix where

Ĉ =


0 1 0 · · · 0

1
. . .

1
1 0 · · · 0

 = Circ(0, 1, 0, . . . , 0) (2.11)

is a N ×N circulant matrix; it follows that M(0)
1,0 = CM1,0, M0,1 = C−1M1,0, where C−1 =

diag(1, Ĉ−1, Ĉ−1) and Ĉ−1 = ĈN−1. Therefore (2.4) translates into the following system to
be solved:

(−a0I + C + CN−1)M1,0 = (2− a0)M0,0, (2.12)

where I is the (2N + 1)× (2N + 1) identity matrix; Figure 2.3-(a) shows the position of the
control points involved in this construction. Our investigation towards explicit solutions leads
to the following

Proposition 2.3.1. Let A = −a0I + C + CN−1 be as in (2.12). The matrix A is symmetric
and singular.

36 Chapter 2 A G1 approximation of Catmull-Clark surfaces

Proof. From the particular shape of A, its symmetry is straightforward since CT = C−1 =
CN−1. Now, the matrix A can be decomposed as

A = −a0I + C + CN−1 = CN−1(C2 − a0C + I) = CN−1(C − z1I)(C − zN−1I) ,

where z1, zN−1 are the roots of the polynomial x2 − a0x+ 1, with a0 = 2 cos (θ) , θ = 2π/N .
If i =

√
−1 is the imaginary unit, they are obtained as

z1 = eiθ, zN−1 = e−iθ,

i.e. they are the N -th roots of unity zk = eiθk corresponding to the angle θ for k = 1 and
k = N − 1. Now,

det(C − ziI) = (1− zi) det
(
Ĉ − ziÎ

)2
, i = 1, N − 1,

where Î is the N ×N identity matrix; since ĈN − Î = 0 we have

det
(
Ĉ − λÎ

)
= (−1)N (λN − 1) (2.13)

from which we deduce that

det
(
Ĉ − ziÎ

)
= (−zi)N + (−1)N+1 = 0, i = 1, N − 1.

This shows that A = CN−1(C − z1I)(C − zN−1I) is not invertible.

The system (2.12) can be therefore solved; the following theorem ensures its solvability.

Theorem 2.3.2. The system (2.12) admits a four-dimensional affine space of solutions.

Proof. Let b = (2− a0)M0,0 be the right-hand side of (2.12); we want to show that b ∈ Im(A)

or, equivalently, Wb = 0, where Im(W T) = Leftker(A) = Ker(A) since A is symmetric.
Recalling the identity

0 = CN − I =
N−1∏
j=0

(C − zjI),

with zk = eiθk the N -th roots of unity, it is easy to prove that we can take

W T =

N−2∏
j=0
j ̸=1

(C − zjI) = diag(0, Ŵ T , Ŵ T),

in which

Ŵ T =

N−2∏
j=0
j ̸=1

(Ĉ − zj Î) (2.14)

2.3 Explicit Bézier masks derivation 37

and Ĉ as in (2.11): in fact

WA = (AW T)T =

CN−1(C − z1I)(C − zN−1I)
N−2∏
j=0
j ̸=1

(C − zjI)


T

=

CN−1
N−1∏
j=0

(C − zjI)

T

= 0

since the matrices (C − zjI) commute. Collecting the constants from the product we have

Wb =
(
bTW T

)T
=

 2− a0
N(N + 5)

diag(N2, 4Î , Î)(1− z0,1− z0,1− z0)

N−2∏
j=2

(C − zjI)

T

= 0

being z0 = 1; due to the particular block structure of A, we deduce that corank(A) = 4. Thus
the solutions of (2.12) form an affine space of dimension 4.

From the previous Theorem 2.3.2, in order to compute a solution of (2.12) we need to add 4
extra constraints to the coefficient matrix; then, since we arrive to an overdetermined system,
the solution we get has to be meant in the least squares sense. To do that, let k̂1 and k̂2 be
the two (column) vectors of one basis of Ŵ T : with this choice it results that

Im(W T) = Span{k1,k2,k3,k4},

where

k1 = (0, k̂T
1 ,0)

T , k2 = (0, k̂T
2 ,0)

T , k3 = (0,0, k̂T
1)

T , k4 = (0,0, k̂T
2)

T .

Here we decided to impose the 4 extra constraints such that the new masks results to be as
close as possible to M1,0; this can be achieved projecting their difference onto Im(W T); this
projection, in principle, can be executed arbitrary, i.e. choosing any direction. Let M∗ be a
particular solution (2.12); then, the general solution of (2.12) is given by

M1,0 = M∗ +
4∑

i=1

µiki, µi ∈ R. (2.15)

Since the rows of A sum up to 2 − a0, i.e. A (1,1,1)T = (2 − a0) (1,1,1)
T , it is immediate

to notice that we can take M∗ = M0,0. Here we choose to perform an orthogonal projection
(M1,0 − M1,0) ⊥ Im(W T), that is

⟨M1,0 − M1,0 |ki⟩ = 0, i = 1, 2, 3, 4.

This leads to the solution obtained by solving

Kµ = b̃, (2.16)

where K = diag(K̂, K̂) and
K̂ =

(
⟨k̂i |k̂j⟩

)
i,j=1,2

38 Chapter 2 A G1 approximation of Catmull-Clark surfaces

is the 2× 2 orthogonal projection matrix and

b̃ =
(
k1 k2 k3 k4

)T M1,0.

We also observe that if we solve (2.15) for N = 3, we obtain again the ACC5 mask M1,0.

Example 2.3.3. In the case of an EV with valence N = 6, using the construction in Theo-
rem 2.3.2 we obtain W T = Span{k1,k2,k3,k4}, where

k̂T
1 = (1, 0,−1,−1, 0, 1), k̂T

2 = (−1,−1, 0, 1, 1, 0).

Hence, from (2.15) we compute the coefficients for the orthogonal projection which are

µ1 =
3

110
, µ2 = − 3

110
, µ3 =

3

220
, µ4 = 0,

and substituting them in (2.16) we obtain the weights for the mask M1,0

M1,0 =
1

660
[360, 76, 58, 22, 4, 22, 58, 19, 10, 1, 1, 10, 19]T .

2.3.2 Bézier masks of second order

Relation (2.5), i.e. the equation for the G1 constraints among Bézier points concerning second
order derivatives, can be solved both with respect to M1,1 or M2,0. One approach, that is
solving (2.5) w.r.t. the mask M1,1, will lead to a circulant linear system which presents different
characteristics depending on the odd or even valence N of the EV to which it is attached. On
the other hand, if we solve (2.5) w.r.t. M2,0, we end up with a direct formula for the solution.
Let us investigate the two cases.

2.3.2.1 Deriving M1,1 by assigning M2,0: circulant system approach

We start by defining the mask M2,0, which is done differently for odd and even valence.
Similarly to (2.12), since M(0)

1,1 = CM1,1, (2.5) translates into the following linear system:

(I + C)M1,1 = d , where d =
1

5

(
a0M0,0 − 5(a0 − 2)M1,0 + 4a0M2,0

)
. (2.17)

The Bézier points involved in this relation are highlighted in Figure 2.3-(b). Let B = I + C
be the matrix in (2.17). To solve the system we have to distinguish the cases N odd and N even.

Case N odd. In this case, from (2.10), replacing the masks we have we get to

M2,0 = [δ•, δ, δ
′]T =

1

10

(
−M0,0 + 5M1,0 + 10M3,0 − 5M4,0 + M5,0

)
. (2.18)

We have the following:

Proposition 2.3.4. The matrix B = I + C is invertible with B−1 = diag
(
1
2 , B̂

−1, B̂−1
)
,

B̂ = Î + Ĉ and

B̂−1 =
1

2

N∑
j=1

(−1)j−1Ĉj−1. (2.19)

2.3 Explicit Bézier masks derivation 39

Proof. It follows from N∑
j=1

(−1)j−1Ĉj−1

(Î + Ĉ
)
=

N∑
j=1

(−1)j−1Ĉj−1 +

N∑
j=1

(−1)j−1Ĉj

=

N∑
j=1

(−1)j−1Ĉj−1 +

N+1∑
k=2

(−1)k−2Ĉk−1 = Ĉ0 + ĈN = 2Î .

By using (2.19) are now able to compute explicitly M1,1.

Corollary 2.3.5. The weights for the mask M1,1 = [γ•,γ,γ
′]T in the odd case are given in

terms of the masks M0,0 = [α•,α,α
′]T , M1,0 = [β•,β,β

′]T and M2,0 = [δ•, δ, δ
′]T by the

following relations:

γ• =
1

5
(5− 2a0)α• +

2

5
a0δ•,

γi =
1

10
a0

N∑
j=1

(−1)j−1αi+j−1 −
1

2
(a0 − 2)

N∑
j=1

(−1)j−1βi+j−1 +
2

5
a0

N∑
j=1

(−1)j−1δi+j−1,

γ′i =
1

10
a0

N∑
j=1

(−1)j−1α′
i+j−1 −

1

2
(a0 − 2)

N∑
j=1

(−1)j−1β′i+j−1 +
2

5
a0

N∑
j=1

(−1)j−1δ′i+j−1,

with i = 1, . . . , N and where the indices i+ j − 1 are understood mod N when i+ j − 1 > N .

Proof. Since from (2.17) it results that M1,1 = B−1d, the proof is obtained by plugging
in (2.19).

Case N even. If we are in presence of an EV with even valence, the matrix B is not invertible
and results corank(B) = 2, due to corank(B̂) = 1. In fact, substituting λ = −1 in (2.13) it
results that det(B̂) = 0 and B̂1,1 = 1, where B̂1,1 denotes the minor of B̂ obtained removing
the first row and column and since its cofactor is an upper triangular matrix with only ones on
the diagonal. This implies corank(B) = 2. Hence, we must add two extra constraints in order
to have a solution for the system; the obtained solution, also in this case, has to be meant in
the least squares sense. First of all we must check if system (2.17) admits a solution.

Denoting
Y = (w1 w2),

where
w1 = (0, ŵT ,0)T , w2 = (0,0, ŵT)T , ŵ = (1,−1, 1, . . . ,−1)T ,

it follows that
Im(Y T) = Span{w1,w2} = Leftker(B);

in fact, it easy to notice that Y TB = 0. Then, the system (2.17) admits a solution if and
only if d ∈ Im(B) or, equivalently,

Y Td = 0. (2.20)

40 Chapter 2 A G1 approximation of Catmull-Clark surfaces

Relation (2.20) is known as Vertex Enclosure Relation (V.E.R.).
Let now denote

Meven
2,0 = [δeven

• , δeven, δ
′even]T =

1

10

(
−M0,0 + 5M1,0 + 10M3,0 − 5M4,0 + M5,0

)
.

Checking property (2.20) for the masks M0,0, M1,0 and Meven
2,0 in (2.17), we notice that

Y TM0,0 = 0, Y TM1,0 = 0 but Y TMeven
2,0 ̸= 0. Thus, in order to have a solution for

system (2.17) we need to compute a new mask M2,0 = [δ•, δ, δ
′]T ensuring (2.20). To do this

we notice that
Im(B) = Leftker(Im(Y));

in fact, it follows that BY = 0 due to the particular structure of B. Moreover, as for M1,0,
we want that the mask M2,0 results close to Meven

2,0 . Therefore we compute the new mask
M2,0 by projecting its difference with Meven

2,0 onto the left kernel B and forcing the V.E.R to
be verified; since we decided to operate an orthogonal projection, the sought mask M2,0 is
obtained imposing

⟨M2,0 − Meven
2,0 | ri⟩ = 0, i = 1, . . . , 2N + 1,

where ri are the rows of B i.e. the vectors of one basis of Leftker(Im(Y)). Using the bilinearity
of the scalar product we can rewrite the projection as

⟨M2,0 | ri⟩ = ⟨Meven
2,0 | ri⟩,

which is in fact
BM2,0 = BMeven

2,0 .

Finally, forcing the V.E.R. to be verified by the desired mask wT
1 M2,0 = 0 and wT

2 M2,0 = 0,
we are able to condense the previous relations in the following linear system

B̃M2,0 = f̃ ,

where

B̃ =

 B
wT

1

wT
2

 and f̃ =

BMeven
2,0

0
0

 . (2.21)

Reordering the rows of B̃ we are able to achieve a diagonal block structure for the matrix
in (2.21) with blocks (2,B̄, B̄) which brings to the following

Proposition 2.3.6. Let B̄ =

(
B̂
ŵT

)
. The pseudo-inverse matrix of B̄ is a block matrix

B̄+ = (B1|B2) where

B1 =
1

2N

N∑
j=1

(−1)j−1(N − 2j + 1)Ĉj−1 and B2 =
1

N
ŵ, (2.22)

with B1 ∈ RN×N and B2 ∈ RN×1.

2.3 Explicit Bézier masks derivation 41

Proof. By definition of pseudo-invers matrix, B̄+ = (B̄T B̄)−1B̄T ; therefore it suffices to show
that

(B̄T B̄) (B1|B2) = B̄T .

Due to the block structure of B̄ we have

B̄T B̄ = B̂T B̂ + ŵŵT = 2Î + Ĉ + Ĉ−1 + ŵŵT .

Noticing that

ŵŵT =
N∑
j=1

(−1)j−1jĈj−1,

it results

ŵŵTB1 =
N∑
j=1

N − 2j + 1 = 0

since Ĉŵ = Ĉ−1ŵ = −ŵ. This implies that(
2Î + Ĉ + Ĉ−1

)
ŵ = 0. (2.23)

Let

H =

N∑
j=1

(−1)j−1jĈj−1.

From (2.22) we deduce that

(B̄T B̄)B1 =
(
2Î + Ĉ + Ĉ−1 + ŵŵT

)
B1 =

(
2Î + Ĉ + Ĉ−1

)(1

2
ŵŵT − 1

N
H +

1

2N
ŵŵT

)
= − 1

N

(
2H + ĈH + Ĉ−1H

)
,

(2.24)
and using the notation in (2.11), we have

H = Circ(1,−2, 3, . . . ,−N) , ĈH = Circ(−N, 1,−2, . . . , N−1) , Ĉ−1H = Circ(−2, 3,−4, . . . , 1) ,

from which
2H + ĈH + Ĉ−1H = −NCirc(1, 0, 0, . . . , 1) = −NB̂T . (2.25)

Substituting (2.25) in (2.24) we arrive at

(B̄T B̄)B1 = B̂T .

In a similar way, using the identity (2.23),

(B̄T B̄)B2 =
(
2Î + Ĉ + Ĉ−1 + ŵŵT

) 1

N
ŵ =

1

N
ŵŵT ŵ = ŵ

since ŵT ŵ = N .

42 Chapter 2 A G1 approximation of Catmull-Clark surfaces

From Proposition 2.3.6, we are now able to compute explicitly the new mask M2,0 ensuring
the V.E.R as follow:

Corollary 2.3.7. The mask M2,0 = [δ•, δ, δ
′]T ensuring (2.20) is obtained from Meven

2,0 =

[δeven
• , δeven, δ

′even]T as follows:

δ• = δeven
• ,

δi =
1

2N

N∑
j=1

(−1)j−1(N − 2j + 1)
(
δeven
i+j−1 + δeven

i+j

)
,

δ′i =
1

2N

N∑
j=1

(−1)j−1(N − 2j + 1)
(
δ′even
i+j−1 + δ′even

i+j

)
,

with i = 1, . . . , N and where the indices i + j − 1 and i + j have to be meant respectively
mod N when i+ j − 1 > N and i+ j > N .

Proof. Since M2,0 = B̃+f̃ the proof is obtained by the explicit formulas (2.21) and (2.22),
using the block structure of B̃.

Hence, using mask M2,0 we are sure to have a solution for (2.17). Now, since corank(B) = 2,
to compute M1,1 we need to add two extra constraints: once more we want to obtain a
mask M1,1 the closest possible to M1,1 and it is ensure projecting their difference onto
Im(Y T) = Leftker(B). Like in the previous cases, we operate an orthogonal projection i.e.

⟨M1,1 − M1,1 |wi⟩ = 0, i = 1, 2,

which translates into
⟨M1,1 |wi⟩ = ⟨M1,1 |wi⟩.

Joining these two additional relations to system (2.17) and denoting

d̃ =

 d〈
M1,1 |w1

〉〈
M1,1 |w2

〉
 , (2.26)

the mask for M1,1 satisfies the relation

B̃M1,1 = d̃.

Similarly to Corollary 2.3.7, we have:

2.3 Explicit Bézier masks derivation 43

Corollary 2.3.8. The mask M1,1 = [γ•,γ,γ
′]T in the even case is given in terms of

M0,0 = [α•,α,α
′]T , M1,0 = [β•,β,β

′]T , M1,1 = [γ•,γ,γ
′]T and M2,0 = [δ•, δ, δ

′]T

by the following relations:

γ• =
1

5
(5− 2a0)α• +

2

5
a0δ•

γi =
1

10N
a0

N∑
j=1

(−1)j−1(N − 2j + 1)αi+j−1 −
1

2N
(a0 − 2)

N∑
j=1

(−1)j−1(N − 2j + 1)βi+j−1

+
2

5N
a0

N∑
j=1

(−1)j−1(N − 2j + 1)δi+j−1 +
1

N
ŵi

〈
γ | ŵ

〉
,

γ′i =
1

10N
a0

N∑
j=1

(−1)j−1(N − 2j + 1)α′
i+j−1 −

1

2N
(a0 − 2)

N∑
j=1

(−1)j−1(N − 2j + 1)β′i+j−1

+
2

5N
a0

N∑
j=1

(−1)j−1(N − 2j + 1)δ′i+j−1 +
1

N
ŵi

〈
γ ′ | ŵ

〉
,

with i = 1, . . . , N and where the indices i+ j− 1 have to be meant mod N when i+ j− 1 > N .

Proof. Because M1,1 = B̃+d̃, the proof is obtained using (2.22), (2.26) and the block shape of
B̃.

Example 2.3.9. For an EV with valence N = 6, and using the formulas in Corollary 2.3.7,
the mask M2,0 satisfying (2.20) is given by

M2,0 =
1

1320
[592, 294, 130,−8, 18,−8, 130, 79, 8,−1,−1, 8, 79]T . (2.27)

Thus, using (2.27) in Corollary 2.3.8, the cross derivative mask is

M1,1 =
1

9900
[5016, 1512, 1512, 258, 144, 144, 258, 604, 185, 43,−4, 43, 185]T .

We notice that negative weights may occur.

2.3.2.2 Deriving M2,0 by assigning M1,1: direct approach based on ACC5

If we assume the cross derivatives to be fixed, substituting the known masks in (2.5), we
directly obtain

M2,0 =
1

4a0

(
−a0M0,0 + 5(a0 − 2)M1,0 + 5(M1,1 + M(0)

1,1)
)
, (2.28)

that is well defined since a0 ̸= 0 for N ̸= 4, which is the case for the EVs we are analyzing.
In Figure 2.3-(c) is figured the location of the treated control points.

44 Chapter 2 A G1 approximation of Catmull-Clark surfaces

2.3.3 Third and fourth order Bézier masks

First of all, depending on the previous solving strategies, from (2.10) we define the new mask

M3,0 =
1

10

(
M0,0 − 5M1,0 + 10M2,0 + 5M4,0 − M5,0

)
.

When we modify the control point related to the mask M3,0 the regularity relation for C2

smoothness in Bézier surfaces across a vertex does not hold anymore. The resulting surface
will be C1 smooth around regular vertices linked to EVs instead of the initial C2 regularity.
From (2.6), it follows that

M2,1 +M(0)
1,2 = r, where r =

1

10

(
−a0M0,0 + 5a0M1,0 − 10(a0 − 2)M2,0 + 6a0M3,0

)
, (2.29)

where Figure 2.3-(d) presents the location of the involved Bézier points. By using the
reparametrization

M(0)
1,2 − M(0)

1,2 = θ
(
M2,1 − M2,1

)
we obtain the one parameter family of solutions of (2.29)

M2,1 =
1

θ + 1

(
r+ θM2,1 − M(0)

1,2

)
,

M(0)
1,2 = r

θ

θ + 1
− 1

θ + 1

(
θM2,1 − M(0)

1,2

)
,

(2.30)

where the parameter θ ∈ R \ {−1} has to be fixed. If we take θ = 1, (2.30) will return a
symmetric solution; indeed, this choice reflects the fact that we are looking for a solution by
projecting orthogonally the ACC5 masks (M2,1,M

(0)
1,2) onto the G1 solution space. For all the

other values of θ \ {−1, 1} we will obtain a non symmetric solution for (2.30); in particular, for
θ = 0, we obtain the asymmetric solution by projecting along the direction M(0)

1,2. Moreover,
with θ = ±∞ we mean the projection along the direction of M2,1; as expected from (2.30), we
don’t have any solution for the value θ = −1 because it translates into a projection along a
parallel direction to the G1 solution space. For the fourth order Bézier masks, from (2.7) we
have

M3,1+M(0)
1,3 = r̃, where r̃ =

1

10

(
a0M0,0 − 5a0M1,0 + 10a0M2,0 − 10(a0 − 2)M3,0 + 4a0M4,0

)
,

(2.31)
which can be solved as above, replacing r in (2.30) with r̃ in (2.31); the positioning of the
considered control points is shown in Figure 2.3-(e).

2.3.4 Treatment of boundaries

Meshes are not always closed and, therefore, they can possess boundaries in which EVs can
eventually lay. Bézier control points returning G1 smoothness around boundary regions can
be obtained by applying (2.4) to (2.10) starting from the boundary masks presented in [LS08],
after degree elevation. Since these masks ensure the interpolation of boundary edges, we are
not going to modify them; we will recover the G1 regularity by imposing G1 relations only in
the inner regions and using the ACC5 boundary masks as initial and final value (see Figure 2.4).
Let κ be the numbers of patches sharing the boundary vertex: for the Bézier masks of order

2.3 Explicit Bézier masks derivation 45

Figure 2.4. Example of a boundary EV with four incident faces. Red square: Bézier point for the border EV
b
(0,...,3)
1,0 . Red circles: initial (b(0)

1,0) and final (b(3)
0,1) Bézier points for the G1 relations around a

boundary EV.

one, imposing (2.4) (κ− 1) times across the inner extraordinary edges we obtain, for κ ≥ 4,
the following linear system:

ÂM1,0 = h, where h =



(2− a0)F
(1)
0,0 − F(0)

1,0

(2− a0)F
(2)
0,0

...
(2− a0)F

(κ−2)
0,0

(2− a0)F
(κ−1)
0,0 − F(κ−1)

0,1


, (2.32)

M1,0=
(
M(1)

1,0, . . . ,M
(κ−1)
1,0

)
, F(1,...,κ−1)

0,0 , F(0)
1,0 and F(κ−1)

0,1 are, respectively, the ACC5 masks for the

boundary (or frontier) control points b(1,...,κ−1)
0,0 , b(0)

1,0 and b
(κ−1)
0,1 , and Â = Tridiag(−a0,1,1) ∈

R(κ−1)×(κ−1), that is a tridiagonal matrix with entries −a0 along the main diagonal and entries
1 on the first upper and lower diagonal. For κ = 3 it results that Â = −a0Î + Ĉ and the vector
h has entries (2 − a0)F

(1)
0,0 − F(0)

1,0 and (2 − a0)F
(κ−1)
0,0 − F(κ−1)

0,1 . System (2.32) can be solved
with a similar strategy like in Section 2.3.1. Regarding the second order masks, even in this
case, from (2.10) and as in (2.18), we have

M(i)
2,0 =

1

10

(
−F(i)

0,0 + 5M(i)
1,0 + 10M(i)

3,0 − 5M(i)
4,0 + M(i)

5,0

)
, i = 1, . . . , κ− 1.

Now, for the cross derivatives, imposing (2.5) (κ− 1) times we get the system:
1 1 0 . . . 0

1 1
. . .

0 . . . 0 1 1

M1,1 = g, (2.33)

where
g =

1

5

(
a0F

(i)
0,0 + 5(2− a0)M

(i)
1,0 + 4a0M

(i)
2,0

)
, i = 1, . . . , κ− 1,

and M1,1=
(
M(0)

1,1, . . . ,M
(κ−1)
1,1

)
. Let R ∈ R(κ−1)×κ be the rectangular matrix in (2.33); since

corank(R) = 1 we have a degree of freedom for the solution. If we want the masks to be close

46 Chapter 2 A G1 approximation of Catmull-Clark surfaces

to ACC5, we can fix this free degree, for example, projecting orthogonally the solution of
(2.33) onto the ACC5 space; this translates into the solution

M1,1 = M1,1 +RTρ,

where ρ is the vector containing the coefficients for the orthogonal projection given by

RRTρ = −RM1,1 + g.

The third and fourth order Bézier points are obtained in the same way as the case for an
inner EV using (2.29) and (2.31) along the inner extraordinary edges.

2.4 Analysis of the solutions and numerical results

From the constructions presented in Section 2.3 it turns out that we can solve system (2.4)-
(2.10) in multiple ways, obtaining a family of G1 schemes. We are now going to analyze this
family and identify the procedure returning the most regular surface. First, we will describe
the results obtained using a set of test meshes [Pet] (cf. Figure 2.5) which contains shapes
with EVs of different valence and particular geometric structure; from the results obtained
by this procedure we will find out the element of the family returning the smoothest surface.
Then, we will check the strength of the previous-found best strategy by applying it to the
more complex meshes in Figure 2.12 and showing numerical results for the G1 continuity.

2.4.1 Comparing the different schemes

Let us call CS (circulant system) the solving strategy in Section 2.3.2.1, NCS (no circulant
system) the strategy in 2.3.2.2 and S (symmetric) and AS (asymmetric) the solutions for the
higher derivatives obtained in 2.3.3 respectively with θ = 1 and θ = 0; then, we can define
four global solving strategies as: NCS-S, NCS-AS, CS-AS and CS-S. To identify the smoothest
surface we carried out an isophote and curvature analysis together with numerical evaluation
of the G2 errors on the surfaces obtained by each strategy. In Figures 2.6 and 2.7 the results
for two meshes with EV of valence N = 5 and N = 8 are shown. In strategy NCS-S we notice
that for both valences, isophotes are deviated away from the EV creating an unwanted white
spot around it, as also underlined by the curvatures. For the asymmetric strategies NCS-AS
and CS-AS we easily realize that the asymmetry of the Bézier points translates into a rotation
of the patches around the EVs, which implies irregularities in the isophotes and unpleasant
curvatures. Instead, in strategy CS-S, we see that both isophotes and curvatures related to the
two valences are smooth and regular in a neighborhood of the EVs. To evaluate numerically
the results we use the quantities

Jn̂K :=

√∫
E
∥n̂L − n̂R∥22, LcGM := max

e∈E

(
max
u∈e

∣∣cLG − cRG
∣∣) , LcM M := max

e∈E

(
max
u∈e

∣∣cLM − cRM
∣∣) ,

where
∫
E :=

∑
e∈E

∫
e with E the set of all edges e of the mesh M and n̂L, cLG, c

L
M , n̂

R, cRG, c
R
M

are respectively the unit normal vector, the Gauss curvature and the mean curvature of,
respectively, the left and right patch sharing the common edge e. The G1 quality is evaluated
by Jn̂K, which is a measure of the distance of our surface from the set of purely C1 parametric

2.4 Analysis of the solutions and numerical results 47

(a) el3 (b) hyp3 (c) linel3 (d) stairs3 (e) el5

(f) house5 (g) beam6 (h) linel6 (i) saddle6 (j) smbeam6

(k) monk7 (l) el8 (m) bas8 (n) kpa8 (o) mitsu9

(p) bas10 (q) updwn10 (r) cube3456

Figure 2.5. Benchmark meshes in [Pet]: the numbers in the names refers to the EVs valences of the meshes.

surfaces. Indeed, this measure is zero on any C1 interface, while it expresses the discrepancy
or “jump” of the (non-unit) normal vector when there is a discontinuity across an interface.
Moreover, the quantities LcGM and LcM M return, respectively, the maximum difference between
the Gauss curvatures and mean curvatures on the patch interfaces: Table 3.25 shows the values
for these quantities of each solving strategy carried out on the test meshes [Pet] in Figure 2.5.
At this point, using both the numerical and visual approach, we can state that in any case
the asymmetric approach AS is never returning very regular surfaces; on the other hand we
see that in most cases the best approach is given by the strategy CS-S. From the numerical
results presented in Table 2.1, we notice that for meshes with very quick and sudden change
of slope of patches around EVs, strategy NCS-S returns slightly better surfaces in terms of
curvature compared to CS-S.

48 Chapter 2 A G1 approximation of Catmull-Clark surfaces

Figure 2.6. Mesh in Figure 2.5-(e). From left to right: solving strategies NCS-S, NCS-AS, CS-AS, CS-S.
Upper row: isophotes. Middle row: Gauss curvature. Lower row: mean curvature.

Figure 2.7. Mesh in Figure 2.5-(l). From left to right: solving strategies NCS-S, NCS-AS, CS-AS, CS-S.
Upper row: isophotes. Middle row: Gauss curvature. Lower row: mean curvature.

