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Abstract

Pushing the boundaries of sciences and providing more advanced services to individ-

uals and communities continuously demand more sophisticated software, specialized

hardware, and a growing need for computing power and storage. At the beginning

of the 2020s, we are entering a heterogeneous and distributed computing era where

resources will be limited and constrained. Grid communities need to adapt their

approach: (i) applications need to support various architectures; (ii) workload man-

agement systems have to manage various computing paradigms and guarantee the

proper execution of the applications, regardless of the constraints of the underly-

ing systems. This thesis focuses on the latter point through the case of the LHCb

experiment.

The LHCb collaboration currently relies on an infrastructure involving 170 com-

puting centers across the world, the World LHC Computing Grid, to process a growing

amount of Monte Carlo simulations, reproducing the experimental conditions of the

experiment. Despite its huge size, it will be unable to handle simulations coming

from the next LHC runs in a decent time. In the meantime, national science programs

are consolidating computing resources and encourage using supercomputers, which

provide tremendous computing power but pose higher integration challenges.

In this thesis, we propose different approaches to supply distributed and shared

computing resources with LHCb tasks. We developed methods to increase the number

of computing resource allocations and their duration. It resulted in an improvement

of the LHCb job throughput on a grid infrastructure (+40.86%). We also designed a

series of software solutions to address issues in highly-constrained environments that

can be found in supercomputers, such as lack of external connectivity and software

dependencies. We have applied those concepts to leverage computing power from

four partitions of supercomputers ranked in the Top500.

Keywords: High-Throughput Computing, High-Performance Computing, Grid

Computing, Monte-Carlo simulation, Supercomputers.
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Résumé

Repousser les limites de la science et fournir des services spécifiques et performant aux

particuliers et aux communautés requièrent des logiciels toujours plus sophistiqués,

du matériel spécialisé et un besoin croissant en stockage et puissance de calcul.

En ce début de décennie, nous entrons dans une phase informatique distribuée

et hétérogène, où les ressources seront limitées et contraintes. Les communautés

employant les grilles de calculs doivent adapter leur approche : (i) les applications

doivent supporter diverses architectures ; (ii) les systèmes de gestion de charge de

travail doivent gérer plusieurs modèles de traitement informatique et garantir la

bonne exécution des applications, en dépit de contraintes liées aux systèmes sous-

jacents. Cette thèse se concentre sur le dernier point évoqué au travers du cas de

l’expérience LHCb.

La collaboration LHCb s’appuie sur la World LHC Computing Grid, une infrastruc-

ture impliquant 170 centres de calcul répartis dans le monde, pour traiter un nombre

croissant de simulations de Monte Carlo afin de reproduire les conditions expérimen-

tales du projet. Malgré son envergure, l’infrastructure ne sera pas en mesure de couvrir

les besoins en simulation des prochaines périodes d’exploitation du LHC en un temps

raisonnable. En parallèle, les programmes scientifiques nationaux encouragent les

communautés à s’approprier leurs supercalculateurs, des ordinateurs centralisant

une puissance de calcul significative mais impliquant des défis d’intégration de taille.

Au cours de cette thèse, nous proposons différentes approches pour approvision-

ner des ressources de calcul hétérogènes et distribuées en tâches LHCb. Nous avons

développé des méthodes pour augmenter le débit d’exécution des programmes LHCb

sur des grilles de calcul (+40.86%). Nous avons également conçu une série de solu-

tions logicielles pour répondre aux limitations et contraintes que l’on peut retrouver

dans des super calculateurs, comme le manque de connexion au réseau externe ou

les dépendances des programmes par exemple. Nous avons appliqué ces solutions

pour tirer profit de la puissance de calcul provenant de quatre partitions de super

calculateurs classés au Top500.

Mots clefs : Calcul Haut Débit, Calcul Haute Performance, Grille de calcul, Simula-

tion de Monte Carlo, Supercalculateurs.
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Introduction

Managing tasks on distributed and heterogeneous com-

puting resources

Pushing the boundaries of sciences and providing more advanced services to indi-

viduals and communities continuously demand more sophisticated software and

hardware, and a growing need for computing power and storage. Building complex

software, operating and maintaining large-scale hardware infrastructure is expen-

sive and require technical expertise not accessible to all (Gray, 2003). Therefore, to

collect, filter, process and present an unprecedented amount of data, scientists and

commercials generally rely on remote computing resources.

Workloads can involve tasks of different natures: CPU or IO-intensive, tightly

or loosely coupled; leveraging a large number of specific hardware - such as GPUs,

many-core nodes and high-speed networks - for a short period or commodity CPUs

for months. Additionally, tasks can require specific software dependencies and data,

or at least a way to access them.

According to their budget and needs, scientists and commercials can also expect a

certain level of Quality of Service (QoS). In the same way, they may expect reproducible,

trustable and secure computing environments. They generally provide incentives -

money, recognition, crypto assets - or hardware and expertise, if any, in exchange for

computing power.

Conversely, many institutes, laboratories and companies own underused and

expensive computing power and storage. For recognition, financial and ecological

reasons, they want to make the best use of their idle resources by sharing them with

internal and external communities. To protect and keep control over their system,

they usually impose constraints at various levels. They generally limit the use of hard-

ware - in time and number of components - per individual, community or project. For

security reasons, they might prevent outbound connectivity and the installation of
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software. Administrators of the resources may provide QoS guarantees and mecha-

nisms to secure the workloads. Infrastructures can rely on open standards facilitating

interoperability between different systems or proprietary black-boxes.

Between computing resources suppliers and consumers, we find workload man-

agement systems relying on middleware. Middleware is defined as "a layer of soft-

ware above the operating system but below the application program that provides

a common programming abstraction across a distributed system" (Bakken, 2001).

Middleware help manage the heterogeneity and complexity of a distributed system,

namely "a collection of autonomous computing elements interacting through a shared

network" (Astley et al., 2001).

A Workload Management System (WMS), sometimes referred to as a workflow

management system, provides a service responsible for the distribution and man-

agement of tasks across distributed computing resources (Andreetto et al., 2008).

The ultimate aim of a WMS is to match the most adapted computing and storage

resources with a certain task, given a list of constraints imposed by both actors. To

satisfy suppliers and consumers, WMS should:

• Support relevant distributed and heterogeneous computing and storage re-

sources for one or more communities.

• Get as many allocations as needed, as fast as possible if necessary. An allocation

corresponds to a set of computing resources blocked for a given duration for a

task.

• Use these allocations efficiently. Tasks should be adapted to the underlying

resources and respect the allocation conditions (duration, number of cores).

For instance, loosely-coupled tasks would not be adapted in a supercomputer

with high-network connectivity, unless nodes remain idle.

WMS might ensure that no actor intends to cheat the systems, and that software re-

producibility and privacy are guaranteed. WMS might also monitor workloads across

distributed and heterogeneous computing resources, and intervene when an incident

occurs. WMS are often coupled with a Data Management System (DMS) to process

data-driven tasks, and feature resources discovery, matchmaking and accounting pro-

cesses. The combination of these components eases the interactions between actors

by delivering a simple interface hiding the complexity of the workload management.
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Under the hood, they deal with (i) the workloads, their software dependencies, input

and output data; (ii) diverse infrastructures and computing models involving different

paradigms, heterogeneous protocols and hardware components.

A growing need for computing power in High Energy Physics

The Standard Model of particle physics - a theory describing the fundamental par-

ticles and their interactions - has successfully explained various phenomena and

experimental results, but remains incomplete and leaves many questions open (“LHC

Season 2 facts & figures”, 2018). To validate and develop the Standard Model of particle

physics, the European Organization for Nuclear Research (CERN) leverages a chain

of particle accelerators that speed up a beam of particles before ending in the Large

Hadron Collider (LHC). Inside the LHC, two particle beams, traveling at close to the

speed of light in opposite directions, collide and provide data about constituents of

matter, which are captured by four detectors corresponding to distinct experiments:

ALICE, ATLAS, CMS and LHCb. Experiments capture millions of events every sec-

ond that have to be filtered, processed and stored. In parallel, to better understand

the impact of detector effects and experimental conditions, experiments also model

events occurring in the detectors by executing Monte-Carlo simulation applications:

they both reproduce the generation of events and the configuration of the detectors

(Clemencic et al., 2011).

CERN does not have the financial resources to process on-site the totality of the

events - simulated and real - and currently relies on the Worldwide LHC Computing

Grid (“Worldwide LHC Computing Grid”, 2022) to deliver nearly real-time data to

physicists. This infrastructure currently involves 170 autonomous computing centers

spread within 42 countries, 1 million computing cores and 1 Exabyte of storage. More

than 50 Petabytes of data are distributed and analyzed every year.

This sole approach was reliable during LHC Run1, but LHC has produced a grow-

ing amount of data since then. According to the analysis of Stagni et al. on the CPU

cycles used in 2016, all the LHC experiments consume more CPU hours than those

officially pledged to them by WLCG (Stagni et al., 2017). Moreover, in the coming

LHC Run3 and then the High-Luminosity Large Hadron Collider (HL-LHC) (Apollinari

et al., 2015) era, experiments are expected to produce up to an order of magnitude
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more data compared to the current phase (LHC Run2). In the meantime, computing

infrastructure and funding models are changing, and national science programs are

consolidating computing resources and encourage using cloud systems as well as

supercomputers (Barreiro et al., 2019).

Dealing with LHCb workloads

In this thesis, we focus on the workload management of the offline activities of the

LHCb experiment. We study the efforts that have to be made to exploit additional

computing power in order to handle the upcoming LHCb workload from the LHC

Run3 and further, from the HL-LHC infrastructure. The purpose is to provide dif-

ferent approaches to increase the throughput of the jobs on available computing

resources, namely the number of jobs we can execute on distributed computing re-

sources in parallel. This involve a better use of the already supported computing

resources, and novel mechanisms to integrate the LHCb workload on non-adapted

and heterogeneous computing resources.

We work on the workload management system of LHCbDIRAC (Stagni and Charp-

entier, 2012), the middleware designed by the LHCb experiment to originally inter-

act with WLCG distributed and shared resources with tasks and data. LHCbDIRAC

is an extension of the general-purpose DIRAC Interware project (“DIRAC”, 2022;

Tsaregorodtsev, 2014) developed since 2003. The middleware combines both a Work-

load Management System (WMS), to handle and orchestrate job requests among

distributed and heterogeneous resources, and a DMS, which includes automated data

replication with integrity checking, needed to deal with large volumes of data. DIRAC

has been adopted in various contexts such as the Belle II experiment (Miyake et al.,

2015), the Cherenkov Telescope Array (CTA) (Arrabito et al., 2012) and the European

Grid Infrastructure (“DIRAC EGI”, 2022).

Outline

The thesis is structured into four main chapters. Chapter 1 introduces the current

heterogeneous computing landscape. It defines the content and features of tasks

and jobs, and compares different computing paradigms. It also presents the current
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hardware components and classes available, and how they can be combined to handle

tasks. More particularly, it emphasizes the heterogeneity of the resources at various

levels. To finish, it describes the LHCb workloads and available resources, and how

the evolution of the computing landscape has influenced the development of the

experiment.

Chapter 2 proposes a review of the current literature regarding the integration of

embarrassingly parallel tasks with limited inputs on various distributed infrastructures.

Embarrassingly parallel tasks refer to problems requiring no effort to be separated into

a number of parallel tasks. This mainly implies software and middleware solutions

to efficiently harness computing power under constraints. It highlights methods to

(i) provision computing resources with jobs, (ii) provide a reproducible environment

including the dependencies of the jobs and (iii) efficiently harness the allocated

resources.

Having surveyed the constraints, the solutions developed around distributed and

heterogeneous computing resources and their limitations, we emphasize various

levers at our disposal to use additional computing power in the LHCb experiment

context (Chapters 3 and 4). Chapter 3 focuses on improvements related to already sup-

ported computing resources, which mainly come from WLCG. This involves changes

in the DIRAC Pilot-Job provisioning tool, the Site Director, and the DIRAC fast CPU

benchmarking solution called DIRAC Benchmark.

Chapter 4 gathers known constraints and solutions we developed to integrate

LHCb workloads on supercomputers. This also includes a general model gathering

commonalities of all the efforts done by LHC experiments on supercomputers and

different practical use cases allowing us to test our approaches.

We will now start by surveying the current computing landscape and how it

impacts the development of the LHCb experiment.
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Chapter 1 Computing landscape at the beginning of the 2020s

1.1 Introduction

Artificial Intelligence (AI) is fueling a revolution in how businesses and researchers

think about problems and their computational solutions (Reed et al., 2022). This

new class of problems spreads fast and increasingly needs computing power and

performance. Therefore, there is growing user demand for cutting-edge and expensive

hardware components and infrastructures.

Large companies leading the hardware market, followed by hardware startups

are surfing on the trend and shaping the computing landscape of a new decade.

Primarily by means of cloud services, they provide an access to shared and distributed

computing resources. They have a direct influence on manufacturers designing

components, which are becoming more and more specialized. In the meantime,

there are still many workloads running on commodity CPUs, such as Monte-Carlo

simulations in High Energy Physics (HEP). On the one hand, developers need to

reshape their workloads accordingly. On the other hand, not all applications can be

ported to specialized architectures.

After decades of homogeneity through the use of x86 CPUs in WLCG grid sites, the

LHCb experiment has to evolve in this new heterogeneous environment to handle a

growing amount of data. This implies software and distributed computing challenges.

In this chapter, we first present the form that a problem can take (Section 1.2).

Then, we propose a survey of the current hardware components and classes, and

how they work together in a wide area network to provide computing power to many

different communities (Section 1.3). Finally, we describe the LHCb workloads and the

computing resources available (Section 1.4).

1.2 About Jobs

1.2.1 Task, Workload, Workflow and Job

Many terms related to jobs are used differently according to their context. To progress

through this thesis, we need to draw on common definitions of terms associated to

the jobs. In Section 1.2.1, we provide a brief summary of our conception of a task, a

workload, a workflow and a job.
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Task

The term "Task" is usually defined as a unit of work. Turilli et al. define a computa-

tional task - mentioned as a task in this thesis - as "a set of operations to be performed

on a computing platform, alongside a description of the properties and dependencies

of those operations and indications on how they should be executed and satisfied.

Implementations of a task may include wrappers, scripts, or applications" (Turilli

et al., 2018). Despite a clear definition, "Task" remains an ambiguous word, even in

the field of computer science. Indeed, a running task can be represented as a process

or a thread. In our context, we decided to refer to a running task as a process, and

threads as operations within a task. A task can have (i) its own business or science

value or (ii) contribute to a common effort as part of a larger scheme. Its dependencies

include data, software and hardware.

The Quality of Service (QoS) of a task refers to its quantitative and qualitative

features, necessary to achieve a set of initial requirements. Cardoso et al. propose

a QoS model for web service that fits with our task definition (Cardoso et al., 2004).

The authors present four main dimensions: time, cost, reliability and fidelity. Time

- needed to transform inputs into outputs - is a basic and universal measure of per-

formance. Cost refers to any financial, human and supply involvement during the

task management and processing. Reliability is a function of the failure rate: a task

has one initial state and two distinct terminating states which are "done" and "failed".

A "done" task does not provide information about how good a produced result is.

Fidelity is a measure of the quality of the task output. Cardoso et al. provide two

additional dimensions to their model for tasks with stronger requirements: maintain-

ability and security. Maintainability represents the mean time necessary to repair a

task failure, namely to maintain it in a condition where it can perform its intended

function. Security refers to mechanisms - such as authentication, access control,

labels, audits, system integrity - and development techniques - formal specifications,

formal proofs, tests - to ensure the confidentiality of the execution.

Workload

We define "Workload" as a set of tasks. In this paradigm, the collective outcome of the

tasks is relevant. We distinguish two main types of workloads: the Bag-of-Tasks (BoT)

and the workflow. A BoT is a set of independent, indistinguishable and embarrassingly
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parallel tasks. BoT are generally used to perform massive searches, fractal calculations,

or simulations (Cirne et al., 2003). On the contrary, a workflow, defined hereafter,

represents "a workload with arbitrarily complex relationships among the tasks" (Turilli

et al., 2018).

Workflow

Yu and Buyya propose a comprehensive overview of various workflow design features

(Yu and Buyya, 2005). The structure defines the temporal relationships between tasks.

Direct Acyclic Graph (DAG) workflows can integrate sequences - ordered series of tasks

-, parallelism - tasks running concurrently -, and choice. In addition to the previous

patterns, non-DAG workflows can include iterations, where one or more tasks are

repeated until a certain condition is true. The model includes, or not, information

about dependencies. Abstract models do not specify low-level information about

resources and data movements and are, therefore, much more portable than concrete

models. In contrast, concrete models might be more efficient to control workflow

execution. There exist different means to assemble tasks and compose a workflow.

User-directed composition systems allow users to edit workflows directly, under the

form of a language (e.g. XML), or a graph (e.g. UML). Automatic composition systems

- as precised in the term - automatically generate workflows for users. Workflows have

similar QoS constraints to tasks. Users may define QoS constraints at the task level,

and/or at the workflow level. In the latter case, the underlying system decides how

fast each task has to be processed.

Job

Turilli et al. define the term "Job" as a type of container used to acquire - mostly com-

puting - resources on a computing system (Turilli et al., 2018). They can be considered

as metadata wrappers - containing dependencies requirements, QoS constraints ex-

plicitly defined - around one or more executables. A job can include a single task,

a whole workflow or part of a workflow depending on user needs and system spec-

ifications. A job is a component used to communicate the wrapped task/workflow

capabilities to a computing system, which aggregates information and orchestrates

resources accordingly. Generally, the more a job is flexible, providing accurate in-

formation, the sooner it will acquire resources. Feitelson et al. characterize jobs
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running in a multi-processor system according to their flexibility, level of preemption,

knowledge available and memory allocation (Feitelson et al., 1997).

1.2.2 High-Throughput, High-Performance and Many-Task Comput-

ing

Scientific and business applications dealing with workloads have mainly relied on

two distinct computing paradigms, which have largely influenced the architectures

and models of most of the current computing infrastructures: High-Throughput

Computing (HTC) and High-Performance Computing (HPC).

High-Performance Computing

A typical HPC workload "will operate on a single, large volume of data, in the form

of initial data files or checkpoint files which are provided by the user or written by a

previous task in the workload" (Huerta et al., 2019). An HPC workload is generally

composed of tightly coupled parallel tasks wrapped within a single job, and uses a

message passing interface (MPI), an Open multi-processing (Open MP) interface or a

mix of both, to achieve inter-process communication. It is executed within a particular

machine with low-latency interconnects (Foster et al., 2008): since IO is typically a

synchronization point between processes, insufficient IO bandwidth becomes a signif-

icant bottleneck. Therefore, tasks of an HPC workload are not executed across widely

distributed computing resources. Floating-point operations per second (FLOPS) have

been the yardstick used by most HPC efforts to rank their systems (Livny et al., 1997).

Twice a year since 1986, Top500.org releases a list of the 500 best general-purpose

computing systems of the world based on their HPC abilities (“Top500 The List”,

2022). Performances of the machines are benchmarked with Linpack (Dongarra et al.,

2003; Dongarra et al., 1979), which reflects the performance of a dedicated system for

solving a dense system of linear equations.

High-Throughput Computing

Nevertheless, for many experiments, scientific progress and quality of research are

tightly bound to computing throughput as Livny et al. emphasize (Livny et al., 1997).

According to them, most scientists are concerned with how many floating-point
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operations per week or month they can extract from their computing environment.

A typical HTC workload consists of running many loosely coupled and independent

tasks - BoT - requiring a large amount of computing power during a long period (Rho

et al., 2012). In such a context, maximizing the number of resources - composed of

commodity CPUs and memory - accessible to the users is preferred over providing

high-efficiency computing resources.

Many-Task Computing

Many-Task Computing (MTC) aims to bridge the gap between HPC and HTC (Raicu,

2009; Raicu et al., 2008). MTC is a broad class of workloads that can include small or

large, uniprocessor or multiprocessor, compute-intensive or data-intensive, static or

dynamic, loosely coupled or largely coupled tasks. An MTC workload tends to involve

an extremely large amount of computing power, data and tasks over short periods,

where primary metrics are measured in seconds (e.g. FLOPS, tasks/sec) as opposed to

tasks per month in HTC. Communication within an MTC workload is generally not

naturally expressed using standard MPI commonly found in HPC, drawing attention

to the many computations that are heterogeneous but not "happily" parallel (Raicu

et al., 2008). In Section 1.3, we present the influence of these computing paradigms

on the computing resources and their components.

