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people. Evgeny, Christophe, Aurélien, Théophile, David, Bastien, Nicolas, Gautier,
Salma, Nesrine it has been a pleasure to exchange with you and to benefit from your
expertise on a countless number of topics. Our coffee breaks will forever remain as
an enlightening experience.

Cheers to all my friends from the lab Katia, Guillaume, Abdul, Abir, Nan, Shufan,
Mariam, Jade and Maurras. I have been lucky to share time with you.

Thanks to my friends and family, Mom, Dad, Nils and Marion, Erwan, Maxime,
Alexandra, Antoine, Louis, Bastien, Victor for your unconditional support. Your
support always pushed me to do better.

A very special thank to Franck Gautier, who believed in me and without whom I
would never have started this project. You will forever remain a friend and the most
inspiring teacher I know.

I also acknowledge the French National Association of Research and Technology
(ANRT) for funding this thesis through grant CIFRE N. 2020/0289.



This is for my dad. Thanks for making me love science and much more. Fines non
habemus.



Résumé

Les plateformes de Cloud Computing mettent à disposition de leurs clients différentes ressources
informatiques à la demande. Cette externalisation rend les fournisseurs garants de la haute
disponibilité et de la qualité de leurs services. La gestion d’un parc de ressources mutualisées en
croissance constante demande de minimiser l’intervention humaine afin de suivre le changement
d’échelle des infrastructures et d’éviter les erreurs. Dans cette thèse, réalisée en collaboration
avec 3DS OUTSCALE, un fournisseur français de cloud public, nous explorons le potentiel des
logs informatiques pour la détection automatique d’anomalies au sein des plateformes de cloud
computing.

Les journaux de logs sont écrits pendant l’exécution et fournissent des informations sur l’état
actuel d’un système. Ils sont déjà largement utilisés à des fins diverses, telles que la surveillance,
le diagnostic, l’évaluation des performances ou la maintenance. Cependant, l’utilisation des
logs pour la détection automatique et en temps réel d’anomalies reste compliquée. La nature
complexe des plateformes de cloud computing doit être dûment prise en compte. L’extraction
d’informations pertinentes à partir d’une multitude de sources de logs et les évolutions fréquentes
de la base de code posent des défis et introduisent des risques d’erreurs. De plus, établir des
relations entre les logs au sein de tels systèmes est souvent une tâche impossible.

Les solutions de structuration visent à retrouver les variables injectées dans les messages des
logs. Notre première contribution implique une étude approfondie de deux de ces méthodes en
examinant l’impact de l’optimisation des hyperparamètres et du prétraitement sur leur précision.
Étant donné la nature laborieuse de l’étiquetage des logs dans le contexte des plateformes de
cloud computing, nous avons cherché à identifier des valeurs génériques potentielles permettant
une analyse précise dans divers scénarios. Cependant, nos recherches révèlent l’impossibilité de
trouver de telles valeurs, soulignant ainsi la nécessité d’approches de structuration des logs plus
robustes.

Notre deuxième contribution présente USTEP, une approche innovante de structuration des
logs en ligne qui surpasse les méthodes existantes en termes de précision, d’efficacité et de
robustesse. USTEP atteint une complexité temporelle d’analyse constante dans le pire des cas,
le distinguant ainsi de ses prédécesseurs pour qui le nombre de patrons déjà découverts ralentit la
vitesse de structuration. À travers une analyse comparative de cinq méthodes de structuration
en ligne des logs utilisant 13 ensembles de données open source et un ensemble de données dérivé
des systèmes de 3DS OUTSCALE, nous démontrons les performances supérieures d’USTEP. De
plus, nous proposons USTEP-UP, une architecture qui permet l’exécution distribuée de plusieurs
instances d’USTEP.

Notre troisième contribution présente Monilog, une architecture système conçue pour la
détection automatique des anomalies à partir de journaux de logs. Monilog exploite des paires
modèle/métrique pour prédire l’activité logs au sein d’un système et détecter les anomalies
en identifiant des changements de comportement. Les capacités prédictives de Monilog sont



reforcées par notre utilisation des récentes avancées dans le domaine de l’apprentissage automa-
tique. Il génère également des rapports détaillés mettant en évidence les composants impliqués
et les applications associées à une anomalie.

Nous avons implémenté une instance de Monilog à l’échelle d’une plateforme cloud et mené
des analyses expérimentales pour évaluer sa capacité à prévoir des événements anormaux, tels
que des pannes de serveur résultant de problèmes de virtualisation. Les résultats obtenus souti-
ennent fortement notre hypothèse concernant l’utilité des logs pour la détection et la prévision
d’événements anormaux. Notre implémentation de Monilog a identifié avec succès des périodes
anormales et fournie des informations précieuses sur les applications concernées.

Avec Monilog, nous démontrons la valeur des logs pour la prédiction des anomalies dans de
tels environnements et proposons une architecture flexible pour les études futures. Notre travail
dans le domaine de la structuration des logs avec la proposition d’USTEP et d’USTEP-UP
nous fournit non seulement des informations supplémentaires pour la construction de modèles
de détection des anomalies, mais présente également des avantages potentiels pour d’autres
applications d’exploration des logs.

Keywords: Fouille de Données, Cloud Computing, Détection d’Anomalies, Apprentissage
Profond, Flux de Données, Séries temporelles, Systèmes Distribués



Abstract

Cloud computing aims to optimize resource utilization while accommodating a large user base
and elastic services. Within this context, cloud computing platforms bear the responsibility
of managing their customers’ infrastructure. The management of an ever-expanding number
of IT resources poses a significant challenge. In this study, conducted in collaboration with
3DS OUTSCALE, a French public cloud provider, we investigate the potential of log data as a
valuable source for automated anomaly detection within cloud computing platforms.

Logs serve as a widely utilized information source for various purposes, including monitoring,
diagnosing, performance evaluation, and maintenance. These logs are generated during runtime
and provide insights into the current state of a system. However, achieving automated real-time
anomaly detection based on log data remains a complex undertaking. The intricate nature of
cloud computing platforms must be duly considered. Extracting relevant information from a
multitude of logging sources and accounting for frequent code base evolution poses challenges
and introduces the potential for errors. Furthermore, establishing log relationships within such
systems is often an insurmountable task.

Log parsing solutions aim to extract variables from the template of log messages. Our
first contribution involves a comprehensive study of two state-of-the-art log parsing methods,
investigating the impact of hyperparameter tuning and preprocessing on their accuracy. Given
the laborious nature of labeling logs related to a cloud computing platform, we sought to identify
potential generic values that enable accurate parsing across diverse scenarios. However, our
research reveals the infeasibility of finding such requirements, thereby emphasizing the necessity
for more robust parsing approaches.

Our second contribution introduces USTEP, an innovative online log parsing approach that
surpasses existing methods in terms of accuracy, efficiency, and robustness. Notably, USTEP
achieves a constant worst-case parsing time complexity, distinguishing it from its predecessors
for which the number of already detected templates is to be taken into account. Through a
comparative analysis of five online log parsers using 13 open-source datasets and one derived
from 3DS OUTSCALE systems, we demonstrate the superior performance of USTEP. Further-
more, we propose USTEP-UP, an architecture that enables the distributed execution of multiple
USTEP instances.

Our third contribution presents Monilog, a system architecture designed for automated log-
based anomaly detection within log data streams. Monilog leverages model/metric pairs to
predict log traffic patterns within a system and detect anomalies by identifying deviations in
system behavior. Monilog forecasting models are powered by the recent advances in the deep
learning field and is able to generate comprehensive reports that highlight the relevant system
components and the associated applications.

We implemented an instance of Monilog at cloud scale and conducted experimental analy-
ses to evaluate its ability to forecast anomalous events, such as servers crashes resulting from



virtualization issues. The results obtained strongly support our hypothesis regarding the utility
of logs in detecting and predicting abnormal events. Our Monilog implementation successfully
identified abnormal periods and provided valuable insights into the applications involved.

With Monilog, we demonstrate the value of logs in predicting anomalies in such environments
and provide a flexible architecture for future study. Our work on the parsing field with the pro-
posal of USTEP and USTEP-UP not only provides us with additional information for building
anomaly detection models but also has potential benefits for other log mining applications.

Keywords: Data Mining, Anomaly Detection, Cloud Computing, Deep Learning, Data
Streams, Distributed System, Time Series
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1.1 Context

1.1 Context

Cloud computing services offer users on-demand self-service access to a shared pool of IT re-

sources. This model provides clients with significant advantages [2; 3], including elasticity,

enabling flexible scaling of computing resources according to their needs. Additionally, it of-

fers broad network access, allowing users to access cloud services from anywhere at any time.

Moreover, the pay-by-use model eliminates the requirement for substantial upfront investments

in computing resources, physical infrastructure, electricity consumption, and staff for system

administration, network management, and database maintenance. These costs are transferred

to the service provider.

The cost-effectiveness and flexibility offered by cloud computing have resulted in a widespread

adoption among businesses and organizations. However, this shift towards outsourcing also

places the responsibility on cloud service providers to ensure high availability and service quality.

From the provider’s perspective, this exponential growth (with a projected 29.8% increase in

the public sector by 2023 [4]) is accompanied by an expanding deployment of infrastructure

to manage. To cope with the constant expansion of resources, it becomes crucial to minimize

human intervention and adapt to changes in infrastructure scale while mitigating the risk of

errors. Consequently, the development of automated monitoring and alerting tools becomes

imperative to support administrators [5; 6; 7].

In large-scale online systems such as cloud computing platforms, even a single incident can

have a profound impact on millions of users [8; 9; 10]. This impact extends beyond the immediate

inconvenience and leads to significant financial consequences [11] as well as performance losses.

For example, a four-hour downtime in Amazon Web Services resulted in a staggering loss of $150

million 1. Consequently, anomaly detection plays a crucial role in the development of secure

and reliable platforms. By enabling timely and accurate identification of anomalous events,

operational teams can swiftly respond and take measures to mitigate potential losses [12].

1https://aws.amazon.com/fr/message/41926/
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1.1 Context

1.1.1 The Landscape of Cloud Monitoring

Cloud computing platforms are intricate systems comprised of numerous physical components,

distributed across multiple data centers. It is not uncommon for a large data center to contain

over 100,000 components, such as servers, network equipment, and storage platforms. Moni-

toring the health of such infrastructure poses a significant challenge for operational teams [13].

Site Reliability Engineers (SREs) often rely on metrics like network latency or Key Performance

Indicators (KPIs), such as the number of active virtual machines per region, to carry out their

tasks [14]. These metrics enable passive monitoring, where alerts are triggered when values

exceed preset thresholds (e.g., when the memory usage of a machine approaches its limit). Ad-

ditionally, SREs may employ manually defined rules to detect specific undesirable scenarios,

such as denial-of-service and distributed denial-of-service attacks, which pose a serious threat

to the availability of cloud computing environments [15]. Studies have shown that rule-based

approaches can effectively identify the machines responsible for such attacks and ban their IP

addresses [16; 17].

The rule-based approaches lean on expert knowledge to identify and encode new undesirable

scenarios. For example, they may monitor updates to lists of common vulnerability exposures.

However, the inability to detect or adapt to novel attacks or failures becomes increasingly prob-

lematic as the system expands [18]. In the context of cloud computing, platform updates and the

diversity of behaviors among components amplify the potential attack vectors and the occurrence

of false alarms within the system.

1.1.2 An Introduction to Logging

Capturing runtime information is a common practice within software systems [19; 20]. The

produced logs describe a vast range of events as well as variations in the monitored system

states [21]. Figure 1.1 is a sample of 20 log lines from a High Performance Computing cluster

(HPC) at the Los Alamos National Laboratories log file. Each line within a log file is called

a log event and is generated by a log statement inside the source of a program. Logs are
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1.2 Research Objectives and Axis Covered by This Manuscript

Figure 1.1: A Sample of a Log File From an HPC System

semi-structured data, with a header following a fixed format and a message which is left to the

discretion of the developers. For instance, the illustrated HPC logs follow the following format:

“LogId Node Component State Time Flag Message.”

Due to the flexibility of their format, logs have been widely adopted in practice and it is

reasonable for the equipment of a single data center to generate billions of log lines per day.

Although many logs are being collected and stored during the normal operation of a Cloud

platform, they are rarely exploited in real-time. It is when a technical issue arises, or a cloud

service delivery is interrupted, the collected logs become the most important source of the

troubleshooting and tracing efforts by the SRE department [13].

1.2 Research Objectives and Axis Covered by This Manuscript

In this thesis, we explore the automation of the exploitation of logs to detect anomalies and

predict incidents within a cloud computing environment. The goal was to design and implement

an innovative autonomous log-based Anomaly Detection (AD) system, capable of detecting

anomalies on a cloud computing platform with high accuracy and minimal false positives to
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reduce false alarms; characterize the anomalies according to properly target the experts able to

manage the alerts and provide them with all relevant information; process a large volume of log

files online with a short detection time.

This research project is supported by 3DS OUTSCALE, a French provider of multi-sovereign

cloud services. The company extensively employs logs to monitor various systems comprising

their cloud computing platform, as well as to identify undesirable outcomes like virtual machine

crashes and security breaches. Being able to conduct this study within an industrial context has

granted us opportunities to gather insights from field experts and validate our proposals using

a large-scale, real-world cloud platform.

1.2.1 Elements of Vocabulary

Within this manuscript, we will regularly use the terms: autonomous, robust, efficient, and

precise. We, therefore, think it is important to precisely define here the meaning of these terms

within the context of this manuscript:

• Autonomous: A system will be considered autonomous if it can perform a targeted task

for an extended period (months), without the need for human assistance.

• Robust: A robust system retains its operational capability despite changes occurring

within its environment. Such environmental changes can for instance be the appearance of

new log statements inside the source code of a monitored system and with it the appearance

of new log messages.

• Efficient: The efficiency of a system or an algorithm reflects its ability to process a large

volume of events in a short time. In our context, this means being able of processing

millions of log lines per minute, this to be able to operate in real-time.

• Precise: The Precision of an alerting system is evaluated using Equation 1.1. With

True Positive the number of events correctly classified as abnormal and False Positive,

the number of irrelevant alerts. Note, a system can be perfectly precise but still miss

5



1.2 Research Objectives and Axis Covered by This Manuscript

abnormal events. However, a high precision means a low proportion of False Positive and

therefore few false alarms.

Precision =
True Positive

True Positive + False Positive
(1.1)

1.2.2 An Overview of 3DS OUTSCALE Cloud Platform and Logging Activ-

ities

As a cloud provider, 3DS OUTSCALE has two key assets: 1/ the hardware infrastructure built

in partnership with CISCO, Intel, Netapp and Nvidia; and 2/ a proprietary orchestrator, TINA

OS, to manage the infrastructure and allocate resources to users [22]. The cloud platform of

the company is designed to be operated in an API-firsts fashion, meaning that the first entry

point for client requests is an ensemble of network-accessible endpoints. Incoming requests

are forwarded to the cloud orchestrator (TINA OS) that will interact with other services as

well as hardware components to perform the appropriate tasks to satisfy customers’ demands.

Figure 1.2 is a simplified version of the company cloud platform architecture.

Figure 1.2: 3DS OUTSCALE Simplified Cloud Platform Architecture

From a logging perspective, the software services composing TINA OS, the hardware drivers,

and the other services related to the continuity and operations or the monitoring of the platform
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are log sources. For the internally developed services of the platforms, teams use continuous

integration [23] methods as a delivery model. This is a commonly used practice in software

development and a proven way to launch new features quickly. Log entries are produced by

logging statements (e.g., print(), logger.log()) inside a program source code, and software version

updates often lead to the appearance, modification or deletion of certain types of logs generated

by an application. A study conducted by researchers from Microsoft on one of their software

shows that after 8 versions, the proportion of changed log statements reaches 30.3% [24].

The challenging aspects of cloud computing platform architectures, a large number of con-

nected devices of various types (thousands inside 3DS OUTSCALE European platform), frequent

changes in the code base, and an important logging volumetry (millions of log lines per minute

generated by 3DS OUTSCALE European cloud platform) served as the catalyst for the research

work presented herein. The main identified challenges revolve around the automated and ef-

ficient exploitation of log messages (log parsing), the precise detection of anomalies in highly

distributed infrastructure, and the contextualization of the identified anomalous events. We

organized our research work around the three aforementioned axes.

1.2.3 Axis 1: Extraction of Structured Data From Log Files

   

2020-03-19 15:38:55,977 - dc1-ucs3 -serviceManager - INFO - Process x92 started on port 42 

TIMESTAMP 2020-03-19 15:38:55,977

HOST dc1-ucs3

APPLICATION serviceManager

SEVERITY INFO

Message Template Process <*> started on port <*>

Variables [‘x92’, ‘42’]

logging.info(“Process {} started on port {}”.format(process, port))
Log Statement

Log Event

Parsed Log

Header
Part

Message
Part

Figure 1.3: Log Statement, Log Event and Parsed Log, an Example
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Programs generate log events during runtime, which are then stored in log files. Log events

constitute semi-structured data, featuring a header with a consistent format, while the mes-

sage content is dictated by the developers’ discretion. Log messages are generated by injecting

variables linked to the real-time state of a system inside a code-embedded message template.

Figure 1.3 displays a log statement in Python and an example of a log event generated by this

statement.

As discussed, logs are created according to a predefined format (e.g., rsyslog RFC5424 [25])

and can be divided into two parts:

• A header, composed of different predefined fields. In the Figure 1.3 example, the header is

composed of 4 distinct fields (TIMESTAMP, HOST, APPLICATION, and SEVERITY ).

As the header formatting is defined as software level, all the log headers will follow the

same format.

• A message, which is a text field without format constraints. Due to its flexibility, it

is common to embed information describing the current state of the system inside the

message.

Mining log-embedded information in contexts where you don’t have access to the source

code is a common issue for automated log-based applications. Log parsing is an active research

topic [1] and, a large panel of approaches have been proposed during the last two decades. To deal

with the unstructured format of log messages and provide them with structured inputs, existing

log-based anomaly detection methods rely on log parsing algorithms to mine logs underlying

templates. As the quality of the parsing process has a direct influence on the precision, and the

efficiency of the downstream log-based applications, and to be relevant in a cloud environment,

a parsing solution must be able to work online, efficiently, and be robust to the evolution of the

log statements.

Alongside this data mining axis, we explore state-of-the-art log parsing solutions and their

relevance for a cloud logging environment, as well as ways of exploiting log-embedded infor-

mation. Particular attention was given to the robustness of the existing solutions and of our
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proposals, as well as their ability to process large volumes of logs efficiently.

