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AAbstract  

Intensity-modulated radiation therapy (IMRT) techniques with highly conformal dose distributions and 
steep dose gradients are the standard for radiotherapy (RT) of head-and-neck (HN) tumors. To be safely 
delivered, accurate patient positioning and accurate delineation of targets and organs-at-risk (OARs) is 
necessary. Manual contouring is performed on computed tomography (CT) images, and typically takes 2-
3 hours for a skilled physician. Similarly, manual treatment planning is complex and the plan quality is 
highly dependent on the planner’s experience. Furthermore, image-guided RT allows monitoring of the 
daily tumor and normal tissue changes, during the treatment course. To facilitate adaptive RT (ART), 
artificial intelligence (AI) solutions have been explored.  

The goal of this PhD was to investigate different solutions for improving the treatment workflow of HN 
cancer patients and the facilitate implementation ART. We considered automatic segmentation (AS) of CT 
images, automated treatment planning (auto-planning), and synthetic-CT image (sCT) generation from 
cone-beam CT (CBCT) images. First, an a priori multicriteria optimization (MCO) algorithm for auto-
planning based on the elaboration of a “wish-list” was evaluated and compared with manual planning. It 
was concluded that high-quality volumetric art therapy (VMAT) plans could be generated with a robust 
wish-list of dose objectives and constraints. Moreover, OARs sparing was superior compared with manual 
planning.  

The second objective was to evaluate and compare six different methods for AS of OARs on CT images. 
Their performance was assessed with regard to resource demand, contour geometrical accuracy, 
computational time, and time needed to perform manual corrections. Additionally, auto-planning was 
used to evaluate the dosimetric impact of using the AS contours with and without manual correction. Four 
atlas-based and two deep learning (DL) solutions were investigated and compared for 14 OARs. One DL 
solution was trained with mono-centric data and the other one was a commercial solution trained with 
multi-centric data. Overall the results showed that the DL solutions had the best performances over the 
majority of the OARs. However, the contours generated by the mono-centric DL solution were the fastest 
to correct. Moreover, the dosimetric study demonstrated no significant impact on the radiation doses. 
Furthermore, the same six solutions were evaluated and compared for the AS of three lymph node (CTVn) 
levels on HN CT images. The same performance evaluation metrics were used. Results showed the 
superiority of the DL solutions and the preference of the experts for the contours obtained with the multi-
centric DL solution, which were also the fastest to correct. Regarding the dosimetric consequences, a 
significant underdosage of the nodal targets was observed regardless of the AS method used. 

The last objective was to investigate different methods for sCT generation based on CBCT images. One 
DL solution was investigated and compared against:  adapted CBCT Hounsfield Units and electron densities 
(HU-ED) calibration curve, density assignment method (DAM) and deformable image registration (DIR). 
Image accuracy was evaluated by calculating the differences in HU numbers between the CT and the sCT.  
The accuracy of dose calculation was evaluated by comparing plans calculated on the CT with the plans 
calculated on the sCT. Results showed that DIR method was the most precise, followed by DL, DAM and 
the adapted HU-ED method.  

In conclusion, for the delineation task, DL solutions were the most attractive. The wish-list based auto-
planning algorithm produced high-quality plans, but the computational time was large. Lastly, DIR and DL 
solutions can offer fast sCT generation from CBCT images, that enable to perform dose calculations on the 
anatomy of the day. The human intervention is not yet to be overlooked, however the aspects investigated 
are key points for ART of HN patients. 
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RResumé 

Les techniques de radiothérapie à modulation d'intensité avec des distributions de dose hautement 
conformes sont la norme pour la radiothérapie (RT) des tumeurs HN. Pour être délivré en toute sécurité, 
le positionnement précis du patient et le contourage correct des volumes cibles et des organes-à-risque 
(OAR) sont nécessaires. Le contourage manuel est réalisé à partir d'images tomodensitométrie (CT) et 
prend généralement 2-3 heures pour un médecin qualifié. De plus, la planification manuelle du traitement 
est complexe et la qualité du plan dépend de l'expérience du planificateur.  

La radiothérapie guidée par l'image permet de surveiller les évolutions de la tumeur et des tissus 
normaux pendant le traitement. Pour faciliter la RT adaptative (ART), des solutions d'intelligence artificielle 
(IA) ont été explorées.  

L'objectif de la thèse était d'étudier différentes solutions pour améliorer le flux de travail de traitement 
des patients HN et permettre l'ART. Nous avons considéré la segmentation automatique (AS) des images 
CT, la planification automatique (auto-planning), et la génération d'images CT synthétiques (sCT) à partir 
d'images de tomodensitométrie conique (CBCT) du jour.  

Au premier, un algorithme d'optimisation multicritères (MCO) a priori pour l’auto-planning basée sur 
l'élaboration d'une “wish-list” a été évalué et comparé à la planification manuelle. Il a été conclu que des 
plans d'arcthérapie volumétrique (VMAT) de haute qualité peuvent être générés avec une “wish-list” 
robuste d'objectifs et de contraintes de dose. De plus, l'épargne des OAR était supérieure à celle des plans 
optimisés manuellement.  

Le deuxième objectif était d'évaluer et de comparer les performances de six méthodes différentes pour 
l'AS des OAR et niveaux ganglionnaires (CTVn) sur les images CT. De plus, l’auto-planning a été utilisée 
pour évaluer l'impact dosimétrique de l'utilisation des contours d'AS. Quatre méthodes basées sur une 
bibliothèque d'atlas (ABAS) et deux solutions d’apprentissage profond (DL) ont été étudiées et comparées 
pour 14 OAR et 3 niveaux CTVn. L'une des solutions DL a été entraînée avec les données monocentriques 
et l'autre était une solution commerciale entraînée avec des données multicentriques. Les résultats ont 
montré que les solutions DL avaient les meilleures performances sur la majorité des structures 
considérées. La solution DL monocentrique a été plus performante pour les OAR, par contre la DL 
multicentrique était meilleure pour les CTVn. De surcroît, l'étude dosimétrique a démontré un impact 
négatif seulement pour les plans génère avec des AS CTVn.  

Le dernier objectif était d'étudier différentes méthodes pour la génération des images sCT à partir 
d'images CBCT. Une solution DL a été étudiée et comparée à d'autres méthodes: correspondance entre 
nombres Hounsfield de CBCT et densités électronique (HU-ED), affectation de densités (DAM) et recalage 
élastique entre l’image CT et CBCT (DIR). En rapport avec l'image CT, la précision des nombres HU a été 
analysée sur la base de l'erreur moyenne (ME) et de l'erreur absolue moyenne (MAE). La précision du 
calcul de la dose a été évaluée en comparant les distributions de dose calculées sur le CT aux doses 
calculées sur les sCT. Les résultats ont montré que la méthode DIR était la plus précise, suivie de DL, DAM 
et HU-ED.  

En conclusion, pour la tâche de contourage, les solutions DL étaient les plus intéressantes. L'algorithme 
d’auto-planning basé sur la “wish-list” produit des plans de haute qualité, mais le temps de calcul est trop 
important pour être intégré dans l’ART. Enfin, les solutions DIR et DL peuvent offrir une génération rapide 
d'images sCT à partir d'images CBCT, ce qui permet d'effectuer des calculs de dose sur l'anatomie du jour. 
L'intervention humaine n'est pas encore à négliger, mais les aspects étudiés dans cette thèse sont des 
points clés pour l'ART des patients HN. 
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HU-ED conversion between HU and ED  
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ML machine learning 
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MRI magnetic resonance imaging 
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OAR organs-at-risk 

pCT planning CT 

PRV planning organ-at-risk volume 

PTV planning target volume 

QA quality assurance  

RT radiation therapy 

sCT synthetic-CT  

STAPLE simultaneous truth and performance estimation  

TNM tumor-node-metastasis 

TPS treatment planning system 

VMAT Volumetric Modulated Arc Therapy 
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IIntroduction  

Cancer is one of the biggest causes of death worldwide and can develop in several regions in the head-
and-neck (HN): larynx, oropharynx, nasopharynx, hypopharynx, thyroid, salivary glands, oral cavity and 
lips. In 2020, among the 1 518 133 patients diagnosed with HN cancer, 34% did not survived [1]. External 
radiation therapy (RT) is one of the most efficient treatments for this type of cancerous tumors. Its 
principle is to deliver high-energy ionizing radiation (MV) with a linear accelerator (LINAC), in order to 
induce DNA damage in the cancer cells and block their ability to multiply. Intensity-modulated radiation 
therapy (IMRT) techniques with highly conformal dose distributions and steep dose gradients are the 
standard of care for RT of HN tumors by ensuring maximum target coverage and organs-at-risk (OARs) 
sparing. Commonly, a cumulative radiotherapy dose of 70Gy is delivered with curative intent over several 
weeks in daily fractions of 1.8 – 2.0Gy. Acquisition of the planning computed tomography (pCT) scan is a 
prerequisite in order to define the patient’s reference positioning, have access to the patient’s anatomy 
and to the electronic densities (ED) of the tissues. On the pCT image, the radiotherapist defines the 
planning target volume (PTV) and the OARs, so that dose calculations can be performed. Both contouring 
and planning require high accuracy. Nonetheless they are tedious and prone to intra and inter-observer 
variations (IOV). Moreover, anatomical changes (e.g. weight loss, tumor shrinkage, displacement of OARs) 
may occur during the RT treatment, that can cause differences between the planned and actual delivered 
doses. 

Adaptive RT (ART) strategies have been developed to correct for intra-fractional anatomical variations. 
Ideally, 3 dimensional (3D) in-room imaging devices primarily used for patient positioning can be used to 
assess daily anatomical deformations and to perform dose calculation on the anatomy of the day. Low 
energy cone-beam CT (CBCT) systems integrated on the LINAC machine are widely spread and used for 
patient set-up verifications. However, their image quality is not suitable for dose calculations due to 
several limitations (e.g. image artifacts, inconsistency of the Hounsfield Unit (HU) numbers, and restricted 
field of view (FOV)). With the advent of artificial intelligence (AI) solutions, several applications have been 
proposed to facilitate the implementation of ART. Among them, automatic image segmentation (AS), 
automated treatment planning (auto-planning) and synthetic-CT (sCT) image generation from CBCT 
images are being discussed in this thesis manuscript.  

The goal of this thesis was to investigate several automated solutions for different steps in the RT 
workflow of HN cancer patients. First, an auto-planning solution was evaluated. Then the performance of 
several AS solutions was compared for HN OARs and HN lymph node levels. Finally, several methods were 
investigated that enable dose calculations on daily CBCT images. The manuscript represents the work done 
in the last three years and is organized in six chapters.  

The first chapter presents the context of the study. In the first part is described the standard process 
of a RT treatment, the modalities used in image-guided RT (IGRT), and the concept of ART with focus on 
HN cancer treatment. Furthermore, the emergence of AI solutions in RT is introduced with a focus on 
state-of-the-art AS methods, auto-planning solutions, and sCT generation methods. In the last part of the 
chapter are summarized the objectives of the thesis. 

The second chapter describes the evaluation of the performance of an auto-planning solution against 
manually optimized treatment plans. This work represents a first contribution, as second author, to the 
article that has been published in the European Journal of Medical Physics in 2021 [2]. 

The third chapter presents the work of the second contribution, the evaluation of the performances of 
six AS methods for OARs segmentation on HN CT images. This work was published in the Radiotherapy and 
Oncology Journal [3]. The performance evaluation was based on resource demand, geometrical accuracy, 
computational time and the time needed for manual corrections. Additionally, the dosimetric impact on 
RT dose distributions was calculated using the auto-planning solution previously validated.  
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Similarly, in the fourth chapter, the performances of the same six AS methods were evaluated on HN 
lymph nodes levels (CTVn), which are typically irradiated as elective target volumes. The results of the 
study are presented as form of an article that will shortly be submitted also to the Radiotherapy and 
Oncology Journal.  

In the fifth chapter are presented results from the evaluation of four methods for sCT generation based 
on daily CBCT images. One DL-based solution was investigated and compared to other methods proposed 
in the literature. With respect to the reference pCT, image uncertainty and dose calculation accuracy were 
measured.  

Finally, chapter six summarizes the thesis conclusions and future perspectives.  
The work done during these three years of thesis was financed by Elekta LTD, and has been conducted 

at the RT department of the Léon Bérard Cancer Center, in the TOMORADIO team of the CREATIS 
laboratories. 
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CChapterr 1.. Clinicall context.. Head-and-neckk cancerr  

Cancer is a disease characterized by an unwanted and uncontrolled growth of cells that have developed 
from normal body cells and which have structural and functional mutations. The danger of malignant 
growth is the ability to invade and infiltrate in the surrounding tissues, blood vessels, lymph vessels and 
other body cavities. Worldwide, over 18 million patients are diagnosed with cancer each year and only 
45% survive [1,4]. After cardiovascular diseases, cancer represents the main cause of mortality. Cancer 
incidence and mortality can be visualized in Figure 1.1-1 as results of global cancer statistics from 2020 [1].

Figure 1.1-1 Cancer global statistics 2020 [1]; HN = head-and-neck; CNS= central nervous system

The most frequent reported cases are the breast and lung cancers, both representing approximately 
12% from the total number of new cancers. Lung patients however have higher mortality (81% compared 
with 30% for breast cancer). Colorectum cancers are following with 10% incidence and 48% mortality.
Head-and-neck (HN) tumors are the next, that in 2020 contributed with 8.2% and 5% to the global cancer 
incidence and mortality, respectively. More precisely, among the 1 518 133 patients diagnosed with HN 
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cancers, 34% did not survive. Malignant tumors in HN are called sarcomas because they originate from 
connective tissue such as skin, fat, muscle, cartilage, nerves and bones. The main categories of HN 
sarcomas are developed in the larynx, oropharynx, nasopharynx, hypopharynx, thyroid, salivary glands, 
oral cavity and lips. In Figure 1.1-2 is illustrated the HN anatomy with the primarily tumor regions and their 
associated percentage of incidence.  

 
Figure 1.1-2 Primarily tumors regions in head-and-neck (Figure credit: © Terese Winslow) 

Among the different localizations, thyroid cancer is the most common, representing 39% from the 
incidence of HN cancers, followed by oral cavity cancers that include also the lip cancers (25%) and larynx 
cancer (12%). At the same time, thyroid cancers have the highest survival (93%) while the oral cavity and 
lip cancers have a high mortality (57%), causing the highest proportion of deaths (35%) among the HN 
cancers. Nasopharynx cancers have however, the highest mortality (60%), but due to their low incidence 
(9%), they contribute with only 16% of the total mortality in HN cancers.  

The most significant risk factors for HN cancers are alcohol and tobacco consumption (including passive 
smoking). Moreover, when used together the risk of developing cancer rises [5]. Infection with human 
papillomavirus (HPV) is also an increasing risk factor particularly for oropharyngeal cancer that includes 
the tonsils and the base of the tongue [6,7].  

Symptoms of HN cancer may include: lump in the neck, sore in the mouth or throat that does not heal, 
difficulty and/or pain in swallowing, troubles breathing and speaking as well as changes of the voice.  

In finding the most appropriate treatment for cancer, staging of the tumors is one of the most 
important steps. Typically, it relies on results from several physical exams such as endoscopies, biopsies 
and imaging sets. American Joint Committee on Cancer (AJCC) developed the tumor-node-metastasis 
(TNM) system to evaluate the anatomic extent of the disease: where T refers to the size of the primary 
tumor, N describes involvement of the lymph nodes and M indicates whether the cancer has spread 
(metastasized) in other areas of the body. The 4 stages for HN cancer are presented in Figure 1.1-3, 
whereas classification might vary according to the specific anatomic subsite [8,9]. In general, primary 
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tumors are classified as T1 to T3 by increasing size, whereas T4 usually represents invasion of another 
structure such as bone, muscle, or root of the tongue. Lymph nodes are staged by size, number, and 
localization (ipsilateral or contralateral to the primary tumor location). Distant metastases (M1) are more 
common in patients with advanced lymph node stage.  

From a therapeutic point of view, HN cancers are challenging to treat because many organs in this 
region are associated with physiological functions such as respiration, communication and nutrition. 
Severe consequences such as functional impairments and structural disfigurements can compromise 
considerably the quality of life and social integration of the patient. Therefore, the management of HN 
cancer patients imposes a multidisciplinary treatment approach involving surgery, external or internal 
radiation therapy and systemic treatments. In order to achieve the therapeutic goal, often the prescription 
includes a combination of these treatment options.  

Surgery 

Surgical treatment has the attempt of radical resection of the tumor and sometimes might include 
removal of structures with important functional functions. For instance, after a total laryngectomy 
(removal of the larynx), patients can have a decreased thyroid gland function that will require hormone 
medication. Depending on the type and location of the surgery, other common side effects include a 
temporary or permanent loss of voice, impaired speech, loss of hearing or swallowing difficulties. The 
removal of the lymph nodes can also cause stiffness in the shoulders. Complications causing breathing 
problems from swelling of the mouth and throat area, can be managed by tracheostomy, which creates a 
hole in the trachea to facilitate breathing. At the same time, some people that experience facial 
deformations may require reconstructive surgery. 

Radiation therapy 

Radiation therapy (RT), also called radiotherapy, is a local treatment aiming to kill the cancer cells by 
damaging their DNA through the use of ionizing radiation. It is given to most of the HN cancers patients 
either with curative (tumor annihilation) or palliative (to reduce the symptoms) intent. It is often combined 
with surgery and/or chemotherapy. Most commonly, radiation is delivered from a source outside of the 
patient body and it’s called external beam radiotherapy. When a radioactive source is inserted inside the 
body, the treatment is called internal radiation therapy or brachytherapy. Superficial cancers such as lip 
cancers can benefit from this method of delivering radiation.  

Acute side effects from radiation consist of redness or skin irritation, mucositis and dysphagia while 
long term complications include xerostomia (dry mouth), loss of taste, decreased mobility of the mouth, 
voice hoarseness, swallowing dysfunction, second malignancies, dysphagia and neck fibrosis [10–13]. 
Radiation can also cause dental problems such as tooth decay, loss of hearing or lymphedema if the lymph 
nodes are damaged. Moreover, every patient receiving radiation in HN should regularly check their thyroid 
function and get hormone medication in case of hypothyroidism.  

Systemic treatments 

Systemic treatments involve drug therapies that work throughout the whole body and can be given as 
an injection, infusion or oral medication. This category includes chemotherapy, targeted therapy and 
immunotherapy.  

Chemotherapy aims to stop tumor growth by metabolic inhibition of the DNA synthesis and is typically 
reserved for patients whose cancers have metastasis. Common drugs used to treat HN cancers include: 
methotrexate, cisplatin and other platinum analogues. In general, chemotherapy may induce side effects 
such as nausea, vomiting, diarrhea, hair loss, poor appetite and weight loss.  
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Targeted therapies act on the cancer’s specific genes and proteins responsible for the growth, division 
and spread of the tumoral cells. Most of the treatments target the epidermal growth factor receptor 
protein. Cetuximab is the only FDA approved targeted molecule for the treatment of HN cancers in 
addition to radiotherapy for locoregionally advanced tumors.  

Immunotherapy has recently emerged from the growing understanding of the role of the immune 
system in tumor suppression. The two FDA approved immunotherapy drugs for the treatment of HN 
cancers are nivolumab and pembrolizumab. Common side effects can include skin reactions, sickens, 
diarrhea and weight changes. 

Upon diagnosis and staging, HN cancers can be categorized in three main clinical groups: those with 
localized disease, those with locally or regionally advanced disease (lymph node positive) and those with 
recurrent and/or metastatic disease. Localized diseases, explicitly stage I and stage II lesions without 
detectable lymph node involvement or distant metastases, are usually treated with curative intent either 
by surgery or radiotherapy depending on the anatomical localization. To preserve voice function, 
radiotherapy might be preferred for the laryngeal cancer, and for small lesions in the oral cavity, surgery 
may be chosen in order to avoid long-term complications caused by radiation. For this category, the overall 
survival rate is high and most recurrences occur within the first 2 years and are typically local. Locally or 
regionally advanced diseases which involve large primary tumor with or without lymph node involvement, 
are present in the majority of the HN cancer patients. For these patients, a curative treatment intent will 
require a combined treatment modality. In most cases, and most efficiently, after surgery, radiotherapy is 
given with or without concomitant chemotherapy. Patients with recurrent and/or metastatic disease 
receive (with only few exceptions) a treatment with palliative intent. This can be RT for pain control but 
most often is chemotherapy having a median survival of 8-10 months after administration.  
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Figure 1.1-3 Staging of head-and-neck cancer tumors based on TNM system [11] 
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The principle of external beam RT is inducing damage inside the cancer cells while limiting the effects 
to the normal healthy tissues. Due to an atypical cell cycle, with an accelerated division stage, cancer cells
are more sensitive to radiation and therefore can be lethally affected by radiation, whereas the effect on 
normal cells is sublethal.

The unit of gray (Gy) is used to quantify the amount of energy absorbed per unit mass. To decrease
acute and especially late toxicity to the surrounding normal tissue exposed to radiation, the desired doses 
are divided in smaller fragments over time, process called fractionation. The reasoning behind 
fractionation is based on the relative biologic effectiveness of radiation described by 5 radiobiological 
determinants, the so-called ‘5Rs’ of radiotherapy: repair, repopulation, redistribution, reoxygenation, and 
radiosensitivity [14]. By delivering small doses of radiation, cells are allowed to repair the sublethal 
damage. Unlike normal tissue, malignant cells have often suppressed the cell repair pathways thus they 
cannot efficiently repair after radiation caused damage. Repopulation is the increase in cell division after 
radiation. Redistribution refers to the cells’ cycles, which makes them more resistant or more sensitive to 
radiation damage. Reoxygenation is the phenomena by which hypoxic cells recover after radiation. It is 
not effective in the malignant tumors that are often characterized by acute or chronic hypoxia caused by 
their rapid proliferation that outgrows their surrounding vascularization. This condition allows a higher 
degree of tumors cell annihilation compared to normal tissues that have normal oxygen levels. Lastly, 
radiosensitivity is an intrinsic cell factor leading to variations in response to radiation among tissues, 
organs, or organisms. 

The linear-quadratic model (LQ) is used to describe the cell survival probability as a function of radiation 
dose (S), where /  ratio characterizes the sensitivity of a certain tissue to fractionation [15] (Figure 1.2-1).
Following the LQ model, curative treatments are commonly delivered in doses of 2Gy per fraction over 
several weeks and hypo-fractionated regimen consist in delivering doses higher than 2Gy in one treatment 
session. 

Figure 1.2-1 Illustration of linear quadratic model. High /  cell lines have nearly-constant rates of cell killing with 
increasing dose, while low /  lines show a pronounced curvature, with greater killing per unit dose at higher doses 

[15]
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Several radiation qualities can be used for treatment, namely electrons, photons or charged particles 
such as protons and carbon ions. Each of them is presenting particular penetration capabilities caused by 
their interaction with matter. The linear accelerator (LINAC) is the most widely used equipment for 
radiation delivery in RT. It is able to produce high intensity X-rays, by accelerating electrons towards a 
tungsten target. Most of the electron’s kinetic energy is transformed into heat and a small fraction of it is 
emitted in the form of X-ray photons. If the target is removed, the electron beam can also be used for 
treatment. Protons or carbon ions are also being effectively used for radiation treatments but they 
necessitate stricter conditions and bigger facilities (such as cyclotrons, where the heavy particles can be 
accelerated), which implies higher costs. Their advantage over photons and electrons consists in the peak 
of maximum dose deposition, which can reach deeper depths in the patient with less harm to the traversed 
healthy tissues. 

Once a radiation beam is produced in a LINAC, it can be modeled with the help of several elements
inside of the treatment head that include filters, blocks and collimators. With the introduction of the multi-
leaf collimator (MLC) in the LINAC design, more precise shaping of the radiation field to the outline of the 
tumoral targets was made possible (see Figure 1.2-2). This allowed the introduction of IMRT.

Figure 1.2-2 LINAC treatment head with rectangular blocks and multi leaf collimators

Based on the available equipment, different treatment planning strategies are possible. Among them, 
3-dimensional conformal radiotherapy (3D-CRT) involves stationary radiation beams aimed at the tumor 
from several directions. This approach is called direct treatment planning because the planner chooses the 
fixed parameters (field intensity, angle, collimator angle, jaws, wedges) and the MLC configuration 
(following the shape of the target) for each radiation field. The superposition of multiple radiation fields 
will yield the desired dose to the target. IMRT is a more sophisticated approach that uses inverse 
optimization starting from dose-volume objectives introduced by the planner [16]. Each beam direction is 
divided into multiple segments in order to achieve highly conformal dose distributions (see Figure 1.2-3). 
It can be used in step-and-shoot or sliding-window mode, which defines the way the MCL will move. 
Similarly, intensity modulation can be delivered in a continuous manner, using volumetric modulated arc 
therapy (VMAT) technique [17], where the treatment head moves around the patient while the radiation 
beam is on. Compared to IMRT, VMAT allows faster delivery of the planned treatments [18]. 

IMRT became the standard modality for RT treatments of complex cases such as HN cancers where the 
radiation fluence has to be optimized in function of multiple targets and OARs. Moreover, it was shown 
that IMRT can improve the long-term quality of life, by reducing xerostomia and dysphagia in HN patients 
[19].
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Figure 1.2-3 Illustration of radiation field modulation 

From a dosimetric point of view, VMAT and IMRT plans for HN patients present comparable results and 
the target volume coverage depends mostly on the planner’s expertise and the treatment planning 
algorithm employed. VMAT plans however demonstrated improved sparing of the normal tissues, 
reduction of the monitor units (MU, the measure of output of a LINAC) with subsequent reduction of the 
treatment delivery times [20–22]. The high risk of developing secondary cancer due to high number of MU 
is however a constant challenge for both intensity modulation techniques. Therefore, to be safely 
delivered, high accuracy in volume definition as well as high precision in patient positioning during the 
entire course of the treatment is crucial. 
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RT remains one of the most cost-effective cancer treatment modalities. Commonly, a cumulative dose 
of 70Gy is delivered with curative intent over several weeks in daily fractions of 1.8–2Gy. Altered 
fractionation regimes are also considered within this group of patients [23]. Often the HN cancer 
treatment requires more than one target volume to be irradiated in order to achieve the therapeutic goal.
A typical dose prescription for HN patients at Léon Bérard Cancer Center consists in delivering 70Gy to the 
PTV associated to the primary tumor, and 54.25Gy to the PTV associated to the prophylactic nodal target, 
in 35 fractions of 2Gy. Other treatment strategies may separate the planned target volume into 3 distinct 
dose levels intervals: low dose [54 – 56Gy], intermediate dose [60 – 63Gy] and high dose [66 – 70Gy].
Typically, the external beam RT treatment can be decomposed in four major steps as illustrated in Figure 
1.3-1 and detailed later. 

Figure 1.3-1 The radiotherapy treatment chain decomposed in 4 major steps

1.Treatment preparation

Imaging of the patient lies at the beginning of the treatment chain and is responsible for a correct target 
detection leading to an appropriate dose prescription. Moreover, it defines the reference positioning of 
the patient during the whole treatment. To ensure a reproducible positioning of the patient, different 
immobilization devices, markers or skin tattoos are being used. Nonetheless, patient must be fairly 
comfortable to maintain a stable position during each treatment session. For the HN patients, a
personalized thermoplastic mask with five-clip immobilization is recommended [24]. 

Generally, patient imaging consists of a CT scan either alone, or in combination with other imaging 
modalities for better tissue visualization such as magnetic resonance imaging (MRI), ultrasound or positron 
emission tomography (PET). The CT scan is a prerequisite because it contains the relationship between the 
image intensity information, expressed in Hounsfield Units (HU) and the correspondent electron density 
(ED) information. This relative HU-ED relationship is defined in the commissioning of the CT imaging system
and it is essential for the dose calculation algorithm. 

A contrast agent injection is recommended before the CT-scan acquisition for a good visualization of 
the HN anatomy [25]. Usually a dose of 90ml iodine solution is administered in 2 steps with 45 seconds
pause in between.

2.Volume definition

The radiation oncology physician, dosimetrist or planner are responsible for (often manually)
contouring on the CT images, slice-by-slice, all the necessary volumes including the tumoral targets and 
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the OARs. This step in which the image is divided into anatomical groups is also called image segmentation, 
annotation or labeling. To enable consistency between contouring practices, international delineation 
guidelines and recommendations have been established for both targets and OARs [26–30]. Additionally, 
the International Commission on Radiation Units and Measurements (ICRU), provides instructions and 
various concepts for defining the target volumes and OARs [31–33]. For the target volumes, the volume 
expansion starts from the gross tumor volume (GTV) that is the visible and/or palpable macroscopic part 
of the tumor (Figure 1.3-2). The clinical tumor volume (CTV) incorporates the GTV and an additional margin 
to account for the tissue microscopic infiltration of the tumors. 

  
Figure 1.3-2 Margin concepts proposed by ICRU reports 50 and 62 [31]  

Like for the GTV, several CTVs can be defined including the primary tumor volume (CTVt) and the HN 
lymph nodes (CTVn). Several recommendations can be found for the delineations and the selection of 
these primary tumor areas and lymph nodes areas at risk (Figure 1.3-3) [27–30]. Lastly, with the goal of 
ensuring adequate CTV dose coverage, ICRU defines the concept of PTV, which is obtained by applying 
additional margin that accounts for the patient positional uncertainties linked to internal movements or 
patient set-up [33]. Depending on the tumor localization, the choice of treatment immobilization and the 
imaging system used for repositioning, isotropic margins between 2 and 5mm are recommended [34].  

 
Figure 1.3-3 Various node areas delineated on axial slices of contrast enhanced CT image [25]  
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Similar as for the PTV, margins are applied to the OARs to account for the same patient positioning 
uncertainties and this concept is called planning organ-at-risk volume (PRV). Margins are typically 
recommended for the “serial-like” organs that include the spinal cord, brainstem, optical nerves, chiasma 
or brachial plexus. For the “parallel organs” such as the parotid glands or the constrictor muscle, this 
margin can be zero. For both PTV and PRV, 4mm margin strategy is used in the radiotherapy department 
at Léon Bérard Cancer Center. A visualization of OARs and lymph nodes (CTVn) volumes typically contoured 
on HN CT images is presented in Figure 1.3-4.

Figure 1.3-4 Organs-at-risk and lymph node level volumes typically contoured in head-and-neck cancer patients

3.Treatment planning

Treatment plan or patient dosimetry is performed by a medical physicist or a dosimetrist, on a 
treatment planning system (TPS) console using the patient CT image and the volumes defined in the 
previous step. Optimal treatment plan geometry and radiation field characteristics must be set, to deliver 
the prescribed dose to the PTV and minimal doses to the normal tissues. For the optimization of the HN 
treatment plans, dose-volume objectives and constraints (see Table 1.3-1) are imposed for each OARs and 
targets upon prescription, clinical protocols and recommendations [25,35]. 



21 
 

Table 1.3-1 Risk of late toxicity for different organs-at-risk in HN and their correspondent dose-volume objectives and 
constraints used for treatment plan optimization (adapted from [25]) 

Region of interest Toxicity Dose-volume objectives and 
constraints 

Planning target volumes \ D50% = Dp (Gy) 
(PTV)  D95%  95% Dp (Gy) 
  D98%  90% Dp (Gy) 
  D2%  107% Dp (Gy) 
Brain Symptomatic necrosis D2% < 60 Gy 
Brainstem Necrosis or neuropathy D2% < 50 Gy 
Spinal Cord Myelopathy D2% < 50 Gy 
Optic nerve/Chiasma Optic neuropathy D2% < 55 Gy 
Cochlea Hearing loss Dmean < 45 Gy 
Brachial plexus Clinical neuropathy V70Gy < 10% 
Parotid glands Xerostomia > grade 2 Dmean < 25 Gy 
Submandibular glands Xerostomia grade 4 Dmean < 30 Gy 
Pharyngeal constrictor muscle Dysphagia Dmean < 45 Gy 
Larynx Hoarseness Dmean < 30 Gy 
Mandible Osteoradionecrosis D5% < 70 Gy 

DP: dose prescribed, Dx: dose that covers X% of the volume, Vx: volume receiving X% of the dose  

4.Treatment delivery and QA 

During a standard RT treatment, one fraction of the prescribed dose is delivered per day to the patient 
that lies on the treatment couch in the reference position defined during CT simulation. Prior to the 
treatment, a pre-treatment 2D or 3D image is acquired and registered to the planning CT image, to ensure 
the correct positioning of the patient. This procedure is called image-guided RT (IGRT) and is highly 
recommended for the HN patients repositioning to reduce systematic and random errors [24]. Most of the 
time, simple translation and rotation shifts are performed between the simulation CT image and the new 
(kV or MV) image of the day. Prior to each treatment session, a quality assurance (QA) of the TPS calculated 
dose distribution is conducted through phantom irradiations that enable the dose evaluation with regards 
to the actual output of the treatment machine.  

In particular for HN cancer patients, accurate radiation delivery remains yet challenged by the patient 
anatomy alteration between the planning CT scan (on which the treatment plan is being created) and the 
scheduled days for the treatment fractions. A review of IGRT strategies for HN cancer treatments can be 
found in literature [36] that aims to provide clinics with best practice recommendations. 
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IGRT is the process of regular imaging, during a course of RT, used to guide the position of the patient, 
by comparing the simulation CT images to the pre-treatment images, acquired in the treatment room prior 
to dose delivery. The main goal of IGRT is to reduce errors in patient set-up and positioning by correcting 
the alignment of different images of the same patient.

Image alignment, typically referred to as image registration, is the process of estimating a spatial 
transformation between two similar images according to different choices available for similarity 
measures (e.g. neighborhood correlation, mutual information, mean squares), optimizers (e.g. conjugate 
gradient line search, gradient descent) and transformation functions (e.g. rigid, affine, B-spline, dense 
deformation field). For the purpose of patient positioning, most commonly two images of a patient are 
aligned by simple rotation and translation shifts, process called rigid registration. 

Imaging modalities are mainly split in two branches based on their dimensionality: 2D or planar imaging 
and 3D or volumetric imaging. 

Planar imaging

Electronic portal imaging device (EPID) or portal imaging is the first 2D imaging modality integrated on 
the linear accelerators. It uses the megavoltage (MV) source and a detector underneath the treatment 
couch to capture the signal of the attenuated radiation field. It is often used for QA of the 3D-CRT radiation 
fields’ shape and equally for the QA of the treatment machine. It can be also used for checking the patient 
positioning but its image quality in terms of tissue contrast is less attractive due to the high intensity 
radiation and comes additionally at expense of increased patient imaging doses.

