
HAL Id: tel-04461363
https://theses.hal.science/tel-04461363v1

Submitted on 16 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building and comparing values from different sources
Basile Garcia

To cite this version:
Basile Garcia. Building and comparing values from different sources. Neuroscience. Université Paris
sciences et lettres, 2022. English. �NNT : 2022UPSLE016�. �tel-04461363�

https://theses.hal.science/tel-04461363v1
https://hal.archives-ouvertes.fr


Préparée à l'École Normale Supérieure

Building and comparing values from different sources

Soutenue par
Basile GARCIA
Le 04/03/2022

École doctorale no158
Cerveau, cognition,
comportement

Spécialité
Neurosciences
computationnelles

Composition du jury :

Wim DE NEYS
Sorbonne University Président

Giorgia ROMAGNOLI
University of Amsterdam Rapporteur

Valérie DUFOUR
Strasbourg University Rapporteur

Ralph HERTWIG
Max Planck Institute
for Human Development Examinateur

Stefano PALMINTERI
ENS - PSL Research University Directeur de thèse

Sacha BOURGEOIS-GIRONDE
ENS - PSL Research University Directeur de thèse





Abstract
Subjective value is an ubiquitous construct in the study of decision-making. In this literature,
individuals’ decisions are often conceived as a two-step process. They first assign values to the
available options, and then choose the option with the highest value. Typically, the explanatory
variable ”value” thus quantifies the intensity of a preference for one option over others. This con-
ceptualization stems from the intersection of several disciplines, notably (behavioral) economics
as well as experimental psychology and neuroscience. In retrospect, the construction of subjec-
tive value, and its purpose in decision-making, can be traced back to two historic experimental
approaches. The description paradigm provides the decision-maker with full knowledge of options
and associated consequences. This paradigm is anchored to economic assumptions of rationality
and is historically related to the quantification of economic value, with ramifications in moral phi-
losophy (utilitarianism). By contrast, the experience paradigm is rooted in animal reinforcement
learning study, where the lack of information implies to learn by trial-and-error. Both paradigms
concurrently developed methods to elicit subjective values. Interestingly, this resulted in behav-
ioral discrepancies, known as the description-experience gap.

About thirty years ago, the field of value-based decision-making emerged when scholars with dif-
ferent backgrounds attempted to merge both fields and provided a neurobiological ground for the
concept of subjective value. The common currency hypothesis posits that items which fundamen-
tally differ in nature (say water and a car) can be compared through the mapping of each item’s
attributes on a common scale, forming a subjective value associated to each item. This scaling
(and comparison) process is thought to be implemented in the brain, and neurally represented
by the firing activity of dopaminergic neurons. However, attributing this activity to value per se
is difficult. Value as a predictive variable often correlates with attention, arousal or salience. In
addition, assuming values acquired from learned experiences are encoded on a neural common
scale, it remains unclear to what extent those values are transformed during both the coding and
the retrieval process. A strong version of the common currency hypothesis would postulate that
they are sufficiently maintained to be properly compared to other kinds of values, such as the ones
built via symbolic descriptions of decision variables.

Through a review of the literature, we asked whether the observed gap between description- and
experience-based choices might hinder our ability to build mechanistic models of decision. There-
after, in the main experimental study presented in this work, we questioned the possibility of
directly comparing experiential subjective values to external symbolic ones represented in the en-
vironment, thus aimed to behaviorally test some of common currency predictions. More generally,
we challenged the traditional two-step model of value based decision-making in humans, which
posits that individuals go through a valuation stage and a choice stage, to ultimately maximize
expected value.
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Active experimentation must force the apparent facts of nature

into forms different to those in which they familiarly present

themselves; and thus make them tell the truth about themselves,

as torture may compel an unwilling witness to reveal what he has

been concealing.

John Dewey, Reconstruction in Philosophy, 1920

La science est une construction qui fait émerger une découverte

irréductible à la construction et aux conditions sociales qui l’ont

rendue possible.

Pierre Bourdieu, Science de la science et réflexivité, 2001

0
Introduction

In the literature on value-based decision making, empirical measures of subjective values can be

constructed from two sources: experience and description. Learning values from experience con-

sists of acquiring information about the expected-value of an option via a trial-and-error process.

In contrast, learning values from description requires to understand a symbolic language that will

convey information about probabilities and outcomes. Both paradigms have been historically de-

veloped separately, and within different academic fields.

In order to understand how the construction of value is envisaged in each field, we will describe

the historical events and the methodological specificities that allow its elicitation. It will hopefully

1



Chapter 0. Introduction

allow to shed light on our results, as well as contemporary debates regarding the ontological status

(i.e. how is the construct of value materially translated in the brain) and epistemological role (i.e.

to what extent this construct is useful) of subjective value for decision-making.

In the first chapter, we will discuss how subjective value is rooted in the notion of economic value,

which most prominent classical economists first theorized as objective to further be interpretated

in a subjectivist framework (utility). Furthermore, we will describe how we went from normative

models of decision to descriptive models of decisions, by means of the description paradigm.

In a second chapter, we will see how psychology and neuroscience evolved toward integrating the

notion of value to their model, notably through the paradigm of reinforcement learning. In addi-

tion, we will discuss how it led to the formulation of the classical two-step model of value-based

decisions.

In a third chapter, we will introduce the description-experience gap phenomenon, that emerges

from the meeting of the above lines of research.

The fourth and fifth chapterswill include respectively, a literature review of the description-experience

gap, and the main research paper of this thesis.

Lastly, the implications of the main experimental study will appear in discussion.
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But I have planted the tree of utility. I have planted it deep,

and spread it wide.

Jeremy Bentham, The Works of Jeremy Bentham, 1843

Nothing can have value without being an object of utility. If

it be useless, the labor contained in it is useless.

Karl Marx, Capital, 1867

How do human beings reason when the conditions for ratio-

nality postulated by the model of neoclassical economics are

not met?

Herbert Simon, The scientist as problem solver, 1989 1
Utility theories and decision-making in

economics

1.1 Toward a subjective theory of value

1.1.1 An objective theory of value: Labor theory of value

A fundamental tenet of classical political economics is that labor is one of the greatest determinant

of economic value. This view was in fact already formulated by physiocrats1: Richard Cantillon’s
1Physiocracy was a school of thought emerging in France in the late XVIII-th century, in the Age of Enlightment.

Physiocrats are often viewed as the founders of modern economic science, as well as economic liberalism, by promot-

5



Chapter 1. Utility theories and decision-making in economics

Essai sur la Nature du Commerce en Général specifies that the ‘real or intrinsic value’ of a precious

metal is ‘proportionable to the land and labour’ required for its production. However, character-

izing economic variables and material processes — as opposed to ideal processes, value is thought

to be a consequence of the material realm activity — which determine the objective (or normative)

value of a good has given rise to series of dissensions among classical economic scholars. (King

and McLure, 2014).

Adam Smith in The Wealth of Nations (1776), makes a clear distinction between the ’real’ price (its

’natural’ value) of a commodity and its ’nominal’ price (Robertson and Taylor, 1957). Tackling the

problem of inter-temporal variations in market prices, he states that labor is the ’real standard’ and

’real price’ by which commodities can be compared to one another and across time. In contrast,

he states that ’money is only their nominal price’ subject to volatility. Smith argues that labor acts

a center of gravity offering a material ground for market prices, such that it is a reliable metric

when it comes to market analysis. Among several arguments, Smith stressed that in a primitive

state of society (where rents and lands are absent), there exists a necessary proportional relation

between the exchange ratio of two goods and the quantity of labor necessary to produce them. In

addition of labor, Smith also considered (in what we later called the cost-of-production theory of

prices) various inputs as part of the output economic value, such as rents for instance.

David Ricardo (1835) completed Smith’s labor theory , notably by distinguishing the role of direct

labor and indirect labor. Like Smith, he though that prices could be explained by the quantity of

labor incorporated in commodities. However, he notes that there exists a direct labor necessary to

produce a commodity (e.g. workforce, tools), as well as an indirect labor, that is the labor produc-

ing the capital necessary for direct labor (e.g. the labor required to produce the tools). According

to him, prices are governed by dynamics related to those two types of labors.

ing for instance the concept of ”laissez-faire”. Their ideas influenced proeminent classical economists, such as Adam
Smith or David Ricardo.

6



Chapter 1. Utility theories and decision-making in economics

While Smith and Ricardo described the underlying principles of the Labor Theory of Value (LTV),

Karl Marx in The Capital (1873) went further to make it a cornerstone in analysis of capitalism.

He thought of value as the origin of (conflicted) social relationships in the productive sphere.

In Marx’s thinking, value is derived from the labor time required of society for its formation.

Formally: W = C + L, where W is the normative value (or worth) for a given product, C is the

capital required in the process (e.g. machines, tools), and L is the quantity of labor. Moreover, value

is fundamental to his sociological and political theory: social classes are determined in relation

to the formation process of value. More precisely the position occupied by an individual in the

productive sphere (either exchanging labor for a wage, or owning themeans of production) defines

the social class.

During the 19th century, the LTV was hegemonic, when it came to explaining economic value

(Dillard, 1945). Importantly, Marx’s writings and ideas became central to the European socialist

movement, which assured the continuation of the LTV2, at least in leftist political circles. However,

in the academic sphere, the LTVwas disputed and others favored a subjectivist conception of value:

utility theory.

1.1.2 A subjective theory of value: utility

Although those three economists were proponents of an objectivist theory of value (or even an

’embodied’ theory of value), they did not completely deny the role of utility (see Box. 1.1). Utility

here refers to the subjective value or satisfaction one may experience from the consumption of a

good. While they relativize its impact on prices, they nevertheless admit that utility is a necessary

condition of economic value. As Ricardo notes, air and water have a greater utility than gold,

while being less valuable. Then ”utility is not the measure of exchangeable value […] although

it is absolutely essential to it”. This paradox was also announced by Smith, and is known as the

diamond-water paradox: ”Nothing is more useful than water: but it will purchase scarcely any-
2Of note, even though the LTV will be disregarded by neoclassical economics, notorious economic theorists such

as John Mayard Keynes supported the LTV (Keynes, 1936)
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thing; scarcely anything can be had in exchange for it. A diamond, on the contrary, has scarcely

any use-value; but a very great quantity of other goods may frequently be had in exchange for it.”.

An answer to the diamond-water paradox has been given by W. Stanley Jevons (1871): While

poorly valuable, water is of great utility. Yet once the first drink has been consumed, the marginal

utility of water, which is very important when one is thirsty, decreases sharply so that the last drink

has almost no value. Conversely, the marginal utility of diamonds (which involves for instance

social prestige) decreases much more slowly (Fig.1.1).

1st unit 2nd unit

A B

Figure 1.1: The diamond-water paradox. (A) Water has a higher utility than diamonds at modest levels of usage,
making it more valuable, merely because people need it to survive. Yet water is available in large supply, and when it
is consumed, its utility quickly decreases as its consumption is not urgent. In contrast, diamond are in much lower
supply and the urge for owning them is rather stable, such that the utility of one additional diamond becomes greater
than the utility of one additional glass of water. (B) Hence the marginal utility (i.e., the utility gained when one unit
is added) of water decreases much faster than the marginal utility of diamonds.

This solution illustrate the subjective conception of value Marginalism endorses. Marginalism

posits that the value of a good is not determined by any inherent or intrinsic properties, nor by

the amount of labor required for its production. Rather economic value is subjective, and is a

proxy for the importance an individual puts into a good. Yet, while promoting it, the Marginalist

movement is not the instigator of economic value understood as subjective utility. This concep-

tualization actually traces back to Bernouilli.

8
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Box 1.1: Measurements in economics

One explanation for the reluctance toward utility theory (Viner, 1925) as a foundation of economic value
might lie in measurement issues. In the 19th century, measuring incomes, prices, quantity of money… was
common practice for economists. The labor theory of value was in the continuity of this tradition of mea-
suring macroeconomic variables. In contrast, utility being a psychological phenomenon, quantifying it was
an epistemological and technical challenge for economics at the time. Furthermore, at the end of the 19th
century, the debate on the feasibility of psychophysics was raging (Moscati, 2018a). Gustave Fechner founded
the discipline of psychopysics (Fechner, 1860), in an attempt to overcome the dualism between mental and
physical substances. One way to realize that was to show that mental entities present measurable properties,
possibly linked to physical phenomena. Along with pioneers of experimental psychology such as Wilhem
Wundt, he clamed that sensations were measurable in a unit-based way, and were hence subject to scientific
enquiry. French philosopher Henri Bergson (Bergson, 1889) disputed this claim, asserting that sensation are
fundamentally qualitative. Consequently, he concludes that measuring sensations consists hence in a cate-
gorical error. Others, such that famous mathematician and philosopher of science Henri Poincaré (Poincaré,
1893), also opposed this view, asserting that unit-based measurement assumes transitivity, a property that
sensations lack. Therefore, utility measurement, as the measurement of sensations in a unit-based way a was
subject to identical criticisms, and faced identical epistemological challenges. Despite those attacks, utility
theory became mainstream, notably with the foundation of neoclassical economics, in which the marginalist
movement played a great role.

aas utilitarian like Bentham defined it (Bentham, 1789)

1.1.3 The expected utility hypothesis

Bernouilli’ proposed the first formalization of utility through expected utility theory (EUT) in

his seminal 1738 paper (Bernoulli, 2011). Here he famously exposed a problem named the St.

Petersbourg paradox.

In this paradox, a casino offers to toss a coin over several trials. The initial stake begins at 2 ducats

and is doubled each time the outcome is an head. Once a tail appears, the game ends and the

player wins the accumulated monetary prize. In other words, the player wins 2 ducats if the first

outcome is head, 4 ducats if head-tail, 8 dollars if head-head-tails, and so on.

What would be a fair price to enter the game? To answer this from the perspective of the gambler,

we should consider the average payoff: winning 2 ducats has a probability of 1
2
, winning 4 ducats

has a probability of 1
4
, and so on. According to a 1600s epistolary discussion between Blaise Pascal
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and Pierre Fermat, a rational decision-maker should compute the mathematical expectation of

each choice and then choose the option that yields the highest (Biswas, 1997). The expected value

of this gamble X (i.e. the arithmetic mean of a large number of independent realizations of the

gamble X) with n repetition is written:

E[X] = 2 · 1
2
+ 4 · 1

4
+ ...+ 2n · 1

n

Said differently, the expected value converges to infinity, because the sum might grow endlessly.

The paradox is that, according to the intuition3 of Bernoulli, there is probably of huge gap be-

tween what players would be willing to pay to play such a game (a few ducats), and its potential

gains (infinity). To solve this paradox, Bernouilli introduced the utility function, as well as the

presumption of a phenomenon called diminishing marginal utility. For Bernoulli, what matters to

the player is the (expected) utility of the gamble, in other words the subjective and psychological

anticipation of gains, not the expected values. One should thus first convert to subjective units,

by means of a utility function:

u(X) = u(2) · 1
2
+ u(4) · 1

4
+ ...+ u(2n) · 1

n

Furthermore, Bernouilli states that the shape of the utility function should be logarithmic, meaning

it should marginally decrease (Fig. 1.1). Indeed, as he notes ’There is no doubt that a gain of one

thousand ducats is more significant to the pauper than to a rich man though both gain are the

same amount’.

1.1.4 Decision under risk

Bernouilli also set up the framework for decisions referred as ’under risk’. Risk means that out-

comes are probabilistic events, as opposed to deterministic events. Later, Knight (1921) will distin-
3This intuition will be empirically verified later, revealing that most of the subjects are not willing to pay even 10

dollars to enter the game (Hayden and Platt, 2009)
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guish risk and uncertainty. The former is quantifiable, under the form of a probability for instance.

The latter expresses a situation where future events are essentially unpredictable due to the lack

of any quantifiable knowledge. Another assumption made by Bernouilli, relies on a necessary

maximization of expect value (or utility). This assumption is maintained within the framework of

decision theory, even though many empirical and theoretical arguments will question its norma-

tive relevance (e.g. Allais, 1953; Sen, 1973; Kahneman et al., 1991; Tversky and Shafir, 1992).

1.1.5 Moral utilitarianism and hedonistic utility

After Bernouilli, the construct of utility was echoed by the moral philosophy of utilitarianism, by

British philosophers Jeremy Bentham (1789) and John Stuart Mills (1859). This theory assesses

the morality of an action according to its consequences. Bentham defends that moral action max-

imizes a population pleasure (i.e. the sum of each individual utility) while Mills aimed for the

minimization of pain. For Bentham, happiness as the maximization of aggregated utilities derives

from his conception of the human being. An economic agent, a rational being, capable of cal-

culation and logical reasoning for his personal case. Importantly, Bentham theorized the felicific

calculus, an algorithm devised to compute the degree or amount of pleasure that a specific action

is likely to induce. Several variables were included, such as the intensity (how strong the sensa-

tion is), duration (how long will it last), and the certainty (how likely will it occur). This sort of

homoeconomicus4, that seeks to maximize its utility, is also evoked by Mill, although in ’altruistic’

terms (see Morgan, 2006).

In the ethics of utilitarianism, utility thus refers explicitly to a form of hedonistic psychological

phenomenon, which human beings are supposed to maximize (when positive), or minimize (when

negative).
4Although the term is not used by Mill or Bentham, it is often admitted that they made one the first description of

it (Persky, 1995)
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1.1.6 Marginal Revolution

On the basis of theoretical legacy of utilitarianism as well as Bernouilli’s utility theory, a group of

scholars fromdiverse countries led the paradigmatic shift, known today as theMarginal revolution.

Instead of putting the emphasis on factors of production in the formation of value, they argued

that economic value merely reflects and quantifies individual preferences (illustrated by marginal

utility) given certain individual (i.e. psychological) and situational properties (e.g. being thirsty in

an environment where water is lacking ensure that the latter will provide a great utility).

In great Britain, William Stanley Jevons posits that utility is the central calculus of economics. Via

a series of articles culminating in his book The Theory of Political Economy (1871), he emphasized

that ”economic value depends entirely upon utility”. In the legacy of the ethical utilitarian tradition

(and especially Bentham’s philosophy), he defended a quantitative and hedonistic vision of utility:

In the first place, pleasure and pain must be regarded as measured upon the same

scale, and as having, therefore, the same dimensions, being quantities of the same

kind, which can be added and subtracted. (Jevons, 1871)

He also predicted that although utility was not measurable at the time, it would soon, thanks to the

quick development of scientific methods. He then proposed to consider utility as the ’willingness

to pay’, as an alternative.

In parallel, Carl Menger (1871) in Austria , and Léon Walras (1896) in France, independently de-

veloped different theories of utility. Menger, in Principle of Economics (1871), criticized Jevons for

being too close to utilitarian hedonism (Jaffé, 1976), and thought that pleasure was to avoid as an

economic object. Instead, he claimed that the need satisfied by the last unit of the good, that is

the marginal utility of that unit, is what underlies subjective value. Contrary to Jevons, he did not

take a stance on whether utility was or will be measurable in the future (Moscati, 2018b).

Léon Walras for his part, published Elements of Pure Economics (1896), where he distinguishes

himself by an intense use of mathematics, which was uncommon in contemporary economics.

Based on the concept of utility he demonstrated the existence of a general equilibrium in market
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theory 5. He disagreed with Jevons on the idea that utility could be measured as the ’willingness

to pay’, as it depends on other factors such as the utility of other commodities and the individual’s

wealth. However, he agreed that utility should be indirectly measured, yet he did not provide any

methods for doing so (Walras, 1909; Moscati, 2018b).

Jevons, Menger, and Walras were thus able to construct comprehensive theories of price and mar-

kets that quickly became popular among economists, making utility a foundational concept of

economic science.

1.1.7 Ordinal Revolution

In Francis Ysidro Edgeworth 1881 work Mathematical Psychics: An Essay on the Application of

Mathematics to the Moral Sciences (1881), he presented a synthesis of utilitarianism (hedonistic

utility) and psychophysics (Fechner, 1860), intending to make utility apt to observation. Economic

theory consists in his view in a calculus of “hedonic forces”, that is pleasure and pain. Economics

investigation must then concentrate on unraveling the mechanism for pleasure maximization and

conversely, pain minimization. According to Edgeworth, a pleasure could be measured incremen-

tally. Said differently, it could be measured as perceivable increments in sensations, the scale

starting from a zero-level (i.e. no stimulus). He labeled his discipline hedonimetry. In addition, the

incremental approach proposed by hedonimetry suggested another property: ordinality. Indeed

what mattered to Edgeworth, was the ranking of hedonistic sensations, not their absolute value.

Therefore, he borrowed the distinction between ordinal and cardinal utility from economist An-

dreas Voigt (1893), who himself drew this distinction from Ernst Schröder ordinal and cardinal

numbers (Schröder, 1873): Cardinal numbers, such as the number three, represent the total num-

ber of units that make up a given amount. Hence, cardinal numbers might be used for the absolute

measure of a quantity. Ordinal numbers, on the other hand, come into play when counting the

units that make up a quantity and represent the location or rank of a specific unit, such as the
5More precisely, he showed that supply and demand interact and tend toward a balance when an economy is com-

posed by several markets working at once. Equilibrium theory will play an important role in modern macroeconomics
(Arrow and Debreu, 1954)
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third unit.

Translated to utility, ordinal utility represents the preferences of an individual if it is unique up to

any (possibly non-linear), monotonic increasing transformation (Moscati, 2018b). Said differently,

if u(x) represents the individual’s preferences, another utility function u′(x) = F [u(x)], with

F increasing, still represents the individual’s preferences. In other words, it preserves the order

between utilities.

In contrast, cardinal utility is more restrictive, as it requires only linear and positive transformation

(Samuelson, 1938; Fishburn, 1970). Thus, only another utility function αu′(x) + β, where α > 0,

maintains individual’s preferences. Cardinal utility yet preserves more mathematical properties:

the order between utilities as well as the order between utility differences. Psychologically speak-

ing it suggests that cardinal utility allows to preserve the intensity of one’s preference for one

option over its alternative.

However, Edgeworth did not develop ordinal utility beyond hedinometry. In fact, The ordinalist

revolution, which was mostly led by Irving Fisher (1907) and Vilfried Pareto (1897) originates

from criticism relating to the psychological foundations of the principle of decreasing marginal

utility, grounded in the framework of cardinal utility. Therefore, and Pareto in particular, pushed

ordinal utility forward, in order to favor a more ’positive’ approach to economics, freed from the

psychological assumptions contained in cardinal utility 6.

1.2 Axiomatic utility

1.2.1 Revealed preferences

Through Samuelson revealed preference theory (1938), microeconomics furthered its ’escape from

psychology’ (Giocoli, 2005), by progressively eliminating psychological entities from theory. He

aimed to breakwith the introspective psychological approach (which he considered non-empirical,

as mental states and variables are assumed non-observable entities) inherited from moral utilitar-
6Of note, Pareto’s positivism can be linked to Friedman subsequent views (Box 1.2; Serrano, 2006)
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ianism and the early Marginalists. Samuelson thus argued that utility should be elicited directly

from consumer choices (or even reduced to it, in order to get rid of the concept). An adequate

empirical approach to the study of utility was then to infer it from preferences, which themselves

are inferred from choices. By equating unobserved preferences with observed choices, revealed

preference theory avoids circularity and make falsifiable predictions. Indeed, assuming people be-

have consistently and prefer option A to B, they should not prefer B to A thereafter. His approach

to preferences measurements contrasted from endeavors to directly measure utility, for example

through stated preferences or psychological methods. His aversion to psychological concepts also

led him to be a proponent of ordinal utility (Moscati, 2019).

1.2.2 Risk-attitudes

Mobilizing series of data collected from different institutions, Friedman and Savage (1948) made

three observations that a robust theory of decision under risk (in their case EUT) should account

for: (1) individuals of all income levels buy insurance ; (2) individuals of all income levels en-

gage in gambling ; and (3) most individuals both purchase insurance and gamble. They ended

up formalizing (in terms of deviation from a linear utility function) a set of different attitudes

a decision-maker might adopt when faced to risky decisions. An individual is said risk-averse

when its preference goes toward a safe option that provides systematically the same payoff in-

stead of another option which outcome is a probabilistic event but has an identical expected value

. The opposite behavior (preferring the uncertain option) is said risk-seeking. This risk typology

is illustrated graphically by the curvature of the (cardinal) utility function, that can be concave

(risk-aversion), convex (risk-seeking), or linear (risk-neutral) (Fig. 1.2). Risk-attitudes constitutes

now a widely used framework, notably to characterize utility functions. Indeed, utility functions

are mainly constructed by presenting risky gambles and analyze in which direction preferences

tend (Vickrey, 1945).
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Figure 1.2: Prototypical risk-attitudes. The x-axis is in arbitrary units, such as a monetary reward. The y-axis
represents the subjective utility function U for the x outcome. An individual that is said to be risk-averse (red curve)
presents a concave utility function. Translated to behavior, its preference goes toward a safe option (with no outcome
variance), as the safe option utility is overweighted, rather than a risky option (which outcome can vary). A risk-
neutral individual (blue curve) presents a linear utility function, which means that the subjective valuation U does
not affect the objective values of x. Hence, the individual is indifferent to risk, and will simply prefer the option
with the highest expected-value. A risk-seeking individual (green curve) will present a convex utility function, and
consequently favors risky gambles, as the safe option is underweighted. The figure is from Bavard, 2021.

1.2.3 Von Neumann-Morgenstern utility theorem

From the 1930s to the early 1950s, expected utility theory came under severe criticisms (Moscati,

2018b). Notably, some economists suggested individuals might prioritize statistical properties of

payoffs distributions (mean , variance etc.) rather than expected utility when making decisions

(Hicks, 1931). Others noted that when decision is made under risk (meaning that payoffs and

outcomes are governed by probability distributions), payoffs as well as the utility derived become

random variables, which implies that utility is cardinal, contrasting with the contemporary ordinal

conception of utility (Tintner, 1942). Others were proponents of simpler decision-rule such as

“minimax” (Wald, 1951), or the mere idea that decision-maker focus on extreme outcomes to assess

risky choices (Shackle, 1949).

Despite those attacks, cardinal EUT became the most important foundation for decision under

risk, ruling out7. the ordinal approach, with the robust axiomatic provided by John von Neumann

and Oskar Morgenstern (VNM).

In their bookTheory of Games and Economic Behavior (1944), they introduce a set of axioms under-
7Cardinal utility seems to be dominant in contemporary decision under risk and other areas of microeconomics.

However ordinal utility is still used in demand analysis for instance (Moscati et al., 2013)
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lying agents’ decisions, and ensuring their rational behavior. A novelty of their approach consists

in the analysis of decision within a game framework, where rationality implies the anticipation

of others behavior. This abstract model of the rational agent is often called normative expected

utility theory (as opposed to descriptive). The ensuing decision axioms prescribe how an hypo-

thetical agent should behave given consistent rationality axioms, in order to further derive a utility

function. Thus, VNM assumed an agent with fixed, well-ordered preferences, that has ’perfect in-

formation’, and behaves ’as-if’ (Box. 1.2) it maximizes expected-value.

Their first axiom requires that the preferences are complete. Let’s imagine two lotteries L1 and

L2: either L1 is preferred to L2, either L2 is preferred to L1. The case where both statements are

true is allowed, it merely means that the decision-maker is indifferent between the lotteries.

Axiom 1: Completeness

For lotteries L1, L2, either L1 ≻ L2, either L2 ≻ L1, or L1 ∼ L2

The second axiom is also rather basic. It states that preferences are transitive. In other words, if

L1 is preferred to L2 and L2 is preferred to L3, then consistent preferences suppose L1 is preferred

to L3.

Axiom 2: Transitivity

For lotteries L1, L2, L3, if L1 ≻ L2 and L2 ≻ L3 then L1 ≻ L3

The next axioms are more technical in nature as they suppose compound lotteries. A compound

lottery consists of running a random device which yields other lotteries and not a monetary prize.

Let’s suppose two lotteries L1 and L2. We then run a compound lottery which may result in two

outcomes: A, with probability p and Bwith probability 1−p. WhenA is drawn, the decision-maker

obtains the outcome of L1; conversely if B is drawn, the outcome of L2 is obtained. It follows that

ifL1 is strictly preferred toL2, then there exist a value for pwhere pL1+(1−p)L2 is also preferred

17



Chapter 1. Utility theories and decision-making in economics

to L2. Said differently, as p gets closer to 1, the compound lottery pL1 + (1− p)L2 gets similar to

L1, which at some point leads to a strict preference of pL1 + (1− p)L2 over L2.

Axiom 3: Continuity

For lotteries L1, L2 if L1 ≻ L2 then for some number p ∈ [0, 1]

pL1 + (1− p)L2 ≻ L2

Lastly, the independence axiom (also named independence to irrelevant alternatives) assumes that

a third L3 has no impact on the above preference relation. Using the same example as above while

adding two compounds: 1) if A is drawn, we obtain the outcome of L1, if B is drawn we obtain

the outcome of L3 2) 1) if A is drawn, we obtain the outcome of L2, if B is drawn we obtain the

outcome of L3. It follows that pL1+(1−p)L3 is preferred to pL2+(1−p)L3. In bothB situations,

we obtain L3, then remains theA situations. Assuming a strict preference of L1 overL2 we should

prefer the first compound to the second.

Axiom 4: Independence

For lotteries L1, L2, and any lottery L3, if L1 ≻ L2 then for any number p ∈ [0, 1]

pL1 + (1− p)L3 ≻ pL2 + (1− p)L3

Finally, a utility function u is said to possess the expected utility property if, for a gambleX , which

yields n outcomes xi with n associated probabilities pi:

u(X) = p1u(x2) + p2u(x2) + ...+ pnu(xn)

The strength of the VNM utility theory lies in the demonstration of the existence of such a util-

ity function, as long as the preference axioms are all satisfied. However, several weaknesses
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rapidly arise regarding the behavioral validity of the VNM utility theorem, consequently ques-

tioning whether or not it should be used as a normative model for decision theory (Box 1.3).

Box 1.2: As-if hypothesis and instrumentalism

Friedman and Savage (1948) proposed an anti-realist vision of EUT (Wong, 1973; Boland, 1979). The counter-
part of anti-realism is scientific realism, a philosophical position in the epistemology of science that can be
broken down into three claims (Chakravartty, 2017):

• Metaphysical claim: The external world is ontologicaly separated from themind, it exists independently
of one’s lived experience.

• Semantic claim: Whether true or false, statements about scientific entities (observable and unobserv-
able) are truth-apt.

• Epistemological claim: Theoretical statements (describing a mind-independent reality) constitutes
knowledge of the world. Truth consists in a relation to reality, a statement that is meaningful and
truth-apt must correspond to an entity in the external world (i.e. correspondence theory of truth).

Even though Savage and Friedman grant the metaphysical commitment, they sort of oppose the two following
claims, by promoting an instrumental epistemology, where descriptions of unobservables merely are instru-
ments for the prediction of observable phenomena, implying that those descriptions are not intended to be
true. Applied to EUT, it states that individuals consciously calculating expected utilities is not what should con-
cern economists. Rather, individuals should be considered as behaving ”as-if” they calculated and compared
(unobservable) expected utilities. This instrumental epistemology will culminate in Friedman’s methodologi-
cal essay (Friedman, 1953) where he asserts that the accuracy of the model predictions should prevail on the
realism of the theoretical assumptions. In his epistemology, Friedman is thus agnostic regarding the imple-
mentation of utility and its computation: It is simply a scientific construct that should be used as a tool to make
predictions about economic behavior. This attitude consisting in the absence of ontological commitments with
regards to utility will typically be adopted by most economists (Gul and Pesendorfer, 2008).

1.2.4 Allais paradox

A few years after the publication of Theory of Games and Economic Behavior, in 1952, a confer-

ence focusing on decision under risk was held in Paris. Maurice Allais with a group of French

economists openly challenged the proponents of the expected utility hypothesis.Allegedly, during

a conference break, Allais exposed a gambling problem to Leonard Savage8(Moscati, 2018b), which
8Savage was a statistician particularly interested in decision theory, as well as a fierce defender of EUT at the time.

In later works such asThe Foundations of Statistics published in 1954, he proposes a subjective theory of probability (or
subjective expected utility theory) which became a cornerstone for bayesian inference in game and decision theory.
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will be later known as the Allais paradox 9. The problem starts with a first gamble:

Allais paradox: Gamble 1

(L1) a safe option yielding 1 million for sure.
(L2) a risky option that yields 5 millions with probability 0.1, 1 million with proba-
bility 0.89, and 0 with probability 0.01

Allais argued that L1 was highly appealing and more prudent, to which Savage agreed. He then

proposed a second gamble:

Allais paradox: Gamble 2

(L3) a risky option yielding 1 million with probability 0.89, and 0 with probability
0.11.
(L4) a risky option yielding 5 millions with probability 0.1, and 0 with probability
0.9

Strikingly, Savage here preferred L4 to L3. Allais remarked that Savage had just violated EUT.

Indeed, to be normatively valid, the pair of preference should follow a unique utility function. If

L1 ≻ L2 it implies that u(1) > 0.1 · u(5) + 0.89 · u(1) + 0.01 · u(0). Yet, if L4 ≻ L3 it means that

0.1 · u(5) + 0.9 · u(0) > 0.11 · u(1) + 0.89u(0). But there exists no utility function satisfying both

inequalities: either L1 ≻ L2, implying that L3 ≻ L4, or L2 ≻ L1 and therefore L4 ≻ L3.

In other words, the inconsistency stems from the violation of the independence axiom. Another

way to understand this paradox is to rewrite L1 and L4. L1 and L2 can be both seen as offering

an outcome of 1 million with probability 0.89. Also, both L3 and L4 give an outcome of nothing

with probability 0.89.

Allais paradox: Gamble 1’ and 2’

(L1) yields 1 million with probability 0.89, and 1 million with probability 0.11.
(L2) yields 5 millions with probability 0.1, 1 million with probability 0.89, and 0
with probability 0.01
(L3) yields 1 million with probability 0.89, and 0 with probability 0.11.
(L4) yields 5 millions with probability 0.1, 0 with probability 0.89, and 0 with
probability 0.01

9The paradox appears in the essay published later to the conference, in French and in Econometrica(Allais, 1953)
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Now when disregarding the probability 0.89 (i.e. considering it as an irrelevant alternative) and

consequently equalizing the outcomes, L2 has a probability of 0.01 to win nothing and a probabil-

ity of 0.1 to win 5 millions. L4 has identical contingencies. In the same manner, L1 and L3 become

the same choice. Therefore, the choice pair (L1 ≻ L2, L4 ≻ L3) violates EUT independence and is

normatively irrational.

Box 1.3: Allais normative and experimental model of utility

After the Paris episode, Allais distributed a questionnaire by post to the participants of a seminar he was
conducting. The questionnaire undoubtedly included Allais paradox and perhaps counterexamples, albeit it
was not its objective to test the paradox. Its main purpose was to empirically characterize the utility functions
of the participants (Mongin, 2019). He considered the VNM axiomatic, as not satisfying the properties of
measurability that one expects of a utility function. As a proponent of early cardinalist theories, he thought
that no preferences could be properly derived from a utility function that was not able to measure the intensity
of a preference over another. Indeed, unlike other VNM theorists, he denied that a utility function satisfying
VNM axioms would necessarily provide such measurement. His empiricist stance might also be opposed to
Friedman’s epistemology, where economic models do not aim at describing plausible decision processes. Thus,
Allais paradox is remembered as an empirical refutation of EUT and especially of the VNMaxiomatic. However
Allais was actually aiming at proposing a normative countermodel of the ’rational man’, which would be based
on the rationality empirically observed in human subjects.

1.3 Behavioralmodels of value anddecision-making

1.3.1 Anomalies in decision-making

The above outlined attack heralded a series of empirical findings showing that under certain cir-

cumstances, human subjects tend to deviate from EUT predictions, and make choices violating

VNM axiomatic (e.g. Ellsberg, 1961; Kahneman and Tversky, 1972; Bell et al., 1988; Tversky and

Shafir, 1992).

An important result from this period is that people’s preferences are constructed in the process

of elicitation, and consequently elicited values and preferences are highly dependent on mea-

surement methods. Indeed, normatively equivalent methods of elicitation often produce system-
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atically different responses (Slovic and Lichtenstein, 1971; Slovic, 1995; Lichtenstein and Slovic,

2006). These preference reversals may occur when subjects are confronted with two lotteries: L1

which offers a large sum of money, but associated with a relatively small probability of winning,

and L2 which offers less money, but with a greater probability of winning. Subjects are then asked

to perform two tasks: a choice between L1 and L2, and thereafter attach a certainty equivalent to

each prospect, i.e. a fictional alternative lottery certain enough such that they would definitely

choose it. A typical finding is that subjects prefer L1 when choice elicited, while paradoxically,

L2 is given the higher valuation when it comes to certainty equivalents. These preference rever-

sals thus explicitly violate the principle of procedure invariance that is fundamental to theories

of rational choice and raises difficulties regarding the elicitation of preferences and thus utility.

A common interpretation is that preference reversals are evidence for the existence of several

systems of preferences (Slovic and Lichtenstein, 1983; Tversky et al., 1988).

1.3.2 Judgment and Decision-Making

One task for decision theorists was then to amend normative models (such as EUT) and propose

empirical models of utility (or descriptive models), while looking for systematic deviations. Those

systematic deviations from optimality such as defined by normative models (which themselves

are constructed by the use of mathematical or philosophical arguments) are called biases. When

biases are found, it can fuel the creation of novel descriptive models, that better account for the

observed departures from the norm, often with the language of cognitive psychology (Baron et al.,

2004). Based on the conjunction of normative and descriptive models, prescriptive models can

be proposed, possibly to improve applied decisions (Kahneman et al., 1982a; Leonard, 2008). This

basically outlines the three-way model on which the nascent field of judgments and decision-

making (JDM) is based (Freeling, 1984; Baron, 1995; Bell et al., 1988).
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1.3.3 Different research programs

Mostly emerging in the 1970s, a structuring element of this literature was the separation between

topics related to psychology (biases and heuristics) and topics related to economics (risk, uncer-

tainty and utility models). Those two lines of research led to two kinds of descriptive models of

decision making. Namely, heuristics and utility models. Heuristics tend to be less formalized and

complex than utility models, by supposing simple rule-based psychological operations instead of

utility computation. One could then see those utility-free models as more parsimonious (Epstein,

1984), as they also relax rationality assumptions. There are nonetheless two approaches to heuris-

tics, roughly identified with the one associated with the Kahneman and Tversky’s heuristics-and-

biases program and Gigerenzer’s fast-and-frugal-heuristics program. The scientific dispute here

lies within the appropriate normative standard for judging human decision-making (Gigerenzer,

1996; Vranas, 2000; Polonioli, 2013).

In contrast, the risk and uncertainty program involves what we will call here the description

paradigm of decision-making (Box 1.4), where although arrangements are made with the assump-

tion of fixed, well-ordered preferences (models are more flexible) and ’perfect information’ (ex-

periments are designed to provide as much a priori information as possible) , the notion of value

computation as well as a high level of formalism are still maintained. They are, in this regard, the

direct continuation of previously seen studies of utility.

Thus, we can distinguish three modeling approach to decisions under uncertainty: (i) models with

value (or utility) computation for isolated options (ii) models with value-difference computation,

meaning that an option is assessed relatively to another (iii) utility-free heuristics, which explain

decisions in terms of computational shortcuts.

In the below section, I sought to present one illustrative example for each approach, although there

exist numerous other models (Vlaev et al., 2011).
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1.3.4 Value models

Value-first models: the case of prospect theory

Prospect theory (PT) was developed by Daniel Kahneman and Amos Tversky (K&T) in 1979 (Kah-

neman and Tversky, 1979), and earned Daniel Kahneman the Nobel Prize in Economics in 2002.

This theory is considered foundational of behavioural economics and is one of the first occa-

sions utility theory was based on experimental work. In their experiment, K&T presented several

prospects to their subjects. These gambles typically take the form of a choice between two lotteries

(presented textually), for instance:

Prospect theory: Gamble 1

(L1) a risky option with probability .33 of winning 2500, probability .66 of winning
2400, and 0 otherwise.
(L2) a safe option that provides 2400 with certainty.

Varying gambles including risky and safe options in the gains and losses domains, they observe

that subject present an asymmetric value function. Behaviorally translated, subjects will typically

be risk-averse in gains (preferring the safe option L1) while they often display risk-seeking pref-

erences in losses (thus choosing the risky option L2 when outcomes are framed as negative). This

behavior results in an inferred S-shaped utility function (Fig. 1.3) .

This particular shape illustrates the reflection effect, which consists of opposite risk-attitudes artic-

ulated around a reference point. Indeed, gains and losses domains are not here to be understood

in absolute terms, but rather relatively to this reference point, which is thought to be set by the

subject subsequently to a few gambles presentations. In addition, PT predicts another phenom-

ena: loss aversion. Loss aversion furthers the idea that losses are treated differently to gains. It is

implemented by including a factor that amplifies negative outcomes. Formally, the utility function

curvature for an outcome x is thus defined as follows:
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risk-seeking

risk-averse

reference point

Loss 
aversion

A B

Figure 1.3: Prospect theory. (A) A typical shape for the PT value function u is an asymmetrical s-shaped, also
known as the reflection effect. This shape is articulated around a reference point, which means that gains and losses
are to be understand relatively to the range of possible outcomes. The curve is steeper and convex in losses (risk-
seeking), a phenomenon called loss aversion, which translates psychologically as an overweight of negative outcomes.
Conversely in gains, people are generally risk-averse, displaying a concave curve. (B) Empirical characterization of
the probability weighting function w most of the time results in a inverse s-shape. Hence, low probabilities are
overweighted, while middle and high probabilities are underweighted.

u(x) =


xα if x > 0

−λ(−x)β if x < 0

with λ being the loss aversion parameter, that increases the steepness of the loss curve. A value of

λ > 1 supposes loss aversion (typical empirical value oscillates around 2). A value of β < 1means

risk-seeking attitudes while β > 1 corresponds to risk-averse attitudes. In the gain domain, this

relationship is identical regarding the values of α. A decision-maker with an α < 1, a β < 1 and

λ > 1 is prototypical of what K&T observed in their study: presenting risk-averse attitudes in

gains, while being risk-seeking in losses in addition of being loss averse.

Another core feature of PT is the probability weighting function (Fig. 1.3B):

w(p) =
pγ

(pγ + (1− p)γ)1/γ
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with γ controlling the curvature. When γ = 1 the function is linear (meaning there are no proba-

bility distortions). When γ > 1, the function tends progressively toward an s-shape. Conversely,

when γ < 1 the curve adopts an inverse s-shape. According to K&T, this component of PT is

crucial as the subjective distortion of probabilities provides an explanation for Allais’ paradox.

Indeed, objective probabilities are weighted according to ‘the impact of events on the desirability

of prospects and not merely the perceived likelihood of these events’ (Tversky and Kahneman,

1979). A classical result is the overweighting of small probabilities while high and intermediate

probabilities are underweighted. This property can cause the sum of weighted probabilities to

equal less than one. According to K&T this ‘subcertainty effect’, explains the violation of EUT in

Allais’ case.

Finally, the subjective expected utility U of a gambleX , is computed as the sum of the utility of n

possible outcomes weighted by their associated subjective probability:

U(X) =
n∑

i=1

u(xi) · w(pi)

Prospect theory is still among the most influential theories of decision under risk nowadays. It

has been cited as an explanatory framework for a broad range of behaviors (Barberis, 2013): in

finance (Baker and Nofsinger, 2010), housing investment (Genesove and Mayer, 2001) or even

political conflicts (Levy, 1996). Following its publication, several criticisms arose, notably that

prospect theory is agnostic regarding the core decision processes, and therefore does not inform

us about cognition per se nor provides mechanistic explanation for the psychological phenomenon

it describes (Trepel et al., 2005; Barberis, 2013). Also, some have suggested that simpler decision

rule could make a better account (in a parsimonious manner) of the predictions made by prospect

theories (e.g.Brandstätter et al., 2006. Yet, prospect theory remains among the most cited papers

in the JDM literature, while being epistemically powerful (from a falsificationist perspective) as it

is highly replicable (Ruggeri et al., 2020).
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Box 1.4: The description paradigm of decision-making

The gambling metaphor of individual choice (Goldstein and Hogarth, 1997) suggests that gambles work as a
prototypical abstraction for real-life decisions (Savage, 1954): an act (a choice between alternatives) leads to
multiple consequences (outcomes), which themselves are probabilistic event (probabilities) s. The experimental
paradigm of decision under risk thus consists in choices between ‘lotteries’ or ‘gambles’, i.e., options associated
to (most of the time) known probabilities and outcomes.

+

Fixation

Choice

You have to choose between

1) a sure gain of $6

2) 30% chance to gain $32
    and 70% chance to
    gain nothing

+
Time

Pie-charts lotteries

+

Fixation
$0

$32

+

$6

Textual lotteries

Fixation

Choice

Fixation

Gambles in experimental settings are often represented as lotteries described textually (e.g. (Tversky and
Kahneman, 1992b)) or as pie-charts (e.g. De Martino et al., 2006). Also, in most studies, decision problem are
single-shot (i.e. a gamble is only showed once), and the outcome of the choice is often not presented. Choices
among these lotteries reveal risk preferences, loss aversion, and ambiguity aversion (Samuelson, 1938; Holt and
Laury, 2002; Varian, 2006) and the data serve as input for decision or utility models and parameter estimation
procedures. The best fitting parameter(s) are identified via a statistical estimation procedure, often maximum
likelihood estimation (Harless and Camerer, 1994; Regenwetter and Robinson, 2017; Harless and Camerer,
1994). A perfectly parameterized model is supposed to reproduce 100% of an individual choice history. Going
through an individual choice history, we can estimate P (Θ|D), i.e. the likelihood of a specific choice under
certain parameters’ values, with Θ being the set of free-parameters (e.g. the loss aversion parameter from
Prospect Theory) and D the data (the choice). Thus, the statistical optimization consists in maximizing the
sum of P (Θ|D) for all decisions within an individual choice history.