1.2.4 Axis 2: Anomaly Detection in Highly Distributed IT Infrastructures

Due to their abundance and the information they contain, the logs are one of the most valuable

data sources for anomaly detection [26; 27]. Different log-based anomaly approaches have been

proposed within the previous years based on traditional machine learning techniques and more

recently on neural approaches [28] such as LSTM [24; 29] or Transformer structures [30]. Deep

learning techniques employ trained models to anticipate the subsequent element in a log template

sequence, flagging an anomaly if the predicted probability falls below a set threshold. Those

methods have strong claims regarding their performances, however, in practice, we found that

knowing or inferring log relationships to identify log sequences is a challenging and often not

possible task within a cloud environment. This is due to logs most of the time not having a

unique operation identifier. Also, inferring related events is hard due to the multiplicity of logging

devices, the involved volumetry and the temporal proximity of operations. Such constraints limit

the application of previously cited anomaly detection methods to the monitoring of specific cloud

components (e.g., the API level where you are likely to find request-id).

Alongside this axis, we explore automated anomaly detection systems that meet the require-

ments of volume, variability and evolution of a cloud platform logs such as 3DS OUTSCALE

one.

1.2.5 Axis 3: Contextualization of Anomalies for Decision Support

When an anomaly is detected, the information sent back to a human team must indicate as

precisely as possible the cause and the context of the problem. To ensure effective resolution,

identifying the context is as important as the anomaly itself. The classification of an anomaly

serves, first of all, to target the most qualified experts to manage it. Work-related to this axis

includes a literature review of the existing classification systems for log-based anomalies and

their relevance in a cloud computing context.
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Due to the constant evolution affecting the logging behavior of the underlying components of

a cloud platform, classifying anomalies is a tedious and not relevant in the long-term task. Also,

professionals may have different ways of handling the same anomalies depending on their context.

Those concerns drove us to propose and evaluate a context-aware anomaly detection system that

outputs anomalies alongside their context. This context includes the concerned equipment and

applications as well as ways of evaluating its criticity. This output allows practitioners to build

their own business rules on top of it instead of forcing them inside a classifier.

1.3 An Overview of Our Contributions

To be efficient in a cloud computing environment, a parsing method should be accurate, efficient,

and able to work in an online fashion. When working with existing log-based anomaly detection

methods, we noticed that poor parsing quality drastically reduces the efficiency and precision

of the considered approaches. Our experiments with state-of-the-art online parsing methods

reveal that hyperparameter tuning and the use of preprocessing regular expressions have a

significant impact on the parsing accuracy. This lack of robustness is a major concern in our

cloud computing context as it is impracticable to label logs to correctly tune them. In response

to this, we introduced USTEP, a log parsing algorithm. This evolving tree-structured algorithm

can discover and encode new parsing rules while processing logs online. USTEP is, to the best

of our knowledge, the only parsing method that achieves constant parsing time where other

methods slow down with new template discovery. USTEP is robust and does not require any

prior knowledge regarding the logging environment. We evaluate our proposal against four

state-of-the-art online methods over 14 datasets coming from real-world applications. USTEP

demonstrated superior performance in both effectiveness and robustness. We also introduced

USTEP-UP, a way of running decentralized USTEP instances to ensure the scalability of the

parsing step.

Those contributions to the log parsing field led to four publications:

• Vervaet, Arthur, Raja Chiky, and Mar Callau-Zori. ”Ustep: Unfixed search tree for effi-
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cient log parsing.” 2021 IEEE International Conference on Data Mining (ICDM). IEEE,

2021. [31]

• Vervaet, Arthur, Yousra Chabchoub, Mar Callau-Zori, and Raja Chiky. ”Online Log

Parsing Using Evolving Research Tree.” Knowledge and Information Systems: Accepted,

to be published

• Vervaet, Arthur, Raja Chiky, and Mar Callau-Zori. ”Automatisation de la structura-

tion des logs pour le cloud computing.” Extraction et Gestion des Connaissances: Actes

EGC’2021 (2021). [32]

• Vervaet, Arthur, Raja Chiky, and Mar Callau-Zori. ”USTEP: Structuration des logs en

flux grâce à un arbre de recherche évolutif.” Extraction et Gestion des Connaissances:

EGC’2022 38 (2022). [33]

To facilitate its use by practitioners and researchers, we have made the source code of

USTEP1 publicly available.

When reviewing log-based anomaly detection state-of-the-art, we noticed that existing work

was focused on detecting anomalous log sequences. In practice, the reconstruction of log se-

quences in a cloud computing context is often impossible, due to a lack of unique identifiers as

well as the technical impracticability to link logs from two different sources related to the same

event. As we could not apply existing log-based anomaly detection methods due to prerequisite

conflicts, we chose to explore new log-based ways of detecting abnormal events within large

composite platforms.

The design of Monilog, our automated log-based anomaly detection system, is inspired by the

field of multivariate time series. Monilog uses models to forecast the log traffic and the resulting

error time series is computed using this forecast and the real traffic to detect anomalous patterns

to detect abnormal behavior of equipment. Monilog has the capacity to generate detailed reports,

regarding anomaly candidates as well as the implicated system and applications. Monilog doesn’t

1https://github.com/outscale/ustep-online-log-parser
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require any prior knowledge regarding the relationship between logs, and can work in a streaming

fashion allowing close to real-time alerting. We implemented and tested our proposal at a cloud

scale using all the syslog messages [25] generated by the Kernel Based Virtual Machine of 3DS

OUTSCALE European cloud region for 11 consecutive days. Our system successfully predicted

all three reported server crashes at least 80 minutes prior to their occurrence. Our precision

evaluation also displays the relevance of the other reported abnormal events.

Monilog is the corner stone of this thesis, related work led to two publications:

• Vervaet, Arthur, Yousra Chabchoub, Mar Callau-Zori, and Raja Chiky. ”Monilog: Detec-

tion of Anomalies in Cloud Computing Infrastructures using Logs” - Under review

• Vervaet, Arthur. ”MoniLog: An Automated Log-Based Anomaly Detection System for

Cloud Computing Infrastructures.” 2021 IEEE 37th International Conference on Data

Engineering (ICDE). IEEE, 2021. [34]

1.4 Organization of This Manuscript

The remainder of this manuscript is organized as follows. In Chapter 2, we present existing

usages and applications based on logs as well as the state-of-the-art on automated log-based

anomaly detection and log parsing. In Chapter 3, we study the impact of parsing accuracy on

AD method’s accuracy and the impact of tuning on existing methods. Chapter 4 is dedicated

to USTEP, our proposal log parsing solution workflow and memory structure, the USTEP-UP

architecture, and our perspectives regarding the log-parsing problem. Chapter 5 is dedicated to

Monilog, our automated log-based anomaly detection system. We discuss here its architecture

and state-of-the-art limitations. In Chapter 6, we present experimental results of Monilog applied

to the monitoring of Virtualization servers at cloud scale. Chapter 7 sum-ups the presented work

and discuss future work based on this thesis.
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In this Chapter, we present a state-of-the-art of automated log-based anomaly detection

(Section 2.3), and we discuss identified limitations of the existing methods in particular for their

application to the cloud-computing platform field (Section 2.6). This chapter also includes a

state-of-the-art of log parsing domain as well as an overview of some log-mining applications.

2.1 Log Mining Applications Within the Literature

Logs are widely available data sources containing real-time information regarding the states of a

system, and they have already proved their utility for a wide range of mining tasks such as user,

or resource profiling. With the increasing amount of generated log lines, multiple automated

log-based approaches have been proposed [35; 36] to exploit the diversity of information they

contain. In this section, we present examples of possible exploitation of the logs that we found

in the literature. We do not intend to present an exhaustive list of existing applications, what

follows should in no way be considered as a survey but rather as an inspiration and an opening

on the existing usages of logs.

2.1.1 Root Cause Analysis

Root cause analysis is one of the most common and traditional uses of logs [37]. By examining

logs preceding a system failure or other undesirable state, one can reconstruct the sequence of

events leading to the system’s failure. One challenge is that log files are typically designed to

represent a single stream of events. Messages from multiple sources, however, may be interleaved

both at runtime (from multiple threads or processes) and statically (from different modules of

a program). For static interleaving, header-embedded information can help filter out logs and

focus on the one related to the considered context. However, for runtime interleaving, a thread

ID does not solve the problem because a thread can be reused for independent tasks. This

is a major challenge when performing root cause analysis on a supercomputer, leading to the
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2.1 Log Mining Applications Within the Literature

proposal of tools like LogAider [38], to mine potential correlations of HPC log events.

2.1.2 Dissection of Performance Issues

Log analysis can help optimize or debug system performance. Understanding a system’s perfor-

mance is often related to understanding how the resources in that system are used. Distributed

systems are notoriously difficult to get right, and we came across several research papers propos-

ing log-mining approaches to dissect and improve the performances of such systems. Wang et

al. [39] proposed a log-based approach to detect the root causes of writing data on parallel file

performance bottlenecks. By analyzing logs collected on Cray XC40 supercomputer system used

for scientific purposes, authors produced guidelines to help developers optimize the I/O behavior

of their applications. Tan et al. [40] explored a log-based approach for performance debugging of

MapReduce, a programming paradigm and framework [41] for parallel distributed computations

on commodity clusters. Lu et al. [42] focused their work on detecting concurrency bugs in dis-

tributed systems by the generated logs. Concurrency bugs are triggered by complex interleaving

of messages and are difficult for programmers to correctly reason about and handle concurrent

executions on multiple machines. The use of the proposed log mining approach alleviates the

pain of hands-on root cause analysis in such scenarios.

2.1.3 Detection of Intrusions and Attacks

Logs are commonly used for security purposes. Searching log files can help detect intrusion

traces or identify malicious attack patterns. When searching for attacks, pattern matching is

an efficient way of looking for traces of classical malicious behaviors. With this approach, only

known patterns can be recognized, yet new types of attack may appear with only small changes

made to existing patterns. This explains why more recent approaches are focused on machine

learning techniques to detect anomalous behaviors to be more robust to attacker’s small changes.

As logs are a broadly available data source in many systems, they are used by a wide range of

security applications. We came across methods using logs to detect SQL injections, a classic
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attack to mine or alter the content of a database [43]; or detect malicious behaviors using proxy

logs [44]. There are also examples of log-mining applications that reconstruct behavior graphs

to detect intrusions or other types of unusual behaviors [45; 46; 47].

2.1.4 Failure Prediction

Failure prediction also forms a dynamic focus area within the log mining field. Logs have been

used by Gao et al. [48] and Chaves et al. [49] to predict hard disk drive failures. Considering the

varied brands and models of drives with different input/output workload patterns present in data

centers, their approach becomes particularly pertinent [50]. Log-based failure prediction has also

been successfully applied for detecting failures in HPC nodes [51] and Oracle databases [52].

Failure prediction is close to anomaly detection; however, failure prediction methods are

designed for one system, or one class of system and usually exploit context-specific information

to perform their task, whereas anomaly detection methods aim to be system agnostic. The

remainder of this manuscript is focused on log-based anomaly detection methods.

2.2 Anomaly Detection

2.2.1 Example of Applied Research Work for Different Fields

Due to its practical utility, anomaly detection has emerged as a significant topic area across

various fields of application [53]. In the medical domain, there are several recent examples [54] of

work on the detection of tumors [55; 56] or, brain lesions [57; 58] using deep learning techniques.

Same for the banking sector, where anomaly detection techniques are for instance applied to

fraud detection in the use of credit cards based on debit records [59; 60]. Closer to our context,

we retrieve work on network intrusion detection systems [61; 62].

2.2.2 Within the Cloud Computing Domain

The development of large-scale services and their underlying systems typically involves the col-

laboration of hundreds of contributors, divided across different teams and sometimes, distinct
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organizational structures. Developers and operators usually have incomplete information re-

garding the overall system and tend to determine anomalous events from a local perspective,

which is error-prone. Besides, manually detecting anomalous log sequences is not efficient nor

scalable because of the continuous increase in the volume of logs generated by modern systems.

The use of keyword-matching techniques or regular expressions helps to detect simple and

well-known anomalous events by seeking characteristic patterns. Although such pattern-matching

approaches are unable to identify a large portion of the anomalies, as many of them are sequences

of “non-anomalous” logs leading to an undesired outcome. Moreover, rule-based approaches are

sensitive to changes in the code base. This need for automation and robustness are reflected in

numerous research works on automated log-based anomaly detection methods [63].

2.3 Automated Log-Based Anomaly Detection

Year Paper Method Year Paper Method

2007 [64] SVM 2019 [29] Bi-LSTM
2009 [65] PCA 2020 [66] IF + Autocencoder
2012 [67] IM 2020 [68] BERT + Bi-LSTM
2016 [69] Clustering 2021 [70] Transformer
2017 [71] LSTM 2021 [72] Clustering + CNN
2017 [73] Clustering 2021 [74] Transformer
2018 [75] CNN 2021 [76] GAN
2018 [77] Clustering 2021 [78] Adversarial Network
2019 [79] Transformer 2021 [80] Transformer
2019 [24] Bi-LSTM 2022 [81] TCN

Table 2.1: Log-Based Anomaly Detection Methods, an Overview

During the last two decades, automated log-based anomaly detection has been an active

research topic, and a wide range of methods have been proposed based on different techniques [36;

82; 83]. Since 2016, the rise of the deep learning field led to the apparition of several methods

based on neural network structures outperforming traditional machine learning-based methods.

According to Bhanage et al. [36], over 87 different publications related to log-based anomaly

detection have been issued between 2016 and 2021. In this section, we cover only the most
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representative methods and their specificities. Table 2.1 presents a summary by years of the

selected methods alongside the original papers and the used techniques.

2.3.1 Traditional Methods

To the best of our knowledge, the first reported log-based anomaly detection method was brought

up by Liang et al. in 2007 [64]. The proposed system is based on the traditional Support

Vector Machines (SVM) set of classifiers and aims to detect failures affecting IBM BlueGene/L

supercomputer.

In 2009, Xu et al. proposed a method based on the Principal Component Analysis (PCA)

algorithm [65] to detect system runtime problems. For their evaluation, they used log traces

generated by Hadoop1, an open-source software dedicated to the management of big data files.

They reconstruct the log sequences using code-embedded log statements for perfect parsing and

display the relevance of PCA for detecting anomalous log sequences in an online fashion.

Lou et al. published a method based on the Invariant Mining (IM) technique [67] to mine

program workflow using logs. The authors artificially generated log traces using Hadoop and

JBoss2, two open-source programs. The original work is focused on inferring log relationships and

reconstructing log sequences, but their work can be extended as an anomaly detection method

by considering unusual workflow as anomalous sequences, that’s why we chose to mention this

method here.

Multiple methods based on clustering techniques exist within the literature, such as Log clus-

ter [69] proposed by researchers from Microsoft to identify problems within two internal online

services. Wurzenberger et al. [73] also used a clustering-based approach to detect cybersecurity

threats (e.g., SQL-dump, SQL-injection, brute force login attack) within a workstation running

a virtual server for an Apache Web server3 hosting a MANTIS Bug Tracker System4, a MySQL

database5 and a reverse proxy.

1https://hadoop.apache.org/
2https://www.redhat.com/fr/technologies/jboss-middleware/application-platform
3https://httpd.apache.org/
4https://www.mantisbt.org/
5https://www.mysql.com/
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2.3.2 Deep-Learning Based Methods

In 2017, Du et al. proposed Deeplog [71], a log-based anomaly detection method based on an

LSTM neural network. Deeplog model logs as natural language sequences and can process them

in a streaming manner. According to an experimental evaluation conducted by Deeplog authors,

it achieves higher accuracy than the previously presented non-traditional methods. Deeplog is

the first identified deep-learning based method and it led the way to multiple approaches driven

by the progress in this domain.

Deeplog approach was directly extended by LogRobust [24], LogAnomaly [29] and Swiss-

Log [68], three methods based on bidirectional LSTM neural networks aim to detect sequential

log anomalies. Authors of each method identified log statement instability as a significant is-

sue, proposing innovative embedding mechanisms to mitigate the effects of log concept drift on

their models. To regroup new templates with an existing one to keep unchanged the embedding

vector size, LogRobust uses semantic information of the log event, LogAnomaly generates an

intermediate template using Ft-tree [84], and SwissLog uses a BERT [85] encoder to encode log

templates.

Convolutional Neural Network (CNN) has been proposed to capture local semantic informa-

tion instead of global information and defeat the overfitting issues in regular neural networks.

It has become one of the most representative neural networks in the field of deep learning [86].

This structure has allowed significant advances in the field of computer vision, but it has also

been successfully applied to time series prediction and signal identification problems. Closer

to our context, CNN has been used by Ren et al. to assign a category (e.g., Network, Mem-

ory, Security, DataBase ...) to log events [87] based on their message. In 2018, Lu et al. [75]

proposed a CNN-based approach able to learn event relationships in system logs and detect

anomalies based on this information. More recently, Yang et al. introduced PleLog [72], a log-

based anomaly detection approach that combines a clustering step and a Convolutional Neural

Network. The clustering step is used to assign a label to log events and allows the system to

train more efficiently within unsupervised contexts.
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The great success of the Bidirectional Encoder Representations from Transformers (BERT)

in modeling sequential data [85] inspired multiple Transformer-based approaches. In our context,

we have identified two different types of BERT usages: 1/ Nedelkoski et al. [79], and Guo et

al. [74] train such model to capture patterns of normal log sequences and used it later on to

detect anomalous ones; 2/ Previously depicted method SwissLog uses only the encoder part of

Bert to enhance the robustness of the addressed approach to new logging patterns.

Finally, we want to highlight here four log-based anomaly detection methods based on dif-

ferent techniques that we found interesting: 1/ Farzad et al. [66] used two deep autoencoder

networks to extract features from logs and perform anomaly detection using the Isolation Forest

(IF) algorithm [88]; 2/ LogGAN, proposed by Xia et al. [76] an LSTM-based generative adver-

sarial network for anomaly detection; 3/ QLLog is another adversarial method based on the

Q-learning algorithm, a reinforcement learning method based on value function; 4/ LightLog, a

light anomaly detection method to handle large-scale logs on edge devices with limited computed

power. Lightlog uses a modified Temporal Convolutional Network (TCN) to detect anomalies.

