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Abstract

This thesis focuses on mixed-integer nonlinear programming (MINLP), a class of mathematical
optimization problems, and the associated algorithms to solve them. The core algorithm
utilized in many global optimization solvers for MINLP problems is the branch-and-bound
algorithm. Key to the success of the branch-and-bound approach is the use of relaxations of
optimization problems, which are vital in obtaining efficient and tight dual bounds. However,
constructing effective relaxations depends on the specific structures of optimization problems.
In the first part of this thesis, we present a comprehensive overview of structural relaxation tools
tailored for structured MINLP problems across different disciplines. These tools encompass
relaxations from extended formulations, relaxations via submodularity, relaxations using piece-
wise linear approximation, and relaxation tightening via intersection cuts. Then, we develop
novel advanced theoretical results based on these tools. In the second part, we employ
these relaxation techniques to address various optimization problems. We explore cutting
planes for signomial programming. Then, we propose intersection cuts for enhancing linear
programming relaxations of submodular optimization problems. Next, we investigate the
Dantzig-Wolfe relaxations for a mixed-integer linear programming problem in wireless network
routing and a MINLP problem in submodular binpacking. Finally, we study the big-M relaxation
technique as applied to piece-wise linear functions in the continuous covering problem on a
network. By combining these comprehensive studies on various relaxation techniques and
their applications in different optimization contexts, this thesis contributes to the advancement
of MINLP and related optimization methods, offering valuable insights for both theoretical
understanding and computational implementation.





Résumé

Cette thèse se concentre sur la programmation non linéaire à variables mixtes (MINLP),
une classe de problèmes d’optimisation mathématique, et les algorithmes associés pour
les résoudre. L’algorithme central utilisé dans de nombreux solveurs d’optimisation globale
pour les problèmes MINLP est l’algorithme de séparation et évaluation. La clé du succès de
l’algorithme de séparation et évaluation réside dans l’utilisation de relaxations des problèmes
d’optimisation, qui sont essentielles pour obtenir des bornes duales efficaces. Cependant,
la construction de relaxations efficaces dépend des structures spécifiques des problèmes
d’optimisation. Dans la première partie de cette thèse, nous présentons un aperçu complet
des outils de relaxation structurelle adaptés aux problèmes MINLP structurés liés à différents
domaines d’applications. Ces outils englobent des relaxations à partir de formulations éten-
dues, des relaxations par sous-modularité, des relaxations utilisant une approximation linéaire
par morceaux et des renforcements de relaxation via des coupes d’intersection. Nous dévelop-
pons de nouveaux résultats théoriques avancés basés sur ces outils. Dans la deuxième partie,
nous utilisons ces techniques de relaxation pour aborder divers problèmes d’optimisation.
Nous explorons les plans coupants pour la programmation signoïdale. Nous proposons des
coupes d’intersection pour améliorer les relaxations linéaire des problèmes d’optimisation
sous-modulaire. Nous étudions les relaxations de Dantzig-Wolfe pour un problème de program-
mation linéaire à variables mixtes dans le routage de réseaux sans fil et un problème MINLP
dans le binpacking sous-modulaire. Enfin, nous étudions la technique de relaxation big-M
appliquée aux fonctions linéaires par morceaux dans le problème de couverture continue sur
un réseau. Les travaux réalisés durant cette thèse de doctorat contribuent à l’avancement des
approches de la programmation non linéaire en nombre entiers et des méthodes d’optimisation
connexes. En effet la combinaison des études exhaustives réalisées sur diverses techniques
de relaxation et leurs applications à différents contextes d’optimisation offrent des perspectives
précieuses tant pour la compréhension théorique des problèmes que pour la mise en œuvre
empirique des résultats.
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Chapter 1

Introduction en français

La pratique conventionnelle des mathématiques appliquées repose sur trois processus essen-
tiels : la modélisation, la simulation et l’optimisation.

Les scientifiques sont généralement d’avis qu’il existe des principes bien définis régissant
les processus naturels et humains. La modélisation est le domaine consacré à la découverte
et à la description de ces principes au moyen de langages formels. Les langages formels
peuvent être analysés par les ordinateurs en code exécutable. Dans cette thèse, nous
considérons des modèles mathématiques décrits formellement par des entrées connues, des
entrées inconnues et éventuellement des critères de décision pour les sorties.

La majorité des processus naturels et humains, tels que les phénomènes physiques, ne
sont pas entièrement sous le contrôle de l’homme ou sont excessivement coûteux à reproduire.
La simulation crée des environnements permettant d’imiter ces processus à l’aide de leurs
modèles mathématiques, facilitant ainsi la caractérisation de leurs propriétés. Les ordinateurs
contemporains permettent de créer un environnement virtuel en traduisant les modèles du
langage formel en codes exécutables, puis en les exécutant pour produire des données
de sortie. Aujourd’hui, grâce à de puissantes ressources informatiques, la simulation peut
désormais traiter des modèles mathématiques avec un grand nombre d’entrées, comme la
simulation de systèmes quantiques et de systèmes multi-agents.

L’optimisation est le processus mathématique qui consiste à trouver les valeurs des sorties
inconnues d’un modèle qui satisfont à des critères donnés au moyen d’entrées observées.
Dans ce contexte, le modèle mathématique est appelé "modèle d’optimisation" et le problème
"problème d’optimisation". La procédure d’optimisation est généralement appelée algorithme,
qui peut être mis en œuvre sur ordinateur. L’optimisation joue un rôle crucial dans l’ajustement
des modèles et la prise de décision, comme dans le problème du voyageur de commerce, où
les bons résultats correspondent à des itinéraires peu coûteux.

Bien que la simulation et l’optimisation utilisent toutes deux des ordinateurs pour exécuter
des modèles mathématiques, leurs objectifs peuvent diverger. La simulation vise à reproduire
les processus naturels et humains sur la base de leurs modèles mathématiques, tandis que
l’optimisation part du principe que les modèles mathématiques fournis sont toujours valables
et se concentre sur la recherche de solutions optimales.

La programmation mathématique (PM) est un langage formel spécifique permettant de
décrire la plupart des problèmes d’optimisation. Chaque phrase formelle est appelée une
formulation d’un problème d’optimisation donné. Chaque formulation MP décompose un
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problème d’optimisation (ou une classe de problèmes) en cinq entités symboliques, appelées :
(i) paramètres, qui codent l’entrée du problème ; (ii) variables de décision, qui codent la sortie
du problème ; (iii) une ou plusieurs fonctions objectives, exprimées en termes de paramètres et
de variables de décision, qui codent les critères à optimiser ; (iv) zéro ou plusieurs contraintes
explicites, qui sont des critères dépendant des paramètres et des variables de décision ;
(v) zéro ou plusieurs contraintes implicites, qui sont des critères énonçant l’appartenance
de certaines variables de décision à un ensemble donné. Les fonctions et les contraintes
explicites sont explicitement données en termes d’expressions mathématiques, tandis que
l’ensemble apparaissant dans les contraintes implicites doit être pris en compte par un
algorithme de solution déployé sur la formulation.

L’optimisation dans l’incertitude est l’étude des problèmes d’optimisation lorsqu’il y a une
incertitude concernant les paramètres impliqués. Dans le cas général, le traitement de
cette incertitude implique l’incorporation de méthodes d’échantillonnage dans un processus
d’optimisation, permettant une approximation probabiliste des problèmes d’optimisation par le
biais de l’échantillonnage. Toutefois, il convient de noter que cette thèse n’abordera pas ces
questions.

Les algorithmes de solution pour les formulations MP sont appelés solvers. Ces solveurs
correspondent à une taxonomie de classes de formulations MP organisées autour de la
continuité ou de l’intégralité des variables de décision, ainsi que de la linéarité, de la non-
linéarité, de la convexité de la (des) fonction(s) objective(s) et des contraintes explicites.
Par exemple, les formulations MP avec des variables entières et des formes linéaires sont
appelées Programmation linéaire en nombres entiers mixtes (MILP). Lorsque les formulations
MP comprennent à la fois des variables entières et des termes non linéaires, elles entrent
dans la catégorie connue sous le nom de programmation non linéaire à nombre entier mixte
(MINLP).

L’optimisation globale est l’étude des problèmes d’optimisation impliquant la non-linéarité et
la non-convexité. Il s’agit d’une classe plus large que la MINLP, car elle comprend également
les problèmes d’optimisation dits "boîte noire", où les fonctions sont données comme des
oracles, plutôt que comme des expressions mathématiques - mais cette thèse ne traitera pas
de ces problèmes.

Comme nous le démontrerons plus tard, MINLP peut exprimer de nombreux types de prob-
lèmes d’optimisation. Actuellement, les solveurs MINLP [48, 62, 283] peuvent théoriquement
traiter globalement plusieurs types de problèmes MINLP structurés, y compris les prob-
lèmes contraints décrits par des fonctions élémentaires (telles que les fonctions puissance et
trigonométriques) et les cônes convexes élémentaires (y compris les cônes polyédriques et
les cônes de second ordre). Cependant, il est crucial de noter qu’il existe des sous-classes de
problèmes MINLP qui peuvent être prouvés comme étant NP-complets ou même indécid-
ables. Les thèmes de la complexité et de la calculabilité de MINLP, tels que discutés dans
[203], sortent du cadre de cette thèse.

MINLP s’inspire de certaines méthodologies de MILP, ce qui lui permet de traiter des
problèmes avec des variables de décision discrètes issus de la recherche opérationnelle et de
l’optimisation combinatoire. MINLP va plus loin et étend ses capacités pour traiter également
des modèles mathématiques non linéaires. Par conséquent, MINLP trouve sa pertinence
dans divers domaines tels que la recherche chimique [253], l’ingénierie des processus [192],
et la théorie du contrôle [172]. Cependant, l’état actuel des connaissances limite la vitesse
des solveurs, ce qui laisse une place importante à la recherche.
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Cette thèse étudie différentes approches pour résoudre plusieurs classes de problèmes
MINLP. L’objectif principal de cette thèse est de réduire la disparité entre la gamme limitée
d’algorithmes d’optimisation disponibles et les vastes problèmes MINLP. Le thème central
de notre étude tourne autour des méthodes de relaxation pour les MINLP. Dans les sections
suivantes, nous définirons et catégoriserons les problèmes MINLP, tout en fournissant une
vue d’ensemble des techniques fondamentales d’optimisation basées sur la relaxation.

1.1 Classifications des problèmes MINLP

Un problème MINLP admet formellement la forme suivante:

inf f0(x) (1.1a)

s.t. i ∈ [m] fi(x) ∈ Si (1.1b)

j ∈ [n] xj ∈ [ℓj , uj ] (1.1c)

j ∈ [k] xj ∈ Z, (1.1d)

où [n] := {1, · · · , n} est l’ensemble d’index de toutes les variables, [k] := {1, · · · , k} est
l’ensemble d’index des variables entières, [m] := {1, · · · ,m} est l’ensemble d’index des
contraintes de la fonction dans l’ensemble. La fonction objective f0 associe les variables à une
valeur scalaire. Pour tout i ∈ [m], Si est un ensemble intégré dans un espace linéaire, et fi
associe les variables à un vecteur dans cet espace linéaire. Pour tout j ∈ [n], les constantes
scalaires ℓj , uj sont respectivement les bornes inférieure et supérieure de la variable xj ,
et −∞ ≤ ℓj < uj ≤ +∞. Les paramètres ci-dessus sont également appelés données du
problème MINLP.

Chaque contrainte xj ∈ Z dans (1.1d) est appelée une contrainte d’intégrité, chaque
contrainte xj ∈ [ℓj , uj ] dans (1.1b) est appelée contrainte de limite de variable, et chaque
contrainte fi(x) ∈ Si est appelée contrainte de fonction dans l’ensemble. Une contrainte
fonction-en-ensemble est composée d’une fonction et d’un ensemble, et permet de modéliser
des contraintes complexes. Par exemple, Si peut être un ensemble non convexe ou un
collecteur. Même s’il est possible de représenter les contraintes d’intégralité et de limite de
variable comme des contraintes uniques de fonction dans un ensemble, la convention est de
les exprimer individuellement.

L’étape initiale de la résolution des problèmes MINLP consiste à identifier leurs types, une
procédure cruciale appliquée dans les solveurs MINLP généraux. La traçabilité des problèmes
MINLP dépend de leurs types spécifiques, que nous définissons sur la base des types de
variables et de contraintes qu’ils contiennent.

Les types MINLP sont des compositions de types élémentaires. Pour indiquer que le
type T est un sous-type du type T’, nous utilisons la notation T ≼ T’. En particulier, dans de
nombreux langages de programmation, nous utilisons ∅ pour désigner le type NULL afin de
compléter la syntaxe. Le type NULL est le sous-type de n’importe quel type. Nous allons
maintenant définir les types élémentaires et leurs sous-types.

Le type élémentaire TI a des sous-types dans {entier, binaire, ∅}, et il concerne l’aspect
discret d’un problème MINLP. S’il y a au moins une variable entière (k ̸= 0), alors TI est du
sous-type "entier". Si, en outre, les bornes de toutes les variables entières se situent dans
l’intervalle [0, 1], alors TI est du sous-type "binaire". En l’absence de variables entières (k = 0),



4 Introduction en français

TI est représenté par ∅ (type NULL). Il est important de noter que le type "binaire" est un
sous-type du type "entier" (binaire ≼ entier).

Le type élémentaire TC a des sous-types dans {linéaire, conique, non-linéaire}, et il est lié
à l’aspect continu d’un problème MINLP. Si chaque fonction fi est affine et que son ensemble
associé Si est un orthant non négatif/non positif ou un cône zéro, alors TC est du sous-type
"linéaire". Si chaque fonction fi est affine et que son ensemble associé Si est un cône convexe,
alors TC est du sous-type "conique". Cependant, si au moins une fonction fi est non linéaire
ou si au moins un ensemble Si est non polyédrique, alors TC est du sous-type "non linéaire". Il
est essentiel de reconnaître que le type "linéaire" est un sous-type du type "conique" (linéaire
≼ conique), et que le type "conique" est un sous-type du type "non linéaire" (conique ≼ non
linéaire).

Le type conique possède des sous-types qui correspondent à des cônes convexes, tels
que le cône polyédrique, le cône de puissance, le cône de second ordre, le cône des matrices
semi-définies et le cône des matrices composites. Le type non linéaire possède également
des sous-types qui ne font pas partie du type conique, tels que le type polynomial et le type
signomial.

Le type élémentaire TM a des sous-types dans {mixte, ∅}, et il capture l’interaction des
propriétés discrètes et continues. Lorsque certaines variables entières, mais pas toutes
(0 ̸= k ≠ n), sont présentes dans le problème MINLP, le TM est du sous-type "mixte".
Cependant, si toutes les variables (k = n) ou aucune (k = 0) sont entières, alors TM est
du sous-type ∅ (NULL). Il convient de noter que ∅ ≼ mixte, ce qui signifie qu’un problème
continu est un sous-type de problème mixte.

Definition 1.1. Un type de MINLP est un produit type de TM,TI,TC.

Dans un problème MINLP de types élémentaires TM, TI, TC, sa relaxation continue devient
un problème de programmation non linéaire (NLP) d’un type de TC. Ainsi, chaque type MINLP
a un type dérivé correspondant pour sa relaxation continue.

Definition 1.2. Un type dérivé TD d’un type MINLP TM, TI, TC appartient à {convexe, non-
convexe}. Si une instance de problème de type TC est convexe, alors le type dérivé TD de TC
est convexe ; sinon, TD est non convexe.

Généralement, les problèmes MINLP sont désignés par le terme de "programmes MTC TI
TC", désignant leurs types élémentaires et leurs propriétés discrètes et continues. Parfois,
nous examinons également le type dérivé TD, auquel cas nous l’appelons "programme TM TI
TC". Pour simplifier les choses, nous utilisons fréquemment des abréviations basées sur une
règle simple : nous conservons et mettons en majuscules les lettres initiales de TM, TI, TC et
"programme", tandis que TD n’est pas abrégé.

Prenons les exemples suivants pour illustrer notre propos : Si un problème MINLP est du
type "mixte, entier, linéaire", il est appelé "programme linéaire mixte en nombres entiers" et
est abrégé en MILP. Si le problème MINLP est un MILP et que, de plus, son TI est binaire, il
devient un "programme linéaire binaire mixte" et est abrégé en MBLP. Si le type d’un problème
MINLP est "entier, polynomial", son type dérivé est non convexe. Dans ce cas, on parle de
"programme polynomial en nombres entiers" (IPP) ou de "programme polynomial en nombres
entiers non convexe" (IPP non convexe).

Dans la représentation alternative suivante, le problème MINLP peut être considéré
comme un problème d’optimisation linéaire sur son ensemble réalisable. Pour transformer la
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formulation (1.1) en cette représentation, les processus suivants peuvent être suivis : ajouter
la contrainte f(x) ≤ t, où t est une variable supplémentaire ; changer l’objectif du problème
d’optimisation en inf t ; considérer t comme faisant partie des variables du problème. Cela
donne lieu à la formulation alternative des problèmes MINLP:

inf cx (1.2a)

s.t. i ∈ [m] fi(x) ∈ Si (1.2b)

j ∈ [n] xj ∈ [ℓj , uj ] (1.2c)

j ∈ [k] xj ∈ Z. (1.2d)

Sans perte de généralité, nous nous concentrons sur les problèmes MINLP représentés
dans la formulation de (1.2). Un problème MINLP est considéré comme traçable s’il existe
un algorithme capable de l’approximer avec une précision arbitraire en un temps qui est
polynomial par rapport à sa taille d’encodage et au niveau de précision souhaité. Un grand
nombre de problèmes MINLP traçables sont des problèmes d’optimisation convexe (continue),
et la traçabilité peut être obtenue par l’algorithme de l’ellipsoïde [132]. Cet algorithme repose
sur le concept suivant d’oracle de séparation.

Definition 1.3. Étant donné un ensemble convexe compact K ⊆ Rn, un oracle de séparation
pour K est un oracle (boîte noire) qui, étant donné un vecteur x dansRn, renvoie l’un des
éléments suivants:

• que x ∈ K;

• Trouver un hyperplan qui sépare x de K : un vecteur a ∈ Rn, tel que ay > ax pour tout
y ∈ K.

Puisque nous considérons le problème MINLP comme dans (1.2), nous appelons la sépa-
ration de MINLP la séparation de MINLP comme la séparation de son ensemble réalisable. La
classification des problèmes MINLP permet d’identifier la première sous-classe de problèmes
MINLP traçables.

Lemma 1.4 ([293]). Si un problème NLP convexe avec un ensemble réalisable compact
possède un oracle de séparation en temps polynomial, alors il est traitable.

La programmation linéaire (PL) et la programmation semi-définie (PDS) sont des PNL
avec des fonctions objectives linéaires sur des contraintes représentables par des cônes
polyédriques et des cônes de matrices semi-définies positives. Il s’agit de sous-types de
MINLP, tous deux dotés d’oracles de séparation en temps polynomial. En revanche, la
catégorie plus large des problèmes NLP non convexes est généralement considérée comme
intraitable [203]. En outre, le MINLP, en tant que super-type englobant le MILP, contient une
multitude de problèmes insolubles.

Une grande partie de la recherche dans le domaine des MINLP tourne autour d’un principe
apparemment évident.

Theorem 1.5. Si un problème MINLP présente un ensemble réalisable compact et possède
un oracle de séparation en temps polynomial pour la coque convexe de cet ensemble, alors il
est traitable.
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Proof. Une preuve formelle peut être trouvée plus loin dans Lemma 1.9.

Pour quelques problèmes MINLP, les coques convexes de leurs ensembles réalisables
sont bien définies et accompagnées d’oracles de séparation en temps polynomial. Par
conséquent, ces problèmes MINLP spécifiques sont traçables, ce qui implique que nous
pouvons "résoudre" ces problèmes en un temps raisonnable. Le théorème ci-dessus motive
les chercheurs à explorer les coques convexes de divers ensembles structurés apparaissant
dans les applications.

Néanmoins, pour une grande partie des problèmes MINLP, la construction des coques
convexes de leurs ensembles réalisables est une tâche redoutable. La réalisation de cette
tâche impliquerait que de nombreux problèmes NP difficiles sont, de manière inattendue,
traçables. Par conséquent, la recherche actuelle est centrée sur l’identification et l’exploitation
d’approximations extérieures pratiques pour ces ensembles.

Bien que la résolution de ces problèmes "approchés" ne résolve pas directement les
problèmes originaux, ils peuvent servir de tremplin précieux pour résoudre le problème original
à l’aide de l’algorithme détaillé dans la section suivante. Cette caractéristique souligne la
nature profonde de la recherche en cours dans le domaine des MINLP.

1.2 Optimisation MINLP basée sur la relaxation

La résolution des problèmes MINLP non convexes pose des défis importants. Néanmoins, il
existe une classe notable de problèmes MINLP non convexes pour lesquels un algorithme
d’énumération implicite reste utile, étant donné qu’ils remplissent la condition suivante.

Definition 1.6. Un problème MINLP (1.2) est dit borné si, pour tout j ∈ [n], −∞ < ℓj < uj <

+∞.

Pour un problème MINLP dont l’ensemble réalisable est compact, il existe toujours un hy-
percube qui contient son ensemble réalisable. Dans la suite, nous considérons les problèmes
MINLP à contrainte de boîte.

L’algorithme sBB (spatial Branch-and-Bound), un algorithme d’énumération implicite, sert
de cadre fondamental à de nombreux solveurs MINLP d’usage général. En général, cet
algorithme implique trois procédures fondamentales : Le "primal bounding", le "dual bounding"
et le "branching".

Tout au long de l’exécution de l’algorithme, il garde la trace de deux bornes critiques : la
borne duale et la borne primale. La meilleure solution découverte au cours de l’exécution
de l’algorithme, souvent appelée solution en place, est utilisée pour établir la borne primale.
L’objectif principal de la borne primale est de trouver une solution réalisable au problème
MINLP.

L’algorithme sBB parcourt implicitement l’espace de recherche défini par la contrainte de
la boîte du problème MINLP. Ce processus implique la subdivision de l’espace de recherche
en régions plus petites et le traitement de sous-problèmes MINLP contraints dans ces sous-
espaces de recherche. L’algorithme sBB se branche non seulement sur des variables entières
comme l’algorithme BB classique pour les MILP, mais aussi sur des variables continues
dans des expressions non linéaires et non convexes. Ce dernier comportement est appelé
branchement spatial, qui permet des approximations plus fines des expressions non linéaires
dans des régions plus petites.
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La borne duale locale est une borne inférieure pour la valeur objective de toute solution
dans un sous-problème MINLP contraint particulier. Si la borne primale tombe en dessous
de la borne duale locale pour une région donnée, cela signifie qu’aucune solution meilleure
que la solution en place ne peut exister dans cette région peu prometteuse, ce qui permet
d’élaguer la recherche dans cette région.

Toutes les régions non élaguées restantes constituent collectivement l’espace de recherche
"ouvert" que l’algorithme sBB doit explorer pour assurer sa convergence. La borne duale
retenue par l’algorithme sBB représente la plus petite des bornes duales locales dans toutes
ces régions non élaguées. L’écart de dualité, qui est la différence entre la borne primaire et la
borne duale, sert à certifier la convergence de l’algorithme sBB.

Pour naviguer méthodiquement dans la région de recherche, une stratégie d’énumération
systématique est employée, appelée règle de branchement. L’objectif d’une règle de branche-
ment diffère : il peut s’agir de trouver une bonne solution primaire ou de réduire l’écart.

Afin d’explorer méthodiquement la région de recherche, l’algorithme sBB utilise une
approche d’énumération systématique connue sous le nom de règle de branchement. L’objectif
d’une règle de branchement peut varier ; elle peut viser à découvrir une solution primale
prometteuse ou à réduire l’écart entre les bornes.

En raison de la nature modulaire de l’algorithme sBB, les composantes de la délimitation
primale, de la délimitation duale et des règles de branchement peuvent être examinées
indépendamment et intégrées de manière transparente, ce qui s’apparente à la philosophie
de conception du solveur SCIP [62]. Les discussions approfondies sur les règles primales
de bornage et de branchement sortent du cadre de cette thèse, et les lecteurs sont invités à
consulter [49] et [58] pour des aperçus détaillés.

Comme nous le montrerons, de nombreuses techniques de bornage dual reposent sur la
notion de "relaxations". C’est pourquoi nous insistons fortement sur le fait que l’algorithme
sBB est un "algorithme MINLP basé sur la relaxation". Dans la section suivante, nous donnons
des définitions formelles des relaxations.

Definition 1.7. Etant donné un problème MINLP, sa relaxation est un autre problème MINLP,
qui contient toutes les solutions réalisables du problème MINLP original.

La définition ci-dessus est générale, et nous montrerons des méthodes concrètes pour
construire des relaxations dans le chapitre suivant. Nous examinons tout d’abord les con-
séquences des relaxations. Normalement, un problème relaxé devrait être traitable, éventuelle-
ment sous la forme d’un problème d’optimisation convexe, ou au moins, il devrait être plus
abordable en termes de calcul que le problème original. Une approche illustrative implique une
stratégie géométrique, dans laquelle une approximation extérieure de l’ensemble réalisable
du problème original est construite, résultant en un problème relaxé. La valeur optimale de ce
problème relaxé est appelée "valeur de relaxation optimale", et la meilleure solution pour le
problème relaxé est appelée "solution de relaxation optimale". De cette manière, l’algorithme
sBB dérive une borne duale locale, comme indiqué ci-dessous.

Lemma 1.8. La valeur optimale de la relaxation est au maximum la valeur optimale du
problème original.

Proof. Ceci est dû au fait que l’ensemble réalisable du problème de relaxation inclut celui du
problème original.

L’observation suivante est simple mais fondamentale pour l’optimisation non convexe.
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Lemma 1.9. Pour un ensemble compact K ⊆ Rn, l’optimisation linéaire sur K est équivalente
à l’optimisation linéaire sur conv(K).

Proof. Il est évident que minx∈K cx ≥ minx∈conv(K) cx. De plus, pour tout x =
∑
i. Par

conséquent, minx∈K cx = minx∈conv(K) cx.

Un problème de relaxation est considéré comme "étanche" lorsque sa solution optimale
est également optimale pour le problème original. Par conséquent, l’obtention de l’étanchéité
nécessite souvent que l’ensemble réalisable du problème relaxé corresponde à la coque
convexe de l’ensemble réalisable du problème original. Néanmoins, la construction de la
coque convexe peut s’avérer difficile. Par conséquent, il est souvent plus pratique de chercher
une approximation extérieure de l’ensemble K qui trouve un équilibre entre la qualité de la
relaxation et l’efficacité de la relaxation.

Tout au long de l’exécution de l’algorithme sBB, les règles primales de bornage et de
branchement peuvent utiliser les informations obtenues à partir de la solution de relaxation
optimale. Par exemple, les heuristiques de recherche locale peuvent commencer leur explo-
ration à partir d’une solution de relaxation optimale, en l’utilisant comme point de départ pour
guider leur recherche.

Néanmoins, des tâches spécifiques, telles que la réduction de l’écart de dualité, peuvent
exiger exclusivement une limite duale locale sans nécessairement nécessiter la solution de
relaxation. Par conséquent, ce concept introduit une interprétation plus limitée de la relaxation.

Definition 1.10. Étant donné un problème MINLP, sa relaxation objective est un autre prob-
lème MINLP dont la valeur optimale est au maximum la valeur optimale du problème original.

Avec l’introduction mentionnée ci-dessus, cette thèse s’attaque au défi de construire des
relaxations pour un problème MINLP structuré ou une classe de problèmes MINLP structurés.
Cela permet de trouver des approximations traçables qui peuvent aider à résoudre le problème
original de manière efficace. Suite à l’analyse ci-dessus, la thèse traite du problème de la
construction d’approximations extérieures convexes pour des ensembles non convexes.

1.3 Structure de la thèse

Nous organisons cette thèse comme suit. Dans Chap. 3, nous résumons les outils de
relaxation de base dans la littérature. Dans Chap. 4, nous développons et introduisons
quelques résultats de relaxation avancés pour les problèmes structurés. Dans les chapitres
suivants, nous étudions les problèmes MINLP structurés et utilisons nos outils de relaxation
pour résoudre ces problèmes. Dans Chap. 5, nous étudions la programmation signomiale
et nous proposons des coupes d’intersection et des coupes d’approximation extérieure pour
relaxer le problème. Dans Chap. 6, nous étudions la maximisation sous-modulaire et ses
problèmes généralisés, et nous proposons des coupes d’intersection pour approximer ces
problèmes. Dans Chap. 7, nous étudions le problème submodulaire d’empaquetage de bacs,
nous appliquons la relaxation de Dantzig-Wolfe (DW) et le branch-and-price pour résoudre
ce problème, et nous utilisons un algorithme d’approximation linéaire par morceaux adapté
pour résoudre le problème de tarification. Dans Chap. 8, nous considérons le problème
du flux de marchandises multiples non divisible dans les réseaux sans fil, où le codage de
réseau est employé pour réduire le trafic. Nous comparons deux méthodes de linéarisation
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pour les termes quadratiques booléens apparaissant dans ce problème, et nous proposons
la relaxation de Dantzig Wolfe et l’algorithme branch-and-price pour résoudre le problème
MILP linéarisé. Dans Chap. 9, nous étudions le problème du recouvrement continu sur les
réseaux et introduisons des formulations MILP big-M pour modéliser les fonctions linéaires non
convexes par morceaux. Dans Chap. 10, nous concluons cette thèse avec des perspectives
sur la recherche future de MINLP.

1.4 Publications antérieures

Certaines parties de la thèse sont publiées à l’avance. Chap. 9 est basé sur un travail conjoint
avec Mercedes Pelegrín qui est publié dans l’Omega International Journal of Management
Science [249]. Chap. 8 est basé sur un travail conjoint avec Sonia Haddad Vanier qui est
publié dans la revue Networks [313]. Chap. 7 est basé sur un travail conjoint avec Claudia
D’Ambrosio, Sonia Haddad Vanier, et Emiliano Traversi qui sera publié dans EURO Journal on
Computational Optimization [313]. Chap. 6 est basé sur un travail conjoint avec Leo Liberti qui
fait l’objet d’une révision majeure dans Mathematical Programming Series B. Chap. 5 est basé
sur un travail conjoint soumis avec Claudia D’Ambrosio, Sonia Haddad-Vanier, Leo Liberti.





Chapter 2

Introduction

The conventional practice of applied mathematics rests on three essential processes: modeling,
simulation, and optimization.

Scientists typically hold the view that there exist well-defined principles governing both
natural and human processes. Modeling is the field dedicated to uncovering and describing
these principles through formal languages. Formal languages can be parsed by computers
into executable code. In this thesis, we consider mathematical models that are described
formally by known inputs, unknown inputs, and possibly with some decision criteria for the
outputs.

The majority of natural and human processes, such as physical phenomena, are either
not entirely within human control or prohibitively expensive to reproduce. Simulation creates
environments for mimicking these processes using their mathematical models, facilitating the
characterization of their properties. Contemporary computers enable the creation of virtual
environment by translating formal language models into executable codes, subsequently
executing them to produce output data. Nowadays, with powerful computing resources,
simulation can now handle mathematical models with a vast number of inputs, such as
simulating quantum systems and multi-agent systems.

Optimization is the mathematical process of finding values of the unknown outputs of a
model that satisfies given criteria by means of observed inputs. In this setting, the mathematical
model is called an optimization model, the problem is called an optimization problem. The
procedure for optimization is typically referred as an algorithm, which can be implemented
on computers. Optimization plays a crucial role in model fitting and decision-making, like the
traveling salesman problem, where good outputs correspond to routes with low cost.

Though both simulation and optimization utilize computers for executing mathematical
models, their objectives can diverge. Simulation aims to replicate natural and human processes
based on their mathematical models, whereas optimization operates under the assumption
that the provided mathematical models are always valid, focusing on the task of searching for
optimal solutions.

Mathematical Programming (MP) is a specific formal language for describing most opti-
mization problems. Every formal sentence is called a formulation of some given optimization
problem. Every MP formulation decomposes an optimization problem (or problem class) into
five symbolic entities, called: (i) parameters, which encode the problem input; (ii) decision
variables, which encode the problem output; (iii) one or more objective functions, expressed in
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terms of parameters and decision variables, which encode the criteria to be optimized; (iv)
zero or more explicit constraints, which are criteria depending on parameters and decision
variables; (v) zero or more implicit constraints, which are criteria that state membership of
some decision variables in a given set. Functions and explicit constraints are explicitly given in
terms of mathematical expressions, whereas the set appearing in implicit constraints must be
taken into account by a solution algorithm deployed on the formulation.

Optimization under uncertainty is the investigation of optimization problems when there is
uncertainty regarding the parameters involved. In the general case, addressing this uncertainty
involves the incorporation of sampling methods into an optimization process, allowing for a
probabilistic approximation of optimization problems through sampling. However, it is worth
noting that this thesis will not delve into such matters.

Solution algorithms for MP formulations are called solvers. Such solvers correspond
to a taxonomy of MP formulation classes organized about continuity or integrality of the
decision variables, as well as linearity, nonlinearity, convexity of the objective function(s) and
explicit constraints. For example, MP formulations with integer variables and linear forms are
called Mixed-Integer Linear Programming (MILP). When MP formulations include both integer
variables and nonlinear terms, they fall into the category known as Mixed-Integer Nonlinear
Programming (MINLP).

Global optimization is the study of optimization problems involving nonlinearity and non-
convexity. This is a larger class than MINLP because it also includes the so-called black-box
optimization problems, where functions are given as oracles, rather than as mathematical
expressions — but this thesis will not treat such problems.

As we will demonstrate later, MINLP can express many types of optimization problems. At
present, MINLP solvers [48, 62, 283] can theoretically tackle several types of structured MINLP
problems globally, including box-constrained problems described by elementary functions
(such as power and trigonometric functions) and elementary convex cones (including polyhe-
dral cones and second-order cones). However, it is crucial to note that there are subclasses of
MINLP problems that can be proven to be NP-complete or even undecidable. The topics of
the complexity and computability of MINLP, as discussed in [203], fall outside the scope of this
thesis.

MINLP draws upon certain methodologies from MILP, enabling it to handle problems with
discrete decision variables from operations research and combinatorial optimization. MINLP
goes a step further and extends its capabilities to tackle nonlinear mathematical models as
well. As a result, MINLP finds relevance in diverse fields such as chemical research [253],
process engineering [192], and control theory [172]. However, the current state-of-the-art
limits the speed of solvers, leaving significant room for further research.

This thesis studies various approaches for solving multiple classes of MINLP problems.
The main objective of this thesis is to narrow the disparity between the limited range of
available optimization algorithms and the vast challenging MINLP problems. The central theme
underpinning our study revolves around relaxation methods for MINLP. In the subsequent
sections, we will define and categorize MINLP problems, while also providing an overview of
fundamental relaxation-based optimization techniques.
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2.1 Classifications of MINLP problems

A MINLP problem formally admits the following form:

inf f0(x) (2.1a)

s.t. i ∈ [m] fi(x) ∈ Si (2.1b)

j ∈ [n] xj ∈ [ℓj , uj ] (2.1c)

j ∈ [k] xj ∈ Z, (2.1d)

where [n] := {1, · · · , n} is the index set of all variables, [k] := {1, · · · , k} is the index set
of integer variables, [m] := {1, · · · ,m} is the index set of function-in-set constraints. The
objective function f0 maps variables to a scalar value. For all i ∈ [m], Si is a set embedded
in a linear space, and fi maps variables to a vector in that linear space. For all j ∈ [n],
the scalar constants ℓj , uj are lower and upper bounds of variable xj respectively, and
−∞ ≤ ℓj < uj ≤ +∞. The above parameters are also called data of the MINLP problem.

Each constraint xj ∈ Z in (2.1d) is called an integrality constraint, each constraint xj ∈
[ℓj , uj ] in (2.1b) is called a variable bound constraint, and each constraint fi(x) ∈ Si is called a
function-in-set constraint. A function-in-set constraint is composed of a function and a set, and
it allows for the modeling of complicated constraints. For example, Si can be a nonconvex set
or a manifold. Even though it is possible to represent integrality and variable bound constraints
as unique function-in-set constraints, the convention is to express them individually.

The initial step in solving MINLP problems involves identifying their types, a crucial proce-
dure applied in general-purpose MINLP solvers. The tractability of MINLP problems relies on
their specific types, which we define based on the types of variables and constraints present
within them.

MINLP types are compositions of elementary types. To indicate that type T is a subtype of
type T’, we use the notation T ≼ T’. Especially, in many programming languages, we use ∅ to
denote the NULL type for syntax completeness. The NULL type is the sub-type of any type.
Now, we proceed to define the elementary types and their subtypes.

The elementary type TI has sub-types in {integer, binary, ∅}, and it pertains to the discrete
aspect of a MINLP problem. If there is at least one integer variable (k ≠ 0), then TI is of the
sub-type “integer”. If additionally, the variable bounds of all integer variables lie within the
range [0, 1], then TI is of the sub-type "binary." In the absence of any integer variables (k = 0),
TI is represented as ∅ (NULL type). Importantly, we observe that the “binary” type is a subtype
of the “integer” type (binary ≼ integer).

The elementary type TC has sub-types in {linear, conic, nonlinear}, and it relates to the
continuous aspect of a MINLP problem. If every function fi is affine and its associated set
Si is a nonnegative/nonpositive orthant or zero cone, then TC is of the sub-type “linear”.
If every function fi is affine and its associated set Si is a convex cone, then TC is of the
sub-type "conic." However, if at least one function fi is nonlinear or if at least one set Si is
non-polyhedral, then TC is of the sub-type “nonlinear”. It is essential to recognize that the
"linear" type is a subtype of the “conic” type (linear ≼ conic), and the “conic” type is a subtype
of the “nonlinear” type (conic ≼ nonlinear).

The conic type has some subtypes, which correspond to convex cones, such as polyhedral
cone, power cone, second-order cone, cone of semi-definite matrices, and cone of composite
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matrices. The nonlinear type also has some subtypes not in conic type, such as polynomial
and signomial.

The elementary type TM has sub-types in {mixed, ∅}, and it captures the interplay of
discrete and continuous properties. When there are some, but not all (0 ̸= k ̸= n), integer
variables present in the MINLP problem, then TM is of the sub-type “mixed”. However, if either
all (k = n) or none (k = 0) of the variables are integer, then TM is of the sub-type ∅ (NULL).
It is worth noting that ∅ ≼ mixed, meaning a continuous problem is a subtype of a mixed
problem.

Definition 2.1. A type of MINLP is a product type of TM,TI,TC.

In a MINLP problem of elementary types TM, TI, TC, its continuous relaxation becomes
a nonlinear programming (NLP) problem of a type of TC. Thus, each MINLP type has a
corresponding derived type for its continuous relaxation.

Definition 2.2. A derived type TD of MINLP type TM, TI, TC belongs to {convex, nonconvex}.
If any problem instance of the TC type is convex, then the derived type TD of TC is convex;
otherwise, TD is nonconvex.

Typically, MINLP problems are referred to as “TM TI TC programs”, denoting their elemen-
tary types, and discrete and continuous properties. Sometimes, we also examine the derived
type TD, in which case we call it a “TD TM TI TC program”. To simplify matters, we frequently
employ abbreviations based on a straightforward rule: we preserve and capitalize the initial
letters of TM, TI, TC, and "program," while TD remains unabbreviated.

As an illustration, consider the following examples: If a MINLP problem is of the type
“mixed, integer, linear”, it is referred to as a “mixed-integer linear program” and is abbreviated
as MILP. If the MINLP problem is a MILP and additionally, its TI is binary, it becomes a
“mixed binary linear program” and is abbreviated as MBLP. If the type of a MINLP problem is
“integer, polynomial”, then its derived type is nonconvex. In this case, it is known as an “integer
polynomial program” (IPP) or a “nonconvex integer polynomial program” (nonconvex IPP).

In the following alternative representation, the MINLP problem can be viewed as a linear
optimization problem over its feasible set. To transform the formulation (2.1) into this repre-
sentation, the following processes can be taken: add the constraint f(x) ≤ t, where t is an
additional variable; change the objective of the optimization problem to inf t; consider t as a
part of the variables in the problem. This gives rise to the alternative formulation of MINLP
problems:

inf cx (2.2a)

s.t. i ∈ [m] fi(x) ∈ Si (2.2b)

j ∈ [n] xj ∈ [ℓj , uj ] (2.2c)

j ∈ [k] xj ∈ Z. (2.2d)

Without loss of generality, we focus on MINLP problems represented in the formulation
of (2.2). A MINLP problem is considered tractable if there exists an algorithm capable of
approximating it with arbitrary accuracy in a time that is polynomial w.r.t. its encoding size and
the desired level of accuracy. A vast number of tractable MINLP problems are (continuous)
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convex optimization problems, and the tractability can be achieved by the ellipsoid algorithm
[132]. This algorithm relies on the following concept of separation oracle.

Definition 2.3. Given a compact convex set K ⊆ Rn, a separation oracle for K is an oracle
(black box) that, given a vector x ∈ Rn, returns one of the following:

• Assert that x ∈ K.

• Find a hyperplane that separates x from K: a vector a ∈ Rn, such that ay > ax for all
y ∈ K.

Since we consider the MINLP problem as in (2.2), we refer to the separation from MINLP
as the separation from its feasible set. The classification of MINLP problems helps identify the
first subclass of tractable MINLP problems.

Lemma 2.4 ([293]). If a convex NLP problem with a compact feasible set has a polynomial
time separation oracle, then it is tractable.

Linear programming (LP) and semi-definite programming (SDP) are NLP with linear
objective functions over constraints represetable by polyhedral cones and cones of positive
semi-definite matrices. They are well-established and tractable sub-types of MINLP, both
equipped with polynomial time separation oracles. In contrast, the broader category of
nonconvex NLP problems is typically considered intractable [203]. Furthermore, MINLP, as a
super-type encompassing MILP, contains a multitude of intractable problems.

Much of the research in the field of MINLP revolves around a seemingly self-evident
principle.

Theorem 2.5. If a MINLP problem exhibits a compact feasible set and possesses a polynomial
time separation oracle for the convex hull of this set, then it is tractable.

Proof. A formal proof can be found later in Lemma 2.9.

For a few MINLP problems, the convex hulls of their feasible sets are well-defined and
accompanied by polynomial time separation oracles. As a result, these specific MINLP
problems are tractable, implying that we can “solve” these problems in a reasonable time. The
theorem above motivates researchers to explore the convex hulls of various structured sets
arising in applications.

Nevertheless, for a substantial portion of MINLP problems, constructing the convex hulls
of their feasible sets is a formidable task. Achieving this would imply that numerous NP-
hard problems are, unexpectedly, tractable. Consequently, the ongoing research direction is
centered on identifying and harnessing practical outer approximations for these sets.

While solving these “approximated” problems may not directly resolve the original problems,
they can serve as valuable stepping stones towards solving the original problem using the
algorithm detailed in the subsequent section. This characteristic underscores the profound
nature of ongoing research in the field of MINLP.

2.2 Relaxation-based MINLP optimization

Solving nonconvex MINLP problems poses significant challenges. Nevertheless, there is
a notable class of nonconvex MINLP problems for which an implicit enumeration algorithm
remains useful, given they meet the following condition.
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Definition 2.6. A MINLP (2.2) is said to be box-bounded, if, for all j ∈ [n], −∞ < ℓj < uj <

+∞.

For a MINLP problem with a compact feasible set, there always exists a hypercube, which
contains its feasible set. W.l.o.g., we consider box-constrained MINLP problems in the sequel.

The spatial Branch-and-Bound (sBB) algorithm [204], an implicit enumeration algorithm,
serves as a foundational framework for numerous general-purpose MINLP solvers. Generally,
this algorithm involves three fundamental procedures: “primal bounding”, “dual bounding”, and
“branching”.

Throughout the algorithm’s execution, it keeps track of two critical bounds: the dual bound
and the primal bound. The best solution discovered during the algorithm’s run, often referred
to as the incumbent solution, is utilized to establish the primal bound. The primary objective of
the primal bounding is to find a feasible solution to the MINLP problem.

The sBB algorithm implicitly traverses the search space defined by the box constraint of
the MINLP problem. This process involves subdividing the search space into smaller regions
and addressing constrained MINLP subproblems within these sub-search spaces. The sBB
algorithm not only branches on integer variables like the classical BB algorithm for MILP
but also branches on continuous variables in nonlinear and nonconvex expressions. The
latter behavior is called spatial branching, which allows for finer approximations of nonlinear
expressions within smaller regions.

The local dual bound is a lower bound for the objective value of any solution within a
particular constrained MINLP subproblem. If the primal bound falls below the local dual bound
for a given region, it signifies that no solution better than the incumbent solution can exist
within that unpromising region, allowing for pruning the search there.

All remaining unpruned regions collectively constitute the “open” search space that the sBB
algorithm needs to explore for its convergence. The dual bound retained by the sBB algorithm
represents the smallest among the local dual bounds within all these unpruned regions. The
(duality) gap, which is the difference between the primal bound and the dual bound, serves as
a certification of the sBB algorithm’s convergence.

To methodically navigate through the search region, a systematic enumeration strategy is
employed, referred to as a branching rule. The goal of a branching rule differs: it can be either
to find a good primal solution or to reduce the gap.

In order to methodically explore the search region, the sBB algorithm employs a systematic
enumeration approach known as a branching rule. The purpose of a branching rule can vary;
it may aim to discover a promising primal solution or to narrow the gap between bounds.

Due to the modular nature of the sBB algorithm, the components of primal bounding, dual
bounding, and branching rules can be examined independently and seamlessly integrated,
akin to the design philosophy of the SCIP solver [62]. In-depth discussions of primal bounding
and branching rules are outside the scope of this thesis, and readers are referred to [49] and
[58] for comprehensive insights.

As will be shown, many dual bounding techniques hinge on the notion of “relaxations”.
Therefore, we strongly emphasize the sBB algorithm as a “relaxation-based MINLP algorithm”.
In the following section, we provide formal definitions of relaxations.

Definition 2.7. Given a MINLP problem, its relaxation is another MINLP problem, which
contains all feasible solutions to the original MINLP problem.
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The above definition is general, and we will show concrete methods to construct relaxations
in the next chapter. We first look at the consequence of relaxations. Normally, a relaxed
problem should be tractable, possibly taking the form of a convex optimization problem, or at
the very least, it should be more computationally affordable than the original problem. One
illustrative approach involves a geometric strategy, wherein an outer approximation of the
feasible set of the original problem is constructed, resulting in a relaxed problem. The optimal
value of this relaxed problem is designated as the “optimal relaxation value”, and the best
solution for the relaxed problem is referred to as the “optimal relaxation solution”. In this
manner, the sBB algorithm derives a local dual bound, as below.

Lemma 2.8. The optimal relaxation value is at most the optimal value of the original problem.

Proof. This is because the feasible set of the relaxation problem includes that of the original
problem.

The following observation is simple but fundamental for nonconvex optimization.

Lemma 2.9. For a compact set K ⊆ Rn, linear optimization on K is equivalent to linear
optimization on conv(K).

Proof. It is obvious that minx∈K cx ≥ minx∈conv(K) cx. Moreover, for every x =
∑
i λix

i ∈
conv(K) with xi ∈ K,λi ≥ 0, since

∑
i λi = 1, cx = c(

∑
i λix

i) ≤ minx∈K cx. Therefore,
minx∈K cx = minx∈conv(K) cx.

A relaxation problem is considered “tight” when its optimal solution is also optimal to the
original problem. Consequently, achieving tightness frequently necessitates that the feasible
set of the relaxed problem corresponds to the convex hull of the original problem’s feasible
set. Nevertheless, constructing the convex hull can be challenging. Therefore, it is often more
practical to seek an outer approximation of set K that strikes a suitable balance between the
quality of the relaxation and the efficiency of the relaxation.

Throughout the execution of the sBB algorithm, both primal bounding and branching rules
can make use of the insights gleaned from the optimal relaxation solution. For example, local
search heuristics may commence their exploration from an optimal relaxation solution, using it
as a starting point to guide their search.

Nonetheless, specific tasks, such as decreasing the duality gap, might exclusively demand
a local dual bound without necessarily requiring the relaxation solution. Consequently, this
concept introduces a more limited interpretation of relaxation.

Definition 2.10. Given a MINLP problem, its objective relaxation is another MINLP problem
whose optimal value is at most the optimal value of the original problem.

With the aforementioned introduction, this thesis tackles the challenge of constructing
relaxations for a structured MINLP problem or a class of structured MINLP problems. This
helps find tractable approximations that can aid in solving the original problem effectively.
Following the above analysis, the thesis deals with the problem of constructing convex outer
approximations for nonconvex sets.
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2.3 Structure of the thesis

We organize this thesis as follows. In Chap. 3, we summarize the basic relaxation tools in
the literature. In Chap. 4, we develop and introduce some advanced relaxation results for
structured problems. In the following chapters, we study structured MINLP problems and use
our relaxation tools to solve these problems. In Chap. 5, we study signomial programming, and
we propose intersection cuts and outer approximation cuts to relax the problem. In Chap. 6,
we study submodular maximization and its generalized problems, and we propose intersection
cuts for approximating these problems. In Chap. 7, we study the submodular bin packing
problem, we apply Dantzig-Wolfe (DW) relaxation and branch-and-price to solve this problem,
and we use a tailored piece-wise linear approximation algorithm to solve the pricing problem.
In Chap. 8, we consider the problem of unsplittable multi-commodity flow in wireless networks,
where network coding is employed to reduce traffic. We compare two linearization methods
for Boolean quadratic terms arising in this problem, and we propose Dantzig Wolfe relaxation
and branch-and-price algorithm to solve the linearized MILP problem. In Chap. 9, we study
the problem of continuous covering on networks, and introduce big-M MILP formulations for
modeling nonconvex piece-wise linear functions. In Chap. 10, we conclude this thesis with the
perspectives on the future research of MINLP.

2.4 Prior publications

Parts of the thesis are published in advance. Chap. 9 is based on a joint work with Mercedes
Pelegrín that is published in the Omega International Journal of Management Science [249].
Chap. 8 is based on a joint work with Sonia Haddad Vanier that is published in the Networks
journal [313]. Chap. 7 is based on a joint work with Claudia D’Ambrosio, Sonia Haddad Vanier,
and Emiliano Traversi that will be published in EURO Journal on Computational Optimization
[313]. Chap. 6 is based on a joint work with Leo Liberti that is under a major revision in
Mathematical Programming Series B. Chap. 5 is based on a submitted joint work with Claudia
D’Ambrosio, Sonia Haddad-Vanier, Leo Liberti.



Chapter 3

Theory: basic relaxation methods

This chapter offers an overview of the core relaxation methods utilized in this thesis. While
there is a wide variety of MINLP problem types, there are established relaxation tools readily
available in the existing literature. Consequently, when tackling a MINLP problem, one can
explore these readily accessible tools and select the most appropriate one to meet their specific
requirements. These relaxation tools can be categorized as follows: relaxations via lifting,
relaxations via submodularity, relaxations via piece-wise linear functions, and relaxations
tightening via intersection cuts.

3.1 Relaxations via lifting

In this section, we present a meta-relaxation method known as “lifting”. Lifting involves the
approximation of a set by representing it in a higher-dimensional space, thereby providing
greater flexibility in addressing challenging problems. In this section, we present several lifting-
based relaxation methods: Dantzig-Wolfe relaxations, factorable programming relaxations,
and certificate-based relaxations. We also present the projection method that can project a
high-dimensional sets into a lower dimensional space.

We have established that any MINLP problem can be reformulated into a linear optimization
problem over its feasible set, which may be nonconvex. The MINLP problem’s feasible set
is denoted as K ∈ Rn, and we approach the MINLP problem in the form of minx∈K cx. To
construct the extended formulation of the MINLP problem, we adopt a set-theoretic approach
that relies on representing the nonconvex set K in a higher-dimensional space through lifting.

Definition 3.1. For the nonconvex set K ∈ Rn, its convex hull admits a lifted representation
K ′ ∈ Rn+k for k ≥ 1, if conv(K) = projRn(K ′).

In some cases, lifting simplifies the process of constructing the convex hull for the noncon-
vex feasible set K. Let c′ = (c, 0) where 0 ∈ Rk. We have the following equalities:

min
x∈K

cx = min
x∈conv(K)

cx = min
y∈K′

c′y. (3.1)

As y is in the extended space containing x, we refer to miny∈K′ c′y as an extended
formulation of the MINLP problem. In situations where constructing K ′ is not feasible, we
instead search for a convex set K̄ ′ that includes K ′. The convex outer approximation K̄ ′
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remains valuable as it provides a relaxation miny∈K̄′ c′y in the extended space. We term this
relaxation an extended relaxation, which satisfies that

min
y∈K′

c′y ≥ min
y∈K̄′

c′y. (3.2)

The lifting method offers extended formulations or extended relaxations for the MINLP
problem. We have the option to solve the extended formulations/relaxations directly or improve
the original projected formulations/relaxations by incorporating the results from lifting.

3.1.1 Dantzig-Wolfe relaxation

The first lifting method utilizes a geometric approach based on Dantzig-Wolfe (DW) relaxation
[154, 296], which proves to be widely applicable whenever all extreme points of a nonconvex
set can be enumerated. The method of the DW relaxation involves an implicit generation of
convex combination of those extreme points, and, in some cases, to obtain a relaxation, the
method may not exhaust all the extreme points.

Consider K = K1 ∩ K2. We assume that computing the convex hulls of both K1 and
K2 is straightforward, and we also have a lifted representation, denoted as K ′

2, such that
conv(K2) = projRn(K ′

2). With these assumptions in place, we can derive a convex outer
approximation K̄ using the following procedure.

Lemma 3.2. K ⊆ K̄ := conv(K1) ∩ projRn(K ′
2).

Proof. The convex hull of the intersection of two sets is included in the intersection of the
convex hulls of the two sets.

In the following, we consider exclusively the sets with polytope convex hulls, for which one
can generate all their extreme points in a finite time. It is noteworthy that a convex set may
have an infinite number of extreme points, and we could in principle extend our methods for
such case.

It is important to note that a polytope can have two different representations: the hyperplane
representation and the vertex representation. In the case where conv(K2) is a polytope
and its vertices V2 are known, we can examine its vertex representation. An explicit lifted
representation of conv(K2) can be defined as follows:

K ′
2 = {(x, y) ∈ Rn × RV2

+ :
∑
v∈V2

yv = 1 ∧ x =
∑
v∈V2

yvv}, (3.3)

where k = |V2|. We note that conv(K2) = conv(V2) = projRn(K ′
2).

By Lemma 3.2, the problem minx∈K̄ cx is a convex relaxation of minx∈K cx. As K̄ =
conv(K1) ∩ projRn(K ′

2), we call the relaxation DW relaxation. In addition, the DW relaxation
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admits the following simplified form:

DW(V ) := min c
∑
v∈V

yvv (3.4a)

s.t.
∑
v∈V

yvv ∈ conv(K1) (3.4b)∑
v∈V

yv = 1 (3.4c)

y ∈ RV+, (3.4d)

where V = V2 and x is substituted by
∑
v∈V2

yvv. However, the number of vertices V2 can be
exponential in n, and this limits the tractability of the DW relaxation.

The column generation method [37, 296] is employed to address this issue. It begins by
considering a subset V ′

2 of the vertices V2 and then solves the restricted problem DW(V ′
2).

Next, it searches for a point (column) v ∈ V2 \ V ′
2 that can improve the restricted problem and

adds this column to V ′
2 . This process iterates, resulting in a sequence of non-increasing upper

bounds DW(V ′
2). Finally, the column generation process stops generating new columns once

the bound converges, i.e., DW(V2) = DW(V ′
2).

The column generation process should determine whether and how to generate a col-
umn. We assume that conv(K1) is a polytope with a known hyperplane representation, i.e.,
conv(K1) = {x ∈ Rn : ∀i ∈ [m], aix ≤ bi}, where ai ∈ Rn, bi ∈ R. Consequently, the DW
relaxation can be expressed as an LP:

DW(V ) := min c
∑
v∈V

yvv (3.5a)

s.t. ∀i ∈ [m] ai
∑
v∈V

yvv ≤ bi (3.5b)∑
v∈V

yv = 1 (3.5c)

y ∈ RV+. (3.5d)

Since the strong duality holds for LP, DW(V ) equals the dual optimal value of the dual LP:

DW(V ) := max λ−
∑
i∈[m]

biµi (3.6a)

s.t. ∀v ∈ V
∑
i∈[m]

aivµi + cv − λ ≤ 0 (3.6b)

µ ∈ Rm+ , λ ∈ R. (3.6c)

The duality gives rise to a certificate for the optimality of DW(V ′
2) and a verifiable condition

to decide whether to generate a column.

Lemma 3.3. Let µ′, λ′ be the dual optimal solution to the dual problem for DW(V ′
2). If for all

v ∈ V2 \ V ′
2 ,
∑
i∈[m] a

ivµi + cv − λ′ ≤ 0, then µ′ is also a dual optimal solution to the dual
problem for DW(V2).
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Proof. This condition implies that the dual solution is also feasible for the dual problem
associated with DW(V2), as the primal problem is already feasible. Thus, the primal value
equals the dual value. By the strong duality of LP, the primal-dual pairs are both optimal.

Hence, if every constraint in V2 is met by µ′, then DW(V2) equals DW(V ′
2). At this point, the

column generation process can be halted, and we can obtain the primal solution for DW(V ′
2),

which concurrently serves as a primal optimal solution for DW(V2). To verify the “all-satisfied”
condition, it is sufficient to solve the following pricing subproblem:

max
v∈V

∑
i∈[m]

aiµ′
iv + cv (3.7)

and compare the maximum with λ′. If the maximum value of the pricing subproblem is strictly
less than λ′, then the corresponding maximum argument is added to V ′

2 . However, if the
maximum value is equal to or greater than λ′, it indicates that the primal and dual problems
have converged, and the DW relaxation is considered solved.

We next consider a more concrete case, where V = {0, 1}n ∩ P , and P is a polytope
given in hyper-plane representation. The pricing subproblem thus admits the following MILP
representation:

max
x∈P∩{0,1}n

(
∑
i∈[m]

aiµ′
i)x+ cx, (3.8)

which can be solved by a MILP solver. In a more general setting, P can be a convex set
instead of a polyhedron.

3.1.2 Projection

A topic closely related to extended formulations is projections. In some cases, an explicit
formulation of conv(K) is only known in the extended space, but it is more efficient and
convenient to work in the original projected space. The projection approach seeks a low-
dimensional approximation of projRn(K ′).

In the following two cases, it becomes impractical to store the complete descriptions of
conv(K) or K ′. Firstly, when given K ′ as a polytope, the number of facets of projRn(K ′) may
be exponential in that of K ′. Secondly, if K ′ is in vertex representation as K ′

2, the number
of auxiliary variables y in its lifted representation can become very large. Consequently, this
further hinders the storage of the entire representation.

To address these practical challenges, a cutting plane algorithm is used to iteratively refine
a convex outer approximation of K through projections. The algorithm operates like the column
generation method for the dual LP.

Let us illustrate the usage of projection with an example. Vertex polyhedrality is a useful
property for convexifying nonconvex functions in MINLP. A specific case is when a function is
convex-extensible from vertices.
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Definition 3.4. Let X be a polytope, and let Q be the vertices of X. A function f : X → R is
convex-extensible from vertices, if

conv((x, t) ∈ X × R : f(x) ≤ t) =

{(x, t) ∈ Rn × R : ∃y ∈ RQ+
∑
q∈Q

yq = 1, x =
∑
q∈Q

yqq,
∑
q∈Q

yqf(q) ≤ t}. (3.9)

A convex function g is a convex underestimating function of f over X, if for all x ∈ X,
g(x) ≤ f(x). The convex envelope Ff is defined as the maximal convex underestimating
function of f over X. Hence, the convex envelope Ff of a convex-extensible function f is
entirely determined by its values at vertices Q. The epigraph K ′ of the convex envelope Ff
possesses a lifted representation that is similar to that of K ′

2:

K ′ := {(x, y, t) ∈ Rn × RQ+ × R :
∑
q∈Q

yq = 1, x =
∑
q∈Q

yqq,
∑
q∈Q

yqf(q) ≤ t}. (3.10)

Let (x̃, t̃) be a point to be separated, where we can let t̃ be f(x̃) or other values. The
projection problem asks a cutting plane (a, 1) to separate (x̃, t̃) from projRn+1(K ′). This
separation problem can be formulated as the following LP:

max ax̃+ t̃ (3.11a)

s.t. ∀q ∈ Q aq + f(q) ≤ 0 (3.11b)

(a, 1) ∈ C, (3.11c)

where C is a convex set imposing the boundedness of (a, 1). In practice, C is defined by
a bound constraint on L1 or L2 norm of (a, 1), which is LP representable. A successful
separation returns (a, 1) such that ax̃+ t̃ > 0.

Lemma 3.5 ([135]). Every concave function is convex-extensible from vertices.

Concave functions are not as tractable as convex functions, however, we can construct the
convex envelopes of concave functions using the above results.

3.1.3 Factorable programming

We next present a second relaxation approach that is widely adopted by MINLP optimization
solvers. This approach relies on the symbolic representation of a mathematical program. The
syntax and semantics of the symbolic representation can be defined formally. For brevity, we
here only give a high-level introduction, and we refer to [201, 204] for more details.

General nonconvex NLP problems typically admit the following formulation:

min
x∈Rn

c · x s. t. Ax+Bg(x) ≤ d, (3.12)

where c ∈ Rn, A ∈ Rm×n, B ∈ Rm×k, g : Rn → Rk, d ∈ Rm. The map g(x) represents a vector
(g1(x), . . . , gk(x)) of nonconvex functions on x, and we refer to gi as its terms. This formulation
can be converted from the formulation (2.2) through epigraphical reformulation.

The backend convex relaxation algorithms implemented in many general-purpose solvers,
including BARON, Couenne, and SCIP, are convex relaxations. Most of them further convert the
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convex relaxations into LP relaxations. These solvers leverage the separability present in the
rows of Ax+Bg(x), allowing them to relax and linearize nonlinear terms gi individually.

In the solvers’ data structures, the problem (3.12) is transformed into an extended formula-
tion:

min
(x,y)∈Rn+k

c · x s. t. Ax+By ≤ d ∧ y = g(x). (3.13)

All the nonlinear terms are grouped within the nonconvex constraints y = g(x). These
constraints give rise to a nonconvex lifted set defined as:

Slift := {(x, y) ∈ Rn+k : y = g(x)}. (3.14)

In fact, one may find the above lifted structure similar to the DW relaxation.
The relaxation algorithms employed by these solvers are based on factorable programming

[201, 223]: this approach treats the multivariate nonlinear terms gi as composite functions.
These algorithms commonly factor each gi into sums and products of a collection of univariate
functions. If convex and concave relaxations of those univariate functions are available,
these algorithms can linearize these relaxations, and yield a linear relaxation for Eq. (3.12).
Common lists of such univariate functions, that are usually available to all sBB solvers, include
ta (for a ∈ N), 1

t , log t, exp t. Some solvers also offer a choice of trigonometric functions,
e.g. Couenne. In this way, one can obtain a convex outer approximation of Slift, which yields a
convex relaxation of the NLP.

3.1.4 Certificate-based relaxation

The third lifting method is an algebraic method based on non-negativity certificates, and we
call the relaxations derived from this method. It proves to be particularly useful for polynomial
programming (PP) and related problems. An advantage of this method is that it does not
necessitate box constraints, which are essential for many conventional relaxation methods.
This relaxation method is based on the duality point of view.