Kilovoltage (kV) imaging allows better distinction of the bony anatomy due to the dominant 
contribution of the photoelectric effect at lower doses, and thus it is well suited for supporting daily patient 
positioning. Compared to the MV systems, delivering average dose per image as high as 20-70 mGy, kV 
systems are reducing the patient imaging dose to 0.1-0.3 mGy per image [37,38]. They imply however an 
additional kV source integrated in the treatment room, either as a separate system (e.g. ExacTrac X-ray 
system; Brainlab AG, Munich, Germany) or integrated on the LINAC (Figure 1.4-1). 2D-kV systems on the 
treatment machine are providing digitally reconstructed radiographs (DRRs), that acquired at 90° distance 
between each other (at typically 90° and 270°) are used to assess and correct patient translational shifts. 
Rotational errors can however be resolved only if the patient couch allows rotational movements.
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Figure 1.4-1 Planar imaging systems in a treatment room with an Elekta linear accelerator; MV and kV sources on 
the treatment head and additionally integrated ExacTrac X-ray system from Brainlab.

The ExacTrac X-ray system (Figure 1.4-1) has two separate radiation sources implanted in the floor and 
two detectors suspended in the ceiling that allows two paired-images to be acquired prior and during the 
treatment.

Volumetric imaging

The 3D imaging systems that can be found in a treatment room are: 3D-kV CBCT (kV-CBCT), 2D-kV 
imaging, high energy CT (2D or 3D MV-CT), CT on rail and MRI. 

The 3D kV-CBCT system is the most used and became the standard imaging practice prior to RT
treatment delivery (Figure 1.4-2). It is fixed to the treatment machine (at 90° of the treatment head), and 
uses a separate X-ray source with a correspondent flat panel amorphous silicon detector positioned 
perpendicular to the radiation treatment field. A single rotation of the tube delivering a conic shape beam 
is sufficient to achieve a reconstruction of the 3D image of the patient with adequate bone anatomy 
contrast to serve for patient positioning verifications, and subsequent translational and rotational 
corrections. Repeated scans may serve in monitoring intra-fractional motions and treatment response, 
and after adequate image processing, they may be used for dose recalculation and treatment plan 
adaptation. Moreover, the imaging dose is on average only 10-30mGy per kV-CBCT image [38,39], which 
is low compared to the treatment dose, scatter and leakage. Nevertheless, it is well justified because 
ensured an increased accuracy of patient positioning. Although it is very convenient due to its integration 
on most LINAC machines, the kV-CBCT system has several disadvantages: limited field of view (FOV), 
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limited soft tissue contrast resolution, presence of image artifacts and scatter in case of a bulky patient. 
An illustration of the CBCT system on an Elekta linear accelerator can be visualized in Figure 1.4-2 and a of 
a HN cancer patient position correction using kV-CBCT imaging is presented in Figure 1.4-3.

Figure 1.4-2 Elekta linear accelerator with kV and MV- CBCT imaging system; SDD = source to detector distance; 
FOV=Field of view, MV=megavoltage, kV=kilovoltage

Figure 1.4-3 CT and CBCT rigid registration; With green is represented the kV-CBCT image of the day, and pink is the 
reference CT image.
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High energy MV-CT imaging are currently integrated in TomoTherapy systems (Accuray, Sunnyvale, CA) 
where the same X-ray source is used to generate both the treatment beam (6 MV) and the imaging beam 
(3.5 MV). Essentially, it is a hybrid between a LINAC and a helical CT scan, where the CT component allows 
targeted regions to be visualized prior to, during, and immediately after each treatment [40](Figure 1.4-4). 
Imaging data is collected on a xenon detector located on the gantry, opposite to the radiation source. 
Varying with the pitch setting, the average imaging patient dose is typically 10-30mGy per scan [38,41]. 

 
Figure 1.4-4 TomoHD (Accuray, Sunnyvale, CA)-TomoTherapy system 

This treatment strategy is particularly employed for treatments that require high degree of radiation 
intensity modulation, patients having large lesions and those having prothesis or dental artefacts where 
the MV-CT image quality is superior compared with kV-CBCT images. In addition, TomoTherapy is used for 
patients with recurring cancer, secondary cancers or metastases. HN cancers are also candidates for 
TomoTherapy treatments particularly in the event of a difficult localization of the tumor (next to a vital 
organ) that require extremely accurate patient positioning, or when maximum normal tissue dose 
tolerances have been reached after a previous administration radiation treatment. Compared with other 
IMRT treatments for HN patients, helical TomoTherapy (HT) treatments were shown to provide the most 
homogeneous target coverage with better sparing of the spinal cord, brainstem, the parotids and the 
swallowing apparatus [42,43].  

Furthermore, non-invasive MRI can be used for image-guiding purposes, and it is known under the 
name of magnetic resonance-guided radiation therapy (MRgRT). This approach is found in the MR-LINAC 
systems that are exploiting the enhanced soft tissue contrast resolution provided by the non-ionizing 
radiation, without additional dose exposure to the patient. This ensure better target localization compared 
to standard kV or MV imaging and ultimately enables delivering of lower doses to the healthy tissues. 
These systems are however not often available as the equipment is rather expensive. MRgRT is particularly 
suitable for tumors in the brain or in the pelvic area where the soft tissue differentiation is highly important 
[44–47]. For the HN localization, MRI guidance is still at its infancy. Increased interest is however evolving 
in exploiting the new hybrid MR-LINAC platforms for this indication [48–51]. Two MR-LINAC systems are 
currently commercially available: MRIdianTM (ViewRay, Mountain View, CA, USA) with a low intensity 
magnetic field of 0.35 T and UnityTM (Elekta AB, Stockholm, Sweden) with a high-intensity magnetic field 
of 1.5 T [52,53] (Figure 1.4-5). The concept has the potential to become the next generation of RT standard 
by providing real-time visualization of the patient anatomy and real-time dose optimization [54].  

 



26

A. B.

Figure 1.4-5 Commercially available MR-Linac platforms; A. Elekta- UnityTM and B. ViewRay - MRIdianTM system

Finally, by integrating sophisticated high-resolution real-time imaging equipment, IGRT is the 
foundation of high precision in radiation oncology and remains a major driving force for innovation 
enabling the shift towards a personalized treatment care. A summary of the IGRT techniques is presented 
in Table 1.4-1.

Table 1.4-1 Summary of in-room IGRT methods

Dimensionality Imaging device Advantages Disadvantages
Planar imaging 
(2D)

MV (EPID) Same source as used for 
treatment (practical)

Tissue contrast

Imaging dose
Soft-tissue contrast

kV (DRR) Bony anatomy contrast 
Imaging dose

Separate source

Volumetric imaging
(3D)

kV-CBCT Translation and rotation
Bony anatomy contrast 
Imaging dose

System accessibility

Separate kV source and detector
Artefacts for dense materials
Limited field of view

soft-tissue contrast
MV-CT
(TomoTherapy)

Same source as used for 
treatment

Tissue contrast
Tumor localization

OAR sparring

Imaging dose
System accessibility 
Image acquisition time

MRI
(MR-LINAC)

No imaging dose
Translation and rotation

Soft-tissue contrast
Tumor localization

System accessibility
Image acquisition time
Costs
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ART aims to undertake corrective measures, when necessary, based on daily tumor and normal tissue 
changes monitored by the in-room imaging techniques. By evaluating patient anatomy in daily images 
prior to each treatment fraction, a decision can be made whether the initial treatment plan requires 
adaptation. A major limitation of ART is the exhaustive labor and time needed to perform the plan 
adaptation. Therefore, currently, ART can be performed in two ways: online and offline (Figure 1.5-1), both
requiring highly efficient workflows.

Figure 1.5-1 Adaptive radiation therapy strategies. (A) Workflow online-ART, (B) Workflow offline-ART

Online-ART uses IGRT to immediately adapt each fraction of the treatment to the daily changes in 
patient position and/or anatomy [55]. Although the concept is clear, the clinical implementation is 
hampered by several technical limitations of the elements involved: in-room imaging, uncertainty of the 
deformable image registration (DIR) algorithms, re-contouring time, plan re-optimization and plan QA. 
Moreover, during all the process of online adaptation, the patient must remain in the treatment position,
in the treatment room. Thus, all the steps must be integrated seamlessly. Additionally, the extra time 
needed to perform online ART reduces the number of patients that can be treated in a day. Therefore, due 
to its complex and interdisciplinary teamwork demand, only few centers are practicing online ART.

Offline-ART uses the daily IGRT images to assess anatomical changes after each treatment fraction.
When considered necessary, a new treatment plan will be performed based on a new simulation CT. The
adapted plan will be then administered in the future fractions. 

There is a particular interest in ART strategies for HN cancer patients due to the complex anatomy and 
tumor volumes in the proximity of OARs related to important physiological functions [56,57]. Moreover,
there is a high potential for anatomical changes during the course of treatment in both tumor volume and 
surrounding tissue, that can have serious consequences in terms of underdosage of targets and 
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overdosage of the important OARs [58]. An average weight loss of 6-10% has been reported for HN 
patients throughout the course of a RT treatment causing inhomogeneous doses in the target volumes 
[59,60]. Reduction of target volumes as well as involved nodes is highly heterogeneous among the HN 
patients, and can cause important alterations of the normal anatomy [61,62]. Among studies, 3-16% 
reduction was found in the mean primary tumor volume after the first 10 fractions of the treatment, 7-
48% after the first 20 fractions and 6-66% by the end of the treatment [56]. Parotid glands shrinkage was 
also reported in several studies indicating up to 48% volume reduction by the end of the treatment [56]. 
Additionally, their migration towards high dose gradient regions was shown to cause severe overdoses, up 
to 19Gy [63] which can have substantial impact in increasing the risk of xerostomia [64,65]. Figure 1.5-2 
illustrates a patient case where volume changes can be observed from the baseline and the 24th fraction 
with respect to the primary tumor, the involved neck nodes and the parotid glands. 

 
Figure 1.5-2 Primary tumor, nodal, and parotid volumes decrease over the course of radiation treatment of a 54-year-
old patient with p16-positive T4 N1 M0 squamous cell carcinoma of the left tonsil. Patient received adaptive 
radiotherapy due to significant tumor response and weight loss observed through daily CBCT imaging. From baseline 
(A1) to week 5 (A2), the primary tumor decreased by 25%. The involved nodes decreased by 48.6% from baseline (B1) 
to week 5 (B2). The left parotid decreased by 37.2% (cyan) and the right parotid (blue) decreased by 41.9% from 
baseline (C1) to week 5 (C2) [50] 

Spinal cord and brainstem are also important OARs that may be overdosed due to anatomical changes 
during the course of treatment. Although the dose variations are modest (2-4Gy) for most of the patients, 
significant dose escalation up to 15 and 10Gy was reported in few studies with regard to maximal doses in 
the spinal cord and brainstem, respectively [63,66,67]. 

Currently, there is no consensus on the timing regimen for ART administration, either for identifying 
the appropriate patient to benefit from it. Given the wide range of anatomical variations in both targets 
and OARs, a single ART regimen might not be applicable to all the patients. Several attempts have been 
made to identify baseline or dosimetric factors that can trigger the need of plan adaptation, among which 
one was able to assess a threshold for deviations larger than 3Gy in the mean doses to parotid glands [68]. 
A pilot study prospectively evaluated the need of ART based on weekly CT dose recalculations in 22 
patients with oropharyngeal cancer. Poor target coverage or inadequate OARs sparing were considered 
triggers for ART administration, resulting in all 22 patients receiving at least 1 adapted re-plan and 8 of 



29 
 

them receiving 2 adapted re-plans. Similarly, in another study based on weekly CT re-planning, 8/10 
patients were selected for ART when the PTV dose coverage was <96% or the spinal cord max dose >45Gy. 
Moreover, 41% of the adapted plans were triggered in the first 2 weeks of the treatment. More recent 
efforts are focused on the use of daily CBCT images to calculate accumulated daily received doses and 
identify the patients that can benefit from ART [69–71].  

With respect to Heukelon et al. [72], Figure 1.5-3 illustrated a selection of possible methods of ART 
implementation for HN cancer patients with increasing frequency of re-planning. ART can be implemented 
at fixed-interval points (Figure 1.5-3 A) or triggered based on qualitatively and quantitatively assessment 
of daily imaging (Figure 1.5-3 B). A “serial” or “sequential” adaptation approach (Figure 1.5-3 C) involves 
more than weekly image acquisition where adaptation is performed using DIR between the planning CT 
and the image of the day. Ideally, a cascade ART scenario (Figure 1.5-3 D) is preferred where daily 
deformations are incorporated between the deformed images subsequent to all fractions.  

 

Figure 1.5-3 Possible typologies of ART implementation. A: fixed interval approach; B: ‘triggered’ ART; C: serial ART; 
D: cascade ART; ART= adaptive radiation therapy [68]. 

Generally, adaptive strategies may rely on repetitive CT, CBCT or MRI scans. An online plan adaptation 
based on daily CT proposed for HN cancers by the researchers at the Medical College of Wisconsin 
consisted of 2 step correction-scheme: segment aperture morphing (SAM) and segment weight 
optimization (SWO). During SAM the spatial relationship between the MLC and the contours of the targets 
and OARs are adjusted to the anatomy of the day using DIR and a new dose distribution is generated for 
each new aperture. Subsequently, optimal weights of the new segments are efficiently determined using 
a newly developed SWO package. After the daily CT scan, the procedure required 5-8min for the studied 
HN cases and was able to achieve the planned objectives by efficiently correcting the inter-fractional 
patient set up and anatomical changes [73]. Upon a retrospective study and clinical benefit assessment, 
the scheme was also adopted for the online adaptation of prostate and breast cancer patients at the clinic 
of Wisconsin [74,75].  

Other interesting offline-ART methods are using the daily images from the first few days of the 
treatment to create composite target volumes and generate a library of adapted plans in function of tumor 
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volume and location. The adapted plan which fits the most the patient anatomy of the day, can be chosen 
for delivery in the future treatment sessions. This strategy is successfully used for bladder cancer patients 
to account for altered anatomy caused by the bladder filling. In one study, the CTV to PTV margins were 
safely reduced from 15 to 10mm and average small bowel volume spared was 31±23cm² when using the 
CBCT-assisted plan selection based on PTV of the day [76]. In another study, the CBCTs from the first 5 
days of the treatment were used to create 3 adaptive plans which were used in 98.5% of the next 
treatment sessions [77]. 

Because most of the LINACs are equipped with CBCT imaging system for pretreatment positioning of 
the patients, it makes them very attractive for performing online-ART. However, the CBCT-based dose 
calculation is not trivial due to the “poor” image quality, limited size of the FOV and inconsistency of the 
HU numbers. There is an active area of research concerning solutions that enable to calculate doses 
directly on daily CBCT images. The proposed methods in the literature include: the use of CBCT adapted 
HU-ED calibration curve [78], density assignment methods [79,80], and DIR between the CT and the CBCT 
[81]. Ultimately, AI-based methods are expected to overcome this issue by automatic generation of 
syntetig-CT images that can provide accurate dose calculation based on the anatomy of the day [82]. 
Evaluation of four CBCT-based dose calculation methods for HN cancer patients is part of the last 
contribution of this manuscript. A commercially available system for performing online-ART based on daily 
CBCT images is Ethos™ (Varian Medical Systems, Palo Alto, CA, USA) which enables on-couch adaptive 
workflow within typically 15minutes per treatment session, which may vary among patients and tumor 
localizations [83]. Promising results on contouring accuracy, treatment plan quality and treatment time 
were demonstrated on prostate cancer patients [84]. Using the integrated automatic contouring 
algorithm, 11% of the contours required no changes, and 81% required only minor adjustments prior to 
dosimetry planning. The adapted treatment plans were chosen in 95% of the fractions, and demonstrated 
improved dosimetric outcomes compared to the initial plan, in 78% of the cases. Overall, the adaptation 
process was carried out in 19minutes on average. A clinical trial, called DARTBOARD has been recently 
initiated for evaluating the system’s clinical benefits of treating HN cancers with margin-less daily adapted 
radiotherapy (a 1 mm margin is kept for intrafraction motion) [85]. 

MRI-guided ART is also an evolving area of research thanks to improved soft-tissue contrast [86,87]. 
However, similar with CBCT images, dose calculations on MRI images require appropriate ED information 
that is usually obtained by DIR between the simulated CT and the daily MR images. The accuracy of DIR 
results is however uncertain, and sometimes manual density overrides and contour corrections may be 
needed. Methods for density assignment are also being used [88]. More advanced solutions are sought 
after for an accurate generation of synthetic-CT from MR images [89]. Commercially available solutions 
for online-ART are integrated in the Elekta-Unity™ and ViewRay-MRIdian™ systems [52,53]. Their 
dosimetric benefits have been recently demonstrated through a retrospective analysis on several 
anatomical sites (liver, lung, multiple abdominal lymph nodes, pancreas, and prostate) [90]. All groups 
showed a clear improvement of the PTV coverage with the adapted plans, and the largest reduction (-87%) 
in median dose to OARs was found on the pancreas patients [90]. However their clinical implementation 
involves complex workflows that can prolong the total treatment time up to 45minutes on average 
depending on the anatomical site [91]. 

In Table 1.5-1 is presented a summary of the current methods used to perform ART based on different 
imaging techniques with their associated strengths and limitations. Additionally, in Table 1.5-2 are 
summarized the current and upcoming trials on ART for HN cancers. Their aim is to assess the clinical 
benefit of ART when compared to traditional treatment regimens and at the same time, help identify which 
patients will benefit the most from this novel approach.  
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Table 1.5-1 Advantages and disadvantages of offline-ART and online-ART approaches 

Method Imaging 
Technique 

Advantages Disadvantages 

Offline-ART  CT-based  Good resolution 
 HU-ED relationship 
 Accurate dose calculations 

 High imaging dose 
 Limited soft-tissue differentiation 

compared to MRI, but better than 
CBCT images 

 Extra scanning time 
CBCT-based  Availability of the system  

 Fast CBCT image acquisition 
 Fast registration CT/CBCT 
 Good contrast for bony anatomy 

 Limited soft-tissue contrast  
(  delineation precision) 

 Artefacts 
 Limited FOV of the CBCT 
 No HU-ED correlation 
 Imaging dose 

MRI-based  Good soft-tissue contrast  
(  delineation precision) 

 Variety of sequences 
 Non-ionizing radiation 
 No imaging dose 

 image distortions 
 no HU-ED correlation 
 Functional imaging 
 Patients with contra-indications  
 Limited availability of the MRI scans  
 The costs 

Online ART 
 

CBCT-based 
(Ethos™) 

 Automatic CT/CBCT registration  
 Automated segmentation of organs 
 Access to CT/PET or MR images on the 

console 
 Human decision making at each step 

 Limited soft-tissue contrast  
(  delineation precision) 

 Artefacts 
 Limited FOV of the CBCT 
 No HU-ED correlation 
 Imaging dose 
 Lower costs compared to MR-LINAC  

MR-LINAC 
(MRIdian™, 
Unity™) 

 Good soft-tissue contrast  
(  delineation precision) 

 Variety of sequences 
 Non-ionizing radiation 
 Real-time tumor tracking 
 Daily adaptation 

 Image distortions 
 No HU-ED correlation 
 Patients with contra-indications  
 Increased treatment time  
 Limited availability of the systems  
 The costs 
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ART may bring significant improvements by accounting for tumor and OARs changes during the course 
of treatment. However, as the initial contours based on the planning image set change, the initial planned 
dose may not accurately represent the actual delivered dose. At the moment no perfect solution exists for 
the issue of dose accumulation from the daily adapted treatment fractions. A voxel-by-voxel dose 
accumulation from each treatment session can be performed by deforming the dose based on the 
deformable vector fields (DVF) obtained from DIR, with the dose warped back to the initial planning CT 
image, to accumulate the doses from the delivered fractions [100]. An alternative approach is to deform 
the initial planning CT onto the daily patient image and calculate the “dose of the day”. Nonetheless, both 
methods for estimating the cumulative dose rely on the choice of the DIR algorithm and the quality of the 
underlying image of the patient. Moreover, the accuracy of the DVF may also be limited by internal target 
changes and OAR displacement. At the same time, the interpolation of doses constitutes another set of 
uncertainties depending on the method used (linear interpolation or energy/mass mapping). These daily 
deformable dose accumulation uncertainties have been subject of intensive research for the ART of HN 
cancers [101–108]. From [101] an illustration of the accumulated dose scheme can be seen in Figure 1.5-4 
where weekly CT scans were used for plan adaptation. They quantified the performance of multiple DIR 
algorithms on 15 HN patients and found differences in the cumulated mean doses to the parotid gland 
from 1 – 8.9Gy. In conclusion, they emphasized that the choice of an image processing metric was at least 
as important as the choice of the registration algorithm.  
 

 
Figure 1.5-4 Dose accumulation workflow (from [101]) 

In the context of CBCT-based IGRT workflows, one study on 5 HN patients investigated the uncertainties 
associated with the choice of the DIR algorithm with respect to the accumulated doses [109]. Their 
maximum difference in estimated doses in OAR reached 2.8% of the prescribed doses and it was concluded 
that the choice of the DIR algorithm had a higher impact in the region of high dose gradient and/or when 
the CBCT image quality was poor. Another study demonstrated the accuracy of Varian’s SmartAdapt DIR 
algorithm on 12 HN patients with respect to target and OAR accumulated doses and presented a 
methodology that can be used for other DIR implementations [105]. As proposed in their study, a DIR 
algorithm can be evaluated by calculating the net voxel displacement after successive application of the 
forward and backward DVF. Similarly, the benchmark of a DIR algorithm can be performed with the help 
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of a virtual phantom, containing CT image set from the start and from the end of treatment, and the 
ground-truth DVF that links them together [110]. Furthermore, another commercial solution SureCalc 
from MIM Maestro software package based on Monte Carlo dose recalculations directly on CBCT images 
was compared with a dose mapping approach for 19 patients with HN cancers [108]. They showed that 
the dose discrepancies increased (>5%) when the calculated dose distributions were deformed back to the 
planning CT which resulted from workflow-related issues.

Taking all these uncertainties into account is part of the challenges when performing ART. This 
problematic of dose accumulation has not been part of this thesis objectives, however it constitutes future 
perspectives of the work.

Finally, current limitations to implementation of ART in routine clinical practice include: 
Optimal selection criteria of patients 
Optimal timing for ART 
Thresholds for OAR of increased toxicity probability 
Thresholds for tumor underdosage/overdosage
Image quality of in-room imaging devices 
Accuracy of deformable image registration
Time consuming task of re-contouring and re-planning
Dose accumulation of adapted treatment fractions

To facilitate implementation of ART, AI solutions have emerged in RT for several applications (Figure 1.5-5)
such as: 

automatic image segmentation (AS) or automatic contouring
automated treatment planning (auto-planning) 
synthetic-CT image generation from CBCT and MRI images
automated plan QA. 

In the next chapters of this thesis manuscript, I will further discuss on auto-planning (Chapter 2), 
automatic contouring (Chapter 3 & 4) and synthetic-CT generation (Chapter 5) methods, with respect to 
the treatment of the HN cancer patients (Figure 1.5-5). Together with generalities on AI methods, the 
state-of-the-art for these different tasks will be introduced in the next sections of the clinical context. 

Figure 1.5-5 Potential applications of artificial intelligence methods in radiotherapy workflow
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AI is a universal term for all that implies modeling of intelligent human behavior by a computer [111]. 
Described as the science and production of intelligent technologies, AI was officially born in 1956 at a 
conference at Dartmouth College organized by Marvin Minsky, John McCarthy, Claude Shannon, and 
Nathaniel Rochester, who became the founding fathers of AI. Its physical branch deals with the 
manufacturing of robotics whereas the virtual branch includes informatics approaches. The former is 
called machine learning and represents a mathematical algorithm that learns from offered scenarios. We 
can envision that humans’ process of learning is based on knowledge and experience, unfortunately both 
limited by the time factor. In a considerably shorter amount of time, a computer can handle a significantly 
larger amount of data and gain experience by using appropriate algorithms. The advantage today is that a 
massive amount of data is available and can be used for training algorithms on modern computational 
hardware. The AI subcategories are illustrated in Figure 1.6-1 and detailed later. 

Figure 1.6-1 Subcategories of Artificial Intelligence (adapted from [112])

Machine learning (ML) is part of AI science and is the umbrella of all the other subcategories of virtual 
learning. In a broad sense, ML is the idea of a computer learning to perform tasks by studying examples 
grouped in a training set. Generally, it is divided into 2 main categories namely: supervised learning and
unsupervised learning.

In supervised learning, the training database contains both data and its corresponding correct output, 
what it’s called “labeled” or “annotated data”. Output of new data is predicted by using a functional 
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relationship between input observations (cause) and output observations (effect). Various algorithms are 
developed to characterize this relationship, the most important being: regression algorithm, classification 
and reinforcement learning [113]. 

In unsupervised learning, the training database does not contain the correspondent output so that the 
computer must find alone the unknown relationship between cause and effect in order to predict outcome 
for future data. Based on this approach, numerous algorithms have been derived such as: dimensionality 
reduction algorithms, clustering, blind source separation, or density estimation [114]. Semi-supervised 
learning combines the two categories of learning by using a training set that contains both labeled data 
and unlabeled data (without the solutions) [115]. This allows reduction of labeled data that is not always 
available or sometimes expensive. 

Deep learning (DL) is a subset of ML where training is based on artificial neural networks (ANNs), 
inspired by the structure of the neurons in the biological brain [116,117]. An AAN is composed of neurons 
organized into layers. We can distinguish 3 elements: input layer, hidden layers and output layer. The 
hidden layer neurons are the processing element which gathers all the inputs or signals from the previous 
layer of neurons with each input being multiplied by its associated weights on the connection. This result 
is then passed through an activation transfer function to give the final output signal to the next layer. See 
in Figure 1.6-2 a representation of an ANN and analog a biological neuron. 

Figure 1.6-2 Representation of an artificial neural network vs a biological neuron (adapted from [118])

The advantage of DL is that during the training phase, the system adjusts its internal parameters based 
on an error computed between the observed and desired output. Along with the computed weights to 
reduce the error, the system calculates a gradient vector for each weight that indicates the error deviation 
triggered by the weight adjustment. A general method to find an effective set of weights is called stochastic 
gradient descent (SGD) method. The system takes the input vector of a few examples and computes its 
output, error and average gradient and the whole process is repeated multiple times on small sets of 
training data until the average of the object function stops decreasing [117]. 

Deep neural networks (DNNs) are combinations of multi-layered ANNs where the output of the first 
layer becomes the input for the next layer and the process repeats until the last layer that gives the output 
of the whole system (Figure 1.6-3). Moreover, because each neuron from one layer is connected to all 
neurons from the next layer, DNNs are in general (but not necessarily) fully connected neural networks
(FCNN). They are dependent on the input data and learn its hierarchical representation without requiring 
additional feature extractors. Moreover, just like basic ML algorithms, they can be either supervised or 
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unsupervised. The main disadvantage is that they need large quantities of input data in order to be 
effective.

Figure 1.6-3 Deep neural network

Convolutional neural networks (CNNs) hold a different architectural scheme that takes advantage of 
spatially structured information, making them suitable for processing (medical) images. A typical 
architecture consists of convolution layers, pooling layers and fully connected layers, whose purpose is to 
find first simple representative features of the input data and progressively search for more elaborate 
features as the layers succeed each other. From an image that is considered a matrix of pixels, the neurons 
of the convolutional layer are dividing the image into small blocks and extract patterns/features and form,
so-called, feature maps. A feature map is a collection of multiple neurons each holding the location of a 
particular feature in an image. The pooling layer performs a down sampling operation that aims to reduce 
the dimensionality of the feature map. The pooled feature maps are eventually converted into a single 
long continuous linear vector that will be the input layer of a fully connected layer used to end the
classification task. See in Figure 1.6-4 an example of a CNN solving an image classification task. 

Figure 1.6-4 Convolutional neural network in solving an image classification task (adapted from [119])

An evolutionary history of the CNNs architectural developments as well as performance comparison of 
recent architectures can be found in the survey from Artificial Intelligence Review Journal done by Khan
et al. [120]. In 2012, a remarkable performance was brought by AlexNet [121] increasing the depth of the 
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network to 8 connected layers and several optimization parameters, reaching unprecedented
performances on classical image categorization problems. Later, in 2015 the concept of skipped 
connections and residual learning gained popularity with the introduction of ResNet which proposed a 
CNN of 152 deep layers [122]. The performance of CNNs has significantly improved over the years by 
exploiting depths and structural modifications. Nowadays the ambition lies in the development of new 
effective architectural designs that include blocks as auxiliary learners. 

Three branches where AI is empowered in RT will be further elaborated in this thesis manuscript
(Figure 1.5-5) that can help implementation of ART for HN cancer patients. The next 3 sections will 
introduce the state-of-the-art with regard to each of the thesis contributions. 

By definition, medical image segmentation is the process of dividing an image into multiple areas 
according to different landscapes in order to label anatomical structures. It is a difficult and time-
consuming task but it is a prerequisite for a successful treatment plan. Complex cases like HN patients are 
the focus of this thesis manuscript and they are particularly challenging and tedious due to the localization 
of tumors in close proximity of multiple OARs. Routinely contouring is performed manually by a physician 
or a dosimetrist and can take up to 1-2h or even 3h per patient depending on the case and the experience 
of the delineator [123–125]. Although guidelines exist [26,27] important variations between contouring 
practices are still observed [126–130]. Moreover, the high intra- and inter-observer variation exhibited by 
manual delineation proved to have important dosimetric impact for the patients [61,131]. In the new area 
of ART, one of the barriers to overcome is the time spent on delineating the volumes on which dose 
constraints are imposed. Therefore, at the basis of high-quality treatment plans stands the accurate 
volume definition. In this section, we propose an extensive literature review on automated image 
segmentation methods of organs principally focused on HN localization.

The goal of automatic segmentation (AS) or automatic contouring is to harmonize contouring practices 
by improving consistency in contour definition and to increase efficiency by reducing the manual 
delineation time. Ultimately, the goal is to facilitate implementation of ART. 

The continuous technical expansion shows promising results in the development of different
automated methods [132–134]. Each organ however exhibits particular limitations (such as appropriate 
image contrast and well defined anatomically boundaries) and thus finding a AS solution to perform well 
over a big range of anatomical structures is a continuous challenge. At the same time, quantifying the 
quality of a segmentation method has also been another persistent challenge, and up to now there is no 
consensus on how to assess performance of AS solutions. In general, results are reported in terms of 
geometric accuracy, assessment of manual time reduction, clinical acceptability and dosimetric impact. 
Recommendations on what metrics can be used exist, but no standardized protocol yet to account for the 
strengths and shortcomings of each [135,136]. 

For the geometrical accuracy evaluation, a measure that characterizes the volume overlap between 
two considered contours is recommended in combination with a measurement of positional displacement 
which provides complementary information. One of the most commonly used coefficients is dice similarity 
coefficient (DICE). DICE measures the volumetric overlap between the ground truth contour (A) and the 
predicted segmentation (B), leading to a value between 0 (no overlap) and 1 (perfect overlap). It is defined 
as: = | || | | |

With the intention of setting a benchmark for AS, DICE values were investigated and it was concluded 
that in the validation process of AS method, a value of “0.80” for the DICE can be interpreted as a good 
performance and looking at the value of 1 as performance benchmark is not realistic [133]. At the same 
time, what seems to be a good volumetric overlap can still conclude in significant organ overdose [137].
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While DICE is limited to the volume intersection without considering the shape differences, a second 
most used metric that accounts for the magnitude of contour displacement is the Hausdorff distance (HD). 
HD is a boundary-based metric that measures the surface distances between the two contours. Due to its 
sensitivity to outliers, often the 95-percentile HD (HD95%) is chosen in contour evaluation:  

 = [ ( , ), ( , )] % = %[ ( , ), ( , )] ( , ) = max min  

where d(A,B) is the directed HD and and A and B are the set of non-zero pixels in the images. Similarly, HD 
metric has its own limitation that it does not focus on the object itself, therefore does not punish a 
prediction with a large hole inside or with a spotted pattern within the contour [136]. 

Another important aspect to consider when evaluating an AS solution is the manual ground truth 
segmentation that has a considerable impact on the interpretation of the results. The choice of a gold 
standard or reference contour varies in the literature from a mathematical average contour, a radiologist-
defined contour, an experienced oncologist defined contour or a consensus contour that is decided upon 
by a panel of experts [138]. The quality of the manual segmentation is hampered on one hand by the 
image quality and structure visibility on the medical images and on the other hand by the IOV as cause of 
individual eye sensitivity of the physician, eye-hand motoric fatigue, experience as well as the contouring 
tools available. Although physical and digital phantoms can be constructed for which ground truth is 
known or easily estimated, such phantoms cannot fully reproduce the whole range of imaging 
characteristics and patient anatomical variability observed in clinical data. Poor overlap results do not 
necessarily mean that the AS solution is worse than the manual reference, but that it differs in terms of 
spatial localization and geometric similarity. For this reason, a blind evaluation of the contours from several 
clinicians can help make the decision upon the clinical acceptability of an automatically generated contour. 
Alternatively, publicly available data sets such as The Cancer Imaging Archive (TCIA) [139] or Public Domain 
Database for Computational Anatomy (PDDCA) dataset released as part of the 2015 segmentation 
challenge [140], can be used to evaluate and prove generalizability of a segmentation method.  

Furthermore, a highly recommended aspect to address when evaluating an AS solution concerns the 
dosimetric consequences of using AS contours. This implies reference dose distributions to be compared 
with those generated from AS contours. The task involves additionally exhaustive labor and is not 
systematically conducted in studies, first because of the time requested to be completed, and secondly 
because of the intra-planner factor, which could introduce bias in the observations [141]. To address these 
difficulties, research groups have adopted different strategies on performing the dosimetry. Among other 
methods, some authors proposed to superpose the original clinical plan onto the automatically delineated 
contours [142,143]. Others have employed the use of auto-planning such as knowledge-based planning 
[131,144] or conserved the original beam configuration parameters [145]. Finally, most of the dosimetric 
studies results concluded non-significant differences in the delivered doses and inconsistent correlations 
between geometric indices and dosimetric endpoints. One study investigated regions of higher sensitivity 
around the PTV where contour accuracy is particularly important [144]. Most of the times, organs located 
in short vicinity of the PTV required manual corrections, however the correlation between organ distance 
to targets and dosimetric impact was not always confirmed. Additionally, it is difficult to isolate the effect 
from each individual contour error (inaccurate contour borders) as the dosimetric effect is rather a 
cumulative one. For this, ideally would be to create separate plans per investigated contour.  