2.4 An Introduction to Log Parsing

Log parsing is a classic first step for log-based anomaly detection and log-based applications in

general. Log parsers aim to extract the underlying information of a log event without assessing

the associated log statement. In practice parsing the header is straightforward as it follows a

given format, however, separating the injected variables from the message template is a chal-

lenging task. The application of regular expressions is a straightforward method to parse raw log

messages; thus, this requires listing all the logging statements and generating the appropriate

expressions. In practice, the source code is not always accessible, and keeping track of all the

changes is a tedious task [89]. Log-parsing methods aim to tackle this issue by providing an

automated way of mining log templates from log messages. Previously presented Figure 1.3

illustrates the expected parsed version of a sample log line.
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2.4.1 Problem Formulation

In this manuscript, we will adopt the formalism introduced by Nedelkoski et al. [30] regarding

the log-parsing problem. Logs are defined as sequences of temporally ordered unstructured text

messages L = (li : 1, 2, ...), with i the positional index of a log message li within the sequence.

Tokens are the smallest inseparable singleton objects within a log message. Each log message

is constituted of a finite sequence of tokens (words) separated by spaces ti = (tij : t ∈ T, j =

1, 2, ..., |ti|). With T the set of all tokens, j the positional index of a token within a log message

li, and |ti| the total number of tokens inside li. Tokenization is defined as a transformation

function M : li → ti,∀i.

Log parsing aims to structure log messages by separating their constant (template) part,

from the variable ones. A log parsing method is defined as a function f : ti → (ei, vi), with ei a

template, and vi a list of variables.

2.5 Log Parsing State of the Art

During the last two decades, different approaches to the log parsing problem have been pro-

posed [1; 35; 90]. According to the usage workflow, log parsers can be classified in two ap-

proaches: Offline algorithms process logs in a batch manner updating the parser from time to

time, this updated parser is used in production to structure incoming logs; Online algorithms

process logs one by one in a streaming fashion and update the parser on the fly. In the follow-

ing, we discuss the method, the opportunities, and the limitations of state-of-the-art parsing

solutions.

2.5.1 Offline parsing

In surveys, we find algorithms based on different techniques such as clustering (LKE [91],

LogSig [92] and LogMine [93]), iterative partitioning (IPLoM [94]), frequent pattern mining

(SLCT [95], LFA [96] and LogCluster [97]), or heuristics (AEL [98] and Logram [99]). All those

log parsing approaches perform multiple passes on a batch of log messages making this process
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is costly both in terms of memory and compute utilization.

Recently, in a context closely related to ours, Nedelkoski et al. [30] proposed NuLog, a log

parser based on the transformer architecture [85]. Their method displays strong parsing accuracy

on datasets coming from different applications. They also provide two case studies illustrating

the relevance of log parsing to feed anomaly detection models. However, training their model

requires a labeled dataset representative of the system logs statements. In practice, such a

dataset is hard to obtain, and as observed by Zhang et al., log statements evolve. To remain

relevant a Nulog-based log parsing system would need to be trained regularly with newly labeled

data.

2.5.2 Online parsing

Online parsing methods handle logs in a streaming manner, enabling the processing of large

datasets by reducing memory bottlenecks. Even if it can help them tune their parameters,

such approaches do not require labeled data to train. To the best of our knowledge, 4 online log

parsers have been proposed within the literature: SHISO [100] and LenMa [101] which are based

on clustering techniques; Spell [102] which uses the longest common subsequence algorithm to

match templates; and Drain [103; 104] a log parsing approach based on a fixed depth research

tree. Those methods can detect new templates on the run, and adapt their parsing to new log

statements. Among them, Drain is often described as the most effective method and is cited as

the recommended log parser by different studies on log-based anomaly detection [1; 29; 105].

Online parsing methods all use a memory structure to remember the intrinsic characteris-

tics of the previously parsed logs: Spell creates and maintains an LCSmap with the different

templates it found; Drain encodes new parsing rules inside a research tree; SHISO and LenMa

maintain clusters of log templates. This memory structure plays an important role in the space

and time complexity, and therefore the efficiency of each method (Table 4.6).
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2.5.3 Distributed parsing

Parsing time can be a bottleneck for downstream applications. Batch parsing methods are

easily distributable (e.g., Logram [99]), as their knowledge base doesn’t evolve after the training

phase. However, they can’t adapt to new log statements, and with the exception of NuLog are

less effective than the best online methods according to Zhu & al. benchmark [1]. Solutions

were built on the top of spark for quick parallelization. He et al. [106] proposed a parallel log

parsing method (POP) using some heuristic rules and hierarchical clustering. Zhu et al. [1] ran

an extension of Drain in production for more than one year with a 90% accuracy. In [107],

authors propose Logan based on the longest common subsequence approach that parallelizes

the training phase.

2.5.4 Parsing Accuracy Metric

Parsing Accuracy (PA) is a commonly used metric to quantify the effectiveness of automated

log parsing solutions. It is defined by [102], and [1] as the ratio of correctly parsed log messages

over the total number of log messages. Parsing operations associates each log message with a

template and a set of variables. A log message is considered correctly parsed if and only if its

event template corresponds to the same group of log messages as the ground truth does. For

example, if a log sequence [E1, E2, E2] is parsed to [E1, E2, E3], we get PA=1/3, since the 2nd

and 3rd messages are not grouped. In contrast to standard evaluation metrics that are used in

previous studies, such as precision, recall, and F1-measure [94; 108; 109], PA is a more rigorous

metric, as with PA, partially matched events are considered incorrect.

2.6 Discussion

As outlined in the previous sections, log-based anomaly detection is an active research topic.

Recent methods are mainly based on deep learning techniques and follow the trend of advances

in this field. Despite the variety of proposed approaches, all the presented methods follow a

common workflow. First, they use a log parsing algorithm or an encoder structure to mine logs
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underlying information. Then they use a previously trained model to predict the next element of

a given log template sequence. An anomaly is flagged if the predicted probability of the verified

next log template of a given sequence falls below a specified threshold.

2.6.1 Reconstructing Log Sequences

When trying to work with existing methods in the 3DS OUTSCALE cloud computing context,

we run into several shortcomings. First, we found that reconstructing log sequences is not

always possible in a cloud computing environment due to the volumetry and the different layers

of components.

A1

Disk Shelf

API Layer

Network layer

A2 A3 A4

B1

C1
C2

B2
Known

Unknown 

Figure 2.1: Multi-Layer Logging Architecture

Figure 2.1 describes a logging environment with 3 layers: an API layer where we can correlate

logs using an identifier (e.g., request id); a network layer where we cannot have any relationship

information as it can englobe multiple routers and no tracking identifier is logged; a disk shelf

layer where we can link related logs using an identifier. Gray’s arrows represent effective but

not discoverable relationships from a logging point of view. In this context, we are not able

to retrieve and order the full log sequence related to a given event such as a user asking for a

specific virtual machine to be deployed.

This limitation was our main motivation for the design of Monilog, a log-based anomaly

detection system capable of functioning within complex environments such as a cloud-computing

platform. We wanted Monilog to operate without any knowledge about the relationship between
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logs making it a suitable solution for multi-source logging environments. Thanks to our access

to 3DS OUTSCALE, we were able to apply our proposal to the monitoring of a real-life cloud

computing platform. More details regarding this system are to be found under Chapter 5 that

presents its architecture and Chapter 6 that reports experimental results regarding its ability to

forecast anomalous events within components of the 3DS OUTSCALE cloud platform.

2.6.2 A Limited Number of Open Datasets

Except some internal systems from Microsoft, methods in the literature are evaluated on a

limited pool of log datasets. We think this is due to the need for reproducibility and easy

comparison with the existing methods but also to the limited number of datasets available

open-source. More specifically, four datasets containing labeled anomalies are frequently used

to compare approaches [110]:

• BGL [111], a collection of logs issued from a BlueGene/L supercomputer system.

• Hadoop Distributed File System (HDFS)1, is a distributed file system that aims to provide

high-throughput access to application data. This log set [112] was generated in a private

cloud environment using benchmark workloads and manually labeled through handcrafted

rules to identify the anomalies.

• Hadoop2 is a big data processing framework that allows for the distributed processing

of large datasets across clusters of computers using simple programming models. The

associated dataset [69] was collected from a Hadoop cluster with 46 cores across five

machines running two different test applications. Failures were manually injected into

parts of the dataset to simulate machine down, network disconnection or disk full issues.

• OpenStack3 is a cloud operating system that controls large pools of computing, storage,

and networking resources throughout a data center. This dataset [71] was generated on

1https://hadoop.apache.org/
2https://hadoop.apache.org/
3https://www.openstack.org/
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CloudLab, a flexible, scientific infrastructure for research on cloud computing.

The sensitivity of information contained in logs from real environments often makes their

publication infeasible, moreover, labeling anomalies in such datasets is a tedious and time-

consuming task. We believe this explains why such a small pool of open-source log traces has

been studied through the years. One of the drawbacks of this phenomenon is that it becomes

complicated to evaluate the relevance of the proposed methods in more complex log environ-

ments. Most of the previously presented methods achieve a 0,94+ precision on each of the

considered datasets, therefore it can be hard to quantify the contribution of a method compared

to the existing ones.

Anomalies affecting cloud computing platforms can be way more complex than the one listed

in the open-source datasets. They can affect a vast range of interconnected components and

therefore may require a multi-log traces approach to be detected [34]. Making a log dataset

available for study is a challenging task as log data provides all the details about the execution

of the infrastructure components, and the misuse of this data may cause serious problems. Due

to confidentiality issues and strict security policies, it is not possible to open-source logs coming

from 3DS OUTSCALE internal services. However, we paid attention to providing the maximum

of information regarding the complexity of its logging environment and the lesson learned. We

hope our results will help to understand the challenges raised by the monitoring of large online

systems such as the cloud computing platforms and the complexity of their logging environment.
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Online Log Parsing Methods and Hyperparameters Tuning
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3.1 Log Parsing for Log-Based AD Methods

Log parsing plays a crucial role in extracting valuable information embedded within logs and is

an essential step for enabling most existing log-based AD methods. Over the years, there have

been numerous methods proposed in this active research area, as documented by Zhu et al. [1] in

their benchmark. They conducted an evaluation of 13 log parsers across 16 datasets, and Drain

emerged with the highest overall performance, reaching an average PA of 0.865. However, it

is important to note that the performance of parsing methods can vary greatly across different

datasets. For example, Drain achieved a PA of 1.0 on the HDFS dataset, but a significantly

lower PA of 0.527 on the Proxifier dataset.

In this section, we focus on investigating the impact of PA on log-based AD methods. We

also explore the influence of hyperparameters and preprocessing techniques on PA.

3.1.1 Impact of the Parsing Accuracy on Anomaly Detection Methods

In order to assess the impact of PA on the accuracy of downstream AD methods, we conducted

an evaluation using an instance of Deeplog [71]. The evaluation involved utilizing the same log

dataset, but parsed with three different PAs. For this purpose, we employed a Drain instance

as the parsing solution and deliberately varied the PA by adjusting hyperparameter values.

The dataset selected for this evaluation consists of HDFS system traces [110]. This particular

dataset was chosen because it is commonly used by both the authors of Drain [103] and Deeplog

in their respective research papers. By applying different PA levels to the parsed logs and

subsequently evaluating the performance of Deeplog, we aimed to examine how variations in

parsing accuracy may impact the overall accuracy of the downstream AD method.

To investigate the relationship between parsing quality levels and the accuracy of downstream

anomaly detection methods, we conducted training on 10 separate instances of Deeplog for each

parsing quality level (1.0, 0.8, 0.65). Figure 3.1 showcases the distribution of AD accuracy

obtained on the test set by each instance. During our experimentation, we observed that a

20% decrease in parsing accuracy resulted in a significant 75% reduction in AD accuracy. This
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Figure 3.1: Parsing Accuracy Impact on Deeplog Performances

highlights the critical impact of parsing quality on the overall performance of AD methods.

In a study conducted by Zhu et al., it was found that the Drain parsing accuracy fell below

0.8 for 6 out of the 16 considered datasets. Furthermore, other online parsers examined in

the study, such as Spell (9 out of 16) and LenMa (7 out of 16 with a PA as low as 0.174

on the HealthApp Dataset), also demonstrated lower PA values for a significant proportion of

the datasets. Additionally, a more recent empirical study by Fu et al. [113] further confirms

the impact of log parsing on the performance of log-based anomaly detection methods. They

highlight that log-based AD methods tend to exhibit poorer performance on datasets with higher

numbers of underlying log templates, indicating the challenge posed by diverse datasets with a

large number of underlying templates.

3.1.2 Parsing Errors

The results obtained from our experiments highlight the significant influence of log parser pre-

cision and accuracy on the overall performance of the parser/anomaly detection model system.

The presence of parsing errors introduces new log templates, which in turn artificially increases

the input vector of deep learning models, resulting in reduced learning quality. Furthermore,
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we observed that the time complexities of existing online log parsing approaches are directly

affected by the number of templates discovered. In systems with diverse logging structures, the

parser’s processing speed can be noticeably slower. This aspect becomes particularly critical

for systems that require real-time processing, such as AD systems operating in complex logging

environments.

In our specific case, where efficiency is a crucial factor in achieving real-time processing, log

parsing efficiency becomes a sensitive issue. The ability to process logs efficiently and in a timely

manner is of utmost importance for AD systems operating in complex logging environments.

3.2 Online Log Parsers and Hyperparameters Tuning1

Log parser Year Technique #hyperparameters

SHISO 2013 Clustering 4
LenMa 2016 Clustering 1
Spell 2016 LCS 1
Drain 2017 Parsing tree 2

Table 3.1: Online Log Parsers Presented in [1].

Two notable studies conducted by He et al. [108] and Zhu et al. [1] have focused on evaluating

the accuracy and robustness of log parsing solutions using log traces from various applications.

These studies provide valuable insights into the potential applications of existing methods for

online log processing. The evaluated methods commonly employ a preprocessing step to filter out

certain tokens and can be fine-tuned using various hyperparameters (as depicted in Table 3.1).

In this section, our focus shifts towards examining the influence of these two factors, the

preprocessing step and the selection of hyperparameters—on the PA of two state-of-the-art log

parsing solutions: Spell and Drain.

1The work presented in this section is mainly extracted from our paper Vervaet, Arthur, Raja Chiky, and
Mar Callau-Zori. ”Automatisation de la structuration des logs pour le cloud computing.” Extraction et Gestion
des Connaissances: Actes EGC’2021 (2021). [32].
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3.2.1 Preprocessing

Preprocessing is a well-established initial step in log parsing processes. Its purpose is to filter

out specific tokens based on user-defined regular expressions (regexes) that represent commonly

encountered variables, such as IP addresses, file paths, or URLs.

During our analysis of logs from a 3DS OUTSCALE internal service, we made an interesting

observation. A pproximately 60% of the tokens within log messages originated from JSON or

XML-formatted data. In API-like services, it is common practice to append such formatted data

at the end of a log line, as it provides valuable context to understand the log entry (e.g., ”Send

42 bytes to 121.13.4.26 {user id=125, service name=dart vader}”). Given that JSON and XML

are already structured formats, it becomes advantageous to exclude these parts from the parsing

process. By doing so, we can reduce the average length of log messages and enhance parsing

efficiency and accuracy.

3.2.2 Experimental Motivations

Given the potential impact of preprocessing and parameter choices on the precision and efficiency

of log parsing approaches, the selection of appropriate values becomes crucial. However, in

many industrial contexts, evaluating the parsing accuracy can be challenging due to difficulties

in labeling the data. Factors such as the evolution of log statements and limited access to source

code make it complex to determine the optimal parameter values. In our study, we specifically

address the following research questions:

• RQ1. What is the impact of preprocessing and hyperparameter tuning on the precision

and accuracy of log parsing?

• RQ2. Is it possible to identify generic hyperparameter values that ensure a good parsing

accuracy across different log datasets?

By addressing these research questions, we strive to provide insights and guidance for prac-

titioners in selecting optimal preprocessing techniques and hyperparameter values, ultimately
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3.2 Online Log Parsers and Hyperparameters Tuning

enhancing the precision and efficiency of log parsing approaches.

3.2.3 Experimental Context

Dataset Size #Messages #Templates #Unique Tokens

OpenStack 60,01 MB 207 820 51 942
Android 3,38 GB 30 348 042 76 923 3 599
HDFS 1,47 GB 11 175 629 30 1 445

Table 3.2: Characteristics of Datasets Used by [1] Benchmark

For our study, we have chosen to evaluate the performance of Drain and Spell, which are

considered the top-performing online log parsing solutions according to the benchmarks con-

ducted by Zhu et al. [1]. and He et al. [63]. To assess their performance, we have utilized a

dataset consisting of 2 000 labeled log events from three different systems: Android, HDFS, and

OpenStack (as shown in Table 3.2).

OpenStack is a cloud solution that enables the deployment of Infrastructure as a Service

(IaaS) platforms. The Android dataset represents logs from the popular mobile operating sys-

tem developed by Google, encompassing various patterns and logs related to resource alloca-

tion, process management, network management, and more. The Hadoop File System (HDFS)

dataset, widely used in the literature, serves as a practical baseline due to its simplicity, featuring

a lower number of patterns and variable parts. For further details regarding these open-source

datasets and their collection methods, we refer to the paper by He et al. [110], which provides

comprehensive information. By evaluating Drain and Spell on these diverse datasets from dif-

ferent logging environments, we aim to gain insights into the performance and effectiveness of

these log parsing solutions in real-world scenarios.

3.2.4 Impact of the Hyperparameters on the Parsing Accuracy

Here, we explore the impact of the values of the hyperparameters on the Parsing Accuracy (PA)

of Spell and Drain to know if generic values are possible (RQ1.).
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Figure 3.2: Influence of the Hyperparameters on the Parsing Accuracy

In the context of log parsing, it is important to differentiate between model parameters and

hyperparameters. Model parameters are learned by the system during training, such as the

weights of a neural network, while hyperparameters are set at the initialization stage and affect

the learning process or behavior of the algorithm. Examples of hyperparameters include the

number of hidden layers or the number of neurons in each hidden layer [114].

For Spell, there is a single hyperparameter, τ ∈ [0, 1], which serves as a threshold to deter-

mine whether a log belongs to an existing known pattern. Drain, on the other hand, has two

hyperparameters: the depth of its search tree (depth ∈ N∗) and a threshold (ST ∈ [0, 1]), which

determines if a log belongs to an existing group.

The impact of hyperparameter values on the parsing accuracy is illustrated in Figure 3.2.