Comparison-based with value-computation models: Regret theory

Regret theory (Loomes and Sugden, 1982; Loomes et al., 1992)was based on the intuition that rather

than evaluating prospects in terms of a summary statistic for each option individually (as EUT, or

Prospect theory), decision-makers are concerned with state-contingent payoffs, i.e. the difference

between options’ payoffs within a certain state. An implication of this model is that individuals
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rather thanmaximizing absolute expected-values, seek to minimize the regret resulting from a low

payoff choice, when a better alternative yielded higher payoff. Conversely, an individual should

maximize the rejoicing that arises when a choice is indeed optimal.

Formally, regret theory assumes both a finite state space of S = {s1, ..., sn}, and probabilities

P = {p1, ..., pn}. An action is a function A that maps A(s)→X where X is an outcome set (e.g.

money amounts). If we suppose 2 actions, denoted by x1,s, the outcome of action A1 in state si is

realized with the probability pi in that state. If If state s is realized, and considering a choice of

A1 over its alternative A2, the decision-maker receives outcome x1,s, while the alternative choice

would have yielded x2,s.

Considering the utility function u, the preference relation between the two actions A1 and A2, for

all states si is thus expressed as follow:

A1 ≿ A2 ⇔
n∑

i=1

pi · u[A1(si)] ≥
n∑

i=1

pi · u[A2(si)]

Thus, according to regret theory, a decision-maker would seek to minimize the regret (or max-

imize the rejoice) by maximizing the difference of the yielded utilities across all states, i.e. by

discriminating the best from the worst action in terms of relative payoff. An interesting feature

of regret theory is that it provides a rational for preference reversals as well as Allais paradox

(Bleichrodt and Wakker, 2015). In short, if the information processing is different in choice elici-

tation (value difference) compared to directly stated valuation (absolute value) it can explain why

different elicitation methods yield different preferences.

Utility in the brain?

Camerer, Loewenstein, and Prelec (2004a) proposed the neuroeconomics agenda: to apply neu-

roscience techniques and expertise to economic research. At the time, researchers hoped that

the new functional magnetic resonance imaging (fMRI) technology would allow them to pinpoint

which parts of the human brain are engaged in various sorts of economic decisions. Furthermore,

fMRI techniques were also seen as useful tools to adjudicate between different descriptive mod-
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els. For instance, the well known PT ”loss aversion” was characterized neurally, by first showing

that regions such as the ventral striatum presented “neural loss aversion”. Indeed the decrease in

activity for losses was steeper in that region, than the increase in activity for gains (Tom et al.,

2007b). Other components of PT, such as probability weighting (Paulus and Frank, 2006) or the

framing effect (De Martino et al., 2006), were also found to potentially have neural representa-

tions. Similarly, comparison-based utility models (such as regret theory) found empirical support,

when neurophysiological recordings in monkeys and humans shown comparative reward coding

in neural substrates (Nieuwenhuis et al., 2005; Tobler et al., 2005). The neural determinants of

subjective valuation are further discussed in chapter 2.

1.3.5 Comparison-based and value-free models

Bounded rationality

In the 1970s, bounded rationality (Simon, 1955) emerged as an alternative basis for the formalism

proposed by EUT and neoclassical economic modelling of decision-making. Simon goals was to

propose a theory of the rational choice thatwas compatiblewith the limited nature of human’s cog-

nition. In short, contrary to the neoclassical model that assumed a decision-maker fully informed

with infinite cognitive abilities, bounded rationality assumes an agent with limited computational

resources which makes cost-efficiency trade-offs in a complex environment where information

is lacking. In addition, he fiercely criticized the assumption of expected value (or utility) maxi-

mization. According to him, a boundedly rational agent attempts to attain some satisfactory or

sufficient outcome, but not necessarily an optimal or maximal one (Simon, 1947, 1972).

Simon also highlighted the contribution of learning, perception, and other cognitive processes in

decision-making.

In Savage’s world framework, small worlds are to be distinguished from large worlds (Savage,

1954). An environment with perfect and full information is called a small world, while a large

word supposes that the relevant information is unknown or has to be estimated from few obser-
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vations, so that the requirements for rational decisions are a priori not met. Savage and Simon

both emphasize that in large worlds one can no longer expect standard models of rationality to

provide the correct answer.

Heuristics-and-biases program

The term “heuristic” originates from mathematician George Polya (1945), who was trying to de-

scribe to its students how mathematicians reason. A heuristic is close to an algorithm, constituted

by a set of rules, executed in sequential order. Algorithms however are to achieve a certain goal,

with clear conditions. By contrast, a heuristic is a rule without very clear conditions, and does

not necessarily results in a useful outcome. Its role is to suggest another approach to a problem,

which may subsequently lead to a solution. For instance, when facing a mathematical problem:

Are there analogous problems? Can you use schematics to represent the problem? Etc.

Kahneman and Tversky (1972) took up the idea of heuristics to explain biases in probability judg-

ment. Taking Bayesian probability theory as a normative model, they found that people made

judgments that were inconsistent with Bayes’ theorem. Indeed, following Savage’s SEU (Sav-

age, 1954), an extensive literature tested the idea of the individual as a Bayes’ decision-maker

(Slovic and Lichtenstein, 1971). These findings have fostered an approach where the decision-

maker is viewed as a conservative Bayesian estimator, within which departures from the norm

are attributed for instance to a deformation of some evidence (extreme ones in a particular). This

conservatism implies that subjective posterior estimates should be monotonically related to ob-

jective Bayesian values (Edwards, 1968). To test the robustness of those previous results, K&T

presented sampling problems of the following form:
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Representativeness heuristic: Problem 1

Consider two very large decks of cards, denoted A and B.
In deck A, 5

6 of the cards are marked X and 1
6 are marked O. In deck B, 1

6 of the cards
are marked X and 5

6 are marked O. One of the decks has been selected by chance,
and 12 cards have been drawn at random from it, of which 8 are marked X and 4 are
marked O.
What do you think the probability is that the 12 cards were drawn deck A, that is,
from the deck in which most of the cards are marked X?

The above problem was alternatively presented with proportion 5
6
replaced by 2

3
, and 1

6
by 1

3
. The

ratio of drawn cards (8:4 here) was also varied. K&T observed that when they asked subjects for

the odds that the cards were drawn from one of the two proposed decks, subjects ignored pro-

portion differences (5
6
, 1
6
), and relied predominantly on drawn cards ratio. Obviously, from a nor-

mative standpoint, the proportion of each kind of marked cards initially present in the deck have

a substantial impact on objective posterior odds. Subjective posterior estimates however diverge

greatly, to the extent that they are not even monotonically related to objective probabilities. To

explain those results, K&T assumed that people were not attempting to apply Bayes rule. Rather,

they propose that they apply a heuristic of similarity, where the ratio of drawn cards (sample) is

compared to the ratio of initial decks (population), without however taking into account the actual

size of the initial decks. While being relevant, this similarity, or representativeness heuristic, is

qualitatively different from Bayes computation of posterior probabilities. Bayes’ theorem states

that:

P (H|D) =
P (D|H)P (H)

P (D)

where H stands for the hypothesis (those cards come from deck A) and D the data (sample of

drawn cards). In the case of the representativeness heuristic, it becomes:

P (H|D) = P (D|H)

which constitutes a violation of the theorem.

A more illustrative example of the representativeness heuristic consists of a task where K&T pre-
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sented personality sketch of a graduate student (named Tom) to subjects, which was conceived

to match the stereotype of a computer science student (Kahneman and Tversky, 1973). Thereafter

they asked participants to rank various academic fields according to the likelihood that the fic-

tive student belongs to one of them. Earlier, K&t had asked other subjects to what extent Tom

is representative of the prototypical graduate student of several study areas. K&T observed that

these rankings were strongly correlated with each other. In other words, subjects inferred that

Tomwas a computer science student because his traits matched the stereotype. However, subjects

were informed that computer science was a small field at the time, which counted few students.

Although this information reduces the likelihood that Tom is a student in that field, they ignored

that fact when making their judgments. K&T concluded from this evidence that people were using

a representativeness heuristic, leading to a bias with regards to the normative model, which would

take into account both population size and similarity.

Following this study and using similar experimental methods, K&T identified a series of heuristics,

such as:

• Availability heuristic (Tversky and Kahneman, 1973): People assess the frequency of

events by availability, i.e. by the ease at which it comes to mind. It leads people to overes-

timate the likelihood of an event solely because it can be recalled quickly.

• Anchoring and adjustment heuristic (Tversky and Kahneman, 1974): When asked for

estimating unknown quantities, people tend to start with information one does know (the

anchor) and then adjust until an acceptable value is reached. This heuristic can lead to

biases when the anchor is not relevant to the considered problem. However, the anchoring

and adjustment process can also help producing estimates closer to optimality when the

initial information is relevant (e.g. When was George Washington elected? You can quickly

generate an estimate by adjusting from the date of the Declaration of Independence in 1776,

a date known to be close to the correct answer).

• Simulation heuristic (Kahneman and Tversky, 1981): Assessments of propensity or like-
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lihood of an event are derived from mental simulations. Among other biases, people seem-

ingly experience more regret over outcomes that are easier to imagine, easier to ’picture

in mind’. According to K&T, people for instance use this to answer questions involving

counterfactual or causal propositions.

For K&T, heuristics were then useful as they saved time and cognitive resources, but also because

they could sometimes provide quasi-optimal answers. Nonetheless, heuristics were first invoked

to explain biases, i.e. departures from normative models. Even if heuristics were functional, they

still led to suboptimal choices and errors in important and possibly frequent situations, such as

in medical diagnosis (Kahneman et al., 1982b). Subsequently, Kahneman & Frederick (2002) will

propose a definition for heuristics:

An heuristic assesses a target attribute by another property (attribute substitution)

that comes more readily to mind.

Fast and Frugal heuristics program

Despite being highly influential; one could argue that the influence of the heuristics-and-biases

program declined in the 2000s, at least in psychology (McKenzie, 2005; Truc, 2021). A possible

origin of this decline can be found in the critique of the approach by the fast-and-frugal research

program (Gigerenzer, 1991, 1996). This critique can be summarized in three main arguments:

• explaining cognitive phenomena using labels such as availability and representativeness

is vague, and says nothing about the processes underlying judgment. Additionally they

prevent the development of comprehensive theories of decision-making (Gigerenzer, 1996).

• focusing mainly on coherence standards (i.e. quantifying the deviation from a normative

statistical model) leads to the pitfall of neglecting the role played by the environment, and

how individuals rationality can be assessed relatively to the environment (’ecological ratio-

nality’) (Gigerenzer and Gaissmaier, 2011)
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• consequently, the approach favors the building of ’biases lists’ and leads to the ’bias-bias’, i.e.

seeing systematic errors where in fact ecological rationality is applied. This has undesirable

effects on public policies inspired by the heuristics-and-biases literature (Gigerenzer, 2018).

The “vagueness” argument has been illustrated using two related phenomena: the gambler’s fal-

lacy and the hot-hand (Gigerenzer and Brighton, 2009). Both phenomena are rooted in intuitions

about randomness. We typically observe the gambler’s fallacy when people intuitively predict

that in a binary outcome sequence, after a long run of one outcome, the other outcome must ap-

pear. A classic example of this fallacy happens when we flip a fair coin: people have a tendency

to predict heads after a sequence of tails (Kahneman and Tversky, 1972). In contrast, the hot-hand

fallacy refers to the tendency that a sequence of identical outcomes will continue. A classic exam-

ple consists in the prediction that a basketball player will score again after a succession of baskets

(Gilovich et al., 1985). In the case of the coin, short sequences are believed to be “representative” of

their generating (random) process, whereas a player scoring several points in a row is perceived

as good (and thus reinforce the hypothesis that his performance is not due to chance) leads to

predicting a continuity. Those two phenomena have thus, been designated as the consequence

of the representativeness heuristic (Ayton and Fischer, 2004). However, the ’representativeness’

label can be seen as vague, as opposite outcomes are explained without specifying the underlying

mechanisms leading to such a prediction. If the priors leading to such predictions are not included

in the heuristic formulation, then it is incomplete. One could thus see it as epistemologically

’weak’ in terms of both explanatory and predictive power (Gigerenzer, 1996).

Moreover, it can be argued that these intuitions are in fact (ecologically) rational, when taking

into account environmental variables (Gigerenzer, 2018). For instance, the gambler’s fallacy can

represent a probabilistically valid intuition under certain circumstances. Let’s consider that a coin

is tossed four times in a row. What sequence of three outcomes is more likely to be encountered:

head-head-tail or head-head-head? In fact, if we consider a particular sequence of outcome with

length k = 3 and a total number of tosses n = 4, the head-head-tail is more likely (Fig. 1.4).
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Figure 1.4: Possible outcome sequences when a coin is tossed four times. A cross is written in the last row when
the sequence head-head-tail appears. A check mark is written in the last row when the sequence head-head-head
appears. The intuition that head-head-tail is more probable (intuition often seen as violating the statistical normative
model) is in fact valid if we consider four tosses, and sequences of length three. The table is taken from Gigerenzer,
2018.

Among 16 possible sequences, HHT is encountered four times (4/16=.25) whereas HHH is encoun-

tered 3 times (3/16=.1875). Similarly, it can be shown that HHT is more likely to appear first under

these parameters (Hahn and Warren, 2009). The only condition for this observation to hold is that

k < n and that n < ∞. As n < ∞ is a reasonable assumption considering humans are mortal,

and k < n is valid as long as judgment is required on a smaller amount of observations than the

overall sample (think of working memory span limitations for instance), it can be assumed that

the cognitive process underlying the gambler’s fallacy is in fact frequently ecologically rational.

Several classical biases when seen through the lens of ecological rationality, may appear as intelli-

gent inferences rather than logical or statistical errors (e.g. on the conjuntion fallacy, see Hertwig

et al., 2008).

Thus, against the ’vagueness’ criticized in the heuristics-and-biases program, the fast-and-frugal-

heuristic program argues for falsifying formal models of heuristic by prediction, not by data fitting

a priori (Gigerenzer and Gaissmaier, 2011). Therefore, model competition is favored (Berg et al.,

2010).

Moreover, Gigerenzer (2018) argues that ’statements about the rationality of judgments need to be

qualified with respect to ecological conditions’, meaning that formal models of heuristic need to

include parameters and rules that implements cognitive processes in relation to the environment.

In accordance with Simon’s bounded rationality (Simon, 1955), these heuristics must maximize an

accuracy-effort trade-off. A heuristic is thus defined as:
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[…] a strategy that ignores part of the information, with the goal of making decisions

more quickly, frugally, and/or accurately than more complex methods. (Gigerenzer

and Gaissmaier, 2011).

A way to make heuristics comparable across environments is to base them on common building

blocks:

• Search rules: specify in what direction search extends in the search space.

• Stopping rules: specify when search is stopped.

• Decision rules: specify how the final decision is reached.

Also, in decision under uncertainty where information is scarce and environments possibly com-

plex, heuristics relying on these building blocks can make sense of decisions while reducing en-

vironmental complexity an computational cost. In these situations, relying only on the best cue

available may be a reasonable alternative. A class of heuristics known as “one-reason decision

making” , among which the take-the-best heuristic is the most notorious, makes this assumption

(Gigerenzer and Goldstein, 1999).

The take-the-best heuristic is a model of inference between two alternatives, evaluating one crite-

rion and based on binary cue values retrieved from memory (Fig. 1.5). Consider the task to infer

between alternative A or B, which one has a higher value on a numerical criterion. Let’s say you

have to decide whether the German city of Cologne has a larger population than another city,

for instance Stuttgart. Let’s denote two cue vectors XA and XB , one for each alternative. These

vectors are composed of binary cues noted xi
A and xi

B , where i is the cue identifier. A cue xi can

refer to a question such as ”is this city a state capital?” or ”does this city as a soccer team playing

in national league?”, by taking a value of 0 or 1. Using the take-the-best heuristic, one individual

will therefore:

• Search through cue vectorsXA andXB , and select a valid cue (cues are ranked by validity).

Cues are then compared. While both cues take the value 0 (−− in figure 1.5) or 1 (++ in

figure 1.5) the search continues.
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Figure 1.5: Take the best heuristic. The heuristic consists in searching through relevant cues that discriminate
between two alternatives, until one cue is found higher on a certain criterion (+−). While both cues have an equal
value (++, −−) the search continues.The figure is adapted from Maldonato et al., 2011

• Stop the first time a cue xi discriminates between the options, that is to say if xi
A > xi

B or if

xi
A < xi

B (+− in figure 1.5).

• Ultimately choose the option with the larger value, as-if it has also a larger value on the

criterion (here population).

A cue validity is assessed with the following computation:

v =
C

(C +W )

where v is the validity criterion according to which cues are ordered, C is the number of correct

inferences when a cue discriminates, and W is the number of wrong inferences.
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In some decision contexts, the take-the-best heuristic has been found to account better for subjects’

decisions than linear models (Czerlinski et al., 1999), or Bayesian inferences (Bröder and Schiffer,

2003; Dieckmann and Rieskamp, 2007).

Simple heuristics sharing these characteristic building blocks, also have found empirical support.

For instance, the priority heuristic has been found to explain several deviations from EUT (e.g. Al-

lais’paradox, certainty effect) without implementing subjective value-computation (Brandstätter

et al., 2006).

1.4 Summary

Utility theories are rooted in the will to quantify economic value. The labor theory of value was an

attempt by classical economists to explain the process by which a good is assigned an economic

value. It suggested that the value of a commodity could be measured objectively by the quantity

of labor needed to produce it, such that the value is somehow incorporated in the good in question

(Smith, 1776; Ricardo et al., 1835; Marx, 1873). Thus, the labor theory of value proposed a materi-

alist definition of value, where economic value derives from production factors. During the 19th

century, the labor theory of value was hegemonic (Dillard, 1945), until the marginalist revolution

occurred. Marginalists (Jevons, 2013; Menger, 1871; Walras, 1896) conceived value as subjective,

and name it ’utility’, i.e. the usefulness or pleasure one can derive from the acquisition of a good or

a service. They inherited this hedonistic conception of economic value from utilitarianism (Ben-

tham, 1789; Mill, 1859), a moral theory asserting that doing good consists in maximizing pleasure.

However, measuring sensations was a nearly impossible task at the time, and numerous debates

surrounded this topic (Box 1.1).

Through the ordinal revolution and revealed preference theory (Samuelson, 1938), utility theory

gradually got rid of its psychological entities, respectively by seeing utility as ordinal (relative)

and not cardinal (absolute), and by considering its measure should be directly derived from indi-
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viduals’ choices. This absence of ontological commitment toward utility culminated in Friedman’s

positivism (Friedman, 1953). On this basis, EUT emerged as an influential axiomatic framework

for decision theory. However, debates concerning the appropriate normative definition of utility

(Box 1.3) arose when several violations of EUT were observed in human decisions (Allais, 1953;

Ellsberg, 1961). It led to the creation of the judgment and decision-making field, which favored

the empirical study of utility trough descriptive models of economic decisions. Interestingly, psy-

chological methods became central again in this approach.

In value-first models (i.e. models that compute an expected-utility for each isolated options), “ex-

perience utility”, as an hedonic quality (Bentham, 1789), was distinguishable from ”decision util-

ity”, i.e. the theoretical weighting of an outcome10. Prospect theory (Kahneman and Tversky, 1979)

belongs to this class of models. Similarly in value-comparison models (i.e. models which decisions

are based on the computation of utility differences), regret and disappointment minimization are

central (Loomes and Sugden, 1982). In short, psychological entities are invoked again, in order

to account for utility. For this class of models, lotteries describing full information (probabilities,

outcomes) are used to elicit risk-attitudes, which are subsequently used to build utility functions

(Holt and Laury, 2002). This experimental setup is also known as the description paradigm.

Moreover, models of utility that account for decisions, are put in competition, sometimes using

fMRI methods to adjudicate between models. This is the ’neuroeconomics approach’, which sug-

gest that utility is not only a theoretical construct, but is also neurally implemented (Camerer et al.,

2005). Hence, utility as a scientific construct, has experienced significant ontological (what is it?)

and epistemological (how to study it?) variations over time (Moscati, 2018b).

Finally, alternative research programswere also proposed. For instance, the fast-and-frugal-heuristics

program advocates for the use of value-free models, and other norms of ’parsimonious’ rationality
10Kahneman et al., 1997 claim that cardinal and empirical measures of utility are ’back to Bentham’.
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(Gigerenzer, 1991, 1996; Gigerenzer and Gaissmaier, 2011; Gigerenzer, 2018). Heuristics are strate-

gies that follow a set of rules in order to maximize an accuracy-effort trade-off. The rationality of

these heuristics is ecological, in the sense that it has to be assessed relatively to how a heuristic

performs in a particular environment.
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Physics did not advance by looking more closely at the jubi-

lance of a falling body, or biology by looking at the nature of

vital spirits, and we do not need to try to discover what per-

sonalities, states of mind, feelings, traits of character, plans,

purposes, intentions, or the other perquisites of autonomous

man really are in order to get on with a scientific analysis of

behavior.

Burrhus F. Skinner, Beyond Freedom and Dignity, 1971

Personally, I am primarily intrigued by the possibility of learn-

ing something, from the study of language, that will bring to

light inherent properties of the human mind.”

Noam Chomsky, Language and Mind, 1968 2
Reinforcement Learning

2.1 Behavioral reinforcement learning

2.1.1 Classical conditioning

In the 1890s, the Russian physiologist Ian Pavlov conducted an experiment on the gastric function

of dogs by collecting secretions from their salivary gland (Pavlov and Gantt, 1928) 1. He noticed

that dogs tended to salivate before they were actually fed, so he decided to study this anticipated

physiological reaction. It turned out that this effect was not confined to a chemistry phenomenon,
1The behavioral experiments he conducted in the 1890s will finally result in a paper translated in English in 1928.
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which piqued his interest and led him to conduct a series of experiments. He varied the stim-

uli occurring after the food was presented, hoping that it will elicit a response and aiming at

creating new causal associations. The procedure consisted of delivering food to dogs (an uncon-

ditioned stimulus, US), following a tone presentation (a conditioned stimulus, CS) (Fig. 2.1). The

conditioned stimulus alone could not elicit salivation (an unconditioned response, UR) at first, yet

after numerous tone-food (CS-US) presentations, the dog’s salivation could be elicited via both the

conditioned and unconditioned stimuli. In this way he discovered the basic principles under the

acquisition of conditional response (CR) - that is, reflex responses, such as salivation, that could be

reproduced through the association with a novel stimulus. Pavlov saw this phenomenon, which

was to be known as ’classical conditioning’, as the basis of learning.

2.1.2 Operant conditioning

During the same decade, the ’associative learning’ paradigm was concomitantly developed by Ed-

ward L. Thorndike (1898). His thesis, Animal Intelligence: An Experimental Study of the Associative

Processes in Animals, is based on a series of experiments in which cats locked in a boxmust uncover

the mechanism that allows them to break free and access food (Fig. 2.1). The cats move around

the box with no apparent purpose and then discovers the action (pulling a rope or pressing a lever

for instance) that provides the solution. After several attempts they defeat the ’puzzle’ faster and

faster. Contrasting to Pavlov setup, Thorndike’s box conditions the receipt of the reward (the

food) on a behavioral response (enabling a mechanism). This associative learning process where

the strength of a behavior is modified by reinforcement was characterized by Thorndike as ’in-

strumental learning’. This was driven by the Law of Effect: responses resulting in a satisfying

effect in a specific situation become more likely to occur in that situation, while responses that

produce a discomforting become less likely to occur again in the same situation. Said differently,

learning occurs via a trial-and-error process, where consequences affect future actions differently.

A positive reinforcer will strengthen the link with a behavior, while a negative one will weaken

the association.
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Thus, there is an important theoretical and experimental distinction between Pavlovian and oper-

ant conditioning. In the former the animal only observes the relationships between events in the

world, whereas in the latter it also has some control over their occurrence.

Before

Learning 
(repeat)

After

No response Reflex = salivating

USCS

CS US

CS CR

US

Classical conditioning Instrumental/operant conditioning

?

CS

CS

CR

US

Increased behavior

US
CS

Figure 2.1: Classical and operant conditioning. In classical conditioning, a conditioned stimulus (CS) is associated
to an unconditioned stimulus (US) through learning, and elicits a conditioned response (CR). For instance, a steack
(US) when presented to a dog, elicits salivation, when a bell (CS) does not. During the learning phase the steack and
the bell are presented together. After a sufficient number of repetitions, the bell (CS) is associated to the steack (US)
and elicits salivation (CR) when presented alone to the dog. In operant conditioning, the process is similar, but the
CS requires an action. As the CS and US association is reinforced, the behavior is reinforced. For instance, a cat is
locked in a cage, with a lever (CS) inside and food (US) outside.. The cat must learn to pull the lever (CR) in order to
gain access to the food (US). This behavior is thus reinforced and increases.

2.1.3 Behaviorism

A proto-behaviorist (Malone, 2014) approach can be seen in the work of Watson (1920), and no-

tably the little Albert experiment, where he showed empirical evidence of classical conditioning

in humans. In short, Watson followed the procedures given by Pavlov’s experiments. He first

exposed a child, Albert, to a series of stimuli such as rats or rabbits, but also non-animal objects

stimuli such as cotton or wool. During those baseline tests, Albert expressed no fear. Thereafter,

he tried to elicit an emotional reaction in Albert, by playing loud sounds when Albert was inter-

acting with those stimuli. Watson observed that he created an (aversive) association with those
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stimuli, which had been at first US, and become CS, provoking a CR, i.e. a negative emotional

reaction (cries, distress) from the little Albert.

Three decades after Pavlov and after acknowledging his work, Burrhus F. Skinner (1938) further

extended associative learning theory, and in this way officially establish one the most influential

experimental psychology research program in the 20th century: behaviorism (Box 2.1).

One of his primary contributions was the extension of the operant conditioning paradigm, by

designing the Skinner box, also called the operant conditioning chamber (Fig. 2.2). The box con-

tained an electrified grid, a food dispenser, a speaker, and a cue light, as well as two levers. The

experimenter can use this setup to explore classical (speaker, lights) and operant (levers) condi-

tioning in a variety of species, most commonly rats. The Skinner box’s allows for the investigation

of several forms of learning:

• Positive reinforcement: The rodent presses the lever, and obtains food, resulting in an

increase in of the operant behavior due to the association with a reward.

• Negative reinforcement: The rodent receives electric shocks, presses the lever, which

stops the shocks. The operant behavior frequency is consequently increased in order to

avoid the shocks.

• Positive punishment: The rodent presses the lever, receives an electric shock, leading to

a decrease of the operant behavior by association with a punishment.

• Negative punishment: The rodent receives food, presses the lever, the food disappears.

The operant behavior frequency is reduced by associating it with the removal of the reward.

By means of this conditioning box, Skinner established the occurrence probability of an action as

themost adequatemeasure of associative strength (Skinner, 1938). The response rate progressively

became the main dependent variable considered in the study of operant learning.

This led to the formulation of theMatching Law (Herrnstein, 1961), which states that different rates

of reinforcement imply different rates of responses. The authorship of this law belongs to Her-

rnstein, who conducted an experiment on pigeons using Skinner’s box. Pigeons were presented

44



Chapter 2. Reinforcement Learning

Negative 
Punishment

Positive
Punishment

(-) Something (+) Something

(+
) B

eh
av

io
r

(-
) B

eh
av

io
r

Negative
Reinforcement

Positive
Reinforcement

Figure 2.2: Skinner’s box. The box was designed to to study various kind of conditioning, notably classical condi-
tioning (with passive stimuli such as tones emitted via a speaker) or operant conditioning (with a lever that enables
actions). A system allowed to distribute food, in order to study appetitive conditioning. In addition, an electrical grid
allowed to apply punishments, and therefore study aversive conditioning.

with two buttons (A and B), each of them associated to different rates of food reward. Pigeons’

preference went toward the button A, that is the button associated to the greatest food frequency.

Interestingly, Herrnstein observed that the ratio of the reinforcement was equivalent to the ra-

tio of responses among the two alternatives. Hence, the Matching Law is formally expressed as

follow:

RA

RA +RB

=
RfA

RfA +RfB

With RA andRB the rate of responses that have different rates of reinforcement RfA and RfB ,

the matching law holds that the relative response rate matches the relative reinforcement rate.
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Box 2.1: Measurements in Psychology and Behaviorism

In parallel to the psychophysics debate mentioned in chapter 1, several sub-disciplines of psychology were
committed to measurements. Differential psychology for instance, through scientists such as Binet (1907),
was interested in measuring psychological variables (e.g. intelligence, memory) through a series of tests (e.g.
questionnaires) that aimed at direct measurements. Others such as Ebbinghaus (1913) took an associationist
(i.e. the idea that mental processes operate by the association of one mental state with other states) approach
for studying memory, by building learning (or performance) curves. He tested the memorization of nonsense
syllables, and concluded that performance decreased depending on several factors (e.g. difficulty of the learned
material, physiological variables such as stress, etc.). Behaviorism emerged concurrently, and proposed a
radically different program for psychological science, that rested (in its most radical form) on three claims
(Graham, 2019):

• Ontological reduction: Psychology is not the science of the inner mind. Psychological phenomenon
should be ontologically reduced to behavioral phenomenon.

• Causal reduction: Psychology as a science should not make appeal to mental entities or events. Causes
of behavior are external (physical events in the environment) not internal (the mind). Therefore models
of psychology should be concerned with inputs (stimuli) and outputs (behavior).

• Epistemic reduction: Mental terms and concept should be eliminated, or if possible translated to be-
havioral concepts.

Supporting one of these three claims is to be considered as a behaviorist. Within behaviorism, several schools
of thought can be distinguished, such as the mathematical approach of Clark Hull, or the radical behaviorism
of Skinner. Hull (1932) looked at the performance of rats learning simple tasks such as discrimination the
correct arm in a T-maze, developed learning rules of the form V (t+ 1) = α(1− V (t)), where V is response
strength and alpha is a learning rate (Staddon and Niv, 2008). Skinner for its part, likely accepted the three
above mentioned claims (Graham, 2019), He saw value only in predicting behavior, not in modeling cognitive
processes a. He rejected the Hullian approach, and conceived a set up (the skinner box) where animals are
treated ”much like physiological preparations” (Skinner, 1956; Guttman, 1977; Staddon and Niv, 2008).

aHe might, in this regard, be reconciled with Friedman’s positivism and instrumentalism (Box 1.2)

2.1.4 Blocking effect

Studying rats’ learning behaviors, psychologist Leon J. Kamin reported a striking phenomenon

(Kamin, 1967a,b). He showed that a prior CR training to a first stimulus (CSA) undermines the

acquisition of a second CR to second stimulus (CSB) if presented together as compound stimulus

(CSAB). Experimentally translated, the operant behavior was pressing a button (CR) for a reward

(US) by food restricted rats. The CS were light (CSA) and electric shock (CSB). After several
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trials, the paired association CSA − US is successfully learned. For the animal, a light predicts

the occurrence of the reinforcer (the food), and a CR is acquired, which consists in pressing the

button. Thereafter lights and shocks (CSAB) are associated to the occurrence of the food. However,

thereafter when shocks are used alone (CSB), the response is diminished 2. In Kamin’s reasoning,

this blocking effect suggested that traditional theories of classical conditioning were incomplete,

given that the latter assumed that contiguity of a CS with a US is a sufficient condition for the

establishment of a CR. Kamin consequently argues that this phenomenon reflects an higher order

cognitive process, such as attention, predictability or surprise. Indeed, assuming contiguity is

sufficient, why are associations not formed with other stimuli present in the environment, like the

experimenter for instance? Some mental process must have selected specific stimuli for learning

to occur. Kamin’s call for cognitivist explanations were thus conflicting with the input-output

model endorsed by behaviorists. As Moore and Schmajuk claimed:

The strength of Kamin’s evidence fromhis blocking experiments fueled the then nascent

cognitive perspective, which in the ensuing decades became a dominant feature of

modern learning theory and computational models of classical conditioning. (Moore

and Schmajuk, 2008).

2.2 Computational reinforcement learning

2.2.1 Basic principles

Progressively and based on the work of early behaviorists, Reinforcement learning (RL) as a for-

malized learning framework arose (see Box 2.2). Instead of being explicitly taught a goal, an RL

agent learns from the consequences of its own actions. It selects actions on the basis of its past

experiences (exploitation) and also by exploring new choices (exploration), or said otherwise, via
2A first control consists in modifying the learning architecture, by skipping the prior conditioning CSA − US and

presenting the compound stimulus CSAB directly, which effectively results in a CR (pressing the button for food)
when only CSB is presented. A second one consists in first learning the CSAB − US association, then learning the
CSA − US association, which again do not result in blocking the CR for CSB alone.
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a trial-and-error process. The training signal that the agent processes is a numerical reward en-

coding the success of an action’s outcome. In addition, the agent seeks to maximize the expected

accumulated reward over time.

The agent integrates the training signal by means of a learning rule, such as the delta rule. The

balance between exploration and exploitation is defined via a policy (i.e. how to select an action,

learning rule put aside), such as the softmax policy or the epsilon-greedy algorithm.

The RL framework is frequently thought as a Markov Decision Process (Howard, 1960). A Markov

decision process is a discrete stochastic process. At each step, the process is in some state s and

the agent chooses an action a. The probability that the process arrives at the state s′ is determined

by the chosen action. More precisely, it is described by the state transition function T (s, a, s′) .

Thus, the realization of the state s′ depends on the current state s and the selected action a. We

then say that the process satisfies the Markov property. When the process moves from state s to

state s′ , the agent receives a reward R(s, a, s′).

Figure 2.3: The basic reinforcement learning components. At time step t and in state St, an agent interacts with the
environment by selecting an action At. Thereafter, it enters a new time step t+ 1 and state St+1 while obtaining a
reward Rt+1.

Thus, the RL framework can be defined by:

• a set of states S.
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• a set of actions A.

• P (s, a, s′); the probability of transition from state s to state s′ under action a.

• R(s, a, s′); the immediate reward after transition from s to s′ with action a.

2.2.2 Prediction Problem and Control Problem

RL is used to address two kinds of problems (Woergoetter and Porr, 2008):

• Prediction problem: the agents learns the value function for the policy followed. When

the algorithm converges, it possesses a value function that must encodes the maximum

expected reward for every visited states.

• Control problem: the agent seeks to find a policy which maximizes the expected reward

when traveling through state space (i.e. by interacting with the environment). As the agent

has a control over the state sequence, it must learn how to travel optimally depending on

the feedback it receives in different states. The control problem is more demanding than the

prediction problem, as it implies to solve the prediction problem as well.

Historically, formal models of classical conditioning coming from animal learning are more con-

cerned with the prediction problem (Balkenius et al., 1998). Animals typically remain passive and

no specific actions or interaction with the environment are required from them. Among this class

of model, the Rescorla-Wagner model (Rescorla, 1972) and the Temporal-Difference model (Sutton

and Barto, 1981; Sutton, 1988) are probably the most notorious.

The control problem on the other hand is present in operant conditioning (as animal actions pos-

sibly affect the environment), and is notably addressed by the Actor-Critic architecture, which is

essentially derived from the Temporal-Difference learning method. Furthermore, another model

specifically designed to reach optimal control over the environment is theQ-learningmodel (Watkins,

1989).
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2.2.3 Rescorla-Wagner Model

In 1972, Yale psychologists Robert A. Rescorla and Allan R. Wagner present a model of classi-

cal conditioning (Rescorla, 1972), that provides a formal explanation for the blocking effect. An

assumption fundamental to the model is that the total amount of conditioning the stimuli may

obtain from the reinforcer is limited. This finite quantity is shared among the stimuli of which

the compound is composed. Another assumption is that the salience of the stimuli modulates

the associative strength. Formally, for a pair of stimuli A and B, the associative strength is thus

incremented at each trial as follows:

∆VA = αAβA(λ− Vtot),

and ∆VB = αBβB(λ− Vtot),

where Vtot = VA + VB

where ∆VA and ∆VB are respectively the gradient strength of the association of stimulus A and

B with the reinforcer. Vtot is the total associative strength of the compound. The salience of each

stimulus is implemented by α, while λ is the asymptote of conditioning (i.e. the maximum amount

of conditioning). Finally, β implements the learning rate of a particular US (the idea being that

different US might be perceived as more or less attractive, and therefore might reinforce with

different intensity). Three elements thus predict the amount of conditioning: (i) the salience of the

CS (ii) the learning rate parameter associated to a US (α) (iii) the difference between the asymptote

(λ) and the associative strength of all the cues present in the environment. V increases when

the difference is positive, while it decreases if it is negative. This error-correction mechanism is

crucial, as it implements the psychological ’surprise’, which ultimately allows overwrite previous

information. In the next years, the Rescorla-Wagner model gained influence, due to its ability

to explain a wide range of behavioral features observed in conditioning tasks, in a parsimonious

manner (Miller et al., 1995; Siegel and Allan, 1996). For instance, the model predicts Kamin’s

blocking effect, merely because after CSA is learned, Vtot will be near the asymptote λ, which
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results in preventing new associations. Despite this explanatory power, several limitations will

foster the emergence of alternative models. Importantly, the model is agnostic regarding higher-

order structure of the environment, and thus can’t implement the relation between actions and

different states for instance. It is thus restricted to prediction problems and cannot address the

control problem. Furthermore, its approach to the prediction problem is also limited, as it can only

learn from immediate outcomes, and not sequences of trials (Sutton and Barto, 1981; Gaffan, 1989).
Box 2.2: Marr’s levels

Computation 
(why/goals)

Algorithm
(what/rules)

Implementation
(how/physical)

RL gained massive popularity over the last
thirty years. For instance, the occurrence of
the ’reinforcement learning’ term was mul-
tiplied by 60 among nature journals (Niv and
Langdon, 2016). Arguably, this success is
due to the idea that RL is a computational
neuroscience framework that encompasses
all three levels of Marr (Marr and Poggio,
1976). Let’s imagine a rat put in experimen-
tal conditions, and that aims to eat a cheese
locked in a cage. At the computational level,
a set of goals and assumptions are defined,
for instance maximizing expected reward,
i.e. getting as most food as possible.

At the algorithmic level, the rules that guide behavior in order to achieve the goals are defined. This is typically
what RL models formalize, i.e., learning rules and policies that aim at fulfilling predefined goals. Here, the rat
must press a button (i.e. select an action) in a particular context (i.e., a state), to obtain the reward, that will
act as a reinforcer of the behavior. Lastly, the implementational level describes how this behavior is neurally
and physically performed. Typically, models’ variables are linked to the activity of neural substrates, via
electrophysiological methods or fMRI. For instance, the prediction-error δ, that implements the difference
between the expected and obtained outcome, is notouriously correlated to dopaminergic activity in the basal
ganglia (e.g. Schultz et al., 1997, Pessiglione et al., 2006).

2.2.4 Delta rule for Neural Nets

In parallel to the development of the conditioning paradigm, the nascent machine learning field

was developing. In 1943, the neurophysiologist Warren McCulloch and the mathematician Walter

Pitts published an article describing the functioning of neurons by representing them as electrical
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circuits (McCulloch and Pitts, 1943). This representation was to become the theoretical basis for

neural networks and other standard connectionist models. Later, Frank Rosenblatt (1958) invented

the perceptron, which consists in formal neurons where synaptic weights are updated through a

learning rule. ADALINE, an extension of the perceptron was proposed byWidrow and Hoff (1960).

More specifically, ADALINE is a single layer neural network with multiple inputs neurons which

generates one output. The inputs are connected to the output neuron through weighted synapses.

Formally, the output y is computed as follows:

y =
n∑

i=1

xiwi

with x being the input vector and w the vector of synaptic weights. For each iteration in the

convergence process, the weights are updated via the following mechanism:

w ← w + η(d− y)x

withw being the synaptic weight, η the learning rate, d the desired output, and o the actual output

of the network. Depending on the class of problem (single layer networks are known for their

inability to treat data that is not linearly separable), the network will eventually converge such

that the output y gets closer to d. This kind of learning mechanism is called ’supervised’, as there

is a prior knowledge of the desired final output.

2.2.5 Temporal difference learning

In the 1980s and the early 1990s, Sutton and Barto proposed the Temporal Difference (TD) learning

algorithm (Sutton and Barto, 1987; Sutton, 1988; Sutton and Barto, 1990). Inspired by the corre-

spondence they observed between the Rescorla-Wagner and ADALINE learning rules (Sutton and

Barto, 1987), they aimed at constructing a new model of classical conditioning, that would bor-

row elements from optimal control (machine learning) and animal learning. More precisely, they

pointed out that in the ADALINE model, the reinforcement signal (d−y) implied by the delta rule
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presented surprising similarities with the Rescorla-Wagner learning rule (Sutton and Barto, 1987,

1981). The equivalent term in Rescorla-Wagner is thought to implement the psychological ’sur-

prise’ when facing a stimulus. In the ADALINE model, this ’surprise’ phenomenon translates as

the the difference between the expected outcome and the obtained outcome. According to Sutton

and Barto, those two models thus belong to the class of prediction-learning methods. However,

they also note this class of models lacks a crucial dimension in their implementation, temporality.

When describing classical conditioning, the Rescorla-Wagner model specifies changes in associate

strength at a trial level. In contrast, TD methods allow for ’real-time’ models (as Sutton and Barto

named them), in the sense that they are able to update associative strength from sequences of

trials:

Whereas conventional prediction-learning methods are driven by the error between predicted and

actual outcomes, TD methods are similarly driven by the error or difference between temporally

successive predictions; with them, learning occurs whenever there is a change in prediction over

time. For example, suppose a weatherman attempts to predict on each day of the week whether it

will rain on the following Saturday. The conventional approach is to compare each prediction to

the actual outcome whether or not it does rain on Saturday. A TD approach, on the other hand, is

to compare each day’s prediction with that made on the following day. If a 50% chance of rain is

predicted on Monday, and a 75% chance on Tuesday, then a TD method increases predictions for

days similar to Monday, whereas a conventional method might either increase or decrease them

depending on Saturday’s actual outcome. (Sutton, 1988)

Let us consider an agent traveling to a sequence of states and rewards, during T timesteps.

st, rt+1, st+1, rt+2,…, rT , sT .

Let Rt be the sum of all the rewards obtained at the current state:

Rt = rt+1 + γrt+2 + ...+ γT−1rT
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where rt+1 is the immediate reward and γ ∈ [0, 1] is the discount factor, which is weighted to give

more importance to recent benefits while discounting (i.e. disregarding) future outcomes more

strongly. If the complete return, i.e., the cumulative future reward Rt expected from this state st,

is dependent on the value of the current state V (st), then we can estimate the value of a state

using a delta rule, which implements an error-correction signal:

V (st)← V (st) + α · (Rt−V (st))

with α ∈ [0, 1] being a learning rate parameter, which determines the extent to which this signal

will override previous information. When α = 0, V (st) remains identical because the agent

ignores the reinforcement signal. If α = 1 the most recent information completely overwrites

previous one. Similarly to the Rescorla-Wagner and likewise ADALINE model, the termRt−V (st)

is a reward prediction error (Sutton and Barto, 1981), i.e., the difference between the complete

return (obtained reward) and the predicted one (expected reward). When V (st) andRt are equals,

the agent perfectly predicts the complete return value and the reward prediction error will be zero

and hence the algorithm will converge. In the TD(0) algorithm described by Sutton and Barto,

instead of using the accumulated sum of discounted rewards Rt, we only look at the immediate

reward rt+1, plus the discount of the estimated value of only one time step ahead V (st+1):

V (st)← V (st) + α · (rt+1 + γV (st+1)−V (st))

To imitate an immediate reward learning (such as in the Rescorla-Wagner model), we can consider

the TD(s = 0) case, or in other words, the case where it makes estimates from estimates, instead

of estimates from sequences of trials. In this way, the TD-error δ is defined:

δt = rt+1 + γV (st+1)−V (st)

The prediction error signal can be used to reinforce actions leading to desirable states of the en-

vironment and discard those leading to worse states. Without considering any other previously
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visited states, we assign a new state value to one state by performing:

V (st)← V (st) + α · δt

TD allows predictions over successive time steps to drive the learning process. The prediction at

any given time step is updated, such that at the next time step, the distance between the previ-

ous prediction and current prediction will be reduced. In other words, it is a particular class of

supervised learning processes, where the training signal for a prediction is derived from future

predictions, instead of being computed based on an immediate outcome. This property provides

TD models with certain advantages over trial-level models. First, TD allows to account for the

frequency of stimuli presentation within a trial, whereas the Rescorla-Wagner for instance can-

not. Indeed the inter-stimulus interval between US and CS is known to have strong effect when

learning associations (Odling-Smee, 1975). Second, these models, because they are in real-time,

are more mechanistic and therefore more amenable to speculation about their physical implemen-

tation, in particular in the light of electrophysiological data (Suri and Schultz, 2001). Although

it was initially designed to solve the prediction problem of classical conditioning, it was later ex-

tended to model instrumental conditioning. Thus, it was able to cope with the control problem,

notably using an actor-critic architecture.

2.2.6 Actor-critic

Actor-critic methods are TDmethods that have a separate memory structure, in order to represent

the policy independently of the value function (Fig. 2.4). One of their aims is to deal with the

control problem (Williams, 1992; Sutton et al., 2000).