Eventually, an inaccurate delineation provided by a AS method will result in additional time for manual 
adjustment, therefore reporting of manual post editing time is an important aspect to help conclude about 
an AS solution. Remaining conscious that a machine cannot fully replace human judgement, the challenge 
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of AS is to get as close to clinical acceptability as possible and to require minimal time for manual 
corrections. A summary of evaluation methods for AS solutions with their associated strengths and 
limitations can be followed in Table 1.7-1. 

Table 1.7-1 Methods for evaluating automatically segmented contours 

Method Evaluation Advantage Disadvantage 
Overlap metrics Volume overlap 

Surface overlap 
(volume DICE,  
Surface DICE) 

Easy to calculate 
Practical during 
training/validation 

Volume dependent  
No information on contour shape 
and localization  
Not correlated to subjective 
clinical acceptance 

Distance metrics Distance between 
surface point of the true 
and predicted volume 
(e.g. HD, MSD, APL) 

Focus on the boundary of the 
contours 
 

Not dependent on absolute 
volume 
Difficult to interpret for small 
contours 
Outliers 

Volume  Comparison of absolute 
volume  

Easy to calculate and interpret 
(Systematic over/under 
estimation of a contour) 

No correlation to contour 
location 

Dose calculations Dosimetric impact of 
delineation uncertainty  

Clinical impact of differences 
between delineations  

Labor intensive 
Dependent on the planning 
strategy 
Subjective to planner input 

Clinical assessment  Turning test 
Blinded evaluation 

Rating from multiple 
observers 

Labor intensive 
Subjective to observer’s 
experience 

Manual corrections Time record 
IOV assessment  

Assessment of benefit in the 
clinical workflow 

Labor intensive 
Subjective to observer’s 
experience 

Abbreviations: HD= Hausdorff Distance, MSD= Mean surface distance, APL= Added path length, IOV=inter-observer 
variation 

Finally, all the resources involved in developing an AS solution as well as the computational time of 
generating the desired contours are important factors to consider when evaluating AS solutions.  

Traditional segmentation methods are still at the foundation of the newly complex methods and their 
ideas are worth credit [146–148]. The origins of computer-aided segmentation were set by the successful 
implementation of digital image processing and mathematical techniques such as threshold-based method 
[149], region-based [150] and edge detection [151]. The logic is simple and calculations are fast but they 
lack precision in terms of details. At present, methods based on more complex concepts and empowered 
by AI research have made remarkable achievements and the segmentation accuracy has surpassed the 
traditional methods. The state-of-the-art of medical images AS methods fall into two main categories: 
atlas-based (ABAS) and deep learning (DL) solutions (Figure 1.7-1). Hybrid methods are also proposed 
under the atlas-based methodology.  
 



41

Figure 1.7-1 Medical image segmentation methods; CT=computed tomography, MRI=magnetic resonance imaging, 
US=ultrasound

Atlas-based methods

ABAS is a segmentation technique that uses previously annotated data (i.e atlases) to propagate organ 
contours onto a new patient image via deformable image registration. As atlas-based method considers 
only contour information from a defined atlas collection or library, the quality of the segmentation is highly 
dependent on the similarity of the atlas and the underlying patient. If only one atlas is used, it has to be 
thoughtfully chosen in order to embody an average patient anatomy. Secondly, the accuracy of atlas-based 
solutions depends on the accuracy of the DIR algorithm that can be hampered by large anatomical 
deformations (particularly in the HN region). 

Single atlas-based techniques make use of a single pre-defined dataset of gold standard volumes, 
whereas multi-ABAS use combined information from multiple atlases to reduce the variability in anatomy 
between the atlas and the new patient. The multiple individual segmentations generated from each atlas 
can be combined to form a population-based average atlas, through a process called fusion. Those 
methods are widely spread due to their convenient implementation that require minimum of resources. 
However, they do have several drawbacks: atlas selection strategy (single vs multi-atlas)[152]; 
performance plateau reached after 10-20 atlases [153]; poor performance for small and low contrast soft 
tissue structures [154]; increased computational time with each added atlas [155]. An illustration of single-
atlas based and multiple-atlases based segmentation can be followed in Figure 1.7-2.
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Figure 1.7-2 Atlas-based segmentation a. Single atlas; b. multiple atlases segmentation

Among the atlas fusion algorithms, one of the firsts, introduced in 2004 by Warfield et al. is the 
simultaneous truth and performance estimation (STAPLE) [156]. STAPLE algorithm consists in estimating 
the optimal combination of the segmentations by weighting each segmentation upon the estimated 
performance level based on expectation maximization algorithm. Several studies have used the STAPLE 
algorithm to compare single and multi-ABAS techniques for delineation of OARs and lymph nodes levels, 
and overall multi-ABAS performed better than single ABAS methods [157–159]. At the same time, STAPLE 
algorithm has been widely used to define the reference ground truth segmentation from multiple manual 
delineation to overcome the IOV. Stapleford et al. followed this approach for generating a consensus 
between five physicians’ manual contours and used it as a benchmark in evaluating bilateral nodal CTV 
segmentation in HN cases [160]. They also measured a reduction of IOV when STAPLE was used.

Another algorithm is similarity and truth estimation for propagated segmentation (STEPS) [161], that 
in addition to STAPLE includes a spatially variant image discriminator that discards the atlases that have 
the least anatomically similarity to the underlying patient. A comparison between STAPLE and STEPS was 
performed by Hoang et al. for the segmentation of OARs in HN patients [161]. They showed that STEPS 
algorithm outperformed STAPLE for a number of structures such as parotids, brainstem and spinal cord 
but not for smaller OARs such as optic chiasm and ocular globes. 

Majority voting (MV) fusion is another algorithm used for atlas fusion [162,163] where for each voxel 
in the new image, each atlas attributes a vote denoting what structure or background the voxel belongs 
to. The final label of the voxel is then decided by the one label that has the most votes. Lee et al. [162]
evaluated a commercial ABAS software (with STAPLE label fusion) vs MV fusion, and stated that their
performances were similar and further research was need to investigate their differences. Different atlas-
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based methods were compared by varying the atlas selection criteria and the fusion algorithm by Chen et 
al. [164]. It was demonstrated that a weighted combination of atlas individual segmentation results based 
on correlation coefficient (as measure of similarity between the atlases and the new patient), 
outperformed standard combination methods such as MV and STAPLE. 

Another method to combine results from multiple atlases is patch-based segmentation [165]. Unlike 
STAPLE, patch fusion (PF) algorithm takes advantage of the image intensity information when weighting 
the individual atlases results. PF algorithm has been compared against STAPLE, within Advanced Medical 
Imaging Registration Engine (ADMIRE, Elekta, AB Stockholm, Sweden) [166] for the segmentation of 7 HN 
OARs [167]. Using 10 atlases and leave-one-out strategy for atlas selection, PF results were superior to 
STAPLE.  

Similarly, using ADMIRE software, Liu et al. performed an evaluation of commercial ABAS (Elekta AB, 
Stockholm, Sweden, with STAPLE fusion) and intra-patient deformable contour propagation for offline-
ART in HN patients. Three separate image datasets were used for each patient: pretreatment planning CT, 
in-treatment planning CT, and a CBCT, the last two acquired in the same day. For the 7 OARs, initial 
contours generated by STAPLE had good conformity to manual reference (DICE>0.8 and mean surface 
distance <2mm). Moreover, similar accuracy was obtained between CT-to-CBCT and CT-to-CT deformable 
registration therefore demonstrating the feasibility of the method for adaptive workflow [168]. 

The performance of three commercially available solutions (ABAS 2.0, Elekta AB, Stockholm, Sweden; 
MIM 5.1.1, MIM Vista Corp, Cleveland, Ohio; VelocityAI 2.6.2, Velocity Medical Systems, Atlanta, Georgia) 
was evaluated by La Macchia et al. for the accuracy of deformable registration and contour propagation 
when using single atlas strategy. The results revealed modest absolute differences between systems and 
significant time savings compared to manual contouring regardless of the solution [154]. Although manual 
corrections of the deformed contours were needed, the use of the atlas-based methods reduced the 
delineation time with 1h for HN patients, 40min for prostate and 20min for mesothelioma patients.  

Furthermore, in addition to the image registration and fusion algorithms, to be noted that the quality 
of the atlases themselves impacts the resulting quality of the AS contours. For this, strict implementation 
of the international guidelines is the key, as well as the involvement of multiple experts. Although 
additional manual review and corrections are needed, simple atlas-based solutions can reduce the manual 
delineation time with minimum resources required [125]. 

Hybrid atlas-based methods 

In addition to the multi-ABAS strategy that relies only on structures shape variation from the contours 
in the atlas library, the hybrid segmentation (HAS) approaches are aiming to compensate for the lack of 
reliable image information by imposing prior shape constraints in the segmentation process. These 
constraints are constructed by the image features learned from the contours’ variation within the atlas 
library. Several implementations of HAS methodologies are present in the literature. 

A method investigated by Qazi et al. [169] uses a probabilistic mask to guide the DIR by a boundary 
refinement approach. The segmentation starts with a single-ABAS registration and then it is refined down 
to voxel level classification. This combination of local low-level features and global high-level prior shape 
information has greater potential in achieving more reliable and robust AS contours. The technique could 
potentially be improved by integrating atlas selection or combination of multiple atlases using a fusion 
algorithm in the first step of atlas registration. Walker et al. studied a smart probabilistic image contouring 
engine (SPICE) algorithm, which performs an initial registration, followed by a deformable registration, and 
finally a probabilistic (model-based) refinement [170]. For most contours in HN, statistically significant 
differences compared to the reference were observed but when the contours were manually corrected, 
no significant differences remained. In conclusion, they affirmed that the human oversite remains critical. 
At the same time, when Thomson et al. evaluated the SPICE algorithm, the results after manual corrections 
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of SPICE contours did not improve significantly and no time-saving evidence was confirmed [171]. Fritscher
et al. examined a different HAS approach, by combining multi-ABAS with geodesic active contours (GAC) 
and statistical appearance models (SAM) for segmentation of the parotid glands and brainstem [172]. This 
way, they tried to combine the strengths of each single method to overcome the other one’s limitations. 
In their approach, starting with the robust atlas-based method, boundary features were learned by the 
GAC and prior information about anatomically plausible appearances of structure was added by the SAM. 
They observed statistically significant improvement for the model-based approach when compared with 
multi-ABAS technique alone. Fortunati et al. proposed a similar framework of combined shape prior from 
atlas-based registration with intensity modeling [173]. They also found improvements in accuracy of most 
of the investigated tissues when compared to a typical atlas-based segmentation based on MV fusion. 

Furthermore, training a voxel classifier in parallel with atlas registration has also been investigated by 
Han et al. [174]. They used Random Forest (RF) algorithm which is a supervised learning algorithm designed 
for voxel-wise classification using both local and contextual image features. Particularly structure border 
regions benefit from training of RF classifiers where atlas-based segmentation errors typically occur. A 
framework of an atlas-based segmentation algorithm using a prior shape model or a voxel classifier 
alongside a traditional atlas-based approach can be followed in Figure 1.7-3. More explicit, classifiers 
trained using the atlas library as training data, were applied to re-estimate a structure contour at the level 
of “ambiguous” voxels where decision from multiple atlas segmentations did not fully agree. Finally, the 
classification result combined with the traditional atlas fusion result was demonstrated to achieve 
improved accuracy compared to the baseline method in the experimental results on rib cage segmentation 
and HN organs [174]. Finally, the HAS techniques show potential in bringing improvements in regions with 
distinguishable image intensity features, but no clear evidence for time saving has been reported. 

The Chapter 3 and Chapter 4 of this thesis manuscript contains an evaluation of traditional atlas-based
fusion methods (STAPLE, PF, and MV) and one hybrid algorithm (RF) for OARs and CTVn, respectively on 
HN CT images.

Figure 1.7-3 Hybrid atlas-based segmentation framework
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Deep Learning methods 

Enormous amount of work has been recently directed into developing image segmentation approaches 
based on DL models [175,176]. One of the milestones in DL-based segmentation was the introduction of 
CNN composed of multiple hidden convolutional layers and a fully connected layer. Some of the most well-
known CNN architectures include: AlexNet [121], VGGNet [177], ResNet [122], GoogLeNet [178], 
MobileNet [179], and DenseNet [180]. 

Long et al. [181] was the first to propose a fully convolutional network (FCN) configuration. By replacing 
all fully-connected layers with fully-convolutional layers the model was able to handle arbitrary size-input 
and produce correspondingly-sized output, in an end-to-end segmentation fashion. Furthermore, the 
authors introduced skip connections such that the information from deep coarse layers is combined with 
the information from shallow, fine layers in order to produce more detailed and accurate segmentations. 
By demonstrating that models can be trained on variable sized images, this work was considered a 
milestone in image segmentation research. However, the limitation when using FCN and CNN is that after 
many layers of pooling, the final resolution is potentially low or suboptimal. To address this issue, authors 
of U-net network proposed to add a symmetrical part to the first convolutional part, where the pooling 
layers were replaced by interpolation layers and a large number of feature channels were added in this 
up-sampling part to support the propagation of the contextual information to higher resolution layers 
[182]. Because the contracting part and the expansive part are fairly equal in size, the model resembles a 
U-shape architecture (Figure 1.7-4). Since this breakthrough, U-net network architectures have been 
explored in many medical image applications [183], and its architectural design has been extended to the 
3D U-Net [184], V-Net [185] and AnatomyNet [186]. Moreover, Isensee et al. [187] reported state-of-the-
art segmentations with a self-configuring U-net network, called nnU-Net, that automatically adapts to any 
new data set without manual intervention. Besides computational efficiency nnU-Net is also able to cope 
with limited training data. The network code is implemented in Python using PyTorch framework and is 
available for users on GitHub (https://github.com/MIC-DKFZ/nnUNet).  

 
Figure 1.7-4 U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a 

multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the 
lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations 

[182]  
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Generative Adversarial Network (GAN) is another category of deep learning that had gained interest 
for segmentation applications due to its data generation capability that can alleviate the problem of 
training data shortage [188]. A typical GAN integrates two networks, namely a generator network and a 
discriminator network into one framework. The generator is trained to generate artificial data and the 
discriminator is trained to differentiate the synthetic samples from real samples (Figure 1.7-5). The training 
stage is time-consuming since the two components need to be trained sequentially and iteratively in a 
competing manner to enhance the performance of the other. The final goal is to generate artificial data 
that cannot be differentiated from real data. Once trained however, only the generator will be used to 
perform segmentations. A U-net-GAN framework was proposed by Dong et al. [189] and demonstrated 
superior segmentation accuracy compared to U-Net network configuration alone for OARs in the thoracic 
region. Moreover, particularly improved results were observed on esophagus when compared to the 
results from 2017 AAPM Thoracic Auto-segmentation Challenge [190]. 

 
Figure 1.7-5 An example illustrating the process of generative adversarial network; back-propagation is applied in 
both networks so that the generator produces more realistic segmentation, while the discriminator becomes more 

skilled at flagging segmented contours against manual contours [189]  

Among the recently published studies, Chen et al. [191] propose a whole-body CT segmentation model 
that combines three OARs segmentation models with one anatomic site detection model. In total the 
model is able to automatically segment 50 OARs across three localizations. All models are ramifications of 
U-net architecture, specifically Ua-Net [192] was used for HN localization, 2.5 U-net [182] for the thorax 
model and 3D U-Net [184] for abdomen and pelvis. The final WBNet model was trained and evaluated on 
the same data against two similar DL networks (nn-Unet [187] and AnatomyNet [186]) and one commercial 
atlas-based solution (ABAS [152]). For the majority of OARs, WBNet superiority was demonstrated in terms 
of geometrical accuracy by means of DICE and HD95% distance. Moreover, compared to manual delineation 
it was reported that WBNet was able to significantly reduce the delineation time by 51%, 73%, 86% and 
71% for HN, thorax, abdomen and pelvis, respectively. Furthermore, they conducted a dosimetric study 
on 20 HN patients and observed that the dose differences were clinically acceptable for most cases. 
However, particular attention was suggested for small volume organs or OARs with relatively lower DICE 
such as the brachial plexus, hypophysis, optic nerve, optic chiasm, and sublingual gland [191]. The study 
has a particular strength since it performs an evaluation of four systems using the same data for training 
and for testing, thus providing pertinent comparison between different DL solutions.  

Another recent study, investigated general (diversified multi-institutional datasets for training) and 
custom (single-institution data sets for training) CT-based AS models for 42 OARs in 3 major tumor sites: 
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HN, male pelvis and abdomen [124]. Additionally, they evaluated an adaptive spatial resolution (ASR) 
approach for the narrow or small volume OARs, which proved to improve the accuracy for the eye lens, 
optical nerves, inner year and bowels. Overall, even with smaller datasets for training, the custom models 
performed slightly better than the multi-centric models. With regards to the contouring times, after 
counting for the necessary manual editing time, the whole process of delineation was reduced by 80%, 
88% and 65% for HN, pelvis and abdomen, respectively [124].  

From most recent studies, state-of-the-art DICE results for CT-based OARs segmentation can be 
followed for HN, thorax, abdomen and pelvis region in Table 1.7-2, , Table 1.7-4, and Table 1.7-5, 
respectively. Compared with other networks from literature, WEBNet showed superior DICE results for 
several OARs such as larynx, lenses, oral cavity, lungs, gallbladder, kidneys, pancreas, and femoral heads. 
Competitive results were from the custom-made models, having the highest overlap results for the optical 
nerves, the heart, duodenum, liver, stomach, small and large bowel, bladder and rectum.  

Table 1.7-2 Review of DICE results for organs-at-risk in Head and Neck region. 

 Chen et al. [191] 
(trained and tested on same data) 

Ibragimov et 
al. 

[193] 

Willems et al. 
[194] 

Nikolov et 
al. 

[195] 

Amjad et al. 
[124] 

 WBNet ABAS Anato
my-Net 

nnUnet CNN CNN 
(DeepVoxNet) 

CNN DCNN 
(ResUnet3D) 

Brainstem 0.87 0.78 0.86 0.90 n.a. 0.92 0.88 0.90 
Eye L 0.92 0.88 0.90 0.84 0.88 n.a. 0.95 0.91 
Eye R 0.93 0.89 0.91 0.86 0.88 n.a. 0.95 0.91 
Larynx 0.90 0.81 0.88 0.79 0.86 0.71 n.a. 0.85 
Lens L 0.83 0.62 0.75 0.77 n.a. n.a. 0.81 0.74 
Lens R 0.84 0.56 0.76 0.79 n.a. n.a. 0.80 0.80 
Mandible 0.94 0.88 0.92 0.94 0.99 0.96 0.96 0.88 
Optic Chiasm 0.64 0.52 0.61 0.69 0.37 n.a. n.a. n.a. 
Optic nerve L 0.76 0.59 0.70 0.72 0.64 n.a. 0.76 0.78 
Optic nerve R 0.75 0.60 0.71 0.75 0.64 n.a. 0.77 0.79 
Oral Cavity 0.91 0.86 0.88 0.91 n.a. 0.84 n.a n.a. 
Parotid L 0.85 0.68 0.81 0.80 0.76 0.86 0.85 0.82 
Parotid R 0.85 0.71 0.81 0.78 0.78 0.90 0.85 0.82 
SMG L 0.82 0.61 0.75 0.79 0.69 0.79 0.85 0.77 
SMG R 0.82 0.55 0.75 0.80 0.73 0.88 0.85 0.80 
Spinal Cord 0.86 0.86 0.86 0.91 0.87 0.96 0.88 0.88 

Abbreviations: L= left, R=right, SMG=Submandibular gland; n.a.= not available; bold numbers highlight the best 
results   



48 
 

Table 1.7-3 Review of DICE results for organs-at-risk in thorax region. 

 Chen et al. [191] 
(trained and tested on same data) 

Feng et al. 
[196] 

Yang et al. 
[190] 

 WBNet ABAS AnatomyNet nnUnet DCNN DCNN 
Heart 0.91 0.85 0.88 0.93 0.93 0.93 
Lung R 0.98 0.95 0.96 0.98 0.98 0.97 
Lung L 0.98 0.96 0.96 0.98 0.97 0.97 
Spinal Cord 0.90 0.86 0.86 0.91 0.84 0.88 
Esophagus 0.76 0.54 0.71 0.81 0.61 0.72 

 Abbreviations: L= left, R=right; bold numbers highlight the best results. 

Table 1.7-4 Review of DICE results for organs-at-risk in abdomen. 

 Chen et al. [191] 
(trained and tested on same data) 

Zhou et 
al. 

[197] 

Gibson et 
al. 

[198] 

Kim et 
al. 

[199] 

Amjad et 
al. 

[124] 
 WBNet ABAS AnatomyNet nnUnet FCN DenseVNet CNN DCNN 

Duodenum 0.77 0.40 0.72 0.74 0.76 0.63 0.81 0.82 
Gallbladder 0.87 0.53 0.81 0.87 0.65 0.73 0.59 n.a. 
Kidney L 0.96 0.83 0.91 0.88 0.91 0.93 0.90 0.96 
Kidney R 0.96 0.81 0.93 0.89 0.92 n.a. 0.91 0.94 
Liver 0.94 0.91 0.95 0.96 0.95 0.95 0.96 0.97 
Pancreas 0.84 0.52 0.75 0.83 0.62 0.75 n.a. 0.76 
Spleen 0.96 0.80 0.93 0.95 0.92 0.95 n.a. 0.96 
Stomach 0.90 0.58 0.83 0.91 0.76 0.87 n.a. 0.95 
Abbreviations: L= left, R=right; n.a.= not available; bold numbers highlight the best results. 

Table 1.7-5 Review of DICE results for organs-at-risk in pelvic region 

 Chen et al.  [191]  
(trained and tested on same data) 

Men et al 
 [200] 

Liu et al. 
[201] 

Amjad et al 
[124] 

 WBNet ABAS AnatomyNet nnUnet DDCNN CNN DCNN 
Large Bowel 0.80 0.37 0.77 0.82 0.62 n.a. 0.87 
Small Bowel 0.82 0.41 0.78 0.81 0.65 0.83 0.84 
Femoral R 0.94 0.90 0.93 0.86 0.92 0.90 n.a. 
Femoral L 0.93 0.91 0.90 0.85 0.92 0.90 n.a. 
Bladder 0.93 0.62 0.89 0.92 0.93 0.92 0.96 
Rectum 0.80 0.61 0.76 0.76 n.a. 0.79 0.89 

    Abbreviations: L= left, R=right; n n.a.= not available; bold numbers highlight the best results 

Important to mention are results from auto-segmentation challenges, where teams had access to the 
same datasets and tested different network configurations [140,190]. Moreover, such competitions 
allowed other studies as well to benchmark their results on the same datasets. For thorax and HN region, 
DL-based methods’ results using international challenge data sets can be followed in Table 1.7-6 and Table 
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1.7-7, respectively. The 2017 AAPM thoracic AS challenge provided a benchmark dataset of 60 thoracic CT 
images, separated in 36, 12 and 12 for training, offline testing and online testing, respectively [190]. Out 
of the 5 OARs, the esophagus had the lowest DICE scores and the largest variations among the solutions. 
This can be explained by its difficult differentiation on CT images.  

Similarly, the 2015 MICCAI HN AS challenge provided a benchmark dataset of 40 CT images, divided 
into 25, 10 and 5 for training, off-site testing and on-site testing, respectively [140]. Among the 9 OARs 
contours, the lowest contour agreement was observed for the chiasma followed by the optical nerves. The 
MRI-aided method provided improved result particularly for these structures and additionally for 
submandibular glands. For the rest of the OARs (parotids, mandible and brainstem) the CT image contrast 
provided good organ differentiation with DICE>0.80 and HD95%<5mm.  

Table 1.7-6 DL-based methods using the 2017 AAPM Thoracic Auto-segmentation Challenge datasets; * participating 
teams at the auto-segmentation thorax challenge [176,190] 

Metric Organ DCNNN 
Team Elekta* 

3D U-Net 
[196] 

Multi-class CNN 
Team Mirada* 

2D ResNet 
Team 

Beaumont* 

3D and 2D  
U-Net Team 

WUSTL* 

U-Net  
GAN 
[189]  

DICE Esophagus 0.72 ± 0.10 0.72 ± 0.10 0.71 ± 0.12 0.61 ± 0.11 0.55 ± 0.20 0.75 ± 0.08 
 Heart 0.93 ± 0.02 0.93 ± 0.02 0.91 ± 0.02 0.92 ± 0.02 0.85 ± 0.04 0.87 ± 0.05 
 Lung L 0.97 ± 0.02 0.97 ± 0.02 0.98 ± 0.02 0.96 ± 0.03 0.95 ± 0.03 0.97 ± 0.01 
 Lung R 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.95 ± 0.05 0.96 ± 0.02 0.97 ± 0.01 

  Spinal Cord 0.88 ± 0.04 0.89 ± 0.04 0.87 ± 0.11 0.85 ± 0.04 0.83 ± 0.08 0.90 ± 0.04 
HD95% Esophagus 7.3 ± 10.31 8.71 ± 10.59 7.8 ± 8.17 8.0 ± 3.80 37.0 ± 26.88  4.52 ± 3.81 

 Heart 5.8 ± 1.98 6.57 ± 1.50 9.0 ± 4.29 8.8 ± 5.31 13.8 ± 5.49 4.58 ± 3.67 

 Lung L 2.9 ± 1.32 2.10 ± 0.94 2.3 ± 1.30 7.8 ± 19.13  4.4 ± 3.41 2.07 ± 1.93 

 Lung R 4.7 ± 2.50 3.96 ± 2.85 3.7 ± 2.08 14.5 ± 34.4 4.1 ± 2.11 2.50 ± 3.34 
  Spinal Cord 2.0 ± 0.37 1.89 ± 0.63 2.0 ± 1.15 2.3 ± 0.50 8.10 ± 10.72 1.19 ± 0.46  

Abbreviations: L= left, R=right; bold numbers highlight the best results 
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Table 1.7-7 DL-based methods using the 2015 MICCAI Head-and-Neck AS Challenge datasets [140,176] 

Metric Organ Shape model 
constrained FCN 

[140]  

2-stage U-
Net 

[202] 

AnatomyNet 
[186] 

DL-based 
[192]  

Synthetic 
MRI-aided 

[203] 

3D U-Net 
[184] 

3D-CNN 
[204] 

DICE Brainstem 0.87 ± 0.03 0.88 ± 0.02 0.87 ± 0.02 0.87 ± 0.03 0.91 ± 0.02 0.80 ± 0.08 n.a. 
  Chiasm 0.58 ± 0.1 0.45 ± 0.17 0.53 ± 0.15 0.62 ± 0.01 0.73 ± 0.11 n.a. 0.58 ± 0.17 
  Mandible 0.87 ± 0.03 0.93 ± 0.02 0.93 ± 0.02 0.95 ± 0.01 0.96 ± 0.01 0.94 ± 0.02 n.a. 
  Optic Nerve L 0.65 ± 0.05 0.74 ± 0.15 0.72 ± 0.06 0.75 ± 0.07 0.78 ± 0.09 0.72 ± 0.06 0.72 ± 0.08 
  Optic Nerve R 0.69 ± 0.05 0.74 ± 0.09 0.71 ± 0.1 0.725 ± 0.06 0.78 ± 0.11 0.70 ± 0.07 0.70 ± 0.09 

  Parotid L 0.84 ± 0.02 0.86 ± 0.02 0.88 ± 0.02 0.89 ± 0.02 0.88 ± 0.04 0.87 ± 0.03 n.a. 
  Parotid R 0.83 ± 0.02 0.85 ± 0.07 0.87 ± 0.04 0.88 ± 0.05 0.88 ± 0.06 0.85 ± 0.07 n.a. 
  SMG L 0.76 ± 0.06 0.76 ± 0.15 0.81 ± 0.04 0.82 ± 0.05 0.86 ± 0.08 0.76 ± 0.09 n.a. 
  SMG R 0.81 ± 0.06 0.73 ± 0.01 0.81 ± 0.04 0.82 ± 0.05 0.85 ± 0.01 0.78 ± 0.07 n.a. 
HD95% Brainstem 4.01 ± 0.93 2.01 ± 0.33 n.a. n.a. n.a. n.a. n.a. 
 (mm) Chiasm 2.17 ± 1.04 2.83 ± 1.42 n.a. n.a. n.a. n.a. 2.81 ± 1.56 
  Mandible 1.50 ± 0.32 1.26 ± 0.50 n.a. n.a. n.a. n.a. n.a. 
  Optic Nerve L 2.52 ± 1.04 2.53 ± 2.34 n.a. n.a. n.a. n.a. 2.33 ± 0.84 
  Optic Nerve R 2.90 ± 1.88 2.13 ± 2.45 n.a. n.a. n.a. n.a. 2.13 ± 0.96 
  Parotid L 3.97 ± 2.15 2.41 ± 0.54 n.a. n.a. n.a. n.a. n.a. 
  Parotid R 4.20 ± 1.27 2.93 ± 1.48 n.a. n.a. n.a. n.a. n.a. 
  SMG L 5.59 ± 3.93 2.86 ± 1.60 n.a. n.a. n.a. n.a. n.a. 
  SMG R 4.84 ± 1.67  3.44 ± 1.55 n.a. n.a. n.a. n.a. n.a. 

Abbreviations: L= left, R=right, SMG= submandibular gland; bold numbers highlight the best results 

Lastly, a review of commercially available AS solutions is summarized in Table 1.7-8, together with studies 
attesting their clinical validation. Majority of the study show of the superiority of DL-based solutions over 
the atlas-based algorithm, in both improved contour consistency through geometrical accuracy, and time 
savings when considering the manual corrections. For instance, Zabel et al. [205] quantified >50% 
compared to 20% time reduction when using a DL-based solution compared to an atlas-based solution for 
the contouring of the rectum and bladder. Similarly, for a set of 7 OARs in HN van Dijk et al. [143] has 
demonstrated significant time savings when using a DL solution compared to an atlas-based solution, 
especially when corrections were performed by a young observer. They also showed a potential reduction 
of >50% compared to the standard manual delineation. Another study presented the experience from 
clinical integration of three commercial AS solutions (e.g. ART-plan Annotate (Therapanacea, Paris, 
France), DLCExpert (Mirada Medical, Oxford, UK) and RayStation v9B (RaySearch Laboratories, Stockholm, 
Sweden)) in three centers in France [206]. Additionally, the paper presented state-of-the-art of DL 
solutions for medical image segmentations as well as recent recommendations on implementation, 
commissioning and QA of AI methods, proposed by the European Society of Radiation and Oncology 
(ESTRO) [207].The observed benefit of integrating DL contours in clinical practice, was reflected through 
objective measures such as DICE or Jaccard coefficient and subjective assessment upon their clinical 
acceptability performed by doctors. ART-plan Annotate solution used >600 data for model training 
depending on localization and provided OARs and target contours for male pelvis, thorax, breast, HN, 
digestive and the brain. From the experience at Léon Bérard Cancer Center (Lyon), most of the OARs 
contours in pelvis and breast region were 100% validated by doctors. However, for thorax and HN, only 
67% and 85% respectively were accepted by the experts. Regarding targets, the DL contours were 100% 
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accepted on the male pelvis and the breast but none were accepted on HN localization. The deployment 
of DLCExpert (>200 data for model training) at the European Hospital Georges Pompidou (Paris) resulted 
in 100% acceptance of the DL contours for OARs and targets on breast localization. At the Pasteur-
ONCORAD Clinic (Toulouse), the commissioning of RayStation v98 solution, trained on about 100 patient 
data, resulted in 100% validated OAR and target contours for the male pelvis region. Another positive 
outcome from implementation of these solutions was the harmonization of organs’ nomenclatures which 
may support creation of prospective databases, that are extremely valuable in the growing context of 
machine learning. They also highlighted the lack of shared experiences among centers and the necessity 
of understanding the AI basis in order to have a critical and constructive communication with the industry. 

 To be noted that one of the most important considerations when developing a DL-based solution is 
the collection of the data, that requires proper curation and pre-processing (e.g. data augmentation, image 
resizing, image cropping, image normalization) prior to training. Moreover, in supervised learning-based 
methods, a bias introduced by the physicians’ ground truth manual contours is to be expected. The 
computing power may also represent a limitation when training a model, therefore depending on the GPU 
power availability and the network design, some methods use the whole image as input, whereas others 
use 2D image-based approaches to reduce the computational costs. 3D feature information has also been 
exploited with the use of 2D kernels on multidirectional 2D images or ultimately with 3D patches as 
network input. A post-processing step is also often applied for the refinement (smoothing) of contour 
boundaries using morphological operations such as conditional random fields. GAN-based methods are 
expected to be used more in the future for penalizing implausible structures. Finally, the multi-organ class 
imbalance remains a continuous problem challenging the choice of an appropriate loss function to 
overcome the segmentation accuracy over a wide range of structures [208]. To increase the community 
awareness, challenges of data-limitation are well described in a survey on DL methods for medical image 
segmentation with few associated solutions in order to further inspire the efforts in this impactful area of 
research [209]. 