The optimal value of τ that maximizes Spell’s accuracy varies across datasets: 0.8 for OpenStack,
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3.2 Online Log Parsers and Hyperparameters Tuning

Dataset Regular expressions

OpenStack
((\d+\.){3}\d+,?)+
/.+?\s
\d+

Android
(/[\w-]+)+’, r’([\w-]+\.){2,}[\w-]+
\b(\-?\+?\d+)\b|\b0[Xx][a-fA-F\d]+\b|\b[a-fA-F\d]{4,}\b

HDFS
blk -?\d+
(\d+\.){3}\d+(:\d+)?

Table 3.3: Regular Expressions Used in the Preprocessing Step

Dataset
Spell (without) Spell (with) Drain (without) Drain (with)
PA #Templ. PA #Templ. PA #Templ. PA. #Templ.

Android 0.60 425 0.91 (×1.5) 180 (×0.42) 0.67 217 0.91 (×1.4) 171 (×0.79)
HDFS 0.28 684 1.00 (×3.6) 14 (×0.02) 1.00 17 1.00 (×1) 16 (×0.94)
O.Stack 0.23 692 0.77 (×3.3) 451 (×0.65) 0.84 75 0.73 (×0.8) 299 (×3.99)

Table 3.4: Influence of the Preprocessing on the Parsing Accuracy

0.85 for Android, a nd 0.5 for HDFS. The choice of τ has the most significant effect on the HDFS

dataset, with half of the considered values leading to precision lower than 0.7, and even dropping

to 0. On the other hand, for OpenStack and Android, selecting an appropriate value of τ can

result in accuracy improvements of up to 15% and 20%, respectively.

Drain’s behavior differs among the datasets. While high values of ST (> 0.7) do not yield

good results, the choice of the depth hyperparameter is crucial for obtaining accurate results

in OpenStack and Android. In the case of Android, the maximum precision achieved is 0.75,

while for the other two datasets it reaches 0.9. The optimal depth value varies: 5 for Android,

6 for HDFS, and 7 for OpenStack. It is evident that the accuracy of both solutions is influenced

by the choice of hyperparameter values, and finding an appropriate combination of values for a

given context is a non-trivial task.

3.2.5 Impact of the Preprocessing on the Parsing Accuracy

Table 3.4 presents the results obtained for each dataset and method, with and without prepro-

cessing. We evaluated the parsing accuracy and also considered the number of patterns to detect
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any potential overclassification of logs. The hyperparameter values used were the ones that re-

sulted in the highest PA with preprocessing. The regular expressions used for this experiment

were those proposed by Zhu et al. in their benchmark [1].

For Spell, the PA is significantly increased by a factor of at least 1.5 when preprocessing

is applied. The improvement is even more pronounced for the HDFS dataset, with a factor of

3.6. The number of templates also benefits from the preprocessing step, bringing it closer to the

actual number: 166 for the Android dataset, 14 for the HDFS dataset, and 43 for the OpenStack

dataset.

For Drain, the results vary depending on the dataset. While there is an improvement in PA

for the Android dataset, the PA and the number of patterns worsen for the OpenStack dataset

when preprocessing is applied. This drop in PA can be attributed to the presence of tokens in

the shape of ”*b*eb-*d*a-*aa*-ba*b-*d*f*f*c” in three templates. Without preprocessing, these

tokens affect one level of the partitioning tree. However, with preprocessing, these tokens are

split into several parts, affecting multiple levels of the tree and resulting in a PA of 0 for any log

containing this type of word. Spell is unaffected because its accuracy on words following this

pattern is already zero.

3.3 Discussion

Based on our study, we can conclude that the selection of hyperparameter values and the im-

plementation of preprocessing regexes have a significant impact on the Parsing Accuracy of log

parsers. We have also highlighted the influence of PA on the Accuracy of AD methods, as

a low PA can significantly degrade the AD potential of downstream models. It is crucial to

find optimal hyperparameter values and appropriate regexes to improve the performance of log

parsing.

However, finding the best hyperparameter values and regexes can be challenging, especially

in complex logging environments with a high volume of data and multiple applications involved.

In the case of the 3DS OUTSCALE logging infrastructure, it is not feasible to label logs with
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their templates manually, which adds to the difficulty of fine-tuning existing parsing solutions.

Based on the obtained results, we are motivated to explore and propose a more robust log

parsing solution in the next chapter. This solution aims to address the challenges faced in

enabling log-based anomaly detection methods in a cloud computing context.
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USTEP a Scalable and Robust Log Parsing Approach 1
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4.1 USTEP: Unfixed Search Tree for Efficient Parsing

4.1.1 Motivations

This section provides a comprehensive overview of our online log parsing method called USTEP

(Unfixed Search Tree for Efficient Parsing) [31; 33]. USTEP was specifically designed for log

parsing in large-scale traces generated by cloud infrastructure, with a focus on low latency and

high robustness. It is worth noting that USTEP is currently the only parsing method known to

achieve constant time complexity.

In our comparative evaluation (detailed in Section 4.2), we compared USTEP with four state-

of-the-art online parsing methods using 10 datasets derived from real-world applications. The

results of our evaluation demonstrate that USTEP outperforms the other methods by improving

parsing accuracy by 3% and enhancing robustness by reducing the quartile inter-distance by half

when compared to Drain.

The development of USTEP was motivated by the identified shortcomings in terms of ro-

bustness and efficiency of existing parsing methods, as discussed in the previous chapter. By

addressing these limitations, USTEP aims to provide a more reliable and efficient log parsing

solution for handling the complexities of cloud infrastructure log traces.

4.1.2 Detailed Workflow

USTEP employs an evolving tree structure to discover and encode parsing rules while performing

online log parsing. A USTEP instance is defined as U = {P, σ, ϕ}, where P = {V, Ẽ,E} represents

the parsing tree, σ ∈ [0; 1] is the similarity threshold that determines when a log is considered to

match a template, and ϕ ∈ N∗ is the maximum number of templates that can be associated with

a leaf node. V = {υk}Nk=1 is the set of nodes, Ẽ the set of discovered templates, and E ⊂ V× Ẽ

the set of node-template links.

4.1.2.1 Evolving Research Tree Structure

The USTEP parsing tree is constructed using four types of elements, as depicted in Figure 4.1:
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Figure 4.1: USTEP Evolving Research Tree Structure

1. Root Node (υ1): At the top of the tree, there is always a root node. It is the only node

present during initialization (V = {υ1}) and serves as the entry point for search operations.

2. Internal Nodes (υk, where k > 1): These nodes have at least one child node and form the

backbone of the parsing tree. They help organize and structure the tree.

3. Leaf Nodes: Leaf nodes are nodes that do not have any child nodes. They represent the

endpoints of the tree branches and serve as the attachment points for templates.

4. Templates: Templates are associated only with leaf nodes. Each leaf node can be linked to

a maximum of ϕ templates. When a leaf node reaches this template limit, a leaf division

operation (explained in Section 4.1.2.4) is triggered to refine the tree structure by utilizing

accumulated knowledge.
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4.1.2.2 Tree Descent Rules

ROOT
key: li→ |ti|

NODE
key: li→ t2

r = 3

LEAF
r = “process”

LEAF
r = 5

LEAF
r = “from”

Terminating process *

Starting process *

Send * bytes to *

Reading from *

Figure 4.2: Example of USTEP Search Tree

In the USTEP research tree, each leaf node stores a set of discovered templates while root

and internal nodes encode parsing rules. The parsing rules in USTEP differ based on the type

of node. Root and internal nodes encode parsing rules, while leaf nodes store a set of discovered

templates. These rules are utilized during the traversal of the tree to locate or identify a template

that matches the given log message.

Each node υj , which has Kj children, is associated with a key function υj .key(ti) and a list

of results r1, . . . , rKj , where each result rk corresponds to the k-th child of the node. In the

case of the root node υ1, the key function is defined as υ1.key(ti) = |ti|, which represents the

number of tokens in the log message. On the other hand, for inner nodes, the key function is

υj .key(ti) = tpivotj , where pivot indicates the specific position used for splitting.

Figure 4.2 displays a tree structure with a root node, one internal node, 3 leaves, and 4
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templates. The root node parsing rule directs the messages to the left or right part of the tree

depending on the value of |ti|. Log messages with |ti| = 3 are directed to the internal node on

the left. The internal node parsing rule returns t2, routing logs towards one of its two leaves,

identified by r1 = “process” and r2 = “from”.

4.1.2.3 Parsing Algorithm

Algorithm 1 USTEP Parsing Algorithm

1: function Parse(ti)
2: (leafi, (ei, vi))← SelectClosestLeaf&Parse(ti) ▷ Step 1
3: UpdateTree(leafi) ▷ Step 2
4: return (ei, vi)
5: end function

Parsing a tokenized log message ti using USTEP is a two-step process (Algorithm 1): 1/

Identify the template ei and the variables vi matching ti using descent rules; 2/ Refine the tree

structure by dividing saturated leaves.

Methods 2 USTEP Template Mining Methods

function InitializeTemplate(ti)
2: e← ti

return e
4: end function

6: function UpdateTemplate(e, ti)
e← (ej if ej = tij else * : j = 1 . . . |ti|)

8: return e
end function

10:

function getVariables(e, ti)
12: v← (tij : j = 1 . . . |ti| if ej = *)

return v
14: end function

In Methods 2, we describe three utility functions used to work with log templates. Initial-

izeTemplate to create a template based on an incoming log, UpdateTemplate to refine a

template by filtering out position-wise non-identical tokens between the incoming log and an
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existing template, and getVariables to extract the variables list from a log once the matching

template is known.

simF (ti, e) =

∑|ti|
j=1 equ(t

i
j , ej)

|ti|
(4.1)

equ(t, t̃) =


1 if t = t̃

0 otherwise

(4.2)

Methods 3 Searching methods

function SelectClosestLeaf&Parse(ti)
2: leafi ← TreeDescent(υ1, ti)

(ei, vi)← SelectTemplate(leafi, ti)
4: return (leafi, (ei, vi))

end function
6:

function TreeDescent(υj , ti)
8: while not υj .isLeaf() do

if ∃k : rk = υj .key(ti) for k = 1, . . . ,Kj then
10: υj ← υk

else
12: ei ← InitializeTemplate(ti) ▷ New leaf to include ti

Create a new leaf υj with a templates list [ei].
14: end if

end while
16: return υj

end function
18:

function SelectTemplate(leafi, ti)
20: ei ← argmax{simF (ti, e) : e ∈ leafi.templates}

if simF (ti, ei) > σ then
22: ei ← InitializeTemplate(ti) ▷ New template to include ti

Add new template ei in leafi tempaltes list
24: else

ei ← UpdateTemplate(ei, ti)
26: end if

vi ← getVariables(ei, ti)
28: return (ei, vi)

end function
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The main search function is SelectClosestLeaf&Parse (Methods 3). As templates are

attached to leaves, to assign a template to a log ti, the first step is descending the tree using

embedded rules. Once a leaf is reached, the list of associated templates is scanned to pick the

one matching ti, if none apply, a new template is created based on ti and added to the tree

structure (Lines 12 and 22). The similarity scores between a log and the templates attached

to the selected leaf are computed as described in 4.1. simF (ti, e) represents the proportion

of positions-wise identical tokens between ti and a template e. The template with the highest

similarity score above σ is picked to represent the log. If no score above σ is found a new

template is created using the current log.

4.1.2.4 Tree Update Operations

NODE
Lbl: 5

key: li→ t3

LEAF
r = “package”

LEAF
r = ”packets”

LEAF
r = “bytes”

LEAF
r = 5

Send * bytes to *
Received * bytes from *
Received * package from *
Send * packets to * Send * packets to *Send * bytes to *

Received * bytes from *

Received * package from *

Figure 4.3: Example of Leaf Division with Pivot set to 3

Parsing time can be a bottleneck for downstream applications. To optimize the processing

time of the next parsing operations, tree update operations are triggered after parsing a log if

the returned leaf is linked to more than ϕ templates. The saturated leaf is transformed into an

internal node and the templates are dispatched among new leaves. This step limits the number

of similarity factors to compute for parsing a single log line and directly contributes to USTEP
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constant parsing time (Section 4.2.5.1).

Methods 4 Tree Update Methods

function UpdateTree(leafi)
2: if |leafi.templates| > ϕ then

DivideLeaf(P, leafi)
4: end if

end function
6:

function DivideLeaf(leaf)
8: pivot← SelectPivot(leaf)

Create an inner node υ with
10: a pivot position pivot and an empty list of leaves L

for all ei ∈ leaf.templates do ▷ Share templates between new leaves

12: if ∃x ∈ L : e
(j)
pivot = e

(i)
pivot ∀ej ∈ x.templates then

Append ei to template list of x
14: else

Create a new leaf with template ei and append to L
16: end if

end for
18: Replace leaf by inner node υ in P

end function
20:

function SelectPivot(leaf)
22: Let’s length templates length of leaf

for p← 1, . . . length do

24: Sp ← {e(i)p : ei ∈ leaf.templates} ▷ Set of tokens at position p
end for

26: pivot = argmax{|Sp| : p ∈ 1, . . . length }
return pivot

28: end function

UpdateTree algorithm and the related methods are described in Methods 4. The leaf

division process starts by searching for the position with the highest number of different tokens

among the templates. This position p is set to be the pivot. The leaf is then transformed into

an internal node with the same label and a key function key(li) = tp. For each unique token

at position p within the templates, a new leaf is created with the appropriate label. All the

templates attached to the initial leaf node are transferred to a newly created leaf following the

new descent rule.
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Figure 4.3 illustrates the division process for ϕ = 3. The considered leaf has 4 templates

and is therefore saturated. The position with the highest number of unique tokens is p = 3

with 3 different ones (bytes, packages, packets). Using this pivot, the leaf is transformed into

an internal node with key = ti3, and three new leaves are created, one for each unique word at

p. The existing templates are dispatched to the new leaves according to their token value at

position 3.

4.2 A Comparative Evaluation of Online Log Parsers

To evaluate the relevance of USTEP regarding the existing online parsing algorithms, we con-

ducted a theoretical and an experimental evaluation of its accuracy, robustness and efficiency [31].

4.2.1 Experimental Setup

4.2.1.1 Datasets

Name #log size(B) #template #t/line %var

Apache 2 000 168K 6 6.3 23%
BGL 2 000 310K 120 6.3 25%
Hadoop 2 000 376K 114 8.4 37%
HDFS 2 000 282K 14 7.4 45%
HPC 2 000 148K 46 3.5 18%
Mac 2 000 312K 341 9.4 28%
OpenSSH 2 000 220K 27 8.7 28%
OpenStack 2 000 582K 43 9.0 45%
Thunderbird 2 000 318K 149 8.5 16%
Zookeeper 2 000 274K 50 6.3 18%
HDFS-2 11 175 629 1.5G 30 7.4 N.A.
OpenStack-2 207 820 54M 43 9.0 N.A.
Internal-1 1 750 916 1.2G N.A. 28.2 N.A.
Big-comp 2× 109 150 GB 910 6.6 33%

Table 4.1: Datasets Characteristics

We selected 14 datasets coming from a wide panel of real-world applications: 12 comes

from openly accessible online sources [110], 1 from 3DS OUTSCALE infrastructure (Internal-
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1 ), and 1 was crafted by combining multiple log traces (Big-comp). 3DS OUTSCALE dataset

represents 30 minutes of consecutive logs issued only from sources related to TINA OS the 3DS

OUTSCALE Cloud orchestrator. Big-comp was crafted using Loghub [110] open source datasets

and represents a multi-source logging environment which is to be expected for a cloud computing

platform. The 12 other datasets are extracted from the Loghub platform [110], a bank of openly

accessible log traces. We summarize the datasets characteristics in Table 4.1. In some cases, the

ground truth is unknown (HDSF-extended, OpenStack-extended, 3DS OUTSCALE ), so, some

metrics cannot be calculated.

4.2.1.2 Log Parsers

Log parser Year Method #parameters

Drain 2017 Fixed depth parsing tree 3
LenMa 2016 Clustering 1
SHISO 2013 Clustering 4
Spell 2016 Longest common subsequence 1
USTEP 2021 Evolving parsing tree 2

Table 4.2: Log Parser Characteristics

To prove the effectiveness of USTEP, in this section, we compare its performance with four

state-of-the-art online log parsers in terms of accuracy and efficiency.

• Drain [103] is an online log parser based on a fixed-depth research tree structure. It is

used by many log-based applications [24; 29] and is presented as the best parsing solution

within Zu & al benchmark [1].

• LenMa [101] uses the distribution patterns within token length to group logs in an online

fashion.

• SHISO [100] uses a tree with a predefined number of children per node to guide its log

grouping process.
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• Spell [102] is an online log parser based on the Longest Common Subsequence algorithm

(LCS). It uses different pre-filtering techniques to accelerate the matching process.

The principal characteristics of each method are presented in Table 4.2. Each log parser uses

different parameters (e.g., σ, ϕ for USTEP), for fairness of comparison each presented experiment

was run multiple times to fine-tune the parameters and retain only the best value.

4.2.1.3 Additional Tuning

Dataset σ ϕ Dataset σ ϕ

Apache 0.5 4 Internal-1 0.3 50
BGL 0.45 18 Mac 0.6 18
Big-comp 0.3 8 OpenSSH 0.75 3
Hadoop 0.3 3 OpenStack 0.9 2
HDFS 0.35 2 OpenStack-2 0.9 2
HDFS-2 0.35 2 Thunderbird 0.3 4
HPC 0.6 2 Z.keeper 0.63 3

Table 4.3: USTEP Parameters Values

The experiments we present here were carried out on a CentOS Linux 7.8 Cloud Hosted

virtual machine with 32 hearts, and 62 GB of RAM. We have made the implementation of each

log parser used publicly available and linked to the datasets. However, due to security and

confidentiality concerns, we have kept Internal-1 private.

The considered algorithms process logs online, and for fairness of comparison, we applied the

same processing rules to each log parser. Used values of σ and ϕ for each dataset are summed

up in Table 4.3. For space reasons, we didn’t detail here the settings for all the other methods

but they are available with the source code of USTEP1.