Assume that we aim to solve the following problem:

λ∗ := min
x∈K

f(x), (3.15)

where K represents a complicated domain of the nonlinear function f . The problem has an
equivalent dual formulation, which searches for the maximum λ ∈ R such that f(x) − λ is
non-negative over K:

λ∗ := max{λ ∈ R : ∀x ∈ K f(x)− λ ≥ 0}, (3.16)

We assume that fλ(x) := f(x)− λ belongs to a set F of functions, such as polynomials.
Let F+

K denote the set of non-negative functions in F over K. Each function in F+
K is referred

to as a non-negativity certificate. Additionally, we assume that F+
K forms a convex cone, such

as the cone of nonnegative polynomials. As a result, the dual problem (3.16) becomes a
convex optimization problem:

max{λ ∈ R : fλ ∈ F+
K}. (3.17)
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As optimization over F+
K is often intractable, our objective is to approximate F+

K . To achieve
this, we aim to construct nested families of conic inner approximations of F+

K indexed by level
numbers i: F 1

K ⊆ · · ·F iK · · · ⊆ FmK = F+
K , where the maximum level number m can approach

infinity. Thus, each family F iK at level i results in a restriction of the dual problem:

λi := max{λ ∈ R : fλ ∈ F iK}. (3.18)

It follows that λi is a lower bound of λ∗ and is non-decreasing.

Lemma 3.6. λ1 ≤ · · · ≤ λm = λ∗.

Proof. The results follow from F 1
K ⊆ · · ·F iK · · · ⊆ FmK = F+

K .

Let us provide a geometric interpretation of (3.18). This interpretation allows us to extract
a primal solution after solving (3.18).

We consider that f − λ and f belong to a linear space consisting of a specific class of
functions, such as the space of polynomials. In this linear space, we have a basis denoted
as {rt(x)}t∈[T ], which could be, for example, a set of monomials. Consequently, f(x) can be
expressed as a linear combination of these basis functions: f(x) =

∑
t∈[T ] ftr

t(x).
We take F iK as a subset of the linear space, and its elements are parameterized by

coefficients of the basis functions. Let Y := {y ∈ RT : ∃x ∈ K,∀t ∈ [T ], yt = rt(x)} represent
a lifted representation of the basis functions {rt(x)}t∈[T ].

Lemma 3.7. For all i ∈ [m], Y ⊆ (F iK)∗, where (F iK)∗ is the dual cone of F iK .

Proof. Y ⊆ (F iK)∗ if and only if for every y ∈ Y , gy ≥ 0 holds for every g ∈ F iK . This is true,
since there exists an x ∈ K such that gy =

∑
t∈[T ] gtyt =

∑
t∈[T ] gtr

t(x).

Consequently, the dual cone (F iK)∗ forms a convex outer approximation of the lifted set
Y . We denote the coefficient vector of f(x) :=

∑
t∈[T ] ftr

t(x) as f , and we take indifferently
between f and f(x). Then the optimal value of the dual problem (3.18) for the primal problem
(3.15) is equal to:

λi := min{fy : y ∈ (F iK)∗}. (3.19)

Since Y ⊆ (F iK)∗, we call (3.19) the level-i (primal) relaxation. Sometimes, we also call
(3.18) the level-i (dual) relaxation. The duality pairs the primal cone F iK and the dual cone
(F iK)∗. This pairing also establishes the duality between the level-i primal relaxation (3.19)
and the level-i dual relaxation (3.18).

For each dual relaxation solution, there exists a corresponding function fλi ∈ F iK , which is
paired with a vector y in the dual cone. As a result, one can extract an approximated lifted
representation from y and deduce a primal solution x.

The lifting method has two different interpretations in the primal and the dual sense. The
primal interpretation is straightforward: (F iK)∗ is a lifted convex outer approximation of the
nonconvex set Y . For example, fλ′ is a polynomial, then y is outer approximations of the
monomials of fλ′ . The dual interpretation reveals that F iK are inner approximations F+

K .
We look at a binary polynomial programming (BPP) example, where K = {0, 1}n and the

polynomial f has degree d ≤ n.
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We review two types of non-negativity certificates over K. The first certificate is the sum of
squares (SOS) polynomial [197], for whcih

F iK := {g(x) : g(x) :=
∑
i

gi(x), s.t. ∀i gi(x) := h2
i (x)}, (3.20)

where hi are polynomials with bounded degrees. The resulting relaxation is called Lasserre
relaxation and can be solved via SDP.

The second certificate is the sum of bound-factor product (SOBFP) polynomial [196, 197]:

F iK := {g(x) : g(x) :=
∑
i

gi(x), s.t. gi(x) :=
∑

Si,S′
i
⊆[n]:Si∩S′

i
=∅

∏
j∈Si

xj
∏
j∈S′

i

(1− xj)}. (3.21)

The resulting relaxation is called Sherali-Adams relaxation [276] and can be solved via LP.
These relaxations certify a lower bound λ of f over K by finding a sum g of non-negativity

certificates gi such that g = f − λ. It is possible that the degrees of the polynomials gi are
larger than the degree d of f . However, the monomials of degrees higher than d sum to
zero in g, i.e., they are “canceled out”. Therefore, the lifting method can decompose f − λ
into polynomials of higher degrees. This redundancy imply that the complexity of certifying
non-negativity increases with respect to the degrees of the certificates.

3.2 Relaxations via submodularity

We have demonstrated that constructing tight relaxations for MINLP problems often involves
finding the convex hull of certain nonconvex sets. In this section, we show that the concept of
submodularity can help find convex relaxations for certain discrete functions.

Submodular functions are important models of discrete convex functions. The classical
definition of submodular set functions [212] is equivalent to the definition of submodular
functions over the Boolean hypercube through Boolean indicator-characterization of subsets.
The latter definition is used in this thesis:

Definition 3.8. A function f : {0, 1}n → R is called a submodular function, if for every
x, y ∈ {0, 1}n, f(x) + f(y) ≥ f(max(x, y)) + f(min(x, y)), where min,max are element-wise
minimum and maximum.

This definition can be generalized over any Cartesian product of subsets of R [287]. The
work of Jack Edmonds [133] plays a prominent role in the study of the combinatorial properties
of submodular functions. We refer to [270] for basic concepts and definitions. The convex
envelope of a submodular function f is its Lovász extension [23, 212]. The framework of
convex analysis can be adapted to discrete settings, and discrete convex funcitons are a
generalization of submodular functions. We refer to [234] for more details about discrete
convex analysis.

We can further define other discrete functions based on the submodularity.

Definition 3.9. A function is supermodular if its negative is submodular. A modular function
is both submodular and supermodular. A submodular-supermodular (SS) function is the
difference between two submodular functions.
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Thereby, affine functions are modular. The Fenchel conjugate of a continuous (possibly
nonconvex) function is a function that encodes its convex envelope. A min-max theorem
(namely, Fenchel duality) holds for any continuous function and its Fenchel conjugate [177].
Convexity is a desirable property, as computing Fenchel conjugates of many convex functions,
such as convex quadratics, is tractable. In contrast, submodular functions are discrete
functions. Nevertheless, it is possible to derive a discrete generalization of the Fenchel
conjugate as follows.

Definition 3.10 ([143]). Given a discrete function g : {0, 1}n → R, its Fenchel conjugate
g⋆ : Rn → R is defined as g⋆(y) := max

x∈{0,1}n
(xy − g(x)).

Submodular functions [234] have the following discrete generalization of the Fenchel
duality.

Lemma 3.11 ([143]). Given a submodular function g : {0, 1}n → R, its Fenchel conjugate g⋆

is convex, and min
x∈{0,1}n

g(x) = max
y∈Rn

(−g⋆(y)).

We consider the following set of f :

Kc := {(x, t) ∈ {0, 1}n × R : cf(x) ≤ t}, (3.22)

where c ∈ {−1, 1}.
Our goal is to create a convex outer approximation of Kc. To achieve this, we construct the

convex envelope of f when c = 1, and we generate a concave overestimator of f when c = −1.
These two constructions yield a convex outer approximation of Kc. Notably, when c = 1, the
convex outer approximation becomes tight, resulting in the best convex outer approximation of
Kc.

3.2.1 Convex envelope

The convex envelope of f over [0, 1]n is called its Lovász extension. The construction of
Lovász extension relates the facets of the convex envelope to several combinatorial structures
defined as follows.

Recall that a permutation σ on [n] is a bijective map from [n] to itself. The map σ(i) ∈ [n]
is the image of an element i ∈ [n] under this permutation. We denote by Sn the set of
permutations on [n]. We define the following sets and vectors related to permutations.

Definition 3.12. Given a permutation σ ∈ Sn and an integer i ∈ {0, . . . , n}, define σ([i]) :=
{σ(1), . . . , σ(i)} (σ([0]) := ∅), and define vi(σ) :=

∑
j∈σ([i]) 1j , where 1j is the j-th element

vector in Rn.

The convex envelope Ff is defined as the maximal convex underestimating function of f
over B. We can then construct the convex envelope of f .

Theorem 3.13 ([23]). Define the map af : Sn → Rn such that it satisfies af (σ)σ(i) = f(vi(σ))−
f(vi−1(σ)) for all σ ∈ Sn and i ∈ [n]. Then Ff (x) := maxσ∈Sn

af (σ)x is the convex envelope
of f over [0, 1]n.

Thus, af (σ)x (σ ∈ Sn) a facet of the convex envelope Ff . Thm. 3.13 shows that permu-
tations on [n] are in one-to-one correspondence to the facets of Ff . Moreover, the convex
envelope Ff is a piece-wise linear function.
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We next look at the relation between facets and permutations.

Corollary 3.14. Given a permutation σ ∈ Sn, for all i ∈ [n] ∪ {0}, af (σ)x defines a facet that
af (σ)vi(σ) = f(vi(σ)).

Proof.

af (σ)vi(σ) =
∑
j∈[i]

af (σ)σ(j) =
∑
j∈[i]

(
f(vj(σ))− f(vj−1(σ))

)
= f i(vi(σ))− f(0) = f(vi(σ)),

where the first equation follows from Defn. 3.12, the second equation follows from Lemma 4.12,
and the last two equations follow from the expansion of the sum.

Conversely to Cor. 3.14, given a point in {0, 1}n, we can construct all the facets equal to f
at it.

Corollary 3.15. For a point v ∈ {0, 1}n, let ι be the number of ones in v. If a permutation
σ ∈ Sn satisfies that v = vι(σ), then the facet af (σ)x admits that af (σ)v = f(v).

Given x̃ ∈ [0, 1]n, the value of the convex envelope Ff (x̃) equals

max
σ∈Sn

af (σ)x̃. (3.23)

Moreover, an optimal solution σ∗ defines a facet σ(σ∗)x such that σ(σ∗)x̃ = Ff (x̃). There-
fore, the argument of the evaluation problem is also a solution to the facet separation problem.
A strongly polynomial time sorting algorithm can solve the evaluation problem [23]: Let σ∗ ∈ Sn
be a permutation such that x̃σ∗(1) ≥ · · · ≥ x̃σ∗(n), then an optimal solution to (3.23) is σ(σ∗).

3.2.2 Concave overestimator

We next construct a concave overestimator for f , which is also a piece-wise linear function.
The facets of the concave overestimator are defined as follows:

Theorem 3.16 ([237]). For every x′ ∈ {0, 1}n, the following affine functions overestimates f :

f1
x′(x) :=f(x′)−

∑
j∈[n]:x′

j
=1

(f(1)− f(1− 1j)) (1− xj) +
∑

j∈[n]:x′
j
=0

(f(x′ + 1j)− f(x′))xj ,

f2
x′(x) :=f(x′)−

∑
j∈[n]:x′

j
=1

(f(x′)− f(x′ − 1j)) (1− xj) +
∑

j∈[n]:x′
j
=0

(f(1j)− f(0))xj ,

where 1j is the j-th unit vector, and 1 is the all-one vector.

From the above affine overestimators, we construct the piece-wise linear overesimator:

f̄(x) := max
x′∈{0,1}n,i∈{1,2}

f ix′(x). (3.24)

However, we are not aware of a polynomial-time algorithm to separate a facet of f̄ . In [237],
the overesimator has the same values as f over the Boolean hypercube.



3.3 Relaxations via piece-wise linear approximations 29

3.3 Relaxations via piece-wise linear approximations

Previous methods for constructing convex relaxations primarily involve generating convex
outer approximations of nonconvex sets. In most cases, the feasible set of the MINLP problem
is an intersection of multiple nonconvex sets, where each set corresponds to a nonconvex
constraint.

In such cases, conventional convex relaxations may fail to be exact when each nonconvex
constraint is convexified individually. Assume that the feasible set K = K1 ∩K2 ∈ R2, where

K1 :=

(x, y) : y ≥

(|x| − 1)2 |x| ≥ 1

1− x2 |x| ≤ 1

 and K2 := {(x, y) : x ≥ 0}. Let the optimization

problem be min(x,y)∈K −x−y, and the optimal solution is ((−1+
√

5)/2, (−1+
√

5)/2). Figs. 3.1a
to 3.1d shows K1,K2,K, conv(K1) ∩K2. However, solving the relaxation over conv(K1) ∩K2

gives a solution (0, 0). Therefore, the relaxation is not exact, and the relaxation solution is also
far from the optimal solution.

Alternatively, one can utilize a nonconvex outer approximation ofK1, as long as optimization
over the approximation set remains feasible. The corresponding relaxation is, therefore,
nonconvex. Given the current capabilities of MILP solvers, we consider MILP relaxations in
this context. The nonconvex outer approximation is commonly referred to as a piece-wise
linear (PWL) approximation. For example, see a PWL outer approximation K̄1 of K1 in
Fig. 3.1e.

We will now introduce a general nonconvex relaxation method based on PWL functions.
Next, we will formally define PWL outer approximations.

We recall that the convex hull of h+ 1 affinely independent points is called an h-simplex
(simplex). To do so, we will utilize a geometric view of simplicial complexes.

Definition 3.17. A simplicial complex C is a collection of h-simplices in Rh, such that

• Any face of a σ ∈ C is also in C;

• For all σ.τ ∈ C, their intersection σ ∩ τ is a face of each of them.

Then we define simplicial covers.

Definition 3.18. Given a full-dimensional nonconvex set K ⊆ Rn, a simplicial cover of K is a
collection {Pt}t∈[T ] of convex polyhedrons, such that

• K ⊆ ∪t∈[T ]Pt;

• For all t1, t2 ∈ [T ], t1 ̸= t2, int(Pt1) ∩ int(Pt2) = ∅;

• {Pt}t∈[T ] is a simplicial complex.

Every simplicial cover yields a PWL outer approximation of K:

K̄ := {x ∈ Rn : ∃t ∈ [T ] x ∈ Pt} (3.25)

Assume that Pt are in hyperplane representation, such that Pt = {x ∈ Rn : ∀i ∈ It atix ≤
bti}. We assume that the recession cone of Pt is zero, i.e., {x ∈ Rn : ∀i ∈ It atix ≤ 0} = {0}.
Using the disjunctive programming principle [29], we obtain a MILP representation of K̄:

K̄ = {x : ∃y ∈ {0, 1}T z ∈ RTn, x =
∑
t∈[T ]

zt, 1 =
∑
t∈[T ]

yt,∀i ∈ It, atizt ≤ btiyt} (3.26)
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Therefore, a MILP relaxation of the nonconvex optimization problem minx∈K cx is:

min cx (3.27a)

s.t. ∀t ∈ T, i ∈ It atizt ≤ btiyt (3.27b)

x =
∑
t∈[T ]

zt (3.27c)

1 =
∑
t∈[T ]

yt (3.27d)

y ∈ {0, 1}T , z ∈ RTn (3.27e)

We note that this representation is an extended formulation.
In high-dimensional spaces, constructing simplicial covers can be challenging, and solving

the MILP (3.27) may become computationally expensive. Consequently, practical algorithms
often resort to PWL relaxations for sets in dimensions n = 1, 2. For instance, when K is the
hypograph of a convex univariate or bivariate function. In the following example, we construct
a PWL approximation for the case of n = 1.

A PWL function is linear on each piece of a given partition of its domain. Let f be
the univariate convex function over [x, x] with x ≥ 0. We say a value of the variable x a
breakpoint. Given an ordered set of breakpoints B = (x1, x2, . . . , xh) such that xk ∈ [x, x]
(k ∈ [h] := {1, . . . , h}), x1 = x and xh = x, the following PWL function approximates f over
the domain [x, x]:

f̄B(x) := f(xk+1)− f(xk)
xk+1 − xk

(x− xk) + f(xk), for xk ≤ x ≤ xk+1, 1 ≤ k ≤ h− 1.

Note that f̄B is an over-estimator of f due to the convexity of f . We call f̄B a PWL approxima-
tion of f . Applying (3.25), we obtain a MILP representation of the PWL approximation of the
hypograph of f :

{(x, t) ∈ [x, x]× R : f(x) ≥ t} ⊆ {(x, t) ∈ [x, x]× R : ∃y ∈ {0, 1}h−1 ∧ x =
∑

k∈[h−1]

zk∧

1 =
∑

k∈[h−1]

yk ∧ ∀k ∈ [h−1] xkyk ≤ zk ≤ xk+1yk ∧
f(xk)− f(xk−1)

xk − xk−1
(zk−xk−1zk)+f(xk−1)yk ≤ t}.

(3.28)

We call B a breakpoint set in [x, x], and f̄B its induced PWL function. Note that we consider
the two bounds x and x as breakpoints here. The approximation error is expressed as ℓp-norm
of the difference between the PWL approximation and the target function.

Definition 3.19. Given a set B ⊂ [x, x] of breakpoints, the ℓp approximation error of f̄B with
respect to f over [x, x] is defined as ℓp(f̄B, f) := (

∫ x
x
|f̄B(x)− f(x)|p dw)

1
p .

Although adding breakpoints decreases the approximation error, it increases the computa-
tion resource to solve the PWL relaxation. So a common problem is to understand the best
achievable approximation error given a fixed number of breakpoints (limited computational
resource).
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Figure 3.1 PWL approximation of nonconvex sets.

3.4 Relaxation tightening via intersection cuts

The cutting plane algorithm aims to construct a polyhedral outer approximation P of the
nonconvex set S, which is the feasible set of the MINLP problem minx∈S cx. Thereby, the
polyhedron P yields an LP relaxation of the MINLP problem. Intersection cuts are a particular
type of valid inequalities that can tighten the polyhedral outer approximation.

The construction of intersection cuts [99] requires two key ingredients: a simplicial cone
containing S, and an S-free set, which is defined as follows.

Definition 3.20. Given a set S ⊊ Rp, a closed set C is (convex) S-free if C is convex and
int(C) ∩ S = ∅.

Thinking reversely, S-free sets are convex regions whose interiors have no element of S,
so S-free sets can describe “non-feasible” regions of a MINLP problem.

Fig. 3.3 shows an example of a S-free set, where we find that C is a convex inner approxi-
mation of cl(Sc).

Intersection cuts were initially devised in the continuous setting (the papers [291], cited
in [178, Ch. III], appeared before the classic paper [30]), where they could approximate the
hypograph S of a convex function over a polytope. There is a unique maximal S-free set: the
epigraph of that convex function. Later, intersection cuts were used in the discrete setting
[30], where S is a lattice. Several more families of lattice-free sets (e.g., splits, triangles, and
spheres [99, 202]) were described later.

We show how to construct S-free sets from a “reverse” representation of some nonconvex
sets. We look at sets involving a particular type of nonconvex functions.

Definition 3.21. A function f is said to be difference-of-concave (DCC), if there exists two
concave functions f1, f2 such that f = f1 − f2.

It is easy to show that the negative of a DCC function is also a DDC function, and thus
any DC function is also a DCC function. A nonconvex set admits a DCC formulation, if it
is represented as the sublevel set of a DCC function. We call such a set a DCC set. The
superlevel set of a DCC function is a sublevel set of another DDC function (the negative of
that function), so one can reformulate the superlevel set into a DCC set. For a function f

and a point x̃ in its domain, we denote the first-order approxiamtion f(x̃) +∇f(x̃)(x− x̃) of
f as Ξfx̃(x). The following lemma gives a family of S-free sets for DCC sets via linearization
method.

Lemma 3.22 ([271]). Let S := {x ∈ Rp : f1(x)−f2(x) ≤ 0}, where f1, f2 are concave functions
over Rp. Then for any x̃ ∈ Rp, C := {x ∈ Rp : f1(x) − Ξf2

x̃ (x) ≥ 0} is S-free. Moreover, if
x̃ ∈ Rp ∖ S, x̃ ∈ int(C).
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Figure 3.2 An S-free set C.

To apply the above lemma, it suffices to reverse the inequality defining S and linearize its
convex part. We refer to x̃ as a linearization point of f2. Note that when the common domain
G of f1 and f2 is not Rp, S should be restricted to the ground set G.

We show some examples in Fig. 3.2.
Given an S-free set, the next step is to construct an intersection cut. The construction

procedure requires additionally a translated polyhedral cone R such that S ⊆ R and the
vertex x̃ of R is not in S. Let us suppose that R admits a hyper-plane representation:
{x ∈ Rp : B(x− x̃) ≤ 0}, where B is a p× p invertible matrix. For all j ∈ [p], let rj denote the
j-th column of −B−1, then rj turns out to be an extreme ray of R. Thereby, R also admits a
ray representation {x ∈ Rp : ∃η ∈ Rp+ x = x̃+

∑p
j=1 ηjr

j},
For all j ∈ [p], we define the step length from x̃ along ray rj to the boundary bd(C) as

η∗
j := max

ηj∈[0,+∞]
{ηj : x̃+ ηjr

j ∈ C}. (3.29)

Then, the intersection cut admits the form:

p∑
j=1

1
η∗
j

Bj(x− x̃) ≤ −1, (3.30)

where Bj is the j-th row of B. When all step lengths are positive, the above linear inequality
cuts off x̃ from S. The construction of an intersection cut is visualized in Fig. 3.3.

In practice, we can obtain S, R, and x̃ as follows. Assume that we have an LP relaxation
minx∈P cx of the MINLP problem, where P is a polyhedral outer approximation of the feasible
set. If the LP solution is not feasible to SP, as the LP relaxation usually comprises all linear
constraints of the MINLP problem, then the solution must not satisfy some nonlinear constraint.
Thus, we can set x̃ to the LP solution and define S by the nonlinear constraint. Moreover, we
can extract R from the basis of the LP defining x̃.

The main issue we address is therefore the construction of (maximal) S-free sets. The
reason why we look for maximal such sets is that, if C and C∗ are two S-free sets with
C ⊆ C∗, then the intersection cut derived from C∗ dominates the intersection cut derived from
C. Thereby, we give a formal definition of maximal S-free sets.
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Figure 3.3 An S-free set C, simplicial cone R, and intersection cut.

Definition 3.23. Given a closed convex set G ⊆ Rp such that S ⊊ G, an S-free set C is
(inclusion-wise) maximal in G, if there is no other S-free set C′ such that C ∩ G ⊊ C′ ∩ G.

Defn. 3.23 generalizes the conventional definition of maximal S-free sets, and one can
recover the conventional definition by setting G = Rp. In some cases, it is difficult to study the
maximality of S-free sets in Rp. Defn. 3.23 allows us to study intersections of S-free sets with
the ground set G.

3.5 Conclusion

In this section, we present a class of common relaxation methods. In the next chapter, we
introduce some advanced theoretical results for relaxing structured sets. They yield new
relaxation methods. In the rest of the thesis, we apply these methods to tackle applications
that can be modelled as MINLP problems.





Chapter 4

Theory: advanced structural
results

Within this chapter, we introduce innovative theoretical findings related to the process of
convexification or relaxation of structured sets. These findings have been developed to address
practical challenges encountered throughout this thesis and will serve as the foundation
for the development of cutting-edge algorithms for various problems. These results can
be regarded as advanced concepts building upon the submodularity and intersection cut
framework introduced in Chap. 3.

4.1 S-free sets for structured sets

In this section, we introduce advanced results concerning the intersection cut framework. We
have demonstrated that the intersection cuts relies on the concept of S-free sets, which in
turn, depend on the specific problem structure. The set S under consideration encompasses
sets originating from NLP and those arising in submodular optimization.

4.1.1 Maximal S-free sets for lifted sets

We consider the extended formulation (3.13) of a general NLP problem and focus on the
associated lifted set Slift in (3.14). We show a lifting result on the construction of maximal
Slift-free sets.

Let z := (x, y) denote the vector variable in the extended formulation (3.13), with its index
set being [n + k]. Consequently, we have z[n] = x and z[n+1:n+k] = y. Consider a closed
subset X of the domain

⋂
i∈[k] dom(gi) for x, and let Y be a closed subset of the domain

×i∈[k] range(gi) for y. The ground set G, where the variables actually vary, can be set as
X × Y. Consequently, the lifted set Slift in (3.14) admits the form {(x, y) ∈ G : y = g(x)}.

Given that each gi(x) (for i ∈ [k]) may only depend on a subset of variables indexed
by Ji ⊆ [n], we can express gi(x) as a lower order function g′

i(xJi
) defined over R|Ji|. Let

Ii := Ji ∪ {i+ n}. As above, we consider a closed subset X i of dom(g′
i) and Yi of range(g′

i).
Consequently, the graph, epigraph, and hypograph of g′

i reside within sets Gi := X i × Yi,
e.g., epi(g′

i) = {(xJi
, yi) ∈ Gi : g′

i(xJi
) ≤ yi}.
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We refer to X ,Y, {X i,Yi}i∈[k] as the underlying sets of the lifted set Slift. The sets are
said to be 1d-convex decomposable by a collection {Dj}j∈[n+k] of closed convex sets in R,
if X =×j∈[n]Dj ,Y =×j∈[n+1:n+k]Dj , and, for all i ∈ [k], X i =×j∈Ji

Dj ,Yi = Dn+i. This
decomposability condition restricts the domains to Cartesian products of real lines, intervals,
or half rays, thereby excluding complicated domain structures.

The decomposability condition allows for the analysis of sets involving fewer variables.
Constructing epi(g′

i)-free sets and hypo(g′
i)-free sets is generally easier than constructing

Slift-free sets. We show that every maximal epi(g′
i)-free or hypo(g′

i)-free set can be lifted into
a maximal Slift-free set.

Theorem 4.1. Suppose the underlying sets of Slift are 1d-convex decomposable and g is
continuous. For some i ∈ [k], let C be a maximal epi(g′

i)-free set or a maximal hypo(g′
i)-free

set in Gi. Then C̄ := C × R|Ic
i | (Ici = [n+ k] \ Ii) is a maximal Slift-free set in G.

Proof. It suffices to consider the case that C is a maximal epi(g′
i)-free set in Gi. W.l.o.g., we

can assume that C,Gi are full-dimensional in R|Ii|. Since epi(g′
i) includes gr(g′

i), C, as an
epi(g′

i)-free set, is also gr(g′
i)-free. First, we prove that C is a maximal gr(g′

i)-free set in Gi.
Assume, to aim at a contradiction, that C′ is a gr(g′

i)-free set that C ∩ Gi ⊊ C′ ∩ Gi. Suppose
that epi(g′

i) ∩ int(C′ ∩ Gi) is not empty and contains (x′
Ji
, y′
i). As C is epi(g′

i)-free, there exists
a point (xJi , yi) ∈ int(C ∩ Gi) ⊆ int(C′ ∩ Gi) such that (xJi , yi) ∈ hypo(g′

i). It follows from the
continuity of g′

i that there exists a point (x∗
Ji
, y∗
i ) ∈ gr(g′

i) in the line segment joining (xJi , yi)
and (x′

Ji
, y′
i). As int(C′ ∩ Gi) is convex, we have that (x∗

Ji
, y∗
i ) ∈ int(C′ ∩ Gi), which leads to

a contradiction to gr(g′
i)-freeness of C′. Therefore, epi(g′

i) ∩ int(C′ ∩ Gi) must be empty, so
C′ ∩Gi ⊆ hypo(g′

i). This means that C′ is also epi(g′
i)-free. However, note that C ∩ Gi ⊊ C′ ∩Gi,

this contradicts with the fact that C is a maximal epi(g′
i)-free set in Gi. Therefore, C is a maximal

gr(g′
i)-free set in Gi. Secondly, we prove that C̄ is a maximal Slift-free set in G. Assume,

to aim at a contradiction, that there exists an Slift-free set D̄ in G such that C̄ ∩ G ⊊ D̄ ∩ G.
We look at their orthogonal projections on R|Ii|. It follows from the decomposability that
C ∩Gi = C ∩projR|Ii|(G) = projR|Ii|(C̄ ∩G) ⊆ projR|Ii|(D̄ ∩G). Denote D := cl(projR|Ii|(D̄ ∩G)),
which is a closed convex set in Gi. Since C̄ = C × R|Ic

i |, D must strictly include C ∩ Gi. Note
that D is gr(g′

i)-free. Since C is a maximal gr(g′
i)-free set in Gi, this implies that C ∩ Gi = D,

which leads to a contradiction.

For any i ∈ [k], we call the operation C × R|Ic
i | the orthogonal lifting of C w.r.t. gi. A similar

lifting result for integer programming is provided by Lemma 4.1 of [102]: given S := Zn × Rh,
any maximal lattice-free set (i.e., Zn-free set) can be transformed into a maximal S-free set
through orthogonal lifting. Therefore, Thm. 4.1 serves as the NLP counterpart to that lemma
(whose proof is also similar). This theorem allows us to focus on low-dimensional projections
of the lifted set.

We will show in Cor. 5.2 that the signomial lift satisfies the prerequisites of Thm. 4.1. The
following example illustrates the application of Thm. 4.1.

Example 4.2. Consider a lifted set Slift defined as

{(x1, x2, x3, x4, y1, y2, y3) : y1 = exp(x1 − x2/x3), y2 = log(x1), y3 = sin(x1/x4)}.

One can verify that the 1d-convex decomposable condition holds for D1 = R+, Dj = R
(for j ∈ [2 : 7]). Then G := R1

+ × R6. We use log(x1) to construct a Slift-free set. A maximal
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Slift-free set can be {(x1, x2, x3, x4, y1, y2, y3) ∈ G : y2 ≤ log(x1)}. Since log(x1) is defined
over positive reals, this example gives a reason to restrict maximality over G.

4.1.2 Maximal S-free for DCC constraints

We provide sufficient conditions for the maximality of S-free sets for two general classes of
non-convex sets S. To begin with, we review some fundamental results from convex analysis.
Our subsequent presentation relies on the use of support functions of convex sets. The
properties of support functions can be summarized as follows.

Lemma 4.3 (Chapter C of [177]). For a full-dimensional closed convex set C ⊊ Rp, let
σC : Rp → R, λ 7→ supz∈C λ · z be the support function of C. Then: (i) C = {z ∈ Rp :
λ · z ≤ σC(λ),∀λ ∈ dom(σC)}, (ii) int(C) = {z ∈ Rp : λ · z < σC(λ),∀λ ∈ dom(σC) ∖ {0}}, (iii)
σC(ρλ) = ρσC(λ) for any ρ > 0. Moreover, for any closed convex set C′ including C, σC ≤ σC′ .

A valid inequality a · z ≤ b of C is called a supported valid inequality, if there exists a
supporting point z′ ∈ bd(C) such that a · z′ = b. Geometrically, a closed convex set is the
intersection of half-spaces associated with supported valid inequalities.

Observation 4.4. It follows from Lemma 4.3 that every supported valid inequality of C must
admit the form λ · z ≤ σC(λ) for some λ ∈ dom(σC), where the supremum σC(λ) is attained at
its supporting points.

An inequality of the form λ · z ≤ σC(λ), for λ ∈ dom(σC), is referred to as an exposed valid
inequality, if there exists an exposing point z′ ∈ bd(C) such that λ · z′ = σC(λ) and for all
λ′ ∈ dom(σC) ∖ {ρλ}ρ>0, λ′ · z′ < σC(λ′).

Observation 4.5. An exposed valid inequality must be a supported valid inequality. Conversely,
a supported valid inequality is an exposed valid inequality, if manifold bd(C) is smooth at its
supporting point. For example, C1 := {(x, y) ∈ R2 : y = x2} is a smooth manifold, so every
supported valid inequality of C1 is exposed; C2 := {(x, y) ∈ R2 : y = |x|} is smooth at x ∈ [1, 2],
so every supported valid inequality of C2 with supporting point (x, y) (x ∈ [1, 2]) is also exposed
by the same point; however, a supported valid inequality of C2 with supporting point (x, y)
(x = 0) cannot be exposed, since there are infinitely many supported valid inequalities at the
same point.

The first theorem we present applies to full-dimensional nonconvex sets S. We observed
the geometric equivalence between the closed convex inner approximation of cl(Sc) and S-free
sets. The theorem provides a sufficient condition for the maximality of closed convex inner
approximations.

Theorem 4.6. Let F be a full-dimensional closed set in Rp, and let C ⊆ F be a full-dimensional
closed convex set. If, for any z∗ ∈ int(F ∖ C) and any λ ∈ dom(σC) such that λ · z∗ > σC(λ),
there exists a point z′ ∈ bd(F) ∩ bd(C) exposing λ · z ≤ σC(λ), then C is a maximal convex
inner approximation of F .

Proof. Let C be a set satisfying the hypothesis. Suppose, to aim at a contradiction, that there
exists a closed convex set C∗ such that C ⊊ C∗ and C∗ is an inner approximation of F . Then,
there must exist an open ball B such that B ⊆ F ∖ C and B ⊆ C∗. Let z∗ be the center
of B, so z∗ ∈ int(F ∖ C). W.l.o.g., we let C∗ = conv(C ∪ {z∗}), which is a closed convex
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inner approximation of F . Since z∗ /∈ C, by the hyperplane separation theorem, there exists
λ ∈ dom(σC) such that

λ · z∗ > σC(λ). (4.1)

For any such λ, by the hypothesis, there exists a point z′ ∈ bd(F) ∩ bd(C) such that

λ · z′ = σC(λ), (4.2)

and z′ is an exposing point of C. We want to show that, for any λ′ ∈ dom(σC∗), λ′ · z′ < σC∗(λ).
We consider the following three cases. First, we consider the case λ′ = λ. Because z∗ ∈ C∗,
by the definition of support functions, we have that

λ · z∗ ≤ sup
z∈C∗

λ · z = σC∗(λ). (4.3)

It follows from (4.1), (4.2), and (4.3) that

λ · z′ = σC(λ) < λ · z∗ ≤ σC∗(λ) = σC∗(λ′). (4.4)

Second, we consider the case λ′ = ρλ for some ρ > 0. Since σC∗ is positively homogeneous
of degree 1, it follows from (4.4) that λ′ · z′ = ρλ · z′ < ρσC∗(λ) = σC∗(λ′). Last, we consider
the case λ′ ∈ dom(σC∗) ∖ {ρλ}ρ>0. By Lemma 4.3, σC ≤ σC∗ . By the hypothesis that z′ is an
exposing point of C, provided that λ′ ̸= ρλ, we have that λ′ · z′ < σC(λ′) ≤ σC∗(λ′). In summary,
we have proved that, for any λ′ ∈ dom(σC∗), λ′ · z′ < σC∗(λ′). So by Lemma 4.3, z′ ∈ int(C∗).
We find that z′ ∈ bd(F) ∩ int(C∗). This finding means a point near z′ exists, which is in C∗, but
not in F . Hence, C∗ is not an inner approximation of F , which leads to a contradiction.

We call z∗ in Thm. 4.6 an outlier point, by which we try to enlarge an S-free set, and let
L(z∗) := {λ ∈ dom(σC) : λ · z∗ > σC(λ)}. The proof of Thm. 4.6 was adapted from that of [233,
Thm. 2], which excludes the presence of the outlier point and requires a stronger assumption,
namely that, for any λ ∈ dom(σC) there exists a point z′ ∈ bd(F)∩bd(C) exposing λ ·z ≤ σC(λ).
As we will see in the proof of Thm. 4.8,

⋃
z∗∈int(F∖C) L(z∗) can be a proper subset of dom(σC),

so we do not need to check that all λ ∈ dom(σC) are exposed.
We next focus on a specific type of function, namely positive homogeneous functions. We

summarize their properties as follows.

Lemma 4.7. Let f be a positive homogeneous function of degree d ∈ R, such that for any
z ∈ dom(f) ⊆ Rp and any ρ ∈ R++, f(ρz) = ρdf(z). Then: (i) int(dom(f)) is a cone, and (ii)
if d = 1, Then, for any z̆ ∈ dom(f), Ξfz̆ (z) = ∇f(z̆) · z for z ∈ dom(f) and Ξfz̆ (z) = f(z) for
z = ρz̆ with ρ ∈ R++.

Proof. Given z ∈ dom(f), f(ρz) = ρdf(z) is a real number for any ρ ∈ R++, so int(dom(f))
is a cone. Suppose that f is positive homogeneous of degree 1. For any z ∈ dom(f),
Ξfz̆ (z) = f(z̆) +∇f(z̆) · (z − z̆) = ∇f(z̆) · z, where the second equation follows from Euler’s
homogeneous function theorem: f(z̆) = ∇f(z̆) · z̆. For any z = ρz̆ with ρ ∈ R++, Ξfz̆ (z) =
∇f(z̆) · ρz̆ = ρΞfz̆ (z̆) = ρf(z̆) = f(ρz̆), where the first and second equations follow from the
previous result, the third follows from that Ξfz̆ has the same value as f at z̆, and the last
equation follows from the homogeneity.
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We recall that Ξfz̆ in the above lemma is the first order linearization of f at z̆. Moreover,
dom(f) is embedded in Rp, so we call Rp the ambient space of f .

The second theorem we present offers a more structured result specifically addressing
nonconvex DCC sets S. [272, Thm. 5.48] provides a sufficient condition for the maximality
of the S-free set described in Lemma 3.22. However, to clearly differentiate it from our
subsequent result, we translate the condition into our setting as follows: (i) the functions f1 and
f2 are superlinear, meaning they are positive homogeneous of degree 1 and super-additive
(note that superlinear functions are concave), (ii) they are separable and act independently
on different variables u and v, (iii) f1 is negative everywhere except at 0, (iv) the linearization
point ṽ of f2 is nonzero, and (v) the domains dom(f1) and dom(f2) are Euclidean spaces.

Our second theorem provides an alternative condition for maximality that relaxes the
condition (i) by requiring only one of f1 or f2 to be positive homogeneous of degree 1, while
imposing mild regularity conditions. Additionally, it allows the domains to be full-dimensional
convex cones.

Theorem 4.8. For every i ∈ {1, 2}, let fi be concave. Let S := {(u, v) ∈ dom(f1)× dom(f2) :
f1(u) − f2(v) ≤ 0}. Suppose that: (i) at least one of f1, f2 is positive homogeneous of
degree 1, (ii) f1, f2 are both positive/negative over the interiors of their domains, (iii) f1 is
continuously differentiable over int(dom(f1)), and (iv) dom(f1),dom(f2) are full-dimensional
in the ambient spaces of f1, f2, respectively. Then, for any ṽ ∈ int(dom(f2)), C := {(u, v) ∈
dom(f1)× dom(f2) : f1(u)− Ξf2

ṽ (v) ≥ 0} is maximally S-free in dom(f1)× dom(f2).

Proof. We first adapt Lemma 3.22 by restricting the domain of z to the convex ground set G :=
dom(f1)× dom(f2). It follows from Lemma 3.22 that C is an S-free set in G. Since dom(f1)×
dom(f2) are full-dimensional, S, C,G are full-dimensional. As S, C ⊆ G, the maximality of C in G
is equivalent to that C is a maximal convex inner approximation of F := cl(Sc) ∩ G = {(u, v) ∈
G : f1(u)− f2(v) ≥ 0}. Note that F is full-dimensional. We then apply Thm. 4.6 to prove that
C is a maximal convex inner approximation of F . Let z∗ ∈ int(F ∖ C) be any outlier point. It
follows from the separating hyperplane theorem that there exists a supported valid inequality
λ · z ≤ σC(λ) of C such that λ · z∗ > σC(λ). Since F ∖ C ⊆ G, int(F ∖ C) ⊆ G. Since C ⊆ G, the
inequality cannot be supported by a valid inequality at bd(G), so the inequality must be a valid
inequality supported at C ∖ bd(G). It follows from the concavity of f1 that the inequality must
admit the form Ξf1

ŭ (u)− Ξf2
ṽ (v) ≥ 0 for some ŭ ∈ dom(f1) (identical up to a positive multiplier).

By the smoothness of f1, w.l.o.g, we can perturb ŭ such that it is in int(dom(f1)). Let v̆ := ṽ.
We now have that ŭ ∈ int(dom(f1)), v̆ ∈ int(dom(f2)). We will prove that Ξf1

ŭ (u)− Ξf2
v̆ (v) ≥ 0

is exposed by a point (u′, v′) ∈ (bd(F) ∩ bd(C)) ∩ int(G). It suffices to show that the following
three equations hold:

Ξf1
ŭ (u′)− Ξf2

v̆ (v′) = 0 (i.e., supported at (u′, v′)),

f1(u′)− Ξf2
v̆ (v′) = 0 (i.e., (u′, v′) ∈ C),

f1(u′)− f2(v′) = 0 (i.e., (u′, v′) ∈ F).

(4.5)

Since C ⊆ F and they are both full-dimensional, the last two equations imply that (u′, v′) ∈
bd(C) ∩ bd(F). As f1 is continuously differentiable and concave in the interior of its domain,
the graph of f1(u) − Ξf2

v̆ (v) over int(G) is a smooth manifold embedded in int(G) × R. The
intersection of a smooth manifold with a hyperplane yields another lower-dimensional smooth
manifold. This implies that the level set C of f1(u) − Ξf2

v̆ (v) is also smooth at any point
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(u, v) ∈ int(G) ∩ C. By Obs. 4.5, (u, v) is an exposing point. Since (u′, v′) ∈ C ∩ int(G), (u′, v′)
is an exposing point, and the maximality of C is verified. We now proceed to construct (u′, v′)
from (ŭ, v̆) and prove (4.5). Let ρ := f2(v̆)/f1(ŭ). Since ŭ ∈ int(dom(f1)), v̆ ∈ int(dom(f2)), by
the assumption, ρ > 0. We consider the following two cases separately.

Case i. We first suppose that f1 is positive homogeneous of degree 1. Let (u′, v′) := (ρŭ, v̆),
which, by Lemma 4.7, is in int(G). We have that:

f1(u′) (i.1)= Ξf1
ŭ (u′) (i.2)= ρf1(ŭ) (i.3)= f2(v̆) (i.4)= f2(v′) (i.5)= Ξf2

v̆ (v′),

where equations (i.1), (i.2) follow from Lemma 4.7, (i.3) follows from the definition of ρ, and
(i.4), (i.5) follow from v′ = v̆.

Case ii. We then suppose that f2 is positive homogeneous of degree 1. Let (u′, v′) :=
(ŭ, v̆/ρ) ∈ int(G). We have that:

Ξf1
ŭ (u′) (ii.1)= f1(u′) (ii.2)= f1(ŭ) (ii.3)= f2(v̆)/ρ (ii.4)= f2(v′) (ii.5)= Ξf2

v̆ (v′),

where equations (ii.1), (ii.2) follow from ŭ = u′, (ii.3) follows from the definition of ρ, and
(ii.4), (ii.5) follow from Lemma 4.7. Therefore, (4.5) are satisfied in both cases.

We present the motivation for limiting the maximality of the set C within the ground set
dom(f1)× dom(f2). The primary reason for this restriction stems from the difficulty in finding
a non-trivial concave extension of f1 over its ambient space such that for all u /∈ dom(f1),
f1(u) > −∞. While such an extension may exist geometrically, the construction of a closed-
form expression remains unclear. In the next section, we will examine a specific example to
illustrate this point.

Furthermore, we will employ the aforementioned theorem to develop DCC formulations
of a nonconvex set. Notably, the functions f1 and f2 may not exhibit simultaneous positive
homogeneity of degree 1, and their domains are non-negative orthants. Consequently, the
relaxed condition on homogeneous degrees and domains in Thm. 4.8 becomes necessary.
We give two examples to verify Thm. 4.8.

Example 4.9. Let f1(u) := u with dom(f1) ∈ R, and let f2(v) :=
∑
i∈[n]
√
vi with dom(f2) =

Rn+. Note that f1, f2 are concave, dom(f2) is a non-negative orthant, and f1 is positive
homogeneous of degree 1. Let G := R × Rn+. One can verify that the presupposition of
Thm. 4.8 is satisfied. Then, S := {(u, v) ∈ G : u−

∑
i∈[n]
√
vi ≤ 0} is a convex set. It is easy

to see that C := {(u, v) ∈ G : u −
∑
i∈[n](

√
ṽi + (vi − ṽi)/

√
ṽi) ≥ 0} is maximally S-free in G

with ṽ > 0.

Example 4.10. Exchange the functions f1, f2 in the previous examples. Then, S := {(u, v) ∈
G :
∑
i∈[n]
√
vi − u ≤ 0} is a reverse-convex set (i.e., the complement of a convex set). It is

easy to see that C := {(u, v) ∈ G :
∑
i∈[n]
√
vi − u ≥ 0} is the unique maximal S-free set in G.

4.1.3 S-free sets in submodular optimization

We denote B := {0, 1}n, B̄ := [0, 1]n. We assume that [n] is equipped with the natural number
order. For S ⊆ [n], we denote by supp(S) ∈ B the characteristic vector of S. Given a set
D ⊆ Rn and a function g : D → R, we adopt the usual notation epiD(g), grD(g),hypoD(g) to
denote the epigraph, graph and hypograph of g over D, respectively. For example, grD(g) :=
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{(x, t) ∈ D × R : g(x) = t}. When D is omitted in the subscript, it is assumed to be Rn. We
consider the submodular maximization problem:

max
t∈R

t s.t. f(x) ≥ t, x ∈ {0, 1}n ∩ X . (4.6)

where X ⊆ Rn is a set describing additional constraints. The above formulation is the
epigraphical reformulation of the submodular maximization problem maxx∈{0,1}n∩X f(x). We
study valid inequalities for the mixed-integer set hypo{0,1}n(f) := {(x, t) ∈ {0, 1}n×R : f(x) ≥
t}, which we call the hypograph of f over the Boolean hypercube {0, 1}n (or, for brevity, the
Boolean-hypograph of f ).

The maximization of arbitrary submodular functions (i.e., Eq. (4.6)) can be reduced to
a MILP with exponentially many linear inequalities [237]. The Benders-like exact approach
based on a branch-and-cut algorithm proposed in [104] provides global dual bounds for primal
solutions, and achieves a finite convergence rate.

Many submodular maximization problems (e.g., max cut with positive edge weights [270],
D-optimal design [267], and utility maximization [8]) have natural MILP or MINLP formulations,
which can be solved using general-purpose global optimization solvers. The algorithm un-
derlying these solvers is typically a branch-and-cut algorithm, which uses polyhedral outer
approximations to construct LP relaxations [61, 62, 284]. For submodular maximization prob-
lems with convex MINLP formulations, a state-of-art algorithm also uses polyhedral outer
approximations [95].

The submodular maximization problem plays an intermediate role between these settings.
On the one hand, the submodular function f is defined over the Boolean hypercube {0, 1}n.
Therefore, the graph of f projected on Rn is a subset of a lattice. On the other hand, as a
discrete analogue to convex functions, f has a convex (thus continuous) extension over the
hypercube [0, 1]n, namely the Lovász extension [212]. We can extend the Lovász extension to
a convex function, which we call F̄f , over the entire n-dimensional Euclidean space Rn. This
(continuous) function F̄f inherits a rich combinatorial structure from f .

The difference of two submodular functions (call them f1, f2) is a submodular-supermodular
(SS) function. SS functions generalize submodular functions, which are also discrete analogs
of difference-of-convex (DC) functions. In fact, SS functions may represent some discrete
nonconvex functions arising in combinatorial optimization. For example, we will show that any
Boolean multilinear function is an SS function.

We denote B := {0, 1}n, B̄ := [0, 1]n. We assume that [n] is equipped with the natural
number order. For S ⊆ [n], we denote by supp(S) ∈ B the characteristic vector of S. Given a
set D ⊆ Rn and a function g : D → R, we adopt the usual notation epiD(g), grD(g),hypoD(g)
to denote the epigraph, graph and hypograph of g over D, respectively. For example, grD(g) :=
{(x, t) ∈ D × R : g(x) = t}. When D is omitted in the subscript, it is assumed to be Rn.

Extensions of submodular functions

We study continuous extensions of submodular functions. W.l.o.g., we assume in the sequel
that, for any submodular function f , f(0) = 0 holds (by a translation of a constant). It is
known that the Lovász extension [212] extends f from B to B̄. Based on this extension, we
construct another extension F̄f of f defined over the entire space Rn, and study its analytical
and combinatorial structures.
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We first look at some polyhedra associated with the submodular function f [23, 270]. Its
extended polymatroid is defined as

EPMf := {s ∈ Rn : ∀x ∈ B, sx ≤ f(x)}, (4.7)

and the convex hull of the Boolean-epigraph f over B is defined as

Qf := conv(epiB(f)).

Recall that ext(EPMf ) are the vertices of EPMf . We further define the polyhedron

EEf := {(x, t) ∈ Rn+1 : ∀s ∈ ext(EPMf ), sx ≤ t}. (4.8)

In fact, EEf contains Qf , because of the following lemma:

Lemma 4.11 ([23]). Qf = EEf ∩ (B̄ × R).

Therefore, x ∈ B̄ defines trivial facets of Qf , and non-trivial facets of Qf are sx ≤ t, where
s is a vertex of EPMf .

These polyhedra in turn give rise to some functions associated with f . Since Qf is the
epigraph of Ff , by Lemma 4.11,

Ff : B̄ → R, x 7→ max
s∈ext(EPMf )

sx. (4.9)

We remark that Ff is equivalent to the Lovász extension of f [23]. We will show that the
cardinality | ext(EPMf )| is not polynomial in n. Thus, when computing Ff , it is inefficient to
evaluate all sx for s ∈ ext(EPMf ). However, the value and the (sub)-gradients of Ff at points
in B̄ can be computed in a strongly polynomial time (see Sect. 3.2.1).

We define the envelope of f extended to Rn as

F̄f : Rn → R, x 7→ max
s∈ext(EPMf )

sx. (4.10)

We note that F̄f simply enlarges the domain of Ff from B̄ to Rn. This extension is algebraically
simple, but analytically less so. The analytical properties of F̄f (x) outside B̄ will be studied
in further detail. We find that EEf is the epigraph of F̄f , i.e., EEf = epi(F̄f ), so F̄f is a
convex function. Since every facet sx ≤ t of EEf is in one-to-one correspondence to a linear
underestimator function sx of F̄f , we call EEf the extended envelope epigraph.

The problem of efficiently evaluating F̄f and its associated sub-gradients at a point in Rn

is very important, because it is crucial in constructing intersection cuts. Regarding F̄f , one
can compute its value and sub-gradients at points in B̄ in a strongly polynomial time using a
sorting algorithm. As the Lovász extension Ff is a restriction of F̄f to the hypercube B̄, this
fact implies that many properties of F̄f may also hold for F̄f . In the following, we will show how
we can reuse the sorting algorithm to compute F̄f over the entire space Rn. This extension
requires us to study the properties of F̄f and EEf .

By Lemma 4.11, one may observe that a facet of EEf includes and extends geometrically
a facet of Qf . This observation reveals the close relation between Ff in (4.9) and F̄f in (4.10).
In order to separate facets of EEf , we consider F̄f since EEf is its epigraph.
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Given x̃ ∈ Rn, the evaluation of F̄f (x̃) is called the extended polymatroid vertex maximiza-
tion problem, as by definition F̄f (x̃) equals

max
s∈ext(EPMf )

sx̃. (4.11)

Any optimal solution s∗ of Eq. (4.11) is a subgradient of F̄f at x̃, i.e., s∗ ∈ ∂F̄f (x̃). The set
of vertices ext(EPMf ) is the image of Sn under the map σ.

Lemma 4.12 ([133]). σ(Sn) = ext(EPMf ).

By Lemma 4.12, maxs∈ext(EPMf ) sx̃ = maxπ∈Sn
σ(π)x̃, so (4.11) asks for a permutation π∗

that maximizes σ(π∗)x̃.
To tackle (4.11), we look at a related relaxed problem, namely the extended polymatroid

maximization problem:
max

s∈EPMf

sx̃, (4.12)

which is equivalent to the problem (3.23) due to Lemma 4.12.
We note that the vertices ext(EPMf ) are a finite set, so (4.11) is always bounded. More-

over, by the Minkowski-Weyl theorem [100], EPMf is the Minkowski sum of the polytope
conv(ext(EPMf )) and the recession cone of EPMf . By Proposition 3.15 of [100] and (4.7), the
recession cone admits the form {s ∈ Rn : ∀x ∈ B, sx ≤ 0}, so the cone is non-empty, and
EPMf is unbounded. This means that (4.12) may be unbounded.

Lemma 4.13 ([23, 133]). When x̃ ≥ 0, the optimum of (4.12) is a vertex of EPMf (i.e., in
ext(EPMf )), and (4.11) is equivalent to (4.12); when x̃ has some negative entries, (4.11) is
unbounded, and therefore not equivalent to (4.12).

Even if (4.11) is not equivalent to (4.12) in general, we show that (4.11) can still be solved
by the sorting algorithm.

Proposition 4.14. The output of the sorting algorithm is an optimal solution of the extended
polymatroid vertex maximization problem (4.11).

Proof. Let π∗ be the permutation found by the sorting algorithm. By Lemma 4.12, σ(π∗)
is in ext(EPMf ) and hence a feasible solution to (4.11). Next, we prove the optimality of
σ(π∗). Let the scalar d := mini∈[n] x̃i. We can write x̃ as the sum of (x̃ − d1), d1, where
the translated vector x̃− d1 = (x̃i − d)i∈[n] has non-negative components. We find that the
following inequalities hold:

σ(π∗)x̃ ≤ max
s∈ext(EPMf )

sx̃ = max
s∈ext(EPMf )

s(x̃− d1 + d1)

≤ max
s∈ext(EPMf )

s(x̃− d1) + max
s∈ext(EPMf )

s(d1),
(4.13)

where the first inequality follows from the fact given by Lemma 4.12 that σ(π∗) is in ext(EPMf ),
the last inequality follows from the fact that maximum of the sum is at most the sum of maxima.
We next construct the optimal solutions to maxs∈ext(EPMf ) s(x̃− d1) and maxs∈ext(EPMf ) s(d1),
respectively. First, since the permutation π∗ maps x̃ into a vector with non-increasing entries
and the entries of d1 are identical, we have that (x̃−d1)π∗(1) ≥ · · · ≥ (x̃−d1)π∗(n). Since x̃−d1
is constructed non-negative, by Lemma 4.13, maxs∈EPMf

s(x̃−d1) = maxs∈ext(EPMf ) s(x̃−d1).
Moreover, π∗ is also the permutation that sorts (x̃− d1) in a non-increasing order, it follows
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again from Lemma 4.13 that σ(π∗) is an optimal solution to maxs∈EPMf
s(x̃− d1). This implies

that σ(π∗) is also an optimal solution to maxs∈ext(EPMf ) s(x̃− d1). Secondly, for any π ∈ Sn, it
follows from Defn. 3.12 that vn(π) = 1. This implies that σ(π)vn(π) = σ(π)1 = f(1), where the
last equation follows from Cor. 3.14. In addition, by Lemma 4.12, argmaxs∈ext(EPMf ) s(d1) =
σ(argmaxπ∈Sn

σ(π)(d1)). Since all σ(π)(d1) are identically equal to df(1), we can pick σ(π∗) as
the optimal solution to maxs∈ext(EPMf ) s(d1). Finally, we find that maxs∈ext(EPMf ) s(x̃− d1) and
maxs∈ext(EPMf ) s(d1) have a common optimal solution σ(π∗). This implies that the inequalities
in (4.13) become equations, because

σ(π∗)x̃ ≤ max
s∈ext(EPMf )

sx̃ ≤ σ(π∗)(x̃− d1) + σ(π∗)(d1) = σ(π∗)x̃.

Therefore, σ(π∗) is an optimal solution to maxs∈ext(EPMf ) sx̃.

Given x̃ ∈ Rn, the sorting algorithm outputs a permutation acting on the entries of . The
sorting algorithm is translation-invariant, i.e., translating each entry of x̃ by the same value
does not change the output permutation. A by-product of Prop. 4.14 is that F̄f is linear over
specific lines specified as follows.

Corollary 4.15. Let x̃ ∈ Rn, then F̄f is linear on x̃+ λ1 w.r.t. λ ∈ R.

We look at the boundary of EEf . By Cor. 3.14 and Cor. 3.15, for all x ∈ B, the point (x, f(x))
supports some facets of EEf .

Theorem 4.16. EEf ∩ hypoB(f) = grB(f) ⊆ bd(EEf ).

Proof. We consider a point v ∈ B and look at the line ℓ = {(v, t) : t ∈ R}. It can be
separated into the restricted epigraph ℓ+ := {(v, t) : f(v) ≤ t} and the restricted hypograph
ℓ− := {(v, t) : f(v) ≥ t}, as ℓ+ ∩ ℓ− = (v, f(v)) and ℓ = ℓ+ ∪ ℓ−. First, we know that, by
definition of Qf and Lemma 4.11, ℓ+ ⊆ Qf ⊆ EEf . Second, by Cor. 3.14, the point (v, f(v))
supports some facets of EEf , so the point (v, t) with t < f(v) is separated by these facets from
EEf . Thereby, we know that ℓ− ∩ EEf = {(v, f(v))}. To summarize, we know that EEf ∩ ℓ = ℓ+

and (v, f(v)) ∈ bd(EEf ). As grB(f) =
⋃
v∈B{(v, f(v))}, we have that grB(f) ⊆ bd(EEf ). As

the hypograph hypoB(f) =
⋃
v∈B{(v, t) : f(v) ≥ t} (union of restricted hypographs), we have

that EEf ∩ hypoB(f) = grB(f).

As mentioned above, F̄f is convex and EEf = epi(F̄f ), so F̄f is also a continuous extension
of f . As EEf contains Qf , F̄f further extends Ff (the Lovász extension).

We now understand enough of the facial structure of EEf that we can construct Boolean-
hypograph-free sets. We can also compute the value and subgradients of F̄f at any point in
Rn, which are used in the construction of intersection cuts.

Boolean-hypograph-free sets for submodular functions

We consider two types of Boolean-hypograph-free sets for a given submodular function f .
First, we show that one can lift a maximal B-free set into a maximal hypoB(f)-free set.

Theorem 4.17. Let f : B → R be an arbitrary function, and let K be a maximal B-free set in
Rn. Then C := K × R is a maximal hypoB(f)-free set.
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Proof. We note that int(C) = int(K) × R. Since int(C) ∩ hypoB(f) = ∅, C is hypoB(f)-free.
Assume that there exists a hypoB(f)-free set C′ containing C. Then the recession cone
of C′ must contain that of C, so C′ = K′ × R for some closed convex set K′ containing K.
Moreover, K′ must be a B-free set, otherwise, there exists a point x ∈ B ∩ int(K′) such that
(x, f(x)) ∈ int(K′) × R = int(C′). However, since K is maximally B-free, this implies that
K = K′. As a result, C = C′, so C is maximal.

This construction does not rely on any structure of f , as it just lifts a B-free set. For
any j ∈ [n], the simple lifted split {x ∈ Rn : 0 ≤ xj ≤ 1} × R is a maximal hypoB(f)-free
set. We next construct hypoB(f)-free sets using submodularity, for both theoretical and
computational interests. We show that both the extended epigraph EEf and its strict subset
Qf are Boolean-hypograph-free sets.

Proposition 4.18. EEf , Qf are hypoB(f)-free sets.

Proof. Since grB(f) ⊆ bd(EEf ), we conclude that EEf ∩ hypoB(f) ⊆ bd(EEf ) and hence
int(EEf )∩ hypoB(f) = ∅. Additionally, EEf is convex and hence hypoB(f)-free. As Qf ⊆ EEf ,
Qf is hypoB(f)-free set.

It is known that the maximal Boolean-hypograph-free set of a convex function is its epigraph.
We shall show, however, that the extended epigraph EEf of a submodular function f is not a
maximal Boolean-hypograph-free set. At a high-level, a possible way to test the maximality of
EEf is as follows. The set Qf is the convex hull of epiB(f). Geometrically, Qf is the “minimal”
convex set containing epiB(f). Intuitively, it is unlikely that a “minimal" set turns out to be a
good “maximal" hypoB(f)-free set. We therefore remove some facets from Qf in order to
enlarge this polyhedron. After removing trivial facets of Qf , the enlarged polyhedron is the
extended epigraph EEf of the envelope of f . However, this enlargement is still not sufficient.
We therefore look at a further enlargement of EEf .

The following fundamental theorem gives a sufficient and necessary condition on (maximal)
Boolean-hypograph-free sets containing EEf .

Theorem 4.19. Let C be a full-dimensional closed convex set in Rn+1 containing EEf . Then C
is a hypoB(f)-free set if and only if C is grB(f)-free. Moreover, C is a maximal hypoB(f)-free
set if and only if C is a polyhedron and there is at least one point of grB(f) in the relative
interior of each facet of C.

Proof. We note that by Thm. 4.16, grB(f) ⊆ bd(EEf ) ⊆ EEf ⊆ C. Thereby, grB(f)∩ int(C) = ∅
(i.e., C is grB(f)-free) if and only if grB(f) ⊆ bd(C).

We consider the S-freeness first. We prove the forward direction. Assume that C is a
hypoB(f)-free set. Suppose, to aim at a contradiction, that there exists a point (v, f(v)) ∈
int(C) ∩ grB(f). Then there exists a sufficiently small ϵ > 0 such that (v, f(v) − ϵ) ∈ int(C),
but (v, f(v)− ϵ) ∈ hypoB(f), which leads to a contradiction. We prove the reverse direction.
Assume that C is grB(f)-free. Suppose, to aim at a contradiction, that there exists a point
(v, f(v)−δ) ∈ int(C) with v ∈ B and δ > 0. As, for some ϵ > 0, (v, f(v)+ϵ) ⊆ int(EEf ) ⊆ int(C),
by convexity of C, (v, f(v)) ∈ int(C), which leads to a contradiction. This implies that C is
hypoB(f)-free if and only if grB(f)-free (or grB(f) ⊆ bd(C)).

We consider maximality next. The proof is similar to that [38] for the bounded maximal
lattice-free set. Let C be a maximal grB(f)-free set. For each v ∈ grB(f), it follows from the
separating hyperplane theorem that there exists a half-space {z : avz ≤ bv} containing C
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such that avv = bv. As grB(f) is a finite set, the set P := {z : ∀v ∈ grB(f), avz ≤ bv} is a
polyhedron. By construction, P is grB(f)-free and C ⊆ P , thus C = P by maximality of C.