The two contributions presented in Chapter 3 and Chapter 4 of this thesis manuscript, present the 
results from evaluating the commercial DL model (ART-plan Annotate, Therapanacea, France) trained with 
multi-centric data and another non-commercial DL model trained exclusively with data from a single 
center, for the segmentation of OARs and CTVn levels on HN CT images.  
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Table 1.7-8 Commercial solutions for automatic segmentation 

Supplier Product Name Method Segmentation site TPS 
integrated 

Reference 

Accuray multiPlan 5.0 AB  HN, brain, pelvis, 
thorax 

Yes Chaney et al. (2004) [210] 

BrainLab iPlan AB HN, rain, pelvis, spine, 
thorax 

Yes Grosu et al. (2003) [211] 

DOSIsoft IMAgo 
 

AB HN, brain Yes Commowick et al. (2008) [212] 

Elekta ABAS 2.0 AB  HN, pelvis No Han et al. (2008) [159] 
Liu et al. (2016) [168] 

ADMIRE Hybrid AB HN No McDonald et al. (2021) [213] 
ADMIRE-DL DL-based HN, thorax No Yang et al. (2018) [190] 

McDonald et al. (2021) [213] 
MIM Software MIM Maestro 6+ AB HN No Hu et al. (2008) [125] 
 ProtégéAI  DL-based HN, prostate No Urago et al. (2021) [163] 
Mirada RTX AB HN, pelvis, thorax  No Gooding et al. (2013) [214] 
 DLCExpert DL-based HN No van Dijk et al. (2020) [143]  

Philips SPICE 9.8 AB model-based HN, abdomen, pelvis, 
thorax 

Yes Qazi et al. (2011) [169]  

RaySearch 
Laboratorie 

RayStation 4.0 AB model-based HN, abdomen, pelvis, 
thorax 

Yes Stewart et al. (2010) [215] 

DLS  
(Raystation 11B) 

DL-based HN, breast, abdomen, 
pelvis, thorax 

Yes - 

Varian Smart 
Segmentation 

AB HN, thorax, pelvis Yes Haas et al. (2008) [216] 
Zabel et al. (2021) [205]  

Velocity Velocity AI 3.0.1 AB model- based HN, brain, pelvis No Stapleford et al. (2010) [160]  
Therapanacea ARTplan-Annotate DL-based HN, thorax, abdomen 

pelvis 
No Ung et al. (2020) [217]  

Limbus AI  Limbus Contour DL-based HN, breast, thorax, 
abdomen pelvis 

No Wong et al. (2020) [218]  

Zabel et al. (2021) [205] 

Siemens 
 

Syngo.Via RT DL-based HN, thorax, abdomen 
pelvis 

No - 

RAD formation  AutoContour DL-based HN, thorax, abdomen, 
pelvis, brain 

No - 

MVISION  MVision AI DL-based HN, breast, thorax, 
abdomen, pelvis 

No - 

Abbreviations: AB = atlas-based, DL = deep learning, HN = head-and-neck 
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The goal in the RT treatment planning step is to determine the optimal irradiation parameters (number 
of beams or arcs, beam angles, shape of the collimators etc.) to achieve a desired dose distribution. 
Normally, the task is carried out by a human user on a dedicated TPS. Manual treatment planning is a 
labor-intensive task that implies interactive optimization, based on trial and error, to reach the best trade-
off between all dose-volume objectives. Moreover, it is strongly dependent on the planner’s skills and 
experience. The difficulty of a plan increases with more OARs accounted for in the optimization. This 
increases further the variation in plan quality results obtained between planners. Auto-planning
techniques have the potential to overcome these issues and reduce operator inconsistencies while 
shortening the time a planner would spend on manual optimization. The ultimate goal of auto-planning is
efficient generation of high-quality plans.

From the literature [219,220] and from RT solutions vendors, we can identify several categories of auto-
planning solutions: knowledge-based planning (KBP), protocol-based automatic interactive optimization 
(PB-AIO), multicriteria optimization (MCO) also known as multi-objective optimization, and DL methods.

Knowledge-based planning (KBP)

KBP relies on a database of prior treatment plans to predict the best achievable plan based on the 
anatomical information of the new patient. It can be atlas-based or model-based. In the atlas-based 
approach the knowledge from atlases is used to select the closest matching patient to give a better starting 
point of the inverse optimization [221–224]. An interesting work of Chanyavanich et al. presents a method 
of predicting starting parameters of the treatment machine using a data-base of prior fixed-field IMRT 
plans [224]. Further, the model-based approaches are able to build predictive models by using prior 
information about the relationship between anatomical and geometrical features from clinically 
acceptable plans. Dose-volume histograms (DVHs) can be used to create predictive site-specific models
based on similar contours and quality of prior treatment plans [225–247]. The limitation is that the DVHs 
are only predicted for the regions of interest (ROIs) that are delineated in the database. This means that 
other volumes which a human planner may also optimize to reduce dose, may not be considered. An 
alternative is voxel-based dose prediction where dose to individual voxels can be predicted from the prior 
plans [248–252]. For this approach the drawback is that the quality of the plans generated in the past 
directly impacts the plan quality for the new patients. 

Published studies on clinical implementation of KBP are via the use of the RapidPlan commercial 
solution from Varian Medical Systems. The results show equally or slightly better plan quality compared 
to manual planning with improved consistency and efficiency. Using KBP, Foy et al. [234] reported a time 
reduction by a factor of 6 in the planning of the VMAT for stereotactic body RT of the spine (from 1–1.5 h 
down to 10–15 min). Most studies are focused on single institution experience and results. However, 
Fogliata et al. [239] performed a study on esophageal cancer involving three centers with different dose 
protocols and demonstrated dosimetric improvements when compared to the reference data especially 
for the center that did not participate with data for training the KBP model. Similarly, other studies’ results 
highlight the potential benefit of a heterogeneous dataset, as well of outliers, in contributing to the model 
strength [224,253].

Protocol-based automatic interactive optimization

The PB-AIO approach mimics the iterative optimization steps of a human operator starting from a user-
defined template of parameters including beam configuration and planning goals for targets and OARs
[254–269]. The automatic solution will iteratively adjust the planning parameters to meet the required 
planning goals. One of the drawbacks of the method is that it is dependent on the experience of the 
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planner to define the set of settings and adequate protocol. Secondly, it is hard to judge if the resulting 
plans could potentially be further improved.  

Studies have reported results for the clinical implementation of the commercial PB-AIO solution 
AutoPlanning in Pinnacle3 TPS (Philips Radiation Oncology Systems, Fitchburg, WI) with either equivalent 
or superior quality compared to both IMRT and VMAT manual planning. Apart from evidence of time 
reduction [266], studies have also reported IOV reduction when PB-AIO auto-planning strategy was used 
[257]. Contrarily, certain studies were arguing the feasibility of fully automated PB-AIO, indicating 
situations where further manual optimization was still deemed necessary [265].  

Multicriteria optimization  

The core of the MCO approach is the concept of “pareto optimal solution” which represents a plan that 
can only be further improved with the cost of degrading at least one of the dose-volume objectives. There 
are two directions of this approach: posteriori and a priori.  

In the posteriori-MCO also called the “pareto surface based technique”, the system creates a database 
of plans (also called “pareto surface”) that satisfy different planning goals and where any change in dose 
to one organ results in a trade-off in another organ [91]–[104].This, allows the physician to explore the 
compromise between different planning goals and choose the preferred plan for the case. One of the 
method’s limitation is the computing resource power since there is an infinite number of pareto plans that 
can be generated. Moreover, the plan selection is totally operator-dependent, and it can become 
challenging especially when there are a large number of clinical objectives under consideration. Another 
limitation of posteriori-MCO method is that the pareto plans do not consider directly the machine 
parameter optimization, thus the chosen plan has to be converted into a deliverable plan using direct 
aperture optimization. This can translate into significant dosimetric differences that may require manual 
adjustments [275]. A commercial solution using posteriori-MCO was implemented clinically in RayStation 
TPS. All studies reported comparable or better plan quality compared to manual planning with benefit in 
time reduction up to 88min [273]. Chen et al. [280] used the DVH information from IMRT automatically 
generated plans in RayStation TPS, to optimize VMAT plans with shorter delivery times and less monitor 
units (MUs). They showed that most of the times the plan quality was conserved and particularly better 
results were observed for HN cases and hypo-fractionated prostate cases, whereas standard fractionated 
prostate cancer cases required further modification of the objectives’ or constraints’ weights [280]. In 
another study on lung cancer [273], evaluation of the plan quality between manual and MCO solution was 
conducted via a double blinded examination and concluded that clinicians preferred the automated plans 
in 8/10 cases, whereas the 2 situations chosen in the favor of the manual planning were due to better skin 
and spinal cord sparing but at the expense of higher esophagus dose. 

In the a priori-MCO approach, a single pareto-optimal plan is generated based on a wish-list with 
predefined clinical dose objectives and constraints [2,284–294]. Each objective and constraint have a 
priority order, and the automatically generated treatment plan contains clinically favorable trade-off 
between all the treatment goals. The idea of this method is to have a single wish-list per clinical protocol 
that provides consistent results over all the patients. Its limitation is that it is highly dependent on the 
experience of the person defining the wish-list.  

Erasmus-iCycle is an in-house developed a priori-MCO algorithm that was validated as beam fluence 
pre-optimizer for the Monaco TPS (Elekta AB, Stockholm, Sweden) after demonstrating superiority over 
manual planning in several clinical sites [287,295]. In a prospective study on HN cancer patients, the 
Erasmus-iCycle plans were preferred in 97% of the cases when compared to manually optimized plans 
[287]. An a priori-MCO solution fully integrated in Monaco TPS is not yet clinically available. Based on the 
Erasmus-iCycle algorithm, Elekta AB vendor developed the mCycle solution, and studies have been 
initiated to validate its clinical implementation. Two studies evaluated and confirmed the feasibility of 
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using the mCycle solution for plan adaptation on prostate and rectal cancer [289,290]. Although both 
studies reported a slight increase in the MUs in the automated plans, this had no impact on deliverability 
and clinical acceptability of the plans. The robustness of the wish-list has been demonstrated for VMAT 
planning of HN cancer patients, where a blind evaluation of 2 physicians confirmed the preference of 
mCycle plans over the manual ones [2]. This work represents the first contribution of this thesis study and 
will be detailed in the Chapter 2. 

Deep learning solutions 

DL-based solutions have also been investigated for auto-planning, where two approaches can be 
distinguished among studies: direct generation of fully 3D dose predictions or generation of fluence maps 
that can be converted into deliverable treatment plans by a commercial TPS. With respect to studies on 
HN cancer patients, dose distribution predictions were obtained either by using GAN [296] or U-net 
network [297]. Both approaches obtained realistic plans that better satisfied clinical criteria. Similarly, in 
other studies, in only few seconds, fluence maps were generated using GAN [298] or U-net network [299] 
with acceptable plan quality. This evidence holds great potential for clinical applications and real-time 
planning. A commercial DL solution was proposed by Raysearch Laboratories and its clinical feasibility was 
demonstrated on prostate [300] and breast [301] cancer localization.  

A summary table of commercially available solutions integrated in TPS with details on studies 
investigating their clinical implementation can be followed in Table 1.8-1. 
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Table 1.8-1 State-of-the-art of automated treatment planning solutions and their clinical validation studies per tumor 
localization and in chronological order 

Autoplanning 
Solution 

Technique/ 
method  

TPS Tumor sites References Year 

RapidPlanTM 
(commercial 
solution) 

KBP (DVH-
guidance) 

Eclipse TPS (Varian 
Medical Systems, 
Palo Alto, USA) 

HN  
 
 

Krayenbuehl et al.[247]  
Tol et al.[227] 
Fogliata et al.[246] 
Krayenbuehl et al.[256] 

2015 
2015 
2017 
2018 

Prostate  
 

Fogliata et al.[231] 
Yang et al.[228] 
Hussein et al.[230] 
Schubert et al.[229] 
Powis et al.[232] 

2014 
2015 
2016 
2017 
2017 

Breast Wang et al.[233] 2017 
Spinal metastasis Foy et al.[234] 2017 
Lung 
 

Fogliata et al.[231] 
Chin Snyder et al.[236] 
Delaney et al.[235] 

2014 
2016 
2017 

Upper GI 
 

Fogliata et al.[240] 
Fogliata et al.[239] 
Habraken et al.[238] 

2014 
2015 
2017 

AutoPlanning 
(commercial 
solution) 

PB-AIO Pinnacle3 TPS 
(Philips Radiation 
Oncology Systems, 
Fitchburg, WI) 

HN 
 

Hassen et al.[266]  
Hazzel et al.[265] 
Gintz et al.[269]  
Speer et al.[267] 
Krusters et al.[268] 
Krayenbuehl et al.[256] 

2016 
2016 
2016 
2017 
2017 
2018 

Prostate Kanabu et al.[257] 2017 
Esophagus 
 

Xiadong et al.[258] 
Hansen et al.[259] 

2017 
2017 

Brain  
 

Krayenbuehl et al.[255] 
Wang et al.[260] 

2017 
2017 

Rectal Song et al.[261] 2016 
RayStation  
(commercial 
solution) 

posteriori- 
MCO  

RayStation TPS, 
Eclipse TPS 

HN 
 

Chen et al.[280] 
Kierkels et al.[281] 
Krayenbuehl et al.[256] 

2014 
2015 
2018 

Prostate Wala et al.[283] 
McGarry et al.[272] 
Chen et al.[280] 
Ghandour et al.[271] 
Müller et al.[282] 

2013 
2014 
2014 
2015 
2017 

Brain Craft et al.[279] 
Müller et al.[282] 

2010 
2017 

Pancreatic Craft et al.[279] 2010 
Lung  Kamran et al.[273] 2016 
Lower GI  Rønde et al.[274]  2017 
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 DL methods Raystation TPS Breast 
prostate 

Bakx et al.[301] 
Nilsson et al.[300] 

2021 
2021 

Erasmus-
iCycle  
 

a priori-MCO Combined with  
Monaco TPS (Elekta 
AB, Stockholm, 
Sweden) 

HN Voet et al. [287]  2013 
Prostate 
 

Voet et al.[292] 
Buschmann et al.[291] 

2014 
2018 

Gastric cancer Sharfo et al.[294] 2018 
Lung Della Gala et al.[285] 2017 
Spinal metastases Buergy et al.[293] 2017 
Cervical Sharfo et al.[286] 2016 

mCycle 
(not yet 
commercially 
available) 

a priori-MCO Monaco TPS (Elekta 
AB, Stockholm, 
Sweden) 

HN 
Prostate 
Rectal  

Biston et al. [2] 
Naccarato et al.[289] 
Jagt et al. [290] 

2021 
2022 
2022 

Abbreviations: HN=head-and-neck, GI=gastro-intestinal  
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The use of IGRT methods have raised the interest in plan adaptation based on daily images of the 
patient. However, in order to be used for advanced tasks such as dose calculation and adaptive treatment 
planning, the new patient image must contain correlation between pixel intensity information quantified 
in HU and ED which characterize the tissues (patient anatomy). The CT scan is the only patient image 
holding a direct correlation between HU and ED, and for that reason remains the patient reference image. 
At the same time, MRI images offer better soft tissue differentiation and therefore, they became the focus 
of many research groups aiming to generate sCT from MRI images and thus making them feasible for dose 
calculations [302]. The same interest goes towards the CBCT images which are frequently (daily or weekly) 
used in IGRT for accurate patient set up. The challenge of HU inaccuracy comes along other limitations 
related to CBCT images namely: image artefacts, scatter, poor soft-tissue differentiation and limited field 
of view. Generation of sCT images from CBCT scans is part of this thesis focus, notably the 4th contribution
(Chapter 5), and therefore will be further elaborated with regards to HN cancer patients.

Initially, several methods have been proposed to reduce the scatter, metal, and beam-hardening 
artifacts on CBCT images [303–306]. Moreover, DL methods such as CNN have also been explored for 
image quality improvement [307,308]. Furthermore, rather than focusing on the correction for a specific 
artefact, methods were proposed for direct generation of sCT from CBCT images, thus enabling their use 
for both patient positioning and dose calculations [309,310]. QA guidelines and recommendations have 
recently been published for the validation of sCT solutions prior to clinical implementation [207]. To 
quantify the accuracy of the HU numbers, metrics such as Mean Error (ME), Mean Absolute Error (MAE), 
Peak signal to noise rating (PSNR) or structural similarity metrics (SSIM) can be used. Additionally, DICE 
coefficient can be used to assess the overlap of the bony structures which is relevant for both patient 
positioning and dose calculations. Furthermore, accuracy of radiation doses must be assessed by 
evaluating DVH points together with gamma index analysis that quantifies the dose differences in every 
image point. A table gathering the quantitative metrics for sCT image evaluation is summarized in Table 
1.10-1.

From literature, four main approaches of sCT generation with varied complexity can be identified that 
have been applied to HN localization. Their principle, advantages, disadvantages and associated references 
are summarized in Table 1.10-2. The simplest method, is the use of CBCT-specific HU-ED conversion curve 
(Figure 1.10-1). Such a correspondence curve can be established either from phantom images, following 
the CT scan calibration process with several known ED inserts, or from one or multiple patient CBCT 
images, resulting in a patient-specific calibration curve. The established HU-ED curve must be applied to 
the CBCT image so dose calculation can be performed. Additionally, due to limited FOV of the CBCT images, 
water equivalent density should be assigned where patient information is missing so that radiation dose 
deposition can be accounted for. 
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Figure 1.10-1 Establishment of CBCT-specific HU-ED curve (adapted from [309])

The study conducted by Giacometti et al. [311] included evaluation on 5 HN patients and demonstrated 
dose differences up to 5.4% when the CT standard calibration curve was applied on the CBCT image and 
3.9% for a site-specific CBCT calibration curve. However, the gamma analysis (2%/0.1mm, 50% threshold) 
yielded >94% agreement to the reference dose distributions. Similarly, Barateau et al. [310] evaluated a 
HU-ED density curve from phantom measurements on 44 HN patients and obtained a MAE of 266.6 HU 
and a mean 3D gamma pass rate (2%/2mm, 30% dose threshold) of 91%. Contrarily, a patient specific 
calibration curve approach was evaluated by Macfarlane et al. [312] on 15 HN patients and resulted in 
average dose metric differences of -0.3% and average gamma pass rates of 95%. 

Secondly, the bulk density assignment method (DAM) can be performed based on one or multiple tissue 
classes (water, bone, air, soft tissue, fat etc.) or based on several regions of interest (ROI) such that the ED
or HU number information from reference CT is applied on the CBCT image (Figure 1.10-2). This involves 
an initial segmentation step on the CBCT image to create the volume that will correspond to the new 
anatomy of the day. For the density affectation step, several approaches can be followed: based on data 
from literature, based on a group of patients or individual patient CT scan. From literature, Giacommeti et 
al. [311] evaluated a density override approach based on 7 densities (air, lung, adipose, muscle, soft and 
dense bone and metal) segmented on both reference CT and the CBCT image. The HU from the CT were 
introduced on the correspondent segments on the CBCT, leading to dose differences up to 3.2% and 
gamma pass rates >95%. The authors mention that this override method was found to be the most labor-
intensive compared to other techniques, although some steps were automatized. Similarly, Barateau et al.
[310] used a 3-class density override (bone, air and soft tissue), where CBCT and CT segmentations were 
based on HU thresholding. The obtained pseudo-CT images had a MAE of 113.2 HU and provided dose 
distributions similar to the reference with gamma pass rates of 98%. The other study, MacFarlane et al.
[312], quantified an average dose metric difference of -1.1% and gamma pass rate of 94.4% for a density 
override method that was performed based on CT-CBCT rigid registration. More explicit, the anatomical 
differences observed on the CBCT were accounted for on the CT image and water or air equivalent 
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densities were assigned accordingly in the regions where the soft tissue had become air (e.g. from weight 
loss) or the air cavity has been replaced by soft tissue (e.g. closed air cavity). 

Figure 1.10-2 Density affectation method (adapted from [309])

Furthermore, DIR algorithms can be used to deform the reference CT to the CBCT image, while keeping 
the appropriate CT HU numbers (Figure 1.10-3). The deformation field obtained through the image 
registration is applied to further deform the CT image and the associated contours, if desired. The new 
image will hold accurate HU values from the CT scan, and the same calibration curve used for the CT will 
be applied to this pseudo-CT to enable dose calculation. Results from literature show overall better dose 
accuracy for the DIR methods compared to the forth mention, HU-ED or DAM methods [310–312]. A MAE 
of 95.5 HU has been reported for the DIR method used in [310], which was better than for the HU-ED and 
DAM method in the study. Similarly, an evaluation conducted for Elastix and Niftireg DIR algorithms 
resulted in accurate dose recalculations with <1% dose error [313]. The main difficulty of this method 
remains the limited FOV of the CBCT image which for the HN cancer patients results in truncation of the 
shoulder region. 

Figure 1.10-3 Deformable image registration between CT and CBCT images (adapted from [309])
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Ultimately, DL methods offer the attractive possibility of directly generating sCT images with CT image 
quality in only few seconds. However, more work is required in the training phase. DL models can be 
trained either through supervised learning using CNNs and paired CT-CBCT training samples (Figure 
1.10-4a), or through unsupervised learning using GAN architectures and unpaired CBCT and CT images for 
training (Figure 1.10-4b). The second method becomes more interesting when such paired CT-CBCT images 
are not available. By using GAN methods, unpaired data can be used to train generators that will generate 
images from the CBCT domain to the CT image domain, and discriminators that will be used to distinguish 
sCT images from real CT data based on the image distribution. In cycleGAN, 2 generator networks are 
trained in order to generate sCT images from CBCT to CT image domain and synthetic CBCT (sCBCT) images 
from CT to CBCT image domain. Then, 2 discriminators will be used to distinguish between the sCT and 
real CT data and between the sCBCT and the real CBCT images. Note that in this configuration, the sCBCT 
images are only a by-product used to calculate adversarial losses and only the CBCT to sCT generator will 
be used for further deployment. Based on this feedback loop, the accuracy of the generator networks is 
increased.

Figure 1.10-4 DL models training for synthetic-CT image generation

Using the supervised training approach, one study reported results from a 2D U-Net neural network 
trained on 50 CBCT/CT paired images of HN cancer patients [314]. Compared with the original CBCT 
images, the range of MAE between reference CT and the sCT images improved from (60; 120) HU to (6;
27) HU. Compared with the CT reference, the average DVH dose metric differences were 0.2% and the 
average gamma pass rates (1%/1mm) were 95.5%. The DCNN model demonstrated higher accuracy of 
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dose calculations when compared with that on the original CBCT images without any corrections. Another 
study that used U-net network architecture (with 37 HN patients for training), achieved similar accuracy 
(average MAE of 19 HU) and better to that of the CBCT images (MAE of 44 HU) [315]. However, no 
dosimetric study was performed to assess the dose-calculation feasibility.  

Using unsupervised training, 4 studies on HN patients were found [82,310,316,317]. Barateau et al. 
[310] trained a GAN network using 2D slices from 30 paired datasets of HN patients and obtained sCT 
images with an average MAE of 82 HU which was significantly better compared with the other methods in 
the study (adapted HU-ED curve, DAM and DIR). While dose differences were not significant when 
compared to the other methods, mean gamma pass (2%/2 mm) rates of 98.1% were obtained by the DL 
method which were slightly lower than the ones obtained with the DIR method (98.8%). Similarily, Liang 
et al. generated sCT images using a cycle-consistent GAN (CycleGAN) framework (81 CBCT images for 
training) and obtained decreased MAE from 70 HU to 30 HU when compared with the original CBCT images 
[82]. Moreover, the gamma pass rates (1%/1mm) demonstrated higher accuracy of dose distributions 
calculated on sCT (96.26%) compared to CBCT images (86.92%). Additionally, a phantom study was 
conducted, to compare CycleGAN performance against two other unsupervised learning methods, namely 
deep convolutional generative adversarial network (DCGAN) and progressive growing of GAN (PGGAN), as 
well as a DIR algorithm. The results from similarity measures demonstrated the superiority of the 
CycleGAN method. Similarly, another study evaluated the performance of 3 different DL solutions 
(CycleGAN, Pix2pix and U-Net) based on supervised and unsupervised learning with a training database of 
135 patients [316]. The image accuracy was quantified on a cohort of 34 patients based on MAE, RMSE, 
PSNR and SSIM and the dose calculation accuracy was assessed by comparing DVH and gamma passing 
rates. The results showed that all the sCT achieved better evaluation metrics than those of original CBCT, 
while the CycleGAN model was the best among the 3 methods (MAE of 24 HU and gamma rate of 97% for 
2%/2mm criteria). Similar performance of a cycleGAN solution was demonstrated by Eckl et al. [317] on 3 
localizations among which also the HN. The mean dosimetric differences of the target volumes were 
<1.7%. and the gamma pass rates >97.8% in all the cases.  

To conclude, the limitations of HU-ED method is related to the CBCT image artefacts and patient 
scattering. While DAM methods may be used to compensate for this issue, the resulted sCT image will 
contain homogeneous tissues densities, and their definition depends on the accuracy of class 
segmentation. Ultimately DIR and DL methods seem to be the most attractive in terms of dose accuracy 
and computational time. Finally, all the CBCT-based dose calculation methods detailed above hold great 
importance for dose monitoring and treatment plan adaptation. Efforts remain needed for defining the 
thresholds for ART based on quantitative evaluation on daily CBCT images. A summary of studies proposing 
DL-based solutions for sCT generation from CBCT on HN localization can be followed in Table 1.10-3. 

The last contribution of this thesis manuscript describes results of evaluating a DL solution trained with 
unpaired CBCT images from multiple centers and compare its image quality and dosimetric accuracy 
against previously described methods (adapted HU-ED curve, DAM, DIR).  
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In this clinical context, this thesis proposes to evaluate several automated solutions for different steps 
in the RT treatment workflow of HN cancer patients, that can enable the implementation of ART for this 
localization. The contributions of the work were divided into four axes:

1. Automatic treatment planning
We evaluated the quality of HN treatment plans when using an auto-planning solution vs 
manual VMAT and TomoTherapy treatment plans. 

2. Automatic segmentation for OARs
We compared 4 atlas-based and 2 DL automatic segmentation solutions for the
delineation of 10 OARs typically used in the treatment of HN cancers
We evaluated their performance with regards to resource demand, geometrical accuracy, 
the time needed for manual corrections and dosimetric impact on RT dose distributions 
calculated using auto-planning. 

3. Automatic segmentation for CTVn
We compared the same 6 automatic segmentation solutions for the delineation of three 
lymph node levels (CTVn) in HN that usually are irradiated as secondary targets 
We evaluated their performance with regards to resource demand, geometrical accuracy, 
the time needed for manual corrections and dosimetric impact on RT dose distributions 
calculated using auto-planning. 

4. CBCT-based dose calculations for ART
We compared different methods for generating synthetic CT from CBCT images
We evaluated their potential application for ART in terms of dose calculation accuracy and 
image quality

An overview of the thesis objectives in function of the four axes is illustrated in Figure 1.11-1 together 
with their associated chapter in this manuscript.

Figure 1.11-1 The objectives of the PhD study
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CChapter 2. Evaluation of fully automated a priori MCO 
treatment planning in VMAT for head-and-neck cancer  

 
The first investigation of adaptive methods for HN cancer treatment, was the evaluation of the 

performance of an a priori multicriteria plan optimization algorithm. The objective of the study was to 
investigate the research version of mCycle auto-planning solution (Elekta AB) against conventional manual 
planning using VMAT or Helical Tomotherapy (HT) for a cohort of HN patients. The results are presented 
in the article below (Biston et al. [2]) which has been published in the European Journal of Medical Physics 
in 2021. In this work, I contributed in the analysis of the results.  

The clinical validation of the mCycle solution was done in several steps:  
1. Plan quality index (PQI) calculated as a weighted sum of dose-volume objectives and constraints  
2. Blind evaluation of manual vs automated plans done by 2 observers (low/high impact differences) 
3. Deliverability of the plans including: number of control points (CP), number of MUs, modulation 

complexity score (MCS), and measured delivery times.  
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In this study, the performance of the mCycle auto-planning solution was evaluated against manually 
optimized VMAT or HT plans. The comparison was performed based on PQIs calculations, blinded 
evaluation by 2 skilled physicians, number of CP, number of MUs, MCS, and QA measurements. Based on 
a cohort of 14 nasopharyngeal carcinomas (upper-HN) and 14 “middle-lower indications” (lower-HN), the 
superiority of mCycle solution was demonstrated. Moreover, mCycle plans were considered better than 
manual plans in 75% of the cases. This result is clinically meaningful because manual optimization of a 
complex HN case requires at least 3-4 optimizations and takes considerably longer time (>2h) when 
compared to the automatic solution proposed (<1h). Moreover, a user-free solution enables increased 
consistency among planners. Another big advantage of using mCycle solution was that it allowed better 
sparing of the OARs while maintaining the desired coverage to the PTVs. This was most of the time the 
reason why it was preferred when compared to manual plans. As a consequence, mCycle plans had higher 
complexity compared to manual VMAT plans, which significantly increased the delivery time, however 
without any negative impact on the QA measurements. 

In my opinion, this evidence motivates the clinical integration of auto-planning solutions for complex 
cases such as HN, where better OARs sparing can be achieved by automatic iterations than by a human 
operator. Nevertheless, if further improvements of the plan are wanted, the plan proposed by mCycle may 
be a good starting point for additional adjustments. It must be mentioned that an excessive amount of 
time is required to have a robust wish-list and that the relatively long computational time remains a 
limitation for ART. To get a robust wish-list, an intensive iterative tuning process must be made that 
involves a collaborative work between the team of clinicians for deciding the priority order of the different 
functions and dose objectives. The complexity of the task increases with the number of critical OARs 
considered, and few iterations are required in order to well balance the dose objectives and constraints. 
Nevertheless, once validated for a clinical protocol and for a localization, it can be quickly adapted to 
another dose protocol having similar dose constraints (i.e. HN localization with 3 PTV dose levels). 

As future perspectives, Elekta company is working on providing a faster auto-planning solution (<15min 
for HN planning) which will open doors for the ART for HN cancer patients. However, manual delineation 
of organs on the anatomy of the day is still a limitation that challenges the promising results of AS solutions. 
This topic will be further discussed in the next two chapters of the thesis. 
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CChapterr 3.. Comparisonn off atlas-basedd andd deepp learningg 
methodss forr organss att riskk delineationn onn head-and-neckk CTT 
imagess usingg ann automatedd treatmentt planningg systemm 

This chapter represents the work of an article that has been published in the Radiotherapy and Oncology 
Journal in November 2022 [3]. The objective was to evaluate and compare the performances of different 
AS methods for OARs segmentation on HN CT images. 

Background and purpose: To investigate the performance of head-and-neck (HN) organs-at-risk (OAR) 
automatic segmentation (AS) using four atlas-based (ABAS) and two deep learning (DL) solutions.

Material and Methods: All patients underwent iodine contrast-enhanced planning CT. Fourteen OAR 
were manually delineated. DL.1 and DL.2 solutions were trained with 63 mono-centric patients and >1000 
multi-centric patients, respectively. Ten and 15 patients with varied anatomies were selected for the atlas 
library and for testing, respectively. The evaluation was based on geometric indices (DICE coefficient and 
95th percentile-Hausdorff Distance (HD95%), time needed for manual corrections and clinical dosimetric 
endpoints obtained using automated treatment planning. 

Results: Both DICE and HD95% results indicated that DL algorithms generally performed better 
compared with ABAS algorithms for automatic segmentation of HN OAR. However, the hybrid-ABAS 
(ABAS.3) algorithm sometimes provided the highest agreement to the reference contours compared with 
the 2 DL. Compared with DL.2 and ABAS.3, DL.1 contours were the fastest to correct. For the 3 solutions, 
the differences in dose distributions obtained using AS contours and AS+manually corrected contours were 
not statistically significant. High dose differences could be observed when OAR contours were at short 
distances to the targets. However, this was not always interrelated.

Conclusion: DL methods generally showed higher delineation accuracy compared with ABAS methods 
for AS segmentation of HN OAR. Most ABAS contours had high conformity to the reference but were more 
time consuming than DL algorithms, especially when considering the computing time and the time spent 
on manual corrections. 

Manual contouring of organs-at-risk (OAR) is a time-consuming task that suffers from large intra- and 
inter-observer variations (IOV), especially for HN cancer patients, because of the complex anatomy and 
the number of OARs [26,127,128,318]. Contour variations may also result in important dosimetric 
differences [142]. Therefore, automatic segmentation (AS) methods are strongly sought after to increase 
contouring accuracy, improve the inter-observer variability, reduce delineation time, and facilitate 
treatment plan adaptation [132,133].

Among the different methods, atlas-based segmentation (ABAS) uses one or more representative 
patients with carefully delineated OAR as reference atlas library for contouring new patients [152]. Those 
methods are widely spread because they require minimum of resources, but they do have several 
drawbacks: atlas selection strategy (single vs multi-atlas) [152]; performance plateau reached after 10-20 
atlases [153]; poor performance for small and low contrast soft tissue structures [154]; increased 
computational time with each added atlas [155].

Data from multiple atlases (multi-ABAS) can be combined with the help of a fusion algorithm in order 
to reduce the risk of anatomical variability between the atlas and the new patient [156]. Additionally, 
hybrid approaches are developed to combine multi-ABAS with machine learning features [169,170,172–
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174]. Despite a higher computational time, multi-ABAS studies have consistently demonstrated improved 
conformity to the reference contours over the single atlas methods, with consequent reduction of the 
post-editing time [157,319]. By adding image intensity information, other studies have shown improved 
accuracy for model-based methods particularly on large organs such as brainstem and spinal cord but 
lacking precision for tiny structures like cochlea [133,169,172,173].

Another method issued from AI research and challenging ABAS is the use of deep learning (DL) 
techniques [132–134,143,163,175,191,320]. DL contouring typically implies the training of a convolutional 
neural network (CNN) directly from a set of annotated reference data. Although the training phase 
requires excessive GPU computing power and work in data gathering and curation, once trained, the 
segmentation is very fast. Different network architectures are continuously investigated to reach the best 
predictions for multiple organ segmentation. While some models are accurate on most volumes, they may 
have difficulties in segmenting small volumes such as optical nerves or cochlea, or organs with low image 
contrast such as constrictor muscles. Comparison between different DL models is rather difficult due to
differences in the data sets used. From the few studies analyzing the performance of different DL models 
trained and tested on the same data sets, Chen et al. examined one multi-ABAS and three similar DL 
models following U-Net-like network architectures with distinctive differences in the configuration and 
loss functions [191]. While nnU-net [187] is a self-configuring network based on the training dataset, 
AnatomyNet [186] follows a defined scheme with squeeze-and-excitation residual blocks for better 
feature representation and a combination of two loss functions (DICE and Focal Loss). By using Ua-Net
[192] for the HN model, that first performs an OAR detection module and then considers image features 
only within the detected regions, WBNet was superior to the other methods for most organs. Apart from 
the in-house developed models, several commercially available solutions have reported good agreement 
with physicians’ manual contours and considerable time savings on the delineation task
[143,163,206,217,218].

Most studies showed that DL methods outperformed ABAS methods [143,163,191]. However, there is 
still room for improvement in the AS of computed tomography (CT) images for small organs or with limited 
image contrast such as optic nerves, optic chiasm or cochlea [134,154,191,218]. Generally, AS methods 
comparisons are based on geometric indices calculations only (DICE; HD) to compare the volume overlap 
between the reference and the automatically generated contour [135]. However, it is highly 
recommended to perform additionally a dosimetric evaluation by generating treatment plans with the AS 
contours [131,133,144,145]. Nevertheless, this involves excessive time in generating treatment plans, and 
may also introduce inter or intra-planner variability [321,322].

In this context, the objective of the present study was to evaluate the performances of 4 atlas-based 
algorithms and 2 DL solutions for the AS of 14 HN OAR. Three multi-ABAS algorithms and one DL solution 
are commercially available while one hybrid-ABAS algorithm and one center-specific DL solution were 
investigated for the first time on HN CT images. All six solutions were evaluated based on geometrical 
accuracy and computational time. The time spent for correcting the contours was measured for the most 
accurate three AS methods and an auto-planning solution based on a priori multicriteria optimization 
(MCO) algorithm was used for the first time to derive doses from AS contours with and without manual 
correction.