1.3 A variety of Computing Resources

1.3.1 Hardware components

Completing a task involves the interactions of many different components, aggregated

into a computing resource, from hardware to software. Challenges arise when it comes

to exporting tasks from a given computing resource to another one: combinations of

heterogeneous components are infinite and outcomes tend to be hardly repeatable.

In Section 1.3.1, we provide a brief summary of the main hardware components that

can be found in computing resources and their evolution through time. This will be

followed by a taxonomy of the existing computing classes gathering these hardware

components (Section 1.3.2) and how they can interact with each other to solve large

scientific and industrial problems (Section 1.3.3).
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Central Processing Unit

The central processing unit (CPU), also named "processor", is the core of a computing

resource. A CPU takes the form of an electronic circuitry executing instructions

received from hardware and software running on the computing resource. A CPU

can be composed of a certain number of cores, each of them containing three main

units: the Control Unit (CU), the Arithmetic Logic Unit (ALU) and the Registers. The

CU decodes the instruction and controls the operations performed with the two

remaining units. The CU contains a clock to control the rate at which instructions

are performed. The ALU performs arithmetic operations such as incrementation and

subtraction, intermediate results related to the current operations are stored in the

Registers, which are small capacity memory cells. CPU performances are affected by

three main factors (Tremblay et al., 1998): (i) how fast you can crank up the clock; (ii)

how much work you can do per cycle; (iii) how many instructions you need to perform

a task.

Two main instruction set architectures (ISA) have significantly influenced the

design of the CPUs since the 1970s: Complex Instruction Set Computer (CISC) and

Reduced Instructions Set Computer (RISC). The CISC approach consists in minimizing

the number of instructions per task, providing hardware flexibility. CISC processors

tend to propose a large number of complex instructions able to load, evaluate and

store data. This comes at a cost: instruction sets may include instructions of different

sizes and clock cycles. RISC, implemented by John Cocke (Cocke and Markstein, 1990)

and coined by Patterson (Patterson and Ditzel, 1980), involves a limited number of

simple instructions of the same size that can be executed within one clock cycle. RISC

CPUs perform much more operations than CISC CPUs to execute a given task but in

less number of cycles. Blem et al., from the University of Wisconsin, revisited the RISC

vs CISC debate (Blem et al., 2013). Their study suggests that whether the ISA is RISC or

CISC is irrelevant, evolution has been continuous, focused on enabling specialization

and agnosticism of RISC or CISC.

There exist various CPU families based on RISC and CISC. CISC ISA, mainly

through Intel x86 but also AMD CPUs, has largely dominated the desktop and high-

performance server market. ARM-based CPUs - RISC ISA - have led the tablet and

smartphone market, and are also entering the high-performance server market (“Top500

The List”, 2022). These companies propose various models adapted to different types
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of tasks and budgets, based on clock speed and transistor size.

In recent years, because of various fundamental limitations in the fabrication

of integrated circuits - such as power, heat restrictions and transistor size - multi-

core processors have become the norm: "Rather than solely looking to increase the

performance of a single processing core, why not put more than one in a personal

computer? In this way, personal computers could continue to improve in performance

without the need for continuing increases in processor clock speed" (Sanders and

Kandrot, 2010). This process started with the introduction of Hyper-Threading by

Intel (Marr et al., 2002) followed by the introduction of logical cores. A single physical

core often appear as two logical cores, also named hardware threads. Modern and

high-performance CPUs such as AMD Optimized 3r d generation EPYC now contain

64 physical cores seen as 128 logical cores by many operating systems. Each core has

also dedicated vector units supporting Single Instruction Multiple Data (SIMD) used

for vector data processing, another axis of parallel software (Flynn, 1966). This encour-

aged the development of multi-threaded software running on the same computing

resource. Yet, even though Hyper-Threading and embedded vector processing enable

CPUs to maximize the use of the cores, most software do not support all these aspects

(Gramoli, 2017).

Co-Processors and Accelerators

Even as the number of cores in CPUs continues to increase, many difficulties remain

in performing specific types of operations: floating-point arithmetic, graphics and

cryptography, for instance. A co-processor aims to supplement the functions of the

primary processor, namely the CPU. By offloading processor-intensive tasks from

the CPU, co-processors can improve the whole system performances. Over time,

economics and potential performances have motivated the migration of co-processor

abilities inside the CPU. In 1989 for instance, Intel integrated the former 80387 co-

processor, dedicated to floating-point operations, within their 80486 processors to

eliminate the external communication delays (“80486 - Intel”, 2022). Accelerators

have resisted that trend. Contrary to co-processors, which are highly connected to

the internal of the main processor, accelerators are typically seen as independent I/O

devices, programmed through an interface.

The Graphics Processing Unit (GPU) is a programmable accelerator composed of
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thousands of specific processing cores running simultaneously, facilitating real-time

execution and massive vector data processing. According to Fan et al., the computa-

tional power of commodity GPUs has exceeded that of PC-based CPUs, and - driven by

the game industry - GPU performance has approximately doubled every six months

since the mid-1990s (Fan et al., 2004). Even if they do not exactly fit all scientific

applications because of their vector design, GPUs have become more general purpose

and are, since more than a decade, an integral part of mainstream computing systems.

GPUs are particularly efficient with applications with the following characteristics

(Owens et al., 2008): computational requirements are large, SIMD parallelism is sub-

stantial, and throughput is more important than latency. Frontier, the first exascale

supercomputer, is composed of AMD Instinct MI250X GPU accelerators, each of them

providing up to 47.9 TFLOPs in double precision.

This performance advantage comes at a price. The programming model differs

fundamentally from that of CPUs. As a consequence, existing programs cannot run

directly on GPUs. This issue constitutes one of the reasons Intel introduced the Xeon

Phi accelerator in 2013: a many integrated core architecture (MIC) based on x86

technology, generally composed of 61 cores, namely 244 hardware threads. Xeon Phi

received a lot of attention since one could cross-compile x86 applications for this

architecture, making scientific applications easier to port on such an accelerator. In

2013, it was part of Tianhe-2A, the largest supercomputer in the world at that time

(Xeon Phi 31S1P). In 2016, it was embedded in 6% of the supercomputers of the

Top500. It is worth mentioning that, during these years, the Laboratory of Informatics,

Modeling and Optimization of the Systems (LIMOS), located in Clermont-Ferrand

in France, developed several research activities around Xeon Phi accelerators and

HEP. They designed a method for porting HEP software to Xeon Phi (Schweitzer et al.,

2014) and studied its performances and reproducibility potential regarding stochastic

simulations (Dao et al., 2014; Schweitzer et al., 2015). In June 2022, Xeon Phi is still

embedded in 1% of the supercomputers of the Top500, although it was abandoned by

Intel in 2018.

As computing needs have become more specialized, manufacturers started to

design application-specific integrated circuits (ASIC). Because they considered GPU

as too general-purpose to run specific AI workloads efficiently, Google engineers

developed their custom ASIC chip: the Tensor Processing Unit (TPU) (Jouppi et al.,

2017). In response, chip manufacturers and major IT companies have entered the
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competition. Among them, we can mention Intel, which has developed the Nervana

Neural Network Processor-T (NNP-T) with the ambition of offering direct integration

with popular deep learning frameworks (Hickmann et al., 2020), unlike the Google

TPU designed for their machine learning library. It is also worth citing Cerebras

System, an AI-accelerator company, which introduced the largest processor in the

industry, coming with 2.6 trillion transistors: CS-2. Contrary to GPUs and other ASICs,

CS-2 can host large AI models, removing the need for mastering model parallelism

and tensor parallelism. Reuther et al. analyzed different AI ASICs and defined CS-2

as one of the most powerful AI chips in 2021 (Reuther et al., 2021). Nevertheless, to

cope with the ever-growing need for specialized hardware to run more complex and

specific applications, and avoid designing a different accelerator for each application

need, manufacturers and engineers have adopted Field Programmable Gate Arrays

(FPGA).

An FPGA is a re-programmable accelerator (Monmasson and Cirstea, 2007), which

is considered by an increasing number of designers from various fields such as

telecommunications, image and signal processing and AI. FPGA is highly flexible,

reduces (i) time-to-market by bypassing costly manufacturing cycles engaging a lot of

manpower and (ii) the impact of design mistakes. However, programmers do not have

any control over power optimization and are limited by the resources available in the

FPGA. FPGA is convenient for prototyping and low quantity production.

Memory and Storage

To reach the CPU, task instructions and mainly data are moved from non-volatile

memory (NVM) to volatile memory closer to a CU. On the one hand, NVM refers to

long-term persistent and mass storage, retaining data even when the computer power

is off. We define two types of storage: hot storage and cold storage. Hot storage refers

to solutions quickly accessible, gathering frequently and actively used data, and takes

the form of a solid-state drive (SSD), a hard disk drive (HDD), or read-only memory

(ROM) to load a given operating system. Cold storage represents objects containing

archived or rarely used data. Tapes are a popular type of cold storage. Hot storage is

generally faster but more expensive and less reliable than cold storage.

On the other hand, volatile memory, also named random access memory (RAM),

requires power to maintain the stored information. Volatile memory, also named main
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memory, is usually faster and, therefore, more expensive than NVM. We distinguish

two main types of RAM: Static RAM (SRAM) and Dynamic RAM (DRAM). DRAM

consists in storing data in capacitors, which gradually discharge energy. To prevent

data loss, a periodic refresh of power is required. DRAM is generally used to implement

main memory. SRAM, on the contrary, consists in storing data in transistors and does

not require any refresh of power to keep the data intact. It is often employed to

implement cache and internal registers of the CPU. DRAM tends to provide greater

memory capacities but slower access speed and higher power consumption than

SRAM.

DRAM can operate either synchronously or asynchronously. Asynchronous DRAM

is not coordinated with the system clock and, thus, has some latency that minimizes

the speed. Asynchronous DRAM is not appropriate for modern high-speed memory

systems anymore. Conversely, with synchronous DRAM (SDRAM), all operations

are controlled by a system clock and synchronized with the clock speed of the CPU.

It allows for much higher clock speeds than conventional DRAM. Single-data-rate

SDRAM (SDR SDRAM) was one of the first synchronous memory architectures and

was able to transfer one machine word - 16 bits on x86 CPUs - of data during one

clock cycle. It was widely used in the 1990s but is now obsolete. Double-data-rate

SDRAM (DDR SDRAM) was the next iteration of SDRAM. The main advantage of

DDR SDRAM was the ability to transfer data on both the rising and falling edges

of the clock. It allows sending twice the data per clock cycle. DDR SDRAM is still

largely employed nowadays and was upgraded through time: DDR2, DDR3, DDR4

and DDR5 with a memory frequency of 4.8 MHz. While the underlying components

and functionalities remain similar, each new version increases the clock speed. For

instance, DDR2 SDRAM doubled the clock speed compared to DDR SDRAM, which

allowed doubling data transfer speeds while maintaining the same bus speed - 6.4

GB/s were potentially delivered. In comparison, DDR4 SDRAM could theoretically

provide 25.6 GB/s, whereas DDR5 SDRAM could reach 32 GB/s and manufacturers are

already announcing a memory bandwidth of 160 GB/s for the DDR5-10000 SDRAM.

DDR5 SDRAM benefits from a power-efficient design - with the transfer of the power

management from the motherboard to the RAM itself - and improved reliability

features (Criss et al., 2020).

On high-performance machines, data generation rates increase faster than tra-

ditional parallel file system ingestion capabilities (Khetawat et al., 2019). To cope
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with this bottleneck, the traditional parallel file system is generally extended with

an intermediate component: a high-bandwidth flash-based storage device called

burst buffer (BBs). These BBs sit between CPUs and the parallel file system, and are

designed to absorb the periodic I/O bursts of HPC tasks. On supercomputers, BBs

are a multi-million dollar resource that impact the productivity of the center, the I/O

performance of the workload and the scientific progress of the users.

Memory is designed as a pyramid where the most expensive and fastest compo-

nents are quantitatively limited and close to the CPU. Nevertheless, the quantity and

quality of memory components may vary according to the nature and needs of the

tasks and the budget available.

Input/Output devices

Input/Output (I/O) refers to any peripheral designed to transmit input to and/or

receive output from data to and from a computing resource. To make its way to a CU, a

task has to be: (i) developed within the computing resource using I/O devices; (ii) sent

to an external storage solution (ii) sent over the network. Developing a task commonly

requires input peripherals such as a mouse and a keyboard to supply storage with

content, while a computer monitor - an output device - provides live feedback on

the content produced. Such devices are present on most desktop computers but

remain uncommon on server solutions where a single Keyboard Video and Mouse

(KVM) switch allows one to control multiple computers only for setup or maintenance

purposes. Tasks and data can also be stored on external storage devices, such as an

external HDD or USB key, manually transported to another computing resource.

Computing resources are usually equipped with a network interface card (NIC),

an I/O device allowing them to remotely communicate data with each other, within

a specific area network. The connection can be wireless, passing by the Wi-Fi for

instance, or bound to an Ethernet or Infiniband (Pfister, 2001) cable depending on

latency and bandwidth requirements of the tasks. We distinguish two main types

of area networks: Local Area Network (LAN) and Wide Area Network (WAN). LANs

are characterized as small, localized, fast and secure, often owned and managed

in-house by the organization where they are deployed. For instance, a LAN can be

represented as two computing resources connected to a single switch or a local cluster

of computing resources linked by a fast Infiniband interconnect. WANs, conversely,
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enable more widespread connectivity covering larger areas such as cities or countries.

Internet can be considered the largest WAN.

Operating System and software

The operating system (OS) is the main software running on a computing resource. It

manages the hardware and software resources and allows tasks to interact with the

inner computing components. There exists a variety of OS grounded on different

philosophies and targeting specific markets. MacOS and Windows have mostly fo-

cused on user experience at the expense of security and an open-source code base

like GNU/Linux. Many distributions - a consistent set of software - are based on the

GNU/Linux kernel: Ubuntu and Fedora are known to be user-oriented, while Red Hat

Enterprise Linux or ArchLinux are server-oriented.

Most OSs perform the same basic functions such as processes, memory, I/O man-

agement and security. An OS uses a multi-tasking mechanism, via a scheduler, to

swap tasks in and out of the CPU so that they appear as running simultaneously. It

determines the amount of memory to allocate to each process and keeps track of the

allocated portions of memory. In the same way, it controls the location of the stored

data so that they can be smoothly accessed when requested. It can handle device

drivers, programs controlling the operations of specific types of external devices. Once

a driver is installed on the OS, this one is able to communicate with it and forward

requests to and from the software on the computing resource. The OS prioritizes pro-

cesses and can interrupt them - suspend the execution and swap to a more important

task - based on I/O signals. Finally, an OS ensures the safety of a computing resource

by providing means of creating user accounts and specific permissions on data. They

can include specific utility software such as firewalls and anti-malware as well.

Software is originally developed in a human-readable language, which cannot be

directly interpreted by the CPU: the source code has to be translated to a low-level

and OS/CPU-specific set of instructions. There exist two kinds of translators, which

largely influence the design of the computing languages: compilers and interpreters.

While in practice a programming language can depend on both processes - pre-

compilation and just-in-time compilation for instance -, we tend to associate them

with a single one. The purpose of a compiler is to convert code from a source language

to another language in order to create an executable file after a linking phase. Most
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of the compilers perform general operations such as pre-processing, lexical analysis,

parsing, semantic analysis, code optimization and generation. Cross compilers are a

specific but largely used type of compiler able to create executable code for a variety of

platforms, referred to as a combination of an OS and a CPU. Compiled programming

languages such as C and C++ are commonly translated to executable code by GCC

(Von Hagen, 2011) or Clang (Lattner, 2008). Aho et al. present a comprehensive

analysis of compilers in their book: "Compilers: Principles, Techniques, and Tools"

(Aho et al., 2007). Alternatively, the goal of an interpreter is to transform and executes

the source code of the software. There are different ways of performing the translation:

(i) parsing the source code and executing it directly; (ii) transforming the source code

into an intermediate representation or object code and executing it; (iii) executing

pre-compiled bytecode coming from a compiler using a Virtual Machine (VM). Shell

programs are parsed and executed line by line, whereas Java, Python and Go are first

compiled into bytecode, which is then interpreted by a VM.

The concept of the virtual machine was developed in the 1970s by IBM, originally

as a method of time-sharing expensive mainframe hardware. At this time, Meyer

and Seawright defined VM as a "software replica of a complete computer system",

consisting of a data structure describing the memory size and the I/O configuration

of the simulated system (Meyer and Seawright, 1970). VMs could support many OS,

and thus provide software portability across various underlying platforms. Nowadays,

there is a wide variety of VMs built by OS and compiler developers as well as language

designers. We distinguish system VMs providing a complete system environment from

process VMs, such as the Java Virtual Machine, capable of supporting an individual

process (Smith and Nair, 2001). In the next sections, we will refer to the term VM

as system VM. It is worth noting that the concept of virtualization has been largely

adopted and engendered the notion of containerization, which will be reviewed in

details in Section 2.3.1. Contrary to system VMs, which virtualize an entire machine

down to the hardware layers, containers only virtualize software layers above the OS

level. They offer a lightweight and fast-to-modify solution compared to VMs.

1.3.2 Aggregated into different computing classes

Moore’s law (Moore et al., 1965) states that the number of transistors in a dense

integrated circuit doubles every 18 months, though the cost of computers is halved.
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Moore’s law was validated over the course of the following half of the century and

has driven the semiconductor industry and set targets for research and development.

It has dramatically enhanced the impact of computing in nearly every segment of

the world economy. There is no consensus on when Moore’s law will cease to apply,

but due to physical limits, it becomes more difficult to exploit its advantages and

semiconductor advancements have slowed down over the last decade. It is worth

noting that Moore’s prediction was updated through time and also popularly widened

to refer to processing power, which was the case until the 2000s. It was stated by

Robert Dennard and known as Dennard’s scaling (Dennard et al., 1974). Dennard’s

scaling - also known as MOSFET scaling - relates to Moore’s law by claiming that the

performance per watt of computing grows exponentially at roughly the same rate.

Dennard’s scaling appeared to break down in the 2001-2002 time period, circuits

started to melt and since then the clock frequency of CPUs started to stabilize (Frank

et al., 2001). The inability to operate within the same power envelope led the CPU

industry to transition to multi-core architectures, creating significant challenges for

memory technology.

Physical and economic constraints, as well as community needs and years of

evolution, have shaped various classes of computing resources. Bell defines a com-

puter class as "a set of computers in a particular price range with unique or similar

programming environments that support a variety of applications that communi-

cate with people and/or other systems" (Bell, 2008). According to him, a class may

be the consequence and combination of a new platform with a new programming

environment, a new interface and a new network.

According to Bell, classes evolve along three paths: (i) constant price and increas-

ing performance of an established class; (ii) supercomputers - a race to build the

largest computer of the day; (ii) and novel, lower-priced "minimal computers". Since

the 2010s, microprocessors are the basis for nearly all classes from personal computers

and commodity servers to scalable servers costing a few hundred million dollars. We

are going to see different forms of computing resource, their origins and their features.

Mainframe

Meek defines "Mainframe" as a cabinet housing the CPU and main memory of a

computing resource, separated from the I/O devices (Meek, 2003). Mainframes are
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considered reliable and stable and characterized by their continuous and evolutionary

improvement while maintaining backward compatibility. They are often used by IT

organizations to host the most important and mission-critical workloads such as

customer order processing, financial transactions, production and inventory control

(“Mainframe concepts”, 2010). Nevertheless, mainframe hardware and software re-

main large and expensive to acquire, and require high-end skills and specific training

to work with.

In the 1950s, mainframes were large, bulky and expensive and reserved for a small

number of privileged users, often from the same company or institution (“Evolution

of computer networks”, 2016). Originally, mainframes were not able to serve users

interactively and concurrently. Users prepared punched cards containing data and

program code and manually transferred their cards to operators that entered the

cards into the mainframe. Users got the results of their program later in the form of a

printout. With the size and cost reductions of the processors, new approaches based

on terminals and VMs emerged.