We now show that there is at least one point of grB(f) in the relative interior of each facet
of C. Assume C = {z : ∀i ∈M,aiz ≤ bi}, where aiz ≤ bi, i ∈M , are all distinct facet-defining
inequalities for C. Suppose, to aim at a contradiction, that the facet Ft = {z ∈ C : atz = bt}
does not contain any point of grB(f) in its relative interior. Let ϵ > 0, enlarge C to another
polyhedron C′ := {z : ∀i ∈M \{t}, aiz ≤ bi, atz ≤ bt+ϵ}. As C ⊊ C′ and C is maximally grB(f)-
free, C′ contains points of grB(f) in its interior. Thus, the point z′ := argminz∈int(C′)∩grB(f) a

tz

exists. It follows from z′ ∈ int(C′) that ∀i ∈ M \ {t}, aiz′ < bi, and atz′ < bt + ϵ. Since
Ft = {z : ∀i ∈M \ {t}, aiz ≤ bi, atz = bt}, atz′ cannot equal bt, otherwise, this implies that Ft
contains z′ ∈ grB(f) in its relative interior. Since C is grB(f)-free, atz′ cannot be strictly less
than bt, otherwise, this implies that C contains z′ ∈ grB(f). Then, it must be that atz′ > bt,
and C∗ := {∀i ∈M \ {t}, aiz ≤ bi, atz ≤ atz′} strictly includes C. By construction, C∗ does not
contain any point of grB(f) in its interior. This contradicts the maximality of C.

The above theorem is purely geometrical. Since submodular functions are combinatorial
objects, we translate this theorem to a combinatorial language. We first define a combinatorial
object in the Boolean hypercube B.

Definition 4.20. Let x0, x1, . . . , xn be n + 1 distinct points of B. They are called monotone,
if 0 = x0 < x1 < · · · < xn = 1. We call the corresponding ordered set (x0, . . . , xn) ⊆ B a
monotone chain in B.

Therefore, we use a monotone chain to represent a set of monotone points. Then we have
the following observation.

Proposition 4.21. The set Sn of permutations is in one-to-one correspondence to the set of
monotone chains via the map V defined as follows: for all π ∈ Sn, V (π) := (vi(π) | i ∈ N∪{0}).

Proof. It suffices to prove that, under the map, each permutation is mapped to a monotone
chain, and for each monotone chain, there exists a permutation mapped to it. By Cor. 3.14,
since ∅ = π([0]) ⊊ · · · ⊊ π([n]) = [n], by Defn. 3.12, 0 = v0(π) < · · · < vn(π) = 1, so V (π)
is a monotone chain. Conversely, given a monotone chain (x0, . . . , xn), we construct π as
follows: π(0) = 0; and for all i ∈ [n], π(i) is the index of the unique non-zero entry of xi − xi−1.
It follows that V (π) is the chain.

We find that permutations and monotone chains are indeed equivalent. We note that
any n+ 1 distinct points from grB(f) are affinely independent in Rn+1 and hence support a
hyperplane in Rn+1. Thereby, we can infer from Cor. 3.14 and Prop. 4.21 that

Corollary 4.22. If (x0, . . . , xn) is a monotone chain in B, then distinct points (x0, f(x0)), . . . , (xn, f(xn))
of grB(f) define (or support) a facet of the extended envelope epigraph EEf .

We say that this monotone chain induces the facet. In fact, we find that facets of EEf ,
permutations on [n], and monotone chains in B are in one-to-one correspondence. Therefore,
we can view them as the same objects. In particular, Prop. 4.21 relates permutations and
monotone chains. We give the following characterization of permutations on [n].

Definition 4.23. A subset S′
n of permutations of Sn is called a cover, if

⋃
π∈S′

n
V (π) = B;

moreover, S′
n is called a minimal cover if, additionally, for all π ∈ S′

n, V (π) ∖
⋃
π′∈S′

n:π′ ̸=π V (π′)
is not empty.
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We want to enlarge EEf by removing its facets. This is equivalent to removing permutations
from Sn. Let S′

n be a subset of permutations of Sn, and C(S′
n) := {(x, t) : ∀π ∈ S′

n, σ(π)x ≤ t}
denotes the relaxation of the extended envelope epigraph induced by S′

n. It is obvious that
EEf = C(Sn) ⊆ C(S′

n) for any S′
n ⊆ Sn. The following corollary translates Thm. 4.19 to a

combinatorial language.

Corollary 4.24. Let S′
n be a subset of permutations of Sn. C(S′

n) is hypoB(f)-free if and only
if S′

n is a cover. C(S′
n) is maximally hypoB(f)-free if and only if S′

n is a minimal cover.

Proof. First, we note that C(S′
n), as a relaxation of EEf contains grB(f). Next, we assume

that S′
n is a cover. Then points of grB(f) support facets of C(S′

n). By Thm. 4.19, C(S′
n) is

hypoB(f)-free if and only if it is a cover. Finally, S′
n is a minimal cover, if and only if then each

facet of C(S′
n) has a point of grB(f) in its interior. By Thm. 4.19, the later is equivalent to that

C(S′
n) is maximally hypoB(f)-free.

We can now disprove the maximality EEf by means of a counter-example. Thanks to
Cor. 4.24, we can use a counting argument to show that we can remove facets from EEf . This
results in a new enlarged hypoB(f)-free polyhedron.

Proposition 4.25. EEf is not maximally Boolean-hypograph-free.

Proof. It suffices to find a counter-example. Consider n = 3, B = {0, 1}3, there are 6
permutations, and 6 monotone chains (see Fig. 4.1). We assume that, in a non-degenerate
case, the associated extended envelope epigraph EEf has 6 facets induced by 6 chains
respectively. The vertices (0, 0, 0) and (1, 1, 1) are visited by all the chains, while the other
vertices are visited twice each. Therefore, a chain cannot “exclusively” visit a vertex, so the
corresponding facet cannot contain one point of grB(f) in its relative interior. In fact, we can
remove some facets from the extended envelope epigraph. We keep three chains:

( (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1) ) ,

( (0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1) ) ,

( (0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 1) ) .

These chains induce 3 facets such that at least one point of grB(f) is in the relative interior
of each facet and each point of B is in these 3 facets, so the polyhedron defined by these 3
facets is a hypoB(f)-free set larger than EEf .

Figure 4.1 a Boolean cube B = {0, 1}3 © [134]

We discuss why enlarging EEf is not a trivial feat. We build a bipartite graph G :=
(B ∪ Sn, E). An edge e of E connects a vertex v ∈ B to a permutation π ∈ Sn if v ∈ V (π).
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Then, a minimal cover is a subset S′
n of Sn such that: i) each vertex of B is incident to at least

one permutation in S′
n; ii) each permutation in S′

n is incident to a vertex of B that no other
permutation in S′

n is incident to. As |B| = 2n and |Sn| = n!, the size of such a graph is not
polynomial in n. We need additional information in order to enlarge EEf efficiently.

We relax the submodular maximization problem (4.6) through a polyhedral outer approx-
imation P of hypoB(f). Let X be the orthogonal projection of P on x-space. We remark
that, within a branch-and-cut algorithm, X might be within a low-dimensional face of B̄. Let
z̃ := (x̃, t̃) be an optimal basic feasible solution to the LP relaxation max(x,t)∈P t, which corre-
sponds to a vertex of P. We assume that x̃ /∈ B, otherwise, x̃ is already an optimal solution to
(4.6).

As z̃ is the point that we want to separate from hypoB(f), we follow the method presented
in Sect. 3.4 to construct an intersection cut. According to [98, 159], we can use a feasible
basis of the LP relaxation to create a simplicial cone R. This cone R can be easily obtained
from the simplex tableau associated with the chosen basis. In our case, we select the optimal
basis defining z̃ so that z̃ is the apex of the corresponding cone R. Moreover, we use EEf
as hypoB(f)-free set. To determine whether the linear inequality (3.30) separates z̃ from
hypoB(f), we need to verify whether z̃ ∈ int(EEf ).

The polyhedral outer approximation P gives rise to a piece-wise linear concave overesti-
mating function of f over X: f̄(x) := max(x,t)∈P t, such that max(x,t)∈P t = maxx∈X f̄(x). This
implies that t̃ = f̄(x̃). We then have the following observation.

Proposition 4.26. Assume that f is not affine over X. If x̃ ∈ relint(X), then f̄(x̃) > F̄f (x̃),
i.e., (x̃, f̄(x̃)) ∈ int(EEf ).

Proof. As f̄ is concave overestimator of f over X and F̄f is convex underestimator of f
over X, f̄ ≥ F̄f over X. Suppose, to aim at a contradiction, that f̄(x̃) = F̄f (x̃). Define a
concave function g := f̄ − F̄f , then for all x ∈ X, g(x) ≥ 0, and g(x̃) = 0. By its concavity,
there exists an affine overestimating function a of g, such that g(x̃) = a(x̃) = 0, and, for all
x ∈ X, 0 ≤ g(x) ≤ a(x). As x̃ ∈ relint(X), the affinity of a implies that a = g = 0 over X,
i.e., f̄ = F̄f over X. So f is concave and convex over X and thus affine over X, which is a
contradiction.

The measure of the relative boundary relbd(X) is zero, so we can assume that a mild
relative interior condition that x̃ ∈ relint(X) holds with probability one. Under this assumption,
the relaxation point z̃ = (x̃, f̄(x̃)) is in the relative interior of the extended envelope epigraph
with probability one. This implies that the linear inequality (3.30) separates z̃ from hypoB(f)
with probability one. In Sect. 6.4, we will empirically evaluate the effectiveness of these
intersection cuts for various submodular maximization problems.

Throughout the rest of this chapter, we will encounter multiple nonconvex optimization
problems. W.l.o.g., we will consider the simplicial cone defined by the simplex tableau
associated with an optimal feasible basis of their LP relaxations. Such simplicial cones are
commonly employed in computational implementations. For the sake of brevity, we refer to
such cones as optimal tableau cones.

Extensions to SS functions

This section considers Boolean-hypograph and Boolean-superlevel sets for an SS function
f := f1 − f2, where f1 and f2 are two submodular functions. We extend our previous results
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on the Boolean-hypograph set of submodular functions; thus one can generate intersection
cuts for a larger family of discrete nonconvex sets.

More specifically, we consider the following nonconvex set

S := {(x, t) ∈ B × R : f(x) ≥ ℓt}, (4.14)

with ℓ ∈ {0, 1}. Given a relaxation point (x̃, t̃) /∈ S, we want to find cutting planes separating
this point from S.

Let F̄f1 := maxs∈EPMf1
sx and F̄f2 := maxs∈EPMf2

sx be extended envelopes of f1, f2,
respectively. As F̄f1 (resp. F̄f2) is a convex extension of f1 (resp. f2), we have that S =
{(x, t) ∈ B × R : F̄f1(x)− F̄f2(x) ≥ ℓt}. By relaxing B to Rn, a (nonconvex) continuous outer
approximation of S is

S̄ := {(x, t) ∈ Rn × R : F̄f1(x)− F̄f2(x) ≥ ℓt}. (4.15)

Moreover, for all x ∈ B, (x, t) ∈ S̄ if and only if (x, t) ∈ S.
Special cases. When ℓ = 1, S is the Boolean-hypograph of the SS function f ; when ℓ = 0,

S is the 0-superlevel set of the SS function f over the Boolean hypercube. Setting f2 = 0 and
ℓ = 1, the set S becomes the hypograph {(x, t) ∈ B × R : f1(x) ≥ t}, which is studied in the
previous section. Setting f1 = 0, the relaxed set S̄ becomes {(x, t) ∈ B × R : F̄f2(x) ≤ −ℓt}.
Let (x̃, t̃) /∈ S̄. Since F̄f2(x) ≥ γ∗x and F̄f2(x̃) = γ∗x̃ for any γ∗ ∈ ∂F̄f2(x̃), then the simple
outer approximation cut γ∗x ≤ −ℓt is a valid inequality for S̄ (hence for S).

In general, we should separate intersection cuts specifically for SS functions. Let γ∗ ∈
∂F̄f2(x̃) be a solution to (4.11) associated with f2, and we define the set

Cx̃ := {(x, t) ∈ Rn × R : F̄f1(x)− γ∗x ≤ ℓt}. (4.16)

The following proposition characterizes S-free sets for Eq. (4.15).

Proposition 4.27. The set Cx̃ in (4.16) is an S-free set. Moreover, if (x̃, t̃) /∈ S̄, then Cx̃ does
not contain x̃ in its interior.

Proof. We first prove that Cx̃ is S̄-free. By definition, γ∗x ≤ F̄f2(x), which implies that F̄f1(x)−
γ∗x ≥ F̄f1(x) − F̄f2(x). Therefore, for (x, t) ∈ int(Cx̃), we have that ℓt > F̄f1(x) − γ∗x ≥
F̄f1(x) − F̄f2(x), which implies that (x, t) /∈ S̄. Hence, int(Cx̃) ∩ S̄ = ∅. Additionally, Cx̃ is
convex. These two facts imply that Cx̃ is S̄-free. Since S ⊆ S̄, Cx̃ is also an S-free set. Next,
assume that (x̃, t̃) /∈ S̄, then ℓt̃ > F̄f1(x̃)− F̄f2(x̃) ≤ F̄f1(x̃)− γ∗x̃, so (x̃, t̃) ∈ int(Cx̃).

In [233, 271, 312], the authors study the sub/superlevel sets of some DC functions. Their
construction of S-free sets relies on a common reverse-linearization technique: reverse the
set S by changing the sign of its defining inequality, and linearize one convex function.

In our case, f is an SS function, so we first need to extend the submodular and supermod-
ular components of f . After the extension, we obtain a DC function. We can then apply the
reverse-linearization technique to its continuous extension.
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4.2 Convex envelopes of supermodular functions

We know overestimators for submodular functions in Sect. 3.2.2. However, we do not know
their concave envelopes. In this section, w.l.o.g., we consider supermodular functions and
their convex envelopes. We present a general characterization of convex envelopes of
supermodular functions.

Let f : Q → R be a supermodular function, where Q := {0, 1}h. We can use a bit
representation to denote Boolean points in Q. For example, 10 denotes the point w that w1 = 1
and w2 = 0. For an affine function a · w + b, its supporting points are the Boolean points in Q
where a · w + b equals f(w).

Lemma 4.28. Every facet of f has h+ 1 affinely independent supporting points in Q.

Proof of Lemma 4.7. Given z ∈ dom(f), f(ρz) = ρdf(z) is a real number for any ρ ∈ R++,
so int(dom(f)) is a cone. Suppose that f is positive homogeneous of degree 1. For any
z ∈ dom(f), Ξfz̆ (z) = f(z̆) +∇f(z̆) · (z − z̆) = ∇f(z̆) · z, where the second equation follows
from Euler’s homogeneous function theorem: f(z̆) = ∇f(z̆) · z̆. For any z = ρz̆ with ρ ∈ R++,
Ξfz̆ (z) = ∇f(z̆) · ρz̆ = ρΞfz̆ (z̆) = ρf(z̆) = f(ρz̆), where the first and second equations follow
from the previous result, the third follows from that Ξfz̆ has the same value as f at z̆, and the
last equation follows from the homogeneity.

Proof. We note that any hyperplane in Rh+1 is uniquely determined by h+ 1 affinely indepen-
dent points. By definition, an affine underestimator a·w+b of f is a facet if and only if a·w+b ≤ t
is a facet of the epigraph epiQ(f). Then, the affine underestimator is a facet, if and only if,
there exists h+ 1 affinely independent points {(wi, ti)}i∈[h+1] ⊆ epiQ(f) ⊆ Rh+1 such that for
all i ∈ [h+ 1], a · wi + b = ti. Moreover, ti must equal f(wi), otherwise a · wi + b = ti < f(wi),
which implies that a ·w+ b ≤ t does not underestimate f at wi. Therefore, wi is the supporting
point of a ·w+ b. Note that {(wi, ti)} are affinely independent, if only if, {wi}i∈[h+1] are affinely
independent.

We can enumerate all possible subsets of h+ 1 affinely independent points of Q. Each
such subset S := {w1, . . . , wh+1} determines an function over Rh via the following affine
combination:

fS(w) := {
∑

j∈[h+1]

λjf(wj) : ∃λ ∈ Rh+1
∑

j∈[h+1]

λj = 1 ∧
∑

j∈[h+1]

λjw
j = w}.

Due to the affine independence of S, the Barycentric coordinate λ for each w in the above
affine combination is unique. We can consider fS as a single-valued affine function and call
it the supported function of S. Since, for all w ∈ S, fS(w) = f(w), solving the linear system
a · w + b = f(w)(w ∈ S), we can compute a, b defining fS . If the supported function fS

underestimates f , we call the subset S facet-inducing.
Assuming we have a collection of facets of f , we then determine whether these facets

define the convex envelope of f . We recall that the convex hull of h+ 1 affinely independent
points is called an h-simplex. A finite collection of h-simplices {Pk}k is called a triangulation
of the unit cube U , if the following conditions hold: (i)

⋃
k Pk = U , (ii) Pk ∩ Pk′ is empty or a

face of both Pk ∩ Pk′ for all k, k′, (iii) the vertices of Pk are contained in Q for all k.
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Proposition 4.29. Let {Sk}k be a collection of facet-inducing subsets of Q. For each k, let
fSk

be the supported function induced by Sk, and let Pk := conv(Sk) be the simplex spanned
by Sk. If {Pk}k is a triangulation of U , then convenvQ(f)(w) = maxk fSk

(w) for all w ∈ U .

Proof. Since
⋃
k Pk = U , for any w ∈ Q, there exists Pk such that w ∈ Pk. Since the vertices Sk

of Pk are contained in Q, w must be in Sk. Therefore, fSk
(w) = f(w). This implies that f(w) =

maxk fSk
(w) for all w ∈ Q, i.e., maxk fSk

is an exact convex underestimator. Suppose, to aim at
a contradiction, that there exists another convex underestimator f ′ of f such that f ′(w) = f(w)
for all w ∈ Q, and f ′(w′) > maxk fSk

(w′) for some w′ ∈ U . Again, since
⋃
k Pk = U , there

exists Pk such that w′ ∈ Pk, i.e., w′ ∈ conv(Sk). Let Sk = {w1, . . . , wh+1}. It follows from
w′ ∈ conv(Sk) that there exists λ ∈ [0, 1]h+1 such that

∑
j∈[h+1] λj = 1,

∑
j∈[h+1] λjw

j = w′.
Note that Sk induces the supported function fSk

, which has supporting points Sk. This implies
that fSk

(w′) =
∑
j∈[h+1] λjfSk

(wj) =
∑
j∈[h+1] λjf(wj). It follows from the convexity of f ′ that

f ′(w′) ≤
∑
j∈[h+1] λjf

′(wj) =
∑
j∈[h+1] λjf(wj) ≤ fSk

(w′) ≤ maxk fSk
(w′), which leads to a

contradiction. Therefore, maxk fSk
is the convex envelope of f over Q.

The collection {Sk}k is called envelope-inducing family in Q, if the presupposition “{Pk}k
is a triangulation” in Prop. 4.29 is satisfied.





Chapter 5

Cutting planes for signomial
programming

5.1 Introduction

In this chapter, we provide a deeper treatment of the signomial term ψα(x) := xα =
∏
j∈[n] x

αj

j ,
where the exponent vector α is in Rn, with respect to convexification and linearization within
an sBB algorithm.

When all the terms in g in (3.12) are signomial terms, the problem (3.12) falls under the
category of signomial programming (SP). In this scenario, we refer to (3.12) as the natural
formulation of SP. The left-hand sides of the constraints in this formulation are referred to as
signomial functions. The lifted set Slift in the extended formulation (3.13) is called a signomial
lift.

Since negative entries may be present in the exponent vector α, in general, variables of
SP are assumed to be positive. We remark that the techniques in this chapter can also treat
signomial terms in general mixed-integer NLP problems. The point of restriction on SP over
positive variables is simply to make the theoretical treatment more readable and streamlined.

In the case of SP, LP relaxations can be derived from polyhedral outer approximations of the
signomial lift in its extended formulation. A typical relaxation algorithm for SP involves factoring
the signomial term ψα(x) into the product of n univariate signomial terms xαi

i . Following the
factorization, the algorithm proceeds to convexify and linearize the intermediate multilinear
term and univariate functions. However, this factorable programming approach can lead to
a weak LP relaxation and introduce additional auxiliary variables representing intermediate
functions. These issues have been previously discussed in the context of pure multilinear
terms [77, 110, 281].

We propose two cutting plane-based relaxation algorithms for SP. In contrast to the
conventional factorable programming approach, our method employs a novel reformulation of
the signomial lift. We study outer approximations of the following graph of the signomial term:

S = {(x, y) : y = xα}. (5.1)

We transform each nonlinear equality constraint yi = gi(x) = xα
i

in (3.14) to an equivalent
constraint ψβ(u) − ψγ(v) = 0, where β > 0, γ > 0, max(∥β∥1, ∥γ∥1) = 1, u, v are disjoint
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sub-vectors of (x, yi), and ψβ , ψγ are concave functions. We consider approximating the
following set

Sst := {(u, v) ∈ Rh+ℓ
+ : ψβ(u)− ψγ(v) ≤ 0}. (5.2)

Our first cutting plane algorithm is based on the intersection cut paradigm [102]. One can
approximate a nonconvex set S using its simplicial conic outer approximation. This requires
the construction of S-free sets, which are closed convex sets containing none of the interiors
of S. The main insight about S-free sets for a nonconvex set S is that they provide an explicit
and useful description of convex parts of the infeasible space w.r.t. S.

Our second cutting plane algorithm is based on the conventional underestimating and
overestimating techniques. To ensure the convergence of the sBB algorithm, a common
assumption for SP is that all variables are bounded. We generate linear underestiamtor (resp.
linear overestimator) for ψβ(u) (resp. ψγ(v)). This yields a convex outer approximation of Sst.

5.1.1 Literature review

SP finds applications in diverse areas, such as aeronautics [243], chemical reactors [69],
delta-sigma modulator topologies [173], design of heat exchanger networks [66], inductors
[181], and trim-loss minimization [173].

The majority of relaxations for SP are derived from its generalized geometric programming
(GPP) formulation, which is an exponential transformation [130] of its natural formulation. The
exponential transformation replaces positive variables x by exponentials exp(z), where z are
real variables. The authors of [221] show that signomial functions in GGP are difference-of-
convex (DC) functions. For the signomial function in each constraint of GGP, they construct
linear underestimators of its concave part; the author of [275] constructs linear underesti-
mators of the whole function via the mean value theorem. The author of [310] proposes
inner approximations of GGP via the inequality of arithmetic and geometric means (AM-GM
inequality). The authors of [82, 127, 235] construct non-negativity certificates for signomial
functions via the AM-GM inequality, and propose a hierarchy of convex relaxations for GGP.
Exponential transformations can be combined with other variable transformations, such as
power transformations, and the inverse transformations can be approximated by piece-wise
linear functions, see [207, 218, 219].

The solvers SCIP [62], BARON [284], ANTIGONE [227], and MISO [226, 228] are capable of
solving the natural formulation of SP or its extended formulation within a global ϵ-optimality
using the sBB algorithm. Specifically, MISO is a specialized solver for SP that employs
exponential transformations of some signomial terms only when necessary. Due to the
following reasons, exponential transformations can complicate general-purpose solvers. First,
in certain NLP problems, signomial terms may appear only as a subset of the nonlinear terms
of g(x). In such cases, solvers may need to enforce the inverse transformation xj = ln(zj),
which requires additional processing for convexification algorithms. Secondly, when dealing
with mixed-integer SP, if some variables of x are integers, exponential transformations lead to
certain components of z becoming discrete but not necessarily integer. As a result, the sBB
algorithm needs to adapt its branching rules.

While considerable attention has been devoted to constructing relaxations for GGP, the
literature on relaxations for the extended natural formulation of SP is relatively limited. The
convex relaxations employed in the mentioned solvers mainly rely on factorable programming
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[204, 223]. Since exponential transformations are nonlinear variable transformations, it is
impossible to directly apply the relaxations designed for the GGP formulation to the natural
formulation.

Numerous research efforts have been dedicated to improving the relaxation techniques for
multilinear terms and univariate/bivariate functions commonly used in factorable programming
[35]. Multilinear terms over the unit hypercube are vertex polyhedral, and their envelopes
over the unit hypercube admit simple extended formulations [262]. Notably, closed forms
for the convex envelopes of bilinear functions [11, 223] and trilinear functions [224, 225]
over hypercubes are well-established. In [276], the author presents convex envelopes for
multilinear functions (sum of multilinear terms) over the unit hypercube and specific discrete
sets. For a comprehensive analysis of multilinear term factorization via bilinear terms, we
refer to [217, 281]. Additionally, [77] offers an in-depth examination of quadrilinear function
factorization through bilinear and trilinear terms, while [110] presents a computational study
on extended formulations.

Convexifying univariate/bivariate functions plays an important role in the field of MINLP
optimzation. In [205], convex envelopes for monomials with odd degrees are derived. An
approach presented in [211] enables the evaluation of the convex envelope of a bivariate
function over a polytope and separating its supporting hyperplane by solving low-dimensional
convex optimization problems. The convex optimization problems are further reduced by
solving a Karush-Kuhn-Tucker system [210]. In [209], convex envelopes for bilinear, fractional,
and other bivariate functions over a polytope are constructed using a polyhedral subdivision
technique. Additionally, [239, 282] employ polyhedral subdivision and lift-project methods to
derive explicit forms of convex envelopes for various non-convex functions, including a specific
subclass of bivariate signomial terms.

Convexifying high-order multivariate functions poses a significant challenge, and the
available literature on convex underestimators for trivariate functions is relatively scarce. In
[175, 176], the authors propose a novel framework for relaxing composite functions in nonlinear
programs. Another approach involves using the intersection cut paradigm [102] to approximate
nonconvex functions. This paradigm can generate cutting planes to strengthen LP relaxations
of NLP problems. Constructing intersection cuts involves searching for an S-free set, where S
represents a nonconvex set defined by nonconvex functions.

The study of intersection cuts originated in the context of NLP [292]. Gomory later
introduced the concept of corner polyhedron [159], and intersection cuts were explored in the
field of integer programming [31]. The modern definition of intersection cuts for arbitrary sets S
is from [125, 156]. For more comprehensive details, we refer to [16, 39, 40, 109, 119, 125, 261].
Recent research has revealed S-free sets for various nonconvex sets encountered in structured
NLP problems. Examples include outer product sets [63], sublevel sets of DC functions [271],
quadratic sets [233], and graphs of bilinear terms [138]. Intersection cuts have also been
developed for convex mixed-integer NLP problems [17, 46, 194, 195, 230] and for bilevel
programming [137].

5.1.2 Contribution

We give the transformation procedure leading to Sst and construct Sst-free sets from the
transformation. We show that these sets are also signomial-lift-free and maximal in the
non-negative orthant. We also discuss the separation of intersection cuts.
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Our second cutting plane algorithm aims at approximating Sst within a hypercube. In
Sect. 5.3, we provide an extended formulation for the convex envelope of the concave function
ψβ over the hypercube. This formulation yields a convex outer approximation of Sst, allowing us
to generate outer approximation cuts through projection. We prove that ψβ is a supermodular
function. For h = 2, we provide a closed-form expression for its convex envelope by exploiting
supermodularity: this allows us to remove the projection step.

About the computational part of this study, we note that signomials are one of the four
main types of nonlinearity occurring in the mixed-integer NLP library (MINLPLib) [47, 75]. Our
relaxation approach does not require factorization or introduce intermediate functions, making
the implementation of the proposed cutting planes within the general-purpose solver SCIP
straightforward.

5.1.3 Notation

For a vector x ∈ Rn, given J ⊆ [n], xJ = (xj)j∈J denotes the sub-vector formed by entries
indexed by J . Given a differentiable function f , for a x̃ ∈ dom(f), ∇f(x̃) denotes the gradient
of f at x̃ and

Ξfx̃(x) := f(x̃) +∇f(x̃) · (x− x̃). (5.3)

The word linearization has two different meanings in mathematical programming: (i) a
symbolic one, which entails the replacement of all occurrences of nonlinear term τ(x) with
a new variable t, followed by the addition of a new constraint t = τ(x) in a formulation —
this is also called a “lifting”; (ii) an analytic one, which involves the replacement of a convex
nonlinear constraint with an affine subspace tangent to the nonlinear surface at a given point.
All mentions of linearization in the rest of this chapter refer to the second meaning.

5.1.4 Outline of the chapter

In Sect. 5.2, we construct several families of S-free sets, study their maximalities, and derive
intersection cuts. In Sect. 5.3, we construct a nonlinear relaxation of the signomial term set,
and derive outer approximation cuts through projection. In Sect. 5.4, we perform computational
tests on instances from MINLPLib and observe improvements to SCIP’s default settings due
to the proposed valid inequalities.

5.2 Signomial-lift-free sets and intersection cuts

In this section, we construct (maximal) signomial-lift-free sets and generate intersection cuts
for SP.

5.2.1 Signomial-lift-free and signomial-term-free sets

We introduce and study formulations of signomial term sets. We transform signomial term
sets into DCC sets. Furthermore, we construct signomial-term-free sets and lift them to
signomial-lift-free sets. The maximality of these sets is investigated, and a comparison is
carried out between signomial-term-free sets derived from different DCC formulations.
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We consider an n-variate signomial term ψα(x) arising in the extended formulation (3.13)
of SP. The exponent vector α may contain negative/zero/positive entries. We extract two
sub-vectors α− and α+ from α such that α− < 0 ∈ Rh′

and α+ > 0 ∈ Rℓ′
, and let x− ∈ Rh′

and x+ ∈ Rℓ′
be the corresponding sub-vectors of x. Entries xj with αj = 0 are excluded from

consideration, and so h′ + ℓ′ may be smaller than n. Since ψα(x) only depends on x− and
x+, it can be represented in the form of xα

−

− xα
+

+ of lower order. Then, a signomial term set is
defined as epigraph or hypograph of xα

−

− xα
+

+ :

Sst = {(x−, x+, t) ∈ Rh
′+ℓ′+1

++ : t ⋚ xα
−

− xα
+

+ }. (5.4)

We first give DCC reformulations of signomial term sets. Let ≶ denote < or >. The interior
of Sst in (5.4) is

int(Sst) = {(x−, x+, t) ∈ Rh
′+ℓ′+1

++ : t ≶ xα
−

− xα
+

+ }.

Reorganizing the signomial terms and taking the closure of the set, we recover

Sst = {(x−, x+, t) ∈ Rh
′+ℓ′+1

+ : tx−α−

− ⋚ xα
+

+ }.

Notably, the exponents associated with signomial terms on both sides are now strictly
positive. Let R++ denote the positive orthant. Let u := (t, x−), v := x+, let h := h′ + 1,
and let ℓ := ℓ′. Then, ψβ′(u) = tx−α−

− and ψγ′(v) = xα
+

+ , where β′ := (1,−α−) ∈ Rh++ and
γ′ := α+ ∈ Rℓ++. After the change of variables, the set admits the following form:

Sst = {(u, v) ∈ Rh+ℓ
+ : ψβ′(u) ⋚ ψγ′(v)}, (5.5)

where ⋚ denote ≤ or ≥.
The formulation (5.5) exhibits symmetry between u and v. We can therefore consider

w.l.o.g. the inequality “≤” throughout the subsequent analysis. Since the signomial terms
ψβ′(u), ψγ′(v) are non-negative over Rh+,Rℓ+, we can take any positive power η ∈ R++ on both
sides of (5.5). Finally, the signomial term set in (5.4) admits the following form:

Sst = {(u, v) ∈ Rh+ℓ
+ : ψβ(u)− ψγ(v) ≤ 0}, (5.6)

where β := ηβ′, and γ := ηγ′.
A signomial term ψα(x) is said to be a power function if α ≥ 0, and ∥α∥1 ≤ 1. According to

[18, 84], power functions are concave over the non-negative orthant; if additionally ∥α∥1 = 1,
ψα(x) is positive homogeneous of degree 1. Through an appropriate scaling of the parameter
η, we obtain a family of DCC reformulations (5.6) of signomial term sets. We let G := Rh+ℓ

+ ,
and use the reverse-linearization technique to construct signomial-term-free sets. We recall
that the definition of the operator Ξ is given in Eq. (5.3).

Proposition 5.1. Let max(∥β∥1, ∥γ∥1) ≤ 1. For any ṽ ∈ Rℓ++,

C := {(u, v) ∈ Rh+ × Rℓ : ψβ(u)− Ξψγ

ṽ (v) ≥ 0} (5.7)

is a signomial-term-free (Sst-free) set. If max(∥β∥1, ∥γ∥1) = 1, then C is a maximal signomial-
term-free set in G.
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Proof. Since max(∥β∥1, ∥γ∥1) ≤ 1, ψβ(u), ψγ(v) are concave. By Lemma 3.22, C is signomial-
term-free. If max(∥β∥1, ∥γ∥1) = 1, then at least one of ∥β∥1, ∥γ∥1 is 1. Therefore, one of
ψβ(u), ψγ(v) is positive homogeneous of degree 1. Moreover, ψβ(u), ψγ(v) are both continu-
ously differentiable and positive over positive orthants Rh++,Rℓ++ (the interiors of their domains).
Since G = dom(ψβ)× dom(ψγ), by Thm. 4.8, C ∩ G = {(u, v) ∈ G : ψβ(u)− Ξψγ

ṽ (v) ≥ 0} is a
maximal signomial-term-free set in G. Therefore, C is also a maximal signomial-term-free set
in G.

Given that max(∥β∥1, ∥γ∥1) = 1 results in a desirable DDC formulation for the signomial
term set, we refer to this formulation as its normalized DCC formulation. Comparing Prop. 5.1
to Thm. 4.8, we extend the domain of Ξψγ

ṽ (v) from Rℓ+ to Rℓ, since it is an affine function.
However, the further extension requires a non-trivial concave extension of the power function
ψβ , for which we are unaware of a closed-form expression.

We have reduced the n-variate signomial term ψα(x) to a signomial term xα
−

− xα
+

+ of lower
order and constructed the corresponding signomial-term-free sets. A similar reduction is
observed for gi to g′

i in Sect. 4.1.1, where we demonstrate the relationship between Slift-free
sets and epi(g′

i)-free/hypo(g′
i)-free sets.

Next, we let the lifted set Slift be the signomial lift, where all gi are signomial terms.
Each equality constraint yi = gi(x) defining the signomial lift is equivalent to two inequality
constraints yi ⋚ gi(x). Applying the normalized DDC reformulation to these inequality con-
straints, we thus obtain a reformulation of the signomial lift, which we call its normalized DCC
reformulation.

Corollary 5.2. Let C be as in (5.7), where ψα = gi for some i ∈ [k] and max(∥β∥1, ∥γ∥1) = 1.
Then the orthogonal lifting of C w.r.t. gi is a maximal signomial-lift-free (Slift-free) set in the
non-negative orthant.

Proof. We verify that the presuppositions of Thm. 4.6 are satisfied by the signomial lift. For
every i ∈ [k], the signomial term gi is continuous, and its domain and range are R++. Let
Ji be the index set of variables of its reduced signomial term g′

i. Let X :=×j∈[n] R++,Y :=
×j∈[k] R++. For all j ∈ [n + k], let Dj := R++. For all i ∈ [k], let X i :=×j∈Ji

R++,Yi :=
R++. The underlying sets of the signomial lift are X ,Y, {X i,Yi}i∈[k], which are 1d-convex
decomposable by {Dj}j∈[n+k]. By Prop. 5.1, C is a maximal hypo(g′

i)-free set in X i × Yi. By
Thm. 4.6, its orthogonal lifting w.r.t. gi is a maximal signomial-lift-free set in positive orthant.
By continuity of ψβ(u), ψγ(v), we can change the ground set from the positive orthant to its
closure, i.e., non-negative orthant.

We next give some examples of signomial-term-free sets from different DDC formulations.

Example 5.3 (Comparison of DCC formulations). Consider Sst = {(u, v) ∈ R2
+ : u ≤ v}, which

is already in normalized DCC formulation. It is easy to see that C1 := {(u, v) ∈ R+×R : u ≥ v}
is a maximal Sst-free set in R2

+ given by Prop. 5.1. Let ṽ ∈ R++ be a linearization point.
As int(Sst) is equivalent to the logarithmic reformulation {(u, v) ∈ R2

+ : log(u) ≤ log(v)},
which is also a DCC formulation, applying the reverse-linearization technique at ṽ yields
C2 := {(u, v) ∈ R2

+ : log(u)− (log(ṽ) + (v − ṽ)/ṽ) ≥ 0}, which is also an Sst-free set. For any
0 < η < 1, Sst = {(u, v) ∈ R2

+ : uη ≤ vη} is a DDC set, applying the reverse-linearization
technique at ṽ yields C3 := {(u, v) ∈ R2

+ : uη − ((1 − η)ṽη + ηṽη−1v) ≥ 0}, which is also an
Sst-free set. However, C2, C3 cannot be maximal in R2

+, because their intersections with R2
+
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are not polyhedral. These sets are visualized in Fig. 5.1 with a linearization point ṽ = 0.5 and
scaling parameter η = 0.7.
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(a) Sst and C1.
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(b) Sst and C2.
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(c) Sst and C3.

Figure 5.1 Sst-free sets.

Example 5.4. Consider the hypograph of signomial term x−2
1 x2

2 and Sst = {(x, y) ∈ R3
+ :

y ≤ x−2
1 x2

2}. For (x, y) ∈ R3
++, y ≤ x−2

1 x2
2 if and only if y1/3x

2/3
1 ≤ x

2/3
2 . The following set is

maximal Sst-free in G = R3
+: C4 := {(x, y) ∈ R3

+ : y1/3x
2/3
1 ≥ x̃2/3

2 + 2
3 x̃

−1/3
2 (x2 − x̃2)}, where

x̃2 ∈ R++. See Fig. 5.2a for x̃2 = 0.2.

Example 5.5. Consider the epigraph of signomial term x3
1x2 and Sst = {(x, y) ∈ R3

+ : y ≥
x3

1x2}. For (x, y) ∈ R3
++, y ≥ x3

1x2 if and only if y1/4 ≥ x3/4
1 x

1/4
2 . The following set is maximal

Sst-free in G = R3
+: C5 := {(x, y) ∈ R3

+ : ỹ1/4 + 1
4 ỹ

−3/4(y − ỹ) ≤ x
3/4
1 x

1/4
2 }, where ỹ ∈ R++.

See Fig. 5.2b for ỹ = 0.2.

(a) Sst and C4. (b) Sst and C5.

Figure 5.2 Two examples of Sst and Sst-free sets.

5.2.2 Computing intersection cuts

We focus on the separation of intersection cuts for the extended formulation of SP. In Sect. 3.4,
we presented a method to construct a simplicial cone R from an LP relaxation. The vertex of
that cone is a relaxation solution z̃ = (x̃, ỹ).

We assume that the LP relaxation includes all the linear constraints from (3.12). If z̃ is not
feasible for (3.12), then z̃ does not belong to the signomial lift. Hence, there exists a signomial
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term gi such that ỹi ̸= gi(x̃). Given the reduced form g′
i, we obtain a signomial term set Sst: if

gi(x̃) > ỹi, we choose Sst as the epigraph of g′
i; otherwise, we select it as the hypograph of g′

i.
This signomial term set yields a signomial-term-free set C in (5.7) containing (ũ, ṽ) in its interior
(Lemma 3.22). By applying the orthogonal lifting, we can transform C into a signomial-lift-free
set C̄ as stated in Cor. 5.2.

We next show how to construct an intersection cut in (3.30). It suffices to compute step
lengths η∗

j in (3.29) along extreme rays rj ofR. Each step length η∗
j corresponds to a boundary

point z̃+η∗
j r
j in bd(C̄). The left-hand-side ψβ(u)−Ξψγ

ṽ (v) of the inequality in (5.7) is a concave
function over (u, v) ∈ Rh+ × Rℓ. Its restriction along the ray z̃ + ηjr

j (ηj ∈ R+) is a univariate
concave function:

τj : R+ → R, ηj 7→ τj(ηj) := ψβ(ũ+ rjuηj)− Ξψγ

ṽ (ṽ + rjvηj),

where rju and rjv are the projections of rj on u and v respectively. Let η̄j := supηj≥0{ηj :
ũ+ rjuηj ≥ 0}. Therefore, η∗

j is the first point in [0, η̄j ] satisfying the boundary condition: either
τj(η∗

j ) = 0 or η∗
j = η̄j . Since τj is a univariate concave function and τj(0) > 0, there is at most

one positive point in R+ where τj is zero. We employ the bisection search method [255] to
find such η∗

j .

5.3 Convex outer approximation

In this section, we propose a convex nonlinear relaxation for the extended formulation (3.13) of
SP. This relaxation allows us to generate valid linear inequalities, known as outer approximation
cuts, for SP. Unlike intersection cuts, outer approximation cuts do not require an LP relaxation
a priori .

Our goal is to construct a convex outer approximation of the signomial lift. This gives rise
to the convex nonlinear relaxation of SP. To ensure the convergence of the sBB algorithm, the
feasible region of the extended formulation (3.13) should be compact. Therefore, we assume
that the signomial lift is in a hypercube.

Our algorithm approximates every signomial term set in the hypercube generated from the
signomial lift. W.l.o.g., we consider a signomial term set in hypergraph or epigraph form. As
Sect. 5.2.1, we can convert it in normalized DDC formulation:

Sst = {(u, v) ∈ U × V : ψβ(u)− ψγ(v) ≤ 0}, (5.8)

where max(∥β∥1, ∥γ∥1) = 1, and U ,V are two hypercubes in Rh+,Rℓ+ respectively. The
signomial term set is generally nonconvex, so we should find a convex outer approximation of
Sst.

Our construction involves convexifying the concave function ψβ in (5.8). To do so, we will
use the formal concepts of convex underestimators and convex envelopes.

Given a function f and a closed set D ⊆ Rp, a convex function f ′ : conv(D)→ R is said to
be a convex underestimator of f over D, if, for all x ∈ D, f ′(x) ≤ f(x). The convex envelope
convenvD(f) of f is defined as the point-wise maximum convex underestimator of f over D,
i.e., epi(convenvD(f)) = conv(epiD(f)), where epiD(f) := {(x, t) ∈ D × R : f(x) ≤ t}.

The following lemma gives an extended formulation of the convex envelope of a concave
function over a polytope, where the formulation is uniquely determined by the function values
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at the vertices of the polytope. Based on Lemma 3.5, we observe that the concave function f
is convex-extensible from its vertices (i.e., convenvP (f)(x) = convenvQ(f)(x) for x ∈ P ), and
convenvP (f) is a polyhedral function.

For the case of P = U :=
∏
j∈[h][uj , uj ] and f = ψβ , Q = {q ∈ Rh : ∀j ∈ [h] qj =

uj ∨ qj = uj} is the set of vertices of the hypercube U . This yields an extended formulation of
convenvU (ψβ). Replacing ψβ by its convex envelope convenvU (ψβ), we obtain a convex outer
approximation of Sst in (5.8):

Sst := {(u, v) ∈ U × V : convenvU (ψβ)(u) ≤ ψγ(v)}.

By using this extended formulation, our convex nonlinear relaxation of SP incorporates
additional auxiliary variables. Specifically, we require 2h variables λq to represent each convex
envelope. For most SP problems in the MINLPLib, where the degrees of signomial terms are
less than 6, and h is less than 3, the convex outer approximation remains computationally
feasible.

5.3.1 Outer approximation cuts

To enhance efficiency, we propose a cutting plane algorithm to separate valid linear inequalities
in the (u, v)-space from the extended formulation of the convex outer approximation. This
algorithm generates a low-dimensional projection of Sst.

Given a point (ũ, ṽ) ∈ U × V, the algorithm determines whether it belongs to Sst. This
verification can be done by checking the sign of convenvU (ψβ)(ũ)−ψγ(ṽ). If convenvU (ψβ)(ũ)−
ψγ(ṽ) ≤ 0, then (ũ, ṽ) ∈ Sst.

Since convenvU (ψβ) is a convex polyhedral function, our cutting plane algorithm evaluates
the function by searching for an affine underestimator a · u + b of convenvU (u) such that
a · ũ+ b = convenvU (ũ). If (ũ, ṽ) /∈ Sst, then a · u+ b ≤ ψγ(ṽ) is a valid nonlinear inequality of
Sst. Consequently, our cutting plane algorithm linearizes the inequality, resulting in an outer
approximation cut a · u+ b ≤ Ξψγ

ṽ (v): we recall that Ξ is defined in Eq. (5.3).
Due to Lemma 3.5, we can solve the following LP to find the affine underestimator:

max
a∈Rh,b∈R

a · ũ+ b s. t.∀q ∈ Q a · q + b ≤ ψγ(q), (5.9)

where we omit the linear constraints that bound (a, b). The maximum value obtained from
this LP is exactly convenvU (ψβ)(ũ). The affine underestimator a · ũ+ b is called a facet of the
envelope convenvU (ψβ), if a · ũ+ b ≤ t is a facet of epi(convenvU (ψβ)). It should be noted that
the solution of the LP is not necessarily a facet.

For h = 1, 2, we can explicitly provide projected formulations of convex envelopes of power
functions. This enables us to obtain facets of convenvU (ψβ) without the need to solve LPs.
As a result, our cutting plane algorithm can efficiently separate outer approximation cuts for
low-order problems.

To simplify our presentation, we translate and scale the domain of ψβ to [0, 1]h. This yields
a new function s(w) := ψβ(u), where for all j ∈ [h], uj := uj + (uj − uj)wj . After these
transformations, we have U = [0, 1]h and Q = {0, 1}h. W.l.o.g., we focus on studying and
computing facets of convenvU (s). For h = 1, the only facet is s(0) + (s(1)− s(0))w1.
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A set D ⊆ Rh is called a product set, if D =×j∈[h] Dj for Dj ⊆ R. Let D be a product
set. A function f : D → R is supermodular over D (Section 2.6.1 of [287]), if the increasing
difference condition holds: for all w1, w2 ∈ D, d ∈ Rh+ such that w1 ≤ w2 and w1+d,w2+d ∈ D,
f(w1 + d)− f(w1) ≤ f(w2 + d)− f(w2). The following operations preserve supermodularity.

Lemma 5.6. Let w′ ∈ Rh, ρ ∈ Rh++, and let D′ be a product subset of D. The following results
hold: (restriction) f is supermodular over D′;(translation) f(w + w′) is supermodular over
D − d; (scaling) f(ρ ∗ w) is supermodular over D/ρ, where +,−, ∗, / are taken entry-wise.

Proof. The results follow from the definition.

We note that when D = Q, d is in Q. We observe a useful property of g.

Proposition 5.7. s is supermodular over Q and convenvU (s) = convenvQ(g).

Proof. According to Example 2.6.2 of [287], the signomial term ψα with α > 0 is a Cobb-
Douglas function, which is supermodular over Rh+. This implies that the power function ψβ is
supermodular over Rh+. By Lemma 5.6, s is supermodular over U = [0, 1]h. As Q = {0, 1}h is
a product subset of U , s is supermodular over Q. After the scaling and translation, s is still
concave, so it follows from Lemma 3.5 that convenvU (s) = convenvQ(s).

The search for facets of s can be reduced to a more general problem, which involves
finding facets of supermodular functions over Boolean hypercubes.

We note that both power functions and multilinear terms can be considered Cobb-Douglas
functions. Consequently, a similar argument can be used to demonstrate that multilinear terms
are supermodular over any product subset of Rh+.

5.3.2 Convex envelopes of bivariate supermodular functions

Using the aforementioned result in Sect. 4.2, we can construct an envelope-inducing family for
bivariate supermodular functions. Let

S2
1 := {00, 10, 01}, S2

2 := {11, 10, 01}. (5.10)

One can find that conv(S2
1) = {(w1, w2) ∈ [0, 1]2 : w1 +w2 ≤ 1}, conv(S2

2) = {(w1, w2) ∈ [0, 1]2 :
w1 + w2 ≥ 1} are two triangles in [0, 1]2. We have that

fS2
1
(w) = f(00) + (f(10)− f(00))w1 + (f(01)− f(00))w2,

fS2
2
(w) = f(11) + (f(01)− f(11))(1− w1) + (f(10)− f(11))(1− w2).

We show that these two affine functions define the convex envelope of f .

Theorem 5.8. For h = 2, {S2
k}k∈[2] as in (5.10) is envelope-inducing family in Q.

Proof. It is easy to see that for all k ∈ [2], S2
k is affinely independent and {conv(S2

k)}k∈[2] is a
triangulation of U . Therefore, it suffices to show that {S2

k}k∈[2] is facet-inducing, i.e., fS2
1
, fS2

2

are affine underestimators of f .
Case i. We note that for all w ∈ S2

1 = {00, 10, 01}, fS2
1
(w) = f(w). Note that Q∖S2

1 = {11}.
It follows from the definition of the affine function fS2

1
that

fS2
1
(11) = fS2

1
(10) + (fS2

1
(01)− fS2

1
(00)) = f(10) + (f(01)− f(00)).
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It follows from the supermodularity of f that

f(10) + (f(01)− f(00)) ≤ f(10) + (f(11)− f(10)) = f(11).

Thereby, fS2
1

underestimates f .
Case ii. We note that for all w ∈ S2

2 = {11, 10, 01}, fS2
2
(w) = f(w). Note that Q∖S2

2 = {00}.
It follows from the definition of the affine function fS2

2
that

fS2
2
(00) = fS2

2
(10)− (fS2

1
(11)− fS2

1
(01)) = f(10) + (f(11)− f(01)).

It follows from the supermodularity of f that

f(10)− (f(11)− f(01)) ≤ f(10)− (f(10)− f(00)) = f(00),

which concludes the proof.

5.3.3 Convexity and reverse-convexity

Our cutting algorithm can detect the convexity/reverse-convexity of signomial term sets. The
detection is simply through normalized DDC formulations.

Denote by eℓj and ehj the j-th unit vector in Rh and Rℓ respectively. Then, we have the
following observations:

i) if ∥β∥1 = 1, γ = 0, i.e., ψβ is concave and ψγ is 1, then Sst is reverse-convex;

ii) if ∥β∥1 ≤ 1, γ = eℓj for some j ∈ [ℓ], i.e., ψβ is concave and ψγ is a linear univariate
function, then Sst is reverse-convex;

iii) if β = ehj , ∥γ∥1 ≤ 1 for some j ∈ [h], i.e., ψβ is a linear univariate function and ψγ is
concave, then Sst is convex;

iv) if ∥β∥1 = 0, ∥γ∥1 = 1, i.e., ψβ is 1 and ψγ is concave, then Sst is convex.

We note that similar results are found in [86, 220]. The results in [86] are proved by
checking the negative/positive-semidefiniteness of the Hessian matrix of a signomial term.
According to the normalized DCC formulation, the results are evident.

5.4 Computational results

In this section, we conduct computational experiments to assess the efficiency of the proposed
valid inequalities.

The MINLPLib dataset comprises instances of MINLP problems that involve signomial
terms, and some of these instances are SP problems. To build our benchmark, we select
instances from MINLPLib that satisfy the following criteria: (i) the instance includes signomial
functions or polynomial functions, (ii) the continuous relaxation of the instance is non-convex.
Our benchmark consists of a diverse set of 251 instances in which nonlinear functions consist
of signomial and other functions. These problems frequently arise in practical applications and
are commonly solved by general-purpose solvers.
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Experiments are conducted on a server with Intel Xeon W-2245 CPU @ 3.90GHz, 126GB
main memory, and Ubuntu 18.04 system. We use SCIP 8.0.3 [62] as the framework for reading
and solving problems, as well as conducting cut separation. SCIP is integrated with CPLEX
22.1 as LP solver and IPOPT 3.14.7 as NLP solver.

We evaluate the efficiency of the proposed valid inequalities in four different settings. The
first setting, denoted as disable, does not apply any of the proposed valid inequalities. The
second setting, denoted as oc, applies only the outer approximation cuts. The third setting,
denoted as ic, applies only the intersection cuts. The fourth setting combines both the oc
and ic settings by applying both cuts. We let SCIP’s default internal cuts to handle univariate
signomial terms and multilinear terms. Our valid inequalities only handle the other high-order
signomial terms. The source code, data, and detailed results can be found in our online
repository: github.com/lidingxu/ESPCuts.

In our benchmark, there are 150 instances classified as affected, in which at least one of
the oc, ic, and oic settings adds cuts. There are 86 instances among the affected ones, for
which SCIP’s default configuration (i.e., the disable setting) runs at least 500 seconds. Such
instances are classified as affected-hard. Each test run uses SCIP configured by a setting
to solve an instance. To solve the instances, we use the SCIP solver with its sBB algorithm,
imposing a time limit of 3600 seconds. For each test run, we measure the running time, the
number of sBB search nodes, and the relative open duality gap.

To aggregate the performance metrics for a given setting, we compute shifted geometric
means (SGMs) over our test set. The SGM for the running time incorporates a shift of 1
second. The SGM for the node number incorporates a shift of 100 nodes. The SGM for the
relative gap incorporates a shift of 1%. We also compute SGMs of performance metrics over
the subset of affected and affected-hard instances. The performance results are presented
in Table 5.1, where we also compute the relative values of SGMs of performance metrics
compared to the disable setting. Our following analysis is based on the results on affected
and affected-hard instances.

Setting All Affected Affected-hard
solved nodes time gap solved nodes time gap solved nodes time gap

disable
absolute 138/251 6510.5 122.0 4.7% 71/150 15592.4 253.6 5.7% 7/86 175973.8 3600.0 26.7%
relative 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

oc
absolute 140/251 5954.1 118.0 4.5% 73/150 13443.9 241.4 5.4% 10/86 115262.3 2872.7 23.3%
relative 0.91 0.97 0.97 0.86 0.95 0.95 0.65 0.8 0.87

ic
absolute 140/251 6144.3 122.4 4.4% 73/150 14081.5 252.1 5.2% 10/86 128072.7 2994.1 22.0%
relative 0.94 1.0 0.95 0.9 0.99 0.91 0.73 0.83 0.82

oic
absolute 139/251 5934.6 117.7 4.6% 72/150 13275.6 236.8 5.6% 10/86 118054.1 2758.3 23.0%
relative 0.91 0.96 0.99 0.85 0.93 0.98 0.67 0.77 0.86

Table 5.1 Summary of performance metrics on MINLPLib instances

First, we observe that the proposed valid inequalities lead to the successful solution of 2
additional instances compared to the disable setting. Considering the oc setting, it solves
2 more instances than the disable setting. Note that, in the affected-hard benchmark, the
number of solved instances by any non-disable setting is 3 more than that by the disable
setting; in the affected benchmark, the number of solved instances by any non-disable setting
is at most 2 more than that by the disable setting. This is because restriction of the benchmark
can reduces more solvable instances by the disable setting.

https://github.com/lidingxu/ESPCuts
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The reductions in the running time, and relative gap achieved by the oc setting are
respectively 5%, 5% for affected instances and 20%, 13% for affected-hard instances. For
the ic setting, it solves 2 more instances than the disable setting. The reductions in the
running time, and relative gap achieved by the ic setting are respectively 1%, 9% for affected
instances and 17%, 14% for affected-hard instances. In the case of the oic setting, it solves
1 additional instance compared to the disable setting. The reductions in the running time,
and relative gap achieved by the oic setting are respectivel 7%, 2% for affected instances and
23%, 14% for affected-hard instances.

We note that the running time does not give much information on affected-hard instances,
because only 10 instances can be solved within 3600 seconds. For these instances, the
gap reduction is more useful to measure the reduction of the search space by the proposed
valid inequalities. However, for all affected instances, the running time is still important, as it
measures the acceleration by the valid inequalities.

Secondly, we observe that all cut settings have a positive impact on the performance of
SCIP, although the extent of reduction varies. When comparing the oc and ic settings, we
find that the oc setting leads to a greater reduction in running time. This difference in running
time arises because computing intersection cuts involves extracting a simplicial cone from the
LP relaxation and applying bisection search along each ray of the cone. These procedures
require more computational resources compared to the construction of outer approximation
cuts.

On the other hand, the ic setting demonstrates better performance in terms of gap
reduction. Intersection cuts approximate the intersection of a signomial term set with the
simplicial cone, while outer approximation cuts approximate the intersection of a signomial
term set with a hypercube. Around the relaxation point, the simplicial cone typically provides a
better approximation than the hypercube. Hence, ic achieves a larger reduction in the relative
gap. However, the better simplicial conic approximation does yield a significant improvement
compared to the hypercubic approximation.

Lastly, the oic setting combines both the oc and ic settings, achieving the best reduction
in the running time. However, for affected and affected-hard instances, the setting exhibits
different results on gap reduction. In fact, the results of affected-hard instances give more
insights, since the goal of valid inequalities is to accelerate the convergence for had instances.
In this sense, the oic setting achieves nearly the best result, so it inherits the best of both valid
inequalities. However, its improvement compared to the individual settings is not significant.

To summarize, the performances of the oc and ic settings are comparable. They can lead
to smaller duality gap with less computational time, which are desirable for solvers, and one
can use any of them. Moreover, they do not hurt each other.

5.5 Conclusion

In this chapter, we study valid inequalities for SP problems, and propose two types of valid
linear inequalities: intersection cuts and outer approximation cuts. They are both derived from
the normalized DCC formulations of signomial term sets. First, we study general conditions on
maximal S-free sets. We construct maximal signomial-term-free sets, from which we generate
intersection cuts. Secondly, we construct convex outer approximations of signomial term
sets within hypercubes. We provide extended formulations for the convex envelopes of the
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concave functions in the normalized DCC formulations. Then we separate valid inequalities
for the convex outer approximations through projection. Additionally, when h = 2, we use
supermodularity to derive a closed-form expression for the convex envelopes.

We present a comparative analysis of computational results obtained from the MINLPLib
instances. This analysis demonstrates the effectiveness of the proposed valid inequalities. The
results indicate that intersection cuts and outer approximation cuts exhibit similar performance,
and their combination inherits the best of the individual settings. In particular, it is straight-
forward to implement outer approximation cuts in general-purpose solvers. In the future, we
intend to carefully fine-tune outer approximation cuts and develop it as an easy-to-use plugin.

We currently deal with signomial terms that explicitly present in the signomial lift, but
our results can be extended to handle more “faces” of the signomial lift. In the future, the
proposed valid inequalities can approximate nonlinear aggregations of constraints defining the
signomial lift. Specifically, given signomial constraints {ψαi(x) = yi}i∈[r], with any exponent
vector ζ ∈ Rr, we can employ signomial aggregation to generate a new signomial constraint:
ψ(
∑

i∈[r]
ζiαi)(x) = ψζ(y). This constraint is valid for the signomial lift and encodes more

variables and terms. Subsequently, we can apply DCC reformulation to the constraints
ψ(
∑

i∈[r]
ζiαi)(x) ≤ ψζ(y) and ψ(

∑
i∈[r]

ζiαi)(x) ≥ ψζ(y). Finally, we can separate the proposed

valid inequalities. As far as we know, the signomial aggregation operator is not used yet for
polynomial programming, as it outputs a signomial constraint.



Chapter 6

Intersection cuts for submodular
optimization

6.1 Introduction

In this chapter, we first consider S as the Boolean-hypograph hypo{0,1}n(f) of f . We use
convex extensions of f in order to construct some S-free sets, which we call Boolean-
hypograph-free. The Boolean-hypograph set hypo{0,1}n(f) is a specialization of the constraint
set {(x, t) ∈ {0, 1}n × R : f1(x) − f2(x) ≥ ℓt} with ℓ ∈ {0, 1}. Then, we consider S as this
general constraint set and extend our results to handle this general case. Finally, we propose
an efficient algorithm to compute intersection cuts derived from S-free sets. To the best of
our knowledge, intersection cuts have not been applied directly to approximate problems with
submodular and/or supermodular structures.

We implement intersection cuts within the SCIP solver [61] and test them on MAX CUT,
PSEUDO BOOLEAN MAXIMIZATION, and BAYESIAN D-OPTIMAL DESIGN problems. We show the
strengths and weaknesses of intersection cuts under these different settings.

6.1.1 Literature review

The base inequalities [237] are a class of valid linear inequalities for the hypographs of general
submodular functions. For a class of special submodular functions, lifting procedures [8, 277]
can strengthen the base inequalities. The base inequalities can be separated either using
heuristics [8] or a Benders-like framework [104] if the point to be separated is integer. The
method defined in [23] combines valid inequalities for the submodular and supermodular
components of an SS function. We refer to [19, 20, 65, 72, 171, 189, 260, 274, 312, 316] for
more details about the exploitation of submodular/supermodular functions in mathematical
programs. Supermodular polynomials in binary variables are defined and studied in [65, 260].
The submodularity of the D-OPTIMAL DESIGN problem is exploited in [266, 274].

As already mentioned, intersection cuts generate valid inequalities for sets that are hard
to optimize over. Gomory introduced the corner polyhedron [159], and his celebrated mixed-
integer cuts [160] are special intersection cuts derived from split disjunctions [236]. The
definition of intersection cuts for arbitrary set S is due to [125, 156]. We refer to [16, 17,
39, 40, 101, 102, 109, 119, 125, 261] for a more in-depth analysis. The method given
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in [289] can generate valid inequalities that cut off points outside S-free sets. We refer
to [17, 46, 194, 195, 229, 230] for relevant recent developments in mixed-integer conic
programming.

For the cases where the nonconvexity of S is not just due to integer variables, we refer to
[137] for bilevel programs, [64] for outer-product sets, [233, 232] for quadratic constraint sets,
[312] for signomial-term sets, and [138] for bilinear sets. The method given in [271] constructs
intersection cuts for sets arising from factorable programs that contain DC functions [188].

Next, we discuss valid inequalities for polynomial programming, because we use polynomial
programs in binary variables as a benchmark in our computational study. In [64], intersection
cuts approximate a nonconvex lifted set, namely the outer product set arising from the
extended formulation of a polynomial program. Lifted sets link decision variables to auxiliary
variables representing (graphs of) monomials up to a given degree. We remark that in most
combinatorial optimization problems, decision variables are binaries. The polynomial program
of interest is then a Boolean Multilinear Program (BMP). The corresponding lifted set is the
Boolean multilinear set [111, 139], the convex hull of which is the so-called Boolean multilinear
polytope. Valid inequalities for the Boolean multilinear polytope may be stronger than those for
the convex hull of the outer product set. Various Gomory-Chvátal-based inequalities [115–118]
are valid for the multilinear polytope. The separation and strength of these inequalities depend
on the hypergraph representing the underlying sparsity pattern of the multilinear set.

We consider a constrained polynomial program, and assume that some of its constraints
are neither integrality constraints nor variable bound constraints. After lifting, those constraints
are linear and thus define a convex set S1. The lifted set S2 is nonconvex, and S1 ̸⊆ S2. The
polynomial program is then equivalent to linear optimization over conv(S1 ∩ S2). However,
in general, conv(S1 ∩ S2) ̸= S1 ∩ conv(S2), so the convexification of the lifted set may not
yield an equivalent convex problem. To address this issue, one attempt is to directly consider
conv(S1 ∩ S2) and generate valid inequalities for it. Some work in this sense exists for certain
interesting special cases, e.g. the intersection of multilinear sets with additional constraint sets
such as cardinality constraints [87]. Another attempt is to consider constraints in projected
formulations, e.g., in mixed-integer quadratically constrained quadratic programs [268]. Since
the representation complexity of the projected formulation is smaller than that of the extended
formulation, this approach is also amenable to computation. In [89, 233], intersection cuts for
the set defined by a quadratic constraint are derived. If additionally, some of the nonbasic
variables of the LP relaxation need to be integer, the monoidal technique [90] can strengthen
such intersection cuts.

However, generating valid inequalities for Boolean multilinear constraints, and, more
generally, constructing S-free sets for nonlinear constraints on discrete variables, remain
problems of considerable interest. In this chapter, we look at these questions through a
“submodularity lens”.