Patient data

Seventy-eight non-operated HN cancer patients treated with radiation therapy between 2018 and 2021 
and who underwent iodine contrast-enhanced planning CT, were selected for this study, which was 
approved by the hospital ethics committee. The contrast agent protocol followed a 2-phase administration 
of 90mL iodine solution of 2mL/s with 45s pause in between 2 doses of 45mL. The CT scan acquisition was
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done 10s after the second injection. Fourteen OAR (i.e. parotids, submandibular glands, oral cavity, 
constrictor muscle, larynx, esophagus, trachea, thyroid, eyes, optical nerves, cochlea, brainstem, spinal 
cord, mandible) were manually delineated by a single expert physician (>30 years of experience), on 
512x512 and 2mm-thick CT slices following HN delineation guidelines [26]. An overview of the study design 
is provided in Figure 3.3-1. For the multi-ABAS approach, 10 patients from this database were selected 
based on their body mass index (BMI) (from 18.9 to 30.7) to form a heterogeneous library of atlases with 
various representative patient anatomies. The same 10 atlases were used to create a library in MIM-
Maestro (MIM Software; Cleveland, USA) and in research version of the ADMIRE software (ADMIREv3.41, 
Elekta AB; Stockholm, Sweden). A mono-centric DL.1 model was trained using 63 patients with the same 
set of OAR excluding optical nerves and cochlea. Conversely, DL.2 model was trained on a large database 
of patients (>1000) collected from multiple centers including ours. Fifteen patients having a BMI ranging 
from 12.1 to 34.7 were reserved for the testing phase. Characteristics of the test cohort are detailed in
Table 3.3-1. 

Figure 3.3-1 Overview of the study design and performance evaluation methods; OAR = organs-at-risk, HD95%=95th

percentile-Hausdorff Distance; * indicates the OAR that were not segmented by certain methods; dose = difference 
between the reference plan created with corrected OAR contours and the plan created with AS contours only;

Multi-ABAS solutions (N= 10 atlases)

Non-commercial solution
ABAS.3 Random Forest (hybrid)
(ADMIREv3.41; Elekta AB, Stockholm)
*did not segment optical nerves and cochlea

Commercial solutions
ABAS.1 STAPLE (Elekta AB, Stockholm)
ABAS.2 Patch Fusion (Elekta AB, Stockholm)
ABAS.4 Majority voting (MIM Software Inc., Cleveland, OH)

Deep learning models 

Non-commercial solution
(N=63, mono-centric)

DL.1 ADMIRE-DL (ADMIREv3.41; Elekta AB, Stockholm)
*did not segment optical nerves and cochlea

Commercial solution
(N>1000, multi-centric)

DL.2 ART-plan Annotate (Therapanacea, France)
*did not segment constrictor muscle

Performance evaluation (N=15 patients)

14 OARs
Geometric evaluation (All 6 methods)

DICE 
HD95%

Statistical tests: 
Kruskal-Wallis
Post-hoc Dunn’s test

• Post-hoc Dunn’s test

10 OAR
Geometric and dosimetric evaluation

(ABAS.3, DL.1, DL.2)

Manual correction time: dosimetrist+physician
DICE and HD95% after corrections 

dose
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Table 3.3-1 Characteristics of the testing cohort used for evaluation of the AS solutions 

 Tumor localization TNM BMI Gender Age 
Patient 1 Oral cavity T4aN0M0 24.1 M 88Y 
Patient 2 Hypopharynx T3N2aM0 12.1 M 57Y 
Patient 3 Nasal cavity T2N0M0 31 F 83Y 
Patient 4 Tonsils T2N0M0 20.8 M 75Y 
Patient 5 Hypopharynx T0N3M0 24 M 45Y 
Patient 6 Rhinopharynx T3N1M0 19 F 58Y 
Patient 7 Rhinopharynx T3N0M0 19.8 F 69Y 
Patient 8 Rhinopharynx T2N2M0 21.4 F 71Y 
Patient 9 Hypopharynx T1N1M0 23.4 M 75Y 

Patient 10 Larynx T2N0M0 30.4 M 60Y 
Patient 11 Tonsils T2N0M0 24 F 69Y 
Patient 12 Unilateral ganglion T4N3M1 34.7 M 54Y 
Patient 13 Parapharynx T2N1M0 25.5 M 65Y 
Patient 14 Larynx T4aN0M0 21.5 M 58Y 
Patient 15 Hypopharynx T4bN0M0 19 M 75Y 

Multi-ABAS and DL methodologies 

Three multi-ABAS solutions integrated in the research version of Monaco TPS [323] (Monaco 5.59.11 
with ADMIREv.3.41) and another one available in MIM-Maestro (MIM Software Inc., Cleveland, OH) were 
investigated: 

 ABAS.1: STAPLE consists in estimating the optimal combination of the atlases segmentations 
by weighting each segmentation upon the estimated performance level based on expectation-
maximization algorithm [156]. 

 ABAS.2: Patch Fusion algorithm computes the final probability of a voxel to belong to a 
structure as a weighted average of the atlases’ contours based on voxel intensity information 
[165]. 

 ABAS.3: Random Forest (RF) is a supervised learning algorithm which constructs a voxel 
classifier for each structure using the registered atlases as training data [174].  

 ABAS.4: Majority voting (MIM) [162]. 
For the ADMIRE software, out of the 10 atlases used, a reference patient was selected for each test 

patient based on the closest BMI of the atlas and the underlying patient. No individual atlas selection was 
required for MIM, but a general template scan (patient having an anatomy close to the mean BMI of the 
atlas cohort) was registered with all the atlases in the library. 

Two DL models were investigated: 
 DL.1: ADMIRE-DL (ADMIREv.3.41, Elekta AB, Stockholm) trained with N=63 patients from one 

center. It is a fully connected deep convolutional neural network (DCNN) with 3D U-net 
architecture and short-range residual connections developed from the ResUnet3D network 
[124]. While the encoding part is responsible for learning multi-scale multi-dimensional image 
features in multiple levels, the combination of long and short-range connections allows the 
decoding part to preserve the high-resolution image features and produce a label map 
corresponding to the input image size [124,190].  
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 DL.2: ART-plan Annotate (Therapanacea, France) trained on a large database with N>1000 
patients obtained from several clinical sites. The model uses anatomy preserving DL ensemble 
networks that first detects organs through DL-based registration to a collection of whole-body 
annotated volumes. Then, the delineation of each anatomical structure is performed through 
an original combination of data-driven and decisional artificial intelligence that enforces 
anatomical consistency [206,217]. 

Geometric evaluation of auto-segmentation solutions 

To quantitatively evaluate the segmentation results, we used two geometric indices: volumetric DICE 
and 95thpercentile-Hausdorff distance (HD95%) [135]. DICE is a measure of the volumetric overlap between 
the ground truth contour (A) and the predicted segmentation (B), leading to a value between 0 (no overlap) 
and 1 (perfect overlap): =  | || | | |   

However, DICE is limited to the pixels overlap without considering the shape differences. Therefore, a 
second metric was used to indicate the magnitude of mislocalization of the prediction. The HD is a 
boundary-based metric that measures the surface distances between the predicted contour and the 
ground truth segmentation. To eliminate the possible outliers, we used HD95%: 

 % = %[ ( , ), ( , )] ( , ) = max min  

where d(A,B) is the directed HD and A and B are the set of non-zero pixels in the images. HD metric has its 
own limitation that does not focus on the object itself therefore does not punish a prediction with a large 
hole inside or with a spotted pattern within the contour [44]. For the elongated organs (i.e., esophagus, 
trachea, constrictor muscle and spinal cord) the results were calculated only on the slices where both 
contours were present to avoid situations where the reference ground truth was missing. 

Time needed for manual corrections 

Three of the automatic solutions (ABAS.3, DL.1 and DL.2) were clinically reviewed and corrected by a 
dosimetrist and validated by a skilled physician on Monaco contouring workstation following the regular 
clinical routine. The time spent on correcting and validating each structure was recorded independently. 

Dosimetric evaluation – automatic treatment plans 

For each patient, and for ABAS.3, DL.1 and DL.2 solutions, 2 different plans were generated: one using 
the AS contours and another one using AS+manually corrected contours. The differences in dose 
distributions were then evaluated on the corrected contours. In total, 90 VMAT treatment plans were 
calculated with mCycle auto-planning solution (Monaco 5.59.11, Elekta AB, Stockholm). The software uses 
a lexicographic MCO which has been extensively described before [2]. All plans were performed using two 
360° arcs. A simultaneous integrated boost technique was used for delivering 70Gy to the planned target 
volume (PTV) associated to the primary tumor and 54.25Gy to the PTV associated to prophylactic nodal 
target, in 35 fractions of 2Gy. Clinically relevant dosimetric endpoints for target volumes (V95%) and OAR 
(Dmean, D2%, D5%) were considered upon the clinical protocol and according to the recommendations of the 
French Society of Radiation Oncology [25]. 
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Statistical analysis 

Per organ and per algorithm, statistical differences between methods were assessed using the non-
parametric Kruskal-Wallis test. Subsequently, to detect between which pairs of algorithms the differences 
were significant, the post-hoc Dunn’s test with Bonferroni correction was applied. Similarly, the 
differences between radiotherapy doses derived from AS contours with or without corrections were tested 
for statistical significance. P-values <0.05 were considered significant. The statistical analysis was 
performed using the libraries (scipy 1.6 and scikit-posthocs 0.7) in Python 3.8. 

Computational time per patient was in average 10.3 ± 1.6min, 10.5 ± 0.6min and 12.1 ± 0.6min for 
ABAS.1, ABAS.2 and ABAS.3, respectively. For ABAS.4, it was under 1min while the atlas registration took 
approximately 6min for a library of 10 atlases. DL.1 and DL.2 provided a solution in less than 1min and 
2min, respectively. Per algorithm and per OAR, DICE scores and HD95% distance results of all solutions are 
summarized in Figure 3.4-1 and Figure 3.4-2, respectively.

Overall, both DICE and HD95% results indicated that DL algorithms were more accurate than ABAS 
algorithms for AS of HN OAR. The Kruskal-Wallis statistical test identified significant differences between 
the 6 AS methods. However, the post-hoc paired test showed no statistical difference in terms of DICE and 
HD95% between the DL.1 and DL.2 and between ABAS.3 and the 2 DL solutions. With 11 common OAR, DL.1 
had overall better contour overlap compared with DL.2 with a DICE average of 0.85 ± 0.32 vs 0.82 ± 0.06 
and 11 vs 9 OAR having DICEs 0.8. Per organ differences however did not reach a statistically significant 
level. 

Regarding ABAS solutions, ADMIRE ABAS algorithms had overall better DICEs and HD95% than ABAS.4, 
which had the lowest DICE results for 7 out of 14 OAR. While all the ADMIRE solutions had DICE results 

0.8 for 7 OAR, ABAS.3 contours were closer to the reference contours. Per OAR statistics revealed 
however no significant differences in DICE and HD95% between ABAS.2 and ABAS.3 and, compared with 
ABAS.1, both ABAS.2 and ABAS.3 performed significantly better for the eyes (p<0.02). Moreover, 
compared with ABAS.4, ABAS.3 performed significantly better for parotids (p<0.003), mandible (p<0.01) 
and submandibular glands (p<0.02). Note that ABAS.3 did not segment optic nerves and cochlea owing the 
algorithm’s limitation for such small structures.

Compared with DL.1, ABAS.3 had significantly better DICE for the mandible (p=0.02). Compared with 
DL.2, ABAS.3 had significantly better DICE for the eyes (p=0.01) and for the mandible (p=0.01). On the 
opposite, DL.2 had significantly better DICE for the esophagus (p=0.04) and significantly better HD95% for 
the thyroid (p=0.03). Finally, the superiority of DL. 1 over ABAS.3 was not statistically demonstrated.

An example of AS contours from ABAS.3, DL.1 and DL.2 in contrast with the physicians’ manual 
delineations is provided in Figure 3.4-3. 
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A. B. 

 
C. D. 

 
Figure 3.4-1 Geometric evaluation of the 6 automatic solutions. 1 = ABAS.1, 2 = ABAS.2, 3 = ABAS.3, 4 = ABAS.4, 5 = 
DL.1, 6 = DL.2; Panels A and B: analysis was performed over all the OAR. Panels C and D: analysis was performed over 
11 common OAR. In red and in green are highlighted the worst and the best results, respectively determined by the 
mean value of DICE/HD95%; in the boxplots, the orange line represents the median, the green triangle indicate the 
mean value and the circles represent outliers. 

 
 
 

Over all segmented OAR 

Over 11 common OAR 
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Figure 3.4-2 Geometric evaluation per OAR of the 4 multi-ABAS and 2 DL solutions; 1 = ABAS.1, 2 = ABAS.2, 3 = ABAS.3, 
4 = ABAS.4, 5 = DL.1, 6 = DL.2; in red and in green are highlighted the worst and the best results, respectively 
determined by the mean value of DICE/HD95%; in the boxplots, the orange line represents the median, the green 
triangle indicate the mean value and the circles represent outliers; Abbreviations: Sub.glands = submandibular glands; 

1= ABAS.1 
2= ABAS.2 
3= ABAS.3 
4= ABAS.4 
5= DL.1 
6= DL.2 

1= ABAS.1 
2= ABAS.2 
3= ABAS.3 
4= ABAS.4 
5= DL.1 
6= DL.2 
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Figure 3.4-3 Example of automatic segmentation uncertainties compared with manual delineations. OAR position 
relative to the PTV can be observed in C and D. A good agreement was generally observed in simple geometry 
structures such as eyes or spinal cord. Large contour discrepancies were noticed compared with the manual reference 
in the cranial and caudal slices for some structures such as oral cavity, trachea or brainstem. to illustrate OAR position 
relative the target, PTV volume is displayed

Ten of the OAR obtained with ABAS.3, DL.1 and DL.2 (best solutions graded based on the geometric 
accuracy results) were thereafter carefully corrected by a dosimetrist and checked by a physician. Manual 
corrections were done organ by organ on all the CT slices. The targets were never displayed, to not 
influence the observers. The manual correction time per patient was in average 36min34sec, 17min54sec 
and 26min57sec for ABAS.3, DL.1, and DL.2, respectively. The contours generated by DL.1, were the fastest 
to correct. In general, manual corrections of eyes, spinal cord and brainstem were <2min for the 3 solutions 
while for oral cavity and esophagus correction times were >3min depending on the AS algorithm used 
(Figure 3.4-4).

A.

C.

B.

D.
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Figure 3.4-4 Time spent on manual corrections for each OAR automatically generated. 3 = ABAS.3, 5 = DL.1, and 6 = 
DL.2; Abbreviations: Sub.glands = submandibular glands; 

After manual corrections, the DICE scores of all OAR were improved, except for the oral cavity on all 3 
solutions, and for the spinal cord on DL.2 solution (Table 3.4-1), thus highlighting inter-observer variability 
in contouring the oral cavity between the expert physician providing the reference contours, and the other 
physician performing manual corrections. At the same time, the HD95% did not decrease consistently for 
all the structures after the manual corrections, confirming, once more, the variability in manual delineation 
between observers. While performing correction on the DL.1 contours did not significantly improve DICE 
and HD95% results, for DL.2 contours, results were significantly improved for the trachea (p<0.001). For 
ABAS.3, the improvements were statistically significant for esophagus (p<0.001) and thyroid (p<0.001). 

The differences in doses on corrected OAR, between treatment plans generated using the AS contours, 
with or without manual corrections are presented in  

Table 3.4-2. No statistically significant difference was found between doses for the 3 solutions. For each 
patient, a minimum distance between each OAR and the targets was calculated. Among OAR having a 
maximum dose constraint, the mandible had the largest dose difference when it overlapped with the PTV. 
For the brainstem and spinal cord, the largest dose differences occurred when the OAR was located at a 
larger distance to the PTV (>30mm). For the parotids and for the submandibular glands, maximum 
differences occurred when the OAR overlapped with the PTV. For the oral cavity, for the eyes and for the 
esophagus, the maximum differences were generally observed at distances<20 mm from the PTV. 
However, for the esophagus, there were some outliers at larger distances from the target (>60mm) for 
DL.2. For the trachea, only in one patient case, and for DL.2, a large difference was observed but at a high 
distance from the target (80mm). Some illustrations of dose distributions with regard to corrected/non-
corrected contours and PTV position are available in Figure 3.4-5 and a summary of studies on AS methods 
for OAR on HN CT images is presented in Table 3.4-3. 
  

3=ABAS.3 
5=DL.1 
6=DL.2 
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Table 3.4-1 Geometric evaluation after manual corrections of 10 OAR for the three best solutions; with * are marked 
the differences that are statistically significant (p<0.05) 

 ABAS.3 DL.1 DL.2 

DICE without 
corrections 

after manual 
corrections 

without 
corrections 

after manual 
corrections 

without 
corrections 

after manual 
corrections 

Parotids 0.8 ± 0.05 0.84 ± 0.04  0.82 ± 0.04 0.84 ± 0.04  0.81 ± 0.06 0.85 ± 0.03  
Oral cavity 0.87 ± 0.04 0.81 ± 0.06  0.85 ± 0.06 0.79 ± 0.08  0.84 ± 0.07 0.79 ± 0.08  
Sub.glands 0.77 ± 0.13 0.83 ± 0.1 0.8 ± 0.07 0.84 ± 0.07  0.79 ± 0.13 0.82 ± 0.14  
Mandible 0.92 ± 0.02 0.93 ± 0.02  0.9 ± 0.02 0.9 ± 0.02 0.89 ± 0.03 0.9 ± 0.03  
Esophagus 0.72 ± 0.1 0.86 ± 0.04* 0.83 ± 0.04 0.86 ± 0.03 0.84 ± 0.05 0.87 ± 0.03 
Trachea 0.88 ± 0.05 0.91 ± 0.04 0.9 ± 0.02 0.9 ± 0.06 0.87 ± 0.03 0.91 ± 0.04* 
Thyroid 0.74 ± 0.11 0.85 ± 0.03 * 0.83 ± 0.04 0.85 ± 0.04  0.85 ± 0.04 0.86 ± 0.03  
Eyes 0.91 ± 0.03 0.91 ± 0.03 0.89 ± 0.03 0.9 ± 0.03  0.87 ± 0.04 0.9 ± 0.03 
Spinal cord 0.84 ± 0.05 0.84 ± 0.05 0.84 ± 0.04 0.85 ± 0.04 0.85 ± 0.03 0.84 ± 0.04 
Brainstem 0.85 ± 0.04 0.86 ± 0.05 0.85 ± 0.03 0.86 ± 0.04 0.85 ± 0.06 0.86 ± 0.06 

HD95% (mm) without 
corrections 

after manual 
corrections 

without 
corrections 

after manual 
corrections 

without 
corrections 

after manual 
corrections 

Parotids 7.2 ± 3.4 7.9 ± 7.2  6.2 ± 2.6 8.4 ± 8.1 7.8 ± 5.2 7.0 ± 7.1 
Oral cavity 6.5 ± 2.6 11.2 ± 3.9  8.1 ± 3.9 11.4 ± 5.1  9.4 ± 5.1 12 ± 5.3  
Sub.glands 4.5 ± 3.1 4.0 ± 2.7  3.7 ± 0.9 2.9 ± 1.3 4.7 ± 2.2 3.8 ± 2.1  
Mandible 2.2 ± 1.1 1.5 ± 1  2.3 ± 0.8 2.1 ± 0.9 3.7 ± 2 2.1 ± 1.4  
Esophagus 6.1 ± 2.3 2.3 ± 0.9* 3 ± 1.3 2.7 ± 0.7 3.6 ± 2.6 1.9 ± 0.4 
Trachea 3.2 ± 1.6 1.9 ± 0.5 2.3 ± 0.7 1.8 ± 0.7 2.4 ± 0.5 1.8 ± 0.6* 
Thyroid 8 ± 8.3 2.5 ± 1.2 * 4.5 ± 4.7 2.2 ± 0.6  3.0 ± 1.4 2.5 ± 1.3  
Eyes 2. ± 0.5 1.9 ± 0.5 2.4 ± 0.8 2 ± 0.4  2.4 ± 0.8 2.2 ± 0.7  
Spinal cord 2.1 ± 0.5 2 ± 0.5 1.8 ± 0.6 1.8 ± 0.5 1.7 ± 0.4 2 ± 0.5 
Brainstem 3.9 ± 1.6 3.9 ± 1.9  4.4 ± 1.6 4.1 ± 1.7 4.1 ± 1.7 3.9 ± 1.8 
Abbreviations: Sub.glands=submandibular glands 
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Figure 3.4-5 Illustrations of radiation dose distributions of plan generated with the AS contours. With green are 
highlighted AS+manually corrected contours; the PTV volumes are in red and dark red so their position relative to the 
OAR can be observed. The arrows point OAR and their correspondent dose difference in the corrected contour between 
plans created with AS+corrections and plans created with AS contours ( DAS+corr=DAS+corr -DAS)
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Table 3.4-2 Dosimetric differences between doses generated with manually corrected contours and automatic 
contours, analyzed on the corrected contours; impact on the target volumes is evaluated in V95% dose coverage, for 
the spinal cord and brainstem in D2%, and for the mandible in D5% while for the rest of the OARs mean doses are 
calculated.  

 ABAS.3 DL.1 DL.2 

Structure V95% 

[%] 
V95% 
[%] 

V95% ranges 
[%] 

V95% 
[%] 

V95% 

[%] 
V95% ranges 

[%] 
V95% 
[%] 

V95% 

[%] 
V95% ranges 

[%] 

PTV_70Gy 98.3 -0.1  [-0.9, 0.7] 98.4 0.2   [-1.4, 1.3] 98.3 -0.04  [-0.8, 2.1] 
PTV_54.25Gy 99.2 -0.03  [-0.2, 0.1] 99.2 0.01  [-0.2, 0.3] 99.2 0.05  [-0.1, 0.2] 

 

Dmean 
[Gy] 

Dmean 
[Gy] 

Dmean ranges 
[Gy] 

Dmean 
[Gy] 

Dmean 
[Gy] 

Dmean ranges 
[Gy] 

Dmean 
[Gy] 

Dmean 
[Gy] 

Dmean ranges 
[Gy] 

Parotid R 16.2 -0.1  [-3.4, 3.3] 16.8 0.3  [-1.8, 3.4] 17.6 0.3  [-2.2, 3.6] 
Parotid L 12.9 -0.04  [-4.3, 3.3] 15.1 0.4  [-2.4, 4] 15 1.1   [-0.8, 6] 
Oral cavity 21 -0.02  [-2.7, 3.2] 21.1 -0.6   [-2.2, 0.9] 21 -0.7  [-3.8, 1.3] 
Sub.gland R 32.5 -0.1  [-0.9, 1.7] 38.7 -0.5   [-2.3, 1.2] 39.1 -0.4  [-7.4, 3.1] 
Sub.gland L 34.1 -0.4  [-2.8, 1.2] 40.6 -0.3  [-1.8, 1.3] 40.9 0.1  [-1.6, 1.1] 
Esophagus 7.9 0.2  [-0.5, 1.7] 9.2 0.5   [-1.1, 2.4] 10.2 0.9  [-0.3, 5.5] 
Trachea 10.1 -0.2  [-0.9, 0.2] 11.9 -0.1  [-0.9, 0.4] 13.5 0.2  [-1.1, 5.2] 
Thyroid 29.4 -0.2  [-4.8, 1.1] 35.5 -0.5  [-3.7, 1.9] 35.4 -0.3  [-2, 1.3] 
Eye R 5.2 0.5  [-1.5, 4.2] 4.9 0.4  [-4.1, 10.3] 5.1 -0.4  [-6.1, 0.8] 
Eye L 4.5 -0.4  [-8.9, 2.5] 5.4 0.8  [-0.4, 8.8] 4.4 -0.8  [-8.9, 1.2] 

 D2% 
[Gy] 

D2% 
[Gy] 

D2% ranges 
[Gy] 

D2% 
[Gy] 

D2% 
[Gy] 

 D2% ranges 
[Gy] 

D2% 
[Gy] 

D2% 
[Gy] 

D2% ranges 
[Gy] 

Spinal cord 25 2.5  [-4.6, 24.4] 23.7 -0.5  [-16.3, 10.1] 24.2 -2.1  [-13.6,16.2] 
Brainstem 16.9 -1.5  [-20.2,13.1] 18 -1.0  [-7.1,4.9] 18.9 -0.6  [-9.7,6.9] 

 D5% 
[Gy] 

D5% 
[Gy] 

D5% ranges 
[Gy] 

D5% 
[Gy] 

D5% 
[Gy] 

 D5% ranges 
[Gy] 

D5% 
[Gy] 

D5% 
[Gy] 

 D5% ranges 
[Gy] 

Mandible 43.3 0.1  [-3.6, 2.1] 43.4 -0.2  [-2.9, 6.3] 44.4 0.35  [-2.5, 4.9] 
Abbreviations: sub.glands=submandibular glands; R = right, L = left; 
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We showed in this study that, overall, both DICE and HD95% results indicated that DL algorithms 
performed better compared with the ABAS algorithms for automatic segmentation of HN OAR. Concerning 
the 2 DL solutions, out of 12 contours, DL.1 outperformed DL.2 solution in terms of DICE for 7 OARs, with, 
however, no statistically significant differences. Contrarily to DL.2, DL.1 was not tailored to automatically 
contour optic nerves and cochlea. Nevertheless, the correction of the AS contour of small organs generally 
takes more time than starting from scratch [123,194].Conversely, DL.2 was not trained to contour the 
constrictor muscle. However, the DL.1 results were highly inaccurate, showing the difficulty to get 
satisfying results for such organs with high anatomical variations and low image contrast. Therefore, 
consistent with the literature, OAR with good CT contrast were better segmented by ABAS and DL solutions 
compared with small and/or thin OAR such as optic nerves or cochlea, and OAR which do not have well-
defined boundaries like constrictor muscles [143,163,186,191,324,325].

Before this study, DL.1 and DL.2 algorithms had not been explored on HN site. The DL.1 algorithm was 
trained exclusively with manual delineations coming from one expert physician, providing uniformity of 
the training data. Ideally, there should be a consortium for the contour delineation between physicians 
working in a radiotherapy department, which should rely on internationally published guidelines [26]. In 
this study, with a limited training dataset (N=63), we showed that a model can achieve consistent results 
for most of the structures in HN. Hence, with a minimum of work, centers can adapt a model to their 
standard delineation’s practices. Similarly, high accuracy segmentation results were obtained with the 
DeepVoxNet and another CNN with networks trained on N=70 and N=50 samples, respectively [193,194]. 
Other studies demonstrated that organs’ pattern depends on the training sample size [326] and yet similar 
results can be obtained when training on a small set of carefully curated data compared with a larger set 
of more easily available routine-level clinical annotations [327]. On the opposite, DL.2 solution was trained 
with more than 1000 samples per organ collected from multiple centers and can segment 50 OAR and 
target volumes in HN. Despite this, highly accurate contours were obtained in this study. Proving that a 
multi-center study approach includes combination of manual contours from different physicians (easier to 
obtain), DL.2 results presented good conformity to new datasets and comparable performance to a model 
train with data from a single center.

We also showed that, using a carefully selected atlas of patients, ADMIRE multi-ABAS methods achieved 
good agreement with manual contours (DICE 0.8)[152,157] and, for some organs, similar or better 
agreement with the reference contours compared with DL models (i.e. oral cavity, mandible, eyes). 
Conversely, ABAS.4 had overall inferior performance. Among multi-ABAS algorithms, ABAS.3, which had 
not been explored before, produced the best results and had significantly better DICEs than DL.1 and DL.2 
solutions for mandible and eyes, respectively. Therefore, with only 10 carefully selected atlases composed 
of non-operated patients with a wide range of BMI, ABAS.3 algorithm may serve as an AS solution easy to 
implement clinically. Note that using an enlarged library of 20 patients (data not shown) did not 
considerably improved the performances of ABAS.3 but drastically increased the computation time, 
demonstrating that the performance plateau phenomena still exists with this new ABAS method.

Many studies have reported the performances of different algorithms for HN OAR segmentation on CT 
images (Table 3.4-3). All studies underlined limited performance on small organs, and the importance of 
both manual contours’ quality, and training data size to obtain accurate segmentations and clinically 
acceptable treatment plans. It was also mentioned that, for noncritical OAR (i.e. far from PTV), manual 
corrections could be omitted [144]. Moreover, AS has shown to reduce inter-observer variability when 
observers performed manual editing on the automatically generated contours, which improves the 
consistency of manual delineation [142].

According to the recently published guidelines, together with geometric accuracy, studies should 
ideally report benefit in time saving and clinical acceptability in terms of patient dose evaluation, for 
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assessing the benefit of an automatic segmentation method [135]. Both tasks involve exhaustive labor and 
are not systematically conducted first because of the time requested to be completed, and secondly 
because of the intra-observer factor, which could introduce a bias in the observations. In this study, both 
tasks were completed for the three best algorithms, and an auto-planning solution was used to perform 
treatment plans based on AS contours with or without corrections. This was a strength of this study, and 
an efficient way to isolate the consequences of contour variations on the radiotherapy doses and reveal 
more precisely which contours require greater attention [131,144] Among other methods, some authors 
proposed to superpose the original clinical plan onto the automatically delineated contours [142,143], to 
use automated planning strategies such as knowledge-based planning (KBP) [131,144] or to conserve the 
original beam configuration parameters [145]. To our knowledge, this is the first time that an a priori MCO 
auto-planning solution is used for contour evaluation. 

We observed in our study that, for most structures, the correction time for DL.1 and DL.2 solutions was 
<1min (e.g. eyes, brainstem, submandibular glands) and <2min (e.g., mandible, parotid glands) 
demonstrating significant time saving versus starting from scratch, particularly for the dosimetrist, whose 
work represented, depending on the AS solution, from 60% to 70% of the total manual editing time. 
Correcting DL.1 contours was 18min and 9min faster compared with ABAS.3 and DL.2 contours, 
respectively. Generally, the oral cavity and esophagus took more time to be corrected. For the oral cavity, 
this may be correlated with the inter-observer variability since the DICE results were consistently smaller 
for all 3 solutions after the manual corrections. We finally observed that all dose-volume constraints and 
target objectives were respected in all plans and that manual corrections of the AS contours had no 
statistically significant impact on the dose distributions. The Dmean for the investigated structures were 
<0.9Gy. Generally, the range of the D2% were the highest for the spinal cord and for the brainstem for all 
the solutions, which may be an important factor in physician’s decision when validating the treatment 
plan. Similar to other studies, for most organs, the difference in the delivered dose was not significant 
[144][145]. The dose constraints and objectives were respected for all the plans automatically generated 
and thus, manual correction could be omitted. 

Considering the organ position relative to the PTV, high dose differences could be observed when the 
OAR contour overlapped with the target volumes or was located in their short vicinity. However, this was 
not always interrelated. This was true for the parotid glands, but for the spinal cord and brainstem, the 
highest D2% were located at a larger distance between the OAR and the PTV (>35mm and >15mm relative 
to PTV 70Gy and PTV 54.25Gy, respectively). At the same time, at short distances from the PTV (<5mm), 
the D2% in brainstem and spinal cord was <2Gy. One possible reason is that, closer to targets, the AS 
contours were highly accurate. Although spinal cord and brainstem presented generally good agreement 
with the manual reference contour, the manual corrections which were nevertheless fast, proved clinically 
meaningful in certain patients. 

Note that this study was deliberately focused on a center-specific approach. The goal was to investigate 
which of the 6 AS solutions available in our department were more accurate and required less resources 
in terms of patient data and manpower. In particular, the objective was to evaluate whether, with a 
relatively small database of homogeneous contoured patients, a center could easily implement an AS 
solution conformed to its own contouring practices, which, nevertheless, should respect international 
contouring guidelines. At the same time, we evaluated a solution that was trained on a multi-centric 
database of contours. Note that the reference contours used in this study belonged to only one expert 
physician, and also, the manual corrections were done by only one dosimetrist and one physician, both 
trained by the reference expert. Although the study could benefit from multiple observers involved in 
manual corrections of the contours, this was, nevertheless, reproducing the clinical workflow of our 
department. Moreover, the relatively small cohort of the test patients was composed of heterogeneous 
patients’ anatomies and tumor locations, in order to challenge the different AS solutions. Including more 
patients will definitively strengthen the study, in particular, the statistical analysis. Finally, these findings 
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suggest that, acknowledging their strengths and limitations, the investigated hybrid ABAS and DL methods 
improved our clinical workflow.

DL methods generally showed higher delineation accuracy compared with ABAS methods for AS 
segmentation of HN OAR. We showed that a DL model can provide accurate contours with a limited 
training dataset, provided that data comes from a single hospital, and if possible, only one expert physician 
is involved. Most ABAS contours had high conformity to the reference but were more time consuming than 
DL algorithms, especially when considering the computing time and the time spent on manual corrections. 
Finally, even if manual checks and modifications must not be ignored, all AS solutions allow reducing inter-
observer variability when physicians perform manual editing of the AS contours.

The present study provided an extensive comparison between 4 atlas-based and 2 DL solutions for 
OARs delineation on HN CT images. Their performance was evaluated with regard to several aspects that 
are relevant when considering an AS solution, namely: patient data resources demand, computational 
time, geometric accuracy (volumetric overlap and surface distance metric), manual correction time, and 
dosimetric impact (using auto-planning). The results showed that DL solutions had overall higher accuracy 
when compared to the ABAS methods. It was also demonstrated that hybrid-ABAS contours had a good 
agreement with the reference contours and were sometimes better than the DL-based contours. However, 
when considering the computational time and the time spent on manual corrections, DL solutions were 
more efficient. 

Regarding the data needed for training a DL solution, similarly to other studies in the literature, our 
study showed that with a limited but more uniform training dataset, a model can achieve consistent results 
for most of the structures in HN. This can be of great interest for centers that wish to adapt a model to 
their standard delineation practices. At the same time, we also demonstrated that a model trained with 
larger amount of multi-centric data can provide good generalizability to new datasets. Performing manual 
corrections was most efficient on the mono-centric DL model contours (on average 18min). This is 
particularly relevant for the workload of the dosimetrists. These considerations can help a department 
choose the best AS solution for their needs in function of their available time and resources. With regards 
to the dosimetric impact, no statistical differences were observed between the plans created with AS or 
AS+manually corrections. This was consistent with literature from results that attest that manual 
corrections could potentially be omitted. Additionally, in our study we investigated the correlation 
between the organ’s position relative to the PTVs and dose differences. The aim was to understand in 
what situations the correction of an AS contour is particularly important. Unfortunately, we were not able 
to identify a clear trend of this relationship since high dose differences were not systematically observed 
in the target’s vicinity. The study was original because it evaluated several commercial and non-
commercial AS solutions, among which 3 of them have not yet been investigated on HN localization. 
Another novelty was the use of an MCO auto-planning solution in the dosimetric study for eliminating the 
planner bias. 