2.4 Analysis of the solutions and numerical results 49

el3 hyp3 linel3 stairs3 el5 house5 beam6 linel6 saddle6
Jn̂K 4.4e-15 3.4e-15 8.5e-15 3.3e-15 9.9e-15 7.0e-16 2.2e-15 1.5e-14 3.9e-15

NCS-S LcGM 1.9e-00 3.1e-00 3.4e-00 2.7e-00 1.2e-00 11.3e-00 84.7e-00 8.1e-00 1.3e-00
LcM M 0.9e-00 2.5e-00 0.3e-00 3.5e-00 0.7e-00 1.4e-00 2.4e-00 2.8e-00 0.5e-00
Jn̂K 4.4e-15 3.4e-15 8.9e-15 3.3e-15 9.9e-15 7.5e-16 2.2e-15 1.5e-14 3.9e-15

NCS-AS LcGM 13.6e-00 3.4e-00 132.8e-00 11.0e-00 7.9e-00 16.5e-00 92.1e-00 75.2e-00 1.6e-00
LcM M 4.2e-00 2.7e-00 23.7e-00 7.0e-00 4.1e-00 4.9e-00 7.3e-00 23.7e-00 1.4e-00
Jn̂K 4.4e-15 3.4e-15 7.0e-15 3.3e-15 9.9e-15 1.0e-15 2.2e-15 1.5e-14 4.0e-15

CS-AS LcGM 5.0e-00 1.3e-00 33.0e-00 4.0e-00 1.3e-00 3.7e-00 43.3e-00 16.0e-00 4.1e-00
LcM M 2.0e-00 1.4e-00 8.2e-00 4.2e-00 0.9e-00 1.5e-00 16.7e-00 5.7e-00 3.5e-00
Jn̂K 4.4e-15 3.4e-15 6.9e-15 3.3e-15 9.9e-15 9.5e-16 2.6e-15 1.5e-14 4.4e-15

CS-S LcGM 0.8e-00 1.3e-00 6.8e-00 3.9e-00 0.1e-00 3.4e-00 17.4e-00 0.9e-00 1.5e-00
LcM M 0.4e-00 1.4e-00 0.6e-00 4.0e-00 0.1e-00 0.8e-00 0.9e-00 0.3e-00 0.6e-00

smbeam6 monk7 el8 bas8 kpa8 mitsu9 bas10 updwn10 cube3456
Jn̂K 2.9e-15 6.2e-15 3.0e-14 5.6e-15 1.0e-14 1.9e-14 1.8e-14 1.0e-14 3.6e-14

NCS-S LcGM 45.6e-00 8.3e-00 7.5e-00 7.7e-00 56.6e-00 1.6e-00 50.0e-00 70.4e-00 0.7e-00
LcM M 4.3e-00 6.4e-00 2.9e-00 5.5e-00 6.5e-00 1.4e-00 11.8e-00 19.1e-00 0.5e-00
Jn̂K 2.9e-15 6.2e-15 3.0e-14 5.6e-15 1.0e-14 1.9e-14 1.8e-14 1.0e-14 3.2e-14

NCS-AS LcGM 49.5e-00 38.3e-00 107.5e-00 12.1e-00 63.0e-00 23.4e-00 91.8e-00 106.2e-00 3.3e-00
LcM M 5.1e-00 10.6e-00 40.8e-00 13.6e-00 17.6e-00 12.8e-00 27.6e-00 29.7e-00 1.9e-00
Jn̂K 2.9e-15 6.1e-15 2.6e-14 5.7e-15 1.1e-14 1.9e-14 1.8e-14 1.0e-14 4.0e-14

CS-AS LcGM 35.1e-00 92.0e-00 43.6e-00 16.1e-00 27.6e-00 14.6e-00 87.9e-00 25.3e-00 1.3e-00
LcM M 7.8e-00 39.0e-00 16.6e-00 16.8e-00 10.7e-00 8.3e-00 49.5e-00 87.4e-00 1.9e-00
Jn̂K 2.9e-15 6.1e-15 2.6e-14 5.7e-15 1.1e-14 1.9e-14 1.8e-14 1.1e-14 4.5e-14

CS-S LcGM 6.0e-00 91.4e-00 0.9e-00 15.1e-00 27.0e-00 1.0e-00 83.3e-00 24.5e-00 0.7e-00
LcM M 1.2e-00 38.8e-00 0.3e-00 15.8e-00 6.0e-00 1.0e-00 47.5e-00 84.4e-00 0.6e-00

Table 2.1. G1 smoothness Jn̂K, Gauss curvature difference LcGM and mean curvature difference LcM M obtained
from strategies NCS-S, NCS-AS, CS-AS, CS-S for every test mesh in Figure 2.5.

2.4.2 Complex meshes

Using the best strategy CS-S obtained in Section 2.4.1, we developed a G1 continuity analysis
on the complex meshes in Figures 2.8 to 2.12; these meshes present a very complicate geometry
together with a very high number of faces, vertices and, obviously, extraordinary vertices of
several valence. In Table 2.2 we present a detailed description of each mesh: we show the
number of EVs of any valence, the total number of EVs, the number of vertices and faces of
the mesh and the numerical evaluation of the G1 regularity. From the results in Table 3.25
and Table 2.2, we can affirm that this construction returns really smooth surfaces, with a G1

error in the range of 10−11-10−15, i.e. numerically identical to zero.

N=3, 5, 6, 7, 8, 9, 10, 11, 12, 16, 45 Total EVs Vertices Faces Jn̂K
alien 858, 82, 156, 102, 30, 6, 0, 0, 0, 0, 0 1234 5126 5124 9.0e-12
bird 1135, 147, 179, 84, 45, 14, 7, 10, 1, 0, 0 1622 6782 6780 2.7e-11

dinosaur 501, 57, 134, 34, 9, 6, 0, 0, 0, 0, 0 741 3002 3000 7.2e-12
disk 270, 90, 45, 0, 0, 0, 0, 0, 0, 0, 2 407 2214 1620 7.8e-12

dolphin 840, 89, 203, 74, 15, 7, 1, 2, 0, 0, 0 1231 5018 2016 2.7e-11
gear 1007, 147, 160, 64, 37, 9, 8, 9, 4, 1, 0 1446 6000 6000 6.4e-12

hammer 502, 73, 108, 34, 10, 6, 3, 1, 0, 0, 0 737 3004 3000 8.6e-12
hand 768, 36, 302, 27, 7, 1, 10, 0, 0, 0, 0 1142 4610 4608 5.7e-12
head 1383, 184, 241, 157, 38, 10, 4, 0, 0, 1, 0 2018 8270 8268 3.7e-11
rabbit 904, 134, 154, 88, 24, 9, 7, 1, 0, 0, 0 1321 5414 5412 6.4e-12
skull 1252, 151, 255, 124, 39, 7, 1, 2, 1, 0, 0 1832 7474 7476 7.8e-12
venus 502, 65, 113, 48, 11, 3, 0, 0, 0, 0, 0 742 3002 3000 2.8e-12

Table 2.2. Detailed features of the meshes in Figures 2.8 to 2.12.

50 Chapter 2 A G1 approximation of Catmull-Clark surfaces

(a) (b)

(c) (d)

Figure 2.8. Alien. (a): multipatch color. (b): solid color. (c): isophotes. (d): zoom on an EV of valence 7.
The surface was obtained using the solving strategy CS-S.

(a) (b)

(c) (d)

Figure 2.9. Hand. (a): multipatch color. (b): solid color. (c): isophotes. (d): zoom on an EV of valence 3.
The surface was obtained using the solving strategy CS-S.

2.4 Analysis of the solutions and numerical results 51

(a) (b)

(c) (d)

Figure 2.10. Rabbit. (a): multipatch color. (b): solid color. (c): isophotes. (d): zoom on an EV of valence 6.
The surface was obtained using the solving strategy CS-S.

(a) (b)

(c) (d)

Figure 2.11. Skull. (a): multipatch color. (b): solid color. (c): isophotes. (d): zoom on an EV of valence 8.
The surface was obtained using the solving strategy CS-S.

52 Chapter 2 A G1 approximation of Catmull-Clark surfaces

(a) bird (b) dinosaur (c) disk (d) dolphin

(e) gear (f) hammer (g) head (h) venus

Figure 2.12. Other surfaces obtained by complex meshes using the solving strategy CS-S.

2.4.3 Comparison with ACC3 surface and Catmull-Clark limit surface

In order to investigate the accuracy of our G1 approximation of the Catmull-Clark limit surface
we analyse on the distance between the two surfaces; the two quantities we take into account
are the geometry error and the normal error. For each point laying on the Catmull-Clark
limit surface, to compute the geometry error we look for their closest points on the G1 surface:
formally, if PCC is a point on the Catmull-Clark surface, the corresponding geometry error
geomerr is obtaining by minimizing the distance

dist(PCC ,G1) = min
P∈G1

∥PCC − P∥2 ,

where we define with G1 to be our CS-S surface. To evaluate the normal error, we first compute
the orthogonal projection P⊥ of each point PCC onto G1. Then the normal error normerr is
obtained evaluating the 2-norm of the corresponding unit normals attached to them

normerr = ∥n(PCC)− n(P⊥)∥2 .

The same study is conducted for the ACC3 surface in order to provide a comparison with our
improved construction and the obtained result are shown in Figure 2.13. We also estimate the
convergence rates of geomerr and normerr for both the surfaces ACC3 and G1. Starting from
different Catmull-Clark subdivision levels of the same input mesh, we construct on each of
them the two surfaces and we evaluate the maximum of the two errors over a dense sampling
of the surface.

In accordance with the quadratic convergence of the Catmull-Clark subdivision scheme,
the geometric error geomerr of our G1 construction converges quadratically, while normerr

converges with a rate of 0.7.

2.4 Analysis of the solutions and numerical results 53

(a) (b)

(c) (d)

Figure 2.13. Catmull-Clark limit surfaces with error colormap representing the geometry error (a)-(c) and
normal error (b)-(d) between the ACC3 surface (left objects) and our G1 surface (right objects)
using the data in [LS08, p. 8].

0 1 2 3 4
10−5

10−4

10−3

10−2

10−1

Refinement step

E
rr

o
r

ACC3 geom

G1ACC geom
ACC3 norm

G1ACC norm
Slope 1.5
Slope 2

Slope 0.72

Figure 2.14. Experimental convergence rates of the geometry and normal errors for ACC3 and G1CS-S under
successive Catmull-Clark subdivisions.

54 Chapter 2 A G1 approximation of Catmull-Clark surfaces

We also observed a convergence rate of 1.5 for the normal vector obtained as cross product
between the coordinate derivatives, which is in general a non-unit vector. On the other side,
in the ACC3 construction we observe that geomerr converges with a rate of 1.5 while normerr

presents an oscillatory non-convergent behavior. Figure 2.14 summarizes these results.
Moreover, from the numerical results we also noticed that this construction returns unit

normals at the vertices which are close to the real normal of the Catmull-Clark surface. Let
Tu,Tv = C Tu be the masks returning the tangents of the limit Catmull-Clark surface with
weights described in [LS08, pag. 3, 6] and ∂u = M1,0 − M0,0, ∂v = M0,1 − M0,0 = C ∂u the
masks returning the derivative directions of our surface obtained from (2.15). Denoting D
the matrix with columns Tu,Tv, ∂u, ∂v, we observe that two trailing singular values σi(D) of
D are small, which means that the four vectors are almost coplanar i.e. the tangent planes
generated by Span{Tu,Tv} and Span{∂u, ∂v} are approaching each other, also verified by the
converge of the unit normal (cf. Figure 2.14).

Summary

In this chapter we presented a novel construction of G1 surfaces defined through masks
over quad meshes which approximate the well-known Catmull-Clark limit surface obtained
from the same initial geometry. Starting from the C0 scheme in [LS08], by degree elevating
the extraordinary patches and using of quadratic gluing data functions we achieved explicit
solutions for the weights identifying the different masks, after having adequately fixed the
degrees of freedom that occurred during the construction; these masks would return the control
points forming the net of a biquintic Bézier patch. Several numerical tests on a benchmark of
challenging meshes ensured the quality of the latter construction.

55

Chapter 3
Geometrically smooth functions for
point cloud fitting
This chapter is devoted to the construction of a G1 set of basis function generating the space
of geometrically smooth splines defined over a quad mesh with the aim of applying them in
point cloud fitting problem. Point clouds arise in many different fields, from earth surveying
to medical imaging, and being able to have a smooth representation of it is a crucial task.
Here, we investigate this topic by using G1 Bézier functions defined over a quadrilateral mesh.

After having recalled the equations generating a G1 smooth spline space we will go further
in the construction of a set of basis function spanning the targeted space; moreover, we also
provide a combinatorial formula for the space dimension depending only on the main features
of the given mesh. The numerical experiments we provide to show the quality of the resulting
fitting are mainly obtained by using parametrized point cloud, i.e. points already equipped
with a parametrization. Moreover, we present a full pipeline to deal with general point clouds
in order to compute a quad mesh and a parametrization. This chapter is based on [MMM24].

3.1 G1 spline space on a mesh M
Here we will recall the equation defining a G1 joint between two adjacent Bézier patches
nearby EVs on a quad mesh M: similarly to relations (2.4) to (2.10), if b(k)

i,j are the control
points laying on the k-th patch (see Figure 2.2 for their labelling), the geometric continuity
constraints across an edge linked to an EV of valence N are:

b(1)
0,1 + b(0)

1,0 = ā0b
(1)
0,0 + a0b

(1)
1,0, (3.1)

5(b(1)
1,1 + b(0)

1,1) = a0b
(1)
0,0 + 5ā0b

(1)
1,0 + 4a0b

(1)
2,0, (3.2)

10(b(1)
2,1 + b(0)

1,2) = −a0b(1)
0,0 + 5a0b

(1)
1,0 + 10ā0b

(1)
2,0 + 6a0b

(1)
3,0, (3.3)

10(b(1)
3,1 + b(0)

1,3) = a0b
(1)
0,0 − 5a0b

(1)
1,0 + 10a0b

(1)
2,0 + 10ā0b

(1)
3,0 + 4a0b

(1)
4,0 , (3.4)

b(1)
4,1 + b(0)

1,4 = 2b(1)
4,0, (3.5)

b(1)
5,1 + b(0)

1,5 = 2b(1)
5,0, (3.6)

10(b(1)
3,0 − b(1)

2,0) = b(1)
0,0 − 5b(1)

1,0 + 5b(1)
4,0 − b(1)

5,0, (3.7)

with ā0 = 2− a0. The gluing data function we use is the same as in (2.2).
Starting from the above equations (3.1) to (3.7), we shall present an explicit construction

of a set of basis functions generating the G1 spline space that will follow the structure of

56 Chapter 3 Geometrically smooth functions for point cloud fitting

the input mesh M. For this purpose, it is interesting to count its main features: we will
refer to nV as the number of vertices of the mesh, which can be subdivided in nIEV inner
EVs, nBEV boundary EVs and nRV regular vertices. The total number of edges is denoted
by nE and is composed by the number of extraordinary and inner regular edges, nEE and
nIRE respectively, that is, edges attached to extraordinary and regular vertices, as well as the
number of boundary edges nBE . With nF we refer to the number of faces and lastly nC is the
number of corners of the mesh.

3.2 Basis extraction

In this section we present an explicit construction of a set of basis functions generating the
G1 space over a quad mesh M, which we refer to as B. Following the topology of the input
mesh M, we can distinguish the set of functions attached to the vertices BV (i.e. spanned by
functions whose support lies on all the patch(es) sharing the vertex), set of basis functions
attached to the edges BE (i.e. spanned by functions whose support lies on the patch(es) sharing
the edge) and set of basis functions attached to the faces BF (i.e. spanned by functions whose
support lies only on the interior of a single patch). This decomposition will be exploited in the
proofs of Section 3.3. Thus, we arrive at a set of basis functions which can be decomposed as

B =

(
nV⋃
i=1

BVi

)
∪
(

nE⋃
i=1

BEi

)
∪
(

nF⋃
i=1

BFi

)
. (3.8)

Also in this construction we assume that all the EVs in M are isolated, that is, their one-ring
neighborhood contains only RVs. Having EVs attached to regular vertices only, which translates
into (3.5) and (3.6), implies that vertex, edge and face functions have value and derivative
equal to zero on the boundary of their support. This is because the G1 constraints, defined
making use of the gluing functions (2.2), do not affect the final six points across the edge (i.e.
the points responsible of the value and derivative of the basis functions at the endpoint of the
edge) and they can therefore be set to zero. Thus, basis functions with local support on a
collection of faces of M do not influence functions in the region surrounding its support. By
combining (3.1) to (3.7) circularly around all the edges attached to an EV we can reformulate
the G1 constraints using a block staircase matrix, which is useful to better understand the
basis extraction and their analysis which follows. Let bi,j =

(
b(k)
i,j

)
, k = 1, . . . , N , be the

vector containing all the points b(k)
i,j attached to the neighborhood of the EV we are considering,

u = (1, . . . , 1︸ ︷︷ ︸
N

)T , Ĉ ∈ RN×N and the circulant matrix Ĉ introduced in (2.11)

Ĉ =


0 1 0 · · · 0

1
. . .

1
1 0 · · · 0

 = Circ(0, 1, 0, . . . , 0).

Note that b4,0 = b5,0 = 0, as a consequence of the locality of the G1 constraints around the
EV. The full system of G1 relations around an EV can be written as

3.2 Basis extraction 57


−ā0u C1

−a0u −5ā0I − 4a0I 5C2

−u 5I − 10I 10I
a0u −5a0I −10ā0I −6a0I 10I 10I

−a0u 5a0I −10a0I 10ā0I 10I 10I





b0,0

b1,0

b2,0

b1,1

b3,0

b2,1

b̂1,2

b3,1

b̂1,3


= 0, (3.9)

where a0 = 2 cos (2π/N) is the first Bernstein coefficient of the gluing data function (2.2),
ā0 = 2− a0, I ∈ RN×N is the identity matrix,

C1 = −a0I + Ĉ + ĈN−1, C2 = I + Ĉ, (3.10)

and b̂1,2 = Ĉ b1,2, b̂1,3 = Ĉ b1,3, with Ĉ in (2.11). The strategy we exploit to obtain the
Bézier coefficients defining the basis functions is the following: starting from (3.1) to (3.7) or
eq. (3.9) we impose, one by one, the value one to each "free" coefficient involved in the G1

constraints. Then, with this initial value we solve the G1 relations (3.1) to (3.7) (or (3.9)),
while we gradually set the value of any unconstrained coefficients that we encounter (i.e.
coefficients which lead to an overdetermined equation) to zero.

3.2.1 The set BV of vertex basis functions

Here belong basis functions connected to inner and boundary vertices (extraordinary or regular)
and corner vertices. We only provide the explicit construction for functions attached to inner
extraordinary and inner regular vertices, since the construction for the remaining cases is
analogous.

3.2.1.1 Construction of basis functions associated to an inner EV

Given an extraordinary vertex of valence N , we associate to it a basis function responsible of
the value (of elements in the G1 spline space) at the vertex and basis functions related to first
and cross derivatives. We deduce during the construction that these basis functions are N + 3
in total.

Basis function related to the vertex value. To extract the basis function associated to
the value at the vertex, we start solving the system (3.1) to (3.7) with initial value b0,0 = 1
and continuing the construction fixing zero values for all the control points which are not
constrained by any relation we will encounter during the construction. With this assumption,
we can rewrite (3.1) in the form

C1b1,0 = (2− a0)u, (3.11)

with C1 ∈ RN×N defined in (3.10). The solution of (3.11) returns the control points involved in
the definition of the first derivative of the basis with unit value at the vertex. From Section 2.3.1,
in particular from Proposition 2.3.1 and Theorem 2.3.2, we can deduce that the matrix

58 Chapter 3 Geometrically smooth functions for point cloud fitting

C1 = −a0I + Ĉ + ĈN−1 is singular and corank(C1) = 2; for this reason, in order to obtain a
unique solution we need to insert two extra constraints to the system (3.11). Let

Ker(C1) = K = Span{k1,k2}

be the kernel of the matrix C1 generated by the two vectors k1 and k2; we can choose our
solution to be orthogonal to the space K, i.e.

⟨b1,0|k1⟩ = ⟨b1,0|k2⟩ = 0.

To compute the kernel K we can use formula (2.14). This procedure allows us to achieve a
unique solution for this set of control points. Going further in the resolution of the system,
using the solution of (3.1) and the circulant matrix C, and taking into account the constraint
along the edge in (3.7) which becomes

b2,0 =
1

2
b1,0 −

1

10
u, (3.12)

we can reorder (3.2) as

C2b1,1 = −1

5
a0u+ 5(2 + a0)b1,0, (3.13)

with C2 as in (3.10). Following the analysis in previous Section 2.3.2.1, for odd values of the
valence N the matrix C2 is invertible, while for even occurrences we have corank(C2) = 1.
To obtain a unique solution in the singular case we need to fix an extra constraint which we
choose to be the orthogonality of the expected solution b1,1 to Ker(C2). Regarding the control
points for the higher derivatives b2,1 and b3,1, from (3.3) and (3.4) and using again (3.12) we
come up with the relations

b2,1 + b̂1,2 = −1

5
u+ b1,0 and b3,1 + b̂1,3 = 0, (3.14)

which can be solved, for example (and as we do), imposing the extra relations

b2,1 = b̂1,2,

b3,1 = b̂1,3.

This procedure, as depicted from the construction, returns a unique basis function. In Fig-
ure 3.1-(a) is presented an example of the coefficients obtained with the previous construction
in case of an EV of valence N = 3, while in Figure 3.2-(a) is shown the plot of the basis
function for N = 5.

Basis functions attached to the first derivatives at the vertex. Proceeding with
the construction of the second subset of basis functions we start again from (3.1) but imposing
this time the value b0,0 = 0; this choice leads to the following homogeneous linear system

C1b1,0 = 0, (3.15)

where the matrix C1 is the same as the previous paragraph and introduced in (3.10). Similarly
to (3.11), a solution of (3.15) is easily given by

b1,0 ∈ Ker(C1) = Span{k1,k2};

3.2 Basis extraction 59

(a) (b)

(c) (d)

Figure 3.1. Coefficients for a basis function attached to the value at the vertex (a), attached to the first
derivatives at the vertex (b)-(c) and attached to the cross derivatives at the vertex (d) for an EV
of valence N = 3.

since the kernel of the matrix C1 is a 2-dimensional space generated by the vectors k1 and k2

we will have two admissible solutions for the system (3.15) which, in fact, leads to two different
basis function attached to value of the first derivative at the vertex obtained by solving the
other G1 relations starting with b1,0 = k1 and b1,0 = k2. The remaining constraints relating
high order derivatives, taking into account the edge constraint obtained from (3.7)

b2,0 =
1

2
b1,0,

are given by the equations

C2b1,1 =
1

5
(2 + a0)b1,0,

b2,1 + b̂1,2 = b1,0,

b3,1 + b̂1,3 = 0,

which can be solved in the same way as (3.13) and (3.14). Figure 3.1-(b) and (c) show the
graph of the resulting functions for an EV with N = 3 while Figure 3.2-(b) and (c) presents
their plot when in presence of an EV with valence N = 5.

60 Chapter 3 Geometrically smooth functions for point cloud fitting

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.2. Basis function attached to the value of the vertex (a), value of first derivatives (b)-(c) and value
of cross derivatives (d)-(e)-(f)-(g)-(h) for an EV of valence N = 5.

3.2 Basis extraction 61

Basis responsible for the cross derivatives at the vertex. To a vertex of valence N
correspond N cross derivatives attached to it; this means that we need to compute N basis
functions related to the value of the cross derivative at the vertex. Let’s consider the k-th
patch belonging to the vertex ring. By setting the value b(k)

1,1 = 1, from (2.5) we realize that
this point has only influence on values laying in patches k− 1, k and k+1; more precisely, the
points affected by this choice are only b(k)

2,0 and b(k+1)
2,0 regarding the second derivatives, which

will have values equal to

b(k)
2,0 = b(k+1)

2,0 =
5

4a0
,

being well defined since a0 ̸= 0 ⇐⇒ N ̸= 4, that is the case of an EV we are in fact investigating.
Regarding higher order derivatives, we have the points b(k)

3,0, b
(k+1)
3,0 , b(k−1)

1,2 , b(k)
2,1, b

(k)
1,2, b

(k+1)
2,1 and

b(k−1)
1,3 , b(k)

3,1, b
(k)
1,3, b

(k+1)
3,1 defined by the relations

b(k)
3,0 = b(k+1)

3,0 =
5

4a0
,

b(k−1)
1,2 + b(k)

2,1 = b(k)
2,1 + b(k+1)

1,2 =
1

2

(
5

a0
− 1

)
,

b(k−1)
1,3 + b(k)

3,1 = b(k)
3,1 + b(k+1)

1,3 =
5

2a0
,

which are obtained making use of (3.3), (3.4) and (3.7). Previous equations can be solved as
in (3.14). Repeating the same construction for all the patches in the ring we come up with the
N basis functions attached to the cross derivatives. The result in the case N = 3 is shown
in Figure 3.1-(d), while Figure 3.2-(d) to (h) presents the plot of the set of cross derivative
basis functions for an EV of valence N = 5.

3.2.1.2 Basis functions at an inner regular vertex

In presence of a regular vertex (RV), i.e. a vertex with valence N = 4, we expect to have by
construction C1-smooth basis functions; this is in fact what (3.5) and (3.6) state. First we
need to investigate how many RV basis function we have. To do that we first need to expand
cyclically (3.5) and (3.6) to all the control points around the vertex; this procedure, using the
notation in Figure 3.3-(a) leads to the following system:



1 0 0 −2 0 0 1 0 0
0 1 0 0 −2 0 0 1 0
1 −2 1 0 0 0 0 0 0
0 0 0 1 −2 1 0 0 0
0 1 0 0 −2 0 0 1 0
0 0 1 0 0 −2 0 0 1
0 0 0 1 −2 1 0 0 0
0 0 0 0 0 0 1 −2 1





P
Q
R
S
T
U
V
W
X


= 0. (3.16)

Let D be the coefficient matrix in (3.16). The number of basis functions attached to the
RV is given by corank(D) = 9− rank(D) = 9− 5 = 4. Hence, a choice for the Bézier points
returning linearly independent functions (by construction) verifying (3.16) is given by the

62 Chapter 3 Geometrically smooth functions for point cloud fitting

coefficients in Figure 3.3-(b). In presence of RV connected to an EV it is also necessary to
modify more control points for each extraordinary edge, according with (3.3) and (3.4).

(a)

1 1
2 0

1
2

1
4 0

0 0 0

0 1
2 1

0 1
4

1
2

0 0 0

0 0 0

0 1
4

1
2

0 1
2 1

0 0 0

1
2

1
4 0

1 1
2 0

(b)

Figure 3.3. (a): labelling of the control points around an inner regular vertex. (b): values for the Bézier
points of the four basis functions.

3.2.1.3 Basis functions linked to extraordinary and regular boundary vertices and
corners

The extraction of this type of functions is analogous to the constructions developed in the
previous sections for the inner cases. Naming with κ the valence of an extraordinary boundary
vertex, i.e. the number of patches attached to it, imitating the process in Section 3.2.1.1 we
come up with κ+ 3 basis functions, which is equivalent to N + 2 since κ = N − 1. On the
other hand, to obtain the functions connected to a regular boundary vertex and corner we
need to copy the procedure shown in Section 3.2.1.2: in both cases, following the same strategy
leading to (3.16), we come up again with four basis functions.

3.2.2 The set BE of edge basis functions

In this second set of functions, we have basis functions attached to inner and boundary edges,
either extraordinary and regular ones. In the same way as the vertex functions we will present
the explicit construction in the case of inner extraordinary and regular edge functions, whereas
the construction for the remaining case is analogous.

3.2 Basis extraction 63

3.2.2.1 Construction of basis functions connected to an extraordinary edge

These functions are obtained starting from (3.3),(3.4) and (3.7). Similarly to the construction
in Section 3.2.1.1, to extract the Bézier coefficients for the functions, we need to set zero values
at the free points appearing in the equations. In the construction of basis functions connected
to extraordinary edges, the control points we need to nullify are all the points laying on the
edge, i.e. b0,0, b1,0, b2,0, b3,0, b4,0 and b5,0. This assumption transforms (3.3) and (3.4) into

b2,1 + b̂1,2 = 0,

b3,1 + b̂1,3 = 0,
(3.17)

which define the two basis functions living on an extraordinary edge. The simplest solution
satisfying (3.17) is to take

b2,1 = b3,1 = 1,

b̂1,2 = b̂1,3 = −1,

or vice-versa. Figure 3.4 presents their plot.

Figure 3.4. The two edge basis functions defined on an extraordinary edge.

3.2.2.2 Basis functions belonging to an inner regular edge

These basis functions are obtained with a similar approach as in Section 3.2.1.2 for an inner
regular vertex; are involved in this construction the six control points in the inner part of the
edge, i.e. away from the influence of the vertices’ equations. In order to determine the number
of these functions, applying the C1 constraints in (3.5) and (3.6) to the two layers of control
points implicated in this analysis with the notation given by Figure 3.5-(a) we have:

(
1 −2 1 0 0 0
0 0 0 1 −2 1

)


P̄
Q̄
R̄
S̄
T̄
Ū

 = 0. (3.18)

64 Chapter 3 Geometrically smooth functions for point cloud fitting

(a)
1 0

1
2 0

0 0

0 0

1
2 0

1 0

0 1

0 1
2

0 0

0 0

0 1
2

0 1

(b)

Figure 3.5. (a): labelling of the control points across a regular inner edge. (b): values for the Bézier points
of the four basis functions.

If D̄ is the matrix in (3.18), the number of basis functions attached to an inner regular edge is
given by corank(D̄) = 4 and a set of possible solutions verifying these constraints returning
linearly independent functions is given by the configurations in Figure 3.5-(b).

3.2.2.3 Boundary edge basis functions

In presence of a boundary edge we have no smoothness constraints to impose. Hence, the
basis functions in this case are the classical bivariate Bézier polynomials obtained assigning
the unit value to the four control points involved in this setting, one at the time, to obtain the
four basis functions we were looking for.

3.2.3 The set BF of face basis functions

To conclude the construction of our basis we miss the definition of functions belonging uniquely
to a single patch. As for the case of boundary edge functions, here we have no regularity
conditions to impose; thus the construction is the same as in Section. 3.2.2.3 returning four
Bézier polynomial on each face.

3.3 Analysis of the basis and space dimension

The functions we built in Section 3.2 form a basis of the G1 spline space over the mesh M.
Denoting by G1(M) such space, it results that G1(M) = ⟨B⟩. In this section we will provide
a proof for this statement as well as a dimension formula for the underlined space. The first
part of the proof, obtained by contradiction, focuses on the linear independence of the basis
functions and it is carried out exploiting the property (3.8) and analysing their supports;
the second half, instead, uses the equations defining the smoothness constraints of the basis
functions in order to prove that they generate the desired spline space.

Theorem 3.3.1. The functions introduced in Section 3.2 form a basis B for the space G1(M)
over a quad mesh M.