4.2.2 Effectiveness of the Log Parsers

Traditionally log parsing is evaluated using the Parsing Accuracy (PA)[1; 102], which corre-

sponds to the ratio of correctly parsed log messages over the total number of log messages. A

1https://github.com/outscale/ustep-online-log-parser
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Dataset Drain LenMa SHISO Spell USTEP

Apache 1 1 1 1 1
BGL 0.963 0.690 0.711 0.787 0.964
Hadoop 0.948 0.885 0.867 0.778 0.951
HDFS 0.998 0.998 0.998 1 0.998
HPC 0.887 0.830 0.325 0.654 0.906
Mac 0.787 0.698 0.595 0.757 0.848
OpenSSH 0.788 0.925 0.619 0.554 0.996
OpenStack 0.733 0.743 0.722 0.764 0.764
Thunderbird 0.955 0.943 0.576 0.844 0.954
Z.keeper 0.967 0.841 0.660 0.964 0.988

Average 0.903 0.855 0.707 0.810 0.937

Big-comp 0.480 - - - 0.816

Table 4.4: Parsing Accuracy of Log Parsers

log message is considered correctly parsed when it aligns with the same template as its ground

truth. Given the potential impact of errors on the performance of downstream applications, ac-

curacy is a crucial aspect. For this study, we employed our ten labeled datasets. The parameters

of all the log parsers are fine-tuned through over 100 runs to avoid bias from randomization,

and we reported the best result for each dataset in Table 4.4.

Our proposal method, USTEP exhibits great performance, achieving the highest PA on

eight out of ten datasets and closely approaching the best result on the remaining two. Overall,

USTEP has the best average PA at 0.937, 3.4% higher than the second best (Drain with 0.865).

USTEP’s better results are due to several intrinsic characteristics. First, the leaf division process

allows it to choose the best token as a descend rule. Where Drain always selects the n-th token

with the risk of selecting a yet-undiscovered variable leading to a branch explosion, splitting logs

from the same log statement over different leaves. Besides, the τ parameters allow fine-tuning

over different types of datasets.

USTEP and Drain appear to be the on average two most accurate methods on the considered

datasets. Production environments are often more complex and englobe a large range of logging

sources. Big-comp dataset was crafted using parts of each of the other 10 datasets to represent
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such an environment. USTEP achieves a 0.816 parsing accuracy over Big-comp dataset, this is

0.336 more than Drain (0.480). We believe this significant difference to be due to the way both

algorithms manage their tree structures. Drain uses the depth-first tokens as descent rules, if

a non-numeric variable is part of those, it will create a new leaf for each unique value it takes.

On the other side, USTEP descent rules are crafted thanks to the accumulation of templates

allowing it to limit the case where a variable sensitive position is selected for a descent rule

allowing it to handle more diverse datasets.

4.2.3 Robustness of the Log Parsers
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Figure 4.4: Robustness of Log Parsers

We believe that a general parsing method must deliver robust performance on diverse

datasets for it to be utilized in production environments. Our goal here is to illustrate USTEP’s

capacity to support a broad range of log data types. In Figure 4.4, we plot the accuracy distribu-

tion of each method. The log parsers are arranged in ascending order of the median PA. SHISO

is on the lowest side and USTEP is on the highest one. Achieving consistently high PA values

across a diverse range of datasets is critical for the general use of a log parser. Regarding this,

despite their great average PA (Table 4.4), the considered log parsers have a large variance when
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applied to logs coming from different types of logging environments. The 1st to 3rd quartile

distance for SHISO is 0.23, 0.146 for Drain, 0.079 for Spell, and 0.073 for USTEP which also

has the highest median at 0.959 PA. The robustness of USTEP within diverse environments is

supported by its achieved PA on Big-comp dataset.

4.2.4 Efficiency of the Log Parsers

4.2.4.1 Experimental Parsing Time

(a) HDFS-Extended (b) OpenStack-Extended

(c) 3DS OUTSCALE (d) Big-comp

Figure 4.5: Cumulated processing time by dataset

We plotted the cumulative time required by each method to parse the four largest datasets

(HDFS-Extended, Openstack-Extended, 3DS OUTSCALE ) and Big-comp (Figure 4.5). Drain

and USTEP were the only methods able to process the 3DS OUTSCALE, and Big-comp datasets
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in less than a day. The effectiveness of each method varies with the dataset; however, both

present a linear cumulated parsing time on all the datasets.

4.2.5 Memory Usage of Log Parsers

Table 4.5: Memory Usage in MB

Dataset Drain LenMa SHISO Spell USTEP

Apache 1.917 1.796 1.714 2.007 1.784
BGL 3.777 3.987 3.581 3.878 3.687
Hadoop 3.079 3.095 2.875 3.228 3.035
HDFS 2.835 2.738 2.636 2.957 2.712
HPC 2.700 2.704 2.479 2.753 2.598
Mac 3.368 3.732 3.161 3.456 3.442
OpenSSH 2.734 2.637 2.541 2.854 2.622
OpenStack 4.004 4.009 3.769 4.342 4.233
Thunderbird 4.053 4.062 3.812 4.151 4.058
Zookeeper 2.988 2.926 2.795 3.035 2.894

Considered parsing methods are based on different parsing structures and therefore can have

a different memory footprint. In Table 4.5, we have consigned the memory used in MB by each

parsing method after parsing a dataset. The results obtained show no significant deviation in

the memory used by the methods. Used space seems to be most impacted by the number of

underlying templates as well as the number of tokens in the logs of the dataset rather than by

the parser memory structure.

4.2.5.1 Complexity Analysis

We analyze the worst-case time and space complexity to process a single log for Drain, Spell,

LenMa, SHISO and USTEP.

Theorem 1. Let’s denote by ti an incoming tokenized log, |ti| the number of tokens constituting

ti, |t| the highest number of tokens for a single discovered template, T the number of unique

templates already discovered by the parser using a structure with N nodes. We have the time

and space complexities in the worst-case scenarios summarized in Table 4.6.
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Table 4.6: Worst-case complexities

Log parser Searching time complexity Space complexity

USTEP O(|ti|) O(T ×N)
Drain O(T × |ti|) O(T ×N)
Spell O(T × |ti| × |t|) O(T )
LenMa O(T × |ti|) O(T )
SHISO O(T × |ti|) O(T ×N)

Proof. We summarize the parser structures to determine complexities. USTEP and Drain use

searching tree structures to determine the closest leaf, once the leaf is identified, a list of tem-

plates is evaluated to find the most similar. So, both have the same space complexity O(T ×N)

and a searching time complexity O(d + max{cleaf ∀leaf} × |ti|) where d is the tree depth and

max{cleaf ∀leaf} is the maximum number of candidate templates in leaves. In the worst-case

scenario, Drain attaches all discovered templates to the same leaf having max{cleaf ∀leaf} = T ,

however, USTEP bounds this number by the parameter ϕ. In both cases, the depth of the tree

doesn’t exceed the maximum token length |t|. USTEP searching time complexity is therefore

in O(|ti|+ϕ× |ti|), with ϕ a constant. Spell does not partition its search space and will use the

LCS algorithm to compare ti with all the existing templates. LCS algorithm complexity is in

O(|ti|×|t|). Thus Spell time complexity is in O(|ti|×|t|×T ). LenMa starts by iterating over the

log message to create a word length vector representing the character length of each token. It

then compares this vector, with all the discovered vectors with the same length (|ti|). Therefore,

its time complexity is in O(|ti| + T × |ti|). In the worst case, SHISO tree descent algorithms

can visit all the existing nodes in the structure and compare the log with all the templates. Its

worst-case time complexity is then in O(T × |ti|).

Search tree structures are more memory-intensive but help to reduce processing time. For

instance, while Spell exhibits a linear space complexity with respect to the discovered templates,

its time complexity is quadratic in terms of the maximum token length. On the other hand,
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Figure 4.6: Processing Time Evolution for OpenStack-extended

USTEP presents a larger space complexity but it is the only method with a constant worst-case

time complexity.

For OpenStack-extended dataset, Drain performs worse than USTEP. Figure 4.6 which illus-

trates the processing time for each incoming log, depicts a trend of increasing processing times

for Drain. As Drain doesn’t bound the number of templates attached to a leaf, in the long run

this increases the processing time as more templates are discovered. USTEP maintains a more

stable processing time thanks to ϕ parameter that limits the number of similarity comparisons.

4.3 USTEP-UP

The time complexity analysis of USTEP displays demonstrates a consistent parsing time relative

to the number of tokens inside the message. Results of our experimental evaluation support

this claim. However, within fast-paced ou multi-sources logging environments, even a constant

parsing time can be a limitation for real-time parsing. We address this scalability issue, by

presenting in this section USTEP-UP, a way of running multiple slightly modified USTEP-like

instances in parallel.

Agrawal & al [107] used an LCS-based log parsing algorithm similar to Spell and distributed

it on top of Spark. Still, their evaluation displays a lower bound in parsing time due to the
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increased overhead induced by the knowledge merge steps between the instances. A similar

approach applied to Drain would run into an even bigger problem, as it’s more than likely that

the tree structures of the instances will diverge, leading to inconsistent parsing where different

templates can be associated with the same log message depending on the instance parsing it.

This inconsistency is a problem because identical messages could appear as being different for

downstream applications.

Like Drain instances, USTEP ones are stateful and need to share information; otherwise,

they might encode different parsing rules. To address this, USTEP-UP runs modified USTEP

instances. Those skip the leaf division step and never divide saturated leaves. A monitoring

instance is added to the architecture, it spreads the knowledge and refines the instances by

punctually merging its memory structure with theirs.

4.3.1 Architecture

Log stream
L
B
U

K.M
Worker

Worker

Worker

Worker

Pool of workers

Figure 4.7: USTEP-UP architecture

USTEP-UP architecture (Figure 4.7) is designed to run multiple USTEP-like instances in a

decentralized fashion. We will refer to those N parsing instances as Ul = {Pl, σ, ϕ}Nl=1. There is

no interaction between any of those parsing instances, they receive their workload from a Load

Balancer Unit (LBU) and punctually merge their knowledge with the Knowledge Manager(KM).
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Subsequently, we will refer to it as U0 = {P0, σ, ϕ}. U0, never processes logs, it updates its tree

P0 by merging it with other trees (Pl), the resulting tree also replaces the Pl. Initially, every

worker starts with identical parsing trees, before any parsing operations: P0 = Pl,∀l.

As they process logs, those trees will grow and extend their parsing knowledge. To avoid

ending with conflictual parsing rules (descent rules) within two trees, we run a modified USTEP

version that skips the leaf division step and therefore never splits saturated leaves. Bypassing

this step ensures that no internal node is created by a parsing instance, it also influences the

time complexity of modified instances now in O(maxT × |ti|)(linear) against O(|ti|)(constant)

for classic USTEP instances. With maxT the maximum number of templates attached to one

leaf. The main risk is then a continuous slowdown of instances with the increase in the number

of log templates. To avoid this, it is the knowledge manager that divides saturated leaves when

it merges its tree with an instance one. Delegating the split step to one instance guarantees that

the encoded parsing rules won’t diverge.

Load balancing systems are widely studied, and many different approaches have already

been detailed within the literature[115; 116]. As its intrinsic workflow doesn’t affect USTEP-

UP design, we will not detail any LBU here. If you want to work with this architecture, we

recommend using a state-of-the-art load balancer.

4.3.2 Merging knowledge

Delegating the leaf division process only to K.M. assures that the instances trees won’t discover

diverging parsing rules. As the worker’s instances can’t divide leaves, it is guaranteed that at

any moment, any internal nodes in a tree Pl also exist in P0. To distribute the knowledge and

refine the instance tree structures, K.M. punctually merges its tree P0 with a selected instance

tree Pl, the resulting tree replaces both P0 and Pl. This merging process adds the knowledge

collected by the instance to K.M., but it also distributes the knowledge acquired by K.M. toward

the other instances to Ul.

The merging process (Algorithm 5) starts by pointing at the root node of each tree. It uses
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ROOT
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Figure 4.8: Example of merging tree process
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Algorithm 5 Merge Pl With P0

1: function MergeTree(P0,Pl)
2: q ← FIFOQueue()
3: q.enqueue(υ01, υ

l
1)

4: while not q.isempty() do
5: (node1, node2) ← q.dequeue()
6: for child in node2.childrens do
7: if not child.isLeaf() then
8: q.enqueue((node1.getChild(child.label), child))
9: else

10: if child.label in node1.childrens() then
11: for template in child.templates() do
12: node1.parse(template)
13: end for
14: else
15: node1.childrens.add(child)
16: if node1.getChild(child).isSaturated() then
17: node1.getChild(child).divide()
18: end if
19: end if
20: end if
21: end for
22: end while
23: return P0

24: end function

a First in First Out (FIFO) Queue to iterate over all the nodes of Pl in a breadth-first fashion.

Crossed Internal nodes are enqueued paired with their equivalent in P0. When encountering a

leaf node, if no child with the same label exists in P0, the leaf is added to the currently pointed

node in P0. Otherwise, all the templates from the Pl leaf are parsed through P0 starting at the

current node and not at the root node. MergeTree(P0,Pl) function time complexity is in O(|Ẽ|),

as we need to iterate over every template within Pl and parse them with P0. As this function

performs operations in place, its space complexity is in O(|V0| × |Ẽ0|+ |Vl| × |Ẽ|).

Figure 4.8 illustrates the merging process between the knowledge tree P0 (Tree 1) and an

instance tree Pl (Tree 2). In this example, we consider σ = 0.5 ϕ = 3. The process starts

by visiting (υ01, υ
l
1), the two root nodes. In this example, υl1 is linked to one leaf node υ11, and

υ11.label = 5. As there is already a node with node.label = 5 inside υ01.children, all the templates
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attached to υ11 are parsed by υ01. υ
1
1.templates return four elements: 1/ ”Send * bytes to *” will

end up in the left leaf according to the descent rules as simF(”Send * bytes to *”, ”Send * bytes

to 1.2.3.4”) = 0.8, it will update the template within P0.2; 2/ ”Send 42 packets to *” will be

affected to the already more refined template ”Send * packets to *”; 3/ ”Received * packages

from *” will create a new leaf as no leaf with label = ”package” exists yet. 4/ ”Received *

packets from *” will end up in the same leaf as ”Send * packets to *” as a new template.

4.4 Perspectives

By separating variables from the template, the parsing process opens a new source of information

for intelligent monitoring, and it is a required step for log-based anomaly detection methods.

With the proposition of USTEP - a high-performing online log parsing algorithm in terms of

accuracy, robustness, and effectiveness, along with USTEP-UP, an architecture designed to

run multiple parallel USTEP instances, we effectively tackle the challenge of parsing logs in

environments characterized by high log statement evolution and huge data volume.

One limitation of USTEP is that it can’t group logs sharing the same template but with a

different number of tokens. This limitation is inherent to its memory structure and it’s shared

with Drain. Still, our comparative evaluation on 14 datasets displays that USTEP outperforms

existing methods in terms of PA and robustness. We believe that progress in the parsing field

can stimulate progress in many log-based applications and not just the anomaly detection ones

as it allows using log message embedded information for a wide variety of tasks. Also, we

discovered that parsing algorithms like USTEP can end up having unusual applications such as

the classification of JIRA1 tickets or the extraction of invoice-embedded information by some

3DS OUTSCALE teams.

1https://www.atlassian.com/fr/software/jira
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Monilog: An Automated Log-Based Anomaly Detection System
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5.1 Introduction

In this chapter we present Monilog, a log-based alert system architecture designed to detect

anomalies at a cloud scale. It is able to produce comprehensive reports regarding the reported

anomaly including the concerned system and applications. Unlike existing methods depicted

in Chapter 2, Monilog operates without needing specific knowledge of the relationship between

logs, thereby facilitating near real-time alerts through a streaming mechanism.

We start by exploring the architecture of Monilog and our work toward implementing Monilog

inside 3DS OUTSCALE infrastructure. We successfully used this implementation to monitor

equipments from the European region of 3DS OUTSCALE during 11 consecutive days. De-

tails about this experimentation, its context, and the obtained results are to be found under

Chapter 6.

5.2 Monilog Architecture

Figure 5.1: Monilog Architecture and Workflow

Monilog workflow is divided in three parts (Figure 5.1): (Section 5.2.1) First (in blue),

Monilog infers log templates and vectorizes them; (Section 5.2.2) It seeks anomalous events and
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generates alert candidates (in white); The last step (in yellow), consolidates alert candidates by

grouping related ones and acquiring their context (Section 5.2.3). On the architectural schema

(Figure 5.1), we indicate 7 components enumerated from 1 to 7, within this chapter, we will refer

to those using a number within curly braces (e.g. {1} refers to the raw logs message queue).

5.2.1 Vectorizing Logs

5.2.1.1 Log Filtering

Logs are timestamped and generated by machines at runtime. Monilog input({1}) is an infinite

and temporally ordered sequence of tuples L = ((ti, li), i = 1, 2, ...), with ti the timestamp

associated to a log li. In our implementation of Monilog, this input {1} is a Kafka1 stream

exposing the last 3 hours of logs. With Kafka being a distributed event streaming platform

presenting good performance in terms of scalability and fault tolerance.

In first-hand, logs are filtered based on header embedded criteria ({2}). Filtering is an

optional step that allows you to retain only the logs linked to the system you want to monitor.

For instance, in our experimental use case around serves crashes (Chapter 6), we choose to retain

only logs issued by Kernel Virtual Machines from 3DS OUTSCALE European cloud region.

5.2.1.2 Template Mining

We define the log event template (e) to be the combination of the application name and the

severity of the considered log message. For instance, the template of the raw log presented in

Figure 1.3 would be ”serviceManager INFO”. This embedding bounds the number of different

possible templates by the number of running applications multiplied by the number of distinct

severity levels (8 for syslog formatted logs). Also, it keeps track of the related application and

the severity, this property is exploited by the context acquisition step to generate contextual

anomaly reports.

In Chapter 4, we presented our proposal log parsing method USTEP that outperforms ex-

1https://kafka.apache.org
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isting log parsers in terms of accuracy and robustness. However, USTEP still makes parsing

errors and rarely achieves 1.0 PA on log datasets. To avoid dealing with falsely parsed tem-

plates we choose to craft templates using only header-embedded information as this is a trivial

and non-error-prone operation. Log parsers can generate useful information based on the log

messages. We believe that in the future, replacing the proposed template mining step by a log

parser such as USTEP could improve the system performances, although this requires dealing

with the induced potential parsing errors.

5.2.1.3 Log Aggregation

Logs with the same host and template are aggregated by w nanoseconds windows. We define

Lh,e(t) as the count of logs associated to template e for host h at timestamp t, and the logs

count window as a time serie Ch,e(w).

Ch,e(t) =
∑

i∈[t,t+w]

Lh,e(i) (5.1)

The tuples of size 4 are then queued within another message queue {3} following the shape

(t + w, h, e, Ch,e(t)). Messages queued into {3} are to be consumed by monilog-brain {4} com-

ponent, in charge of identifying alert candidates within the log series associated to each host.