We acknowledge limitations of the study in terms of the small cohort of test patients and reference 
contours coming from one expert physician only. However, the heterogeneous dataset for testing was able
to challenge the different AS algorithms. Moreover, this study deliberately focused on a center-specific 
approach, with the goal to investigate which solution available in the department was more accurate and 
required fewer resources in terms of patient data and manpower. However, the statistical results could 
benefit from more patients included in the testing cohort and more observers involved in the manual 
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corrections task. Future perspectives of the work include increasing the database for training and 
incorporating cases of both operated and non-operated patients. 

Finally, these findings are of great interest for the development of ART workflows for HN patients 
because they prove increased workflow efficiency when using AS for OAR delineation combined with 
treatment plans generated using an auto-planning solution. Manual delineation of the primary target 
remains a time limitation, whereas AS of the lymph node levels that are usually irradiated as secondary 
target are being discussed in the next chapter of the manuscript.  
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CChapterr 4.. Evaluationn off differentt algorithmss forr automaticc segmentationn 
off head-and-neckk lymphh nodess onn CTT imagess 

Purpose: To investigate the performance of 4 atlas-based (ABAS) and 2 deep learning (DL) solutions for 
head-and-neck (HN) elective nodes (CTVn) segmentation on CT images.

Material and Methods: One expert physician delineated bilateral CTVn levels 2, 3 and 4 on 70 HN 
patients. Ten and 49 patients were used for multi-ABAS atlas library and for training of a mono-centric DL 
model respectively. Additionally, a commercial multi-centric DL solution was considered. Remaining 21 
patients were used for testing. Quantitative evaluation was assessed using volumetric DICE and 95-
percentile Hausdorff distance (HD95%). Subjective evaluation was performed on 3 solutions by 4 physicians.
One recorded manual correction time. A dosimetric study was conducted using an auto-planning solution.

Results: Overall DL solutions had better DICE and HD95% results than multi-ABAS methods. No 
statistically significant difference was found between the 2 DL solutions. However, the contours provided 
by multi-centric DL solution were clinically better rated by all physicians and were also faster to correct 
(1min06sec vs 4min10sec, on average). The time needed for manual corrections was larger for ABAS 
contours (6min31sec). For all methods, decreased accuracy was observed from CTVn2 to CTVn4, and using
the contours in treatment planning resulted in underdosage of the elective target volume.

Conclusion: The commercial DL solution provided the best contours when compared to mono-centric 
ABAS and DL methods for the segmentation of CTVn on HN CT images. Particularly for the CTVn4, manual
corrections remain necessary to avoid target underdosage. Finally, AS contours help reducing the manual 
delineation time.

High accuracy in radiation doses implies highly conformal dose distribution and steep dose gradients, 
achieved today by using intensity modulated radiation therapy (IMRT) techniques. For head-and-neck (HN) 
cancer, the fluence optimization is complex because of a large number of organs with strict dose-
objectives. To achieve optimal target coverage with minimum normal tissue toxicity, accurate delineation 
of both organs-at-risk (OARs) and target volumes is a crucial step. Manual contouring is time-consuming 
and although international guidelines exist [27,328,329], large inter and intra-observer variation are 
observed [128,318,330] that can negatively impact patient doses [137,142]. To help in organs 
differentiation and increase the images’ contrast, the patients should be injected with an iodine solution 
before the simulation computer tomography (CT) scans[25]. To reduce the delineation time, improve 
consistency and accuracy of volume definition, automatic segmentation (AS) solutions received great 
interest[132,133,331]. AS methods for HN OARs contouring were investigated in many studies, whereas 
fewer studies were focused on the clinical target volumes (CTV). Whereas important anatomical variations 
make gross tumor volumes difficult candidates for AS, the HN lymph nodes levels (LN) have well-
established anatomical borders [27,329] and are often irradiated as secondary prophylactic nodal target 
(CTVn). 

Among the AS solutions, atlas-based AS (ABAS) methods are attractive as they require only one or few 
(multi-ABAS) patients as prior information (in form of an atlas library), but they are limited to the range of 
patient anatomical representation. Few studies have demonstrated the superiority of multi-ABAS vs 
single-ABAS strategies for CTVn segmentation [152,332–334]. It was shown that using 11 vs 1 atlas enabled 
decreasing the manual delineation time by 20% [332]. In another study, the range of reported overlap 
between ABAS and reference contours, was 29%-78% depending on the CTVn level considered [334]. One 
multi-ABAS study (N=10 atlases) evaluated dosimetric plan quality when using AS contours obtained with 
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a commercially available solution (ABAS, Elekta AB), and demonstrated that despite >80% contour overlap, 
non-edited CTVn contours can cause large underdosage in target volumes [137]. Hybrid approaches 
combining multi-ABAS and machine learning features have also been explored. Qazi et al. evaluated a 
model-based algorithm (N=15 atlases) and achieved expert contours overlap of 74% (LN level 1-4) [169]. 
Their results were superior to Chen et al. [335] who created an active shape model (N=14 atlases) that
reached 69% overlap (one nodal volume covering LN 2-4) and superior to that of Gorthi et al. [336] with
an active contour-based model (N=9 atlases) that reached maximum 58% overlap (individual CTVn levels 
1-6). 

Alternatively, deep learning (DL) solutions should increase accuracy and efficiency in AS at the cost of 
more efforts involved in gathering and curating manual contours databases for training. Promising results 
were obtained particularly for OARs in HN patients and several solutions are commercially available
[3,133,143,163,190,217,218]. From the few studies evaluating their accuracy in segmenting HN CTVn, 
Wong et al. investigated a commercial DL-based segmentation software (Limbus Contour build 1.0.22) 
trained with publicly available annotated data (on average 328 CT scans/organ) [218]. One single CTVn 
volume including 6 LN was auto-segmented. The overlap with the experts’ contours was 72% which was 
inferior to the inter-observer variability (IOV) assessed (79%). Another study investigated a 3D-
convolutional neural network (CNN) trained on 69 patients (mono-centric data), for segmenting 10 
separated CTVn levels, with the exception of levels 2-4 which formed one volume [337]. The contour 
overlap against 2 experts ranged between 46-82%, in function of the considered CTVn level. The manual 
delineation time was reduced from 52 to 35min using AS contours. Moreover, it was shown that using the 
AS solution enabled to significantly improve the IOV (92.2% vs 79.8%). Lastly, Strijbis et al. [338] trained 3 
different Unet networks on 70 patients for segmenting individual volumes for CTVn 1-5. They showed that 
an ensemble of networks provided the best results with >85% contour overlap for the CTVn 1, 2 and 3, but 
<72% for CTVn 4 and 5. 

In this context, the objective of the present study was to evaluate the performance of 4 ABAS and 2 DL 
solutions for the individual segmentation of 6 CTVn volumes, explicitly the left (L) and right (R) LN levels 2 
(CTVn2), 3 (CTVn3) and 4 (CTVn4). This follows on from the formerly performed work on HN OARs 
segmentation [3]. Five of the solutions were investigated for the first time on HN CTVn segmentation.  One 
hybrid-ABAS and one center-specific DL solution not commercially available were compared to three and 
one, commercially available multi-ABAS and DL solutions, respectively. All 6 solutions were evaluated 
based on geometrical accuracy. A clinical scoring of the contours was then performed by 4 expert
physicians on the 3 most accurate AS solutions. For one physician, the time spend on correcting the 
contours was measured. Lastly, an auto-planning solution based on a priori multicriteria optimization 
(MCO) algorithm was used to generate treatment plans when using manual and AS CTVn contours. 

Patient data

Seventy HN cancer patients treated with radiation therapy between 2018 and 2022 were included in the 
study, which was approved by the hospital ethics committee. For each patient, CT scan acquisition was 
performed after 2 injections of iodine contrast agent following national recommendations [25]. Bilateral 
CTVn 2, 3 and 4 were then manually delineated according to international delineation guidelines [27] by a 
senior expert physician, on 512x512 and 2mm-thick CT-slices. Forty-nine non-operated patients were used 
to train a mono-centric DL model to automatically segment the 6 target volumes. Based on their body 
mass index (BMI, from 19.9 to 26), 10 of these patients were subsequently used to form an atlas library 
for the multi-ABAS solutions, that covers a large variety of patient anatomies. Identic atlas libraries were 
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created within MIM-Maestro (MIM-Software; Cleveland, USA) and the research version of ADMIRE 
software (ADMIREv3.41, Elekta AB; Stockholm, Sweden). Conversely, the training of the second DL 
solution, was exclusively handled by the vendor (Therapanacea, France), incorporating big amount of 
multi-centric patient data (>1000). The remaining 21 patients with different tumors and anatomies (BMI 
17.9 – 33.7), were used for testing of the 6 AS solutions. In addition to reference contours for CTVn, the 
test cohort (Table 4.3-1) included expert delineations for OARs and primary tumor volumes.  

Table 4.3-1 Characteristics of the testing cohort used for evaluation of the AS solutions 

 Tumor localization TNM Treated CTVn BMI 
Patient 1 Rhinopharynx T3 N1 M0 2 – 4 L/R 19 
Patient 2 Rhinopharynx T2 N2 M0 3-4 L/R 21.4 
Patient 3 Rhinopharynx T1 N1 M0 2-4 L, 3-4 R 33.7 
Patient 4 Hypopharynx T4 N3b M0 2-4 L 18.6 
Patient 5 Hypopharynx T1 N1 M0 2 – 4 L/R 23.4 
Patient 6 Hypopharynx T4b N0 M0 2 – 4 L/R 19 
Patient 7 Larynx  T2 N0 M0 2 – 4 L/R 24 
Patient 8 Larynx T2 N0 M0 2-4 R 30.4 
Patient 9 Larynx T3 N0 M0  2 – 4 L/R 21.8 

Patient 10 Larynx T4a N0 M0 2 – 4 L/R 21.5 
Patient 11 Tonsils T2 N0 M0 2-4 L 24 
Patient 12 Tonsils T2 N1 M0 2 – 4 L/R 25.5 
Patient 13 Tonsils T1 N1 M0 2-4 L, 3-4 R 17.9 
Patient 14 Tonsils T2 N1 M0  2-4 R 23.8 
Patient 15 Tonsils T2 N0 M0  2 – 4 L 32.4 
Patient 16 Tonsils T3 N0 M0  2 – 4 L/R 31.5 
Patient 17 Tonsils T2 N1 M0  2 – 4 L/R 32.6 
Patient 18 Oral cavity T4a N2c M0 2-4 R, 4 L 30.2 
Patient 19 Oral cavity T3 N1 M0 2-4 L, 3-4 R 24.2 
Patient 20 Oral cavity T2 N0 M0  2 – 4 L/R 22.1 
Patient 21 Oral cavity T3 N2a M0  2 – 4 R 21.0 

Automatic segmentation solutions 

Thee multi-ABAS solutions integrated in the research version of Monaco treatment planning system 
(TPS) (Monaco 5.59.11 with ADMIREv3.41) and another one available in MIM-Maestro (MIM Software Inc., 
Cleveland, OH) were investigated (Table 4.3-2). Two DL solutions were considered, one mono-centric (data 
from this study) solution and one commercially available multi-centric solution (Table 4.3-2).  

All AS solutions have been fully described in a previous work [3]. Briefly, ABAS.1 uses a traditional 
method for atlas fusion based on expectation-maximization algorithm. ABAS.2 uses voxel intensity 
information to obtain a weighted average of the atlases’ contours. ABAS.3 algorithm trains a voxel 
classifier on the fly using the registered atlases as training data. Lastly, ABAS.4 performs the voxel 
annotation based on labels predicted by majority of the atlases. For the 3 ABAS solutions used in ADMIRE 
software, for each test patient, a reference atlas was selected from the library, upon the closest BMI. 
Distinct process was followed in MIM-Maestro, where to create the atlas library, one atlas was chosen as 
template patient (based on BMI) and was registered to the 9 remaining atlases.  

Among the DL solutions, DL.1 is a CNN where the high-resolution image features captured in the 
encoding part are preserved with the help of short-range connectors in the decoding part for a label map 
corresponding to the input image size. The DL.2 solution uses a set of organ-specific networks with an 
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original combination of data-driven and decisional artificial intelligence that enforces anatomical 
consistency. Its training included annotated patients from multiple centers and was handled by the vendor.  

Table 4.3-2 Characteristics of the 6 automatic segmentation solutions investigated in the study. 

 Solution name Software Vendor Nr. of Atlases/ 
Nr. of training patients 

Commercially 
available 

1. ABAS.1 STAPLE [156] ADMIREv3.41 
(Elekta AB, 
Stockholm, Sweden) 

N=10 Yes 

2. ABAS.2 Patch Fusion [339]  Yes 

3. ABAS.3 Random Forest [174]  No 

4. ABAS.4 Majority Voting [162] MIM Maestro 7.0 
(MIM Software Inc., 
Cleveland, OH) 

N=10 Yes 

5. DL.1 ADMIRE-DL [124,190] ADMIREv3.41 
(Elekta AB, 
Stockholm, Sweden) 

N=49 mono-centric 
patient data 

No 

6. DL.2 ART-plan Annotate 
[206,217] 

ART-plan 
(Therapanacea, 
France) 

N>1000 multi-centric 
patient data 

Yes 

Abbreviations: STAPLE = Simultaneous Truth and Performance Level Estimation 

Geometric evaluation 

The quantitatively evaluation of the 6 AS solution was performed per CTVn level and per their union, 
based on volumetric DICE coefficient and 95-percentile Hausdorff Distance (HD95%) [135], similar to a 
previous work [3].  

Clinical acceptability assessment and time required for manual editing  

The union of the bilateral CTVn contours (CTVn_union) was further examined on 12 patients for the 
most accurate 3 solutions, in terms of clinical acceptability and manual correction time. First, a blinded 
evaluation was made by 4 physicians choosing for each CTVn_union one of the following options: 

a) clinically acceptable without corrections   
b) clinically acceptable with minor corrections   
c) clinically acceptable with major corrections   
d) not acceptable for clinical use 

Then the AS contours were manually adjusted by one of the physicians on Elekta ProKnow® (Elekta AB, 
Stockholm) platform and the time spent on corrections was recorded for each of the 3 solutions.  

Dosimetric end-points using auto-planning solution 

For the 12 patients, 4 treatment plans were calculated automatically using mCycle auto-planning 
solution (Monaco 5.59.11, Elekta AB; Stockholm, Sweden). All plans were designed using 2 arcs and a 
simultaneous integrated boost technique to deliver 70Gy to the primary planned target volume 
(PTV_70Gy) and 54.25Gy to the prophylactic nodal target (PTV_54.25Gy), in 35 fractions of 2Gy. The 
reference plan was created using exclusively manually delineated contours of OARs and PTVs. The 3 
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experimental plans were created by replacing the manual CTVn contour with CTVn contours obtained by 
ABAS.2, DL.1 and DL.2 solutions. The PTV_54.25Gy was created for each plan from the union of CTVn levels 
and the prophylactic target plus additional 4mm margins. The resultant 4 dose distributions were all 
analyzed on the reference manual contours. From the dose-volume histograms (DVHs) clinically relevant 
dosimetric endpoints were extracted according to the French Society of Radiation Oncology 
recommendations [25]. 

Statistics

For all 6 solutions and for each lymph node level, Kruskal-Wallis test was performed to assess if the 
methods were statistically different. Furthermore, post-hoc Dunn’s with Bonferroni correction for multiple 
testing was performed to detect between which pairs of algorithms the differences were statistically 
significant. Similarly, dose differences between the treatment plans were statistically evaluated. The 
statistical tests were performed using Python 3.8 with level of significance set <0.05.

Computational time for one patient was about 6min,9min and 10min for ABAS.1, ABAS.2 and ABAS.3, 
respectively. For ABAS.4, the segmentation time was approximately 1 min, whereas creation of the atlas 
library (registering of the atlases to the library) took around 7min. DL.1 and DL.2 provided segmentation 
in <1 and <2min, respectively.

DICE and HD95% results obtained for each CTVn level and for CTVn_union are presented in Figure 4.4-1.
Overall DL solutions (DICE: 0.63-0.87) were more accurate than ABAS methods (DICE: 0.49-0.79), with no 
statistically significant difference between DL.1 and DL.2 (p>0.2). However, DL.1 generally performed 
better on CTVn4 than DL.2, whereas DL.2 had the lowest HD95% distances ( 6.4mm ± 5.1) among all the 
methods.
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Figure 4.4-1 Geometric evaluation results of the four ABAS and two DL solutions; 1 = ABAS.1, 2 = ABAS.2, 3 = ABAS.3, 
4 = ABAS.4, 5 = DL.1, 6 = DL.2. Panel A and B show DICE and HD95% results per individual CTVn level; Panel C and D 
show DICE and HD95% results of the CTVn union volume; in red and in green are highlighted the worst and the best 
results, respectively determined by the mean value of DICE/HD95%; in the boxplots, the orange line represents the 
median, the green triangle indicate the mean value and the circles represent outliers.
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Considering the multi-ABAS solutions, no statistically significant difference was observed between 
ABAS1, ABAS.2 and ABAS.3 (p=1). ABAS.4 provided the worst results but differences in both DICE and HD95%

compared to other ABAS methods were statistically significant only on CTVn2_L contours (p<0.005). 
Differences were statistically significant between DL.1 algorithm and ABAS.1, ABAS.2 and ABAS.3 

solutions only in DICE for the CTVn3_L/R (p<0.03). Compared with ABAS.4, DL.1 had statistically better 
DICE results for all the CTVn levels (p<0.04) and statistically better HD95% results for CTVn2_L (p<0.001) and 
CTVn_3L/R (p<0.04). 

Similarly, DL.2 had significantly better DICE results compared with ABAS.1, ABAS.2 and ABAS.3 for 
CTVn2_L/R (p<0.03) and CTVn3_L/R (p<0.001) and significantly better HD95% for CTVn3_L/R (p<0.002) and 
CTVn4_R (p=0.02). Moreover, compared with ABAS.4, DL.2 had significantly better DICE results for all 
levels (p<0.02) but CTVn4_L (p=0.5) and significantly better HD95% for all node levels (p<0.007). 

An additional geometric analysis of the CTVn_union resulted in increased conformity to the manual 
reference, particularly for the multi-ABAS solutions, for which the contour unification enabled DICE results 
to reach values up to 0.81 (ABAS.2). Finally, DL.2 solution obtained the best conformity to the union of the 
reference contours (meanDICE: 0.86 ± 0.03; meanHD95%: 4.1 ± 1.2mm) (Figure 4.4-1 Panel C and D). 
Moreover, the blinded study results (Figure 4.4-2) showed that all physicians rated DL.2 contours as 
clinically acceptable without or with only minor corrections. Contrarily, none of ABAS.2 contours were 
accepted without corrections, and only one physician accepted few contours from DL.1 without 
corrections. Moreover, some ABAS.2 and DL.1 contours were also rejected by two physicians. 

Figure 4.4-2 Expert evaluation on the CTVn_union from ABAS.2, DL.1 and DL.2 solutions

Furthermore, manual correction time was in average 6min31sec, 4min10sec and 1min06sec for ABAS.2, 
DL.1 and DL.2 respectively, and contours’ accuracy improved significantly only for ABAS.2 solution 
(p<0.001) (Figure 4.4-3). 
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Figure 4.4-3 DICE and HD95% results before and after performing manual corrections 

Regarding the dosimetric study, in all the plans, the dose objectives for PTV_70Gy and the dose 
constraints for the OARs were achieved with no statistically significant dose difference observed (p>0.1). 
Conversely, PTV_54.25Gy which contained the CTVn experimental volumes, experienced significant loss in 
coverage compared to reference plans for all solutions (p<0.01). Overall, the largest dose variations were 
observed on CTVn4 where ABAS.2 and DL.1 achieved sufficient coverage (V95%>95%) while DL.2 did not 
(92.3%). Figure 4.4-4 illustrates results of the dosimetric study per PTV and per CTVn level. Between the 
reference and both ABAS.2 and DL.1 experimental plans, statistically significant dose differences were 
identified for CTVn2 (in both V95% and D98%, p<0.002), CTVn3 (V95%, p<0.001) and CTVn4 (V95% and D98%, 
p<0.006). Similarly, dose differences were significant between reference and DL.2 experimental plan for 
the dose distribution to CTVn2 (V95%, p=0.001) and CTVn4 (V95%, D98% and D50%, p<0.007).  

One patient case that exhibited large dose differences (Patient 4) is illustrated in Figure 4.4-5, with a 
visual representation of the CTVn_union contours variation presented in panel A, and important loss in 
PTV_54.25Gy coverage illustrated in panel B and C. Furthermore, a summary of studies from literature on 
AS for HN CTVn volumes is presented in Table 4.4-1. 
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Figure 4.4-4 Dosimetric comparison between reference plan and the 3 experimental plans. Panel A: dosimetric impact on the primary target 
(PTV_70Gy) evaluated in terms of V95%, D2% and D50%; Panel B: dosimetric impact on the nodal target (PTV_54.25Gy) evaluated in terms of V95%, D98% 
and D50%: Panel C, D and E: dosimetric impact on the bilateral CTVn levels 2, 3 and 4 respectively, evaluated in terms of V95%, D98% and D50%. With green 
are highlighted the reference results from the reference plan created exclusively with manual contours.
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Figure 4.4-5 Illustration of a patient case (Patient 4). Panel A: Visualization of AS contours (CTVn_union) from the 3 
solutions: ABAS.2 (orange), DL.1 (light blue) and DL.2 (dark blue) solutions in contrast with the manual reference 
(green). Panel B: experimental radiotherapy plans (ABAS.2, DL.1 and DL.2) compared to the reference plan; the 
reference manual contour of the PTV_54.25Gy is displayed; significant underdosage to the secondary target is 
observed particularly for the plan created with DL.2 contours. Panel C: From dose volume histogram, a negative 
impact on elective target is observed in the plans generated with CTVn AS contours  
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In this study, we evaluated for the first time the performance of ABAS.2, ABAS.3, ABAS.4, DL.1 and DL.2 
solutions. We observed that overall DL solutions had better accuracy compared with multi-ABAS methods 
for CTVn segmentation on HN CT images. With regard to the geometric indexes, the 2 DL solutions were 
not statistically different. In general DICE results were better for DL.2 on CTVn2 and CTVn3, and better for 
DL.1 on CTVn4. When evaluating CTVn_union, DL.2 provided better conformity to manual reference and 
61% were considered clinically acceptable without correction while the rest requested only minor 
corrections which took about 1min/patient for one of the physicians involved. Conversely, DL.1 contours 
needed minor or major correction in 94% of the cases which resulted in more important manual correction 
times (4min43sec/patient). DL.1 model was trained with relatively small number of patients (N=49) 
delineated exclusively by one expert physician, which ensured data uniformity. Similar with the previous 
work on OARs, we showed in this study that accurate results can be obtained with a limited but uniform 
training database, which can encourage centers to create custom-made models adapted to their standard 
delineation practices. A similar mono-centric training data approach (N=69) was followed by van der Veen 
et al. for the segmentation of 10 CTVn levels [337]. For the union of LN 2-4, they found 76% and 82% 
overlap to manual contours from 2 observers, whereas an 83% overlap was obtained with DL.1 solution in 
our study. They showed that the IOV was improved when corrections were made on the DL-based 
contours. Contrarily, DL.2 solution was trained with much more patients coming from multiple centers, 
which also included segmentations from the same reference physician involved in the training database 
of DL.1. Compared to the mono-centric solution, DL.2 obtained better overlap for CTVn_union (0.86), 
which indicated a good generalizability of the model. 

Regarding multi-ABAS methods, this study showed that good results can be obtained when using a 
library of only 10 patients, and atlas selection strategy based on the closest BMI. Moreover, performing 
the union of the CTVn levels, enabled an overlap 0.80 which suggested that most of the AS contour 
discrepancies happen at the junction of the level. When considering both the computational and the 
manual correction time, approximately 15min were needed to segment a new patient with ABAS.2 
solution. Contrary to the results observed previously on OARs segmentation, the superiority of the new 
ABAS.3 solution over the commercial ABAS.1 and ABAS.2 solutions was not demonstrated for the CTVn 
segmentation [3].

According to recently published guidelines, studies should also report findings from dosimetric 
evaluation of treatment plans created with a new AS methods [207]. From the limited literature, only one 
study performed a dosimetric evaluation and attested that editing ABAS contours of neck CTVn was 
required to avoid large underdosage in the target volumes [341]. Moreover, the heterogeneity of studies’ 
design makes comparison rather difficult. Since big amount of work is required to create reference data 
bases, some studies considered a total volume of the CTVn whereas others considered independent 
contours per CTVn. 

To our knowledge, the present study investigated for the first time 5 AS methods for segmenting 3 
CTVn levels separately. Additionally, auto-planning was used to assess dosimetric consequences of using 
AS contours from one multi-ABAS and 2 DL solutions. This allowed decreased labor and IOV, and to focus 
on the dosimetric effect coming from the CTVn contour only. Overall the results were similar among the 
AS methods, and showed no significant impact on the primary PTV and OARs. However, despite the use of 
a CTV-to-PTV margin of 4mm, significant underdosage on the nodal PTV was observed for all the AS 
solutions, which was consistent with the literature [341]. The effect was more pronounced on the CTVn4 
level which could be related with the higher discrepancies previously identified in the geometrical overlap. 
Moreover, the blinded study showed that majority of AS contours were clinically acceptable with only 
minor corrections. When considering both computational and manual correction time, substantial time 
savings can be achieved by using DL solutions. In our study, one single physician performed the reference 
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contours and another physician performed the manual corrections. A good contour overlap (DICE=0.85) 
between the two experts was observed when manual corrections were performed on the AS contours. 
IOV between manual delineations among the experts was not assessed in this study. However, other study 
showed that performing manual adjustments on AS contours enabled to improve IOV [337]. While 
differences in DICE and HD95% were not statistically significant between DL.1 and DL.2, DL.2 contours were 
better rated by all the 4 physicians, and time for correcting the contours was significantly lower. Therefore, 
the interplay between the training cohort size and a DL model architecture could be further investigated 
by training DL.1 on a larger cohort (N>50 patients). In the previous work, 63 patients were used for training 
the same model on OARs, which provided consistent result over the majority of structures. While on CTVn 
delineation, DICEs 0.82 were obtained for CTVn2, more training data could potentially improve the 
accuracy on CTVn3 and CTVn4. At the same time, DL.2 was trained on large database of patients and the 
overlap for CTVn4 was inferior to DL.1 model. Overall, both multi-ABAS and DL results showed decreased 
accuracy from CTVn2 to CTVn4 which is consistent with the literature [334,338]. 

DL solutions were faster and more accurate than multi-ABAS methods for CT-based AS of HN CTVn 
levels. The multi-centric DL model provided high quality contours leaving only 1min for manual corrections. 
Similar contours were obtained with the mono-centric model trained with <50 patients, but 4min were 
required for manual adjustments. With only 10 atlases, ABAS methods can provide good conformity to 
reference contours, but with decreased workflow efficiency. A decrease in contour accuracy was observed 
from CTVn2 to CTVn4. Finally, manual corrections are still needed to preserve the coverage of the elective 
target.

The present study represents the third contribution of this PhD project and is a continuation of the 
previous work on AS of HN OARs. We compared the 4 ABAS and the 2 DL solutions for the delineation of 
separate CTVn levels 2,3 and 4, that are typically irradiated as secondary targets in HN localization. 
Additionally, we evaluated the accuracy of their union as this volume is generally used in for the treatment 
planning. We analyzed the contours in terms of: computational time, spatial accuracy, clinical acceptability 
(assessed by 4 physicians), time needed to perform manual corrections (performed by one of the 
observers) and dosimetric consequences when using the AS contours in treatment planning. 

Similar to the previous study on OARs, we observed that DL solutions had better accuracy when 
compared with ABAS methods for CTVn segmentation on CT images. However, ABAS methods were also 
able to reach DICEs>0.80 when considering the union of the levels. This revealed an important observation, 
the fact that significant contour inaccuracies happen at the border between the levels, at the upper and 
lower extremities. The main advantage of an ABAS method was the small amount of resources required. 
However, the drawback was the computational time (6-10min per patient, for a library of 10 atlases). 
Contrarily, DL methods were trained on larger databases (49 patients for DL.1 and >100 patients for DL.2
solution) but the contours were generated faster (<1min and <2min, respectively). Moreover, all the 
contours generated by the commercial multi-centric DL model were deemed clinically acceptable without 
or with only minor corrections, that were on average 1min06sec per patient. These remarkable results 
constitute key components for highly efficient workflows. Compared with the mono-centric DL solution 
no statistically significant differences were identified between geometrical accuracy indices (DICE and 
HD95%). However, the manual correction time was larger (4min10sec vs 1min06sec, on average). Overall, 
the clinical evaluation from the 4 experts, led to similar conclusions for DL.1 and ABAS.2 contours. 
However, performing the manual corrections was more time-consuming on the ABAS.2 contours 
(6min31sec vs 4min10sec). Notably, a good agreement (DICE=0.85) among the reference expert and the 
other physician performing the manual corrections was observed, which was higher than expert IOV 
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previously reported in literature studies [218,337]. An IOV among experts was not conducted this study, 
however it constitutes future perspectives of the work. Evaluating contours from multiple observers, 
manually delineated from scratch and manually adjusted AS-based contours, would enable to assess the 
usefulness of AS in improving the consistency of delineation practices.  

When analyzing the dose distributions, significant underdosage in the secondary PTV was observed 
regardless of the solution used. The loss in coverage was particularly detected on the CTVn4 which could 
be related with the discrepancies previously identified in the geometrical overlap. For both ABAS and DL 
methods, DICE results for CTVn4 were 0.72, which was consistent with results from the literature 
[334,338]. For these contours, we recommend greater attention, before using them in treatment planning.  

To best of our knowledge, the present study investigated for the first time 5 AS methods (3 multi-ABAS 
and 2 DL) for segmenting 3 separate CTVn levels. Additionally, auto-planning was used to assess dosimetric 
consequences which enabled decreased labor, no planner IOV, and an isolated effect coming from the 
CTVn contour only. Future perspectives of the work include to increase the DL model training database 
(perhaps also including operated patients), as well as the testing patient’s cohort. Furthermore, a new 
network framework could be developed that combines anatomical landmarks from CTVn delineation 
guidelines in order to guide the node levels predictions.  

Finally, the study demonstrates that AS methods for CTVn can be integrated in the RT workflows to 
reduce the time spent on manual delineation. At this moment, the proposed combination of AS for OARs 
and CTVn, together with auto-planning solutions could be used to improve efficiency of complex HN cases. 
Only the primary tumor volume would remain to be manually delineated by physicians. However, to 
enable ART, intra-fractional anatomical variations must be considered. In this regard, the next chapter will 
discuss different methods for synthetic CT image generation from daily CBCT images, that can be used to 
calculate plans on the anatomy of the day.   
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CChapterr 5.. Evaluationn off differentt methodss forr syntheticc CTT imagee 
generationn fromm dailyy CBCTT imagess  

Currently, RT for complex HN cases is managed by combining IMRT and robust IGRT strategies. This 
ensures adequate target coverage and sufficient OARs sparing. Delivery of high accuracy radiation doses 
is however sensitive to patient anatomical variations that typically happen due to tumor shrinkage or 
weight loss. The use of kV-CBCT images acquired at the beginning of each treatment fraction, can enable 
to assess the delivered dose based on the anatomy of the day and to trigger re-planning. However, the 
CBCT image quality is rather “poor” (low soft-tissue contrast) and contains many image artifacts that result 
in inconsistent HU values. Moreover, CBCT image has a limited field-of-view (FOV) thus does not cover the 
whole patient contour as defined in the planning-CT (pCT) image. Finally, daily CBCT based dose calculation 
uncertainties are difficult to assess due to missing ground truth (doses on daily CT images).

Different approaches to overcome these issues exists [342]. A summary table is presented in the first 
chapter of this manuscript (Table 1.10-2). To assist ART, DL methods are promising, because they offer fast 
conversion of CBCT into synthetic-CT (sCT) images, and demonstrated image quality close to that of pCT
[310,317]. 

The purpose of this study was to investigate different methods that enable dose calculations from daily
CBCT images. A DL method for sCT generation was proposed by Elekta based on a cycleGAN architecture 
trained on unpaired CT and CBCT data. Additionally, three other methods from literature have been 
investigated and compared: CBCT-specific HU-ED curve, 3-class density assignment method (3C-DAM) and 
a deformable image registration algorithm (DIR).

Patient data

Twenty-five patients following a specific adaptive IGRT protocol were selected for this study (Table 
5.2-1). Each of them had CT scan and CBCT scan acquisition in the same hour following the established 
clinical protocol for HN patients. The CT images were acquired on a Siemens scanner (SOMATOM go.Sim)
with an exposure of 120kV and a slice thickness of 2mm. The patients were immobilized with a 
personalized 5-points thermoplastic mask and they received contrast agent injection prior to CT image 
acquisition. The CBCT acquisition was performed on one of the 3 linear accelerators (Versa HD, Elekta AB) 
used for the treatments using the same imaging protocol (120 kV, M20, and 2mm slice thickness).