Users now interact with a time-sharing mainframe via terminals - light computing

resources composed of a display, a keyboard and a connection to the mainframe

- located out of a computing center and onto their desktops. Users interact nearly

simultaneously with the CPU and are able to start their program and receive the results

almost immediately. Until the mid-1990s, mainframes provided the only acceptable

means of handling the data processing requirements of a large business (“Mainframe

concepts”, 2010).

Desktop Computer

Desktop computers appeared in the 1960s and became prevalent in LANs as compo-

nents became cheaper and smaller. Basic operations formerly based on mainframes

were outsourced, first to minicomputers, and then to desktop computers.

Personal computers (PC) are a broad subclass, designed for the people, containing

all the components seen in Section 1.3.1. They comprise commodity CPUs - from 2

to 20 cores - and memory - from 4 to 64 GB of RAM. They perform basic processing

operations and store a few TB of data. In developed countries, they are now part

of most of the households, mainly to write and store documents and surf the web.
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Since 2003, they started to propose multi-threaded and, later, multi-core CPUs. The

can also embed accelerators such as GPUs, mainly for gaming. Workstations are

business-oriented desktop computers primarily designed to handle demanding tasks.

It is defined as more robust and efficient than a PC and highly configurable to match

specific needs and budgets. The market is dominated by Windows, which is the result

of strong relationships between Microsoft and manufacturers delivering the OS with

most desktop computers.

A desktop computer is usually exclusive to a physical person, even though many

approaches - discussed later in Section 1.3.3 - have been built around this class to

harness unused CPU cycles from thousands of hundreds of them.

Cluster

Sterling defines clustering as "a powerful concept and technique for deriving extended

capabilities from existing classes of components" (T. L. Sterling, 2002). In the ency-

clopedia of physical science and technology (T. Sterling, 2003), he describes cluster

computing as a class of parallel computer structure relying on "cooperative ensem-

bles of independent computers integrated by means of interconnection networks to

provide a coordinated system capable of processing a single workload". Bell and Gray

define clusters with over 1,000 processors as massively parallel processors (MPP), and

constellations as clusters made up of nodes with more than 16 processors (Bell and

Gray, 2002).

Fostered by Amdahl’s law (Amdahl, 1967), cluster computing was developed in

the 1960s as an alternative to linking large mainframes to provide a cost-effective form

of commercial parallelism (Buyya, 1999). Cluster computing did not gain momen-

tum until the convergence of three important trends in the 1980s according to Yeo et

al. (Yeo et al., 2006): high-performance microprocessors, high-speed networks, and

standard tools for high-performance distributed computing. A possible fourth trend

corresponds to the increasing need for computing power coupled with the low accessi-

bility of traditional supercomputers. Academic projects such as Beowulf (T. L. Sterling,

2002), Berkeley NOW (Culler et al., 1997) and HPVM (Chien et al., 1997) have largely

contributed to the emergence of cluster platforms. They promoted open source devel-

opment platforms, vendor independence, low-entry costs to supercomputing-level

performance and proved the advantage of clusters over other traditional platforms.
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According to Yeo et al. (Yeo et al., 2006), the trend in parallel computing was to

move away from traditional specialized supercomputing platforms, to cheaper and

general-purpose systems consisting of loosely coupled components made from PCs

and workstations.

Today, clusters remain widely used in science, engineering, commerce and in-

dustry applications. Potential user institutions have a "plethora of choices in terms

of form, scale, environments, cost to meet their scalable computing requirements"

(T. L. Sterling, 2002). Cluster computing resources are generally non-interactively

shared among many users, mostly target non-service workflows, and are orchestrated

by Local Resource Management System (LRMS).

Supercomputer

Bell refers to "supercomputers as the largest computers at a given time, coming into

existence by competing and pushing technology to the limit to meet the unend-

ing demand for capability" (Bell, 2008). Supercomputers are primarily designed for

academic and research purposes, and aim at processing specialized tasks requiring

immense amounts of mathematical calculations such as scientific simulations, fluid

dynamic calculations and animated graphics - HPC workflows.

CDC 6600, introduced as the culmination of several years of effort by Seymour

Cray and his team, is often considered the first major supercomputer: it was an order

of magnitude faster than any computer shipping at the time. Seymour Cray left CDC

to propose "Cray style" computers that paved the way for supercomputing for 30

years with shared memory parallel functional units, which include vector processing.

Nowadays, supercomputers are massively parallel clusters with large shared memory,

containing many-core high-end nodes bound by fast connectivity systems such as

Infiniband (Pfister, 2001). They all embed a GNU/Linux distribution and CPUs with

vector processing capabilities, and many of them propose accelerators since 2010. The

Top500 organization benchmarks supercomputers twice a year and provides statistics

and trends in the area.

In 2022, the most powerful supercomputer, Frontier - built at the Department of

Energy’s Oak Ridge National Laboratory in Tennessee - have been the first of its class

to break the exascale barrier with the linpack benchmark (1.1 exaFLOPS). After years
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of "supercomputing monoculture" (Bell and Gray, 2002) led by Intel x86 CPUs and

Nvidia GPUs, supercomputers have entered a new heterogeneous era driven by the

growing needs for specific hardware able to handle AI workloads and by the arrival of

Quantum computing.

Smartphone

Smartphones - and tablets by extension - appeared in the 2000s and have gained in

popularity in the 2010s. They are the results of key technological advances, mostly

in terms of miniaturization and networking. Progress on lithium-ion batteries has

been an important factor in the emergence of this type of computing resource. They

combine the abilities of a cell phone - namely calling and sending text messages - and

the features of a personal computer. Smartphones embed a CPU, memory, storage as

well as I/O devices such as a touch screen and camera, and can be identified as micro

PC fitting within a pocket. Bell defined "smartphone" as the convergence between

a personal media device (PDA), a camera and a cell phone (Bell, 2008). IBM Simon,

introduced in 1992 at Las Vegas COMDEX, is often considered the first smartphone

despite its limited battery life and bulky form.

Just as the PC revolution disrupted mainframe, minicomputer, and workstation

markets, smartphone and cloud services are increasingly disrupting the PC market

nowadays (Reed et al., 2022). The smartphone OS market is unequally shared between

Android and iOS. There have been some developments to harness unused CPU cycles

of smartphones (Jenviriyakul et al., 2019). However, their architecture - CPU, battery,

cooling system - was not designed toward this goal.

1.3.3 Widely networked

Gray described the costs of computing (Gray, 2003): software and hardware com-

panies sell billions of dollars of computers and software each year; the total cost of

ownership is more than a trillion dollars per year. Operations cost far exceed capital

costs. Due to physical and economic limitations, there has always been a large interest

in sharing computing power from different computing resources, across institutions

and organizations: (i) certain communities may temporarily need additional com-

puting resources not available locally - not affordable - to process their workloads;
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(ii) certain organizations may need to amortize their infrastructure costs - initial and

maintenance - by providing them to several communities across the globe. Never-

theless, Gray questioned the economic issues of moving a task from one computer

to another or from one place to another. According to him, "it is fine to send a GB

over the network if it saves years of computation - but it is not economic to send a

kilobyte question if the answer could be computed locally in a second" (Gray, 2003).

The author recommended putting the computation near the data, and stated that "on-

demand" computing was only viable for very CPU-intensive tasks; which is still the

case but to a lesser extent since years of networking progress have passed. This factor

has been essential in the expansion of several approaches to temporarily acquire/offer

remote computing resources.

Grid Computing

In the mid-1990s, Foster and Kesselman, inspired by the electricity Grid, coined the

same term "Grid" to denote a distributed computing infrastructure for advanced

science and engineering (Foster and Kesselman, 2003). Grid computing aims at

coordinating resource sharing and problem-solving in dynamic, multi-institutional

Virtual Organization (VO) (Foster et al., 2001). It does not imply unrestricted access

to resources, resource providers and consumers are expected to clearly and carefully

define what is shared, who is allowed to share, and the conditions under which sharing

occurs. Such a set of individuals and/or institutions is defined as VO.

Grid computing can be seen as a set of additional protocols and services built on

the Internet to support the creation and use of computation-enriched environments.

These include: (i) resource management protocols and services that support secure

remote access to computing and data resources and the co-allocation of multiple

resources; (ii) security solutions that support the management of credentials and poli-

cies when computations span multiple institutions; (iii) information query protocols

and services that provide configuration, monitoring and status information about

resources, organizations and services; (iv) data management services that locate and

transport datasets between storage systems and applications (Foster et al., 2001). For

Foster and Kesselman, interoperability is essential to provide fair sharing arrangement

and dynamic VO formations, and should rely on standard and universal protocols and

syntax. Grid computing architecture is deliberately open rather than prescriptive.
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Computing resources architectures, operating systems, scheduling and usage poli-

cies are not imposed, which can lead to administrative and physical heterogeneities,

and task reproducibility issues. Though, the authors recommend obtaining agree-

ment on standard protocols. Additionally, grid environments introduce challenges

that are not encountered in sequential or parallel computers: multiple administra-

tive domains, new failure modes and large variations in performance. Foster and

Kesselman designed the Globus Infrastructure Toolkit (Foster and Kesselman, 1997)

to build an adaptive wide-area resource environment. It provides basic mechanisms

such as communication, authentication, network information and data access, en-

abling high-level applications to adapt to heterogeneous and dynamically changing

environments.

Grid computing enables access to millions of processors within a VO. Users have

mostly access to clusters, workstations and supercomputers, via commodity hardware

such as PCs and smartphones. The dynamic and unpredictable behavior of grid

computing is not adapted to HPC workloads that require tightly coupled computing

resources such as supercomputers, but several scientific communities dealing with

HTC tasks have largely adopted the approach. In practice, grid computing tends to

involve organizationally-owned resources managed by professional administrators

and powered on most of the time.

The business model of Grid Computing - mainly found in academia and labora-

tories - is project-oriented (Foster et al., 2008): VOs typically have a certain number

of CPU hours they can spend. Access to computational power requires increasingly

complex proposals to be written. When a VO joins a grid infrastructure with a set of

resources, it knows that others in the community can now use these resources. In the

meantime, it acknowledges the fact that it gains access to other sites. Popular grid

computing infrastructures involve WLCG (“Worldwide LHC Computing Grid”, 2022),

which partners with the European Grid Infrastructure (EGI), the Open Science Grid

(OSG) and the Nordic e-Infrastructure Collaboration (NeIC).

Cloud Computing

Cloud computing emerged in the 2000s and evolved out of grid computing to become a

tremendously influential paradigm for the whole computing area. NIST denotes cloud

computing as a "model for enabling ubiquitous, convenient, on-demand network
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access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction" (Mell, Grance, et al.,

2011).

According to Mell et al., cloud computing is characterized by: (i) on-demand

self-service, a consumer can unilaterally provision computing capabilities without

requiring human interaction; (ii) broad network access, capabilities are available over

the network and accessed through heterogeneous client platforms such as worksta-

tions, personal computers, smartphones; (iii) resource pooling, provider’s computing

resources, physical or virtual, can serve multiple consumers; (iv) rapid elasticity, ca-

pabilities can be elastically provisioned and released, and appeared as unlimited;

(v) measured service, cloud systems control and optimize resources, and provide

transparency for both the provider and consumer of the utilized service. The capa-

bility provided to the consumer may vary depending on the service model chosen

by the provider, the most known are: (i) software as a service (SaaS) allows using the

provider’s application running on a cloud infrastructure; (ii) platform as a service

(PaaS) enables deployment of consumer-created or acquired applications, supported

by the provider, onto the cloud infrastructure ; (iii) infrastructure as a service (IaaS)

allows provisioning processing, storage, networks to deploy and run arbitrary software,

OS and applications. In the context of this thesis, we focus on IaaS. Cloud infrastruc-

tures can be private, for exclusive use by a single organization comprising multiple

consumers. It may be owned, managed and operated by the organization or a third

party. "Community cloud" is also widely spread, and opened to specific communities

of consumers from organizations that have shared concerns. "Public cloud" is the

most known form of infrastructure because it is open to the general public. Most

known actors in the domain include Amazon Web Service (AWS), Google Cloud and

Microsoft Azure. Lastly, "hybrid cloud" is a composition of two or more distinct cloud

infrastructures that remain unique entities, but are bound together by standardized

or proprietary technologies.

Foster et al. describe factors that contribute to the surge and interest in cloud

computing (Foster et al., 2008): (i) the rapid decrease in hardware cost and increase

in computing power and storage capacity; (ii) the exponentially growing data size;

(iii) the wide-spread adoption of web 2.0 applications. The evolution of virtualization

technology has also been essential in the expansion of cloud computing. Over the past
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few years, processor manufacturers such as AMD and Intel have introduced hardware

support for virtualization (Foster et al., 2008). Cloud providers have largely embraced

virtualization (Foster et al., 2008): (i) multiple applications can be run on the same

server, resources can be utilized more efficiently; (ii) resources can be dynamically

configured and bundled for significantly different compute and storage needs; (iii)

virtual environments can be backed up, migrated and recovered; (iv) provisioning

and maintenance can be automated. Virtualization also provides better security,

manageability and isolation. Computing infrastructures are much better utilized,

leading to lower upfront and operational costs.

Cloud computing dramatically lowers the cost of entry for small firms and third-

world countries trying to benefit from compute-intensive workflows that were only

accessible to the largest of corporations (Marston et al., 2011). According to Marston et

al., cloud computing also enables faster time to market in many businesses, promotes

innovation, and makes it easier for enterprises to scale their services depending on

client demand. Even though small businesses have been quick to adapt to cloud

computing, large corporations have voiced a plethora of concerns, clearly enumerated

by Armbrust et al. (Armbrust et al., 2010).

Security is one of the major concerns, as the responsibility is divided among

potentially many parties including cloud users, vendors, and any third-party vendors

that users rely on for security-sensitive software or configurations. Data in the cloud

face security threats both from outside and inside the cloud. Virtualization is a key

security lever protecting against most attempts by users to attack one another or the

underlying cloud infrastructure. One of the last security concern is about protecting

the cloud user against the provider. Users mainly use contracts and courts, rather

than security engineering, to guard against provider malfeasance.

Data lock-in and software licensing are other obstacles. Current software licenses

commonly restrict the computers on which the software can run, whereas cloud

computing APIs are still essentially proprietary, which makes it difficult to extract

software and data from the cloud. Additionally, users are vulnerable to price increases,

reliability problems - the OVH data center fire is a recent example -, and even to

providers going out of business. Interoperability of all the services and applications

remains a significant challenge, as users need to tap into a federation of Clouds instead

of a single Cloud provider. Standardization appears to be a good solution to address
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the interoperability issue. However, the interoperability issue "has not appeared on

the pressing agenda of major industry cloud vendors" (Dillon et al., 2010). None of

them supported the Unified Cloud Interface project (“Unified Cloud Interface Project”,

2012) proposed by the Cloud Computing Interoperability Forum (CCIF), or the Open

Cloud Manifesto - mentioned by Nelson et al. (Nelson, 2009) - supported by almost

200 companies and organizations. In 2017, the National Institute of Standards and

Technology (NIST) and the Institute of Electrical and Electronic Engineers (IEEE)

announced a collaboration to build consensus on creating an inter-cloud (Lee et al.,

2020).

Cloud computing was first attracting web services and HTC workloads. A few

years ago, Napper et al. demonstrated that cloud resources could not reach a spot

in the Top500. Indeed, the performance of single nodes available on AWS EC2 was

as good as nodes found in current HPC systems, but the available memory and net-

work performance were insufficient to maintain high performance when scaling up

the cluster (Napper and Bientinesi, 2009). Nevertheless, major cloud vendors are

proposing HPC resources nowadays.

The rapid growth of commercial cloud services and business outsourcing has

made Amazon AWS, Microsoft Azure, and Google Cloud among the fastest-growing

elements of the computing services industry (Reed et al., 2022). Today, CPU manu-

facturers are responsive to cloud vendor requirements, as a large part of their micro-

processors is purchased by those vendors. In the same way, business and technology

shifts have attracted money and opportunities, and therefore, talents from academia

to a small number of very large companies or creative startups.

Global Computing

The key idea of global computing - also named volunteering computing or public-

resource computing - is to "harvest the idle time of Internet-connected computing

resources which may be widely distributed across the world, to run a very large and

distributed application" (Fedak et al., 2001). Global computing relies on volunteers,

willing to offer some of their idle time to execute tasks, mostly related to academic or

public projects, in exchange for incentives such as credit and screensaver graphics.

The goal of global computing is to harness a large number of unused computing

resources, PCs and smartphones, to build a very large parallel computer. According to
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Anderson, it allows research scientists with moderate computing skills to create and

operate a large computing project and also encourages public awareness of current

scientific research (Anderson, 2004).

Global computing emerged in the mid-1990s with GIMPS, Distributed.net and

SETI@home Korpela et al., 2001. Open-source middleware such as XtremWeb (Fedak

et al., 2001) and Berkeley Open Infrastructure for Network Computing (BOINC, Ander-

son, 2004) have been essential in the expansion of large-scale public resource projects.

They make it easy for scientists to create and operate public-resource computing

projects and for PC owners to participate in multiple projects.

In contrast to grid and cloud computing, global computing involves an asym-

metric relationship between projects and participants. Projects have no control over

participants, and cannot prevent malicious behavior. Additionally, computers can

embed various OS and CPUs, and are frequently turned off or disconnected from

the Internet. Global computing middleware typically include redundant computing

and cheat-resistant accounting mechanisms to address these issues. Most of the

projects supported are throughput-oriented and have relatively small memory, disk

and network bandwidth requirements.

Nowadays, the cloud market is dominated by few providers and has been devel-

oped without standards, which limits medium to small providers to enter the market

(Romero Coronado and Altmann, 2017). With the emergence of the blockchain tech-

nology (Nakamoto, 2008) and the smart contracts (Szabo, 1996), several projects such

as iExec, Golem and SONM have intended to build decentralized cloud infrastructure

based on the global computing paradigm. Uriarte et al. provide a complete com-

parison of these projects, and emphasize the lack of generality and interoperability

between them (Uriarte and DeNicola, 2018).

Through Section 1.3, we have had a brief overview of the current computing

landscape and how it has evolved. These advancements have greatly enhanced data

management and processing at CERN and fostered significant scientific progress such

as the discovery of the Higgs Boson in 2012 (A. Collaboration, 2012). CERN signed the

purchasing contract for its first mainframe computer - a Ferranti Mercury - in 1956.

In 1996, it turned off the IBM 3090 for the last time and replaced them by scalable

solutions based on Unix PCs to comply with LHC computing requirements. In Section

31



Chapter 1 Computing landscape at the beginning of the 2020s

1.4, we are going to describe the current LHCb workflow and available resources and

identify the computing needs of the collaboration.

1.4 LHCb workflows and available computing resources

1.4.1 LHCb workflow

At the origins of the universe, matter and antimatter were created in equal proportions.

However, a growing imbalance has appeared over time that should result in the loss

of antimatter. The purpose of the LHCb experiment lies in the study of beauty and

charm hadron decays to provide insight into the phenomenon of matter-antimatter

asymmetries (T. L. Collaboration, 2008; “LHCb - Large Hadron Collider beauty experi-

ment”, 2022). The experiment also searches for physics beyond the Standard Model

through rare decays. In the following sections, we will present the LHCb detector as

well as the computing model of the experiment (Section 1.4.1) and will enumerate the

computing resources at the disposal of the collaboration (Section 1.4.2). It is worth

mentioning that the LHC Run3 has started in 2022 and involves an upgraded version

of the LHCb detector, a different computing model as well as novel applications. Since

these applications currently remain unstable and experimental, we focused on the

original detector components and the computing model from Run1 and Run2.

Detecting collisions

Collisions occurring in the LHC result in an abundance of quarks that quickly decay

into other forms. To catch beauty quarks, LHCb has developed a series of sophisticated

sub-detectors, close to the path of the beams circling in the LHC. The ability to

identify different particle species is a fundamental requirement for the success of the

experiment. The detector geometry is optimized to detect forward events efficiently

(Figure 1.1):

• The VErtex LOcator (VELO), a silicon-strip vertex detector, is positioned at

five millimeters from the proton-proton interactions to pick out short-lived B

mesons from the multitude of other particles produced.

• The Ring Imaging Cherenkov (RICH1 and RICH2) detectors identify a range of

different particles resulting from the decay of B mesons, such as charged pions,
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kaons and protons. Charged particles pass through a dense gas, faster than light

does, and emit a cone of light, which the RICH detectors reflect onto an array of

sensors using mirrors.