We separate the logic of the monilog-log-consumer component {2} and monilog-brain com-

ponent {4}. By doing so, the structure becomes more modular and it is easier to enforce new

filtering rules or to experiment with different anomaly detection models. In our practical im-

plementation, the monilog-log-consumer is implemented using Spark1, an engine for executing

computing tasks on a cluster of machines. Having its logic decoupled from the monilog-brain

component allowed us to take full advantage of Spark streaming features.

1https://spark.apache.org
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5.2.1.4 Vectorization

monilog-brain {4} component reads the message queue {3}, and writes the obtained tuples in a

cold storage database {5}. This database aims to provide a convenient way of replaying specific

sequences to test new models or to inspect suspicious results. In our implementation of the

Monilog system, we choose InfluxDB1, a high-speed read and write database designed for time

series. We also built a visualization module {6} on top of {5}, allowing us live monitoring of

interesting metrics such as the log count per time window or the time delay or the prediction

error of the different models over time.

When training models, every unique log template within the training set is associated to an

id (see template mining step). We define T as the ensemble of unique log templates within the

model training set, and fe : T 7→ 1, 2, .., |T|, a bijective function. The id ei of log template is

defined by the following equation:

ei =


fe(i) if i ∈ T

|T|+ 1 otherwise

(5.2)

The event count vector V (t) is constructed as follows:

V (t)(i) =
∑
ei=i

Ch,e(t) (5.3)

|V (t)| = |T|+ 1 (5.4)

5.2.2 Detecting Anomalies

5.2.2.1 Model Predictions:

Models forecast the log traffic using a matrix regrouping r previous observations. Their output

is a prediction for the next log count vector, each model can be assimilated to a prediction

1https://www.influxdata.com
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function P:

P (M(t)) = V̂ (t) (5.5)

|V (t)| = |V̂ (t)| (5.6)

With M(t) a matrix composed of the r last count vectors at time t. M(t) is formally defined

as follows:

M(t)(j) = V (t− (w × (r − j))), j ∈ [1, .., r] (5.7)

In the case of a perfect predictor:

V̂ (t) = V (t+ w) (5.8)

5.2.2.2 Compute Forecasting Error

Previous steps model prediction V̂ (t − w) are compared to the actual observation V (t) using

different error metrics. They evaluate the forecasting accuracy of the models for the elapsed time

step. The performance of Monilog is heavily impacted by the selected model/metric combination.

In our experimental evaluation phase, we used three forecasting models, and three error metrics

resulting in 9 different error time series, one for each model/metric pair. We found useful to

store error metric outputs into the cold-storage database {5}. This allows us to visualize the

error series in real time but also to investigate again certain patterns later without having to

repeat the model prediction step, which is expensive in terms of computing units.

5.2.2.3 Alert Candidate Generation

The error time series are used to generate alert candidates. Points that are considered abnormal

regarding the three sigma rules based on the weekly mean error are labeled as alert candidates.
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Figure 5.2: An Example of Error Time Serie

Figure 5.2 is an error-time series extracted from our experimental evaluation (Section 6.2). It

plots the error value (vertical axis) over the time (horizontal axis), the green line represents the

mean value for the serie, and the red one the 3-sigma threshold. Any point above this threshold

will be considered as an alert candidate.

5.2.3 Anomaly Consolidation

5.2.3.1 Context Acquisition

Forecasting error metrics are computed using the forecasted vector and the observation vector.

Each record inside one of those vectors is linked to an identified template. It is therefore possible

to quantify the influence of a given template over the final error. This information is used to

retrieve the most contributing templates to the total error. Since the templates are forged

using the application name and the severity, reverting this process enables us to identify the

application and severity of the templates that contribute most to the errors.

5.2.3.2 Alert Consolidation

1{"Timestamp": "2022-11-02 10:32:00",

2"Data Centers": [{

3"Name": "DC-1",

4"Hosts":[{

5"Name": "Host -13",
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6"Anomaly Score": 4.5,

7"Applications": [{

8"Name": "App -13"

9"Score Weight": "92.4%"

10}]},

11{"Name": "Host -27",

12"Anomaly Score": 3.2,

13"Applications": [{

14"Name": "App -13"

15"Score Weight": "54.2%"},

16{"Name": "App -9"

17"Score Weight": "36.8%"}

18]}]

19}]}

Listing 5.1: An Alert Report

False positive or irrelevant alerting are the main obstacles toward the adoption of an anomaly

detection system by the operational teams [117]. At the end of the previous step, for each alert

candidate, the system returned the host as well as the top contributing applications. In the

alert consolidation step, it is possible to define additional rules to reduce the number of alerts.

For instance, alerts linked to similar equipment inside a data center can be grouped, or alerting

scenarios can be defined based on the involved applications.

An example of an alert report is provided in Listing 5.1, showing how alert candidates from

equipment connected to the same data center are used. For each host, the anomaly scores as well

as the weights of the top contributing applications are listed. The ability to generate detailed

alert report is a strong point toward Monilog acceptance by operational teams as it gives them

detailed information about the potential issue while allowing them to fine-tune the alert settings

based on their experience and domain knowledge.
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5.3 Classification of Log-Based Anomalies

5.3.1 Within the Litterature

Anomalies encompass various types of events, ranging from breakdowns to performance issues,

including security attacks. These anomalies possess distinct characteristics that often necessitate

the involvement of different teams, each with their own set of priorities. Effectively classifying a

detected anomaly and providing contextual information facilitates the identification of the most

appropriate team to address the issue at hand. In our review of the literature, we discovered

three studies that explore the automated classification of log-based anomalies.

Zou et al. proposed Uilog [118] (2016), an anomaly classifier that built a fault keyword

matrix to classify anomalies. This matrix encodes the probability of a given token to appear in

each fault type. This matrix is dynamically learned during the training phase thanks to labeled

anomalies. Author’s evaluation on classic error affecting CentOS based virtual machines in a

cloud illustrates the relevance of their proposal to correlate tokens with specific anomalies.

With WEAC [119] (2017), Pande et al. also exploit token embedded information to detect

and classify anomalies by using word2vec techniques. Authors illustrates the superiority of their

method comarent to Isolation Forest [88] (IF), and HDBSCAN [120], two traditionnal mahcine

learning techniques.

LogClass (2018), by Meng et al., is a classifier trained over log anomalies [121]. Authors

applied their proposal to a set of switch logs issued from data centers to detect and classify

common errors (e.g., FAN FAILED, POWER DOWN, SYSTEM REBOOT). Logclass approach

is based on the bag-of-words technique and learns anomalies labels based on the frequently

associated tokens.

A common limitation of these approaches is their reliance on manually established labels to

train their classifiers. Acquiring such labeled data is a laborious task, and the resulting trained

classifier may not be adaptable to newly detected anomalies. Consequently, these approaches

become challenging to maintain, which, in our view, is a key factor contributing to the lack of

active research on log-based anomaly classification.
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5.3.2 With Monilog

Classifying anomalies can be a subjective task, different organizations may have different ways of

handling the same type of events and will assign them different priorities based on their business

model. Therefore, instead of trying to group anomalies around known errors, we focused on a

way to bring up as much relevant information as possible about an anomaly.

Unlike other approaches, Monilog does not incorporate a classifier module. Instead, when it

detects a potential anomaly, it generates a comprehensive report containing relevant information.

As depicted in Section 5.2.3, this report includes the concerned equipment, the applications

responsible for the anomalies alongside the criticity of the logs linked to those applications. The

proportional contribution to the error score for each log template (appname + criticity) is also

provided.

Organizations can easily create a tailored anomaly handling process on the Monilog platform

by leveraging business rules and expert knowledge. An example at cloud scale could be for

instance to group anomalies occurring at the same time if they concern equipment inside a

given subnet/data center. One could also use the involved applications to create error handling

scenarios based on identified error templates. We believe the flexibility offer by Monilog to be a

key factor for his adoption by industrial practitioners in production.

5.4 Perspectives

In this chapter, we presented Monilog, an automated system for detecting anomalies based on

log data. Monilog is specifically designed to address the challenges posed by cloud computing

platforms, which often consist of numerous complex components of diverse types and undergo

frequent updates reflected in log statements. One of the key strengths of Monilog is its capability

to generate comprehensive statements that provide detailed information about the detected

anomalies and the specific components involved. This inherent flexibility offered by Monilog has

been instrumental in its adoption by industrial practitioners operating in real-world production

environments.
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We were able to implement an instance of Monilog to monitor the European region of 3DS

OUTSCALE. In Chapter 6, we illustrate the practical utilities of Monilog by applying it to

the detection of Kernel Virtual Machines crashes. Our proposal is quite flexible and many

improvements can still be made. We share our thoughts and perspectives on this in Section 7.2

at the end of this manuscript.
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6.1 Introduction

To assess the practical applicability of our proposal, we implemented a version of Monilog

using the logging infrastructure provided by 3DS OUTSCALE and tested it at a cloud region

scale. The implemented architecture was running three different models and three different

error metrics detailed below. It allows us to validate the real-time performances of our approach

as well as its relevance to forecast anomalous events and provide useful insight regarding the

anomalous periods.

In this section, we provide a comprehensive overview of the logging environment, collection

mode, experimental context, selected models, and metrics. We also discuss their performance

in forecasting anomalous events. We have focused our assessment work around two research

questions:

• RQ3. What is the precision of each of the considered model/metric pairs for the detection

of abnormal events ?

• RQ4. Can the considered model/metric pairs forecast the major events that impacted the

monitored systems during the experimental period ?

In Section 6.3.1, we share and comment the result of a precision evaluation of the tested

model/metric couples. We used manually generated labels regarding the relevance of the identi-

fied anomalous candidates. The section 6.3.3 is dedicated to RQ4, as we explore the capability of

our proposal to forecast three critical anomalous events that occurred during the experimental

period.

6.2 Experimental Setup

6.2.1 Dataset

A Kernel Based Virtual Machine or KVM refers to a Linux system turned into an hypervisor

that allows a host machine to run multiple isolated virtual environments, called virtual machines.
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A KVM exposes four types of resources to its hosted virtual machines: Computing resources,

memory, network access and storage access. Server hard failures are rare events but they can

have a negative impact on the hosted client virtual machines.

During 11 consecutive days, our Monilog implementation was reading a Kafka stream filled

by syslog messages issued from all the Kernel Based Virtual Machines (KVMs) linked to the

3DS OUTSCALE European cloud region. Several billion lines of logs were consumed during the

monitored period at the average rate of 238 logs per host per minute.

6.2.2 Anomalies

During the monitored period, operational teams reported and timestamped three severe crashes.

However, during the same period, Monilog alerting system generates a higher number of alert

candidates. To evaluate the relevance of Monilog architecture as well as the performance of

each model/metric combination, we ran a manual inspection of all the reported abnormal events

to assign them one of the following label: Probable Anomaly (PA) for the legitimate abnormal

events; False Positive (FP) for the identified events that are not likely to represent anomalies,

and Unknown for the remaining ones.

We assign to the Probable Anomaly category events such as a high concentration of kernel

errors, dropped log messages due to excessive rates or network-related errors. Unusual but not

abnormal events such as a large number of virtual machines being deployed simultaneously,

booting operations, or admin operations such as network configurations changes were labeled as

False Positive. Events inside the Unknown are linked to log events referring to external systems

or metrics. Assigning a clear label to such events is a difficult task as it requires to correlate the

information from multiple systems. Given the significant number of such events in our case, we

made the decision to set them aside, as inspecting each one in detail was not practically feasible.
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6.2.3 Models

The cloud computing logging environment is inherently chaotic, significantly influenced by var-

ious client operations. Some of these operations are periodic and run by scripts like the backup

or the cleaning of data where other ones are punctual (e.g., manually triggered API calls). It is

common for equipment, such as servers, to transition rapidly from an inactive state to a fully

loaded state. To address this dynamic nature, forecasting models are utilized to predict the

subsequent log count vector based on the previous vectors. In our experimental evaluation, we

have chosen and implemented three distinct types of models for this purpose.

We set r = 24, the number of last count vectors forwarded to the model. As each vector

represents a five-minute time window, this is the equivalent of asking the model to predict the

next five minutes based on the last two hours of logs.

6.2.3.1 Repetitor

This model always predicts the most recent count vector as the next output. With this model:

V̂ (t) = V (t) (6.1)

The repetitor model offers a rather simplistic approach to forecasting log traffic, assuming

its consistency over time. However, it presents some interesting aspects. As it only considers

the last log count vector, it is less influenced by trailing noises. Obtained result displays that

coupled with the appropriate error metric, this model can achieve a good precision even if it

tends to miss a large number of abnormal events.

6.2.3.2 Mean Channel Value

This model returns the channel wise mean of the last r observations. For this model, V̂ (t) is

constructed as below:

V̂ (t)(i) =

∑r
j=1M(j)(i)

r
(6.2)
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Another straightforward approach to forecasting log traffic is through the mean channel value

model. It aims to mitigate the influence of the chaotic changes such as wide variation affecting

one channel by using its over time mean.

6.2.3.3 LSTM Autoencoder

LSTM [122] is a type of Recurrent Neural Network (RNN) that allows the network to retain

long-term dependencies between data at a given time from many time steps before. They have

been used by a large panel of sequence learning tasks including handwriting recognition, speech

recognition, and sentiment analysis. An LSTM-based encoder is used to map an input sequence

to a vector representation of fixed dimensionality. The decoder is another LSTM network which

uses this vector representation to produce the target sequence.

LSTM autoencoders displayed promising results for multivariate time series forecasting in

contexts like supply chain management [123], multi-sensor anomaly detection [124], or spacecraft

monitoring [125]. To test the relevance of such models in our cloud computing logging context,

we trained an LSTM encoder decoder to reconstruct instances of normal time series. Training

log data were collected during the two weeks prior to our 11 days train dataset, they are issued

from the same KVM but there is no overlap between the training and the evaluation period.

A linear layer on top of the LSTM decoder layer is used to predict the next log count vector

V̂ (t)(i).

6.2.4 Error Metrics

Accuracy measurement in a forecasting problem is always a subject of debate because of its

importance. Workloads can significantly vary between two identical devices and change drasti-

cally over time. For instance, a server charge can operate between 0 and 100% of its computing

capacity and quickly evolve within this range of values without abnormal. We have chosen three

distinct metrics for this experimental evaluation. Each metric is given a forecast vector V̂ and

an observation vector V and returns a numeric value. We assume here that vectors have the

same dimension |T|+ 1.

75



6.2 Experimental Setup

6.2.4.1 Root Mean Square Error

The Root Mean Square Error (RMSE) is a commonly used metric in statistics. It is defined

as the square root of the mean square error between the forecast vector V̂ and an observation

vector V :

RMSE =

√∑|T|+1
i=1 (V̂ (i)− V (i))2

|T|+ 1
(6.3)

As it doesn’t involve volumetric comparisons, this metric is heavily influenced by the most

represented log templates. Two unpredicted logs associated to a rare logging event will have the

same weight in the final error than two unpredicted logs associated to a frequent logging event.

6.2.4.2 Symmetric Mean Absolute Percentage Error

The Symmetric Mean Absolute Percentage Error (SMAPE) is also a commonly used metric in

statistics, it expresses the accuracy as a ratio defined by the following formula:

SMAPE =
100

|T|+ 1

|T|+1∑
i=1

|V̂ (i)− V (i)|
|V (i)|+ |V̂ (i)|

(6.4)

It is the absolute difference between an observation V and the forecast V̂ divided by half

the sum of absolute values of the observation and the forecast. The value of this calculation is

summed for every fitted point and divided again by the number of fitted points |T|+1. The lower

the SMAPE value of a forecast, the higher is the model accuracy. This error metric involves

volumetric comparisons between the expected and obtained number of each logging template.

With this metric, rare unpredicted events will have a stronger impact on the final value and

fluctuation of the number of common events will be less impacting. One limitation to SMAPE is

that if the actual value or forecast value is 0, the value of error will approach for the concerned

channel 100%.
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6.2.4.3 Log Accuracy Ratio

Mean Absolute Percentage Error metric systematically promotes methods with lower predictions.

The Log Accuracy Ratio (LAR) was introduced by Tofallis in 2015 [126] to avoid this bias. LAR

is defined as the square logarithm of the ratio observation over the forecast:

LAR =
1

|T|+ 1

|T|+1∑
i=1

ln(
V (i)

V̂ (i)
)2 (6.5)

Its properties are similar to SMAPE ones, as it also induces volumetric comparison between

the forecasted and the actual values.

6.3 Evaluation

6.3.1 Precision Evaluation

In order to be accepted by technical teams, it is more important for an alerting model to be

precise than to be accurate. A significant proportion of false positive can hide the relevant

alerts and, in the long run leads the system to be abandoned. Computing the accuracy of

each model/metric pair would require knowing all the abnormal events that occurred during

the monitored period. As previously discussed, this is impracticable due to the number of logs

inside the dataset. However, we spent a consequent amount of time inspecting and labeling all

the abnormal sequences raised by the different model/metric pairs. Each sequence was assigned

one of the following labels: Relevant Alert, False Positive or Unknown. More details about those

labels can be found in Section 6.2.1.

The precision for each model/metric combination is computed based on those labels using

the following equation:

Precision =
relevant alerts

relevant alerts+ false positives
(6.6)
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Repetitor

RMSE SMAPE LAR

# Relevant alerts 281 840 453
# False positive 577 103 98
# Unknown 1 911 2 3

Total 2 769 945 554
Precision 0.327 0.891 0.822

Mean anomaly length in minutes 80.16 17.20 16.26
Anomalous periods time share in % ×10−3 14.6 1.07 0.59

MeanPredictor

RMSE SMAPE LAR

# Relevant alerts 37 825 352
# False positive 60 497 363
# Unknown 1 274 818 849

Total 1 371 2 140 1 563
Precision 0.381 0.624 0.493

Mean anomaly length in minutes 59.50 54.30 65.32
Anomalous periods time share in % ×10−3 5.37 7.64 6.71

LSTM-AE

RMSE SMAPE LAR

# Relevant alerts 1 10 458 4 085
# False positive 0 745 865
# Unknown 11 315 2 016 5 842

Total 11 316 13 219 10 792
Precision N.A 0.933 0.825

Mean anomaly length in minutes 5 5 5
Anomalous periods time share in % ×10−3 3.70 4.33 3.53

Table 6.1: Predictor Alerting Precision per Selected Error Metric

It is the ratio of relevant alerts over the total number of alerts. Note, we left aside all the

Unknown labeled events. As we weren’t able to assign them a clear label, we chose to ignore

them when computing the precision. Table 6.1 regroups the obtained results for each of the
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nine model/metric combinations. Precision for the LSTM-AE/RMSE should be 1.0. Assigning

a label to anomalies reported by this pair was a complicated task and, we end up assigning

the Unkown label to almost all of them (11 315 over 11 316). We consider this to be a strong

sign that reported anomalous period will not be easily exploitable to detect effective anomalies.