The actor implements the policy and is used to select actions. The critic is synonymous to the

value-function, and is called critic because it adjusts and guides the choices made by the actor.

Both components are only informed by the current state. For this reason, they learn policies

directly, that is, without calculating option values The critic therefore learns from the prediction-
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error signal and informs the actor on whether to maintain a policy or not. In contrast with the

standard TD-learning model, where the action was left unspecified, the actor-critic model allows

for action-selection, allowing to describe operant conditioning.

Figure 2.4: Standard actor-critic architecture. Actor-critic methods are temporal-difference learning methods which
rely on an architecture based on two main components. The actor is the learning component, while the actor is the
decision component. The actor, given the state-value function, selects an action which maximizes expected reward.
The obtained reward is used to compute the temporal-difference error, which is both fed to the critic and the actor,
in order to respectively update the state-value function and guide future policies.

As standard TD models, the actor component learns from the following prediction-error δ:

δt = rt+1 + γV (st+1)−V (st)

where V is the state-value function implemented by the critic. The actor is also informed about

the state, and can select the appropriate action. The specific architecture of the actor-critic, implies
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that the actor directly implements the TD error, in order to adjust the weighting of the selected

action, with the following update rule:

p(at, st)← p(at, st) + βδ

where p(at, st) is the probability of choosing the action a a time t, β determines to what extent

the prediction-error overrides the initial probability.

A desirable feature of this dual architecture, and especially in the machine learning field, is the

reduction of the computational complexity. Learning a unique state-value function, instead of a

value for each action-state couple (action-state value function), reduces the risk of combinatorial

explosion, when the number of states and actions exponentially grows. This is known as the curse

of dimensionality, which happens in high-dimensional spaces (Sutton and Barto, 2018).

Moreover, the separate actor in actor-criticmethodsmakes themgood candidates for psychological

and biological modeling. This dissociation can be used to impose domain-specific constraints,

for instance to build model of the ventral and dorsal striatum, where the former corresponds to

the critic and the latter corresponds to the actor. (O’Doherty et al., 2004; Takahashi et al., 2008).

In behavioral research, actor-critic architectures were able to account for the matching law and

conditional avoidance (Sakai and Fukai, 2008; Maia, 2010).

2.2.7 Q-Learning

Q-learning was first introduced by Chris Watkins (1989). Q-learning differentiates itself from

the above mentioned algorithms in the sense that it seeks to maximize a value function for each

state-action pair, stored in a Q-matrix Q(s, a). The ”Q” in Q-learning stands for quality, i.e. how

much an action will lead to future rewards. For each time step t, the agent chooses an action

at and receives a reward rt. Following that choice, it enters a new state st+1. The agent thus

interact with an environment composed by a state vector S, with s ∈ S. For each state, there

are available actions denoted a ∈ A. Given a state-action couple (s, a), there is an underlying
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outcome probability distribution, where P (rt|st, at), is the probability of obtaining the reward rt.

Therefore, the bellman equation (Bellman, 1956) for the Q-learning rule is of the form:

Q(st, at)← Q(st, at) + α(rt+1 + γmax
a

Q(st+1, a)−Q(st, at))

where α is the learning rate that controls the weight of new information, γ is the discount factor, rt

is the reward received when moving from state st to state st+1, and maxa Q(st+1) is the maximum

reward that can be expected in the next state. Q-learning became popular in human behavioral

research, notably to model bandit task decisions. It was declined under various forms (by using

different learning rates for different types of signal for instance), in order to account for a wide

range of phenomena such as optimistic bias (Lefebvre et al., 2017), confirmation bias (Palminteri

et al., 2017a), or even to account for social learning (Najar et al., 2020).

2.2.8 Action selection and the exploration-exploitation trade-off

The above learning rules provide a way to obtain estimates of action-state values (Watkins, 1989),

or only state values (Sutton and Barto, 1981; Williams, 1992; Sutton et al., 2000). However, forming

accurate value estimate requires a policy to sample the action-space efficiently. For this reason,

several decision rules have been conceived. They rely on parameters that will adjust the explo-

ration (sample new options) and exploitation (maximize the expected reward) trade-off.

We can distinguish three widely used decision rules:

• Argmax rule (Sutton and Barto, 2018): a function that deterministically selects the action

with the highest estimated value. By default, there is no exploration.

• ϵ-greedy rule (Sutton and Barto, 2018): a function that selects either the action with the

highest estimated value (with probability 1− ϵ) or a random action (with probability ϵ).

• Softmax rule (Luce, 2012): a function that stochastically selects actions. The probability of

an action increases with the relative value difference to other actions available in the action
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set. Formally, for a Q-learning model:

π(a) =
eβQ(s,a)∑

a′ ∈ A eβQ(s,a′)

with a′ being the alternative actions, A the action set,Q the state-action value function, and

β the inverse temperature. The inverse temperature indicates the degree of stochasticity.

When β = 1 values are unchanged, when β = 0 all actions become equally likely. Finally,

when β →∞, the function becomes deterministic and acts as an argmax rule.

2.2.9 Value-free models

In value-based RL models, agents usually maximize an action-value function. The underlying as-

sumption is that at an algorithmic level (see Box 2.2) individual assign values to isolated options in

order to compare them. However, some have argued that the value construct is not necessary to

describe plausible decision-making processes, and that a parsimonious principle would be not to

invoke value as a component of learning models. Several computational models do not integrate

a value function, among them the policy gradient models (e.g. Bennett et al., 2021), some connec-

tionist models (e.g. Suri et al., 2020), or habits’ models (e.g. Miller et al., 2019). However, we will

only describe the case of policy-gradient methods, because it is more in line with the RL models

(and especially actor-critic architectures) seen previously.

Policy gradient methods

Policy gradient methods rely upon optimizing parametrized policies with regards to the expected

return Recently, Benett et al. (2021) described a model where the agent interacts with the envi-

ronment by selecting actions according to a parameterized policy (Fig. 2.5), such that:

πθ(a) =
eθa∑

a′ ∈ A eθ′a

where a is the considered action, A is the action set, a′ is an alternative, and θ is the set of pa-
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rameters that adjust the policy toward a particular option. Hence, policy-gradient algorithms do

not store expected rewards. The parameters are most of the time to be thought of as representing

actions in terms of desirability.

Figure 2.5: Policy gradient learning. A policy-gradient algorithm selects an action at given a state st according to
a parameterized policy πθ . The set of parameters θ is updated via gradient descent following the obtention of the
reward rt+1. In contrast with value-based algorithms, there is no value-function per se.

These parameters are directly updated subsequently to the choice, that is after obtaining the reward

rt. Thus, considering the action a and the policy π with parameters θ:

∆θa =


α · [1− πθ(a)] · rt if a was chosen

−α · πθ(a) · rt otherwise

with α being the learning rate controlling the quantity of information that is taken into account to

update the parameter set θ. Please note that in this example, we chose to consider an environment

where the state is fixed, but some models integrate the state as an input variable (e.g. Baxter and

Bartlett, 1999).

This model shines because of its simplicity: the learning rate constitutes the only free parameter.

Furthermore, the absence of a value-function allows the avoidance of the intractability problem

that arises from complexity due to continuous states and actions. Indeed, since policy-gradient
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methods optimize an overall policy and not action-values, they can be applied without difficulty

to a continuous action space.
Box 2.3: The experience paradigm in humans

In most situations, the expected utility of an action is unknown, as decision variables are not described a priori
(Gigerenzer et al., 2005). Among humans and animals, it is frequent to make choices among options with
imperfectly known outcomes, which can only be learned from experience. In neuroscience and experimental
psychology, such situations are often translated using the multi-armed bandit task, in which subjects repeat-
edly choose among options with unknown expected-value, thus negotiating the tension between exploitation
and exploration (Sutton and Barto, 2018). Indeed, the multi- armed bandit paradigm has imposed itself as a
useful framework to study this trade-off, either theoretically (e.g. Whittle, 1988), or empirically (e.g. Daw
et al., 2006).

time

Thus, abstract cues which convey no information in particular are presented to individuals. Most of the time,
individuals are expected to find which options maximizes expected value among a given choice set. The learn-
ing curves thus represent the frequency with which subjects choose the most rewarding option, meaning that
they progressively reveal the underlying distribution of outcomes for a particular set of options. Furthermore,
investigating the generative processes underlying these behaviors requires various methods (Palminteri et al.,
2017b; Wilson and Collins, 2019). Manipulating the learning architecture and decision variables (e.g. num-
ber of options, quantity of information displayed in the feedback, gain or loss frames, etc) the experimenter
can expect to elicit different learning and decision mechanisms. Computational models (e.g. Q-learning;
Watkins,1989) are often often put in competition in order to account for these psychological processes. Model
comparison and falsification involves finding parameter values that best account for the behavioral data for a
given model. The estimated parameters can be used to further explore inter-individual differences, or simulate
new datasets under different hypotheses. Additionally, fMRI and electrophysiological methods can allow to
corroborate or falsify computational models, by assessing the degree of plausibility of the data under certain
model assumptions (Camerer et al., 2004b; Rustichini, 2009).
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2.3 Neural reinforcement learning

2.3.1 Value-based decision-making

What are the processes by which our brains adjudicate between two different options? Decision-

makerswho adhere to axiomatic rationality are assumed to behave as-if they compute and compare

utilities (Von Neumann and Morgenstern, 1944). Similarly, behaviorism and RL computational

models assume an associative strength between an option, a state, and a reward (Rescorla, 1972;

Sutton, 1988; Watkins, 1989) , which translates into a value function, allowing measures of subjec-

tive expected values. RL andmost utility models have in common to suggest that we assign a scalar

value to each option, and then select the one with the highest value, i.e. the two-step model of

decision-making. However, they where developed within different experimental paradigms (see

Box 2.3). But do we physically compute and compare subjective values? Does the as-if computa-

tion actually occurs in the brain? Economists have been historically reluctant to make ontological

commitments regarding value computation (Friedman, 1953). In a similar fashion, important be-

haviorists have traditionally limited their speculation to a behavioral input-output model, and

refrained to suppose mental entities (Skinner, 1956). Positing a valuation stage needs additional

empirical evidence, other than choice behavior. Consequently some scholars advocated for a novel

research program, grounded on the idea that decisions originate from a neural valuation process.

(Camerer et al., 2004b; Rustichini, 2009).

2.3.2 The prediction-error in monkeys

Historically, the quest for finding a neurobiological ground for decision-making models, marked a

decisive turning point with Wolfram Schultz. In a seminal paper (Schultz et al., 1997), he showed

with an electrophysiological setting that the activity of midbrain dopaminergic neurons encoded

the discrepancy between the actual reward and its prediction. As mentioned in the previous chap-

ter, the reward-prediction error (RPE) is a fundamental component of RL models. Functionally,
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it implements the update of previously acquired information by integrating new information, i.e.,

the differences between received and predicted rewards. It hence is conceived as the learning-

driving signal. Psychologically, it represents the surprise between one expected outcome and the

actual outcome (Rescorla, 1972). Schultz showed that such a surprise, when positive, provokes an

increase of activity (better than expected reward), and contrastingly, when negative (worse than

expected reward) induces a depression. Also, a correctly predicted reward elicits no response (pre-

diction error of zero) (Fig. 2.6). Translating those results to the conditioning paradigm language,

after learning, fruit juice (the unconditioned stimulus; US) was paired with a tone (the conditioned

stimulus; CS), such that the tone predicted the dopaminergic response. Interestingly, this pattern

of activity perfectly matched the idea that dopaminergic activity encoded the RPE, as it is compu-

tationnaly formulated in TD-learning models.

Thereafter, the subsequent literature used a similar experimental set up, inherited from the pio-

neering work of Herrnstein (1961). In it, monkeys are typically asked to choose between options

by keypress, or touching a screen. Variable amounts of juice allow to manipulate reward mag-

nitude to different options with different color codes (e.g. Platt and Glimcher, 1999). In this

paradigm, it has been for instance found that monkeys’s choices relied on a reward probability

estimated by sampling over the last few trials (Sugrue et al., 2004). Neural activity in response to

reward variations has been located in ventral midbrain areas (Fiorillo et al., 2003), and the corre-

spondence between dopaminergic neurons phasic activity and prediction-error has been further

established (e.g. Morris et al., 2004). Moreover, modulating this activity has been shown to affect

choices (Pessiglione et al., 2006). However, the relevance of the relationship between single cell

dopaminergic activity and prediction-error has been questioned. Indeed, some studies found that

this relation might only hold for positive prediction-errors (Bayer and Glimcher, 2005). More gen-

erally, dopamine signals might serve more than one function (e.g. the vigor in selecting an action

relies on dopamine) and are present in various brain areas (Niv and Schoenbaum, 2008).

.
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Figure 2.6: Raster plot showing how dopamine neurons encode prediction-error in classical conditioning. (A)
Dopamine neuron activity in three circumstances was studied by Schultz et al. (1997). In the top example, dopamin-
ergic neurons fire following an unexpected reward (R). In the middle example, the reward is predicted (CS), and the
reward (R) occurs . In conformity with reinforcement learning theoretical predictions, the activity is unchanged.
Finally, in the bottom case, neurons firing activity was reduced when a predicted reward predicted was omitted. (B)
Three RL models components are considered for each scenario: the reward r(t), the value-function V (t) and the
prediction-error δ(t). The yellow juice drop represents the reward (R), when the little red sun presents the condi-
tioned stimulus (CS), i.e. when the reward is predicted following learning. In the top example, the reward occurs
thus producing a positive prediction-error. In the middle example, after learning the association via the update of
V (t), the reward elicits a prediction-error of zero (the monkey is not surprised because the outcome is expected).
In the bottom example, when the reward is omitted, the prediction-error becomes negative. Original figure is from
Ludvig et al., 2011.

2.3.3 A neural common currency in humans

The relationship between changes in blood oxygenation of the brain and neural activity has been

assumed since the end of the 19th century (Huettel et al., 2004). At the end of the 20th century, fMRI

(Functional Magnetic Resonance Imaging) techniques were developing, and some studies started

to investigate brain functioning by means of BOLD (Blood-Oxygen-Level Dependent) contrast in

humans (Kwong et al., 1992).

In the decision-making field, most studies using fMRI involve a visual representation of a gambling
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task, where subjects are instructed to choose between pairs of options by keypress. During the

task, brain activity is monitored and thereafter correlated with various decision variables. FMRI

thus permitted to study the neural coding of decision variables (prediction-error, reward, proba-

bilities, etc.), and showed the prominent role of subcortical and cortical areas. Numerous studies

highlight the role of the striatum and portions of pre-frontal cortex (PFC) and orbitofrontal cortex

(OFC) in the coding of reward value (O’Doherty et al., 2004; Knutson et al., 2005; Daw and Doya,

2006; Tom et al., 2007a). Reward-prediction error signals for their part, are also frequently local-

ized in the striatum, although some traces are found in OFC and amygdala (O’Doherty et al., 2004;

Daw and Doya, 2006; Pessiglione et al., 2006; Yacubian et al., 2006). Distinguishing probability

of reward from expected gain, was not an easy task, as most of the studies find entangled neural

correlates for both variables (Delgado et al., 2005; Hsu et al., 2005; Knutson et al., 2005; Preuschoff

et al., 2006).

Following these empirical evidences, the hypothesis that the brain does indeedmake subjective ex-

pected value calculations was reinforced. This calculation is allegedly made via a set of sequential

and modular processes (Fodor, 1983), within a two-step architecture. Roughly, each subprocess

(e.g. valuation) is complete and isolated in a module and then passes on output information to

the next module (e.g. choice) sequentially. The valuation stage was identified in the ventromedial

prefrontal cortex and orbitofrontal cortex (vmPFC/OFC), parts of the striatum. The choice stage

for its part, was found to be implemented in lateral PFC and other parietal areas (Rangel et al.,

2008; Kable and Glimcher, 2009).

On this basis, the hypothesis of a neural common currency was formulated (Levy and Glimcher,

2012; Sescousse et al., 2013). More precisely, this hypothesis aimed at answering the following

question: How can a decision-maker choose between options that are fundamentally different in

nature? Utility theories, as well as RL models typically consider choices to be made as if the values

of the options have beenmapped to a single common scale. Conducting a meta-analysis using data

from numerous fMRI studies, Levy & Glimcher (2012) proposed that this common representation
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A

B

C

Figure 2.7: A valuation system for economic decisions. (A) A positive correlation between a neural value signal
and behaviorally measured economic value was found in the posterior vmPFC. (B) A common area vmPFC/OFC was
correlated with rewards of different natures, namely food and money. (C) A possible distributed circuit for value-
based decisions. Information from occipital (8) and subcortical structures (9, 10) are used to build a single common
value representation in prefrontal structures (1, 2, 3, 4). This unified value is then passed to motor cortical areas and
parietal areas to produce the choice (5, 6, 7). (1) vmPFC, (2) OFC, (3) DLPFC, (4) Insula, (5) Primary motor cortex
(M1), (6) Posterior parietal cortex, (7) frontal eye fields, (8) Visual cortex, (9) Amygdala, (10) Striatum. The original
figures are from Levy and Glimcher, 2012.

is located and dopaminergically driven in a subregion of the vmPFC and OFC (Fig. 2.7). Moreover,

they show that different kind of supposedly incommensurable rewards (food and money) trigger

vmPFC/OFC activations, that correlates with estimated subjective values. Other studies corrob-

orated this overlap of primary and secondary rewards representations (e.g. Delgado et al., 2011

).

Of note, this valuation system hypothesis is somewhat controversial. Indeed, value per se is often

difficult to disentangle from other variables, as value often correlates with outcome identity, or

higher-order cognitive phenomena such attention, arousal, salience, etc. (Maunsell, 2004; Heil-

bronner et al., 2011; Schoenbaum et al., 2011; Leathers and Olson, 2012; O’Doherty, 2014). In

addition, the choice and valuation stage may not be anatomically dissociable, as shared areas are

activated during both stages (Bartra et al., 2013). For these reasons, and among others, some schol-
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ars have argued that behavioral research should foster other approaches to decision-making than

value based (Suri et al., 2020; Hayden and Niv, 2021).

2.4 Summary

RL models are historically tied to animal learning and behaviorism (Thorndike, 1898; Skinner,

1938). Learning was conceived as the strengthening of association between stimuli (classical con-

ditioning) or between stimuli and actions (operant conditioning) through reinforcers (a reward/a

punishment). Behaviorism3, as psychology research program, advocated for a black box model

of cognitive processes, where psychological entities should be disregarded, and reduced to inputs

(stimuli), and outputs (behavior) (Box 2.1).

Later, computational models of classical conditioning emerged in an attempt to account for phe-

nomena contradicting previous theories (e.g. blocking effect) observed in animal learning (Rescorla,

1972). Progressively, the association between a stimuli and other stimuli or actions, were formal-

ized as a value function (Rescorla, 1972). A RL agent seeks to maximize its expected reward, by

optimizing a state-value function (Sutton and Barto, 1981, 1987; Sutton, 1988; Sutton and Barto,

1990), or a state-action value function(Watkins, 1989). However some models actively avoid value

functions in order to only focus on policy learning (e.g. policy gradient methods, see Bennett et al.,

2021), claiming that value computation is not a parsimonious assumption (Hayden and Niv, 2021).

In order to integrate new information and update the value function, an RL agent computes the

prediction-error, i.e. the different between the obtained outcome and the expected outcome. The

idea that the brain neurally implements such computation emerged when correlations between

model variables and dopaminergic activity were found in monkeys (Schultz et al., 1997). Value

based decision-making and RL thus started to be investigated in humans (Camerer et al., 2004b;

Rangel et al., 2008; Rustichini, 2009) and the multi-armed bandit task became a standard paradigm
3Aside from particular behaviorists such as Tolman (1948)
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to study it (Box. 2.3). In this paradigm, subjects have to rely on experience to learn the expected

value of options (like in non-human animals), where contingencies (probabilities and outcomes)

are not provided a priori.

Several scholars then turned proponents of the neural common currency hypothesis (Rangel et al.,

2008; Levy and Glimcher, 2012; Sescousse et al., 2013). It posits that items of different natures

can be compared through their mapping on a single common scale, and that this process is neu-

rally represented. The brain is thought to represent the relevant decision variables, to compute

value signals related to the variables at hand, and thereafter select the action possibility with

the strongest value signal. This two-step model of value based decision-making has been tested

through imagery methods. Indeed, various fMRI studies, identified a valuation circuit supposedly

implemented in the orbitofrontal cortex, prefrontal cortex, striatum, and sometimes other cortical

areas (e.g. Knutson et al., 2005; Pessiglione et al., 2006).

Interestingly, subjective value as conceived in psychology, has undergone an evolution similar

to the concept of utility in economics. At first ontological speculations were avoided, but with

the neuroscientific revolution the question of its physical implementation played an increasingly

important role.
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There are other reasons, too, for the incompleteness of logi-

cal contact that consistently characterizes paradigm debates.

For example, since no paradigm ever solves all the problems it

defines and since no two paradigms leave all the same prob-

lems unsolved, paradigm debates always involve the question:

Which problems is it more significant to have solved?

Thomas Kuhn, The Structure of Scientific Revolutions, 1962

3
The description-experience gap

3.1 Evidence for a behavioral gap

3.1.1 Two lines of research

In the previous chapters we have seen two experimental research paradigms, that emerged con-

currently, and led to different methods for studying decision-making as well as subjective valua-

tion. In tasks involving description-based choices, individuals are presented with gambles, either

described textually or graphically (e.g. pie-charts). Through the representation of the cue, indi-

viduals are directly provided with decision variables (probabilities, outcomes) prior to the actual
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choice, i.e. decision under risk. In tasks involving experience-based choices, cues are abstract

and are not supposed to convey any semantic meaning. They can take the form of symbols (e.g.

a star) or day-to-day objects (e.g. a door). No information is given a priori, hence individuals

must infer the expected value of each symbol by experience, i.e. by remembering past outcomes.

In addition, they sometimes have to infer the underlying structure of the experiment, such as

relation between states. Those decisions are considered under uncertainty (Knight, 1921) as out-

come probability distributions are completely unknown. Although the paradigms are quite dif-

ferent in terms the models typically fitted (e.g. utility models against RL models) or theoretical

assumptions regarding individuals’ cognition – that reflects on experimental conditions – (e.g.

quasi-full information against complete uncertainty), they share enough features to allow com-

parisons 1. Indeed, the multi-armed bandit metaphor (see Box 2.3) is rather close to the gambling

metaphor of decision-making (see Box 1.4), and some modeling assumptions are common to both

paradigms (e.g. value functions implied by the maximization of expected-value hypothesis). Thus,

the description-experience dichotomy can be conceptualized as a continuum of uncertainty, rather

than two binary categories (Hertwig and Erev, 2009b, Fig. 3.1).

3.1.2 First evidence

In the beginning of the 2000s, three studies pioneered the investigations of behavioral discrep-

ancies between description- and experience-based choices (Barron and Erev, 2003b; Weber et al.,

2004; Hertwig et al., 2004).

Barron and Erev (2003a) were among the first to re-parameterize description-based tasks to bring

them closer to experience-based tasks 2. They did that by showing the outcome subsequent to the

choice, and by repeating decision problems more than once. Their goal was to test the persistence
1Luckily for us, these competing paradigms seemingly avoid being hit by the epistemological problem of incom-

mensurability (Feyerabend et al., 1993; Kuhn, 2021).
2Erev (1998) had previously built bridges between the description and experience paradigm by fitting RL models to

choices made in a game theory setting. Thaler, Tversky, Kahneman, and Schwartz (1997) and Fox and Tversky (1998)
presented generalizations of prospect theory where agents have to rely on past experience. Even before Chu & Chu
(1990) showed that preference reversals (Slovic and Lichtenstein, 1971) could be eliminated by presenting the outcome
feedback subsequently to the choice
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Risk
Probabilities and 
outcomes are known 
a priori

Ambiguity
Some probabilities and 
outcomes are known 
a priori

Full Uncertainty
Probabilities and outcomes
 are unknown a priori 
(they are learnt a posteriori)

Certainty
Deterministic 
outcomes known 
a priori

Decision from 
description

Decision from 
experience

$5  $5$5  $5 $5

Risk+feedback
Probabilities and outcomes
 are known a priori 
and feedback is shown

$5

?

Figure 3.1: The continuum of uncertainty with regards to the description and experience paradigms.

of four common decision patterns predicted by prospect theory and observed in description-based

tasks, namely, loss aversion, the certainty effect, the reflection effect, and the inverse s-shaped

probability weighting function (Kahneman and Tversky, 1972). Aside from loss aversion, devia-

tions from prospect theory were observed in all patterns.

First, the certainty effect was reversed. Initially, the certainty effect predicts that the riskier of two

prospects is preferred if the probability of winning in both prospects is multiplied by a common

ratio. This ‘common ratio’ effect constitutes a violation of expected utility theory’s (Allais, 1953)

and was demonstrated by Kahneman and Tversky (1979) with the following gamble:

Certainty effect

(L1) 3 with certainty
(L2) 4 with probability 0.8; 0 otherwise

Most of the subjects here preferred the safe option (L1). However, dividing each lottery by 4,

which gives a probability of 0.25 for L1, and probability of 0.2 for L2, allowed to reverse the pref-

erence toward L2. Interestingly Barron and Erev noted that adding feedback led them to obtain an
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opposite pattern (see also Jessup et al., 2008): subject were risk-seeking in the first gamble (thus

choosing L2), whereas multiplying by a ratio (dividing) in the second gamble led to an increase of

risk-averse choices (L1).

Following the same procedure, i.e. presenting classical gambles from the literature but in an ex-

periential learning setting, Barron and Erev showed that subjects exhibited two other departures

from classically observed patterns in description-based choices. The reflection effect, that consists

in being risk-seeking in losses and risk-averse in gains, was present but in an opposite configu-

ration. Subject tended to be more risk-seeking in gains than in losses. Similarly, the traditional

overweighting of rare events observed in the inverse S-shaped probability weighting function gave

way to an underweighting of rare events.

Weber et al. (2004), compared risk preferences across humans and animal. They noted that be-

cause animals are foreign to human symbolic and semantic representation of lotteries, all their

decisions when foraging information are de facto decisions from experience. In order to mimic

animal foraging tasks in humans, they used a sampling paradigm (Fig. 3.2). Essentially, it consists

in ’foraging’ the information before making a choice, by letting the subject sample each option

(i.e. they decide how long to explore each option underlying outcome distribution) prior to the

actual choice. They reported that when placed in an experiential sampling paradigm, humans and

animals had similar risk attitudes, i.e. they tend to be more seeking in gains than prospect theory

predicts.

Following Weber et al., Hertwig et. al (2004) investigated which properties of decision from ex-

perience caused the underweighting (instead of the traditional overweighting) of rare events. The

two candidate properties were (i) the repeated decisions design (ii) the direct experience (or not) of

the outcome subsequently to the choice. To disentangle those two properties, they mobilized the

sampling paradigm from Weber et al. If underweighting of rare events is caused by repeated de-

cisions, then decision by sampling should not display this bias. If it is caused by direct experience
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incomplete complete

Figure 3.2: Different types of outcome presentation in experience. The sampling paradigm (leftmost) consists for
the subject in a sampling phase, where he is able to explore options’ possible outcomes before the actual choice. In
the partial-feedback paradigm (middle), only the chosen option’s outcome is shown subsequently to the choice. In
the complete-feedback paradigm (rightmost), both options’ outcomes are shown subsequently to choice. The figure
is adapted from Hertwig and Erev, 2009b; Wulff et al., 2018.

of the outcome however, then the sampling paradigm should result in underweighting.

First they contrasted repeated decisions in experience and in description domain. They observed

that in conformity with prospect theory predictions, subject overweight rare events in the de-

scription domain, while they are underweighted in experience. The ’repeated decisions’ hypoth-

esis being discarded, they conclude that the cause for such behavioral differences must lie in the

outcome presentation. Finally, they identify two factors for the underweighting of rare events

phenomenon: sampling error (i.e. subjects rely on small samples, such that the options seems

less variable that they actually are) and recency (i.e. recently sampled outcomes are given greater

weight than earlier sampled ones).
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3.1.3 Testing the robustness of the description-experience gap

Strikingly, experience-based decisions seem to differ systematically from description-based deci-

sions. In the experience domain, the fourfold pattern of risk attitudes has been found to held, yet

in opposite directions. This phenomenon where traditional patterns of description-based decision

are reversed in an experiential learning setting is known as the description-experience gap (Hertwig

and Erev, 2009a).

A meta-analysis conducted by Madan et al. (2014; 2019) initiated the study of the gap via cross-

species comparisons. They compared risk-preferences among pigeons and humans, varying from

described to experiential choices. In experience, both species presented an ”extreme-outcome

bias”, i.e. both extremities of the probability distribution of experienced values were overweighted.

Also, this extreme-outcome rule leads to a contextual and asymmetric treatment of gains and

losses: relative gains elicit more risk-seeking attitudes. Again, experience-based choices showed

an inverse reflection effect. Interestingly, when asked through a self-reported memory test, sub-

jects recalled more occurrences of extreme outcomes than equally encountered non-extreme out-

comes. Consequently, they suggest that this extreme-outcome rule (and thus partly the description-

experience gap) is underpinned by specific cognitive processes, and in particular memory pro-

cesses.

In order to test which model could account for this gap and its underlying decision processes.

Model competitions were organized. The Technion competition (Erev et al., 2010) consisted in

predicting risky choices within the description, partial feedback, complete feedback, and sampling

paradigms (Fig. 3.2). A broad range of theoretical approaches were represented (e.g. heuristics,

prospect theory, regression models, etc.). In the description paradigm, the winning model was

a stochastic version of cumulative prospect theory (Tversky and Kahneman, 1992a). In the sam-

pling paradigm and feedback paradigm however, winning models were respectively the ensemble
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model and the ACT-R model. The former is a model combining several decision rules, such as the

natural-mean heuristic (Hertwig and Pleskac, 2008) or the priority heuristic (Brandstätter et al.,

2006). The latter is a model that implement a declarative memory system which can account for

primacy and recency effects (Lovett et al., 1999). Consequently, models that capture behavior in

description-based settings assume very different mechanisms than models capturing behavior in

experience-based settings. This reinforces the idea that the description-experience gap is not only

due to a difference in experimental paradigms but to different underlying cognitive processes.

Finally, Wulff et al. (2018) recently conducted an extensive meta-analysis in order to assess the

robustness of the gap and identify its major determinants (Fig. 3.3).

They found that across the literature, identical decision problems presented in an experience- or

description-based manners were leading to different preferences (Fig. 3.3A). They note that it is

particularly true for decision problems that involve a risky against a safe option, where the gap is

the most important.

The hypothesis stating that the gap (and in particular the underweighting of rare events) is partly

caused by individuals relying on small samples (Barron and Erev, 2003b; Hertwig et al., 2004),

is corroborated, as small samples distort experience-based representations of probabilities (Fig.

3.3B). Nevertheless, small sample reliance and thus sampling error, is not a sufficient explanation,

as the gap persists even when experience and (objective) described frequencies converge.

In the sampling paradigm, the recency effect was replicated (Fig. 3.3C), yet for the effect to hold,

the subject needs to have control over the information foraging process, i.e. it has to be its own

decision to stop the exploration of possible outcomes.
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A C

B

Figure 3.3: Ameta-analysis of the description-experience gap. (A)The y-axis lists the 33 data sets that were analyzed.
The x-axis quantifies the difference between the description and experience conditions. Each task had a description
condition and an analogous experience condition. The gapwas operationalized in twoways: either by quantifying the
deviation from cumulative prospect theory predictions (left pane), either by merely considering discrepancy between
choice proportions in the description and the experience condition (right pane). Error bars represent the standard
error of the mean. (B) The x-axis represents the objective probability while the y-axis represents the experienced
probabilities. Because of sampling error, experienced probabilities are distorded. Notably, the distribution of experi-
enced relative frequencies is more polarized toward 0 and 1. The grey dots in the background are the individual trials.
The circles and lines in the foreground (in blue, gray, or orange) represent the median experienced probabilities for
each unique true probability and the respective interquartile range. The bar graphs at the top and on the right show
the marginal distribution of the objective probabilities and of the experienced relative frequencies, respectively. (C)
Analysis of the effect of recency in the sampling paradigm. In the autonomous (upper panel) and matched data sets
(autonomous with pseudorandom sampling; middle panel), subjects sampled the options as much as they wanted. A
strong recency effect was observed. In the regulated data sets (lower panel), subjects were forced to sample a certain
N , and no recency effect occurred. Blue, beige, and orange points represent the results obtained for a given data
set using three different measures (within-option, across-option, and mirror-image method). Diamonds and their
widths represent the estimates and standard errors from a random effects meta-analysis. The figure is adapted from
Wulff et al., 2018.
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3.2 Objectives of the present work

3.2.1 First study

How shouldwe investigate cognition, and consequently, decision-making? Cognitive phenomenon

can be understood at different degrees of explanation (Marr and Poggio, 1976). Some academics

claim that cognitive processes are best investigated and understood at a certain level, such as be-

havioral level, neural network level in the brain, etc. Others argue for a combination of top-down

and bottom-up approaches, with emphasis on a particular level with regards to specific objects

or questions (e.g. on interpreting neural data and brain functioning within behavioral paradigms,

see Niv, 2021).

Non-invasive approaches for studying the human brain only allow macroscopic assessments of

brain activity that aggregate thousands of cells (Glover, 2011). In contrast, animal models allow

invasive recordings that give access to brain activity at the cellular and circuit levels. Taking

advantage of the brain homology observed between humans and monkeys, decision under uncer-

tainty and its neural mechanisms has often been studied in the latter (e.g. Hayden et al., 2011;

De Petrillo et al., 2015). Prior studies showed that many biases replicate in monkeys, for instance

ambiguity-aversion (Hayden et al., 2010; Rosati and Hare, 2011), or loss and framing effect (Chen

et al., 2006; Krupenye et al., 2015). However, monkeys are by default unable to understand the sym-

bolic language that allows humans to apprehend visual lotteries. As a result, they are compelled

to learn a new symbolic system by reinforcement. Considering that the description-experience gap

might be the consequence of different cognitive processes, ignoring this gap in monkeys could

hinder our understanding of data coming from animal electrophysiology.

Thus, in a first study (chapter 4), we will assess to what extent the description-experience gap con-

stitutes an epistemological challenge for decision-making research, in the sense that it could affect
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the exchange of knowledge (top-down and bottom-up) between different levels of explanation, and

therefore the building of plausible models of decision under uncertainty.

3.2.2 Second study

If the description-experience gap is more than a laboratory artefact, and originates from different

cognitive processes or representations, does it have consequences for the common currency hy-

pothesis? The common currency hypothesis (Rangel et al., 2008; Levy and Glimcher, 2012) posits

that neural value representations are encoded in the brain as-if items’ attributes are mapped into

a single scale; which then allows comparison of options that are different in nature. However,

as seen previously, studies of decision-making (from which common currency arose and is con-

ceptualized in) often exclusively consider those two representational systems (experiential and

symbolic) separately. Either values are external and conveyed through symbolic representations

(pie-charts/text) or they are learnt through experience (abstract cues with no particular meaning

or information). It is thus unclear whether experiential values that suppose internal representa-

tions can be further compared to values represented in the environment (Fig. 3.4).

To what extent does buying a lottery ticket (and associated probabilities of winning described in

the back) involves a comparison of experiential against symbolic values? Does a choice between

a food product we already experienced and a food product that displays an objective rating (e.g.,

nutriscore) involves a comparison between experiential and symbolic values? Are those two types

of value even commensurable?

Prior studies have designed task with hybrid choices, in which descriptive and experiential infor-

mation is combined (e.g., Erev et al., 2008;Erev et al., 2017;Lejarraga andMüller-Trede, 2017). How-

ever, few studies have included hybrid choices presenting experiential options (where expected

value is learned by reinforcement) against symbolic options (which expected value is described

and given prior to the choice).
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Figure 3.4: RL model with descriptions of objective probabilities and payoffs provided to the individual. Classically,
an RL model selects actions in an environment. From the reward subsequent to the choice is computed a prediction
error δ, which implements the difference between the obtained outcome and the expected outcome. It learns by
updating its option-value function with the prediction error δ. Let’s suppose an agent learned subjective values of
uncertain options. Now, in a next phase, the previously learned options are presented against explicit options, which
objective probabilities and payoffs a given a priori. Are the internal representations of uncertain options’ values
comparable to the explicitly described option values?

In monkeys, Heilbronner and Hayden (2016) presented experiential options against symbolic op-

tions and showed a preference for the former (at equal probabilities). In addition, they showed that

as humans, monkeys are more risk-seeking in experience, suggesting that the gap also exists in

monkeys. However, they only included five experienced options, which 3 are in the loss domain.

This asymmetry does not allow an accurate assessment of the commensurability of the two types

of value. In addition, it can be argued that the described options are of different nature to the ones

in humans, as monkeys have to learn the symbolic system pertaining probabilities and outcome

by experience.

In addition, FitzGerald et al. (2010) have looked for potential differential representations of ex-

periential against symbolic values in humans. Activity in the vmPFC and OFC showed a positive

response to learned value, replicating the previous literature for this specific valuation system.
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On the other hand, neural substrates underpinning described values computation are not clearly

highlighted, yet, the authors found activations in the bilateral ventral putamen and cerebellum.

However, this study only includes three experiential option, against nine symbolic options. Also,

because it is an fMRI study, the sample size is low. These two limitations prevent from assessing

experiential option values precisely.

Thus, in a second study (chapter 5), we devised a series of experiments, which included almost

800 subjects in total. We aimed to accurately assess the degree of commensurability of experiential

and symbolic values in a large population sample, while controlling for several biases.
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The experimental investigation of decision-making in humans relies on
two distinct types of paradigms, involving either description- or experi-
ence-based choices. In description-based paradigms, decision variables
(i.e. payoffs and probabilities) are explicitly communicated by means of
symbols. In experience-based paradigms decision variables are learnt from
trial-by-trial feedback. In the decision-making literature, ‘description–
experience gap’ refers to the fact that different biases are observed in the
two experimental paradigms. Remarkably, well-documented biases of
description-based choices, such as under-weighting of rare events and loss
aversion, do not apply to experience-based decisions. Here, we argue that
the description–experience gap represents a major challenge, not only to
current decision theories, but also to the neuroeconomics research framework,
which relies heavily on the translation of neurophysiological findings
between human and non-human primate research. In fact, most non-
human primate neurophysiological research relies on behavioural designs
that share features of both description- and experience-based choices. As a
consequence, it is unclear whether the neural mechanisms built from non-
human primate electrophysiology should be linked to description-based or
experience-based decision-making processes. The picture is further compli-
cated by additional methodological gaps between human and non-human
primate neuroscience research. After analysing these methodological
challenges, we conclude proposing new lines of research to address them.

This article is part of the theme issue ‘Existence and prevalence of
economic behaviours among non-human primates’.

1. The neuroeconomic research programme
The expected utility model was established as the standard normative model
of decision-making under risk [1,2]. Integrating Bernoulli’s intuition about
the curvature of the utility function and probability theories, von Neumann
and Morgenstern demonstrated that choices based on the expected utility
(i.e. the product between the utility of an outcome and its probability) satisfies
four basic axioms of rationality (completeness, transitivity, continuity and
independence). Historically, the neoclassical economics research programme dis-
regarded the study of the internal processes governing economic behaviours.
Keynes’ animal spirits [3] were considered unmeasurable, and economic
theory was built on the assumption that the human mind as well the brain
were ultimately black boxes. The ‘as-if’ hypothesis [4] illustrates this position
by endorsing an instrumentalist epistemology: theory predictive power prevails
on the realism of its initial assumptions. Accordingly, it was considered accepta-
ble to rely on unrealistic assumptions regarding the unbounded cognitive
capacities or perfect knowledge of economic agents, as far as the predictions
were sufficiently accurate.

© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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However, with the accumulation of behavioural evidence
against the standard normative expected utility model,
it soon appeared that it had to be profoundly amended to
successfully account for actual decisions under risk [5,6]. Posi-
tive, descriptive, models of decision-making under risk that
integrate insights from psychology, such as the notion of
bounded rationality (i.e. humans display limited compu-
tational capacities), heuristics (taking computational shortcuts
to make decisions) and biases (systematically distorted rep-
resentations of behavioural variables) were then proposed
and formalized [7–9]. Among the descriptive theories of
decision under risk and uncertainty, ‘prospect theory’ (PT)
had a strong empirical ground and stood out [8,10]. PT postu-
lates that expected utility is calculated relative to a reference
point (the frame), an asymmetric treatment of gains and
losses (loss aversion), as well as a subjective weighting of prob-
abilities ( probability distortion). PT successfully explained
known paradoxes (such as the Allais’s paradoxes) and new
ones (e.g. the Asian disease paradox, as well as a certain
number of ‘real life’ irrational behaviours [11,12]).

However, despite these successes, some aspects of the
descriptive approach, in general, and PT, in particular,
remained unsatisfactory. First, it remained difficult to ulti-
mately arbitrate between competing descriptive theories
solely based on behavioural data. For instance, alternative
behavioural theories have been proposed (such as rank-depen-
dent utility, regret and disappointment theories; see [13] for a
review) that make overlapping predictions with PT, making
them hard to disentangle. Second, while making accurate
predictions, PT, and other descriptive theories, do not specify
which are the actual cognitive operations and how they are
implemented by the brain. In terms of the Marrian analysis
of modelling, PT (as other descriptive theories) is situated at
the computational level that specifies which is the goal of the
agent (in this case:maximizing a subjective utility that includes
reference point dependence, loss aversion and probability
deformation), but is silent concerning the algorithmic (i.e.
what are the operations involved in the manipulation of
decision variables) and implementational levels (i.e. how these
operations are physically embodied and realized) [14].

A couple of decades later the time was ripe for a group of
scholars of diverse origins to seek in neuroscientific data the
way to overcome the limitations of descriptive theories,
developed by psychologists and behavioural economists.
This was facilitated by the rapid development of non-inva-
sive neuroimaging techniques in humans (most notably
functional magnetic resonance imaging: fMRI [15–17]) and
improvement of single-unit electrophysiological record-
ings in monkeys [18,19]. The hope was (and still is) that,
taking advantage of neuroscientific methods and concepts,
neuroeconomics (as this raising field was named), would
be able to address the epistemological issues of economic
theories highlighted above.

Concerning adjudicating on competing theories (our first
issue), by opening the brain ‘black box’ functional neuroima-
ging studies would provide an additional crucial observable
measure—blood oxygen level dependent signal (BOLD: an
aggregate and indirect measure of neural electrical activity),
to compare, falsify and ultimately refine behavioural models.
We define this approach as the weak neuroeconomic agenda, as
it does not involve rewriting economic descriptive theories
[20–22]. Coming back to our example, while making similar
behavioural predictions in respect of preferences under risk,

different theories postulate different utility functions that can
be searched in the brain [23–25]. Assuming one knows
where to look for utility representation in the brain,1 it
would be, in principle, possible to assess which model better
predicts its activity (a sort of neural model comparison: see
[29]). Beyond comparing different theories, the neural activity
could in principle help refining a theory by fixing some of its
parameters. For instance, in many circumstances, PT is silent
about how the reference point should be set [30]. Assuming
one knows where to look for positive (gain) and negative
(loss) utility representations in the brain, in some cases the
reference point could be inferred comparing the profile of
activity of the ‘gains’ and ‘losses’ areas2 [25,33].

Concerning building new theories (second issue), accepting
the fundamental ontological tenet that (economic) decisions
ultimately stem from neural activity in the brain (which is a
standard materialistic and monistic solution to the mind-
body problem, see [34]), entails that neuroscientific methods
should provide the conceptual and methodological tools
necessary to develop new, neurobiologically grounded, neural
models encompassing the algorithmic and implementational
levels. By contrast with the previous approach, we define this
approach as the strong neuroeconomic agenda, as it involves
rewriting economic theories in neurobiological terms. By inte-
grating biological constraints and cost functions, these
hypothetical neurobiologically grounded economic models
have the potential of explaining why human decision-
making presents certain biases from a biologically (not
logically or statistically) normative perspective [35,36].

The methodological requirements of the two main
neuroeconomics agenda are not quite the same. The weak neu-
roeconomic agendacan, in principle, be fulfilled byexperiments
relying on aggregate and indirect measures of the neural
activity, such as the BOLD signal recorded by fMRI scanners
in areas encoding subjective values. Furthermore, since the
goal is arbitrating between different behavioural theories of
decision-making developed by psychologists and economists,
the experiments belonging to this research agenda should be
preferentially (if not exclusively) performed in humans.

On the other side, as neural models are, ultimately, models
of which information is encoded in neurons and how neurons
are connected (networks), the strong neuroeconomic agenda
research programme cannot be pursued only relying on
fMRI neural signals.3 In fact, BOLD signal, at its best resolution,
aggregates over thousands of neurons [37–39]. Furthermore, it
is still unclear towhich extent it reflects presynaptic or postsyn-
aptic activity (probably a mixture of both) [39,40]. Such neural
models should eventually be validated based on the recording
of single-cell activities, which is, for obvious ethical reasons,
nearly impossible in humans.4 This is why neuroeconomics
research, from its very inception, strongly relies on electro-
physiological research on animal models, which have been
employed in the study of neural mechanisms and cognition
for almost 80 years [42]. Monkeys (especially rhesus monkey:
Macaca mulatta), are particularly popular models, because
they present a wide behavioural repertoire and high degree
of neuro-anatomical homology with humans, especially con-
cerning the prefrontal cortices that underpin decision-making
[43].