6.1.2 Contribution

In Sect. 4.1.3, we already studied vairous properties for S-free sets arising in submodular
maximization. We summarize those theoretical contributions here. Our primary contribution is
the construction of Boolean-hypograph-free sets. We show that a maximal Boolean-hypograph-
free set C × R can be lifted from a maximal {0, 1}n-free set. We also give an alternative
construction of Boolean-hypograph-free sets by exploiting the submodularity. We relate the
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analytical properties of F̄f in (4.10) to its combinatorial properties, which inherit those of the
Lovász extension. We show that the epigraph epi(F̄f ) of F̄f is a Boolean-hypograph-free set
that is larger than the epigraph of the Lovász extension. However, unlike in the continuous
setting, epi(F̄f ) is not maximally Boolean-hypograph-free. We give necessary and sufficient
conditions on maximal Boolean-hypograph-free sets that contain epi(F̄f ).

The second contribution is the computation of intersection cuts. We reduce the intersection
cut separation problem to solving univariate nonlinear equations, which we achieve by a
hybrid discrete Newton algorithm like [157]. We show that facets of epi(F̄f ) can be separated
in strongly polynomial time. This implies that the (sub)-gradients required by the Newton
algorithm can be computed in a strongly polynomial time. The hybrid discrete Newton algorithm
finds a zero point of a univariate nonlinear equation in a finite number of steps. By contrast,
the conventional bisection algorithm only guarantees ϵ-approximated solutions for ϵ > 0.

Lastly, we extend the previous findings to constraint sets involving an SS function. We
show that any Boolean multilinear function is an SS function. This result yields intersection
cuts for multilinear constraints in binary variables.

6.1.3 Outline of the chapter

The rest of the chapter is organized as follows. In Sect. 6.2, we consider applications for
intersection cuts to Boolean multilinear constraints and BAYESIAN D-OPTIMAL DESIGN. In
Sect. 6.3, we propose the hybrid discrete Newton algorithm for computing intersection cuts. In
Sect. 6.4, we analyze the computational results.

6.2 Application

In this section, we discuss the application of intersection cuts to Boolean multilinear program-
ming and D-optimal design. We exploit the submodular structures in these two problems.

6.2.1 Boolean multilinear constraints

We consider the construction of S-free sets for Boolean multilinear constraints. Since x ∈
{0, 1} ⇔ x2 = x, one can reduce a polynomial function defined on binary variables to a
multilinear function, whose monomials do not include powers. For example, x2

1x
3
3 + x2

2 can be
reduced to x1x3 + x2. A Boolean multilinear function is sometimes called a pseudo Boolean
function.

A similar case is the construction of S-free sets for continuous quadratic constraints [233].
We call this construction the “continuous approach”. It applies eigenvalue decomposition to
factor the symmetric matrix representing quadratic terms in a quadratic constraint. Through this
factorization, the quadratic constraint is reformulated to a DC constraint, possibly intersected
with additional linear constraints. This reformulation is amenable to the reverse-linearization
technique. Applying the technique with possibly additional operations, one can construct the
so-called continuous-quadratic-free sets [233] 1. Multilinear terms, however, are represented
by tensors. High-order tensor decomposition is more complicated than matrix decomposition

1The construction is de facto discussed case by case. For some cases, the reverse-linearization technique already
suffices to produce continuous-quadratic-free sets. For other cases, one needs additional operations, e.g., projecting
out a lineality space. Notably, all cases require the eigenvalue decomposition and its resulting DC constraint.
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[193]. It is doubtful whether the continuous approach can be extended so as to produce DC
functions from tensors.

Here we consider an alternative discrete approach. It exploits the submodularity and the
supermodularity of Boolean multilinear functions. In [65, 237], a class of Boolean multilinear
functions is shown to be supermodular. We give a submodular-supermodular decomposition
for general Boolean multilinear functions in the following.

Proposition 6.1. Consider a Boolean multilinear function f : B → R, x 7→
∑
k∈[K] ak

∏
j∈Ak

xj

with K multilinear terms, where Ak ⊆ [n]. Let f = f1 − f2 where

f1(x) :=
∑

k∈[K]
ak<0

ak
∏
j∈Ak

xj (6.1)

f2(x) := −
∑

k∈[K]
ak>0

ak
∏
j∈Ak

xj . (6.2)

Then f1, f2 are submodular over B.

Proof. It follows from Theorem 13.21 of [112] that f1, f2 are submodular functions over B.

Since every Boolean multilinear function is an SS function, we can construct S-free sets
for the corresponding Boolean-superlevel set or Boolean-hypograph set.

Corollary 6.2. Consider a multilinear function f : B → R, where f(x) =
∑
k∈[K] ai

∏
j∈Ak

xj

for Ak ⊆ [n] as in Prop. 6.1, and f1(x), f2(x) as in Eq. (6.1)-(6.2). Let S, S, and Cx̃ be as
(4.14), (4.15), (4.16), respectively. Then, the set Cx̃ is an S-free set. Moreover, if x̃ /∈ S, then
Cx̃ does not contain x̃ in its interior.

Proof. By Prop. 6.1, we know that both f1 and f2 are submodular. Hence, the result follows
by applying Prop. 4.27.

Importing the notation in Prop. 6.1, a BMP problem has the following form:

max t (6.3a)∑
k∈K0

aik
∏
j∈Ak

xj ≥ t (6.3b)

∀i ∈ [m]
∑
k∈Ki

aik
∏
j∈Ak

xj ≥ 0 (6.3c)

∀j ∈ [n] xj ∈ {0, 1}, (6.3d)

where m is the number of constraints, K is the number of distinct multilinear terms in the
BMP, Ki ⊆ [K] is the index set of multilinear terms in the i-th constraint (0 for objective).
Unconstrained BMP has several synonyms: PSEUDO BOOLEAN MAXIMIZATION or MULTILINEAR

UNCONSTRAINED BINARY OPTIMIZATION (MUBO).
To construct S-free sets for Boolean multilinear constraints in the BMP, we need to write

them as the standard form (4.14). For all i ∈ [m] or i = 0, let

fi(x) :=
∑
k∈Ki

aik
∏
j∈Ak

xj ,
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and write
fi(x) = fi1(x)− fi2(x),

where fi1 :=
∑
k∈Ki:aik<0 aik

∏
j∈Ak

xj and fi2 := −
∑
k∈Ki:aik>0 aik

∏
j∈Ak

xj are two sub-
modular functions.

The objective and constraints of (6.3) can be represented as

fi1(x)− fi2(x) ≥ ℓit

(for all i ∈ [m], ℓi = 0, and ℓ0 = 1), which, by Cor. 6.2, is in the standard form.
Separating intersection cuts requires LP relaxations or simplicial cones. One can first lift

multilinear terms to obtain an extended formulation:

max t (6.4a)∑
k∈K0

a0kyk ≥ t (6.4b)

∀i ∈ [m]
∑
k∈Ki

aikyk ≥ 0 (6.4c)

k ∈ [K] yk =
∏
j∈Ak

xj (6.4d)

∀j ∈ [n] xj ∈ {0, 1} (6.4e)

The standard Boolean linearization technique [111] can reformulate a multilinear term∏
j∈Ak

xj by its underestimators and overestimators:

∀j ∈ Ak yk ≤ xj (6.5a)

yk ≥ |Ak|+ 1−
∑
j∈Ak

xj , (6.5b)

where |Ak| is the cardinality of Ak. Then, by linearizing each nonlinear constraint (6.4d) as
linear constraints in (6.5), one obtains a MILP reformulation of (6.4).

To construct LP relaxations, one can simply drop the integrality constraints xj ∈ {0, 1}.
The direct LP relaxation of the MILP reformulation is also an LP relaxation of the BMP (6.4).
Following the method at the end of Sect. 4.1.3, we can construct an optimal tableau cone in
the extended space (x, y, t). The S-free set belongs to a projected space (i.e., (x, t)-space).
By extracting the (x, t) entries of the rays of the optimal tableau cone, we project the optimal
tableau cone into the (x, t)-space. Given the projection of this optimal tableau cone, it is
straightforward to construct intersection cuts for the BMP: we separate the intersection cuts
constructed by means of the S-free sets given by Prop. 4.27.

As explained above, Boolean quadratic constraints belong to Boolean multilinear con-
straints, and continuous quadratic constraints relax Boolean quadratic constraints. Both the
continuous and discrete approaches can construct valid S-free sets for Boolean quadratic
constraints. We remark that maximal continuous-quadratic-free sets are no longer maximally
Boolean-quadratic-free. It is easy to see that the discrete approach preserves the term-wise
sparsity patterns of the SS functions and requires no factorizations. Therefore, the discrete
approach is computationally amenable to ill-conditioned or sparse coefficient matrices.
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6.2.2 D-optimal design

In statistical estimation, optimal designs are a class of experimental designs that are optimal
with respect to some statistical criterion. We derive an extended convex MINLP formulation for
the BAYESIAN D-OPTIMAL DESIGN problem. In this formulation, the problem is a cardinality-
constrained submodular maximization problem.

Let Sm denote the set of m-by-m symmetric matrices, and let Sm+ (resp. Sm++) denote the
set of m-by-m positive semi-definite (resp. positive definite) matrices. Given a set of full
row-rank matrices {Mj ∈ Rm×rk}j∈[n], an optimal design problem usually has the following
form:

max Φ(
∑
j∈[n]

MjMj
⊤xj) (6.6a)

∑
j∈[n]

xj = k (6.6b)

∀j ∈ [n] xj ∈ {0, 1}, (6.6c)

where k is the size of the design and Φ : Sm → R is the design criterion. The matrix M(x) :=∑
j∈[n] MjMj

⊤xj is called the information matrix. For the D-optimal criterion [72, 267], Ψ is
the log determinant function log det.

Reseachers usually study BAYESIAN D-OPTIMAL DESIGN, where a statistical prior on the
data {Mi}i∈[n] adds a regularization term ϵI into the information matrix M(x). Thus, M(x) =
ϵI +

∑
j∈[n] MjMj

⊤xj . The additional term is also due to the well-posedness: when x = 0,
we have that log det(M(0)) = log det(ϵI) is well defined. Then, the submodular maximization
version of the BAYESIAN D-OPTIMAL DESIGN problem has the following formulation:

max log det

ϵI +
∑
j∈[n]

MjMj
⊤xj

 (6.7a)

∑
j∈[n]

xj = k (6.7b)

∀j ∈ [n] xj ∈ {0, 1}, (6.7c)

The log determinant function is concave and has a semi-definite programming (SDP)
and geometric programming representation [18]. The scalability of the mixed-integer log
determinant formulation above is limited by the current state of SDP solvers. Based on the
second order cone representation of the determinant function det(M(x)) [267], we give an
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extended formulation for (6.7):

max t (6.8a)

t ≤
∑
i∈[m]

log(Jii) (6.8b)

∑
j∈[n]∪{0}

MjZj = J (6.8c)

J is lower triangular (6.8d)

j ∈ [n] ∪ {0} i ∈ [m] ∥Zjei∥2 ≤ ujixj (6.8e)

i ∈ [m]
∑

j∈[n]∪{0}

uji ≤ Jii (6.8f)

∑
j∈[n]

xj = k (6.8g)

x ∈ {1} × B (6.8h)

J ∈ Rm×m (6.8i)

j ∈ [n] ∪ {0} Zj ∈ Rrj×m (6.8j)

j ∈ [n] ∪ {0} i ∈ [m] uji ∈ Rrj×m
+ , (6.8k)

whereM0 = ϵ1/2I is an auxiliary matrix. One can represent this formulation by low-dimensional
convex cones [18], e.g., (rotated) second-order cones, and exponential cones. Therefore, this
extended formulation is amenable to computation.

Proposition 6.3. (6.8) is equivalent to (6.7), and the objective function of (6.7) is submodular
w.r.t. x.

Proof. One can modify the original D-optimal design problem by adding a slack variable
x0 = 1. Applying the logarithmic transformation to results in [267], (6.8) is equivalent to (6.7).
It follows from [266, 274] that (6.7) is submodular w.r.t. x.

A global optimization solver like SCIP can linearize the constraints in the extended for-
mulation (6.8), and thus produces an LP relaxation in the extended space. We can obtain
an optimal tableau cone as the approach dealing with the BMP. Then, we can construct
intersection cuts from Boolean-hypograph-free sets.

6.3 Separation problem

In this section, we consider the separation problem for an intersection cut from an S-free set.
Summarizing the previous sections, the S-free set is in the form of

C := {(x, t) ∈ Rn × R : G(x) ≤ ℓt},

where G(x) = maxs∈ext(EPMg) sx is the extended envelope of some submodular function g over
B and ℓ ∈ {0, 1}. We remark that the extended envelope epigraph EEf in (4.8) is a special
case with ℓ = 1 and g = f ; the set Cx̃ in (4.16) is also a special case that g(x) = f1(x)− γ∗x.

Assume that z∗ := (x̃, t̃) is the vertex of an optimal tableau cone R, and z∗ ∈ int(C).
Recalling the cut coefficient formula in Sect. 3.4, the separation problem consists in computing
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the step length along each ray rj :

η∗
j = sup

ηj≥0
{ηj : z∗ + ηjr

j ∈ C}. (6.9)

This line search problem asks for the step length to the border of C along the ray rj from z∗

which, we recall, is an interior point of C. We denote by rjx, r
j
t the projection of rj on x- and t-

spaces. Looking at the function defining C, the intersection step length η∗
j is the zero point of

the following function:

ζj : R+ → R, where ζj(ηj) = ℓ(t̃+ rjtηj)− G(x̃+ rjxηj).

This function enjoys the following properties.

Proposition 6.4. ζj is a concave piece-wise linear function over [0,+∞] with ζj(0) > 0. If
η∗
j <∞ and there exists an η′

j > 0 with ζj(η′
j) = 0, then η′

j = η∗
j , i.e., the solution η∗

j must be
unique. For all s∗ ∈ argmaxs∈ext(EPMg) s(x̃+ ηjr

j
x), ℓrjt − s∗rjx is a subgradient in ∂ζj(ηj). For

ηj > η∗
j , ∂ζj(ηj) ≤ ∂ζj(η∗

j ).

Proof. Since the extended envelope G is the maximum of linear functions, it is convex and
piece-wise linear, so ζj is concave and piece-wise linear. Since ζj(0) = ℓt̃− G(x̃), it follows
from the assumption z∗ ∈ int(C) that ℓt̃ > G(x̃) and thus ζj(0) > 0. Since C is closed and
convex, η′

j = η∗
j if and only if z∗ + η′

jr
j ∈ bd(C). That is G(rjxηj + x̃) = G(x̃) + rjtη

′
j , i.e.,

ζj(η′
j) = 0. Since s∗ ∈ ∂G(x̃+ rjxηj), by the chain rule, ℓrjt − s∗rjx is a subgradient of ζj . By

the concavity of ζj , its subgradients are non-increasing.

By Prop. 6.4, the line search problem (6.9) is reduced to solving the univariate nonlinear
equation:

ζj(ηj) = 0. (6.10)

For each ray rj , solving (6.10) gives the unique zero point of the univariate function ζj , or
certifies that no such point exists.

To solve the univariate nonlinear equation (6.10), it is natural to deploy a Newton-like
algorithm. Therefore, we need the value and (sub)gradient information of ζj : the computation
of ζj can then be reduced to the computation of G. The value and subgradients of G are
obtained by means of a sorting algorithm (see Prop. 4.14). We note that these computations
can be carried out in strongly polynomial time.

Previous works [90, 312] use the bisection algorithm, which guarantees finding the zero
point within a given tolerance. Our implementation, which we call hybrid discrete Newton
algorithm, is a combination of the discrete Newton algorithm [157] and the bisection algorithm.
The role of the bisection algorithm in Alg. 6.1 is to help find a starting point for the Newton
algorithm. Thanks to the piece-wise linearity of the univariate function ζj , our algorithm finds
an exact zero point in a finite time.

Proposition 6.5. The hybrid discrete Newton algorithm terminates in a finite number of steps
and finds the zero point η∗

j .

Proof. For all η ∈ R+, we assume that Algorithm 6.1 chooses and computes a unique
subgradient β at ηj , we denote it ∇ζj(ηj), and call it algorithmic gradient. The concavity of
ζj implies that its algorithmic gradient is monotone-decreasing w.r.t. ηj . There is a threshold
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Algorithm 6.1: Hybrid discrete Newton algorithm
1 Input: The univariate function ζj , (scalar) starting point ∆ > 0 (default: 0.2), a numeric

η∞ representing +∞, and the maximum number I of search steps (default: 500);
2 Output: ηj > 0 such that ζj(ηj) = 0;
3 Let step number i = 0, and let step length ηj = ∆;
4 if ζj(η∞) > 0 then
5 ηj = η∞; ◃ safeguard
6 else
7 while i < I do
8 Let s∗ ∈ argmaxs∈ext(EPMg) s(x̃+ rjxηj);
9 Compute a subgradient β = rjt − s∗rjx;

10 if ζj(ηj) = 0 then
11 break;
12 else if β < 0 then
13 ηj = ηj − ζj(ηj)

β ; ◃ Newton step

14 else
15 ηj = 2ηj ; ◃ bisection step

16 i = i+ 1;

η′
j ≥ 0 such that, for all ηj ∈ [0, η′

j), the algorithmic gradient ∇ζj(ηj) > 0; for all ηj ∈ [η′
j ,+∞]

(called the Newton step region), the algorithmic gradient ∇ζj(ηj) ≤ 0.
After a finite number of bisection steps (at most ⌈log(η′

j/∆)⌉), the algorithm enters the
Newton step region [η′

j ,+∞], where the algorithmic gradient is always negative. Then, we
prove that the algorithmic gradient ∇ζj(ηj) at step i is different from that at step i − 1, and
the algorithm stays in the Newton step region. Since ζj is piece-wise linear (the number of its
distinct algorithmic gradients is finite), the algorithm must terminate in a finite number of steps.

If at step i− 1, ζj(ηj − ζj(ηj)
∇ζj(ηj) ) = 0, then the algorithm terminates at this step and finds the

zero point. If at step i−1, ζj(ηj− ζj(ηj)
∇ζj(ηj) ) < 0, then we prove that∇ζj(ηj− ζj(ηj)

∇ζj(ηj) ) ̸= ∇ζj(ηj)

and ∇ζj(ηj − ζj(ηj)
∇ζj(ηj) ) ≤ 0.

First, assume, to aim at a contradiction, that ∇ζj(ηj − ζj(ηj)
∇ζj(ηj) ) = ∇ζj(ηj). Knowing

that the algorithmic gradient is monotone-decreasing, the piece-wise linearity of ζj implies
that this algorithmic gradient is constant in the range [ηj − ζj(ηj)

∇ζj(ηj) , ηj ]. It follows that for all

δ ∈ [0, ζj(ηj)
∇ζj(ηj) ], ζj(ηj − δ) = ζj(ηj)− δ∇ζj(ηj). Hence, ζj(ηj − ζj(ηj)

∇ζj(ηj) ) = 0, which leads to a
contradiction.

Second, we show that ∇ζj(ηj − ζj(ηj)
∇ζj(ηj) ) ≤ 0. When ζj(ηj)

∇ζj(ηj) ≤ 0, by the mononcity of ∇ζj ,

∇ζj(ηj− ζj(ηj)
∇ζj(ηj) ) ≤ ∇ζj(ηj) < 0. When ζj(ηj)

∇ζj(ηj) > 0, as by assumption that∇ζj(ηj) < 0, ζj(ηj)

must be negative. Then, by the concavity of ζj , ζj(ηj− ζj(ηj)
∇ζj(ηj) ) ≤ ζj(ηj)−∇ζj(ηj) ζj(ηj)

∇ζj(ηj) = 0.

This implies that ∇ζj(ηj − ζj(ηj)
∇ζj(ηj) ) ≤ 0.

From Prop. 6.5, the hybrid discrete Newton algorithm first executes bisection steps with
increasing ηj and ζj(ηj). Then it enters into the Newton step region. After a single Newton
step, ζj(ηj) becomes negative, and then monotonically increases to zero in a finite number of
steps.

The discrete Newton algorithm in [157] is applied to the line search problem for submodular
polyhedra, which are polars of extended polymatroids. In that context, it runs in a strongly
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polynomial time. In our case, C contains the extended polymatroid, but it is unbounded
in general. The corresponding line search problem may have no solutions, if the ray rj is
contained in the recession cone of C. Therefore, Algorithm 6.1 needs a safeguard step, where
we evaluate ζj at a user-defined infinity. One may also prove that Algorithm 6.1 runs in a
strongly polynomial time, but a careful analysis for the unbounded case is needed.

6.4 Computational results

In this section, we conduct computational experiments to test the proposed cuts. The source
code, data, and detailed results can be found in our online repository: github.com/lidingxu/Subcut.

Setup and performance metrics. The experiments are conducted on a server with Intel
Xeon W-2245 CPU @ 3.90GHz and 126GB main memory. We use SCIP 8.0 [61] as a MINLP
framework to solve the natural formulations of test problems. SCIP is equipped with CPLEX
22.1 as an LP solver, and IPOPT 3.14 as an NLP solver.

By Thm. 4.17, the simple lifted split Hj := {x ∈ Rn : 0 ≤ xj ≤ 1} × R is a maximal
hypoB(f)-free set, where the splitting variable xj is chosen as the most fractional entry of the
relaxation solution. We have three settings of cut separation routines (cut separators). The
submodular cut (resp. the split cut) setting adds intersection cuts derived from EEf (resp. Hj),
and the default setting does not add any intersection cuts. Our separators adhere to unified
parameter settings that aim to maximize the likelihood of SCIP invoking our separators. These
parameters for the cut separators in SCIP are detailed in [2]. Notably, during our experiments,
we observed that the cut separators are predominantly influenced by the following parameters:

• SEPA_PRIORITY: the priority of the intersection cut separator. We set it to 100000
(the separators are called in a predefined order, which is given by the priorities of the
separators).

• SEPA_DELAY: the default for whether the separation method should be delayed, if other
separators found cuts. We set it to TRUE, i.e., delayed. (If the separator’s separation
method is marked to be delayed, it is only executed after no other separator found a cut
during the price-and-cut loop).

• SEPA_MINVIOL: the minimal violation a cut must fulfill such that the cut can be added.
We set it to 10−4.

• SEPA_NCUTSLIMITROOT: the limit for the number of cuts generated at the root node.
We set it to -1, meaning that the separation is unlimited.

Most cut separators in SCIP have priorities lower than 15, leading us to assign the highest
priority to our cut separators. Consequently, SCIP calls our cut separators before the others
during the optimization process.

The proposed cuts in this chapter are represented by the expression αx+ µt ≤ β. When
constructing a cut of this form to separate a point (x̃, t̃), it is considered numerically ill-
conditioned, if the condition number max(α, µ)/min(α, µ) becomes too large.

The objective of the proposed cuts is to approximate the constraint f(x) ≥ ℓt, where f

represents either a submodular function or an SS function. During our analysis, we observed
that the magnitude of f(x) can be significantly larger than 1. For submodular cuts, this

https://github.com/lidingxu/Subcut
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leads to a numerically ill-conditioned cut, where the magnitude of µ is much smaller than the
magnitudes of the entries in α.

A similar issue arises in the numerical optimization of finite sums of nonlinear functions,
such as problems of the form min g(x) := min

∑
j∈[k] gj(x). To enhance numerical stability

during optimization, it is more favorable to optimize the average g(x)/k rather than g(x) itself.
Therefore, we adopt a similar pre-processing step to scale our test problems.

Specifically, we scale the constraint f(x) ≥ ℓt into f(x)/χ ≥ ℓt, where χ represents a
positive scaling factor. The purpose of this step is to ensure that the magnitude of µ becomes
similar to that of α and β. The factor χ is selected as follows:

• For MAX CUT problems, χ is the number of edges of the graph.

• For PSEUDO BOOLEAN MAXIMIZATION problems, χ is the number of degree-4 monomials
in the polynomial.

• For D-OPTIMAL DESIGN problems, χ is 1.

SCIP has internal routines of higher authority than any individual cut separator. These
routines can control whether to invoke a cut separator and whether to apply the cuts found
by the separator. Interfaces of these routines are not exposed publicly, but SCIP allows us
to affect these routines through the parameters of cut separators. Therefore, we conduct
the above three settings respectively in two distinct configurations: the standalone and the
embedded configurations.

In the standalone configuration, we aim at measuring the performance of our cuts in
a “clean” environment without interacting with other cuts, so we deactivate all of SCIP’s
internal cut separators. In the embedded configuration, we aim at measuring the performance
of our cuts in a “real” environment. According to Example 6.10 of [100], our split cuts
correspond to Gomory mixed integer cuts. To ensure a fair comparison, we require an
equal level of implementation for intersection cuts, including the data structure and parameter
settings. Hence, we replace SCIP’s implementation of Gomory mixed integer cuts with our
own implementation, thereby disabling SCIP’s internal Gomory mixed integer cut separators
in the embedded configuration.

We focus on the root node performance and measure the closed root gap. Let d1 be the
value of the first LP relaxation (without cuts added), let d2 be the dual bound after all the cuts
are added, and let p be a reference primal bound. The closed root gap (d2 − d1)/(p− d1) is
the closed gap improvement of d2 with respect to d1. We also record the number of added
cuts, the relative improvement to the default setting, and the total running time. For each
configuration and setting, we compute these statistics’ shifted geometric means (SGMs) with
a shift of 1 over our test sets.

For each of the following experiments, we present and analyze computational results in
the form of tables and scatter plots. The tables contain SGMs of the statistics, including the
closed root gap (abbreviated as “closed”), the total running time (abbreviated as “time”), and
the number of applied cuts (abbreviated as “cuts”). Moreover, the “relative” column displays
the relative value of the closed root gap of one configuration that our cuts are enabled to that
of the default configuration. Thus, the “relative improvement” due to our cuts is defined as the
“relative” minus one. The scatter plots compare the closed root gap of each instance between
two different settings. Furthermore, each scatter plot indicates the number of instances where
one setting outperforms the other, referred to as “win” instances.
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Experiment 1: MAX CUT. Consider an undirected graph G = (V,E,w), where V is the set
of nodes, E is the set of edges, and w is a weight function over E. For a subset S of V , its
associated cut capacity is the sum of the weights of edges with one end node in S and the
other end node in V \ S. The MAX CUT problem aims at finding a subset S ⊆ V with maximum
cut capacity. Let V = [n], and we use a binary variable vector x ∈ B indicating whether
vertices belong to S. The problem can be formulated as the following quadratic unconstrained
binary optimization (QUBO) problem:

max
x∈B

∑
{i,j}∈E

wij((1− xi)xj + xi(1− xj)).

When w is nonnegative, the cut capacity function (the objective function) is submodular.
The Biq Mac library [305] offers a collection of MAX CUT and QUBO instances of medium

size. Our benchmark consists of two sub-benchmarks with 30 “g05” and respectively 30 “pw”
MAX CUT instances with nonnegative weights from the library. These instances are generated
randomly by Giovanni Rinaldi’s rudy code [259, 263]. For each dimension n = 60, 80, 100, the
“g05” sub-benchmark consists of 10 unweighted graphs with edge probability 0.5. For each
graph density in {0.1, 0.5, 0.9}, the “pw” sub-benchmark consists of 10 graphs with integer
edge weights chosen from [0, 10].

The reference primal bounds are also from the Biq Mac library. We encode the hypograph
reformulation (4.6) of the QUBO. SCIP will automatically reformulate the problem into a MILP
via the reformulation-linearization technique (RLT) [6]. This MILP formulation is a special case
of the extended formulation (6.8) of a degree-2 BMP with m = 0.

For the standalone configuration, the relative improvement of submodular cuts is 342%
compared to 178% of split cuts. In the standalone configuration, we can compare the “clean”
strengths of intersection cuts derived from different Boolean-hypograph-free sets. As observed
from the scatter plots in Fig. 6.2, the submodular cut setting outperforms the split cut setting in
42 instances under the standalone configuration. Although split cuts are derived from maximal
Boolean-hypograph-free sets and submodular cuts are derived from non-maximal ones, the
clean performance of split cuts is worse. Regarding the embedded configuration, the relative
improvement of submodular cuts is 85%, compared to 58% of split cuts. The scatter plot
shows that the submodular cut setting surpasses the split cut setting in 34 instances under
this configuration.

We observe that fewer split cuts are generated than submodular cuts. This means that
the efficiency of some split cuts does not satisfy SCIP’s internal criteria, so SCIP abandons
more split cuts than submodular cuts. As two types of cuts are derived using the same
principle but from different Boolean-hypograph-free sets, the distances between the relaxation
points to the boundary of Boolean-hypograph-free sets determine the cut efficiency. This
observation suggests that relaxation points are further from the boundary of the extended
envelope epigraph than from the splits. The separation time of split cuts is shorter than that of
submodular cuts, particularly for the “pw” instances with a high graph density (0.9). This is
because separating submodular cuts requires solving nonlinear equations that involve sorting
and computing graph cuts, while the split cuts can be computed in a closed form.
Experiment 2: PSEUDO BOOLEAN MAXIMIZATION. As mentioned, PSEUDO BOOLEAN MAX-
IMIZATION is a MUBO problem, a generalization of QUBO. We can use techniques from
Sect. 4.1.3 to generate intersection cuts.
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Configuration
Default Submodular cut Split cut

closed time closed relative time cuts closed relative time cuts
standalone 0.026 4.33 0.111 4.418 22.9 215.48 0.075 2.78 7.04 75.04
embedded 0.097 4.77 0.161 1.852 68.19 162.5 0.139 1.575 9.4 67.6

Table 6.1 Summary of MAX CUT results
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Figure 6.1 Scatter plots of MAX CUT results in standalone (top) and embedded (bottom)
configurations

POLIP [245] is a library of polynomially constrained mixed-integer programming instances.
All MUBO instances in POLIP with degree higher than 2 are 41 “autocorr_bern” instances,
which are also included in MINLPLib [75, 300]. These instances arise from short ranged
non-disordered lattice spin model (the Bernasconi model) [206] in theoretical physics. The
problem is to determine a ground state in the Bernasconi model minimizing a degree-four
energy polynomial: n

n−r+1
∑n−r
i=0

1
r(r−1)

∑r−1
d=1(

∑i+r−1−d
j=i zjzj+d)2, where z ∈ {−1, 1}n. The

number n of variables in these instances is chosen from 20 to 60, and the interaction range
r is chosen from 3 to 6. The problem is reformulated into a degree-4 BMP with m = 0 in
MINLPLib through the transformation zj = 2xj − 1. SCIP constructs the extended formulation
(6.8). We use the best-known primal bound from MINLPLib as the reference primal bound.

In Table 6.2, we report the computational results. For the standalone (resp. the embedded)
configuration, the relative improvement of submodular cuts is 504% compared to 117% of split
cuts. As indicated by the scatter plots in Fig. 6.2, the submodular cut setting outperforms the
split cut setting in 29 instances under the standalone configuration. Regarding the embedded
configuration, the relative improvement of submodular cuts is 98%, compared to 49% of split
cuts. As indicated by the scatter plots, the submodular cut setting wins in 31 more instances
than the spit cut setting under this configuration.

In both configurations, the submodular cuts are better than the split cuts in terms of the
closed root gap. Moreover, under the embedded configuration, the difference in the relative
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improvements between submodular cuts and split cuts is 48%. This is larger than 28% of MAX

CUT benchmark under the same configuration. This divergence between degree-2 and degree-
4 MUBO suggests that the submodular cuts are suitable for high-order Boolean multilinear
constraints.

We recall that to solve the nonlinear equations, the hybrid discrete Newton algorithm needs
oracle access to the value of the Boolean multilinear function. For some instances, a Boolean
multilinear function may consist of thousands of multilinear terms. After a code timing analysis,
we find that the separation of submodular cuts spends the most time computing the function
value. Therefore, this is the main time performance bottleneck, which needs to be optimized in
the future. In accordance with MAX CUT results, non-maximal S-free sets may yield stronger
cuts. Thus, the geometrical relation between the S-free sets and the optimal tableau cone
matters.

In Sect. 6.4.1, we conduct a branch-and-bound test.

Configuration
Default Submodular cut Split cut

closed time closed relative time cuts closed relative time cuts
standalone 0.008 8.46 0.053 6.039 28.03 68.83 0.032 2.170 10.56 20.48
embedded 0.051 13.60 0.079 1.979 46.20 28.20 0.067 1.491 20.43 9.43

Table 6.2 Summary of PSEUDO BOOLEAN MAXIMIZATION results
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Figure 6.2 Scatter plots of PSEUDO BOOLEAN MAXIMIZATION results in standalone (top) and
embedded (bottom) configurations

Experiment 3: BAYESIAN D-OPTIMAL DESIGN. As mentioned before, the BAYESIAN D-
OPTIMAL DESIGN problem has a submodular maximization form (6.7). In particular, we can
encode it as an extended formulation (6.8) in SCIP. SCIP generates gradient cuts for this
convex MINLP. Therefore, we can obtain LP relaxations and simplicial conic relaxations.

Our benchmark consists of two sub-benchmarks. Recall that the binary vector x selects a
subset of {MjMj

⊤ ∈ Sm}j∈[n], and the information matrix M(x) in (6.7) is the sum of matrices
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in the selected subset. Thus, the problem data of (6.7) are variable dimension n, matrix size
m, cardinality number k, and matrices MjMj

⊤. We next outline the procedure for generating
them.

The first sub-benchmark consists of 15 block design instances. We follow the method
in [267] to generate these instances. Let x := (x1,2, x1,3, . . . , x1,m+1, . . . , xm,m+1) ∈ {0, 1}n,
where n =

(
m+1

2
)
. Let H(x) be an undirected graph with m+ 1 vertices. If xi,i′ = 1, there is an

edge between vertices i, i′; otherwise, no edge connects them. We have M(x) = PL(x)P⊤,
where L(x) :=

∑
i,i′ xi,i′(1i − 1i′)(1i − 1i′)⊤ ∈ Sm ⊆ Rm×m is the Laplacian of H(x), and

P ∈ Rm×(m+1) is the matrix that transforms an (m + 1)-dimensional vector v to the vector
obtained by keeping the first m entries of v. In other words, M(x) is the submatrix of the
Laplacian of H(x) obtained by removing its last row and last column. Then an optimal solution
to (6.6) corresponds to the graphs with n nodes and k edges that have a maximum number
of spanning trees. Note that Mj = P (1i − 1i′) ∈ Rm×1 is a single-column matrix, which
is degenerated to a m-dimensional vector. We generate a block design instance for each
combination of m ∈ {10, 11, 12}, n =

(
m+1

2
)
, k ∈ {m,m+ 1,m+ 2,m+ 3,m+ 4}. This results

in a total of 15 combinations.
The second sub-benchmark consists of 30 random Gaussian instances. We generate a

Guassian instance for each combination of

(n,m) ∈ {(50, 20), (50, 30), (60, 24), (60, 36), (70, 28), (70, 42)}

and
k ∈ {m,m+ 1,m+ 2,m+ 3,m+ 4}.

This results in a total of 30 combinations. We still let each Mj be a single-column matrix (i.e., a
vector), and its entries are drawn from a Gaussian distribution with zero mean and a variance
of 1/

√
n.

We set the regularization constant ϵ to 10−6. SCIP can find primal feasible solutions at
the root node using its internal heuristics. We select the best primal bound given by these
solutions among all settings as the reference primal bound. Since SCIP’s internal gradient
cuts are important for linearizing convex nonlinear constraints, we keep the gradient cuts
but disable all integer-oriented cuts (GMI cuts and mixed-integer rounding cuts etc.) in the
standalone configuration.

In Table 6.3, we report the computational results. We divide the results of block design and
Gaussian random instances, since the density of matrices are different. Looking at the default
setting in different benchmarks, there is no difference between the standalone and embedded
configurations in terms of the closed root gap. This means that integer-oriented cuts do not
improve the root node LP relaxations. We see the same problem for intersection cuts, which do
not close the root gap but increase the computing time. In particular, the number of separated
cuts is around one. Thereby, many intersection cuts are too weak to add to the cut pool.

We recall that intersection cuts and many integer-oriented cuts are LP-based cuts, i.e.,
derived from an LP relaxation of the extended formulation (6.8). Therefore, their strengths
depend on the LP relaxation. Based on the types of MINLPs, there are two basic ways to
construct initial LP relaxations. For nonconvex MINLPs, one way usually uses the factorable
programming and term-wise envelopes [223]. Notable examples are Boolean multilinear
constraints and continuous quadratic constraints [233]. The McCormick envelopes or Boolean
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linearization techniques are used to construct their LP relaxations, which have a finite number
of constraints.

For convex MINLPs, the other way linearizes nonlinear constraints, and the number of
constraints in the LP relaxation can grow to infinity. This is because a convex nonlinear
constraint is equivalent to an infinite number of linear constraints. Given that SCIP may
incorporate numerous gradient cuts to approximate the convex MINLP (6.8), we can better
understand its behavior in a simplified scenario. Consider a smooth convex body approximated
by a polyhedral outer approximation, where each vertex and its associated faces define one
or several simplicial cones, representing optimal tableau cones. As the polyhedron closely
approximates the convex body, the vertex comes closer to the border manifold of the convex
body, and the simplicial cones approach the tangent space of the manifold at that vertex.
Consequently, the cones become very flat, and in the most extreme case, they turns into
a hyperplane defining the tangent space. When a hyperplane intersects an S-free set, this
results in the hyperplane itself. Therefore, it is highly likely that our separators will generate
weak intersection cuts. In summary, the weakness of intersection cuts is due to the flatness of
the optimal tableau cone.

Benchmark Configuration
Default Submodular cut Split cut

closed time closed relative time cuts closed relative time cuts

Block design
standalone 0.59 20.46 0.59 1.0 18.71 1.84 0.59 1.0 11.62 1.77
embedded 0.59 21.44 0.59 1.0 19.0 1.84 0.59 1.0 12.41 1.77

Gaussian
standalone 0.83 213.13 0.83 1.0 415.07 1.45 0.83 1.0 214.17 1.45
embedded 0.83 214.77 0.83 1.0 426.33 1.45 0.83 1.0 214.14 1.45

All
standalone 0.75 98.47 0.75 1.0 149.54 1.57 0.75 1.0 82.6 1.55
embedded 0.75 100.47 0.75 1.0 153.01 1.57 0.75 1.0 84.31 1.55

Table 6.3 Summary of BAYESIAN D-OPTIMAL DESIGN results
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Figure 6.3 Scatter plots of BAYESIAN D-OPTIMAL DESIGN results in standalone (top) and
embedded (bottom) configurations
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6.4.1 Supplementary branch-and-bound computational results

We also have an additional branch-and-bound test for MAX CUT problem instances in Sect. 6.4.
This test was designed to assess the performance and properties of our cuts in a "production-
level" environment, which presents more complex challenges compared to the root node
experiment. As such, the parameter settings and analysis in this test are more intricate and
require a detailed explanation, which we provide below.

We conducted our tests under the embedded configuration, where the branching rule, node
selection rule, and primal heuristics adhere to SCIP’s defaults. We made adjustments to some
parameters specifically to control the behavior of our cut separators in the branch-and-bound
algorithm. These parameters are as follows:

• SEPA_FREQ: the default frequency for separating cuts. We set it to 0, meaning that our
cut separators are called at the root node.

• SEPA_NCUTSLIMITROOT: the limit for the number of cuts generated at the root node.
We set it to 60.

• SEPA_MAXBOUNDDIST: the default maximal relative distance from the current node’s
dual bound to primal bound compared to the best node’s dual bound for applying
separation. We set it to 1, meaning that separation is applied at all search nodes.

Due to the substantial number of parameter combinations, tuning the parameters for
the branch-and-bound test is more challenging compared to the root node experiment. For
instance, SCIP’s internal Gomory mixed-integer cut separator [1, 108] is limited to applying
at most 30 cuts at the root node, while SCIP’s quadratic intersection cut separator [3, 89]
employs at most 20 cuts at the root node and 2 cuts at each non-root node.

In a preliminary branch-and-bound test, we find that even the default setting can solve the
“pw” instances of density 0.1 within 100 seconds, while all settings run 3600 seconds on the
other instances. To have an unbiased result, we remove “pw” instances of density 0.1 and
create a sub-benchmark called MAX CUT-sub.

For the following branch-and-bound test, we measure the closed duality gap (abbreviated
as gap), the relative improvement of the closed duality gap to the default setting, the number
of search nodes (abbreviated as nodes), and the number of applied cuts.

Benchmark
Default Submodular cut Split cut

gap nodes gap relative nodes cuts gap relative nodes cuts
MAX CUT-sub 0.605 231372 0.596 0.981 220176 59.87 0.618 1.026 207078 42.2

Table 6.4 Summary of MAX CUT-sub results in the embedded branch-and-bound test

Our observations indicate that the submodular cut setting performs slightly worse than the
default setting, while the split cut setting performs marginally better than the default setting. As
shown in Fig. 6.4, the difference in closed duality gaps between the submodular/split cut and
default settings is no more than 2%. This shows that the optimization landscape of MAX CUT

problems is very complicated. As for our parameter settings, intersection cuts cannot have a
significant impact on the branch-and-bound algorithm.

In contrast to the results in the root node experiment, we find that the split cut setting
outperforms the submodular cut setting in the branch-and-bound test. Detailed cut information
obtained during debugging reveals that the condition number of submodular cuts can be
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thousands of times larger than that of split cuts, and the submodular cuts can be denser as
well. Consequently, these numerical properties make the submodular cuts less stable and
efficient compared to the split cuts.

When considering the approximation of the Boolean-hypograph hypoB(g), where g rep-
resents any function over B, we can deduce from Thm. 4.17 that the splits define a class of
maximal Boolean-hypograph-free sets. Although the split cuts are independent of the values
of g, we can use the split cuts to approximate the Boolean-hypograph of g. While one can
find other Boolean-hypograph-free sets based on the values of g, the resulting cuts will likely
exhibit the same numerical properties as our submodular cuts.

As a result, future research should consider this finding when exploring intersection cuts.
However, it is also worthwhile to investigate the performance of submodular cuts in other
problems and algorithms, such as PSEUDO BOOLEAN MAXIMIZATION problems and the diving
heuristic.
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Figure 6.4 Scatter of MAX CUT-sub results in the embedded branch-and-bound test

6.5 Conclusion

We construct Boolean-hypograph-free sets for submodular functions. Our construction relies
on a new continuous extension of submodular functions. We characterize maximal Boolean-
hypograph-free sets, and generalize our results to sets involving submodular-supermodular
functions. These yield intersection cuts for Boolean multilinear constraints. We exploit the
submodular structure in an extended formulation of the D-OPTIMAL DESIGN problem. We
propose a hybrid discrete Newton algorithm that can compute intersection cuts efficiently and
exactly. The computational results show that intersection cuts derived from the submodularity
are better than those derived from split cuts for MAX CUT and PSEUDO BOOLEAN MAXIMIZATION

problems in the root-node experiments. For convex MINLPs, our computational results on
the BAYESIAN D-OPTIMAL DESIGN problem suggest that simplicial conic relaxations given by
gradient cuts can be flat, which makes intersection cuts weak.



Chapter 7

Branch-and-price for submodular
bin packing

7.1 Introduction

Bin packing (BP) is an important combinatorial optimization problem with applications in
various fields, including call centers, healthcare, container shipping, and cloud computing.
These applications are typically modeled as BP problems that aim to pack unsplittable items
into a minimum number of bins, with a capacity constraint on each bin. Formally, a BP problem
can be written as the following Binary Linear Programming (BIP) problem:

min
∑
j∈M

yj , (7.1a)

s.t.
∑
i∈N

µivij ≤ cyj , ∀j ∈M, (7.1b)∑
j∈M

vij = 1, ∀i ∈ N , (7.1c)

vij ∈ {0, 1}, ∀i ∈ N , j ∈M, (7.1d)

yj ∈ {0, 1}, ∀j ∈M, (7.1e)

whereM := {1, · · · ,m} is the index set of potential bins (m is the number of potential bins),
N := {1, · · · , n} is the index set of items (n is the number of items), c is the capacity which
is the same for every bin, and µi is the size of item i. Variable yj decides whether bin j is
used, and variable vij indicates whether item i is allocated to bin j. Capacity constraints
(7.1b) stipulate that the capacities of bins are not exceeded, and set partition constraints (7.1c)
require that each item is exactly allocated to one bin.

In many practical applications of BP, nominal item sizes µ are not revealed before the
allocation decision is made, so uncertainty arises. Probabilistic modeling of capacity con-
straints (7.1b) allows item sizes µ to be random parameters, and thus the uncertainty is taken
as a probability distribution on µ. We consider two commonly used probabilistic BP models.
The first probabilistic model is the BP with chance constraints (BPCC) [280]. By assuming
item sizes µ following a given (multivariate) probability distribution, BPCC requires that each
capacity constraint in (7.1b) should be respected with a probability at least α, written as the
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following chance constraints [85]:

P(
∑
i∈N

µivij ≤ cyj) ≥ α, ∀j ∈M. (7.2)

The second probabilistic model is the distributionally robust BP (DRBP) [319, 97]. It models
the worst case of chance constraints [153]. More specifically, given a family D of probability
distributions of µ, DRBP requires that each chance constraint in (7.2) should be respected for
any probability distribution within D . Thereby, capacity constraints of DRBP can be formulated
as the following distributionally robust constraints

inf
µ∼D

P(
∑
i∈N

µivij ≤ cyi) ≥ α, ∀j ∈M. (7.3)

Computational optimization of BPCC and DRBP models is challenging due to probabilistic
constraints. Stochastic optimization methods can tackle mathematical optimization prob-
lems with probabilistic constraints. The sample average approximation (SAA) is a common
stochastic optimization method for chance-constrained and distributionally robust optimization
problems [216, 60]. It approximates these problems as two/multi-stage MILP problems and
computes approximate solutions that converge to an optimal solution in a probabilistic sense.
Previous works, such as [319, 123, 41], apply tailored SAA methods to solve BPCC and DRBP.

Several recent works show that, under various assumptions on probabilistic distributions,
BPCC and DRBP are equivalent to or well-approximated by a deterministic optimization
problem, namely, submodular BP (SMBP). It is shown in [97] that, BPCC has an SMBP
formulation, if item sizes µ follow independent Gaussian distributions; SMBP also provides
an upper bound for BPCC with item sizes µ under general independent distributions over
bounded intervals (we note that then SMBP becomes a restriction of BPCC, and thus its
solution is always feasible to BPCC.). It is shown in [318] that DRBP has an SMBP formulation,
if distributions in D have the same mean values and the same diagonal covariance matrix.

Given the applicability of the previous assumptions, SMBP is an appealing alternative
formulation to BPCC and DRBP, as it can be solved optimally in a finite time, while the
convergence rate of SAA methods for BPCC and DRBP depends on the number of samples.
SMBP already finds its applications in cloud computing [97], surgery planning [121], and
operating room planning [301]. The environment is highly dynamic for these applications, and
uncertainty plays a significant role in practical models. These applications give rise to a need
for efficient algorithms to solve SMBP.

In this chapter, we study the exact algorithms for solving SMBP. SMBP has the following
Binary Nonlinear Programming formulation:
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min
∑
j∈M

yj , (7.4a)

s.t.
∑
i∈N

aivij + σ

√∑
i∈N

bivij ≤ cyj , ∀j ∈M, (7.4b)

∑
j∈M

vij = 1, ∀i ∈ N , (7.4c)

vij ∈ {0, 1}, ∀i ∈ N , j ∈M, (7.4d)

yj ∈ {0, 1}, ∀j ∈M (7.4e)

where ai, bi are parameters inferred from the distribution of µi. This formulation is a compact
nonlinear version of (7.1). We remark that the left-hand side of the constraint (7.4b) is a
submodular function over x [21], so SMBP is named after this function. A constraint in the
form of (7.4b) with yj fixed to 1 is called a submodular knapsack constraint.

To solve SMBP, the state-of-art exact algorithm uses general-purpose integer-programming
solvers to solve its Binary Second-Order Conic Programming (BSOCP) reformulation [318],
which valid inequalities can further strengthen [21]. The experiment in [318] shows that small
instances with item number n up to 40 and bin numbers m up to 10 can be solved to optimality
by this exact algorithm.

The intuition underlying this chapter is that the decomposition is a promising approach to
tackling large-scale classical BPs: a BP is reformulated into a set cover formulation based
on enumerating all feasible packing patterns; then its continuous relaxation is solved using
a column generation approach [154]. The branch-and-price algorithm integrates column
generation with the branch-and-bound algorithm. It is the state-of-the-art exact algorithm for
solving DW decomposition of classical BPs [304, 120].

We propose the first DW decomposition and set cover formulation for SMBP, and design
a branch-and-price algorithm with tailored methods for solving pricing problems. After our
DW decomposition of SMBP, the nonlinearity moves to the pricing submodular knapsack
subproblem, which has a linear objective function and a submodular capacity constraint. One
can avoid the growing number of nonlinear constraints (7.4b) in the compact formulation (7.4),
when solving larger instances.

The DW decomposition provides a skeleton of our main algorithm. The techniques for
solving general DW decomposition problems are vast, to name a few, we refer to [141] for
stabilization techniques, [103] for lexicographic pricing, [303] for goal cuts and early termination,
and [184] for non-robust cuts. In [250], a simple parameterization enables the use of several
advanced techniques in the branch-cut-and-price VRPsolver [252]: automatic stabilization by
smoothing [251], limited-memory rank-1 cuts [247], enumeration, hierarchical strong branching
over accumulated resources [150], and limited discrepancy search diving heuristics. In this
chapter, we focus on algorithmic innovation that exploits the specific nonlinear structure of
pricing problems and new techniques to speed up the convergence of column generation.

As the study in [318] for the compact formulation, the nonlinearity is a crucial feature for
model representability, so it is unavoidable and needs a special algorithmic treatment. In our
case, pricing problems have submodular knapsack constraints involving nonlinear functions.
We give two different views of nonlinearity. First, we can represent the submodular knapsack
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constraint via second-order constraints, which many general solvers then accept. Alternatively,
we propose a non-convex Mixed-Binary Quadratically Constrained Programming (MBQCP)
formulation for the submodular knapsack. A PWL function is linear in each partition of its
domain and can be modeled by a MILP formulation [299]. PWL functions have been used
to approximate or relax non-convex MINL) problems [149]. Despite its non-convexity, the
critical feature of the MBQCP formulation is that its only nonlinear function is a univariate
quadratic function, which is easy to approximate using a PWL function. We construct the PWL
relaxation for the submodular knapsack and combine it with cutting planes to form an exact
PWL relaxation-based branch-and-cut (PWL-B&C) algorithm.

The submodular knapsack is essential as it models the chance-constrained knapsack
problem [162]. We thus provide an approach for solving submodular knapsack problems
different from the pure valid inequality approach in [21, 22].

We propose several strategies to accelerate the convergence of the branch-and-price
algorithm, i.e., improve primal and dual bounds. The Farley bound [136, 294] is an early
valid dual bound before the termination of the column generation procedure [304, 155]. The
formula for the Farley bound imposes a condition on whether an exact pricing algorithm can
improve the current dual bound. If the condition is not satisfied, the exact pricing algorithm
is unnecessary, so we can use fast pricing heuristic. Our branch-and-price algorithms use
a hybrid pricing strategy to speed up the column generation procedure. The hybrid pricing
strategy is thus an intermediate between exact pricing and heuristic pricing strategies [67].

There are few publicly available instances of SMBP problems. In [97], there is a method to
generate instances from BPCC and DRBP under various distributions. We generate instances
of three different scales by this method and conduct computational experiments on them. We
implement our branch-and-price algorithm for the set cover formulation of SMBP and find that
it outperforms existing methods, which solve the compact BSOCP formulation [318]. Our core
innovation, PWL-B&C pricing algorithm, and hybrid pricing strategy, significantly improve the
branch-and-price algorithm.

7.1.1 Literature review

As mentioned, there are several steps of transformation from BP with uncertainty to SMBP.
We review these transformations and algorithms for solving associated transformed models.

The surgery planning problem is a typical application of BP with uncertainty in healthcare,
where the surgery duration (item size) is assumed to be stochastic. Some pioneering works
[123, 41] allow violations to capacity constraints (the left-hand side of (7.1b) thus can be greater
than the capacity) rather than consider chance constraints. To minimize these violations, they
use a penalty approach by adding the expectation of the sum of these violations into the
objective function. Therefore, the transformed BP model is a standard stochastic optimization
problem called stochastic BP (SBP). SBP can be further modeled and solved as a stochastic
two-stage mixed-integer programming problem: the first stage variables are the bin variables y,
the second stage variables are the item variables v, and the expected violation is the second
stage objective. In some works [79, 122], only the expected penalty is considered in the
models.

Compared to SBP, BPCC, and DRBP can control the violation of each capacity constraint
with a guaranteed probability bound, and thus they are more accurate models for BP with
uncertainty. To solve BPCC and DRBP, there are approximation algorithms and exact algo-
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rithms. (Sampling-based) approximation algorithms usually converge asymptotically to an
optimal solution when the sampling number increases (as SAA methods), and exact algorithms
usually converge in finite time. However, exact algorithms are mostly available for deterministic
optimization problems.

In [279], a variant of BPCC in surgery planning is studied: items (surgeries) are allocated
to a given set of bins (time blocks), the goal is to minimize the sum of expected capacity
residuals (undertime), subject to chance constraints for overuse of bins’ capacities (overtime).
Assuming that the operation duration follows a multivariate normal distribution, the authors
reformulate the problem as a deterministic optimization problem containing a convex objective
and submodular capacity constraints. In [280], a special BPCC with the probability distribution
over finite support is studied. It has a BIP formulation, which an exact algorithm can solve. As
mentioned before, for various probabilistic distributions [97, 318], BPCC and DRBP admit a
deterministic SMBP reformulation, which can be solved by exact algorithms.

Regarding solution algorithms, an SAA-based algorithm [319] can solve BPCC approx-
imately, whose scenario subproblem is solved exactly by a DW decomposition approach.
In addition, SMBP reformulation of DRBP [319] can be approximated by a MILP, which is
solved by a DW decomposition approach. The only tailored exact algorithm for BPCC and
DRBP [318] solves their compact SMBP reformulations. As for the deterministic variant of
BPCC, the authors of [279] propose an exact outer approximation algorithm enhanced with
PWL relaxation of submodular knapsack constraints, and the algorithm is a multi-search tree
method, i.e., an underlying MILP solver will be called multiple times. In conclusion, no exact
algorithm based on DW decomposition exists to solve SMBP. Meanwhile, DW decomposition
is already used for various approximated problems.

This exception may be due to the lack of efficient exact algorithms to solve submodular
knapsack problems. We note that in [319], DW decomposition is de facto applied to a MILP
problem, and thus the pricing problems are also MILPs such as classical knapsack problems
[76], which can be solved efficiently by general-purpose integer programming solvers. The
efficiency of general solvers is mostly due to the lifted cover inequalities, which are strong
valid inequalities for knapsack polytope and can be constructed via sequence-independent
lifting [163]. However, for submodular knapsack, the computation of lifted cover inequalities is
not tractable [22]. As we know from the literature, the tailored algorithm can be much better
than general solvers for many variants of classical knapsack, because these algorithms can
exploit more problem structures than general solvers. To name a few, we refer to the quadratic
knapsack [78, 145], the multidimensional knapsack [256], and the quadratic multi-knapsack
[53, 242].

Although general solvers are almost as complex as a black box for users, we can at least
understand how they solve the submodular knapsack. The submodular knapsack can be
reformulated as a BSOCP problem, which is an acceptable formulation to CPLEX [70] and
SCIP [59]. These solvers implement LP outer approximation-based branch-and-cut (LP-B&C)
algorithm [96] to solve the BSOCP or general Mixed-Integer Second-Order Conic Programming
(MISOCP) problems. The LP outer approximation is sometimes called the polyhedral outer
approximation (or polyhedral relaxation). In fact, any second-order conic program (SOCP)
is polynomially reducible to a linear program [51]. As for a submodular knapsack constraint,
general solvers will linearize it into an intersection of a set of classical knapsack constraints,
thus, inefficiency arises if too many linearizations are applied.
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On the other hand, there are alternative exact approaches to solve some classes of
nonconvex MINLPs using PWL relaxations [113, 149]. For example, [113] obtains a convex
MINLP relaxation for nonconvex MINLPs with separable nonconvex functions. The authors
distinguish between convex and concave parts and then convexify the concave parts by PWL
functions.

Regarding the submodular knapsack, its BSOCP (a convex MINLP) formulation has a
nonlinear function over all the problem variables, which is difficult to approximate when
the dimension is high. On the other hand, the nonconvex MBQCP formulation, where the
only nonlinear function is a univariate quadratic function on a slack variable. The resulting
PWL relaxation in the experiment is stronger than pure polyhedral relaxation. In our case,
we will show that the quadratic function can be approximated in a “dimension-free" way,
since the nonlinearity is concentrated on a single variable. [279] only uses PWL relaxations
to approximate the submodular knapsack. It requires refining PWL relaxations to achieve
convergence, so their multi-search tree algorithm needs to restart the MILP solver from scratch
in each iteration. In contrast, we prefix PWL relaxations and use cutting planes to achieve
convergence. Therefore, our single-search tree does not need to restart the MILP solver.

We look at the recent development of DW decomposition and branch-and-price algorithm
for solving MINLPs (see [12]), such as recursive circle packing (RCP) problems [155], binary
quadratic problems [81], and facility location with general nonlinear facility cost functions [241].
There may be several ways to divide a MINLP into master and subproblems, so a MINLP
may admit different DW decompositions. In [81], the authors study the strengths of different
DW decompositions for binary quadratic problems. In most cases, after applying the DW
decomposition to the compact MINLP formulation, the master problem is a MILP, and the
pricing problems are MINLPs. Since pricing problems are solved in thousands of iterations,
[155] shows that any improvement in the pricing algorithm can speed up the convergence of
column generation.

7.1.2 Contribution

In summary, our contribution in this chapter is threefold. As far as we know, the previous
work applies DW decomposition for an approximated MILP for SMBP, and thus nonlinearity
is not considered in the solving process. So, we are the first to apply DW decomposition for
SMBP with the nonlinearity considered. Built on the basic DW decomposition and branch-and-
price algorithm, we develop a new hybrid pricing strategy technique to speed up the column
generation, which can avoid computationally expensive exact pricing while not worsening
the dual bound. Second, for pricing submodular knapsack problems, we propose a new
MBQCP formulation and its PWL relaxation, and design a new PWL-B&C algorithm as an
alternative exact algorithm to the conventional LP-B&C algorithm, which is based on valid
inequalities. Finally, we perform computational experiments on many instances to evaluate
the proposed algorithms. The computational results show that our tailored branch-and-price
algorithms for DW reformulation outperform the conventional branch-and-cut algorithm for
BSOCP formulation implemented in a state-of-art commercial solver; and the PWL-B&C
algorithm can be a standalone algorithm for submodular knapsack. The source code and
benchmark are released on our project website https://github.com/lidingxu/cbp.

https://github.com/lidingxu/cbp
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7.1.3 Outline of the chapter

This chapter is organized as follows. In Sect. 7.2, we describe the set cover formulation of
SMBP. In Sect. 7.3, we introduce the critical components of our branch-and-price algorithm:
the branching rule, column generation, dual bound computation, initial columns, and primal
heuristics. In Sect. 7.4, focusing on solving the pricing problem, we present the pricing heuristic,
reformulations of the pricing problem, PWL relaxation, the exact pricing algorithm, and the
hybrid pricing strategy. In Sect. 7.5, we show the computational results of the proposed
algorithms for instances generated from the literature and analyze their performance. In
Sect. 7.6, we end this chapter with a conclusion and future research directions.

7.2 Set cover formulation

In this section, we propose a new set cover formulation for SMBP. The formulation is derived
similarly to the DW decomposition of the classical linear BP [120]. This formulation can be
solved efficiently by a branch-and-price algorithm.

A column p is defined by a binary vector as (d1p, d2p, . . . , dnp), where dip = 1 if item i is
contained in the column p. A column is called feasible if the combination of its items can fit
into a bin, i.e., satisfies the submodular capacity constraint (7.4b). The set cover formulation
is based on enumerating all feasible columns, the number of which can be exponential to the
number of items.

Set notation:

• P: the set of all feasible columns.

Decision variables:

• λp =
{

1, if column p is used by the solution

0, otherwise
for p ∈ P.

We obtain the following set cover formulation for SMBP:

min
∑
p∈P

λp, (7.5a)

s.t.
∑
p∈P

dipλp ≥ 1, ∀i ∈ N , (7.5b)

λp ∈ {0, 1}, ∀p ∈ P. (7.5c)

The set cover constraint (7.5b) specifies that each item i (i ∈ N ) is contained in at least
one bin. The set cover reformulation already finds applications in vehicle routing [247] and
unsplittable multi-commodity flows [313].

The compact formulation (7.4) is a MINLP, but the set cover formulation (7.5) is a MILP.
Moreover, the number of nonlinear constraints in the compact formulations equals the number
of potential bins. The nonlinearity of the set cover formulation is de facto ‘hidden’ in the pricing
subproblems, and each pricing subproblem has only one nonlinear constraint.

Remark 7.1. (Modeling of BSOCP constraints) We give a way to obtain a BSOCP formulation
of the constraint

∑
i∈N aivij+

√∑
i∈N bivij ≤ d, where d = cyi or d = c. Since vij ∈ {0, 1}, the



92 Branch-and-price for submodular bin packing

square root
√∑

i∈N bivij equals
√∑

i∈N biv2
ij . Then the constraint is equivalent to a SOCP

constraint
√∑

i∈N biv2
ij ≤ d′, where d′ := d−

∑
i∈N aivij . Then one can further reformulate

the SOCP constraint into several 3d SOCP constraints x1 ≥
√
x2

2 + x2
3, which is acceptable by

CPLEX [71].

We can obtain a BSOCP formulation of SMBP (7.4) through the above discussion. When
comparing two formulations, a formulation is said to be “stronger”, if it yields a better dual
bound.

Proposition 7.2. The linear relaxation of the set cover formulation (7.5) is stronger than the
continuous SOCP relaxation of the BSOCP formulation of (7.4).

Proof. Let

Fj := {(v1j , · · · , vnj , yj) ∈ {0, 1}n+1 :
∑
i∈N

aivij + σ

√∑
i∈N

bivij ≤ cyj}

be the feasible set of the j−th constraint in the BSOCP formulation of (7.4). Therefore, the
feasible set of the BSCOP formulation is F =

∏
j∈M Fj .

Let F j be the continuous relaxation of Fj , and

F j = {(v1j , · · · , vnj , yj) ∈ [0, 1]n+1 :
∑
i∈N

aivij + σ

√∑
i∈N

bivij ≤ cyj}.

Therefore, the feasible set of the continuous relaxation of the BSCOP formulation is F =∏
j∈M F j .
On the other hand, the points of Fj are zero vectors and (p, 1) (p ∈ P). Therefore, its

convex hull is

conv(Fj) =

{(v1j , · · · , vnj , yj) ∈ [0, 1]n+1 : ∃λp ∈ [0, 1]P ∧
∑
p∈P

λp = yj ∧ v =
∑
p∈P

dpλp}.

We note that F j is also a convex relaxation of Fj , hence Fj ⊂ conv(Fj) ⊂ F j .
The optimum of the continuous relaxation of the BSOCP formulation is

min
(v,y)∈F,v satisfies (7.4c)

∑
j∈M

yj .