Regarding this, we set aside the precision result for this combination.

Overall, SMAPE appears to be the precision wise best performing metric, and LSTM-

AE/SMAPE the most precise pair. This combination achieves a precision of 0.933 while also

being the most verbose one with 13 219 anomaly candidate, 11 203 if we remove the unknown

ones. RMSE on its side is the worst performing metric for each model. We explain this by its

sensibility to volume change regarding the common templates. Most of the false positives raised

by the model/RMSE pairs are linked to a massive deployment of virtual machines, automated

CRON jobs or maintenance operations. All of those operations tend to generate a usually high

number of log messages. The model/LAR pairs produces in between result, Tofallis [126] concern

regarding metrics favoring underforecasting models does not seem to be harmful in our case.

Regards to the previously stated results, SMAPE appears to be the go for choice to optimize

the precision regarding generated anomaly candidates.

Despite its simplicity, the repetitor model surprisingly achieves high precision. It obtained

a precision of 0.891 when coupled with the SMAPE error metric, and a precision of 0.822 when

coupled with the LAR error metric. We believe this result to be driven by the chaotic aspect of

logs. A repetitor model with a proportional metric such as SMAPE or LAR is good to detect

short term major evolution in logging behaviors. Also, the 5-minute duration of the window is

huge compared to cloud operations periods that are usually measured in milliseconds. However,

the total number of relevant alerts (840 for Repetitor/SMAPE) is way lower than the 10 458

reported by LSTM-AE/SMAPE.
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6.3.2 Anomaly Duration

In the lower part of Table 6.1, we indicate the mean anomaly length for the reported anomaly

candidates as well as the percentage of the total dataset duration that is flagged as part of an

abnormal period (in %×10−3).

Anomalies reported by LSTM-AE/metric pairs are all of the same duration (5 min), which

is also the window length duration. Thus meaning that such model/metric combination never

flagged two consecutive periods as abnormal. LSTM-AE forecasting seems to quickly adapt its

output to the newly detected logging behaviors. This is a strong point regarding the capability

of LSTM-AE neural structure for multivariate time series forecasting as well as for anomaly

detection. Still, this fast adaptability seems to be penalizing regarding the discovery of long-

term events such as KVM crashes. We discuss this more in the next section when analyzing the

ability of model/metric pairs to forecast critical events.

Anomalies reported by MeanPredictor/metric like pairs tend to last around one hour (54.3

minutes for the MeanPredictor/SMAPE pair). This corresponds to almost half of the total

duration of past observations forwarded to the model. One explanation is that drastic changes

in the logging behavior impact the forecasting output of the model for the next two hours. A

positive side of this behavior is that the model is more sensitive to the accumulation of errors

over the time.

6.3.3 Critical Events Forecasting

Throughout the 11-day experimental period, the operational teams reported three server crashes.

As each crash affected a different KVM and occurred on a different day, we assumed here that

they are independent anomalies. Predicting these events could aid the monitoring team in

reducing their impact on client-hosted virtual machines. In this section we answer question

RQ4. by investigating the capacity of the considered model/metric pairs to forecast the reported

crashes.

We consigned the obtained results under Table 6.2. For each crash we reported the model/-
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metric pairs that detected the crash (i.e., crash time occurs during one of the reported anomaly

candidate time periods), and if applicable the forecast. The forecast is computed using the time

difference between the reported crash time and the beginning of the associated abnormal period

if applicable.

The results indicate that two model/metric pairs detected at least one crash, while only

one managed to detect all of them. The MeanPredictor/LAR detects two crashes and the

MeanPredictor/SMAPE detects all of the three reported crashes. For the five detected crashes,

the forecasting time is superior to 80 minutes. Giving the low number of alleged crashes, we are

working with, it is difficult to reach any hard conclusion. However, obtained results support our

hypothesis that KVM log files can be used to predict server crashes.

MeanPredictor model was the only one able to forecast some of the reported crashes. We

believe this to be linked to this model sensitivity to the accumulation of small anomalies over

time. When diving into prior to crash KVMs logging behavior, we observed a drift within the

hours before the crash. A higher than the usual number of logs with error or warning severity

was reported during this period. MeanPredictor/SMAPE pair appears to be specially efficient

regarding the detection as well as the long-time alerting regarding those drifts. Figure 5.2

displays the over time error of the SMAPE error metric over MeanPredictor forecasts. The

crash occurred during Day 3, the crash error time is clearly visible as the associate reported

error value is the highest for the considered KVM during the experimental period.

Despite their abnormal nature, both the Repetitor and LSTM-AE models swiftly adapt to

new behaviors. Repetitor and LSTM-AE models coupled with SMAPE or LAR metrics raised

anomaly at the same time as the MeanPredictor/SMAPE and MeanPredictor/LAR models for

the alleged crashes. However, they stop raising alert after a short period, around 30 minutes

for Repetitor/metric pairs and after one abnormal period (5 min) for LSTM-AE/metric pairs.

Regarding this, we could debate about the ability of such models to forecast crashes because

to a certain extent they detect their premises. When looking at the alert candidate detailed

report raised by repetitor and LSTM-AE models, it was obvious that it was an alleged anomaly
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but hard to predict a crash. On the other hand, MeanPredictor generated reports give us more

clues.

Repetitor

RMSE SMAPE LAR

Crash 1
Detected ✗ ✗ ✗

Forecast (minutes) N.A N.A N.A

Crash 2
Detected ✗ ✗ ✗

Forecast (minutes) N.A N.A N.A

Crash 3
Detected ✗ ✗ ✗

Forecast (minutes) N.A N.A N.A

MeanPredictor

RMSE SMAPE LAR

Crash 1
Detected ✗ ✓ ✓

Forecast (minutes) N.A 120 120

Crash 2
Detected ✗ ✓ ✓

Forecast (minutes) N.A 80 80

Crash 3
Detected ✗ ✓ ✗

Forecast (minutes) N.A 85 N.A

LSTM-AE

RMSE SMAPE LAR

Crash 1
Detected ✗ ✗ ✗

Forecast (minutes) N.A N.A N.A

Crash 2
Detected ✗ ✗ ✗

Forecast (minutes) N.A N.A N.A

Crash 3
Detected ✗ ✗ ✗

Forecast (minutes) N.A N.A N.A

Table 6.2: Model/Metric Pairs Ability to Forecast the Major Anomalous Events
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6.4 Lesson Learned

In this chapter, we presented Monilog a log-based anomaly detection system designed for the

cloud computing context. It is able to detect anomalous events in contexts where log relation-

ships are not identifiable and to generate detailed output regarding the reported events including

the concerned system and the applications whose behavior led to raise an alert. We conducted

an evaluation of our proposal at industrial scale using 11 consecutive days of logs issued from

the KVMs of the european cloud region operated by 3DS OUTSCALE. For this evaluation, we

considered three forecasting models: Repetitor, MeanPredictor and LSTM-AE and three error

metrics: RMSE, SMAPE, LAR. Considering the accuracy of each model/metric pair, SMAPE

emerged as the top-performing error metric, with LSTM-AE proving the most effective model

for detecting anomalies. During the monitored period, three KVM crashes were reported, and

the MeanPredictor/SMAPE combination was able to predict all of them with at least 80 min of

forecasts.

6.5 Perspectives

The results obtained in our study provide strong support for our hypothesis regarding the

utility of logs in detecting and forecasting abnormal events. The implementation of our Monilog

system demonstrated accurate identification of abnormal periods and offered valuable insights

into the associated applications within a KVM environment. Moving forward, we aim to expand

the monitoring capabilities of Monilog by conducting experiments on a wider range of cloud

computing equipment and software. A key concern of our work is reducing the number of

false alerts. As we broaden the monitoring scope, it is expected that abnormal events will

generate multiple alert candidates as they become linked to more devices. To address this, we

plan to experiment with combining Monilog’s reported anomaly candidates with existing key

performance indicators (KPIs) and metrics, resulting in fewer alerts with enhanced contextual

information. Additionally, we believe that leveraging cloud-specific rules, such as geographic
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distribution of devices, can facilitate the combination of anomaly candidates and their associated

contexts.

Regarding the labeling of the anomalies in our experimental study, we choose to put admin

operations in the False positive category, such events can be the sign of malicious events run

by an infiltrated agent with admin privileges. As the focus of this work is on the platform

and resources monitoring, we chose to set such scenario aside and classified the linked event as

normal. Also, the error metric should be picked carefully and be driven by your context [127].

In our cloud computing environment, non-homogeneity is a major concern. Error metric that

includes proportional comparisons (SMAPE and LAR) gave us better results than the other one

(RMSE). In the future we can imagine crossing information from multiple error metrics to alert

on specific scenarios.
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7.1 Conclusion

Cloud computing platforms offer a globally accessible pool of shared and highly available pro-

cessing and storage resources. These platforms have gained immense popularity due to their

cost-effective distribution of computing infrastructure among multiple organizations. However,

effectively monitoring the growing number of IT resources on the provider side presents a sig-

nificant challenge. Logs serve as a valuable resource for various tasks, including inspection,

maintenance, development, and alerting.

In this manuscript, we present our research, which aims to address the issue of automated

log-based anomaly detection within cloud computing platforms. Our work aligns with the fields

of data mining, cloud computing, deep learning, and distributed systems. The key contributions

of our research are as follows:

1. Literature Review: We conduct a comprehensive review of existing research in the areas

of log parsing and log-based anomaly detection.

2. Robustness and Tuning of Spell and Drain: We investigate the robustness and fine-tuning

aspects of Spell and Drain, two state-of-the-art online parsing methods.

3. Novel Parsing Techniques: We propose novel, more robust and efficient approaches for

parsing log messages in an online and distributed manner.

4. Automated Anomaly Detection Architecture: We introduce Monilog, an automated archi-

tecture designed for detecting anomalies within a cloud infrastructure through log analysis.

This architecture leverages recent advancements in deep learning and provides explana-

tions for the flagged events.

5. Cloud-Scale Experimentation: We present a large-scale experimentation of Monilog, an

anomaly detection framework, using KVM logs.

Throughout the manuscript, we provide in-depth discussions and analysis for each of the

above points, utilizing a combination of open-source and 3DS OUTSCALE log data. We believe
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that our work significantly contributes to the advancement of automated log-based anomaly

detection in cloud computing platforms and offers valuable insights for practitioners and re-

searchers in this field.

7.1.1 Contributions to the Log-Parsing Field

Labeling logs in complex environments can be a laborious task. For an automated log-based

anomaly detection system, it is crucial to have a log parsing solution that is both robust to

log changes and adjustable without relying on labeled data. In Chapter 3 of our study, we

delve into the impact of hyperparameter tuning on Spell and Drain, two widely used log parsing

methods. Our investigation reveals that there are no universally applicable values for these

hyperparameters, emphasizing the necessity for more robust parsing solutions.

In Chapter 4, we introduce USTEP, an online log parsing approach based on an evolving

tree structure, able to discover and encodes new parsing rules on the run. The comparative

complexity analysis highlights the fact that USTEP is the only existing method to achieve con-

stant time complexity as it is not influenced by the state of its memory structure. Experimental

results on a panel of 14 datasets including one industrial dataset issued from 3DS OUTSCALE

logging infrastructure show the superior parsing effectiveness (+3.4% at 93.7%) and robustness

of USTEP when compared to other state-of-the-art techniques.

Log parsing is a mandatory first step for many log mining methods. Therefore, parsing time

can become a bottleneck for solutions requiring real-time processing in log intensive environ-

ments. In those cases, centralized log parsing fails to produce on the fly output. The USTEP-UP

framework introduced in Chapter 3 helps to run multiple USTEP instances in parallel while con-

serving parsing consistency.

7.1.2 Automated Log-Based Anomaly Detection in Cloud Environment

In Chapter 5 of our research, we introduce Monilog, an anomaly detection system specifically

designed for the cloud computing context. Monilog is capable of detecting anomalous events in
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environments where the relationships among logs are not easily identifiable. Monilog utilizes a

model to forecast the log traffic and error metrics, which enables the evaluation of its forecasting

accuracy. An abnormal period is identified when the associated error reaches an unusual value,

indicating potential anomalies. One of the unique aspects of Monilog lies in its parsing and em-

bedding of log events. This approach enables the system to generate comprehensive summaries

pertaining to the reported anomaly candidates, including details about the systems and applica-

tions involved. By leveraging these capabilities, Monilog enhances log-based anomaly detection

in the cloud computing environment, offering valuable insights for identifying and addressing

irregular events that may occur within complex log structures.

In Chapter 6, we conducted a comprehensive evaluation of our proposal at an industrial

scale using 11 consecutive days of logs obtained from the KVMs in the European cloud region

operated by 3DS OUTSCALE. The evaluation aimed to assess the effectiveness of our approach

in raising relevant alerts for anomaly detection. During the evaluation, we considered three

different forecasting models: Repetitor, MeanPredictor, and LSTM-AE, along with three er-

ror metrics: RMSE, SMAPE, and LAR. Our primary focus was to evaluate the performance

of these nine model/metric pairs in identifying and alerting abnormal periods. Based on the

results, the SMAPE error metric emerged as the best performing metric, exhibiting the highest

efficacy in detecting abnormal periods. Additionally, the LSTM-AE model demonstrated the

highest effectiveness in detecting such abnormal periods. Throughout the monitored period,

three instances of KVM crashes were reported. Notably, the MeanPredictor model successfully

predicted all of these crashes, providing forecasts at least 80 minutes prior to each event. This

outcome serves as a validation of the effectiveness and relevance of Monilog in forecasting abnor-

mal events within cloud computing infrastructure. The evaluation conducted on real-world data

from the European cloud region underscores the practical utility and reliability of our proposed

approach, reinforcing its potential for enhancing anomaly detection and forecasting within cloud

computing environments.
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7.2 Perspectives

7.2.1 Data Mining

Our research is dedicated to the identification of anomalies within cloud computing platforms,

specifically focusing on the analysis of log data. Within this context, we have developed USTEP,

a log parsing solution that we propose, along with its distributed version USTEP-UP, which

provides a more robust and efficient approach to log parsing.

Although significant progress has been made, parsing errors remains a concern. It is impor-

tant to acknowledge that no parsing solution can achieve flawless parsing in all logging contexts.

While USTEP has exhibited exceptional performance, we believe there is scope for improvement.

Currently, it lacks the ability to group together logs originating from the same log statement

but containing a different number of tokens.

To address this limitation, we propose exploring the incorporation of virtual links between

log templates using techniques such as the Longest Common Subsequence (LCS) algorithm.

Although this enhancement may marginally slow down the parsing process, it has the potential

to enhance the accuracy of log grouping.

The extraction of data from logs is a critical step for log-based applications in general. The

most precise information about the current state of a system is often embedded within the log

message and can only be accessed through parsing. Currently, little utilization is made of non-

numerical variables, as existing approaches primarily focus on template mining. This limitation

is associated with the diverse nature of the embedded variables, including text, IP addresses,

URLs, numbers, hashes, and more. Exploiting this information can be pivotal for numerous

log-based applications in domains such as monitoring, security, and usage mining.

Furthermore, we posit that log parsers can be employed for a broader range of data mining

tasks beyond log parsing itself. They can prove invaluable in detecting patterns in streams of

messages or extracting underlying information from textual content. Through two experiments

conducted at a recreational scale, we have demonstrated the intriguing potential of USTEP in

extracting content from tickets within the JIRA work management software or from invoices.
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7.2.2 Log-Based Anomaly Detection

The experimental results conducted on a cloud platform scale scale demonstrate the promising

potential of Monilog in achieving automated log-based anomaly detection. Further exploration

of Monilog’s capabilities should focus on multi-component anomaly detection. While our prac-

tical analysis solely utilized logs from the KVM, it would be interesting to extend monitoring

to a broader range of logging sources, such as storage devices and cloud hypervisors. The

range of abnormal events that Monilog can detect is extensive, with our current focus being on

virtualization-induced server crashes. However, this detection capability could be expanded to

include security events or any other form of unusual logging behavior.

On a more technical note, advancements in the field of machine learning can greatly benefit

Monilog by providing opportunities to experiment with new log forecasting models. Conducting

experiments with different model/metric combinations would enhance our understanding of how

to optimize the Monilog architecture specific contexts.

Regarding the embedding step of Monilog, we deliberately opted not to employ log parsing.

This decision was driven by the desire to assess the potential of Monilog using the simplest

approach as a benchmark. However, in the future, we believe that incorporating log parsing

would be advantageous, as it would enable the utilization of a wider range of information for

anomaly detection and the generation of anomaly reports. This, however, would require dealing

with parsing errors.

Monilog is designed to detect concept drifts in system logging behavior and provide detailed

outputs related to such drifts. Nevertheless, this approach can also be adapted to capture

various events. For instance, we envision Monilog being applied to track the propagation of

software updates within a cloud platform or to analyze usage patterns across different system

components.
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7.2.3 Safety and Monitoring

By carefully examining logs, security professionals can identify potential security breaches, ma-

licious activities, and unauthorized access attempts. Logs enable the detection of suspicious

patterns, anomalies, and indicators of compromise, facilitating early warning and timely in-

cident response. Additionally, logs play a crucial role in forensic investigations, providing a

detailed record of events and actions that can be analyzed to reconstruct timelines and identify

the root cause of security incidents. Security use cases usually required fine-grained analysis as

attackers take care of leaving the smallest number of traces.

Security use cases typically necessitate fine-grained analysis, as attackers are adept at mini-

mizing their traceable activities. A challenge extensively addressed in the literature is that the

majority of log analyses are conducted post-mortem [128]. Consequently, such approaches are

unable to promptly address ongoing attacks. In our future research, we aim to explore auto-

mated methodologies for swiftly detecting security attacks by leveraging multiple data sources,

including logs.

Correlating log data with other data sources such as KPIs, metrics or architectural infor-

mation could help refine the analysis of abnormal events, reduce the number of false positive,

detect weaker signals or enrich the anomalous context. We believe that working with heteroge-

nous sources is key to develop better monitoring systems able to detect a wider range of abnormal

events including malicious and hardly traceable events.