3.3 Analysis of the basis and space dimension 65

Proof. In order to prove that the set B is a basis of our space we need to prove that it is
linear independent and the property of being a generating set. For the linear independence, we
proceed by contradiction. Since we assume to have isolated EVs only, we have by construction
that the supports of vertex basis functions attached to different vertices are disjoint; the
same property holds for edge basis functions defined over different edges as well as face basis
functions attached to different faces. Hence, we can restrict our proof on basis functions
attached on elements sharing a common vertex. Therefore we consider an EV of valence N
with its N extraordinary edges and N faces (the case with regular vertices and regular edges
is analogous) and we assume that there exists a linear dependence between the basis functions
supported on these elements, i.e. there exist non zero coefficients α,β,γ such that

N+3∑
i=1

αiB
EV
i +

N∑
j=1

2∑
i=1

β
EEj

i B
EEj

i +

N∑
j=1

4∑
i=1

γ
Fj

i B
Fj

i = 0. (3.19)

From (3.19) it holds that

supp

N+3∑
i=1

αiB
EV
i +

N∑
j=1

2∑
i=1

β
EEj

i B
EEj

i

 = supp

−
N∑
j=1

4∑
i=1

γ
Fj

i BiFj

 ,

and in particular

supp

N+3∑
i=1

αiB
EV
i +

N∑
j=1

2∑
i=1

β
EEj

i B
EEj

i

 ⊆
(

N+3⋃
i=1

supp
(
BEV

i

))
∪

 N⋃
i=1

 2⋃
j=1

supp
(
B

EEj

i

)
supp

N+3∑
i=1

αiB
EV
i +

N∑
j=1

2∑
i=1

β
EEj

i B
EEj

i

 ⊆

 N⋃
i=1

 4⋃
j=1

supp
(
B

Fj

i

) .

It follows that

supp

N+3∑
i=1

αiB
EV
i +

N∑
j=1

2∑
i=1

β
EEj

i B
EEj

i


⊆

(N+3⋃
i=1

supp
(
BEV

i

))
∪

 N⋃
i=1

 2⋃
j=1

supp
(
B

EEj

i

) ∩

 N⋃
i=1

 4⋃
j=1

supp
(
B

Fj

i

) = ∅.

(3.20)

Hence, (3.20) implies

N+3∑
i=1

αiB
EV
i +

N∑
j=1

2∑
i=1

β
EEj

i B
EEj

i = 0 =

N∑
j=1

4∑
i=1

γ
Fj

i B
Fj

i ,

that is γFj

i = 0 ∀ i, j since BFj

i are linearly independent by construction. Now we have

N+3∑
i=1

αiB
EV
i = −

N∑
j=1

2∑
i=1

β
EEj

i B
EEj

i .

66 Chapter 3 Geometrically smooth functions for point cloud fitting

Let us fix two adjacent patches k and k− 1 sharing the EV we are considering and let us focus
on the control points b(k)

0,0, b
(k)
1,0, b

(k)
0,1, b

(k)
1,1, b

(k−1)
1,0 , b(k−1)

1,1 . By definition, these control points are

always equal to zero for all the basis functions BEEj

i , while this is not the case for the BEV
i ;

hence, if we now look at the submatrices corresponding to the points we are considering for
both BEV

i and B
EEj

i , we deduce that in the first case the selected submatrix is invertible,
while the second submatrix is the null matrix. Therefore it follows that ∀i, αi = 0 since the
BEV

i are linearly independent by construction and consequently, using the same argument,
β
EEj

i = 0 ∀i, j.
Regarding the generating property, let f ∈ G1(M). Since the basis functions BFj

i attached
to a face Fj are C1 smooth we can define the function

f
′
:= f −

nF∑
j=1

4∑
i=1

c
Fj

i B
Fj

i , (3.21)

which is still G1 and is such that the inner face coefficients vanish. The same procedure can
be applied to the C1 basis function attached to corners BCj

i , boundary edges BBEj

i and inner
regular edges BIREj

i which can be used to define a new function starting from (3.21) as

f
′′
:= f

′ −
nC∑
j=1

4∑
i=1

c
Cj

i B
Cj

i −
nBE∑
j=1

4∑
i=1

c
BEj

i B
BEj

i −
nIRE∑
j=1

4∑
i=1

c
IREj

i B
IREj

i ∈ G1,

so that it has null coefficients in the above mentioned sectors.
Let s be the indices of the 9 control points in Figure 3.3 related to the basis functions BRVj

i

attached to a regular vertex RVj and let denote by f [s] the corresponding control coefficients
of the function f . Since from (3.16)

Af [s] = 0,

it follows that
Ker(A) = Span

{
B

RVj

i [s]
}
.

Hence

f
′′
[s] =

4∑
i=1

c
RVj

i B
RVj

i [s];

we proceed similarly with boundary EVs BBEVj

i and boundary regular vertices BBRVj

i to define
respectively coefficients cBEVj

i , c
BRVj

i so that the function

f
′′′
:= f

′′ −
nRV∑
j=1

4∑
i=1

c
RVj

i B
RVj

i −
nBRV∑
j=1

4∑
i=1

c
BRVj

i B
BRVj

i −
nBEV∑
j=1

NBEVj
+2∑

i=1

c
BEVj

i B
BEVj

i

is still a G1 smooth function and it has zero coefficients in the previously treated regions.
Now, the function f ′′′ has only non-zero coefficients around extraordinary vertices and their

incident edges. We define t as the indices of the non-zero coefficients for an extraordinary
vertex EVj (black points in Figure 3.1). Similarly to the case of regular vertices, from (3.9),

Āf
′′′
[t] = 0,

3.4 Numerical experiments 67

where Ā is the matrix in (3.9) containing the G1 constraints. Then,

Ker(Ā) = Span
{
B

EVj

i [t]
}

which leads to

f
′′′
[t] =

3NEVj
+3∑

i=1

c
EVj

i B
EVj

i [t].

Finally, we have that

f
′′′′

:= f
′′′ −

nEV∑
j=1

3NEVj
+3∑

i=1

c
EVj

i B
EVj

i = 0,

which concludes the proof.

As consequence of the particular structure of the set B we have the following formula for
the dimension of our spline space.

Corollary 3.3.2. The space G1(M) has dimension given by:

dim
(
G1(M)

)
=

nV∑
i=1

|BVi |+
nE∑
i=1

|BEi |+
nF∑
i=1

|BFi |

=

nEV∑
i=1

NEVi + 3nIEV + 2(nBEV + nEE) + 4(nIRE + nBE + nRV + nC + nF).

Proof. The proof is obtained using the decomposition in (3.8) and summing up all the members
of the basis functions for each feature of the mesh shown in Sections 3.2.1, 3.2.2 and 3.2.3.

3.4 Numerical experiments

We conclude this chapter presenting numerical experiments in which we assess the basis
functions constructed in Section 3.2 in point cloud fitting problems. The setup of our
investigation is the classical least squares fitting problem: given a point cloud P, i.e. a set of
points Pi ∈ R3, i = 1, . . . , nP , with associated parameters (ui, vi) ∈ [0, 1]2 on the patch ℓi, we
want to find the coefficients ci ∈ R3 of a G1 surface G =

∑
k ckBk such that the quantity

F =

nP∑
i=1

∥∥∥G(ℓi)(ui, vi)− Pi

∥∥∥2
2
+ λEthin, λ ≥ 0, (3.22)

is minimal, where G(ℓ), ℓ = 1, . . . , nF , is the geometry map

G(ℓ) : [0, 1]2 −→ R3 , (u
(ℓ)
i , v

(ℓ)
i) 7−→ G(ℓ)(u

(ℓ)
i , v

(ℓ)
i) =

36∑
i,j=1

b(ℓ)
i,jB

(ℓ)
i,j (u

(ℓ)
i , v

(ℓ)
i), (3.23)

defining the G1(M) space, and b(ℓ)
i,j the control points associated with the bivariate Bernstein

polynomials B(ℓ)
i,j defining the ℓ-th patch Ω(ℓ) = G(ℓ)([0, 1]2).

68 Chapter 3 Geometrically smooth functions for point cloud fitting

We also take into account in our minimization problem (3.22) an energy term given by the
standard thin-plate energy

Ethin =

nF∑
ℓ=1

∫∫
[0,1]2

∥∥∥G(ℓ)
uu

∥∥∥2
2
+ 2

∥∥∥G(ℓ)
uv

∥∥∥2
2
+
∥∥∥G(ℓ)

vv

∥∥∥2
2
du dv, (3.24)

which is controlled by the parameter λ. The minimization of the functional in (3.24) is
responsible for a regularisation effect on the final surface G (i.e. oscillations). Moreover,
following the construction presented in [Hos88], we perform few iterations of parameter
correction to further reduce the approximation error, if needed.

Since our focus is on the quality of the G1 basis for fitting, the parametrized data that we
use in the following numerical experiments are obtained by evaluating certain input functions
or surfaces to obtain parameters. In particular, starting from a planar mesh, in order to build
point cloud data from a given analytic function f , we compute parameters (ui, vi) by randomly
sampling a certain number of points in the unit square [0, 1]2, for each patch. Therefore, the
point cloud is obtained by the triple

(xi, yi, f(xi, yi)), with (xi, yi) = G(ℓi)(ui, vi).

A similar procedure is performed to obtain a point cloud from a quad mesh yielding an AC3

surface [LS08]: considering the geometry map GACC3 , we obtain sample points

(xi, yi, zi) = G
(ℓi)
ACC3

(ui, vi)

randomly on the surface, with (ui, vi) ∈ [0, 1]2. Furthermore, we present two examples of data
fitting starting from point clouds without any given structure where both the quad mesh and
a parametrization are computed just starting from the points data.

After having computed a least squares surface G from a point cloud P, let us define the
array of errors err = {erri}nPi=1 whose entries are the quantities

erri =
∥∥∥G(ℓi)(ui, vi)− Pi

∥∥∥
2
,

i.e. the Euclidean distance (ℓ2 norm) from each point of the cloud and the corresponding
value on the surface evaluated at its parameter. From this we define two quantities which will
be used to asses the accuracy of the fitting, namely the maximum error and the root mean
squared error (RMSE in short):

L∞ = max
i=1,...,nP

erri, RMSE =

√√√√ 1

nP

nP∑
i=1

err2i . (3.25)

3.4.1 Point cloud by analytic function evaluation

The experiments we propose here use point cloud data obtained by sampling an input function
f(x, y) over a domain identified by a quad mesh M. In Example 3.4.1 we focus on the quality
of the fitting showing how it improves when the number of basis functions increases, without
the need to use extra smoothness constraints. On the other hand, Example 3.4.2 exhibit the
power of our construction when thin plate energy is used in order to obtain an optimal result,

3.4 Numerical experiments 69

but without increasing the dimension of the spline space. Finally, Example 3.4.3 provide an
example of fitting from a point cloud derived by a trivariate function defined over the unit
sphere.

Example 3.4.1. For this test, the point cloud is obtained evaluating the function

fT (x, y) =
y

2 (cos(4(x2 + y − 1)))
, (x, y) ∈ MT (3.26)

over the mesh MT , defining a triangle, formed by 3 patches which present an EV of valence
N = 3; our sampling produced a point cloud formed by 1536000 points. This example uses no
smoothing, which means we fix λ = 0. From the result in Figure 3.6-(a) can be noticed that
constructing our spline space over a coarse mesh as MT leads to a fitting surface which is not
approximating in a proper way our point set, due to its very oscillatory behavior. This issue
can be solved by increasing the number of functions generating the spline space, i.e. increasing
the number of patches defining the polygonal domain; in this example the mesh has been
refined via Catmull-Clark subdivision.

(a) (b)

(c) (d)

Figure 3.6. (a): final point cloud obtained sampling (3.26) at the last refinement step. (b): resulting surface.
(c): multipatch representation of the surface. (d): error color plot of the ℓ2 distances. The cloud
is contained in a bounding box whose longest length is 2.

In Table 3.1 and Figure 3.7 are respectively listed and plotted the errors computed from (3.25)
for 5 refinement levels. Figure 3.6 shows the input point cloud (a) and the results at the last
step of subdivision (b)-(c) together with its error color plot (d), while Table 3.2 and Figure 3.7
present the resulting errors, when the number of points increases along with the dimension

70 Chapter 3 Geometrically smooth functions for point cloud fitting

dim
(
G1(MT)

)
72 240 864 3264 12672

L∞ error 0.364e-00 0.122e-00 0.834e-01 0.178e-01 0.790e-02
RMSE 0.491e-01 0.149e-01 0.335e-02 0.353e-03 0.570e-04

Table 3.1. Maximal error L∞ and RMSE for the surfaces in Example 3.4.1 obtained under 5 Catmull-Clark
subdivision steps from a point cloud of 150528 elements.

dim
(
G1(MT)

)
72 240 864 3264 12672 49920

L∞ error 0.225e-00 0.844e-01 0.340e-01 0.385e-02 0.187e-03 0.351e-05
RMSE 0.349e-01 0.140e-01 0.338e-02 0.256e-03 0.723e-05 0.119e-06

Table 3.2. Maximal error L∞ and RMSE for the surfaces in Example 3.4.1 obtained under 6 Catmull-Clark
subdivision steps with increasing number of elements in the point cloud to estimate the rate of
convergence. The point clouds have respectively 1500, 6000, 24000, 96000, 384000 and 1536000
points.

(a) (b)

Figure 3.7. Experimental behaviors of errors for Example 3.4.1. (a): errors obtained when increasing the
number of basis functions but keeping fix the size of the point cloud. (b): errors obtained
when increasing both the number of basis functions but and the size of the point cloud at every
refinement step.

of the G1 spline space. Moreover, we investigate the convergence of the fitting error and, as
shown in Figure 3.7, we recovered the optimal convergence rate 6 using biquintic splines.

Example 3.4.2. Here, the cloud data is derived sampling the function

fE(x, y) =
∑

ν∈{−3,0,3}

2

3e
√

(10x+ν)2+(10y+ν)2
, (x, y) ∈ ME , (3.27)

where ME is a quad mesh tracing out an hexagon composed of 96 patches identifying an EV
of valence N = 6 in its middle. The point cloud we obtain is formed of 153600 points. Here we
show the power of the smoothing property of this construction: differently from Example 3.4.1,
fixing the number of patches i.e. the number of basis function, which is equal to 1725 in our

3.4 Numerical experiments 71

case, we compute the fitting surface increasing the smoothing parameter λ from 10−3 to 10−1

with a step of 10−1.

(a) (b)

(c) (d)

(e) (f)

Figure 3.8. (a): point cloud obtained sampling the function in (3.27). (b) to (d): approximating surfaces
obtained by using the same number of basis function and point cloud with smoothing parameter
λ = 0, λ = 10−2 and λ = 10−1, respectively. (e): multipatch coloring of the surface in (d). (f):
error color plot of the ℓ2 distances for the surface in (d). The cloud is contained in a bounding
box whose longest length is 2. Notice how the wrinkles nearby the middle peak diminish when
the smoothing parameter increases from (b) to (d).

From Figure 3.8-(b) we notice that the fitting surface presents several wrinkles around the
middle peak; by increasing the smoothing factor λ we recover regularity in the output function

72 Chapter 3 Geometrically smooth functions for point cloud fitting

which presents much less irregularities, as can be noticed in Figure 3.8-(d). As expected,
this procedure will produce at every iteration a smoother function than the previous, but on
the other side this forced regularity constraint is reflected in an increase of the three errors
in (3.25); this phenomenon is shown in Table 3.3 and graphically in Figure 3.9.

Figure 3.9. Experimental behavior obtained from the errors for Example 3.4.2 when increasing the smoothing
parameter λ.

λ 0 10−3 10−2 10−1

L∞ error 0.164e-00 0.165e-00 0.170e-00 0.196e-00
RMSE 0.308e-02 0.310e-02 0.312e-02 0.375e-02

Table 3.3. Maximal L∞ error and RMSE for the surfaces in Example 3.4.1 for the surfaces in Example 3.4.2
computed making use of 1725 basis functions and progressively bigger smoothing parameter λ.
The maximum length of the box containing the model in Figure 3.8 is equal to two.

Example 3.4.3. In this example, the point cloud is obtained by evaluating a trivariate
function defined over the unit sphere S2. More precisely, the points are sampled from the
function

fS2(x, y, z) = max{0, sin (2πx) sin (2πy) sin (2πz)}+ 1, (x, y, z) ∈ S2. (3.28)

The data we get is composed of 540000 points, while the set of basis functions has been
built over the quad mesh MS2 approximating the unit sphere with 96 faces. We notice from
the color plot in Figure 3.10-(d) that, understandably, the error is concentrated in the regions
where the point cloud has peaks. This is due to the noticeable slopes created by the presence
of the max function in (3.28). Table 3.4 shows the numerical results for the errors.

dim
(
G1(MS2)

)
L∞ error RMSE

fS2 1512 0.539e-01 0.107e-01

Table 3.4. Spline space dimension, maximal error L∞ and RMSE for the fitting presented in Example 3.4.3.
The point cloud in Figure 3.10 is surrounded by a box with longest size 3.

3.4 Numerical experiments 73

(a) (b)

(c) (d)

Figure 3.10. (a): point cloud obtained sampling the trivariate function defined in (3.28) over the unit sphere
S2. (b): quad mesh used to define the G1 space. (c): final least squares surface. (d): error color
plot of the ℓ2 distances. The cloud is contained in a bounding box whose longest length is 3.

3.4.2 Point cloud from ACC3 surfaces

We now present fitting examples obtained from big data sets. The point clouds utilized in this
section are provided by randomly sampling the Approximate Catmull-Clark surfaces (ACC3)
obtained from the construction in [LS08]. Figures 3.11 to 3.16 show the data we use for
our investigation obtained from the ACC3 surfaces, starting from parameters sampling: the
dimension of the clouds goes from a minimum of 549180 to a maximum of 968704 points. In
all the experiments presented here we do not consider any smoothing parameter, i.e. λ = 0,
but few iterations of parameter correction [Hos88] are performed to optimize the fitting error;
the errors in Table 3.5 are obtained using the formulas in (3.25). Since ACC3 surfaces are not
G1 at the EVs, it is not surprising to see that the maximal fitting error is located around the
extraordinary vertices.

74 Chapter 3 Geometrically smooth functions for point cloud fitting

(a) (b)

(c) (d)

Figure 3.11. Bird. (a): point cloud obtained sampling an ACC3 surface. (b): quad mesh used to define the
G1 space. (c): final least squares surface. (d): error color plot of the ℓ2 distances. The cloud is
contained in a bounding box whose longest length is 100.

3.4 Numerical experiments 75

L∞ error RMSE
no p.c. 3 × p.c. no p.c. 3 × p.c. dim

(
G1(M)

)
nP

bird 0.138e-00 0.754e-01 0.325e-02 0.648e-03 100386 549180
dinosaur 0.251e-01 0.162e-01 0.348e-03 0.205e-03 29885 680124
hammer 0.667e-02 0.555e-02 0.138e-03 0.596e-04 48580 685800

hand 0.417e-01 0.320e-01 0.616e-03 0.341e-03 28227 575424
rabbit 0.120e-01 0.114e-01 0.302e-03 0.145e-03 60220 968704
venus 0.131e-01 0.611e-02 0.210e-03 0.610e-04 55018 676592

Table 3.5. Maximal error L∞ and RMSE obtained both without and with 3 iterations of parameter correction
(p.c.) for the fitting examples presented in Figures 3.11 to 3.16 with a description of the spline
space and point cloud features. All the above mentioned models are contained in a box whose
longest length is 100.

(a) (b)

(c) (d)

Figure 3.12. Dinosaur. (a): point cloud obtained sampling an ACC3 surface. (b): quad mesh used to define
the G1 space. (c): final least squares surface. (d): error color plot of the ℓ2 distances. The
cloud is contained in a bounding box whose longest length is 100.

76 Chapter 3 Geometrically smooth functions for point cloud fitting

(a) (b) (c) (d)

Figure 3.13. Hammer. (a): point cloud obtained sampling an ACC3 surface. (b): quad mesh used to define
the G1 space. (c): final least squares surface. (d): error color plot of the ℓ2 distances. The
cloud is contained in a bounding box whose longest length is 100.

(a) (b)

(c) (d)

Figure 3.14. Hand. (a): point cloud obtained sampling an ACC3 surface. (b): quad mesh used to define the
G1 space. (c): final least squares surface. (d): error color plot of the ℓ2 distances. The cloud is
contained in a bounding box whose longest length is 100.

3.4 Numerical experiments 77

(a) (b)

(c) (d)

Figure 3.15. Rabbit. (a): point cloud obtained sampling an ACC3 surface. (b): quad mesh used to define
the G1 space. (c): final least squares surface. (d): error color plot of the ℓ2 distances. The
cloud is contained in a bounding box whose longest length is 100.

(a) (b) (c) (d)

Figure 3.16. Venus. (a): point cloud obtained sampling an ACC3 surface. (b): quad mesh used to define the
G1 space. (c): final least squares surface. (d): error color plot of the ℓ2 distances. The cloud is
contained in a bounding box whose longest length is 100.

78 Chapter 3 Geometrically smooth functions for point cloud fitting

3.4.3 Quadrilateral mesh generation, parametrization and fitting

In the previous experiments, all the point clouds were already equipped with a parametrization.
This is because the goal of this chapter is to show the quality of the fitting with the basis
functions we propose, rather than improving upon parameter computation. Nevertheless, we
now present few examples in which both the parametrization of an unorganised point cloud
and the construction of a coarse quadrilateral mesh are derived. Starting from an input point
cloud, we first reconstruct a triangular mesh by using the algorithm in [Ber99]; then we apply
the so-called 4-8 subdivision scheme [VZ01] to obtain a quadrangular representation of the
previous triangular mesh. This procedure leads to a mesh, which is much more refined than we
would need for our computation. Hence, we coarsen it using Rhino3D command QuadRemesh
(see [McN10]), which reduces the number of faces of the quad mesh without modifying its
topology. This quad mesh M is the mesh on which we define the G1 space and basis functions.

In order to associate parameters to a point Pi = (xi, yi, zi) of the point cloud, we compute
its orthogonal projection P⊥

i = (x⊥i , y
⊥
i , z

⊥
i) onto the G1 spline surface G obtained from the

construction in Chapter 2. Assume that the point P⊥
i is laying on the ℓ-th patch of G. Let G(ℓ)

be the geometry map associated with the patch ℓ defined in (3.23). We define the parameters
(ui, vi) associated with the point Pi as

(ui, vi) =
(
G(ℓ)

)−1
(P⊥

i);

This parameter computation is repeated for all the points of the point cloud.
Figures 3.17, 3.19 and 3.21 present three examples of point cloud fitting obtained using

the pipeline presented in this section. Particular interest goes for the example in Figure 3.19,
whose initial point cloud presents a very uneven distribution of points. Moreover, in all the
numerical examples a regularization parameter λ = 10−1 has been used in order to have a
well-posed problem. The compression we obtain in these examples is smaller than the one in
the experiments presented in Section 3.4.2; it could be increased doing more coarsening on the
quad mesh but we didn’t go further in this direction since the aim of the subsection is the
general parametrization and mesh generation. Table 3.6 summarizes the key points of these
experiments.

nP nF coarse quad mesh dim
(
G1(M)

)
L∞ error RMSE

uniform toy 113846 2104 33280 0.190e-01 0.248e-02
nonuniform toy 30908 1860 29391 0.250e-01 0.277e-02

icosahedron 208708 7892 125205 0.189e-01 0.142e-02

Table 3.6. Points in the input cloud, quad mesh and corresponding spline space details, maximal error L∞

and RMSE for the fitting examples in Figures 3.17, 3.19 and 3.21. All the models are contained in
a bounding box whose longest length is 2.

3.4 Numerical experiments 79

(a) (b)

(c) (d)

Figure 3.17. Uniform toy. (a): input point cloud. (b): reconstructed quad mesh used to define the G1 space.
(c): final least squares surface. (d): error color plot of the ℓ2 distances. The cloud is contained
in a bounding box whose longest length is 2.

(a) (b) (c) (d)

Figure 3.18. Reflection lines on the C0 (a) and G1 (c) surfaces obtained from the point cloud in Figure 3.10-(a)
and relative zooms, (b) and (d), around an EV.

80 Chapter 3 Geometrically smooth functions for point cloud fitting

3.4.4 Comparison with C0 fitting

Here we present a comparison between surfaces obtained by fitting a point cloud using our
proposed G1 basis functions and using the standard C0 Bernstein basis on (the faces of) a
quad mesh M, whose space is denoted by C0(M). In Table 3.7 we can notice that, despite
the higher dimension of the continuous basis functions, the errors we get are comparable with
the ones obtained from the G1 construction using fewer basis functions; Figures 3.18 and 3.20
present the reflection lines for the treated examples.

(a) (b)

(c) (d)

Figure 3.19. Nonuniform toy. (a): input point cloud. (b): reconstructed quad mesh used to define the G1

space. (c): final least squares surface. (d): error color plot of the ℓ2 distances. The cloud is
contained in a bounding box whose longest length is 2.

dim
(
C0(M)

)
dim

(
G1(M)

)
L∞

C0 error L∞
G1 error RMSEC0 RMSEG1

fS2 2402 1512 0.455e-01 0.539e-01 0.728e-02 0.107e-01
uniform toy 52602 33280 0.165e-01 0.190e-01 0.224e-02 0.248e-02

Table 3.7. Comparison between C0 and G1 dimensions and errors for the examples in Figure 3.10 and 3.17.

3.4 Numerical experiments 81

(a) (b) (c) (d)

Figure 3.20. Reflection lines on the C0 (a) and G1 (c) surfaces obtained from the point cloud in Fig. 3.17-(a)
and relative zooms, (b) and (d), around an EV.

(a) (b)

(c) (d)

Figure 3.21. Icosahedron. (a): input point cloud. (b): reconstructed quad mesh used to define the G1 space.
(c): final least squares surface. (d): error color plot of the ℓ2 distances. The cloud is contained
in a bounding box whose longest length is 2.

82 Chapter 3 Geometrically smooth functions for point cloud fitting

Summary

In the present chapter we described an easy procedure to build biquintic G1 smooth Bézier basis
functions over quadrangular meshes to be utilized in point cloud fitting problems. Starting
from the equations expressing the geometric continuity constraints obtained making use of
quadratic gluing data, we performed an extraction approach, based on the different degrees of
freedom present in the system, leading to linear systems returning the control point defining
the sought functions. Moreover, we provided an analysis of the latter basis functions as well
as a dimension formula for the spline space they generate. We concluded providing numerical
experiments establishing their quality in point data fitting.

83

Chapter 4
Analysis-suitable G1 bases for
isogeometric analysis
Complex geometries are commonplace when dealing with PDEs simulations arising from real-
life applications; from this there is a need to have robust and analysis-suitable constructions
to deal with such shapes. In this chapter we propose a new set of analysis-suitable G1 spline
basis functions for isogeometric analysis simulations on arbitrary domains Ω ⊂ R3.

After recalling the generic constraints ensuring G1 continuity between Bézier patches, we
present the construction of vertex, edge and face functions and we provide a dimension
formula for the spline space generated by such basis. Furthermore, we produce numerical
experiments to ensure their suitability in IGA simulations on various PDEs. This chapter is
based on [MMM23].

Motivation

The basis functions introduced in Chapter 3 do not behave optimally when applied in the
numerical resolution of PDEs on successive approximation of Catmull-Clark surfaces. This
fact can be noticed from the plot in Figure 4.1, which reports the H1 errors we obtain when
solving the Poisson’s equation (cf. (1.12) or following Section 4.4.2) over the domains obtained
applying the G1 construction introduced in Chapter 2 to the meshes in Figure 4.9. Indeed,
except for the case of valence N = 4 that corresponds to the regular case, the other errors
do not decrease, as expected in the optimal case, by a rate of 5. The reason behind this
suboptimal result can be found in the refinement procedure we use during the simulations.
By definition, the basis functions in Chapter 3 only allow the construction of a sequence of
isogeometric spaces by iteratively splitting each quadrilateral mesh face regularly into four
quadrilaterals (we opted for the Catmull-Clark split) and consequently reparametrizing via
the G1 framework in Chapter 2. It is easy to realize that the spaces obtained during this
procedure are not nested. Moreover, this approach modifies the geometry, which changes at
every refinement step. A rigorous explanation of why this suboptimal behaviour arises can be
found in [Tak23].

The goal of this chapter is to define a spline space and a basis over quad meshes allowing
refinement techniques that don’t change the geometry of the desired domain nor require a
reparametrization at every step. This can be achieved, for example, and it is what we actually
do, by equipping the construction with the possibility of using knot insertion. With this
approach the resulting spline space will turn out to be nested and the domain’s geometry is
fixed.

84 Chapter 4 Analysis-suitable G1 bases for isogeometric analysis

0 1 2 3 4 5

10−9

10−7

10−5

10−3

10−1

Refinement step

H
1

er
ro

r

Valence N = 3
Valence N = 4
Valence N = 5

Slope 4.7
Slope 5

Slope 2.5

Figure 4.1. Convergence plot of the error for the Poisson’s problem when using the basis functions introduced
in Chapter 3. Except for the regular case N = 4, we obtain a suboptimal rate.