An optimal solution of the LP relaxation of the set cover formulation satisfies
∑
p∈P dipλp = 1

(i ∈ N ), and the optimal value is exactly the same as min
(v,y)∈

∏
j∈M

conv(Fj),v satisfies (7.4c)

∑
j∈M

yj .

Since
∏
j∈M conv(Fj) ⊂ F , the result follows.

7.3 Branch and price

Solving the set cover formulation with an exponential number of binary variables is challeng-
ing. In this section, we present an exact branch-and-price algorithm to solve the set cover



7.3 Branch and price 93

formulation of SMBP. The branch-and-price algorithm integrates column generation with the
branch-and-bound algorithm to solve the LP relaxation efficiently. In the following subsections,
we describe the important steps of our branch-and-price algorithm: the branching rule, column
generation, primal heuristics, and dual bound computation.

7.3.1 Branching rule

Our branch-and-price algorithm uses the Ryan/Foster branching rule [264]. The branching
rule selects a pair of items i1 ∈ N and i2 ∈ N that must either be packed together or not
packed together. We denote by

• S: the set of item pairs that are forced to be packed together such that, if a column p
respects S, then for (i1, i2) ∈ S, di1p = di2p;

• D: the set of item pairs that are not allowed to be packed together such that, if a column
p respects D, then for (i1, i2) ∈ D, di1p + di2p ≤ 1.

Indeed, (S,D) exactly describes the branching decisions made for each node of the
search tree, whose nodes are constructed and selected by SCIP’s internal rules [5] in our
implementation. We denote by

PS,D := {p ∈ P | ∀(i1, i2) ∈ S di1p = di2p ∧ ∀(i1, i2) ∈ D di1p + di2p ≤ 1}

the set of feasible columns respecting branching constraints induced by (S,D). We refer to
PS,D as the (S,D)-feasible columns.

At each node of the search tree, the set cover problem (7.5) is restricted to the branching
decision set (S,D), i.e., it follows as

min
∑

p∈PS,D

λp, (7.6a)

s.t.
∑

p∈PS,D

dipλp ≥ 1, ∀i ∈ N , (7.6b)

λp ∈ {0, 1}, ∀p ∈ PS,D. (7.6c)

The above problem (7.6) is called the master problem, and its LP relaxation is called the
master LP problem.

Given a solution λ of the LP relaxation, if λ is not integral, the branching rule chooses
an item pair to branch. It first creates an n-by-n matrix, and computes its entries as
Mi1i2 =

∑
p∈PS,D:di1p=di2p=1 λp for all i1, i2 ∈ N . Since, for an integral solution, Mi1i2

must be either 0 or 1, the branching rule chooses the most fractional entry (i′1, i′2) such
that i′1, i′2 = argmini′1,i′2∈N |0.5−Mi′1i

′
2
|. Then, the rule adds (i′1, i′2) to S,D, respectively.

7.3.2 Column generation

We present a column generation method to solve the master LP problem.
The column generation procedure starts with a subset of (S,D)-feasible columns of the

master LP problem, adds columns, and solves the restricted LP iteratively. Given a subset
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P ′
S,D of PS,D, the corresponding restricted LP problem, namely the Restricted Master LP

(RMLP) problem, is

min
∑

p∈P′
S,D

λp, (7.7a)

s.t.
∑

p∈P′
S,D

dipλp ≥ 1, ∀i ∈ N , (7.7b)

λp ≥ 0, ∀p ∈ P ′
S,D. (7.7c)

After solving the RMLP, let πi be the dual variable associated with the i-th constraint
(7.7b). The reduced cost for a column p ∈ PS,D is rp := 1−

∑
i∈N πidip. If there is a column

p ∈ PS,D \ P ′
S,D whose reduced cost rp is negative, then adding p to P ′

S,D could reduce the
objective value of the RMLP. Otherwise, the solution for the RMLP is also optimal for the
master LP problem. The column with the most negative reduced cost is determined by solving
a pricing problem.

Before the column generation procedure is applied to the current node, the items that can
only be packed together are combined into the set S using a preprocessing process. Let
the new item set be N ′, a′, b′ be the merged parameters, and the new conflict relation be D′.
Preprocessing leads to a smaller pricing problem, which can be formulated to a submodular
knapsack problem with conflicts:

max
∑
i∈N ′

π′
ixi, (7.8a)

s.t.
∑
i∈N ′

a′
ixi + σ

√∑
i∈N ′

b′
ixi ≤ c, (7.8b)

xi1 + xi2 ≤ 1, ∀(i1, i2) ∈ D′, (7.8c)

xi ∈ {0, 1}, ∀i ∈ N ′. (7.8d)

If the optimal value
∑
i∈N ′ π′

ixi > 1, then the corresponding column has a negative reduced
cost 1−

∑
i∈N ′ π′

ixi and is added to the RMLP. Otherwise, the solution of the RMLP is optimal
for the master LP, and the current node is solved. The details of the pricing algorithms can be
found in Sect. 7.4.

Since, within a time limit, pricing problems may not be solved optimally, a pricing algorithm
may find an existing column in P ′

S,D or a column with a positive reduced cost. Therefore,
adding the column does not improve the RMLP, and the column generation procedure halts.
The following simple constraint can exclude existing solutions from the pricing problem and
thus shrink the search space: ∑

i∈N ′

π′
ixi ≥ 1 + ϵ, (7.9)

where ϵ is a sufficiently small positive real number. Exact algorithms can easily add this
constraint to exclude existing columns in P ′

S,D. This constraint also guarantees that if solutions
of negative reduced costs exist, then exact algorithms can find one of them.
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7.3.3 Primal heuristics

We discuss primal heuristics that help find primal feasible solutions to the set covering
formulation. We use two heuristics: the first heuristic employs an approximation algorithm to
find a primal solution that forms a set P ′ of initial columns, and the second heuristic tries to
find a primal solution once a column is generated and added to P ′.

[97] propose approximation algorithms to find a feasible solution with 8/3-ratio to the
optimal solution to the submodular bin packing. Their algorithms are greedy and easy to
implement, so we employ these algorithms as the first heuristic.

During column generation, each generated column could be combined with the previous
columns in P ′ into a primal feasible solution. Our second primal heuristic is similar to the
greedy column selection heuristic in [214, 185]. Once a column is generated, we force it
into a potential solution. Then, we greedily select an existing column from P ′ that packs the
maximum number of unpacked items until all items are packed. We note that the heuristic
may find columns that do not improve the RMLP.

7.3.4 Dual bound computation

For an optimization problem, a dual bound certifies the optimality of a solution. In the branch-
and-price setting, a local dual bound at each node of the search tree is a lower bound on the
optimum of the master problem (7.6). The algorithm uses the local dual bound to fathom the
node or select branch nodes.

The optimum of the master LP problem is a local dual bound. However, the column
generation procedure usually needs to solve many pricing problems to converge to this
optimum. At each iteration of the column generation procedure, another local dual bound is
available. This bound is referred to in the literature as Farley bound. The following lemma
illustrates how this bound can be computed.

Lemma 7.3 ( [136, 294]). Let vMP be the optimum of the master LP, let vRMLP be the optimum
of the RMLP, let vprice be a dual bound for the pricing problem (7.8), and let vF := vRMLP

vprice
be

the Farley bound. Then, vF ≤ vMP, and thus vF is a local dual bound.

The computation of the Farley bound requires a dual bound on the pricing problem,
obtained using an exact pricing algorithm. The branch-and-price algorithm holds a local lower
bound vld at each search tree node. After solving each pricing problem, the branch-and-price
algorithm updates vld according to the following rule:

vld = max{vF, vld}.

Early stopping rules from [304] can compare the local dual bound and the primal bound
to improve the branch-and-price algorithm. The rules exploit integrality and can stop column
generation earlier than the classical algorithm. We implement these rules in our branch-and-
price solver.

7.4 Solving the pricing problem

In this section, we present solution methods for the pricing problem. The proposed algorithms
can be implemented as a stand-alone solver for the submodular knapsack problem.
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We first present a fast pricing heuristic. We then present two formulations of the submodular
knapsack problem (with conflicts): a convex BSOCP formulation and a non-convex MBQCP
formulation. The convex BSOCP formulation is solved in our experiments for a comparative
study. The PWL method is a way to approximate nonlinear functions (or relax under some
conditions) by linear functions in its subdomain. We derive a PWL relaxation of the MBQCP
formulation and develop an exact PWL-based branch-and-cut algorithm (PWL-B&C) for the
pricing problem.

To speed up column generation, we also present a hybrid pricing strategy that can replace
the exact pricing algorithm with a fast pricing heuristic.

7.4.1 Pricing heuristic

We propose a fast heuristic, the fixing-greedy heuristic. This heuristic is used by the hybrid
pricing strategy to speed up the column generation procedure.

The fixing-greedy heuristic is based on the best-fit-greedy algorithm. The best-fit-greedy
algorithm adds an item per iteration only if it does not conflict with the previously added items,
as long as the capacity is not exceeded. The heuristic keeps

• ∆: the set of items added to the bin, which is initially empty.

At each iteration, the best-fit greedy heuristic has the following steps:

1. computes the sum of a′
i and the sum of b′

i of added items, i.e., A :=
∑
i∈∆ a′

i and
B :=

∑
i∈∆ b′

i;

2. find the set ∆ := {i ∈ N ′ \∆ : A+ a′
i + σ

√
B + b′

i ≤ c} of items that can be added to
the bin;

3. if ∆ = ∅, exits and outputs ∆;

4. for each unadded item i ∈ ∆, computes the incremental capacity usage γi := (A+ a′
i +

σ
√
B + b′

i)− (A+ σ
√
B), and the profit-over-usage ratio ri := π′

i

γi
;

5. adds the unadded item with the maximum ri into ∆.

The fixing-greedy heuristic enforces, for each time, an item in N ′ to be in the solution, runs
the best-fit greedy algorithm, and outputs the best solution.

7.4.2 BSOCP formulation

The Binary Second-Order Conic Programming formulation of the pricing problem (7.8) is
similar to the BSOCP formulation of SMBP (7.4).



7.4 Solving the pricing problem 97

Applying the same technique in Remark 7.1, the BSOCP formulation of the pricing problem
is:

max
∑
i∈N ′

π′
ixi, (7.10a)

s.t.
∑
i∈N ′

a′
ixi + σ

√∑
i∈N ′

b′
ix

2
i ≤ c, (7.10b)

xi1 + xi2 ≤ 1, ∀(i1, i2) ∈ D′, (7.10c)

xi ∈ {0, 1}, ∀i ∈ N ′. (7.10d)

Where (7.10b) can be represented by 3d second-order conic constraints. The BSOCP
formulation (7.10) is a convex MINLP formulation.

In this section, we analyze the polyhedral outer approximation of the BSOCP formulation
(7.10) and show that a finite number of cutting planes is sufficient to define an exact MILP
reformulation of the BSOCP formulation (7.10).

To simplify the presentation, we use the following notation:

• the left-hand side of (7.10b):

f(x) :=
∑
i∈N ′

a′
ixi + σ

√∑
i∈N ′

b′
ix

2
i ;

• the binary set defined by (7.10b):

C := {x ∈ {0, 1}N ′
: f(x) ≤ c};

• the continuous relaxation of C:

C := {x ∈ [0, 1]N
′

: f(x) ≤ c}.

Since f is convex, C is convex. We also note that the convex hull of C is a polytope. A
set O is a polyhedral outer approximation of C, if O is a polyhedron and C ⊂ O. A polyhedral
outer approximation can be constructed as follows. Define a linearization of f at some x̂ in the
domain of f by Lfx̂(x) := f(x̂) +∇f(x̂)⊤(x− x̂). Since f is convex, Lfx̂ is an under-estimator
of f , i.e., Lfx̂(x) ≤ f(x) for any x. Hence, Lfx̂(x) ≤ c is a linear inequality valid for f(x) ≤ c.

A polyhedral outer approximation O is said exact, if O ∩ {0, 1}n = C. So, solving the
optimization problem over an exact polyhedral outer approximation with binary and conflict
constraints is equivalent to solving the submodular knapsack problem with conflicts. Next, we
identify a family of valid inequalities that give an exact polyhedral outer approximation. Each
of these valid inequalities corresponds to a binary point not in C.

Theorem 7.4. Given a point x̂ ∈ {0, 1}N ′
, the following inequality is valid for C and C:∑

i∈N ′

a′
ixi + σ√∑

i∈N ′ b′
ix̂i

∑
i∈N ′

b′
ix̂ixi ≤ c. (7.11)
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Let

O = {x ∈ [0, 1]N
′

:
∑
i∈N ′

a′
ixi + σ√∑

i∈N ′ b′
ix̂i

∑
i∈N ′

b′
ix̂ixi ≤ c, ∀x̂ ∈ {0, 1}N ′

\ C}.

Moreover,

1. if x̂ /∈ C, the valid inequality is violated by x̂;

2. O is exact, and C = O ∩ {0, 1}N ′
.

Proof. Since function f is convex, it follows that

Lfx̂(x) ≤ f(x) ≤ c.

Moreover,

Lfx̂(x)

=f(x̂) +∇f(x̂)⊤(x− x̂)

=
∑
i∈N ′

a′
ixi + σ

√∑
i∈N ′

b′
ix̂

2
i + σ√∑

i∈N ′ b′
ix̂

2
i

∑
i∈N ′

b′
ix̂i(xi − x̂i)

=
∑
i∈N ′

a′
ixi + σ

√∑
i∈N ′

b′
ix̂

2
i + σ√∑

i∈N ′ b′
ix̂

2
i

∑
i∈N ′

b′
ix̂ixi −

σ√∑
i∈N ′ b′

ix̂
2
i

∑
i∈N ′

b′
ix̂ix̂i

=
∑
i∈N ′

a′
ixi + σ√∑

i∈N ′ b′
ix̂i

∑
i∈N ′

b′
ix̂ixi

where the last equation follows from the fact that x̂ is binary.
Therefore, inequality (7.11) in the statement is valid for C. The left-hand side of inequality

(7.11) evaluated at x̂ is
∑
i∈N ′ a′

ix̂i + σ
√∑

i∈N ′ b′
ix̂i which is by hypothesis is at least c, so x̂

violates the inequality.
Let us consider x∗ ∈ {0, 1}N ′

. If x∗ /∈ C, then x∗ violates the Lfx∗(x) ≤ c which is a facet
defining inequality of O, then x∗ /∈ O. Hence, x∗ ∈ O implies that x∗ ∈ C. If x∗ ∈ C, since O is
a polyhedral outer approximation of C, x∗ must be in O. Therefore, C = O ∩ {0, 1}N ′

.

Looking at the above theorem, we find that each binary point not in C gives rise to a valid
inequality separating it from C. Moreover, binary points in C satisfy these valid inequalities, i.e.,
they are in the polyhedral outer approximation O. We define two sets related to the polyhedral
outer approximation O. The generating set is defined as

X := {x̂ ∈ {0, 1}N ′
: x̂ /∈ C}, (7.12)

because it generates the following cut coefficient set :

Θ :=
{
θ ∈ RN ′

: ∃x̂ ∈ X ∀i ∈ N ′ θi = a′
i + σ√∑

i∈N ′ b′
ix̂i

b′
ix̂i

}
. (7.13)

By Thm. 7.4, O is an exact polyhedral outer approximation, so replacing x ∈ C with x ∈ O
does not change the binary feasible set. This gives rise to an exact MILP formulation equivalent
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to the submodular knapsack problem with conflicts:

max
∑
i∈N ′

π′
ixi, (7.14a)

s.t. θ⊤x ≤ c, ∀θ ∈ Θ (7.14b)

xi1 + xi2 ≤ 1, ∀(i1, i2) ∈ D′, (7.14c)

xi ∈ {0, 1}, ∀i ∈ N ′. (7.14d)

However, X (and hence Θ) is unknown before exploring the search space, and its cardinality
may be exponential. In practice, the cuts corresponding to Θ can only be separated lazily, i.e.,
a cut is added until a point x̂ is found in X . Off-the-shelf solvers do not use this finite family of
cuts, but it is a crucial component for constructing our PWL-B&C algorithm in Sect. 7.4.5.

The following lemma explains the approximation error of the polyhedral outer approximation
O w.r.t. C.

Lemma 7.5 ([51]). Let ϵ > 0, then there exists a method to construct a polyhedral outer
approximation O of C with additional O(1)|N ′| log( 1

ϵ ) variables and constraints, such that the

relative ℓ∞ approximation error maxx∈O |
∑
i∈N ′ a′

ixi + σ
√∑

i∈N ′ b′
ix

2
i − c|/c is at most ϵ.

Note that the approximation error of the polyhedral outer approximation depends on the
number of variables.

7.4.3 MBQCP formulation

We present a non-convex Mixed Binary Quadratically Constrained Programming formulation
for the submodular knapsack problem (with conflicts). Although we do not use this formulation
to solve the pricing subproblems, this formulation inspires PWL relaxation and the PWL-B&C
algorithm. Here, we introduce a slack variable w to define the sum

∑
i∈N ′ a′

ixi. Then our
MBQCP formulation becomes the following non-convex MINLP program:

max
∑
i∈N ′

π′
ixi, (7.15a)

s.t.
∑
i∈N ′

a′
ixi = w, (7.15b)

σ2
∑
i∈N ′

b′
ixi ≤ (c− w)2, (7.15c)

xi1 + xi2 ≤ 1, ∀(i1, i2) ∈ D′, (7.15d)

xi ∈ {0, 1}, ∀i ∈ N ′, (7.15e)

w ∈ [0, c]. (7.15f)

Although the program contains a concave quadratic constraint (7.15c), the nonlinearity is only
a univariate quadratic function compared to the |N ′|-dimensional nonlinear SOC function f in
(7.10b).
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Figure 7.1 Graphs of the quadratic and its PWL over-estimator

7.4.4 PWL relaxation

A Piece-Wise Linear (PWL) function is linear on each piece of a given partition of its domain.
We derive a MILP relaxation of the MBQCP formulation (7.15) based on the PWL relaxation
for the quadratic function, and refer to this new MILP relaxation as the PWL relaxation.
The approximation error of the optimal PWL relaxation is discussed in this section. Let us
denote by q(w) := (c− w)2 the univariate quadratic function. We denote a value of the slack
variable w in the constraint (7.15c) as a breakpoint. Given an ordered set of breakpoints
B = (w1, w2, . . . , wh) such that wk ∈ [w,w] (k ∈ [h] := {1, · · · , h}), w1 = w and wh = w, the
following function is a PWL approximation of q over the domain [w,w]:

q̄B(w) := q(wk)− q(wk−1)
wk − wk−1

(w − wk−1) + q(wk−1), for wk−1 ≤ w ≤ wk, 2 ≤ k ≤ h.

Note that q̄B is an over-estimator of q due to the convexity of q.
We call B a breakpoint set in [w,w], and q̄B its induced PWL function. Note that we consider

the two bounds w and w as breakpoints here. Fig. 7.1 shows the graphs of a quadratic function
and its PWL over-estimator, where w = 0.1, w = 1.9, c = 2, and B = {0.1, 0.4, 0.8, 1.2, 1.6, 1.9}.

Assume that we are given the breakpoints B. Replacing σ2∑
i∈N ′ b′

ixi ≤ q(w) with
σ2∑

i∈N ′ b′
ixi ≤ q̄B(w) in the constraint (7.15c), we obtain the following PWL relaxation of the

MBQCP formulation (7.15):
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max
∑
i∈N ′

π′
ixi, (7.16a)

s.t.
∑
i∈N ′

a′
ixi = w, (7.16b)

σ2
∑
i∈N ′

b′
ixi ≤ q̄B(w), (7.16c)

xi1 + xi2 ≤ 1, ∀(i1, i2) ∈ D′, (7.16d)

xi ∈ {0, 1}, ∀i ∈ N ′, (7.16e)

w ∈ [0, c]. (7.16f)

Remark 7.6. (Modeling PWL functions) The graphs of PWL functions have several MILP
formulations, see [299]. In this chapter, we consider the logarithmic model. We denote by z the
auxiliary binary variables introduced in the MILP formulation of q̄B. From version 20.1.0 [180],
CPLEX can automatically formulate q̄B to the logarithmic model and add auxiliary variables z in
the internal data structure.

The approximation error of a PWL relaxation is expressed as ℓp-norm of the difference
between the approximation function and the target function.

Definition 7.7. Given a set B ⊂ [w,w] of breakpoints, the ℓp approximation error of q̄B with
respect to q over [w,w] is defined as ℓp(q̄B, q) := (

∫ w
w
|q̄B(w)− q(w)|p dw)

1
p .

Since the approximation error measures the quality of a PWL approximation to the quadratic
function, thus it in turn measures the error of the PWL relaxation to the MBQCP formulation.
Empirically, the optimal solution to a PWL relaxation with a small approximation error should
have a small gap to the optimal solution of the submodular knapsack with conflicts. On the
other hand, although adding breakpoints decreases the approximation error, it increases the
computation resource to solve the PWL relaxation. So a common problem is understanding the
best possible approximation error given a fixed number of breakpoints (limited computational
resource).

This problem can be formalized as follows. Given an integer h (number of breakpoints),
denote by Bh the family of breakpoint sets of cardinality h in [w,w], the breakpoint selection
problem aims to find a set B ∈ Bh to minimize the ℓp error:

min
B∈Bh

ℓp(q̄B, q). (7.17)

A convex program [149] can compute the ℓ∞-approximation error for general noncon-
vex functions. An error analysis [54] gives asymptotically tight bounds to quantify the ℓ2-
approximation error.

The following theorem gives the best ℓ∞-approximation error that we can achieve: an
optimal solution to the breakpoint selection problem under the ℓ∞-approximation error is an
equidistant partition of [w,w].

Theorem 7.8. Given B ∈ Bh,

ℓ∞(q̄B, q) = max
w∈[w,w]

|q̄B(w)− q(w)| = max
2≤k≤h

(wk − wk−1)2

4 .
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Furthermore, let wk = w + k−1
h−1 (w − w) for 1 ≤ k ≤ h, which yields the minimum ℓ∞-

approximation error (w−w)2

4(h−1)2 for the break point selection problem (7.17).

Proof. Since q̄B and q have the same value at w ∈ {w1, . . . , wh}, it follows that the ℓ∞-norm is
the maximum value of ℓ∞-norms over individual sub intervals:

ℓ∞(q̄B, q) = max
w∈[w,w]

|q̄B(w)− q(w)| = max
2≤k≤h

max
w∈[wk−1,wk]

|q̄B(w)− q(w)|.

Let w ∈ [wk−1, wk], then

|q̄B(w)− q(w)|

=q(wk)− q(wk−1)
wk − wk−1

(w − wk−1) + q(wk−1)− (c− w)2

=(w − wk−1)(wk − w).

We have

max
w∈[wk−1,wk]

|q̄B(w)− q(w)|

= max
w∈[wk−1,wk]

(w − wk−1)(wk − w)

=(wk − wk−1)2

4 .

The maximum value is at w = wk−1+wk

2 .
It follows that (7.17) is equivalent to:

min
w=w1≤...≤wh=w

max
2≤k≤h

(wk − wk−1)2

4 .

Therefore, the optimal solution is an equidistant partition of [w,w], and the results follow.

The approximation error decreases with the quadratic rate with respect to h. The relative
ℓ∞-approximation error is defined as

ℓ∞(q̄B, q)
(w − w)2 .

We have the following result on the relative approximation error of the PWL relaxation.

Corollary 7.9. Let ϵ > 0, then there exists a MILP formulation of PWL function q̄B induced by
B with O(1) log( 1

ϵ ) binary variables and O(1) 1√
ϵ

continuous variables and constraints, such
that the relative ℓ∞-approximation error is at most ϵ.

Proof. For the logarithmic model of PWL function, given h breakpoints from the equidistant
partition, the relative ℓ∞-approximation error is (w−w)2

4(h−1)2(w−w)2 = 1
4(h−1)2 with log(h− 1) binary

variables and h− 1 continuous variables and constraints [299], the result follows.

Next, we summarize the approximation errors of two relaxations to their corresponding
formulations. Note that we do not consider the integrality of the binary variable x′. Comparing
Lemma 7.5 and Cor. 7.9, the approximation error of the PWL relaxation (7.16) to the MBQCP
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formulation (7.15) is independent of the number of variables, while the approximation error of
the polyhedral outer approximation to the BSOCP formulation (7.10) depends on this number.

We remark that our PWL relaxation differs from [279]’s PWL relaxation. The constraint
(7.15) of MBQCP formulation is equivalent to σ

√∑
i∈N ′ b′

ixi ≤ c− w, and a PWL relaxation
was used for the left-hand side concave function σ

√∑
i∈N ′ b′

ixi in [279]. However, the optimal
approximation error for such PWL relaxation has yet to be discovered.

7.4.5 Exact PWL-B&C algorithm

The approximation error of the PWL relaxation is dimensionless but only for a small number
of breakpoints, it is not exact. Instead of adding many breakpoints, the finite number of cuts
induced by the set Θ in (7.13) suffices to make the PWL relaxation exact. To solve it, we
propose a combined formulation and a branch-and-cut algorithm based on the PWL relaxation
(PWL-B&C).

max
∑
i∈N ′

π′
ixi, (7.18a)

s.t.
∑
i∈N ′

a′
ixi = w, (7.18b)

σ2
∑
i∈N ′

b′
ixi ≤ q̄B(w), (7.18c)

θ⊤x ≤ c, ∀θ ∈ Θ (7.18d)

xi1 + xi2 ≤ 1, ∀(i1, i2) ∈ D′, (7.18e)

xi ∈ {0, 1}, ∀i ∈ N ′, (7.18f)

w ∈ [0, c]. (7.18g)

Formulation (7.18) combines the MILP formulation (7.14) with the (redundant) PWL relaxation.
As already mentioned by Thm. 7.4, the MILP formulation (7.14) is an exact formulation for
submodular knapsack problems with conflicts, so this combined formulation (7.18) is also
exact.

The intuition underlying the combined formulation (7.18) is that we cannot add numerous
valid inequalities (7.18d) a priori. In practice, we add them lazily to exclude infeasible binary
solutions to the submodular knapsack with conflicts in the course of the search, and this
method is typically supported or suggested by lazy cut callbacks of some solvers such as
CPLEX and SCIP. However, in this way, we cannot control the initial relaxation quality given
solely by a few valid inequalities from (7.18d). On the contrary, the PWL relaxation (7.18c)
can be enforced a priori, and its quality is controllable (Thm. 7.8). So we can leverage it to
reduce the initial search space and refine the relaxation by adding valid inequalities lazily. This
intuition and formulation give rise to a tailored Algorithm 7.1 for submodular knapsack with
conflicts, partly inspired by algorithms in [96]. We show in experiments that this formulation
with redundant constraints (7.18b) and (7.18c) can be solved much faster than the standard
BSOCP formulation (7.10). In practice, only a few cuts in (7.18d) must separate before the
convergence.

Our algorithm consists of three main steps: tightening the bounds, constructing the PWL
relaxation (breakpoints), and the PWL B&C algorithm. First, bound tightening is a preprocess-
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ing procedure used to tighten the bounds on the breakpoints for all pricing problems. Then,
the PWL relaxation (breakpoints) is constructed for all pricing problems, and this is also a
pre-solving procedure. The construction depends on the number of items, the size of the
items, and the capacity. Finally, based on the PWL relaxation, the PWL-B&C algorithm is
adapted to the LP-B&C algorithm [96].

Bound tightening The bound tightening procedure is called before the branch-and-price
algorithm to shrink the boundaries of the breakpoints B into [0, c].

Considering a pricing problem at a node of the search tree, we find that if w =
∑
i∈N ′ a′

ixi

is small, q(w) = (c− w)2 is larger than σ2∑
i∈N ′ b′

ixi, so the capacity constraint (7.15c) is not
active. Thus, there is no need to overestimate q when w is small. More precisely, there is a
w ∈ [0, c] such that, for any binary solution x ∈ {0, 1}N ′

, let w =
∑
i∈N ′ a′

ixi, if w ≤ w, then
σ2∑

i∈N ′ b′
ixi ≤ q(w). Since q is non-increasing, q(w) ≥ q(w) ≥ σ2∑

i∈N ′ b′
ixi. The point w

is called lower breakpoint, the submodular capacity constraint (7.15c) is never violated for
w ∈ [0, w]. We can start by overestimating q starting from the maximum lower breakpoint
computed from the following convex MBQCP problem:

w := max w,

s.t.
∑
i∈N ′

a′
ixi = w,

σ2
∑
i∈N ′

b′
ixi ≥ (c− w)2,

xi1 + xi2 ≤ 1, ∀(i1, i2) ∈ D′,

xi ∈ {0, 1}, ∀i ∈ N ′.

(7.19)

Similarly, we can define the upper breakpoint. There exists some upper breakpoint
w ∈ [0, c], such that, for every binary solution x ∈ {0, 1}N ′

, if
∑
i∈N ′ a′

ixi + σ
√∑

i∈N ′ b′
ix

2
i ≤ c,

then
∑
i∈N ′ a′

ixi ≤ w. The minimum upper breakpoint can be computed from the following
BSOCP problem:

w := max
∑
i∈N ′

a′
ixi,

s.t.
∑
i∈N ′

a′
ixi + σ

√∑
i∈N ′

b′
ix

2
i ≤ c,

xi1 + xi2 ≤ 1, ∀(i1, i2) ∈ D′,

xi ∈ {0, 1}, ∀i ∈ N ′.

(7.20)

We solve the above two programs at the root node and obtain the bound [wr, wr] for
breakpoints. Since the feasible sets of the other nodes are a subset of the root node set,
the above programs at other nodes are more strict than those at the root node. It follows for
w,w of any other node that wr ≤ w and w ≤ wr. We then set w = wr and w = wr for all nodes.

Construction of breakpoints To determine the number of breakpoints B, we run a greedy
heuristic algorithm that tries to maximize the number of items in a bin. We take h as the
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solution value given by the heuristic algorithm and assign breakpoints h equidistantly in [w,w].
The equidistant partition gives the best approximation error according to Thm. 7.8 for a fixed
number of breakpoints. We also add a breakpoint corresponding to w = 0.

PWL-B&C algorithm The main steps of the PWL-B&C algorithm are described in Algo-
rithm 7.1. Recall that the problem (7.8) is a maximization problem. Algorithm 7.1 maintains
a set of active nodes N of the search tree, a pool of cuts C , an incumbent solution x∗

(
∑
i∈N ′ π′

ix
∗
i is a primal bound).

A node (l, u, U) is characterized by the finite variable boundary vectors l and u and the
node’s dual upper bound U . The upper bound U is inherited from its parent node and computed
via the LP relaxation. Note that the PWL function is a modeling concept. We use a MILP solver,
i.e., CPLEX, that formulates the PWL function qB into a MILP. We denote by z the additional
binary variables to model q̄B (see Sect. 7.4.4). The variables z are also constructed internally
by CPLEX, and we assume that the PWL function is forced when z is set to binary.

We denote by MB(C , l, u, U) the MILP relaxation restricted to finite bounds (l, u) for (x, z)
at a node of the search tree. The MILP relaxation MB(C , l, u, U) consists of the PWL relaxation
(7.16), cuts from C , and other cuts added by the MILP solver.

Algorithm 7.1: PWL-B&C algorithm
1 Input: a submodular knapsack problem with conflicts (7.18), and the set B of

breakpoints;
2 Output: a primal solution x∗ and a dual upper bound (dual gap);
3 initialize MILP MB(C , l0, u0,∞) as the PWL relaxation (7.16) ; ◃ the PWL function is

modeled by auxiliary binary variable z
4 initialize cut pool C to ∅, the node list N of MB(C , l0, u0,∞) with root node (l0, u0),

incumbent solution x∗ = 0, and the upper bound U of the root node to∞;
5 while N contains nodes do
6 remove a node (l, u) from N ;
7 solve LP relaxation of MB(C , l, u, U);
8 if LP is infeasible then
9 continue ; ◃ fathomed by infeasibility

10 get an LP optimal solution (x̂, ẑ);
11 if upper bound U ≤

∑
i∈N ′ πix̂i then

12 continue ; ◃ fathomed by bound
13 else
14 set U to

∑
i∈N ′ πix̂i ; ◃ update the dual upper bound

15 end
16 if (x̂, ẑ) is binary then
17 if x̂ satisfies capacity constraint (7.8b) then
18 set x∗ to x̂;
19 continue ; ◃ fathomed by integrality
20 else
21 add separation cut to C by Thm. 7.4;
22 add the node MB(C , l, u, U) to N ;
23 continue ; ◃ reoptimization after cut added
24 end
25 end
26 add branch nodes to N using (x̂, ẑ) (fractional) and U ;
27 end
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The node set N initially contains the root node (l0, u0), where l0, u0 ∈ RI are the finite
initial global bounds on variables (x, z). On Line 6 of Algorithm 7.1, the main loop removes a
node (l, u, U) from N . Line 7 solves the LP relaxation of MB(C , l, u, U) by the MILP solver.

If the LP-relaxation MB(C , l, u, U) is infeasible, Line 9 immediately fathoms the node by
infeasibility. The upper bound U of the node means that any feasible solution to the combined
formulation (7.18) that satisfies the bounds of the node for (x, z) has an objective value of at
most U . Since LP is a relaxation of the combined formulation (7.18), any feasible solution to
the combined formulation (7.18) that satisfies the bounds of the node for x has a objective
value of at most U .

Line 12 fathoms the node by bound if U is not better than the incumbent value. Otherwise,
the upper bound U of the node is set to the optimal value of LP on Line 14.

If ẑ is not binary, then the PWL function is not implicitly enforced by the integrality of ẑ, so
the algorithm should continue to branch. If ẑ is binary (the PWL function is enforced) and x̂ is
binary, then the algorithm examines the solution x̂.

If additionally, x̂ is feasible (the capacity constraint is satisfied), then its objective value
should be at least the upper bound U . Line 18 stores the new incumbent solution x̂, and
Line 19 fathoms the node since x̂ is an optimal binary solution with respect to the bounds
(l, u). Otherwise, the constraint (7.18d) is violated. Line 21 adds this constraint to the cut pool
C , Line 22 adds the current node for re-optimization, and Line 23 discards x̂ by the cut in the
next optimization iteration. Finally, (x̂, ẑ) must be fractional on Line 26, the algorithm branches
using the information from fractionality and U .

We remark that the idea in [279] for exact algorithms does not deploy cutting planes for
approximating submodular knapsack, so in each iteration, new breakpoints are added to PWL,
relaxations, and the underlying MILP solver needs restarts.

7.4.6 Hybrid pricing strategy

The pricing heuristic in Sect. 7.4.1 is fast, but it cannot guarantee the dual upper bound
required by the Farley bound of Lemma 7.3. The exact pricing algorithm is slow but yields the
dual upper bound for the pricing problem. The hybrid pricing strategy first calls the pricing
heuristic to decide whether the exact pricing algorithm can improve the local dual bound of the
master problem.

In fact, the exact algorithm is required only under a particular condition. The following
proposition gives the condition.

Proposition 7.10. Let vheur be the solution value of the pricing heuristic, let vRMLP be the
optimum of RMLP (7.7), and let vld be the current local dual bound for the master problem. If
vRMLP
vheur

≤ vld, the exact algorithm cannot yield a better local dual bound than vld.

Proof. Let vpopt be the optimum for the pricing problem (7.8), then vheur ≤ vpopt. It follows
that vRMLP

vpopt
≤ vRMLP

vheur
≤ vld. However, vpopt is the smallest pricing dual bound vprice, so vRMLP

vpopt
is

the greatest Farley bound according to Lemma 7.3. Therefore even if the pricing algorithm is
solved to optimality, we cannot obtain a better bound than vld.

If the condition vRMLP
vheur

≤ vld holds, one can get rid of the exact pricing algorithm, and
use the solution from the fixing-greedy heuristic in Sect. 7.4.1. The hybrid pricing strategy is
outlined in Algorithm 7.2.
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Algorithm 7.2: Hybrid pricing strategy
1 Input: a pricing problem (7.8) with the objective coefficients π′, vRMLP the optimum of

RMLP (7.7), vld the local dual bound of the master problem;
2 Output: a generated column x∗, and the updated local dual bound vld;
3 call the pricing heuristic with the objective coefficients π′ ; ◃ run heuristic first
4 let x, vheur be the heuristic solution and its value;
5 if vRMLP

vheur
≤ vld and 1−

∑
i∈N ′ π′

ix̄i < 0 then
6 x∗ ← x ; ◃ heuristic solution
7 else
8 call the exact pricing Algorithm 7.1 ; ◃ exact pricing
9 let x̃, vprice be the primal solution and the dual bound;

10 x∗ ← x̃;
11 vld = max{vld,

vRMLP
vprice

} ; ◃ update the local dual bound
12 end

The heuristic algorithm is called first in Line 3. If vRMLP
vheur

≤ vld, the exact pricing is not
needed. If the heuristic solution x has a negative reduced cost, the strategy outputs it in Line
6. Otherwise, the strategy calls the exact algorithm in Line 8.

7.5 Computational experiments

In this section, we present the computational experiments we made to test the effectiveness
of our branch-and-price algorithms for SMBP. In particular, we test different configurations
of branch-and-price algorithms to evaluate the proposed techniques. The source code and
benchmarks are publicly available on the project website https://github.com/lidingxu/cbp. We
also provide a bash file to reproduce the experiments on Linux systems.

7.5.1 Benchmarks

We produce benchmarks as described in [97]. The authors test their approximation algorithms
on benchmarks from real cloud data centers of Google, which are not accessible due to
confidentiality 1.

They also describe data generation methods by considering a variety of uncertainty models,
and these methods have a probabilistic interpretation: parameters of SMBP instances are
derived from parameters of uncertainty models. For different risk levels α, they propose three
data generation methods (cases) to construct the data a, b, σ in SMBP (7.4), i.e., the Gaussian
case, the Hoeffding inequality case, and the distributionally robust approximation case.

We describe the generation methods next. In summary, we first determine overall param-
eters such as capacity and item numbers, then we generate distributions, and finally cast
parameters of distributions into parameters of items.

The overall parameters of instances are set as follows. We set the capacity of each bin to
72 (the number of cores of the servers), the risk level α ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 0.99}. We set
the number of items (i.e., jobs) |N | ∈ {100, 400, 1000} to obtain three benchmarks with different
sizes: CloudSmall, CloudMedium, and CloudLarge. There are three generation methods and
six risk levels.

1We, therefore, create new instances using the same generation method.

https://github.com/lidingxu/cbp
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The distributions of instances are set as follows. We call the distribution of µi the target
distribution for item i. We assume that every µi follows the same target distribution. This target
distribution is unknown in [97] except for its quantiles in Table 7.1.

Given α and N , we generate an SMBP instance as follows:

1. sample µi (i ∈ N ) according to Table 7.1;

2. sample a and b from µ and σ, using one of the following cases:

• Gaussian case;

• Hoeffding’s inequality case;

• distributionally robust approximation case.

Table 7.1 Example distribution of item size

Item sizes 1 2 4 8 16 32 72
% Items 36.3 13.8 21.3 23.1 3.5 1.9 0.1

We first illustrate the approach of sampling µ. We approximate the target distribution by a
normalized histogram such that its quantile distribution is the same as in Table 7.1. A histogram
consists of intervals divided from the entire range [0, 72], and each interval has endpoints
of two consecutive quantiles of Table 7.1. The histogram gives a discrete non-parametric
estimation of the target distribution. We apply a two-stage sampling to obtain a nominal item
size µi (i ∈ N ) sampled from a continuous distribution. It has two steps:

1. sample an interval [d1, d2] from the histogram;

2. sample a nominal item size µi from [d1, d2] uniformly.

Second, we construct a truncated Gaussian, which is defined by its lower and upper
bounds A and A, mean µ′, and its standard deviation σ′. To obtain these parameters, for each
i ∈ N , we:

1. sample Ai ∈ [0.3, 0.6] and Ai ∈ [0.7, 1.0] uniformly;

2. sample scale parameter si ∈ [0.1, 0.5];

3. compute the mean µ′
i and the standard variation σ′

i of the truncated Gaussian with lower
bound Ai, upper bound Ai and scale parameter si.

With the above parameters, we generate the data a, b, σ of SMBP (7.4). There are three
cases, which correspond to different assumptions on the uncertainty or probability distribution.

For the Gaussian case:

1. let σ = Φ−1(α), where Φ is the cumulative distribution function of the Gaussian distribu-
tion;

2. for i ∈ N , let ai = µ′
iµi and bi = (σ′

iµi)
2.

For the Hoeffding’s inequality case:

1. let σ =
√
−0.5 ln (1− α);
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2. for i ∈ N , let ai = µ′
iµi and bi = ((Ai −Ai)µi)

2

For the distributionally robust approximation case:

1. let σ =
√
α/(1− α);

2. for i ∈ N , let ai = µ′
iµi and bi = (σ′

iµi)
2.

For all the above cases, if there exists i ∈ N such that ai, bi are too large to fit a bin (usually
for large α, σ), then we rescale ai, bi to fit the bin.

We generate six instances with different random seeds for each combination of generation
methods and risk levels. As a result, we have 108 = 6× 6× 3 instances in a benchmark.

7.5.2 Experimental setups

In this section, we describe the setup of the experiments, including the development environ-
ment, the implementation of the algorithms, and the solution statistics.

Development environment The experiments are conducted on a server with Intel Xeon
W-2245 CPU @ 3.90GHz, 126GB main memory, and Ubuntu 18.04 system. We use SCIP
8.0.1 [147] as a branch-and-price (B&P) framework to solve the set cover formulation (7.5).
We use ILOG CPLEX 22.1 as:

• an LP solver to solve the RMLP (7.7);

• a BSOCP solver to solve the BSOCP formulations of SMBP (7.4) and the submodular
knapsack problem with conflicts (7.10);

• a MILP solver used by the PWL-B&C Algorithm 7.1;

CPLEX’s parameters are set by default, except we disable its parallelism.

Solver implementation We implement four solvers for SMBP according to the proposed
techniques in this chapter. Four of them are branch-and-price solvers. These solvers are as
follows:

1. BSOCP-BC: a solver using CPLEX’s B&C algorithm to solve the compact BSOCP formu-
lation of SMBP.

2. DW-BC: a B&P solver for solving the set cover formulation (7.5), which uses CPLEX’s
B&C algorithm to solve the BSOCP formulation (7.10) of the pricing problem.

3. DW-PWL: a B&P solver for solving the set cover formulation (7.5), which uses the
PWL-B&C algorithm to solve the combined formulation (7.16) of the pricing problem.

4. DW-Hybrid: DW-PWL enhanced with the hybrid pricing strategy in Algorithm 7.2.

We use the approximation algorithm from [97] to find an initial feasible solution that serves
as a warm start for all solvers. All B&P solvers deploy the column selection heuristic in
Sect. 7.3.3, and all exact pricing solvers add the solution exclusion constraint (7.9) to pricing
problems. The time limit for each solver is 3600 CPU seconds.
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If the column generation procedure at the root node does not finish after 3500 CPU
seconds, it is halted, giving SCIP 100 CPU seconds to invoke its own primal heuristic.

For the pricing problems, we set the same time limit for the exact algorithms (|N | × 0.015
CPU seconds) and the same tolerance for relative gaps.

Performance metrics and statistical tests In order to evaluate the solver performance in
different instances, we compute shifted geometric means (SGMs) (see [5]) of performance
metrics as aggregated statistics. Compared to arithmetic means, SMGs avoid the over-
representation of biased outlier points. The SGM of values v1, ..., vN ≥ 0 with shift s ≥ 0 is
defined as (

N∏
i=1

(vi + s)
)1/N

− s.

Given an SMBP problem instance, let v be a dual lower bound and v be a primal upper
bound found by a solver. The relative dual gap in percentage is defined as:

δd := v − v
v
× 100.

A smaller relative dual gap indicates better performance.
Let va be the value of the solution found by the greedy min-utilization algorithm, which is

communicated to all solvers as a warm start. The closed primal bound is defined as:

δp := va − v
max(v − v∗, 1e−6) × 100,

where v∗ is the largest dual bound found among all solvers. A larger closed primal gap means
better performance.

We report the following performance metrics for each instance tested by each solver and
compute the SGMs of the benchmarks:

1. t: the total running time in CPU seconds, with a shifted value set to 1;

2. δd%: the relative dual gap in percentage, with a shifted value set to 1%;

3. δp%: the closed primal bound in percentage, with a shifted value set to 1%;

4. #N: the number of nodes of the search tree, with a shifted value set to 1;

5. #C: the number of columns generated, with a shifted value set to 1;

6. E%: the percentage of columns generated by the exact pricing algorithm, with a shifted
value set to 1%;

7. τ%: the relative dual gap in the percentage of a pricing problem solved by an exact
algorithm, with a shifted value set to 1%;

8. tp%: the ratio between pricing time and total solving time in percentage, with a shifted
value set to 1%.

Metrics (1)-(4) refer to master problems and are available to all solvers. Metrics (5)-(8)
refer to pricing problems and are not available for the BSOCP-BC, while metric (6) is 100% for
the DW-PWL and DW-BC.
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Benchmarks Solvers Problem statistics Pricing statistics
t δd% δp% #N #S #I #C E% τ% tp%

CloudSmall
(|N | = 100)

BSOCP-BC 1452 15.8 0.0 26601 18 0 - - - -
DW-BC 2129 11.4 0.9 21 20 17 1373 100 3.56 99
DW-PWL 633 2.4 2.7 66 61 32 1869 100 0.01 99
DW-Hybrid 330 2.0 3.4 127 65 36 3485 18 0.01 96

CloudMedium
(|N | = 400)

BSOCP-BC 3600 100.0 0.0 0 0 0 - - - -
DW-BC 3600 39.0 0.1 2 0 4 861 100 0.39 98
DW-PWL 3600 17.2 0.4 1 0 10 3372 100 0.01 91
DW-Hybrid 3600 11.8 0.6 12 0 15 6879 9 0.04 73

CloudLarge
(|N | = 1000)

BSOCP-BC 3600 100.0 0.0 0 0 0 - - - -
DW-BC 3600 59.6 0.0 2 0 0 741 100 0.04 89
DW-PWL 3600 43.1 0.2 1 0 6 2105 100 0.01 63
DW-Hybrid 3600 34.2 0.4 1 0 11 4257 4 0.01 8

Table 7.2 Aggregated statistics of the main computational results

7.5.3 Comparative analysis of results

The main computational results are summarized in Table 7.2. For each benchmark, we report
the SGM statistics of the performance metrics, the number of instances solved (denoted by
#S), and the number of instances with improved primal bounds (denoted by #I). We also report
a computational test of adaptive selection of break points in 7.5.3. Next, we analyze the main
computational results by comparing the solvers.

We first compare the compact BSOCP formulation of SMBP (7.4) with the set cover
formulation (7.5). So, we evaluate the performance of BSOCP-BC and DW-BC. For all the
benchmarks, DW-BC achieves smaller dual gaps than BSOCP-BC. For small instances, DW-
BC also explores a smaller number of nodes of the search tree. These observations agree
with Prop. 7.2 that the continuous relaxation of the set covering formulation is stronger than the
continuous relaxation of the compact formulation. The number of nonlinear integer constraints
in the compact formulation increases with the number of bins. For medium instances, BSOCP-
BC cannot even finish the root node computation of the compact formulation. However,
DW-BC can prove a dual gap or improve primal solutions by solving the set cover formulation.
Although the two formulations are insufficient to tackle medium or large instances, the compact
formulation is better overall than the set cover formulation. Then, we will solely examine
algorithms that tackle the set cover formulation in the following.

We next evaluate our core innovation to solve the pricing subproblems: the PWL relaxation
and its associated combined formulation (7.18). So, we compare DW-BC with DW-PWL.
DW-BC just calls CPLEX to solve the BSCOP formulation (7.10) of pricing subproblems, while
DW-PWL uses a tailored branch-and-cut algorithm to solve the combined formulation (7.18).
Looking at the problem statistics for all the benchmarks, we find that DW-PWL significantly
reduces the master problem’ dual gap than DW-BC. Especially for small instances, DW-PWL
achieves nearly five times improvement to DW-BC. More details can be found in pricing
statistics. DW-PWL can solve pricing subproblems to optimality (pricing gap on average is
0.01%) in a short time and thus produce much more columns than DW-BC. Especially for large
instances, we find that combined formulation (7.18) is still solvable. The overall quality of the
combined formulation for submodular knapsack outperforms that of the BSOCP formulation
(7.10).

We examine the hybrid pricing strategy, which replaces the computationally expensive
exact pricing with computationally cheap heuristic pricing when the exact pricing is not in
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need. So, we compare DW-PWL with DW-Hybrid. Looking at the problem statistics, the
hybrid pricing strategy achieves smaller dual gaps, especially for large instances; it also saves
computational time for small instances. Looking at the pricing statistics, the hybrid pricing
strategy can generate twice the number of columns than the exact pricing, for all the instances.
As a byproduct, with more columns, SCIP can find more improved primal solutions. We find
that the hybrid pricing strategy gives rise to consistent improvement.

We look at the column selection heuristic. So, we compare DW-Hybrid with DW-Hybrid*.
The column selection heuristic can find more improved solutions.

Finally, we summarize our computational results. The set cover formulation is better than
the compact formulation regarding scalability, although both formulations are unsolvable for
medium and large instances. Our techniques can improve the column generation procedure
for the set cover formulation. Regarding pricing subproblems, a dense BSOCP constraint
might be reformulated as a submodular knapsack constraint, so the good performance of
PWL relaxations suggests that PWL relaxations can provide strong MILP relaxations for dense
BSOCP constraints. This finding can also help solve other BSOCP problems. The hybrid
pricing strategy uses a hint from the Farley bound, so it reduces computational time and is
applicable for other column generation problems. As for benchmarks, CloudSmall is a suitable
testbed for comparing solvers, CloudMedium is suitable for testing the pricing algorithms, and
CloudLarge is still too big to handle.

Non-equidistant breakpoints

According to Thm. 7.8 in Sect. 7.4.4, the optimal breakpoints under the ℓ∞ error form an
equidistant partition of [w,w]. In this section, we investigate whether adaptive non-equidistant
breakpoints can improve the DW-PWL. There are many possibilities for non-equidistant
breakpoints, and we propose a regression approach using the previous pricing information.

We recall that the DW-PWL solver adds a lazy cut at each infeasible solution x̂. Let
ŵ :=

∑
i∈N ′ a′

ix̂i be the corresponding value of variable w, and we call it an infeasible w-value.
For an objective coefficient vector c′, let [wℓ(c′), wu(c′)] be the range of the set of infeasible
w-values, which are recorded during the PWL-B&C algorithm for every pricing problem. Our
intuition is that for a new pricing problem with an objective coefficient vector c, one may reduce
the search space by concentrating breakpoints to the range [wℓ(c), wu(c)], because this refines
the PWL relaxation in that region. Usually [wℓ(c), wu(c)] is unknown, so one can only use a
predication range [w′

ℓ(c), w′
u(c)]. Given the fixed number of breakpoints of B, with this limited

resource, we use the knn regression approach to learn [w′
ℓ(c), w′

u(c)] and concentrate a subset
of of B to [w′

ℓ(c), w′
u(c)].

The knn regression is as follows. Let T be the number of pricing iterations, and we use
a list {[wℓ(ct), wu(ct)]}1≤t≤T to record the set of intervals, where wℓ(ct), wu(ct) are the lower
and upper bounds of the set of infeasible w-values in the t-th pricing problem. For the new
objective coefficient vector c, we sort the list in an increasing order w.r.t. the ℓ2-norm distances
between {ct}1≤t≤T to c. The predicted range [w′

ℓ(c), w′
u(c)] is as follows:

w′
ℓ(c) =

∑
1≤t≤k

wℓ(ct)/k, w′
u(c) =

∑
1≤t≤k

wu(ct)/k.

Recall that there are in total h breakpoints in the range [w,w]. Let r := (w′
u(c)−w′

ℓ(c))/(w−w)
be the range ratio. Then, given a concentration scale s > 1, we put h ∗ r ∗ s number of
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k = 1 k = 3 k = 5

s = 1 s = 1.5 s = 1.5 s = 2.5 s = 1.5 s = 2 s = 2.5 s = 1.5 s = 2 s = 2.5

δd% 35.29 35.58 35.66 35.36 35.28 36.28 35.29 35.39 34.95 35.29

#C 2134.12 2120.03 2097.46 2123.38 2118.57 2091.97 2148.48 2111.01 2155.95 2134.12

Table 7.3 Master and pricing problem statistics of different configurations

breakpoints equidistantly in [w′
ℓ(c), w′

u(c)], and h∗(1−r∗s) number of breakpoints equidistantly
in the remaining breakpoint region. This concentration results in a PWL relaxation with a better
approximation in [w′

ℓ(c), w′
u(c)]. Therefore, we hope that the adaptive PWL relaxation could

use the previous pricing information.
To understand the performance of the knn regression approach, we have several configu-

rations with combinations of k ∈ {1, 3, 5} and s ∈ {1.5, 2, 2.5}. We note that with k = 1, s = 1,
the configuration is exactly the DW-PWL solver. To test these configurations, we generate
two new benchmarks with |N | ∈ {500, 900}, each containing 36 instances. The aggregated
computational results are presented in Table 7.3, which displays SGMs of the relative dual
gap of master problems, and the number of generated columns.

The non-equidistant breakpoints do not lead to an improvement of the algorithm. In most
cases, knn regression approach is even worse than the equidistant breakpoint approach.
Therefore, finding good breakpoints is a complex task.

7.6 Conclusion

We develop a PWL-B&C algorithm for solving pricing submodular knapsack problems. The
PWL-B&C algorithm is more efficient than the conventional LP-B&C algorithm implemented in
CPLEX for the pricing submodular knapsack problems. The PWL-B&C algorithm can also be
extended to solve the multiple submodular knapsack problems. For general MINLP problems,
if a nonlinear constraint can be reformulated into a linear part and a univariate concave part,
then the univariate concave part can be convexified by the PWL relaxation.

Our hybrid pricing strategy applies to the column generation procedure, where the master
problems are in set cover formulations, as long as there are fast pricing heuristics. This pricing
strategy is helpful for large instances. As a future study, we can apply this strategy to solve the
DW decomposition of the capacitated vehicle routing problem, for which the pricing problem is
complex.

The primary efforts of this chapter are solving pricing submodular knapsack subproblems
with conflicts via PWL relaxations and speeding up column generation via a hybrid pricing
strategy. There is still much room for improvement in future studies. Since the submodular
knapsack with conflicts is solved multiple times with different parameters, the information
of previous column generation iterations can be leveraged statistically to reduce the search
space of pricing subproblems.

On the other hand, commonly known techniques for branch-and-price algorithms are gen-
erally helpful. Combining our techniques with other advanced elements from general-purpose
framework [250] could be also useful. For example, we can use stabilization techniques
to speed up the convergence of the column generation or use cutting planes to tighten the
relaxation of the master problem.





Chapter 8

Branch-and-price for coding-aware
routing in wireless networks

8.1 Introduction

Multi-hop wireless sensor networks (WSNs) support many applications requiring wireless
communication on various platforms. We can mention unmanned aerials vehicles (UAVs)
[231, 244], flying taxis (Vertical Take-Off and Landing) [248], Internet-of-Things (IoT) sensor
devices for monitoring [114, 307], connected healthcare [161, 308], agricultural monitoring and
various emerging smart city and smart mobility deployments [213, 315], whose components
are connected via WSNs. In all these cases, energy efficiency and traffic optimization are
key challenges. In the upcoming IoT landscape [10, 258], smart devices are expected to be
widely deployed everywhere over the world [146]. Current statistics indicate that billions of
IoT devices are already deployed and connected in 2020, and they are expected to grow
substantially in the future [13]. WSNs are having significant and growing effects on energy
consumption and environmental issues. The research community faces solving optimization
problems that will shape the connectivity of billions of devices with significant energy issues.
Most WSN technologies and deployments rely on single-hop communications. Multi-hop
communication in WSNs would increase network capacity and coverage without requiring new
infrastructure. Extensions to multi-hop communication especially in IoT-related technologies
are attracting research and industrial interest [158, 273].

In this chapter, we study the problem of energy efficiency in multi-hop WSNs, namely
wireless unsplittable multi-commodity flow with network coding (wUMCFC). We use the DW
relaxation for the resulting MILP problem and propose an exact branch-and-price algorithm.

The lifetime of the network strongly depends on the energy level of its devices. Each node
in the WSN has limited wireless communication capabilities and energy source (usually a
battery). Due to the small sizes of the sensors, the batteries are also small and the available
energy is limited. The optimal management of energy is necessary to ensure a long network
lifetime. A classification of the main used batteries in the WSN is given in [285].

Routing strategies have a major impact on the total energy consumption of networks. In
multi-hop WSNs each communication is routed through a single path, i.e., unsplittably from its
source node to its target node [25–27]. Hence the intermediate nodes in the path are not in
charge of computing, for each data packet, the next hop-node.
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Unsplittable routing allows intermediate nodes to use less memory, speeds up packet
handling processes, minimizes loss rates and enables better quality of service (QoS). However
unsplittable routing induces very complex combinatorial optimization problems [37, 44, 190,
298]. Splittable routing is very complex to apply in a wireless context. This would require
sophisticated protocols and more intelligence in the network components. For more details on
routing protocols in WSNs, we refer to [106].

Network coding allows intermediate nodes of the network to encode several packets into
a single packet, and then broadcast, i.e., transmit simultaneously to all neighbours only once
[238]. Broadcasting is the term used to describe communication where the data packets are
sent from one node to all other connected nodes; a single sender transmits data, and the data
is sent to all connected receivers. Network coding reduces energy consumption in WSNs by
reducing the number of transmissions required in a network to carry traffic between the set of
sources and the set of destinations [4, 52, 88, 182, 200]. The deployment of network coding
and broadcasting realizes significant benefits in terms of resource and energy management
and improves a network’s throughput, efficiency and scalability, as well as resilience to attacks
and eavesdropping [140].

Interference has a significant impact on energy consumption, networking operation and
performance. Wireless communication relies on shared communication media, that can be
accessed by several devices, close to each other, at the same time. Interference is caused
by simultaneous transmissions between these devices. Several strategies and models are
developed in the literature to handle interference in WSNs [309].

8.1.1 Literature review

In [240], the authors proposed a linear programming model to compute optimal routing, that
minimizes the number of data transmissions, without taking into account the interference. In
[198], a MILP was proposed to optimize the routing with network coding, but the effect of
energy saved by network coding was not considered.

This article presents mathematical formulations of the wUMCFC problem that integrate
interference and network coding. A column generation approach and a branch-and-price
framework are then described. The proposed models are based on the unsplittable multi-
commodity flow (UMCF) problem formulations. UMCF is one of the well-known NP-hard
problems in combinatorial optimization [24, 126, 190, 191]. The problem addressed in this
chapter is more complex since it generalizes the UMCF problem with additional coding and
interference constraints. Extensive research is required to adapt mathematical programming
approaches and develop efficient algorithms to solve it. Multi-commodity flow models are
developed for several network optimization problems since they lead to modeling complex
technical constraints [14, 43, 50, 151, 199, 298]. The technical constraints can be the un-
splittable routing or resource sharing constraints [24, 191, 168]. Another advantage of the
multi-commodity flow formulations is that they can be solved efficiently by decomposition and
column generation methods [37, 152, 168, 215, 251, 297].

8.1.2 Contribution

The first contribution of this chapter is our quantitative analysis and modelling of interference,
network coding and energy consumption in the context of WSNs. We propose the new problem
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wUMCFC and new models to integrate interference and network coding. Given the network
topology, source-target traffic demands, transmissions capacities, and channels’ interference,
the wUMCFC problem seeks to minimize the energy cost of data transmission in multi-hop
WSNs and find an optimal unsplittable routing. The wUMCFC problem incorporates network
coding to reduce data transmission, save energy consumption and improve quality of service
(QoS). Interference is modelled using adapted capacity constraints, which are defined over
the clique set of an undirected conflict graph. We show that the wUMCFC problem is an
NP−hard problem.

The second contribution involves our formulations of the wUMCFC problem. The first class
of models are compact edge-based formulations, which consist of a mixed-Boolean quadratic
programming (MBQP) formulation and two MILP formulations. The two MILP models are
respectively the edge balance formulation and the edge linearization formulation. We study the
strength of these two MILP formulations. The second class of models is a DW reformulation of
the edge balance model, namely a path-based formulation.

To solve the path-based formulation efficiently, we develop a column generation approach
and a branch-and-price (B&P) algorithm [15, 37, 152]. The algorithm is implemented in a new
open source solver wUMCFC. This yields our third contribution. In our B&P algorithm, the
pricing problem is reduced to a shortest path problem in an extended graph. Although the
edge weights of the extended graph can be negative, we prove that the cycles of the extended
graph have positive costs. Therefore, a shortest path in the extended graph can be calculated
in polynomial time. We show that, under our reduction, the path generated in the original graph
is always a simple path. We perform a computational study on realistic problem instances with
an analysis of the performance of the B&P algorithm and the effect of the network coding.

8.1.3 Outline the chapter

This article is organized as follows: In Section 8.2, we introduce the classical UMCF problem
formulation and notation. We present the three important aspects of the wUMCFC problem:
energy consumption, clique capacity constraints and network coding. We then analyze the
complexity of the wUMCFC problem. In Section 8.3, we present and compare the compact
edge-based formulations and the path-based formulation. In Section 8.4, we propose a new
algorithm to solve the LP relaxation of the path-based formulation. We discuss the column
generation approach, the pricing problem and the B&P algorithm. In Section 8.5, we describe
branching rules to enforce the integrality of path variables. In Section 8.6, we perform two
experiments. The first experiment shows that the B&P algorithm for the path-based formulation
outperforms the MILP solver CPLEX for the edge balance formulation. The second experiment
demonstrates that the network coding mechanism can decrease the energy cost significantly.
Conclusions are drawn in Section 8.7 along with the prospect of future research.

8.2 Models and notation

The network topology is represented by a bi-directed graph G = (V,E), where V denotes
the set of nodes corresponding to wireless transmission devices and E denotes the set of
transmission links that can be used to route the traffic.

Unsplittable traffic demands are denoted by a set D of source-target node pairs (s, t).
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We define the following notation of data and parameters:
Cij : the transmission capacity of the edge (i, j). It measures the number of data packets

that can be sent through the channel (i, j) per unit of time.
βij : the energy cost parameter for flow transmission along the edge (i, j). It measures the

energy cost to transmit a unit data packet per unit of time.
dst: the traffic demand from the source node s to the target node t for st ∈ D.
Decision variables:
xstij : binary variable indicating whether demand st is routed on the edge (i, j), for st ∈ D

and (i, j) ∈ E.
The occupancy time ratio (OTR) is an important concept in wireless communication. The

OTR measures the ratio that the channel along (i, j) is transmitting data per unit of time.
Hence, the forwarding node i consumes energies during the transmission time. For each edge
(i, j) ∈ E, its OTR is defined as the total flow per unit of time divided by its capacity, i.e.,∑

st∈D d
stxstij

Cij
. (8.1)

The UMCF problem aims to find a unique routing path for each demand that minimizes the
total energy cost under capacity and demand constraints.