• The tracking system comprises four tracking stations: TT located between

RICH1 and the dipole magnet, and T1-T3 between the magnet and RICH2.

They enable the trajectory of each particle passing through the detector to be

recorded, and Cherenkov rings to be reconstructed.

• The magnet consists of two coils of 27 tonnes, mounted inside a 1,450-tonne

steel frame. It causes the paths of charged particles to curve, with positive and

negative particles moving in opposite directions. It helps scientists calculate the

momentum of a particle and find its identity.

• The muon system contains five rectangular stations, gradually increasing in size

(M1-M5). Each station contains chambers filled with a combination of three

gases, with which passing muons - tiny, electron-like particles present in the

final stages of many B-meson decays - react while wire electrodes detect the

result.

• The calorimeter system (SPD, PS, ECAL, HCAL) stops particles, measuring the

amount of energy lost as each one grinds to a halt. The Scintillating Pad Detector

(SPD) determines whether particles hitting the calorimeter system are charged

or neutral, while the Pre-Shower detector (PS) indicates the electromagnetic

character of the particle. The electromagnetic calorimeter (ECAL) deals with

the energy of lighter particles, such as electrons and photons, whereas the

hadron calorimeter (HCAL) samples the energy of protons, neutrons and other

particles containing quarks. Calorimeters rely on ultraviolet light, which is

emitted proportionally to the energy of the particles. They remain the main way

of identifying particles that possess no electrical charge.

Eventually, the upgraded detector should be able to support an increased lumi-

nosity coming from the LHC (Piucci, 2017). It is going to embed, once completed,

a new tracking system composed of three sub-detectors: a new VELO, an Upstream

Tracker (UT) and a large Scintillating-Fiber (SciFi) tracker. The upgraded VELO, al-

ready installed, is closer to the beam axis. This should improve the impact parameter

resolution by a factor of about 40%, increase the VELO tracking, efficiency especially
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Figure 1.1 – A schematic view of the original LHCb detector.

for low momentum tracks, and provide a better decay time resolution. The UT should

be fully installed in 2023. It comprises four tracking layers based on silicon strip

technology that will be located between the RICH1 detector and the dipole magnet, in

place of the current TT. The UT will be used for downstream reconstruction of long-

lived particles decaying after the VELO and will be essential to improve the trigger

timing and the momentum resolution. The SciFi tracker, already in place, is located

between the dipole magnet and the RICH2 detector. It is structured in 12 detector

layers and used for track reconstruction after the magnet region. The system will allow

reducing the number of fake tracks reconstructed by the tracking algorithms, by a

factor of 50-70%. Consequently, the trigger timing will be largely improved. In addi-

tion, the RICH detectors have been upgraded with new photo sensors and front-end

electronics. The physics performance of the new RICH system will achieve similar

performance to the previous detector but at a ten-fold higher luminosity. We can also

mention minor upgrades in (i) the calorimeter system where the SPD and the PS have

been removed and the readout electronics of the ECAL and HCAL have been replaced;

(ii) the muon system where the off-detector electronics have been redesigned and the

M1 has been removed (Mnich, 2022).

The original LHCb detector records 40 million collisions every second, which

represents an amount of data too large to be processed and stored, namely 1 TB/s or
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3.6 PB per hour. Moreover, physicists cannot directly work on raw data coming from

the detector, it has to be filtered, converted into a human-readable format and stored.

This requires HEP software and significant computing power.

The LHCb computing model

Filtering, processing and analysis are part of a complex workflow represented in Figure

1.2. During Run1 and Run2, LHCb used a two-level trigger system for only selecting

the most interesting collisions from the LHC: the level 0 trigger (L0), and the high-level

trigger (HLT). L0 is implemented in custom FPGAs and aims at reducing the rate of

visible interactions from 40 MHz to 1 MHz at which the LHCb detector can be read

out. L0 takes decisions in under 4 µs, exclusively based on information from the muon

and the calorimeter systems, as these are the only piece of information available at

such a high rate. HLT, a software implementation (Moore), further filters collision

to reach an output rate of 30 kHz. HLT is a two-stage system: HLT1 performs a fast

track reconstruction and makes a decision based on a track segment; HLT2 performs

a high-fidelity reconstruction and makes a decision based on the full detector read-

out information. The data is recorded to RAW files and transferred to tapes. These

operations are defined as the online part of the experiment. They are followed by a

second set of operations called the offline part of the experiment, which is mainly

orchestrated by LHCbDIRAC (Hushchyn et al., 2017).

After the replication, the RAW data is reconstructed, via the Brunel application, to

transform the detector hits into objects such as tracks and clusters. Objects are stored

in an output file in the form of a Data Summary Tape (DST) file. A DST file contains

the full event information: raw data and reconstructed objects; which corresponds to

150 kB for each event.

This data goes through the stripping stage (DaVinci) consisting of very severe

selections which correspond to different types of physics analysis that keep interesting

events and generate DST or µDST files - save space by storing only the information

concerning the build candidates, raw events are discarded. To save disk space and

speed up access for analysts, these files are grouped into streams of 5 GB containing

similar selections. Users can run their analysis tools to extract variables from DST and

µDST files using the DaVinci applications. µDST files require additional calculations

as some tracks are not present in the events.
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Stochastic simulation applications are of major importance both in the design

and construction phase of an experiment and during its operation. They allow the

collaboration to understand experimental conditions and performances. LHCb pro-

duction managers generate a lot of simulated events, often called Monte Carlo data to

distinguish them from real data. They are processed in a very similar way to real data.

Indeed, the simulated data is subject to the same deficiencies as in the processing of

real data.

The simulation of proton-proton collisions, and the hadronization and decay of

the resulting particles, are controlled by the Gauss application. The Bool application

converts the simulated hits made in the virtual detector into signals that mimic the real

detector, so that simulated data can then be passed through the usual data processing

chain described above.

Figure 1.2 – LHCb computing workflow (Run1).

In 2015, LHCb introduced the Turbo stream to respond to the increase in energy

coming from the Run2 of the LHC, and thus, the higher rate of interesting events. The

Turbo stream directly provides users with the selection of candidates resulting from

HLT2, with no further offline reconstruction by Brunel. The collaboration improved

the reconstruction software both online (Moore) and offline (Brunel), between the

first two runs, which now perform identically. However, because of limited storage,

events saved to the Turbo stream contain only the candidates that were reconstructed

in the trigger, and therefore the regular workflow is still necessary and runs in parallel.

Overall, Turbo Stream saves a lot of time, and hence money as users do not always

need to wait for the offline reconstruction to perform their analysis.

In 2022, the collaboration has fully redesigned the trigger system: L0 hardware

trigger has been considered a bottleneck, in regards to the increase in luminosity
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coming from the Run3, and has been removed. HLT1, which handles the track recon-

struction, an inherently parallelizable task suitable for vector processing, has been

reimplemented on GPUs (Allen framework). HLT1 will reduce the data rate by a factor

of 30. In the same way, the collaboration is planning to increase the use of the Turbo

steam model. For about 2/3 of data, only the data of the signal candidate will be saved

and no further offline reconstruction will be possible. This should generate smaller

events so that more events could be saved. In the context of this thesis, we focus on

offline activities, which require a huge amount of computing power not available at

CERN.

Offline and distributed computing activities

The LHCb offline and distributed computing activities include production and non-

production tasks (Stagni and Charpentier, 2012). Non-production activities include

user analysis, monitoring and testing, and take the form of independent tasks, not

contributing to any shared outcome. Production activities comprise simulation,

digitalization, reconstruction, reprocessing, stripping and analysis.

In LHCb, application managers design usable steps via the LHCbDIRAC Pro-

duction Request System. A step corresponds to an activity definition: an offline

application bound to a set of options and parameters, applied on the collection of

events provided, or to be generated. Then, the production managers combine the

available steps to create and start productions. A production can be seen as a linear

meta-workflow, namely a sequence of production activities. Production managers,

along with the computing shifters and the Grid Expert On Call (GEOC) follow the

productions.

Once started, steps take the form of Bags of Tasks, batches of independent tasks

where only the collective outcome is relevant. Each task performs an event data

processing application, provided in the step definition, on a subset of events defined

in the production. LHCb event data processing applications are based on the Gaudi

framework (Barrand et al., 2001). Gaudi provides a common infrastructure and envi-

ronment to interact with events: (i) a global Event Loop to process events one by one

without holding them all in memory at once; (ii) a Transient Event Store, a per-event

file system, gathering data objects - particles, vertices, tracks, hits - related to a single

event; (iii) Algorithms, C++ class that can be inserted into the Event Loop to perform a
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certain function for each event, such as filtering events or reconstructing particles; (iv)

Tools, common functions shared between Algorithms; (v) Options, a script in which

properties of Algorithms and Tools are specified, along with the order of execution of

the Algorithms.

Because CERN cannot handle all the activities on-site, tasks are encapsulated

into DIRAC jobs, distributed and remotely executed. The data manager creates bulk

replication, deletion or archival of datasets for the jobs. A DIRAC job may provide

information about the execution location and environment requirements: platform,

number of processors, and minimum CPU time. A DIRAC job embeds its task in a

linear workflow of connected operations to pre-process and post-process the task. A

DIRAC workflow is composed of steps, each of them including a number of modules

connected to Python modules.

In practice, launching a production triggers the creation of transformations in the

Transformation System. A transformation handles repetitive work such as creating

production jobs and data management operations. Transformation agents are respon-

sible for inspecting the Transformation System tables, and submitting tasks either to

the Workload Management System, or the Data Management System.

Figure 1.3 presents the number of offline tasks processed and the CPU days

consumed by these tasks in a year. Simulation applications (Gauss), noted Sim and

FastSim on the plots, represent 71.7% of the offline activities. In a year, they consume

around 91.1% of the CPU time available on computing resources. They are, by far,

the largest consumers of the available computing resources: 91.1% of the CPU time

available is dedicated to the simulations, and should remain above 90% in Run3

(Stagni et al., 2020).

Focus on Gauss

Gauss (Belyaev et al., 2011; Clemencic et al., 2011) consists of two independent phases

executed sequentially: (i) the generation of the events; (ii) the tracking of the particles

through the simulated detector. The production of particles is handled with Pythia

(Sjöstrand et al., 2001), a general-purpose event generator, whilst the decay and time

evolution of the produced particles is delegated to EvtGen (Lange, 2001). External

generator libraries - Tools - can be plugged to perform specific actions: generation of
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Figure 1.3 – At the left: number of tasks processed; At the right: CPU days consumed.
Both are classified by type of task, from week 24 of 2021 to week 24 of 2022. Generated
from the LHCbDIRAC web application.

a given event sample, decay of unstable particles, cut at generator level on the decay.

The simulation of the physics processes undergone by the particles traveling through

the detector is delegated to the Geant4 toolkit (Agostinelli et al., 2003). A dedicated

Gauss algorithm transforms the output of the generation phase to the Geant4 input

format.

Gauss does not require any data input, except an Option script containing the

configuration and initialization variables for each phase. Gauss is highly configurable

and involves different Pseudo-Random Number Generators (PRNG) in the different

phases. We can pinpoint Marsaglia-Zaman-Tsang (Marsaglia et al., 1990), a PRNG

from the 1990s embedded in Pythia. It is worth mentioning that Marsaglia’s PRNGs

were criticized by Panneton and L’ecuyer for their poor quality (Panneton and L’ecuyer,

2005), and that they fail several randomness tests from the TestU01 library, a collec-

tion of utilities for the empirical randomness testing of random number generators

(L’ecuyer and Simard, 2007).

A random number seed is generated based on a run number, an event number

as well as an algorithm name. The random number seed is reset for each event

both at the beginning of the generation and the tracking phases. The run and event

numbers are stored in the generated event and read back when initializing the tracking

phase to ensure the event reproducibility. Two common ways are available to run

the application: (i) a generator-only mode; (ii) a full simulation mode. In the full

simulation mode, the generator output is provided along with the output of Geant4
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transformed back into the LHCb event model, namely a Monte Carlo truth history as

well as hits produced in the sensitive detectors.

Currently, Gauss is a compute-intensive single-process (SP), single-threaded (ST)

application, with a memory footprint of 1.4 GB. From 95% to 99% of the CPU time

devoted to the application is spent by Geant4. Gauss only supports CISC x86 architec-

tures and CERN-CentOS-compatible environments (“Linux@CERN”, 2022).

With the upgrade of the LHCb detector for the LHC Run3, the detector will collect

a substantially larger amount of data, which will result in a bigger amount of complex

simulated events. Therefore, speeding up simulations is becoming essential to meet

future simulation demands. Stagni et al. created Gauss-MP, a multi-process (MP)

version of Gauss (Stagni et al., 2020) based on GaudiMP (Rauschmayr and Streit, 2014)

to run Gauss on multiple hardware threads. GaudiMP is a MP version of the LHCb

event processing framework Gaudi, which already existed but had never been used

in production. To greatly reduce the memory footprint of Gauss, the LHCb team has

started to work on Gauss-on-Gaussino (Siddi and Müller, 2019), a multi-threaded

(MT) version of Gauss. Gauss-on-Gaussino is still in development.

Faster alternatives to a full, Geant4-based simulation are also being pursued.

LHCb developers are investigating libraries to: (i) simulate fewer particles; (ii) simu-

late less of the detector; (iii) simulate the subdetectors faster. For instance, Siddi has

worked on the integration of the Delphes toolkit (Ovyn et al., 2009) in the simulation

framework, replacing Geant4 (Siddi, 2016). Delphes is modular software designed to

perform fast simulations by propagating stable particles using a parametric approach.

We can also cite libraries such as ReDecay (Müller et al., 2018), RICHLess (Whitehead,

2018), and Lamarr (L. Collaboration, 2019), currently being developed. In the mean-

time, it remains critical to find computing resources to respond to the increasing CPU

demand.

1.4.2 Computing Resources available

Figure 1.4 highlights the number of CPU days consumed by type of resources in 2019.

The LHCb experiment mainly uses WLCG to perform its offline activities (57.9%),

followed by the HLT farm (38.6%) and other opportunistic resources, clouds and

partition of supercomputers.
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Figure 1.4 – Number of CPU days consumed, classified by type of resource, from week
0 of 2019 to week 0 of 2020. Generated from the LHCbDIRAC web application.

The Wordwide LHC Computing Grid

Created in 2002 to share the burden with computer centers around the world, WLCG is

the world’s largest computing grid. Coordinated by CERN, WLCG currently comprises

170 computing centers, 1 million computed cores and 1 exabyte of storage, spread

within 42 countries and supported by many associated grids across the world, such as

EGI and OSG as well as many regional grids. It can process 2 million tasks every day

and gives a community of over 10,000 physicists near real-time access to LHC data,

regardless of their physical location. WLCG is organized in different layers:

• Tier 0: the CERN Data Center located in Geneva, Switzerland. It is responsible

for the safe-keeping of the raw data and the first pass reconstruction. It has to

distribute the raw data and reconstruction output to the Tier 1s and reprocess

data during LHC down-times as well.

• Tier 1: 13 sites responsible for the safe-keeping of proportional share of raw and

reconstructed data, large-scale reprocessing and safe-keeping of corresponding

output. They have to distribute the data to Tier 2s and safely keep a share of

simulated data produced at these Tier 2s.

• Tier 2: universities and other scientific institutes, which can store sufficient data

and provide adequate computing power for specific analysis tasks. They handle

analysis requirements and proportional share of simulated event production

and reconstruction.
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• Tier 3: individual scientists accessing these facilities through local computing

resources, which can consist of local clusters or even just PCs.

To be part of Tier 1 and Tier 2, sites need to comply with the resource and service

requirements of WLCG and the experiments. Tier 1 sites have to provide a detailed

plan that explains which experiments will be hosted and how they will demonstrate

the expected functionality, performance and reliability. They should have excellent

connectivity to the national academic network backbone. Tier 1 and Tier 2 sites should

provide a significant fraction of CPU and disk capacity of that required by each experi-

ment: typically around 10% of the global total Tier 1 requirement of the experiment

for Tier 1 sites. Tier 1 sites also have to provide a significant tape archive service. In

addition to resources, sites must run the set of services for the target experiments.

They should provide on-call support for key services year-round, and demonstrate

the appropriate level of availability and reliability of the services. They must provide

the interface to the WLCG accounting services and publish accounting data on all of

the work performed by the supported experiments. Computing resources of WLCG

can embed various types of CISC x86 CPUs, and support CentOS, an environment

adapted to LHCb software.

Each year, review boards have to compare the requests of the experiments for

computing and storage resources with the actual usage of the available resources. The

overall computing power comes from a variety of CPUs, where the specific hardware

deployed at one site can be quite different from that at another site, both in terms

of cost and computing performance (Valassi, Andrea et al., 2020). To quantify the

experiment needs and the resources provided by the sites in a given year, a common

unit of measurement is required. Since 2009, the HEP-SPEC06 (HS06) has been the

standard CPU benchmark for the LHC experiments (“How to Run HEP-SPEC06 Bench-

mark”, 2017). Until now, it provides a quite good evaluation metric of a computing

resource, highly correlated to HEP applications: the amount of useful "work" that the

computing resource can do per unit time. Based on the actual usage of the resources

of LHCb in a year, review boards allocate a certain number of CPU work, in HS06

units, for the next year. Sites also use HS06 to buy the CPU resources providing the

amount of HS06 pledged to the experiments for the lowest financial cost, also taking

into account electrical power efficiency (Valassi, Andrea et al., 2020).

This approach was reliable during LHC Run1, but LHC has produced a growing
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amount of data since then. According to the analysis of Stagni et al. on the CPU

cycles use in 2016, all the LHC experiments now consume more CPU hours than those

officially pledged to them by the WLCG (Stagni et al., 2017). Experiments have found

ways to exploit opportunistic resources.

The HLT Farm

Located near the LHCb experiment at the CERN Point 8, The High-Level Trigger (HLT)

farm is dedicated to the HLT1 and HLT2 tasks. It is composed of 1500 PCs, distributed

over 60 subfarms: each of them comprises 24, 28 or 32 PCs. The number of computers

represents around 12,000 cores, idle when there is no data-taking. Recently, the LHCb

collaboration decided to use these idle cycles to perform simulation tasks (Closier

et al., 2019). The facility provides the environment and set of services required to run

simulation tasks.

Supercomputers

Supercomputers offer a significant amount of resources and would potentially offer a

more cost-effective data processing infrastructure compared to dedicated resources

in the form of commodity clusters, as Sciacca emphasizes (Sciacca, 2020). Neverthe-

less, supercomputers are highly heterogeneous architecture, pose higher integration

challenges and have not been operated continuously for LHC experiments workload

processing. HEP workloads are not necessarily tailored for computing resources such

as non-x86 CPUs and accelerators - GPUs and FPGAs - that we usually find in super-

computers. Furthermore, supercomputers are designed with a fast and expensive

interconnect that would not be leveraged by a massive number of embarrassingly

parallel tasks.

In the last few years, LHC experiments have started to integrate some of their

workflows on compatible supercomputer partitions. CERN has an agreement with

the Partnership for Advanced Computing in Europe (“PRACE”, 2022) and the pan-

European network and services provider for research and education (“GÉANT”, 2022)

to form a pioneering collaboration that will work to overcome challenges related to

the use of HPC systems. This collaboration, now powered by the EuroHPC initiative,

allows LHCb to access some of the best pre-exascale and petascale supercomputers
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located in the European Union: Mare Nostrum 4 in Spain, Marconi in Italy and Piz

Daint in Switzerland. In this context, a given number of CPU hours are reserved for

the experiment. Once consumed, LHCb jobs are still allowed in the systems, but are

less prioritized. LHCb also benefits from a close collaboration with the Laboratório

Nacional de Computação Científica (LNCC) in Brazil, which allows the experiment to

use some of the CPU resources of the Santos Dumont supercomputer.

1.5 Conclusion

This survey has covered parts of the history and latest trends of the computing industry

and research. The 2020s should be marked by (i) further heterogeneous computing

resources for specialized and complex workloads; (ii) a growing demand for cloud

computing, especially related to HPC; (iii) a decline in Moore’s law. While it is mainly

LHCb-oriented, this chapter provides details about how to analyze the impact of the

current trends on a computing project.

We have started this chapter by defining terms such as job, task, workload and

workflow in order to set common foundations for the rest of the thesis (Section 1.2.1).