4.1 General formulation of G1 conditions

In order to describe our construction, we need to deal with G1 constraints across Bézier patches
defined over quad faces where, eventually, two linked EVs may occur. Actually, as will be
explained in the next section, we will deal with EVs attached to valence 4 vertices whose
edges are not all orthogonal to their adjacent ones; this vertex takes the name of non-crossing
regular vertex (non-crossing RV in short) and, for our purposes, it will be treated like an
EV. We assume again that the input quad mesh M presents isolated EVs. Similarly to the
constructions in Chapter 2 and Chapter 3 we use here quadratic symmetric gluing data of the
form

aN,N ′(u) = a0B
0
2(u) + a1B

1
2(u) + a2B

2
2(u),

bN,N ′(u) = −1,

where the Bi
d are the univariate Bernstein polynomials in (1.3) and the ai ∈ R, i = 1, 2, 3,

are coefficients that we will define later on. As is well known, a Bézier patch is a particular
case of tensor-product B-spline whose knot vectors are formed by zeros and ones only; for the
biquintic case we are dealing with, the knot vector tB defining the grid tB × tB on which our
patch lives is

tB = {0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1} = {06,16}. (4.1)

In this setting, specializing (1.10) for two Bézier functions with b(k)
i,j their control points defining

the k-th patch labelled as in Figure 2.2, the system defining the G1 constraints is defined by

4.1 General formulation of G1 conditions 85

b(1)
0,1 + b(0)

1,0 = (2− a0)b
(1)
0,0 + a0b

(1)
1,0, (4.2)

5(b(1)
1,1 + b(0)

1,1) = (a0 − 2a1)b
(1)
0,0 + (10− 5a0 + 2a1)b

(1)
1,0 + 4a0b

(1)
2,0, (4.3)

10(b(1)
2,1 + b(0)

1,2) = (−a0 + 2a1 − a2)b
(1)
0,0 + (5a0 − 10a1 + a2)b

(1)
1,0 + 2(−5a0 + 4a1 + 10)b(1)

2,0

+ 3a0b
(1)
3,0, (4.4)

10(b(1)
3,1 + b(0)

1,3) = (a0 − 2a1 + a2)b
(1)
0,0 + 5(−a0 + 2a1 − a2)b

(1)
1,0 + 2(5a0 − 10a1 + 2a2)b

(1)
2,0

+ 2(−5a0 + 6a1 + 10)b(1)
3,0 + 4a0b

(1)
4,0 , (4.5)

5(b(1)
4,1 + b(0)

1,4) = (2a1 − a2)b
(1)
0,0 − (10a1 − a2)b

(1)
1,0 + 4(2a1 − a2)b

(1)
2,0 − 2(10a1 − 3a2)b

(1)
3,0

+ 2(4a1 + 5)b(1)
4,0, (4.6)

b(1)
5,1 + b(0)

1,5 = (2 + a2)b
(1)
5,0 − a2b

(1)
4,0, (4.7)

10(b(1)
3,0 − b(1)

2,0) = b(1)
0,0 − 5b(1)

1,0 + 5b(1)
4,0 − b(1)

5,0. (4.8)

These conditions, similarly to (3.9), can be reformulated in matrix form following the
notation introduced in Section 3.2 as

MG1b = 0, (4.9)

where MG1 = (M1|M2) is a block matrix with

M1 =



−(2− a0)u C1

−(a0 − 2a1)u (10− 5a0 + 2a1)I −4a0I 5C2

−u 5I 10I −10I
(a0 − 2a1 + a2)u −(5a0 − 10a1 + a2)I 2(5a0 − 4a1 − 10)I −3a0I

−(a0 − 2a1 + a2)u 5(a0 − 2a1 + a2)I −2(5a0 − 10a1 + 2a2)I 2(5a0 − 6a1 − 10)I
−(2a1 − a2)u (10a1 − a2)I −4(2a1 − a2)I 2(10a1 − 3a2)I



M2 =


10I 10I

−4a0I 10I 10I
−2(4a1 + 5)I 5I 5I

a2I −(2 + a2)I I I



and b the vector

b =
(
b0,0 b1,0 b2,0 b1,1 b3,0 b2,1 b̂1,2 b4,0 b3,1 b̂1,3 b4,1 b̂1,4 b5,0 b5,1 b̂1,5

)T
,

with bi,j =
(
b(k)
i,j

)
, k = 1, . . . , N.

86 Chapter 4 Analysis-suitable G1 bases for isogeometric analysis

We notice that when a1 = a2 = 0, system (4.2) to (4.8) reduces to system (2.4) to (2.10).
Given two biquintic patches defined over a generic tensor-product grid t× t, with

t = {06, t1 ≤ t2 ≤ . . . ≤ ts, 16}, the equations defining the G1 joins will depend also
on the values of the knots (and their combinations), making them harder to be solved. In
fact, calling with m the number of control points laying on the common edge shared by two
patches, the G1 equations on a general knot vector can be sketched as

b(1)
0,1 + b(0)

1,0 = (2− a0)b
(1)
0,0 + a0b

(1)
1,0, (4.10)

b(1)
1,1 + b(0)

1,1 = L1,1(b
(1)
0,0, . . . , b

(1)
m−1,0 ; ti, a0, a1, a2), (4.11)

b(1)
2,1 + b(0)

1,2 = L2,1(b
(1)
0,0, . . . , b

(1)
m−1,0 ; ti, a0, a1, a2), (4.12)

...

b(1)
m−3,1 + b(0)

1,m−3 = Lm−3,1(b
(1)
0,0, . . . , b

(1)
m−1,0 ; ti, a0, a1, a2), (4.13)

b(1)
m−2,1 + b(0)

1,m−2 = Lm−2,1(b
(1)
0,0, . . . , b

(1)
m−1,0 ; ti, a0, a1, a2), (4.14)

b(1)
m−1,1 + b(0)

1,m−1 = Lm−1,1(b
(1)
m−2,0, b

(1)
m−1,0 ; ti, a2), (4.15)

with ti ∈ t, i = 1, . . . , s, and where we indicate with Lj,1(· ; ·) the linear combination of the
variables present in the first argument by the coefficients present in the second argument
concerning the j-th pair of control points. In addiction to (4.10) to (4.15) we also need to
consider edge constraints, i.e. linear combinations of control points on the edge, which are as
many as the knot spans present in t.

Let now assume that our knot vector is only formed by s uniform inner knots with multiplicity
5 (e.g. equal to the degree of the patch), that is

t = {06, t51 < t52 < · · · < t5s,1
6}, (4.16)

where we followed the notation in (4.1). Under this hypothesis, the spline spaces associated to
the knot vectors will be nested and, as consequence of the knot insertion algorithm, the patch
will be split in several biquintic Bézier components which joins C0 between them; moreover this
split procedure gives rise to valence 4 points on the edge which can be seen as extraordinary
vertices that are the so called non-crossing RV, in which the gluing data functions are nonzero.
We will refer to them as virtual EVs. Finally, in order to have enough regularity in our space,
we will impose extra C1 continuity across the split lines of each patch. Figure 4.2 shows an
example of patch with no split and with one split.

Using (4.2) to (4.8) (e.g. system (4.9)) and the construction presented in Section 3.2, we
provide in the next section the derivation of a set of basis function spanning the G1 spline
space which result to be analysis-suitable for IGA simulations.

4.2 Construction of the basis

We present here the construction of a set of basis functions generating the G1 spline space over
a quad mesh M associated to the knot vector t as in (4.16). We will refer to this set as Bt,
to stress its dependency on the knot vector. Similarly to what we did in Section 3.2, we will
follow the topology of the input mesh M in order to separate the set of functions attached to

4.2 Construction of the basis 87

(a) (b)

Figure 4.2. (a): control points in a Bézier patch with knots t = {06,16}. The red dot identifies the EV.
(b): control points in a patch with a 4-split given by the knots t = {06,1/25,16}. The red dot
identifies the EV, the blue square the virtual EVs while the blue dots outline the C0 split lines.

the vertices Bt
V , set of basis functions attached to the edges Bt

E and set of functions attached
to the faces Bt

F . Hence, similarly to (3.8) we can decompose the set of basis functions as

Bt =

(
nV⋃
i=1

Bt
Vi

)
∪
(

nE⋃
i=1

Bt
Ei

)
∪
(

nF⋃
i=1

Bt
Fi

)
. (4.17)

Depending on the basis functions we want to compute, the strategy we exploit is different.
Regarding the vertex functions, their control points are obtained via knot insertion starting
from the vertex basis functions defined on a Bézier knot vector, while the edge basis is computed
concatenating around a virtual EV the relations (4.2) to (4.8), thanks to the particular shape
of the patch we obtained under the assumption (4.16). The functions related to the faces are
again the standard C1 Bézier basis. Let investigate these constructions more in details.

4.2.1 Vertex basis functions: the set Bt
V

To this set belong basis functions connected to inner and boundary EVs, regular vertices as
well as corners. We only present the construction for functions supported around an EV since
the other cases are analogous or already presented in Section 3.2.1.

4.2.1.1 Construction of basis functions corresponding to an inner EV

For an inner extraordinary vertex of valence N , also in this construction we have attached to
it N + 3 different basis functions; this because the degrees of freedom of system (4.2) to (4.8)
around an EV are the same as system (2.4) to (2.10). The computation of the basis functions
attached to an inner EV defined on the knot vector t are obtained via knot insertion from
the functions presented in Section 3.2.1.1. Let BEV

k , k = 1, . . . , N + 3 be any of these basis
functions (defined on tB); if t (as in (4.16)) is our target knot vector, we can repeatedly apply
the knot insertion algorithm to all the patches defining the basis function until we reach t.
The output function BEV t

k we get from this procedure presents a support which is bigger than
desired; in fact, as we already noticed in the previous two sections, the G1 constraints across
an edge only involve the points along the edge and its above and below layers. In order to
reduce the support of the latter function we apply truncation, i.e. we substract to the elevated
basis function a linear combination of the C1 functions living in the inner part of the patch.

88 Chapter 4 Analysis-suitable G1 bases for isogeometric analysis

This procedure do not affect the G1 regularity across edges. Figure 4.3 shows graphically the
steps of this procedure on a patch.

(a) (b) (c)

Figure 4.3. Control points involved in the computation of the new vertex basis function. The point surrounded
in red refers to the EV. (a): nonzero control points of a basis function defined on tB. (b): nonzero
control points after degree elevation to reach the knot vector t = {06,1/25,16}. The light green
points refer to the C1 functions laying on the face. (c): control points defining the new vertex
function on t after truncation.

To conclude, we can summarize the entire procedure as follow: given an EV of valence
N and any related vertex function BEV

k , k = 1, . . . , N + 3 defined on tB, for suitable sets of
indices I, Ĩ and It, in order to derive the vertex function BEV t

k defined on t we do:

BEV
k =

∑
i,j∈I

bi,jBi,jyknot insertion

B̃EV t

k =
∑
i,j∈Ĩ

b̃
t

i,jB
t
i,jytruncation

BEV t

k =
∑
i,j∈It

bt
i,jB

t
i,j , where

{
bt
i,j = 0 if i, j ≥ 2,

bt
i,j = b̃

t

i,j otherwise.

Figure 4.4 presents the set of vertex basis functions for an EV of valence N = 5 defined on the
knot vector t = {06,1/25,16}.

4.2.1.2 Bases linked to boundary EVs

In presence of a boundary EV of valence κ, with κ the number of patches sharing the vertex,
similarly to the case of an inner EV we come up with κ+ 3 basis functions. Since κ = N − 1,
it is equivalent to N + 2 and we can compute them applying the same procedure of repeated
knot insertion as in Section 4.2.1.1.

4.2.1.3 Basis functions at regular vertices and corners

When dealing with a regular vertex, by construction we have attached to them standard C1

basis functions; same fact for a corner. Both of them can be computed following the strategy
in Section 3.2.1.2 and Section 3.2.1.3.

4.2 Construction of the basis 89

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4. Set of truncated vertex basis functions for an EV of valence N = 5 defined on the knot vector
t = {06,1/25,16}. Their non truncated version is shown in Figure 3.2.

90 Chapter 4 Analysis-suitable G1 bases for isogeometric analysis

4.2.2 Edge basis functions: the set Bt
E

We find in this set those functions whose support lays on the two patches shared by an edge,
inner or boundary either extraordinary or regular. Here we present the explicit construction
in the case of inner extraordinary since the remaining cases are analogous to Section 3.2.2.2
and Section 3.2.2.3.

4.2.2.1 Extraordinary edge basis functions

For a given knot vector t as in (4.16) and an extraordinary edge, we will investigate separately
the construction of the edge functions which vanish along the edge from those that are nonzero
along it. We assume at this step that our knot vector has only one multiple inner knot, i.e.

t = {06,1/25,16}. (4.18)

The general situation will be treated later. To compute these edge basis functions we exploit the
fact that knot vectors as (4.18) define an internal split of the patch in four Bézier subpatches.
This split also creates across the edge what we call a virtual EV, i.e. a valence 4 point with
no vanishing gluing data on it; hence we can circularly chain around this virtual EV, two
patches by two, the relations (4.2) to (4.8), using each time the proper gluing data defined on
the subedge identified by the split. In fact, along the extraordinary edge, at each split of the
face corresponds a split of the gluing function defined on it: the coefficients identifying the
new pair of subdivided (quadratic) gluing data can be computed by using the de Casteljau
algorithm (cf. Figure 4.6-(a)-(b)). In addiction, since we want C1 smoothness in the inner
part of the face, when concatenating the equations between subpatches that do not cross the
extraordinary edge we use (4.2) to (4.8) with null values for the gluing data coefficients that
is in fact imposing C1 continuity. The labelling for the coefficients of the new pair of gluing
data function, as well as the subpatches, is made starting from the right outgoing edge of the
virtual EV, in a counterclockwise ordering: we have aR0 , aR1 , aR2 for the outgoing right edge and
aL0 , a

L
1 , a

L
2 for the outgoing left edge. It is straightforward that

aL0 = −aR0 , aR0 ̸= 0.

As we already explained, these coefficients can be computed applying the de Casteljau algoritmh
to the initial gluing data function defined along the original edge. Figure 4.6-(c) illustrates the
labeling of the new gluing data and subpatches orientation. Moreover, in each subpatch we
order the control point following the Bézier structure in Figure 2.2 starting from the virtual EV
which represent the point ḃ

(k)
0,0, k = 0, . . . , 3, where we introduced the over dot to differentiate

the notation from the classical EV case. Figure 4.5 illustrates this labelling.
After building the system, the strategy we exploit to obtain the Bézier coefficients defining

the basis functions is analogous to the strategy we used in Section 3.2.1: starting from (4.2)
to (4.8) (or (4.9)) we impose, one at the time, the value one to each free coefficient appearing
in the G1 system. Consequently, we solve (4.2) to (4.8) with this initial values while gradually
setting the value of any unconstrained coefficients that we encounter to zero.

Since we are dealing with edge functions, we can set to zero the values of the points neighbour-
ing the vertices defining the edge e.g. the points ḃ

(0)
4,0, ḃ

(0)
5,0, ḃ

(0)
4,1, ḃ

(0)
5,1, ḃ

(1)
0,4, ḃ

(1)
0,5, ḃ

(1)
1,4, ḃ

(1)
1,5, ḃ

(2)
4,1, ḃ

(2)
5,1,

ḃ
(3)
1,4, ḃ

(3)
1,5. The derivation of both types of basis functions is founded on two circulant systems,

which come up after the concatenating procedure explained before, whose solutions return

4.2 Construction of the basis 91

01

2 3

ḃ
(0)

0,0 ḃ
(0)

1,0 ḃ
(0)

2,0 ḃ
(0)

3,0

ḃ
(0)

3,1ḃ
(0)

2,1ḃ
(0)

1,1ḃ
(0)

0,1ḃ
(1)

1,1ḃ
(1)

1,2ḃ
(1)

1,3

ḃ
(1)

0,1ḃ
(1)

0,2ḃ
(1)

0,3

ḃ
(2)

1,1ḃ
(2)

2,1ḃ
(2)

3,1 ḃ
(3)

1,0 ḃ
(3)

1,1 ḃ
(3)

1,2 ḃ
(3)

1,3

Figure 4.5. Labelling of the control points involved in the construction of the edge basis functions. The
ordering is performed counterclockwise, starting from the patch zero, around the virtual EV (blue
square).

(a) (b)

1

aL2 aL1 aL0

2

aR0 aR1 aR2

0

3

(c)

Figure 4.6. Extraordinary vertex (red) and regular vertex (green). (a): extraordinary edge where it is defined
a single gluing data function (red line). (b): virtual EV (blue square) which splits in two the
extraordinary edge, defining a pair of new gluing functions (orange and green lines). The dashed
blue lines identify the regions where we impose C1 continuity. (c): labelling of the subdivided
gluing data and subpatches around a virtual EV.

the points ḃ1,0 and ḃ1,1 (the bold refers to the vectorial notation introduced in Section 3.2
and (4.9)).

These systems are: 
−aR0 1 0 1
1 0 1 0
0 1 aR0 1
1 0 1 0

 ḃ1,0 =


2− aR0

2
2 + aR0

2

 ḃ0,0 (4.19)

and 
1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

 ḃ1,1 = d, (4.20)

92 Chapter 4 Analysis-suitable G1 bases for isogeometric analysis

where

d =



1

5

(
aR0 − 2aR1

)
ḃ
(0)
0,0 +

(
2− aR0 +

2

5
aR1

)
ḃ
(0)
1,0 +

4

5
aR0 ḃ

(0)
2,0

2ḃ
(1)
1,0

−1

5

(
aR0 + 2aL1

)
ḃ
(2)
0,0 +

(
2 + aR0 +

2

5
aL1

)
ḃ
(2)
1,0 −

4

5
aR0 ḃ

(2)
2,0

2ḃ
(3)
1,0


. (4.21)

Let analyze their properties. If we call A ∈ R4×4 the matrix in (4.19) it is trivial to notice that

det(A) = 0 and corank(A) = 2.

In fact, it results that

Ker(A) = Span{k̇1, k̇2}, where k̇1 = (−1,−aR0 , 1, 0)T , k̇2 = (0,−1, 0, 1)T

since
A k̇1 = 0, A k̇2 = 0 and rank(k̇1 k̇2) = 2.

Next, if C̃ is the matrix in (4.20), since we are in the case of even valence N = 4, from the
analysis in Section 2.3.2.1 we know that

corank(C̃) = 1 and Ker(C̃) = Span{ŵ}, ŵ = (1,−1, 1,−1)T .

From the previous investigation we can conclude that in order to obtain a solution, similarly
to the constructions presented in Chapter 2 and Chapter 3, we need to add extra conditions to
the systems in (4.19) and (4.20); again, these additional constraints will be the orthogonality
of the desired solutions to the kernel of the corresponding matrix plus the verification of the
Vertex Enclosure Relation (V.E.R.) (2.20). We underline that all the solutions we achieve must
be meant in a least square sense, since we will deal with overdetermined systems. Following
paragraphs show how to compute explicit solutions for problems (4.19) and (4.20).

Basis functions vanishing along the edge. To obtain basis functions which are zero along
the edge we need to impose

ḃ
(0)
i,0 = ḃ

(2)
i,0 = 0, i = 0, . . . , 5. (4.22)

Specializing (4.9) for a virtual EV, that is valence N = 4 and properly subdivided gluing data,
and substituting in it the assumption (4.22), we get that

corank(MG1) = 6,

which means there are only six edge functions vanishing along the edge being G1 across it and
C1 internally the faces for the knot vector t in (4.18). Four of them are the basis living in the
inner part of the two subedges which derive from (4.4) to (4.5) and, alike to Section 3.2.2.1,
we have

ḃ
(0)
2,1 + ḃ

(3)
1,2 = 0,

ḃ
(0)
3,1 + ḃ

(3)
1,3 = 0,

ḃ
(1)
1,2 + ḃ

(2)
2,1 = 0,

ḃ
(1)
1,3 + ḃ

(2)
3,1 = 0,

4.2 Construction of the basis 93

that can be solved by setting, for example,

ḃ
(0)
2,1 = ḃ

(0)
3,1 = ḃ

(1)
1,2 = ḃ

(1)
1,3 = 1,

ḃ
(3)
1,2 = ḃ

(3)
1,3 = ḃ

(2)
2,1 = ḃ

(2)
3,1 = −1.

Their graph is illustrated in Figure 3.4.
Consequently the remaining two basis functions will be obtained by solving systems (4.19)

and (4.20). If we substitute (4.22) in (4.19), it reduces to(
1 1
1 1

)(
ḃ
(1)
1,0

ḃ
(3)
1,0

)
= 0

from which we get the two (linearly independent) solutions

ḃ
(1)
1,0 = ḃ

(3)
1,0 = 0 (4.23)

and
ḃ
(1)
1,0 = 1, ḃ

(3)
1,0 = −1. (4.24)

To deduce the remaining control points we need to substitute, one at the time, previous
solutions in (4.20). First, replacing (4.23) in (4.20) one has

C̃ḃ1,1 = 0

whence
ḃ1,1 ∈ Ker(C̃) =⇒ ḃ1,1 = ŵ,

which identifies the nonzero coefficients of the desired basis function. Going on, filling (4.24)
in (4.20) we additionally have

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
1 −1 1 −1

 ḃ1,1 = 2


0
−1
0
1

 , (4.25)

where we already imposed the extra condition ⟨ḃ1,1|ŵ⟩ = 0 since rank(C̃) = 3. Finally, (4.25)
returns the solution

ḃ1,1 = (−1,−1, 1, 1)T

that together with (4.24) defines the other sought function. In Figure 4.7-(a) and (b) are
shown these two zero basis functions.

Nonzero edge basis functions. To extract this second set of functions we need to assume
that there exists at least one nonvanishing control point along the edge. This assumption
reflects an extra degree of freedom on (4.4) and (4.5), which can be solved symmetrically or
not; in the light of Section 2.4.1 we opt for a symmetric solution. Under these hypothesis,
from (4.9) adapted for a virtual EV, we obtain

corank(MG1) = 2,

94 Chapter 4 Analysis-suitable G1 bases for isogeometric analysis

meaning that only two basis functions which don’t vanish at the edge exist. The computation
of the first basis function begins assuming that ḃ0,0 = 1 (and consequently ḃ

(0)
3,0 = ḃ

(2)
3,0 = 0);

from (4.8) follows

ḃ
(0)
2,0 = − 1

10
+

1

2
ḃ
(0)
1,0, ḃ

(2)
2,0 = − 1

10
+

1

2
ḃ
(2)
1,0. (4.26)

The analysis of (4.19) reveals that two extra conditions are required to ensure the uniqueness
of its solution; the first additional constrain we impose is the feasibility of the points ḃ1,0 for
the V.E.R. To do that, we derive the equation of the V.E.R from (4.21) forcing

⟨d|ŵ⟩ = 0

which translates into(
2− 3

5
aR0 +

2

5
aR1

)
ḃ
(0)
1,0 − 2ḃ

(1)
1,0 +

(
2 +

3

5
aR0 +

2

5
aL1

)
ḃ
(2)
1,0 − 2ḃ

(3)
1,0 =

2

5

(
aR1 + aL1

)
, (4.27)

where we used (4.26). Adding (4.27) to (4.19) results
−aR0 1 0 1
1 0 1 0
0 1 aR0 1
1 0 1 0

2− 3

5
aR0 +

2

5
aR1 −2 2 +

3

5
aR0 +

2

5
aL1 −2

 ḃ1,0 =


2− aR0

2
2 + aR0

2
2

5

(
aR1 + aL1

)

 (4.28)

and, if we name AV the matrix in (4.28), turns out that

corank(AV) = 1, Ker(AV) = Span{k̇V } with k̇V = (0,−1, 0, 1)T .

Finally, the single solution is obtained after setting the extra condition

⟨ḃ1,0|k̇V ⟩ = 0

giving rise to

−aR0 1 0 1
1 0 1 0
0 1 aR0 1
1 0 1 0

2− 3

5
aR0 +

2

5
aR1 −2 2 +

3

5
aR0 +

2

5
aL1 −2

0 −1 0 1


ḃ1,0 =



2− aR0
2

2 + aR0
2

2

5

(
aR1 + aL1

)
0


(4.29)

whose solution is
ḃ1,0 = (1, 1, 1, 1)T . (4.30)

To obtain the following coefficients defining the nonzero basis function we substitute (4.30)
in (4.26) and (4.21); then, adding the extra relation ⟨ḃ1,1|ŵ⟩ = 0 to increase the rank of the
matrix in (4.20) we get 

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
1 −1 1 −1

 ḃ1,1 =



2− 12

25
aR0

2

2 +
12

25
aR0

2
0



4.2 Construction of the basis 95

obtaining the solution

ḃ1,1 =



1− 6

25
aR0

1 +
6

25
aR0

1 +
6

25
aR0

1− 6

25
aR0


.

The last coefficients concerning the higher order derivatives are extracted from (4.4) and (4.5),
while after substituting in them the previous solutions we got they become

ḃ
(0)
2,1 + ḃ

(3)
1,2 =

4

5

(
1− 3

5
aR1

)
,

ḃ
(1)
1,2 + ḃ

(2)
2,1 =

4

5

(
1− 3

5
aL1

)
and

ḃ
(0)
3,1 + ḃ

(3)
1,3 = − 6

25
aR2 ,

ḃ
(1)
1,3 + ḃ

(2)
3,1 = − 6

25
aL2 .

To define the second nonzero basis functions we retrace the steps we made for the previous
function by setting ḃ0,0 = ḃ

(2)
3,0 = 0 but ḃ

(0)
3,0 = 1; this choice updates the edge constraint (4.8)

as
ḃ
(0)
2,0 =

1

2
ḃ
(0)
1,0 + 1, ḃ

(2)
2,0 =

1

2
ḃ
(2)
1,0. (4.31)

In this framework, the points ḃ1,0 needs to satisfy the V.E.R.(
2− 3

5
aR0 +

2

5
aR1

)
ḃ
(0)
1,0 − 2ḃ

(1)
1,0 +

(
2 +

3

5
aR0 +

2

5
aL1

)
ḃ
(2)
1,0 − 2ḃ

(3)
1,0 = −4

5
aR0 . (4.32)

Substituting the previous V.E.R. (4.32) in (4.29) and taking into account the initial values we
fixed to extract this second basis function, we obtain

−aR0 1 0 1
1 0 1 0
0 1 aR0 1
1 0 1 0

2− 3

5
aR0 +

2

5
aR1 −2 2 +

3

5
aR0 +

2

5
aL1 −2

0 −1 0 1


ḃ1,0 =



0
0
0
0

−4

5
aR0

0


,

from which

ḃ1,0 = h


2
aR0
−2
aR0

 , h =
aR0

8aR0 − aR1 + aL1
, (4.33)

96 Chapter 4 Analysis-suitable G1 bases for isogeometric analysis

where h is well defined under the hypothesis of separated EV in the input mesh. Replacing
the solution (4.33) and (4.31) in (4.21), and adding the additional constraint ⟨ḃ1,1|ŵ⟩ = 0 as
for the previous case, for the points ḃ1,1 we get from (4.20) the new system


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
1 −1 1 −1

 ḃ1,1 = 2h



2

5

(
5 +

13

2
aR0 + aL1

)
aR0

−2

5

(
5 +

3

2
aR0 + aL1

)
aR0
0


returning the vector

ḃ1,1 =
h

5


10 + 13aR0 + 2aL1

−(10 + 3aR0 + 2aL1)
−(10 + 3aR0 + 2aL1)
10 + 13aR0 + 2aL1

 .

Lastly, the values for the points linked to the higher derivatives can be deduced substitut-
ing (4.33), (4.31) and the initial assumption ḃ

(0)
3,0 = 1 in (4.4) and (4.5) coming to

ḃ
(0)
2,1 + ḃ

(3)
1,2 =

h

aR0

(
(90− 16aR0 + 28aR1 + aR2 − 2aL1)a

R
0 + 4

(
aR1 +

5

2

)(
aL1 − aR1

))
,

ḃ
(1)
1,2 + ḃ

(2)
2,1 = −h

(
10− 6aL1 + aL2

)
and

ḃ
(0)
3,1 + ḃ

(3)
1,3 =

h

aR0

(
−2(5 + 16aR0 − 2aR1 + aR2 + 2aL1)a

R
1 + 2(5 + aR2)a

L
1 + (80 + 13aR2)a

R
0

)
,

ḃ
(1)
1,3 + ḃ

(2)
3,1 = 3aL2 h.

Figure 4.7-(c) and (d) presents these two nonzero edge basis functions.

Extraordinary edge functions for knot vectors with multiple inner knots. The
previous paragraph shows the explicit construction of basis functions living across the two
patches shared by an extraordinary edge when the knot vector present a single inner knot with
multiplicity 5 as (4.18); the entire procedure led to reasonably simple closed formulas defining
the control points of the different functions in Bézier form. In principle, the same pipeline can
be applied for any knot vector with an arbitrary number of inner knots (4.16) by concatenating
the G1 constraints around every virtual EV appearing plus forcing C1 smoothness in the inner
part of the patch, but unfortunately the results are not obtained as easily as in the previous
case. To explain why, let us consider a knot vector of type

t = {06,1/35,2/35,16}. (4.34)

The case with s ≥ 3 inner knots follows directly. In presence of two inner knots our patch will
be subdivided in 9 Bézier subpatches while the edge will be split in three subedges, giving rise
to two virtual EVs; as consequence, also the gluing data defined over the original edge has to

4.2 Construction of the basis 97

(a) (b)

(c) (d)

Figure 4.7. Nonzero edge basis functions (a)-(b) and zero edge basis functions (c)-(d) for an extraordinary
edge on the knot vector t = {06,1/25,16}.

be redefined in each subedge via the de Casteljau algorithm leading to a triple of quadratic
gluing data that is globally identified by 9 coefficients. Figure 4.8-(a) underlines with different
colors the gluing data functions and virtual EVs living on the splitted edge. If now we chain
the G1 equations (4.2) to (4.8), first around a virtual EV and then around the next one, we
realize that the two systems share the pairs of control points referring to the highest order
derivatives, i.e. related to (4.4) and (4.5) (cf. Figure 4.8).

That is why, being chained by these points, the two systems must be solved simultaneously
and consequently each degree of freedom relative to a virtual vertex we need to fix to begin
the computation will inevitability influences the points around the second virtual EV, and vice
versa. Hence, the basis functions will have a support which lays all along the control points
involved in the 8-times-chained system depending therefore on all the coefficients of the local
gluing data functions defined along the edge. Despite all these dependencies (from both the
elevated number of involved control points and gluing data coefficients), we are able to derive
explicit solutions for the desired basis functions which, however, are not elegant and easy to
deal with for implementation purposes. For this reason we opt for a numerical computation of
these basis functions by numerically evaluating the kernel of the resulting chained system: this
is made, as in the previous explicit construction, separating the computing of basis functions
vanishing across the edge from by those that are nonzero on it. Additionally, as expected,
computing the corank of the chained system we find that the zero functions along the edge are
10, while the nonzero are 4.

The same chained dependency appears when dealing with knot vectors having an arbitrary

98 Chapter 4 Analysis-suitable G1 bases for isogeometric analysis

(a)

(b)

Figure 4.8. (a): subdivided gluing data (colored lines) and virtual EVs (blue and violet squares) when
considering the knot vector t = {06,1/35,2/35,16}. (b): control points involved in the G1

constraints around two virtual EVs. In orange are highlighted the common control points
responsible of the concatenating of the two G1 systems.

number of inner knots: in this case, the pairing of the equations is made concatenating, two-
by-two, the G1 systems of two consecutive virtual EVs as well as the numerical computation.
Moreover, if say our knot vector has s inner knots, we will end up with 4s+ 2 zero edge basis
functions and 2s nonzero edge functions along an extraordinary edge.

4.2.3 Face basis functions: the set Bt
F

The only missing functions in this construction are those whose support only lay on a single
patch. The concerned basis functions are C1 and belong to this set also the ones obtained
forcing the C1 continuity across the split lines defined by the Bézier split. For a knot vector t
with s inner knots, by using combinatorial formulas, we have (4s+ 2)2 basis functions in this
set.