In figure 1, we represent what a prototypical workflow
should look like to combine human and monkey data to deli-
ver a neural model of decision-making. Of note, we describe
it from an abstract perspective of theory-building, but in
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reality, its different steps can occur simultaneously (or in
reverse order), and in very distant laboratories. Once
identified as a behavioural process of interest (e.g. decision-
making under uncertainty), a behavioural protocol is designed
(typically, a series of choice problems involving different
amounts of rewards and probabilities) and administered to
both humans and monkeys. If the behaviour is comparable
across species (meaning that the monkey represents a valid
experimental model of human behaviour5), functional imaging
in humans can then be deployed to identify neural targets
encoding macroscopic variables (e.g. probabilities, outcomes)
that are later used to guide the selection of the areas where
neurons will be recorded inmonkeys. A desirable intermediate
step, to reinforce the functional correspondence between
human and monkey brain activations, would be to also
deploy fMRI in monkeys [45]. Similarly, in some neurologic
and psychiatric diseases, intra-cranial neural activity can also
be recorded in humans [41]. Finally, all these data can then
be combined together to propose and validate a neurobiologi-
cally plausible model of the behavioural process of interest.
Thereafter, the proposed model should be validated using
lesions and assessing its generalizability. Methods such as
trans-cranial magnetic stimulation and brain lesions can be
used to test the alleged causal relationship between neural cor-
relates and behavioural processes [46–48]. The model’s ability
to generalize can be assessed by generating predictions in
tasks involving different decision problems and behavioural
processes (out-of-sample validation).

A crucial step in this workflow is checking that humans and
monkeys display the same behavioural processes and biases as a
result of a true homology. This is something notoriously tricky
to assess, because several, to some extent unavoidable, meth-
odological differences exist between human and non-human
primate research.

The foundational experimental paradigm of behavioural
decision-making research consists in making choices between
‘lotteries’ or ‘gambles’, i.e. options associated with known or
unknown probabilities of obtaining different outcomes [2,5].
According to the gambling metaphor of individual choice
[49], lotteries are believed to be prototypical of real-life
decisions [50]. Outcomes and their probabilities are described
to participants, who often (especially in the first generation of
behavioural economics studies) make only one or very few
decisions, without being informed about the outcome of
their choices (in general to purposely prevent learning pro-
cesses from influencing decision-making [51]). On the other
side, monkey electrophysiological research adopts very differ-
ent methodological standards. For various reasons (including
ethical ones), monkey studies are limited in terms of sample
size, and consequently, the number of observations per subject
is greatly increased in order to increase statistical power and
reduce measurement noise. In fact, behavioural tasks in mon-
keys display a greater number of trials per subject, collected
on a sample size of often less than five subjects (e.g. [52,53]).
Both parameters (sample size and number of trials) are
roughly a couple of orders of magnitude different compared

decision process of interest

monkey

behavioural
protocol

human
behaviour

monkey
behaviour

functional
imaging

single unit
recording

neural model

identify targets

human
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funff ctional
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Figure 1. Prototypical workflow combining human (purple) and monkey (green) data to pursue the strong neuroeconomic agenda. Dotted lines designate optional
steps. (Online version in colour.)
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to what is common practice in behavioural economics (e.g.
[54,55]) (figure 2a). Interestingly, fMRI studies of decision-
making present experimental parameters somehow in-
between those used in monkeys and human studies: they
usually involve hundreds of trials and also sample sizes of
about 20–40 subjects (see two notable examples in neuroeco-
nomics: [25,56]). Assuming that decision-making possesses
ergodicity (i.e. the behaviour averaged across trials is the
same as the behaviour averaged across subjects), different
ratio trial/participants per se should not present a big chal-
lenge to compare results from human and monkey studies
(but note that ergodicity does not seem to be granted for
psychological processes, see [57]). However, in addition to
these quantitative differences, in monkey studies, an outcome
(usually a primary reward) is provided on a trial-by-trial basis.
This is because a monkey would simply stop doing the
experiment in the absence of extrinsic motivation. Thus, in vir-
tually all cases monkey experiments include a reinforcement
learning component, where actions are associated with past
outcomes. This is true even when the paradigm involves
establishing a symbolic system to communicate outcomes
and probabilities. In fact, in the absence of a shared language
or semantic system to communicate, monkeys are compel-
led to learn any representational system by trial-and-error
from feedback.

In the present article, we argue that the above-mentioned
differences do not only present a technical issue, but also a
major epistemological challenge for the (strong) neuroeconomic
agenda. We detail why below.

2. The experience–description gap
As mentioned before, foundational contributions to behav-
ioural decision-making research were made through the use
of explicitly described gambles. Several representations have
been used to convey outcome values and probabilities, includ-
ing textual and numerical descriptions (e.g. [5,8,54]), later
replaced by visual cues such as pie-charts (e.g. [25,58]). In
these paradigms, the information pertaining to the decision-
relevant variables is processed by verbal and mental calcu-
lation systems and relies upon some degree of semantic
knowledge to decode the meaning of the symbols used. In
addition to that, decision problems were usually presented
only once and, in case multiple decision problems were
used, the final outcome (i.e. the realization of the lottery)
was usually not displayed on a trial-by-trial basis (figure 2b).

However, relatively few situations in real life match the
characteristics of the pure description-based paradigms, namely
complete and explicit information about outcome values and
probabilities. In fact, in many circumstances, it seems rather
prudent to assume that information about outcome values
and probabilities are shaped by past encounters of the same
decision problem. Experimentally, this configuration is often
translated into multi-armed bandit problems (starting with
Thompson [59], but see [60] for a review), where the decision-
maker faces abstract cues of unknown value and has to figure
by trial-and-error the value of the options. Computationally,
behaviour in multi-armed bandit problems is generally well-
captured by associative or reinforcement learning processes

description description + experience

no. trials

experience

Hertwig et al. [55]

Wu & Gonzalez [54]

De Martino et al. [25]

Pessiglione et al. [56]

Fiorillo et al. [53]
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Figure 2. Methodological differences between description, experience and description–experience studies. (a) Sample size and number of trials listed in two elec-
trophysiological studies [52,53], two human fMRI studies [25,56] and two human behavioural studies [54,55]. (b) Successive screens of a trial in the different
behavioural decision-making paradigms. In pure ’description’ paradigms, decision variables are explicitly described and no feedback is provided. In pure ’experience’
paradigms, decision variables are hidden and feedback is provided on a trial-by-trial basis. In the ‘description plus experience’ paradigms, decision variables are
explicitly described and feedback is provided on a trial-by-trial basis. (Online version in colour.)
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[61]. In the early 2000s, a line of enquiry arose where researcher
translated the typical decision problems used in behavioural
economics (i.e. involving choices between a safe and a risky
prospect in the gain and loss domain6) into experience-based
paradigms [55,63,64] (figure 2b). Systematic comparisons
between these two decision-making modes revealed the
existence of robust description–experience gaps regarding risk
preferences in humans [65–67] . More precisely, probability
weighting functions eventually show opposite deformations
when comparing description-based and experience-based
choices (figure 3, box 1). In particular, most of the tenets of PT
do not seem to hold in experience-based choices [8]. While
traditionally, in the description domain, the occurrence of rare
events is overestimated (possibility effect) and the occurrence
of frequent events is underestimated, experience-based
decisions tend to show the opposite biases: an effect that is
only partially explained by incomplete sampling [55,63,64,66].

In description-based choices, a behavioural hallmark of
loss aversion (overweighting of negative outcomes) is the reflec-
tion effect, where subjects are risk averse in the gain domain and
risk seeking in the loss domain. The opposite pattern has been
repeatedly found in the experience-based decisions [67]. This
observationmay be explained by biases in the learning process,
such as remembering preferentially extreme outcomes or inte-
grating preferentially better-than-expected outcomes [72,77].
Finally, a smaller subset of studies investigated a hybrid situ-
ation where decision problems are fully described, choices
are repeated and followed by a trial-by-trial feedback. These

‘description plus experience’ paradigms showed that probability
distortions compatible with prospect theory are initially pre-
sent, but corrected by the presence of feedback [78,79]. To
summarize, the whole spectrum of decision-making under
uncertainty in humans is far from being fully captured by
PT’s loss aversion and subjective probability deformation.
Specifically, different descriptive models seem to apply as a
function of how outcome and probability information is con-
veyed. In what remains of the paper, we illustrate why we
believe that this feature seriously challenges leveraging on
neural and behavioural data in monkeys to build a neural
model of decision-making under uncertainty.

3. Decision under risk in monkeys
In this section, we try to address the question of whether mon-
keys are a good experimental model for human decision-
making under uncertainty. We will focus this survey on
rhesus monkey (Macaca mulatta) results because most electro-
physiological studies are performed in this species (but see
[44] for a more detailed review including other primates).
Askingwhethermonkeys are a good experimentalmodel trans-
lates into asking whether in the laboratory setting their
behaviour displays the distinctive features and biases observed
in humans.We stress again that the comparison is complicated
by the fact that pure description-based paradigms cannot exist
in monkey studies because of the lack of language. In fact, in
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Figure 3. (a) Illustration of the nonlinear transformation of probabilities in description (left panel) and experience (right panel). In the description domain, sub-
jective probability is reflected by a probability weighting function (here denoted π) following an inverse S-shape (i.e. low probabilities are overweighted while high
probabilities are underweighted). This tendency is reversed when it comes to the experience domain, where the curve follows an S-shape. (b) Illustration of the
classical linear utility function in the description domain (left panel) and the update of the value function for the experience domain (right panel). In description,
the utility curve displays a steeper slope for losses than gains. In experience, an opposite phenomenon is frequently observed. The sign of the prediction error (i.e.
the difference between the obtained reward R and the associative value Q) affects the learning rate.
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Box 1. Description- and experience-based behavioural models.

In this box, we sketch the formalisms standardly employed to explain and quantify risk preferences in description-based and
experience-based decisions. Description and experience paradigms radically differ in how they model decision under risk. In
the description domain, risk preferences are the direct result of subjective deformations of probabilities and outcomes that are
explicitly stated. On the other side, in the experience domain there is no separate representation of outcomes’ probabilities
and no explicit deformation of outcomes’ values. Consequently, risk preferences are the indirect result of the learning process
that links past outcome information to subsequent choices. Eventually, these two approaches lead to different explanations of
risk attitudes.

Risk preferences in description-based paradigms are commonly explained by prospect theory (PT). The expected value of
k iterations of the same gamble X (which is random variable) is computed as follows:

E(X) ¼
Xk
i¼1

pixi,

where xi is the value of an individual outcome and pi is the objective probability of the outcome. PT states that the utility of an
outcome, that is the subjective value u(xi), is nonlinear and modulated by different parameters: α and β, that are the power to
which, respectively, a positive or negative outcome are elevated, and λ the loss aversion coefficient. Thus, the PT utility func-
tion is defined as follows:

u(xi) ¼
xai if xi � 0

�l(�xi)b if xi , 0

�
,

an α≤ 1 corresponds to risk aversion in the gain domain (the intuition dates back to Bernoulli), α > 1 corresponds to risk-seek-
ing behaviours. In the loss domain, the same relation is true concerning the values of β. A value of λ > 1 corresponds to loss
aversion; its typical empirical value is around 2 [10,68]. A decision-maker with α < 1, β > 1 and λ > 1 will present different risk
preference in the gain (risk aversion) and the loss (risk seeking) domain (figure 3b).

In addition, PT postulates a subjective deformation of probabilities. There are multiple ways to mathematically express the
probability weighting function. One of the most common is the ‘Prelec’ function [69]:

p( pi) ¼ e�d(� log ( pi))
g

with δ controlling the elevation and γ the curvature. When both parameters are set to 1, the function tends to linearity. The
more γ > 1, the more the function adopts an S-shape. A classical result is the overweighting of low probabilities compared to
high probabilities, where the direction of the curve follows an inverse S-shape (figure 3a), with γ < 1. Note that another prob-
ability weighting function has been proposed [54]. Finally, the subjective expected utility is given by

SEU(X) ¼
Xk
i¼1

p( pi)u(xi):

By the variation of these parameters, PT accounts for inter-individual differences in risk preferences. Of note, concurrent
theories such as regret theory [70] or rank-dependent utility models [71], which use very different representational structures
and parameterizations, are also used to model decision-making under risk.

Experience-based paradigms can be seen as reinforcement learning problems operationalized as k-armed bandit tasks
[61]. Consider an environment composed by a state vector S, with s∈ S. In each of states s, there are available actions denoted
a∈A. Each state-action pair has an underlying reward probability distribution, such that P[R|s, a], is the probability of
obtaining the reward R, knowing the state-action couple (s, a). An agent must then follow a policy in order to maximize a
state-action value function Q(s, a) (i.e. to maximize the average expected reward). A common learning policy is to compute
subsequently to a choice of the prediction error δ, that will be used to incrementally update the value associated to a specific
state-action pair (s, a):

d ¼ R�Q(s, a)
Q(s, a) Q(s, a)þ ad

with α the learning rate that determines to what extent newly acquired information overrides the previous. In this
paradigm, inter-individual variability in behaviours can be accounted for by differences in individual parameters such as
the aforementioned learning rate α. However, this model with only one parameter is too simple to accommodate different
risk preferences.

A way to refine this model to account for different risk preferences, is to allow for two different learning rates, α+ and α−:

Q(s,a) Q(s,a)þ aþd if d . 0
a�d if d , 0

�

If α+ = α−, the two learning rates model is equivalent to a one learning rate model. We define the tendency to preferentially
update Q(s,a) from positive prediction errors rather than negative prediction errors as positivity bias (or loss neglect) (α+ > α−).
Conversely, we define the opposite situation (α+ < α−) as negativity bias (or loss enhancement).

The learning rate asymmetry has direct consequence for risk preferences in the setting where a subject has to learn the
value of a safe (say a fixed value of 0) and a risky (say 50% chance of winning/losing one euro) option. A subject displaying
a positivity bias would neglect the past losses and will, therefore, be a risk-seeker (figure 3b). Conversely, the negativity bias
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monkey studies, whenever outcomes and probabilities are con-
veyed via a symbolic system, the system is nonetheless learned
andmaintained by trial-by-trial outcomes (i.e. a situation simi-
lar to the ‘description plus experience’ paradigm, described
above). In such ‘pseudo’description-basedparadigm,monkeys
are trained to associate continuous variations in one visual fea-
ture (e.g. colour or size) to continuous variations of a decision
variable (e.g. outcomes or probabilities). The comparison is
further complicated by the fact that only few studies formalize
risk preferences in terms of model parameters (such as prob-
ability distortion, loss aversion or learning rates) and data
reporting is often limited to behavioural measures.

The general picture (table 1) emerging from ‘pseudo’
description-based paradigms in monkeys (i.e. studies relying
on learned symbolic systems to communicate values) is, at
best, mixed. PT has been explicitly tested in paradigms using
visual cues carrying symbolic information similar to those pre-
sented to humans (e.g. pie-charts). Only a few studies show
results in conformity with the pattern of description-based
decisions observed in humans. Risk aversion, suggestive of
marginally decreasing utility in the gain domain, has been
rarely reported [93]. Nioche et al. [98] is the sole study confirm-
ing all PT features: marginally decreasing utility (risk aversion
in the gain domain), loss aversion (risk seeking in the loss
domain) and subjective probability weighting consistent with
overestimation of rare events. Probability weighting function
consistentwith standard PThas been reported byother studies,
but the same studies also reported increasing marginal utility
and risk seeking in the gain domain, which is not typically
observed in description-based decisions in humans [95,97].
Many others pseudo description-based experiments also
reported risk-seeking attitudes and/or marginally increasing
utility in gains [91,92,94,96]. In addition, although the
traditional inverse probability weighting function has some-
times been observed [95,98], variation of experimental design
features (such as randomly mixing gambles instead of repeat-
ing the same gambles sequentially) can reverse the direction
of the probability weighting function [99].

Regarding ‘pure’ experience-based studies in monkeys (i.e.
involving no symbolic system to communicate values), the pic-
ture is somehowclearer. Indeed, rhesusmacaques exhibit robust
risk-seekingbehaviour in thegaindomain [80–89]. Risk-seeking
attitudes have also been reported in the loss domain [90].

Risk-seeking behaviour in experience-based studies can be
computationally explained byan increased sensitivity to positive
(compared to negative) prediction errors (‘positivity’ bias) which
is generally documented in human reinforcement learning
(box 1) [72–74]. This hypothesis is corroborated by studies
demonstrating a stronger impact of past positive outcome in

choices using either model-free or model-based measures
[81,82,101].

Finally, it can be argued that if monkeys are a good model
for human decision-making under uncertainty, they should
display a description–experience gap. To our knowledge, so
far only one study explicitly tackled this issue [102]. Monkeys
were asked to make repeated choices between safe, and risky
options, whose outcome probability was either learned by
experience or described by the ratio between colours on a rec-
tangle. Replicating previous findings in monkeys, and in
discordance with the standard result in humans, Heilbronner
and Hayden found that monkeys were risk-seekers in the
description domain. However, consistent with the gap
observed in humans, they also found that risk-seeking
behaviour was higher for experience-based cues.

To summarize, the literature seems to suggest that monkeys’
decision-making for experience-based choice is quite consistent
with what is observed in humans in terms of risk preference.
This is consistent with a large body of literature showing that
the neural substrates of reinforcement learning are largely pre-
served in the two species [103,104]. Risk seeking in this context
may be driven by a higher learning rate from positive compared
to negative prediction errors, which is essentially a compu-
tational reinforcement learning translation of the ‘hot hand’
fallacy [105,106]. The situation is much less reassuring concern-
ing description-based decisions, as preferences compatible with
PT are rarely observed. This can be due to the fact that pseudo
description-based design in monkeys resembles the ‘description
plus experience’ set-up in humans, where PT-like deformations
arebluntedorevendisappear, as if description-basedandexperi-
ence-based biases reciprocally cancel themselves [78,79]. As a
result, it remains unclear to what extent description-based pro-
cesses can be elicited in the non-human primate animal model.

4. The impact of other experimental differences
Experimental results concerning decision-making under
uncertainty in monkeys do not seem to straightforwardly
comply with the predictions of PT. Overall it seems that mon-
keys’ behaviour is better accounted for as an experience-based
decision process, which is consistent with the fact that pure
description-based paradigms are not possible and monkey
experiments always involve trial-by-trial feedback. The sys-
tematic presence of trial-by-trial feedback is not the only
systematic methodological difference between the monkey
and human studies (figures 2 and 4).

First, monkey studies essentially rely on primary rewards
(mainly water or fruit juice), while human studies are realized

implies risk aversion. Both pessimistic and optimistic biases have been reported in the literature, with the latter bias being
more frequently reported [72–75].

While it is tempting to see the positivity bias as the experience-based antithesis of loss aversion, their formalism and
psychological interpretations are quite different and they are, therefore, not mutually exclusive. Indeed, loss aversion con-
cerns the valuation of prospective losses, while the positivity bias concerns the retrospective assessment of past losses.

It is important to note that, in humans, although the average values of the behavioural biases are reported as described
above (for instance: inverse S-shape in description-based paradigms and loss neglect in experience-based paradigms; see
figure 3a), their results are further tempered by a high degree of inter-individual variability in the bias parameters. At the
individual level, some subjects may in fact display opposite biases in both experimental settings [72,76]. If inter-individual
variability is equally high in other primates, the fact that monkey studies use very small sample size (figure 2) can contribute
to explaining the comparably less consistent picture observed (table 1).
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mainly with secondary rewards (sometimes hypothetical
ones) and primary reinforcers are only occasionally used
[107,108]. Preliminary evidence from a study comparing
risk propensity for different kinds of rewards in humans
(money versus sport beverage) and monkeys showed similar
patterns in the two species, thus suggesting that in more

comparable experimental condition risk preferences in both
species could converge [109]. Furthermore, while the neural
correlates of different kinds of rewards converge in the ven-
tral prefrontal and striatal systems (principle of the
common currency; [110]) they also have specific correlates,
which may contribute to the different neural mechanisms

Table 1. Studies investigating risk attitudes in rhesus monkeys. E, experience-based paradigms (i.e. without explicit representation of outcomes and
probabilities); D, description-based paradigms (i.e. involving explicit representation of outcomes and probabilities; note that in monkeys this implies a
’description plus experience’ set-up); liquid, the utilization of either water or fruit juice; tokens, the acquisition of a secondary reward, which is later exchanged
for a primary reward; seek, an overall preference for the risky option; avoid, an overall preference for the safe option; inverse S-shape, the probability distortion
postulated by prospect theory; S-shape, the probability distortion traditionally found in experience-based paradigms; N/A, the information is not available.

study
sample
size modality reward

risk attitude
in gains

risk attitude
in losses

probability
distortion

loss
aversion

McCoy & Platt [80] 2 E liquid seek N/A N/A N/A

Hayden & Platt [81] 2 E liquid seek N/A N/A N/A

Hayden et al. [82] 5 E liquid seek N/A N/A N/A

Long [83] 3 E liquid seek N/A N/A N/A

Watson [84] 8 E liquid seek N/A N/A N/A

O’Neill & Schultz [85] 2 E liquid seek N/A N/A N/A

Heilbronner et al. [86] 3 E liquid seek N/A N/A N/A

Kim et al. [87] 2 E liquid seek N/A N/A N/A

Heilbronner & Hayden [88] 2 E liquid seek N/A N/A N/A

Xu & Kralik [89] 2 E liquid seek N/A N/A N/A

Smith et al. [90] 7 E liquid seek seek N/A N/A

Hayden et al. [91] 4 D liquid seek N/A N/A N/A

So & Stuphorn [92] 2 D liquid seek N/A N/A N/A

Yamada et al. [93] ? D liquid avoid N/A N/A N/A

Raghuraman & Padoa-Schioppa [94] 2 D liquid seek N/A N/A N/A

Staufer et al. [95] 2 D liquid seek seek inverse S-shape N/A

Farashahi et al. [96], experiment 1 3 D liquid seek N/A none N/A

Farashahi et al. [96], experiment 2 3 D token seek seek S-shape N/A

Chen & Stuphorn [97] 2 D liquid seek seek inverse S-shape N/A

Nioche et al. [98] 2 D liquid avoid seek inverse S-shape yes

Ferrani-Toniolo et al. [99]

experiment 1

2 D liquid N/A N/A inverse S-shape N/A

Ferrani-Toniolo et al. [99],

experiment 2

2 D liquid N/A N/A S-shape N/A

Eisenreich et al. [100] 3 D liquid seek seek N/A N/A
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and result in distinct, reward-specific, risk preferences [107].
On the other side, a proxy for secondary reward can be
found in monkey paradigms that involve collecting (virtual)
tokens to be later exchanged for a primary reward. Unlike
pure primary reward tasks, where losses cannot be
implemented (it is impossible to take some fruit juice away
from the stomach of a monkey), tokens have the advantage
of making possible subtracting previously acquired rewards
from the animal, thus inducing ‘losses’ in the same manner
as in human. However, a recent study using tokens, showed
risk-seeking attitudes comparable to that observed using pri-
mary reward [96]. Furthermore, when tokens are used, they
are almost immediately changed against primary reward,
making them not really comparable to money, whose value is
much more permanent. Taken together, the available evidence
suggests that the primary/secondary reward dichotomy does
not explain the fact that human description-based biases are
hardly observed in monkeys.

Second, in addition to the difference in the nature of the
reward, description-based paradigms in humans and para-
digms in monkeys often present a systematic difference in
the amount of the reward (figure 4). Indeed, most of the orig-
inal studies about PT used hypothetical gambles of hundreds
of dollars and the same biases have been replicated using real
stakes of about a month’s salary [111]. On the other side,
monkey studies use very small amounts of rewards (mere
drops of liquids). It has been argued that part of the descrip-
tion–experience gap may simply derive from this difference
in stake instead of being induced by fundamental differences
in the decision-making process [88]. This would be consistent
with Markowitz utility function which supposes risk seeking
for small stakes (peanuts effect) before converting to risk
aversion for higher stakes [112] and is supported by the find-
ing that increasing the relative amount of reward (by
reducing its frequency) decreases risk seeking down to risk
neutrality in monkeys [88,112]. However, risk aversion in
the gain domain (and a reverse pattern in the loss domain:
the reflection effect) has also been observed with small
stakes in description-based decisions in humans [67]. Thus,
available evidence suggests that differences in the size of the
stake cannot fully explain the fact that human description-
based preferences are hardly observed in monkeys.

Finally, another notable difference between human and
monkey experiments is represented by the amount and the
type of training required to perform the task (see figures 2
and 4). In human experiments, task training rarely takes
more than a few minutes (in some extreme cases of descrip-
tion-based paradigms, there is virtually no training: subjects
are just asked to reveal their preferences). On the other side,
monkey experiments require extensive training, in general
spanning several months (usually training takes longer than
the experiment itself ). It can be, therefore, argued that their
behaviour becomes to some extent habitual or automatized:
a cognitive state that contrasts dramatically with the declara-
tive and deliberative stance of description-based choices
taken by humans [113]. In addition to that, training in mon-
keys (and other animals) often involves simplified versions
of the task (often deterministic contingencies), which may
reinforce specific risk preferences. Although the role of
extended (several days, weeks) training and the resulting
behavioural automation (or habituation) in risk preferen-
ces is unclear, it may contribute to the fact that human
description-based biases are rarely observed in monkeys.

5. Conclusion and perspectives
Our review suggests that the rhesus monkey is a partial model
of humandecision-making under uncertainty. Risk preferences
in monkeys are generally better explained as experience-based
processes. Accordingly, monkeys proved to be a very good
model of human reinforcement learning processes, providing
crucial insights into its neural implementation (the dopamine
prediction error hypothesis: [56,62,114]). The situation is less
clear concerning description-based choices. In paradigms
using explicit symbolic information about decision variables,
monkeys only rarely displayed risk preferences compatible
with human results. Deciding by description implies a sym-
bolic system of communication. While in humans this system
pre-exists (language), in monkeys it has to be learnt by trial-
and-error, thus irremediably confounding description and
experience. In addition to differences in the way value infor-
mation is conveyed (experience- or description-based), other
methodological factors (training, reward type and stakes)
further drive apart the experimental set-ups of the two species.
This situation is problematic as building a neural model of
decision-making under uncertainty should integrate human
(fMRI) and monkey (single unit) neurophysiological data,
while explaining risk preferences in a wide range of situations
that span from pure description-based choices to pure
experience-based choices.

We propose further lines of research that could eventually
help filling these gaps and ultimately fulfilling the strong neu-
roeconomic agenda. On the human side, the description–
experience gap has been extensively studied at the behavioural
level, but surprisingly neglected at the neural level. A notable
exception [115], found different neural representations for
description- and experience-oriented decisions. Furthering
this line of enquiry would prove useful to redefine the target
areas to look specifically for description-based processes in
monkey electrophysiological studies.

With the development of online testing techniques, it is
becoming easier to implement extended massive training in
humans [116]. Translated in the field of decision-making
under risk, these experiments would provide crucial insights
into the impact of extensive training in risk preferences. While,
description-based studies in monkeys require learning ex novo
a symbolic system, in humans the meaning of pie-charts is pro-
vided by the language. It would be interesting to put humans in
situations where they have to figure out by trial-and-error the
code linking continuous visual features to decision variables.

In general, all the efforts aimed at increasing the methodo-
logical overlap between human and monkey studies will
provide further insights intowhat are the behavioural processes
shared across the two species. Popularizing fMRI experiments
in monkeys would help confirm the neuro-anatomical targets
and increase the focus on shared neural systems. The token
paradigm (conceptually closer to the notion of the secondary
reward) offers the possibility to implement losses in monkeys,
hence facilitating the cross-species study of loss aversion.

Finally, on themonkey side, PT has been sporadically repli-
cated. It will be important to clarify and formalize the
experimental factors (in terms of stimuli, training and reward
type; see table 1) that predict whether PT-like behaviour will
be observed in a monkey experiment [88]. Determining
under which experimental conditions PT is replicated in mon-
keys will imply a deeper understanding of the cognitive
mechanisms underlying decision-making under uncertainty.
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Endnotes
1Subjective utility (or subjective value) representation seems to be dis-
tributed across a network of areas that include the ventral and the
dorsal prefrontal cortices (both medial and lateral part), posterior cin-
gulate cortex, the striatum, the insula, the amygdala and the
hippocampus [26–28].
2It is indeed the case that brain systems encoding positive and
negative values are, at least partially, dissociable. Losses are generally
encoded by the insula, the amygdala and the dorsal prefrontal cortex,
while gains are generally encoded in the ventral prefrontal and the
striatum [31,32].

3Other non-invasive imaging techniques, such as magneto- and elec-
tro-encephalography present no advantage over fMRI when it comes
to inferring single unit activity. They present better temporal resol-
ution traded off against a worst spatial resolution.
4There are a few exceptions of single unit recordings in humans,
obtained from neurologic patients undergoing brain surgery. While
informative, these data are limited by the fact the neuro-anatomical
targets cannot be chosen freely and that findings may not generalize
to the general population [41].
5Of course, there is a lot of information to be gained also in the case
where humans and monkeys do not display the same decisions and
biases. Such differences currently represent a strong area of research
in comparative psychology and ethology [44]. However, the (not so
implicit) assumption of the vast majority of research in neuro-econ-
omics is that monkeys are valid experimental models for human
cognition, and they are not investigated for comparative reasons.
6In the human reinforcement learning literature, the most frequently
used paradigms involve options that possess, at a given trial, differ-
ent expected values but overall similar risk level [56,62]. As a result
the human reinforcement learning literature is more concerned
about measures of objective performance rather than subjective
preference.
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Abstract  13 

To choose between options of different natures, standard decision models presume that 14 

a single representational system ultimately indexes their subjective values on a common 15 

scale, regardless of how they are constructed. To challenge this assumption, we 16 

systematically investigated hybrid decisions between experiential options, whose value is 17 

built from past outcomes experience, and symbolic options which describe probabilistic 18 

outcomes. We show that participants' choices exhibited a pattern consistent with a 19 

systematic neglect of the experiential values. This normatively irrational decision strategy 20 

held after accounting for alternative explanations, and persisted when it bore an economic 21 

cost. Overall, our results demonstrate that experiential and symbolic values are not 22 

symmetrically considered in hybrid decisions, suggesting that they are not 23 

commensurable and recruit different representational systems which may be assigned 24 

different priority levels in the decision process. These findings challenge the dominant 25 

models commonly used in value-based decision-making research. 26 
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Introduction 27 

Standard models of economic decision-making generally assume a two-step decision 28 

process, where individuals identify and assign values to available options, and ultimately 29 

pick the option with the highest subjective value (1–3). The values attributed to individual 30 

options can derive from different sources. On the one hand, a priori neutral stimuli acquire 31 

positive or negative experiential values after association with past outcomes (rewards and 32 

punishments) (4–6). On the other hand, the explicit description of an option’s possible 33 

outcomes and their probabilities are combined to form a subjective expected value (7–34 

10). Such explicit descriptions may take many different forms, including written language 35 

(from simple vignettes to fully specified numerical variables), a symbolic code 36 

communicating the decision variables (payoffs and probability) in an unambiguous 37 

manner, or a combination of the two (11).  38 

 39 

In the standard two-step model, the way option values are built (via experience or 40 

description) is only peripheral to the decision process itself, meaning that experiential and 41 

symbolic values converge to a central valuation and decision-making system (3, 12–16). 42 

Thereby, choices between experiential and symbolic options should present no particular 43 

challenge, because their values are translated into an internal common currency, allowing 44 

an unbiased comparison between these differently generated option values. This 45 

normative point of view is indirectly supported by the fact that the neural correlates of 46 

experiential and symbolic values largely overlap in the so-called brain valuation system 47 

(17–20). 48 

 49 

However, several lines of evidence in behavioral decision-making research question the 50 

idea of a central valuation system. In fact, it is now a very well established that, when 51 

studied separately, experience-based and description-based choices display different 52 

properties: a phenomenon referred to as the description-experience gap (21–24). This 53 

difference in the subjective valuation of experiential and symbolic options poses a direct, 54 

theoretical challenge to the idea of a central valuation system (25). This rather suggests 55 

the existence of modality-specific valuation systems, relying on distinct cognitive 56 
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representations, which would hinder, if not impede, the comparison between experiential 57 

and symbolic options. 58 

Strikingly, this key prediction has not been directly assessed, because studies usually 59 

consider separate sets of decision problems for experiential and symbolic options (26, 60 

23). Thereby, to date, very little experimental evidence has formally assessed the 61 

commensurability of experiential and symbolic option values, nor their mapping into a 62 

central or different valuation systems (27, 28). This is particularly problematic considering 63 

that hybrid choices seem to be the norm rather than the exception in our modern societies 64 

where descriptive information is omnipresent. For example, everyday situations like 65 

choosing between our favorite restaurant (experience) and a new one with good review 66 

(description) is a prototypical example of such a hybrid decision.  67 

To fill this gap and challenge the commensurability of experiential and symbolic values, 68 

we designed a new behavioral protocol. The experiment started with a learning phase 69 

during which human participants repeatedly faced abstract cues paired with probabilistic 70 

outcomes, thereby learned to associate experiential expected-values to the originally 71 

neutral symbols. After this phase, participants were asked to make hybrid choices 72 

between the experienced symbols and described lotteries visualized as colored pie-charts 73 

(a standard way to represent value symbolically) (11).  When making hybrid choices, 74 

participants treated the two kinds of options asymmetrically and, specifically, were 75 

neglecting experiential values. This asymmetry was robust across seven experiments, 76 

where we controlled for many possible alternative explanations, such as, insufficient 77 

learning, generalization issues or lack of incentives. Overall, the relative neglect of an 78 

option’s value conditional on its source is consistent with the idea that different types of 79 

values – such as experiential and symbolic – may involve different representational 80 

systems, resulting in their incommensurability. 81 
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Fig 1. Behavioral tasks, hypotheses, option values and experimental protocol. (A) The leftmost panel 83 
displays successive screens of a typical trials in the learning phase (LE). The LE-phase consists in a two-84 
armed bandit task with fixed (4 or 2 – in Exp. 4) pairs of abstract cues (E-options) and contained 120 trials. 85 
The rightmost panel displays successive screens of a typical trials in the Experiential-Symbolic choice 86 
phase (ES). The ES-phase consists in binary choices between a lottery (standardly materialized as a pie-87 
chart) and a symbol previously presented in LE-phase. In most experiments, the EE phase lasted 88 trials 88 
(8 E-options x 11 S-options). Durations are given in milliseconds. (B) The panels illustrate three possible 89 
hypotheses on how participants could make choices in the ES-phase. In each panel the probability of 90 
chosen the E-option is plotted against the value of the S-option (expressed as probability of winning a 91 
point). The insets represent the indifference points (where the curves cross 50%; of not unbiased 92 
indifference points should lay on the diagonal). The color of the curves indicates the value of the E-option 93 
(lowest: light orange; highest: dark orange).  The leftmost panel illustrate the default hypotheses according 94 
to which E-options and S-options are fully commensurable and therefore the curves cross 50% (indifference 95 
point) at exactly the value of the E-option. The central panel illustrates experiential value neglect scenario 96 
according to which ES-choices are determined (almost) uniquely by the value of the S-options. Finally, the 97 
rightmost panel illustrates the symbolic value neglect scenario, accordingly to which ES-choices are 98 
determined (almost) uniquely the value of the E-options. (C) The panel displays the options values. The 99 
topmost part shows how E-option were organized in learning contexts (in all experiment except Exp. 4 and 100 
7; of note, the attribution of the value to the symbols was randomized across participants). The bottommost 101 
part shows the lotteries used in the ES phase (in all experiment except Exp. 7). (D) The experiments were 102 
structured as follows: they all started with a learning phase (LE), where participants made choices between 103 
abstract symbols and received feedback information.  After the LE phase, participants were asked to make 104 
repeated choices between each E-option and several lotteries (see Fig. 1A and Fig. 1C). From Experiment 105 
5 on, participants were also asked to make choice between E-options that were not necessarily presented 106 
together. Finally, we assessed the stated probability (SP) of winning for each symbol by asking participants 107 
to explicitly rate each E-option, following a probability matching procedure (29). 108 

 109 

Results 110 

We conducted a series of experiments structured in two main phases, one allowing the 111 

formation of subjective values from the experience of past outcomes, and a second where 112 

these experiential options (E-options) were presented against options whose subjective 113 

values were described by symbolic means (S-options) (Fig. 1A). During the first (or 114 

learning: LE) phase, E-options were materialized by abstract shapes that provided no 115 

explicit information concerning the expected value (EV) of the option. During the LE 116 

choices, E-option values could therefore only be inferred from the history of gains (+1 117 

point) and losses (-1 point) associated to a specific cue. E-options were presented in four 118 

fixed pairs, each featuring an EV-maximizing and an EV-minimizing option.  119 

Subsequently, in the Experiential-Symbolic (ES) phase, participants were asked to make 120 

choices between the very same E-options of the previous phase and pie-charts explicitly 121 

describing the associated probabilities of gain and loss. As these ES, “hybrid” choices are 122 
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the main focus of this paper, we thereafter delineate three plausible hypotheses 123 

concerning the behavioral output of this phase.  124 

First, assuming that the subjective values of the E- and S-options are mapped into a 125 

common scale (common currency hypothesis), participants should make unbiased 126 

decisions in the ES phase. Accordingly, the probability of choosing, say, the E-option, will 127 

be jointly determined by the EV of the E- and the S-option (Fig. 1B: left). In other terms, 128 

for a given E-option the inferred indifference point will precisely correspond to S-options 129 

with equal EV.  130 

Alternatively, the possibility that subjective values are constructed and represented in a 131 

modality-specific way (representational gap hypothesis) entails that E- and S-options are 132 

not readily commensurable. This situation could lead to two possible scenarios.  In one 133 

of them, participants make random choices in the ES-phase. In the other scenario 134 

participants could prioritize one of the two sources of information. Within this scenario, 135 

participants could resolve the tension between E- and S-options basing their choices 136 

primarily on the explicit symbolic values provided by the lotteries. In other terms, 137 

participants would pick the lottery, when positive, and reject it when negative, as if the E-138 

option values were neglected and regressed to zero (experiential value neglect; Fig. 1B: 139 

mid). In the other case, participants would present an over-reliance on experiential values 140 

and would display the opposite pattern: accept or reject an E-option without considering 141 

the S-option value (symbolic value neglect; Fig. 1B: right). Crucially, the ES phase of our 142 

experiments allows to tease apart these different scenarios by analyzing the probability 143 

of choosing an E-option as a function of the S-option being presented. More precisely, 144 

taking each E-option separately and uncovering the S-option (value) at which a 145 

preference shifts from the former to the latter provides us with an estimate of how much 146 

a participant values an E-option. Quantifying the relation between E-options and S-147 

options boils down to inferring indifference points (i.e., when the probability of choosing 148 



The impassable gap between experiential and symbolic values                                                             Garcia et al.                                                              
 

7 
 

one option over the other is 50%) which acts as proxies of participant E-option values 149 

(Fig. 1B: insets).  150 

 151 

 152 

Fig 2. Raw behavioral results and inferred option values in Experiments 1-to-4. (A) Correct choice 153 
rate grouped per learning context in the LE phase, where ‘40/60’ designated the hardest decision problem, 154 
‘10/90’ the easiest decision problem. The dark blue line indicates the mean, the mid-dark blue indicates the 155 
standard mean error, and the light blue indicates a 95% confidence interval. The dotted line indicates 156 
chance (or random) responding (50%). (B) Average probability of choosing an E-option over a S-option 157 
during ES phase. The color of the curves indicates the value of the E-option (lowest: light orange; highest: 158 
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dark orange). Dots represent the empirical indifference points, the value of a lottery that corresponds to a 159 
probability of choosing the symbol 50% of the times.  (C) The panels represent for each symbol the inferred 160 
value (as expressed by the probability of winning; p(win)) as a function of the actual value.  ES estimates 161 
are represented in orange, LE estimates in blue and SP estimates in pink. In the data-boxes, the dark tone 162 
line represents the mean, mid-dark tone the standard mean error, light tone a 95% confidence interval. The 163 
lines represent linear regression (dark tone), and the average standard mean error (light tone). (D) 164 
Comparison of individual inferred slopes obtained from linear fit (see Fig. 2C) in the three modalities (LE, 165 
ES and SP in blue, orange and pink, respectively). The black lines represent mean and standard error of 166 
the mean. The colored boxes represent 95% confidence interval. The shaded area probability represents 167 
density functions. ***p<0.001 paired sample t-tests.  168 

 169 

First evidence for the experiential value neglect scenario 170 

In the LE phase of the first experiment (N=76), we presented pairs of E-options in an 171 

interleaved manner (i.e., E-option pairs are distributed randomly in the sequence of trials) 172 

and we displayed only the outcome of the chosen option (partial feedback) (Fig. 2A, Exp. 173 

1). Apart from the most difficult learning context (60/40), choice accuracy was above 174 

chance level for all E-option pairs (T(75)=1.5, P>.05; T(75)=10.98, P<0.001), thus 175 

indicating that participants aimed at (and managed to) maximize expected value. 176 

Furthermore, accuracy was modulated by the difference in expected value (i.e., the 177 

decision value) of the E-option pair. Choice accuracy increased as a function of the 178 

decision value (β=0.077, T(300)=2.16, P < 0.05; β=0.08, T(300)=2.35, P < 0.05; β=0.21, 179 

T(300)=5.94, P < 0.001), thus indicating that participants’ behavior was sensitive to the 180 

specific EV of E-options involved in a given pair.  181 

Regarding analysis of the ES phase, the probability of choosing an E-option in an ES 182 

decision was largely determined by the S-option EV-value and the preference shift 183 

abruptly occurred around S-option EV equal to zero (i.e., P(+1) = P(-1) = 0.5). Despite 184 

clear proofs of successful value learning and encoding during the LE phase, ES phase-185 

choice pattern was clearly consistent with the experiential value neglect scenario. (Fig. 186 

2B: left).  187 

To quantify and statistically compare the differences in preferences observed in the LE 188 

and the ES phase, we first estimated the theoretical subjective value of each E-option 189 

separately for the two choice types, proxied by its probability of winning a point: p(win) 190 

(remind that the outcomes are fixed, so the expected value of different options only 191 

depend on their probabilities to win). Concerning the LE phase, we leveraged on a 192 
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classical associative learning approach, where we assumed p(win) to be iteratively 193 

updated as a function of a prediction error-minimizing learning rule (30, 31, 6).  We were 194 

able to infer p(win) attributed to each E-option at the end of the learning process by fitting 195 

this, rather parsimonious and standard, model. 196 

Concerning the ES phase, subjective p(win) estimates were inferred using the following 197 

method: the probability of choosing a specific E-option over a S-option of various 198 

expected values was assumed to take the form of a logistic sigmoid function. We fitted 199 

those logistic functions to each E-option and individual, and used them to extrapolate the 200 

indifference points indexing E-options’ subjective p(win).  201 

Finally, to compare the overall valuation of the E-options in the LE and the ES phases, 202 

we computed a measure of how well the subjective p(win) estimates from each phase 203 

matched the objective underlying probabilities, using slopes estimates from linear 204 

regressions. 205 

At this aggregate level, a slope equal to 1 corresponds to an unbiased representation of 206 

E-options’ p(win), whereas a slope equal to 0 corresponds to random representations.  In 207 

our data, the slopes estimated from the LE phase were significantly higher and closer to 208 

1 compared to those estimated from ES-choices (T(75)=6.53, P < .001) (Fig. 2C: left). 209 

Thus, ES decision problems feature a specific neglect of E-option values, as if hybrid 210 

choices prioritized the value of the symbolic options over an unbiased comparison of 211 

experiential and symbolic values, thereby confirming the experiential neglect hypothesis.  212 

We ruled out a first trivial interpretation for this result, by only including in the analyses 213 

participants that performed at 100% of correct response in catch trials (i.e. trials involving 214 

choices between two S-options; see Supplementary Materials), disseminated across 215 

the ES phase to ensure the participants’ capacity to understand the symbolic 216 

representation of the probabilities.   217 

In the following sections of the paper, we provide additional evidence in favor of the 218 

experiential neglect hypothesis by progressively ruling out alternative interpretations via 219 

additional measures and experiments.  220 

 221 



The impassable gap between experiential and symbolic values                                                             Garcia et al.                                                              
 

10 
 

Ruling out insufficient learning and forgetting 222 

While the experiential neglect pattern observed in the ES phase is consistent with the 223 

idea that E-options and S-options are not equally considered in the decision process, it is 224 

also consistent with a much more trivial hypothesis: insufficient learning. Despite 225 

reinforcement learning model fitting suggesting otherwise (see Fig. 2C: left), it is indeed 226 

possible that the neglect of E-option in the decision is caused by an imperfect and noisy 227 

E-option value representations at the end of the learning phase. To rule out this alternative 228 

interpretation, we devised a series of experiments where we changed the LE phase in 229 

order to improve learning, while keeping the (average) option values the same. In a 230 

second experiment (Exp. 2; N=71), we therefore presented decision problems as blocks 231 

(rather than interleaved as in Exp. 1), so as to improve performance and option 232 

identification by preventing the saturation of working memory (32). In a third experiment 233 

(Exp. 3; N=83), we additionally provided the outcome information concerning the 234 

unchosen option – a manipulation known for increasing accuracy (33, 34). Finally, on top 235 

of these variations, in a fourth experiment (Exp. 4; N=88) we also reduced the number of 236 

decision problems of the LE phase to two, such that each decision problem was presented 237 

for twice as many trials as in experiments 1-3, thereby reducing the uncertainty about the 238 

options’ outcomes. These manipulations were successful in significantly increasing 239 

decision accuracy in the LE phase (Exp. 1: 0.66±0.01; Exp. 2: 0.71±0.01, β=0.05, 240 

T(314)=2.28, P < 0.05; Exp. 3: 0.82±0.01, β=0.16, T(314)=7.17, P < 0.001; Exp. 4: 241 