Based on these, we have compared three main computing paradigms, namely HPC,

HTC and MTC (Section 1.2.2). Combined with physical and economical constraints,

they have influenced hardware infrastructures.

Then, we have presented a variety of hardware components to highlight a growing

heterogeneity (Section 1.3.1):

• ISAs: RISC and CISC.

• Accelerators: GPUs, MICs, FPGAs and ASICs.

• Storage and memory: HDD, SSD, SRAM, DDR SDRAM.

• I/O devices and especially the network interfaces: Wi-Fi, Ethernet, Infiniband.

• OS: Windows, Mac, Linux.

• Programming languages: interpreted and compiled.

We also surveyed the main computing classes (Section 1.3.2). While mainframes

are still used in large IT organizations, many of them have been replaced by clusters
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of computing resources, often more affordable. Currently, cluster architectures also

represent the majority of supercomputers. On the user side, the smartphone is in-

creasingly disrupting the PC market, even though PCs are still largely employed in

companies and laboratories.

Following the progress in networking, resource providers have been able to offer

access to their computing power via grid computing, cloud computing and global

computing (Section 1.3.3). During the last decade, cloud computing has been largely

adopted. It is worth noting that, contrary to grid computing, cloud computing does

not rely on any standard protocols.

We have finished with an analysis of the LHCb workload and available computing

resources (Section 1.4). LHCb workloads are primarily composed of Monte-Carlo

simulation tasks that represent 71.7% of the offline activities and consume 91.1% of

the CPU time available. These amounts are expected to grow with the next LHC runs.

While many developers are working on reducing the memory and CPU footprint of the

programs, there is still a need for additional computing power. LHCb decision-makers

have chosen to rely on WLCG and several supercomputers to deal with the tasks.

Thus, the aim is to efficiently execute as many Gauss tasks as possible on these

computing resources, despite various integration challenges. We address the topic in

Chapter 2 where we have surveyed different solutions to better use distributed and

heterogeneous computing resources, and especially within grids and supercomputers,

to process BoT workloads with limited inputs.
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2.1 Introduction

As workloads become more complex, hardware tends to be more specific, expensive

and difficult to acquire. Cutting-edge workloads require massive infrastructures

that only large companies and laboratories are able to provide. Furthermore, such

hardware is rare and highly demanded.

Resource providers have set up mechanisms to offer a fair share of their infras-

tructures to different consumers. While they grant resource computing allocations on

their systems, they cannot guarantee the repeatability of programs developed on dif-

ferent systems. They may not supply allocations with dependencies of the programs

or the required OS for instance. Thus, there exist intermediate developers creating

middleware to ease the integration of workloads on heterogeneous and distributed

computing resources coming from independent administrative sites.

In this chapter, we survey different middleware solutions, mostly related to grid

computing and supercomputers, to run Bag-of-Tasks (BoT) with limited inputs on

distributed and heterogeneous computing resources. First, we study the grid com-

puting environment, the existing provisioning model and security mechanisms to

protect the services of Workload Management System (WMS) (Section 2.2). Then, we

compare VMs, containers, package managers and the CernVM-File System (CVMFS)

to provide specific environments across various sites (Section 2.3). Lastly, we review

tools to efficiently exploit granted allocations (Section 2.4).

2.2 Supplying computing resources with jobs

2.2.1 Environment

Temporarily acquiring shared, distributed and heterogeneous computing resources is

the result of various middleware interacting with each other. Efficiently using them de-

pends on how WMS leverage the middleware available to supply computing resources.

In Section 2.2.1, we explain technical details and middleware implementations com-

posing a computing grid, which we consider a meaningful use case to understand

how standard protocols and collaboration can play a role in leveraging distributed,

decentralized and heterogeneous computing systems.
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Distributed Computing Resource and Infrastructure

Turilli et al. define a Distributed Computing Resource (DCR) as a set of possibly

heterogeneous resources, a middleware, and an administrative domain (Turilli et al.,

2018). Any system: (i) offering computing, data and network resources; (ii) proposing

a middleware to ease the interactions with these resources; (iii) enforcing policies of

an administrative domain; can be seen as a DCR.

A Distributed Computing Infrastructure (DCI), commonly named "Site" in this

manuscript, is composed of a set of DCRs federated with a common administrative,

project, or policy domain (Turilli et al., 2018).

On clusters and supercomputers, various communities continuously compete

to acquire computing resources, while providers aim to maximize the use of their

resources, and potentially their profit. To control access to computing resources, they

generally set up a Local Resource Management System (LRMS), also defined as a batch

system.

Local Resource Management System

A LRMS has three key functions: (i) allocating exclusive or non-exclusive access to

resources - CPU cores, accelerators, memory - to users for some duration of time so

they can perform their tasks; (ii) providing a framework to execute and monitor tasks;

(iii) arbitrating contention for resources by managing a queue of pending work. It

is worth noting that we find similar mechanisms in clouds. Even though resources

appear infinite for the users, cloud providers still need to orchestrate their physical

resources, making sure they can respond to the demand.

System administrators tend to provide different queues, or partitions, gathering

similar Worker Nodes (WN), depending on user demands. A queue may accept

and prioritize certain groups of users based on computing-related criteria, such as

determining the best fit of jobs in memory or aiming toward maximum CPU usage

(Henderson, 1995). According to Henderson et al., system administrators may also

rely on policies driven by financial or political factors.

Users generally need to create jobs wrapping their tasks, inputs and meta-data.

Meta-data are related to the duration of the tasks, and the number of cores and mem-
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ory needed, to efficiently communicate with a LRMS. Therefore, the form of the jobs

primarily depends on the underlying LRMS managing resources in the targeted sys-

tem. There exists various LRMS solutions: PBS (Henderson, 1995), LSF (“IBM Platform

LSF”, 2022) and especially SLURM (Yoo et al., 2003) remain popular choices in the

HPC community, while HTCondor (Litzkow et al., 1987) is largely employed in the

HTC community, especially to harness idle CPU cycles on workstations. They have

their programming syntax and configuration options, which can vary through time in

the form of different versions. Communities having to interact with various infrastruc-

tures would need a deep understanding of each LRMS and its versions. Supporting

each of them would result in a hard-to-maintain application. As a consequence, devel-

opers from different communities have worked on a component able to communicate

with various types of LRMS: the Computing Element (CE).

Computing Element

Sfiligoi defines a CE as the "fundamental building block of any Grid environment"

(Sfiligoi and Padhi, 2010). A CE provides a uniform interface across various sites,

independently from the type of LRMS in place on the sites. The interface allows

users to submit, monitor, cancel jobs or get their outputs. When a job is submitted, a

globally unique job identifier is generally returned to further manipulate it afterward.

A CE manages the burden of maintaining the code to support interactions with various

versions of LRMS. In general, each site provides a CE to interact with a DCR.

Over time, different types of CE have also appeared. Similar to LRMS, types of CEs

have their programming syntax and configuration options, varying through time. In

1998, Czajkowski et al. introduced the first CE (Czajkowski et al., 1998): the Globus

Resource Allocation Manager (GRAM). GRAM was responsible for: (i) processing

resource requests from users, under the form of Resource Specification Language

(RSL) scripts; (ii) enabling remote monitoring and management of jobs created in

response to a resource request; (iii) periodically updating information service with

information about the current availability and capabilities of the resources managed.

GRAM was originally able to communicate with HTCondor, EASY, Fork, LoadLeveler,

LSF and NQE. GRAM was eventually declared deprecated and no longer used.

In 2010, the Computing Resource Execution And Management (CREAM), devel-

oped by INFN, became a popular choice among sites (Aiftimiei et al., 2008). It used a
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completely different architecture than GRAM. It was based on open standards and

exposed a simple, robust and lightweight interface based on Web Services. CREAM

enabled a high degree of interoperability: developers could use any programming

language to build client interfaces. CREAM processed Job Description Language (JDL)

requests to get allocations. The JDL is a high-level, user-oriented language based on

Condor classified advertisements (classads) (Litzkow et al., 1987). CREAM supported

the execution of single-core and multi-core jobs, as well as MPI jobs. CREAM was no

longer maintained in 2020, and thus, was declared deprecated. Instances were mostly

replaced by HTCondor schedd instances. The LRMS proposes remote interactions

with the scheduler, which can therefore be seen as a CE.

In 2002, the NorduGrid collaboration developed the Advanced Resource Connec-

tor (ARC) middleware to meet the pressing users’ demands for urgent grid system

deployment (Ellert et al., 2007). Because it resolved many shortcomings from the

existing implementations at this time - HTCondor was not adjustable and extensible

enough, while the Globus Toolkit required the number of ports opened in the firewall

to be proportional to the number of potential jobs -, ARC quickly became one of the

main choices for the sites. It has been the first-ever middleware to provide services to

a worldwide High Energy Physics (HEP) data processing effort. ARC is portable, com-

pact and manageable both on the server- and the client-side. It relies on an extended

RSL (xRSL) syntax to handle jobs from users. Until now, ARC has embedded three

main services: (i) the Computing Service, implemented as a GridFTP-Grid Manager,

which provides a gateway to the computing resource; (ii) the Information System, a

hierarchical database, which stores information about the list of known resources;

(iii) the Brokering Client, deployed as a client part, enabling resource discovery and

brokering capabilities. In ARC5 and ARC6, developers introduced A-REX services to

replace both GridFTP services and the Grid Manager (Konstantinov, 2017). A-REX

proposes a Web Service interface to interact with the jobs. Developers plan to drop

support for GridFTP in the next release, namely ARC7.

We find similar solutions in the cloud domain, mostly to interact with APIs from

different cloud providers. Apache libcloud allows users to uniformly access a variety

of clouds (“Apache Libcloud”, 2022). Supercomputers not supported within the Grid

context are often only accessible via SSH, and sometimes through a VPN. In this case,

users have to connect to the edge node of the infrastructure and interact locally with

the LRMS in place. Dealing with many types and versions of CEs, supercomputers and
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cloud resources would be time-consuming for the communities willing to submit their

tasks on various infrastructures without having a deep understanding of middleware

and CEs. For this reason, communities pass through a third layer to access remote

computing resources: WMS.

WMS

The term "WMS" remains ambiguous: middleware such as ARC and HTCondor al-

ready support many computing paradigms and therefore, to some extent, could be

considered as WMS. In the context of this thesis, a WMS provides an entry-point to

manage jobs on various computing resources via different CEs and LRMS, across

distributed sites.

Laure et al., developers of the gLite middleware, provide an overview of the main

services accompanying WMS (Laure et al., 2004): (i) security services to enable iden-

tification of entities and functionalities for data confidentiality; (ii) API services to

provide a convenient backend for grid services; (iii) information and monitoring

services to publish and consume information related to resources and use it for mon-

itoring purposes; (iv) data services to manage data across distributed sites through

different transfer protocols if required.

There exist many different WMS. Many of them deal with a similar architecture

composed of LRMS and CEs, but they focus on different kinds of computing resources

or provide diverse means of handling jobs. Communities choose a WMS according

to technical and emotional criteria such as: (i) the nature of their workload; (ii) the

computing resources at their disposal; (iii) affinities and partnerships; (iv) the efforts

deployed by developers to maintain the tool and communicate changes.

Many communities such as Belle II, CTA, EGI, iLC, JINR, Juno, and GridPP have

adopted DIRAC to interact with grid resources. These communities have chosen

DIRAC over similar solutions such as the Production ANd Distributed Analysis sys-

tem (PanDA) WMS developed by ATLAS (Chiu and Potekhin, 2010), and the ALICE

Environment (AliEN) (Bagnasco et al., 2008), because the middleware developed by

LHCb quickly became generic, open-source, and self-contained. Recently, PanDA

developers decided to offer PanDA features for projects outside of ATLAS and HEP

experiments (Svirin et al., 2019). Contrary to other LHC experiments, the CMS ex-
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periment has used an existing generic WMS solution named glideinWMS (Balcas

et al., 2015; Sfiligoi, 2008). Most of the "grid" WMS mentioned above propose similar

features, but depend on different funding agencies and are bound to distinct commu-

nities. They deal with BoT - rather than workflows like the Pegasus WMS (Deelman

et al., 2015) - and grid resources, but remain more or less focused on integrating clouds

and supercomputers. Developers of PanDA and glideinWMS started working on such

opportunistic computing resources years ago, contrary to developers of DIRAC.

Communities bound to DIRAC have significantly helped to integrate cloud re-

sources in the middleware, but a lot of work is still required for supercomputers.

Contrary to the global computing area proposing self-contained and easy-to-integrate

solutions such as the XtremWeb and the BOINC WMS, solutions related to super-

computers required an immediate development not grounded on any analytical

understanding of underpinning abstractions. Therefore, they tend to remain specific

to a WMS in a certain context. Thus, there are needs for: (i) classifying the existing

solutions and proposing a first abstract model; (ii) building solutions related to super-

computers within DIRAC, generic, as far as possible. This will be treated in Chapter

4.

2.2.2 Provisioning model

Grid infrastructures tend to include various types of middleware and as many methods

to interact with them. Developers of WMS have designed several approaches to

provision distributed computing resources with jobs, around two main models which

are going to be discussed in Section 2.2.2: push and pull. While straightforward

methods consisting of directly submitting jobs are generic, they remain too often

inefficient. Conversely, there exist very specific methods to provision cloud resources

with jobs, non transferable to other types of computing resources.

Push model

The push-based approach consists in submitting jobs at many levels to dispatch them

across the sites: (i) from a WMS to different CEs (Figure 2.1 Step 1); (ii) from a CE to

a LRMS within sites geographically distributed (Figure 2.1 Step 2); (iii) from a LRMS

to an available WN. In this architecture, sites are composed of single or multiple CEs,
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Figure 2.1 – Interactions between a Workload Management System (WMS) and a grid
Site to execute a workload via the push model.

and WNs are mostly grouped and bound to LRMS queues homogeneously.

The push-based model has been shown to be inefficient and error-prone (Stagni

et al., 2015). Indeed, jobs are transferred through middleware before waiting for

resources within a LRMS queue. A broken site would result in failures of jobs, which

would need to be submitted again. Moreover, WMS have to gather information about

many sites and have to compare them with the features of the jobs, which can be a

long and complex operation. Once submitted, jobs cannot be transferred elsewhere

on the grid, which might put a significant load on certain sites.

Therefore, WMS developers tend to prefer pull-based approaches over the push

model when possible: WNs should have external connectivity. It is the case in the

WLCG context, but many supercomputers do not allow it and require jobs to be

pushed. Several ATLAS teams have employed the Arc Control Tower (aCT) infrastruc-

ture to submit HEP applications on supercomputers having no outbound connectivity
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(Filipčič, 2011; Nilsen et al., 2015), such as O’Brien et al. on the High-End Computing

Terascale Resource (HECToR) facility (O’Brien et al., 2014), Filipčič et al. on Tody, a

supercomputer located at the Swiss National Supercomputing Center (CSCS) (Filipčič

et al., 2015) and Filipčič on the Chinese HPC CNGrid network to run Monte-Carlo

simulation jobs (Filipčič, 2017). Installed outside of the supercomputer, aCT creates a

bridge between the WMS and an ARC CE: it fetches jobs from the WMS and manages

the pre-processing of the inputs and the post-processing of the outputs of the jobs,

which would require an outbound connectivity. Then, it submits the jobs to an ARC

CE, monitors and reports their status to the WMS.

DIRAC developers have chosen to fully support the pull model, and more specifi-

cally the Pilot-Job paradigm. Thus, we would need to reintroduce solutions to push

jobs on given types of resources. Developers of aCT have designed a generic and

open-source tool. In Chapter 4, we study the possibility of reusing the tool, or creating

a similar utility specific to DIRAC if necessary.

Pull model: Pilot-Job paradigm

The Pilot-Job paradigm has been devised and implemented mostly to support com-

putations across multiple distributed machines, aggregated into high-performance

clusters, computing grids or virtualized in cloud infrastructures. It has been quickly

adopted in the Grid Computing context as an answer to the inefficiencies of the push

model. The paper, given by Casajus and his colleagues of the LHCbDIRAC team

(Casajus et al., 2010), defines Pilot-Job objects, also known as pilots, as "nothing more

than empty resource reservation containers that are sent to the available computing

resources with the final aim of executing the most appropriate pending job in the cen-

tral WMS queue" (see Pilot in Figure 2.2). Pilots can perform basic sanity checks of the

running environment (Figure 2.2 Step 3) before any binding with a given job (Figure

2.2 Step 4) to effectively run tasks on well-behaved and well-adapted resources (Figure

2.2 Step 5). They create an overlay network that masks the central WMS components

from the heterogeneity of the underlying resources.

DIRAC proposes its implementation of the Pilot-Job paradigm where pilots, con-

sidered as simple jobs, can run on WNs. A pilot performs a DIRAC installation and

checks properties of the work environment such as CPU, memory and available disk

space. Then, it gets the most suitable jobs from the central DIRAC WMS server. It
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Figure 2.2 – Interactions between a Workload Management System (WMS) and a grid
Site to execute a workload via the push model applying the Pilot-Job paradigm.

retrieves and checks the availability of the input data and software, executes the task,

reports the success or the failure of the execution, and uploads output data if required.

Pilot provisioning tools aim at automating the submission of Pilot-Jobs to the

resources, ensuring high availability and maximizing the throughput of the jobs (see

PilotManager in Figure 2.2). A lot of WMSs integrate such tools to supply WNs with

pilots. As Turilli et al. underline, the Pilot-Job paradigm appeared as a real solution for

solving the inefficient push model (Turilli et al., 2018). We have seen an immediate

development not grounded on any analytical understanding of underpinning abstrac-

tions, architectural patterns or computational paradigms, which led to a variety of

Pilot-Job implementations and thus of Pilot-Job provisioning tools.

Condor (Bricker et al., 1992), originally designed to allow users to execute tasks on

a resource pool, was one of the first software to implement the Pilot-Job paradigm,

under the name of Glideins (Frey et al., 2002), to employ the grid resources via resource

placeholders. It has been quickly complemented by GlideinWMS (Sfiligoi, 2008) to
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automate and optimize the provisioning of the Glideins. Global computing WMS,

such as XtremWeb and BOINC, rapidly adopted the concept. In this context, users

install a client, which behaves as a kind of resource placeholder to pull tasks from the

server when CPU cycles are available. In the meantime, WMS such as DIRAC, PanDA,

AliEN, and Coaster (Hategan et al., 2011) have been developed and provided similar

pilot deployment features despite slight variations.

Luckow et al. were the first to pinpoint this lack of generality and proposed a

conceptual basis to compare and contrast different Pilot-Job frameworks through

an abstract model called P* (Luckow et al., 2012). They also designed a generic

implementation called Saga BigJob (Luckow et al., 2010), which is not maintained

anymore. The P* model, represented in Figure 2.3, defines the following elements:

• Pilot: the entity that gets submitted and scheduled on a resource.

• Compute Unit (CU): encapsulates a task specified by the application that is

submitted to the Pilot-Job framework.

• Scheduling Unit (SU): units of scheduling internal to the P* Model. Once a CU

is under the control of the Pilot-Job framework, it is assigned to an SU.

• Pilot-Manager (PM): responsible for orchestrating the interaction between the

Pilots and the different components of the model, and decisions related to

internal resource assignment

Most of the Pilot-Job provisioning mechanisms aim at maximizing the throughput

and minimizing the number of wasted resources by keeping a fixed number of pilots

in the Grid pool and continuously instantiating them while there are jobs to process.

The tools usually generate pilots that take the form of scripts, sent to WNs via the grid

architecture and the push model. They also monitor pilots to identify failures and

adjust the number of pilots to meet the demanding pressure. The characteristics and

the priorities of the jobs are matched with the attributes of the resources to achieve

the best binding. Rubio-Montero et al. (Rubio-Montero et al., 2015) and Turilli et al.

(Turilli et al., 2018) emphasize the commonalities but also the differences between

several WMS in further details.

LHCbDIRAC primarily relies on Pilot-Jobs to supply WLCG computing resources.

In this context, an analysis of the DIRAC Pilot-Job provisioning tool, named Site
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Figure 2.3 – P* Model: Elements, Characteristics and Interactions as defined by Luckow
et al. Luckow et al., 2012.

Director, should be conducted to check whether the implementation is optimal. It

could emphasize limitations preventing the full exploitation of the resources and allow

us to develop different approaches to improve the throughput of the jobs on WLCG

resources and face up to the growing amount of data coming from the LHC Run3. This

will be addressed in further details in Chapter 3.