Before introducing network interference and network coding, let us recall the ILP formulation
of the classical minimum cost flow (UMCF) problem:

min z =
∑
st∈D

∑
(i,j)∈E

βijd
stxstij (8.2.0)∑

j:(i,j)∈E

xstij −
∑

j:(j,i)∈E

xstji = 0, ∀i ∈ V − {s, t}, ∀st ∈ D, (8.2.1)∑
(s,i)∈E

xstsi −
∑

(i,s)∈E

xstis = 1, ∀st ∈ D, (8.2.2)∑
(i,t)∈E

xstit −
∑

(t,i)∈E

xstti = 1, ∀st ∈ D, (8.2.3)

∑
st∈D

dst

Cij
xstij ≤ 1, ∀(i, j) ∈ E, (8.2.4)

xstij ∈ {0, 1}, ∀(i, j) ∈ E, ∀st ∈ D.

(8.2)

Objective function z (8.2.0): energy consumption of data transmission per unit of time.
Flow conservation constraints (8.2.1) to (8.2.3): flow conservation constraints at each

node.
Edge capacity constraint (8.2.4): the total flow on an edge should not exceed the available

transmission capacity. This constraint stipulates that the OTR of an edge must be at most 1.
The mathematical formulation of the wUMCFC problem requires the addition of new

constraints and new variables to the classical UMFC. This new problem integrates interference
and coding mechanisms.

In the following subsections, we present three important factors of the wUMCFC problem:
energy consumption, clique capacity constraints, and network coding. We also analyze the
complexity of the wUMCFC problem.
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8.2.1 Energy consumption

This chapter considers the energy consumption induced by data transmissions via active
devices in the network.

A node i ∈ V is active when it is transmitting data. We introduce an energy cost parameter
βi that measures the cost of energy consumed by an active node i per unit of time. This
parameter depends on the characteristics of the communication device corresponding to the
node i.

For (i, j) ∈ E, let fij be the flow on the edge, i.e., the number of data packets to transmit
from node i to node j per unit of time. Recall that the OTR fij

Cij
is the time ratio that node i is

transmitting data along the channel (i, j). The energy cost per unit of time on the channel (i, j)
is fij

Cij
βi. During the remaining part of a time unit 1− fij

Cij
, energy is not consumed because

the node i does not transmit data through (i, j).
The energy cost parameter βij of (i, j), follows as:

βij = βi
Cij

(8.3)

8.2.2 Clique capacity constraint

The difference between wireless and wired networks lies mainly in the use of communication
channels and transmission technologies [314]. In wired networks, the capacity of one channel
is not affected by the data transmissions of any other channels. In WSNs, channels inherently
share the same communication space, and the interference between channels in a neighbor-
hood would decrease their capacities. When a channel transmits a data packet, it consumes
the capacity of its neighbours. Interference reduces transmission capacities significantly [28].

We model interference using capacity constraints, which are defined over the clique set of
an undirected conflict graph Gc = (N,L) where N = E.

The nodes of the conflict graph Gc are the edges of the network graph G. The links of Gc
represent interference between the edges of G which cannot transmit data at the same time.

If two edges in G are in interference, then a link between their corresponding nodes is
added to Gc. The graph Gc is constructed incrementally with an initial empty link set L, as
follows:

1. N = E and L = ∅.

2. If (i, j) ∈ N and (k, l) ∈ N are under interference then
add the link {(i, j), (k, l)} to L: L = L ∪ {(i, j), (k, l)}.

Interference can be modeled in various ways [164]. We introduce the n−dist interference
model to construct the conflict graphs in our experiments. The n−dist model extends single-
node and two-node models proposed in [83].

Let p = (v1, . . . , vh) be a simple path in the graph G, where vt ( t ∈ {1, . . . , h}) is the node
in the path p. We define the length of p as the number of nodes h in the path. For i, k ∈ V ,
we define dist(i, k) as the length of a shortest path from i to k or from k to i, i.e., a path
with the minimum number of nodes. For (i, j) and (k, l) ∈ E, the distance dist ((i, j), (k, l))
is defined as the length of a shortest path between any pair of {i, k}, {i, l}, {j, k},and {j, l},
i.e., dist ((i, j), (k, l)) = mint1∈{i,j},t2∈{k,l}{dist(t1, t2),dist(t2, t1)}. Hence, dist ((i, j), (k, l))
measures the minimum distance between the tail and end nodes of edges (i, j) and (k, l) .
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Under the n−dist model, (i, j) and (k, l) are in interference if dist ((i, j), (k, l)) ≤ n.
For example, Figure (8.1a) shows a network of five nodes and Figure (8.1b) shows its

conflict graph constructed via the 2−dist interference model. The 2−dist interference model
corresponds to the single-node model in [83]. This model considers that a node interferes with
its neighbors.

The distance between (1,2) and (4,5) is 3, so they are not connected via any link in Gc.
The distance between (1,2) and (3,4) is 2, so they are connected via one link in Gc. If two

edges in G are in interference, then a link between their corresponding nodes is in Gc. Hence
we can check whether two edges share capacity by the adjacency of their corresponding
nodes in Gc.

1

2

3

4

5

(a) Network with 5
nodes

(1, 2)

(2, 3)

(4, 5)

(5, 4)

(3, 4)

(b) Conflict graph

Figure 8.1 Interference model

We develop a capacity-sharing model in a wireless communication context from [165].
For edge (i, j) ∈ E, let fij be the flow on this edge; recall that fij

Cij
is the OTR of this edge.

Two edges connected in the conflict graph cannot transmit at the same time otherwise these
transmissions will fail.

Let m be a subset of edges of G such that the corresponding nodes in Gc are a clique.
Then every edge of m shares OTR with other edges in m.

The sum of OTRs of edges in m should be at most 1 and the clique capacity constraint
follows as:

∑
(i,j)∈m

fij
Cij
≤ 1. (8.4)

For any two clique sets m1 and m2, such that m1 ⊂ m2, it follows that the clique capacity
constraint over m1 is dominated by the clique capacity constraint over m2:

∑
(i,j)∈m1

fij
Cij
≤

∑
(i,j)∈m2

fij
Cij

. (8.5)

Therefore, non-dominated constraints are defined over maximal cliques. The dominance
relation over clique capacity constraints is equivalent to set inclusion over the corresponding
cliques. Then, it suffices to consider only non-dominated constraints induced by maximal
cliques in the model.

We denote by M the set of maximal cliques of Gc.
In Figure (8.1b), m1 = {(1, 2), (2, 3)} is a clique set, but m2 ={(1, 2), (2, 3), (3, 4)} is the

maximal clique set including it, therefore the capacity constraint is expressed only on the
maximal clique m2.
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j i k
P2 P2

P1P1

(a) Classical forwarding

j i k
P3 = P1 ⊕ P2 P2

P3 = P1 ⊕ P2P1

(b) Forwarding with network cod-
ing

Figure 8.2 Network coding

There are two maximal cliques of Gc in Figure (8.1b), and hence

M = {{(1, 2), (2, 3), (3, 4)} , {(2, 3), (3, 4), (4, 5), (5, 4)}} .

The model contains two capacity constraints:

∑
(i,j)∈{(1,2),(2,3),(3,4)}

fij
Cij
≤ 1,

∑
(i,j)∈{(2,3),(3,4),(4,5),(5,4)}

fij
Cij
≤ 1.

The following section is dedicated to presenting the network coding technique in WSN.

8.2.3 Network coding

Network coding allows intermediate nodes to combine data packets into a single packet
before broadcasting. It is a networking technique where operations, which in practice tend to
be algebraic algorithms, are performed on data to reduce the number of transmissions and
energy consumption. Broadcasting is the term used to describe communication where the
data packets are sent from one node to all other connected nodes.

Figure (8.2) illustrates the network coding mechanism by a triple of nodes; node j ∈ V and
node k ∈ V send packets P1 and P2 to each other through the intermediate node i ∈ V .

The classical forwarding scheme in Figure (8.2a) uses four transmissions to send P1 and
P2. Node j (resp. k) sends its packet P1 (resp. P2) to node i, and node i sends P1 to k and P2

to j, separately.
Figure (8.2b) shows that with network coding, only three transmissions are needed, and

hence the energy cost at the device i is saved. First node j and node k record and send
their packets to node i. Then node i encodes these two data packets by XOR operation to
obtain an encoded packet P3 := P1 ⊕ P2, where ⊕ is the bit-wise Boolean addition. Node i
broadcasts the encoded packet P3 to node j and node k simultaneously. Finally, node j and
node k decode data of P3 by XOR-ing with recorded packets, P1 = P3 ⊕ P2 and P2 = P3 ⊕ P1.

If (j, i), (i, k), (k, i), and (i, j) are in E, then there is a coding opportunity on the node i

called the three-node pattern.
The opportunity set is defined as follows:
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Λi{k,j} := {(j, i), (i, k), (k, i), (i, j)} . (8.6)

For Λi{k,j} ⊂ E, let fjik be the flow along j → i → k, and let fkij be the flow along
k → i→ j.

If fjik and fkij are non-zero, then network coding can be applied, and the node i could
encode the opposite flows fjik and fkij .

We define ui{k,j} as the flow encoded by node i, and it measures the number of data
packets in fjik and fkij that node i could code per unit of time.

Since the maximum encoded data cannot exceed the number of data arriving at a node i,
ui{k,j} must satisfy the following inequality:

ui{k,j} ≤ min(fjik, fkij). (8.7)

The next sections explain how the network coding increases the capacity of the network
and decreases the energy cost.

Effects on clique capacity constraints

Network coding decreases the left-hand side of the capacity constraints since it reduces the
occupancy time rate (OTR). Without network coding, the OTRs sum for transmitting fjik and
fkij is:

fjik
Cji

+ fjik
Cik

+ fkij
Cki

+ fkij
Cij

. (8.8)

Let T i{k,j}u
i
{k,j} be the OTR of the broadcasted flow ui{k,j} by network coding, where T i{k,j}

is a network transmission parameter. The broadcasting time must be at least the time of one
of the two separate transmissions:

T i{k,j} ≥ max{ 1
Cik

,
1
Cij
}, (8.9)

The remaining parts of fjik − ui{k,j} and fkij − ui{k,j} are transmitted by the classical
forwarding scheme.

The OTR with network coding follows as:

fjik
Cji

+
fjik − ui{k,j}

Cik
+ fkij
Cki

+
fkij − ui{k,j}

Cij
+ T i{k,j}u

i
{k,j}

=fjik
Cji

+ fjik
Cik

+ fkij
Cki

+ fkij
Cij
− ( 1

Cij
+ 1
Cik
− T i{k,j})ui{k,j}.

(8.10)

Let Ci{k,j} be the increased capacity over the three-node pattern Λi{k,j} with network coding.
Ci{k,j} measures the number of data packets that will no longer be transmitted on Λi{k,j} due
to network coding:

1
Ci{k,j}

:= 1
Cij

+ 1
Cik
− T i{k,j}. (8.11)
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From the bound on T i{k,j}, the following bound on 1
Ci

{k,j}
is obtained:

1
Ci{k,j}

≤ min
{

1
Cij

,
1
Cik

}
. (8.12)

Equivalently, Ci{k,j} ≥ max{Cij , Cik}.
As a result, the OTR can be rewritten as:

fjik
Cji

+ fjik
Cik

+ fkij
Cki

+ fkij
Cij
−
ui{k,j}

Ci{k,j}
. (8.13)

The OTR decrease within Λi{k,j} is
ui

{k,j}
Ci

{k,j}
.

Let m ∈ M be a maximal clique of Gc. The clique capacity constraint is obtained by
summing up the OTRs decreased by network coding, for all opportunity sets in m:

∑
(i,j)∈m

fij
Cij
−

∑
Λi

{k,j}⊂m

ui{k,j}

Ci{k,j}
≤ 1. (8.14)

Inequalities (8.14) and (8.7) define the clique capacity constraint with network coding.
In our experiments, we set T i{k,j} to its lower bound max{ 1

Cki
, 1
Cij
}, and correspondingly

set Ci{k,j} to 1/( 1
Cij

+ 1
Cik
− T i{k,j}) = min{Cki, Cij}.

In practice, the OTR of broadcasting ui{k,j} can be at most equal to the lower bound

max
{
ui

{k,j}
Cki

,
ui

{k,j}
Cij

}
; a higher Ci{k,j} can be set accordingly.

Effects on energy consumption

Network coding allows us to reduce the energy cost and decrease the objective function value.
Without network coding, the energy consumption to send the flow ui{k,j} from node i to node

j and to node k separately is ui{k,j}(βij+βik). Let βi{k,j}u
i
{k,j} be the cost of broadcasting ui{k,j}

by network coding, where the energy cost parameter βi{k,j} measures the energy consumption
to send a unit packet of ui{k,j} per unit time by broadcasting. The transmission cost βi{k,j}u

i
{k,j}

is equal to the OTR of broadcasting ui{k,j} times βi, i.e., βi{k,j}u
i
{k,j} = ui{k,j}T

i
{k,j}βi. Dividing

by ui{k,j}, it follows that βi{k,j} = βiT
i
{k,j}.

Therefore, the energy cost of sending flow fjik and fkij is reduced to

βjifjik + βik(fjik − ui{k,j}) + βkifkij + βij(fkij − ui{k,j}) + βi{k,j}u
i
{k,j}

=βjifjik + βikfjik + βkifkij + βijfkij − ui{k,j}(βik + βij − βi{k,j}).
(8.15)

Denote τ i{k,j} = βij+βik−βi{k,j}, so the energy cost saved by network coding is τ i{k,j}u
i
{k,j}.

The energy saving and the increased capacity are coupled according to Section 8.2.1:

τ i{k,j} = βi

(
1
Cij

+ 1
Cik
− T i{k,j}

)
= βi

1
Ci{k,j}

. (8.16)

It follows from Section 8.2.1 and the inequality (8.12) that:

0 ≤ τ i{k,j} ≤ βi min
{

1
Cij

,
1
Cik

}
≤ min {βij , βik} . (8.17)
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8.2.4 Complexity analysis

The wUMCFC problem is formulated as an UMCF problem with additional network coding
and clique capacity constraints. The wUMCFC problem can be reduced to a single-source
unsplittable flow problem [126, 190, 191, 222] by considering a single source demand, where
clique sets are singletons, and the coding variables are fixed to zero.

The single-source unsplittable flow problem is NP−hard, hence the wUMCFC problem is
also NP−hard.

8.3 Mathematical Formulations

In this section, we present mathematical programming formulations of the wUMCFC problem:
the compact edge-based formulations and the path-based formulation. We first define the
problem notation.

We denote by wUMCF the model derived from the UMCF problem by including network
coding variables and constraints. The edge capacity constraints are reformulated as the
clique capacity constraints defined in Section 8.2.3. Moreover, the objective function z− is
obtained by subtracting from z the energy cost saved by network coding zc; where zc :=∑

Λi
{k,j}⊂E τ

i
{k,j}u

i
{k,j}.

An abbreviation for edge (resp. path) formulation, i.e., E# (resp. P), is appended at the
end of the model notation, where # will be revealed subsequently. For example, wUMCFC-P
denotes the path-based formulation of the wUMCFC problem.

8.3.1 Compact edge-based formulations

In this subsection, we propose the MBQP formulation, and derive two edge-based MILP
formulations: the edge linearization formulation and the edge balance formulation.

MBQP formulation

The decision variables of the MBQP formulation are defined as follows:
Decision variables:
xstij : binary variable indicating whether demand st ∈ D is routed on the edge (i, j) ∈ E.
qstjik : real variable denoting the flow value of the demand st ∈ D routed on the incident

edges j → i→ k. qstjik should satisfy the quadratic constraint: qstjik = dstxstjix
st
ik.

ui{k,j} : real coding variable denoting the value of two opposite flows along the incident
edges k → i→ j and j → i→ k, which would be encoded at the node i.

M is the set of the maximum cliques of the conflict graph Gc, and τ i{k,j}u
i
{k,j} (Λi{k,j} ⊂ E)

is the energy cost saved by network coding.
The MBQP formulation, denoted by wUMCFC-EQ, follows as:
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min z− =
∑
st∈D

∑
(i,j)∈E

βijd
stxstij −

∑
Λi

{k,j}⊂E

τ i{k,j}u
i
{k,j} (8.18.0)

∑
(i,j)∈E x

st
ij −

∑
(j,i)∈E

xstji = 0, ∀i ∈ V − {s, t}, ∀st ∈ D, (8.18.1)∑
(s,i)∈E x

st
si −

∑
(i,s)∈E

xstis = 1, ∀st ∈ D, (8.18.2)∑
(i,t)∈E x

st
it −

∑
(t,i)∈E

xstti = 1, ∀st ∈ D, (8.18.3)

qstjik − dstxstjixstik = 0, ∀(j, i), (i, k) ∈ E, ∀st ∈ D, (8.18.4)
ui{k,j} −

∑
st∈D

qstjik ≤ 0, ∀Λi{k,j} ⊂ E, (8.18.5)

ui{k,j} −
∑
st∈D

qstkij ≤ 0, ∀Λi{k,j} ⊂ E, (8.18.6)

∑
st∈D

∑
(i,j)∈m

dst

Cij
xstij −

∑
Λi

{k,j}⊂m

ui{k,j}

Ci{k,j}
≤ 1, ∀m ∈M, (8.18.7)

xstij ∈ {0, 1}, ∀(i, j) ∈ E, ∀st ∈ D,
qstjik ∈ R+, ∀(j, i), (i, k) ∈ E, ∀st ∈ D,
ui{k,j} ∈ R+, ∀Λi{k,j} ⊂ E.

(8.18)

Objective function z− (8.18.0): the energy consumption of data transmissions per unit of
time, after removing the energy cost saved by network coding.

Flow conservation constraints (8.18.1) to (8.18.3): incoming and outgoing flows at each
node are balanced.

Incident edge flow constraints (8.18.4): the flow qstjik on incident edges (j, i) and (i, k) is
equal to dst if the demand st uses an unsplittable path through (j, i) and (i, k), otherwise
qstjik = 0.

Coding opportunity constraints (8.18.5) and (8.18.6): the coding variable ui{k,j} (cf. in-
equality (8.7)) is at most the minimum of two opposite aggregated flows along j → i→ k and
k → i→ j.

Clique capacity constraint (8.18.7) with network coding: the OTR within the clique set m
should be at most 1 (cf. (8.14)).

The wUMCFC-EQ formulation contains the classical constraints of the UMCF problem, and
additional clique capacity constraints, quadratic constraints and network coding constraints
and variables. The next section is dedicated to presenting an edge linearization of the
wUMCFC-EQ problem.

Edge linearization formulation

We propose an MILP reformulation of the nonlinear MBQP formulation.
The constraint qstjik = dstxstjix

st
ik is quadratic, xstji and xstik are binary variables, so we propose

the exact linearization approach as follows:

qstjik ≥ dst(1− xstji − xstik),

qstjik ≤ dstxstji,

qstjik ≤ dstxstik,

qstjik ≥ 0.

(8.19)
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The edge linearization formulation, denoted by wUMCFC-EL, replaces incident edge flow
constraints (8.18.4) of the wUMCFC-EQ formulation with the following linearization constraints:

qstjik ≥ dst(1− xstji − xstik), ∀(j, i) ∈ E, ∀(i, k) ∈ E, ∀st ∈ D, (8.20)

qstjik ≤ dstxstji, ∀(j, i) ∈ E, ∀(i, k) ∈ E, ∀st ∈ D, (8.21)

qstjik ≤ dstxstik, ∀(j, i) ∈ E, ∀(i, k) ∈ E, ∀st ∈ D, (8.22)

qstjik ≥ 0, ∀(j, i) ∈ E, ∀(i, k) ∈ E, ∀st ∈ D. (8.23)

Indeed, the wUMCFC-EL is a standard linearization of the wUMCFC-EQ problem, which is
currently used by commercial solvers such as CPLEX [70].

Edge balance formulation

The edge balance formulation uses the balanced property of flows on edges to represent the
flows on incident edges. We denote the edge balance formulation by wUMCFC-EB. More
precisely, the wUMCFC-EB formulation replaces incident edge flow constraints (8.18.4) of the
wUMCFC-EQ formulation with the following edge balance constraints:

∑
(i,k)∈E

qstjik − dstxstji = 0, ∀(j, i) ∈ E, ∀st ∈ D,

∑
(j,i)∈E

qstjik − dstxstik = 0, ∀(i, k) ∈ E, ∀st ∈ D.
(8.24)

The wUMCFC-EB is an MILP formulation.
We illustrate the usage of subscript/superscript notation for the subsequent part of this

chapter. When we omit subscripts and/or superscripts of some variables, we denote the
subset of variables restricted to the remaining subscripts and/or superscripts. For example,
x denotes the set of flow variables indexed by entire superscripts (demands) and subscripts
(edges), and xst denotes the set of st−flow variables indexed by entire subscripts (edges).

The wUMCFC-EB is a reformulation of the wUMCFC-EQ formulation by the following
theorem.

Theorem 8.1. Let x take binary values satisfying flow conservation constraints on nodes
(8.18.1), (8.18.2) and (8.18.3). Then q satisfies (8.18.4) if and only if q satisfies (8.24).

Proof. Assume x takes binary values satisfying flow conservation constraints on nodes
(8.18.1), (8.18.2) and (8.18.3). Then, x already represents an UMCF. For any (j, i) and
(i, k) ∈ E and st ∈ D, qstjik = dstxstjix

st
ik if and only if qstjik is the value of binary st-flow over

incident edges (j, i) and (i, k). For each st ∈ D, since xst is an unsplittable flow, the st−flow
takes a unique path from s to t. Then the latter condition is equivalent to: for any edge
(i, j) ∈ E, the st− flow entering (i, j) from its incident edges equals the st− flow leaving from
(i, j) to its incident edges, which is exactly the edge balance constraint (8.24).

According to the following theorem, the linear relaxation of the wUMCFC-EL formulation is
not stronger than the linear relaxation of the wUMCFC-EB formulation.

Theorem 8.2. The optimal value of the linear relaxation of the wUMCFC-EL formulation is at
most the optimal value of the wUMCFC-EB formulation.
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Proof. Let (x̄, q̄, ū) be a feasible solution of the linear relaxation of the wUMCFC-EB formu-
lation. Since the x̄ of the relaxation represents a fractional MCF, for each st ∈ D, we can
partition x̄st and dst into a finite number of unsplittable st−flows. Denote by χst the set of
paths on which st−flows in the relaxation solution have non-zero values, and let Ipij ∈ {0, 1}
((i, j) ∈ E) be the Boolean indicating whether a path p contains the edge (i, j), and let dst,p

be the value of the st−flow routed by path p. It follows that

dstx̄stij =
∑
p∈χst

dst,pIpij ,

dst =
∑
p∈χst

dst,p
(8.25)

According to the edge balance constraints (8.24), q̄stjik ((j, i) and (i, k) ∈ E ) could be decom-
posed by unsplittable st−flows in χst. Let q̄st,pjik be the st−flow of path p containing edge (j, i)
and (i, k); if p does not contain edge (j, i) and (i, k), q̄st,pjik is defined as zero. It follows that

q̄stjik =
∑
p∈χst

q̄st,pjik ,

q̄st,pjik

dst,p
∈ {0, 1},

q̄st,pjik

dst,p
= IpjiI

p
ik.

(8.26)

The reformulation of
q̄st,p

jik

dst,p = IpjiI
p
ik is obtained by using the following inequalities:

q̄st,pjik ≥ d
st,p(1− Ipji − I

p
ik),

q̄st,pjik ≤ d
st,pIpji,

q̄st,pjik ≤ d
st,pIpik,

q̄st,pjik ≥ 0.

(8.27)

By summing up these four inequalities over p ∈ χst, and substituting equations (8.25), we
obtain:

q̄stjik ≥ dst(1− x̄stji − x̄stik),

q̄stjik ≤ dstx̄stji,

qstjik ≤ dstx̄stik,

qstjik ≥ 0,

(8.28)

which are exactly constraints (8.19) of the wUMCFC-EL formulation. Therefore, (x̄, q̄, ū) is
also a feasible solution of the linear relaxation of the wUMCFC-EL formulation. The feasible
set of the linear relaxation of the wUMCFC-EL formulation includes the feasible set of the
wUMCFC-EB formulation so the result follows.

The wUMCFC-EL formulation is not a stronger formulation, and the linearization (8.20)
introduces more constraints compared to (8.24). The wUMCFC-EB formulation is more
suitable from the computational point of view, so we only solve wUMCFC-EB (8.18) in our
experiments (see Section 8.6).
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The edge-based formulations cannot be applied to large-scale problems because their
number of variables and constraints increase dramatically with the size of the network and the
number of demands. In the next section, we propose a new formulation using path variables
which leads to a better modelisation of the unsplittable routing and network coding.

8.3.2 Path-based formulation

We next consider the approach in Sect. 3.1.1. The path-based formulation is a DW reformula-
tion of the wUMCFC-EB formulation, where path variables are extreme points of the convex
hull of edge variables. Their linear relaxations have the same value, but the sizes of LPs
and the times to solve corresponding MILPs are different (see Section 8.6). The path-based
formulation contains an exponential number of path variables w.r.t. the size of the graph, but it
can be solved efficiently by the column generation approaches.

Denote by φst the set of all simple paths from the source s to the target t. We define the
following decision variables used by the path-based formulation:

Decision variables:
ystp : binary variable indicating whether demand st ∈ D is routed along a path p ∈ φst.
ui{k,j} : real coding variable denoting the amounts of two opposite flows, along k → i→ j

and j → i→ k, which can be encoded at i.
The path-based MILP formulation, denoted by wUMCFC-P, follows as:

min z− =
∑
st∈D

∑
p∈φst

∑
(i,j)∈p

βijd
stystp −

∑
Λi

{k,j}⊂E

τ i{k,j}u
i
{k,j} (8.29.0)

ui{k,j} −
∑
st∈D

∑
p∈φst

∑
(k,i),(i,j)∈p

dstystp ≤ 0,

ui{k,j} −
∑
st∈D

∑
p∈φst

∑
(j,i),(i,k)∈p

dstystp ≤ 0, ∀Λi{k,j} ⊂ E, (8.29.1)

∑
st∈D

∑
p∈φst

∑
(i,j)∈p∩m

dst

Cij
ystp −

∑
Λi

{k,j}⊂m

ui{k,j}

Ci{k,j}
≤ 1, ∀m ∈M, (8.29.2)

∑
p∈φst

ystp = 1, ∀st ∈ D, (8.29.3)

ystp ∈ {0, 1}, ∀st ∈ D, ∀p ∈ φst,
ui{k,j} ∈ R+, ∀Λi{k,j} ⊂ E

(8.29)

Objective function z− (8.29.0): energy consumption of data transmissions in the network
per unit of time.

Coding opportunity constraints (8.29.1): every three-node coding opportunity set induces
a pair of constraints, associated with two opposite flows, such that the coding variable ui{k,j}
(cf. inequality (8.7)) is at most the aggregated flows along k → i→ j and j → i→ k.

Clique capacity constraints (8.29.2) with network coding: the OTR within the clique set m
should be at most 1 (cf. (8.14)).

Unsplittable constraints (8.29.3): each demand has to be routed by a single path.
The path-based formulation wUMCFC-P has an exponential number of path variables, but

it contains fewer other variables and fewer constraints than the edge-based formulations. The
numerical experiments in Section 8.6 show that it can be solved efficiently by the branch-and-
price algorithm.
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Table 8.1 Comparison of variables

Routing vars Coding vars Auxiliary vars

Path-based formulation Exponential O(|E|2) 0

Edge-based formulation O(|E||D|) O(|E|2) O(|E|2|D|)

#Flow cons #Coding opportunity cons #Clique capacity cons

Path-based formulation O(|D|) O(|E|2) O(|M |)
Edge-based formulation O(|D||V |) O(|E||D|) + O(|E|2) O(|M |)

Table 8.2 Comparison of constraints

Tables (8.1) and (8.2) compare sizes of edge and path-based formulations in terms of
number of variables and number of constraints.

8.4 Column generation

This section is dedicated to presenting a column generation approach to solve the LP relaxation
of wUMCFC-P (8.29).

The column generation approaches [124, 152, 215, 295] start by solving an initial linear
program (LP) restricted to a small subset of variables and then generate new variables
(columns) dynamically. Columns are removed from the LP because there are too many
columns to handle efficiently, and most of them will have their associated variable equal to
zero in an optimal solution. The LP problem with all columns is called the master problem,
and the problem limited to a subset of active columns is called the restricted master problem
(RMP). To check the optimality of the RMP solution, a subproblem, called the pricing problem,
is solved to try to identify columns with a negative reduced cost (for a minimization problem).
If such columns are found, the RMP is reoptimized. When the pricing subproblem returns a
solution with a nonnegative reduced cost, we can conclude that the solution to the master
problem is optimal.

The pricing algorithm developed here consists of two parts. The first part is called reduced
cost pricing, and it adds paths with the minimum negative reduced cost. The second part
is called Farkas pricing which identifies and repairs the infeasibility. We reduce the pricing
problem to a shortest path problem in an extended graph.

8.4.1 Reduced cost pricing

The objective function of the pricing subproblem is the reduced cost of the new variable with
respect to the current dual variables. From the solution of the RMP, we obtain the dual prices
for each of the constraints in the RMP. This information is then used in the objective function
of the pricing problem.

If the objective value of the pricing problem is negative, a variable with negative reduced
cost is identified. This variable is then added to the RMP, and the RMP is re-optimized.
Re-solving the RMP will generate a new set of dual values, and the process is repeated until
no negative reduced cost variables are identified.
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Let γjik, γkij , ζm and ηst be the dual variables associated respectively to the constraints
(8.29.1), (8.29.2) and (8.29.3).

The reduced cost of a path variable on p ∈ φst is denoted by RCst(p) and

RCst(p) :=
∑

(k,i),(i,j)∈p

−dstγkij +
∑

(i,j)∈p

dstβij +
∑
m∈M

∑
(i,j)∈p∩m

dst
ζm
Cij

+ ηst. (8.30)

The dual problem of the LP relaxation of wUMCFC-P (Dual-wUMCFC-P) follows as:

max −
∑
m∈M

ζm −
∑
st∈D

ηst (8.31.0)

γkij + γjik − τ i{k,j} −
∑

m∈M :Λi
{k,j}⊂m

ζm
Ci{k,j}

= 0, ∀Λi{k,j} ⊂ E, (8.31.1)

RCst(p) ≥ 0, ∀st ∈ D,∀p ∈ φst, (8.31.2)
ζm ∈ R+, ∀m ∈M, (8.31.3)
γkij , γjik ∈ R+, ∀Λi{k,j} ⊂ E, (8.31.4)
ηst ∈ R, ∀st ∈ D. (8.31.5)

(8.31)

The dual variables γ domain is originally defined over the opportunity sets Λ ⊂ E × E. We
extend this domain to E×E so the subsequent analysis is simpler: for (k, i), (i, j), (j, i), (i, k) ∈
E, if Λi{k,j} ̸⊂ E, we define γkij = 0 and γjik = 0.

Let σst ⊂ φst (st ∈ D) be the set of active path variables added into RMP; only constraints
(8.31.2) indexed by σst are included in the dual RMP.

The pricing problem is decomposed into |D| sub-problems. For each st ∈ D, the corre-
sponding sub-problem checks whether there exists a path p from s to t such that RCst(p) < 0.

We define a path cost function PC, such that for a path p in the graph G we have:

PC(p) :=
∑

(k,i),(i,j)∈p

−γkij +
∑

(i,j)∈p

βij +
∑
m∈M

∑
(i,j)∈p∩m

ζm
Cij

. (8.32)

Let p∗ = argminp∈φst PC(p), it follows that RCst(p∗) = dstPC(p∗) + ηst = minp∈φst RCst(p).
If RCst(p∗) < 0, then we add the column associated to the path p∗ to the RMP.

The pricing problem is reduced to finding a path p with the minimum cost PC(p).
The shortest path algorithm is not used in the original graph G since PC(p) includes

positive and negative costs on incident edges. However, we have the following polynomial
reduction of the pricing problem to the shortest path problem in an extended graph.

Extended Graph

Denote by EG = (H,A) the weighted directed extended graph to construct, and let w be the
weight function over edges in A. Let E =

{
(i, j) | (i, j) ∈ E

}
be auxiliary edges that are copies

of original edges.
We build EG as the follows:

1. Let H := E ∪ E.
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k i j

wkij

wki wij

(a) Edges in original graph G

(k, i) (k, i) (i, j) (i, j)
wki wkij wij

(b) Corresponding nodes in extended graph EG

Figure 8.3 G and EG

2. If (k, i) ∈ E and (i, j) ∈ E, then
(

(k, i), (i, j)
)
∈ A;

If (i, j) ∈ E, then
(

(i, j), (i, j)
)
∈ A.

Denote

A≤ :=
{(

((k, i), (i, j)
)
| (k, i), (i, j) ∈ E

}
,

A≥ :=
{(

(i, j), (i, j)
)
| (i, j) ∈ E

}
.

(8.33)

Consequently, A = A≤ ∪A≥ is partitioned into two subsets.

3. For
(

(k, i), (i, j)
)
∈ A≤, its weight is

w
((

(k, i), (i, j)
))

:= −γkij , (8.34)

and we abbreviate it as wkij , which is negative. We call A≤ the set of negative edges.

For
(

(i, j), (i, j)
)
∈ A≥, its weight is

w
((

(i, j), (i, j)
))

:= βij +
∑

m∈M :(i,j)∈m

ζm
Cij

, (8.35)

and we abbreviate it as wij , which is positive. We call A≥ the set of positive edges.

By construction, negative edges are only incident to positive edges, and vice versa.

Figure (8.3) is an example of building an extended graph.
The size of the extended graph EG is polynomial in the size of G: EG has O(|E|) nodes

and O(|E|2) edges.
The weight w(p′) on a path p′ in EG is defined as the sum of its edge weights. Two paths

representations are used: the edge representation, which is an ordered sequence of edges
enclosed by (), and the node representation as an ordered sequence of nodes enclosed by [].
The first (resp. last) node of a path is called the source (resp. target) node. We define the
following mapping:

Definition 8.3. Let a path p in G be (e1, . . . , en) where ei ∈ E for i = 1, . . . , n, and denote
by e = (i, j) for e = (i, j) ∈ E. The path mapping π maps p to a path π(p) in EG satisfying:
π(p) = [e1, e1, . . . , en, en].

Figure (8.3) shows that π maps a path ((k, i), (i, j)) in (8.3a) to a path
[
(k, i), (k, i), (i, j), (i, j)

]
in (8.3b).
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s i t

lm

(a) A cyclic path p in
G

(s, i)(s, i)

(i, l) (i, l) (l,m) l,m) (m, i) (m, i)

(i, t)(i, t)

(b) A simple path p′ = π(p) in EG

Figure 8.4 π−1 does not preserve the acyclicity from EG to G

Therefore, the source and target of p are s and t if and only if the source and target of π(p)
are (s, i) and (j, t) for some i ∈ V and some j ∈ V .

φst is the set of simple paths in G from node s ∈ V to node t ∈ V .
We define ψst as the set of simple paths in EG in which source nodes are (s, i) ∈ E for

some i ∈ V and target nodes are (j, t) for some j ∈ V .

Lemma 8.4. Given st ∈ D, the following properties are satisfied by the mapping π:

1. π is an injection.

2. For p ∈ φst, PC(p) = w(π(p)), where w is the sum of weights of edges of π(p).

3. π(φst) ⊊ ψst.

Proof. From the construction of EG and π: π is injective, PC(p) = w (π(p)) and π(φst) ⊂ ψst.
To prove the strictness of the inclusion, we give an example in Figure (8.4).

p = ((s, i), (i, l), (l,m), (m, i), (i, t))

is cyclic,

p′ = π(p) =
[
(s, i), (s, i), (i, l), (i, l), (l,m), (l,m), (m, i), (m, i), (i, t), (i, t)

]
is simple, thus π(φst) ̸= ψst.

Every path p′ in EG with source node in E and target node in E is the map of a unique path
p in G (see Figure (8.4)), and the inverse π−1 is well-defined on those p′. Since π preserves
the path cost and is an injection, the pricing problem is reduced to finding argminp′∈π(φst) w(p′),
and recovering the inverse path.

There are two issues to address:

• Enumerating all paths in π(φst) is not efficient. Note that ψst is a set of paths in EG with
known sources in E and targets in E, but it strictly includes π(φst).
Let p∗ = argminp′∈ψst w(p′) be a shortest path in ψst; it follows that

w(p∗) ≤ min
p′∈π(φst)

w(p′) = min
p∈φst

PC(p). (8.36)
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We will prove that p∗ ∈ π(φst) (equivalently, π−1(p∗) is simple), and hence w(p∗) =
minp′∈π(φst) w(p′).

• The path p∗ is a shortest simple path in EG between a known set of sources and targets
indicated by ψst. Note that there exist edges with negative weights in EG. We will prove
that none of cycles in EG are negative, i.e., EG is conservative. Hence, the shortest
simple path problem is solvable in polynomial time.

The negative weights are adressed first.

Lemma 8.5. For Λi{k,j} ⊂ E, wik + wkij + wjik ≥ 0 and wij + wkij + wjik ≥ 0.

Proof. From the constraint (8.31.1) and 1
Ci

{k,j}
≤ min

{
1
Cij

, 1
Cik

}
(cf. (8.12)), we have

γkij + γjik − τ i{k,j} =
∑

m∈M :Λi
{k,j}⊂m

ζm
Ci{k,j}

≤
∑

m∈M :Λi
{k,j}⊂m

ζm
Cij
≤

∑
m∈M :(i,j)∈m

ζm
Cij

. (8.37)

It follows from the definition of wkij , wjik and wij that

− wkij − wjik
=γkij + γjik

≤τ i{k,j} +
∑

m∈M :(i,j)∈m

ζm
Cij

≤βij +
∑

m∈M :(i,j)∈m

ζm
Cij

=wij .

(8.38)

The last inequality follows from (8.17).
Hence, wij + wkij + wjik ≥ 0 holds. The proof for wik + wkij + wjik ≥ 0 is similar.

Theorem 8.6. Let e1 and e2 be two incident edges of EG, let e1 be negative, and let e2 be
positive. Then, w(e1) + w(e2) ≥ 0

Proof. Let e1 =
(

(k, i), (i, j)
)

be negative and e2 =
(

(i, j), (i, j)
)

be positive. If Λi{k,j} ⊂ E, it
follows from Lemma (8.5) that

w(e1) + w(e2)

=wkij + wij

≥− wjik
≥0.

(8.39)

Otherwise, according to the extension of γ in Subsection 8.4.1 and the definition of weights,
w(e1) = wkij = 0 and w(e2) = wij ≥ 0, so w(e1) + w(e2) ≥ 0.

Corollary 8.7. For any simple cycle r of EG, it follows that w(r) ≥ 0.

Proof. Denote r = (e1, ..., et), and let its length be t. Because of alternative appearances of
positive and negative edges in the cycle, t is even where t = 2h for some integer h. W.l.o.g.,
we assume e1 is negative.
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By Lemma (8.6), then w(r) =
∑
h∈{1,..., t

2 } (w(e2h−1) + w(e2h)) ≥ 0.

The Bellman-Ford algorithm is used to compute the shortest simple path p∗ in the graph EG.
The number of nodes and edges of the extended graph are O(|E|) and O(|E|2), respectively,
hence the time complexity is O(|E|3).

The complexity of the pricing algorithm is O(|D||E|3). The Bellman-Ford algorithm can
output a smallest length path when there are multiple shortest paths of the same weight, so
the pricing algorithm works even if the weight of a cycle is zero. Lemma 8.8 demonstrates that
the removal of cycles of flows would decrease the objective value.

Now, we prove that π−1(p∗) is simple based on the perturbation analysis and the optimality
of p∗.

Let (y, u) be a feasible solution of LP relaxation of (8.31), and denote by z−(y, u) the
objective value of solution (y, u). If there exists a path p in G such that yp > 0, and p contains
a cycle r, we call this solution is cyclic.

Here, we take the edge representation of a path/cycle, and p \ r denotes the usual set
minus operation. Since the left-hand sides of clique capacity constraints and the objective
function are related to OTRs, deleting cycles of a path would reduce the OTRs on the edges
of cycles. As a result, deleting cycles could both decrease the objective and increase the
feasibility.

Lemma 8.8. Let (ȳ, ū) be a cyclic solution such that there exists a path ṗ with ȳṗ > 0, and ṗ
contains a cycle ṙ; denote by p̈ = ṗ \ ṙ a path without the cycle ṙ. There exists another feasible
solution (ŷ, û), such that ŷṗ = 0, ŷp̈ = ȳṗ + ȳp̈, ŷp = ȳp for p ̸= ṗ and p̈, and z−(ŷ, û) ≤ z−(ȳ, ū).

Proof. We can assume that û (resp. ū) is equal to its upper-bound defined by the pair of
constraints (8.31.1) for fixed ŷ (resp. ȳ). This is because increasing u does not change the
feasibility of the solution and decreases the objective value.

Assume ȳ follows the value assignment of the lemma, and ū is equal to its upper-bound
defined by constraints (8.31.1) with fixed ȳ.

In contrast to the path ṗ, the path p̈ does not contain the cycle ṙ. Denote by ṙ+ =
ṙ ∪ {(j, i) | (i, j) ∈ ṙ} the union of the cycle ṙ and its reversed cycle. For Λi{k,j} ⊂ ṙ+ ∩ E, the
flow on cycle ṙ affects the coding variable ûi{k,j}. By deleting the cycle ṙ, the right-hand side
of one of the constraint pairs (8.31.1) decreases by at most ȳṗ.

Coding variables affected by cycle ṙ satisfy the following conditions

ūi{k,j} − û
i
{k,j} ≤ d

stȳṗ, ∀Λi{k,j} ⊂ ṙ+ ∩ E, (8.40)

ūi{k,j} − û
i
{k,j} = 0, ∀Λi{k,j} ̸⊂ ṙ+ ∩ E. (8.41)

We first check that the clique capacity constraint (8.31.2) is still feasible for each clique set
m ∈M .

Assume that ṗ ∈ φst. If r ∩m = ∅, then ṗ ∩m = ∅. Hence, ŷp = ȳp for p s.t. p ∩m ̸= ∅, and
ūi{k,j} = ûi{k,j} for all Λi{k,j} ⊂ m. So the left-hand side of the clique capacity constraints on m
remains the same (feasible). Otherwise if r ∩m ̸= ∅, then for Λi{k,j} ⊂ m ∩ ṙ+, the associated
coding variables decrease from ūi{k,j} to ûi{k,j}.
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It follows that ∑
Λi

{k,j}⊂m

1
Ci{k,j}

ūi{k,j} −
∑

Λi
{k,j}⊂m

1
Ci{k,j}

ûi{k,j}

=
∑

Λi
{k,j}⊂m∩ṙ+

1
Ci{k,j}

ūi{k,j} −
∑

Λi
{k,j}⊂m∩ṙ+

1
Ci{k,j}

ûi{k,j}

≤
∑

Λi
{k,j}⊂m∩ṙ+

dst

Ci{k,j}
ȳṗ

≤
∑

Λi
{k,j}⊂m∩ṙ+

min
{
dst

Cij
,
dst

Cik

}
ȳṗ

≤
∑

(i,j)⊂m∩r

dst

Cij
ȳṗ,

(8.42)

the second inequality follows from (8.12) and the third inequality follows from an enlarged
index set.

We check the left-hand side of the clique capacity constraint for each m:

∑
st∈D

∑
p∈φst

∑
(i,j)∈p∩m

dst

Cij
ŷp −

∑
Λi

{k,j}⊂m

1
Ci{k,j}

ûi{k,j}

=
∑
st∈D

∑
p∈φst

∑
(i,j)∈p∩m

dst

Cij
ȳp −

∑
(i,j)∈m∩r

dst

Cij
ȳṗ −

∑
Λi

{k,j}⊂m

1
Ci{k,j}

ûi{k,j}

≤
∑
st∈D

∑
p∈φst

∑
(i,j)∈p∩m

dst

Cij
ȳp −

∑
Λi

{k,j}⊂m

1
Ci{k,j}

ūi{k,j}

≤1.

(8.43)

The first equation follows from the difference between ȳ and ŷ on the cycle ṙ, the first
inequality follows from (8.42), and the last inequality follows from the fact that ȳ is feasible.
Indeed, the left-hand side of the clique capacity constraint under the new solution (ŷ, û) is
decreased.

Since the st−flow on cycle ṙ decreases by ȳṗ, and coding variables decrease accordingly,
it follows that:

z−(ŷ, û)− z−(ȳ, ū)

=−
∑

(i,j)∈ṙ

βijd
stȳṗ −

∑
Λi

{k,j}⊂ṙ+∩E

τ i{k,j}

(
ûi{k,j} − ū

i
{k,j}

)
≤−

∑
(i,j)∈ṙ

βijd
stȳṗ +

∑
Λi

{k,j}⊂ṙ+∩E

τ i{k,j}d
stȳṗ

=−
∑

(i,j)∈ṙ:̸∃k,Λi
{k,j}⊂ṙ+∩E

βijd
stȳṗ +

∑
(i,j)∈ṙ:∃k,Λi

{k,j}⊂ṙ+∩E

(−βij + τ i{k,j})dstȳṗ

≤−
∑

(i,j)∈ṙ:̸∃k,Λi
{k,j}⊂ṙ+∩E

βijd
stȳṗ

≤0.

(8.44)
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The first equation follows from the difference of objective values on cycle ṙ, the first
inequality follows from (8.40), and the second equation follows from the partition of edges in ṙ,
and the second inequality follows from (8.17).

Therefore, z−(ŷ, û) ≤ z−(ȳ, ū).

Recall that p∗ = argminp′∈ψst w(p′), and its path cost PC(π−1(p∗)) = minp′∈ψst w(p′) ≤
minp′∈φst w(p′). We further conclude the following theorem 8.9.

Theorem 8.9. π−1(p∗) is a simple path in G, and PC(π−1(p∗)) = minp′∈φst w(p′).

Proof. Note that the reduced cost RCst(π−1(p∗)) of p∗ is the minimum among paths in ψst.
By the definition of the minimum reduced cost, among all path variables which admit zero
values in RMP, assume a positive perturbation of the path variable associated to π−1(p∗), such
perturbation decreases the objective function.

If π−1(p∗) is not simple, by Lemma (8.8), there are two cases:

• If deleting the cycles of p∗ decreases the objective value, it would contradict the minimum
reduced cost of π−1(p∗);

• Otherwise, deleting cycles yields a solution of the same objective value, i.e., the reduced
cost of the new simple path is the same as the reduced cost of π−1(p∗). But according to
the Bellman-Ford algorithm, among paths of the same minimum cost, only the shortest
simple path would be the output of the algorithm, which contradicts our assumption.

Therefore, π−1(p∗) must be simple and the result follows.

Therefore, there is no need to check whether an inverse optimal path is simple. To
summarize, the pricing algorithm constructs the extended graph EG, for each st ∈ D, finds a
shortest path in φst (Bellman-Ford Algorithm), and adds the inverse path in σst. If no such
path exists, the master problem is optimal.

8.4.2 Farkas pricing

The Farkas pricing improves the feasibility when the LP relaxation of the RMP is infeasible.
The constraint (8.31.2) differentiates the RMP dual problem from the master dual problem.

The quantifier φst in Dual- wUMCFC-P (8.31) is replaced by its active subset σst.
According to the Farkas’ lemma, the RMP is infeasible if and only if the dual RMP

is unbounded. The dual RMP is unbounded if and only if there exists an improving ray
(∆(η),∆(γ),∆(ζ)) (Farkas certificate) of the dual RMP along which the objective function can
be improved infinitely.
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The dual simplex algorithm could detect this improving ray. The vector (∆(η),∆(γ),∆(ζ))
is an improving ray for the dual RMP if and only if it satisfies the following conditions:

−
∑
m∈M

∆(ζ)m −
∑
st∈D

∆(η)st > 0, (8.45.0)

∆(γ)kij + ∆(γ)jik −
∑

m∈M :Λi
{k,j}⊂m

∆(ζ)m
Ci{k,j}

= 0, ∀Λi{k,j} ⊂ E, (8.45.1)

FCst(p) ≥ 0, ∀st ∈ D,∀p ∈ σst, (8.45.2)
∆(ζ)m ∈ R+, ∀m ∈M, (8.45.3)
∆(γ)kij ,∆(γ)jik ∈ R+, ∀Λi{k,j} ⊂ E, (8.45.4)
∆(η)st ∈ R, ∀st ∈ D. (8.45.5)

. (8.45)

where the Farkas coefficient is defined as:

FCst(p) :=
∑

(k,i),(i,j)∈p

−dst∆(γ)kij +
∑
m∈M

∑
(i,j)∈p∩m

dst
∆(ζ)m
Cij

+ ∆(η)st. (8.46)

If(∆(η),∆(γ),∆(ζ)) is an improving ray for the dual RMP, it might violate the constraints of
(8.45.2) for some st ∈ D and p ∈ φst \ σst.

The pricing algorithm finds, for each demand st ∈ D, a path with the minimum Farkas coeffi-
cient. Such paths with negative Farkas coefficient are added to σst. Adding the corresponding
cut repairs unboundedness of the dual RMP, and equivalently, adding the corresponding
column in the RMP repairs its infeasibility.

If the Farkas pricing does not find any path, then (∆(η),∆(γ),∆(ζ)) certifies that the
dual master problem is unbounded, and we can conclude that the primal master problem is
infeasible.

For a solution with a non-zero cyclic path, the left-hand side of the clique capacity constraint
is always at most the value of another solution after removing the cycles. Therefore, the simple
path improves feasibility. Therefore, the inverse of an optimal path in the extended graph is
also simple in the original graph.

In summary, we have the following corollary for the correctness of the pricing algorithm.

Corollary 8.10. The pricing algorithm finds a simple path to improve the RMP solution in
polynomial time.

Since the pricing problem is solved for several iterations at each node of the search tree,
the above corollary shows the efficiency of our approach.

8.5 Branching rule

Branch-and-price (B&P) is a generalization of linear programming (LP) based branch-and-
bound specifically designed to handle integer programming (IP) formulations that contain a
huge number of variables. B&P applies column generation at every node of the branch-and-
bound tree. Branching occurs when no columns with negative reduced costs are found, but
the LP solution does not satisfy the integrality conditions.



138 Branch-and-price for coding-aware routing in wireless networks

i

j

k

s t

l

Figure 8.5 Paths diverge at i and k

The wUMCFC-P formulation contains binary path variables. Hence, at every node of the
B&P tree, when the column generation converges to a fractional LP solution, the branching rule
enforces the integrality of the path variables. Two branching rules can be applied: branching
on edges or branching on paths.

Branching on paths is an easy way to set binary path variables to zero or one. If a variable is
fixed to zero, the pricing algorithm might regenerate it. In the worst case, the solver generates
a column, fixes it to zero, regenerates it again, and hence never terminates.

We choose the branching rule on edges. Branching on edges [36] forbids flows to use
certain edges. For st ∈ D, an edge e ∈ E is st−forbidden at a sub-B&P tree if e is forbidden to
transmit any st−flow in any nodes of the sub-search tree. To forbid an edge e, we set to zero
the existing columns of the paths containing e at the branching node, and forbid generation of
any st−path containing e in its sub-search tree. Every node of the B&P tree records a set F st

of forbidden edges for each st−flow.
To be compatible with the proposed pricing algorithm, we can simply delete edges in F st

from the original G, and generate the extended graph EG from this subgraph of G. In this way,
none of the st−paths through a forbidden edge would be generated.

Note that all the properties of the pricing algorithm still hold for the subgraph of G, and all
the paths generated are simple in the subgraph and in G as well.

Let χst = {p | yp > 0, p ∈ φst} be the set of st−path variables with non-zero values in the
LP relaxation. Let T be the sub-graph of G supporting χst. In T , the in-degree of s is zero, the
out-degree of t is zero, and the in-degree and the out-degree of the remaining nodes in T are
identical.

For example, in Figure (8.5) there are 4 st−paths, 2 divergence nodes i and k, and i is the
first divergence node.

In our implementation (8.1), we choose the flow st = argmaxst∈D:|χst|>1 d
st. Thus the

branching rule has a strong impact on the dual bound. Note that branching on edges incident
to the first divergence node fixes more active paths than branching on other edges.

Let the node i be the first divergence node of the tree T associated with st.
Denote by Nst

i = {(i, j) | (i, j) ∈ T} the set of out edges at node i in T , by Osti =
{(i, j) | (i, j) ∈ E} \ (F st ∪Nst

i ) the set of non-forbidden out edges of E \Tat node i. Note that
Nst
i ∩Osti = ∅. Since the st−flow should be binary, it must take at most one edge of Nst

i ∪Osti
in its unique path; this forms a binary disjunction branch.

We partition Nst
i and Osti equally into F st1 and F st2 , which are st−forbidden edge subsets

for two child nodes in the branch.
First, Nst

i is divided into two parts according to st−flow values on its edges, such that the
current st−flow is partitioned into the two child nodes in a balanced way. Then, the partition of
Osti is randomly chosen by order.
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Algorithm 8.1: Branching rule
Data:
G: the original graph representing the network, G = (V,E)
χ: the set of path variables with non-zero values for each demand.
F : the set of forbidden edge sets at the current B&P node.
Result: Updated forbidden edge sets for two child nodes

1 st←− argmaxst∈D:|χst|>1 d
st

2 Construct the sub-graph T supporting χst

3 Find the first divergence node i of T
4 Nst

i ←− {(i, j) | (i, j) ∈ T}
5 Osti ←− {(i, j) | (i, j) ∈ E} \ (F st ∪Nst

i )
6 Compute values of st−flow on the edges of Nst

i according to χst

7 Sort Nst
i in decreasing order by flow values on the edges

8 F st1 , F st2 ←− ∅
9 for (i, j) ∈ Nst

i do
10 if |F st1 | < |F st2 | then
11 F st1 ←− F st1 ∪ {(i, j)}
12 else
13 F st2 ←− F st2 ∪ {(i, j)}

14 for (i, j) ∈ Osti do
15 if |F st1 | < |F st2 | then
16 F st1 ←− F st1 ∪ {(i, j)}
17 else
18 F st2 ←− F st2 ∪ {(i, j)}

19 return F st1 , F st2

8.6 Computational Results

In this section, we describe the test instances and evaluate the performance of the proposed
algorithms. The path-based formulation wUMCFC-P of each instance is solved by the B&P
algorithm. The compact wUMCFC-EB formulation is solved by the MILP CPLEX solver. The
first experiments compare the performance of the B&P algorithm implemented with SCIP to
the CPLEX solver performance.

The second experiment solves the wUMCF problems and the wUMCFC problems by the
B&P algorithm to observe the impact of network coding. The wUMCF problem is obtained by
setting u = 0 and deleting coding opportunity constraints from the wUMCFC problem.

8.6.1 Instances

We generate 40 instances and divide them into two classes, low-demand, and high-demand
test beds. Each instance describes the graph G representing a WSN, the costs β of its edges,
the demands D, the capacities C of its edges and the clique set M .

For each test bed, there are 10 subclasses, and each subclass contains 2 instances
with the same number of nodes and demands. The number of nodes |V | ranges from 30 to
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120 by a step of 10, and each test bed contains instances of these 10 distinct sizes. The
number of demands, |D|, equals 0.4|V | and 0.8|V | for low-demand and high-demand test
beds, respectively.

Given the number of nodes and demands, the generation procedure follows as:

1. Generate a random bi-directed geometric graph G = (V,E) of a given number of nodes
in the unit square, where the Euclidean radius for linking two nodes is proportional to√

1
n .

2. For each i ∈ V , sample the node cost βi from the truncated standard normal distribution
s.t. 0.8 ≤ βi ≤ 1.2.

3. For each (i, j) ∈ E, sample the capacity Cij uniformly from {1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6},
and set the cost βij = βi

Cij
.

4. For each demand st ∈ D: randomly select a pair of source and target nodes s and t,
and sample the demand dst from a normal distribution with a mean proportional to 1

|D| .

5. Construct the conflict graph Gc of G according to the 2-dist interference model in Section
8.2.2.

6. Find the set M of maximal cliques in Gc using Networkx’s recursive backtracking algo-
rithm [169].

Note that finding all maximal cliques of a graph is an NP− complete problem. But the
generated geometric graphs are sparse, the number of maximal cliques is not very large and
the enumeration by Networkx’s recursive backtracking algorithm is efficient. Therefore, we
generate all the clique capacity constraints according to the 2-dist interference model, by using
the clique set M computed by the Networkx algorithm.

For each coding opportunity set Λi{k,j} ⊂ E, the parameters τ i{k,j} (for energy saving) and
Ci{k,j} (for capacity increasing) are computed based on Section 8.2.3.

We only generate feasible and non-trivial instances. An instance is feasible if it has a
solution and an instance is trivial if its LP relaxation root node is already feasible, i.e., satisfies
the integrality constraints.

For each input, we repeat the above procedure until the instance is feasible and non-trivial.
The generated test instances are described in the first column of Table (8.3) and the first

column of Table (8.4). The first letter indicates whether it belongs to the low or high-demand
test bed (L or H), and the following V.E.D indicates respectively the numbers of nodes, edges
and demands.

The B&P algorithm in our solver wUMCFC is implemented using SCIP (version 7.0.2) [147]
with CPLEX (version 12.10.0) as an LP solver. We use CPLEX in the single-thread mode (with-
out parallelism) to solve the compact edge balance formulation. The open source solver wUM-
CFC and test instances can be found in our project web page: github.com/lidingxu/wUMCFC.

The computing environment has an Intel Core i7-6700K CPU at 4.00 GHz and 16 GB of
RAM under Ubuntu 20.04 system. The time limit is set to 3600 CPU seconds. The relative
duality gap tolerance is set to 1e-4.

https://github.com/lidingxu/wUMCFC
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8.6.2 Numerical comparisons of formulations

In this section, we perform the numerical comparison between the path-based formulation
wUMCFC-P and the compact edge balance formulation wUMCFC-EB. We evaluate perfor-
mance metrics of the B&P algorithm for the wUMCFC-P formulation and CPLEX for the
wUMCFC-EB formulation.

We implement the pricing algorithm and the branching rules for the B&P algorithm in SCIP;
the initial columns are the shortest paths of the demands.

Table (8.3) and Table (8.4) report the results for low and high-demand data sets respectively.
For the B&P algorithm and CPLEX, we report the primal bound z∗

−, the relative duality
gap in percentage, the run time t in CPU seconds, the number of variables, the number of
constraints, and the number of nodes. Additionally for the B&P algorithm, we also record the
pricing time tP in CPU seconds, the number of pricing calls and the number of generated
paths.

Among all 40 instances, the B&P algorithm solves 13 instances to optimality, and finds
primal feasible solutions for all 40 instances. CPLEX solves 10 instances to optimality and
finds primal feasible solutions for 23 instances. This result can be explained by the fact that
the size of the edge-based formulation is significantly larger than the size of the path-based
formulation, especially for large networks and high-demand instances. In the edge-based
formulation, the number of constraints grows linearly with the number of demands and the
size of the network, while the number of constraints of the path-based formulation mainly
depends on the size of the network. Both the edge-based formulation and the path-based
formulation need auxiliary continuous variables to model the coding opportunities, but the
edge-based formulation has additional variables q on incident edges. The number of variables
of the edge-based formulation is O(|E|2|D|), and the number of variables of the path-based
formulation is O(|E|2) in addition to the path variables.

Even with the generated columns (path variables), the size of the path-based formulation
is still smaller than the size of the edge-based formulation. This occurs because, for each
demand, only a small part of the path variables are non-zero in the optimal solution. Columns
generated, at one node in the search tree, are not necessarily included in the LP relaxation of
a different node. If some columns are equal to zero in the LP relaxation, SCIP can remove
these columns from descendant nodes, and add them back dynamically. Hence, the size of
the LP is kept as small as possible.

To compare the performance of the B&P algorithm and CPLEX, we compute the shifted
geometric means (by 10s) of run times for low-demand, high-demand and all instances
respectively. The run time of unsolved instances is taken as the time limit (3600 seconds).
For the B&P algorithm, the mean times for low-demand, high-demand and all instances are
respectively: 588.3 seconds, 1365.2 seconds and 897.1 seconds. For CPLEX, the mean
run times for low-demand, high-demand and all instances are respectively: 1005.9 seconds,
1798.3 seconds and 1345.4 seconds. Therefore, the B&P algorithm is respectively 0.71, 0.31
and 0.5 times faster than CPLEX on low-demand, high-demand and all instances.

We also compare the average duality gaps for the instances in which feasible solutions are
found by CPLEX. The average duality gap for B&P is 0.62% and the average duality gap for
CPLEX is 1.04%.

In summary, B&P outperforms CPLEX in run time and the quality of solutions.
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The two following tables show that a significant part of the total running time is dedicated
to solving the pricing problem. Let tpt be the ratio of the pricing time over total run time. On
average, the ratio is 26%, and it increases with the size of the network and the number of
demands.

Table 8.3 Solver performance on low-demand test bed

Instance B&P for the wUMCFC-P CPLEX for the wUMCFC-EB

z∗
− Gap(%) t tp #calls #paths #vars #cons #nodes z∗

− Gap(%) t #vars #cons #nodes

L30.152.12 2.72 0.0 1.1 0.1 499 1156 1532 755 95 2.72 0.01 8.08 10909 4562 41
L30.166.12 2.18 0.0 4.8 1.1 1242 2673 3139 940 226 2.18 0.01 2.28 13444 5078 5

L40.240.16 2.26 0.0 3.5 0.5 486 1839 2563 1487 29 2.26 0.01 16.27 28197 9719 0
L40.260.16 2.37 0.0 43.5 9.6 1724 6307 7234 1924 150 2.37 0.01 156.58 34576 10739 46

L50.308.20 3.06 0.01 25.9 6.2 1766 5422 6391 1975 131 3.06 0.0 246.16 47400 15461 40
L50.334.20 2.67 0.0 30.9 7.7 1480 5802 7071 2595 64 2.67 0.01 76.34 59215 16857 6

L60.394.24 4.39 4.85 3600.1 1931.0 23524 70034 71426 2841 1735 4.59 9.92 3600.03 80568 23468 89
L60.342.24 3.87 1.0 3600.2 2296.7 33058 55133 56101 2015 7586 3.84 0.27 3600.02 58671 20109 1119

L70.446.28 4.09 0.57 3600.0 2214.9 30522 74835 76320 3002 2648 4.09 0.57 3600.03 102021 30482 298
L70.380.28 3.96 0.01 478.6 195.9 9299 24732 25769 2136 1610 - - 3600.02 74036 26123 155

L80.482.32 3.77 0.01 72.8 19.0 2587 8362 9903 3145 187 3.78 0.32 3600.08 123478 37761 90
L80.672.32 2.51 0.52 3600.2 1127.5 5111 31152 34772 7781 131 2.57 3.59 3600.2 263385 54060 0

L90.544.36 6.44 1.83 3600.1 1311.4 25327 43417 45040 3376 5685 6.4 0.58 3600.07 149607 47719 8
L90.552.36 5.97 0.69 3600.1 1682.6 27540 60768 62509 3549 3476 5.97 0.82 3600.05 156861 48240 10

L100.716.40 4.16 1.68 3600.2 1171.6 15791 68773 71573 5681 1065 - - 3600.08 270651 68860 0
L100.568.40 6.18 1.46 3600.2 1332.3 19217 52610 54258 3463 3327 6.21 1.57 3600.15 167922 54855 0

L110.710.44 5.98 2.02 3600.0 714.6 24847 39220 41461 4623 10531 - - 3600.18 248479 74770 0
L110.710.44 6.11 1.6 3600.0 942.9 17980 60739 63001 4625 2486 6.26 4.07 3600.12 251989 74860 0

L120.708.48 4.95 0.34 3600.0 946.6 41914 45198 47283 4221 19147 - - 3600.07 256114 81248 35
L120.698.48 6.28 0.45 3600.1 1144.6 35174 49818 51782 3994 12351 6.27 0.22 3600.08 245289 80517 3

8.6.3 Effects of network coding

According to Section 8.2.3, network coding has two effects: capacity increasing and energy
saving.