0.79±0.01; β=0.13, T(314)=5.8, P < 0.001), while avoiding ceiling performance issues. 242 

Indeed, even in the easiest experiments, accuracy was still significantly modulated by the 243 

decision values; for instance, the accuracy in the more difficult decision problem (60/40) 244 

was always lower compared to the easiest one (‘90/10’) (T=5.81, P<0.001; T=8.81, 245 

P<0.001).  246 

Crucially, the remarkable increase in the LE phase accuracy of the new experiments 247 

(107% - 124% of Exp. 1) was not paralleled by detectable qualitative differences in ES 248 

phase choice patterns (Fig 2B). In other terms, the experiential value neglect persists 249 

despite the uncertainty concerning the E-options’ values being considerably reduced (via 250 
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blocked design, complete feedback and increasing the number of trials per decision 251 

problem).   252 

To quantitatively characterize this claim, we estimated the subjective p(win) for each E-253 

option separately for the LE and the ES phases and fitted a linear regression between the 254 

estimated subjective p(win) and their true values (as described above).  Confirming the 255 

efficiency of our manipulations in increasing learning performance, the LE-inferred slopes 256 

increased significantly across experiments (Exp. 2: β=0.11, T(942)=5.98, P=0.055; Exp. 257 

3: β=0.28, T(942)=6.5, P < 0.001; ; Exp. 4: β=0.31, T(942)=7.27, P < 0.001). Critically, 258 

the ES slopes were not modulated across experiments aside from Exp. 4 (Exp. 2: β=-259 

0.1, T(942)=-1.76, P=0.07; Exp. 3: β=0.02, T(942)=6.5, P=0.67; ; Exp. 4: β=0.11, 260 

T(942)=2.06, P < 0.05) (Fig. 2D). Overall, LE-inferred slopes were significantly higher 261 

than the ES slopes in all experiments (Exp. 2: T(70)=11.74, P < 0.001; Exp. 3: 262 

T(82)=15.8, P < 0.001; Exp. 4: T(87)=11.64, P < 0.001; Fig. 2E), and the asymmetric 263 

effects of the manipulations on the LE versus ES phases translated into a significant  264 

interaction between the choice modality (ES and LE) and the experiment number (Exp. 265 

2: β=-0.21, T(942)=-2.58, P<0.05; Exp. 3: β=-0.26, T(942)=-3.29, P<0.01; ; Exp. 4: 266 

β=0.2, T(942)=2.57, P < 0.05).  267 

The comparison between the first four experiments suggests that experiential value 268 

neglect is not a mere effect of insufficient learning.  We indeed observe that an improved 269 

performance in the learning phase does not translate into a similar decrease of the 270 

experiential value neglect effect. However, independently of the quality of learning, it is 271 

also theoretically possible that participants forgot the E-option values when entering the 272 

ES hybrid choice phase, although the fact that the ES phase directly succeeded the LE 273 

phases within a matter of seconds makes it improbable. To rule out this possibility,  in 274 

Exp. 1-4, we asked participants to evaluate the E-options’ p(win) just after the ES phase, 275 

by implementing a fully incentivized stated probability (SP) procedure (35). More 276 

precisely, participants were explicitly asked to rate the probability of winning a point they 277 

attribute to an E-option, by means of a numerical rating scale (Fig. 1D).  278 

We then evaluated the quality of the E-option memory retention by regression these 279 

stated probabilities against their true values. Note that because this elicitation happens 280 
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after the ES phase, this SP-inferred slopes constitutes a lower bound of how well E-option 281 

values are learned and could be recovered during the ES phase. Yet, the SP-inferred 282 

slopes were systematically higher than the ES-inferred slopes and significantly so in Exp. 283 

2, 3, 4 (Exp. 1: T(75)=2.62, P>0.05; Exp. 2: T(70)=3.42, P<0.05; Exp. 3: T(82)=4.38, 284 

P<0.001, Exp. 4: T(87)=4.87, P<0.001). Therefore, E-options’ values elicited during the 285 

SP phase were more accurate than those elicited in the preceding ES-phase. This 286 

observation rules out forgetting as a plausible interpretation of the apparent experiential 287 

value neglect pattern observed in the ES phase.   288 

Ruling out generalization issues and assessing the robustness to practice  289 

 290 

The above-reported results from 4 experiments and 3 preference elicitation methods 291 

indicate that the experiential value neglect phenomenon cannot be accounted for by 292 

insufficient learning nor by mere forgetting. In the present section we rule out two 293 

additional alternative explanations. First, it should be noted that the ES phase involves a 294 

generalization process, because the E-options are extrapolated from the decision context 295 

where their subjective values are originally learned. It is therefore conceivable that the 296 

apparent experiential value neglect is spuriously created by a generalization problem. 297 

Second, in the previously reported experiments, participants went through the different 298 

phases (LE, ES and SP) only once: perhaps participants were somehow taken by surprise 299 

by the ES phase. In that case, presenting them different phases of the experiment twice 300 

will possibly allow them to improve their decisions by anticipating the ES-phase (36).   301 

To control for generalization and practice, we run two additional experiments.  In Exp. 5 302 

and Exp. 6 (N=71 and N=66), after the learning phase, we interleaved the ES-choices 303 

with choices involving E-options presented in all possible combinations (referred to as 304 

EE-choices). Thus, in all cases except one, EE-choices required being able to generalize 305 

their value to new decision problems. As in ES-choices, we plotted the probability of 306 

choosing a given E-option as a function of the alternative E-option (Fig. 3B). To check 307 

whether experiential value neglect disappears if participants are given the opportunity to 308 

learn how to make ES decisions, Exp.  6 included a second session where we repeated 309 

all phases (LE, ES, ES and SP). Of note, E-options in the second sessions were 310 

materialized by a new set of symbols.   311 
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Fig 3. Raw behavioral results and inferred option values in Experiments 5-to-6. (A) Average 314 
probability of choosing an E-option over a S-option during ES phase. The color of the curves indicates the 315 
value of the E-option (lowest: light orange; highest: dark orange). Dots represent the empirical indifference 316 
points, the value of a lottery that correspond to a probability of choosing the symbol 50% of the times. Exp. 317 
6.1 and Exp. 6.2 refers to the first and the second session, respectively. (B) Average probability of choosing 318 
an E-option over another E-option during EE phase. The color of the curves indicates the value of the E-319 
option (lowest: light green; highest: dark green). Dots represent the empirical indifference points, the value 320 
of a lottery that corresponds to a probability of choosing the symbol 50% of the times. (C) The panels 321 
represent for each symbol the inferred value (as expressed by the probability of winning; p(win)) as a 322 
function of the actual value.  ES estimates are represented in orange and EE estimates in green. In the 323 
data-boxes, the dark tone line represents the mean, mid-dark tone the standard mean error, light tone a 324 
95% confidence interval. The lines represent linear regression (dark tone), and the average standard mean 325 
error (light tone). (D) Comparison of individual inferred slopes obtained from linear fit (see Fig. 3C) in two 326 
modalities (ES and EE in orange and green, respectively). The black lines represent mean and standard 327 
error of the mean. The colored boxes represent 95% confidence interval. The shaded area represents 328 
probability density functions. ***p<0.001 two sample t-test.  329 

 330 

EE-choices curves revealed that participants were capable of successfully extrapolating 331 

the value of the E-options to new decision problems involving other E-options. On the 332 

other side, the ES-choices were consistent with experiential values neglect, thus 333 

replicating the previous experiments (of note, the LE-phase of Exp. 5 and Exp. 6 334 

presented the same characteristics as that of Exp. 3: complete feedback and block 335 

design) (Fig. 3A).  336 

To formally assess the difference between EE- and ES-choices, we calculated for each 337 

participant their option-specific indifference points, following the same procedure used for 338 

ES-choices and we compared the inferred slopes across decision modalities. EE-inferred 339 

slopes were consistently significantly higher than ES slopes in both Exp. 5 and Exp. 6 340 

(Exp. 5: T(70)=4.5, P < 0.001; Exp. 6.1: T(65)=4.08, P < 0.001).  341 

Being presented with the whole experiment a second time had no detectable effect in 342 

choice behavior in neither the EE- or the ES-phase. Indeed, we observe no significant 343 

increase in the slopes in neither ES- (β=0.04, T(260)=0.84, P=0.4)  nor EE- choices 344 

(β=0.1, T(260)=1.59, P=0.11) and the ES-inferred slopes were still significantly smaller 345 

compared to EE- ones (Exp. 6.2: T(65)=5, P < 0.001). This suggests that being exposed 346 

with the whole experiment one time and, by doing so giving participants the possibility to 347 

adjust the decision strategy does not affect the main results.  348 
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 349 

 350 

 351 

Fig 4. Option values and behavioral results in Experiment 7. (A) The panel shows and compare the 352 
options value in Exp .1-6 to that of Exp 7. In Exp. 7, we reorganized E-options and S-options values such 353 
that half of the E-options have higher expected-values than all S-options and, conversely the other half 354 
have lower expected-values. In such an arrangement, a participant fully neglecting the E-options values in 355 
the ES phase will end up with random choices in respect to utility maximization (B) Average probability of 356 
choosing an E-option over a S-option during ES phase. The color of the curves indicates the value of the 357 
E-option (lowest: light orange; highest: dark orange). Dots represent the empirical indifference points, the 358 
value of a lottery that correspond to a probability of choosing the symbol 50% of the times. (C) Expected 359 
value maximizing (i.e., correct) choices in the ES phase of Exp. 6 compared to Exp. 7. The black lines 360 
represent mean and standard error of the mean. The colored boxes represent 95% confidence interval. 361 
The shaded area probability represents density functions.  ***p<0.001 two-sample t-test. (D) Average 362 
probability of choosing an E-option over another E-option during EE phase. The color of the curves indicates 363 
the value of the E-option (lowest: light green; highest: dark green). Dots represent the empirical indifference 364 
points, the value of a lottery that correspond to a probability of choosing the symbol 50% of the times.   (E) 365 
Expected value maximizing (i.e., correct) choices in the EE phase of Exp. 6 compared to Exp. 7. The black 366 
lines represent mean and standard error of the mean. The colored boxes represent 95% confidence 367 
interval. The shaded area probability density functions.  ***p<0.001 two-sample t-test. (F) The panel 368 
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represents for each symbol the inferred value (as expressed by the probability of winning; p(win)) as a 369 
function of the actual value.  ES estimates are represented in orange and EE estimates in green. In the 370 
data-boxes, the dark tone line represents the mean, mid-dark tone the standard mean error, light tone a 371 
95% confidence interval. The lines represent linear regression (dark tone), and the average standard mean 372 
error (light tone). (G) Comparison of individual inferred slopes obtained from linear fit (see Fig. 4F) in two 373 
modalities (ES and EE; in orange and green, respectively). The black lines represent mean and standard 374 
error of the mean. The colored boxes represent 95% confidence interval. The shaded area probability 375 
represents density functions. ***p<0.001 paired two-sample t-test.  376 

 377 

Experiential value neglect persists even when it bears an economic cost 378 

Analysis of choice behavior in the ES show that learned values of the E-options are largely 379 

neglected, as if participants were deciding on the basis of the value of the S-options only, 380 

and this despite the fact performance in the LE, SP and EE-choices indicate that E-option 381 

values are well learned and memorized. Neglecting experiential values seems, at least 382 

prima facie, suboptimal for the decision process, as taking into account all relevant 383 

information is considered a hallmark of normative behavior (37, 38). However, if E-option 384 

information processing (e.g. memory access/retrieval) is costly or if neglecting E-options 385 

does not hinders decision performance dramatically, it may become rational to do so (39–386 

41).  387 

To evaluate this possibility, we simulated choices based on an extreme version of the 388 

experiential neglect rule: if an S-option has positive expected value, choose it, otherwise 389 

choose the E-option. These simulations show that, applied to the decision problems of 390 

the ES phase from experiments 1-to-6, extreme experiential neglect still generates 77% 391 

of expected-value maximizing choices. This result is actually not as counterintuitive as it 392 

initially appears:  by design, a positive lottery is the most advantageous option in ≥50% 393 

of the decision problems in which it appears, and the converse is true for the negative 394 

expected value lotteries. These considerations suggest that, instead of representing an 395 

intrinsic cognitive limitation of value-based decision-making, the experiential value 396 

neglect is a rational heuristic strategy deployed by efficient (or lazy) decision-makers 397 

maximizing an accuracy-effort trade-off (42–45).  398 

In order to test this new interpretation of the results, we designed a new experiment (Exp. 399 

7) where we reorganized E- and S-options probabilities in a way that makes neglecting 400 

experiential values economically disadvantageous (Fig. 4A). In this new configuration, 401 
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the narrower range of S-option values are nested within the broader E-option values, so 402 

that any given S-option has a higher expected value compared to the 4 negative E-403 

options, and a lower expected value compared to the 4 positive E-options. Such 404 

configuration guarantees that participants neglecting E-option values in the ES-phase will 405 

exhibit a chance-level choice accuracy (50% of expected value maximizing choices). 406 

Except for the modification of the lotteries, Exp. 6 present the exact number of trials.  407 

Despite this stronger economic incentive, the behavioral pattern in ES-phase remained 408 

consistent with the experiential value neglect scenario (Fig. 4B). The significant 409 

difference between ES and EE slopes persisted in Exp. 7 (T(70)=5.12, P<0.001), 410 

suggesting that despite the reorganization of probabilities, we were still able to elicit more 411 

accurate E-option values from EE-choices (Fig.4F, Fig. 4G). As a consequence, 412 

compared to Exp. 6, the accuracy in the ES-choices significantly dropped in Exp 7 by 413 

approximately 20% (T(94.97)=11.01, P < .001, Fig 4C). Of note, the accuracy in the EE-414 

choices remained the same (Fig. 4D, Fig. 4E), with no significant difference between the 415 

two experiments (T(131.77)=0.38, P=1, BF¹⁰=0.19).  416 

These findings indicate that experience values are neglected even when it involves an 417 

(economic) cost.  Therefore, the results are consistent with the idea that the experiential 418 

value neglect reflects a hard-coded feature of hybrid choices between experiential and 419 

symbolic option, rather than being strategically deployed by the relative lack of incentive 420 

in Exp1-6.  421 

Controlling for ambiguity aversion  422 

E-options may be deemed more ambiguous, because their outcome probability 423 

distributions are inferred from finite samples and cannot been known with absolute 424 

precision or certainty. Experiential value neglect cannot be accounted by a simple form 425 

of ambiguity aversion (46–48), because E-options are generally preferred compared to 426 

negative expected value S-options (i.e., there is no systematic bias against E-options). 427 

Nonetheless, to assess whether the participant’s attitude toward ambiguous lotteries 428 

differed between experiential and symbolic options in a final experiment we included 429 

choices with ambiguous lotteries (i.e., lotteries, whose value was hidden). The results 430 

(presented in the Supplementary Materials and Figure S1) indicate that ambiguity 431 
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aversion was not detectable in our set up and that it could therefore not contribute to 432 

explain the observed pattern of behavior. The results of Exp. 8 also replicate all previously 433 

reported findings.    434 

 435 

 436 

Fig. 5 Hypothetical decision model and reaction times analyses (A) The panel presents a schematic 437 
representation of the decision process in the EE- and the ES- phases, respectively. The two processes 438 
differ in that in the former case (EE) the decision is based by retrieving the values of both options, while in 439 
the latter case (ES), under an extreme form of experiential value neglect, only the value of the lottery 440 
matters. (B) Median reaction times across modalities. EE decisions are significantly longer than ES 441 
decisions (regardless of the choice taken in ES). When comparing when an S-option is chosen (ESs) and 442 
when an E-option is chosen (ESe) we also observed a significant difference. The black lines represent mean 443 
and standard error of the mean. The colored boxes represent 95% confidence interval. The shaded area 444 
probability density functions.  (C) Different in reaction times differences (ESe – ESs in orange; EE - ESs in 445 
green). In the data-boxes, the dark tone line represents the mean, mid-dark tone the standard mean error, 446 
light tone a 95% confidence interval. (D) Reaction times as a function of whether the ES-choices could be 447 
only explained by a total neglect of the experiential value (red) or whether they could only be explained by 448 
experiential values estimated from the learning phase (dark blue).  In the data-boxes, the dark tone line 449 
represents the mean, mid-dark tone the standard mean error, light tone a 95% confidence interval. *p<0.05, 450 
**p<0.01, ***p<0.001 paired two-sample t-test.  451 
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Reaction times analysis: a tale of two systems?    452 

Choice behavior differ across the ES- and the EE-choices.  In the ES-phase, participants 453 

neglect the experiential option value and to make choices only based on the symbolic 454 

option value, so that, if the S-option is positive, it is chosen, otherwise it is rejected (Fig. 455 

5A). On the other hand, EE-choices are based on the retrieval from memory of the 456 

experiential values of both options. Thus, one decision process (ES-choices) seems to 457 

involve the processing and representation of only one option value (the lottery), while the 458 

other process (EE-choices) seems to involve the processing and the representation of 459 

two option values. We hypothesized that these different processes translate into different 460 

reaction times between the two choice modalities. To test this prediction, we compared 461 

the reaction times in EE and ES-choices, while including only decisions with similar 462 

objective value difference (49). Indeed, we found that ES decisions were faster compared 463 

to EE decisions, both when the S-option is chosen – (ESs) and when the E-option is 464 

chosen –(ESe) (T(136)=6.02, P < 0.001; T(136)=3.98, P < 0.001; Fig. 5B and Fig. 5C). 465 

Of note, within ES decisions, ESe choices were also slightly but significantly slower the 466 

ESs choices (~50ms; T(136)=4.35, P < 0.001), which may indicate that choosing the E-467 

option requires additional processing to retrieve and represent the value of the E-option. 468 

To confirm this intuition, we considered two categories of ES-choices: choices exclusively 469 

consistent with the participant choosing using the estimates inferred from the LE phase, 470 

on one side, and choices consistent with a full experiential value neglect, on the other 471 

side (Fig. S5). We observed that, in conformity with previous results, ES-choices that are 472 

consistent with a full experiential value neglect are significantly faster than choices that 473 

can only be explained taking into account the E-option values estimated from the LE-474 

phase (T(386)= 2.27, P<0.05) (Fig. 5D). Overall, the RT analyses support the idea that 475 

choices based on the S-values of the lotteries required reduced cognitive processing 476 

compared to those involving the retrieving from memory. Thus, E-values inferred from 477 

ES-choices are consistent with the dual process model of Fig. 5A. 478 

Discussion 479 

Our results clearly indicate that the experiential and symbolic option values are not treated 480 

symmetrically when making hybrid choices and speak against the idea of a central 481 
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valuation system that encodes option values in a common currency, regardless of the 482 

way they are built (3, 12). The key finding supporting this claim is provided by the analysis 483 

of hybrid decision problems between experiential and symbolic cues, where choices 484 

appeared to be made by largely neglecting value information acquired during the learning 485 

phase. Crucially, by running several experiments and including multiple control measures, 486 

we ruled out several alternative explanations for the experiential value neglect:  this 487 

decision-making pattern is not due to insufficient learning, forgetting, generalization issue, 488 

or a lack of incentive. Finally, reaction time analyses are consistent with different 489 

processing of experiential and symbolic values and with the idea of an additional cognitive 490 

cost associated with the memory retrieval of learned values. It seems that past 491 

experiences and symbolic descriptions of possible outcomes ultimately generate value 492 

representations different enough to make them largely incommensurable and that the 493 

tension between the two is resolved by overweighting (or prioritizing) symbolic 494 

information.  In the following paragraphs we try to provide plausible reasons why these 495 

values representations radically differ, why symbolic information is favored in hybrid 496 

choices and which cognitive mechanisms could underlie the behavioral pattern observed.  497 

Symbolic descriptions of lotteries in our task (and in general) involve separate information 498 

about at least two different features of outcomes: payoffs (i.e., the amount of reward to 499 

be won or lost) and their probability (50). Models of decision-making designed to explain 500 

behavior in this kind of paradigms frequently assume that probability and payoffs are 501 

processed individually. For instance, in prospect theory and its extensions, different 502 

subjective weighting functions are supposed to apply to these variables (51–53, 14, 54). 503 

A separate representation of payoffs and probabilities is also assumed by models that do 504 

not suppose the calculation of a multiplicative expected utility (55) and by models 505 

supposing that decisions are underpinned by feature-by-feature comparisons (56–60). 506 

On the contrary, experience-based choices, as instantiated by simple reinforcement 507 

learning tasks, are usually modeled assuming that the decision-makers represents a 508 

unique numeric value for each state-action pair. The decision-maker can ‘look-up’ in this 509 

value matrix before making their choice and, once an outcome is obtained it partially 510 

overwrites the ‘cached’ values previously stored in memory, so that they approximate the 511 

average outcome (61). Option value representation is therefore structurally very different 512 
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from that of description-based choices, because the relevant features (payoffs and 513 

probabilities) are never explicitly represented as separate attributes of the outcomes. 514 

Furthermore, some authors even suggest that reinforcement-based choices may bypass 515 

the calculation of reward-based option-specific values, and is underpinned by what is 516 

called direct policy learning (62–65). Our results seem to reject an extremely orthodox 517 

interpretation of direct policy learning (accuracy in the learning phase was sensitive to the 518 

value difference between options and experiential values were successfully generalized 519 

to new combinations). It is nonetheless plausible to conceive that - at least to some extent 520 

- reinforcement-based decisions involve a value-free (policy-based) component that can 521 

be hardly compared with the subjective extracted from explicit payoffs and probabilities. 522 

Functional neuroimaging investigations of experiential and symbolic decision-making 523 

may also shed light on the debate about value representation across modalities. While 524 

functional meta-analyses identified overlapping correlates of experiential and symbolic 525 

values (17–20), the putative neural mechanisms of reinforcement-based and description-526 

based decisions differ in many crucial respects. First of all, the most influential and 527 

consensual neural models of reinforcement-based leaning and decision-making give a 528 

preponderant role to dopamine-induced neural plasticity circuits (66–68). More 529 

specifically dopamine-dependent plasticity is supposed to drive action selection by 530 

shaping the strength of the synapses between the frontal cortex and the basal ganglia 531 

(69, 70). Current neural models do not attribute to dopamine-driven processes and the 532 

basal ganglia a prominent role in description-based choices. Rather, they suppose that 533 

the decision process is solved by cortical circuits (71–74), following an evidence 534 

accumulation process similar to that observed for perceptual decisions (75, 76).  Thus, 535 

structural differences in the neural mechanisms of choices across modalities may 536 

represent a biologically grounded bases of the representational difference between 537 

experiential and symbolic values.     538 

The representational tension of hybrid choices is solved by participants by neglecting the 539 

experiential values and basing their choices on the symbolic value. Several control 540 

analyses allowed us to formally exclude the possibility that this effect merely arise from 541 

insufficient knowledge of the experiential values. Why is the symbolic information 542 

preferred? We suggest two not-mutually exclusive explanations. One possibility is that 543 
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experiential value estimates are perceived as less precise. Note here that precision 544 

represents the uncertainty about the value estimate itself (48). Indeed, assuming 545 

imperfect memory storage and retrieval, it is conceivable that experiential values are less 546 

precise compared to symbolic ones that can be perfectly calculated (77). According to 547 

this interpretation, participants would quasi-systemically prioritize the more precise 548 

source of information for their choices (47, 48, 78). Another possibility is that participants 549 

prefer discarding experiential information not to incur the cost associated with the cost of 550 

memory retrieval (79, 80). Reaction times analysis was overall consistent with this idea, 551 

because choices involving the processing of the experiential values were generally slower 552 

compared to those involving symbolic ones, even if balanced in objective difficulty (49). 553 

This latter interpretation leaves open the possibility that if one makes memory retrieval 554 

less costly, the behavioral pattern could be reversed (i.e., we would witness symbolic 555 

value neglect). This could be possible for example after extensive training, once 556 

experience-based choices are routinized (81) or, conversely, by making symbolic 557 

information harder to decode. These are interesting possibilities to be explored by future 558 

studies.  559 

Finally, we speculate on the possible cognitive mechanisms underlying the experiential 560 

value neglect phenomenon and we identify two plausible candidates. The first mechanism 561 

involves ‘bottom-up’ attentional processes. It is well-documented that attentional focus 562 

biases evidence accumulation in value based decision-making (82, 83). It is therefore 563 

conceivable that an attentional bias toward symbolic options may result in prioritizing 564 

described information and neglecting experiential one. The second possible mechanism 565 

involves a ‘top-down’ heuristic process, according to which the calculation of individual 566 

option values is hijacked by a deterministic decision rules (44). Of note, even if we 567 

managed to demonstrate experiential value neglect in situations where it is 568 

disadvantageous (experiment 7), it can nonetheless be argued that this decision rule is 569 

overall adaptive, because computationally cheap and satisfying in most situations (see 570 

experiments 1-6).  571 

To conclude, our results  add to the collection of behavioral anomalies showing that 572 

values representations are inherently dependent on the way they are built, as it is 573 
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postulated by the ‘construction of preference’ framework (84, 14, 85). More specifically, 574 

our findings pose serious challenges to the default assumption that values 575 

representations are shared across different decision-making modalities, traditionally 576 

referred to as experience- and description-based. The incommensurability between 577 

experiential and symbolic values results in behaving as if discarding acquired information 578 

and consequently entails suboptimal decisions. These findings are worth exploring 579 

outside the experimental setting because many real-life decisions involve a tension 580 

between an experiential and a symbolic component.  581 

  582 
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 795 

Methods and supplementary results  796 

In this document we present the methods, as well as some additional results, including 797 

those issued from an experiment (Exp. 8), which is only briefly mentioned in the main text.  798 

Experimental participants 799 

In total, we tested 787 participants (430 females; aged 31.09±10.42 years) distributed 800 

across seven experiments. Participants were recruited via Prolific, a platform dedicated 801 

to online research participants recruitment (https://prolific.co/). To assess participants’ 802 

engagement in the different tasks and their understanding of probability representation, 803 

we inserted catch trials consisting in choices between two lotteries (S-options), with one 804 

of the two cues being obviously better in terms of expected value maximization. In all 805 

analyses we only retained the participants displaying 100% of correct choices in these 806 

catch trials. In total 599 participants were included. Experiment 1 to 7 included the 807 

following numbers of participants: 76,71, 83, 88, 71, 66, 71, 73 (see Table 1). Of note, 808 

none of the results presented in the main or supplemental text was affected by the 809 

exclusion of the participants.  810 
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 811 

Table S1. Experiments parameters. The ‘Exp.’ column refers to the experiment number. The ‘Outcome (LE)’ column refers to the 812 

outcomes displayed during a single LE phase trial. The column can take two values: partial (only obtained outcome) or complete (both 813 

obtained and forgone outcomes). The ‘Structure (LE)’ column refers to how the presentation of the options (or decision problems) was 814 

organized in the LE phase. ‘Blocked’ correspond to the case in which all trials belonging to a given option pair are presented in a row.  815 

Otherwise, when options pairs are distributed randomly, the value is set to ‘interleaved’. The ‘Decision problems (LE)’ column refers 816 

to the number of option pairs presented in the LE phase. The ‘Phases’ column, refers to the specific phases present in a part icular 817 

experiment. ‘LE’ refers to the learning phase. ‘ES’ stands for Experiential-Symbolic phase. ‘EE’ stands for Experiential-Experiential 818 

phase (performed after learning with no feedback). ‘SP’ stands for Stated Probability phase. ‘EA/SA’ stands for Experiential-819 

Ambiguous and Symbolic-Ambiguous.  The ‘Sessions’ column provides the number of sessions, i.e., how many times we repeated 820 

the sequence of phases with a different set of E-options. The ‘N’ column refers to the number of participants included in the experiment 821 

after exclusion of those displaying >100% correct response rate in the ES catch trials.   822 

The research was carried out following the principles and guidelines for experiments 823 

including human participants provided in the declaration of Helsinki (1964, revised in 824 

2013). The INSERM Ethical Committee approved the study and participants provided 825 

written informed consent prior to their inclusion. To sustain motivation throughout the 826 

experiment, the tasks were economically incentivized. Specifically, in addition to a show-827 

up fee, participants were initially endowed with £2.5, and according to their choices, they 828 

could reach a maximum £5. The conversation rate was around 1pt = 1 cent and they were 829 

explained that all points won across the different phases were summed up. The average 830 

final bonus was £4.05 ± 0.72, which was significantly higher compared to what they would 831 

have got in average following random choices (T(615) = 52.58, P < 0.001).  832 

Behavioral protocol 833 
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The different experiments were conducted on a website programmed in javascript, html 834 

and css (code: https://github.com/bsgarcia/RetrieveAndCompare, testing: https://human-835 

rl.scicog.fr/RandCTesting). 836 

 837 

Initial learning phase (LE phase) 838 

Participants first performed a probabilistic instrumental learning task (LE). Participants 839 

were provided with written instructions explaining that the aim of the task was to maximize 840 

their payoff by seeking monetary rewards and avoiding monetary losses. From 841 

experiment 1 to 5, participants performed only one learning session. Experiment 6, 7 and 842 

8 for their part include 2 learning sessions. From experiment 1 to 7, each learning session 843 

contained four pairs of experiential cues (E-options), apart from experiment 4, which 844 

contained 2 (but featured proportionally twice more trials). Each pair was fixed, so that a 845 

given cue was always presented against the same other cue. Thus, within learning 846 

sessions, pairs of cues represented stable choice contexts. Within each pair, the two cues 847 

were associated to two outcomes; either winning a point (+1) either losing one (-1). The 848 

four (two in experiment 4) cue pairs corresponded to four contexts of varying difficulty, 849 

indexed by the difference in the probability of winning a point between the two cues. On 850 

each trial, one pair was randomly presented with one cue on the right and the other on 851 

left side of the screen. Participants were required to select, without time-limit, between 852 

the two cues by left-clicking. After the choice, the selected cue was highlighted with a 853 

black border while a transition effect was activated. The transition effect lasted 854 

approximately 1000 ms and revealed the outcome of the choice. The outcome was then 855 

displayed during approximately 1500 ms.  In experiments 1, 2, 3, 5, 6 and 7, the four pair 856 

of cues were presented 30 times each, for a total of 120 trials within sessions. In 857 

experiment 4, the two pairs were presented 60 times each, to maintain an identical 858 

number of trials. In experiment 1, pairs of cues were presented in an interleaved manner, 859 

meaning they were distributed randomly across the 120 trials. From experiment 2 to 7, 860 

pairs were presented in a blocked manner, meaning they were stacked in sequences of 861 

30 choices.  862 
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Regarding feedback, there were two settings: partial and complete. A partial feedback 863 

setting implied that only the outcome of the chosen option (or cue) was displayed, while 864 

complete feedback means that both outcomes were displayed, regardless of the choice. 865 

Experiment 1 and 2 involved partial feedback. From experiment 3 on, feedback was set 866 

to complete. 867 

Hybrid choices between experiential and symbolic values (ES phase) 868 

This phase is present in all the experiments. 869 

After the LE phase, E-options were presented against symbolic cues (S-options). S-870 

options were implemented as pie-charts, where the green part indicates the probability to 871 

win a point, and the red part indicates the probability to lose a point.  Each E-option (8) 872 

involved in the LE phase was presented against 11 S-options (for a total of 88 trials), with 873 

probability of winning (and respectively loosing) a point ranging from 0% to 100%, with a 874 

10% step.  On each trial, one pair was randomly presented with one cue on right and left 875 

side of the screen. Participants were required to select, without time-limit, between the 876 

two cues by left-clicking. After the choice, the selected cue was highlighted with a black 877 

border and the transition to the next trial, lasted approximately 1000 ms. No feedback 878 

was presented during the ES phase. Participants were informed about their earnings only 879 

at the end.   880 

Although the outcome was not displayed, participants were told that this phase was still 881 

incentivized, such that choice accuracy affected their bonus compensation. 882 

Assessing generalization of experiential values (EE phase) 883 

This phase is present in Experiment 5 to 8. After the LE phase, each E-option was 884 

presented against other E-options. With 8 cues presented in the LE phase, it follows that 885 

each E-option was presented against the other 7 E-options, so that this phase contained 886 

56 trials. EE choices were presented in the same time as the ES choices, because we 887 

wanted to avoid having them differ in terms of time elapsed since the LE phase. Thus, 888 

technically the EE and the ES phases overlap.  889 
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For each trial, one pair was randomly presented with one cue on the right and left sides 890 

of the screen. Participants were required to select, without time-limit, between the two 891 

cues by left-clicking. After the choice, the selected cue was highlighted with a black border 892 

and the transition to the next trial, lasted approximately 1000 ms. The transition effect 893 

lasted approximately 1000 ms and leave place for the next trial. No feedback was 894 

presented.  895 

Although the outcome was not displayed, participants were told that they could still win 896 

(and lose) points during this phase, this phase was still incentivized, such that choice 897 

accuracy affected their bonus compensation. 898 

 899 

 900 

 901 

Stated Probability assessment (SP phase) 902 

In all experiments, participants were asked, for each E-option previously faced in the LE 903 

phase, the following question «What are the odds this symbol gives a +1?». They had to 904 

provide their answer on rating-scale, going from 0% to 100% with a 5% step.  905 

Answers were incentivized via a matching probability procedure that is based on the 906 

Matching Probability Mechanism (29). More precisely, participant chose a probability (p) 907 

for the presented E-option.  A number (r) is then randomly drawn in the interval [0 1]. If p 908 

> r, the outcome of the choice was obtained using the E-option probability of winning and 909 

losing a point (as-if the E-option was chosen in the LE phase for instance). Otherwise, if 910 

p < r, the participant has r (%) chance of winning a point, and respectively 1-r (%) chance 911 

of losing a point.   912 

In other words, the higher the response (p) of the participant, the higher the chances were 913 

the outcome would be determined by the E-option. Conversely, the lower the response 914 

(p), the higher the chances were that the outcome would be determined by the random 915 

lottery number (r). 916 
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Ambiguity assessment  917 

Preference towards ambiguous lotteries was assessed only in Experiment 8. After the LE 918 

phase, E-options as well as S-options were presented against an ambiguous cue. This 919 

ambiguous cue was represented by a greyed pie-chart, with a question mark on top. 920 

Consequently, it was represented similarly to S-options, i.e., as a lottery, which was 921 

however 100% ambiguous in the sense that it conveys no a priori information regarding 922 

probabilities of gains or losses (see Figure S1).  Each E-option (8) and S-options (8), 923 

were presented against this ambiguous cue two times, resulting in a total of 32 trials. For 924 

each trial, one pair was randomly presented with one cue on the right and left sides of the 925 

screen. Participants were required to select, without time-limit, between the two cues by 926 

left-clicking. After the choice, the selected cue was highlighted with a black border while 927 

a transition effect was activated. The transition effect lasted approximately 1000 ms and 928 

left room for the next trial. No feedback was presented.  929 

Although the outcome was not displayed, participants were told that they still could win 930 

(and lose) points during this phase, and that correct choices (i.e., choices maximizing 931 

expected value) and wrong choices would thus affect their bonus compensation. 932 

Statistical and computational modeling 933 

Inferential statistics  934 

All t-tests were realized using Python 3.9 and the pairwise_ttests function from the 935 

pingouin library. Bonferroni's corrections were applied systematically. Linear regressions 936 

were realized using Matlab R2020a fitlm function.  937 

E-option probabilities inference in ES and EE phases  938 

To infer a probability estimate (or indifference point) for each E-option from EE and ES 939 

choices we proceeded as follows. In those phases, an E-option was assessed relatively 940 

to other cues (either S-options, either other E-options). In the ES phase 11 S-options were 941 

presented against each E-option. In the EE phase 7 E-options were presented against 942 

each E-option. Choosing the E-option that was currently assessed is always coded as 1, 943 
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whereas choosing the cue presented against (an S-option in ES, or an E-option in EE) is 944 

always coded as 0.   945 

We note 𝑐𝑖
𝑡 ∈ {0, 1} the choice of a participant 𝑖 at trial 𝑡. Thus, for each E-option 𝑗 we 946 

obtain a vector of choices 𝐶𝑖
𝑗

= (𝑐𝑖
1, 𝑐𝑖

2, 𝑐𝑖
3, … 𝑐𝑖

𝑛) , with 𝑛 = 11 in the ES phase, and 𝑛 = 7 947 

in the EE phase. We then fit the following logistic function (86, 87): 948 

𝑓(𝐶𝑖
𝑗
) =

1

1 + 𝑒𝛽𝑖(𝐶
𝑖
𝑗
−𝜆

𝑖
𝑗
)
 949 

With  𝛽𝑖 > 0 (which controls the slope of the function) being a free parameter unique to 950 

each individual 𝑖, while 𝜆𝑖 
𝑗

∈ [0, 1] (the function midpoint) is a free parameter that is 951 

estimated for each E-option 𝑗 and individual 𝑖. The indifference point 𝜆𝑖
𝑗
 represents here 952 

the probability where a preference shift (from one cue to another) occurs, and is thus a 953 

subjective probability (or value) estimate for the E-option 𝑗 and participant 𝑖. Both 954 

parameters were estimated through minimum negative log-likelihood estimation, using 955 

matlab’s fmincon function.  956 

Inferring E-option value estimated in the LE phase 957 

To infer E-option values in the learning (LE) phase, we fitted a reinforcement learning 958 

model (or Q-learning model) to our data (31, 77). 959 

The model treats each pair of cues as a state 𝑠. After a choice, each cue subjective 960 

probability of winning a point (𝑝𝑤𝑖𝑛) was incrementally updated with the following 961 

Rescorla-Wagner rule:  962 

𝑝𝑤𝑖𝑛(𝑠, 𝑐) ← 𝑝𝑤𝑖𝑛(𝑠, 𝑐) +  𝛼𝛿𝑐 963 

𝑝𝑤𝑖𝑛(𝑠, 𝑢) ← 𝑝𝑤𝑖𝑛(𝑠, 𝑢) +  𝛼𝛿𝑢 964 

Where 𝛼 is the learning rate (which controls to what extent new information overrides 965 

previous one) for the chosen cue (𝑐)  as well as the unchosen cue (𝑢). The associated 966 

prediction errors 𝛿𝑐   and 𝛿𝑢 are computed as follows: 967 

𝛿𝑐 = 𝑅𝑐 − 𝑝𝑤𝑖𝑛(𝑠, 𝑐) 968 
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𝛿𝑢 = 𝑅𝑢 − 𝑝𝑤𝑖𝑛(𝑠, 𝑢) 969 

Where 𝑅𝑐 and 𝑅𝑢 are the outcomes displayed for both chosen and unchosen cues. 𝑅𝑥 970 

took value of 1, when the outcome was +1pt, and 0 otherwise. Initial were set at 0.5 for 971 

all options. Please note that for experiments 1 and 2, where only 𝑅𝑐 was displayed (partial 972 

feedback setting) only 𝑝𝑤𝑖𝑛(𝑠, 𝑐) was updated. Decision was modeled using a softmax 973 

function, where the actual probability of choosing a cue 𝑎 when presented against a cue 974 

𝑏 was calculated as follows: 975 

𝑃(𝑠, 𝑎) =  
1

1 + 𝑒𝛽(𝑝𝑤𝑖𝑛(𝑠,𝑏)−𝑝𝑤𝑖𝑛(𝑠,𝑎))
 976 

With 𝛽 > 0 being the temperature parameter, that implements choice stochasticity. As 𝛽 977 

decreases, the events of choosing 𝑎 or 𝑏 tend to become equi-probable. As 𝛽 increases, 978 

the difference between 𝑝𝑤𝑖𝑛(𝑠, 𝑎) and 𝑝𝑤𝑖𝑛(𝑠, 𝑏) is amplified, and the choice becomes 979 

more and more deterministic (until the function almost acts as an argmax policy).  980 

Model fitting 981 

Learning rate and temperature parameters (here denoted 𝜃) involved in the reinforcement 982 

learning model were estimated by finding values that minimized the negative logarithm of 983 

the posterior probability over the free parameters (−𝑙𝑜𝑔 (𝑃(𝜃|𝐷)), which was computed 984 

as follows: 985 

− 𝑙𝑜𝑔  (𝑃(𝜃|𝐷 ))  ∝ − 𝑙𝑜𝑔  (𝑃(𝐷|𝜃))  − 𝑙𝑜𝑔 (𝑃(𝜃)) 986 

Where  𝑃(𝐷|𝜃) is likelihood of the data (i.e., the observed choices during the LE phase) 987 

given certain parameter values, and 𝑃(𝜃) is the prior probability of those parameter 988 

values.  989 

The prior probability distribution over the learning rates was assumed as beta distributed 990 

and quasi-uniform (betapdf(1.1, 1.1)). The softmax temperature was for its part assumed 991 

to be gamma distributed (gampdf(1.2, 5)).  992 

The optimization procedure was again performed using Matlab’s fmincon function and 993 

previously described in Lebreton et al., 2019.  994 
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Parameter and choice recovery in EE and ES phases 995 

To quantify and statistically compare the differences in preferences observed in the ES 996 

and EE phase, we estimated for each E-option its theoretical subjective value (expressed 997 

in terms of probability of winning a point). This value is itself inferred in term of indifference 998 

points. For instance, in ES choices, one E-option with 80% chance of winning will be 999 

compared to range of S-options (going from 0% to 100% chance of winning a point). The 1000 

indifference point for the E-option considered is then the S-option value at which a 1001 

preference shift occurs between the two kinds of options (let’s say, when the S-option is 1002 

above 80%, considering the decision-maker is rational). To infer those indifference points, 1003 

we fitted a logistic function to each subject choice history for each E-options in both EE 1004 

and ES phases (see the methods section). We treated these indifference points as 1005 

proxies for subjective values, i.e., E-option value estimates (or probability estimates, as 1006 

in the numerical space considered they are equivalent). 1007 

To assert that this fitting procedure is robust, and that we do not elicit random subjective 1008 

values, we followed a parameter recovery procedure (89). 1009 

We simulated EE and ES choices based on the (EE and ES) E-option value estimated 1010 

from experiment 1 to 6.   1011 

More precisely, for each subject, we simulated an agent going through its choice history, 1012 

and we used the 8 inferred estimates (one for each E-option, each subject having its own 1013 

8 indifferent points) to simulate new choices. 1014 

We generate these choices using an argmax decision rule, meaning that the agent 1015 

systematically selects the option with the highest value. Of note, in the simulated ES 1016 

phase, we do not suppose any subjective deformation regarding S-options, such that the 1017 

agent is directly informed of the objective expected-value to make its decision.  1018 

At this point of the procedure, simulated choices can be compared to choices from 1019 

behavioral data.  By doing so, we can see how well they match, and therefore whether 1020 

our value estimates allow us to correctly recover the choices actually made by our 1021 

participants. EE choices are recovered up to 83%, whereas ES choices are almost 1022 
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perfectly recovered, with a score of 96%. The fact that EE choices are less recovered is 1023 

not surprising, as the E-option estimates results from the comparison of one option 1024 

against 7 others, when in the ES phase an E-option is presented against a wider range 1025 

of alternative options (11), hence allowing better precision in the fitting of E-option value 1026 

estimates. 1027 

We then generate new E-option value estimates, by applying our initial logistic fitting 1028 

procedure (see methods section) to this newly simulated data. We observe that E-option 1029 

value estimates are almost perfectly recovered, both in the ES (Fig. S2) and EE (Fig. S3) 1030 

phase, with a spearman 𝜌 that is systematically higher than .97. 1031 

.  1032 

Fig. S2 Recovery of E-option estimated probabilities in Experiments 1-to-6, ES phase. We estimate 8 E-option 1033 

value for each subject in the ES phase. Thereafter, going through each individual choice history, we simulate a new 1034 

choice dataset using these value estimates as an input for an argmax decision rule. We apply our logistic fitting 1035 

procedure again (see the methods section) on this simulated data, to generate new estimates.  Then we run a spearman 1036 

correlation to test the relationship between the estimates from the behavioral data and the estimates from the simulated 1037 

data. The grey dotted line corresponds to a perfect recovery of E-option probability estimates. 1038 

 1039 

 1040 
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 1041 

Fig S3. Recovery of E-option estimated probabilities in Experiments 1-to-6, EE phase. We estimate 8 E-option 1042 

value for each subject in the EE phase. Thereafter, going through each individual choice history, we simulate a new 1043 

choice dataset using these value estimates as input for an argmax decision rule. We apply our logistic fitting procedure 1044 

again (see the methods section) on this simulated data, to generate new estimates.  Then we run a spearman 1045 

correlation to test the relationship between the estimates from the behavioral data and the estimates from the simulated 1046 

data. The grey dotted line corresponds to a perfect recovery of E-option probability estimates. 1047 

  1048 
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Supplementary results   1049 

Experiment 8  1050 

We devised Experiment 8 to test whether the behavioral pattern observed in the 1051 

Experiential-Symbolic phase was the result of ambiguity aversion (47), i.e. that the 1052 

participant have a preference for options with known probability distributions over option 1053 

with unknown probability distributions. In other words, participants would neglect 1054 

experiential expected-values estimated during the LE phase because they are reluctant 1055 

toward ambiguous options (E-options) and consequently mainly rely on options actually 1056 

providing full probabilistic information (S-options).  1057 

Thus, we presented each E-option (Fig. S1A: top) and S-option (Fig. S1A: bottom) 1058 

against one ambiguous option (A-option), represented by a greyed pie-chart which 1059 

conveyed no a priori information. Interestingly, the indifference point inferred for the A-1060 

option was close to 50% (both when the A-option is presented against E- and A-options). 1061 

It suggests that without a priori information, participants associate a 50% subjective 1062 

probability of winning a point to the A-option. When presented against E-options (Fig. 1063 