4.3 Analysis of the basis and space dimension 99

4.3 Analysis of the basis and space dimension

The functions we provided in previous Section 4.2 define a set of basis functions for the G1

spline space over the mesh M and the knot vector t. We denote such space as G1
t(M) =

〈
Bt
〉
.

The proofs of the following results demonstrating this statement, based on the decomposition
in (4.17), are identical to those of Theorem 3.3.1 and Corollary 3.3.2 and for this they will be
left out.

Theorem 4.3.1. The functions introduced in Section 4.2 form a basis Bt for the space G1
t(M)

over a quad mesh M.

Corollary 4.3.2. The space G1
t(M) has dimension given by:

dim
(
G1

t(M)
)
=

nV∑
i=1

|Bt
Vi
|+

nE∑
i=1

|Bt
Ei
|+

nF∑
i=1

|Bt
Fi
|

=

nEV∑
i=1

NEVi + 3nIEV + 2nBEV + 4(nRV + nC) + 4(2s+ 1)(nIRE + nBE)

+ 2(3s+ 1)nEE + (4s+ 2)2nF ,

with s the number of inner knots in t, counted without multiplicity.

We observe that, as should be, for s = 0 we find again the dimension formula in Corol-
lary 3.3.2.

4.4 Numerical experiments

Here we present some numerical experiment concerning the quality of the functions we propose
when dealing with isogeometric analysis simulation. The spaces involved in the approximation
process are a series of nested spaces defined over subsequent finer knot vector. Given an initial
set of basis functions, the refined ones are obtained inserting 2L − 1, L ∈ N, uniform inner
knots of multiplicity 5 in both parameter directions, where L represent the level of refinement.

Let us consider a mesh M composed of nF quad faces σℓ. The space of isogeometric
functions we consider is given by

Ṽ :=

{
ṽ ∈ L2(Ω) : ṽ ◦G(ℓ) ∈ G1

t(M)
∣∣∣
σℓ

, ℓ = 1, . . . , nF

}
, (4.35)

where G(ℓ) is the geometry map defining the G1ACC spline space introduced in Chapter 2
used to compute the ℓ-th patch of the physical domain

Ω =

nF⋃
ℓ=1

Ω(ℓ), Ω(ℓ) = G(ℓ) (σℓ) . (4.36)

We parametrize each mesh’s face such that σℓ = [0, 1]2; moreover it results that Ṽ ⊂ H2(Ω).
The refined spaces will be denoted Ṽh, where h is the size of the elements which will be properly
specified in each example; generally we have h = O(2−L).

First we use the proposed functions for numerical experiments of L2 projection for both
planar and non planar domains and then continue in solving Poisson’s equation and biharmonic
equation.

100 Chapter 4 Analysis-suitable G1 bases for isogeometric analysis

Figure 4.9. Quad meshes presenting EVs of different valences used to define our physical domain Ω involved
in the IGA simulations.

4.4.1 L2 projection

Let Ω be a multipatch domain as in (4.36), g : Ω −→ R a smooth function defined on it and let
{ϕi}i∈I , I = {1, . . . ,dim(Ṽh)} be a set of G1-smooth isogeometric functions forming a basis of
the subspace Ṽh ⊂ H2(Ω). We want to approximate the function g by the function

ũh(x) =
∑
i∈I

ciϕi(x), ci ∈ R, (4.37)

in the least square sense i.e. we compute the coefficients {ci}i∈I such that

∥ũh − g∥2L2 =

∫
Ω
(ũh(x)− g(x))2 dx −→ min

ci
. (4.38)

Introducing the mass matrix M = (mi,j)i,j∈I and the vector g = (gi)i∈I whose entries are
given by

mi,j =

∫
Ω
ϕi(x)ϕj(x) dx and gi =

∫
Ω
g(x)ϕi(x) dx,

the previous minimization problem (4.38) can be reformulated as

Mc = g,

where c = (ci)i∈I is the vector containing the unknown coefficients.

Example 4.4.1. Here we investigate the L2 projection problem (4.38) for the function

g(x, y) = cos(2πx) sin(2πy) (4.39)

over three different domains obtained applying the G1ACC construction on the meshes
in Figure 4.9 with valences N = 3, 4, 5. Table 4.1 shows the numerical errors for each step
of subdivision while Figure 4.10 represents their plot, indicating that the convergence rate is
optimal with respect to the L2 norm, i.e. O(h6).

4.4 Numerical experiments 101

0 1 2 3 4 5
10−11

10−9

10−7

10−5

10−3

10−1

Refinement step

L
2

er
ro

r

Valence N = 3
Valence N = 4
Valence N = 5

Slope 6

Figure 4.10. Convergence plot of the error for the L2 projection problem in Example 4.4.1

N = 3 N = 4 N = 5

L dim(Ṽh) L2 error dim(Ṽh) L2 error dim(Ṽh) L2 error
0 72 1.586e-01 100 3.021e-02 118 5.315e-02
1 234 5.518e-03 324 4.355e-04 388 2.188e-03
2 846 1.705e-04 1156 1.359e-05 1408 1.268e-04
3 3222 4.055e-06 4356 2.892e-07 5368 3.379e-06
4 12582 7.010e-08 16900 5.035e-09 20968 5.300e-09
5 49734 1.195e-09 66564 8.157e-11 82888 8.675e-11

Table 4.1. Spline space dimension and L2 error for each level of subdivision in Example 4.4.1

Example 4.4.2. The construction of the basis functions in Section 4.2 holds without further
adjustments also for nonplanar domains. Here we present again an example of L2 projection
performed on the two multipatch domains in Figure 4.11 containing various EVs of different
valences: the objective function we consider in this case is

g(x, y, z) = cos
(πx
10

)
sin
(πx
10

)
.

Table 4.2 and Figure 4.12 present the numerical results we gained. We observe that also in
this case we achieve the optimal convergence rate O(h6) for the L2 error.

102 Chapter 4 Analysis-suitable G1 bases for isogeometric analysis

(a) sphere (b) Y-shape

Figure 4.11. Nonplanar domains utilized in the L2 projection experiment

Sphere Y − shape

L dim(Ṽh) L2 error dim(Ṽh) L2 error
0 360 1.008e-06 846 5.347e-06
1 1464 4.769e-08 3222 2.232e-07
2 5976 1.856e-09 12582 8.449e-09
3 24264 3.474e-11 49758 9.808e-11

Table 4.2. Spline space dimension and L2 error for each subdivision level of the two domains in Example 4.4.2

4.4.2 Poisson’s equation

Let consider again a multipatch domain Ω. Here we test our basis functions on the following
Poisson’s problem {

−∆u(x) = f(x), x ∈ Ω,

u(x) = hD(x), x ∈ ∂Ω,
(4.40)

with f, hD ∈ L2(Ω). If {ϕ}i∈I , I = {1, . . . ,dim(Ṽh,D)} is a set of basis functions for the
subspace Ṽh,D ⊂ H1(Ω), that is the subspace of functions in (4.35) verifying the Dirichlet
boundary condition (4.40), using the Galerkin’s approach in Section 1.5.2 we can translate the
problem (4.40) in a system of linear equations

Kc = f

for the unknown coefficients c = (ci)i∈I , where the entries of the stiffness matrix K = (ki,j)i,j∈I
and the vector f = (fi)i∈I are defined, respectively, as

ki,j =

∫
Ω
(∇ϕi(x))T ∇ϕj(x) dx and fi =

∫
Ω
f(x)ϕi(x) dx,

such that our solution can be written as in (4.37).

4.4 Numerical experiments 103

0 1 2 3

10−10

10−9

10−8

10−7

10−6

10−5

Refinement step

L
2

er
ro

r

Sphere
Y-shape
Slope 6

Figure 4.12. Convergence plot of the error for the L2 projection problem over nonplanar domains in Exam-
ple 4.4.2

Example 4.4.3. Here we solve the Poisson’s problem (4.40) on the three domains defined
by the meshes in Figure 4.9. The load function f and the boundary function hD are selected
in order to have as exact solution the function g(x, y) in (4.39). The resulting H1 errors are
presented in Table 4.3 together with their plot in Figure 4.13, indicating that we achieve
optimal convergence rate of O(h5) in H1 norm.

N = 3 N = 4 N = 5

L dim(Ṽh,D) H1 error dim(Ṽh,D) H1 error dim(Ṽh,D) H1 error
0 72 5.757e-01 100 1.283e-01 118 2.035e-01
1 234 3.234e-02 324 3.485e-03 388 1.091e-02
2 846 1.772e-03 1156 1.282e-04 1408 9.592e-04
3 3222 5.826e-05 4356 4.330e-06 5368 4.660e-05
4 12582 1.830e-06 16900 1.370e-07 20968 2.063e-07
5 49734 5.806e-08 66564 4.265e-09 82888 5.257e-09

Table 4.3. Spline space dimension and H1 error for each level of subdivision in Example 4.4.3

4.4.3 Biharmonic equation

We conclude this chapter presenting the numerical approach to a fourth-order problem, that is
the biharmonic equation. Given a multipatch domain Ω, we can introduce the Cauchy problem

104 Chapter 4 Analysis-suitable G1 bases for isogeometric analysis

0 1 2 3 4 5
10−9

10−7

10−5

10−3

10−1

Refinement step

H
1

er
ro

r

Valence N = 3
Valence N = 4
Valence N = 5

Slope 5

Figure 4.13. Convergence plot of the error for the Poisson’s problem in Example 4.4.3

for the biharmonic equation as 
∆2u(x) = f(x), x ∈ Ω,

u(x) = hD(x), x ∈ ∂Ω,
∂u

∂n̂
= hN (x), x ∈ ∂Ω,

(4.41)

where f, hD, hN are functions belonging to L2(Ω). As for the Poisson’s problem, using the
Galerkin’s approach we can translate (4.41) in a linear system. To do that, let {ϕi}i∈I be a
set of basis functions for the subspace of functions in (4.35) verifying the Dirichlet-Neumann
conditions (4.41) Ṽh,D,N ⊂ H2(Ω). Introducing the matrix K = (ki,j)i,j∈I and the vector
f = (fi)i∈I whose entries are the quantities

ki,j =

∫
Ω
∆ϕi(x)∆ϕj(x) dx and fi =

∫
Ω
f(x)ϕi(x) dx+

∫
∂Ω
hN (x)ϕi(x) dγ,

we end up solving the linear system with unknowns c = (ci)i∈I ,

Kc = f ,

allowing us to write the sought solution in the form of (4.37).

Example 4.4.4. We numerically solve the biharmonic equation (4.41) on the domains described
by the meshes in Figure 4.9, defining the input functions f, hD and hN such that, similarly to
the Poisson’s equation, the exact solution is given by the function in (4.39). Table 4.4 resumes
the H2 errors while Figure 4.14 shows their convergence plot; also in this case we gain optimal
convergence rate of O(h4) in H2 norm.

4.4 Numerical experiments 105

N = 3 N = 4 N = 5

L dim(Ṽh,D,N) H2 error dim(Ṽh,D,N) H2 error dim(Ṽh,D,N) H2 error
0 72 6.184e 01 100 1.428e 01 118 2.081e 01
1 234 8.675e-00 324 1.091e-00 388 2.219e-00
2 846 1.011e-00 1156 6.770e-02 1408 3.216e-01
3 3222 5.705e-02 4356 4.221e-03 5368 3.283e-02
4 12582 3.244e-03 16900 2.637e-04 20968 4.675e-04
5 49734 1.911e-04 66564 1.747e-05 82888 2.374e-05

Table 4.4. Spline space dimension and H2 error for each level of subdivision in Example 4.4.4

0 1 2 3 4 5

10−5

10−4

10−3

10−2

10−1

100

101

102

Refinement step

H
2

er
ro

r

Valence N = 3
Valence N = 4
Valence N = 5

Slope 4

Figure 4.14. Convergence plot of the error for the biharmonic equation in Example 4.4.4

As we already mentioned in Example 4.4.2, the proposed functions can be used to solve
PDEs over nonplanar domains; in next Chapter 5 we will show some numerical experiments
regarding this topic.

Summary

This chapter has been devoted to the description of a set of analysis-suitable G1 biquintic
spline basis functions. Following the idea of Chapter 3, we proceeded with an extraction
strategy starting from the equations describing the G1 constraints between two adjacent
spline patches defined on a knot vector whose knots presents multiplicity 5; this assumption
allowed us to perform an easy and almost fully explicit construction for such functions. Several
IGA simulations on classical PDEs have been provided to show the optimality of our novel
proposal.

107

Chapter 5
A pipeline from CAD models to
spline representation
Shape modelling and analysis are crucial operations which directly impact engineering and
industrial processes in many sectors of our society. The last several decades have witnessed
the development of many powerful tools for computer-aided design (CAD), computer-aided
engineering (CAE), and computer-aided manufacturing (CAM). These tools assist in handling
the complex computations required to convert from the digital model of a shape to its actual
production. Also boundary representation (B-rep) is a widely used tool when representing
manufacturable geometry in Mechanical CAD (MCAD) processes. Such computations can
include digital shape description, model reparation, meshing, numerical simulations, and
optimisation. Currently, they require specific engineering efforts, are time consuming, and
prone to errors and approximations: this explains why alternative approaches are preferred.
Moreover, such model are not suitable for numerical simulations.

Using the constructions developed in Chapters 2 to 4 we present here a complete pipeline to
convert CAD models into smooth G1 spline representations, which are suitable for isogeometric
analysis. Starting from a CAD boundary representation of a mechanical object, we perform
an automatic control cage extraction by means of quadrangular faces, such that its limit
Catmull-Clark subdivision surface approximates accurately the input model. Then we compute
a basis of the G1 spline space over the quad mesh in order to carry out least squares fitting
over a point cloud, acquired by sampling the original CAD geometry. Finally, we use the basis
functions to perform isogeometric analysis simulations of realistic PDEs on the reconstructed
G1 model. This chapter is based on [Mar23], and the work has been developed in collaboration
with Sam Whyman and Mark Gammon from ITI.

5.1 Control cage generation from MCAD geometry

In this section, we detail the construction of the control cage from the boundary representation
of a model. The foundation to our approach is to represent each MCAD edge with a cubic
B-spline with a multiplicity-4 knot at each end. This allows the end curvature to be controlled
by so-called slope control points which are not themselves part of the control cage topology
(Figure 5.1). These can equally be thought of as tangent vectors stored at the ends of the
spline. The limit surface is then defined to be the tensor product surface of the boundary
B-splines. Since the slope control points affect only the first two knot spans, it follows that
the first two layers of patches depart from the usual behaviour of the regular regions of a
Catmull-Clark subdivision surface (i.e., away from the EVs). This modification constitutes

108 Chapter 5 A pipeline from CAD models to spline representation

Figure 5.1. Schematic of a cubic B-spline with knot vector {0, 0, 0, 0, 1, 2, 3, 4, . . . }. The slope control point
is shown in red, and all other control points in blue. The location of the red point influences the
shape of the spline only within the first two knot spans.

the addition of Bézier edge conditions to the standard Catmull-Clark scheme [She14], and is
illustrated by Figure 5.2. The 3D location of the limit surface at the boundary is influenced
only by the control points on the boundary. Therefore, neighbouring control cages sharing the
same boundary control points will maintain at least C0 continuity between their limit surfaces,
regardless of the positions of the interior control points, or the slope control points.

(a) (b)

Figure 5.2. (a): schematic showing the application of Bézier edge conditions to a subdivision surface. The red
lines represent the rows of control points which approximate the MCAD edges as cubic B-splines.
The blue dashed lines represent the rows of slope control points. Shaded patches are defined using
the tensor product of the boundary B-splines, and the unshaded patches are the usual regular
bicubic B-spline patches. (b): 3D control cage with vectors pointing to the implied positions of
the slope control points. Each boundary control point stores one vector, whereas the corners
store three.

The use of Bézier edge conditions imposes strict topological requirements upon the control
cage. Namely, no EV may be placed on the boundary, nor within the first two layers of control
cage faces, due to the tensor product nature of the limit surface within these regions. These
topological constraints, to which engineering-grade subdivision surfaces must adhere, pose
challenges when generating a suitable control cage. Each MCAD vertex must be treated as a
corner, i.e., it must be associated with a 2-valent control cage vertex (such as in Figure 5.2).
The appearance of any EV is restricted solely to the interior of the control cage. Meeting
these requirements through traditional quad-dominant meshing techniques is challenging,
and therefore we present a novel automatic approach referred to as SubD layering, which is
tailored to satisfying the prescribed topological constraints. The process involves partitioning
an MCAD face into regions of structured and unstructured mesh. The structured regions
form a boundary layer from which EVs are fully excluded. These are formed by constructing

5.1 Control cage generation from MCAD geometry 109

4-sided blocks around each MCAD vertex (referred to as corner blocks), and then connecting
these to form 4-sided edge blocks associated with each MCAD edge. The remaining interior
region constitutes a block with topology identical to the original MCAD face, and this is filled
with unstructured mesh. This process is illustrated in Figure 5.3. The size and positions of

(a) (b)

(c) (d)

Figure 5.3. Schematic outlining the SubD layering process. (a): MCAD B-rep face with 5 vertices. (b):
corner blocks are constructed around the MCAD vertices. (c): corners blocks are connected to
form edge blocks. (d): Domain is partitioned into corner (red) and edge (green) blocks which can
receive structured mesh, and one interior (grey) region which receives unstructured mesh.

the corner blocks are determined using the two-dimensional medial axis [Ali16] as a guide to
ensure that the blocks do not intersect. An example of this is given in Figure 5.4.

Figure 5.4. SubD layering for the wheel arch of the Car model, showing corner (red), edge (green) and
unstructured regions (grey). The 2D medial axis (blue) determines the shape of the blocks so
that they do not intersect.

Once the domain partitioning has been completed, we generate a coarse mesh of the layer
faces. The boundary layer is meshed using a transfinite interpolation technique [GH73] and is

110 Chapter 5 A pipeline from CAD models to spline representation

specified to be one element thick. The interior region is meshed using quad-dominant meshing
technology [Ali16]. The coarse mesh is then subdivided twice, and this ensures that there are
no EVs within the first two layers of control cage faces from the boundary, thus satisfying the
topological requirements for the Bézier edge conditions. This refinement of a coarse mesh is
illustrated in Figure 5.5.

(a) (b) (c)

Figure 5.5. (a): initial coarse mesh for a 5-sided face. (b): one level of refinement. (c): two levels of refinement
(with mesh smoothing applied). The EVs are highlighted in red. After two levels of refinement
the location of the EVs meet the topological requirements for the Bézier edge conditions.

The SubD layering process is applied to each MCAD face in the model in turn, such that
the resulting control cage meets the topological requirements dictated by all MCAD edges,
both external and internal (i.e., connectivity 1 and 2, respectively). By stipulating that the
common vertices along the edges between contiguous faces are shared, a single limit surface is
able to represent the entire model while remaining fully watertight (i.e. C0 continuous). This
guarantee is not maintained for MCAD B-rep geometry as a network of NURBS patches. An
example of a watertight limit surface is given in Figure 5.6. An example of the control cage

Figure 5.6. A single subdivision surface representing the wing tip of the SNC Dream Chaser model, which
is comprised of multiple MCAD B-rep faces. The control cage is shown in green, and the limit
surface is shaded in orange. Bézier edge conditions (with slope control vectors shown in grey) are
applied such that contiguous regions of the limit surface meet with the same C1 discontinuity as
the original B-rep. However, the limit surface is guaranteed to be exactly C0 continuous along
the join reflecting the MCAD edges (blue).

computation is presented in Figure 5.7. This may be contrasted with the multiple NURBS
patch representation shown in Figure 5.8.

5.2 Control cage adjustment 111

Figure 5.7. Subdivision surface approximation of the KCS ship hull. The control cage is shown in wireframe,
and the limit surface shaded.

(a)

(b)

Figure 5.8. (a): shaded MCAD B-rep faces of the KCS ship hull model, with edges shown in black wireframe.
(b): embedding NURBS patches for each face.

5.2 Control cage adjustment

The SubD layering process outlined in Section 5.1 is primarily focused on achieving the correct
topology for the control cage. The second step of the process is to adjust the control cage
so that its limit surface coincides with the target MCAD geometry. To achieve this, we use
the ability of our engineering-grade subdivision surfaces to accurately represent geometry; the
behaviour of the edges is governed by the B-spline edge conditions, which can be made to
respect the MCAD edges via a least squares fitting process. For the interior, we found that
1000 rounds of iterative control cage adjustment give a sufficiently good approximation for
each of the four models. This is demonstrated in Figure 5.9, which shows the front section of
the NASA CRM.

5.3 Point cloud sampling

The fitting procedure for our multipatch G1 spline representation combines the generation
of points on the geometry with a standard regression between the sample points and the
parametric points on the subdivision surface. We require a set of samples points which lie

112 Chapter 5 A pipeline from CAD models to spline representation

Figure 5.9. Heat map of the distance from the limit surface to the target MCAD geometry, for the forward
section of the NASA CRM. A maximum fitting error of approximately 0.005% of the aircraft
length is achieved after 1000 rounds of iterative control cage adjustment.

exactly on the geometry, including the edges. Each point must be mapped to a corresponding
patch of the subdivision surface, together with a local patch parameter coordinate. This is
achieved by sampling each patch of the limit surface at a predetermined set of parameter values,
using explicit evaluation [Sta98]. The corresponding 3D positions on the limit surface (which
approximates the geometry) are then moved exactly onto the MCAD geometry. Given that the
limit surface samples already lie very close to the target geometry, they may be projected easily
onto the embedding NURBS surfaces of the MCAD B-rep faces. We also apply additional
measures aimed at preventing creases and folds appearing in highly curved regions. The result
is a uniform non-folding structured grid of sample points lying on the target geometry, for
each patch of the limit surface. Figure 5.10 shows an example of the typical distribution of the
point cloud sampling. The procedures introduced here and in previous Section 5.1 have been
carried out by using the software CADfix [CAD].

Figure 5.10. An example of the distribution of points in the sampling of the MCAD geometry, for the tail
of the NASA CRM. Each patch of the subdivision surface receives a uniform grid of samples,
which are projected onto the embedding surfaces of the MCAD B-rep faces.

5.4 From CAD to G1

Here we report the numerical experiments concerning the different steps of the proposed
construction. First we present the fitting procedure to reconstruct a G1 surface from an

5.4 From CAD to G1 113

MCAD point cloud using the technique introduced in Chapter 3, then we will use the previous
result as the geometric domain over which to solve the heat equation using geometrically
smooth basis functions in the IGA environment. The CAD models used for the numerical
investigation are standard target examples for this type of problem. These are: Car model,
Dream Chaser shuttle model, KCS hull model and the NASA CRM. All of them present
special features and sharp edges which are a notable characteristic to be recovered in the fitted
surface. The samplings of the original models are obtained following the procedure explained
in Section 5.3. In order to obtain a precise result, the target point clouds contain large amounts
of data. For the same reason, the control cage obtained from the MCAD (Section 5.1) presents
a significant quantity of faces. The models are represented in their original scale, i.e., 1 unit
= 1 m. All of the numerical experiments have been performed on two different machines:
the first has been devoted to the control cage generation and the MCAD sampling, while the
second ran the basis computation and consequent spline fitting and IGA simulation. Their
specifications are: Windows 10, Intel(R) Xeon(R) CPU E3-1240 v6 @ 3.70GHz, 16.0 GB
RAM, 4 cores, and Windows 10, Intel(R) Core(TM) CPU i7-9850 @ 2.60GHz, 16.0 GB RAM,
6 cores, respectively. Figures 5.12 to 5.15 show for each of the four models, in order, the quad
mesh extracted from the input MCAD model by using the technique in Section 5.1, the point
cloud acquired from the initial geometries following the idea in Section 5.3, the fitted surface
in solid and multipatch coloring and a color plot representing the approximation error in
Eucledian norm. Moreover, Table 5.1 summarises the dimensions of the starting point cloud,
that is the number of points it contains indicated with nP , the number nF of faces forming the
control cage and the number of basis functions nb generating the spline space together with the
approximation errors evaluated with the formulas in (3.25). From the L∞ errors represented
in Table 5.1, as well as in the color map of the models’ color plot, it can be noticed that the
highest errors are located, as expected, around the EVs and near the sharp regions of the CAD
models. This is because we are fitting sharp edges with high smoothness basis functions which
cannot properly recreate the actual shape of the model in these regions (see Figure 5.11). In
order to increase the quality of the fitting (i.e., decrease the error) and faithfully reproduce the
characteristics of the input model, our construction allows us to identify the sharp edges of the
CAD model which are to be preserved: this can be done by labelling as sharp the concerned
edges and defining locally on those edges only C0 basis functions. In this manner our output
surface will manifest the desired sharp features. Figure 5.11 shows a detail of the KCS hull
model where the top edge is first computed with G1 smoothness, and then recomputed as a
C0 sharp feature.

Regarding IGA simulations, various experiments with the heat equation have been performed:
considering the following Cauchy problem

∂u

∂t
(x, t) = c2∆Ωu(x, t) , (x, t) ∈ Ω× (0, T] ,

u(x, 0) = u0(x) , x ∈ Ω ,

u(x, t) = uD(x, t) , (x, t) ∈ ∂Ω× (0, T] ,

(5.1)

with Ω the physical domain we are looking at, ∆Ω the Laplace-Beltrami operator defined
in (1.23), c, T > 0 and u0(x), uD(x, t) given initial data, we run the simulations for each of
the four CAD models, considering as the final time the instances T = 0.1, T = 0.2, T = 0.3
and T = 0.4 minutes. The Galerkin’s discretization of (5.1) can be obtained in a similar
way as (4.40). These time dependent integrations have been carried out using 20 time steps

114 Chapter 5 A pipeline from CAD models to spline representation

(a) (b)

Figure 5.11. Zoom-in of the top edge of the KCS hull model. (a): smoothed edge with consequent oscillations
due to the G1 continuity. (b): sharp edge achieved by imposing C0 regularity along the sharp
edge.

(a) (b)

(c) (d)

(e) (f)

Figure 5.12. Car model. (a): original MCAD model. (b): quad mesh extrapolated from the MCAD geometry.
(c): point cloud sampling of the original MCAD model. (d): surface in solid color. (e): surface
in multipatch color. (f): error color plot representing the ℓ2 distance between the point cloud
and the resulting surface.

5.4 From CAD to G1 115

(a) (b)

(c) (d)

(e) (f)

Figure 5.13. Dream Chaser shuttle model. (a): input MCAD model. (b): quad mesh extrapolated from the
MCAD geometry. (c): point cloud sampling of the original MCAD model. (d): surface in solid
color. (e): surface in multipatch color. (f): error color plot representing the ℓ2 distance between
the point cloud and the resulting surface.

tstep under the Crank-Nicolson method. Figures 5.16 to 5.19 present the results of the IGA
simulations. These are obtained by setting, as initial conditions, an heat source at the likely
location of the engines within the various vehicles represented. This demonstrates a realistic
analysis of the thermal behaviour of such models. Table 5.2 presents the running times required
to compute each fragment of the pipeline.

Car Dream Chaser KCS NASA CRM
nb 166198 168187 166881 116607
nF 10432 10576 10456 7336
nP 1262272 1279696 1265179 887656

L∞ error 7.965e-03 4.610e-02 4.644e-01 2.946e-03
RMSE 1.292e-04 1.660e-03 5.890e-03 8.264e-05

Maximal length 3 9 230 1.70

Table 5.1. Fitting errors, spline space and CAD model features for the experiments in Figures 5.12 to 5.15.

116 Chapter 5 A pipeline from CAD models to spline representation

(a)

(b)

(c)

(d)

(e)

Figure 5.14. KCS hull model. (a): quad mesh extrapolated from the MCAD geometry. (b): point cloud
sampling of the original MCAD model. (c): surface in solid color. (d): surface in multipatch
color. (e): error color plot representing the ℓ2 distance between the point cloud and the resulting
surface.

Car Dream Chaser KCS NASA CRM
Cage generation 1 min 45 sec 1 min 4 sec 55.25 sec 57.88 sec
MCAD sampling 22 min 28 sec 26 min 24 sec 22 min 23 sec 22 min 53 sec
Basis computation 11.39 sec 10.98 sec 10.04 sec 6.03 sec

Fitting 2 min 43 sec 3 min 11 sec 2 min 51 sec 1 min 42 sec
IGA simulation 15.65 sec/tstep 9.39 sec/tstep 7.39 sec/tstep 1 min 17 sec/tstep

Table 5.2. Detailed elapsed time for each step of the procedure.

5.4 From CAD to G1 117

(a)

(b)

(c)

(d)

(e)

Figure 5.15. NASA CRM. (a): quad mesh extrapolated from the MCAD geometry. (b): point cloud sampling
of the original MCAD model. (c): surface in solid color. (d): surface in multipatch color. (e):
error color plot representing the ℓ2 distance between the point cloud and the resulting surface.

118 Chapter 5 A pipeline from CAD models to spline representation

Figure 5.16. Solution for the heat equation on the Car model at the instants from T = 0 to T = 0.4 min.

Figure 5.17. Solution for the heat equation on the Dream Chaser model at the instants from T = 0 to T = 0.4
min.

5.4 From CAD to G1 119

Figure 5.18. Solution for the heat equation on the KCS ship model at the instants from T = 0 to T = 0.4
min.

Figure 5.19. Solution for the heat equation on the NASA CRM at the instants from T = 0 to T = 0.4 min.

Summary

In this chapter we provided a practical application of the constructions described in Chapters 2
to 4 to convert CAD models into G1 objects. Starting from an input CAD model, using
tools from the software CADfix have been possible to build a quad mesh such that its
limit Catmull-Clark surface faithfully approximates the CAD model and also a point cloud

120 Chapter 5 A pipeline from CAD models to spline representation

discretization of the model itself. With this information, we were able to define the basis
functions we previously developed on the given quad mesh and we used them to fit the cloud
and obtained a smooth and analysis-suitable model on which we run IGA simulations.

121

Chapter 6
Free natural vibrations of a shallow
lake
In this chapter we present another application of the novel constructions described in Chapters 2
to 4 concerning the IGA simulation of shallow-water equation for real case studies on lakes.
Shallow-water equation is an important and popular tool to investigate the behaviour of
water surfaces, i.e. their oscillations, in the shallow framework; in particular it is widely used
to analyze the surface movement of rivers and lakes nearby their shores as well as coastal
tsunami. As can be noticed from its formulation (1.17), the solution of the shallow-water
equation strongly depends of the bathymetry function h which describes seabed’s shape of
the considered environment: for this reason, in order to have an accurate solution, having a
precise representation of the bathymetry function is essential.