Pull model: further approaches

The emergence of clouds and other opportunistic resources has encouraged the devel-

opment of new deployment methods based on the pull model. McNab et al. developed
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the Vacuum model to leverage VMs (McNab et al., 2014). It consists in spontaneously

producing Pilot-Jobs within VMs. Experiments supply contextualization procedures

prior to launching the Vac daemon. The Vac daemon creates VMs on behalf of the

resource provider directly on the hypervisor machine on which it runs. Then, it gath-

ers information and stops VMs based on its observation, if VMs do not have any job

to process for instance. The Vcycle daemon was developed following the successful

deployment of Vac for production LHCb and ATLAS workloads. The Vcycle daemon

extends the abilities of the Vac daemon to IaaS environments.

Some sites, especially supercomputers, propose a partial outbound connectivity

from the WNs: they can exclusively communicate with Data Access Node (DAN)s,

which can communicate outside the system. In such a context, Pilot-Jobs cannot

fetch jobs directly from the WNs, whereas jobs cannot interact with external services.

Several ATLAS teams have worked on different solutions to efficiently interact with

supercomputers with partial outbound connectivity and no CE available. Oleynik

et al. redefined the Pilot-Job concept to serve as a job broker on the DANs of Titan

(supercomputer at the Oak Ridge National Laboratory) (Oleynik et al., 2017). In this

context, PanDA submits pilots to the DANs that have both access to the external

and internal networks. Similar to aCT, each pilot queries jobs, manages the pre- and

post-processing steps, and then submits jobs to the LRMS of Titan.

Oleynik et al. also introduced Next Generation Executors (NGE), which is a

run-time system to submit heterogeneous and dynamically determined workloads

(Oleynik et al., 2017). It contains a Pilot Manager installed on the DANs, that submits

pilots to the LRMS. Once running, a pilot instantiates a Pilot Agent and Executors on

the allocated nodes. The Pilot Manager fetches jobs from PanDA and communicates

with the Pilot Agent via a database installed on a DAN. Then, Executors process the

jobs. Such installation is possible provided that the administrators of the supercom-

puter allow running services on DANs.

In the same way, the ALICE collaboration has developed a tool called ANALISA to

interact with supercomputers with partial outbound connectivity such as the US De-

partment of Energy’s National Energy Research Scientific Computing Center (NERSC)

resources: Edison and Cory (Fasel, 2016). ANALISA is composed of two parts: (i) the

submission layer, which runs on a DAN, prepares the user software and the sandbox

to contain the jobs; (ii) the worker layer, which is executed on the WNs, runs the jobs
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and manages the transfer of input and output files within the local shared file system.

Maeno et al. have introduced Harvester, an attempt to provide a universal but still

PanDA-specific Pilot-Job submission system on Grid and supercomputer resources

(Barreiro Megino et al., 2020; Maeno et al., 2019). The service provides push and pull

mechanisms, and lightweight and heavy installation procedures, on the supercom-

puter DANs or outside of them.

2.2.3 Authentication and Authorization

Within allocations, and especially through a pull-based model solution, jobs are

expected to interact with WMS services and may request sensitive data and operations.

Any malicious operation in such distributed ecosystems could lead to worldwide

issues impacting a large number of communities. According to the RFC 2977 entitled

Mobile IP Authentication, Authorization, and Accounting Requirements, "the need for

service from a foreign domain requires, in many models, Authorization, which leads

directly to Authentication, and of course Accounting".

WMS and site administrators must be able to verify a claimed identity and de-

termine if a particular right, such as access to some resource, can be granted to the

presenter of a particular credential. In the context of WLCG, they should maintain

a collaborative collection of information on resource usage. The WLCG Authentica-

tion and Authorization Infrastructure (AAI) ensures: (i) confidentiality of processed

data among distributed grid sites; (ii) traceability of user actions in WLCG resources;

(iii) attribution of identifiers to determine users; (iv) isolation and suspension of

compromised user’s identity.

X.509 certificates

The current WLCG AAI, chosen in the early 2000s, is based on the Grid Security

Infrastructure (GSI) of the Globus Toolkit (Welch et al., 2003), which relies on X.509

certificates (Cooper et al., 2008). According to Ceccanti et al. (Ceccanti et al., 2019), the

approach consists in a trust fabric informing services about the certificate authorities

(CAs) that can be trusted, X.509 certificates issued by trusted CAs to users and services

for mutual authentication purposes, proxy certificates to delegate authentication and
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authorizations from X.509 certificates and Virtual Organization Membership Service

(VOMS) attribute certificates used to augment identity information with VO-issued

authorization attributes that drive the authorization at services.

Grid-based WMS and middleware implement the same authentication model.

Clients and services are identified by X.509 certificates and user credentials are for-

warded to the final destination via proxy certificates. Authentication is done by check-

ing the credentials received against a list of valid CAs. If the credentials presented fail

to be signed by one of the valid CAs, then the connection is closed. Casajus et al. pro-

vide further details about X.509 certificates in the DIRAC context (Casajus, Graciani,

et al., 2010), which is similar to other grid-based WMS. Every time a client connects

to a DIRAC service, DIRAC extracts the client’s credentials from the SSL handshake.

The credentials identify the requester and DIRAC associates a set of properties to the

credentials. To execute the requested action, the requester has to have at least one

property in the set of properties required by the action.

Casajus et al. also explain how DIRAC transports users’ credentials to WNs via the

Pilot-Job paradigm. They define two types of Pilot-Jobs: generic and private. Private

Pilot-Jobs are submitted to the grid using the user’s credentials, whereas generic

Pilot-Jobs are submitted with credentials from privileged users able to change their

identity in the WNs to run the real user jobs. Private Pilot-Jobs were never employed

in practice. The DIRAC Proxy Management service allows users to upload long-lived

proxies. As proxies allow to act on behalf of users, they are considered very sensitive

data and, therefore, can only be downloaded by a restricted set of users and agents,

such as Pilot-Jobs once installed on a WN. Pilot-Jobs download short-lived and limited

proxies from the long-lived proxies hosted in the Proxy Management service to run

the jobs.

On the one hand, the GSI approach has worked well for years, "providing a se-

cure infrastructure that has scaled to millions of jobs and hundreds of sites, has

supported important scientific discoveries and has been adopted by several research

communities besides HEP" (Ceccanti et al., 2019). On the other hand, experience

has also exposed the main limitations of the current WLCG AAI: (i) X.509 certificates

are complex, annoy most scientific users and lead to errors; (ii) Proxy certificates

do not natively work in browsers, which led to complex workarounds to integrate

VOMS with Science Gateways; (iii) Identity federations, such as EDUGAIN, cannot
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be easily integrated within the current infrastructure; (iv) X.509 represent a barrier

when integrating computing and storage resources from external partners, such as

commercial providers, hybrid clouds and HPC centers. Various communities have

started to work on alternatives to X.509 certificates. Token-based solutions have stood

out.

Tokens

The current approach is considered outdated by today’s standards regarding the

protection of the privacy of user data. In the meantime, alternative AAI concepts have

emerged and have been widely adopted by the industry:

• OAuth 2.0 (Hardt, 2012) has become the standard framework for delegated

authorization for HTTP services. According to Ceccanti et al., it defines autho-

rization flows targeted at service, desktop and mobile applications that describe

how access tokens can be obtained from authorization servers and presented at

services to be granted access to resources (Ceccanti et al., 2019).

• OpenID Connect (Sakimura et al., 2014) was designed to extend OAuth with an

identity layer. It defines how authentication information is provided to services.

• JSON Web Tokens (JWTs) (M. Jones et al., 2015) provide a mechanism to express

claims meant to be securely exchanged between services. Claims can describe

user identity, authentication properties, attributes and capabilities.

In 2017, while multiple activities independently started to work on token-based

authorization, the WLCG Authorization Working Group was formed (Bockelman et al.,

2020). The group gathers experts from multiple domains aiming at charting a path to-

wards token-based authorization for WLCG. Efforts have been focused on addressing

usability and simplifying integration with third-party services and software.

The group eventually chose to adopt the INDIGO Identity and Access Manage-

ment (IAM) service as the core of the future WLCG AAI. Conceptually and practically,

INDIGO IAM aims to replace VOMS as the VO attribute authority, without being lim-

ited to a single authentication mechanism. INDIGO IAM provides a central VO-scoped

authorization server, dealing with user authentication, registration and high-level

authorization for a VO. INDIGO IAM allows users to link multiple identities to a VO

account, which are exposed to services via standard OpenID Connect claims. To
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enable a seamless transition, INDIGO IAM supports both X.509 certificates and tokens

via a combination of JWTs, OAuth and OpenID Connect.

Existing grid middleware have started to transition from X.509 certificates to

tokens as well. Developers of HTCondor have integrated SciTokens (Withers et al.,

2018) to the LRMS and have planned to drop support of the GSI of the Globus Toolkit

by 2023. Developers of DIRAC have started to implement token-based services and

agents, but the solution is not production-ready and does not specifically focus on

interactions between WMS and grid middleware. We would need to implement WMS

components to accompany the grid middleware transition before the end of support

of GSI.

Through Section 2.2, we have seen mechanisms to interact with distributed and

heterogeneous computing resources relying on standard protocols. The section was

focused on means to get allocations while preserving security within the grid infras-

tructure. In Section 2.3, we are going to discuss about reproducibility within the

allocations.

2.3 Providing reproducible environments

2.3.1 Getting a compatible and optimized environment

In the past decade, articles in both the scientific and popular press have shed light on

the reproducibility crisis. In 2016, Baker conducted a survey of 1,576 researchers who

took a brief online questionnaire on reproducibility in research (Baker, 2016). It targets

peer review, replication of experiments, confirmation of the results, verification and

open research. According to it, more than 70% of researchers have tried and failed

to reproduce another scientist’s experiments. While there are recognized systemic

issues such as pressure to publish and selective reporting, there are also technical

limitations. Thus, there is a rising need for reproducibility of results obtained through

computational research.

Hill has worked on parallel random numbers, simulation and reproducible re-

search. According to him, being able to reproduce the results of a computing exper-

iment on distributed computers is paramount to meet the scientific method (Hill,

2015). He distinguishes repeatability from reproducibility. He defines scientific re-
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producibility in its broad sens as "means that other researchers found similar results

to those published, possibly with techniques and approaches different from what is

announced in a reference publication", and repeatability as a subset of reproducibility

consisting in "finding the same results with the same input data and algorithm". Re-

peatability of software is essential to test, verify and find errors, and thus, ensures the

validity of the results. Yet, it is not always guaranteed, especially in a heterogeneous

and distributed context.

Hill gives two technical limitations to reproducibility (Hill, 2015): (i) it is not possi-

ble to accurately code real numbers with a limited binary representation, and thus,

the order of the operations achieved with the floating-point format has a technical

importance even though they are mathematically associative; (ii) it is hard to deal

with implementations in different programming languages, compiling with different

compilers, executions on different OS - especially relying on various modern many-

core architectures or hardware accelerators (Taufer et al., 2010). Hill emphasizes that

even with the same compiler, language and OS, bitwise reproducibility is not always

guaranteed from one run to another in the same computing environment in case of

silent errors - also known as soft errors.

The LHCb collaboration, among many researchers and companies, is aware of

the issues and has set up an infrastructure to validate software before pushing it in

production. In Section 2.3.1, we focus on a specific aspect of reproducibility: we want

similar results of Gauss across the sites. At most, results should have slightly and

insignificant variations.

Software validation

Computing resources at the disposal of the LHCb collaboration mainly involve x86

CPUs, distributions of Linux such as Scientific Linux CERN or CentOS, as well as

different types and versions of compilers. To ensure simulation tasks remain repro-

ducible on these platforms, despite perpetual code changes, the LHCb collaboration

has developed a testing and verification phase (Popov, Dmitry, 2019).

The commissioning phase corresponds to a release of a major version of an ap-

plication, which may require migration to a more recent version of its dependencies.

It consists in compiling the software stack, executing it and finalizing it successfully,
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without any technical faults. The commissioning phase relies on the LHCb nightly

build system (Clemencic and Couturier, 2014; Kruzelecki et al., 2010), which per-

forms the build and the tests on several configurations and platforms. If the build is

successfully finalized, nightly tests are executed.

Nightly tests aim to verify that the built software works. They specifically check

that the external libraries, frameworks and toolkits are exactly of the versions that

developers intended to use. They are designed to be simple and fast to execute, about

a couple of minutes to a maximum of half an hour.

Once the active development phase is achieved, the main changes have been im-

plemented and the software stack works from a purely technical point of view, much

more sophisticated tests are launched via the LHCb Performance and Regression

(LHCbPR) project (Couturier et al., 2014; Mazurov et al., 2017). LHCbPR provides

support to conducting systematic profiling and allows comparing the results of per-

formance and regression tests run on the LHCb applications. Timing and hardware

performance data are collected from the Gaudi framework, which includes multiple

profiling measures, and from the performance monitoring unit of modern CPU archi-

tectures. Collected data form comparable, reproducible and representative profiles,

allowing regression analysis. LHCbPR provides a flexible framework able to deal with

various profiling tools, and perform automated and regular executions to comply

with the objective of a reliable regression analysis. It centrally stores performance

information, which is then available through a web application. Compared to nightly

tests, PR tests require more time, about four to six hours on a single core of a modern

CPU, depending on the simulated beam conditions in the case of Gauss.

According to Popov et al., some problems are spotted only on ongoing productions

at runtime, such as technical problems with large productions on the grid, troubles

with reconstructions or discrepancies in physics distributions (Popov, Dmitry, 2019).

At this point, the LHCb Physics Performance Working Groups are involved to verify the

results and explore physics processes that would be impossible to analyze on smaller

data samples. To deploy LHCb software on constrained computing resources, the

collaboration has to negotiate with system administrators that may be already over-

whelmed by requests for specific versions of software. Alternatively, the collaboration

can resort to package managers or containers.
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Package managers

System administrators have struggled for years to respond to software demands from

various communities: toolchains, huge scientific software stacks and different versions

and variants of a given package. In the meantime, they opt for a conservative approach

related to software management and aim to preserve a stable environment. To satisfy

both constraints, system administrators build and install packages and make them

available via environment modules (Furlani, 1991), which allows users to pick the

specific packages they want.

Nevertheless, system administrators manually install software, which is a time-

consuming operation. They cannot deal with many large software stacks, and to

protect their system, cannot let users install their software, requiring root privileges.

Hence, users cannot redeploy the same software environment on another system.

Moreover, for maintaining a secure environment, system administrators have to

remove installed software or upgrade it in place, which may lead to broken user

environments.

To cope with these issues, various teams have developed software package man-

agers supporting non-root users, automating package builds and facilities to create

package variants: Conda (“Conda”, 2022), EasyBuild (“EasyBuild: building software

with ease.” 2022) and Spack (“Spack”, 2022). Each of them focuses on certain aspects

such as usability, time to result, reproducibility or security. Conda is user-friendly

and targets desktop computers, but does not build packages from source locally and

thus, cannot deliver as many performances as Easybuild or Spack, which generally

run on HPC systems. Contrary to the package managers mentioned above, GNU Guix

(“Guix”, 2022) and Nix (“NixOS”, 2022) require root privileges to work. GNU Guix is

a general-purpose package manager that implements the functional package man-

agement paradigm pioneered by Nix. GNU Guix extends Nix features by proposing

a unified interface for package definitions and their implementations. Both focus

on software reproducibility. The LHCb collaboration was mainly concerned about

reproducibility of the results and portability and, therefore, has decided to employ Nix

to build part of the software stack of the experiment (Burr, Chris et al., 2019).

Unfortunately, package managers are still not perfect. According to Courtès et

al., some of them generally implicitly rely on tools or libraries already installed on
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the system, which can also be unavailable (Courtès and Wurmus, 2015). The ad-hoc

naming conventions they rely on to identify builds fail to capture the directed acyclic

graph (DAG) of dependencies that led to a particular build. Alternatively, progress in

virtualization has resulted in various container implementations.

Containers

As we have explained in Section 1.3.1, containers only virtualize software layers above

the OS level and provide a lightweight solution to reproduce an environment com-

pared to VMs. Containers provide isolation through the use of Linux cgroups and

namespaces and embed all the dependencies required to execute the contained

software application. These dependencies may include system libraries, external

third-party code packages, or OS-level applications. Docker (“docker”, 2022), Singu-

larity - now Apptainer - (Kurtzer et al., 2017), Shifter (“Shifter - Containers for HPC”,

2022), Podman (“podman”, 2022) and Charliecloud (Priedhorsky and Randles, 2017)

are popular choices among container technologies.

Docker democratized container technology and remains one of the most popular

solutions, especially in the cloud computing area. Docker needs root permission to

run, which generally contradicts HPC system policies. Moreover, Docker does not

natively support MPI operations that are often needed for many HPC tasks. Podman

is an alternative to Docker, which replaces the daemon-client architecture of Docker

with individual processes that run the containers. Podman can run rootless containers

through the use of user namespaces. Apptainer, Charliecloud and Shifter are designed

for HPC systems. While Shifter remains relatively specific to NERSC supercomput-

ers according to Abraham et al. (Abraham et al., 2020), Singularity/Apptainer and

Charliecloud have been adopted by various HPC systems across the world. Singulari-

ty/Apptainer provides isolation for workloads while preventing privilege escalation.

Charliecloud focuses on simplicity of architecture instead of portability, and provides

a way to encapsulate dependencies with minimal overhead. Abraham et al. deliver

further details about these implementations (Abraham et al., 2020). DIRAC supports

Singularity/Apptainer within certain grid sites and opportunistic supercomputers. It

is able to launch jobs within platform-compatible containers on WNs.

Courtès et al. express reserves when it comes to reproducibility aspects (Courtès

and Wurmus, 2015). According to them, containers are resource-hungry, coarse-grain
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and do not compose. Furthermore, configuration files used to build containers -

Docker files, Definition files - suffer from being too broad to reproduce a software

environment. Lastly, the tendency to rely on complete third-party system images is a

security concern: part of the containers can be considered a black box. To get more

control over software across many distributed sites, CERN experiments have relied on

the CernVM-File System (CVMFS) for years.

2.3.2 Distributing software across distributed computing resources:

another approach

Delivering a reproducible environment along with up-to-date software across thou-

sands of heterogeneous computing resources in a user-friendly way is a major chal-

lenge: Buncic et al. designed CernVM and CVMFS to tackle it by decoupling the

software from the Operating System (Buncic et al., 2010). The approach has worked

well in WLCG where sites are expected to mount CVMFS on the nodes, but this is

rarely the case when it comes to opportunistic resources such as supercomputers. In

Section 2.3.2, we detail the main features of CVMFS and illustrate existing solutions to

integrate it on constrained resources having no external connectivity.

CVMFS

CernVM (“CERNVM-FS”, 2022) is a thin Virtual Software Appliance of about 150 Mb

in its simplest form. It supports a variety of hypervisors and container technologies

and aims to provide a complete and portable user environment for developing and

running HEP applications on any end-user computer and Grid Sites, independently

of the underlying Operating Systems used by the targeted platforms. CVMFS is a

scalable and low-maintenance file system optimized for software distribution. CVMFS

is implemented as a POSIX read-only file system in user space. Files and directories

are hosted on standard web servers and mounted on the computing resources as a

directory. The file system performs aggressive file-level caching: both files and file

metadata are cached on local disks as well as on shared proxy servers, allowing the file

system to scale to a large number of clients (Buncic et al., 2010).

This approach has been mainly adopted by the HEP community and is now

getting users from various communities (Arsuaga-Rios et al., 2015). In a few years,
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it has become the standard software distribution service on Grid Sites of WLCG.

CVMFS developers have extended the features of the file system and have provided

additional tools to support clouds (Harutyunyan et al., 2012; Segal et al., 2011) and

supercomputers (Blomer et al., 2017). At the beginning of 2021, CVMFS was managing

about 1 billion files delivered to more than 100,000 computing nodes by (i) 10 public

data mirror servers - called Stratum1s - located in Europe, Asia and the United States

and (ii) 400 site-local cache servers (“CernVM-FS Overview and Roadmap”, 2021).