The CT and CBCT images, were registered based on bony anatomy using a 3D-rigid transformation 
(transition and rotation) with mutual information (MI) as similarity metric inside of the Monaco treatment 
planning system (TPS). On the CT images, OARs and target volumes were defined by the treating radiation 
oncologist. Using VMAT, a simultaneous integrated boost technique was used to deliver 70Gy to the PTV 
associated to the primary tumor and 54.25Gy to the PTV associated to prophylactic nodal target, in 35 
fractions of 2Gy. The dose calculations were performed in Monaco TPS. The clinical plans were saved and 
the templates were applied to the CBCT images after correct positioning of the plan isocenter. With the 
assumption that not important anatomical variation was present between the two image scans, the set of 
contours from the CT with the correspondent approved clinical plan were used as reference for dose 
calculations. 
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Table 5.2-1 Test cohort 

Patient Number  Tumor Localisation TNM 
Patient 1 Nasal cavity T2 N3 M0 
Patient 2 Nasal cavity T3 N0 M0  
Patient 3 Oral cavity T4 Nx Mx 
Patient 4 Oral cavity T2 N1 M0 
Patient 5 Oropharynx T4 N2 M0 
Patient 6 Oropharynx T1 N3 M0 
Patient 7 Oropharynx T2 N1 M0  
Patient 8 Hypopharynx T3 N1 M0 
Patient 9 Tongue T1 N1 M0 

Patient 10 Tongue T2 N2 M0 
Patient 11 Tongue T3 N2 Mx 
Patient 12 Tongue T2 N2 M0 
Patient 13 Tongue T3 N2 M0  
Patient 14 Tongue T1 N2 M0 
Patient 15 Tongue T4 N3 M0 
Patient 16 Tongue T4 N1 M0 
Patient 17 Tongue T2 N2 M0 
Patient 18 Soft palate T3 N2 M0 
Patient 19 Tonsils T2 N1 M0 
Patient 20 Larynx T3 N2 M0 
Patient 21 Larynx T4 N2 M1 
Patient 22 Larynx T2 N0 M0 
Patient 23 Larynx T3 N0 M0  
Patient 24 Larynx T2 N0 M0 
Patient 25 Larynx T3 N0 M0 

Synthetic-CT image generation methods 

Four methods were investigated for dose calculation on CBCT images (Figure 5.2-1). 

1. CBCT HU-ED curve from phantom measurements 

Three HU-ED curves were established by acquiring images of the CIRS 062 phantom with the HN CBCT 
protocol acquisition on the 3 treatment machines used for treating the patients in the cohort (Figure 
5.2-2). This phantom contained the same heterogeneous inserts with known ED, as used for the CT 
calibration, namely: lung inhale, lung exhale, adipose tissue, breast tissue, water equivalent, liver, muscle, 
trabecular bone and dense bone. When compared with other phantom configurations, one study 
concluded that a site-specific calibration curve yielded the best dose agreement [343]. Similarly, in our 
study, after trying several configurations of the phantom, the inner circle of the phantom was used for 
establishing the curve (Figure 5.2-2). The obtained relative HU-ED curves were thereafter introduced in 
the TPS and applied to the CBCT images for each patient accordingly. To account for the missing image 
information on the CBCT image, an additional structure was created by subtracting the CBCT image 
contour from the patient contour, and its ED was forced to that of water. 
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Figure 5.2-1 Methods used of creating synthetic CT from CBCT images; between the planning CT and the CBCT from 
the same day, a rigid registration was applied

Figure 5.2-2 Phantom used for establishing the HU-ED curve for the CBCT systems on 3 Versa HD machines

2. Density assignment method

Similar to another study [344], on each patient reference CT, inside on the patient contour, 3 tissue 
classes were segmented based on HU thresholds. For air, soft tissue and bone, respectively, [-1024; -150], 
[-150; 150] and [150; 4096] ranges for HU values were used, and the meanHU values for the 3 tissue classes 
were documented for each patient. Similarly, CBCT images were segmented into 3 classes based on HU 
thresholding. Additional manual corrections of the class segmentations were necessary in case of image 
artifacts. The soft tissue segment was obtained by subtracting the bone and air segments from the patient 
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body contour on the CBCT image. Per class, meanHU values from the pCT segments were assigned to the 
corresponding tissue class on the CBCT images. 

3. CT to CBCT deformable registration  

Using the research software ADMIRE (v4.3, Elekta AB), a deformed image was created between the 
planning CT (moving image) and the CBCT (fixed image). Following a multi-resolution framework, first a 
rigid registration is performed based on local cross correlation metric and then the deformable registration 
is applied based on block-matching method and normalized-mean-of-squared-differences as similarity 
metric. The accuracy of the deformation fields obtained with ADMIRE was fully described elsewhere [310].  

4. Deep learning method for sCT generation 

A cycleGAN model was proposed by Elekta AB, that has been trained with unpaired CT and CBCT 
images. From each CBCT image, a deformed CT was obtained by applying DIR between the planning CT 
and the CBCT image. Two generators were trained, one to produce sCT images from the original CBCT 
images and another one to generate synthetic-CBCT (sCBCT) images from the original true CT images. Two 
discriminators were used, one to discriminate the sCT from real CT images and the other one to 
discriminate the sCBCT from real CBCT images. Additionally, a structural similarity index map (SSIM) 
weighted L1-loss term were adopted. Minimizing the L1-loss term, enforced the generated images to 
match the pixel values with the real images. Moreover, since in practice it is not realistic to have perfectly 
aligned corresponding CT for CBCT images even by use of advanced deformable registration methods, a 
SSIM-weighted term was introduced to eliminate potential distortions effects. The SSIM weights provide 
a mechanism of enforcing different levels of strengths on sCT images to match the targeted CT images in 
a pixel-by-pixel fashion. Adding a threshold on the SSIM weights allowed to select high similarity areas 
between the paired CBCT and CT images and to obtain more accurate sCT images. The final cycleGAN 
model was trained by Elekta on a multi-centric data base of CBCT images (>100 patients) including 150 
CBCT scans (31 patients) from our department.  

Image uncertainties evaluation 

To assess the image quality, a voxel-wise comparison was performed between the pCT and the sCT 
images. The mean error (ME) and mean absolute error (MAE) between pCT and sCT images were 
calculated by the following formulas:  

 ( , ) =  1 ( ) ( ) 

 ( , ) =  1 | ( ) ( )| 
 
where N represents the total number of voxels. The values inside the patient body contour of the sCT were 
considered for all the 4 methods.  
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Dosimetric accuracy evaluation

To evaluate the dosimetric accuracy, the clinical plan first saved as a template was calculated on the 4 sCT 
images obtained. From DVHs, dose differences were evaluated on the reference contours from the pCT. 
Clinically relevant dosimetric endpoints for target volumes (V95%, D95%, D2%,) and OARs (Dmean, D2%, D5%) 
were considered upon the clinical protocol and recommendations [25]. Furthermore, a spatial dose 
evaluation between pCT and sCT dose distributions was performed by calculating 3D gamma analysis 
(3%/3mm, 2%/2mm criteria, no dose threshold).

Statistical analysis

Statistical differences in imaging and dosimetric points between the methods were assessed using 
Kruskal-Wallis test followed by post-hoc Dunn’s test with Bonferroni correction in Python Notebook 3.8.
P-values <0.05 were considered significant.

Imaging points

The ME and MAE results from pixel-wise comparison between pCT and sCT images showed that DIR 
method provided the most similar image quality to the corresponding pCT with significant differences 
demonstrated (p<0.008) compared with the other methods (Table 5.3-1). The largest discrepancies were 
observed for the adapted CBCT HU-ED curve, and the results were significantly different compared to all 
the other methods. At the same time, results from 3C-DAM and DL-sCT methods were similar and not 
statistically different. An illustration of MAE results can be visualized in Figure 5.3-1.

Table 5.3-1 Results from pixel-wise comparison between pCT and sCT images

HU-ED curve 3C-DAM DIR DL-sCT
ME 139.5 ± 71.9 * 28.4 ± 27.1 * -6.8 ± 12.1 27.9 ± 13.3 *
MAE 224.9 ± 32.0 * 145.6 ± 14.9 * 102.9 ± 25.3 137.9 ± 15.6 *

In bold are marked highlighted the best results among the methods and with * are marked the statistically significant differences 
when compared with the other methods. 

Figure 5.3-1 Illustration of mean absolute error results between CT and sCT image 



116

Dosimetric analysis

In all the plans the dose objectives and constraints were achieved (Table 5.3-2). The mean differences 
were <1Gy in majority of the dosimetic endpoints and were significantly different compared with 
reference only in the targets DVH points (in D2% to PTV_70Gy and in V95%, D95% and D2% to PTV_54.25Gy). 
Larger dose deviations >1.2Gy were observed in V95% of PTV_54.25Gy, that were significant for DIR and DL-
sCT plans (p<0.001). Significant dose differences >1.2Gy were found also for HU-ED curve method in D2%

to both targets. Moreover, the largest dose deviations to OARs were seen for DIR method on the mean 
dose to the parotids (>2.6Gy), but the differences were not statistically significant. An illustration of DVH
comparison can be visualized in Figure 5.3-2. 

Table 5.3-2 Dose differences between the plans calculated on the pCT and on the sCT images

Planning CT HU-ED curve 3C-DAM DIR DL-sCT
Reference values mean mean mean mean

PTV_70Gy V95%(%) 98.57 ± 1 0.21 ± 1.37 0.19 ± 1.19 0.39 ± 1.09 0.65 ± 1.39
PTV_70Gy D95%(Gy) 67.89 ± 0.67 -0.96 ± 1.28 -0.4 ± 0.72 0.04 ± 0.54 -0.02 ± 0.63
PTV_70Gy D2%(Gy) 71.79 ± 1.5 -1.83 ± 1.36 -2 ± 1.59 -0.96 ± 0.46 -0.68 ± 0.45
PTV_54.25Gy V95%(%) 97.86 ± 1.48 1.34 ± 2.07 1.22 ± 2.03 1.63 ± 1.86 2.08 ± 2.03 
PTV_54.25Gy D95%(Gy) 52.93 ± 0.61 0.31 ± 1.2 0.5 ± 0.99 0.83 ± 0.86 0.99 ± 1.01 
PTV_54.25Gy D2%(Gy) 54.09 ± 2.17 -1.28 ± 0.93 -0.21 ± 0.25 -0.67 ± 0.32 -0.48 ± 0.33
Parotid_R Dmean(Gy) 21.3 ± 7.27 0.07 ± 0.75 0.06 ± 0.83 -2.69 ± 13.28 0.1 ± 0.75
Parotid_L Dmean(Gy) 23.86 ± 11.03 -0.38 ± 0.86 -0.34 ± 1.38 -3.46 ± 15.24 -0.13 ± 0.95
Oral Cavity Dmean(Gy) 40.69 ± 12.32 -0.78 ± 0.59 -0.67 ± 0.48 -0.22 ± 0.29 -0.44 ± 0.43
SpinalCord D2%(Gy) 31.78 ± 5.37 -0.5 ± 0.52 -0.21 ± 0.35 -0.07 ± 0.24 -0.06 ± 0.32
Brainstem D2%(Gy) 14.2 ± 9.25 -0.04 ± 0.67 0.16 ± 0.68 -0.03 ± 0.45 0.15 ± 0.58
Mandible D5%(Gy) 57.66 ± 8.91 -1.4 ± 0.83 -0.9 ± 0.59 -0.16 ± 0.63 -0.29 ± 0.61

mean= mean dose differences between reference values on pCT and plans calculated on the sCT images; in bold are 
highlighted the significant dose differences compared to reference 

Figure 5.3-2 Illustration of a dose volume histogram comparison between plans calculated on pCT and sCT images



117 
 

The results from 3D gamma analysis are summarized in Table 5.3-3, for 3%/3mm and 2%/2mm criteria. 
Overall DIR method provided the best dose agreement for majority of the structures considered. Based on 
the variance test, results from 3%/3mm gamma criteria were significantly different for all the structures 
considered (p<0.02), except the parotids, spinal cord and brainstem. Similarity, significantly different 
results were found for the 2%/2mm criteria for the same structures and additionally for the spinal cord 
(p<0.02). More precisely, with regard to gamma 3%/3mm, DIR and DLs-CT results were not significantly 
different (p>0.06). However, DIR method results were significantly better compared to HU-ED method for 
all the structures except the parotids, spinal cord and brainstem (p<0.01). Compared with 3C-DAM, DIR 
results were significantly better for PTV_70Gy, oral cavity and mandible (p<0.005). Furthermore, with 
regard to 2%/2mm criteria, DIR results were significantly better compared with DL-sCT method for 
PTV_70Gy and for oral cavity (p<0.02). When compared to HU-ED method, DIR results were significantly 
better for all listed structures except the parotids and the brainstem (p<0.02) and, when compared with 
3C-DAM, DIR results were significantly better for PTV_70Gy, oral cavity and the mandible (p<0.001). An 
illustration of gamma analysis results can be visualized in Figure 5.3-3. 

Table 5.3-3 Gamma pass rate results between the plans calculated on the pCT and on the sCT images 

 3D Global Gamma 3%/3mm 
 HU-ED 3C-DAM DIR DL-sCT 
PTV_70Gy 80.29 ± 24.88 * 97.36 ± 5.76 * 99.68 ± 0.69 98.9 ± 3.11 
PTV_54.25Gy 80.79 ± 17.47 * 96.25 ± 5.01 97.63 ± 2.88 96.59 ± 3.27 
Parotid_R 99.43 ± 1.96 99.65 ± 1.37 99.52 ± 1.84 99.69 ± 1.41 
Parotid_L 99.84 ± 0.36 99.52 ± 2.02 99.98 ± 0.06 99.93 ± 0.17 
Oral Cavity 97.71 ± 2.76 * 98.75 ± 1.84 99.86 ± 0.34 99.3 ± 1.08 
SpinalCord 98.68 ± 3.2 99.63 ± 1.06 99.73 ± 0.77 99.63 ± 1.1 
Brainstem 99.95 ± 0.25 100 ± 0.01 100 ± 0 100 ± 0 
Mandible 97.22 ± 5.34 * 98.83 ± 2.01 * 99.84 ± 0.34 99.44 ± 1.46 
Patient contour 95 ± 4.47 * 97.2 ± 2.94 97.84 ± 2.67 97.25 ± 2.81 

 
 3D Global Gamma 2%/2mm 
 HU-ED 3C-DAM DIR DL-sCT 
PTV_70Gy 53.36 ± 31.16 * 81.88 ± 16.84 * 96.11 ± 5.45 89.93 ± 11.6 * 
PTV_54.25Gy 61.33 ± 21.71 * 84.86 ± 13.06 92.63 ± 7.31 87.85 ± 9.49 
Parotid_R 94.71 ± 9.36 94.55 ± 9.08 95.37 ± 10.49 95.36 ± 8.12 
Parotid_L 95.99 ± 6.16 95.61 ± 12.66 98.13 ± 3.7 97.18 ± 4.85 
Oral Cavity 82.62 ± 14.38 * 88.25 ± 10.15 * 97.4 ± 4.33 91.98 ± 7.34 
SpinalCord 92.77 ± 9.92 * 97.76 ± 3.02 98.34 ± 2.53 98.13 ± 2.75 
Brainstem 98.56 ± 4.7 99.34 ± 1.56 99.64 ± 1.49 99.66 ± 1.01 
Mandible 85.01 ± 14.26 * 89.24 ± 8.6 * 96.88 ± 5.24 93.45 ± 7.04 
Patient contour 86.04 ± 8.89 * 91.33 ± 6.31 93.47 ± 6.39 92.05 ± 5.56 

In bold are highlighted the best gamma results and with * are marked the significant differences compared with the 
other methods 
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Figure 5.3-3 Illustration of one patient’s gamma analysis results (3%/3mm) between reference and the plan 
calculated on sCT image 

This study provided results for dose calculations methods on CBCT images. Four methods were 
evaluated and compared. DIR and DL methods were the fastest, providing an sCT images in <1min. For 3C-
DAM method, the sCT generation process involved several steps that were more time-consuming 
(approximately 5 min per patient to verify and correct the segmented tissue classes). Establishing the HU-
ED curve was simple but the most laborious because the phantom irradiations were performed on the 3 
treatment machines. The largest differences were in the dense bone insert: when compared to the pCT 
measured vales, mean HU difference was 90 HU, and when compared among the three CBCT acquisitions, 
the mean difference was 46 HU. However once established, the curves were used accordingly for all the 
patients.

Overall the results showed that DIR method was the most accurate in both imaging and dosimetry 
points. However, the results were not always significantly different compared with DL method. Moreover, 
among all the methods, dose deviations on the parotids were the largest for DIR algorithm. Nevertheless, 
for majority of the structures, the gamma agreement was the highest for DIR solution for both gamma 
criteria. CBCT images were acquired shortly after performing the pCT, thus allowing to assume that the 
anatomical deformations were minimal. However, this configuration might have represented an 
advantage for the DIR algorithm over the other methods, for the calculation of the deformable vector 
fields. DL-sCT method yielded the best results after DIR, with significant dose deviations only for the 
elective PTV. Gamma rates were >96% and >87% for 3%/3mm and 2%/2mm criteria respectively, with the 
largest discrepancies observed on the PTVs. 3C-DAM method was similar in image accuracy when 
compared to DL-sCT method. The dose deviations were small <1.2Gy and the gamma rates were >96% and 
>81% for 3%/3mm and 2%/2mm criteria, respectively. Adapted HU-ED method had the worse image 
quality, dose deviations <1.4Gy and lowest gamma pass rates particularly on the target contours (<80%). 

Another study from literature performed a similar comparison (using ADMIRE software with same DIR 
and DL method) based on 14 HN patients [310]. They reported ME/MAE results of 208.9/266.6 HU, 
14.6/113.2 HU, -36.6/95.5 HU and 17.1/82.4 HU for a HU-ED, DAM, DIR and DL method, respectively. In 
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our study, the results were similar, with larger MAE results particularly for DAM (145.6 HU) and DL-sCT 
method (137.9 HU). Similar results were obtained for the dose deviations in targets and OARs (<1.2Gy). 
Gamma pass rates were also comparable between our study and Barateau et al, showing best agreement 
for DIR (98.8%) method, followed by DL method (98.1%). However, contrarily to our study results, in their 
comparison, slightly better image quality was obtained with the DL method (trained on 30 HN patients 
from the same center). Similarly, another study reported slightly lower ME/MAE (1.4/77.2 HU) for a similar
DL solution (trained on a mono-centric database of 25 patients and a total of 120 unpaired CBCT images, 
using ADMIRE software) [317]. They demonstrated mean relative dose differences <1% to the gross tumor 
volumes and <5% for the OARs. Moreover, their reported gamma rates (on the patient volume) were 
98.6% and 95% for 3%/3mm and 2%/2mm criteria, respectively. In our study, using the DL method, gamma 
rates of 97% and 92% were obtained for 3%/3mm and 2%/2mm criteria, respectively. Similarly, other 
related study using a cycleGAN-based method (trained on 90 HN CT and CBCT images), reported gamma 
values of 98.4% on HN localization and a MAE of 29.85 HU [82]. 

A known issue of GANs architectures is the model instability when networks are trained with only 
adversarial losses. The additional cycle consistency loss from cycleGAN aim to address this issue. 
Moreover, in the framework of the cycleGAN model proposed by Elekta in this study, a SSIM threshold 
with weighted L1-norm term was added to obtain a more robust model. However, although cycleGAN can 
remove most scatter artifacts on the CBCT images and correctly assess HU values to match those of the CT 
images, when both the CT and CBCT training datasets include metal artifacts, they will still be present in 
the sCT images. Moreover, CBCT images that have severe truncation problems will also yield sCT images 
that have truncations.

Another concern for GANs, is the application range. This is clearly present in our study where the model
trained on a large multi-centric database, seemed to not provide a good generalizability to our test cohort. 
Better performances were demonstrated by similar network architectures that were trained and tested 
on uniform image acquisition cohorts [82,310]. 

As future perspectives of the study, we plan to evaluate the model performance when trained with 
uniform data and also to investigate solutions for the image truncation problem caused by the CBCT small 
FOV. Another direction will be to investigate the accuracy of the DIR method when using CBCT images 
from different treatment fractions. Furthermore, DIR accuracy can be evaluated with regard to dose 
accumulation, as proposed in another study [100]. Provided that the solutions are integrated in the TPS, 
the success of such work would enable accurate and efficient generation of sCT from CBCT images that 
can be further used for ART planning. 

Finally, four methods for dose calculation on CBCT images were evaluated and compared in this study. 
DIR method demonstrated the best image quality and the best gamma pass rates. Next was the DL method. 
DAM provided comparable results with the DL solution but was more time-consuming. Using a HU-ED 
curve demonstrated the largest discrepancies in both image similarity metrics and dose calculation 
accuracy. Future investigations are needed to determine the accuracy of DIR in different fractions of the 
treatment, and the performance of DL based on a uniform training cohort. Ultimately, used with caution, 
DIR and DL methods can potentially be used for CBCT-based adaptive workflows for RT of HN patients.
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The present study provided an evaluation and comparison of 4 CBCT-based dose calculation methods.
Their performance was evaluated with regards to imaging dosimetric accuracy compared to the planning 
CT images. The workload and resources needed for each method were also considered. 

The results demonstrated that DIR algorithm had the best performance, followed by the DL method. 
Moreover, both were fast, generating a sCT image in <1min. Class density assignment method had similar 
results with DL method, but was more time-consuming (~5min) due to the extra steps related to tissue 
class segmentation and HU numbers assignment. Finally, the adapted CBCT HU-ED curve had the worst 
results. 

Several metrics to quantify the accuracy of sCT images exist [207], but no real consensus on the 
acceptance criteria. In our study we quantified ME and MAE for all the methods inside of the body contour 
of the CBCT image. Some other studies are documenting the results based on tissue segments (e.g bony 
structures, air cavities, soft tissue). This would be interesting to investigate further in our cohort of 
patients. Due to voxel-wise comparison, particular care should be taken to compensate for possible 
anatomical difference and/or potential errors in the initial registration step between the CT and the CBCT 
images. A solution from literature would be to apply negative margins (e.g. 2mm) to the segments where 
the HU number difference wants to be assessed [317].

With regards to the dose calculation accuracy, typically DVH-based dose differences and gamma 
analysis are performed to compare plans calculated on the sCT and the reference CT. In our study, target 
objectives and OARs constraints we considered upon clinical protocol and two gamma criteria were used
(3%/3mm and 2%/2mm). We observed that generally dose deviations were small and not significant. 
Larger discrepancies were identified with the stricter criteria for gamma analysis, whereas only DIR 
method passed >90% the 2%/2mm gamma criteria inside all the structures considered. Perhaps a better 
understanding of the exact location of the inconsistent HU numbers would allow to find correlations with 
the dose deviations and gamma rates. Ultimately this would enable to define appropriate limits for 
acceptance criteria. 

The study is original because a cycleGAN was evaluated on HN localization that was trained with 
unpaired CBCT images from a multi-centric database. The model trained on mono-centric data seem to 
provide better results in other studies [82,310]. Another issue that must be further investigated is the 
image truncation problem caused by the CBCT small FOV, which in our study was resolved by water density 
override where image information was missing. Furthermore, DIR accuracy must be evaluated with regard 
to different fractions of the treatment, and finally the accuracy DIR for dose accumulation must be 
assessed [100]. 

Provided that are integrated in the TPS, DIR and DL methods are the most promising solutions for 
enabling ART planning by generation of sCT from daily CBCT images. 
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CChapter 6. Conclusions and perspectives of the study 

Finally, the work carried out during the 3-year thesis study, aimed to evaluate different methods to 
accelerate the RT workflow and ultimately enable to perform ART for HN cancer patients. The 
contributions were divided into four axes, and notably we have evaluated: 1) The performances of an 
automatic planning solution based on a priori MCO algorithm 2) Six solutions for automatic segmentation 
of OARs and CTVn on HN CT images; 3) Four methods that enable dose calculations on daily CBCT images. 
A seamlessly integration of these solutions would represent the success story of ART for patients with HN 
cancers.  

Regarding speed and accuracy, DL solutions were very attractive. However, a great amount of work is 
needed for the training data base collection and curation. Other methods based on less input information 
(wish-list based for auto planning and atlas-based segmentation for automatic contouring) enabled to 
reduce the clinical load. More precisely, we demonstrated that manual optimization can be safely replaced 
by a wish-list based auto-planning, and manual contouring time can be shortened by performing 
corrections on AS contours. Additionally, both methods allow an improved consistency among operators. 
Their limitation remains the computational time. Lastly, we observed that the fastest and most accurate 
method to generate sCT from daily CBCT images was the use of DIR and DL methods. A limitation remains 
the limited FOV in the CBCT images, which in our study was resolved by water density override where the 
image information was missing.  

Numerous future directions can be envisioned from this work. Short term perspectives with regards to 
auto-planning are testing and evaluating of faster solutions promised by Elekta company, and investigate 
them also on a larger cohort of HN cancer patients, where population can be divided in smaller groups 
upon the tumor’s localization. Furthermore, several wish-lists can be established in function of the clinical 
protocol and cancer sites, and encourage their integration into the clinical routine. Perspectives of 
developing a DL-based solution for auto-planning can also be considered, in order to generate plans in 
only few seconds. Moreover, the methodology used for quantifying the plan quality can further be applied 
for evaluating other auto-planning solutions before clinical implementation in our department. Yet, an 
obstacle for the smooth integration of the wish-list based auto-planning algorithm in the clinical routine 
remain the nomenclature of the structures of interest, where AS solution may be the key facilitator.  

With regards to the AS solutions, we have evaluated several commercially and non-commercially 
available solutions. Among them, some were investigated for the first time on HN OARs and/or CTVn 
volumes. From this work, short term perspectives can be proposed starting with a study to evaluate the 
relationship between the amount of training data and the DL model performance for each of the 
structures. In parallel, the open-source self-configurating nnUnet can be trained with the same input, and 
results can be compared in order to investigate the inter-play between the training data and the network 
architecture. This has already been initiated in the work of a master student. Moreover, it can be 
investigated the model performance when operated patients are included in training. We had already 
tested this option by including few cases of patients with larynx or trachea removed. The initial results 
however were not satisfying and we concluded that more operated patients needed to be included to 
potentially increase model’s performance. Furthermore, a future perspective with regards to the patient 
database, is to include data also from other centers, that must nonetheless be consistent with the image 
acquisition protocol (2mm thick slice, contrast agent injection) and follow international delineation 
guidelines. By doing this, a multi-centric study can be conducted where the generalizability of the mono-
centric DL model can be tested with respect to reference manual delineations from other physicians. 
Furthermore, by including manual delineation form multiple observers would allow to assess IOV among 
manual delineations and compare it to IOV from AS+manual corrections. Similar to another study [170], it 
would be interesting also to further split the observations into categories based on the experience of 
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physicians, namely residents, young and senior physicians. While conducting the proposed study, record 
of the manual delineation time should be performed so that the actual time reduction could be assessed. 
With regards to the dosimetric impact evaluation, we demonstrated in our study that OAR’s distance to 
PTV was not consistently interrelated with the high dosimetric deviations. Perhaps a deeper investigation 
can be performed in order to determine in what situations editing the AS contours makes a clinical 
difference, and whether thresholds for DICE/HD95% could be set. Furthermore, one study showed that 
surface DICE and added path length (APL) measures for contour accuracy were better indicators for the 
clinical delineation time saved when using AS contours [345]. It would be interesting to compare these 
measures also on the cohorts from our studies. Another future research perspective inspired from 
literature [334,346] would be to develop a DL network framework with contour constraints based on 
anatomical landmarks. Structures with well-defined borders on CT images, that constitute anatomical 
borders defined in the delineation guidelines (e.g. the hypoid bone, sternocleidomastoid muscle, 
vertebrae) can be segmented as auxiliary task output of a DL network. Then, distance maps can be applied 
for restricting the shape of the desired main segmentation output (predictions of OARs and CTVn volumes).  

With regard to the last thesis contribution, on CBCT-based dose calculations, we can first envision as 
the next step, the optimization of the DL solution for sCT generation. A new model could be trained on 
uniform data from our department (mono-centric model), while trying also to optimize the network 
architecture (number of layers, image size, loss function, weights and thresholds etc.). Its performance 
should be then compared with that of the multi-centric model. Secondly, another function available In 
Monaco TPS (AdaptAnatomy) for sCT generation based on density overrides is planned to be investigated 
in the near future. For this, several strategies can be followed with respect to the regions of interest (ROIs): 
one can use the full set of structures present on the CT set or choose only few tissue classes. To make the 
process automated, one can use an atlas-based AS solution for segmenting a predefined list of bony and 
soft tissue structures on the CT. Since this is another TPS integrated sCT generation solution, it would be 
relevant to compare it with the formerly investigated methods. Another direction of research from this 
topic is the problematic of dose accumulation. DIR accuracy remain to be assessed so that dose calculation 
uncertainties can be estimated [100]. Furthermore, uncertainties in CBCT-based sCT generation could be 
propagated from errors in daily patient re-positioning. Therefore, dose deviations should also be 
investigated with regard to the patient re-positioning strategies. A study has already been initiated for 
evaluating the dosimetric uncertainties related to bone-matching (BM) registration alone, and BM+soft 
tissue guided registration between the daily CBCT and the CT images. Lastly, QA criteria for the clinical 
implementation of a sCT method should be investigated and proposed.  

Long-term perspectives would be to evaluate a RT workflow that combines automated solutions for 
auto-contouring, auto-planning and sCT image generation. While complex IMRT techniques enabled to 
reach outstanding target coverage, the integration of modern RT solutions enables stronger focus towards 
minimizing toxicity to normal tissues. This require however QA checks at each step in the treatment 
workflow. It would be clinically useful to evaluate margin strategies considering all the uncertainties 
related to the automated solutions used. Another goal is to enable selection of patients that will benefit 
from plan adaptation. This could be done based on intra-fraction anatomical variations, where we could 
compare volume overlap from OARs and CTVn used for planning, with volumes automatically segmented 
on the sCT generated from pre-treatment CBCT images. Critical thresholds can be investigated based on 
evaluating planned doses against doses created on the actual anatomy of the day.  

Ultimately, the clinical validation of such RT workflow would decrease the manual workload, help in 
the harmonization of the clinical practices and enable fast decision making for RT of complex HN cancer 
cases. Results from clinical trials are awaited to determine the clinical benefits of ART. 
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RRésumé étendu 

Introduction  

Le cancer est l'une des principales causes de décès dans le monde et peut se développer dans plusieurs 
régions de la tête et du cou (HN), notamment le larynx, l'oropharynx, le nasopharynx, l'hypopharynx, la 
thyroïde, les glandes salivaires, la cavité orale et les lèvres. D'après les statistiques de 2020, sur les 1 518 
133 patients chez qui un cancer HN a été diagnostiqué, 34 % n'ont pas survécu [1]. La radiothérapie externe 
(RT) est l'un des traitements les plus efficaces pour ce type de tumeurs cancéreuses. Son principe est de 
délivrer des rayonnements ionisants de haute énergie (MV) à l'aide d'un accélérateur linéaire (LINAC), afin 
d'induire des dommages à l'ADN des cellules cancéreuses et de bloquer leur capacité à se multiplier. Les 
tissus normaux ont une plus grande capacité de réparation après une irradiation et la toxicité peut être 
limitée en divisant la dose sur plusieurs jours. Les techniques de radiothérapie à modulation d'intensité 
(IMRT) avec des distributions de dose hautement conformes et des gradients de dose abrupts constituent 
la norme pour la RT des tumeurs HN en assurant une couverture maximale de la zone cible et l'épargne 
des organes à risque (OAR). En général, une dose de radiothérapie cumulée de 70Gy est délivrée avec une 
intention curative sur plusieurs semaines en fractions quotidiennes de 1.8 – 2.0Gy. L'acquisition de l'image 
tomodensitométrique de planification (pCT) est un prérequis pour définir le positionnement de référence 
du patient, avoir accès à l'anatomie du patient et aux densités électroniques (ED) des tissus. Sur l'image 
pCT, le radiothérapeute définit le volume cible de planification (PTV) et les OAR, afin que les doses de 
rayonnement puissent être établies sur la base de contraintes dose-volume. Le contourage et la 
planification demandent une grande précision. Néanmoins, elles sont laborieuses et susceptibles de 
variations intra et inter-observateurs (IOV). De plus, des changements anatomiques (par exemple, perte 
de poids, réduction de la tumeur, déplacement des OAR) peuvent se produire entre le pCT et la première 
session de traitement, ainsi qu'entre les fractions de traitement, ce qui peut causer des différences entre 
les doses planifiées et les doses délivrées effectivement. 

Des stratégies de RT adaptative (ART) ont été développées pour corriger les variations anatomiques 
intra-fractionnelles. Idéalement, les dispositifs d'imagerie tridimensionnelle (3D) installés dans la salle de 
traitement, principalement utilisés pour minimiser les erreurs de positionnement du patient, peuvent être 
utilisés pour évaluer les déformations anatomiques du patient et pour effectuer un nouveau calcul de la 
dose sur l'anatomie du jour. Les systèmes de tomographie à faisceau conique (CBCT) à faible énergie 
intégrés à la machine LINAC sont très répandus et utilisés pour vérifier la mise en place du patient. Par 
contre, la qualité de images n'est pas adaptée aux calculs de dose à cause de plusieurs inconvénients 
(artefacts d'image, incohérence des chiffres de l'unité Hounsfield (HU), et champ de vue limité (FOV)). Avec 
l'avènement des solutions d'intelligence artificielle (IA), plusieurs applications ont été proposées pour 
faciliter la mise en œuvre de l'ART. Parmi elles, la segmentation automatique des images (AS), la 
planification automatique du traitement (auto-planning) et la génération d'images CT synthétiques (sCT) 
à partir d'images CBCT sont abordées dans ce manuscrit de thèse. 

L'objectif de cette thèse était d'étudier plusieurs solutions automatisées pour différentes étapes du 
flux de travail de la RT des patients atteints de cancer HN. En premier lieu, une solution de planification 
automatique a été évaluée. Ensuite, la performance de plusieurs solutions AS a été comparée pour les 
OARs HN et les niveaux de ganglions lymphatiques (CTVn) dans la région HN. Enfin, plusieurs méthodes 
qui permettent de calculer la dose sur des images CBCT du jour ont été étudiées. Le manuscrit représente 
le travail effectué au cours des trois dernières années et est organisé en six chapitres. 

Le premier chapitre présente le contexte de l'étude. Dans la première partie est décrit le processus 
standard d'un traitement par RT, les modalités utilisées dans la RT guidée par l'image (IGRT), et le concept 
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d'ART avec un accent sur le traitement du cancer HN. En outre, l'émergence de solutions d'IA dans la RT 
est présentée en mettant l'accent sur les méthodes plus récentes en matière de AS, les solutions de 
planification automatique et les méthodes de génération d'images sCT. Dans la dernière partie du chapitre 
sont résumés les objectifs de la thèse. 

Le deuxième chapitre décrit l'évaluation des performances d'une solution d'auto-planification par 
rapport à des plans de traitement optimisés manuellement. Ce travail représente une première 
contribution, en tant que second auteur, à l'article qui a été publié dans le European Journal of Medical 
Physics en 2021 [2]. 

Le troisième chapitre présente le travail de la deuxième contribution, l'évaluation des performances de 
six méthodes d'AS pour la segmentation des OARs sur des images CT. Ce travail a été publié dans le 
Radiotherapy and Oncology Journal [3]. L'évaluation des solutions AS était basée sur la demande en 
ressources, la précision géométrique, le temps nécessaire aux corrections manuelles et l'impact 
dosimétrique sur les distributions de dose RT calculées à l'aide de l'auto-planning. 