The focus of our investigation is on the numerical simulation of the so-called free vibrations
of a shallow lake, that are the oscillations of a lake’s surface due only to the force of gravity.
Since there are no analytic solutions for the general shallow-water equation, we first make
sure the code is correct by analyzing a particular case where an explicit solution is available;
then we move further to the general setting considering domains representing real lakes whose
bathymetry function is given in terms of point cloud obtained from a GPS rastering. The
steps to achieve a truthful solution are the following: starting from cloud data returning the
bathymetry of a selected lake, we extract from it the curve delineating the shape of the lake.
Then, using Rhino3D modeler we reconstruct a quad mesh (that discretize the lake’s surface)
on which we build our spline space using the bases in Chapter 3; these basis functions will be
used both to reconstruct the bathymetry function by fitting the input point cloud and to solve
the shallow-water equation. This is the reason why, in order to obtain a very precise solution,
we are going to use fine quad meshes for both the fitting and the simulation.

6.1 Problem statement

Let Ω be our physical domain identifying the surface of a lake living on the plane x = (x, z)
and h(x) the bathymetry function returning the bathymetry value y = −h(x). The Cauchy
problem for the shallow-water equation can be formulated ash(x)∆u(x) +∇h(x) · ∇u(x) + κ2u(x) = 0, x ∈ Ω,

∂u

∂n̂
(x) = 0, x ∈ ∂Ω,

(6.1)

122 Chapter 6 Free natural vibrations of a shallow lake

where κ2 = σ2/g, g the gravitational acceleration and σ the frequency of the free oscillations.
The homogeneous Neumann condition is a natural choice for this kind of equations. We
observe that (6.1) is actually describing an eigenvalue problem: introducing the differential
operator Dh, which depends on the function h, defined as

Dhφ = h∆φ+∇h · ∇φ, (6.2)

(6.1) can be reformulated as
Dhu = −κ2u,

meaning that the solution we seek is an eigenfunction of the operator Dh with eigenvalue −κ2.
In general, there is no explicit solution for the problem (6.1) unless special cases such as very
regular shape for the domain Ω and constant depth h; in order to test the correctness of our
implementation we first focus on the particular case where the lake Ω is a square domain of
length ℓ with depth h = constant.

6.1.1 The test case

Assuming constant bathymetry, (6.2) reduces to

Dhφ = h∆φ,

from which (6.1) becomes ∆u(x) = −κ̄2u(x), x ∈ Ω,
∂u

∂n̂
(x) = 0, x ∈ ∂Ω,

(6.3)

with κ̄2 = κ2/h, that is a well-known equation in acoustic applications named Helmholtz
equation. In the additional case of a square lake, an exact solution of (6.3) can be simply
obtained via separation of variables, leading to:

u(x, z) = Λ cos

(
kπx

ℓ

)
cos

(
jπz

ℓ

)
, (x, z) ∈ Ω, (6.4)

with Λ ∈ R and k, j, ℓ any integers such that

κ̄2 =
π2
(
k2 + j2

)
ℓ2

.

Figure 6.1 shows the exact solution (6.4) in presence of a unit square (i.e. ℓ = 1) for k = j = 1,
k = 2, j = 3 and Λ = 1. Similarly to the problems in Section 4.4, by using the basis functions
introduced in Chapter 4, the Galerkin’s discretization of (6.3) brings to

Kc = −κ̄2M, (6.5)

where the stiffness K = (ki,j)i,j∈I and mass M = (mi,j)i,j∈I matrices have entries

ki,j =

∫
Ω
(∇ϕi(x))T ∇ϕj(x) dx, mi,j =

∫
Ω
ϕi(x)ϕj(x) dx (6.6)

and c = (ci)i∈I is the vector containing the unknown coefficients of the desired solution
expressed as linear combination of the bases {ϕi}i∈I as in (4.37). Hence, our numerical
investigation is devoted to the computation of the eigenvalues of the generalized eigenvalue
problem defined in (6.5) whose related eigenfunctions are the solution of (6.3).

6.2 Simulations on real lake data 123

(a) (b)

Figure 6.1. Exact solution (6.4) for the problem (6.3) when Ω is the unit square. (a): solution for Λ = k =
j = 1. (b): solution for Λ = 1, k = 2, j = 3.

6.1.2 The general case

Once we make sure that our implementation is correct, we can deal with the general prob-
lem (6.1) defined over a domain Ω with arbitrary shape and any bathymetry function h. As we
said above, in this setting the problem (6.1) has no explicit solution. Its Galerkin’s formulation,
as for the test case, leads to the generalized eigenvalue problem

K̃c = −κ2M,

with M as in (6.6) and stiffness matrix K̃ = (k̃i,j)i,j∈I

k̃i,j =

∫
Ω
h(x)

(
(∇ϕi(x))T ∇ϕj(x)

)
dx+

∫
Ω
ϕj(x)

(
(∇h(x))T ∇ϕi(x)

)
dx

In the next section we present two numerical simulation for the shallow-water equations
based on real data: starting from the 3D point cloud of a lake’s seabed obtained from a GPS
rastering we are able to delineate the shape of the lake (defining our domain Ω) as well as the
h function via fitting the cloud using the basis functions in Chapter 3 defined over a quad
meshing of Ω.

6.2 Simulations on real lake data

The data used in these experiments is taken from the dataset analyzed in [Kha22]. In particular
we use data from the Rogagua Lake, in Bolivia and from the Orta lake, in Italy; the two lakes
have been chosen based on their very different shape and bathymetry conformation.

In order to solve the shallow-water problem (6.1) using the technique introduced in Chapter 4
we need to define a mesh domain delineating the shape of the lake as well as a function returning
the bathymetry of the lake. This goal can be achieved by following the next steps: first,
starting from the point cloud acquired from a GPS rastering of the lake’s seabed (represented
as triangular mesh), using the Rhino3D modeler command ExtractMeshEdges we extract the

124 Chapter 6 Free natural vibrations of a shallow lake

boundary edges and we get a curve identifying the shape of the lake. Since the extrapolated
curve is obtained from a set of points it is a piecewise linear curve; therefore, to achieve a
smoother and more realistic result we apply few iterations of Laplacian smoothing [Sor05].
This curve will identify our physical domain Ω. A triangular meshing of the internal area can
be made by the command PlanarMesh of Rhino3D, and its conversion to quads by using
the QuadRemesh option. As accurately replicating the lake’s shape is essential for a precise
simulation, the resulting mesh will exhibit a high number of faces. Finally, on this mesh we
build our spline bases which will be used to both reconstruct the bathymetry function h by
fitting the input point cloud and solving the shallow-water equation.

6.2.1 Rogagua lake

The first experiment is performed on the Rogagua lake model from the repository analyzed
in [Kha22]. Figure 6.2 illustrates the meshing and fitting steps properly explained in Section 6.2
while Table 6.2 summarizes the features of the input point cloud, i.e. its number of points
nP , the number of quad faces nF of the extrapolated quad mesh and the number of bases nb
defined on it as well as the errors (defined in (3.25)) while fitting the bathymetry function. It
also contains the dimensions of the lake’s model bounding box, expressed in meters. The error
color plot in Figure 6.2-(e) points-out that the (very few) regions where the fitting error is
localized corresponding to the boundary of the domain, and this is due to its slight modification
induced by the Laplacian smoothing in order to get a proper outline. Finally, we computed
the first 15 solutions for the shallow-water problem (6.1), shown in Figure 6.3, that correspond
to the eigenfunctions with associated eigenvalues (and frequencies) listed in Table 6.1.

Eigenvalues Frequencies
2.872e-08 2.802e-05 1.601e-04 5.307e-04 1.658e-02 3.962e-02
3.713e-04 5.037e-04 5.087e-04 6.034e-02 7.028e-02 7.063e-02
6.527e-04 8.495e-04 9.009e-04 8.001e-02 9.128e-02 9.399e-02
1.150e-03 1.294e-03 1.489e-03 1.060e-01 1.127e-01 1.208e-01
1.573e-03 1.838e-03 1.878e-03 1.242e-01 1.343e-01 1.357e-01

Table 6.1. First 15 eigenvalues, and corresponding frequencies, for the shallow-water simulation on Rogagua
lake.

6.2.2 Orta lake

The second investigation concerns the Orta lake, whose model belongs to the same dataset
as before. Its irregular shape and seabed is very different from the previous Rogagua lake,
and together with the presence of an island make this case very interesting. Similarly to the
previous experiment, Table 6.2 presents the point cloud features and the attributes of the quad
mesh we achieved from it. Also in this case the fitting error is localized nearby the boundary of
the domain. Table 6.3 lists the first 15 eigenvalues and frequencies identifying the 15 solutions
of the shallow-water equation depicted in Figure 6.5.

6.2 Simulations on real lake data 125

(a)

(b) (c)

(d) (e)

(f)

Figure 6.2. Rogagua lake. (a)-(b): point cloud representing the lake’s seabed. (c): curve defining the lake’s
shape. (d): quad mesh of the domain identified by the boundary curve (c). (e): ℓ2 fitting error
color plot. (f): fitted surface determining the bathymetry function h.

nb nF nP L∞ error RMSE Length Width Depth
Rogagua lake 126922 7840 164989 1.043e-00 2.280e-02 520 580 27

Orta lake 268004 16516 25383 6.520e-01 1.557e-02 400 180 22

Table 6.2. Spline space, mesh, point cloud and model features concerning the reconstruction of the bathymetry
functions in Figures 6.2 and 6.4.

126 Chapter 6 Free natural vibrations of a shallow lake

Figure 6.3. Solutions of the shallow-water equation for the Rogagua lake corresponding to the first 15
eigenvalues, ordered in increasing magnitude.

6.2 Simulations on real lake data 127

(a)

(b) (c) (d) (e)

(f)

Figure 6.4. Orta lake. (a)-(b): point cloud representing the lake’s seabed. (c): curve defining the lake’s
shape. (d): quad mesh of the domain identified by the boundary curve (c). (e): ℓ2 fitting error
color plot. (f): fitted surface determining the bathymetry function h.

Eigenvalues Frequencies
1.681e-09 2.392e-04 3.515e-04 1.284e-04 4.844e-02 5.871e-02
1.368e-03 1.751e-03 2.687e-03 1.158e-01 1.310e-01 1.623e-01
4.473e-03 6.067e-03 8.554e-03 2.094e-01 2.439e-01 2.896e-01
8.964e-03 1.028e-02 1.059e-02 2.965e-01 3.176e-01 3.223e-01
1.113e-02 1.225e-02 1.290e-02 3.303e-01 3.466e-01 3.556e-01

Table 6.3. First 15 eigenvalues, and corresponding frequencies, for the shallow-water simulation on Orta lake.

128 Chapter 6 Free natural vibrations of a shallow lake

Figure 6.5. Solutions of the shallow-water equation for the Orta lake corresponding to the first 15 eigenvalues,
ordered in increasing magnitude.

6.2 Simulations on real lake data 129

Summary

This chapter has presented another practical application of the tools introduced in Chapters 2
to 4 to solve the shallow-water equation when dealing with shallow lakes. Given a point cloud
reproducing the seabed of a certain lake, we provided a pipeline to obtain from it a quad mesh
reproducing the lake’s shape; having defined on the latter mesh the G1 basis functions, we were
able, using the same basis set, to both fit the point cloud obtaining a smooth description of the
bathymetry function and solve the shallow-water equation using the IGA formulation. Two
examples on real lake data have been provided showing the power of the proposed approach.

131

Chapter 7
Cubic C2 spline quasi-interpolants on
arbitrary triangulations
Quasi-interpolation is a general approach to construct efficient local approximants in a pre-
scribed space to a given function f or just a given set of data. It is often preferred over
interpolation because it is a local method and does not require the solution of possibly large
linear systems. A quasi-interpolation operator is usually obtained as a linear combination of a
suitable set of functions, which are positive, stable, and locally supported, or at least have a
strong fast decay, in order to achieve local control.

In this chapter we present the construction of C2 cubic spline quasi-interpolants on a given
arbitrary triangulation where each triangle is refined according to the cubic Wang-Shi (WS)
split. The main tool in our construction is the simplex spline basis for the local space of
C2 cubics on the cubic WS split presented in [LMS22]. In order to guarantee global C2

smoothness between the local simplex spline representations, our construction starts from a
Hermite interpolation problem that uniquely identifies elements of the cubic WS spline space on
a prescribed triangulation. For a given function f , different C2 cubic spline quasi-interpolants
are then obtained by feeding different sets of Hermite data to this Hermite interpolation
problem. Finally, various numerical examples illustrating the performance of the introduced
quasi-interpolants are presented. This chapter is based on [MMS23].

7.1 The spline space S23(△WS3
)

Let us consider a reference (macro-)triangle △ = ⟨p1,p2,p3⟩ identified by three noncollinear
points p1,p2,p3 in R2. We divide each edge of △ into three equal segments, respectively,
resulting into nine boundary points. Then, we refine △ into a number of subelements delineated
by the complete graph connecting those boundary points, which consists of the three edges of
the triangle and 18 interior lines. The resulting partition is called the WS3 (or cubic Wang–Shi)
split of △ as it is the third member of a family of splits originally proposed by Wang and Shi
[WS90]; see Figure 7.1 for an illustration. We denote the obtained mesh structure by △WS3 :
it has 58 vertices and 75 polygonal regions.

We consider the space of C2 cubic splines on the partition △WS3 , i.e.,

S23(△WS3) :=
{
s ∈ C2(△) : s

∣∣∣
τ
∈ P3, ∀ τ ∈ P3

}
,

where Pd denotes the space of bivariate polynomials of degree at most d and P3 the set of
polygons in △WS3 . The dimension of S23(△WS3) equals

dim(S23(△WS3)) = dim(P3) + 18 = 28;

132 Chapter 7 Cubic C2 spline quasi-interpolants on arbitrary triangulations

Figure 7.1. Structure of the WS3 split.

see, e.g., [LMS22, Theorem 2]. The partition △WS3 looks (and actually is) quite complicated,
not only due to the large number of regions but also because of their shape as it is a mixture
of triangles, quadrilaterals, and pentagons. Therefore, dealing in practice with the elements
of the space S23(△WS3) is prohibitive if we just rely on a direct approach by considering a
polynomial representation on each region of the split and by taking into account the inter-
element smoothness. However, the split has a particularly beautiful feature: it is a cross-cut
partition of △, formed by the complete graph of the nine points selected on the boundary of △.
Hence, it is natural to consider bivariate cubic simplex splines (see Section 1.2.2) to bypass the
complex geometric structure of the split and to obtain an elegant representation of S23(△WS3).
Following [LMS22, Theorem 3], a basis of S23(△WS3) consisting of (scaled) simplex splines,

{B1, . . . , B28}, (7.1)

can be constructed. More precisely, each Bi is obtained by scaling a cubic simplex spline
defined by six (counting multiplicity) knots taken among the boundary points of the WS3

split; the 28 knot sequences are reported in Figure 7.2. There are seven different types of
simplex in the set (7.1): Figure 7.4 shows a representative for each type.

The basis functions in (7.1) enjoy several interesting properties:

• the scaling factors ensure that they form a nonnegative partition of unity;

• they inherit recurrence relations and differentiation formulas from the simplex spline
structure;

• they admit simple conditions for C2 joins to neighboring triangles in a given triangulation
T ;

• cubic polynomials can be represented through a Marsden-like identity;

7.2 Hermite interpolation in S23(△WS3) 133

• they lead to well-conditioned collocation matrices for Lagrange and Hermite interpolation
using certain sites;

• a control net can be formed that mimics the shape of the spline function represented in
this basis.

1
1

1 1

11

1 1
11

1

1

1

1

1
1 1

1
11

1

1

1

1

1

1

1 1

1
1

1

1

1

1

1

1

1

1
1

1

11

1
1

1

1
1

1
1 1

1
1

1
1

1111
1
1 1
1

1
11

1

1
11

1
11

11

1 1
1

1

1
1
1

1
11

11
1
1

11
1
1

1
1

1

1

11
1

1

1

1

1

1

1 1 1
11
1

1
1

1

1 1
1 1
1

1
1

4 4

4

3 3 3 3

3 3

2 2 2 2

2

2

22

2

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

Figure 7.2. From [LMS22, Figure 3]: sequences of knots for a set of simplex spline basis functions for
S2
3(△WS3). Each black disc shows the position of a knot, and the number inside indicates its

multiplicity.

7.2 Hermite interpolation in S23(△WS3
)

An efficient way to identify the elements of the space S23(△WS3) is to solve a suitable Hermite
interpolation problem. Taking into account the dimension of the space, a natural choice is to
consider six Hermite data values associated with each vertex of △, three Hermite data values
associated with each edge of △, and one function value associated with the triangle △ itself.
Due to its importance later on, we explicitly state the following result which is a byproduct
of [LMS22, Theorem 3].

Proposition 7.2.1. Let fj ∈ R, j = 1, . . . , 28, be given. There exists a unique spline
s ∈ S23(△WS3) such that

ρj(s) = fj , j = 1, . . . , 28, (7.2)

134 Chapter 7 Cubic C2 spline quasi-interpolants on arbitrary triangulations

where the operators ρ1, . . . , ρ18 related to the vertices of △ are defined as

ρ1(φ) = φ(p1), ρ2(φ) = φ(p2), ρ3(φ) = φ(p3),

ρ4(φ) = Dp1p2φ(p1), ρ5(φ) = Dp1p3φ(p1), ρ6(φ) = Dp2p3φ(p2),

ρ7(φ) = Dp2p1φ(p2), ρ8(φ) = Dp3p1φ(p3), ρ9(φ) = Dp3p2φ(p3),

ρ10(φ) = D2
p1p2

φ(p1), ρ11(φ) = D2
p1p3

φ(p1), ρ12(φ) = D2
p2p3

φ(p2),

ρ13(φ) = D2
p2p1

φ(p2), ρ14(φ) = D2
p3p1

φ(p3), ρ15(φ) = D2
p3p2

φ(p3),

ρ16(φ) = Dp1p2Dp1p3φ(p1), ρ17(φ) = Dp2p3Dp2p1φ(p2), ρ18(φ) = Dp3p1Dp3p2φ(p3),
(7.3)

the operators ρ19, . . . , ρ27 related to the edges of △ are defined as

ρ19(φ) = Dq3p3φ(q3), ρ20(φ) = Dq1p1φ(q1), ρ21(φ) = Dq2p2φ(q2),

ρ22(φ) = D2
p3,1p3

φ(p3,1), ρ23(φ) = D2
p2,1p2

φ(p2,1), ρ24(φ) = D2
p1,2p1

φ(p1,2),

ρ25(φ) = D2
p3,2p3

φ(p3,2), ρ26(φ) = D2
p2,3p2

φ(p2,3), ρ27(φ) = D2
p1,3p1

φ(p1,3),

(7.4)

and finally the operator ρ28 related to the triangle △ is defined as

ρ28(φ) = φ(q), (7.5)

with (see also Figure 7.3)

p1,2 =
2

3
p2 +

1

3
p3 , p1,3 =

1

3
p2 +

2

3
p3 , q1 =

1

2
p2 +

1

2
p3 ,

p2,1 =
2

3
p1 +

1

3
p3 , p2,3 =

1

3
p1 +

2

3
p3 , q2 =

1

2
p1 +

1

2
p3 ,

p3,1 =
2

3
p1 +

1

3
p2 , p3,2 =

1

3
p1 +

2

3
p2 , q3 =

1

2
p1 +

1

2
p2,

(7.6)

and
q =

1

3
p1 +

1

3
p2 +

1

3
p3. (7.7)

p1 p3,1 p3,2 p2

p1,2

p1,3

p3

p2,3

p2,1

Figure 7.3. Labeling of the knots on the boundary of the triangle △.

7.2 Hermite interpolation in S23(△WS3) 135

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 7.4. From (a) to (g): the simplex spline basis function B1, B4, B10, B16, B19, B22, B28.

136 Chapter 7 Cubic C2 spline quasi-interpolants on arbitrary triangulations

For the sake of completeness, we report in Table 7.1 the collocation matrix of the operators ρj
applied to the basis functions Bi, i, j = 1, . . . , 28; see also [LMS22, Section A.3]. From [LMS22,
Corollary 1] we know the following related result.

Corollary 7.2.2. For given data fk,α,β, gk, gk,l, and h0, there exists a unique spline s ∈
S23(△WS3) such that

Dα
xD

β
y s(pk) = fk,α,β, 0 ≤ α+ β ≤ 2, k = 1, 2, 3,

Dnk
s(qk) = gk, D2

nk
s(pk,l) = gk,l, k, l = 1, 2, 3, k ̸= l,

s(q) = h0,

(7.8)

where nk is the outgoing normal direction of the edge opposite to the vertex pk, and the points
pk,l, qk and q are defined in (7.6) and (7.7).

7.3 The spline space S23(TWS3
)

Let T be a triangulation of a polygonal domain Ω ∈ R2 and let TWS3 denote its refinement
obtained by taking the WS3 split of each of its triangles. We consider the space of C2 cubic
splines on TWS3 , i.e.,

S23(TWS3) :=
{
s ∈ C2(Ω) : s

∣∣∣
τ
∈ P3, τ is polygon in TWS3

}
.

The unisolvency of the Hermite interpolation problem stated in Corollary 7.2.2 implies that

dim(S23(TWS3)) = 6nV + 3nE + nT ,

where nV , nE , nT are the number of vertices, edges, and triangles of T , respectively; see
[LMS22; Wan01; WS90]. Moreover, any spline function of S23(TWS3) can be locally constructed
on each (macro-)triangle △i of T via the Hermite data (7.8), and the corresponding spline
piece on △i can be represented in the form

s
∣∣∣
△i

=
28∑
j=1

cijB
i
j , cij ∈ R, (7.9)

where {Bi
1, . . . , B

i
28} is the scaled simplex spline local basis (7.1) for the triangle △i.

Any function, which is represented locally in the form (7.9) on each △i of T , is C2-smooth
over △i but not necessary C2-smooth across the edges of T . Conditions on the local spline
coefficients cij to ensure global C2 smoothness are discussed in [LMS22, Section 4]. The
construction of a stable global basis with local support for S23(TWS3) is also presented in
[LMS22, Section 4].

7.3 The spline space S23(TWS3) 137

ρ
1

ρ
2

ρ
3

ρ
4

ρ
5

ρ
6

ρ
7

ρ
8

ρ
9

ρ
1
0

ρ
1
1

ρ
1
2

ρ
1
3

ρ
1
4

ρ
1
5

ρ
1
6

ρ
1
7

ρ
1
8

ρ
1
9

ρ
2
0

ρ
2
1

ρ
2
2

ρ
2
3

ρ
2
4

ρ
2
5

ρ
2
6

ρ
2
7

ρ
2
8

B
1

1
0

0
-9

-9
0

0
0

0
54

54
0

0
0

0
54

0
0

0
0

0
0

0
0

0
0

0
0

B
2

0
1

0
0

0
-9

-9
0

0
0

0
54

54
0

0
0

54
0

0
0

0
0

0
0

0
0

0
0

B
3

0
0

1
0

0
0

0
-9

-9
0

0
0

0
54

54
0

0
54

0
0

0
0

0
0

0
0

0
0

B
4

0
0

0
9

0
0

0
0

0
-8

1
0

0
0

0
0

-5
4

0
0

-2
7

3
2

0
0

7
5 2

0
0

0
0

0
0

B
5

0
0

0
0

9
0

0
0

0
0

-8
1

0
0

0
0

-5
4

0
0

0
0

-2
7

3
2

0
7
5 2

0
0

0
0

0
B

6
0

0
0

0
0

9
0

0
0

0
0

-8
1

0
0

0
0

-5
4

0
0

-2
7

3
2

0
0

0
7
5 2

0
0

0
0

B
7

0
0

0
0

0
0

9
0

0
0

0
0

-8
1

0
0

0
-5

4
0

-2
7

3
2

0
0

0
0

0
7
5 2

0
0

0
B

8
0

0
0

0
0

0
0

9
0

0
0

0
0

-8
1

0
0

0
-5

4
0

0
-2

7
3
2

0
0

0
0

7
5 2

0
0

B
9

0
0

0
0

0
0

0
0

9
0

0
0

0
0

-8
1

0
0

-5
4

0
-2

7
3
2

0
0

0
0

0
0

7
5 2

0
B

1
0

0
0

0
0

0
0

0
0

0
27

0
0

0
0

0
0

0
0

-1
8
9

3
2

0
0

3
1 2

0
0

49
0

0
0

B
1
1

0
0

0
0

0
0

0
0

0
0

27
0

0
0

0
0

0
0

0
0

-1
8
9

3
2

0
3
1 2

0
0

49
0

0
B

1
2

0
0

0
0

0
0

0
0

0
0

0
27

0
0

0
0

0
0

0
-1

8
9

3
2

0
0

0
3
1 2

0
0

49
0

B
1
3

0
0

0
0

0
0

0
0

0
0

0
0

27
0

0
0

0
0

-1
8
9

3
2

0
0

49
0

0
3
1 2

0
0

0
B

1
4

0
0

0
0

0
0

0
0

0
0

0
0

0
27

0
0

0
0

0
0

-1
8
9

3
2

0
49

0
0

3
1 2

0
0

B
1
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

27
0

0
0

0
-1

8
9

3
2

0
0

0
49

0
0

3
1 2

0
B

1
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
54

0
0

9 8
0

9 8
-6

3
-6

3
0

0
0

0
0

B
1
7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

54
0

9 8
9 8

0
0

0
-6

3
-6

3
0

0
0

B
1
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
54

0
9 8

9 8
0

0
0

0
-6

3
-6

3
0

B
1
9

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
5 4

0
0

-1
20

0
0

-1
20

0
0

0
B

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
4
5 4

0
0

0
-1

20
0

0
-1

20
0

B
2
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
5 4

0
-1

20
0

0
-1

20
0

0
B

2
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
54

27
0

0
0

0
1 1
2

B
2
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
27

54
0

0
0

0
1 1
2

B
2
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
54

27
0

0
1 1
2

B
2
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
27

54
0

0
1 1
2

B
2
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
54

27
1 1
2

B
2
7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
27

54
1 1
2

B
2
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1 2

T
ab

le
7.

1.
V

al
ue

s
of

ρ
j
(B

i
)

fo
r
i,
j
=

1
,.
..
,2
8
,w

he
re

ρ
j

is
de

fin
ed

in
(7

.3
),

(7
.4

)
an

d
(7

.5
).

138 Chapter 7 Cubic C2 spline quasi-interpolants on arbitrary triangulations

7.4 Construction of quasi-interpolants

In this section we present the construction of three C2 cubic quasi-interpolants in S23(TWS3) for
an arbitrary triangulation T . For a given (sufficiently smooth) function f , the common idea
of the three approaches is to build a quasi-interpolant Qf by using the local simplex spline
basis (7.1) on each macro-triangle △i of the triangulation refined according to the WS3 split.
More formally,

f −→ Qf ∈ S23(TWS3), Qf
∣∣∣
△i

=
28∑
j=1

µij(f)B
i
j , i = 1, . . . , nT ,

where {µij(f)}nT ,28
i=1,j=1 are linear functionals to be constructed so that the following properties

hold:

• global smoothness: Qf is globally C2;

• polynomial reproduction: Qp = p, ∀p ∈ P3;

• locality: µij(f) depends on values (and/or derivatives) of f only on triangles △k such
that △k ∩△i ̸= ∅.

In the spirit of finite (macro-)elements, an efficient way to obtain linear functionals µij
enjoying the above properties is to construct Qf |△i as the solution of the Hermite problem in
Corollary 7.2.2 where the Hermite data are directly taken (see Section 7.4.2) or accurately
estimated (see Sections 7.4.3 and 7.4.4) from f .

A direct solution of such a Hermite problem, however, would require a triangle-dependent
collocation matrix and thus would lead to the computation of nT different collocation matrices
in T . To circumvent this issue, we consider the Hermite problem stated in (7.2), whose
collocation matrix is the same for all triangles in T . The values fj at the right-hand side have
to be properly deduced from those in (7.8) in order to get global C2 smoothness. This is
briefly described in the next section.

7.4.1 Consistent local Hermite data

Suppose the Hermite data (7.8) are given for the triangle △. In this section we outline
how to compute the values fj , j = 1, . . . , 28 so that the solution s of the problem stated in
Proposition 7.2.1 solves the Hermite interpolation problem stated in Corollary 7.2.2 as well.

Of course, f28 = h0. Moreover, the values fj , j = 1, . . . , 18, can be immediately obtained by
standard calculus from the data

fk,α,β, 0 ≤ α+ β ≤ 2, k = 1, 2, 3.

Let us now focus on f19. The direction q3p3 involved in the definition of the operator ρ19
(see Figure 7.5) can be written as

q3p3 = γp1p2 + δn3,

for some real values γ, δ. Therefore, from (7.8) we deduce

ρ19(s) = Dq3p3s(q3) = γDp1p2s(q3) + δDn3s(q3) = γDp1p2s(q3) + δg3.

7.4 Construction of quasi-interpolants 139

p1 p3,1 p3,2 p2

p3

q3

n3

Figure 7.5. Example of directions attached to the edge p1p2 defining the operators ρ19, ρ22, ρ25 and its
outgoing normal.

Then, to obtain a consistent value for f19, we only need to compute the value Dp1p2s(q3).
This can be achieved by observing that, since s ∈ S23(△WS3), its restriction to the edge p1p2

is a univariate C2 cubic spline with two inner knots at p3,1 and p3,2, respectively. Thus, it is
uniquely determined by its values and first and second derivatives at the two ends of the edge,
i.e., by the values of ρ1(s), ρ2(s), ρ4(s), ρ7(s), ρ10(s), ρ13(s) or, in other words, by the values
f1, f2, f4, f7, f10, f13 previously computed. This allows us to compute Dp1p2s(q3) and so to get
a consistent value for f19. Similarly, we can compute f20 and f21.

Now, let us consider f22. The direction p3,1p3 involved in the definition of the operator ρ22
(see Figure 7.5) can be written as

p3,1p3 = ηp1p2 + ζn3,

for some real values η, ζ. Thus, we have

ρ22(s) = D2
p3,1p3

s(p3,1) = η2D2
p1p2

s(p3,1) + 2ηζDp1p2Dn3s(p3,1) + ζ2D2
n3
s(p3,1).