This is challenging as working with a single data sources can already be a big data challenge

as this was discuss a lot inside this manuscript. Combining multiple sources can therefore pose

an even bigger data challenge [129]. Still we believe this research field to be the next big step

in building intelligent monitoring system for complex platforms such as cloud ones.
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8.1 Introduction

8.1.1 Contexte

La flexibilité et la haute disponibilité des ressources informatiques mise à disposition par les

plateformes de cloud computing stimulent une adoption massive du modèle. Le secteur jouit

d’une croissance toujours dynamique avec une prévision de 29.8% pour le secteur public en

2023 [4]. Du côté des fournisseurs, le maintien en activité et le développement d’un parc

d’équipements et de services en croissance constante posent des contraintes d’automatisation.

Dans le cadre de cette thèse, nous étudions les registres machines (logs) comme source

d’information pour la création d’un système innovant et autonome de détection des anoma-

lies dans les plateformes de cloud computing. Nos travaux ont été réalisés dans le cadre d’un

partenariat industriel avec 3DS OUTSCALE, fournisseur français cloud souverain. Cette col-

laboration nous a permis d’échanger avec des experts techniques du domaine, de développer une

meilleure connaissance des enjeux et des limitations des systèmes existants et de réaliser des

expériences à l’échelle sur des données réelles.

8.1.2 Contributions

Nous avons organisé nos travaux de recherches autour de 3 axes:

8.1.2.1 Axe 1: Structuration des Logs

Les logs informatiques sont des données semi-structurées. Chaque log a un entête qui suit

un format défini par convention, incluant des champs tels que la date et l’heure, le système,

l’application concernée, ou la criticité. Le format des messages de logs lui, est libre et laissé

à la discrétion des développeurs. Cette flexibilité a permis une adoption massive des logs en

pratique, mais est également un frein à leur exploitation automatique. Afin de récupérer les

données relatives à l’état courant du système il nécessaire de pouvoir les extraire du message.

Dans cet axe, nous explorons les méthodes existantes de structuration des messages logs

et nous nous intéressons à l’optimisation de leurs hyper paramètres afin d’identifier des valeurs
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génériques. Les résultats de notre étude mettant en limite la non-existence de telles valeurs nous

ont poussés à proposer USTEP une nouvelle méthode de structuration des messages logs, plus

robuste aux différents environnements et présentant une meilleure complexité temporelle que

l’état de l’art. Le besoin de temps réels étant un prérequis fort pour un système de détection

d’anomalies, nous avons également introduit USTEP-UP une architecture pour faire tourner

plusieurs instances d’USTEP en parallèle et permettre le passage à l’échelle.

8.1.2.2 Axe 2: Détection des Anomalies dans des Infrastructures Cloud

Les logs sont déjà activement utilisés pour la détection d’anomalies et depuis 2017, de nombreuses

méthodes basées sur des approches de deep learning ont été publiées [24; 29; 71]. Ces méthodes

présentent des précisions élevées, cependant elles ont besoin de pouvoir regrouper les logs en

séquences afin de détecter des anomalies. En pratique, à l’échelle d’une plateforme de cloud

computing, ce prérequis est pratiquement impossible à obtenir à cause de la forte volumétrie,

de la multiplicité des sources de logs et de l’absence d’identifiants uniques de transactions dans

de nombreuses sources.

Nous avons proposé Monilog, un système autonome de détection des anomalies adapté aux

besoins de robustesse et de rapidité des plateformes cloud et qui ne nécessite pas de devoir

lier les logs entre eux. Monilog est inspiré du domaine des séries temporelles multivariées, il

prédit l’activité log d’une machine à l’aide d’un modèle et se sert de son erreur de prédiction

pour détecter des comportements anormaux. Notre implémentation de Monilog à des fins de

surveillance de la région Europe de 3DS OUTSCALE nous a permis de valider son efficacité

pour la prédiction de comportements anormaux liés aux serveurs de virtualisation (KVM).

8.1.2.3 Axe 3: Caractérisation des Anomalies

Lorsqu’une anomalie est détectée, l’information remontée à une équipe humaine doit indiquer

le plus précisément possible la cause et le contexte du problème. Pour assurer une résolution

efficace, l’identification du contexte est aussi importante que l’anomalie elle-même afin de cibler

les experts les plus qualifiés pour la gérer. Les travaux liés à cet axe comprennent une revue

95
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de la littérature des systèmes de classification existants pour les anomalies basées sur les logs et

leur pertinence dans un contexte de cloud computing.

En raison de l’évolution constante affectant le comportement des composants sous-jacents

d’une plateforme cloud, la classification des anomalies est une tâche fastidieuse et non pertinente

sur le long terme. Aussi, les professionnels peuvent avoir différentes manières de traiter les

mêmes anomalies en fonction de leur contexte. Ces préoccupations nous ont poussés à proposer

et à intégrer dans Monilog la possibilité d’identifier le contexte des erreurs remontées. Ce

contexte inclut les équipements et applications concernés ainsi qu’une évaluation de sa criticité.

Ces rapports permettent aux praticiens de créer leurs propres règles métier, plus flexibles et

pertinentes qu’un classificateur.

8.2 État de l’Art

8.2.1 Détection des Anomalies à l’aide de Logs

La recherche de mots clés ou de motifs est l’utilisation la plus simple qui peut-être faite des logs

pour détecter des anomalies. Bien qu’efficaces pour des scénarios bien connus et identifiés, ce

type d’approches ne sont pas capables de découvrir de nouveau scénario et dépendent du travail

d’experts pour être enrichie et mises à jour.

Ce besoin d’automatisation des processus a servi de motivation à de nombreux travaux

d’exploitation des logs. Durant les deux dernières décennies, de multiples approches de détection

automatisée d’anomalie à partir de logs ont été proposées, principalement basées sur des méthodes

d’apprentissage automatique ou d’apprentissage profond.

D’après Bhanage et al. [36], plus de 87 publications portant sur des méthodes de détection

d’anomalies à partir de logs ont été publiées entre 2016 et 2021. Nous avons regroupé dans la

Table 8.1 les méthodes les plus représentatives de l’état de l’art avec leurs spécificités.
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Année Papier Méthode Année Papier Méthode

2007 [64] SVM 2019 [29] Bi-LSTM
2009 [65] PCA 2020 [66] IF + Autocencoder
2012 [67] IM 2020 [68] BERT + Bi-LSTM
2016 [69] Clustering 2021 [70] Transformer
2017 [71] LSTM 2021 [72] Clustering + CNN
2017 [73] Clustering 2021 [74] Transformer
2018 [75] CNN 2021 [76] GAN
2018 [77] Clustering 2021 [78] Adversarial Network
2019 [79] Transformer 2021 [80] Transformer
2019 [24] Bi-LSTM 2022 [81] TCN

Table 8.1: Méthodes de Détection Automatisée des Anomalies, un Aperçu

8.2.1.1 Méthodes Traditionnelles

À notre connaissance, la première méthode de détection d’anomalies basée sur des logs a été

évoquée par Liang et al. en 2007 [64]. Le système proposé est basé sur l’ensemble de clas-

sificateurs SVM (Support Vector Machines) et vise à détecter les défaillances affectant le su-

percalculateur IBM BlueGene/L. Dans la catégorie des méthodes traditionnelles, on retrouvera

par la suite des approches basées sur d’autres méthodes d’apprentissage automatique telles que

Principal Component Analysis [65], Invariant Mining [67] ou du partitionnement [69; 73].

8.2.1.2 Méthodes Basées sur de L’apprentissage Profond

Présentée en 2017, Deeplog [71] est la première méthode proposée basée sur des réseaux de

neurones. Elle utilise un réseau de neurones de type LSTM pour détecter des anomalies dans

des séquences de logs. Deeplog a rapidement été étendu par des chercheurs de Microsoft [24] et

de Huawei [29]. Les deux équipes ont utilisé une structure LSTM bidirectionnelle et ajouté des

mécanismes de résilience face aux évolutions des comportements logs des systèmes ciblés.

Depuis, de nombreuses approches d’apprentissage profond ont été proposées, les méthodes

utilisées suivant les tendances et les avancées du domaine. Ces méthodes partagent cependant

un mécanisme commun, ils dépendent de solution de structuration des logs pour extraire les

patrons sous-jacents et autres informations utiles des messages de logs.
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8.2.2 Structuration des Logs

Les approches de structuration des logs visent à séparer les parties injectées du patron d’un

message afin de reconstituer la ligne de code qui l’a générée. Elles permettent ainsi de regrouper

ensemble des logs tu mêmes types et d’accéder à des informations intégrées aux messages. Les

avancées dans le domaine de la structuration de logs ont un impact direct les performances des

méthodes de détection automatisée des anomalies.

Les méthodes existantes peuvent être regroupées en deux familles. Les approches permettant

de traiter des messages en flux, et celles qui ont besoin d’effectuer plusieurs passes sur des jeux

de données. Dans notre contexte, les seules méthodes pertinentes tombent dans la première

catégorie, les logs étant générés en flux.

À notre connaissance, 4 méthodes de structuration des logs en flux existent dans la littérature:

SHISO [100] et LenMa [101] basées sur des méthodes de partitionnement, Spell [102] qui utilise

l’algorithme de plus grande séquence commune; et Drain [103; 104] une approche basée sur un

arbre de recherche. Parmi elles, Drain est souvent citée comme la méthode la plus précise et

recommandée par plusieurs études [1; 29; 105].

8.3 Étude de Méthodes Robustes pour la Structuration des Logs

Les méthodes de structuration des logs étant utilisées en amont des méthodes de détection

d’anomalies, leur précision peut avoir une influence directe sur les méthodes en aval. Une de nos

études sur Deeplog couplé avec Drain montre qu’une baisse 20% de la précision de structuration

peut entrainer une baisse de 70% de la précision de détection des anomalies [31].

8.3.1 Impact des valeurs des Hyperparamètres sur les Méthodes de Référence

Les principaux facteurs influant sur la précision d’une méthode de structuration sont les valeurs

de ses hyperparamètres et les expressions régulières qui lui sont fournies pour prétraiter les

messages. Isoler un jeu de données représentatif d’un environnement cloud et le labéliser pour

paramétrer les méthodes est une tâche ardue et non pérenne dans le temps.
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8.3 Étude de Méthodes Robustes pour la Structuration des Logs

Nous nous sommes penchés sur l’existence de valeurs par défaut permettant des perfor-

mances stables sur différents jeux de données pour Spell et Drain. Notre étude met en lumière

l’inexistence de telles valeurs ainsi que les performances fluctuantes en termes de précision max-

imale obtenue sur des logs issus de systèmes différents [32]. Ces résultats nous ont motivés à

explorer et proposer USTEP, une méthode de structuration des logs plus précise et plus robuste.

8.3.2 USTEP, une Méthode de Structuration plus Robuste et plus Rapide

ROOT

NODE

LEAF

LEAF LEAF

LEAF
Template

Template

Template

Template

Template

Template
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Figure 8.1: USTEP Structurelle Mémorielle Arborescente

Basée sur une structure arborescente qui évolue au fil des messages traités, USTEP est

capable traiter en flux des messages de logs. Sa structure mémorielle est basée sur 4 types

d’éléments (Figure 8.1): 1/ une racine qui sert de point d’entrée aux actions de recherche; 2/

des noeuds internes qui encodent les règles de parcours de l’arbre; 3/ des feuilles qui regroupent

les patrons; et 4/ les patrons déjà découverts.
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Les messages entrent par la racine et suivent les règles des noeuds internes jusqu’à rejoindre

une feuille. Ils sont alors comparés aux patrons déjà découverts pour savoir s’ils peuvent y être

assimilés. Le cas échéant, un nouveau patron est créé à partir du message courant. Quand une

feuille contient trop de patrons, elle divise, se transformant en un noeud interne relié à plusieurs

nouvelles feuilles. Cette étape d’éclatement permet de garder un temps de traitement rapide

tout en créant des règles de descentes spécifiques aux logs rencontrés.

Jeu de donnée Drain LenMa SHISO Spell USTEP

Apache 1 1 1 1 1
BGL 0.963 0.690 0.711 0.787 0.964
Hadoop 0.948 0.885 0.867 0.778 0.951
HDFS 0.998 0.998 0.998 1 0.998
HPC 0.887 0.830 0.325 0.654 0.906
Mac 0.787 0.698 0.595 0.757 0.848
OpenSSH 0.788 0.925 0.619 0.554 0.996
OpenStack 0.733 0.743 0.722 0.764 0.764
Thunderbird 0.955 0.943 0.576 0.844 0.954
Z.keeper 0.967 0.841 0.660 0.964 0.988

Moyenne 0.903 0.855 0.707 0.810 0.937

Big-comp 0.480 - - - 0.816

Table 8.2: Précision des Méthodes de Structuration

Notre évaluation d’USTEP [31] sur 11 jeux de données issus de différents systèmes réels nous

a permis de mettre en valeur la supériorité de notre méthode en termes de précision (+3.34%

par rapport à Drain) et de robustesse avec un écart type deux fois plus faible que Drain. USTEP

est également la seule méthode obtenant une complexité temporelle constante en pire cas.

Afin de pouvoir s’adapter aux changements de charge, nous proposons USTEP-UP, une

architecture permettant de faire fonctionner plusieurs instances d’USTEP de manière distribué,

sans partage de mémoire, mais avec une consistance de structuration [31].
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8.4 Proposition de Monilog un Système Innovant de Détection

d’Anomalies à Partir de Logs

Les limites que nous avons identifiées dans notre état de l’art des méthodes de détection des

anomalies sont: 1 une sensibilité aux erreurs de structuration; 2 le besoin de pouvoir regrouper

les logs en séquences. Le point 2 étant non atteignable de manière réaliste dans le cadre d’une

plateforme cloud, de par la diversité des environnements de logs impliqués et leur évolution, nous

avons proposé Monilog, une méthode de détection d’anomalie ne nécessitant pas ce prérequis.

Monilog est également capable de générer des rapports sur les erreurs remontées incluant le

système et les applications concernées.

8.4.1 Architecture de Monilog

Figure 8.2: Architecture et Fonctionnement de Monilog

L’architecture de Monilog (Figure 8.2), est divisée en trois parties.

1. En bleu, Monilog structure les logs et les regroupe par patrons et par fenêtres temporelles.

Dans les phases de vectorisation, le patron assigné à chaque log est constitué de la combi-

naison de son application et de sa criticité. Nous avons fait le choix ici de ne pas dépendre
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de solution de structuration des logs afin d’éliminer les erreurs potentielles.

2. En blanc, il cherche des événements anormaux en comparant ses prévisions d’activité avec

la réalité. Les prévisions sont faites par des modèles recevant en entrée les derniers vecteurs

liés à un équipement. Les prédictions sont ensuite comparées aux vraies observations pour

la même période grâce à des métriques d’erreurs. L’écart par rapport à l’erreur moyenne

sur une période concernée sert à déterminer l’anormalité. La Figure 8.3 est un exemple de

série temporelle avec, en vert l’erreur moyenne et en rouge le seuil d’alerte.

3. Finalement, en jaune il crée des rapports d’incidents à partir des anormalités détectées.

L’utilisation de l’application est de la criticité du message pour créer le patron d’un tem-

plate permet également d’inverser le lien est de faire ressortir les applications les plus

contributrices à l’anormalité.

Figure 8.3: Un Exemple de Série Temporelle d’Erreurs

8.4.2 Utilisation de Monilog pour la Surveillance de KVM

Afin de tester le potentiel de Monilog pour le monitoring d’une plateforme cloud, nous avons

utilisé les logs générés par les serveurs de virtualisation (KVM) d’un centre de données de 3DS

OUTSCALE pendant 11 jours. Dans notre étude, nous évaluons trois modèles de prédiction

(Repetitor, MeanPredictor, LSTM-AE) et trois métriques d’erreur (RMSE, SMAPE, LAR) pour

un total de 9 paires modèle/métrique.

Les résultats obtenus (Table 8.3) mettent en avant la SMAPE comme la métrique perme-

ttant d’obtenir la meilleure précision sur tous les jeux de données. Et le LSTM-AE comme le
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Repetitor

RMSE SMAPE LAR

# Alertes vérifiées 281 840 453
# Faux Positifs 577 103 98
# Inconnu 1 911 2 3

Total 2 769 945 554
Precision 0.327 0.891 0.822

MeanPredictor

RMSE SMAPE LAR

# Alertes vérifiées 37 825 352
# Faux Positifs 60 497 363
# Unknown 1 274 818 849

Total 1 371 2 140 1563
Precision 0.381 0.624 0.493

LSTM-AE

RMSE SMAPE LAR

# Alertes vérifiées 1 10 458 4 085
# Faux Positifs 0 745 865
# Inconnu 11 315 2 016 5 842

Total 11 316 13 219 10 792
Precision N.A 0.933 0.825

Table 8.3: Précision des Paires Modèle/Métrique

modèle plus précis, quand couplé avec la SMAPE. Nous avons inspecté manuellement tous les

événements remontés, cependant nous n’avons pas toujours pu établir un diagnostic franc. Nous

avons donc fait le choix d’introduire un label Inconnu pour ces événements.

Durant la période d’évaluation, trois crashs de KVM ont été remontés par les équipes. Pour

ces événements majeurs, seule les combinaisons MeanPredictor/SMAPE et MeanPredictor/LAR

ont pu prédire les événements. Cependant, dans le cas de MeanPredictor/SMAPE la prédiction

est chaque fois 80 minutes avant occurrence.
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8.5 Conclusion Générale

Dans ce manuscrit, nous présentons nos travaux de recherches visant à proposer un système

autonome et innovant de détection des anomalies dans les infrastructures de cloud computing

en exploitant les logs. Nos contributions sont les suivantes:

• Un état de l’art du domaine de la détection d’anomalies à partir de logs et du domaine de

structuration des logs.

• Une étude de la robustesse de Spell et Drain ainsi que de leur paramétrage automatique.

• Nous avons proposé USTEP, un algorithme de structuration des logs et USTEP-UP sa

version distribuée.

• Nous avons introduit une nouvelle architecture pour la détection automatique d’anomalie

à partir de message logs, capable de générer des rapports sur les anomalies détectées.

• Une évaluation à l’échelle d’un cloud de notre proposition en exploitant des logs issus de

serveurs de virtualisation.

Tout au long du manuscrit, nous fournissons des discussions et des analyses détaillées pour

chacun des points susmentionnés, basées une combinaison de données de journal open source

et 3DS OUTSCALE. Nous pensons que notre travail contribue à l’avancement de la détection

automatisée des anomalies basée sur les logs dans les plateformes de cloud computing et fournit

des informations précieuses aux praticiens et aux chercheurs dans ce domaine.
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