To keep the file system consistent and scalable, developers conceived CVMFS as a

read-only file system. Release managers - or continuous integration workers - aiming

to publish a software release have to log in to a dedicated machine - named Stratum0

- with an attached storage volume providing an authoritative and editable copy of

a given repository (Blomer, Jakob et al., 2019). Changes are written into a staging

area until they are committed as a consistent changeset: new and modified files are

transformed into a content-addressed object providing file-based deduplication and

versioning. In 2019, Popescu et al. introduced a gateway component, a web service

in front of the authoritative storage (Popescu, Radu et al., 2019), allowing release

managers to perform concurrent operations on the same repository and make CVMFS

more responsive (Figure 2.4.1.b and 2.4.2.b).

The transfer of files is then done lazily via HTTP connections initiated by the

CVMFS clients (Figure 2.4.3.b). Clients request updates based on their Time-to-Live

(TTL) value, which is generally about a few minutes. Once the TTL value expires,

clients download the latest version of a manifest - a text file located in the top-level

directory of a given repository composed of the current root hash, metadata and

the revision number of this repository - and make the updated content available.

Dykstra et al. provide additional details about data integrity and authenticity mecha-

nisms of CVMFS to ensure that data received matches data initially sent by a trusted

server (Dykstra and Blomer, 2014). This pull-based approach has been proven to be

robust and efficient, according to Popescu et al. (Popescu, Radu et al., 2019), and

has been widely used to distribute up-to-date software on grid sites for many years

(Figure 2.4.2.a). Figure 2.4 presents a simplified schema summarizing the software

distribution process on grid sites via CVMFS.

Users may need to use various versions of software on heterogeneous computing

resources implying different OS and architectures. To provide a convenient and repro-
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Figure 2.4 – Schema of the CVMFS workflow on Grid Sites: (a) the steps to get software
dependencies from the job; (b) the steps to publish a release of a software in CVMFS.
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ducible environment for the users, release managers generally provide software along

with build files related to many architectures, OS and compilers. Many communities

have started merging package manager systems with CVMFS (Boissonneault et al.,

2019; Burr, Chris et al., 2019; Dröge et al., n.d.; Volkl, Valentin et al., 2021; Willett, 2019;

Xu, Benda et al., 2020). Overall, the solutions consist of four nested layers: (i) the

host-layer managing the network, CPU and co-processors; (ii) the file-system layer,

CVMFS, dealing with software files across distributed computing resources; (iii) the

compatibility layer, which generally take the form of a container or an OS such as a

Nix or Gentoo (“Gentoo Linux”, 2022), providing required OS components; (iv) the

software management layer handling software and versions for various platforms

(Easybuild, Spack).

Software delivery under constraints

To keep up with the computing needs, experiments have started to use supercomput-

ers. Nevertheless, supercomputers have more restrictive security policies than Grid

Sites: they do not allow CVMFS to be mounted on the nodes by default and many

of them have limited or even no external connectivity. The LHC communities have

developed different solutions and strategies to cope with the lack of CVMFS, which is

a critical component to run their workflows.

Stagni et al. rely on a close collaboration with some supercomputer centers -

Cineca in Italy and CSCS in Switzerland - to get CVMFS mounted on the worker nodes

(Stagni et al., 2020). Nevertheless, their strategy is limited to a few supercomputers and

their approach would be difficult to reproduce on a large number of supercomputers:

most of them do not allow such collaboration.

To deal with the lack of CVMFS on supercomputers with outbound connectivity,

Filipčič et al. studied two solutions: rsync and Parrot (Filipčič et al., 2015). The first

solution consisted in copying the CVMFS software repository in the shared file system

using rsync: a utility aiming to transfer and synchronize files and directories between

two different systems. rsync added a significant load on the shared file system of

the supercomputers and required changes in the repository absolute paths. The

second solution was based on Parrot: a utility copied on the shared file system of

the supercomputer, usable without any user privileges. Parrot is a wrapper using

ptrace attached to a process that intercepts system calls that access the file system
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and can simulate the presence of arbitrary file system mounts, CVMFS in this case.

Nevertheless, the solution was "unreliable in a multi-threaded environment" (Filipčič

et al., 2015) because it was unable to handle race conditions. These methods did not

constitute a production-level solution but contributed to further and future advanced

solutions.

In recent years, developments in the Fuse user space libraries and the Linux kernel

have lifted restrictions for mounting Fuse file systems such as CVMFS. Developers

of CVMFS have integrated these changes and designed a package called cvmfsexec

(“cvmfsexec”, 2022), which allows mounting the file system as an unprivileged user.

The program needs a specific environment to work correctly: (i) external connectiv-

ity; (ii) the fusermount library or unprivileged namespace mount points or a setuid

installation of Singularity/Apptainer. Blomer et al. provide additional details about

the package (Blomer, Jakob et al., 2020).

Communities exploiting supercomputers that do not provide outbound connec-

tivity cannot directly benefit from cvmfsexec: the package still needs to pull updated

data via HTTP, which is not available in such context. We can distinguish two cases:

(i) supercomputers that grant outside network or specific service access to a limited

number of nodes and (ii) supercomputers that do not provide nodes with any external

connectivity at all.

Tovar et al. recently worked on the first case (Tovar, Benjamin et al., 2021). They

managed to build a virtual private network (VPN) client and server to redirect network

traffic from the workloads running on the worker nodes to external services such as

CVMFS. In this configuration, the VPN client runs on a worker node along with the

job, while the VPN server is hosted on one of the specific nodes of the supercomputer

and can interact with external services. Communities working on supercomputers

from the second case cannot leverage the solution developed by Tovar et al.

O’Brien et al., one of the first teams to work with supercomputers in the LHC

context, address the lack of external network access by copying part of it to the shared

Lustre file system accessible by the WNs (O’Brien et al., 2014). The approach (i)

worked because the environment of the supercomputer was similar to a grid site one,

(ii) required changes in the CVMFS files and (iii) degraded the performance of the

software as Angius et al. described (Oleynik et al., 2017). To tackle the latter issue on
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the Titan supercomputer, Angius et al. moved the software to a read-only NFS server:

this eliminated the problem of metadata contention and improved metadata read

performance.

Similarly, on the Chinese HPC CNGrid, Filipčič regularly packed a part of CVMFS

in a tarball. Filipčič provided a deployment script to install the software and fix the

path relocation on the shared file system to the local system administrators: they were

then responsible for getting and updating the CVMFS tarball on the network when

requested (Filipčič, 2017).

To help communities to unpack a CVMFS repository in a file system, a team

of developers designed uncvmfs (“uncvmfs”, 2018). The utility deduplicates files of

a software stack: it populates a given directory with the CVMFS files that are then

hard-linked into it, if possible. The program was used, in combination with Shifter

(Gerhardt et al., 2017), a container technology providing a reproducible environment,

in the context of the integration of the ALICE and CMS experiments workflows on the

NERSC High-Performance Computing resources (Fasel, 2016; Hufnagel, 2017). As a

proof of concept, Gerhardt et al. used uncvmfs to deduplicate the ATLAS repository

and copy it into an ext4 image - about 3.5Tb of data containing 50 million files and

directories -, compressed into a 300Gb squashfs image; and Shifter to provide a

software-compatible environment to run the jobs (Gerhardt et al., 2017). Despite

encapsulating the files in a container reduced the startup time of the applications, the

solution generated large images, long to update and deliver on time.

Teuber and the CVMFS developers conceived cvmfs_shrinkwrap to cope with

large images (Teuber, 2019). The tool supports uncvmfs features with certain opti-

mizations and delivers additional features: cvmfs_shrinkwrap can extract specific files

and directories based on specification files, deduplicate them, making them easy to

export in various formats such as squashfs or tarball. In this way, the following opera-

tions remain the responsibility of the user communities: (i) trace their applications -

meaning, in this context, "capturing all their dependencies and their locations in the

file system" -, (ii) call cvmfs_shrinkwrap to get a subset of CVMFS composed of the

minimum required files, and (iii) export this subset in a certain format and deploy it

on sequestered computing resources to run their jobs.

Douglas et al. already described such a project in an article (Benjamin, Douglas et
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al., 2019), but the work remains specific to the ATLAS experiment. They use uncvmfs to

produce a large image that has to be filtered afterward. We would need an open-source

utility to assist various user communities in this process. It would take applications of

interest in input and would output - with the help of cvmfs_shrinkwrap - a subset of

CVMFS with the minimum required files to run the given applications, in combination

with a container image if needed.

2.4 Using allocated computing resources efficiently

2.4.1 Exploiting multi-core/node allocations...

Computing resources have been acquired and the environment has been set up. From

this point, it is essential to make the best use of the resources during the allocated time.

Under-using them would represent a lack of workload processing for the consumers,

and to some extent, a waste of financial resources. Over-using them could force the

system to kill tasks before they could provide any meaningful result, which would

lead to a waste of time and computing power. Therefore, in Section 2.4, we present

approaches to maintain a good balance, both in terms of space (Section 2.4.1) and

time (Section 2.4.2) allocated.

While it is common to get single-core allocations in grid resources - especially

in WLCG -, multi-core and multi-node allocations are largely employed within the

HPC community. In the context of this thesis, we define a multi-core allocation as

a LRMS reservation of multiple hardware threads hosted within a single WN; and a

multi-node allocation as a LRMS reservation of multiple hardware threads distributed

within multiple WNs. HPC clusters tend to propose a limited number of possible

allocations to users. In such a context, it is the responsibility of the users to exploit as

many resources as possible within a single allocation and make the best use of them.

Developers of grid WMS solutions attempting to exploit HPC clusters have worked on

different solutions to exploit many-core allocations.

Multi-process/threaded tasks

For the LHC Run2, ATLAS developers chose to enable multi-processing in the re-

construction framework, AthenaMP, to exploit 8-core allocations while reducing the
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memory consumption from 19 to 11 GB (Campana, 2015). As CMS and ALICE devel-

opers did (C. Jones, Collaboration, et al., 2017; Tadel and Carminati, 2010), ATLAS

developers also worked on a multi-threaded version of their framework to better scale

with many-core architectures (Leggett et al., 2017).

For its part, the LHCb collaboration has recently started to develop a multi-

threaded framework on top of Gauss, Gauss-on-Gaussino, seen in Section 1.4.2. There

was no urgent need until now, as the memory footprint of the LHCb Run2 applica-

tions was small enough to fit with all the computing resources available. To leverage

multi-core allocations, the collaboration also created a method to flexibly provision

jobs having different requirements on many-core nodes: the fat-node partitioning

mechanism.

Fat-node partitioning

The LHCb collaboration had the opportunity to interact with the Marconi A2 partition

of Cineca, a consortium joining 70 Italian universities, four national research centers

and the Ministry of Universities and Research in Italy. The partition contains Xeon Phi

7250 (KNL) nodes, each of them composed of 68 physical cores and up to 4 hardware

threads per core, seen as 272 logical cores. Rather than implementing a quick ad-hoc

solution for the partition, DIRAC developers designed a flexible and generic fat-node

partitioning mechanism to manage independent jobs simultaneously from a Pilot-Job

(Stagni et al., 2020).

DIRAC submits a Pilot-Job on one many-core node per allocation. Once installed

on the node, the Pilot-Job checks the number of processors available and sequentially

fetches jobs accordingly to run them in parallel. The fat-node partitioning mechanism

supports complex descriptions of jobs and resources. It allows users to submit single-

core and multi-core jobs. Users can also specify a range of cores to use (e.g. from 1 to

32 cores), or a "Whole node" tag to use all the cores available on the node. In the same

way, DIRAC can interpret and enforce constraints from resource providers. Resource

providers may only accept single-core jobs, multi-core jobs, both, or only "Whole

node" jobs. They may also ask the exact number of processors a job is requesting in

advance.

Dealing with multi-node allocations requires further methods and libraries to
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manage workloads in parallel across many nodes. From an allocation, we would need

to identify and access available nodes.

Dealing with multi-node allocations

To exploit many-core and multi-node allocations, ATLAS teams developed MPI wrap-

pers, combining multiple instances of single-node tasks simultaneously (De et al.,

2015). In this context, it is worth noting that MPI is used for management of embar-

rassingly parallel tasks rather than for collaborative distributed computing, its main

purpose. The MPI wrappers are workload-specific as they have to set up the environ-

ment, organize per-rank worker directories and input parameters, and clean up on

exit. The WMS pushes MPI wrappers to LRMS, requesting multi-node allocations for

each of them. At run time, a corresponding number of copies of a wrapper script is

installed on each node allocated. Each copy starts a task as a subprocess and waits

until its completion. A similar concept was applied by the ALICE collaboration on the

NERSC supercomputer (Fasel, 2016).

Such an approach was used to exploit allocations on the Titan supercomputer.

Each copy of an MPI wrapper was handling a multi-process Athena task. However, this

concept makes the scheduling of multiple generations of tasks in the same allocation

impossible: once a statically defined number of tasks are packaged into a wrapper, no

further tasks can be added to that wrapper, which prevents efficient use of available

walltime. The NGE concept introduced by ATLAS, and discussed in Section 2.2.2,

addressed this issue (Oleynik et al., 2017). It consists in submitting pilots instead of

MPI wrappers to: (i) avoid further job packaging and submission overheads; (ii) relax

assumptions such as knowing the number of simulations, and events per simulation,

before submitting; (iii) offer task-independent scheduling interface while hiding the

mechanics of coordination and communication among multiple worker nodes. The

pilots use the Open Run-Time Environment (ORTE), a critical component of the

OpenMPI implementation, to coordinate the executors.

The DIRAC team also worked with MPI wrappers, in the context of the GISELA

Latin American Grid Initiative in 2012 (Tsaregorodtsev and Hamar, 2012). Tsaregorodt-

sev et al. were mostly focused on supplying special services to support MPI jobs in

grid sites not natively running MPI. They were able to generate dynamic allocation of

virtual computer pools leveraging many single-core allocations in grid sites. Neverthe-
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less, the project was abandoned. Currently, DIRAC does not embed any mechanism

to support multi-node allocations. Building a layer on top of the fat-node partitioning

concept is discussed in Chapter 4.

To meet growing demand, especially from the medical community and HPC users,

Dotti et al. proposed a different approach: a Geant4 extension employing MPI (Dotti et

al., 2015). A hybrid approach, combining MPI and multi-threads allows for simplified

use of large core-count resources: users do not need anymore to write a custom script

to perform job splitting, handling and merging.

2.4.2 ...As long as possible

CPU time spent on a task depends on the underlying configuration of the allocated

computing resources. Site administrators may configure computing resources on

their own: they can provide virtual or physical machines and enable or disable param-

eters such as over-clocking and hyper-threading, the latter being a potential source of

errors (“[WARNING] Intel Skylake/Kaby Lake processors: broken hyper-threading”,

2017). They can also involve heterogeneous computing resources having different

CPU architectures, memory access time or caching capabilities. Therefore, bench-

marking computing resources capabilities, regarding a given task, is critical to exploit

allocations efficiently.

CPU benchmarking

Andersen et al. define benchmarking as "the process of continuously measuring

and comparing one’s business processes against comparable processes in leading

organizations to obtain information that will help the organization identify and imple-

ment improvements" (Andersen and Pettersen, 1995). CPU benchmarking involves

measurement and comparison of the performance of various processors to run appli-

cations of interest. Charpentier from the LHCb collaboration (Charpentier, 2017) and

Valassi et al. (Valassi, Andrea et al., 2020) identified several reasons proving that CPU

benchmarking is a critical task for the HEP community:

• Experiments keep an accounting of the consumed resources, both yearly and in

the planning of long-term projects.

• Experiments know whether a given task will have enough compute resources
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to complete successfully before attempting to run it. They can optimize its

placement.

• Individual computing sites buy the CPU resources providing the best price-

performance ratio.

• Software developers compare the performance of an application to the theoreti-

cal compute power of the machine where it is run, or to another application.

Dixit from IBM Corporation defines three types of popular CPU benchmarks: ker-

nel, synthetic and application (Dixit, 1993). Kernel benchmarks are based on valuable

code fragments representing the majority of CPU time in applications of interest.

Synthetic benchmarks are custom-built to include a mix of low-level instructions

resembling those found in applications of interest. Kernel and synthetic benchmarks

are generally small, prone to attack and measure only the CPU performance. The best

benchmark for a given application is probably the application itself. Nevertheless, due

to the number of existing applications, considering that many of them are proprietary,

this option is often impractical.

Results of a CPU benchmark can have various formats (Pelevanyuk, 2021). A score

can take the form of (i) a number corresponding to a relative performance on some

artificial workload, or (ii) absolute numbers based on different metrics such as Flops,

MB/s, reads/s and writes/s.

CPU benchmarking in HEP

To cope with challenges of ever-greater complexity, developers have to design cutting-

edge software relying on more specific and heterogeneous computing architectures.

These always-changing requirements imply CPU benchmarking evolution. Valassi et

al. propose an exhaustive state-of-the-art related to the CPU benchmarking history in

the HEP domain (Valassi, Andrea et al., 2020).

In the late 1970s, the User Support Group at CERN designed the "CERN Unit", a

CPU benchmark based on a set of typical FORTRAN66 programs for event simulation

and event reconstruction (McIntosh, 1992). The results were normalized by compari-

son with an IBM 370/168. The "CERN Units" were mainly used to grant CPU quotas

to users of the CERN central systems. In the early 1990s, McIntosh decided to redefine
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the "CERN Unit": it was impossible to run the benchmark on newer machines. Thus,

McIntosh changed the tests to make them more portable and more representative of

the HEP workload of this time (McIntosh, 1992).

In his article, McIntosh also reviews other existing benchmarks outside HEP and

mentioned - without knowing it at this time - the popular successor of the "CERN

Unit": the SPEC benchmark suite. The Standard Performance Evaluation Corporation

(SPEC) defines itself as a "non-profit corporation formed to establish, maintain and

endorse standardized benchmarks and tools to evaluate performance and energy

efficiency for the newest generation of computing systems" (“Standard Performance

Evaluation Corporation”, 2022). SPEC aims to "provide the benchmarker with a stan-

dardized suite of source code based upon existing applications that have already been

ported to a wide variety of platforms by its membership" (“Standard Performance Eval-

uation Corporation”, 2022). After SPEC CPU92 and SPEC CPU95, the HEP community

adopted SPEC CINT2000 (SI2K), an integer benchmark suite comprised in SPEC CPU

2000 (Michelotto et al., 2010), for the Computing Technical Design Report (CTDR) of

all the LHC experiments (Valassi, Andrea et al., 2020). In 2005, several presentations

at HEPiX (“HEPiX Online”, 2022), an international group of HEP computing users

founded in 1991 and interested in benchmarking topics, pinpointed discrepancies be-

tween the performances of HEP applications and the SI2K scores. In 2006, the HEPiX

Benchmarking Working Group (BWG) was established to address these discrepancies.

In 2009, a consensus emerged within HEPiX: the group suggested adopting a new

HEP-specific benchmark named HEP-SPEC06 (HS06), based on the latest SPEC suite

at this moment, SPEC CPU2006 (Henning, 2006).

HS06 was written in C++ and is composed of seven programs representing real

applications, mostly from scientific domains, although not from the HEP domain

(Valassi, Andrea et al., 2020). The difference between HS06 and SPEC CPU2006 lies

in a few HEP-specific tunings. Up to now, it has been the official CPU performance

metric to be used by WLCG sites: (i) HS06 score was found to be highly correlated to

throughput on a large number of diverse machines replicating typical WLCG worker

nodes, for several HEP applications from all the LHC experiments; (ii) HS06 CPU usage

pattern was found to be quite similar to that observed on the CERN batch system used

by the LHC experiments, and its memory footprint was comparable to that of typical

HEP applications.
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In 2017, Charpentier, from the LHCb collaboration, analyzed correlations between

HS06 and LHCb reconstruction and simulation applications (Charpentier, 2017). He

observed bad scaling properties with the applications. The ALICE collaboration

reached the same conclusion (Giordano and Santorinaiou, 2020), and the HS06 bench-

mark was declared as no longer representative of WLCG software and computing

(Valassi, Andrea et al., 2020). Different reasons led to this conclusion: (i) memory

footprints of the applications have increased in general; (ii) 64-bit builds have replaced

32-bit builds; (iii) multi-threaded, multi-process and vectorized software solutions

are becoming more common; (iv) the hardware landscape is also more and more

heterogeneous, with the emergence of non-x86 architectures such as ARM, Power9

and accelerators, especially at HPC centers. To address this issue, the HEPiX BWG

started further investigations to find novel benchmark solutions that could better fit

with the new HEP applications.