Hence, from (7.8) we set

f22 = η2D2
p1p2

s(p3,1) + 2ηζDp1p2Dn3s(p3,1) + ζ2g3,1.

The value D2
p1p2

s(p3,1) can be computed from the analytical expression of s along the edge
p1p2 previously obtained. Finally, the restriction of Dn3s along the edge p1p2 is a univariate
C1 quadratic spline with two inner knots at p3,1 and p3,2, respectively. Therefore, such
univariate spline is uniquely determined by its values and first derivatives at the two ends of
the edge, which can be computed from

fk,α,β, 1 ≤ α+ β ≤ 2, k = 1, 2,

and by its value at the midpoint q3, i.e., by g3. Similarly, we can compute fj , j = 23, . . . , 27.
It is worth to notice that the computed values fj , j = 1, . . . , 28, are linear expressions in

terms of the given Hermite data (7.8).

140 Chapter 7 Cubic C2 spline quasi-interpolants on arbitrary triangulations

7.4.2 Quasi-interpolant from exact Hermite data

For this construction, we assume that for each triangle △i of T , i = 1, . . . , nT , the Hermite
data

f ik,α,β, gik, gik,l, and hi0,

as in (7.8), are sampled from a given (sufficiently smooth) function f . These data allow us to
compute the values

fiexa = (fiexa,1, . . . , f
i
exa,28)

T (7.10)

according to the strategy outlined in Section 7.4.1. Then, to find the spline satisfying the
problem stated in (7.2), we solve the linear system

B µi
exa(f) = fiexa,

where the matrix B ∈ R28×28 is given by

B = (bl,k)
28
l,k=1 =

(
ρl(B

i
k)
)28
l,k=1

. (7.11)

Note that, due to the definition of ρl, l = 1, . . . 28, and Bi
k, k = 1, . . . , 28, the matrix B is

independent of i. Actually, it is just the transpose of the matrix reported in Table 7.1. It can
be directly checked that

∥B∥∞ = 366, ∥B−1∥∞ =
3523

729
≤ 5. (7.12)

Let
µi

exa(f) = (µiexa,1(f), . . . , µ
i
exa,28(f))

T ,

we define Qexa : C2(Ω) −→ S23(TWS3) by

Qexaf
∣∣∣
△i

=
28∑
j=1

µiexa,j(f)B
i
j , i = 1, . . . , nT . (7.13)

By construction, the quasi-interpolant Qexaf enjoys the global smoothness, cubic polynomial
reproduction, and locality properties stated at the beginning of Section 7.4. Moreover, we
have the following result as a consequence from Corollary 7.2.2.

Proposition 7.4.1. The quasi-interpolant in (7.13) is a projector onto S23(TWS3), i.e.,

Qexas = s, ∀s ∈ S23(TWS3).

Let ∥f∥∞,Ω be the standard L∞-norm of the function f on the domain Ω,

∥Dkf∥∞,Ω = max
α+β=k

∥Dα
xD

β
y f∥∞,Ω,

and let hT be the length of the longest edge of the triangulation T with θT its smallest angle.
Then, from its construction described in Section 7.4.1, we know that fiexa in (7.10) can be
bounded by

∥fiexa∥∞ ≤ C
(
∥f∥∞,Ω + hT ∥Df∥∞,Ω + h2T ∥D2f∥∞,Ω

)
, (7.14)

for some constant C, which is independent of f and hT but depends on θT .

7.4 Construction of quasi-interpolants 141

(a) (b)

Figure 7.6. (a) Positioning of the Bézier domain points (7.15) on a triangle. (b) Positioning of the modified
Bézier domain points (7.21) with ε = 1/2 on a triangle.

Proposition 7.4.2. The quasi-interpolant in (7.13) satisfies

∥Qexaf∥∞,Ω ≤ 5C
(
∥f∥∞,Ω + hT ∥Df∥∞,Ω + h2T ∥D2f∥∞,Ω

)
,

where the constant C is defined in (7.14).

Proof. Consider a triangle △i of T . Since the basis functions in (7.1) form a nonnegative
partition of unity on △i, we have

∥Qexaf∥∞,△i ≤ ∥µi
exa(f)∥∞ ≤ ∥B−1∥∞∥fiexa∥∞.

The bounds in (7.12) and (7.14) conclude the proof.

7.4.3 Construction with Hermite data from averaged polynomials

In practical problems it is often unrealistic to assume the availability of data describing a
bivariate function up to second order derivatives. Hence, in order to solve the problem stated
in Corollary 7.2.2, we need to be able to generate reasonable values up to second derivatives
for our spline approximation. We describe a first strategy in this section, making use of local
cubic polynomial interpolants defined on each triangle of T .

Let us start by defining the Bézier domain points bi
ℓ, ℓ = 1, . . . , 10, related to the triangle

△i of T , i ∈ {1, . . . , nT }. For simplicity, we define them in barycentric coordinates:

bi
1 = (1, 0, 0) , bi

2 =

(
2

3
,
1

3
, 0

)
, bi

3 =

(
2

3
, 0,

1

3

)
, bi

4 =

(
1

3
,
2

3
, 0

)
, bi

5 =

(
1

3
,
1

3
,
1

3

)
,

bi
6 =

(
1

3
, 0,

2

3

)
, bi

7 = (0, 1, 0) , bi
8 =

(
0,

2

3
,
1

3

)
, bi

9 =

(
0,

1

3
,
2

3

)
, bi

10 = (0, 0, 1) .

(7.15)
See Figure 7.6-(a) for an illustration of these points. Suppose we know the values of a function
f at them, i.e.,

ziℓ = f(bi
ℓ), ℓ = 1, . . . , 10,

and set zi = (zi1, . . . , z
i
10)

T . We can then build the local cubic polynomial interpolant Iif on
△i, defined by

Iif =
∑

0≤α+β≤3

ciα,βx
αyβ, (7.16)

142 Chapter 7 Cubic C2 spline quasi-interpolants on arbitrary triangulations

where ci = (ci0,0, c
i
0,1 . . . , c

i
3,0)

T is obtained by solving the linear system

Vi c
i = zi,

and Vi ∈ R10×10 is the Vandermonde matrix in terms of the monomial basis of P3 evaluated
at the Bézier domain points of △i. The idea behind this construction is to use these local
polynomials to produce reasonable derivative values to be used in our approximation process.
Since the Hermite data in (7.3) to (7.5) refer to values attached to the vertices, edges, and
triangles of T , we can orient our investigation towards the same features.

Let vk be a vertex of T , k ∈ {1, . . . , nV }. Making use of the local interpolants defined over
the triangles sharing the vertex vk, we define the averaged vertex polynomial Vkf as

Vkf =
∑

l :vk∈△l

ωl I lf, ωl =

1

|△l|∑
m :vk∈△m

1

|△m|
, (7.17)

where |△| stands for the area of the triangle △. The choice of the weights ωl in the above
averaging favors the polynomials defined over triangles with small area. Similarly to the vertex
case, for each edge ej of T , j ∈ {1, . . . , nE}, we introduce the averaged edge polynomial Ejf
as

Ejf =
∑

l : ej∈△l

ωl I lf, ωl =

1

|△l|∑
m : ej∈△m

1

|△m|
. (7.18)

Furthermore, to define the triangle (or face) polynomial F if attached to the triangle △i,
i ∈ {1, . . . , nT }, we simply take the local cubic interpolant Iif , i.e.,

F if = Iif. (7.19)

The positioning of these vertex, edge, and triangle polynomials is visualized in Figure 7.7-(a).
We have now all the ingredients at hand to build the quasi-interpolant Qavef . Consider the

triangle △i of T , i ∈ {1, . . . , nT }. With reference to (7.8), from the vertex polynomials Vkf
in (7.17) we sample the values f ik,α,β ; from the edge polynomials Ejf in (7.18) we sample the
values gik and gik,l; and finally, the value hi0 is sampled from the triangle polynomial F if in
(7.19). Given these Hermite data we follow the same construction as in Section 7.4.2.

More precisely, according to the strategy outlined in Section 7.4.1, we first compute the
values

fiave = (fiave,1, . . . , f
i
ave,28)

T ,

and solve the linear system
B µi

ave(f) = fiave,

with B defined in (7.11). Let

µi
ave(f) = (µiave,1(f), . . . , µ

i
ave,28(f))

T ,

7.4 Construction of quasi-interpolants 143

vk

△i
ej

(a)

vk

△i
ej

(b)

Figure 7.7. (a): visualization of the positioning of the local cubic polynomial interpolants attached to the
vertex vk, edge ej , and triangle △i. (b): visualization of the positioning of the weighted least-
squares cubic polynomials around the vertex vk, edge ej , and triangle △i.

we then define the quasi-interpolant Qave : C
0(Ω) −→ S23(TWS3) by

Qavef
∣∣∣
△i

=
28∑
j=1

µiave,j(f)B
i
j , i = 1, . . . , nT . (7.20)

From its construction it follows that the quasi-interpolant Qavef enjoys the global smoothness,
cubic polynomial reproduction, and locality properties stated at the beginning of Section 7.4.

7.4.4 Construction with Hermite data from local weighted least-squares
polynomials

In this section we propose a different method to reconstruct the Hermite data required in
Corollary 7.2.2 by building local cubic polynomials through weighted least squares.

Let us assume, as in Section 7.4.3, that the function values of f are known in certain points,
which we select to be a modification of the standard Bézier domain points (7.15). Fix ε > 0.
For a given triangle △i, i ∈ {1, . . . , nT }, we define the modified Bézier domain points b̃i

ℓ,
ℓ = 1, . . . , 10, in barycentric coordinates as:

b̃i
1 = (1, 0, 0) , b̃i

2 =
(
1− ε

3
,
ε

3
, 0
)
, b̃i

3 =
(
1− ε

3
, 0,

ε

3

)
, b̃i

4 =
(ε
3
, 1− ε

3
, 0
)
,

b̃i
5 =

(
1

3
,
1

3
,
1

3

)
, b̃i

6 =
(ε
3
, 0, 1− ε

3

)
, b̃i

7 = (0, 1, 0) , b̃i
8 =

(
0, 1− ε

3
,
ε

3

)
,

b̃i
9 =

(
0,
ε

3
, 1− ε

3

)
, b̃i

10 = (0, 0, 1) .

(7.21)
Note that the standard Bézier domain points are a special case with ε = 1. The smaller the
value of the parameter ε, the closer the points will be to the vertices of the triangle. Figure 7.6-
(b) shows the positioning of these points for ε = 1/2. The idea here is to build a single cubic
polynomial defined over the neighborhood of each vertex or edge of the triangulation obtained
through weighted least squares, where the weights are defined by measuring the distance of
each modified Bézier domain point to the target vertex or edge.

More precisely, let

z̃iℓ = f(b̃i
ℓ), ℓ = 1, . . . , 10, i = 1, . . . , nT ,

144 Chapter 7 Cubic C2 spline quasi-interpolants on arbitrary triangulations

be the known values of a given function f . As in Section 7.4.3, we build different polynomials
related to the features of the considered triangulation, namely its vertices, edges, and faces.
Let vk, k ∈ {1, . . . , nV }, be a vertex of T and denote by |vk| the number of triangles attached
to vk. We define the weighted vertex polynomial Vk

ε f as

Vk
ε f =

∑
0≤α+β≤3

ckα,βx
αyβ, (7.22)

where ck = (ck0,0, c
k
0,1 . . . , c

k
3,0)

T is obtained by solving the overdetermined linear system

Wk Ṽk c
k =Wk z̃

k

in least-squares sense. Here Ṽk ∈ R10|vk|×10 is the Vandermonde matrix in terms of the
monomial basis of P3 evaluated at all the modified Bézier domain points of the triangles
sharing vk, and z̃k is the vector containing the values

z̃k = {z̃iℓ, i : vk ∈ △i, ℓ = 1, . . . , 10}.

Moreover, Wk ∈ R10|vk|×10|vk| is the diagonal matrix containing the weights corresponding to
the points in (7.21). More precisely, for a given point b̃i

ℓ that belongs to a triangle △i attached
to vk, its weight ω(b̃i

ℓ;v
k) is chosen as

ω(b̃i
ℓ;v

k) =
1

1 + 10

(
dist(b̃i

ℓ,v
k)

h△i

)2 , (7.23)

where dist(b̃i
ℓ,v

k) = ∥b̃i
ℓ − vk∥2 is the standard Eucledian distance and h△i is the length

of the longest edge of △i. A similar procedure can be followed to define the weighted edge
polynomial Ej

εf attached to the edge ej of T , j ∈ {1, . . . , nE},

Ej
εf =

∑
0≤α+β≤3

cjα,βx
αyβ, (7.24)

where cj = (cj0,0, c
j
0,1 . . . , c

j
3,0)

T is determined by solving the overdetermined linear system

Wj Ṽj c
j =Wj z̃

j

in least-squares sense. Here Ṽj ∈ R20×10 is the Vandermonde matrix in terms of the monomial
basis of P3 evaluated at all the modified Bézier domain points of the triangles sharing ej , and
z̃j is the vector containing the values

z̃j = {z̃iℓ, i : ej ∈ △i, ℓ = 1, . . . , 10}.

The weights in the diagonal matrix Wj ∈ R20×20 are calculated similar to (7.23). For a given
point b̃i

ℓ that belongs to a triangle △i attached to ej , we choose the weight ω(b̃i
ℓ; e

j) as

ω(b̃i
ℓ; e

j) =
1

1 + 10

(
dist(b̃i

ℓ,e
j)

h△i

)2 .

7.4 Construction of quasi-interpolants 145

Lastly, the triangle (or face) polynomial F i
εf attached to the triangle △i, i ∈ {1, . . . , nT },

F i
εf =

∑
0≤α+β≤3

c̃iα,βx
αyβ, (7.25)

is defined as the cubic polynomial interpolating at the points in (7.21), which can be built in
a manner similar to (7.16). Figure 7.7-(b) illustrates the positioning of the above weighted
polynomials defined in (7.22), (7.24), and (7.25). These polynomials can take the same role as
the averaged polynomials introduced in Section 7.4.3 and can be used to recover the Hermite
values involved in Corollary 7.2.2.

The new quasi-interpolant Qwlsf is built as follows. Consider the triangle △i of T , i ∈
{1, . . . , nT }. With reference to (7.8), from the weighted vertex polynomials Vk

ε f in (7.22) we
sample the values f ik,α,β; from the weighted edge polynomials Ej

εf in (7.24) we sample the
values gik and gik,l; and finally, the value hi0 is sampled from the triangle polynomial F i

εf in
(7.25). Given these Hermite data we follow the same construction as in Section 7.4.2. More
precisely, applying the conversion strategy explained in Section 7.4.1, we find the values

fiwls = (fiwls,1, . . . , f
i
wls,28)

T ,

from which we compute the coefficients

µi
wls(f) = (µiwls,1(f), . . . , µ

i
wls,28(f))

T

by solving
B µi

wls(f) = fiwls,

with B as in (7.11). The quasi-interpolant Qwls : C
0(Ω) −→ S23(TWS3) is then identified by

Qwlsf
∣∣∣
△i

=
28∑
j=1

µiwls,j(f)B
i
j , i = 1, . . . , nT . (7.26)

Once more, by construction, the quasi-interpolant Qavef enjoys the global smoothness, cubic
polynomial reproduction, and locality properties stated at the beginning of Section 7.4.

7.4.5 Error estimates

In this section we analyze the approximation order of the proposed quasi-interpolants to a
sufficiently smooth function f . To this end, we recall a classical approximation result about
polynomials on triangles; see, e.g., [LS07, Theorem 1.3]. Given a triangle △ with maximal
edge length h△, for every f ∈ Cd+1(△) there exists a polynomial pd ∈ Pd such that

∥Dk(f − pd)∥∞,△ ≤ Kd h
d+1−k
△ ∥Dd+1f∥∞,△, (7.27)

for all 0 ≤ k ≤ d. The constant Kd depends only on d. Note that a similar estimate in Lq-norm
can be shown for any function f belonging to the Sobolev space W d+1,q(△); see [LS07].

Proposition 7.4.3. Given a function f ∈ C4(Ω), the quasi-interpolant in (7.13) satisfies

∥f −Qexaf∥∞,Ω ≤ Kexa h
4
T ∥D4f∥∞,Ω, (7.28)

where the constant Kexa is independent of f and hT .

146 Chapter 7 Cubic C2 spline quasi-interpolants on arbitrary triangulations

Proof. Consider a triangle △i of T . Then, using a triangle inequality,

∥f −Qexaf∥∞,△i ≤ ∥f − p3∥∞,△i + ∥p3 −Qexaf∥∞,△i ,

where p3 is the same polynomial as in (7.27) for d = 3. Moreover, the polynomial reproduction
property of the quasi-interpolant implies ∥p3 −Qexaf∥∞,△i = ∥Qexa(p3 − f)∥∞,△i and from
Proposition 7.4.2 we deduce

∥p3 −Qexaf∥∞,△i ≤ 5C
(
∥f − p3∥∞,△i + hT ∥D(f − p3)∥∞,△i + h2T ∥D2(f − p3)∥∞,△i

)
.

Combining the above estimates with (7.27) results in (7.28), where Kexa = K3(1 + 15C).

Similar approximation estimates can be derived for the quasi-interpolants Qavef in (7.20)
and Qwlsf in (7.26) as well.

7.5 Numerical experiments

This section contains several numerical experiments illustrating the quality of the proposed
quasi-interpolants Qexaf , Qavef , and Qwlsf , described in Section 7.4. We start by applying
our constructions to a degree four polynomial and the well-known Franke’s function, both
defined on a square domain. We consider a sequence of nested tridirectional meshes to verify
the approximation order of the quasi-interpolants (see Section 7.4.5). Next, we apply our
constructions to a sigmoid function and a function with three peaks, again defined on a
square domain, but now we use adaptively refined triangular meshes in order to capture more
accurately the local features. Lastly, we present an example dealing with a non-square domain.
In all the examples we take the value ε = 1/2 in (7.21) for the construction of Qwlsf .

Being able to evaluate any spline s ∈ S23(△WS3) represented in the basis (7.1) is an important
aspect in our constructions. Since the basis functions are (scaled) simplex splines, they could
be evaluated through recurrence or simply by means of a lookup-table process; see [LMS22,
Section 5.1] and in particular [LMS22, Tables 1 and 2] for their explicit expressions. Any point
p ∈ △ can be uniquely characterized and searched via a Boolean vector. Indeed, thanks to
the cross-cut nature of the WS3 split, each of the 75 polygonal regions in △WS3 is uniquely
identified by the sign of the linear equations defining the 18 interior lines of the split; see
[LMS22, Eq. (28)]. Hence, in order to detect in which polygonal region of the macro-triangle a
given point p belongs to, we only need to evaluate all the 18 interior lines at p and to collect
the resulting signs in a Boolean vector.

7.5.1 Polynomial of degree four

We start our numerical investigation considering as given function a polynomial of degree four.
From Section 7.4.5 we expect that the L∞ norm of error we commit when approximating
a polynomial of degree four with our three QIs decreases as O(h4T), with hT the maximum
length of the macroelements in the triangulation. In order to demonstrate the optimality
of our proposed approximations, we consider five nested tridirectional meshes in [0, 1]2 with
axis-aligned edge lengths from 20 to 2−4; this experiment has been developed by using the
bivariate quartic polynomial f ∈ P4

f(x, y) =
1

4
x4 + x3y. (7.29)

7.5 Numerical experiments 147

(a)

(b)

Figure 7.8. (a): plot of the polynomial f(x, y) in (7.29). (b): plot of Qavef .

10−1 100

10−7

10−6

10−5

10−4

10−3

10−2

Mesh size

L
∞

er
ro
r

Qexaf
Qavef
Qwlsf
Slope 4

Figure 7.9. Convergence plot in logarithmic scale of the L∞ error for the quasi-interpolants computed from
the polynomial f in (7.29) over the nested meshes in Figure 7.10.

148 Chapter 7 Cubic C2 spline quasi-interpolants on arbitrary triangulations

(a) (b) (c)

(d) (e)

Figure 7.10. From (a) to (e): triangulations of the domain [0, 1]2 with axis-aligned edge lengths 2−i, i =
0, . . . , 4 involved in the examples in Sections 7.5.1 and 7.5.2.

In Figure 7.8 are presented, respectively, the graph of the polynomial f and its corresponding
quasi-interpolant Qavef , while Figure 7.10 contains the 5 nested meshes we used to test the
optimal convergence rate shown in Figure 7.9. As we can notice from the convergence plot, for
the polynomial case the errors obtained with the averaging and weighted least-squares are
almost the same, while with the exact data the error is smaller.

7.5.2 Franke’s function

As first non-polynomial example we consider the well-known Franke’s function, which is a
standard test in approximation methods. Franke’s function presents two Gaussian peaks of
different heights and a smaller dip; it is analytically defined as:

f(x, y) =
3

4
e−

(9x−2)2+(9y−2)2

4 +
3

4
e−

(9x+12)2

49
− 9y+1

10 +
1

2
e−

(9x−7)2+(9y−3)2

4 − 1

5
e−((9x−4)2+(9y−7)2).

(7.30)
Imitating Section 7.5.1, we test the error convergence of our proposed constructions over
tridirectional meshes in [0, 1]2 with axis-aligned edge lengths 2−i, i = 0, . . . , 4 (see Figure 7.10).
Figure 7.11 presents the graph of the Franke’s function and its corresponding quasi-interpolant
Qavef . In this case, we notice from the error plot in Figure 7.12 that the quasi-interpolant
Qwlsf returns smaller errors than Qavef , when the size of the mesh becomes small enough; the
construction with exact data Qexaf returns the most accurate representation. The optimal
convergence rate is once again achieved.

7.5 Numerical experiments 149

(a)

(b)

Figure 7.11. (a): graph of the Franke’s function in (7.30). (b): plot of Qavef .

10−1 100
10−4

10−3

10−2

10−1

Mesh size

L
∞

er
ro
r

Qexaf
Qavef
Qwlsf
Slope 4

Figure 7.12. Error plot in logarithmic scale of the L∞ error for the quasi-interpolants computed from the
Franke’s function f in (7.30) over the nested meshes in Figure 7.10

150 Chapter 7 Cubic C2 spline quasi-interpolants on arbitrary triangulations

7.5.3 Sigmoid function

Let introduce the sigmoid function f whose explicit equation is

f(x, y) =
tanh (9y − 9x) + 1

9
. (7.31)

We restrict its definition to the squared domain [−1, 1]2. It easy to notice that in the region
neighboring the line of equation y = x the sigmoid presents a very steep jump between
its maximum and minimum value. Hence, in order to construct precise quasi-interpolants
preserving this feature, we will use in this example non-uniform triangulations which are finer,
at every step, in the regions of the domain close to the slope. The graph of the sigmoid function
and its Qexaf quasi-interpolant are contained in Figure 7.13, while Figure 7.14 shows these
adaptative triangulations. Figure 7.15 presents the error plot for this investigation. Similarly
to the previous example, the best approximation is achieved with the quasi-interpolant Qexaf ,
while when dealing with recreated Hermit data the Qwlsf quasi-interpolant does a better job.

(a)

(b)

Figure 7.13. (a): plot of the sigmoid in (7.31). (b): plot of Qavef .

7.5 Numerical experiments 151

(a) (b) (c)

(d) (e)

Figure 7.14. From (a) to (e): adaptative triangulations of the domain [−1, 1]2 utilized for the construction of
Qexaf,Qavef and Qwlsf in the example in Section 7.5.3.

101.4 101.5 101.6 101.7 101.8 101.9

10−3

10−2

10−1

√
dof

L
∞

er
ro
r

Qexaf
Qavef
Qwlsf

Figure 7.15. Error plot in logarithmic scale of the L∞ error for the quasi-interpolants of the sigmoid
function (7.31) over the adaptative meshes in Figure 7.14.

152 Chapter 7 Cubic C2 spline quasi-interpolants on arbitrary triangulations

7.5.4 Function with three peaks

In real applications it is common to deal with functions which presents some discontinuities:
in these situations, most of the usual numerical tools have to be adapted in order to treat
them. Here we show that our construction works perfectly also in this challenging setting
without any ah-hoc tuning. Let f be the function defined as

f(x, y) =
2

3e
√

(10x−3)2+(10y−3)2
+

2

3e
√

(10x)2+(10y)2
+

2

3e
√

(10x+3)2+(10y+3)2
. (7.32)

From standard computation it is easy to notice that the function f presents three cusps in
correspondence of the pairs (−3,−3), (0, 0), (3, 3) for x and y, respectively. Thus, in these
points its first (and second) derivative will result discontinuous; as consequence, in this
experiment we won’t be able to construct the quasi-interpolant Qexaf , while there are no
problems for the other two approaches Qavef and Qwlsf . Furthermore, an interesting aspect
of our construction is to regularize discontinuous functions with faithful C2 approximations.
Figure 7.16-(a) shows the plot of the function f defined in (7.32), while Figure 7.16-(b) the
graph of its QI Qavef . Due to the presence of the peaks we decided to use adaptative meshes
which present an increasing number of triangles nearby the regions of the domain where the
irregularities are; Figure 7.17 shows these locally refined triangulations while in Figure 7.18
is illustrated the behavior of the L∞ error for Qavef and Qwlsf . Once again, we notice that
the approximation achieved with Hermite data from local weighted least-square polynomials
produces a smaller error.

(a)

(b)

Figure 7.16. (a): graph of the function in (7.32). (b): plot of Qavef .

7.5 Numerical experiments 153

(a) (b) (c)

(d) (e) (f)

Figure 7.17. From (a) to (f): adaptative triangulations of the domain [−1, 1]2 used in the construction of
Qavef and Qwlsf in the example in Section 7.5.4.

101.3 101.4 101.5 101.6 101.7

10−2

10−1

100

√
dof

L
∞

er
ro
r

Qavef
Qwlsf

Figure 7.18. Error plot in logarithmic scale of the L∞ error for the two quasi-interpolants Qavef and Qwlsf
of the function in (7.32) over the adaptative meshes in Figure 7.17.

154 Chapter 7 Cubic C2 spline quasi-interpolants on arbitrary triangulations

7.5.5 Function on a pentagon domain

In the previous examples we set our approximation problem over triangulations of a squared
domain; moreover, this is not a restrictive assumption. In fact, another key point of our
construction is its generality over arbitrary triangular meshes. In the following experiment we
consider the polygonal domain ⊂ [0, 1]2 identified by the set of vertices

{(0.2, 0), (0, 0.55), (0.5, 1), (1, 0.55), (0.8, 0)} (7.33)

on which we define a function f that, for a matter of graphic convenience, we take such that
it has zero value along the boundaries of . Let ri(x, y) = 0, i = 1, . . . , 5 be the implicit
equations of the five lines identifying the pentagonal domain (7.33); so we have the polynomial

q(x, y) =
5∏

i=1

ri(x, y),

which is used to define the objective function f of our investigation

f(x, y) = e−((x−0.5)2+(y−0.45)2)q(x, y). (7.34)

Figure 7.19 shows the plot of the function f and its quasi-interpolant Qavef , respectively,
while in Figure 7.20 are reported the consequent triangulations of the domain which have
been used to investigate the behavior of the L∞ error presented in Figure 7.21.

(a) (b)

(c) (d)

Figure 7.20. From (a) to (d): successive triangulations of the pentagonal domain ⊂ [0, 1]2 used in the
example in Section 7.5.5 for the assembly of Qexaf,Qavef and Qwlsf .

7.5 Numerical experiments 155

(a)

(b)

Figure 7.19. (a): plot of the function in (7.34). (b): plot of Qavef .

101 101.2 101.4 101.6 101.8

10−5

10−4

10−3

10−2

10−1

√
dof

L
∞

er
ro
r

Qexaf
Qavef
Qwlsf
Slope 4

Figure 7.21. Error plot in logarithmic scale of the L∞ error for the quasi-interpolants of the function defined
in (7.34) over the meshes in Figure 7.20.

156 Chapter 7 Cubic C2 spline quasi-interpolants on arbitrary triangulations

The quasi-interpolant Qwlsf , among the two defined from reconstructed Hermite data, shows
a slightly smaller approximation error. We reach again the expected rate of convergence.

Summary

In this chapter we provided the construction of three cubic C2 quasi-interpolants over arbitrary
triangulations. The quasi-interpolants are locally spanned by a simplex spline basis defined
on cubic Wang-Shi refinement of the polygonal domain, making the whole construction very
elegant. Thanks to their locality, we are able to compute the coefficients defining each quasi-
interpolant just solving a small linear system whose right-hand side contains proper Hermite
data ensuring the global C2 continuity. If not given as input, we presented two different
techniques to reconstruct consistent Hermite informations from local cubic polynomials defined
thanks to a set of known values of a given function. Several numerical experiments are provided
to state the actual approximation quality of the proposed quasi-interpolants.

157

Conclusion and perspectives
In this thesis, we have investigated new smooth spline structures suitable for modelling shapes,
as well for approximation problems and numerical simulations.

We began in Chapter 2 presenting the construction of a G1 family of surfaces, described by
mean of smoothing masks, having the property of approximating the well-known Catmull-Clark
subdivision surface. The coefficients of the above masks are explicitly defined through explicit
formulas generated from the equations ensuring the geometric continuity between Bézier
patches. The solving procedure led to multiple solutions which have been individually analyzed
in order to select the one returning the smoothest result, as has been proven in the several
proposed experiments.

Then we moved to the investigation of a set of basis function generating the G1 spline space
introduced in Chapter 2. Chapter 3 was devoted to the creation of such functions through
a constructive procedure together with a deep analysis of their properties and a dimension
formula for the space they generate which only depends on the combinatorial features of the
mesh. We used these objects to solve point cloud fitting problems, whose high-quality result is
provided by the various numerical experiment we proposed.

Chapter 4 was dedicated to the investigation of analysis-suitable basis functions for IGA
simulations. This construction is essentially led by mimicking the building process made for
the bases in Chapter 3, but generalizing the previous definitions for more general knot vectors.
Also in this case a closed formula for the spline space dimension has been given. The suitability
of the proposed bases in numerical IGA simulations of PDEs is shown in some classical tests.

Chapters 5 and 6 presented two interesting applications of the novel constructions in Chap-
ters 2 to 4. The first one concerned the conversion, via point cloud fitting, of CAD models into
smooth spline representations. We proposed a complete pipeline which describes the several
steps of this translations combined with practical examples. Moreover, this approach turns
CAD geometries (that are not appropriate for simulations) to analysis-suitable structures.
Equally interesting, the second application focused on the solution of the shallow-water equa-
tion when dealing with lakes. Due to its strong dependence to the bathymetry conformation,
a crucial point for a realistic study is to gain a precise representation of it: in our case, it is
obtained via fitting a cloud describing a real lake seabed with our technique, to which follows
the numerical resolution of the equation.