De la même façon, dans le quatrième chapitre, les performances des six mêmes méthodes AS ont été 
évaluées sur les niveaux de ganglions lymphatiques (CTVn), qui sont généralement irradiés comme 
volumes cibles électifs dans la région HN. Les résultats de cette étude sont présentés sous la forme d'un 
article qui sera prochainement soumis également au Radiotherapy and Oncology Journal. 

Le cinquième chapitre présente les résultats de l'évaluation de quatre méthodes de génération de sCT 
à partir d'images CBCT du jour. Une solution basée sur DL a été étudiée et comparée à d'autres méthodes 
proposées dans la littérature. Par rapport au pCT de référence, la précision de l'image et la précision du 
calcul de la dose ont été mesurée. 

Enfin, le chapitre six résume les conclusions de la thèse et les perspectives futures de ce travail.  
Les travaux réalisés au cours de ces trois années de thèse ont été financés par Elekta LTD, et ont été 

conduits au service de RT du Centre de Cancérologie Léon Bérard, dans l'équipe TOMORADIO des 
laboratoires CREATIS. 

Chapitre 1 Contexte clinique 

Le cancer est une maladie caractérisée par une croissance indésirable et incontrôlée de cellules qui se 
sont développées à partir de cellules normales du corps et qui présentent des mutations structurelles et 
fonctionnelles. Dans le monde, plus de 18 millions de patients se voient diagnostiquer un cancer chaque 
année. En 2020, les tumeurs de la tête et du cou (HN) ont contribué 8.2 % et 5 % respectivement à 
l'incidence et à la mortalité mondiales par cancer. D'un point de vue thérapeutique, le HN est une région 
difficile à traiter car de nombreux organes de cette région sont associés à des fonctions physiologiques 
telles que la respiration, la communication et la nutrition. Par conséquent, la prise en charge des patients 
atteints de cancer HN impose une approche thérapeutique multidisciplinaire impliquant la chirurgie, la 
radiothérapie externe (RT) ou interne et les traitements systémiques. Afin d'atteindre l'objectif 
thérapeutique, la prescription comprend souvent une combinaison de ces options thérapeutiques. 

Le principe de la RT est d'induire des dommages à l'intérieur des cellules cancéreuses tout en limitant 
les effets sur les tissus normaux. En raison d'un cycle cellulaire atypique, avec une phase de division 
accélérée, les cellules cancéreuses sont plus sensibles aux rayonnements et peuvent donc être affectées 
de façon létale par les rayonnements, alors que l'effet sur les cellules normales n’est pas létal. 
L'accélérateur linéaire (LINAC) est l'équipement le plus répandu pour l'administration de RT. Il est capable 
de produire des rayons X de haute intensité, en accélérant des électrons vers une cible en tungstène. La 
plus grande partie de l'énergie cinétique de l'électron est transformée en chaleur et une petite fraction 
est émise sous forme de photons de rayons X. Une fois qu'un faisceau de rayonnement est produit dans 
un LINAC, il peut être modélisé à l'aide de plusieurs éléments à l'intérieur de la tête de traitement, 
notamment des filtres, des blocs et des collimateurs. L'introduction du collimateur multi-lames (MLC) dans 
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la conception du LINAC a permis de modeler plus précisément le champ de rayonnement en fonction du 
contour des cibles tumorales. Cela a permis l'introduction de la RT modulée en intensité (IMRT) et la 
thérapie volumétrique par modulation d'arc (VMAT), qui sont devenue la modalité standard pour les 
traitements par RT des cas complexes tels que les cancers HN. 

Une prescription de dose typique pour les patients HN au Centre de Cancérologie Léon Bérard consiste 
à délivrer 70Gy au volume cible planifié (PTV) associé à la tumeur primaire, et 54.25Gy au PTV associé à la 
cible ganglionnaire prophylactique, en 35 fractions de 2Gy. La radiothérapie guidée par l'image (IGRT) est 
le processus d'imagerie régulière, au cours d'une séance de RT, utilisé pour guider la position du patient, 
en comparant les images de simulation CT aux images de pré-traitement, acquises dans la salle de 
traitement avant la délivrance de la dose. L'objectif principal de l'IGRT est de réduire les erreurs 
d'installation et de positionnement du patient en corrigeant l'alignement de différentes images du même 
patient. Avec l'aide de l'IGRT, la radiothérapie adaptative (ART) cherche à prendre des mesures correctives, 
si nécessaire, en fonction des changements quotidiens de la tumeur et des tissus normaux. La principale 
limite de l'ART est le temps nécessaire pour adapter le plan à l'anatomie du jour. Pour faciliter la mise en 
œuvre de l'ART, des solutions d'intelligence artificielle ont émergé en RT pour plusieurs applications. 

Dans ce contexte clinique, cette thèse propose d'évaluer plusieurs solutions automatisées pour 
différentes étapes du flux de traitement par RT des patients atteints de cancer HN, qui peuvent permettre 
la mise en œuvre de la ART pour cette localisation. Les contributions de ce travail ont été divisées en quatre 
axes : 

1. Planification automatique du traitement  
 Nous avons évalué la qualité des plans de traitement HN en utilisant une solution de 

planification automatique par rapport aux plans de traitement manuels VMAT et 
TomoTherapy. 

2. Segmentation automatique pour les OARs  
 Nous avons comparé 4 solutions de segmentation automatique basées sur une 

bibliothèque d’atlas et 2 solutions de segmentation automatique d’apprentissage profond 
(DL) pour la délimitation de 10 OARs typiquement délinée sur les images pCT des patients 
de cancers HN. 

 Nous avons évalué leurs performances en ce qui concerne la demande de ressources, la 
précision géométrique, le temps nécessaire aux corrections manuelles et l'impact 
dosimétrique sur les distributions de dose de RT calculées à l'aide de la planification 
automatique.  

3. Segmentation automatique pour les niveaux ganglionnaires lymphatiques  
 Nous avons comparé les 6 mêmes solutions de segmentation automatique pour la 

délimitation de trois niveaux de ganglions lymphatiques (CTVn) sur des images CT qui sont 
habituellement irradiés comme volumes cibles secondaires.  

 Nous avons évalué leurs performances en termes de demande de ressources, de précision 
géométrique, de temps nécessaire aux corrections manuelles et d'impact dosimétrique 
sur les distributions de dose de RT calculées à l'aide de la planification automatique.  

4. Calculs de dose basés sur le CBCT pour la ART 
 Nous avons comparé différentes méthodes pour générer des images CT synthétique (sCT) 

à partir d'images CBCT.  
 Nous avons évalué leur application potentielle pour la TAR en termes de précision du 

calcul de dose et de qualité d'image. 
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Chapitre 2. Validation d'une solution de planification de traitement automatisée 

La première investigation des méthodes adaptatives pour le traitement du cancer HN, a été l'évaluation 
de la performance d'un algorithme d'optimisation de plan à base de multicritères a priori. L'objectif de 
l'étude était d'examiner la version de recherche de la solution de planification automatique mCycle (Elekta 
AB) par rapport à la planification manuelle conventionnelle utilisant la VMAT ou la tomothérapie 
hélicoïdale (HT) pour une cohorte de patients HN. Les résultats sont présentés sous la forme d'un article 
(Biston et al. [2]) qui a été publié dans le European Journal of Medical Physics en 2021. Dans ce travail, j'ai 
contribué à l'analyse des résultats. 

Dans cette étude, les performances de la solution d'auto-planification mCycle ont été évaluées par 
rapport aux plans VMAT ou HT optimisés manuellement. La comparaison a été effectuée sur la base des 
calculs des indice de qualité des plans (PQI), de l'évaluation en aveugle par 2 médecins qualifiés, du nombre 
de points de contrôle (CP), du nombre d’unité de contrôle (MU), de scores de complexité de modulation 
(MCS) et des mesures d'assurance qualité. Sur la base d'une cohorte de 14 carcinomes du nasopharynx 
(HN supérieur) et de 14 "indications moyennes inférieures" (HN inférieur), la supériorité de la solution 
mCycle a été démontrée. De plus, les plans mCycle ont été considérés comme meilleurs que les plans 
manuels dans 75 % des cas. Ce résultat est cliniquement significatif car l'optimisation manuelle d'un cas 
complexe de HN nécessite au moins 3-4 optimisations et prend beaucoup plus de temps (>2h) par rapport 
à la solution automatique proposée (<1h). Par ailleurs, une solution sans utilisateur permet d'accroître la 
cohérence entre les planificateurs. Un autre grand avantage de l'utilisation de la solution mCycle est qu'elle 
permet de mieux épargner les OARs tout en maintenant la couverture souhaitée pour les PTV. C'est la 
principale raison pour laquelle elle a été préférée aux plans manuels. Par conséquent, les plans mCycle 
étaient plus complexes que les plans VMAT manuels, ce qui a considérablement augmenté les temps de 
traitement, sans toutefois avoir d'impact négatif sur les mesures d'assurance qualité.  

À mon avis, cette preuve motive l'intégration clinique de solutions de planification automatique pour 
les cas complexes tels que HN, où une meilleure épargne des OAR peut être obtenue par des itérations 
automatiques que par un opérateur humain. Néanmoins, si d'autres améliorations du plan de traitement 
sont souhaitées, le plan proposé par mCycle peut être un bon point de départ pour des ajustements 
supplémentaires. Il convient de mentionner qu'un temps excessif est nécessaire pour obtenir une ‘wish-
liste’ robuste et que le temps de calcul relativement long reste une limite pour l’ART. Pour obtenir la ‘wish-
liste’, il faut mettre en place un processus de réglage itératif intensif qui implique un travail de 
collaboration entre l'équipe de cliniciens pour décider de l'ordre de priorité des différentes fonctions et 
des objectifs de dose. La complexité de la tâche augmente avec le nombre d'OAR critiques considérés, et 
plusieurs d'itérations sont nécessaires pour bien équilibrer les objectifs et les contraintes de dose. 
Néanmoins, une fois validé pour un protocole clinique et pour une localisation, il peut être rapidement 
adapté à un autre protocole de dose ayant des contraintes de dose similaires (par exemple une localisation 
HN avec 3 niveaux de dose PTV).  

En ce qui concerne les perspectives d'avenir, la société Elekta s'efforce de fournir une solution de 
planification automatique plus rapide (<15min pour la planification HN) qui ouvrira les portes de l'ART 
pour les patients atteints de cancer HN. Cependant, la délimitation manuelle des organes sur l'anatomie 
du jour reste une limitation qui remet en cause les résultats prometteurs des solutions de AS. Ce sujet sera 
abordé plus en détail dans les deux prochains chapitres de la thèse. 
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Chapitre 3. Comparaison des méthodes basées sur l'atlas et l'apprentissage 
profond pour la délimitation des organes à risque sur les images de 
tomodensitométrie de la tête et du cou à l'aide d'un système automatisé de 
planification des traitements 

Ce chapitre représente le travail d'un article qui a été publié dans le Radiotherapy and Oncology Journal 
en novembre 2022 [3]. L'objectif était d'évaluer et de comparer les performances de différentes méthodes 
de SA pour la segmentation des OARs sur des images CT HN.  

Cette étude a fourni une comparaison détaillée entre 4 solutions basées sur une bibliothèque d'atlas 
(ABAS) et 2 solutions d’apprentissage profond (DL) pour la délimitation des OAR sur des images CT HN. 
Leurs performances ont été évaluées par rapport à plusieurs aspects qui sont pertinents lors de l'examen 
d'une solution AS, notamment : la demande de ressources en données du patient, le temps de calcul, la 
précision géométrique (recouvrement volumétrique et métrique de la distance de surface), le temps de 
correction manuelle et l'impact dosimétrique (en utilisant la planification automatique). Les résultats ont 
montré que les solutions DL avaient une précision globalement supérieure à celle des méthodes ABAS. Il 
a également été démontré que les contours hybrides ABAS présentaient un bon accord avec les contours 
de référence et étaient parfois meilleurs que les contours basés sur la méthode DL. Toutefois, si l'on 
considère le temps de calcul et le temps consacré aux corrections manuelles, les solutions DL se sont 
révélées plus efficaces.  

En ce qui concerne les données nécessaires à l'entraînement d'une solution DL, comme d'autres études 
dans la littérature, notre étude a montré qu'avec un ensemble de données d'entraînement limité mais 
plus uniforme, un modèle peut obtenir des résultats homogènes pour la plupart des structures de HN. Cela 
peut être d'un grand intérêt pour les centres qui souhaitent adapter un modèle à leurs pratiques de 
contourage. En même temps, nous avons également démontré qu'un modèle entraîné avec une plus 
grande quantité de données multicentriques peut fournir une bonne généralisation à de nouveaux 
ensembles de données. L'exécution de corrections manuelles a été la plus efficace sur les contours du 
modèle DL monocentrique (en moyenne 18 minutes). Ceci est particulièrement significatif pour la charge 
de travail des dosimétristes. Ces considérations peuvent aider un service à choisir la solution de AS la mieux 
adaptée à ses besoins en fonction du temps et des ressources dont il dispose. En ce qui concerne l'impact 
dosimétrique, aucune différence statistique n'a été observée entre les plans créés avec AS sans ou avec 
des corrections manuelles. Ceci est cohérent avec les résultats de la littérature qui attestent que les 
corrections manuelles pourraient potentiellement être négligées pour les OAR. Par ailleurs, dans notre 
étude, nous avons examiné la corrélation entre la position de l'organe par rapport aux PTV et les 
différences de dose. L'objectif était de comprendre dans quelles situations la correction d'un contour AS 
est particulièrement importante. Malheureusement, nous n'avons pas réussi à identifier une tendance 
claire de cette relation car des différences de dose élevées n'ont pas été systématiquement observées à 
proximité de la cible. L'étude est originale car elle a évalué plusieurs solutions AS commerciales et non 
commerciales, parmi lesquelles 3 d'entre elles n'ont pas encore été étudiées sur la localisation des HN. 
Une autre nouveauté était l'utilisation d'une solution d'auto-planification dans l'étude dosimétrique pour 
éliminer le biais du planificateur.  

Nous reconnaissons les limites de l'étude, en termes de petite cohorte de patients testés et de contours 
de référence provenant d'un seul expert. Cependant, l'ensemble de données hétérogènes pour les essais 
a permis de mettre à l'épreuve les différents algorithmes de AS. De surcroît, cette étude s'est délibérément 
concentrée sur une approche monocentrique, dans le but de déterminer quelle solution disponible dans 
le service était la plus précise et nécessitait moins de ressources en termes de données sur les patients et 
de main-d'œuvre. Cependant, les résultats statistiques pourraient bénéficier d'un plus grand nombre de 
patients inclus dans la cohorte de contrôle et d'un plus grand nombre d'observateurs impliqués dans la 
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tâche de correction manuelle. Les perspectives futures de ce travail incluent l'augmentation de la base de 
données pour la formation et l'incorporation de cas de patients opérés et non opérés. 

Enfin, ces résultats sont d'un grand intérêt pour le développement des flux de travail de l'ART pour les 
patients HN car ils prouvent l'efficacité améliorée du flux de travail lors de l'utilisation de l'AS pour la 
délimitation de l'OAR combinée à des plans de traitement générés à l'aide d'une solution de planification 
automatique. La délimitation manuelle de la cible primaire reste une limite de temps, tandis que la AS des 
niveaux de ganglions lymphatiques qui sont habituellement irradiés comme cible secondaire est discutée 
dans le prochain chapitre du manuscrit. 

 

Chapitre 4 Évaluation de différents algorithmes pour la segmentation 
automatique des ganglions lymphatiques de la tête et du cou sur des images CT 

L'étude représente la troisième contribution de ce projet de doctorat et est une continuation du travail 
précédent sur l'AS des OAR. Nous avons comparé les 4 solutions ABAS et les 2 solutions DL pour la 
délimitation des niveaux CTVn 2,3 et 4, qui sont typiquement irradiés comme cibles secondaires dans la 
localisation HN. De plus, nous avons évalué la précision de leur union car ce volume est généralement 
utilisé pour la planification du traitement. Nous avons analysé les contours en termes de : temps de calcul, 
précision spatiale, acceptabilité clinique (évaluée par 4 médecins), temps nécessaire pour effectuer des 
corrections manuelles (effectuées par l'un des observateurs) et conséquences dosimétriques lors de 
l'utilisation des contours AS dans la planification du traitement.  

Comme dans l'étude précédente sur les OAR, nous avons observé que les solutions DL offraient une 
meilleure précision par rapport aux méthodes ABAS pour la segmentation du CTVn sur les images CT. 
Cependant, les méthodes ABAS étaient également capables d'atteindre des DICE>0,80 en considérant 
l'union des volumes. Cela a révélé une observation importante, le fait que des imprécisions de contour 
significatives se produisent à la limite entre les niveaux, aux extrémités supérieures et inférieures. Le 
principal avantage d'une méthode ABAS était la petite quantité de ressources nécessaires. Cependant, 
l'inconvénient était le temps de calcul (6-10 minutes par patient, pour une bibliothèque de 10 atlas). En 
revanche, les méthodes DL ont été entraînées sur des bases de données plus importantes (49 patients 
pour la solution DL.1 et >100 patients pour la solution DL.2) mais les contours ont été générés plus 
rapidement (<1min et <2min, respectivement). De plus, tous les contours générés par le modèle 
commercial multicentrique DL.2 ont été considérés comme cliniquement acceptables sans ou avec 
seulement des corrections mineures, qui étaient en moyenne de 1min06sec par patient. Ces résultats 
remarquables constituent des éléments clés pour des flux de travail très efficaces. Par rapport à la solution 
DL monocentrique, aucune différence statistiquement significative n'a été identifiée entre les indices de 
précision géométrique (DICE et HD95%). Cependant, le temps de correction manuelle était plus important 
(4min10sec contre 1min06sec, en moyenne). Globalement, l'évaluation clinique des 4 experts a conduit à 
des conclusions similaires pour les contours DL.1 et ABAS.2. Cependant, la réalisation des corrections 
manuelles a pris plus de temps pour les contours ABAS.2 (6min31sec vs 4min10sec). Notamment, une 
bonne concordance (DICE=0.85) entre l'expert de référence et l'autre médecin effectuant les corrections 
manuelles a été observée, ce qui est supérieur à la variabilité entre des experts précédemment rapporté 
dans les études de la littérature [216,337]. Une mesure de l’IOV entre experts n'a pas été réalisée dans 
cette étude, mais elle constitue une perspective future de ce travail. L'évaluation de contours provenant 
de plusieurs observateurs, de contours délimités manuellement et de contours basés sur la AS ajustés 
manuellement, permettra d'évaluer l'utilité de la AS pour améliorer l’adhérence des pratiques de 
contourage.  

Lors de l'analyse des distributions de dose, un sous-dosage significatif dans le PTV secondaire a été 
observé indépendamment de la solution utilisée. La perte de couverture a été particulièrement détectée 
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sur le CTVn4, ce qui pourrait être lié aux divergences précédemment identifiées dans la superposition 
géométrique de volumes de référence. Pour les méthodes ABAS et DL, les résultats de DICE pour CTVn4 
étaient 0.72, ce qui était cohérent avec les résultats de la littérature [334,338]. Pour ces contours, nous 
recommandons une plus grande attention, avant de les utiliser dans la planification du traitement.  

À notre connaissance, la présente étude a examiné pour la première fois 5 méthodes d'AS (3 multi-
ABAS et 2 DL) pour segmenter 3 niveaux CTVn distincts. De plus, la planification automatique a été utilisée 
pour évaluer les conséquences dosimétriques, ce qui a permis de réduire le travail, de ne pas avoir de 
factor de planificateur et d'obtenir un effet isolé provenant uniquement du contour du CTVn. Les 
perspectives futures de ce travail incluent l'augmentation de la base de données de formation du modèle 
DL (incluant peut-être aussi des patients opérés), ainsi que la cohorte de patients de test. En outre, un 
nouveau cadre de réseau pourrait être développé qui combine les repères anatomiques des directives de 
contoruage du CTVn afin de guider les prédictions des niveaux de CTVn.  

Enfin, l'étude démontre que les méthodes AS pour le CTVn peuvent être intégrées dans les flux de 
travail de la RT afin de réduire le temps consacré à la délimitation manuelle. À l'heure actuelle, la 
combinaison proposée de la AS pour les OAR et le CTVn, associée à des solutions de planification 
automatique, pourrait être utilisée pour améliorer l'efficacité des cas complexes de HN. Seul le volume de 
la tumeur primaire resterait à délimiter manuellement par les médecins. Cependant, pour permettre l'ART, 
les variations anatomiques intra-fractionnelles doivent être prises en compte. À cet égard, le chapitre 
suivant abordera différentes méthodes de génération de CT synthétique à partir d'images CBCT du jour, 
qui peuvent être utilisées pour calculer des plans sur l'anatomie du jour. 

 

Chapitre 5. Évaluation de différentes méthodes pour la génération d'images CT 
synthétiques à partir d'images CBCT du jour 

Cette étude a fourni une évaluation et une comparaison de 4 méthodes de calcul de dose basées sur 
des images CBCT. Leurs performances ont été évaluées en termes de précision dosimétrique par rapport 
aux images CT de planification. La charge de travail et les ressources nécessaires pour chaque méthode 
ont également été prises en compte.  

Les résultats ont montré que l'algorithme a base de recalage déformable (DIR) avait les meilleures 
performances, suivi par la méthode DL. De plus, les deux méthodes ont été rapides, générant une image 
sCT en moins d'une minute. La méthode d'affectation de la densité de classe (DAM) a donné des résultats 
similaires à ceux de la méthode DL, mais elle a demandé plus de temps (~5min) en raison des étapes 
supplémentaires liées à la segmentation des classes de tissus et à l'affectation des numéros HU. Enfin, la 
courbe HU-ED adaptée du CBCT a donné les pires résultats.  

Il existe plusieurs métriques pour quantifier la précision des images sCT [207], mais aucun consensus 
réel sur les critères d'acceptation. Dans notre étude, nous avons quantifié l'erreur moyenne (ME) et 
l'erreur absolue moyenne (MAE) pour toutes les méthodes à l'intérieur du contour du corps de l'image 
CBCT. Certaines autres études documentent les résultats en fonction des segments de tissus (par exemple, 
les structures osseuses, les cavités aériennes, les tissus mous). Il serait intéressant d'approfondir cette 
étude dans notre cohorte de patients. En raison de la comparaison par voxel, une attention particulière 
doit être portée à la compensation d'éventuelles différences anatomiques et/ou d'erreurs potentielles 
dans l'étape initiale d'enregistrement entre les images CT et CBCT. Une solution proposée par la littérature 
consiste à appliquer des marges négatives (par exemple, 2 mm) aux segments où la différence d'indice HU 
doit être évaluée [317].  

En ce qui concerne la précision du calcul de la dose, les différences de dose basées sur l’histogramme 
dose-volume (DVH) et l'analyse gamma sont généralement effectuées pour comparer les plans calculés 
sur des images sCT et des images CT de référence. Dans notre étude, les objectifs pour les volumes cibles 
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et les contraintes de l'OAR ont été pris en compte en fonction du protocole clinique et deux critères gamma 
ont été utilisés (3%/3mm et 2%/2mm). Nous avons observé que les écarts de dose étaient généralement 
faibles et non significatifs. Des écarts plus importants ont été identifiés avec les critères d'analyse gamma 
les plus stricts, alors que seule la méthode DIR a passé >90% le critère gamma de 2%/2mm à l'intérieur de 
toutes les structures considérées. Une meilleure compréhension de l'emplacement exact des chiffres HU 
incohérents permettrait peut-être de trouver des corrélations avec les écarts de dose et les débits gamma. 
A terme, cela permettrait de définir des limites appropriées pour les critères d'acceptation.  

L'étude est originale car un cycleGAN qui a été entraîné avec des images CBCT non appariées provenant 
d'une base de données multicentrique, a été évalué sur la localisation HN. Le modèle entraîné sur des 
données monocentriques a semblé fournir de meilleurs résultats dans d'autres études [82,310]. Une autre 
question qui doit être étudiée plus en détail est le problème de la coupure de l'image causée par le champ 
de vue limités du CBCT, qui dans notre étude a été résolu en remplaçant la densité de l'eau lorsque les 
informations de l'image étaient manquantes. En outre, la précision du DIR doit être évaluée par rapport 
aux différentes fractions du traitement, ainsi que la précision du DIR pour l'accumulation de la dose doit 
être évaluée [100]. 

À condition d'être intégrées dans le système de planification des traitements, les méthodes DIR et DL 
sont les solutions les plus prometteuses pour permettre la planification des ART par la génération de sCT 
à partir d'images CBCT du jour. 

Chapitre 6. Conclusions et perspectives de l'étude 

Finalement, le travail effectué pendant les 3 années de thèse, visait à évaluer différentes méthodes 
pour accélérer le flux de travail de la RT et finalement permettre de réaliser l’ART pour les patients atteints 
de cancer HN. Les contributions ont été divisées en quatre axes, et nous avons notamment évalué : 1) Les 
performances d'une solution de planification automatique basée sur un algorithme MCO a priori ; 2) Six 
solutions de segmentation automatique des OAR et CTVn sur des images CT ; 3) Quatre méthodes 
permettant de calculer la dose sur des images CBCT du jour. Une intégration sans faille de ces solutions 
représenterait la réussite de l'ART pour les patients atteints de cancers HN. 

En ce qui concerne la vitesse et la précision, les solutions DL étaient les plus intéressantes. Cependant, 
la collecte et la gestion de la base de données d'entraînement nécessitent un travail considérable. D'autres 
méthodes basées sur moins d'informations a priori (‘wis-list’ pour la planification automatique et 
segmentation basée sur une bibliothèque d’atlas pour le contourage automatique) ont permis de réduire 
la charge clinique. Plus précisément, nous avons démontré que l'optimisation manuelle peut être 
remplacée en toute sécurité par une planification automatique basée sur une ‘wis-list’, et que le temps de 
contourage manuel peut être raccourci en effectuant des corrections sur les contours générés 
automatiquement. De plus, les deux méthodes permettent une meilleure cohérence entre les opérateurs. 
Leur limite reste le temps de calcul. Enfin, nous avons observé que la méthode la plus rapide et la plus 
précise pour générer des sCT à partir d'images CBCT du jours était l'utilisation des méthodes DIR et DL. 
Une limitation reste le FOV limité dans les images CBCT, qui dans notre étude a été résolu par le 
remplacement de la densité de l'eau où les informations de l'image étaient manquantes.  

De nombreuses perspectives d'avenir peuvent être envisagées à partir de ce travail. Les perspectives à 
court terme en ce qui concerne la planification automatique sont de tester et d'évaluer les solutions plus 
rapides promises par la société Elekta, et de les étudier également sur une plus grande cohorte de patients 
atteints de cancer HN, où la population peut être divisée en groupes plus petits en fonction de la 
localisation de la tumeur. En second lieu, plusieurs ‘wis-lists’ peuvent être établies en fonction du 
protocole clinique et des sites de cancer, et encourager leur intégration dans la routine clinique. Les 
perspectives de développement d'une solution basée sur la DL pour l'auto-planification peuvent 
également être envisagées, afin de générer des plans en quelques secondes seulement. Par ailleurs, la 
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méthodologie utilisée pour quantifier la qualité des plans peut être appliquée pour évaluer d'autres 
solutions de planification automatique avant leur mise en œuvre clinique dans notre service. Cependant, 
un obstacle à l'intégration harmonieuse de l'algorithme d'auto-planification basé sur la ‘wish-list’ dans la 
routine clinique reste la nomenclature des structures d'intérêt, où la solution AS peut être le facilitateur 
principal.  

En ce qui concerne les solutions AS, nous avons évalué plusieurs solutions disponibles ou non dans le 
commerce. Parmi elles, certaines ont été étudiées pour la première fois sur des OARs HN et/ou des 
volumes CTVn. A partir de ce travail, des perspectives à court terme peuvent être proposées en 
commençant par une étude visant à évaluer la relation entre la quantité de données d'entraînement et la 
performance du modèle DL pour chacune des structures. En parallèle, l’open-source nnUnet network peut 
être entraîné avec les mêmes données d'entrée, et les résultats peuvent être comparés afin d'étudier 
l'interaction entre les données d'entraînement et l'architecture du réseau. Ceci a déjà été initié dans le 
travail d'un étudiant en master. En autre, il est possible d'étudier les performances du modèle lorsque des 
patients opérés sont inclus dans la formation. Nous avions déjà testé cette option en incluant quelques 
cas de patients ayant subi une ablation du larynx ou de la trachée. Cependant, les premiers résultats 
n'étaient pas satisfaisants et nous avons conclu qu'il fallait inclure encore plus de patients opérés pour 
augmenter potentiellement les performances du modèle. De plus, une perspective pour le futur en ce qui 
concerne la base de données de patients, est d'inclure également des données provenant d'autres centres, 
qui doivent néanmoins être cohérentes avec le protocole d'acquisition d'images (tranche de 2mm 
d'épaisseur, injection de produit de contraste) et suivre les directives internationales de contourage. Il est 
ainsi possible de réaliser une étude multicentrique permettant de tester la généralisation du modèle DL 
monocentrique par rapport aux contourages manuelles de référence d'autres médecins. De plus, 
l'inclusion de contours manuels provenant de plusieurs observateurs permettrait d'évaluer l'IOV parmi les 
contourage manuelles et de le comparer à l'IOV des AS avec des corrections manuelles. Comme dans une 
autre étude [170], il serait également intéressant de diviser les observations en catégories basées sur 
l'expérience des médecins, à savoir les résidents, les jeunes médecins et les médecins seniors. Lors de la 
réalisation de l'étude proposée, le temps de délinéation manuelle devrait être enregistré afin que la 
réduction réelle du temps puisse être évaluée. En ce qui concerne l'évaluation de l'impact dosimétrique, 
nous avons démontré dans notre étude que la distance de l'OAR au PTV n'était pas systématiquement liée 
aux écarts dosimétriques élevés. Une étude plus approfondie pourrait peut-être être réalisée afin de 
déterminer dans quelles situations l'édition des contours de l'OAR fait une différence clinique, et si des 
limites pour DICE/HD95% pourraient être fixés. Par ailleurs, une étude a montré que les mesures DICE de 
surface et APL (added path length) pour la précision des contours étaient de meilleurs indicateurs du 
temps de délinéation clinique gagné lors de l'utilisation des contours AS [345]. Il serait intéressant de 
comparer ces mesures également sur les cohortes de nos études. Une autre perspective de recherche 
future inspirée de la littérature [334,346] serait de développer un cadre de réseau DL avec des contraintes 
de contour basées sur des repères anatomiques. Les structures dont les limites sont bien définies sur les 
images CT et qui constituent des limites anatomiques définies dans les directives de délimitation (par 
exemple, l'os hypoïde, le muscle sternocléidomastoïdien, les vertèbres) peuvent être segmentées comme 
tâche auxiliaire d'un réseau DL. Ensuite, les modèles de distance peuvent être appliqués pour restreindre 
la forme des prédictions des volumes OAR et CTVn.  

En ce qui concerne la dernière contribution de la thèse, sur les calculs de dose basés sur le CBCT, nous 
pouvons d'abord envisager comme prochaine étape, l'optimisation de la solution DL pour la génération de 
sCT. Un nouveau modèle pourrait être entraîné sur des données uniformes de notre département (modèle 
monocentrique), en essayant également d'optimiser l'architecture du réseau (nombre de couches, taille 
de l'image, fonction de perte, poids et seuils, etc.). Ses performances doivent ensuite être comparées à 
celles du modèle multicentrique. En second lieu, une autre fonction disponible dans Monaco TPS 
(AdaptAnatomy) pour la génération de sCT basée sur des densités modifiées devrait être étudiée. Pour 
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cela, plusieurs stratégies peuvent être suivies en ce qui concerne les régions d'intérêt (ROI): on peut utiliser 
l'ensemble des structures présentes sur le set CT ou choisir seulement quelques classes de tissus. Pour 
automatiser le processus, on peut utiliser une solution AS basée sur ABAS pour segmenter une liste 
prédéfinie de structures osseuses et de tissus mous sur le CT. Comme il s'agit d'une autre solution de 
génération de sCT intégrée au TPS, il serait pertinent de la comparer avec les méthodes étudiées 
précédemment. La problématique de l'accumulation des doses est une autre direction de recherche de ce 
sujet. La précision du DIR doit encore être évaluée afin que les incertitudes du calcul de la dose puissent 
être estimées [100]. En outre, les incertitudes liées à la génération de sCT par CBCT pourraient se propager 
à partir des erreurs de repositionnement du patient au jour le jour. Par conséquent, les écarts de dose 
doivent également être étudiés en fonction des stratégies de repositionnement du patient. Une étude a 
déjà été lancée pour évaluer les incertitudes dosimétriques liées à la registration par alignement osseux 
(BM) seulement, et au recalage guidé par BM+tissus mous entre le CBCT du jour et les images CT. Enfin, il 
est nécessaire d'étudier et de proposer des critères d'assurance qualité pour la mise en œuvre clinique 
d'une méthode sCT.  

Les perspectives à long terme seraient d'évaluer un flux de travail de RT qui combine des solutions 
automatisées pour l'auto-contournement, l'auto-planification et la génération d'images sCT. Alors que les 
techniques complexes d'IMRT ont permis d'atteindre une couverture exceptionnelle du volume cible, 
l'intégration de solutions modernes de RT permet de se concentrer davantage sur la minimisation de la 
toxicité pour les tissus normaux. Cela nécessite toutefois des contrôles de qualité à chaque étape du flux 
de travail. Il serait cliniquement utile d'évaluer les stratégies de marge en tenant compte de toutes les 
incertitudes liées aux solutions automatisées utilisées. Un autre objectif est de permettre la sélection des 
patients qui bénéficieront d'une adaptation du plan. Cela pourrait être fait sur la base des variations 
anatomiques intra-fractionnelles, où nous pourrions comparer la superposition des volumes des OAR et 
CTVn utilisés pour la planification, avec les volumes automatiquement segmentés sur le sCT généré à partir 
des images CBCT de pré-traitement. Les limites critiques peuvent être étudiées en évaluant les doses 
planifiées par rapport aux doses créées sur l'anatomie du jour.  

Finalement, la validation clinique de ce flux de travail de RT réduirait la charge de travail manuelle, 
aiderait à l'harmonisation des pratiques cliniques et permettrait une prise de décision rapide pour la RT 
des cas complexes de cancer HN. Les résultats des essais cliniques sont attendus pour déterminer les 
avantages cliniques de l’ART.  
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