S1B: top), the A-option is preferred against E-option which probability of winning a point 1064 

is inferior to 50%, which suggests that those options are remembered as giving a negative 1065 

expected-value. The preference is reversed when the E-option probability is above 50%, 1066 

showing that participants associate those options to positive expected-values. When 1067 

presented against S-options (Fig. S1B: bottom)  1068 

Of note, E-options cannot be conflated with A-options for two reasons. First, when 1069 

presented against A-options, E-options choice frequency increases monotonically with 1070 

their associated objective probabilities. This result suggests that E-options are robustly 1071 

linked to past outcome information, when it comes to comparing them to ambiguous 1072 

stimuli.  1073 

Second, the experiential neglect pattern cannot be the result of pure ambiguity aversion, 1074 

as E-options are in average preferred against S-options when the latter has a negative 1075 

expected-value, regardless of the E-option value. It suggests that this preference for 1076 
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known risks only holds in the gain domain, which excludes a pure preference toward 1077 

known risks, i.e., a pure ambiguity aversion. 1078 

 1079 

Fig. S1 Raw behavioral results and inferred option values in Experiments 8.  (A) The topmost panel 1080 

displays successive screens of a typical trial in the Experiential-Ambiguous (EA) phase. The bottommost 1081 

panel displays successive screens of a typical trials in the Symbolic-Ambiguous (SA) phase. The EA-phase 1082 

consists in binary choices between a symbol previous encountered in the LE-phase, and an ambiguous 1083 

lottery (materialized as greyed pie-chart with a question mark on top). The SA-phase consists in binary 1084 

choices between an explicit lottery (materialized as a pie-chart partly green for gain probabilities, and partly 1085 

red for loss probabilities) and an ambiguous lottery (materialized as greyed pie-chart with a question mark 1086 

on top).  (B) Average probability of choosing an ambiguous option (A-option) over a E-option (top) or an S-1087 

option (bottom) during the ambiguity phase. Dots represent the empirical choice frequency of the A-option. 1088 

The largest dot at the intersection of the grey dotted line represents the indifference point, i.e., when the 1089 

subject chooses randomly between the two options. The error bars represent the standard error of the 1090 

mean. (C) Comparison of individual inferred slopes obtained from linear fit in three modalities (LE, ES and 1091 

EE in blue, orange and green, respectively). The black lines represent mean and standard error of the 1092 

mean. The colored boxes represent 95% confidence interval. The shaded area represents the probability 1093 

density function. ***p<0.001 paired sample t-tests. 1094 

 1095 

Of note, introducing A-options among the other post-learning assessments did not affect 1096 

the previously observed relation in inferred slopes (Fig. S1C). LE-inferred slopes were 1097 

consistently significantly higher than ES slopes (Exp. 8.1: T(72)=13.05, P < 0.001; Exp 1098 
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8.2: T(72)=10.41, P < 0.001) as well as EE slopes (Exp. 8.1: T(72)=5.9, P < 0.001; Exp 1099 

8.2: T(72)=6.38, P < 0.001). EE-inferred slopes for their part were systematically higher 1100 

than ES slopes (Exp. 8.1: T(72)=5.78, P < 0.001; Exp 8.2: T(72)=4.61, P < 0.001). 1101 

Slope comparison among Experiments 5-to-8.  1102 

From experiments 5-to-8 (Fig. S4), LE slopes were consistently and significantly higher 1103 

than ES slopes (Exp. 5: T(70)=12.94, P<0.001; Exp. 6.2: T(65)=10.59, P<0.001; Exp. 1104 

7.2: T(70)=14.4, P<0.001;Exp. 8.2: T(72)=10.41, P<0.001), EE slopes (Exp. 5: 1105 

T(70)=7.7, P<0.001; Exp. 6.2: T(65)=5.72, P<0.001; Exp. 7.2: T(70)=8.18, P<0.001;Exp. 1106 

8.2: T(72)=6.38, P<0.001), as well as SP (Exp. 5: T(70)=8.98, P<0.001; Exp. 6.2: 1107 

T(65)=6.18, P<0.001; Exp. 7.2: T(70)=10.88, P<0.001;Exp. 8.2: T(72)=7.71, P<0.001).  1108 

The EE slopes were the second closest to 1, i.e., the second closest to E-option objective 1109 

values. They are consistently higher than ES slopes (Exp. 5: T(70)=4.48, P<0.001; Exp. 1110 

6.2: T(65)=4.84, P<0.001; Exp. 7.2: T(70)=7.77, P<0.001;Exp. 8.2: T(72)=4.61, 1111 

P<0.001), however they are most of the time not significantly different from SP slopes 1112 

(Exp. 5: T(70)=1.75, P=1; Exp. 6.2: T(65)=1.12, P=1; Exp. 7.2: T(70)=3.3, P<0.05;Exp. 1113 

8.2: T(72)=1.12, P=1). SP slopes for their part, are systematically higher than ES slopes 1114 

(Exp. 5: T(70)=4.05, P<0.01; Exp. 6.2: T(65)=5.34, P<0.001; Exp. 7.2: T(70)=4.8, 1115 

P<0.001;Exp. 8.2: T(72)=4.62, P<0.001),   designating the ES values as the lowest 1116 

slopes and the closest to 0. 1117 

 1118 

 1119 
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Fig S4. Inferred option values in Experiments 5-to-8. Comparison of individual inferred slopes obtained 1120 
from linear fit in the 4 modalities (LE, ES, EE and SP in blue, orange, green and purple, respectively). The 1121 
black lines represent mean and standard error of the mean. The colored boxes represent 95% confidence 1122 
interval. The shaded area represents the probability density function. ***p<0.001 paired sample t-tests.  1123 

 1124 

Choice profiling among Experiment 1-to-8 1125 

We classified ES-choices in different categories as a function of being explained 1126 

exclusively either by a full E-value neglect, by E-option estimates elicited in the LE phase, 1127 

by both, or finally by none of them (Fig. S5).   1128 

In order to do so, we ran two simulations for each experiment.  1129 

In the first simulation, for each subject, we simulate an agent that is confronted with the 1130 

history of decision problems that the real subject was facing. This artificial agent makes 1131 

decisions according to the following experiential neglect decision rule: If the S-option is 1132 

above 50% chance of winning a point, choose the S-option, otherwise choose the E-1133 

option.  This behavior is what we name experiential neglect, because the values of the E-1134 

options are not even considered by the decision-maker.  1135 

In the second simulation, we also simulate an agent that is confronted with the history of 1136 

decision problems that the real subject was facing. However, this agent has access to the 1137 

E-option value estimates (specific to the subject in question) that were inferred from the 1138 

LE-phase through our Q-learning model fitting procedure (see methods).  We do not 1139 

assume any deformation regarding the perception of S-option probabilities and rewards. 1140 

Consequently, we assume that the agent uses an argmax rule (i.e., systematically 1141 

choosing the highest value), to decide between the (subjective) E-option estimates and 1142 

the S-option objective expected-value.  1143 

With this simulated choice dataset, we can compute the proportion of choices from our 1144 

behavioral data that match with each simulation.   1145 

We observe that most of the choices can be both explained by LE estimates and the 1146 

extreme experiential neglect decision rule (see main text). Yet, the number of choices 1147 
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exclusively explained (or predicted) by the experiential neglect rule is significantly higher 1148 

than the number of choices explained by LE estimates (T(598)=13.87, P<0.001). 1149 

Of note, the Exp. 7, due to its particular configuration of probabilities among E- and S-1150 

options, seemingly allows to discriminate better between the two decision models, as the 1151 

number of choices explained by both decision rules.  1152 

 1153 

Fig S5.  Choices prediction from Experiments 1-to-8. We run 2 simulations. In the first one, we assume 1154 
that all participants make use of an experiential neglect decision rule, which basically consists in choosing 1155 
the S-option as long as it is higher than 50% chance of winning a point, and otherwise choose the E-option. 1156 
The second one consists in simulating all choices while assuming that participants use experiential values 1157 
from the LE phase (i.e., the ones we inferred through our Q-learning model), therefore “LE estimates”. 1158 
Thereafter we compute the proportion of choices that are explained by each simulation, i.e., the proportion 1159 
of behavioral choice that are identical to simulated choices. Choices explained by experiential neglect are 1160 
in red. Choices explained by inferred experiential values from the LE phase are in dark blue. Choices 1161 
explained by both experiential values and experiential neglect are in grey. Choices explained by none of 1162 
them are in black. 1163 

 1164 

1165 
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Entre le phénomène scientifique et le noumène scientifique,

il ne s’agit donc plus d’une dialectique lointaine et oisive,

mais d’un mouvement alternatif qui, après quelques recti-

fications des projets, tend toujours à une réalisation effec-

tive du noumène. Elle renforce ce qui transparaît derrière

ce qui apparaît. Elle s’instruit par ce qu’elle construit.

Gaston Bachelard, Le Nouvel Esprit Scientifique, 1934

6
Discussion

In chapter 1, we saw that utility models of economic decisions derive from the will to quantify eco-

nomic value. The ontology of value (i.e. its modalities of existence) as well as its epistemology (i.e.

how to study it) have varied over time. At first its conception was materialist and objective. The la-

bor theory value thus presupposes that economic value is embodied in a good. Subsequently, sub-

jective conceptions of value (utility) were imposed in the academic field, notably via neoclassical

theories. The axiomatic utility model was gradually stripped of all psychological considerations.

When these axioms were refuted on empirical grounds, a battle ensued over the normative model

to be used to describe economic decisions. Some defend an approach based on subjective and em-

pirically characterized (and possibly neurally implemented) models of value (prospect theory for
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instance). These models are mostly rooted in the description paradigm, i.e. the probabilities and

rewards of options are described a priori. This way of operationalizing the decision stems from

the assumptions of rationality, notably the assumptions that economics agent have access to full

information. Other researchers consider that the heuristics and value-free approaches are more

appropriate, as rationality is bounded and ecological. They argue that heuristics allow to make

efficient decisions in complex and information lacking environments.

In chapter 2, we saw that RL models emerged within the paradigm of classical conditioning. Be-

haviorists considered that psychological phenomena should be reduced to a behavioral output-

input model, and were mostly focused on animal learning. However, a more cognitivist approach

developed when computational models of classical conditioning were applied to human decision-

making. The experience paradigm of decision-making was greatly inspired by animal learning.

Notably, humans are confronted to multi-armed bandit task where information is lacking, and the

contingencies of their actions are learned through trial-and-error. The value-functions, the deci-

sion rules, as well as their parameters, took an important role in modeling and describing human

learning and decisions. Also, the field of value-based decision making definitely established itself

when evidences for material translations of RL components (e.g. prediction-error) were found in

the brain. On this basis, the neural common currency hypothesis emerged. It specifies that there

exists a dedicated cortical circuit for valuation, which allows the comparison of items that fun-

damentally differ in nature through a common neural representation. Afterwards, the two-step

model (unified valuation of options, then selection of the option maximizing expected value) of

value-based decision making became more and more dominant. In the mean time, and for the

sake of parsimony (i.e. not invoking the value construct), other scholars have fostered alternative

pathways to describe human decisions, notably via policy models (e.g. policy gradient learning).

In chapter 3, we saw that the meeting of the description and experience paradigms resulted in

behavioral discrepancies, also known as the description-experience gap. More precisely, the sub-
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jective valuation of described and experienced probabilities and outcomes seemingly differs. We

discussed the literature on the possible determinants of this behavioral gap.

In chapter 4, we studied the implications of the description-experience gap for cross-species studies

of decision under uncertainty. We concluded that the rhesus monkey only constitutes a partial

model of human decision-making under uncertainty. Indeed, in the description domain, when

humans are typically risk-averse in gains and risk-seeking in losses, monkeys often display op-

posite preferences. However, in the experience domain, humans and monkeys display similar

risk-attitudes. One explanation could be that, when description-based studies in monkeys require

learning a symbolic system from scratch, in humans the meaning of risk is provided by language.

As a result, monkeys are located in a mixed paradigm (i.e. ’description + experience’), where they

have to learn symbolic options through trial-and-error, i.e. by experience. Additionally, we identi-

fied several methodological gaps (such as the nature of the reward, or the number of trials) which

might prevent from proper cross-species comparisons. We proposed further lines of enquiry that

could help reducing these gaps, and foster methodological overlaps between humans and nun-

human primates decision-making study.

In chapter 5, we tested in a human behavioral study, the degree of commensurability of experi-

ential versus symbolic options, and therefore how the description-experience gap is instantiated

in this kind of hybrid decisions. Actively learning subjective values through experience does not

entail the ability to properly compare those values to described symbolic ones. Despite subjects

displaying high performance during the learning phase, the comparison of experiential and sym-

bolic options are made almost regardless of the experiential values. We named this phenomenon

experiential neglect. With various controls, we made sure that subjects do not merely forget expe-

riential values. Thereafter, when presenting experiential options against each other, we observed

that estimates were more in line with objective values, showing that this phenomenon does not

result from an incapacity to extrapolate values to new decisions contexts. Moreover, even when
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significantly modifying the configuration of probabilities attributed to experiential and symbolic

options, subjects persist in the exact same behavior, despite that it comes at a significant economic

cost. For this reason, we suggested that experiential and symbolic values are not only constructed

and conveyed in two different ways, but also possibly rely on different representational systems.

However, this study presents several limitations. For instance, we aimed at testing (only behav-

iorally) the impact of the description-experience gap, and especially hybrid choices, on the tradi-

tional two-step model of decision making. This model specifies a unified valuation stage followed

by a choice stage. Consequently, we hypothesized that experiential and symbolic values are built

and retrieved in order to be further compared. Nevertheless, subjects’ behavior in this experiment

could be interpreted within a value-free framework as well, i.e. without assuming value computa-

tion, and therefore, value representations. Additionally, we have superficially considered the role

of ambiguity aversion in our results. In fact, the behavioral pattern observed in our subjects could

derive from both ambiguity aversion and experiential neglect.

In this discussion, we will address the various implications of the study presented in chapter 5,

with respect to the contemporary literature.

6.1 Experiential and symbolic

hybrid choices in previous literature

6.1.1 In monkeys

Heilbronner and Hayden (2016) presented hybrid choices between experienced and described op-

tions in monkeys. Three adult male rhesus macaques (labeled B, J, K), had to perform these hybrid

choices by comparing explicit lotteries represented by colored bars, to abstract experienced cues

(Fig. 6.1A).

In their task, they observed an overall preference for experienced options. Considering the entire
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A

B

B

A

C Exp. 1-8

Figure 6.1: Experiential and symbolic hybrid choices in monkeys. (A) Three adult male rhesus macaques (subjects
B, J, K), on each trial, had to chose between two options, a described and an experienced gamble, by shifting gaze
to it and maintaining that gaze for 200 ms. Experiential options were five emotionally neutral nature scenes. Each
scene corresponded to a win probability of respectively 20%, 35%, 50%, 65%, and 80%. Conversely described symbolic
options were divided into a red and a blue portion, and indicated the probability of respectively losing and winning.
Monkeys received water as a reward or punishment, respectively 250 µL or 0 µL. (B) Probability of choosing the
experiential option, according to probability of winning, presented against all symbolic options, for each monkey.
Dashed colored lines indicate results from each subject minus description-experience neutrality (gray dashed line).
(C) Probability of choosing the experiential option, according to probability of winning, presented against all symbolic
options. All experiments (except from 4 and 7, which experiential options had different win probabilities) were pooled.
Dashed colored lines indicate results from each subject minus description-experience neutrality (gray dashed line).
A and B are from Heilbronner and Hayden. 2016
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set of experiential options, monkeys chose the experienced over the range of described options

more than half the time as well (B: 65.01%, J: 62.58%, K: 58.06%). It has been previously shown that

humans prefer risky options to ambiguous ones (Curley et al., 1986; Einhorn and Hogarth, 1985)

as well as monkeys (Hayden et al., 2010). One could suggest that because experiential options are

more ambiguous they should be avoided. However, monkeys here displayed an opposite prefer-

ence. When taking each experiential cue individually and ranking them according to probability

of winning, we can observe a monotonic increase in their choice frequency coupled to a global

overestimation (Fig. 6.1B).

In contrast, our human subjects display no particular preference toward one modality over the

other. In fact, averaged over experiments 1-to-8 (with exp. 4 and 7 excluded, because they have

different options’ probabilities), subjects chose the experienced option precisely 50% of the time.

Also, experiential options were over selected in losses (i.e., when the option is below 50% chance of

winning a point) and under selected in gains (i.e., when the option is above 50% chance of winning

a point) (Fig. 6.1C).

What could explain this gap between species? Unlike humans, and as shown in chapter 4, mon-

keys are reliably risk-seeking (Heilbronner and Hayden, 2013; Xu and Kralik, 2014). This study

suggests that monkeys are even more risk-seeking for experienced cues. However, it is hard to

disentangle experience from description learning in monkeys, as all subjects had extensive prior

training (thousands of trials) to learn the symbolic system of described gambles, while the experi-

ential gambles were newly learned for the study. Thus, this prior training could explain why there

exists such a gap between species: value representations of experiential and symbolic options are

constructed in a similar way in monkeys. In addition, losses in monkeys are hard to implement

experimentally, and consequently a punishment consists in an absence of gains. This constraint

might result in a shift of the reference point, and therefore the absence of asymmetry between the

gain of loss domain, contrary to our task where our subjects displayed a kind of reflection effect.
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Consequently, this difference between species in the comparison of experiential against symbolic

options, calls for additional comparative studies. A way to make between species comparison

possible, would be to study the experienced gain domainmore precisely in humans. If the reference

point moves, and the reflection effect (i.e, the experiential neglect) pattern is maintained, then we

will be in the presence of a robust cross-species behavioral gap.

6.1.2 In humans

To our knowledge, FitzGerald et al. (2010) is the only human study using a behavioral paradigm

identical to ours. Seventeen subjects underwent an fMRI task, inwhich theymade choices between

three experiential cues (with probability of winning 10%, 50% and 90%) and nine symbolic cues

(with probability of winning 5%, 10%, 20%, 40%, 50%, 60%, 80%, 90%, and 95%). Symbolic cues

probabilities were described with pie-charts, when experiential cues were basic geometrical forms.

Subjects received a total of 160 trials of feedback per experiential cue.

Interestingly, when looking at indifference points between experiential and symbolic options, sub-

jects significantly overweighted the low probability experienced option (Fig. 6.2A ). On the other

hand, the 50% and 90% chance option were well estimated, with indifference points in line with

their objective values.

In our results, low probability experiential options were also overweighted, yet their high probabil-

ity counterpart were underweighted. A possible explanation, is then that our experiential neglect

emerges in order to cope with a saturation of working memory, or is due to sampling error. In-

deed, in our task (Fig. 6.2B), subject only experienced 30 trials per cue. However, in experiment 4,

we reduced the number of options to four, showed the feedback of both options, and doubled the

number of trials. Even by these standards, the experiential neglect pattern remained. Moreover,

subjects showed that they were able to rank the experiential options correctly when the latter were

pitted against each others. Further behavioral studies should investigate the minimal conditions

under which experiential options can be rationally assessed against symbolic ones.
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Figure 6.2: Experiential and symbolic hybrid choices in humans. (A) Indifference curves between an experiential
option of probability 0.1 (top), 0.2 (middle), 0.3 (bottom), and a range of symbolic options (p=0.05, 0.1, 0.2, 0.4, 0.5,
0.6, 0.8, 0.9, 0.95). The red dot represents the indifference points, while the blue dots presents the frequency for
choosing the experiential option. The green curve is a logistic fit. (B) Indifference curves plotted for our experiments
1-to-6 (excluding experiment 4). Eight experiential options (E-options; p=0.1, 0.2, 0.3, 0.4, 0.6, .7, 0.8, 0.9) are presented
against eleven symbolic options (S-options; p=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, .7, 0.8, 0.9, 1). (C) (Top) Mean parameter
estimates for activation in the ventromedial prefrontal cortex (vmPFC), medial orbito frontal cortex (mOFC) in red.
Mean parameters estimates for activation in left ventral putamen (LVP). Activity in the vmPFC/OFC was correlated
more strongly with the value of learned cues than described ones, whereas the left VP showed the opposite pattern.
Black bars indicate 95% confidence. (Bottom) Mean parameter estimates for activation in the anterior cingulate
cortex (ACC) in red. Mean parameters estimates for activation in left anterior insula (LAI). Activity in the ACC was
correlated more strongly with the value of learned cues than described ones, whereas the LAI showed the opposite
pattern. Black bars indicate 95% confidence.). A and C are from FitzGerald et al., 2010.
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Regarding the neural substrates involved (Fig. 6.2C), they found that vmPFC/OFC responded to

experiential value, which fits with previous literature (e.g. Schoenbaum and Roesch, 2005;Padoa-

Schioppa and Assad, 2006;Hare et al., 2008;Chib et al., 2009). Learned risk, i.e. the outcome vari-

ance, was correlated with the ACC.This phenomenon is also known as the expected risk hypothesis

(Brown and Braver, 2005, 2008). Distinct neural substrates were found for symbolically described

values. Notably, described risk was linked to the insula and described values were link to the ven-

tral putamen. These structures are usually not attributed a prominent role in description-based

choices (Padoa-Schioppa and Conen, 2017). Hence, these activations may be specific to hybrid

choices.

At the neural level, further research could consists in identifying the brain structures involved in

the processing of hybrid choices. For this we should uncover the regions involved in this kind

of choices via behavioral fMRI monitored task in humans and build computational models that

could account for these decisions. By relying on microscopic assessments and electrophysiogical

methods in monkeys, those models could be falsified and further refined.

6.2 General considerations on the idea

of a representational gap

We hypothesized that our experiential neglect pattern was due to different value representations,

and we discussed in chapter 5 the possible neural substrate underlying this process. The idea

that subjective representations of experienced and described values systematically differ is more

or more considered (e.g. Kellen et al., 2016). This representational gap that emerges from the

comparison of experiential and symbolic values, might be an instantiation at the individual level

of the description-experience gap observed at an aggregated level. Furthermore, this gap might be

located at several description levels, and possibly with interactions between them:
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• Neural level: Experiential and symbolic values might be implemented via different neural

substrates, and consequently recruit different cognitive processes and mental representa-

tions. In chapter 5, we discussed how working memory could be specific to the building and

retrieval of experiential values. Here we will explore this level by addressing the question

of relative valuation. In addition, we will discuss how policy learning questions the rele-

vance of postulating value representations, and therefore the traditional two-step model of

value-based decision making.

• Computational and action selection level: Regardless of the valuation process and its imple-

mentation, the representational gap could be located at a higher cognitive level. For instance,

our experiential neglect pattern could be caused by the hijacking of the action selection pro-

cess by an alternative (and possibly more appropriate) decision rule. For that matter we will

interpret our results through the lens of ambiguity aversion and heuristic decision-making.

• Elicitation level: It is possible that values are constructed at an even higher level of ab-

straction, namely in the process of elicitation. However, different elicitation methods often

result in systematically different responses. We will discuss how the violation of procedure

invariance might help understanding our results.

6.2.1 Are value representations relative?

In the last twenty-five years, a spectrum of neural and behavioral findings pointed out that valu-

ation might be performed in a relative way (or at least that values are neurally rescaled according

to the range of outcomes) in both description (Sugrue et al., 2004; Padoa-Schioppa, 2009) and ex-

perience domain, albeit particularly in experience (Tremblay and Schultz, 1999; Cromwell et al.,

2005; Palminteri et al., 2015; Klein et al., 2017; Bavard et al., 2018, 2021; Isoda, 2021; Palminteri and

Lebreton, 2021).

Indeed, in most daily life situations, decisions are contextual. For instance, choosing how to dress
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for a particular event will depend on the social context in which that event takes place. This prop-

erty of real-life decisions is well illustrated in perceptual decision-making (for reviews, see Bar,

2004; Schwartz et al., 2007). For example, in the classic Ebbinghaus illusion, two circles of similar

size are positioned near each other. Many larger circles are positioned around the central first

one, while smaller circles are surrounding the other. As a consequence, people often perceive

the circle surrounded by larger circles as smaller than the other one, suggesting that an object’s

subjective size perception is modulated by the properties of its surroundings, and more generally

is influenced by relative judgments.

In the RL literature, growing evidence suggests that learning is sensitive to contextual effect (e.g.,

Louie and De Martino, 2014; Palminteri et al., 2015; Bavard et al., 2018; Palminteri and Lebreton,

2021). This contextual learning has been identified to be generally located at two levels: reference-

dependence and range-adaptation.

Reference-dependence refers to the valuation of gains and losses relative to a temporal or spa-

tial reference point. The reference point is central to prospect theory (Tversky and Kahneman,

1979), as the reflection effect for instance, is articulated around it. For example, in loss-avoidance

contexts, an avoided-loss may become rewarding (i.e. a relative reward) if losses were the most

frequent outcome in the given context. In the experience domain, this reference-dependence has

been shown to improve learning in losses, yet at the cost of irrational preferences, as learned values

seemingly cannot be extrapolated to other decision problems (Bavard et al., 2018, 2021). Addition-

aly, reference-dependence has also been charaterized neurally in the description paradigm (Weber

et al., 2007).

Studies investigating the contextual effects occuring in RL also highlighted the role of range-

adaptation. At the behavioral level, subjects show different sensitivity for different ranges of

intensity/magnitude (Bavard et al., 2018). Concomitantly and as a biological translation of these
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findings, some evidence for neuronal range adaptation has been brought to light (Padoa-Schioppa,

2009). Neuronal range adaptation posits that the firing rate of neurons adapts to how the variable

encoded is distributed, as a mechanism to cope with various decision situations.

Recent studies have shown that computational models combining a reference point and range-

adaption mechanism can explain various irrational preference patterns (Bavard et al., 2021). In-

terestingly enough, while ecological RL seems to be better accounted by models integrating a

combination of reference-dependence and range-adaptation, the latter models perform poorly in

description-based choices (Dumbalska et al., 2020; Landry and Webb, 2021).

Assuming experiential values formed in our learning phase are likely to be represented in a relative

fashion, this phenomenon could account for our experiential neglect pattern to a certain extent.

Indeed, if in the learning phase, relative values are learned, then it would prevent the comparison

with absolute symbolic ones, and (potentially) induce the use of alternative decision rules in order

to overcome the cost of comparing two incommensurable values. Hence, future research could test

this hypothesis by designing a learning phase where experiential options are not learned by pairs,

but rather presented against all other options, in order to reach a higher level of generalization.

6.2.2 Ambiguity aversion

While the term “ambiguity effect” was not coined in it, the underlying principles of it were already

described in Ellsberg (1961) seminal paper. In this paper, Ellsberg outlines an hypothetical gamble:

Ellsberg’ paradox

(1) You can win $100 by drawing a ball of a certain color from a bucket.
(2) The bucket contains 90 balls, 30 of which are red.
(3) Among the 60 remaining balls, an unknown proportion are yellow, and the rest
are black.
(4) You have to bet $100 either on a red ball, either a yellow ball.
(5) Drawing a ball of the color you bet on will win you the $100.
(5) If you draw a black ball or a ball of the color you did not bet on, you will get
nothing.
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Ellsberg predicted that the majority would prefer to bet on the red ball 1. The odds of drawing a

red ball are 1
3
. Moreover, without further information, the prior for the proportion of yellow ball

is also 1
3
. The proportion of red balls is consequently equal to the assumed proportion of yellow

balls. The reason for this preference has therefore been interpreted in terms of ’ambiguity aver-

sion’, i.e., the preference for known risk rather than unknown risk. Said differently, most people

avoid the option with missing outcome or probability information. In a variety of experimental

and real-world situations, it has been shown that humans reliably prefer risky options to ambigu-

ous ones, even paying an extra cost to avoid ambiguity (Einhorn and Hogarth, 1985; Curley et al.,

1986; Camerer and Weber, 1992; Fox and Tversky, 1995). Likewise, monkeys also exhibit this pref-

erence (Hayden et al., 2010). Several explanations have been proposed for ambiguity aversion,

such as comparative ignorance (Frisch and Baron, 1988; Fox and Tversky, 1995; Fox and Weber,

2002), i.e. the tendency to bet on what feels more familiar, or the belief that the ambiguous urn

is rigged (Frisch and Baron, 1988; Kühberger and Perner, 2003). Yet, why people avoid ambiguity

remains unclear.

Coming back to our experiential neglect result, the tendency for our subjects to choose symbolic

and described options over experienced options could be interpreted as the result of ambiguity

aversion, as experienced options are lacking symbolic information. For this reason, we included

a control in our 8th experiment, where we presented one 100% ambiguous option against a set of

previously encountered experiential and symbolic options. Interestingly, subjective estimates for

the ambiguous option inferred from these choices were around 50%, i.e. subjects seemingly assign

a neutral expected-value of 0 to the ambiguous option, thus closely resembling the experiential ne-

glect pattern (see chapter 5, supplementary materials). Other studies have found a similar pattern,

when presenting symbolic and risky options to ambiguous options (Li et al., 2015, 2017), which is

pictured in Figure 6.3B/D.

1His intuition will be verified by Halevy, 2007
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Figure 6.3: Ambiguity aversion pattern. (A) Risky versus ambiguous option. Subjects had to choose between physical
stimuli representing risky gambles (in this example, 3 winning and 3 losing eggs; left) and ambiguous gambles (always
containing 6 eggs of unknown colors; right). (B) The x-axis represents the probability of the risky option. The y-axis
represents the probability of choosing the risky option. Each row of the shaded represents a participant, and each
column a choice. When ambiguity is chosen, the cell is in light gray. When the risky option is chosen, the cell is in dark
gray.The blue line is a logistic regression, that represents the proportion of risky choices according to its probability.
(C) Risk and ambiguous options visual representations. Red proportions indicates the probability of losses, while blue
indicates the probability for gains. Ambiguity was modulated by varying the quantity of hidden space on a bar (grey).
(D) Proportion of risky choices according to the gamble win probability, against an ambiguous cue. Error bars indicate
the standard error of the mean. Dotted lines indicate linear regression fits. (E) Proportion of risky choices according
to the gamble win probability, against an ambiguous cue, plotted in function of the ambiguous bars’ proportion of
ambiguity. Error bars indicate the standard error of the mean. Dotted lines indicate linear regression fits. A and B
are from Li et al., 2017. C, D, E are from Li et al., 2015

However, this ’experiential as ambiguous’ argument is questionable for several reasons.

First, when presenting the 100% ambiguous option against all experienced options, subjects pre-

fer the latter at a frequency proportional to its expected value (although the choice frequency

does not perfectly match objective values) and the frequency curve monotonically increases with
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the expected value. This result suggests (among others mentioned in chapter 5) that experiential

values are remembered, even though they are discarded when comparing experienced options to

described ones. Experiential options are linked to past information when the 100% ambiguous

option does not. Besides, it has been shown that experience reduces ambiguity aversion (Güney

and Newell, 2015). Also our design quite differs from classical ambiguity versus risk experiments

(Fig. 6.3A/C). In previous studies, it is often difficult to variate simultaneously both the degree

of ambiguity (uncertainty) and the expected value of the ambiguous option (which remains fixed

most of the time; see Fig. 6.3A/C), resulting in measurements imprecision. Thus, in our exper-

iment, the ambiguous option cannot be confused with experienced options, as the latter are not

purely ambiguous and bears past outcome information.

Second, the pattern of experiential neglect can not be pure ambiguity aversion, as experienced

options with negative expected-value, are most of the time preferred against symbolic options

equally punishing. It is only when expected values are positive, that subject display opposite pref-

erences, and are risk-seeking. In fact, a study found a fourfold pattern of ambiguity aversion, that

shows differences in the loss and gain domain. In Kocher et al. (2018), ambiguity aversion is found

for moderate likelihood gain and low likelihood loss prospects. Conversely, ambiguity seeking is

found for low likelihood gain prospects and moderate likelihood loss prospects. This fourfold pat-

tern matches the results in our task, where the tendency to choose experiential options in the loss

domain (i.e. against symbolic options which probability is below 50%) is counterbalanced by a

preference for symbolic options in the gain domain (i.e. against symbolic options which probabil-

ity is above 50%). However, as this pattern isn’t well substantiated yet.

Third, neural evidence suggests, that if risk and ambiguity are neurally represented in different

ways (e.g. Hsu et al., 2005; Lauriola et al., 2007), ambiguity and RL subjective valuation might

engage distinct circuitry as well (Bach et al., 2011).
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Finally, if it is not a pure ambiguity aversion preference pattern, option learned through reinforce-

ment likely carry ambiguous information. Experiential neglect could possibly be induced by the use

of a heuristic in order to resolve this ambiguity, or more generally value-free decision processes.

For instance, recently, Pleskac and Hertwig (2014) examined the relationship between probability

and payoff in various environments, notably life insurance, dairy farming, or academic publishing.

They highlighted that in a lot of natural environment, there is a legitimate belief for an inverse

relation between payoffs and probabilities. For example, journals with a higher impact factor have

a lower acceptance rate. They further tested this ’risk-reward’ heuristic experimentally. They ob-

served that the ambiguous or uncertain option became increasingly undesirable as the magnitude

of the payoff increased. Indeed the ’risk-reward’ heuristic predicts that high-reward options have

low probability. This result may partially account for the low attractivity and underweighting of

high-reward experiential options in our task.

Thus, the role of ambiguity aversion (as well as the possible heuristics behind it) and its relation to

our behavioral pattern should be further investigated. Eventually, further imagery studies should

disentangle the neural substrates involved in different forms of uncertainty (e.g. ambiguous op-

tions vs experiential options learned by reinforcement).

6.2.3 Fast-and-frugal heuristics

Does the discarding of experiential information observed in our subjects results from the use of a

heuristic? Ignoring information, even relevant one, in order to maximize an effort-accuracy trade-

off is a hallmark of heuristics as conceived by the fast-and-frugal research program (Gigerenzer

and Gaissmaier, 2011).

Our subjects, on average, behave as-if they roughly follow a simple decision rule: choose the

symbolic option if it has a positive expected value, otherwise choose the experiential option. To

some extent, this decision process might belong to the class of heuristics that bases judgments on

one good reason only, and ignore other information (Gigerenzer and Gaissmaier, 2011). Thus, a
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one-clever-cue heuristic in our task, would consists in observing the proportion of red and green

in the symbolic option, and choose the latter when green is dominant.

In Simon’s scissors analogy:

Human rational behavior (and the rational behavior of all physical symbol systems)

is shaped by a scissors whose two blades are the structure of task environments and

the computational capabilities of the actor (Simon, 1990).

According to the scissors analogy, this behavioral pattern is the consequence of our task structure

coupled to limited computational resources. That said, is this behavior ecologically rational? Does

it maximize an accuracy-effort trade-of? Apart from experiment 7, subjects perform above 80%

of choices maximizing expected value in the Experiential-Symbolic condition (Fig. 6.4).

Figure 6.4: Performance from the Experiential-Symbolic phase described in chapter 5, among experiments 1-to-8.
Each orange point represent a subject average performance. Error bars represent standard deviation.

In experiment 7, we changed the probabilities of experiential and symbolic options in order to test

the experience neglect persistence in an environment where it would be ineffective. Interestingly,

subjects kept discarding experiential information, resulting in a significant performance drop and

economic loss.
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As Gigerenzer and Brighton (2009) state it:

All inductive processes, including heuristics, make bets. This is why a heuristic is

not inherently good or bad, or accurate or inaccurate, as is sometimes believed. Its

accuracy is always relative to the structure of the environment. The study of the

ecological rationality asks the following question: In which environments will a given

heuristic succeed, and in which will it fail?

We identified a laboratory environment in which the experiential neglect pattern fails to provide

good performance. Further research could consists in identifying natural environments where

this pattern could be useful, as heuristics are supposed to result from evolutionary processes

(Gigerenzer, 2008). In fact many decision situations involve a critical tension between experien-

tial and symbolic values. Natural environments are filled with symbolic informations, and humans

spontaneously build internal representations through experience (Pitt, 2020). For instance, when

choosing a restaurant, one might feel conflicted between ratings provided by other users, and its

personal experience.

Moreover, we can draw two interpretations by assuming that the pattern experiential neglect re-

sults from the use of a heuristic. Either the heuristic is mobilized in order to compare two types

of values that are usually incommensurable. This implies that we are still engaged in an ontolog-

ical claim about valuation (as we have been so far), since we assume that values are physically

represented but perhaps in various forms. Alternatively, we could postulate that heuristics and

value-free decision models are spontaneous modes of decision-making, and thus reject commit-

ments about value representations.

6.2.4 Policy-based models and value as a reification

In a recent article, Hayden and Niv (2020) made the case for alternative approaches to the tradi-

tional two-step decision-making model, by addressing the common currency hypothesis. They have

done so by challenging both ontological assumptions about subjective valuation and the episte-

mological responses that follow from them. Their arguments can roughly be broken down into
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three claims.

First, neuroeconomics (Camerer et al., 2004b; Rustichini, 2009) inherited the utility measurement

tradition. Since two decades, it proceeded to reify2 the value construct by giving it a biological

basis. Yet, there is mixed evidence for the brain to encode value per se, and a fortiori in a cardi-

nal sense. The common currency hypothesis was established from the observation that firing rates

of single neurons or neuronal populations correlate with values of outcomes (Kable and Glim-

cher, 2009; Rangel et al., 2008; Levy and Glimcher, 2012; O’Doherty, 2014), and that variations in

these firing rates entails choice modulation (Sugrue et al., 2004; Strait et al., 2015). With the ac-

cumulation of neural evidence, it has been hypothesized that a modular valuation system guides

decision-making. The OFC neural signals were supposed to encode value (experienced utility),

when the PFC would drive choices3 (decision utility) (Kahneman et al., 1997; Kable and Glimcher,

2009; Levy and Glimcher, 2012; Bartra et al., 2013). In addition, the authors note that numerous

findings in fact support a code for a relative preference of options (e.g. Tremblay and Schultz,

1999; Padoa-Schioppa, 2009; Klein et al., 2017), which seemingly excludes the idea of an abstract

value code (i.e. cardinal utility) implemented in brain. Indeed, various evidence might corroborate

this claim. For instance, when presenting one option at a time, neural responses do correlate with

the value of the first presented option. However, the second (alternative) option correlate with

the value difference, that is, a comparison process (Strait et al., 2015; Azab and Hayden, 2018).

Moreover, they argue that skepticism toward relative (or ordinal) value coding is also legitimate,

given that many neural findings could be reinterpreted as signals merely encoding outcome iden-

tity (Klein-Flügge et al., 2013; Rich and Wallis, 2016). In addition of outcome identity, they note

that many confounds might prevent from identifying any ”pure” neural correlates of value, such

as the broad category of visceral, autonomic, skeletomotor processes (O’Doherty, 2014) or other

properties (surpriseness, informativeness, etc.) of stimuli themselves (e.g. Wilson et al., 2014; Yoo

and Hayden, 2018; Botvinik-Nezer et al., 2020)
2A reification is an abstraction treated as if it were a physical entity.
3This specialization of the PFC is however debated (Bartra et al., 2013)
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Second, they build a philosophical argument, in which they argue that current methods are in fact

unable to read out the “true subjective value” of an option. The only information we can get from

choices is a rank relation between options, i.e. preferences. In fact, options values are inferred

from preferences, but elicited preferences are noisy measurements that are sensible to confound-

ing factors, as mentioned above. According to them, a final guardian knot that prevents from

estimating ”true” values, is thus the impossiblity of obtaining value measurements independently

of behavior. To make their point, they propose a thought experiment. Suppose a particular class

of neurons whose firing rates are perfectly correlated with value inferred from preferences. In

order to falsify the decision model, we manipulate the task. These manipulations induce changes

of the firing rates that are perfectly consistent with our predictions. Hypothetically, these neurons

could encode the value of our options. However, it has been shown that two preference sets can

coexist under a single set of options (Schonberg and Katz, 2020). It entails that some neurons must

encode option values, when others code for preferences. However, disentangling value neurons

from preference neurons implies to show that preference neurons do not follow the assumed value

function. However the value function is by construction inferred from preferences, resulting in a

paradox.

To sum up, they argue that the current literature points toward a relative neural valuation (or

even a pure comparison) of options, rather than an absolute cardinal assessment. Second, they

claim that neural value, is in fact theoretically intractable, as it is inevitably tied to preferences as

inferred from behavior.

Third, to overcome these problems, they propose to reject the epistemic constraint inherited from

economic value theories, and endorse value-free approaches, such as policy-learning models (Ben-

nett et al., 2021). Indeed, valuation is costly (Payne et al., 1992), and probably often not necessary.

The success of heuristics (Gigerenzer and Gaissmaier, 2011), shows that valuation might not be the
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default decision mode, even more so when items are fundamentally different. Computing action-

values is one mean to maximize expected value (e.g. Q-learning; Watkins, 1989). Instead, policy

models directly learn action policies. Policy-gradient models and Actor-Critic architectures be-

long to this class of models (see chapter 2 for a more detailed description). Besides, these models

have found empirical support both in the behavioral and neuroscience literature (e.g. Sakai and

Fukai, 2008; Maia, 2010; O’Doherty et al., 2004; Takahashi et al., 2008; Colas et al., 2017).

By actively avoiding invoking the theoretical construct of value, Hayden and Niv (2020) claim

that their approach is more parsimonious, as it omits a supposedly unnecessary entity to explain

decisions. Nonetheless, is value necessary to explain our experiential neglect pattern? As seen

in previous sections, the pattern in itself might be partially explained by heuristics or ambiguity

averse attitudes. However, policy-learning might not be the best candidate to explain our results.

During the learning phase, experiential options were presented in fixed pairs. Policy-learning

predicts that individuals would learn the optimal policy for a given pair, while not being able to

generalize to new decisions problems. Yet, experiential options are in average ranked correctly

when presented (for the first time) against each others (Experiential-Experiential phase). Also,

the subjective values inferred from these choices are in line with objective values. This result

suggests that our subjects are able to extrapolate their experience within an option pair to new

contexts, which requires at some point to project all the options into a new space that makes them

comparable. So does the Stated Probabilities phase, in which subjective explicit ratings are also

more rational than values elicited from experiential vs symbolic comparisons.

6.2.5 Are values built a posteriori?

We identified several levels at which experiential and symbolic values could diverge in construc-

tion. However, there may be a more fundamental epistemological problem with value. As said

previously, value is inferred from preferences, which themselves are elicited from choices. There

are situations in which, assuming a unique value function, different elicitation procedures elicit
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different preferences. To explain this, Lichtenstein and Slovic (2006) hypothesized that preferences

are generated at the time of elicitation rather than arising from any inherent value function. This

violation of procedure invariance has been discussed by many scholars (e.g. Tversky and Shafir,

1992, Ariely et al., 2003), often leading to the conclusion that talking about true preferences is

irrelevant, in any normatively significant sense.

As Hayden and Niv (2020) state it:

That is, in the view of these and like-minded scholars, value doesn’t sit in the brain

waiting to be used; rather, preference is a complex and active process that takes place

at the time the decision is made.

This may be reminiscent of the indeterminacy problems encountered in several disciplines, where

measuring properties of a system’s state possibly affects the state itself, and in turn the measure-

ments. This is however not that surprising, as the brain and embodied mind are complex systems

in perpetual motion (Varela et al., 1992). In a strong sense, it entails that preference elicitation is

a circular process, as the measure creates the preference state. In a weaker (and probably more

reasonable) sense, it suggests that preference elicitation does raise measurement uncertainty and

falsification problems (Glimcher, 2005).

Taking this problem seriously might imply to foster decision models that build preferences on the

fly, without assuming a unique set of preferences under a single value function (Hayden and Niv,

2020; Bennett et al., 2021). However, the gain in flexibility could be at the expense of the ability

to track reguralities in decisions. These regularities probably emerge from neural and cognitive

processes presenting a certain stability and permanence in time and space. Indeed, in our ex-

periment, each elicitation (Experiential-Experiential, Experiential-Symbolic, Stated Probabilities)

yields different subjective values, violating procedure invariance. Nevertheless, elicited values are

well-ordered with regards to expected values, suggesting underlying stable valuation processes.
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6.3 Conclusion

In the modern world, symbolic information and values are pervasive. From prices to weather fore-

casting, there exists a constant tension between these external information and our own internal

representations. But how do we humans represent information internally? One answer would

involve electrochemical reactions in the brain. However, this answer might be unsatisfying, as it

does not tell much about cognition. Similarly, the french parliament is made of stones, it does not

tell much about its social function and internal structure. In other words, we must go beyond the

simple constituents. Rather, the debate on representations is focused on how information is rep-

resented and processed (Pitt, 2020). For instance, in the ”imagery debate” (Pylyshyn and Dupoux,

2001), Marr (1982) proposed that visual representations are stored in a symbolic format (language-

like, described primitives of objects) at an early stage of processing. Some opposed this thesis, yet

no one disputed whether visual content is stored or not.

What about value representations? The picture might be less clear than in the case of vision. In

chapter 1 and 2, we saw how two paradigms (experience and description) made the assumptions

that individuals assign different scalar values to options, and afterwards select the highest. Marr’s

level has been applied to value based decision-making, and more generally in RL, as it translates

well (Box 2.2). Undoubtedly, individuals are able to produce numerical estimates of average ex-

perienced outcomes, when they are asked to. In the same manner as they do when they draw an

object from memory. It suggests that some ”primitives” of value are stored during the learning

process.