Finally, Chapter 7 was centered on the construction of cubic C2 quasi-interpolant operators
supported on a generic triangulation refined according to the cubic Wang-Shi split. The
quasi-interpolation operators are computed by means of a local simplex spline basis which
allows a simple derivation of coefficients for their representation in the simplex basis. Their
approximation power and quality is confirmed by the examples we proposed which treat several
challenging situations.

Several interesting perspectives can be considered. Concerning the construction of the
G1ACC surface, it might be generalized to patches of arbitrary degree; in fact, the choice to
use bidegree 5 Bézier patches, in order to have sufficient degrees of freedom, can be substituted

158 Conclusion and perspectives

with spline patches of any degree defined on an appropriate knot vector. Also interesting is
the generalization to quad meshes presenting connected EVs. In this framework, the systems
defining the geometric constraints around each vertex result to be interconnected with each
other, making the solution of the equations more difficult. It would also be interesting to
extend of the ACC scheme for the construction of G2 surfaces; actually, starting from the G1

scheme presented in this thesis, we believe that the G2 smoothness can be reached imitating
the solving strategy used for the tangent plane continuity, but applied to the proper equations
governing the desired higher continuity. More challenging, but not impossible, is the extension
of the G1ACC construction to the volumetric case. It is not a straightforward task, since some
theoretical tools are not well defined yet, as for example the definition of gluing data function
across faces of a volumetric mesh and the compatibility condition around a vertex.

A similar outlook may be applied to the construction of the basis functions. More precisely,
the definition of G1 functions can be generalized to patches of arbitrary degree and knot vector
as well as to topologies with connected EVs. Also the G2 case is interesting to be studied and
the more demanding volumetric generalization.

Also of interest is to develop a pipeline converting CAD objects to IGA suitable models that
takes into account the features of the input geometry, since it is a sensitive aspect in practical
applications.

Lastly, regarding the quasi-interpolation operators, a similar approach may be used to define
quartic C3 quasi-interpolants by using the simplex spline basis defined in [LMS24]. It is also
interesting to investigate their application to the isogeometric analysis environment, e.g. in
the definition of ad-hoc quadrature rules for triangular domains.

159

Bibliography
[Ali16] Z. Ali, J. Tyacke, P.G. Tucker, and S. Shahpar. “Block Topology Generation for

Structured Multi-block Meshing with Hierarchical Geometry Handling”. Procedia
Engineering 26 (2016), pp. 212–224.

[AS02] P. Alfeld and L. L. Schumaker. “Smooth macro-elements based on Powell–Sabin
triangle splits”. Advances in Computational Mathematics 16 (2002), pp. 29–46.

[AS10] L.-E. Andersson and N.F. Stewart. Introduction to the Mathematics of Subdivision
Surfaces. Society for Industrial and Applied Mathematics, 2010.

[Bar08] D. Barrera, M. J. Ibáñez, P. Sablonnière, and D. Sbibih. “Near-best univariate
spline discrete quasi-interpolants on nonuniform partitions”. Constructive Approx-
imation 28 (2008), pp. 237–251.

[BC13] P.B. Bornemann and F. Cirak. “A subdivision-based implementation of the hier-
archical b-spline finite element method”. Computer Methods in Applied Mechanics
and Engineering 253 (2013), pp. 584–598.

[Bei14] L. Beirão da Veiga, A. Buffa, G. Sangalli, and R. Vázquez. “Mathematical analysis
of variational isogeometric methods”. Acta Numerica 23 (2014), pp. 157–287.

[Ber12] S. Bernstein. “Démonstration du théorème de Weierstrass fondée sur le calcul des
probabilités”. Communications of the Kharkov Mathematical Society 13 (1912),
pp. 1–2.

[Ber99] F. Bernardini, J Mittleman, H. Rushmeier, C. Silva, and G. Taubin. “The ball-
pivoting algorithm for surface reconstruction”. IEEE Transactions on Visualization
and Computer Graphics 5.4 (1999), pp. 349–359.

[Bez17] J. Bezanson, A. Edelman, S. Karpinski, and V.B. Shah. “Julia: A fresh approach
to numerical computing”. SIAM Review 59.1 (2017), pp. 65–98.

[BG15] A. Buffa and C. Giannelli. “Adaptive isogeometric methods with hierarchical
splines: Error estimator and convergence”. Mathematical Models and Methods in
Applied Sciences 26.01 (2015), pp. 1–25.

[BH14] G.-P. Bonneau and S. Hahmann. “Flexible G1 interpolation of quad meshes”.
Graphical Models 76.6 (2014), pp. 669–681.

[BHR93] C. de Boor, K. Höllig, and S. Riemenschneider. Box Splines. Springer New York,
1993.

[BM17] M. Bercovier and T. Matskewich. Smooth Bézier Surfaces over Unstructured
Quadrilateral Meshes. Springer, 2017.

[BMV17] A. Blidia, B. Mourrain, and N. Villamizar. “G1-smooth splines on quad meshes
with 4-split macro-patch elements”. Computer Aided Geometric Design 52-53
(2017), pp. 106–125.

160 Bibliography

[BMX20] A. Blidia, B. Mourrain, and G. Xu. “Geometrically smooth spline bases for data
fitting and simulation”. Computer Aided Geometric Design 78 (2020), p. 101814.

[Boe84] W. Boehm. “Calculating with box splines”. Computer Aided Geometric Design 1.2
(1984), pp. 149–162.

[Boo72] C. de Boor. “On calculating with B-splines”. Journal of Approximation Theory 6.1
(1972), pp. 50–62.

[Boo78] C. de Boor. A Practical Guide to Spline. Springer, 1978.

[Bra16] C. Bracco, C. Giannelli, F. Mazzia, and A. Sestini. “Bivariate hierarchical Hermite
spline quasi-interpolation”. BIT Numerical Mathematics 56 (2016), pp. 1165–1188.

[Bra20] C. Bracco, C. Giannelli, M. Kapl, and R. Vázquez. “Isogeometric analysis with C1

hierarchical functions on planar two-patch geometries”. Computers & Mathematics
with Applications 80.11 (2020), pp. 2538–2562.

[Bra23a] C. Bracco, C. Giannelli, M. Kapl, and R. Vázquez. “Adaptive isogeometric methods
with C1 (truncated) hierarchical splines on planar multi-patch domains” (2023).
arXiv: 2204.10000.

[Bra23b] C. Bracco, C. Giannelli, A. Reali, M. Torre, and R. Vázquez. “Adaptive isogeomet-
ric phase-field modeling of the Cahn-Hilliard equation: Suitably graded hierarchical
refinement and coarsening on multi-patch geometries” (2023). arXiv: 2306.07112.

[Bre11] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations.
Springer, 2011.

[Bre13] A. Bressan. “Some properties of LR-splines”. Computer Aided Geometric Design
30.8 (2013), pp. 778–794.

[BS08] S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods.
Vol. 15. Texts in Applied Mathematics. Springer, 2008.

[BS16] A. Buffa and G. Sangalli, eds. IsoGeometric Analysis: A New Paradigm in the
Numerical Approximation of PDEs. Vol. 2161. Lecture Notes in Mathematics.
Springer International Publishing, 2016.

[Buf16] A. Buffa, E.M. Garau, C. Giannelli, and G. Sangalli. “On Quasi-Interpolation Op-
erators in Spline Spaces”. Lecture Notes in Computational Science and Engineering.
Springer International Publishing, 2016, pp. 73–91.

[CAD] CADfix. https://www.iti-global.com/cadfix.

[CC78] E. Catmull and J. Clark. “Recursively generated B-spline surfaces on arbitrary
topological meshes”. Computer-Aided Design 10.6 (1978), pp. 350–355.

[CHB09] J. Cottrell, T. Hughes, and Y. Bazilevs. Isogeometric analysis: toward integration
of CAD and FEA. John Wiley & sons, Ltd., 2009.

[CLR84] E. Cohen, T. Lyche, and R. Riesenfeld. “Discrete box splines and refinement
algorithms”. Computer Aided Geometric Design 1.2 (1984), pp. 131–148.

[CS66] H.B. Curry and I.J. Schoenberg. “On Pólya frequency functions IV: The funda-
mental spline functions and their limits”. Journal d’Analyse Mathématique 17.1
(1966), pp. 71–107.

https://arxiv.org/abs/2204.10000
https://arxiv.org/abs/2306.07112
https://www.iti-global.com/cadfix

161

[CST16] A. Collin, G. Sangalli, and T. Takacs. “Analysis-suitableG1 multi-patch parametriza-
tions for C1 isogeometric spaces”. Computer Aided Geometric Design 47 (2016),
pp. 93–113.

[CT65] R.W. Clough and J.L. Tocher. “Finite element stiffness matrices for analysis of
plates in bending”. Proceedings of the Conference on Matrix Methods in Structural
Mechanics. Wright-Patterson Air Force Base, 1965, pp. 515–545.

[DLG90] N. Dyn, D. Levine, and J.A. Gregory. “A Butterfly Subdivision Scheme for Surface
Interpolation with Tension Control”. ACM Trans. Graph. 9.2 (1990), pp. 160–169.

[DLP13] T. Dokken, T. Lyche, and K.F. Pettersen. “Polynomial splines over locally refined
box-partitions”. Computer Aided Geometric Design 30.3 (2013), pp. 331–356.

[DQ15] L. Dedè and A. Quarteroni. “Isogeometric Analysis for second order Partial
Differential Equations on surfaces”. Computer Methods in Applied Mechanics and
Engineering 284 (2015), pp. 807–834.

[DRS13] C. Dagnino, S. Remogna, and P. Sablonnière. “Error bounds on the approximation
of functions and partial derivatives by quadratic spline quasi-interpolants on
non-uniform criss-cross triangulations of a rectangular domain”. BIT Numerical
Mathematics 53 (2013), pp. 87–109.

[DS78] D. Doo and M. Sabin. “Behaviour of recursive division surfaces near extraordinary
points”. Computer-Aided Design 10.6 (1978), pp. 356–360.

[Eva18] J.A. Evans, M.A. Scott, K.M Shepherd, D.C. Thomas, and R. Vázquez. “Hierar-
chical B-spline complexes of discrete differential forms”. IMA Journal of Numerical
Analysis 40.1 (2018), pp. 422–473.

[Fal18] A. Falini, C. Giannelli, T. Kanduč, M.L. Sampoli, and A. Sestini. “An adaptive
IgA-BEM with hierarchical B-splines based on quasi-interpolation quadrature
schemes”. International Journal for Numerical Methods in Engineering 117.10
(2018), pp. 1038–1058.

[Far23] A. Farahat, B. Jüttler, M. Kapl, and T. Takacs. “Isogeometric analysis with
C1-smooth functions over multi-patch surfaces”. Computer Methods in Applied
Mechanics and Engineering 403 (2023), p. 115706.

[Far79] G. Farin. “Subsplines über Dreiecken”. PhD thesis. Braunschweig, FRG, 1979.

[Far82] G. Farin. “Visually C2 cubic splines”. Computer-Aided Design 14.3 (1982), pp. 137–
139.

[Far86] G. Farin. “Triangular Bernstein-Bézier patches”. Computer Aided Geometric Design
3.2 (1986), pp. 83–127.

[Fre71] P.O. Frederickson. “Triangular spline interpolation. Generalized triangular splines”.
Math. Reports 6/70 and 7/71. Lakehead University (1970/71).

[GH73] W.N. Gordon and C.A. Hall. “Construction of curvilinear coordinate systems and
application to mesh generation”. International J. Num. Methods in Eng. 7 (1973),
pp. 461–477.

[GJM20] A. Giust, B. Jüttler, and A. Mantzaflaris. “Local (T)HB-spline projectors via
restricted hierarchical spline fitting”. Computer Aided Geometric Design 80 (2020),
p. 101865.

162 Bibliography

[GJS12] C. Giannelli, B. Jüttler, and H. Speleers. “THB-splines: The truncated basis for
hierarchical splines”. Computer Aided Geometric Design 29.7 (2012), pp. 485–498.

[Gro24] J. Grošelj, M. Kapl, M. Knez, T. Takacs, and V. Vitrih. “C1-smooth isogeometric
spline functions of general degree over planar mixed meshes: The case of two
quadratic mesh elements”. Applied Mathematics and Computation 460 (2024),
p. 128278.

[GS18] J. Grošelj and H. Speleers. “Three recipes for quasi-interpolation with cubic
Powell–Sabin splines”. Computer Aided Geometric Design 67 (2018), pp. 47–70.

[Hah89] J.M. Hahn. “Geometric continuous patch complexes”. Computer Aided Geometric
Design 6.1 (1989), pp. 55–67.

[HBC08] S. Hahmann, G.-P. Bonneau, and B. Caramiaux. “Bicubic G1 Interpolation of
Irregular Quad Meshes Using a 4-Split”. Advances in Geometric Modeling and
Processing. Ed. by Falai Chen and Bert Jüttler. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2008, pp. 17–32.

[HCB05] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. “Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement”. Computer Methods in
Applied Mechanics and Engineering 194.39 (2005), pp. 4135–4195.

[Hel17] L. Heltai, J. Kiendl, A. DeSimone, and A. Reali. “A natural framework for
isogeometric fluid–structure interaction based on BEM–shell coupling”. Computer
Methods in Applied Mechanics and Engineering 316 (2017), pp. 522–546.

[Hos88] J. Hoschek. “Intrinsic parametrization for approximation”. Computer Aided Geo-
metric Design 5.1 (1988), pp. 27–31.

[Hug21] T.J.R. Hughes, G. Sangalli, T. Takacs, and D. Toshniwal. “Smooth multi-patch
discretizations in Isogeometric Analysis”. Geometric Partial Differential Equations
- Part II. Elsevier, 2021, pp. 467–543.

[JQ14] N. Jaxon and X. Qian. “Isogeometric analysis on triangulations”. Computer-Aided
Design 46 (2014), pp. 45–57.

[Jüt14] B. Jüttler, U. Langer, A. Mantzaflaris, S. Moore, and W. Zulehner. “Geometry
+ Simulation Modules: Implementing Isogeometric Analysis”. Proc. Appl. Math.
Mech. 14.1 (2014), pp. 961–962.

[Kap15] M. Kapl, V. Vitrih, B. Jüttler, and K. Birner. “Isogeometric analysis with geomet-
rically continuous functions on two-patch geometries”. Computers & Mathematics
with Applications 70.7 (2015), pp. 1518–1538.

[Kha22] B. Khazaei, L.K. Read, M. Casali, K.M. Sampson, and D.N. Yates. “GLOBathy,
the global lakes bathymetry dataset”. Scientific Data 9.1 (2022).

[Kos18] K.V. Kostas, M.M. Fyrillas, C.G. Politis, A.I. Ginnis, and P.D. Kaklis. “Shape
optimization of conductive-media interfaces using an IGA-BEM solver”. Computer
Methods in Applied Mechanics and Engineering 340 (2018), pp. 600–614.

[KP17a] K. Karčiauskas and J. Peters. “A New Class of Guided C2 Subdivision Surfaces
Combining Good Shape with Nested Refinement”. Computer Graphics Forum 37.6
(2017), pp. 84–95.

163

[KP17b] K. Karčiauskas and J. Peters. “Guided subdivision surfaces: modeling, shape and
refinability” (2017).

[KP23] K. Karčiauskas and J. Peters. “Evolving Guide Subdivision”. Computer Graphics
Forum 42.2 (2023), pp. 321–332.

[Kra97] R. Kraft. Adaptive and Linearly Independent Multilevel B-splines. Bericht. SFB
404, Geschäftsstelle, 1997.

[KS99] B.I. Ksasov and P. Sattayatham. “GB-splines of arbitrary order”. Journal of
Computational and Applied Mathematics (1999).

[KST18] M. Kapl, G. Sangalli, and T. Takacs. “Construction of analysis-suitable G1 planar
multi-patch parameterizations”. Computer-Aided Design 97 (2018), pp. 41–55.

[KTC22] K.J. Koh, D. Toshniwal, and F. Cirak. “An optimally convergent smooth blended
B-spline construction for semi-structured quadrilateral and hexahedral meshes”.
Computer Methods in Applied Mechanics and Engineering 399 (2022), p. 115438.

[Lan15] U. Langer, A. Mantzaflaris, S. Moore, and I. Toulopoulos. “Multipatch discon-
tinuous Galerkin isogeometric analysis”. Isogeometric Analysis and Applications.
Lecture Notes in Computational Science and Engineering. Springer, 2015, pp. 1–32.

[Li11] G. Li, C. Ren, J. Zhang, and W. Ma. “Approximation of Loop Subdivision Surfaces
for Fast Rendering”. IEEE Transactions on Visualization and Computer Graphics
17.4 (2011), pp. 500–514.

[LMS08] T. Lyche, C. Manni, and P. Sablonnière. “Quasi-interpolation projectors for box
splines”. Journal of Computational and Applied Mathematics 221 (2008), pp. 416–
429.

[LMS22] T. Lyche, C. Manni, and H. Speleers. “Construction of C2 Cubic Splines on
Arbitrary Triangulations”. Foundations of Computational Mathematics 22.5 (2022),
pp. 1309–1350.

[LMS24] T. Lyche, C. Manni, and H. Speleers. “A local simplex spline basis for C3 quartic
splines on arbitrary triangulations”. Appl. Math. Comput. 462 (2024), p. 128330.

[Loo87] C.T. Loop. “Smooth Subdivision Surfaces Based on Triangles” (1987).

[LS07] M.-J. Lai and L.L. Schumaker. Spline Functions on Triangulations. Cambridge
University Press, 2007.

[LS08] C. Loop and S. Schaefer. “Approximating Catmull-Clark subdivision surfaces with
bicubic patches”. ACM Transactions on Graphics 27 (2008), 8:1–8:11.

[Man20] A. Mantzaflaris. “An Overview of Geometry Plus Simulation Modules”. Mathemat-
ical Aspects of Computer and Information Sciences. Cham: Springer International
Publishing, 2020, pp. 453–456.

[Man23] A. Mantzaflaris, B. Mourrain, N. Villamizar, and B. Yuan. “An algebraic framework
for geometrically continuous splines” (2023). arXiv: 2305.09096.

[Mar23] M. Marsala, A. Mantzaflaris, B. Mourrain, M. Gammon, and S. Whyman. “From
CAD to Representations Suitable for Isogeometric Analysis: a Complete Pipeline”
(2023). hal: 04185850.

https://arxiv.org/abs/2305.09096
04185850

164 Bibliography

[Mar70] M.J. Marsden. “An identity for spline functions with applications to variation-
diminishing spline approximation”. Journal of Approximation Theory 3.1 (1970),
pp. 7–49.

[MAT20] MATLAB. version 9.9.0. (R2020b). Natick, Massachusetts: The MathWorks Inc.,
2020.

[Maz04] M.-L. Mazure. “Chebyshev Spaces and Bernstein Bases”. Constructive Approxima-
tion 22.3 (2004), pp. 347–363.

[McN10] R. McNeel et al. “Rhinoceros 3D”. Robert McNeel & Associates, Seattle, WA
(2010).

[MMM22] M. Marsala, A. Mantzaflaris, and B. Mourrain. “G1–Smooth biquintic approxima-
tion of Catmull-Clark subdivision surfaces”. Computer Aided Geometric Design
99 (2022), p. 102158.

[MMM23] M. Marsala, A. Mantzaflaris, and B. Mourrain. “Analysis-suitable G1 bases on
quadrilateral meshes”. In preparation (2023).

[MMM24] M. Marsala, A. Mantzaflaris, and B. Mourrain. “G1 spline functions for point
cloud fitting”. Applied Mathematics and Computation 460 (2024), p. 128279.

[MMS23] M. Marsala, C. Manni, and H. Speleers. “Maximally smooth cubic spline quasi-
interpolants on arbitrary triangulations”. Submitted for publication (2023).

[MPS11] C. Manni, F. Pelosi, and M.L. Sampoli. “Generalized B-splines as a tool in
isogeometric analysis”. Computer Methods in Applied Mechanics and Engineering
200.5-8 (2011), pp. 867–881.

[MS07] C. Manni and P. Sablonnière. “Quadratic spline quasi-interpolants on Powell–Sabin
partitions”. Advances in Computational Mathematics 26 (2007), pp. 283–304.

[MVV16] B. Mourrain, R. Vidunas, and N. Villamizar. “Dimension and bases for geomet-
rically continuous splines on surfaces of arbitrary topology”. Computer Aided
Geometric Design 45 (2016), pp. 108–133.

[NP16] T. Nguyen and J. Peters. “Refinable C1 spline elements for irregular quad layout”.
Computer Aided Geometric Design 43 (2016), pp. 123–130.

[PBP02] H. Prautzsch, W. Boehm, and M. Paluszny. Bézier and B-Spline Techniques.
Springer, 2002.

[Pet] J. Peters. SurfLab Shape Gallery Page.

[Pet00] J. Peters. “Patching Catmull-Clark meshes”. Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques - SIGGRAPH ’00 (2000).

[Pot93] H. Pottmann. “The geometry of Tchebycheffian splines”. Computer Aided Geomet-
ric Design 10.3-4 (1993), pp. 181–210.

[PR08] J. Peters and U. Reif. Subdivision surfaces. Springer, 2008.

[PS77] M.J.D. Powell and M.A. Sabin. “Piecewise Quadratic Approximations on Triangles”.
ACM Transactions on Mathematical Software 3.4 (1977), pp. 316–325.

[PT95] L. Piegl and W. Tiller. The NURBS Book. Springer, 1995.

[Qua16] A. Quarteroni. Modellistica Numerica per Problemi Differenziali. Vol. 97. UNI-
TEXT. Springer Milan, 2016.

165

[Rei97] U. Reif. “TURBS—Topologically Unrestricted Rational B-Splines”. Constructive
Approximation 14.1 (1997), pp. 57–77.

[RMS23] K. Raval, C. Manni, and H. Speleers. “Tchebycheffian B-splines in isogeometric
Galerkin methods”. Computer Methods in Applied Mechanics and Engineering 403
(2023), p. 115648.

[Sab85] P. Sablonnière. “Composite finite elements of class Ck”. Journal of Computational
and Applied Mathematics 12–13 (1985), pp. 541–550.

[Sch46] I. J. Schoenberg. “Contribution to the problem of approximation of equidistant
data by analytic functions. Part A. On the problem of smoothing or graduation.
A first class of analytic approximation formulae”. Quart. Appl. Math. 4 (1946),
pp. 45–99.

[Sed03] T.W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. “T-splines and T-NURCCs”.
ACM Transactions on Graphics 22.3 (2003), pp. 477–484.

[She14] J. Shen, J. Kosinka, M.A. Sabin, and N.A. Dodgson. “Conversion of trimmed
NURBS surfaces to Catmull-Clark subdivision surfaces”. Computer Aided Geo-
metric Design 31.7-8 (2014), pp. 486–498.

[SM16] H. Speleers and C. Manni. “Effortless quasi-interpolation in hierarchical spaces”.
Numerische Mathematik 132 (2016), pp. 155–184.

[Sor05] O. Sorkine. “Laplacian Mesh Processing”. Eurographics 2005 - State of the Art
Reports. The Eurographics Association, 2005.

[Spe13a] H. Speleers. “Construction of normalized B-splines for a family of smooth spline
spaces over Powell–Sabin triangulations”. Constructive Approximation 37 (2013),
pp. 41–72.

[Spe13b] H. Speleers. “Multivariate normalized Powell–Sabin B-splines and quasi-interpolants”.
Computer Aided Geometric Design 30 (2013), pp. 2–19.

[SS06] L. L. Schumaker and T. Sorokina. “Smooth macro-elements on Powell–Sabin-12
splits”. Mathematics of Computation 75 (2006), pp. 711–726.

[Sta01] J. Stam. “Evaluation of Loop Subdivision Surfaces”. SIGGRAPH 99 Course Notes
(2001).

[Sta98] J. Stam. “Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary
Parameter Values”. Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’98. 1998, pp. 395–404.

[Tak23] Thomas Takacs. “Approximation properties over self-similar meshes of curved
finite elements and applications to subdivision based isogeometric analysis” (2023).
arXiv: 2307.10403.

[TMH21] D. Toshniwal, B. Mourrain, and T.J.R. Hughes. “Polynomial spline spaces of
non-uniform bi-degree on T-meshes: combinatorial bounds on the dimension”.
Advances in Computational Mathematics 47.1 (2021).

[TSH17] D. Toshniwal, H. Speleers, and T.J.R. Hughes. “Smooth cubic spline spaces on
unstructured quadrilateral meshes with particular emphasis on extraordinary
points: Geometric design and isogeometric analysis considerations”. Computer
Methods in Applied Mechanics and Engineering 327 (2017), pp. 411–458.

https://arxiv.org/abs/2307.10403

166 Bibliography

[TT23] T. Takacs and D. Toshniwal. “Almost-C1 splines: Biquadratic splines on un-
structured quadrilateral meshes and their application to fourth order problems”.
Computer Methods in Applied Mechanics and Engineering 403 (2023), p. 115640.

[Ver23] H.M. Verhelst, P. Weinmüller, A. Mantzaflaris, T. Takacs, and D. Toshniwal. A
comparison of smooth basis constructions for isogeometric analysis. 2023. arXiv:
2309.04405.

[VZ01] L. Velho and D. Zorin. “4–8 Subdivision”. Computer Aided Geometric Design 18.5
(2001), pp. 397–427.

[Wan01] R.-H. Wang. Multivariate Spline Functions and Their Applications. Kluwer Aca-
demic Publishers, 2001.

[Wan18] C. Wang, S. Xia, X. Wang, and X. Qian. “Isogeometric shape optimization on
triangulations”. Computer Methods in Applied Mechanics and Engineering 331
(2018), pp. 585–622.

[WS90] R.-H. Wang and X.-Q. Shi. “Sµ
µ+1 surface interpolations over triangulations”.

Approximation, Optimization and Computing: Theory and Applications. Ed. by
A. G. Law and C. L. Wang. Elsevier Science Publishers B.V., 1990, pp. 205–208.

[Zor00] D. Zorin. “A method for analysis of C1-continuity of subdivision surfaces”. SIAM
Journal on Numerical Analysis 37.5 (2000), pp. 1677–1708.

[ZQ19] M. Zareh and X. Qian. “Kirchhoff–Love shell formulation based on triangular
isogeometric analysis”. Computer Methods in Applied Mechanics and Engineering
347 (2019), pp. 853–873.

,

https://arxiv.org/abs/2309.04405

	Introduction
	Brief history of splines
	Context of the thesis
	Overview
	Publications
	Implementations

	Preliminaries
	B-spline functions
	Definitions and properties
	B-spline curves
	Tensor-product B-spline surfaces
	Smooth joints between B-spline patches

	NURBS
	Fundamental algorithms
	Knot insertion
	Degree elevation

	Beyond tensor-product
	Splines on triangulations
	Barycentric coordinates
	Triangular Bernstein polynomials
	Bézier surfaces

	A brief summary of simplex splines

	Splines on meshes
	Splines on triangular planar meshes
	G1-smooth splines over topological quad meshes

	Subdivision surfaces
	Definitions and properties
	An overview on classical subdivision surfaces
	Catmull-Clark scheme
	Doo-Sabin scheme
	Loop scheme
	The Butterfly scheme

	Isogeometric analysis
	PDEs: strong and weak formulation
	Strong and weak formulation of some classical PDEs

	Galerkin's method and isogeometric spaces
	PDEs on manifolds

	A G1 approximation of Catmull-Clark surfaces
	Bicubic Approximate Catmull-Clark (ACC3) and degree elevated (ACC5)
	G1 constraints on Bézier patches
	Explicit Bézier masks derivation
	Bézier masks of order one
	Bézier masks of second order
	Deriving M1,1 by assigning M2,0: circulant system approach
	Deriving M2,0 by assigning M1,1: direct approach based on ACC5

	Third and fourth order Bézier masks
	Treatment of boundaries

	Analysis of the solutions and numerical results
	Comparing the different schemes
	Complex meshes
	Comparison with ACC3 surface and Catmull-Clark limit surface

	Geometrically smooth functions for point cloud fitting
	G1 spline space on a mesh M
	Basis extraction
	The set BV of vertex basis functions
	Construction of basis functions associated to an inner EV
	Basis functions at an inner regular vertex
	Basis functions linked to extraordinary and regular boundary vertices and corners

	The set BE of edge basis functions
	Construction of basis functions connected to an extraordinary edge
	Basis functions belonging to an inner regular edge
	Boundary edge basis functions

	The set BF of face basis functions

	Analysis of the basis and space dimension
	Numerical experiments
	Point cloud by analytic function evaluation
	Point cloud from ACC3 surfaces
	Quadrilateral mesh generation, parametrization and fitting
	Comparison with C0 fitting

	Analysis-suitable G1 bases for isogeometric analysis
	General formulation of G1 conditions
	Construction of the basis
	Vertex basis functions: the set BVt
	Construction of basis functions corresponding to an inner EV
	Bases linked to boundary EVs
	Basis functions at regular vertices and corners

	Edge basis functions: the set BEt
	Extraordinary edge basis functions

	Face basis functions: the set BFt

	Analysis of the basis and space dimension
	Numerical experiments
	L2 projection
	Poisson's equation
	Biharmonic equation

	A pipeline from CAD models to spline representation
	Control cage generation from MCAD geometry
	Control cage adjustment
	Point cloud sampling
	From CAD to G1

	Free natural vibrations of a shallow lake
	Problem statement
	The test case
	The general case

	Simulations on real lake data
	Rogagua lake
	Orta lake

	Cubic C2 spline quasi-interpolants on arbitrary triangulations
	The spline space S32(WS3)
	Hermite interpolation in S23(WS3)
	The spline space S32(TWS3)
	Construction of quasi-interpolants
	Consistent local Hermite data
	Quasi-interpolant from exact Hermite data
	Construction with Hermite data from averaged polynomials
	Construction with Hermite data from local weighted least-squares polynomials
	Error estimates

	Numerical experiments
	Polynomial of degree four
	Franke's function
	Sigmoid function
	Function with three peaks
	Function on a pentagon domain

	Conclusion and perspectives
	Bibliography