The first effect enables more feasible routes. It depends on networks’ bottlenecks, capac-
ities and demands. Thus, network coding is more useful for instances where demands are
large and capacities are limited.

The second effect yields fewer transmissions. Recall that the saved energy equals the
CSC zc. This effect reduces the energy cost of every feasible route, which depends on the
costs of edges.

The wUMCFC problem is an UMCF problem integrating clique capacity constraints and
network coding, and the wUMCF problem is the UMCF problem only with clique capacity
constraints.

Since in the previous experiments, the B&P algorithm for the path-based formulation
outperforms CPLEX for the edge balance formulation, we compare the objective values (energy
costs) of the wUMCF and the wUMCFC problems by solving their path-based formulations.

The path-based formulation of the wUMCF problem, i.e., wUMCF-P, is obtained by removing
coding variables and coding constraints from wUMCFC-P. In our starting experiment, the
following instances have solutions for the wUMCFC (with coding) formulation but have no
solutions for the wUMCF (without coding) formulation:

• low-demand: L30.166.12, L50.308.20, L110.710.44, L120.708.48 and L120.698.48.

• high-demand: H30.132.24, H40.226.32, H50.224.40, H50.282.40, H90.552.72, H90.504.72
and H110.630.88.
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Table 8.4 Solver performance on high-demand test bed

Instance B&P for the wUMCFC-P CPLEX for the wUMCFC-EB

z∗
− Gap(%) t tp #calls #paths #vars #cons #nodes z∗

− Gap(%) t #vars #cons #nodes

H30.146.24 2.56 0.0 0.8 0.1 301 880 1222 688 56 2.56 0.01 29.78 20150 8371 16
H30.132.24 3.12 0.01 0.3 0.1 195 580 859 560 45 3.12 0.01 8.22 16700 7564 7

H40.220.32 3.56 0.01 123.6 50.2 5330 12931 13545 1261 962 3.56 0.01 599.12 47152 16505 193
H40.226.32 2.69 0.01 195.3 42.7 8675 14541 15195 1306 3453 2.69 0.01 370.43 49522 16680 284

H50.224.40 4.81 0.13 3600.0 1040.3 126298 25862 26444 1165 110427 4.81 0.21 3600.01 58325 23213 2302
H50.282.40 4.15 0.0 821.7 316.9 15530 37497 38313 1642 3607 - - 3600.02 78667 26351 146

H60.394.48 4.61 0.69 3600.0 1708.4 27550 52328 53725 2815 6622 - - 3600.04 158063 43869 23
H60.362.48 3.45 1.25 3600.0 1574.0 16715 52420 53635 2525 2411 - - 3600.05 137815 40112 3

H70.452.56 4.91 7.53 3600.0 839.7 7596 54355 56049 3543 432 - - 3600.08 223788 58485 0
H70.464.56 4.02 0.47 3600.0 1593.2 15744 55929 57557 3354 2450 4.02 0.69 3600.15 217070 60690 0

H80.552.64 4.42 2.11 3600.1 931.8 19115 56330 58030 3458 4560 - - 3600.16 264689 77730 0
H80.484.64 4.54 5.04 3600.0 692.5 21358 39771 41294 3127 7455 - - 3600.12 236580 71154 0

H90.552.72 5.52 0.86 3600.0 710.7 26380 40918 42670 3523 12196 - - 3600.12 308703 92601 0
H90.504.72 4.91 0.74 3600.0 777.9 31117 39608 41038 2894 15619 4.92 1.1 3600.12 257387 84783 7

H100.594.80 4.71 1.26 3600.1 1090.4 22752 55539 57394 3747 6329 - - 3600.1 366192 111618 0
H100.598.80 4.59 1.67 3600.2 1069.0 18056 47139 48945 3741 4337 - - 3600.14 359387 112133 0

H110.772.88 5.61 3.51 3600.0 815.8 8290 53669 56688 6143 470 - - 3600.26 630648 156050 0
H110.630.88 7.01 2.57 3600.0 885.1 22104 38323 40105 3619 5209 - - 3600.13 397273 130245 0

H120.720.96 7.18 2.13 3600.0 586.0 21033 40337 42621 4601 7588 - - 3600.21 542513 161613 0
H120.740.96 6.25 1.56 3600.0 429.2 13977 38935 41304 4821 4206 - - 3600.48 562586 165990 0

Demands of these instances exceed the capacity of the networks, but network coding could
increase the capacity. As a result, more feasible routes are possible, and these instances
have solutions under the wUMCFC formulation. These instances demonstrate the first effect
of network coding, i.e., increasing capacities, which improves QoS of WSNs.

We evaluate the energy cost only on feasible instances. A binary search method is used to
find feasible demands for each of these infeasible instances. Revised instances have a suffix
’R’ appended to their labels, and we replace original instances with revised instances in new
test beds. We still set the time limit to 3600 seconds. B&P might produce primal solutions
with unclosed duality gaps at the end of the time limit. The subsequent experiment shows that
network coding reduces the energy cost significantly although the unclosed duality gaps yield
estimation errors.

Recall that the objective function of the wUMCF problem (denoted by z) is the first term
of the objective function of the wUMCFC problem (denoted by z−), and their difference
zc =

∑
Λi

{k,j}⊂E

τ i{k,j}u
i
{k,j} is the energy cost explicitly saved by network coding (CSC). For

each instance, we report the incumbent value z∗ of the wUMCF problem (resp. z∗
− of the

wUMCFC problem), the relative duality gap in percentage, the run time t in CPU seconds, the
number of variables and the number of constraints. For the wUMCFC problem, we also record
CSC z∗

c of the incumbent solution. The results are reported in Tables (8.5) and (8.6) for low
and high-demand test beds respectively.

Let z∗ and z∗
− be the optimal values of the wUMCF and the wUMCFC problems respectively,

B&P could compute them with unlimited time and memory. Define by f = z∗−z∗
−

z∗ = 1− z∗
−
z∗ the

relative energy saved by network coding, and f̂ = 1− z∗
−
z∗ is the estimator of f .

Given the relative duality gap and the primal bound (incumbent value), we can compute
the dual bound of the optimum.

Let z∗ be the lower bound on the wUMCF problem so the error of the estimator follows

f − f̂ =
z∗ z∗

− − z∗ z∗
−

z∗ z∗ ≥
z∗ z∗

− − z∗ z∗
−

z∗ z∗ := ê, (8.47)

for which ê gives a lower bound on the error.
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The average relative energy saving is 18.35%, and the average error lower bound is −0.04%.
Therefore, the non-closed duality gap just induces a negligible estimation error of the relative
energy saving. The network coding saves energy cost significantly.

Increasing capacity could yield a larger feasible route set, hence the optimum decreases.
Indeed, the CSC contributes to the main part of the energy saving. For each instance, we
compute the first term of the objective function of the wUMCFC problem, i.e., z̃∗

− = z∗
− + z∗

c ,
which is the energy cost of the given incumbent routing without network coding. Among 62.5%
instances, z̃∗

− > z∗, only the second effect (CSC) can contribute to energy saving. Among the
remaining 37.5% instances, z∗ ≥ z̃∗

− > 0.973z∗; the energy cost without saving (z̃∗
−) is close to

the energy cost of the wUMCFC problem (z∗), therefore the first effect (capacity increasing)
still has a minor contribution to energy saving. The ratio z∗

c

z̃∗
−

is CSC over unreduced energy

cost, its average value among all instances is 19.16%. Consequently, we can conclude that
CSC has a major contribution to energy saving.

However, with network coding the number of variables and constraints of the wUMCFC
problem are significantly larger than those of the wUMCF problem for the same graph. Hence,
the solution times and the duality gaps of the wUMCFC problems increase with the size of
instances. To achieve better performance, the wUMCFC problem requires a faster algorithm.
An adapted branch-and-price algorithm is developed in this chapter.

Table 8.5 Effects of network coding on low-demand test bed

Instance wUMCF wUMCFC

z∗ t Gap (%) #vars #cons z∗
− z∗

c t Gap (%) #vars #cons

L30.152.12 3.0 0.0 0.0 33 27 2.72 0.37 1.1 0.0 1487 755
L30.166.12.R 2.42 0.0 0.01 32 32 1.76 0.34 0.1 0.0 620 940

L40.240.16 2.37 0.0 0.0 55 71 2.26 0.2 3.3 0.0 2445 1487
L40.260.16 2.64 0.2 0.0 175 102 2.37 0.36 42.9 0.01 7101 1924

L50.308.20.R 2.86 0.2 0.0 155 77 2.47 0.3 39.5 0.0 7214 1975
L50.334.20 3.0 0.1 0.0 77 97 2.67 0.41 40.1 0.0 7818 2595

L60.394.24 5.33 51.1 0.01 1856 105 4.39 1.35 3600.0 4.92 66727 2841
L60.342.24 4.69 0.9 0.01 347 127 3.87 0.77 3600.2 1.02 52664 2015

L70.446.28 4.59 0.2 0.01 121 88 4.09 0.6 3600.0 0.58 71244 3002
L70.380.28 4.62 2.9 0.01 481 118 3.96 0.77 502.7 0.01 25769 2136

L80.482.32 4.08 10.2 0.01 869 127 3.77 0.3 74.7 0.01 9903 3145
L80.672.32 2.83 0.0 0.0 32 605 2.51 0.54 3600.5 0.52 34712 7781

L90.544.36 7.57 2.4 0.01 282 202 6.44 1.6 3600.0 1.89 36228 3376
L90.552.36 7.77 3600.0 0.46 5773 139 5.97 1.9 3600.0 0.78 49755 3549

L100.716.40 5.07 1.2 0.0 229 161 4.17 0.98 3600.1 1.99 68123 5681
L100.568.40 7.02 0.8 0.0 186 247 6.18 1.12 3600.0 1.47 51570 3463

L110.710.44.R 8.15 3600.0 0.91 10055 229 5.51 1.98 3600.1 1.59 40143 4623
L110.710.44 7.56 88.9 0.01 718 189 6.11 1.73 3600.0 1.6 61856 4625

L120.708.48.R 5.18 0.6 0.01 220 147 4.13 1.11 3600.0 0.13 31142 4221
L120.698.48.R 6.47 3600.1 0.06 484 162 5.17 1.23 3600.0 0.32 39410 3994

8.7 Conclusion

In this article, we propose a mathematical programming approach to address the problem
of optimizing the energy cost of data transmission in multi-hop WSNs. We propose new
formulations of the problem that take into account specific technical constraints of wireless
communication, such as unsplittable routing, interference and network coding.



8.7 Conclusion 145

Table 8.6 Effects of network coding on high-demand test bed

Instance wUMCF wUMCFC

z∗ t Gap (%) #vars #cons z∗
− z∗

c t Gap (%) #vars #cons

H30.146.24 3.36 0.0 0.0 97 52 2.56 0.79 0.7 0.0 1258 688
H30.132.24.R 2.84 0.6 0.0 223 50 2.51 0.32 0.3 0.01 745 560

H40.220.32 4.01 0.1 0.01 118 97 3.56 0.48 132.8 0.01 14000 1261
H40.226.32.R 2.45 0.2 0.01 101 62 2.1 0.34 34.8 0.01 6671 1306

H50.224.40.R 5.37 102.3 0.01 1332 81 4.51 0.92 1563.0 0.01 15351 1165
H50.282.40.R 5.44 3600.0 0.4 3866 90 3.97 1.01 233.7 0.01 19707 1642

H60.394.48 5.32 33.0 0.01 1511 117 4.61 0.7 3600.0 0.64 59957 2815
H60.362.48 4.04 2.0 0.01 442 191 3.45 0.85 3600.0 1.3 51053 2525

H70.452.56 5.94 3600.0 0.07 1979 267 4.91 1.35 3600.0 7.53 54468 3543
H70.464.56 4.66 0.5 0.01 192 210 4.02 0.71 3600.0 0.48 56404 3354

H80.552.64 5.72 0.6 0.01 271 186 4.42 1.54 3600.2 2.12 56716 3458
H80.484.64 6.24 3600.0 0.31 1933 209 4.54 1.63 3600.0 5.08 36467 3127

H90.552.72.R 6.07 3600.1 0.03 929 163 4.5 1.47 3600.0 0.38 27090 3523
H90.504.72.R 6.68 3600.1 0.17 674 178 4.66 1.94 3600.0 0.84 35466 2894

H100.594.80 5.93 1.1 0.01 235 197 4.71 1.29 3600.0 1.26 56155 3747
H100.598.80 6.09 3.5 0.01 539 289 4.59 1.64 3600.1 1.67 48364 3741

H110.772.88 7.4 2.0 0.01 289 281 5.61 1.78 3600.0 3.51 56031 6143
H110.630.88.R 7.47 1.3 0.01 329 231 5.33 2.36 3600.0 2.08 40768 3619

H120.720.96 9.95 996.2 0.01 1935 225 7.18 2.88 3600.0 2.13 42412 4601
H120.740.96 8.25 1.9 0.01 290 275 6.25 2.26 3600.0 1.56 41935 4821

A column generation approach is developed as well as a branch-and-price framework
to solve this NP-hard and challenging problem. The numerical experiments show that the
proposed branch-and-price algorithm outperforms the CPLEX solver both in terms of running
time and duality gap. We also show that, for all instances, network coding reduces energy cost
significantly. For hard instances, it enables more feasible routes with lower objective function
values. The computational efficiency of the branch-and-price algorithm is improved by adapted
branching rules and solution tracking mechanisms.

In the future, we plan to integrate more complex coding schemes and optimize the number
of activated devices in the network (see [297]). This integration may increase the complexity
of the problem and introduce more binary decision variables in the models. We aim to develop
a polyhedral study of this problem, derive new valid inequalities and develop branch-and-price-
and-cut algorithms.

We also plan to extend this chapter, from general WSNs to the special cases of IoT
deployments. Connecting IoT devices through WSNs requires specific technologies. These
technologies induce more technical constraints on routing, resource management and network
coding protocols. We are interested in extending our models to integrate the specific constraints
of the IoT deployment on multi-hop WSNs.

The further study of such optimization problems and the development of corresponding
decision-support tools will help to offer new services with increased quality of service in future
wireless networks deployments.





Chapter 9

Piece-wise linear modelling in
continuous covering on networks

9.1 Introduction

Covering in Operations Research refers to the optimization problem of deciding the location of
facilities to “cover" the points of the so-called demand set, which should fall within the radius
coverage of at least one of the installed facilities. This classic problem finds applications in
many different domains, including health care [7], surveillance of transport networks [167],
computer networks security [278], crane location for construction [73], military evacuation
systems [183], homeland defense [45], and urban air mobility [311].

Covering problems have taken many forms in the literature. A rough classification distin-
guishes between maximal covering location and set-covering location problems. The former
aims at maximizing the covered demand with a fixed number of facilities (see e.g. [92]),
while the latter seeks to minimize the number of installed facilities to cover all the demand
(see e.g. [288]). In these classic works [92, 288], the problem is defined on a network and
both demand points and candidate facility locations are at nodes. Most of the variants of
network covering studied afterward consider at least one of these two sets to be finite, see the
reviews [254, 148] and the references therein. However, this assumption corresponds to ideal
but usually unrealistic scenarios (the reader is referred to the real applications of the above
paragraph). As an example, in the eVTOLs safety landing site location problem [311], a set
of emergency landing sites has to be installed on the traffic network in such a way that any
point of the same is covered. Something similar happens for the location of ambulance bases
in rural areas studied in [7]. Some works addressing network covering with continuous sets
of both candidate locations and demand points are [68, 56, 33], for maximal covering, and
[166, 142, 174], for set-covering. We focus on the latter variant, which we call the continuous
set-covering problem.

Gurevich et al. [166] presented an algorithm to compute an optimal continuous set-
covering when the covering radius and the edge’s lengths are natural numbers. This algorithm
is polynomial time for the class of networks satisfying that every non-separable component
is either an edge, a simple cycle, or a simple cycle with one chord, that is, for “almost tree”
networks. More recently, Fröhlich et al. [142] also studied the same version of the continuous
set-covering with natural numbers. The authors presented three different approaches to solve
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Figure 9.1 Two cycle coverage points with respect to a cycle C of five nodes

the problem, including a MILP formulation. On the other hand, Hartmann et al. [174] focused
on the computational complexity of the continuous set-covering for general covering radii.
They proved that, when all edges have unit length, the continuous set-covering is polynomially
solvable if the covering radius is a unit fraction, and is NP-hard otherwise.

We can now formally state our problem. Consider an undirected connected network
N = (V,E, l), where l : E → R+ is the edges’ length function. We will denote le := l(e) the
length of e. The continuum of points on all edges and nodes of N is denoted with C(N). The
distance function d(·, ·) defines the distance between two points, which coincides with the
length of the shortest path in C(N) connecting them. Given δ > 0, a point p ∈ C(N) is said to
δ-cover p′ ∈ C(N) (respectively, p′ δ-covers p) if d(p, p′) ≤ δ holds. The parameter δ is called
the covering radius. The continuous δ-covering location problem on N is to find a set of facility
locations in C(N) of minimum cardinality that δ-covers the whole network, and is formally
stated next.

Definition 9.1 (Continuous Set-Covering Problem (CSCP)). The Continuous Set-Covering
Problem on a network N can be expressed as the following optimization problem:

min
{
|P| : P = {pi}pi∈C(N) and ∀p ∈ C(N), ∃pi ∈ P s.t. d(p, pi) ≤ δ

}
. (9.1)

A set P satisfying the condition within (9.1) is called a δ-cover of N , while P∗ minimizing (9.1)
is a minimum δ-cover.

The set P in Definition 9.1 can represent the locations of ambulance bases [7], surveillance
cameras [167], routing servers in a network of computers [278], cranes for construction [73],
aerial military medical evacuation facilities [183], aircraft alert sites for homeland defense [45],
or eVTOL safety landing sites in an urban area [311].

The CSCP is known to be NP-hard, see [174]. Due to the continuous nature of CSCP, there
is an infinite number of candidate locations. Previous works reduce CSCP to a tractable set
covering problem by discretization. A first observation is that typical simplifications proposed
in other related studies are not valid for the CSCP.

Discretization methods identify finite dominating sets (FDS), which are finite subsets of
candidate locations guaranteed to contain an optimal solution. From the literature, we know at
least three FDS for related variants of the CSCP, which rely on different assumptions on the
network and the covering radius. Here, we review and compare these FDS. Since we aim to
propose a general exact algorithm, we show that it may not be viable to extend discretization
methods to solve the CSCP for general networks and real radii.
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First, Church and Meadows [91] studied the problem with demand at nodes, and identified
the following points:

NIP := {p ∈ C(N) : d(p, v) = δ for some v ∈ V }.

The authors proved that FDS1 := V ∪NIP is an FDS for the network set-covering problem
when the set of demand points is V and that of candidate locations is C(N).

Secondly, Gurevich et al. [166] studied the continuous set-covering problem when the
covering radius and the edge’s lengths are natural numbers. They presented an FDS for the
case of all edge lengths being one, which can be easily extended to the case of general edge
lengths (see [142]),

FDS2 :=
{
p ∈ C(N) : d(p, v) = i

2 · le
for some e ∈ E and v ∈ e; i = 0, . . . , 2 · le

}
.

Note that FDS2 depends on the edge’s length.
Lastly, Fröhlich et al. [142] proposed a different FDS for the same version of the continuous

set-covering with natural numbers. The authors defined the following set of cycle coverage
points:

CCP :=
{
p ∈ C(N) : d(p, C) := miny∈C{d(p, y)} =

(
δ − lC

2
)

mod δ, p /∈ C, for a simple cycle C ⊆ C(N)
}

,

where lC is the total length of the cycle C. Suppose that a cycle C is covered by a set of
facilities. A cycle coverage point is the furthest point where a facility that contributes to cover
C can be moved without compromising the coverage of the cycle (if the rest of the facilities
remain unchanged).

Fig. 9.1 illustrates this idea. In the depicted example, all edges have unit length and δ = 2.
The figure depicts p1 and p2, which are CPP with respect to the cycle C of five nodes. Note that
d(p1, C) = d(p2, C) = 1.5(= (2− 5/2) mod 2). Fig. 9.1 also depicts two locations in C (marked
with symbols ’x’), which correspond to two possible feasible locations for the remaining facility
needed to cover C (note that the one at the bottom only yields a covering of the cycle if p2 is
located, while the other one together with either p1 or p2 can completely cover C).

The authors of [142] gave the following recursive definition of an FDS for the problem with
natural numbers:

S1 := V ∪NIP ∪ CCP ;

Sj+1 := Sj ∪ {p ∈ C(N) : d(p, y) = δ for some y ∈ bd(A(Sj))};

FDS3 := S|J|,

where bd(A(Sj)) is the boundary of the area covered by Sj , and J ⊆ E is the subset of edges
to be covered. As the author explained themselves, FDS3 ⊆ FDS2. However, the cardinality
of FDS3 may be exponential in the input size, as the number of cycles in a network is in
general exponential.

The example depicted in Fig. 9.2 illustrates that none of FDS1 and FDS2 are FDS for the
CSCP. A similar observation was already presented in [56] for a related problem. The figure
shows eight nodes on a path, where all edges have equal lengths. If le = 1 for all e ∈ E and
δ = 1.2, P := {p1, p2, p3} is an optimal δ-cover.
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Figure 9.2 An instance of CSCP such that not all facilities in P∗ are at a distance δ from some
node

It can be easily observed that there is no optimal solution in which p2 is placed either at a
node or at a distance δ from some of the eight nodes, which shows that FDS1 is not a valid
FDS. On the other hand, it is also easy to check that there is not a feasible solution with the
three facilities located either at nodes or middle-points of edges, which proves that FDS2 is
also not a valid FDS. As opposed to FDS2, the assumption of the edge lengths and coverage
radius being natural numbers is not fundamental in the definition of FDS3. Conversely, FDS3

is based on the idea of identifying those points at the “boundaries” of coverage areas, i.e.,
those delimiting the transition from covering/not covering a specific part of the network.

Consequently, FDS3 could be extended to the general CSCP. However, such an extension
potentially yields sets with many more candidates, due to the recursive construction of FDS3

based on the distance function. Note that, if δ and the edge lengths are natural numbers,
FDS3 only contains points of the set

INT := {p ∈ C(N) : d(p, v) is integer or half-integer for some v ∈ V }.

Indeed, if δ ∈ N, NIP ⊆ INT is clear; CCP ⊆ INT holds since the operation (δ−lC/2) mod δ
only yields half integers; and FDS3 ⊆ INT then easily follows by definition. However, if δ ∈ R,
the locations of the points in FDS3 are a priori undetermined, and its cardinality increases.
Take the same example depicted by Fig. 9.1. If δ = 2.1 (i.e. we increase δ just by 0.1), the
CCP with respect to the cycle C of the Figure increases from two to four points.

9.1.1 Literature review

Facility location and set covering problems have many variants and applications in operations
research and management science. Related literature to this work is vast; here we review a
selection of works related to CSCP. In [265], the model allows that an edge is covered jointly
by two facilities. In [269], the authors presented a unified vision of the common characteristics
of facility location problems in a continuous space. In [257], the authors summarized the
research progress in facility location problems on networks. A recent survey [302] provided
a comprehensive overview of emergency facility location problems in logistics, including
mathematical models, applications, and the commonly used solution methods. One of the
most distinguishing features of variants of the maximal covering location problem is the solution
space: continuous [254, 34], discrete [148, 105], or on networks [74, 57]. Especially in [57],
the authors introduced the maximal covering location problem with edge demand. In [32], the
authors studied the upgrading version of the maximal covering location problem with edge
length modifications on networks. A related problem that has been recently studied is the
obnoxious facility location problem [128]. It aims at locating undesirable facilities that have
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a negative impact on communities. The most common objective is to maximize the shortest
distance to the closest facility, and the problem has various variants featuring multiple facilities
on the plane [129, 186], p-median objective [187], or edge demand on networks [57]. We refer
to [93] for a recent review on the obnoxious facility location problem. For more related works,
we refer to [9, 246, 144, 55, 179].

9.1.2 Contribution

As opposed to discretization methods, we directly tackle the CSCP for general networks and
real radii. Our main contribution is an exact integer programming approach for the CSCP,
together with tailored algorithms and strategies to tackle it. Even if this problem has been
known for decades, surprisingly, only a few partial results are known for some special cases
and sub-classes of networks. To the best of our knowledge, only one MILP model [142] has
been proposed so far which can address the general CSCP. Such a model can be applied to
any network whose edges do not measure more than the covering radius. This condition does
not restrict the applicability of the MILP in [142], as any network can be transformed into an
equivalent one that satisfies it.

Here, we present an enhanced MILP formulation that relies on the same assumption as
that in [142], but whose numbers of constraints and variables have smaller order of magnitude.
In addition, preprocessing strategies to reduce the number of variables of the model are
studied, and tailored algorithms are presented. Approaches to strengthen this formulation
are also presented, including big-M constants tightening and valid inequalities. The valid
inequalities are constraints that reduce the feasible space without removing model solutions.

The introduction of a second MILP, which is scalable concerning the edge’s lengths
completes the main contributions of this work. This second MILP is an adaptation of the first
one we propose, with the difference that it does not require all edge lengths to be smaller than
the covering radius. Finally, our computational experiments prove that the MILP model in [142]
is not scalable. On the other hand, the preprocessing technique drastically reduces the size of
the first model proposed herein.

Finally, we show in the experiments that the second model we propose is superior to both
the model from [142] and our first model, in terms of the solution quality and solving time.

In the proposed setting, both the candidate facility locations and the demand points are
continuous sets (in particular, they coincide with C(N)). The problem could be defined for
a subset of demand edges, J ⊆ E, and/or a subset of candidate locations H ⊆ E. The
theoretical results, model, and methods described in this work apply to such cases, after
straightforward adaptation.

9.1.3 Outline the chapter

The rest of the chapter is organized as follows. Sect. 9.2 presents useful notation and the
theoretical development upon which our model is built. Then, our first MILP model is introduced
in Sect. 9.3, while strategies to strengthen this model are described in the next section. The
network processing algorithms that complement our MILP are detailed in Sect. 9.5. A second
MILP model, which we call reduced formulation and is a modification of the first MILP, is
presented in Sect. 9.6. Finally, Sect. 9.7 describes our computational experiments, and reports
and analyzes the obtained results. Sect. 9.8 closes the chapter with some conclusions.
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9.2 Covering characterization

This section presents several notation, definitions, assumptions, observations, and results
related to the CSCP. On the one hand, Prop. 9.5 gives a characterization of the δ-covers of a
network, which is based on the individual coverage of each edge of the network. Then, this
result is refined to obtain a second necessary and sufficient covering condition in Prop. 9.9. It
distinguishes between two alternative possibilities for covering each edge, namely complete or
partial, and will be useful for our MILP formulation and methods. The rest of the section is
oriented to characterize the so-called partial and complete covers. The idea of these sets is
to delimit the areas of the network where a facility, if placed, would completely cover a given
edge, and those where a facility would reach the edge (but maybe not completely cover it).

We first introduce some related notation, definitions and assumptions. We assume that
V is totally ordered by the binary relation ≼. Every edge e ∈ E has a unique representation,
e = (va, vb), where va, vb ∈ V , and va ≼ vb. From now on, we take e = (va, vb) indifferently as
a continuum in C(N) or as an edge ending at va, vb. We extend the edges’ length function to
l : C(N)→ R+ as a length measure on the continuum of points. For two points p, p′ ∈ C(N),
we denote by Π(p, p′) ⊆ 2C(N) and Π∗(p, p′) ⊆ Π(p, p′) the set of paths and shortest paths,
respectively, connecting p and p′. Any path π ∈ Π(p, p′) is indifferently treated as a continuum
in C(N), then lπ := l(π) is the length of π. The distance between p and p′, d(p, p′), is the
length of a shortest path connecting them:

d(p, p′) := min{lπ : π ∈ Π(p, p′)} = lπ∗ for any π∗ ∈ Π∗(p, p′).

In particular, if p and p′ belong to the same edge, we denote by l(p, p′) the length of the unique
path in that edge connecting them. We work under the following assumption:

Assumption 9.2. δ ≥ le for all e ∈ E.

If Assumption 9.2 did not hold, we could consider a set I ⊂ 2C(N), that would contain, for
each e = (va, vb) ∈ E, the following continuum sets of points (segments):

• If δ ≥ le, e ∈ I;

• If δ < le, let n := ⌈ leδ ⌉+ 1. We define v1 := va, vn := vb and v2, . . . , vn−1 ∈ e such that
l(va, vi) = (i− 1) le

n−1 for i = 2, . . . , n− 1. Then, (vi, vi+1) ∈ I for all i = 1, . . . , n− 1.

We consider N ′ = (V ′, E′ = I), where V ′ contains the endpoints of I. The new network
N ′ satisfies that δ ≥ le for all e ∈ E′, and it is isomorphic to N with respect to the length
function. Indeed, since N ′ is obtained by subdividing edges in N , C(N) = C(N ′) and a set of
points δ-covers N if and only it δ-covers N ′. Therefore, Assumption 9.2 always holds after the
network N is transformed into N ′ (via a preprocessing step). Such transformation yields a
network with more nodes and edges, which has a direct impact on the size of optimization
models. In Sect. 9.6, we present a model that avoids this effect.

9.2.1 Observations

In the following, we give several observations of optimal δ-covers, which guide our quantitative
analysis of covering conditions and the resulting MILP model of Sect. 9.3.
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Observation 9.3. For an edge e = (va, vb) ∈ E and a point p ∈ C(N), one of the following
cases holds:

1. p cannot δ-cover any point in e;

2. p can δ-cover the whole e;

3. p can δ-cover a continuous portion of e containing either va or vb;

4. p can δ-cover two continuous portions of e, which do not intersect, each contains either
va or vb.

Observation 9.4. (a similar statement was proven in [142]) There exists an optimal δ-cover
that satisfies:

i) Each edge e ∈ E has at most two facilities (due to Assumption 9.2);

ii) If there are two facilities in the edge e, we can assume without loss of generality that
they are located at end nodes va, vb (this follows from i) and Assumption 9.2).

As a consequence, the set of candidate facilities of a δ-cover is in one-to-one correspondence
to the edges and nodes of the network.

With the above observations, we can already give a high-level description of the covering
characterization behind our model. Namely, if we fix a set of facilities on some network edges,
there would be some edges completely covered regardless of the exact facility locations within
their edges. Some other edges would be partially covered from the left-end node and/or
from the right-end node, and how much depends on the actual facility locations. So we have
variables that specify the exact facility locations on each edge. Finally, we stipulate that the
cover from the left and the cover from the right better exceed the edge length. One difficulty is
that the corresponding covering function is not linear However, we show that such a function
is a piece-wise linear function, which can be modeled by a MILP. The aim of the remainder of
this section is to give a mathematical specification of the above characterization.

9.2.2 Covering conditions

We give a sufficient and necessary condition that the network is δ-covered by installed facilities.

Proposition 9.5. Let P = {pi}pi∈C(N) be a finite set of points in C(N). An edge e = (va, vb) ∈
E is δ-covered by P if and only if either there exists p ∈ P ∩ e or

max{δ −min
p∈P

d(va, p), 0}+ max{δ −min
p∈P

d(vb, p), 0} ≥ le. (9.2)

Moreover, the set P is a δ-cover of N if and only if for each e ∈ E, either there exists p ∈ P ∩ e
or (9.2) is satisfied.

Proof. If there exists p ∈ P ∩ e, then e is δ-covered by p due to Assumption 9.2. Otherwise,
for each i ∈ {a, b}, let us consider p∗

i ∈ P such that d(vi, p∗
i ) = minp∈P d(vi, p) and let

π∗
i ∈ Π∗(vi, p∗

i ) be a shortest path between vi and p∗
i , i.e. lπ∗

i
= d(vi, p∗

i ). Condition (9.2) can
be rewritten as follows:

max{δ − lπ∗
a
, 0}+ max{δ − lπ∗

b
, 0} ≥ le.
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(a) By two points (b) By one point, through both
ends

(c) By one point, through one end

Figure 9.3 Covering of an edge e = (va, vb) ∈ E

Note that max{δ − lπ∗
i
, 0} represents the maximum length that can be δ-covered by P (specifi-

cally, from p∗
i ) after passing through vi. Since the path(s) that δ-cover e must contain va and/or

vb, the edge is covered if and only if these “maximum lengths” for va and vb add up to more
than le.

Fig. 9.3 illustrates Prop. 9.5. It shows three ways of covering the same edge e = (va, vb) ∈ E
for a given network. The edges of the network are depicted with dashed lines, while the different
paths through which e is covered are delimited with continuous bold traces. Facility locations
are marked with the symbol ‘x’. Fig. 9.3a depicts two facilities located at p, p′ that cover two
portions of the edge, which contain va and vb respectively. In this case, the min functions
inside (9.2) are attained respectively at p and p′. In the middle, Fig. 9.3b shows a single
location p that covers e through two different paths, which traverse va and vb respectively.
These paths form a cycle that contains p and e. In this case, the two min operations inside
(9.2) are attained at the same point, p. Finally, Fig. 9.3c illustrates the case in which a single
facility located at p covers e through one of its end nodes, va. Here, one of the max operators
in (9.2) is equal to zero (p is further from vb than δ).

9.2.3 Covering delimitation and simplification

For an optimization or search problem, delimitation refers to the reduction of the candidate
space. FDS is studied in related works as a way for reduction of CSCP (under some as-
sumption), and hence it is a kind of delimitation. Instead of FDS, we consider a different
delimitation that can be used for the general CSCP, and which allows us to obtain a reduced
MILP formulation.

The characterization in Prop. 9.5 is based on the individual covering of every edge in
the network. When considering possible locations to cover a fixed edge, we can restrict
ourselves to its surroundings within the radius δ. Delimiting those parts of the network that
could “contribute” to covering a particular edge or node reduces the search space. We then
introduce three kinds of delimitation: potential covers, complete covers and partial covers. We
will represent the covering condition under such delimitation. In effect, the covering condition
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has a simplified form compared to its general form in Prop. 9.5, and an adequate preprocessing
procedure can reduce and strengthen our MILP model.

We find that, for every node, there may exist potential covers, i.e., a set of edges and
nodes where, if a facility is located, it can possibly δ-cover this node. The potential covers in
the following definition delimit the edges and nodes of C(N) that can contribute to covering a
particular node of the network.

Definition 9.6. For each v ∈ V , the potential covers of v are the candidate facility locations to
cover v:

E(v) := {e′ = (v′
a, v

′
b) ∈ E : d(v, v′

i) ≤ δ for some i ∈ {a, b}}

V(v) := {v′ ∈ V : d(v, v′) ≤ δ}

F(v) := E(v) ∪ V(v).

Clearly, v is not reachable within the radius δ for any facility installed outside F(v). Regard-
ing the covering of edges, an edge incident to v could be covered by some of the facilities in
F(v).

We find that, for every edge e, there may exist complete covers, i.e., a set of edges and
nodes where, if a facility is located, it can always δ-cover the edge e, regardless of the exact
facility location. Once there is a facility within a complete cover, the whole edge e is guaranteed
to be covered by this facility. The following definition serves to delimit the network to such
complete covers.

Definition 9.7. For each e = (va, vb) ∈ E, the complete covers of e are the candidate facility
locations that can completely cover e:

Ec(e) := {e′ ∈ E : ∀p′ ∈ e′,∀p ∈ e, d(p, p′) ≤ δ}

Vc(e) := {v′ ∈ V : ∀p ∈ e, d(p, v′) ≤ δ}

Fc(e) := Ec(e) ∪ Vc(e). (9.3)

If a facility is placed at Fc(e) (either at a node in Vc(e) or at a point on an edge belonging
to Ec(e)), we can immediately conclude that e is δ-covered. Note that any facility placed at e′

can completely cover e if and only if any facility placed at e can completely cover e′. That is, Ec

is symmetric over E. On the other hand, it is obvious that e ∈ Ec(e), and va, vb ∈ Vc(e), for all
e = (va, vb) ∈ E.

Given a node v, we can characterize the complete covers of the incident edges to the node
v. This helps us refine the potential covers of this node. The following definition identifies
those candidate facility locations in the potential covers of the node v that cannot completely
cover any incident edges to v.

Definition 9.8. We define the following sets for each v ∈ V :

Ep(v) := {e′ ∈ E(v) : ∃e ∈ E(v), e′ /∈ Ec(e)}

Vp(v) := {v′ ∈ V(v) : ∃e ∈ E(v), v′ /∈ Vc(e)}

Fp(v) := Vp(v) ∪ Ep(v). (9.4)

We call these sets the partial covers of E(v), where E(v) := {e ∈ E : v ∈ e} is the set of
incident edges to v.
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The set Fp(v) contains those candidate locations that can contribute to partially covering
some of the edges in E(v). Note that, if a facility is placed at F(v) \ Fp(v), then this facility
completely covers E(v).

Definitions 9.6, 9.7, and 9.8 provide us with a refined covering condition. Indeed, the
following proposition is a consequence of Prop. 9.5 and the aforementioned definitions, and
will be used to characterize coverings in the MILP formulation presented in Sect. 9.3.

Proposition 9.9. A finite set P of points in C(N) is a δ-cover of N if and only if, for each
e = (va, vb) ∈ E, either P ∩ Fc(e) ̸= ∅ or∑

i∈{a,b}

max
{

0, δ − min
p∈P∩Fp(vi)

d(vi, p)
}
≥ le. (9.5)

Moreover,

min
p∈P∩Fp(vi)

d(vi, p) = min
{

min
v′∈P∩Vp(vi)

d(vi, v′), min
p∈P∩(Ep(vi)\V )

d(vi, p)
}
, for i = a, b.

Proof. For i ∈ {a, b}, the equality F(vi) = Fp(vi) ∪ Fc(e) holds by definition, which gives the
new necessary and sufficient covering condition.

For the second statement of the proposition, we have Fp(vi) = Vp(vi) ∪ Ep(vi) from
Definition 9.8. Then, it suffices to see that we can take p ∈ P ∩ (Ep(vi) \ V ) in the second
inner min operator of the right-hand side instead of p ∈ P ∩ Ep(vi). Let e′ = (v′

a, v
′
b) ∈ Ep(vi).

We prove that the end nodes of e′ can be excluded from the second inner min operator. Let
i′ ∈ {a, b}, we denote ī′ = b if i′ = a and ī′ = a if i′ = b. First, by definition, d(vi, v′

i′) ≤ δ for
some i′ ∈ {a, b}. Therefore, v′

i′ ∈ Vp(vi), and we can exclude it from the second inner min
operator (this node is already considered by the first inner min operator). We consider now the
other end node of e′. If d(vi, v′

ī′
) ≤ δ then, similarly, v′

ī′
can be excluded from the second inner

min. Otherwise, we know that the outer min is not attained at v′
ī′

, as d(vi, v′
i′) ≤ δ < d(vi, v′

ī′
),

thus v′
ī′

can be disregarded.

Remark 9.10. The left hand side function in (9.5) is a PWL function w.r.t. the distance d.
Moreover, we cannot reformulate it into a system of linear constraints, because the left hand
side function involves the max functions, which is convex w.r.t. its argument. In this chapter, we
consider a big-M method to reformulate the PWL function as a MILP representable function.

Remark 9.11. The covering conditions described both in Propositions 9.5 and 9.9 would
be also applicable if only a subset of E, J ⊆ E, is to be covered. Indeed, these covering
conditions are based on the individual coverage of the edges, so it would be sufficient to apply
them just to the edges in J . As a consequence, our methods, including the MILP formulation
and algorithms presented in the next sections, apply to this more general version of the CSCP.

In order to exploit the newly defined potential, complete, and partial covers in our formu-
lation, from a practical viewpoint, we need to have some characterizations that can operate
in a computer. Definition 9.6, which introduces potential covers, satisfies this requirement.
Indeed, it just depends on distances between pairs of nodes, which we can easily calculate.
Conversely, Definition 9.7 presents complete covers with a condition that must be satisfied by
“the infinitely many points of an edge”, which is not directly computable. Finally, the elements
in the partial covers defined by Definition 9.8 can be easily calculated once both potential and
complete covers are known.
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9.2.4 Characterization of complete covers

In the following, we focus on characterizing the complete covers, which will be useful for our
MILP formulation and tailored algorithms, (see forthcoming Sections 9.3 and 9.5). To begin
with, we note that Prop. 9.5 already gives us a characterization of the nodes in Vc(e). Indeed,
it is easy to observe that, for a given e ∈ E, v ∈ Vc(e) if and only if P := {v} δ-covers e. We
then focus on the sets Ec(e). On the one hand, it is clear that, for every edge e = (va, vb) ∈ E,

Ec(e) ⊆ E(va) ∩ E(vb).

Moreover, if we define Ec(v) ⊆ E(v) as follows, we have a tighter set containing Ec(e).

Definition 9.12. The edges that can completely cover a node v ∈ V are:

Ec(v) := {e′ ∈ E : ∀p′ ∈ e′, d(v, p′) ≤ δ}.

It is clear that the following observation holds.

Observation 9.13. For any e = (va, vb) ∈ E, Ec(e) ⊆ Ec(va) ∩ Ec(vb).

With this observation, we can limit the search of Ec(e) in the set Ec(va) ∩ Ec(vb), as we will
show in Sect. 9.5, the latter set is easy to compute.

We recall that Definition 9.12 is somewhat the inverse of Definition 9.7. That is, e′ ∈ Ec(v) if
and only if v ∈ Vc(e′). We present a set of intermediate statements in Definition 9.14, Lemma
9.15, and Lemma 9.16, which allow us to describe the edges in the complete cover set Ec(e)
as the main result in Prop. 9.18.

Definition 9.14. Let v ∈ V be a node and e′ = (v′
a, v

′
b) ∈ E be an edge. For all q ∈ [0, le′ ], we

define the following functions:

dv(q) := min{d(v, v′
a) + q, d(v, v′

b) + le′ − q}

rv(q) := max{δ − dv(q), 0},

and constant:
Qve′ := (d(v, v′

b) + le′ − d(v, v′
a))/2,

which satisfies the following equation:

d(v, v′
a) +Qve′ = d(v, v′

b) + le′ −Qve′ .

The function dv(q) represents the distance between v and a point p′ ∈ e′ such that
q = l(v′

a, p
′), where l(v′

a, p
′) measures the length of the continuum (v′

a, p
′) ⊆ e′. The inner

terms in the minimization that defines dv(q) coincide for q = Qve′ . Informally, Qve′ is the
“bottleneck" coordinate on e′ (see original definition in [94]), for which the distance to v is
the same if we go through v′

a or v′
b. Indeed, since |d(v, v′

b) − d(v, v′
a)| ≤ le′ , it follows that

0 ≤ Qve′ ≤ le′ . Note that dv(q), rv(q), and Qve′ depend also on the edge e′.

Lemma 9.15. Let e = (va, vb). An edge e′ is in Ec(e) if and only if rva
(q) + rvb

(q) ≥ le for all
q ∈ [0, le′ ].
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Proof. e′ ∈ Ec(e) if and only e is δ-covered by any point p′ ∈ e′. Take P = {p′} in Prop. 9.5, e
is δ-covered by P, if and only if

max{δ − d(va, p′), 0}+ max{δ − d(vb, p′), 0} ≥ le

holds for all p′ ∈ e′. Let q = l(v′
a, p

′), q ∈ [0, le′ ], be the measure of the sub-edge (v′
a, p

′) ⊆ e′.
Then, the observation that dvi

(q) = d(vi, p′) for i = {a, b} completes the proof.

We present the following lemma without proof. The lemma is a direct consequence of
Definition 9.14.

Lemma 9.16. Let v ∈ V and e′ = (v′
a, v

′
b) ∈ E. Then, 0 ≤ Qve′ ≤ le′ , the function dv(q) is

increasing when q ∈ [0, Qve′ ], and it decreases for q ∈ [Qve′ , le′ ]. Moreover, dv(q) admits the
following piece-wise linear representation:

dv(q) =

d(v, v′
a) + q if q ≤ Qve′ ,

d(v, v′
b) + le′ − q if q ≥ Qve′ .

Note that with Obs. 9.13, to find Ec(e), we can check Lemma 9.15 for e′ ∈ Ec(va)∩Ec(vb): if
rva(q) + rvb

(q) ≥ le, then e′ is in Ec(e). Then, we consider v ∈ V , and we want to characterize
rv for all points on edges e′ ∈ E such that e′ ∈ Ec(v). We present the following result without
proof.

Lemma 9.17. Given v ∈ V , and e′ = (v′
a, v

′
b) ∈ Ec(v). If e′ ∈ Ec(v), then rv(q) admits the

following piece-wise linear representation:

rv(q) =

δ − (d(v, v′
a) + q) if q ≤ Qve′ ,

δ − (d(v, v′
b) + le′ − q) if q ≥ Qve′ .

Finally, we have a tractable version of Lemma 9.15.

Proposition 9.18. Let e = (va, vb). An edge e′ ∈ Ec(va) ∩ Ec(vb) is in Ec(e) if and only if

r(q) ≥ le for all q = Qvae′ , Qvbe′ ,

where r(q) := rva
(q) + rvb

(q).

Proof. From Lemma 9.15, e′ ∈ Ec(e) if and only if minq∈[0,le′ ] r(q) ≥ le. Due to Lemma 9.16,
the minimum argument must be some of the breakpoints in the piece-wise linear description
of rv(q). Then, it suffices to check

min{r(q) : q ∈ {0, Qvae′ , Qvbe′ , le′}} ≥ le.

Since e′ ∈ Ec(va) ∩ Ec(vb), rvi
(0) ≥ le and rvi

(le′) ≥ le always holds for all i ∈ {a, b}. It
suffices thus to check the following condition

min{r(q) : q ∈ {Qvae′ , Qvbe′}} ≥ le.

Then, the result follows.
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9.3 MILP formulation

We present the variables of the MILP formulation first. For each v ∈ V , there is one candidate
facility (fixed location); and for each e ∈ E, there is another one (location within the interior of
e, e \ {va, vb}). Then, the finite set F := E ∪ V will be used to index the candidate facilities. In
our MILP formulation, there are two decisions associated with each f ∈ F . One is to decide
if a facility is installed at f . The second is only necessary for those facilities installed at the
interior of edges, and consists in determining their locations within the corresponding edges.

To represent the first of the above decisions, we define the following binary variables, which
we call the placement variables:

yf = 1 if a facility is installed at f, for all f ∈ F .

We identify the set of installed facilities with F1 = {f ∈ F : yf = 1}. To represent the second
of the above decisions, we define the following continuous variables, which we name the
coordinate variables:

qe =

l(va, p) if ye = 1 and a facility is installed at p ∈ e

0 otherwise
for all e = (va, vb) ∈ E.

We use v′ and e′ to denote nodes and edges where facilities are installed, and use v and e
to denote nodes and edges to be covered, respectively. We refer to va, vb as the end nodes of
e = (va, vb) ∈ E; given e′ = (v′

a, v
′
b) ∈ E, we refer to v′

a, v
′
b as its end nodes.

We use the necessary and sufficient condition of δ-covering in Prop. 9.9, and the second
result in this proposition regarding the distance function. Other than the placement and
coordinate variables, some additional variables are used, which we present next.

• ∀e ∈ E,we ∈ {0, 1}, if Fc(e) ∩ F1 ̸= ∅, then we = 1;

• ∀v ∈ V, rv ∈ [0,+∞);

• ∀v ∈ V, xv ∈ {0, 1},= 1, if ∀e ∈ E(v), Fc(e) ∩ F1 ̸= ∅, then xv = 1;

• ∀v ∈ V , v′ ∈ Vp(v), zvv′ ∈ {0, 1}, if ∀e = (u, v) ∈ E(v) s.t. we = 0, max{0, δ − d(v, v′)}+
ru ≥ le, then zvv′ = 1;

• ∀v ∈ V , (e′, i′) ∈ EIp(v), if ∀e = (u, v) ∈ E(v) s.t. we = 0, max{0, δ−τve′i′(qe′)}+ru ≥ le,
then zve′i′ ∈ {0, 1} = 1.

where
τve′i′(q) := d(v, vi′) + 1i′=aq + 1i′=b(le′ − q),

and
EIp(v) := {(e′ = (v′

a, v
′
b), i′) ∈ Ep(v)× {a, b} : d(v, v′

i′) ≤ δ}.

We sometimes refer to rv as the “residual cover” at node v, since it represents the maximum
remaining length that can be covered after reaching v from “a sufficiently close” facility.
Remembering Defn. 9.14, these variables must satisfy:

rv ≤ rv(qe), for all e ∈ F1 ∩ (E ∖ E(v)).
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In an optimal solution, it can be rv = rv(qe) for an edge e ∈ E as stated above. In this case,
rv is the maximum remaining length that can be covered after reaching v from the closest
facility. However, we do not impose this equality in our formulation, since it is enough for
guaranteeing the coverage of e = (va, vb) ∈ E that the sum of the residuals rva

+ rvb
exceeds

le (see Prop. 9.9). That is, if le is already exceeded by rva
+ rvb

for some rvi
< rvi

(qe), then
the coverage condition of Prop. 9.9 will hold.

We denote by M∗ the sufficiently large big-M constant associated with index ∗, the value of
which will be determined later. Our formulation of the CSCP reads as follows:

min
∑
f∈F

yf (9.6a)

s.t. we ≥ yf e ∈ E, f ∈ Fc(e) (9.6b)

we ≤
∑

f∈Fc(e)

yf e ∈ E (9.6c)

xv ≥ 1−
∑

e∈E(v)

(1− we) v ∈ V (9.6d)

xv ≤ we v ∈ V, e ∈ E(v) (9.6e)

yv′
i′

+ ye′ ≤ 1 e′ ∈ E, i′ ∈ {a, b} (9.6f)

qe′ ≤ le′ye′ e′ ∈ E (9.6g)

le(1− we) ≤ rva + rvb
e ∈ E (9.6h)

xv +
∑

v′∈Vp(v)

zvv′ +
∑

(e′,i′)∈EIp(v)

zve′i′ = 1 v ∈ V (9.6i)

zvv′ ≤ yv′ v ∈ V, v′ ∈ Vp(v) (9.6j)

zve′i′ ≤ ye′ v ∈ V, (e′, i′) ∈ EIp(v) (9.6k)

rv ≤Mv(1− xv) v ∈ V (9.6l)

rv ≤Mvv′(1− zvv′) + δ − d(v, v′) v ∈ V, v′ ∈ Vp(v) (9.6m)

rv ≤Mve′i′(1− zve′i′) + δ − τve′i′(qe′) v ∈ V, (e′, i′) ∈ EIp(v) (9.6n)

yf , we ∈ {0, 1} f ∈ F , e ∈ E (9.6o)

xv, zvv′ , zve′i′ ∈ {0, 1} v ∈ V, v′ ∈ Vp(v), (e′, i′) ∈ EIp(v) (9.6p)

qe′ , rv ≥ 0 e′ ∈ E, v ∈ V. (9.6q)

Constraints (9.6b) and (9.6c) model the logic or constraint we = ∨f∈Fc(e)yf . Constraints (9.6d)
and (9.6e) enforce the logic constraint xv = ∧e∈E(v)we, that is, xv is the product of the we

variables such that e ∈ E(v). Constraints (9.6f) prevent two facilities in a solution from being
installed respectively at the interior of an edge and one of their end nodes. Constraints (9.6g)
bound the coordinate variables with the corresponding edge length, and set them to zero if no
facility is located at its interior. The covering condition in Prop. 9.9 is enforced by (9.6h). If
we = 1, then the condition is satisfied (e is covered by Fc(e)). Otherwise, the inequality (9.5)
of the proposition has to be satisfied. The rest of the constraints of the model (9.6i)-(9.6n),
together with variables r, x, q, and z, aim at modeling (9.5). To begin with, (9.6i) impose that,
for each v ∈ V , one of the following statements holds:

i) All incident edges to v, e ∈ E(v), are completely covered by facilities placed at their
complete covers, Fc(e) (we = 1 for all e ∈ E(v), xv = 1).
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ii) A sufficiently close facility to v is installed at v′ ∈ Vp(v) (zvv′ = 1), that is,

max{0, δ − d(v, v′)}+ ru ≥ le ∀u ∈ V s.t. (u, v) = e ∈ E and we = 0;

iii) A sufficiently close facility to v is installed at e′ ∈ Ep(v) and v is reached through v′
i′ of e′

(zve′i′ = 1), that is,

max{0, δ − τve′i′(qe′)}+ ru ≥ le ∀u ∈ V s.t. (u, v) = e ∈ E and we = 0.

If the case i) above holds, then the covering condition in (9.6h) is satisfied for all e ∈ E(v),
regardless of the value of the residual cover variables. Otherwise, suppose that xv = 0 and
we = 0 for some e ∈ E(v). In this case, the corresponding constraint (9.6h) is “active”, that
is, the inequality (9.5) of Prop. 9.9 has to be satisfied for e. Since xv = 0, constraints (9.6i)
impose that there is a facility among those installed at Fp(v) that is sufficiently close one to v.
This facility is the one bounding the residual variables rv (see constraints (9.6m)-(9.6n)), which
represent the terms in the left-hand side of (9.5). Constraints (9.6j) (resp. (9.6k)) ensure that
zvv′ (resp. zve′i′) can be one only if facility is installed at v′ (resp. e′). Due to (9.6i), for every
fixed node v ∈ V , at most one of the constraints in (9.6l)-(9.6n) will be active. If xv = 1, (9.6l)
enforces rv = 0. Indeed, all the covering conditions (9.6h) are “inactive” and rv is not needed
to guarantee the coverage of any e ∈ E(v). Otherwise, if xv = 0, (9.6l) reads rv ≤Mv, where
Mv is a big-enough constant that does not restrict the value of the residual. Finally, constraints
(9.6m)-(9.6n) bound rv by δ− d(v, p) ≥ 0 for a sufficiently close facility to v installed at p, when
xv = 0. The constants Mvv′ and Mve′i′ are assumed to be big enough so that the constraints
in (9.6m)-(9.6n) do not add anything to the model if zvv′ or zve′i′ are zero, respectively. For
instance, Mv = Mvv′ = δ and Mve′i′ = δ + le′ are valid values for these constants (we recall
Assumption 9.2). Sect. 9.4 presents refined values of these big-Ms.

We observe that the number of variables and constraints in (9.6) can be reduced. Namely,
for each v ∈ V and e′ = (v′

a, v
′
b) ∈ Ep(v), if d(v, v′

a) + le′ ≤ d(v, v′
b) then d(v, p) = d(v, v′

a) +
l(v′

a, p) for every p ∈ e′. Similarly, if d(v, v′
b) + le′ ≤ d(v, v′

a) then d(v, p) = d(v, v′
b) + l(v′

b, p)
always holds for all p ∈ e′. For such nodes and candidate facilities, we do not need both
variables, zve′a and zve′b, and corresponding constraints in (9.6n) (we know beforehand that
one of these constraints would never be active if a facility is located at e′). Therefore, EIp(v)
would only contain one of the pairs (e′, a) or (e′, b).

9.3.1 Comparative insights with respect to an existing MILP

To the best of our knowledge, the only existing MILP for the CSCP was proposed in [142]. The
authors used a similar observation to ours with respect to optimal δ-covers. They noted that
every edge contains at most one facility. Indeed, in their setting, if two facilities are located
at both end-nodes of an edge e = (va, vb) one of them is considered to be “hosted” by an
adjacent edge, e′ ∈ E(va) ∪ E(vb) (by optimality, neither va nor vb is a leaf). Their location
variables are indexed then by E.

However, this approach has issues with symmetry, which leads to redundant solutions.
Indeed, many different solutions to the MILP model represent the same facility locations to the
CSCP, since there exist many combinations of the edges “hosting” the facilities that are located
at nodes. Let us consider an example: let v ∈ V be a node, e ∈ E(v) be an incident edge, and
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Variables Constraints

Binaries Continuous

MILP (9.6) |V |2 + 2(|V ||E|+ |V |+ |E|) |V |+ |E| |E|2 + |V |2 + 5|E||V |+ 7|E|+ 3|V |
MILP in [142] |E|3 + 3|V ||E|+ |E| 3|V ||E|+ |E| 3|E|3 + 8|E||V |+ |E|

Table 9.1 Comparative summary on MILP formulations for the CSCP

p ∈ e be a point on e. Even though the distance d(p, v) is equal to ϵ for a very small ϵ > 0, the
point p is still located at e. However, when d(p, v) = 0, the point p is located at the node v and,
consequently, at every edge in E(v). When a facility is located at a node, the discontinuity
there leads to the question: which node or edge do we choose to represent this facility? In
our MILP model, we have a specific node facility variable (i.e., yv) which prevents edge facility
variables (i.e., ye, e ∈ E(v)) from “hosting" facilities at v, thanks to constraint (9.6f).

On the other hand, we consider model size in terms of the number of variables. A second
main difference between MILP (9.6) and the MILP in [142] is that the latter uses binary
variables to identify the two edges containing the facilities that cover a given edge. On
the one hand, this yields variables and constraints of O(|E|3). On the other hand, multiple
equivalent solutions arise when the edge in question can be covered by a single facility, as the
authors commented themselves. Finally, the covering constraints in both formulations actually
correspond to the same characterization of δ-cover, but are modeled in a slightly different way.
Namely, the authors of [142] defined the “residual covers” for each edge (where a facility might
be placed) and node of the network. Interested readers might consult [142] and the MILP
therein, which we do not reproduce here for the sake of concision.

Nonetheless, Table 9.1 shows a comparative summary of the two formulations, based
on the number of variables and constraints. This summary considers an upper bound on
the size of MILP (9.6). That is, we take Fc(e) = F , Vp(v) = V , and Ep(v) = E for all v ∈ V
and e ∈ E—however, this would never be the case, as the partial and complete covers are
complementary. On the other hand, Table 9.1 considers the MILP in [142] with J = E (the set
of edges to be covered).

9.4 Strengthening

In this section, we analyze modifications of the MILP (9.6) that can yield a tighter linear
relaxation of this formulation. Namely, we tighten our big-M constraints (9.6l)-(9.6n) by
devising small constants Mv, Mvv′ , Mve′i′ , δvv′ , and δve′i′ . We also present several families of
valid inequalities. Valid inequalities define conditions that have to be satisfied by any feasible
solution, and yield tighter linear programming relaxations, see e.g. [306].

9.4.1 Constants tightening

From the MILP formulation, it is easy to yield the following observation. For v ∈ V , it suffices
for a facility f ∈ Fp(v) to contribute to the residual cover rv at most Uv := maxe∈E(v) le. Indeed,
rv aims at ensuring that the inequality (9.5) of Prop. 9.9 is satisfied for all e ∈ E(v). We define
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δvv′ = min{Uv + d(v, v′), δ}, for v′ ∈ Vp(v),
δve′i′ = min{Uv + maxq∈[0,le′ ] τve′i′(q), δ} = min{Uv + d(v, v′

i′) + le′δ}, for (e′ = (v′
a, v

′
b), i′) ∈ EIp(v).

Since Uv is a valid upper bound for the residual cover variable rv, the big-Ms in the
constraints (9.6m) and (9.6n) should guarantee that

Mvv′ + δvv′ − d(v, v′) ≥ Uv,

Mve′i′ + min
q∈le′

(δve′i′ − τve′i′(q)) ≥Uv.

Taking the minimums of the above big-Ms, we can now tighten the big-M constants of the
MILP (9.6) as follows:

Mv :=Uv

Mvv′ :=Uv − (δvv′ − d(v, v′)) = max{0, Uv + d(v, v′)− δ}

Mve′i′ :=Uv − min
q∈le′

(δve′i′ − τve′i′(q)) = Uv − δve′i′ + max
q∈le′

τve′i′(q)

=Uv − δve′i′ + d(vi, v′
i′) + le′ = max{0, Uv + d(v, v′

i′) + le′ − δ},

where the last equations in the definition of Mvv′ and Mve′i′ follow from the definition of δvv′

and δve′i′ , respectively.
Consequently, the constraints (9.6m) and (9.6n) should be replaced by:

rv ≤Mvv′(1− zvv′) + δvv′ − d(v, v′) v ∈ V, v′ ∈ Vp(v) (9.7a)

rv ≤Mve′i′(1− zve′i′) + δve′i′ − τve′i′(qe′) v ∈ V, (e′, i′) ∈ EIp(v). (9.7b)

9.4.2 Valid inequalities

“Leafs” inequalities

If a node v ∈ V has degree one, we can assume without loss of generality that no facility is
located at v nor at its incident edge. Indeed, an equivalent δ-cover could be built by just moving
such a facility to the unique neighbor of v in N . More than valid inequalities, the following are
valid variable elimination:

yv = 0; ye = 0 ∀v ∈ V s.t. deg(v) = 1, e ∈ E(v). (9.8)

“Adjacent edges” inequalities

Consider a node v ∈ V of degree two. If there is a facility at v, then no facility is placed at the
edges incident to v (we recall the model constraints (9.6f)). Otherwise, we can assume that at
most one facility is placed at these edges in an optimal solution, which can be enforced by the
following valid inequalities:

ye + ye′ + yv ≤ 1 ∀e, e′ ∈ E, e ̸= e′, s.t. e ∩ e′ = v and deg(v) = 2. (9.9)

Fig. 9.4 illustrates the above inequalities. Fig. 9.4a shows the case in which a facility is located
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(a) A facility is located at v (b) Solution with two facilities

Figure 9.4 Illustration of valid inequalities (9.9)

at v. Otherwise, if two facilities are placed at e and e′ respectively, we can build an equivalent
solution by moving one of these facilities to the end node of the corresponding edge that is not
v, as depicted in Fig. 9.4b. We recall that the last statement holds due to our Assumption 9.2.

“Neighborhood” inequalities

Let us now consider a node v ∈ V , and suppose that there are several facilities placed at
different edges in E(v) in a feasible solution. Take e∗ ∈ E(v) containing a facility f∗ such
that d(f∗, v) = min{d(f, v) : f is installed at e ∈ E(v)}. The following proposition gives an
equivalent feasible solution where the facilities at the edges e ∈ E(v) such that e ̸= e∗ are
moved to the nodes.

Proposition 9.19. Given a node v ∈ V and an edge e∗ ∈ E(v), for any feasible solution
ŷ with several facilities placed at edges in E(v), the following solution y is feasible and∑
f∈F yf ≤

∑
f∈F ŷf :

• yu = 1 for all u ∈ V such that e = (u, v) ∈ E(v), e ̸= e∗, and ŷe = 1;

• ye = 0 for all e ∈ E(v) such that e ̸= e∗, and ŷe = 1;

• yf = ŷf otherwise.

Proof. We denote by N(v) the set of vertices adjacent to v. Consider the change of facilities
from ŷ to y. The facilities in the edges E(v) \ {e∗} are ‘pushed’ to the vertices N(v). For
u ∈ N(v), if there already exists a facility at u, and there is another facility ‘pushed’ to u, then
these two facilities merge and they are accounted as one facility in y. Hence, the number of
facilities of the solution y is at most that of the solution ŷ.