However, the level at which value is translated, and the format of its representation remains un-

clear. Indeed, debates on whether activity recorded in the OFC reflects value signals are raging

(e.g. O’Doherty, 2014; Hayden and Niv, 2020). Regarding the format of value, as shown by context-

dependence (Palminteri et al., 2015; Bavard et al., 2018, 2021), valuation might be performed in a
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relative manner, and therefore relative values might be stored. In chapter 3 and 4, we discussed

the description-experience gap, i.e. systematic behavioral discrepancies reported between the ex-

perience and description paradigms (Hertwig and Erev, 2009b; Wulff et al., 2018). We further hy-

pothesized in chapter 5 that subjective representations of experienced and described values may

systematically differ (Kellen et al., 2016). We concluded that the description-experience gap might

also be instantiated at the individual level, and expressed by an incommensurability of symbolic

and experiential values. In other words, symbolic and experiential values may be stored in differ-

ent formats (i.e. representational gap).

Yet, to a certain extent, our experiential neglect pattern could actually be explained by value-free

processes, notably heuristics. The fact that values can be inferred does not entail that all learning or

decision processes involve value representations. Some decision problemsmight require value cal-

culation, when others might not (e.g. see Appendix; Payne et al., 1992; Gigerenzer, 2008; Juechems

and Summerfield, 2019; Hayden and Niv, 2020). Furthermore, regardless of whether a decision

process involves value calculation, a single choice set can often be explained by different deci-

sion models (e.g. one value-based and one value-free). To some extent, this underdetermination4

(Duhem, 1991; Stanford, 2021) can be solved by rigorous falsification methods (Palminteri et al.,

2017b). Nevertheless, a more precautionary position would be to favor pluralistic5 approaches to

value based decision-making, in the tradition of cognitive science. For instance, although they

are relatively incipient, connectionnists6 alternatives have been proposed (Suri et al., 2020). This

paradigm conceives value as an emergent phenomenon (and eventually suggests that value may

simply not be represented; see Hunt and Hayden, 2017) and allows to relax assumptions such as

the maximization of expected value.

Also, another obstacle to the idea of value representation stems from the polysemy surrounding
4The premise behind underdetermination of scientific theory is that the evidence available to us at any given time

may be insufficient to identify what beliefs (here models) we should have in response to it.
5Or even perhaps, an ”anything goes” approach (Feyerabend et al., 1993)
6Value based decision-making is often conceived within a modular architecture (Fodor, 1983). In contrast, con-

nectionism models mental or behavioral phenomena as emergent processes of networks of simple interconnected
units.
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the concepts of both value (O’Doherty, 2014; Hayden and Niv, 2020) and representation (Poldrack,

2021). As Russ Poldrack (2021) states:

The ontological status and epistemic utility of mental representations are topics of

enduring debate within the philosophy of mind. Neuroscientists have forged ahead

largely unaware of these debates, using the termwidely to describe the systematic em-

pirical relationships that are often found to exist between neural activity and features

of the external world.

A solution provided by Poldrack is to follow a set of criteria that demonstrate that these posited

representations fulfill the “job description” for doing real representational work (Ramsey, 2007).

Last but not least, one should be careful about the legacy of previous theories. Value based

decision-making inherits from a long tradition of theoretical and experimental work, where psy-

chological and ontological commitments were often explicitly rejected. In contrast, neuroscience

tends to naturalize and reify phenomena or abstract constructs, that are historically, socially or

politically situated (Uttal, 2001; Choudhury et al., 2009; Joel and Fausto-Sterling, 2016; Poldrack,

2018; Hayden and Niv, 2020). Although there is no definitive solution to this risk, some answers

might be found in the ’critical neuroscience’ program7 (Choudhury et al., 2009).

7Inspired by the Frankfurt School (Max et al., 2017) it proposes a set of ”self-critical practices, which aim to achieve
reflective awareness of the standpoint-specific biases and constraints that enter into the production, interpretive
framing and subsequent application of neuroscientific knowledge.” (Choudhury et al., 2009)
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A
Appendix

Introduction

During mymaster’s degree, I submitted two theses, which were revised, submitted, and eventually

published as articles when I was pursuing my doctoral thesis. Both articles intended to test the

predictions of certain economic models when implemented under laboratory conditions, i.e. when

the conditions for classical rationality are not met. Interestingly, these papers illustrate well the

dichotomy between value-first and value-free models. Depending on the experimental conditions,

both were useful tools to account for subjects’ behavior.
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In a first study, we experimentally tested Iwai’s model of money emergence (Iwai, 1997). This

model attempts to formalize the conditions under which a commodity money can emerge from

interactions located in a barter economy, with 3 or 4 goods in circulation. For each good, there

is a type of agent that produces it, and one that consumes it. Agents are thus specialized both

in production and consumption. The goal for an agent is to obtain its consumption good, which

constitutes the reward. Eventually, if the economy converges, one the good will be used as a

medium of exchange (in order to avoid frictions), that is, a commodity money. This framework

involves multi-step decisions, in the sense that an agent has to predict that it will be obtaining

its consumption good by (1) exchanging its production against a transition good (2) then use this

good to obtain its consumption good. In addition, in a 3 goods economy, each agent is presented,

at each trial, with 2 options (3 goods minus the one already produced and owned). Conversely, in

a 4 goods, there are three options. Thus, it implies to solve both the prediction problem and the con-

trol problem (see chapter 2). In humans, we observed that a simple reinforcement learning model

best-fitted subjects’ behavior, which made sense with regards to the environmental structure.

In a second study, we experimentally tested another economicmodel, theHotelling’smodel (Hotelling,

1929). This model assumes a linear city, where two firms are competing for a market. Consumers

are evenly distributed on the segment, and aim to maximize their utility. In order to maximize

their profit, firms can vary two parameters: their price and their spatial location. Because of the

curse of dimensionality (Bellman, 1956) that results from the combinatorial explosion of decision

variables, such environment is not tractable by value-learning models, or at least classical rein-

forcement learning. Furthermore, we observed that humans’ decisions were best accounted by

heuristics, which allowed satisfactory performance while reducing the environmental complex-

ity.
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A.1 Coordination over a uniquemediumof exchange

under information scarcity
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Coordination over a unique medium of exchange
under information scarcity
Aurélien Nioche 1,2,3,4,5,13*, Basile Garcia4,5,6,7,8,13, Germain Lefebvre6,7,9,10, Thomas Boraud4,5,11,

Nicolas P. Rougier 4,5,8,12,13 & Sacha Bourgeois-Gironde 2,3,9,13

ABSTRACT Several micro-founded macroeconomic models with rational expectations

address the issue of money emergence, by characterizing it as a coordination game. These

models have in common the use of agents who dispose of perfect or near-perfect information

on the global state of the economy and who display full-fledged computational abilities.

Several experimental studies have shown that a simple trial-and-error learning process could

constitute an explanation for how agents coordinate on a single mean of exchange. However,

these studies provide subjects with full information regarding the state of the economy while

restricting the number of goods in circulation to three. In this study, by the mean of multi-

agent simulations and human experiments, we test the hypothesis according to which

coordination over a unique medium of exchange is possible in the context of information

scarcity. In our experimental design, subjects and artificial agents are only aware of the

outcome of their own decisions. We provide results for economies with 3 and 4 goods to

evaluate to which extent it is possible to generalize results obtained with 3 goods to n goods.

Our findings show that in an economy à la Iwai, commodity money can emerge under drastic

information restrictions with three goods in circulation, but generalization to four or more

goods is not guaranteed.
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Introduction

In the last decades, monetary economics has shifted from a
purely macroeconomic understanding of money to an analysis
of its micro-foundations, both in its game-theoretical and

behavioral dimensions. Following the intuitions of Karl Menger
(1892) and starting with the Jones’ model in the mid-1970’s
(Jones, 1976), several search-theoretic models have been proposed
in order to identify the conditions for money emergence (Dia-
mond, 1984; Kiyotaki and Wright, 1989, 1991; Oh, 1989; Aiyagari
and Wallace, 1991; Kiyotaki and Wright, 1993; Shi, 1995; Iwai,
1996; Kehoe et al., 1993; Wright, 1995; Luo, 1998). They are
considered search-theoretic models in the sense that they describe
situations where agents need to search for a trading partner
before transacting (Nosal and Rocheteau, 2011). Besides, these
models belong to the class of micro-founded macroeconomic
models with rational expectations. Agents with rational expecta-
tions can take advantage of all the available information to form
their expectations and decide which action is optimal on the belief
that every other agent in the economy has a similar ability (Muth,
1961).

Their first advantage is that they explain a macroeconomic
phenomenon—money emergence—from individual decision-
making processes. The second advantage of these models is
that they explain money emergence that does not require the
economies to be centralized: they do not need to assume a
monetary authority for the agents to coordinate over a unique
medium of exchange. Focusing on the function of a medium of
exchange, these models highlight the key role that the money can
play in limiting frictions in exchange processes (i.e., the difficulty
to find an exchange partner). However, these models are based
on three unrealistic assumptions: the omniscience of economic
agents, infinite time and an extremely large number of agents
(unbounded).

A question that immediately arises is whether money emer-
gence without a monetary authority is possible in an economy
populated by agents with restricted abilities and having limited
access to information. More precisely, we want to know whether
coordination over a unique medium of exchange is possible when
agents proceed by trial and error and have access to local
information only.

A partial answer has been brought to this question, through
agent-based simulations with artificial agents using a reinforce-
ment learning process (Marimon et al., 1990; Duffy and Ochs,
1999; Kindler et al., 2017) in a Kiyotaki-and-Wright’s environ-
ment (Kiyotaki and Wright, 1989, 1993). In these simulations,
reinforcement learning agents have by construction limited
computational abilities, and their informational inputs are only
constituted by the success and failures of each exchange attempt.
In contrast to Kiyotaki-and-Wright’s theoretical agents, they are
completely blind to the global state of the economy, and the
tuning of their preferences does not rely on the knowledge of the
latter. Yet, results report achievement of monetary equilibria,
indicating that fully rational agents are not required for money to
emerge. In a similar perspective, other work considers the ques-
tion of money emergence under heterogeneous beliefs, where
some agents are rational, and the remaining fraction learns by an
adaptive learning rule, showing that coordination is also even-
tually possible in this setting (Branch and McGough, 2016).

The Kiyotaki’s and Wright’s model (Kiyotaki and Wright,
1989, 1993) has been experimentally tested, to show if results
obtained analytically or by numerical simulation were repro-
ducible with actual human subjects. It had been shown that a
monetary equilibrium can be reached with human subjects
evolving in a search-theoretic environment (Brown, 1996; Duffy
and Ochs, 1999; Duffy, 2001), or at least reaching a high pro-
portion of speculators (Lefebvre et al., 2018). Interestingly, it has

been shown that a reinforcement model fits well their experi-
mental data obtained in a Kiyotaki-and-Wright’s environment
(Kiyotaki and Wright, 1989, 1993), suggesting that although more
sophisticated behavior rules were available, subjects tended to
favor immediate past feedback (Duffy and Ochs, 1999; Duffy,
2001).

One first critic that we can address the computational and
experimental aforementioned studies, is that although they suc-
ceeded in demonstrating achievements of monetary equilibrium,
they were mainly considering the fundamental equilibrium of
Kiyotaki and Wright (Kiyotaki and Wright, 1989, 1993). Indeed,
Kiyotaki and Wright (Kiyotaki and Wright, 1989, 1993) consider
two types of equilibrium: (i) fundamental, where the monetized
good is less costly to store than the other goods in circulation,
what explains easily why it is preferred, (ii) speculative, where
some agents are required to incur at first supplementary costs
(i.e., to speculate). The speculative equilibrium is particularly
interesting, as it provides insight about a specific cognitive ability
that could sustain money emergence (i.e., the ability to endorse a
cost on short term with view on distant goals), and yet, it is the
one for which the results are the scarcest (Brown, 1996; Duffy and
Ochs, 1999; Duffy, 2001; Kindler et al., 2017; Lefebvre et al.,
2018). Secondly, in contrast with virtual agents learning by
reinforcement that are only provided with scarce information,
human subjects had access to information about the global state
of the economy in studies mixing the use of artificial agents and
human subjects (Duffy and Ochs, 1999; Duffy, 2001; Lefebvre
et al., 2018). Thirdly, to our knowledge, these computational and
experimental studies are based on search-theoretic models
involving only three goods (Brown, 1996; Duffy and Ochs, 1999;
Duffy, 2001; Kindler et al., 2017; Lefebvre et al., 2018). In this
case, only one type of agent uses the monetary good genuinely as
a medium of exchange. It remains to know whether their con-
clusions can hold if there are more than three goods in
circulation.

Let us note that in recent literature, numerous questions have
been treated through an experimental money-emergence para-
digm: Whether a convergence on a money equilibria is preferred
to a gift exchange equilibria, where an agent has the possibility to
give a good in the hope of obtaining another later (Duffy and
Puzzello, 2014), how inflation tax affects economic activity
(Anbarci et al., 2015), how a foreign money may be accepted by
agents in an international framework (Jiang and Zhang, 2018;
Ding et al., 2018), how a monetary equilibrium is reachable under
assumption of a finite horizon (Davis et al., 2019), or even how
when a first money already circulates in the economy, a second
may emerge (Rietz, 2019). However, either they assume a central
authority that injects money (Anbarci et al., 2015; Ding et al.,
2018), either money does not emerge endogenously, as a fraction
of agents is first provided with tokens (worthless goods that none
agents consume) they are compelled to exchange to obtain their
consumption good (Duffy and Puzzello, 2014; Jiang and Zhang,
2018; Davis et al., 2019; Rietz, 2019). In these experiments, the
cognitive requirements for money emergence as an endogenous
process are thus never explicitly tested.

The purpose of this study is to know whether economies
populated with human subjects can reach a monetary state in the
context of information scarcity, that is in a case of extremely
incomplete information in the sense of the game theory, forcing
the subjects to take their decisions under a strong form of
ambiguity. More precisely, this study aims to investigate whether
coordination over a unique medium of exchange can occur with
subjects only experiencing the direct outcome of their decision,
learning by trial-and-error and without any additional
information.
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Hence, the question is to know whether results obtained with
virtual agents combining a restriction on computational abilities
and informational input can be generalized to economies popu-
lated with humans. To assess their reliability and to broaden our
conclusions, we decided to include an additional good, including
in our study economies with four goods in circulation. To meet
these goals, we borrowed certain elements from the previous
search-theoretical models to define the structure of our econo-
mies, such as the production-consumption specialization and the
absence of double coincidence of wants (i.e., if an agent produces
i and consumes j, no agent produces j and consumes i, so that
pure bartering is not an effective solution). However, instead of
using an environment a la Kiyotaki and Wright (Kiyotaki and
Wright, 1989, 1993), we decided to use a search-theoretical
structure that presents more generality than Kiyotaki and
Wright’s one, based on the Iwai’s model (Iwai, 1996). Iwai’s
model differs in two fundamental ways from Kiyotaki and
Wright’s model (Kiyotaki and Wright, 1989, 1993): (i) the
exchange technology consists in random pairing inside markets
specialized in a pair of good while in Kiyotaki and Wright
(1989, 1993), agents are randomly matched regardless of any
other characteristic (ii) there are no storage cost, such as storing a
good i is not costlier than storing good j. That is why we decided
to adopt an Iwai-like environment with indistinguishable goods,
in a way to avoid that money emergence bears on intrinsic fea-
tures of goods, as it is in the case of the Kiyotaki and Wright’s
fundamental equilibrium. We began by conducting a series of
simulations. In the simulated economies, agents are producing a
certain good and looking to obtain another one through
exchanges, have little knowledge about the environment in which
they operate—they only know if their attempt of exchange was a
success or a failure. They are learning using a basic reinforcement
mechanism, associating a value to each choice option available to
them and updating by trial-and-error the efficiency of each type
of exchange. We used the results of these simulations to identify
the experimental conditions that would promote the coordination
over a single medium of exchange. Subsequently, we observed the
behaviors of human subjects under similar informational con-
straints and we compare the theoretical and experimental results.
To conclude, we discuss the possibility of coordination over a
unique medium exchange in the context of information scarcity,
in a three and four goods setting.

Materials and methods
Model
General framework. Each economy is composed of different types
of agents. A type of agent is defined by what agents of this type
produce and consume. The goal of each agent is to obtain his
consumption good. Agents proceed to exchanges between them
to achieve this goal. Agents have feedback only about their
exchange attempt and learn by reinforcement the efficiency of
each type of exchange. We vary across simulations the distribu-
tion of agents among the existing types. By construction, if a good
m becomes money, an agent that produces it or consumes it
should try to exchange directly his production good against his
consumption good. Otherwise, the agent is supposed to use it as a
medium of exchange, that is to exchange his production good
against m, and then m against his consumption good.

Production-consumption specialization. We consider an economy
with G goods in circulation, with G � 3. We denote these goods
1; 2; ¼ ;G. Each agent is specialized in production and con-
sumption. A agent of type ði; jÞ produces good i and consumes
good j (with j≠ i). We suppose a non double coincidence of
needs: if an agent of type ði; jÞ exists, then an agent of type ðj; iÞ

does not exist. We use a minimally connected endowment-need
distribution (Iwai, 1996), such that existing agent types are:
ðG; 1Þ; ð1; 2Þ; ¼ ; ðG� 1;GÞ. The number of agents for each type
is exogenously set. We designate by xG1 the number of agent of
type ðG; 1Þ, x12 the number of agent of type ð1; 2Þ, ..., xG�1G the
number of agent of type ðG� 1;GÞ. Each agent enters the
economy equipped with a unit of its production good. Each time
an agent receives its consumption good, it consumes it and
immediately after, produces a new unit of its production good
(each agent owns a single storage unit).

Exchange technology. The exchange technology relies on a
trading-post mechanism (Iwai, 1996). At each time step, each
agent chooses the type of exchange it wants to perform,
depending on the good it has in hand. This choice determines to
which market it goes. There is an equal number of markets and
goods in circulation. Each market is specialized in a pair of good
ði; jÞ, such as in the ij-market it is possible to exchange i against j,
and j against i. Our trading technology works synchronously (i.e.,
all exchanges occur simultaneously). Thus, in each ij-market, we
randomly associates each i-seller – j-buyer to a j-seller – i-buyer, if
there is a sufficient number of j-sellers– i-buyers. Therefore, in
each ij-market, the probability of successfully exchanging a good i
against a good j depends on the respective number of i-sellers – j-
buyers and j-sellers– i-buyers (e.g., if there is in the ij-market at
time t, 4 i-sellers – j-buyers and 8 j-sellers – i buyers, 4
ij-exchanges will take place and the probability of success for a
i-seller – j buyers is 0.5 while a j-seller – i-buyer will proceed to
the desired exchange with certainty).

Information scarcity. An agent does not know other agents’
choices, nor the probabilities of success of each exchange: the only
information it has access to is whether or not it succeeded in the
desired exchange.

Strategies. The goal of each agent is to obtain as quickly as pos-
sible his consumption good.

We will specifically consider:

● The direct exchange strategy. For a type-ij agent with i in
hand (his production good), it consists of trying an exchange
against j (his consumption good).

● The indirect exchange strategy with k as a medium of
exchange. For a type-ij agent with i in hand (his production
good), it consists of trying an exchange against the good k
(with k≠ i; j). With k in hand, it consists of trying an exchange
against j (his consumption good).

Simulations
Decision-making process. Each agent learns to estimate the success
rate of each type of exchange. This allows it to estimate the time
needed to get its consumption good depending on the choice
is made.

Success rate estimates for each exchange type are based on a
reinforcement learning process. At time step t, when an agent
attempts to exchange i against j, it updates the success rate
estimation associated to the exchange of type ði; jÞ, noted eij
according to:

etþ1
ij ¼ etij þ α � ðs� etijÞ ð1Þ

with α 2 ½0; 1�, a free parameter and s, a binary variable such as
s ¼ 1 if the agent succeeded in his exchange, 0 otherwise. α is a
learning rate which defines to which extent an agent takes into
account his latest attempted exchange. If α ¼ 1, the agent
considers only his latest attempted exchange. If α ¼ 0, the agent
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does not take into account the new observations of failure or
success of the last attempted exchange.

When making a decision, each agent considers the expected
temporal interval between the time of choice and the time he gets
his consumption good. It is assumed that the longer the time
interval, the lower the value for the agent. Let vðijÞ be the value
associated to the choice ij (i.e., exchange i against j) and Δij the
estimation by the agent of the time that will be spent before
consumption if he chooses ij:

vðijÞ ¼ 1=ð1þ βÞΔij ð2Þ
with β > 0, a free parameter. β is a discount factor parameter: the
closer to 0, the more subjective values are discounted with time
(Osborne, 2016). Since it takes at least one unit of time for the
agent to get its consumption good, the value function v is
bounded between 0 and 1.

We assume that for each exchange of type ði; jÞ, the agent has
an estimation of the success rate associated to this type of
exchange (eij). The higher the estimated success rate, the lower
the estimated time to succeed in this exchange. Let δij be the
estimated time to achieve a type-ij exchange:

δij ¼ 1=eij ð3Þ
For a type-ij agent, Δij ¼ δij. If a type-ik agent (with k≠ j), the

value of Δij depends on the action policy chosen by the agent, as Δij

would be equal in this case to the sum of the δ-values for each
intermediary exchange planned by the agent. For instance, for a
type-ik agent following an indirect exchange strategy with good j,
Δij ¼ δij þ δjk. An exhaustive description of valuation functions for
the specific case where G ¼ 3 is given in the supplementary section.

Agents make decisions using a probabilistic decision rule. The
standard approach is to use a softmax function to introduce
stochasticity in choice (Sutton and Barto, 1998). However,
Apesteguia and Ballester (2018) show that the combination of a
softmax rule and either a risk-sensitivity or a temporal discounting
model can be problematic, as the parameter describing the risk-
sensitivity discounting effect can have a non-monotonic effect on
the variable of interest. For this reason, the rule implemented is a
simple ϵ-rule (Sutton and Barto, 1998). Let vðijÞ be the value
associated with choice ij and pðijÞ, the probability to choose to
exchange i against j. pðijÞ is computed as follows:

pðijÞ ¼ 1� γ if 8k : vðijÞ> vðikÞ;
γ=ðG� 1Þ otherwise:

�
ð4Þ

with γ 2 ½0; 1�, a free parameter. γ is an exploitation-exploration
rate (Sutton and Barto, 1998): the lower the γ-value, the more
prone the agent will be to choose the option with the highest
subjective value. On the contrary, the higher the γ-value, the more
the agent will be prone to choose another option.

Protocol and parametrization. We ran 10; 800 simulations with
G ¼ 3 and 10; 800 simulations with G ¼ 4. Each simulation las-
ted 100 time-steps. The exploration parameter (ϵ) was varied
between 0:10 and 0:15. The learning rate (α) was varied between
0:10 and 0:25. The discount factor (β) was varied between 0:80
and 1:20. The initial values of success rate estimates for all types
of exchange were set to 1. The fact that the initial values were set
to 1 precluded the presence of bias in preferences (such as bias
such as the appearance of commodity money was more likely).
With these values, the value associated with exchanging his
production good against his consumption good was indeed
higher than the value of any other exchange for all agents,
implying that all agents were preferring the direct exchange
strategy at the first time-step.

When G ¼ 3, x31 was set to 50 while x12 and x23 were varied
between 10 and 200.

When G ¼ 4, x41 and x12 were set to 50 (following results from
simulations with G ¼ 3) while x23 and x34 were varied between 10
and 200.

Artificial experiments. We ran 4 separate simulations before the
experiment using the same distribution of agents as for experi-
ments (2 matching the conditions of Experiment I and 2
matching the conditions of Experiment II). The cognitive para-
metrization of the agents was: α ¼ 0:175, β ¼ 1:000 & γ ¼ 0:125
(these values correspond to the average value of each parameter
used for the simulations).

Post-hoc simulations. We fitted our behavioral data on the
decision-making model using Scipy’s (Jones et al., 2001) differ-
ential evolution algorithm (provided by the module optimize). We
optimized model parameters by minimizing the negative log-
likelihood of the model for each subject individually.

Using the best-fit parameter values of the subjects to
parametrize the artificial agents (the distribution of the best-fit
parameter values is given in Fig. S18A of the Supplementary
Section), we ran 4 post-hoc simulations (2 matching the
conditions of Experiment I and 2 matching the conditions of
Experiment II).

Experiment I
Subjects. Sixty-six subjects have been recruited by the Maison des
Sciences Économiques (106–112, boulevard de l’Hôpital, 75013
Paris, France). The ethics approval for this project was provided
by the Institutional Review Board of the Paris School of Eco-
nomics. In line with ethical guidelines, all participants provided
their informed consent before proceeding to the experiment and
filled in a survey asking their age and gender. Financial com-
pensation of 10 euros was offered to each participant, with a bonus
proportional to their score (a subject earned a point when he
succeeded to obtain its consumption good and each point corre-
sponded to 0:20 euros). The average reward was 15:41 euros
( ±1:80 STD). We noticed a gender parity (women represented
48:5% and men 51:5%). The average age was 29:42 ( ±12:55 STD).

Task. A subject plays the role of a producer of a good i and a
consumer of a good j, in an economy comprising either 30
(uniform condition) or 36 (non-uniform condition) subjects.
During 50 time steps, he has to choose which type of exchange he
wants to try, among two options (e.g., with good 1 in hand, he has
to choose between trying to exchange good 1 against good 2, or
good 1 against good 3). The only information he gets is whether
he succeeded or not in the exchange. Further details are provided
in the supplementary section.

User interface. Following the assumption that a visually appealing
serious-game would increase the subject’s engagement (Wanner,
2014; Comello et al., 2016) and induce naturalistic decision-
making (Harrison and List, 2004), we chose to design a game-
inspired interface instead of a textual interface (see Fig. 1).

Experimental conditions. All goods being identical, we arbitrarily
chose the good 1 as the ‘target’, that is to say, the good that we
wanted to see emerge. Following the simulation results, we con-
trasted two modes of distributions, either promoting the money
emergence or precluding it. Each subject went through only one
of the two conditions. The conditions differ by the distribution of
agents among types.
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● Uniform (U). There is an equal number of agents of
each type.

● Non-uniform and promoting the use of a medium of
exchange (NUPM). The number of agents for a specific type
depends on whether this type involves producing or
consuming a specific good, that we arbitrarily chose to be
the good 1. The number of agents for a type meeting this
condition is half the number of agents of a type not meeting
this condition.

The two conditions were the following:

1. G ¼ 3 and U-distribution. x31, x12 and x23 were set to 10.
2. G ¼ 3 and NUPM-distribution. x31 and x12 were equal to 9

but the value of x23 was doubled (18)—the choice of setting
x31 and x12 to 9 instead of 10 and x23 to 18 instead of 20 is
due to the absence of some subjects the day the experiment
took place.

Analysis. With three goods in circulation, one type of agent can
use the good 1 as a medium of exchange: Agents that produce
good 2 and consume good 3. We thus measured for each agent
belonging to the type (2, 3), the indirect exchange rate involving
good 1. That is the frequency rate at which a subject of type (2, 3)
asks for the good 1 to use it as a medium of exchange to get his
consumption good 3 from his production good 2. For statistical
analysis of the human experiment as well the experiment-like
simulations, we averaged this measure overtime for the last third
of the trials, to assert learning curves were stable. We then
compared these results across uniform and non-uniform dis-
tributions of agent types. As we did not expect a normal dis-
tribution of data due to clustering effects at the boundaries of our
scale, assessment of statistic relevance of our observations has
been made with Mann–Whitney’s U ranking test (Mann and
Whitney, 1947), applying Bonferroni’s corrections for multiple
comparisons. We set the significance threshold at 5%.

Experiment II
Subjects. 100 subjects have been recruited under the same con-
ditions as for Experiment I. The remuneration was computed the
same way and the average reward was 14:29 euros (±1:53 STD).
We also noticed a gender parity (women represented 50:0% and
men 50:0%). The average age was 28:97 years old (±13:01 STD).

Task. The task is similar to Experiment I, except that they were 4
goods in circulation and that economies were comprising either
40 (uniform condition) or 60 (non-uniform condition) subjects.
Also, as a consequence of having 4 goods in circulation, subjects
were having 3 alternatives each time, instead of 2 (for instance,
with the good 1 in hand, they had a choice between trying to
exchange it against the good 2, 3 or 4).

Experimental conditions. As in experiment I, the parametrization
of the economies for each condition has been based on the
simulation results (see Fig. 2). Hence, the distribution was either
uniform (U), either non-uniform promoting the use of a medium
of exchange (NUPM):

1. G ¼ 4 and U-distribution. x41, x12, x23, x34 were set to 10.
2. G ¼ 4 and NUPM-distribution. x41, and x12 were still equal

to 10 but the values of x23 and x34 were doubled (20).

Analysis. With four goods in circulation, two agent types can use
the good 1 as a medium of exchange: Agents that produce good 2
and consume good 3 and agents that produce good 3 and con-
sume good 4. We measured for each agent belonging to the type
ð2; 3Þ and ð3; 4Þ the frequency rate at which a subject asks to trade
its production good for the good 1 to obtain its consumption
good. For statistical analysis of the human experiment as well the
experiment-like simulations, we averaged this measure overtime
for the last third of the trials, to assert learning curves were stable.
We then compared these results across the uniform and non-
uniform distribution of agent types. As we did not expect a
normal distribution of data due to clustering effects at the
boundaries of our scale, assessment of statistic relevance of our
observations has been made with Mann-Whitney’s U ranking test
(Mann and Whitney, 1947), applying Bonferroni’s corrections for
multiple comparisons. We set the significance threshold at 5%.

The Supplementary section provides further details, and in
particular a summary of the experiment parametrization in
Tables S1 and S2.

Results
Simulations
3 goods setting. When G ¼ 3, the highest frequency of indirect
exchanges with good 1 is observed when the value of x31 is equal
to that of x12 and when the value of x23 is at least twice that of x31

Fig. 1 User interface. Screen-shots corresponding to a 3 good (wood, wheat, and stone) economy. The subject plays the role of a producer of wood,
consumer of wheat. a Decision-making phase. b Waiting screen while other players also take a decision. c Successful exchange. d Unsuccessful exchange.
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(see Fig. 2). One may notice that the use of a uniform distribution
of agent types (x31 ¼ 50, x12 ¼ 50, x23 ¼ 50) results in a low
frequency of indirect exchanges with good 1.

4 goods setting. When G ¼ 4, the highest frequency of indirect
exchanges with good 1 is observed when the values of x23 and x34
are nearly twice that of x41 and x12 (see Fig. 2). The use of a
uniform agent type distribution (x41 ¼ 50, x12 ¼ 50, x23 ¼ 50,
x34 ¼ 50) results in a low frequency of indirect exchanges with
good 1.

Experimental setup. Put together, these results led us to formulate
the following operational hypotheses regarding our experiments:
(i) setting the number of one particular type of agents to half of
the other agent types promotes the use of its production good as a
medium of exchange (ii) setting the number of agents of each
type equal precludes the emergence of a medium of exchange.

Hence, for the Experiment I, we set the value of x12 equal to
that of x31 and set the value of x23 twice that of x31 for the
simulations under experimental conditions with G ¼ 3 where our
goal was to promote money emergence (see Fig. 3). For the
Experiment II, we set the value of x12 equal to that of x41 and to
set the value of x23 and x34 twice that of x41 for the simulations
under experimental conditions with G ¼ 4 where our goal was to
promote money emergence (see Fig. 4).

Experiment I
Artificial experiment. To make predictions about the experiment
with human subjects, we ran 2 additional simulations, using a
parametrization identical to the two experimental conditions (see
Table S1). In one of the two conditions, we used a uniform dis-
tribution types while in the other, we promoted the use of good 1

as a medium of exchange, by using a non-uniform distribution of
agent types (one can note that as all the goods are identical, the
choice to promote good 1 is arbitrary).

With G ¼ 3 (see Fig. 3), we observe that the median frequency
of indirect exchanges with good 1 by agents of type ð2; 3Þ is (i)
above chance level, and (ii) significantly greater in the
NUPM–distribution than in the U-distribution (U ¼ 21:0,
p < 0:001�, n ¼ 28). This means that agents that neither produce
the good 1 nor consume it try to obtain it when they have their
production good in the hand and, once in the hand, try to obtain
their consumption good using it as an intermediary good.

Human experiment. In line with the results of the simulation, we
observe that the median frequency of indirect exchanges with
good 1 by subjects of type ð2; 3Þ is (i) above chance level, and (ii)
significantly greater in the NUPM–distribution than in the U-
distribution (U ¼ 50:5, p ¼ 0:031�, n ¼ 28).

Post-hoc simulations. The simulations using the best-fit parameter
values led to results that have the same pattern as the experi-
mental results. With three goods we observe that the median
frequency of indirect exchanges with good 1 by agents of type (2,
3) is significantly greater in the NUPM-distribution than in the
U-distribution (U ¼ 48:0, p ¼ 0:023�, n ¼ 28).

Experiment II
Artificial experiment. To make predictions about the experiment
with human subjects, we ran two additional simulations, using a
parametrization identical to the two experimental conditions (see
Table S2). In one of the two conditions, we used a uniform dis-
tribution types while in the other, we promoted the use of good 1
as a medium of exchange, by using a non-uniform distribution of

Fig. 2 Simulation: Influence of agents distribution on the use of a medium of exchange. Based on these simulation results, we deduced the optimal
experimental conditions required to see money emerge with human subjects. a The phase diagram summarizes the results of 10,400 simulations with 3
goods.The number of type (3, 1) agents is set to 50 while the number of agents of type (1, 2) and (2, 3) varies between 10 and 200 (corresponding,
respectively, to the values on the x-axis and y-axis). The hotter the color, the higher the indirect exchange frequency involving good 1 as a medium of
exchange. In a three goods economy, the highest frequency of indirect exchanges with good 1 observed is when the value x12 as well the value of x23 is
nearly twice that of x31. b Similarly, the phase diagram on B panel summarizes the results of 10,400 simulations with 4 goods. The number of agent of types
(4, 1) and (1, 2) is set at 50 while the the number of agents of type (2, 3) and (3, 4) varies between 10 and 200 (corresponding, respectively, to the values
on the x-axis and y-axis). In a four goods economy, the highest frequency of indirect exchanges with good 1 observed is when the value x23 as well the value
of x34 is nearly twice that of x12 and x41.
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agent types (one can note that as all the goods are identical, the
choice to promote good 1 is arbitrary).

With G ¼ 4, two types of agent are able to use good 1 as a
medium of exchange: ð2; 3Þ and ð3; 4Þ. We observe that the
median frequency of indirect exchanges with good 1 by ð2; 3Þ

agents (see Fig. 4a) is (i) above chance level, and (ii) significantly
greater in the NUPM–distribution than in the U-distribution
(U ¼ 21:0, p < 0:001�, n ¼ 30). Similarly, the median frequency
of indirect exchanges with good 1 by ð3; 4Þ agents (see Fig. 4b) (i)
is above chance level, and (ii) significantly greater in the
NUPM–distribution than in the U-distribution (U ¼ 28:0,
p ¼ 0:002�, n ¼ 30).

Human experiment. For the condition with G ¼ 4, we expected
the use of the good 1 as money to be promoted by both agent
types ð2; 3Þ and ð3; 4Þ. But contrary to what has been observed in
the artificial agents, the median frequency of indirect exchanges
with good 1 by agents of type ð2; 3Þ (see Fig. 4a) is not sig-
nificantly greater in the NUPM–distribution than in the U-
distribution (U ¼ 56:0, p ¼ 0:056, n ¼ 30). Similarly, the median
frequency of indirect exchanges with good 1 by agents of type
ð3; 4Þ (see Fig. 4b) is not significantly greater in the
NUPM–distribution than in the U-distribution (U ¼ 77:5,
p ¼ 0:333, n ¼ 30).

Post-hoc simulations. The simulations using the best-fit para-
meters value led to results that have the same pattern as the
experimental results. The median frequency of indirect exchanges
with good 1 by agents of type ð2; 3Þ is not significantly different in
the NUPM-distribution than in the U-distribution (U ¼ 99:0,
p ¼ 0:982, n ¼ 30), as well as for agents of type ð3; 4Þ (U ¼ 78:5,
p ¼ 0:355, n ¼ 30).

Supplementary section provides more details for both experi-
ments, in particular a summary of the statistical tests (see Table
S3), a short demographic analysis (see Figs S1, S2, and Table S4),
the representation of individual behavior (see Figs S3 and S4), a
sensitivity analysis to free parameters (see Fig. S5 and Table S5),
some post hoc simulations varying some environment parameters
and also using alternative decision-making models (see Figs S7,
S8, S10–S17, and Tables S7 and S8), more details about the model
fitting and a model comparison (see Figs S6, S18, S19, and Tables
S6, S9, S10).

Discussion
The results obtained by simulation are in line with our initial
assumption: the emergence of commodity money is possible in a
decentralized economy with agents endowed with limited com-
putational abilities and having very poor information on the
global state of the economy. Indeed, they show that manipulating
the agent type distribution is sufficient to foster the emergence of
a unique medium of exchange in a 3 goods economy, as well as in
a 4 goods economy.

To assess the robustness of these computational results, we
conducted two experiments. In contrast to previous experimental
studies (Marimon et al., 1990; Duffy, 2001; Kindler et al., 2017),
human subjects did not have access to any statistic regarding the
current state of the economy in which they were evolving, and in
particular the choices of the other participants. The only feedback
that they got at each iteration of the game was whether the
exchange was successful. Also, contrary to recent experimental
studies (Duffy and Puzzello, 2014; Anbarci et al., 2015; Ding et al.,
2018; Jiang and Zhang, 2018; Davis et al., 2019; Rietz, 2019), there
is no monetary authority, and money emerges endogenously
since no good is intrinsically devised to become a medium of
exchange.

In the 3 goods setting experiment, the experimental results
were consistent with the computational results, the manipulation
of the agent type distribution being effective in promoting the use
of a unique medium of exchange. Although, in the 4 goods setting
experiment, this manipulation turned out to be ineffective. The

Fig. 3 Experiment I: The use of a medium of exchange with three goods in
circulation. We contrast the U-distribution of agent types (blue color) with
the NUPM-distribution (orange color). In a three goods economy, only the
(2, 3) type of agent can use Good 1 as money. The left side plots represent
the moving median (±STD) of the frequency of use of a medium of
exchange for each individual over time with a 25 time-step window. On the
box plots (right side), each dot represents the averaged frequency over
time for either one artificial agent (panel a and panel c), or one human
subject (panel b) belonging to the (2, 3) agent type. The gray dotted lines
indicate the chance level. a We observe that in the NUPM-distribution, the
median frequency of indirect exchanges involving good 1 is significantly
greater than in the U-distribution (p < 0:05), showing that the good 1 is
used as a medium of exchange significantly more frequently in the NUPM-
distribution than in the U-distribution. b We replicate this result with
human subjects: in the NUPM-distribution, the median frequency of indirect
exchanges involving good 1 is significantly greater than in the U-distribution
(p < 0:05). c Running post-hoc simulations with the best-fit parameters of
the human subjects, we obtain the same pattern as the experimental
results: the median frequency of indirect exchanges involving good 1 is
significantly greater than in the U-distribution (p < 0:05).
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results with a 3 goods economy extend precedent works in arti-
ficial agents and human using the Kiyotaki and Wright’s frame-
work (Marimon et al., 1990; Duffy, 2001; Kindler et al., 2017). In
particular, it shows that coordination over a unique medium of
exchange is also possible in an Iwai-like environment (Iwai,
1996). Furthermore, it shows that the monetary coordination
does not even require agents to have extended knowledge of other
players’ preferences or to construct a sophisticated belief system: a
trial and error approach—in our case, a simple reinforcement
learning mechanism—is sufficient. Of course, this coordination
between agents over a unique medium of exchange is not sys-
tematic: our results suggest that structural constraints are
necessary, such as a non-equal distribution of agents over types in

our environment. This can be interpreted as the fact that a par-
ticular endowment-need distribution can render sensitive the
benefits of coordinating on a unique medium of exchange, thus
highlighting interaction effects between economic structure and
agents’ cognition.

However, by raising the number of goods from 3 to 4, and
placing human subjects under the same conditions as our artifi-
cial agents, we were not able to replicate the results obtained by
simulations. This failure may carry several interpretations. We
tackle some of those thereafter. Except for the first one, they have
in common to assume that an additional good greatly increases
the difficulty to coordinate, which is the most probable cause of
failure. (i) “It is due to specific features of the sample”. We possess

Fig. 4 Experiment II: The use of a medium of exchange with three goods in circulation. We contrast the U-distribution of agent types (blue color) with the
NUPM-distribution (orange color). In a four goods economy, two types of agents that can use good 1 as money: (2, 3) and (3, 4). The left side of each pair
of plots represents the moving median (±STD) of the frequency of use of a medium of exchange for each individual over time with a 25 time-step window.
On the box plots (right side), each dot represents the averaged frequency over time for either one artificial agent (panel a and panel c), or one human
subject (panel b). Results for (2, 3) agents are depicted on the two leftmost figures of each panel, while results for (3, 4) are depicted on the two rightmost
plots. The gray dotted lines indicate the chance level. a In simulations and with regards to (2, 3) agents, we observe that in the NUPM-distribution, the
median frequency of indirect exchanges involving good 1 is significantly greater than in the U-distribution (p < 0:05), showing that good 1 is used a
medium of exchange significantly more in the NUPM-distribution than in the U-distribution. Similarly, with artificial agents that belong to the (3, 4) type,
we observe that in the NUPM-distribution, the median frequency of indirect exchanges involving good 1 is significantly greater than in the U-distribution
(p < 0:05). b We do not replicate the simulation results from panel a with human subjects: the frequency of indirect exchanges with good is not
significantly different from the U-distribution (p > 0:05). Similarly, we do not replicate the simulation results from panel b with human subjects (p > 0:05).
c Running post-hoc simulations with the best-fit parameters of the human subjects, we obtain the same pattern as the experimental results: the median
frequency of indirect exchanges involving good 1 are not significantly greater than in the U-distribution for both agent types that are concerned (p > 0:05).
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data from one hundred subjects, but this corresponds to data for
only two economies and we expected convergence for only one of
them. It is indeed difficult to reject the possibility that the lack of
convergence over a medium of exchange for the concerned
economy is specific to our sample.

(ii) “The subjects (or a sub-group of the subjects) were unable
to endorse the primary cost of indirect exchange (i.e., they have a
strong bias towards a direct exchange strategy)”. Indeed, in a
Kiyotaki & Wright environment (Kiyotaki and Wright,
1989, 1993), in the specific case where a speculative equilibrium is
expected—that is to say when the monetary good has a higher
storage cost than the other good—it has been noted that a non-
negligible part of subjects had difficulties to endorse the primary
cost implied by the use of the monetary good as a medium of
exchange (i.e., to speculate) (Duffy and Ochs, 1999; Kindler et al.,
2017). It means that some subjects that neither produce or con-
sume the monetary good were reluctant to engage in indirect
exchange strategies. Similarly, our experimental results show that
part of the subjects that were supposed to proceed to indirect
exchanges and suffer from a primary temporal cost, did not adopt
such strategies, although most of the subjects that were supposed
to use direct exchanges did so (see for instance the results for the
condition with a non-uniform distribution promoting the good 1
with four goods depicted in the Fig. 4). As in our protocol,
subjects do not play against artificial agents that use a determi-
nistic algorithm but against other human subjects, it is none-
theless difficult to tell whether subjects playing (almost) always a
direct exchange strategy did it because of the behavior of other
subjects, or because they were initially strongly biased toward this
option.

(iii) “Subjects were lacking information to coordinate”. Since
the level of information for artificial agents was strictly identical
to that of humans, it is probably for other reasons than because of
a lack of information. Indeed, reinforcement learning, although
effective, is far from being the most sophisticated learning model.
It is unlikely that human subjects have failed to coordinate on a
single medium of exchange due to more limited cognitive abilities
than agents using reinforcement learning.

(iv) “The psychological model used for the simulations is
unappropriated, that is the reason why it was partly ineffective in
producing accurate predictions”. Several studies point out the fact
that reinforcement learning models fit well the behavior of
human subjects in economic contexts (Roth and Erev, 1995; Erev
and Roth, 1998; Feltovich, 2000), and specifically for modeling
behavior in a coordination game over a unique medium of
exchange (Duffy and Ochs, 1999; Duffy, 2001; Kindler et al.,
2017). However, to test the relevance of such an interpretation,
we proceeded to a post hoc analysis (see Supplementary section).

We fitted the behavioral data with our reinforcement learning
model, and run simulations using the best-value parameters of
each subject. We obtained the same pattern as the experimental
results: in the three-goods setting, the use of a medium of
exchange is promoted in the condition of non-uniform dis-
tribution while in the four-goods setting, the use of a medium of
exchange was not promoted as we expected. Hence, using the
adequate set of cognitive parameters, we could replicate the
experimental results, whether positive or null.

(v) “Assuming the cognitive model as true, this could be
because the artificial agents from a single economy were having
homogeneous cognitive features, while it exists certain hetero-
geneity among the human subjects that could make the coordi-
nation more difficult”. To test the relevance of this interpretation,
after fitting the behavioral data with the model, we simulated an
homogeneous population using as cognitive parameter values the
average best value for each cognitive parameter after fitting the

behavioral data (instead of simulating an heterogeneous population
with the parameters of a single agent being the best-value para-
meters of a subject fit). However, the pattern remained unchanged:
the non-uniform distribution of agent types promotes the use of a
medium of exchange with three goods, but not with four.

(vi) “More trials would have allowed subjects to overcome the
complexity of coordination at 4 goods”. To test the relevance of
this interpretation, after fitting the behavioral data with the
model, we simulated a population of (heterogeneous) agents with
the parameters of every single agent being the best-fit parameter
values of a single subject for a larger number of iteration (n ¼ 500
instead of 50). Here, the results changed (see Supplementary
section), as the non-uniform distribution of agent types promotes
the use of a medium of exchange in both settings with a large
number of trials. This indicates that an extended time could have
allowed the human subjects to modify slowly their behavior
towards the use of a medium of exchange, raising the questions
about the pragmatic possibility of such large scale experiments for
a long time.

Nevertheless, these results seem to contribute to a better
understanding of the processes underlying the coordination over
a unique medium of exchange. Hence, in the 3 goods setting, the
results in artificial agents, as well as those obtained in human,
show that decision-makers do not need to have any expertize
concerning the economic system in which they evolve to allow
this system to acquire certain remarkable macroeconomic prop-
erties—such as the existence of a unique medium of exchange.
Said differently, these results show that the members of an eco-
nomic system do not need to know the macroeconomic proper-
ties of the system to be able to influence them.

Although, the attempt to test the robustness of the results by
considering a 4 good setting appears to be unsuccessful. The
results obtained by simulation and with human subjects being
not completely in line, it is difficult to draw strong inferences
regarding the possibility of money emergence under infor-
mational constraints in a more than three goods economy.
Also, these negative results indicate the importance to take
into account the temporal aspect of the coordination pro-
cesses: even if we possess evidence for the existence of a
steady-state for an economic system with artificial agents (or
by mathematical proof), it could be that, due to the complexity
of the coordination process, the time for obtaining with
humans is so long that in real-world context, it would be a
good approximation to say that it would never occur. At least,
in the present context of money, the phenomenon already
occurred, so it just remains to continue to investigate how such
large scale coordination has been possible, given the com-
plexity of the interactions.

In previous studies (Duffy and Ochs, 1999; Duffy, 2001;
Lefebvre et al., 2018), subjects were constantly provided with
economy statistics, such as the current distribution of goods or
agent types. From this information, subjects can infer exchanges’
success probabilities. In that sense, decisions are made by
description: subjects learn about the probabilistic consequences of
their action by consulting descriptions of action consequences
and probabilities. In contrast here, subjects are not provided with
any information related to the state of the economy, decisions are
therefore made by experience: subjects’ learning of outcome
probabilities is based on their own experience. In the literature,
one concept refers to these two kinds of decision-making systems
supposed to result in behavioral discrepancies: the description-
experience gap (Wulff et al., 2018).

It has been observed that decision by experience is subject to
biases that are absent in decision by description. Preferential
learning from positive outcomes (rather than negative outcomes)
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prediction errors is for instance often observed (Palminteri et al.,
2017; Lefebvre et al., 2017; den Ouden et al., 2013; Frank et al.,
2007; Van Den Bos et al., 2012; Aberg et al., 2016). Interestingly,
our subjects also present this asymmetry in value-update and
seem to preferentially learn from exchanges that result in better-
than-expected outcomes (see Fig. S18F). Investigating how such
bias affects the coordination of agents in an experience-based
money emergence paradigm could then constitute a relevant
subject for further studies.

Data availability
The data are available at the same address than the analysis
program: https://github.com/AurelienNioche/MoneyAnalysis.

Code availability
The software we used was based on a client/server architecture.
The client part has been developed using the Unity game engine.
The application ran on 7″ Android tablets. The assets of the
application are available at https://github.com/AurelienNioche/
MoneyApp. The experiment server was hosted on a local server
and has been developed in Python. The code of the server part is
available at https://github.com/AurelienNioche/MoneyServer.
The analysis program is available at https://github.com/
AurelienNioche/MoneyAnalysis.
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ABSTRACT Duopolies are situations where two independent sellers compete for capturing

market share. Such duopolies exist in the world economy (e.g., Boeing/Airbus, Samsung/

Apple, Visa/MasterCard) and have been studied extensively in the literature using theore-

tical models. Among these models, the spatial model of Hotelling (1929) is certainly the most

prolific and has generated subsequent literature, each work introducing some variation

leading to different conclusions. However, most models assume consumers have unlimited

access to information (perfect information hypothesis) and to be rational. Here, we consider

a situation where consumers have limited access to information and explore how this factor

influences the behavior of competing firms. We first characterized three decision-making

processes followed by individual firms (maximizing one's profit, maximizing one's relative

profit with respect to the competitor; or tacit collusion) using a simulated model, varying the

level of information of consumers. These manipulations alternatively lead the firms to

minimally or maximally differentiate their relative position. We then tested the model with

human participants in the role of firms and characterized their behavior according to the

model. Our results demonstrate that limited access to information by consumers can actually

induce a mutually beneficial non-competitive behavior of firms, which is not traceable to

explicit collusive strategies. Imperfect information on the part of consumers can hence be

exploited by firms through basic and blind decision rules.
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Introduction

Duopolies are situations where two independent sellers
compete for capturing market share. There are actually
numerous examples of such situations in the world

economy (e.g., Boeing/Airbus, Samsung/Apple, Visa/Mas-
terCard). What is particularly interesting in these situations is the
fact that it is not rare to observe sellers adopting a similar posi-
tioning on the market, both in geographical terms and in terms of
product differentiation (e.g., Burger King/McDonalds). This can
appear counterintuitive at first glance: one could spontaneously
assume that sellers would try to avoid such behavior in order to
reduce competition. The first formal model proposed by Hotell-
ing (1929) for describing such situations has provided an expla-
nation on why and how firms could be incentivized to minimally
differentiate. His model considers a pool of consumers that are
uniformly spread over a one-dimensional segment. Two firms
selling the same product have to decide where to locate on this
segment and what price to offer for their product, knowing that
each consumer will choose a firm according to its relative distance
(linear transportation costs) and the price of the product. The
original study holds that in such conditions, firms tend to
aggregate and compete near the center of the segment (minimal
differentiation principle) due to the effort of the firms to capture
the largest number of consumers. However, subsequent research
(d’Aspremont et al., 1979; Cremer et al., 1991; Economides, 1993;
Brenner, 2005) demonstrated the existence of an antagonist
principle of maximal differentiation, using either quadratic
transportation costs, a higher number of competitors or a higher
number of dimensions on which firms can differentiate them-
selves. In the end, both minimal and maximal differentiation can
be incentivized and observed (Irmen and Jacques-François, 1998).
Here, we show how the level of information of consumers may
induce different behavior for the two firms, depending on their
strategies.

Several experimental studies have already attempted to char-
acterize the various factors influencing differentiation. For
instance, Kruse et al. (2000) allowed for communication between
participants in the role of firms and showed that they tend to
group in the center when communication is limited, but on the
contrary, to differentiate themselves if communication is unlim-
ited (cooperation). Similarly, Kephart and Friedman (2015) set-
up a protocol contrasting continuous and discrete time and
demonstrated that continuous time could trigger a maximal dif-
ferentiation strategy, as it allows some form of communication,
and as a consequence, some form of cooperation. These two
findings brought together suggest that quick and/or full infor-
mation transmission can help to reach a cooperative equilibrium
in a typical Hotelling's model. Several other studies brought up
arguments supporting the robustness of the minimal differ-
entiation phenomenon such as, for example, the four-player
version of the game by Huck et al. (2002) or in Barreda-
Tarrazona et al. (2011), where subjects tended to group in the
center under several experimental conditions. Although there is a
treatment in Barreda-Tarrazona et al. (2011) with human subjects
as consumers, what is common to all these works is their shared
assumption of the fact that firms are competing to capture
rational and fully informed consumers even when they document
spatial behavior that departs from Nash equilibrium when it
theoretically exists. The case when consumers have no full
informational access to the firms' strategies and when firms must
compete over this less than completely informed consumers have
not been addressed, to our knowledge, in the experimental lit-
erature related to Hotelling (1929). It has yet important impli-
cations as it is a common fact that consumers are not fully aware
of all options available on the markets they participate in and that
firms know and anticipate this fact in their own strategies.

Stigler (1961) argued that the information question should be
fully taken into account in such competition models, as it can
deeply impact the nature of equilibria. This is particularly
important as consumer choices are known to be subject to several
biases and based on partial information (Thaler, 1980; Kahne-
man, 2003). More precisely, the uncertainty resulting from the
imperfect nature of information has been shown to provide an
incentive for the firms to regroup and transparency of the market
is, thus, a prominent factor for differentiation (Webber, 1972;
Stahl, 1982). In line with predictions from earlier studies (Eaton
and Richard, 1975; Brown, 1989; Dudey, 1990; Schultz, 2009), we
postulate that in a duopoly context, the consumers' access to
information is a critical factor for the differentiation of the two
firms.

We thus defined a formal turn-based model (Prescott and
Vissher, 1977; Loertscher and Muehlheusser, 2011) that allows us
to explicitly manipulate the amount of information available to
consumers while retaining their rational nature. Agents can act
rationally under partial information and thereby induce obser-
vable organizational patterns in the market that differ from what
is expected under perfect information. We test the hypothesis that
the amount of information accessible to consumers can variably
drive the differentiation of the two firms: when this amount is
low, firms will be maximally differentiated; when this amount is
high, firms will be minimally differentiated. We test this
hypothesis using a simulation where we consider three decision-
making processes for the firms, namely (i) a maximization of
short-term profits, (ii) a maximization of the difference of profits
between the firm and its opponent, (iii) a maximization of the
profits of the two firms. Following Rubinstein’s prescriptions
(Rubinstein, 1991), the aim of these decision rules is to incor-
porate the potential perception of the situation by the decision
makers. These rules indeed constitute plausible behavioral
responses on the part of firms in the light of partial information
on the part of consumers. These decision rules helped us to
characterize the behavior of human subjects for the experimental
part of this work where subjects play the role of the firms under
different informational conditions. The choice of using the first
decision rule is straightforward: a firm only pays attention to its
current own profit, considering further expectations about the
future not reliable. A firm may consider the behavior the other
firm either too difficult to compute or not reliable. This is tan-
tamount to ignore the other player strategies. This type of “blind”
decision rule has a presence in the Industrial Organization lit-
erature stemming as far as Rothschild (1947) in which securing
one’s profit is the only rule by which a firm’s behavior is guided.

Regarding the second decision rule, motivations are dual. It
could lie on an anchoring bias (Tversky and Kahneman, 1974): it
is difficult to evaluate the success of a move per se, a move is
considered efficient if it leads to better profits than its opponent.
In other words, firms' strategies evaluation relies on comparisons
to a given point instead of evaluation in absolute terms. Secondly,
it could be due to a zero-sum bias (Meegan, 2010; Różycka-Tran
et al.,), even if in our model, the profit of one firm is not
necessarily made at the expense of the other firm (see ‘Methods’
section). Indeed, considering—sometimes wrongfully—that a
greater profit for its opponent is a profit loss for itself, a firm
could decide to make its choice only considering the profit
difference.

The use of the third heuristic lies on the expectation of tacit
collusion (TC) with the opponent: if both firms try to maximize
their own profit as well as the profit of their opponent, it would
avoid the drawbacks of a competitive situation and leads to higher
profits. It could be also seen as a search for Pareto optimality
(Pareto, 1964), that is to say following the strategies that lead to a
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repartition of profits such as no firm could earn more, otherwise,
it would be at the expense of the other.

Therefore, we hypothesized that (i) depending on the infor-
mation available to consumers, either a minimum differentiation
or a maximal differentiation can apply, (ii) the effect of the
information available to consumers can be modulated by the
firms’ decision rules.

Methods
Model description. We consider a unidimensional normalized
space X discretized into ncons evenly spread locations such that xi
= (i− 1)/(ncons− 1). We consider a set of 1+ pmax− pmin integer
prices P ranging from pmin to pmax. We consider two firms
{Fj}j∈[1,2] and a group of ncons consumers Cif gi2 1;:::;nconsf g.

Each firm Fi= (xi,pi) is characterized by a position xi and a
price pi. Consumers are uniformly spread over space such that xi
= (i− 1)/(ncons− 1). View radius is defined on a per-experiment
basis and is the same for all the consumers during an experiment.
The firm position is a free variable and must correspond to a
consumer position such that there are only ncons different possible
positions for a firm. Price pi is a free variable and is discrete: there
are P possible prices spread uniformly between a minimal price
pmin and a maximal price pmax. Simulations are turn-based
(Prescott and Vissher, 1977; Loertscher and Muehlheusser, 2011).
We distinguish at each turn an active firm that is allowed to select
a strategy and a passive firm that has to wait for the next turn to
react and deploy its own strategy. More specifically, at turn t,
Firm A (F1 or F2) chooses its location and its price, consumers
choose a firm and profits are collected for both firms. At turn t+
1, Firm B (F2 or F1) chooses its location and its price (while Firm
A keeps location and price from turn t), consumers choose a firm
and profits are collected for both firms. Let ∏i be the profit of the
firm Fi for a single turn defined by ∏i= pi·qi with pi the price at
which Fi sells its product, and qi the quantity Fi sold. There is no
production cost. Consumers are able to buy only one product per
turn. They consume it immediately, in such a manner that they
do not constitute any stock. This implies that a firm produces a
maximum of ncons products per turn.

Each consumer Ci= (xi,ri) is characterized by a position xi and
a view radius ri. The view radius defines a segment centered on
the consumer [xi−ri,xi+ri]. Only firms located inside this
segment are considered by the consumer (see Fig. 1). Conse-
quently, at each turn, some consumers will see only one firm and
will be captive since they cannot choose what firm to buy from.
Some consumers will see both firms and are named volatile
because they can choose any of the two firms depending on their
choice criterion. Some consumers won't see any firms and cannot
buy, and, thus, are named ghost consumers. A view radius of 0
means the firm has to be at the same position to be seen while a
radius of 1 means the firm is seen by all the consumers.
Reciprocally, and depending on the consumer view radius, firms
have access only to a subset of all the consumers, they are named
the potential consumers and represent the sum of captive and
volatile consumers.

Parameters. For all the simulations, we used the following
parameters: ncons (number of consumers)= 21, nprice (number of
prices)= 11, pmin (minimal price)= 1, pmax (maximal
price)= 10, nturn= 100. The initial position and price for the
passive firm (first turn) are randomly assigned. The view radius
(r) is the same for all the consumers and is comprised between 0
and 1. For each of the three different decision-making processes,
we ran (i) 1000 simulations with r randomly (uniformly) drawn
between 0 and 1 for each simulation; (ii) 64 additional

simulations with r= 0.25 and r= 0.50 respectively, in order to
characterize experimental data.

Decision-making processes. Consumers do not choose the
amount of information they dispose of. They may see zero, one or
two firms. In the event that they do not see any firm, they are
unable to buy and have to wait for the next turn. If they see a
single firm, they have no means to compare prices and have to
buy from this firm, independently of the price (each consumer
has an unlimited budget). When they are able to see the two
firms, they buy from the firm offering the lowest price. In the
specific case where prices of both firms are equal, they choose
randomly between the two. Firms have perfect knowledge of the
environment: they know (i) the price and the position of the
opponent, (ii) the location of each consumer xi, (iii) the view
radius ri of each consumer and (iv) the decision-making method
of consumers. Firms from two different simulations can differ in
their decision-making process but two firms from the same
simulation share the same decision-making process. Decision-
making process of a firm is either one of the three following
decision rules:

Profit maximization (PM). Each time an active firm plays, it
computes the potential profits for all the possible position-price
couples regarding the current decision-making process of the
passive firm, and chooses the couple position-price that max-
imizes profit (in the case where several couples position-price lead
to the same best payoff, the firm chooses randomly between these
moves);

Difference maximization (DM). If Firm A is the active firm, the
difference between its own profit and the profit of Firm B is
computed for each possible move, and the move leading to the
greatest difference is chosen (in case of multiple moves leading to
the greatest difference, the move is randomly chosen between
those moves);

Tacit collusion (TC). The distance to the maximum profit for
Firm A and the distance to the maximum profit for Firm B are
computed for each move the active firm can play, the chosen
move is the one leading to the minimum sum of the distances.

Firm decision-making process. The choice space is defined by
the set Y, that is the Cartesian product of all possible location-
price couples:

Y ¼ xi; pj
� �n o

xi2X; pj2P

The expected profit of the firm A is defined by the number of
potential consumers (the sum of captive and volatile consumers)
that a firm can expect when making the move yα, that is locating
at position xi and setting price pj.

Let the boolean-valued function VCk determine if a consumer
Ck sees the location xi:

VCk
xið Þ ¼ 1

0

�
if xk � rk � xi � xk þ rk;

otherwise:

Let the function VCk define the profit that the firm A can expect
from a consumer Ck for the move yα= (xi,pj), knowing that the
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move of the opponent is yβ= (xm,pn):

WA
Ck

yα; yβ
� �

¼
0 if pj>pn ^ VCk

xmð Þ ¼ 1
h i

_ VCk
xið Þ ¼ 0;

0:5 if pj ¼ pn ^ VCk
xmð Þ ¼ 1;

1 otherwise:

8>><
>>:

Then, the expected profit of the firm A for a given move yα is
obtained from the function EA, knowing that the move of firm B
is yβ:

EA yα; yβ
� �

¼
Xncons
k¼1

WA
ck yα; yβ
� �

A firm makes the move yλ (that is a specific combination of
position and price) using one of the following decision rules:
profit maximization (PM), difference maximization (DM), or
tacit collusion (TC).

When following a PM decision rule, the active firm A
maximizes its expected profit EA

yi;yβ
such that:

λ ¼ argmax
i

EA yi; yβ
� �n o

yi2Y

� �

When following a DM decision rule, the active firm A
maximizes the difference between its own expected profit and the
corresponding expected profit of the passive firm B:

λ ¼ argmax
i

EA yi; yβ
� �

� EB yi; yβ
� �n o

yi2Y

� �

When following a TC decision rule, the firm A makes the move
maximizing both its own expected profit and the expected profit
of its opponent, by considering the relative distance to the

Fig. 1 Model. The model is represented by a one-dimensional line segment over which consumers (black dots) are spread uniformly. Firms (outlined red
dots) are free to position themselves on any consumer position. Consumers view firms that fall within their view radius such that some consumers view
only one firm (captive consumers), some consumers view both firms (volatile consumers) and some consumers view none (ghost consumers). The
number of captive, volatile, and ghost consumers for a firm depends on the size of the view radius of the consumers and the respective position of the two
firms. The number of captive consumers increases as the view radius of consumers decreases. The number of potential consumers (captive+ volatile) of a
firm is a function of the position of the firm and the view radius of the consumers. When the level of information is high (r= 0.50), there is a unique
position where all the consumers are potential consumers for a firm. When the level of information is low (r= 0.25), there is a whole segment where
exactly half the consumers are potential consumers for a firm
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maximum expected profit for both firms:

ΔA yα; yβ
� �

¼ max EA yi; yβ
� �n o

yi2Y

� �
� EA yα; yβ

� �

λ¼ argmin
i

ΔA yi; yβ
� �

þ ΔB yi; yβ
� �n o

yi2Y

� �

Experiments. Participants were recruited using the Amazon
Mechanical Turk (AMT) platform. AMT is an online crowd-
sourcing service where anonymous online workers complete web-
based tasks in exchange for monetary compensation. It was noted
that responses from AMT participants were at least as reliable as
those obtained in laboratories (Buhrmester et al., 2011; Amir
et al., 2012). In addition, AMT participants exhibit similar
judgment and decision biases such as framing effects, conjunction
fallacy, or outcome bias (Paolacci et al., 2010). The ethics
approval for this project was provided by the Ecole Normale
Supérieure as per the school's guidelines. In line with ethical
guidelines, all participants provided informed consent before
proceeding to the experiment. Participants also had to fill in a
survey asking their age, nationality, and gender. Monetary com-
pensation of one dollar was offered to each participant, with a
bonus proportional to their score. In average, participants
received a compensation of $2.64 (±0.58 SD). Participants were
paired inside a dedicated virtual room and each pair went
through one of the four treatments. The four treatments corre-
spond to the combination of two factors: consumers' view radius
(r) and the display of the opponent's profit (s). The consumers'
view radius that was either low (r= 0.25) or high (r= 0.50) and
the opponent's profit was either hidden (s= 0) or displayed
(s= 1). For all the rounds, we used the same parameters as for
simulations except that we maintained constant the initial loca-
tions of firms: one of the two firms was placed at one of the
extrema of the segment, the other firm at the other extrema. Their
initial price was set to 5. The subject playing first was randomly
selected. The number of rooms (with two subjects each) for each
condition is: (r= 0.25, s= 1, neco= 26), (r= 0.25, s= 1,
neco= 30), (r= 0.50, s= 1, neco= 26), (r= 0.50, s= 1, neco= 26).
Additional information is provided in the supplementary section.

Analysis. Only data obtained from subjects that have fully
completed the experimental procedure has been used for analysis.
Among the 410 subjects that signed up to the platform,
222 subjects went through all the process (see Supplementary for
more information). The reasons why a subject may not have
completed the procedure are (i) the impossibility to match him
with another subject, (ii) quit before the end, (iii) a technical
problem (i.e., poor computer performances). The sample of
subjects we used for analysis matches the demographic char-
acteristics of AMT (Ipeirotis, 2010). Regarding the composition of
the participants, we noticed a quasi-gender parity (women
represented 54.1% and men 45.9%). The average age was 34.75 ±
9.54. We counted a dozen nationalities, the most common being
American (75.78%) with a large majority, and, to a lesser extent,
Indian (11.71%).

We drew a three-dimensional profile for each subject. Each
dimension corresponds to a particular decision rule (PM, DM,
TC). The score associated with each dimension assesses the extent
to which a subject behaves accordingly to what a specific decision
rule implies to do.

Let be vAH yα; yβ
� �

be the value of the move yα relatively to

the decision rule H∈ {PM, DM, TC} (respectively, for PM, DM,

TC) at time t∈ [1,nturn]:

vAPM yα; yβ
� �

¼
EA yα;yβð Þ

max EA yi;yβð Þf gyi2Y

� � if max EA yi; yβ
� �n o

yi2Y

� �
> 0;

1 otherwise:

8>><
>>:

vADM yα; yβ
� �

¼
EA yα;yβð Þ�EB yα;yβð Þ

max EA yi ;yβð Þ�EB yi;yβð Þf gyi2Y

� � if max EA yi; yβ
� �

� EB yi; yβ
� �n o

yi2Y

� �
> 0;

1 otherwise:

8>><
>>:

vATC yα; yβ
� �

¼

min ΔA yi;yβð ÞþΔB yi;yβð Þf gyi2Y

� �
ΔA yα;yβð ÞþΔB yα;yβð Þ if ΔA yα; yβ

� �
þ ΔB yα; yβ

� �
> 0;

1 otherwise:

8>>><
>>>:
For convenience, we did not include the variable t in the

definition of the v functions. So, let’s assume a function f such as:

fH i; tð Þ ¼ viH yα; yβ
� �

for time t

The score for a subject i and for a decision rule t is simply the
average value of f over time:

sH ið Þ ¼ 1
nturn

Xnturn
t

fH i; tð Þ

For the analysis, we pooled the individual scores by experi-
mental condition. As we did not expect a normal distribution of
the data due to clustering effects at the boundaries of our scales
(i.e., price), assessment of statistic relevancy of our observations
has been made with Mann–Whitney's U-ranking test, applying
Bonferroni's corrections for multiple comparisons. We set the
significance threshold at 1%.

Results
Simulations. In order to test our hypothesis regarding the
influence of the information level of consumer (measured by his
view radius) on the differentiation of the two firms, we ran
1000 simulations using a random view radius between 0 and 1
and tested three different decision rules for the firms, namely PM,
DM, and TC. For each of these simulations, we measured the
mean distance between the two firms, which is the distance
separating the two firms averaged over the last third of the 100
turns (i.e., the last 33 turns). We report in Fig. 2 all these distances
on the y-axis and the corresponding view radius on the x-axis.
Minimal differentiation corresponds to a mean distance of 0 firms
being placed at the center of the linear city while maximal dif-
ferentiation corresponds to a mean distance of 0.5 one firm being
placed on the first quarter of the linear city and the other one at
the last quarter.

The high dispersion of the points when r is close to 0 or near 1
can be explained by the fact that the firm location has almost no
impact on the firm profits. If the value of r is close to zero, the
consumers are almost blind in the sense that their view radius is
so narrow that except if the competitor is very close, each firm
would sell its product to only a few consumers, regardless of its
position. If r is close to 1, the visual field of the consumer is so
broad that it will see both firms and these firms will always
compete. For such extreme values of r, the mean distance
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observed is close to 0.33, which corresponds to the mean distance
observed for random moves. As each consumer sees only its own
position or sees both firms, it is indeed expected that the firms
randomly choose their location, which corresponds to a mean
distance of 0.33.

We can observe in Fig. 2a that for the PM decision rule, a view
radius of 0.50 corresponds to the minimal differentiation
principle where the two firms compete to occupy the central
position because this is the unique position that gives access to all
the consumers (all consumers are potential consumers for the
firm positioned at the center). It thus makes sense for the two
firms to compete around this position and to try to get a
maximum number of consumers in order to maximize their
profit. Because of this competition, the mean price for both firms
is very low and leads to moderate profits. When the view radius is
reduced to 0.25, the mean distance between the two firms is
maximal (0.5). This specific radius corresponds to a case where
there is a possibility of local markets as shown on Fig. 1. The two
ends of the plateau when r= 0.25 represent a compromise
between competition and a lesser number of consumers, but
those consumers are captive for each firm. This allows both firms
to set higher prices and to maximize their profits. When the DM
decision rule is used (see Fig. 2c), firms tend to minimally
differentiate, the proximity forcing them to reduce their prices
and hence, greatly reducing their profits compared to what
happens with firms using a PM decision rule. As one
would expect, when firms try to optimize at the same time
their profit and their opponent's profit (TC decision rule), firms
tend to maximally differentiate and establish local monopolies
(see Fig. 2e).

Focusing our attention on the specific cases where r= 0.25 or
r= 0.50 (Fig. 2b, d and f), one can notice quite different situations
in terms of distance, price and profits for the three policies
respectively. For r= 0.25, the principle of maximal differentiation
applies for PM and TC decision rules, leading to maximal prices
and profits. This is not true for the DM decision rule where the
principle of minimal differentiation seems to apply, leading to
moderate prices and profits. For r= 0.50, the situation is different
and both the PM and DM decision rules lead to a minimal
differentiation of the two firms with low prices and profits. Only
the tacit collusion decision rule (TC) allows for an implicit equal
share of the market, with highest prices and profits. Together,
these three decision rules allow to give account on minimum or
maximum differentiation in the two specific cases of low and high
level of information available to the consumers.

Experiments. When considering the effect of the view radius of
consumers on the mean distances, prices and profits (each of
these measures being an average for each pair of subjects, in such
a manner that each observation accounts for a two subjects
couple), experimental results are very similar to the results of
simulations when the PM decision rule is used, and this, inde-
pendently of whether the opponent's profit is visible or not.
Indeed, a large view radius induces a minimal differentiation
effect where the two firms are led to a fierce competition around
the central location, subsequently decreasing their prices and
profits. Conversely, when consumers dispose of a narrow view
radius, firms tend to exploit this disability by locating at the
endpoints of the segment.

Fig. 2 Simulation results. For each of the three decision rules (profit maximization [PM], difference maximization [DM], tacit collusion [TC]),
1000 simulations were run with a random (uniform) view radius for the consumers. The distance between the two firms, the profit and the price as a
function of the consumers' view radius is displayed in a (PM), c (DM), and e (TC). Each dot corresponds to the mean distance that has been observed
between the two firms during a single simulation and vertical bars indicate the standard deviation. Mean prices and profits are reported on the right using
gray bars and the standard deviation in black. For each of the three decision rules (PM, DM, TC) and for low- and high-view radius (r= 0.25, r= 0.50), 25
additional simulations were run and observed distance, price, and profit are displayed on the right (b, d, f) in order to compare them to the experimental
results
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More precisely, the median distance is greater when r= 0.25
than when r= 0.50 (when s= 0, u= 81.5, p < 0.001, n= 59; when
s= 1, u= 33.0, p < 0.001, n= 52). The same applies for the prices
(when s= 0, u= 128.5, p < 0.001, n= 59; when s= 1, u= 30.5, p
< 0.001, n= 52) and for the profits (when s= 0, u= 178.0, p <
0.001, n= 59; when s= 1, u= 131.5, p < 0.001, n= 52).

The display of the opponent's profit (s= 1) has a limited effect
on the general shape of the data relatively to distance, price, and
profit. It has an effect on distance only when r= 0.25 (when
r= 0.25, u= 191.0, u= 191.0, p= 0.007, n= 56; when r= 0.50,
u= 283.0, p= 0.686, n= 55) and no effect on price (when
r= 0.25, u= 321.0, p= 1.000, n= 56; when r= 0.50, u= 311.0,
p= 1.000, n= 55) and profit (when r= 0.25, u= 252.0,
p= 0.143, n= 56; when r= 0.50, u= 296.5, p= 1.000, n= 55).

A table summarizing the results is available in the supplemen-
tary section (see Table S4).

Although the general shape of data is close to what has been
observed with simulations using the PM decision rule, the
dispersion of results is much more spread out and we assume this
scattering of the data can be attributed to inter-individual
differences. In order to study this inter-individual variability, we
computed three individual scores for each subject, assessing the
compatibility of their behavior for each time step of the
experiment with the use of (i) a PM decision rule, (ii) a DM
decision rule, (iii) a TC decision rule. Distribution by experi-
mental condition of PM, DM, and TC scores are shown in Fig. 3b.
A matrix correlation of the scores by experimental condition has
also been computed (see Fig. 3c).

Considering the effect of the field of view on individual scoring,
the results indicate that the DM scores are higher in condition of
high information while PM scores are lower. The variation of the
view radius has no significant impact on TC scores. More
precisely, considering the effect of field of view on individual
scoring and comparing when r= 0.50 to when r= 0.25, for both
value of s, we observe that the DM score are significantly higher
(when s= 0, u= 488.0, p < 0.001, n= 118; when s= 1, u= 460.0,
p < 0.001, n= 104) and the PM scores are significantly lower
(when s= 0, u= 1048.0, p < 0.001, n= 118; when s= 1,
u= 861.0, p < 0.001, n= 104). Still when r= 0.50 compared to
when r= 0.25, the TC scores are significantly lower, but only
when s= 1(when s= 0, u= 1452.5, p= 0.730, n= 118; when
s= 1, u= 461.5, p < 0.001, n= 104).

Considering the effect of the display of the opponent’s score,
the results indicate that if the opponent's score is displayed, the
DM scores are higher in condition of low information. In
contrary, it has no significant impact on PM and TC scoring.
More precisely, considering the effect of opponent's profit
displaying on individual scoring (i.e., when s= 1 compared to
when s= 0), the DM score are significantly higher only when
r= 0.25 (when r= 0.25, u= 733.0, p < 0.001, n= 112; when
r= 0.50, u= 1031.0, p= 0.026, n= 110), while the PM scores are
not statistically different (when r= 0.25, u= 1248.5, p= 0.413,
n= 112; when r= 0.50, u= 1438.5, p= 1.000, n= 110), neither
are the TC scores (when r= 0.25, u= 1204.5, p= 0.227, n= 112;
when r= 0.50, u= 1376.5, p= 0.216, n= 110). A table summar-
izing the results is available in the supplementary section (see
Table S5).

Also, similarly to the results obtained by simulation, a radius
value of 0.25 allows to discriminate the use of a PM decision rule
from a TC decision rule, and a radius value of 0.50 allows to
discriminate the use of a PM decision rule from a DM decision
rule. This is especially noticeable when looking at the distribution
of the scores (Fig. 3b) but also when looking at the correlation
matrix (Fig. 3c). When r= 0.25, a subject who has a high score in
PM would likely to have a high score in TC but a low score in
DM, while when r= 0.50, a subject who has a high score in PM

would likely have a high score in DM but a low score in TC.
Hence, when trying to discriminate different decision rules, a
condition of low information (r= 0.25) allows to distinguish a
PM from a DM decision rule, but not from a TC decision rule.
Conversely, in a condition of high information (r= 0.50), a DM is
indistinguishable from a PM decision rule, but a TC decision rule
is. In other words, a DM decision rule could be interpreted as a
decision rule revealed solely in a condition of low information,
while a TC decision rule could be interpreted as an adaptive
decision rule in condition of high information.

If we now look more closely at individual behaviors, it is
striking to see that when subjects competing together have been
identified both as users of a specific decision rule (i.e., obtained a
high score toward PM, DM, or TC), the dynamics of their playing
is very similar to the corresponding simulation. With r= 0.25,
subjects using PM decision rule tend to position themselves at the
first and third quarters of the segment and both set a high selling
price (see Fig. 4a). However, when r= 0.50, subjects position
themselves at the center and immediately lower their price (see
Fig. 4b) even though they are less inclined to do so compared to
simulated firms using the corresponding decision rule. They are
actually trying to regularly increase their price. The situation is a
bit different for subjects using a DM decision rule when r= 0.25
(see Fig. 4c). In that case, the positions of subjects oscillate around
the center accompanied with an increase and decrease in prices,
indicating a will to capture the market of their opponent. When
r= 0.50, both simulated firms and human subjects using a TC
decision rule set their prices at their maximum but the dynamics
are not exactly the same (see Fig. 4f). Subjects positioned
themselves further apart, and this increase of the distance can be
assumed to be due to an intent from the subjects to communicate
their goodwill to their opponent.

Discussion
The principle of minimal differentiation as exposed in the
seminal paper of Hotelling (1929) did not reach consensus in the
abundant subsequent literature. Once some restrictive assump-
tions of the initial model are relaxed (for instance, number of
firms, spatial structure, or cost structure), it has been shown that
the principle of minimal differentiation can be invalidated and
that the antagonistic principle of maximal differentiation could
apply (d’Aspremont et al., 1979; Cremer et al., 1991; Economides,
1993; Brenner, 2005). In addition of these theoretical results,
several experimental studies show that by manipulating either the
communication between firms (Kruse et al., 2000) or by manip-
ulating the time structure (Kephart and Friedman, 2015)—what
also indirectly impacted the ability of the firms to communicate
about their intentions—it was possible to induce either a minimal
or a maximal differentiation between the firms. Similarly to Kruse
et al. (2000) and Kephart and Friedman (2015), and despite the
robustness of the minimal differentiation principle highlighted by
the experimental results of Huck et al. (2002) and Barreda-
Tarrazona et al. (2011), our results report both phenomena:
simulations and experiments allowed us to demonstrate that the
consumers' amount of information affects the differentiation of
firms with respect to their decision-making strategies. We isolated
incentives supporting either a geographic concentration and a
fierce price competition resulting in drastic reduction of profits,
or a maximal differentiation inducing a softening of the price
competition and thereby a large increase in firms' profits. How-
ever, our results also show that the principle of maximal differ-
entiation may be systemic and cannot be uniquely attributed to
the deliberate use of a cooperative strategy on the part of firms (as
in Kruse et al., 2000), or to TC (as in Kephart and Friedman,
2015).
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Indeed, when consumers have only access to a low level of
information, the occurrence of maximal differentiation in
experimental results can in turn be interpreted as an adaptation
to these consumers' limited access to information. In that cir-
cumstance, firms using a PM decision rule formed local mono-
polies without any willingness to cooperate with the other firm.
This supports and provides a possible rationale to d'Aspremont
et al.'s final open remark in their fundamental reexamination of
Hotelling's model (1929), according to which, contra Hotelling,
one should intuitively expect differentiation to be a distinctive
feature of oligopolistic competition. Oligopolists should indeed be
better off by dividing the markets into submarkets over which
they each exert quasi-monopolistic control. Our results actually
demonstrate that limited access to information, on the part of
consumers, can be an underlying factor and a prevailing one in
actual competitive markets that induces a non-competitive
behavior from which firms, without prior explicit collusion, can
take advantage of the situation and establish local monopolies,
which are detrimental to consumers. Our results show that only
the use of a profit DM decision rule precludes the formation of
such local monopolies.

Besides, the use of these decision rules allowed us to emphasize
heterogeneous behaviors. Thinking of these various behaviors in
terms of deviation from a rational behavior understood as the
maximization of a unique utility function would have prevented

us from making sense of this heterogeneity. In order to define our
decision rules, we measured whether our subjects looked for
maximizing their own profit, whether they aimed at maximizing
the difference of profits with their opponents, or finally whether
they tried to create a TC. The PM decision rule appears to be a
good predictor of the firms' aggregated behavior, while the other
decision rules offer an opportunity to account for less expected
behaviors.

The use of a DM decision rule indeed supported a fierce
competition when informational structure opened the possibility
of quasi-monopolies. The use of this decision rule could be
explained by the presence of an underlying anchoring bias
(Tversky and Kahneman, 1974): as it is difficult to evaluate the
success of a move per se, a move is considered efficient if it leads
to beer profits than its opponent. In other words, firms' strategy
evaluation relies on comparisons to a given point instead of an
evaluation in absolute terms. This could explain why this decision
rule has been promoted by the display of the opponent score. The
use of such decision rule could also be due to an underlying zero-
sum bias (Meegan, 2010; Różycka-Tran et al.,): considering
wrongfully that a greater profit for its opponent is necessarily a
profit loss for itself, a firm could decide to make its choice only
considering the profit difference.

While DM decision rules are precluded under certain condi-
tions the formation of monopolies, the use of a TC decision rule

Fig. 3 Experimental results. a Combined effect of the consumers' view radius and the display of the opponent's score on distance, price, and profit. The
white dots indicate the median, the thick black bars indicate the IQR. The extrema of the thin bars indicate the lower and upper adjacent values. The
colored areas give an indication of the shape of the data distribution. b Mean scores of profit maximization (PM), difference maximization (DM), and tacit
collusion (TC) by experimental condition. The white dots indicate the median, the thick black bars indicate the IQR. The extrema of the thin bars indicate
the lower and upper adjacent values. The colored areas give an indication of the shape of the data distribution. c Score correlation matrix. Blue color
indicates a strong negative correlation and red color a strong positive correlation
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allowed to relax price competition when information structure
was promoting it. As a means to avoid the drawbacks of a
competition situation leading to lower profits, the use of such
decision rule could be explained by the search for a Pareto
optimality (Pareto, 1964) that is to say following the strategies
that lead to a distribution of profits such as no firm could earn
more, otherwise it would be at the expense of the other. It could
also be interpreted as deliberate attempts to emit signals in order
to relax competition in a situation where the communication
technology needed to lead it rationally is lacking.

Another consideration that is raised by our study is that the
consequences of using such decision rules can differ from Nash
predictions applied to a basic Hotelling's model under full
information: for instance, the use of a TC decision rule under full
information leads to maximally differentiate while minimal dif-
ferentiation would be expected. However, it is now a well-trodden
theme that decision rules can be interpreted in terms of their
adaptive rationality (Gigerenzer and Reinhard, 2001). As long as a
chosen decision rule improves the outcome of the game and

corresponds to relatively stable observable spatial patterns, we can
speak of a specific form of rationality arising under the imposed
informational constraint. Work by Sutton (1997), applied to the
Hotelling's model, explores such an equilibrium notion and weak
rationality requirement, based in his case on a single decision
rule, which is to seize an opportunity when it presents itself. It
would take a further study to understand how the TC decision
rule highlighted here indeed constitutes an adaptive rational
behavior to informational constraints, either exerted on con-
sumers by means of the availability of information, or exerted on
firms by means of their disability to communicate.

For the purpose of our study, we considered a model with a
basic architecture. For instance, we used a homogeneous view
radius for consumers in our model, mainly for two reasons: (i) it
may have been more difficult for the subjects to identify con-
sumers view radius and to adapt their behavior in consequence,
(ii) diminish the potential variability of our data. Besides, from a
more theoretical point of view, it is equivalent to consider con-
stant radius across the population of consumers as reciprocally

Fig. 4 Analysis of dynamics. Comparison of the dynamics between artificial firms and human controlled firms. Each figure presents the evolution of
positions and prices of two firms in competition (orange: Firm A, blue: Firm B; data for artificial firms comes from a single simulation that serves as an
example of a typical behavior). a Left: artificial firms using a profit maximization strategy; right: two participants with a high score in profit maximization;
r= 0.25. b Same as in subfigure a but with r= 0.50. c Left: two firms using a difference maximization (DM) decision rule; two participants with a high
score in DM; r= 0.25. d Same as in subfigure c but with r= 0.50. e Left: two firms using a tacit collusion (TC) decision rule; right: two participants with a
high score in TC; r= 0.25. f Same as in subfigure e but with r= 0.50
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implementing the idea of a limited sphere of influence of the
firms. Given this limited amount of vision around consumers or
sphere of influence of firms (in the sense, then, of being visible by
consumers) it also motivates firms to try to change their location.
That being said, It might be relevant to implement heterogeneous
view radius in a further study, in order to test the robustness of
our results established in a homogeneous setting.

Another implication of our implementation of information is
that consumers may be unaware of one of the two options. The
unawareness of one of the two options is an abstraction for a
consumer that is not willing to inform himself. For instance, we
can mention emergency situations (keys lost, car break) where the
first solution is picked without consideration of other options.
This type of partial attention or restriction to a “consideration
set” can also be seen as reflecting a form of incomplete preference
relation on the part of the consumers, which has been modeled in
different terms in the literature: top options (Rubinstein and
Salant, 2011) or consideration sets (Lleras et al., 2017).

Regarding the structure of firm decision-making, we think that
a turn-based strategy is more appropriate as it is more likely that
a human subject embodying a firm chooses a strategy in reaction
to a change of strategy from its competitor. When dealing with
rational agents, simultaneous decision-making is possible in the
sense that they dispose of full information and unbounded
computational abilities, providing them the means to compute
the equilibrium and to play accordingly. As we set-up a human
subject experiment, we were expecting to deal with non-fully
rational agents that are unable to do so. Coordination on price or
location policies, leading to a typical situation of maximal/mini-
mal differentiation seems unlikely or at least much more difficult
in this configuration. Indeed, pure rationality models such as
required to deal with normal forms or extensive forms in
experimental game-theory predict behavior to a lesser extent that
taking account the incremental feedback of players in repeated
sequential situations (Roth and Erev, 1995). We anticipated that
subjects will make use of decision rules, leading to more or less
stable situations—these decision rules play also the rules of
learning heuristics. Then, designing a turn-based game con-
stituted for us a way to facilitate the occurrence of such situations.

From a broader perspective, our results demonstrate interac-
tion effects between consumers and firms’ cognitions, that can
deeply impact market dynamics. It, therefore, creates an incentive
to think that duopoly regulation should incorporate insights from
incomplete markets due to agents limited cognitive abilities.
However, most of the focus has been put in behavioral industrial
organization to the irrationalities of clients rather than firms. We
donot consider our firms irrational either but as constrained to
find decision rules in response to their own perception of the
consumers’ limited information about themselves. From a theo-
retical point of view, we are not the first to envision such a
problem (Spiegler, 2006). However, the decision rules we stylize
and simulate can definitely provide incentives to a more beha-
viorally oriented approach to duopoly regulation.

Code and data availability
Simulations were implemented using Python and the Python
scientific stack (Jones et al., 2001; van der Walt et al., 2011;
Hunter, 2007). The code is available at https://github.com/
AurelienNioche/SpatialCompetition.
The software used for the experimental part of the study is based
on a client/server architecture. The client part was developed
using the Unity game engine, hosted on a dedicated server and
ran in the subjects' web browser using WebGL API. The code and
the assets are available at https://github.com/AurelienNioche/

DuopolyAssets. The experiment server was hosted on a dedicated
server and developed using the Django framework. The code of
the server part is available at https://github.com/AurelienNioche/
DuopolyDjango.
The analysis program is available at https://github.com/
AurelienNioche/DuopolyAnalysis. Figures 3 and 4 were pro-
duced using raw data that are available at https://github.com/
AurelienNioche/DuopolyAnalysis.
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MOTS CLÉS

Prise de décision, Modélisation, Neurosciences Computationnelles, Apprentissage par renforcement, Incerti-
tude, Description et Expérience

RÉSUMÉ

La valeur subjective est une construction théorique omniprésente dans l'étude de la prise de décision. Dans cette littéra-
ture, les décisions des individus sont souvent conçues selon un processus en deux étapes. Ils attribuent d'abord des
valeurs aux options disponibles, puis choisissent l'option ayant la valeur la plus élevée.
Aussi, deux manières de construire des valeurs subjectives sont souvent envisagées : par description et par expérience.
Apprendre par description correspond à obtenir des informations sur la valeur des options disponibles, via des représen-
tations visuelles et sémantiques. Par exemple, lorsque que l’on sélectionne un restaurant sur internet, on peut se référer
aux notes et commentaires fournis par les autres utilisateurs. A l’inverse, apprendre par expérience correspond à con-
struire des valeurs subjectives par essais-erreurs. Cela correspondrait donc à essayer différents restaurants, et ainsi se
construire une appréciation de ces derniers.
Dans cette thèse, nous cherchons à évaluer si les valeurs construites via ces deux méthodes sont commensurables. Plus
précisément, nous cherchons à établir si les individus sont capables de comparer les valeurs acquises par expérience et
description, et si oui, par quels processus de décision.

ABSTRACT

Subjective value is an ubiquitous theoretical construct in the study of decision making. In this literature, individuals'
decisions are often conceived in a two-step process. They first assign values to the available options, and then choose
the option with the highest value.
Thus, two ways of constructing subjective values are often considered: by description and by experience. Learning by
description corresponds to obtaining information about the value of available options, via visual and semantic represen-
tations. For example, when selecting a restaurant on the Internet, we can refer to the ratings and comments provided by
other users. Conversely, learning by experience corresponds to building subjective values by trial and error. This would
correspond to trying different restaurants, and thus building an appreciation of them.
In this thesis, we seek to evaluate whether the values constructed via these two methods are commensurable. More
precisely, we seek to establish whether individuals are able to compare values learned by experience and description,
and if so, by which decision processes.
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Decision-making, Modeling, Computational neuroscience, Reinforcement learning, Uncertainty, Description-
experience gap