The proof then consists in showing that y is feasible. We will show that all edges are
covered. Let us consider e ∈ E. If e was covered in ŷ by facilities not placed at edges in E(v)
then it is still covered by these facilities in y. Suppose then that a facility placed at e′ ∈ E(v)
with e ̸= e∗ was covering e (or part of e) in solution ŷ, and let e′ = (u, v). We distinguish two
cases. First, if the facility at e′ was partially covering e through node u, then it clearly covers at
least the same part of e in the new solution y (where the facility is moved to u). Otherwise,
suppose the facility at e′ was partially covering e through node v. In this case, the facility at e∗

covers at least the same part of e (it is closer to v). Since this facility remains unchanged in
the new solution, we can guarantee that e is still covered.

As a consequence of Prop. 9.19, the following inequalities are valid:∑
e∈E(v)

ye ≤ 1− yv ∀v ∈ V. (9.10)
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(a) A facility is located at v (b) Solution with several facilities

Figure 9.5 Illustration of valid inequalities (9.10)

Fig. 9.5 illustrates the valid inequalities (9.10). In particular, Fig. 9.5b illustrates the equivalent
solution given in Prop. 9.19. It is easy to observe that these new inequalities are a generaliza-
tion of inequalities (9.9). Moreover, constraints (9.10) dominate the model constraints (9.6f)—
and are fewer.

9.5 Network processing

The network processing algorithm analyzes the network N to compute the parameters and
sets needed to construct the MILP model (9.6), which we recall next:

1. Vc(e), Ec(e) for all edges e ∈ E;

2. Vp(v), Ep(v), EIp(v) for all nodes v ∈ V ;

3. d(v, v′) for all pairs of nodes v, v′ ∈ V such that d(v, v′) ≤ δ.

The above data is computed by Algorithms 9.1, 9.2 and 9.3. Algorithms 9.1 and 9.2 contain
auxiliary functions, which are called within the main Algorithm 9.3. Algorithm 9.1 computes
the sets E(v) and V(v) (which are not directly used in the MILP but necessary to obtain Ep(v)
and Vp(v)), and the distances d(v, v′) for all v, v′ ∈ V such that d(v, v′) ≤ δ. Algorithm 9.1
also computes the sets Ec(v), which will serve as intermediate sets to finally obtain Ec(e) in
Algorithm 9.3. The main task in Algorithm 9.3 is to compute the sets Vc(e) and Ec(e). To that
aim, this algorithm calls both Algorithm 9.1 and the procedure “mutual” described in Algorithm
9.2. Once Vc(e) and Ec(e) are known, the computation of Vp(v) and Ep(v) in Algorithm 9.3
easily follows by definition.

In the following, we present Algorithm 9.1, which defines the function “nodeCover(N, δ, s)”.
This function, for each source node s ∈ V , outputs: Ec(s), E(s), V(s), and d(s, v) for all v ∈ V
such that d(s, v) ≤ δ (otherwise the algorithm outputs d(s, v) = +∞). The algorithm starts with
empty sets Ec(s), E(s), U(s),V(s), where U(s) is used for intermediate calculations. The set
Q denotes nodes whose shortest path (and distance) to s are unknown, and it is initialized
to V . In the course of the algorithm, Q decreases, while V(s) increases. In Lines 7-11, the
distance d(s, v) and predecessor values prevs(v) are initialized, for all v ∈ V . The while loop
is an adaptation of the classic Dijkstra algorithm. Line 14 selects the node u with the shortest
distance to s among all unprocessed nodes, and removes it from Q. If d(s, u) > δ, then none
of the remaining nodes in Q are reachable from s, and the search is pruned. Otherwise, the
neighbors of u that are still in Q are inspected. For each v ∈ Q ∩ E(u), the edge (u, v) is first
added to E(s). Then, the algorithm computes the length ℓ of a path from s to v that traverses
u. If ℓ < d(s, v), then the distance and the predecessor for node v are updated in Lines 24- 25.
In addition, if ℓ < δ, node v and edge (u, v) are added to Ec(s) and V(s) in Lines 27 and 28,
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respectively. Otherwise, the edge e is added to the undetermined set U(s). Whether this edge
belongs or not to the complete cover set Ec(s) is decided later on in the algorithm. Namely,
edges e = (va, vb) ∈ U(s) are processed in Lines 35-39: if e can be jointly δ-covered by s from
two sides, then e is added to the complete cover Ec(s).

Algorithm 9.2 describes the procedure “mutual”, which determines, given e = (va, vb) ∈ E
and a candidate edge for the complete cover e′ ∈ Ec(va) ∩ Ec(vb), whether e′ ∈ Ec(e). This
algorithm is based on Prop. 9.18 in Sect. 9.2.

Network processing Algorithm 9.3 computes all the sets that are needed by the MILP
formulation. The algorithm starts with empty sets Ec(e),Vc(e), Ep(v),Vp(v), for e ∈ E and
v ∈ V . In Line 3, the algorithm loops through all nodes v ∈ V and computes the function
“nodeCover(N, δ, v)”, storing its output. Then, the algorithm calculates the sets Vc(e) for
e ∈ E, by applying the symmetric relation between these sets and the sets Ec(v) from
“nodeCover(N, δ, v)”. After that, in Line 10, the algorithm loops through all edges e = (va, vb) ∈
E. It checks whether there is an edge e′ ∈ Ec(va) ∩ Ec(vb) such that e′ ∈ Ec(e) (equivalently,
e ∈ Ec(e′)) by calling the procedure "mutual". Since e′ ∈ Ec(e) if and only if e ∈ Ec(e′), the loop
only runs over pairs such that e < e′ (we assume a total order on the elements of E). The loop
starting in line 18, iterates on each node v ∈ V and looks for v′ ∈ V(v) such that there exists
an e ∈ E(v) but e /∈ Ec(v′). The nodes v′ found are added to Vp(v). Finally, the loop in line
28 also iterates on v ∈ V , and looks for e′ = (v′

a, v
′
b) ∈ E(v) such that there exists e ∈ E(v)

but e /∈ Ec(e′). Each edge found is added to Ep(v), and, right after that, the set EIp(v) may be
updated after checking the dominance rule described at the end of Sect. 9.3. We have the
following complexity result for Algorithm 9.3.

Proposition 9.20. Let D be an upper bound on the degree of the nodes of a connected
network N = (V,E). The time complexity of the network processing Algorithm 9.3 is
O(|E|2 + |V ||E|(D + log |V |)).

Proof. We first analyze the time complexity of the procedure nodeCover described in Algorithm
9.1. The main while loop is a modification of the Dijkstra algorithm, and it can be implemented
with time complexity O((|E|+ |V |) log |V |), see [107]. Therefore, the overall time complexity
of nodeCover is also O((|E|+ |V |) log |V |).

The network processing Algorithm 9.3 has four outer loops, and next we analyze the
complexity of each outer loop. The first outer loop runs the nodeCover algorithm over the
nodes, so its complexity is O(|V |(|E|+ |V |) log |V |). The second outer loop runs the mutual
algorithm over the edges pairs, since the mutual algorithm has a constant time complexity,
so the complexity of this loop is O(|E|2). The third outer loop is composed of three for
loops, and its time complexity is O(D|V |2), which has an upper bound O(D|E||V |). The last
outer loop is composed of three for loops, and its time complexity is O(D|E||V |). After sum-
ming up the complexity of these loops, we have that the total time complexity of Algorithm 9.3 is
O(|V |((|E|+ |V |) log |V |) + |E|2 + |V ||E|D), or, equivalently,O(|V ||E| log |V |+ |E|2 + |V ||E|D).
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Algorithm 9.1: single node δ-cover algorithm: nodeCover
1 Input: Network N = (V,E, ||), cover range δ > 0, a source s ∈ V ;
2 Output: Ec(s), E(s), V(s), d(s, v) for all v ∈ V (returns d(s, v) = +∞ if d(s, v) > δ);
3 Initialize set Q← V ;
4 Initialize sets Ec(s)← ∅, E(s)← ∅, U(s)← ∅;
5 Initialize set V(s)← ∅;
6 for each node v ∈ V do
7 d(s, v)← +∞ ; ◃ Unknown distance from s to v
8 prevs(v)← {∅} ; ◃ Unknown predecessor of v
9 end

10 d(s, s)← 0;
11 add s to V(s);
12 while Q is not empty do
13 u← argminv∈Q d(s, v);
14 remove u from Q ; ◃ Take the closest node u and remove it from Q
15 if d(s, u) > δ then
16 d(s, v)← +∞ for all v ∈ Q ; ◃ End of Dijkstra (all nodes in Q are outside the

covering radius)
17 break
18 end
19 for each v ∈ Q s.t. v ∈ E(u) do
20 e← (u, v);
21 add e to E(s) ; ◃ Edge e is in the potential cover set of s
22 ℓ← d(s, u) + le ; ◃ Path from s to v that traverses u
23 if ℓ < d(s, v) then
24 d(s, v)← ℓ ; ◃ Update the distance to v
25 prevs(v)← u ; ◃ Update the predecessor of v
26 if ℓ ≤ δ then
27 add e to Ec(s) ; ◃ Edge e is in the complete cover set of s
28 add v to V(s) ; ◃ Node v is in the potential cover set of s
29 else
30 add e to U(s) ; ◃ Undetermined edge
31 end
32 end
33 end
34 end
35 for each edge e = (va, vb) in U(s) do
36 if va ∈ V(s) and vb ∈ V(s) and δ − d(s, va) + δ − d(s, vb) ≥ le then
37 add e to Ec(s) ; ◃ Edge e is completely covered
38 end
39 end
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Algorithm 9.2: Edge mutual cover algorithm: mutual

1 Input: Edges e = (va, vb), e′ = (v′
a, v

′
b) such that e′ ∈ Ec(va) and e ∈ Ec(vb).

2 Output: Boolean value indicating whether e′ ∈ Ec(e).
3 for i ∈ {a, b} do
4 Qvie′ ← d(vi,v

′
b)+le′ −d(vi,v

′
a)

2 ;
5 end
6 for i ∈ {a, b} do
7 if q ≤ Qvie′ then
8 rvi(q) = δ − (d(vi, v′

a) + q) ;
9 else

10 rvi
(q) = δ − (d(vi, v′

b) + le′ − q) ;
11 end
12 end
13 if rva(Qvae′) + rvb

(Qvae′) ≥ e AND rva(Qvbe′) + rvb
(Qvbe′) ≥ e then

14 return TRUE;
15 else
16 return FALSE;
17 end
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Algorithm 9.3: Network processing algorithm

1 Input: Network N = (V,E, ||) and cover range δ > 0;
2 Output: Ec(e), Vc(e), Ep(v), Vp(v), EIp(v), for all e ∈ E and v ∈ V , and distance

function d;
3 for each node v ∈ V ; ◃ Computation of node complete covers Vc(e)
4 do
5 Ec(v), E(v),V(v), d(v, ·)← nodeCover(N, δ, v) ;
6 for each edge e ∈ Ec(v) do
7 add v to Vc(e) ;
8 end
9 end

10 for each edge e = (va, vb) ∈ E ; ◃ Computation of edge complete covers Ec(e)
11 do
12 for each edge e′ = (v′

a, v
′
b) ∈ E, e < e′, such that e′ ∈ Ec(va) ∩ Ec(vb) do

13 if mutual(e, e′, d) then
14 add e′ to Ec(e);
15 add e to Ec(e′) ;
16 end
17 end
18 for each node v ∈ V ; ◃ Computation of node partial covers Vp(v)
19 do
20 for each node v′ ∈ V(v) do
21 for all e ∈ E(v) do
22 if e /∈ Ec(v′) then
23 add v′ to Vp(v);
24 break
25 end
26 end
27 end
28 for each node v ∈ V ; ◃ Computation of edge partial covers Ep(v) and EIp(v)
29 do
30 for each edge e′ = (v′

a, v
′
b) ∈ E(v) do

31 for all e ∈ E(v) do
32 if e′ /∈ Ec(e) then
33 add e′ to Ep(v);
34 if d(v, v′

a) ≤ δ AND d(v, v′
a) ≤ d(v, v′

b) + le′ then
35 add (e′, a) to EIp(v);
36 if d(v, v′

b) ≤ δ AND d(v, v′
b) ≤ d(v, v′

a) + le′ then
37 add (e′, b) to EIp(v);
38 break
39 end
40 end
41 end
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(a) A facility is located at va (qe = 0)

(b) A facility is located at the tail (0 < qe ≤ l̂e) (c) No facility is located at the tail (l̂e < qe ≤ 2δ)

Figure 9.6 Illustration of Prop. 9.21 for a long edge e

9.6 A reduced formulation for networks with long edges

The MILP (9.6) assumes le ≤ δ for all e ∈ E, however, in many real-world networks, some
edge lengths are greater than the covering radius. To reuse the previous results, one approach
is to transform a network with long edges into another network with edge lengths at most
δ. The transformation is by subdividing edges of the original network into smaller pieces, so
the optimal cover does not change. This transformation enables us to apply MILP (9.6) or
the MILP in [142] on the transformed network. We note that, in [142], there is a recursive
transformation. However, the recursive transformation is not constructive, so we cannot employ
it in practice. Another trivial transformation is by subdividing edges as suggested in Sect. 9.2.
However, this strategy is a trivial heuristic, and it increases the number of edges and nodes of
the transformed network, and thus the number of variables and constraints of the MILP model
by a nonlinear factor.

In this section, we present an alternative approach to tackle networks with edge lengths
greater than the covering radius. Instead of transforming the network, this approach directly
treats long edges in the formulation by using specific sets of constraints and variables. We
highlight that the approach is also applicable to “long paths”. That is, if there is a path in the
network whose intermediate nodes all have degree two, we can represent it by a single edge
of length equal to the total length of the path. Indeed, the CSCP does not change after this
transformation.

The main idea of the reduced formulation is to assume a predefined covering of those
edges that are long enough. Such covering consists in placing facilities every 2δ distance units
on the long edge. Let us consider e ∈ E such that le > 2δ. An edge satisfying this condition
is called a long edge. We denote by l̂e := le − 2δ⌊le/(2δ)⌋ the length of the last piece of e
after dividing it into pieces of measure 2δ. We call l̂e the tail of e. The following proposition
guarantees the correctness of the reduced formulation.

Proposition 9.21. Let N be an undirected network, e = (va, vb) ∈ E be a long edge, and P ′

be a feasible δ-cover of N . Define P with p ∈ P for all p ∈ P ′ \ e. Let pe ∈ P ′ ∩ e be such that
l(va, pe) = minp′∈P′∩e l(va, p′), and let qe := l(va, pe) (here qe represents a length, although it
will also be a variable of the reduced MILP that we introduce afterward). Note that qe ∈ [0, 2δ]
(otherwise, P ′ would not be a δ-cover). The set P can be completed in such a way that it
δ-covers N and |P| ≤ |P ′|, as follows:

- pe ∈ P;

- p ∈ P for all p ∈ e, p > pe, such that l(pe, p) = 2δ · k, for some k ∈ N;
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- If ∃p′ ∈ P ′ ∩ e such that d(pe, p′) > 2δ⌊l(pe, vb)/(2δ)⌋ then vb ∈ P.

Moreover, ⌊le/(2δ)⌋ ≤ |P ∩ e| ≤ ⌊le/(2δ)⌋+ 2. In particular,

(i) If 0 ≤ qe ≤ l̂e, then |P ∩ e| = ⌊le/(2δ)⌋+ 1 if vb /∈ P, |P ∩ e| = ⌊le/(2δ)⌋+ 2 otherwise.

(ii) If l̂e < qe ≤ 2δ, then |P ∩ e| = ⌊le/(2δ)⌋ if vb /∈ P, |P ∩ e| = ⌊le/(2δ)⌋+ 1 otherwise.

Proof. It is easy to observe that |P| ≤ |P ′|. First, since facilities are placed every 2δ distance
on e, the original covering P ′ cannot contain fewer facilities than P. Since the rest of the
facilities are just taken from P ′, |P| ≤ |P ′|. On the other hand, P has to δ-cover N for the
same reason. That is, the facilities of P that were not in P ′ cover at least as much as the
ones originally in P ′. The last part of the proposition easily follows from construction, and is
illustrated by Fig. 9.6.

Remark 9.22. The following example shows that the upper bound is tight, that is, there is
a case that satisfies |P ∩ e| = ⌊le/(2δ)⌋ + 2. Consider a network with a single edge e, and
let δ = 1 and le = 3.5. Therefore, to cover e, we need 3 facilities (|P ∩ e| = 3). Because
⌊le/(2δ)⌋+ 2 = 3, the upper bound is tight. Similarly, we can give a tight example for the lower
bound, by simply setting le = 2 in the previous network.

In the following, we present our reduced formulation, which is an adaptation of MILP (9.6).
We treat long edges specifically, improving the scalability of our approach. Edges e ∈ E such
that δ < le ≤ 2δ are subdivided into two sub edges of length smaller than δ. Therefore, we
assume that, for every e ∈ E, either le ≤ δ or le > 2δ. In the former case, all the constraints
and variables of the model remain unchanged. In the latter, we introduce new variables
and constraints to the model, while dropping some of the constraints originally in (9.6). The
objective function also needs adaptation. We introduce all these modifications next.

Let e = (va, vb) ∈ E be a long edge and, for any feasible solution, let qe be as in Prop. 9.21.
That is, when e is a long edge, we use the former variable qe of MILP (9.6) to represent the
position of the left-most facility on e with respect to va. The placement variables yva

, yvb
, and

ye will be used as well, with slightly different meanings to those in (9.6), as we will explain later
on. We introduce an indicator variable ue ∈ {0, 1} to distinguish between two possible ranges
in the domain of qe. If 0 ≤ qe ≤ l̂e, then ue = 0; otherwise l̂e ≤ qe ≤ 2δ and ue = 1. This can
be modeled with the following constraints:

qe ≤ l̂e(1− ue) + 2δue,

qe ≥ l̂eue.
(9.11)

From Prop. 9.21, there is a transition in the number of facilities on e when ue changes from 0
to 1. Let us denote by L ⊆ E the set of long edges of the network. The objective function of
the reduced MILP reads as follows∑

f∈F\L

yf +
∑
e∈L

(⌈ le
2δ

⌉
− ue

)
. (9.12)

Note that the coefficients on the last term in the objective already account for the facilities
installed at va for each e = (va, vb) ∈ L, while they do not do so for vb. This will condition the
values of the placement variables in an optimal solution, namely, yva

= 0 for all e = (va, vb) ∈ L.
The facilities installed at these nodes will be tracked by the variables qe, namely, if qe = 0 then



172 Piece-wise linear modelling in continuous covering on networks

a facility would be installed at va. To complete the modeling of the CSCP, we need to ensure
that the covering of the long edge fits into the covering of the rest of the network. Namely,
some parts of the network might be covered by facilities placed on e, and part of e (namely
its tail or the portion between va and pe of Prop. 9.21) could be covered by facilities placed
outside e.

We focus first on the case 0 ≤ qe ≤ l̂e. We need to ensure that both the segment (va, pe)
and the tail of e are covered. For the tail, we know that there is a facility at a distance l̂e − qe
from vb. This facility covers a length δ of the remaining fragment on e on its right-hand side,
which has a length equal to l̂e − qe. The rest of such fragment should be covered, which can
be imposed by the following constraint:

rvb
≥ l̂e − qe − δ ⇐⇒ rvb

+ qe + δ ≥ l̂e ∀e ∈ L s.t. ue = 0. (9.13)

To ensure the covering of the segment (va, pe), we have:

rva
+ δ ≥ qe ∀e ∈ L s.t. ue = 0.

Let us consider now the case l̂e < qe ≤ 2δ. There is a facility installed at a distance of
2δ− qe + l̂e from vb. Then, to ensure that the tail of e is covered, we need to cover the fragment
between this facility and vb. Since the facility already covers a length δ on this fragment, the
following constraint enforces the covering of the tail:

rvb
≥ 2δ − qe + l̂e − δ ⇐⇒ rvb

+ qe − δ ≥ l̂e ∀e ∈ L s.t. ue = 1. (9.14)

To ensure the covering of the segment (va, pe), we have the same equation as before:

rva + δ ≥ qe ∀e ∈ L s.t. ue = 1.

In summary, the following constraints ensure that the edge e is fully covered:

rva
+ δ ≥ qe ∀e ∈ L, (9.15)

rvb
+ qe − (2ue − 1)δ ≥ l̂e ∀e ∈ L. (9.16)

Constraint (9.16) gathers (9.13) and (9.14) in a single constraint. The reduced MILP model is
as follows (we avoid extended writing of the model for the sake of conciseness):

min (9.12)

s.t. (9.6b), (9.6c), (9.6h) e /∈ L

(9.6f), (9.6g), (9.6k) e′ /∈ L

(9.6d), (9.6e), (9.6i), (9.6j), (9.6l), (9.6m), (9.6n), (9.6o), (9.6p), (9.6q)

(9.11), (9.15), (9.16)

ye = 1 e ∈ L(9.17)

we = 0 e ∈ L,(9.18)

where, if e ∈ L, the term τvei(qe) in (9.6n) is replaced by d(v, vi) + 1i=aqe+ 1i=b(2δue+ l̂e− qe).
We enforce (9.17) because e always contains a facility if e ∈ L. On the other hand, we need
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to include constraints (9.18) to guarantee that the variables rva
and rvb

can take positive
values. Indeed, if we = 1 for e ∈ L, it may happen that xva = 1 or xvb

= 1, which will will imply,
respectively, rva = 0 or rvb

= 0 due to (9.6l). We compute the complete and partial cover sets
in the same way as for the original MILP model. Note that no edge or node can completely
cover e if e ∈ L.

The following theorem is on the scalability of the reduced MILP above.

Theorem 9.23. Given a network N = (V,E, l), the maximum number of variables and
constraints of the reduced MILP model only depends on V and E.

Proof. The number of constraints and variables of the reduced model does not grow with the
edge lengths, except for a constant factor of 2 for those edges e ∈ E such that δ < le ≤ 2δ.

9.7 Computational results

In this section, we present the computational experiments testing the existing and proposed
formulations and strengthening techniques for CSCP and its discrete variant (facilities on
nodes).

9.7.1 Experiment Setup

We describe the setup of the experiments including the benchmarks, development environment,
implementation of algorithms and solution statistics. The computational results and source
code are publicly released on our project website: https://github.com/lidingxu/cflg/, where we
provide a bash file to reproduce the experiments in Linux systems. Those benchmarks that
we generated for this study, or that were publicly available already, are also available at the
repository.

Benchmarks. We use three different benchmarking sets: two come from the literature,
and the other has been generated synthetically. For every instance, we set the coverage
radius δ equal to the average of the edge lengths. We describe these benchmarks next.

Kgroup. It consists of 23 prize-collecting Steiner tree problem instances from [208], and
the benchmark includes the graphs and edge lengths of these instances. These random
geometric instances are designed to have a local structure somewhat similar to street maps.
Nodes correspond to random points in the unit square. The number of nodes ranges from 22
to 241. There is an edge between two nodes if their distance is no more than a prescribed
threshold which depends on the number of nodes, and the length of an edge is the Euclidean
distance between the two points. It is divided into two sets, Kgroup_A and Kgroup_B. The first
one consists of 12 small instances with up to 45 nodes, and the second one consists of 11
large instances with up to 241 nodes.

City. It consists of real data of 9 street networks for some German cities, and it was first
used in [56]. The number of nodes ranges from 132 to 771. The length of each edge is the
length of the underlying street segment.

Random. It consists of 24 random network instances generated via Erdős-Rényi binomial
method with the package “Networkx" (see [170]). A network is constructed by connecting
nodes randomly. Each edge is included with a predefined uniform probability p. The number of
nodes, n, is in {10, 15, 20, 25, 30, 40}. For each n, we generate random graphs with different ad-
jacency probabilities, namely p ∈ {0.1, 0.2, 0.3, 0.4}. Furthermore, we split these instances into

https://github.com/lidingxu/cflg/
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two benchmarks: Random_A and Random_B. Random_A contains instances with n ∈ {10, 15, 20}.
Random_B contains instances with n ∈ {25, 30.40}.

Coverage radii. For each network, we define two sets of coverage radii: “Small” equal to
[Average Edge Length], and “Large” equal to ×2 [Average Edge Length], respectively.

Problem preprocessing. Networks of instances are modified in a problem preprocessing
step to be amenable to MILP models.

Given an original network of each instance, in the first preprocessing step, we delete any
degree-two node and concatenate its adjacent edges to a new edge, as long as the deletion
does not yield a self-loop. Such a node can be treated as an interior point of the new edge. We
refer to the preprocessed network without any such degree-two node as the degree-two-free
network.

Even after the first preprocessing step, the degree-two-free network may not correspond to
the actual problem network to solve, since we may subdivide the degree-two-free network for
the non-reduced model to guarantee that δ > maxe∈E |e|. We refer to the preprocessed net-
work after the second preprocessing step as the subdivided network, which is degree-two-free
and satisfies δ > maxe∈E |e|. Therefore, the size (number of nodes and edges) of a subdivided
network depends on δ.

Development environment. The experiments are conducted on a computer with Intel
Core i7-6700K CPU @ 4.00GHZ and 16GB main memory. JuMP [131] is a modeling language
for mathematical optimization embedded in Julia. We use JuMP to implement our models
and interact with MILP solvers. Specifically, we use ILOG CPLEX 20.1 to solve our models.
Alternatively, the implementation allows users to switch easily to other solvers (e.g. Gurobi
and GLPK).

CPLEX’s parameters are set as their defaults, except that we disable its parallelism and set
the MIP absolute gap to 1 (due to the integral objective). The experiments are partitioned into
jobs. Every job calls CPLEX to solve an instance, and this job is handled by one process of
the multi-core CPU. To safeguard against a potential mutual slowdown of parallel processes,
we run only one job per core at a time, and we use at most three processes in parallelism.
The time limit of each job is set to 1800 CPU seconds.

Model implementation. We implement six models based on different combinations of
formulations and settings. The first five models address CSCP, while the last model solves its
discrete restriction, i.e. the variant in which facilities must be placed at nodes. These models
are as follows.

EF. This model implements the model from [142] for CSCP. This formulation only uses
edges to model facility locations, and the authors do not consider the complete and partial
cover sets to delimit the size of the model. This model assumes δ > maxe∈E |e|, and it reads
the subdivided graph.

F0. This model implements a basic formulation that is a simplification of the model (9.6).
It does not use the complete and partial cover information nor any of the strengthening
techniques in Sect. 9.4. Hence, it does not call the network processing algorithm nodeCover.
This model assumes δ > maxe∈E |e|, and it reads the subdivided graph. More precisely, the
constraints (9.6b)-(9.6e) related to complete covers are removed, the complete cover variables
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Model Problem Delimitation Strengthening Long edge Size Input network Comment
EF CSCP No No No Very large Subdivided network From [142]
F0 CSCP No No No Large Subdivided network The simple model
F CSCP Yes No No Medium Subdivided network The complete model
SF CSCP Yes Yes No Medium Subdivided network The strengthened model
RF CSCP Yes Yes Yes Small Degree-two-free network The reduced model
SFD discrete facility SCP Yes Yes No Very Small Subdivided network The discrete model

Table 9.2 Model summary

w are fixed to 0; for each v ∈ V , the partial cover sets Ep(v), EIp(v) are solely set, respectively,
asE andE×{a, b}, and consequently, Mv = δ, Mvv′ = r(N) for v′ ∈ Ep(v), Mve′i′ = r(N)+|e′|
for (e′, i′) ∈ EIp(v) are trivial valid bound constants, where r(N) := maxv,v′∈N d(v, v′) is the
radius of the problem network N .

F. This model implements the complete formulation (9.6) for CSCP, it does use the
complete and partial cover information, and hence it calls the network processing algorithm
nodeCover. It does not use the strengthening techniques in Sect. 9.4. This model assumes
δ > maxe∈E |e|, and it reads the subdivided network as well. For each v ∈ V , due to the
delimited partial cover set, Mv = δ, Mvv′ = δ for v′ ∈ Ep(v), Mve′i′ = δ+ |e′| for (e′, i′) ∈ EIp(v)
are valid bound constants.

SF. This model strengthens F by using the techniques described in Sect. 9.4. More
precisely, the big-M constants are reduced as Sect. 9.4.1; the "Leafs" inequalities are used
to fix variables; and the "Neighborhood" inequalities are implemented as model constraints
which replace (9.6f).

RF. This model implements the reduced formulation from Sect. 9.6. It only requires
δ < 2 maxe∈E |e|. Given a degree-two-free network, it models the long edge specifically as the
description Sect. 9.6, and it subdivides the edges with lengths greater than δ and smaller than
2δ into two sub-edges.

SFD. Any solution of the discrete restriction of CSCP—where facilities can only be placed
at nodes— is a feasible solution of CSCP. We name this discrete restriction by the discrete
facility SCP. This model solves the discrete facility SCP, which solely sets ye = 0 for all e ∈ E
in SF model.

The above models are summarized in Table 9.2. Both EF and F0 consider that any two
points in the network can possibly cover each other, and do not utilize the complete and partial
cover information. They have been already compared in Sect. 9.3.1, and hence F0 should
have fewer variables and constraints than EF. We are interested in the dual gaps obtained
after the models are solved within the time limit for these models.

Performance metrics and statistical tests. We describe the performance metrics and
the ways to compute their statistics. These statistics will be used to evaluate the model
performance.

Let v be a dual lower bound and v be a primal upper bound obtained after solving some of
the models described above, the relative dual gap is defined as:

σ := v − v
v

.

A smaller relative dual gap indicates better primal and dual behavior of the model.
Let nsd be the number of nodes of the subdivided network of that instance, note that a

trivial primal solution is the set of the nodes of the subdivided network (for which edge length
is at most δ). Therefore, to normalize the primal solution value, we define the relative primal
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bound
vr := v

nsd
.

If vr < 1, then the model finds a solution better than the trivial one.
In order to evaluate model performance, we compute shifted geometric means (SGMs) of

performance metrics, which provides a measure for relative differences. This avoids statistics
from being dominated by outliers with large absolute values as is the case for the arithmetic
mean. The SGM also avoids an over-representation of results with small absolute values. The
SGM of values v1, ..., vM ≥ 0 with shift s ≥ 0 is defined as

(
M∏
i=1

(vi + s)
)1/M

− s.

We say an instance is affected by a model, if solving this model finds a feasible solution;
the instance is solved by this model, if solving this model finds an optimal solution. If an
instance is unaffected, usually the model is too large to be read into the MILP solver.

We record the following performance metrics of each instance for each model, and compute
the benchmark-wise SGMs:

1. t: the total running time in CPU seconds, with a shifted value set to 1 second;

2. σ: the relative dual gap, with a shifted value set to 0.01;

3. vr: the relative primal bound, with a shifted value set to 0.01.

For an unaffected instance, we set by default t = 1800, σ = 1 and vr = 1. Note that the time
does not include the preprocessing time, since we find that the preprocessing is usually at
most 0.5 seconds.

We will discuss the computational results, which are divided into two parts. In the first part,
we compare the five models EF, F0, F, SF, and RF. We evaluate the performance metrics of
these models. The second part compares RF and SFD, quantifying the facilities that are saved
by allowing continuous location. In the following, we will analyze the aggregated results.

9.7.2 Comparative Analysis of Continuous Models

We compare five continuous models for the CSCP, namely EF, F0, F, SF, and RF. For each
benchmark, radius and model, we record a triple of integers S/A/T: S denotes the number
of solved instances, A denotes the number of affected instances, and T denotes the number
of total instances in the benchmark. Moreover, we also report the average SGMs of the
dual gaps, solving times and relative primal bounds among all instances in the benchmark.
Table 9.3 summarizes these results.

First, we notice that EF cannot affect any instance in any benchmark; RF, SF and RF can
affect all instances, i.e., solutions are provided by these models; RF is the model that solves
the most number of instances (11), and SF is the second best one (10).

Secondly, we compare EF and F0. F0 is obviously superior to EF. With F0, 39 among 56
instances of small radius (resp. 42 among 56 instances of large radius) can be read by the
CPLEX solver, while the instances modeled by EF are too large to read. Therefore, better
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solutions than trivial solutions are found by F0: on average, for instance of small radius (resp.
large radius), F0 finds solutions that use 25.2% (resp. 74.1%) fewer facilities than the trivial
solution.

Then, we compare F0, F and SF. With the delimitation of complete and partial covering
sets, F and SF can affect all instances (especially those in Kgroup_B, of which F0 could just
read one). With the strengthening technique, SF has only marginal improvement in the relative
primal bound, and solving time, while F is even slightly better than SF in the dual gap. We
observe, in our experiment, that adding valid inequalities might slow down the internal solving
process of CPLEX.

Finally, we compare SF and RF. RF outperforms SF in all performance metrics. Moreover,
RF is the best one among those models affecting all instances. Indeed, for many instances,
their degree-two-free networks may contain long edges, and RF avoids introducing too many
variables and constraints for modeling their coverage.

Kgroup_B is the hardest benchmark. The best model RF still has an average dual gap of
59.1% and 154.2% relative primal bound for instances of small radius, and this means that RF
cannot produce better solutions than the trivial one.

We find that for all the models (except for EF), the average dual gaps and solving times of
instances of large radius are smaller than those of instances of small radius. This shows that
the large radius has a positive effect on the model performance, and an instance of a small
radius may be more difficult than the same instance of a large radius. This is because, with a
larger radius, the network after processing is smaller.

In Fig. 9.7, we show scatter plots of the relative dual gaps and the relative primal bounds
of affected instances between different settings. For every plot, there is a line in which the
points have equal (X,Y)-values. If points fall below the line, then the Y-axis model performs
better for the corresponding instances. Note that when comparing F0 and F, the plots do not
consider the unaffected instances of F0 which are affected or solved by F. Moreover, F0 even
closes more duality gaps than F, but F can find better primal solutions. These plots give an
overview of all affected instances and support the above analysis.

To summarize, we have shown that the two proposed techniques— that to delimit the
coverage areas from a given point in Sect. 9.2, and that to cover long edges in Sect. 9.6,—
can reduce the model size drastically. Among the five models tested, RF features the best
overall performance, which is achieved by directly modeling covers on long edges. On the
other hand, delimiting the covering sets to the potential, complete and partial covers also
reduce the model size, which allows F to read all the tested instances.

9.7.3 Comparative Analysis of Continuous and Discrete Models

In CSCP, the facilities are located either at nodes or edges, while in the discrete variant
considered in this section facilities can only be located at nodes. Our objective is to evaluate
the number of facilities that can be saved by allowing continuous location. Since the discrete
model studied here, SFD, is a discrete restriction of CSCP, every optimal solution is a feasible
solution of CSCP. We solve SFD for the discrete facility SCP and compare the results with the
best model for CSCP, RF.
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Benchmark Radius EF F0
time σ(%) vr(%) S/A/T time σ(%) vr(%) S/A/T

city
Small 1800.0 100.0% 100.0% 0/0/9 1801.7 56.8% 83.3% 0/3/9
Large 1800.0 100.0% 100.0% 0/0/9 1800.9 42.3% 36.2% 0/6/9

Kgroup_A
Small 1800.0 100.0% 100.0% 0/0/11 1802.6 25.1% 85.0% 0/11/11
Large 1800.0 100.0% 100.0% 0/0/11 139.2 14.7% 19.2% 7/11/11

Kgroup_B
Small 1800.0 100.0% 100.0% 0/0/12 1800.4 92.6% 98.8% 0/1/12
Large 1800.0 100.0% 100.0% 0/0/12 1800.1 93.2% 86.6% 0/1/12

random_A
Small 1800.0 100.0% 100.0% 0/0/12 16.8 15.9% 54.8% 9/12/12
Large 1800.0 100.0% 100.0% 0/0/12 0.2 25.5% 19.5% 12/12/12

random_B
Small 1800.0 100.0% 100.0% 0/0/12 1317.6 36.4% 63.3% 1/12/12
Large 1800.0 100.0% 100.0% 0/0/12 154.4 26.0% 10.0% 11/12/12

all
Small 1800.0 100.0% 100.0% 0/0/56 625.8 37.4% 74.8% 10/39/56
Large 1800.0 100.0% 100.0% 0/0/56 132.5 33.1% 25.9% 30/42/56

Benchmark Radius F SF
time σ(%) vr(%) S/A/T time σ(%) vr(%) S/A/T

city
Small 1802.9 29.5% 62.2% 0/9/9 1801.3 30.1% 66.9% 0/9/9
Large 1801.2 28.4% 21.7% 0/9/9 1800.9 29.1% 21.7% 0/9/9

Kgroup_A
Small 1803.0 33.1% 82.2% 0/11/11 1801.3 32.0% 80.6% 0/11/11
Large 238.0 18.9% 19.1% 8/11/11 300.8 19.0% 19.1% 8/11/11

Kgroup_B
Small 1800.6 80.8% 240.5% 0/12/12 1801.4 79.7% 191.9% 0/12/12
Large 1800.4 85.1% 80.5% 0/12/12 1800.7 85.9% 77.3% 0/12/12

random_A
Small 20.2 16.5% 54.3% 9/12/12 16.1 17.1% 54.9% 9/12/12
Large 0.3 25.5% 19.5% 12/12/12 0.2 10.4% 17.9% 12/12/12

random_B
Small 1574.2 38.8% 64.9% 1/12/12 1501.2 40.0% 67.5% 1/12/12
Large 220.5 19.9% 10.3% 9/12/12 175.7 18.8% 10.0% 11/12/12

all
Small 675.0 35.2% 86.2% 10/56/56 637.6 35.5% 83.6% 10/56/56
Large 163.0 30.2% 23.6% 29/56/56 160.9 24.9% 22.8% 31/56/56

Benchmark Radius RF
time σ(%) vr(%) S/A/T

city
Small 1804.4 16.2% 54.1% 0/9/9
Large 1801.5 25.8% 21.3% 0/9/9

Kgroup_A
Small 1622.6 21.5% 77.5% 1/11/11
Large 158.9 19.2% 19.3% 8/11/11

Kgroup_B
Small 1800.9 59.1% 154.2% 0/12/12
Large 1800.6 75.5% 63.3% 0/12/12

random_A
Small 15.9 8.1% 54.3% 9/12/12
Large 0.3 26.6% 19.8% 12/12/12

random_B
Small 1304.3 38.5% 63.8% 1/12/12
Large 190.2 19.8% 11.2% 9/12/12

all
Small 604.9 23.7% 75.4% 11/56/56
Large 146.6 29.2% 22.8% 29/56/56

Table 9.3 Results for continuous models
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Figure 9.7 Scatter plots of the relative dual gaps and the relative primal bounds between
different settings

In addition to the previous performance statistics, we also record for each instance, a new
relative primal bound for the continuous model defined as:

v′
r := v

vd
,

where vd is the best solution found by SFD. If v′
r < 1, then the continuous model (in this case,

RF) finds a solution better than the one found by the discrete model.

Benchmark Radius RF SFD
time σ(%) vr(%) v′

r(%) S/A/T time σ(%) vr(%) v′
r(%) S/A/T

city
Small 1804.4 16.2% 54.1% 89.3% 0/9/9 0.2 0.3% 60.6% 100.0% 9/9/9
Large 1801.5 25.8% 21.3% 92.0% 0/9/9 3.4 1.1% 23.2% 100.0% 9/9/9

Kgroup_A
Small 1622.6 21.5% 77.5% 91.1% 1/11/11 0.5 2.7% 85.1% 100.0% 11/11/11
Large 158.9 19.2% 19.3% 85.5% 8/11/11 0.4 6.7% 22.6% 100.0% 11/11/11

Kgroup_B
Small 1800.9 59.1% 154.2% 185.0% 0/12/12 66.1 0.8% 83.3% 100.0% 10/12/12
Large 1800.6 75.5% 63.3% 312.1% 0/12/12 136.5 1.1% 20.2% 100.0% 12/12/12

random_A
Small 15.9 8.1% 54.3% 86.0% 9/12/12 0.0 1.2% 63.2% 100.0% 12/12/12
Large 0.3 26.6% 19.8% 93.6% 12/12/12 0.0 2.4% 21.1% 100.0% 12/12/12

random_B
Small 1304.3 38.5% 63.8% 91.8% 1/12/12 1.0 2.1% 69.5% 100.0% 12/12/12
Large 190.2 19.8% 11.2% 103.3% 9/12/12 1.7 8.7% 10.9% 100.0% 12/12/12

all
Small 604.9 23.7% 75.4% 104.6% 11/56/56 2.2 1.3% 72.1% 100.0% 54/56/56
Large 146.6 29.2% 22.8% 121.3% 29/56/56 3.9 3.2% 18.7% 100.0% 56/56/56

Table 9.4 Results for continuous and discrete models

Table 9.4 depicts some comparative results. A first observation is that SFD has fewer
variables and constraints than RF, as it models a simpler problem. In addition, our strengthening
techniques explain that SFD can solve almost all instances in a very short time. Moreover,
even the average relative primal bound of SFD is smaller than RF. However, we note that, with
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Figure 9.8 Scatter plots of the relative dual gaps and the relative primal bounds between SFD
and RF

the exception of Kgroup_B and random_B of large radius, RF finds solutions with fewer facilities.
For Kgroup_B, RF has a larger average dual gap than SFD.

In Fig. 9.8, we also show scatter plots of the relative dual gaps (σ) and the relative primal
bounds (vr) for those instances affected by both SFD and RF. These plots complement the
averaged results of Table 9.4 by giving information on all affected instances, and support the
above analysis.

By allowing location at edges, the continuous model can reduce the number of installed
facilities. However, it becomes more challenging to solve the problem. The results suggest
that calling SFD and passing its solution as a warm-start to RF can make sense as a two-step
optimization approach.

9.8 Conclusions

In this work, we use an integer programming approach to solve CSCP, propose various MILP
formulations for this problem and test these formulations against an existing MILP formulation
on several benchmarks from the literature.

The existing works mainly consider discretization methods and FDS. Discretization methods
are indeed preprocessing procedures that restrict CSCP to an equivalent set-covering problem
with continuous demands and candidate facilities in FDS. But FDS is only computable when
CSCP satisfies some assumption, so it is not practical to employ FDS for general CSCP. On
the other hand, to delimit the search space of MILP models, we use alternative preprocessing
procedures. We explore the delimitation that relaxes the concept of FDS, which also restricts
the candidate space of facilities (from the full network to a still continuous sub-network). We
learn the following ideas to tackle similar problems (possibly with more complex constraints):
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i). Integer programming methods are more viable and flexible for general graphs, as a partial
delimitation of the problems is useful for strengthening the models (via separation of valid
inequalities, tightening big-M constants, variable fixing), while the discretization methods
require a full delimitation and a complete characterization of FDS. ii). Our delimitation is
applicable as long as the facility location is continuous.

Specifically, we devise and implement four models for CSCP: F0, F and SF, which belong
to the same family of models, and RF, which is the reduced one. These models mainly differ in
preprocessing procedures applied. We find that MILP solvers cannot read or build the MILP
model from [142] for any instances in our test bed, and this is due to the model having a large
number of constraints and variables. So we mainly compare our four models. We find the
MILP size is the main barrier to scalability. The delimitation of those parts of the network that
can be covered from a specific location has been revealed as a very effective technique to
reduce the model size. In addition, avoiding breaking long edges in the reduced model also
results in better scalability. In conclusion, RF is the best model: it can find good solutions with
a small dual gap.

Meanwhile, the model SF is easily cast into SFD for the discrete restriction of CSCP. We
find that allowing continuous facilities decreases the number of installed facilities but increases
the solving time significantly. We note that SFD finds an optimal solution for the discrete facility
SCP quickly, which is a primal solution for CSCP. Therefore, SFD can be called as a fast
MILP-based primal heuristic for CSCP.

As for future studies, devising efficient heuristics to be integrated into MILP solvers can
be useful to improve the primal performance of the proposed models. For instance, different
relaxations of CSCP can be worth exploring, such as that where demand only happens at
nodes (i.e. only nodes are to be covered). Every solution of CSCP would be a solution
of such relaxation, and hence the optimal value of the latter is a valid dual lower bound of
the optimal value of CSCP. If solving this combinatorial relaxation is efficient and provides
a stronger dual lower bound than the LP relaxation of CSCP, we can utilize this result and
integrate the combinatorial dual bound into the MILP solver, which leads to a combinatorial
branch-and-bound algorithm.

Moreover, we can investigate the potential use of FDS to further delimit the search space
and integrate FDS in the preprocessing procedure.





Chapter 10

Conclusions and perspective

This chapter summarizes the key findings of this thesis. Towards the conclusion of this chapter,
we delve into the perspectives of this thesis work, discussing its potential for uncovering novel
applications across diverse domains and its possible avenues for further development.

10.0.1 Conclusions

Within the scope of this thesis, we focus on the examination of relaxation techniques tailored
for challenging MINLP problems. Our approach revolves around a structural exploration of
effective relaxation strategies suitable for a variety of problem types. In the introductory section,
we introduce a comprehensive list of relaxation methods drawn from existing literature. These
encompass a range of approaches, such as relaxations stemming from extended formulations,
submodularity-based relaxations, PWL relaxations, and intersection cuts. Additionally, we
introduce advanced relaxation techniques that build upon intersection cuts and submodularity.
These relaxation tools are then employed to address various real-world applications.

Our computational findings demonstrate that enhancing relaxation methods can lead
to accelerated performance in exact MINLP solvers. These enhancements are primarily
effective for a specific subset of MINLP problems, given that our relaxations are tailored to
the structural characteristics of such problems. Furthermore, our relaxation methods are
highly adaptable, with the ability to be activated or deactivated through the structural detection
functions integrated into MINLP solvers. This adaptability facilitates the seamless integration
of relaxation methods within the sBB algorithmic framework. As a result, the research on
MINLP becomes more accessible, as even a modest enhancement in relaxation methods can
serve as a foundational component for future studies.

It is worth noting that the techniques we present primarily facilitate exact solutions for
MINLP problems, albeit at the expense of increased computation time. Consequently, our
relaxation methods find their ideal application in static scenarios where problems are solved
offline, with a primary focus on achieving high accuracy. In such settings, these relaxation
methods function as core algorithms within MINLP solvers, akin to the role of propagation in
constraint programming [5].

It is important to recognize that relaxation methods belong to a broader category of
approximation methods. While relaxation methods do not directly yield solutions, approximation
methods are geared towards delivering approximated solutions within a reasonable time. In
this context, approximation methods are considered front-end framework, as exact MINLP
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solvers, commonly called upon by users instead of relaxation methods. As a result, relaxation
methods can be viewed as the backends of many approximation techniques.

In recent times, the field of MINLP research has encountered several challenges arising
from factors such as the emergence of deep learning techniques, the prevalence of large-scale
problems, and the inherent dynamics and uncertainties present in mathematical models.
Additionally, a frequently overlooked challenge for MINLP research lies in the legacy aspects
of its ecosystem. In the subsequent sections, we outline two primary research directions
aimed at tackling these challenges.

10.1 Perspectives in algorithm design

The historical influence of MILP techniques might contribute to the existing legacy within the
MINLP ecosystem. However, the applicability of these techniques to MINLP problems is still
an active research area. In the subsequent sections, we conduct a comprehensive survey of
open problems and associated research perspectives. These problems expand the scope of
MINLP within the wider realm of mathematical optimization.

10.1.1 Extended formulations vs projected formulations

The prevalent choice among mathematical solvers is to embrace projected formulations of the
underlying relaxations, as opposed to extended formulations. This preference can be attributed
to several factors. Firstly, these relaxations, notably linear programming (LP) relaxations,
can be progressively enhanced by cutting planes, thus offering a straightforward means of
controlling relaxation size. Secondly, it is noteworthy, that while an extended formulation with a
polynomial-size may exist, it could correspond to an exponentially sized projected formulation.
Nonetheless, the practical utilization of extended formulations necessitates a predetermined
design to balance the trade-off involving model size and the strength of the model. An open
question or ongoing debate centers around the applicability of extended formulations.

The preference over projected formulations could potentially face constraints stemming
from computational resources. Given the prevailing capabilities of contemporary computers,
there arises an opportunity to reevaluate the applicability of extended formulations. Recent
progress in polynomial programming research has unveiled a range of attractive extended
formulations, such as the sparse Lasserre hierarchy and relative entropy relaxations [235].
These novel extended formulations introduce a degree of flexibility in representing polynomial
optimization.

An approach for integrating extended formulations into solvers involves the dynamic resolu-
tion of extended formulations at specific nodes within the branch-and-bound tree. Furthermore,
at a given search node, the extended formulations might be adaptively lifted, albeit at the cost
of computational resources. The determination of whether to enhance these formulations
is intrinsically linked to optimization theory. A comparable challenge is encountered in the
context of facial reduction for semi-definite programming, which can be seen as the endeavor
to identify a suitable basis for the sum-of-squares representation of a polynomial.
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10.1.2 Modeling power: the lack of convexity and nonlinear function
types

In the realm of MINLP, the central challenge is tackling non-convex optimization problems,
although the methods deployed often hinge upon convex optimization. Particularly within the
MINLP landscape, the foundational algorithmic framework rests upon the utilization of convex
relaxations.

Yet, the majority of optimization solvers remain firmly rooted in LP relaxations. Particularly,
the MINLP solver Mosek can address conic programming problems. Its reference book [18]
lists several essential cones, and the solver is capable of representing a significant portion
of convex sets through compositional operations. However, it is noteworthy that the study of
these fundamental cones and their optimization attributes largely predates the 2000s.

We aim to remain attuned to emerging application trends, uncovering novel function types
that have the potential for significant impact. Pursuing this research direction has the potential
to substantially expand the modeling power of solvers, enabling them to tackle a broader range
of optimization challenges.

This apparent lack of basic convexity types could be attributed to the inherent lack of
elementary functions - the sources of non-convexity - which include polynomial, rational,
trigonometric, hyperbolic, and exponential functions, possibly including their inverse counter-
parts. The limitations of the available convexity forms pose a problem for the modelling power
of MINLP solvers.

Most MINLP solvers can effectively handle factorizable functions and essentially work as
composite functions. An ongoing research attempt is to extend their capacities to handle the
demands of modern deep neural networks, which often involve a larger number of relatively
simple layers. Several MINLP based approaches [290, 286, 317] are proposed for improv-
ing neural networks. A novel approach [42, 80] addresses the challenges of progressively
modeling and optimizing for auto machine learning. This perspective aligns closely with a
contemporary principle in modern machine learning: the fusion of modeling and optimization.
Thus, this perspective can inspire the feature design of MINLP solvers.

Convex functions are fertile ground for ongoing research and offer numerous avenues for
exploration. While conventional nonlinear functions are usually defined over scalar variables,
a promising direction is to consider functions defined over cones, such as convex functions
defined over positive-definite matrices. An abundance of such functions can be discovered
in quantum information, since quantum states can be aptly represented by probability-dense
matrices—complex positive-definite matrices with unit trace. It is worth noting, however, that
despite the richness of this field, the current focus of research efforts is on efficient convex
optimization techniques rather than global optimization, primarily due to the scale of dense
matrices.

Our goal is to keep pace with emerging trends in applications and discover new types of
features that are likely to have a significant impact. Pursuing this line of research has the
potential to significantly expand the modelling power of solvers and enable them to handle a
broader range of optimization tasks.
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10.1.3 Approximations vs. relaxations

Throughout history, the problem domains studied in MILP and combinatorial optimization have
overlapped considerably, which has fostered a continuous exchange of ideas and knowledge.
One particularly common and widely used technique is that of relaxations. These relaxations
act as mediators within algorithms to achieve a feasible solution.

A variety of approximation algorithms in combinatorial optimization, for example, solve
relaxations to derive solutions that guarantee optimality. Many of these algorithms were
developed for theoretical studies, so they guarantee worst-case performance, but in practice
they may perform poorly. In contrast, in the MILP domain, relaxation methods are often
integrated into the branch-and-bound search framework, with the relaxation solutions serving
as the starting point for heuristics. Exact MILP solvers generally provide optimal solutions to
many practical problems within a reasonable time. It should be noted, however, that in the
field of combinatorial optimization there are approximation algorithms or heuristics based on
structural techniques that go beyond simple relaxation. This raises an intriguing question: Can
these alternative techniques be used in the context of MINLP? For example, although there
are many tailored convex optimization algorithms, convex relaxations in MINLP solvers are
mainly based on primal-dual interior point solvers. Integrating these tailored algorithms to
take over specific tasks in MINLP solving, such as preprocessing, could be considered as a
possible research direction.

10.2 Perspectives of solver framework

The inherent legacy of the MINLP ecosystem may also stem from earlier software systems
efforts. These systems, while valuable, often present challenges to new software developers
and emerging researchers. The complexity associated with these systems hinders adoption of
recent advances in software engineering and innovations in programming languages. The use
of the C language in mathematical optimization programs can lead experienced developers to
create code with memory leaks, resulting in lengthy debugging cycles. The evolution of C++
standards leads to frequent updates and the integration of new language features in each
version. However, due to the divergence between classical C and modern C++, mathematical
solvers cannot benefit from these features, e.g. for efficient memory management.

In today’s programming education, the focus is on functional programming languages
other than C. Consequently, the pool of new researchers who can develop tailored algorithms
for MINLP may be smaller than in other areas of mathematical optimization. A notable
recent development is the SCIP team’s decision to make it a fully open source protocol. This
transformation raises hopes that the broader community will contribute extensively to its further
development. One way to close the current gap is to gradually replace the C components of
SCIP with a modern programming language. Similarly, the Linux community has begun using
Rust to reimplement the Linux kernel, a strategy we can emulate.

Rust is an ahead-of-time compiled programming language that focuses on performance,
type safety, and concurrency. It enforces memory safety— without requiring the use of
a garbage collector or reference counting. It borrows ideas from functional programming,
including static types, immutability, higher-order functions, and algebraic data types. In
addition, Rust has a built-in package management system and testing infrastructure, making it
a suitable choice for an open source-driven development landscape. We envision an enriching
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exploration of the software framework jointly orchestrated by researchers, users, and the open
source community.
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[105] J.-F. CORDEAU, F. FURINI, AND I. LJUBIĆ, Benders decomposition for very large scale
partial set covering and maximal covering location problems, European Journal of
Operational Research, 275 (2019), pp. 882–896.

[106] J. A. CORDERO, Link-state routing optimization for compound autonomous systems in
the internet, PhD thesis, École Polytechnique, 2011.

[107] T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN, Introduction to
algorithms, MIT press, 2009.

[108] G. CORNUÉJOLS, F. MARGOT, AND G. NANNICINI, On the safety of gomory cut genera-
tors, Mathematical Programming Computation, 5 (2013), pp. 345–395.

[109] G. CORNUÉJOLS, L. WOLSEY, AND S. YILDIZ, Sufficiency of cut-generating functions,
Mathematical Programming, 152 (2015), pp. 643–651.

[110] A. COSTA AND L. LIBERTI, Relaxations of multilinear convex envelopes: dual is better
than primal, in International Symposium on Experimental Algorithms, Springer, 2012,
pp. 87–98.



References 195

[111] Y. CRAMA, Concave extensions for nonlinear 0–1 maximization problems, Mathematical
Programming, 61 (1993), pp. 53–60.

[112] Y. CRAMA AND P. L. HAMMER, Boolean functions: Theory, algorithms, and applications,
Cambridge University Press, 2011.

[113] C. D’AMBROSIO, J. LEE, AND A. WÄCHTER, An algorithmic framework for MINLP with
separable non-convexity, in Mixed Integer Nonlinear Programming, J. Lee and S. Leyffer,
eds., New York, NY, 2012, Springer New York, pp. 315–347.

[114] B. D. DEEBAK AND F. AL-TURJMAN, A hybrid secure routing and monitoring mechanism
in IoT-based wireless sensor networks, Ad Hoc Networks, 97 (2020), p. 102022.

[115] A. DEL PIA AND A. KHAJAVIRAD, A polyhedral study of binary polynomial programs,
Mathematics of Operations Research, 42 (2017), pp. 389–410.

[116] , The multilinear polytope for acyclic hypergraphs, SIAM Journal on Optimization,
28 (2018), pp. 1049–1076.

[117] A. DEL PIA, A. KHAJAVIRAD, AND N. V. SAHINIDIS, On the impact of running intersec-
tion inequalities for globally solving polynomial optimization problems, Mathematical
programming computation, 12 (2020), pp. 165–191.

[118] A. DEL PIA AND M. WALTER, Simple odd-cycle inequalities for binary polynomial
optimization, in International Conference on Integer Programming and Combinatorial
Optimization, Springer, 2022, pp. 181–194.

[119] A. DEL PIA AND R. WEISMANTEL, Relaxations of mixed integer sets from lattice-free
polyhedra, 4OR, 10 (2012), pp. 221–244.

[120] M. DELORME, M. IORI, AND S. MARTELLO, Bin packing and cutting stock problems:
Mathematical models and exact algorithms, European Journal of Operational Research,
255 (2016), pp. 1–20.

[121] Y. DENG, S. SHEN, AND B. DENTON, Chance-constrained surgery planning under
conditions of limited and ambiguous data, INFORMS Journal on Computing, 31 (2019),
pp. 559–575.

[122] , Chance-constrained surgery planning under conditions of limited and ambiguous
data, INFORMS Journal on Computing, 31 (2019), pp. 559–575.

[123] B. T. DENTON, A. J. MILLER, H. J. BALASUBRAMANIAN, AND T. R. HUSCHKA, Optimal
allocation of surgery blocks to operating rooms under uncertainty, Operations Research,
58 (2010), pp. 802–816.

[124] G. DESAULNIERS, J. DESROSIERS, AND M. M. SOLOMON, eds., Column generation,
Springer US, Boston, MA, 2005.

[125] S. S. DEY AND L. A. WOLSEY, Lifting integer variables in minimal inequalities corre-
sponding to lattice-free triangles, in Integer Programming and Combinatorial Optimiza-
tion, A. Lodi, A. Panconesi, and G. Rinaldi, eds., Berlin, Heidelberg, 2008, Springer
Berlin Heidelberg, pp. 463–475.

[126] Y. DINITZ, N. GARG, AND M. X. GOEMANS, On the single-source unsplittable flow
problem, Annual Symposium on Foundations of Computer Science - Proceedings, 19
(1998), pp. 290–299.

[127] M. DRESSLER AND R. MURRAY, Algebraic perspectives on signomial optimization, SIAM
Journal on Applied Algebra and Geometry, 6 (2022), pp. 650–684.

[128] T. DREZNER, Z. DREZNER, AND A. SCHÖBEL, The weber obnoxious facility location
model: A big arc small arc approach, Computers & Operations Research, 98 (2018),
pp. 240–250.

[129] Z. DREZNER, P. KALCZYNSKI, AND S. SALHI, The planar multiple obnoxious facilities
location problem: A voronoi based heuristic, Omega, 87 (2019), pp. 105–116.



196 References

[130] R. J. DUFFIN, Linearizing geometric programs, SIAM review, 12 (1970), pp. 211–227.

[131] I. DUNNING, J. HUCHETTE, AND M. LUBIN, Jump: A modeling language for mathematical
optimization, SIAM Review, 59 (2017), pp. 295–320.

[132] J. G. ECKER AND M. KUPFERSCHMID, An ellipsoid algorithm for nonlinear programming,
Mathematical programming, 27 (1983), pp. 83–106.

[133] J. EDMONDS, Submodular functions, matroids, and certain polyhedra, in Combinatorial
Optimization—Eureka, You Shrink!, Springer, 2003, pp. 11–26.

[134] EN:USER:CBURNETT, Hamming distance 3 bit binary, 2007. The image is licensed
under CC BY-SA 3.0.

[135] J. E. FALK AND K. R. HOFFMAN, A successive underestimation method for concave
minimization problems, Mathematics of Operations Research, 1 (1976), pp. 251–259.

[136] A. A. FARLEY, Note on bounding a class of linear programming problems, including
cutting stock problems, Operations Research, 38 (1990), pp. 922–923.
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Résumé: Cette thèse se concentre sur la programmation
non linéaire à variables mixtes (MINLP), une classe de
problèmes d’optimisation mathématique, et les algorithmes
associés pour les résoudre. L’algorithme central utilisé dans
de nombreux solveurs d’optimisation globale pour les prob-
lèmes MINLP est l’algorithme de séparation et évaluation.
La clé du succès de l’algorithme de séparation et évalua-
tion réside dans l’utilisation de relaxations des problèmes
d’optimisation, qui sont essentielles pour obtenir des bornes
duales efficaces. Cependant, la construction de relaxations
efficaces dépend des structures spécifiques des problèmes
d’optimisation. Dans la première partie de cette thèse,
nous présentons un aperçu complet des outils de relaxation
structurelle adaptés aux problèmes MINLP structurés liés
à différents domaines d’applications. Ces outils englobent
des relaxations à partir de formulations étendues, des re-
laxations par sous-modularité, des relaxations utilisant une
approximation linéaire par morceaux et des renforcements
de relaxation via des coupes d’intersection. Nous dévelop-
pons de nouveaux résultats théoriques avancés basés sur
ces outils. Dans la deuxième partie, nous utilisons ces

techniques de relaxation pour aborder divers problèmes
d’optimisation. Nous explorons les plans coupants pour la
programmation signoïdale. Nous proposons des coupes
d’intersection pour améliorer les relaxations linéaire des
problèmes d’optimisation sous-modulaire. Nous étudions
les relaxations de Dantzig-Wolfe pour un problème de pro-
grammation linéaire à variables mixtes dans le routage
de réseaux sans fil et un problème MINLP dans le bin-
packing sous-modulaire. Enfin, nous étudions la technique
de relaxation big-M appliquée aux fonctions linéaires par
morceaux dans le problème de couverture continue sur
un réseau. Les travaux réalisés durant cette thèse de
doctorat contribuent à l’avancement des approches de la
programmation non linéaire en nombre entiers et des méth-
odes d’optimisation connexes. En effet la combinaison
des études exhaustives réalisées sur diverses techniques
de relaxation et leurs applications à différents contextes
d’optimisation offrent des perspectives précieuses tant pour
la compréhension théorique des problèmes que pour la
mise en œuvre empirique des résultats.

Title: Relaxation methods for mixed-integer nonlinear programming

Keywords: MINLP; global optimization; relaxation

Abstract: This thesis focuses on mixed-integer nonlinear
programming (MINLP), a class of mathematical optimiza-
tion problems, and the associated algorithms to solve them.
The core algorithm utilized in many global optimization
solvers for MINLP problems is the branch-and-bound al-
gorithm. Key to the success of the branch-and-bound ap-
proach is the use of relaxations of optimization problems,
which are vital in obtaining efficient and tight dual bounds.
However, constructing effective relaxations depends on the
specific structures of optimization problems. In the first
part of this thesis, we present a comprehensive overview
of structural relaxation tools tailored for structured MINLP
problems across different disciplines. These tools encom-
pass relaxations from extended formulations, relaxations
via submodularity, relaxations using piece-wise linear ap-
proximation, and relaxation tightening via intersection cuts.
Then, we develop novel advanced theoretical results based

on these tools. In the second part, we employ these re-
laxation techniques to address various optimization prob-
lems. We explore cutting planes for signomial programming.
Then, we propose intersection cuts for enhancing linear
programming relaxations of submodular optimization prob-
lems. Next, we investigate the Dantzig-Wolfe relaxations
for a mixed-integer linear programming problem in wireless
network routing and a MINLP problem in submodular bin-
packing. Finally, we study the big-M relaxation technique
as applied to piece-wise linear functions in the continuous
covering problem on a network. By combining these com-
prehensive studies on various relaxation techniques and
their applications in different optimization contexts, this the-
sis contributes to the advancement of MINLP and related
optimization methods, offering valuable insights for both
theoretical understanding and computational implementa-
tion.
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