The SPEC CPU 2017 (SC17) benchmark suite, released by SPEC in 2017, as the

replacement of SPEC CPU 2006 was one of the considered candidates. SC17 is larger

and has a more complex codebase, with respect to its predecessor, and is shaped for

multi-core and multi-threads applications. Contrary to the initial expectations, it was

proven that SC17 does not bring much benefit with respect to HS06 (Giordano and

Santorinaiou, 2020). Since 2017, in conjunction with LHC experiments, the HEPiX

BWG has developed the so-called HEP-Benchmarks suite (Valassi, Andrea et al., 2020)

- the future successor of HS06 - based on HEP applications. The suite includes three

main components:

• The HEP-workloads package: the core of the suite. It contains the code and

infrastructure to build a standalone container for each of the HEP software work-

loads it includes. The HEP-workloads package supports a range of workloads

going from single-process and single-threaded software compatible with x86

CPUs to multi-process, multi-threaded applications targeting non-x86 CPUs

and accelerators. The system relies on CVMFS (“CERNVM-FS”, 2022), and Linux

containers.

• The HEP-score package: combines the benchmark scores derived from the

individual HEP workloads into a single number.

• The HEP-benchmark-suite package: a toolkit to coordinate the execution of

several benchmarks including HEPscore along with HS06, SC17 and others.

80



Running tasks on distributed and heterogeneous computing resources Chapter 2

Pelevanyuk, from the Joint Institute for Nuclear Research (JINR), explains that

HS06 is based on proprietary software and, therefore, is accessible only to site ad-

ministrators (Pelevanyuk, 2021). Running the whole suite of benchmarks is a time-

consuming operation, so site administrators perform the tests only if the structure

of their resources has changed. Thus, LHC experiments cannot leverage HS06 to

get insights into whether a given task could run within the allocated time on a given

worker node. They have relied on different approaches: Machine/Job Features, fast

CPU benchmarking tools and fine-grained event processing systems.

Machine/Job Features

In 2016, the HEPiX virtualization group, in conjunction with the WLCG Machine/Job

Features Task Force introduced the Machine/Job Features (MJF) mechanism (Alef

et al., 2016). MJF was designed as a set of standard specifications, implemented by the

resource providers. MJF provided running jobs with access to detailed information

about their current host (Machine features) and meta-information about themselves

(Job features). Machine features included the number of cores available, the CPU

power (HS06) and the shutdown time if any maintenance was planned. Job features

contained many details such as the number of cores allocated, the start and end

dates of the job, and the maximum CPU time or wall clock time that should be spent

running the job. MJF details were independent of the LRMS or VM model used, and

accessible either locally via the filesystem on a worker node, or remotely via HTTPS.

In 2016, the task force proposed MJF scripts to different sites willing to test the

software: a dozen of Tier1 and Tier2 sites were providing Machine/Job Features. WLCG

set up a monitoring infrastructure to measure the progress of the deployment and

validate the participating sites. In practice, sites did not all adopt MJF or did not update

the features after changing their computing resources, which led to fragmented and

erroneous information. Eventually, the project was abandoned. As a consequence,

fast CPU benchmarking appeared as a more reliable approach.

Fast CPU benchmarking in HEP

Developers of DIRAC designed an open-source fast and synthetic HEP CPU bench-

marking solution named DIRAC Benchmark in 2012 (DB12) (“Dirac Benchmark 12”,
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2022). The project has been written in Python2, is portable, and spends less than a

minute to provide an estimated HS06 score. The LHCb experiment and JINR heavily

rely on DIRAC Benchmark to compute the CPU power of the worker nodes, prior to

fetching a HEP task from a central broker (Korenkov et al., 2020). Combined with the

CPU time left information coming from the LRMS, it provides the CPU work left in an

allocation in HS06.seconds, and allows running the most appropriate HEP task on a

given computing resource:

C PUwor k = C PUpower ×C PUt i me (2.1)

For instance, a computing resource available for 1000 HS06.seconds would be able

to run two 500-HS06.second jobs. In 2016, Charpentier, from the LHCb collaboration,

finetuned DIRAC Benchmark to better fit with the evolution of the Monte-Carlo

simulation applications of the experiment, which resulted in the creation of Dirac

Benchmark 2016 (DB16). DB16 simply applies a factor of 1.54 to DB12, is specific to the

LHCb experiment and, therefore, has not been integrated into the DIRAC Benchmark

repository. To save CPU time, Stagni et al. introduced elastic MC simulation jobs

based on DB16 (Stagni and Charpentier, 2015). Once introduced, a MC simulation

production is first run on a test site: a small number of events are executed. Once

completed, the CPU time spent on each event is averaged and combined with the

CPU power:

C PUwor k o f 1event = C PUpower ×mean(C PUt i me per event ) (2.2)

The C PUwor k o f 1event is expressed in HS06.seconds. The value is stored and

bound to the MC simulation production. At the beginning of its execution, a job

related to a given MC simulation production computes the number of events to

produce, based on the CPU work left in the allocation (Equation (2.1)), and the CPU

work necessary to execute 1 event of the production - which was obtained on the

test site with Equation (2.2). Because the CPU power value computed by DIRAC

Benchmark is an estimation, a margin of 0.75% is applied to make sure that the job
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will not be killed by the system:

event s to pr oduce =
C PUpower ×C PUt i me

C PUwor k o f 1event
×0.75. (2.3)

DIRAC Benchmark has been successfully employed for many years by various

communities, but would need to be ported to Python3: Python2 was declared depre-

cated in January 2020. This would potentially imply score discrepancies and would

need to be cautiously handled and extensively tested. Moreover, the fast CPU bench-

marking solution would need to be further analyzed to comply with new types of

processors. We will tackle the issue in Chapter 3. Alternatively, fine-grained event

processing system would also allow experiments to efficiently leverage CPU time

within the allocations, especially from preemptible computing resources.

The ATLAS Event Service: a different approach

ATLAS teams have worked with various opportunistic and preemptible computing

resources (Cameron et al., 2017; Svatos et al., 2020a, 2020b). In this context, jobs could

be killed at any time without any warning if other users would require the resources.

To address this issue and fully exploit computing resources, Calafiura et al. de-

signed a fine-grained event processing system named ATLAS Event Service (AES)

(Calafiura et al., 2015a). Based on the Job Execution and Definition Interface (JEDI)

(De et al., 2014), which dynamically breaks down tasks at the level of either individual

events or event clusters, AES streams a small portion of the input data to the jobs in

real-time. While the jobs persist, they can elastically continue to consume new inputs

and stream away outputs with no need to tailor the execution time to the time left.

In such as case, jobs are eventually killed by the system at any time with minimal

data losses. AES is particularly adapted to opportunistic and preemptible computing

resources with external connectivity.

To deal with partial outbound connectivity, Calafiura et al. developed Yoda, an

MPI application submitted to the LRMS by a specialized component of the Pilot

Manager running on the edge node (Calafiura et al., 2015b). The Pilot Manager is

responsible for downloading input data to the shared file system, getting job defini-
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tions from the PanDA server and streaming out the outputs produced by the Yoda

jobs. A Yoda application consists of a leader orchestrating the entire MPI application

by continuously distributing fine-grained input data to followers and collecting their

outputs.

DIRAC Benchmark prevents jobs to be killed by the system and releases com-

puting resources before the end of the allocation, which can represent waste for the

community submitting jobs. Conversely, AES and Yoda let jobs run out of time to

exploit allocations as long as possible, which generates a small waste per allocation:

the last events processed do not provide any meaningful result. The approach is

well-suited for preemptible resources, but not for pledged resources. Indeed, running

out of time would imply not releasing resources that could have been better used by

other communities.

2.5 Conclusion

This chapter is about getting as many allocations as needed and exploiting them

efficiently while preserving reproducibility across distributing and heterogeneous

sites. It should be most suitable for WMS developers aiming to manage HTC workloads

with limited inputs on various independent sites, especially in mid-sized clusters and

supercomputers.

First, we have described the grid environment and various implementations of

middleware: LRMS, CEs, WMS (Section 2.2.1). While middleware relies on common

standards, it is worth noting that the profusion of implementations makes it difficult to

leverage a large number of computing resources and justifies the development of extra

components. We have presented various approaches to submit jobs from WMS to

WNs in such an ecosystem (Section 2.2.2). The push model remains generally adapted

to any use case, especially when constraints are important, but remains inefficient.

Conversely, pull model solutions are more efficient but remain specific to certain

types of computing resources. The Pilot-Job paradigm has been widely adopted in

the grid context for years but is not always adapted for supercomputers. Furthermore,

we are not sure the Pilot-Job implementation of DIRAC is efficient enough to fully

exploit grid computing resources. We have also briefly exposed security approaches

to prevent malicious use of the WMS services from an allocation (Section 2.2.3). The
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current approach, based on X.509 certificates is now considered outdated and should

be replaced with a token-based implementation.

Then, after analyzing the LHCb software validation process, we have surveyed dif-

ferent approaches to bring Gauss requirements to the allocated computing resources.

This mainly involve container and package manager implementations (Section 2.3.1).

Package managers generally implicitly rely on tools or libraries already installed on the

system, which can also be unavailable, whereas containers are considered resource-

hungry and coarse-grain, their definition files being too broad to be precisely repro-

duced. We also described CVMFS, a shared file system developed for distributed

software across many independent sites (Section 2.3.2). We have highlighted issues

and existing solutions to integrate the shared file system on WNs of supercomputers.

When it comes to resources with no external connectivity, most of the solutions re-

main too specific and do not cover the entire process to provide a functional subset of

CVMFS.

Lastly, we have seen approaches to efficiently exploit allocations (Section 2.4).

LHCb is equipped to manage multi-core allocations with the fat-node partitioning

mechanism, but cannot deal with multi-node allocations. MPI libraries seem to

be a great choice in this latter case. We have also illustrated two main approaches

to run tasks as long as possible within allocations: fast CPU benchmarking tools

and fine-grained event processing systems. LHCb has successfully employed DIRAC

Benchmark to compute CPU work left within allocations. The benchmark has to be

ported to Python 3 and be deeply analyzed in regards to Gauss executions.

This chapter comprises many solutions related to grid computing and super-

computers that we could leverage and extend to (i) better exploit WLCG computing

resources (Chapter 3) and (ii) start integrating the LHCb workload - Gauss tasks in

priority - on supercomputers (Chapter 4).
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3.1 Introduction

WLCG resources only are no longer sufficient and needs additional support to process

the continuously growing amount of data coming from the LHC experiments. There-

fore, the WLCG communities have found ways to exploit non-reserved CPUs, often on

non-formally pledged resources as stated in Section 1.4.2.

On the one hand, developers have made significant efforts to integrate non-grid

and opportunistic resources such as cloud systems, supercomputers and volunteering

computing middleware. They have developed novel mechanisms to provision work-

loads and efficiently exploit computing allocations on these new types of resources.

On the other hand, there has been less focus on (i) Pilot-Job provisioning tools and

(ii) fast CPU benchmarking tools dealing with shared and distributed heterogeneous

clusters, such as grid resources. Yet, many virtual organizations such as LHCb still

mainly depend on grid resources.

This chapter comprises two parts. In the first part (Section 3.2), we want to explore

whether improving the Pilot-Job provisioning mechanism bound to the push model

could speed up the Pilot-Job submission frequency and, thus, could increase the

throughput of the jobs on grid resources (Boyer et al., 2022a; Boyer et al., 2020). We

propose to test this hypothesis by analyzing and improving the "DIRAC Site Director"

- the Pilot-Job provisioning utility used by LHCb on WLCG - and assessing the impact

of the changes on WLCG over 12 months. If successful, the results of our study could

be directly applied by communities involving DIRAC and could deliver insights to

any community dealing with a grid architecture through the Pilot-Job paradigm in

a broader sense. After the presentation of the fundamental features of the DIRAC

Site Director and its current limitations in Section 3.2.1, we describe the solutions

proposed to increase the Pilot-Jobs submission rate and the throughput of the jobs

in Section 3.2.2. Results are finally assessed in Section 3.2.3 and discussed in Section

3.2.4.

In the second part (Section 3.3), we aim at porting DIRAC Benchmark to Python

3 and checking whether it would still be correlated with Gauss. In Section 3.3.1, we

enumerate DIRAC Benchmark use cases and features. Then, in Section 3.3.2, we

explain our methods to port DIRAC Benchmark to Python 3.9. The last two sections

are about comparisons (i) between the Python 2 and the Python 3 versions of DIRAC
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Benchmark (Section 3.3.3) and (ii) between the Python3-corrected version of DIRAC

Benchmark 16 and Gauss (Section 3.3.4).

3.2 Improving Pilot-Job provisioning

3.2.1 Analysis of the DIRAC Site Director

The Site Director is a DIRAC agent performing Pilot-Job submission via the so-called

push model to install pilots - mostly - on grid resources. In Section 3.2.1, we analyze its

features and expose several limitations. While some of these limitations are bound to

the grid architecture, some others could be addressed by performing changes within

the source code and the configuration of the Site Director.

Overview of the Site Director

The Site Director works in cycles, executing the same logic at each iteration. An

iteration consists in:

• Getting information about LRMS queues and the WNs bound to them from

the Configuration service first (Figure 3.1 Step 1): OS installed, architecture of

the WNs, maximum number of waiting pilots allowed in the queues, maximum

number of pilots allowed in the Site. The Configuration service fetches informa-

tion from the Berkeley Database Information Index (BDII), a service composed

of multiple agents installed on the Sites, collecting data at the WN, Site, and Grid

level according to Osman et al (Osman et al., 2012). The Configuration service

also provides the Site Director with details about the CEs to connect to them:

name, credentials if required.

• Querying the Matcher service, for each valid LRMS queue. Given a LRMS queue

configuration - namely details about the architecture of the WNs and the OS

installed on them - the Matcher service delivers a list of n j jobs that could be

executed on the underlying WNs (Figure 3.1 Step 2).

• According to the number of jobs that match the configuration n j and the slots

available in the LRMS queue S, generating a certain number of pilots np as

scripts to run on the WNs: np = min(n j , S) (Figure 3.1 Step 3). S the number of
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slots available is determined by the limits set by the Site administrators minus

the number of pilots submitted in previous iterations that are still waiting or

running. Pilots previously submitted are registered in the PilotsDB database.

• Pushing these scripts through the multiple components of the grid to reach the

WNs. A Site Director only submits the necessary number of pilots, according to

the jobs waiting in the queues, to avoid congesting the Sites with empty pilots.

To submit the scripts to a CE, the Site Director calls a DIRAC communication

interface providing the necessary tool to interact with it (see Figure 3.1 Step 4).

• Registering the pilots submitted in the PilotsDB database on which next itera-

tions will draw upon (Figure 3.1 Step 5).

• Monitoring pilots to spot failures and provision resources accordingly. The Site

Director calls the DIRAC communication interfaces to get the status of the pilots

(Figure 3.1 Step 6).

• Reporting the status to the PilotsDB database and the Accounting service (Fig-

ure 3.1 Step 7). The Accounting service collects and stores data about DIRAC

activities that can then be used to build reports.

It is worth noting that a Site Director is highly and dynamically configurable.

DIRAC administrators can set up multiple instances that can run in parallel and

manage specific Sites, CEs, and types of resources to share the workload. Additionally,

they can tune parameters to modify the functioning of a Site Director: execute the

monitoring process every nupd ate cycle, wait n f ai l cycles before submitting in a LRMS

queue that failed, get the outputs of the pilots, etc.

By default, in LHCbDIRAC, Site Directors are configured to monitor pilots every

10 cycles. They also wait 10 cycles before submitting in a LRMS queue that failed, and

do not fetch the outputs of the pilots. Additionally, one cannot control the submission

operations, despite the many parameters a Site Director contains. Indeed, a Site

Director stops generating and submitting pilots for 10 cycles in the LRMS queues that

have no more slots available. Lastly, LHCbDIRAC administrators have configured the

minimum duration of the Site Director cycles to 120 seconds.
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Figure 3.1 – An iteration of a Site Director: steps to manage Pilot-Jobs on grid comput-
ing resources.

Limitations due to the grid architecture

We carried out an analysis in DIRAC for the LHCb experiment to emphasize the

different limitations inherent to the grid architecture that could cause latencies and

prevent to submit as many pilots as needed to run jobs. Since we cannot profile the

production environment, we draw on the DIRAC command-line interface, the web

application, as well as the log files to get insight into the Site Directors. Raw data and

results from the analysis are publicly available (Boyer, 2021a).

The Accounting service of the web application provides the average number of

jobs processed by pilot per day and per CE during a month (Figure 3.2). In the context

of LHCb, most of the pilot handles a single job, despite pilots have been designed
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to fetch and run multiple jobs. Indeed, getting an accurate value of the time left

allocated to a pilot is a complex operation due to the grid heterogeneity. Site managers

work with various LRMS types and versions and adjust specific features differently.

Therefore, LHCbDIRAC administrators prefer to limit the number of jobs that a pilot

can process, to avoid aborting the jobs that would run out of time. Thus, a Site Director

generally submit a pilot per waiting job.
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Figure 3.2 – Average number of jobs processed per pilot during a month, classified by
the CE that was used to submit them

The web application also presents the time that pilots take from their submission

to their installation on a WN. According to the records of 3000 pilots installed on 33

Sites, this duration is not immediate, and generally vary from 165 seconds (1-quantile)

to 1719 seconds (3-quantile) (Figure 3.3). Indeed, many VOs are competing for limited

computing resources on different Sites. LRMS of the Sites may put the pilots on hold

when they arrive, while other VOs are using WNs. Figure 3.3 also contains the time

that 3000 jobs take from their arrival in DIRAC to their installation on a WN via a pilot.

The median duration to effectively bind a waiting job to a pilot is about 92 seconds,

while the median duration to send and execute a pilot on a WN is 309 seconds. The

medians demonstrate that jobs are rarely processed by pilots that were generated for

this purpose, outlining the importance of always having waiting pilots in the LRMS

queues.

The web application contains a configuration page with the parameters of LRMS

queues. LRMS queues limit the number of pilots, running and waiting, by means of
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Figure 3.3 – Duration, in seconds, from the pilot generation to the pilot installation on
a WN at the left; Duration, in seconds, from the job arrival to the job matching at the
right

two parameters: (i) max pi lot s the maximum number of pilots coming from a given

queue, and bound to a VO, an LRMS can handle simultaneously; (ii) max w ai ti ng

pi l ot s the maximum number of pilots, bound to a VO, that a LRMS can hold in a

given queue simultaneously. The number of waiting jobs in LHCbDIRAC is often

significantly superior to the max pi lot s values of the LRMS queues.

Issues bound to the infrastructure remain unsolvable, as modifying the architec-

ture in place is not a possible option. Therefore, Site Directors cannot submit as many

pilots as necessary to quickly process the jobs, nor reach and maintain max pi lot s

in the LRMS queues. Thus, we should focus on continuously submitting pilots to

maintain max w ai ti ng pi lot s in the LRMS queues.

Limitations due to the Site Director itself

Through this part, we analyze whether the Site Director limits the production of Pilot-

Jobs by itself and the reasons of such limitations if they exist. The DIRAC command-

line interface allows us to get a summary of the status of the pilots, classified by CE, at

a certain moment. There are keys for every active CE, and each of them contains a list

of status associated with the number of pilots currently in this state. By repeating the

process every 5 minutes, we get plots describing the activities of the pilots associated

with a specific CE or LRMS queue through time (Figure 3.4). Plots only describe the

activities of the pilots at a certain point in time, but we consider this sufficient to get
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a grasp of the limitations of the Site Director. In the same way, pilots can pass from

Waiting to Running in less than 5 minutes, meaning some of them can only appear as

Running on the plots, but this should not significantly impact the plots.

We notice that max w ai ti ng pi l ot s is reached but rarely maintained in most

cases. The Site Director bound to LRMS3 queue1 did not submit any pilot for 2 hours,

whereas no pilot was queued, and running pilots were decreasing through time. We

can observe similar behavior in LRMS2 queue1 and LRMS1 queue1 even if the latter

one is less noticeable. The web application can provide information about errors that

could have occurred during the submission process, but nothing was reported for the

studied queues during this period. Thus, the limitation must come from the execution

of the Site Director.

In the LHCb context, each Site Director is bound to specific Sites and to a specific

CE type to minimize the number of LRMS queues to manage per Site Director. Its

execution is recorded in a distinct log file where we can extract additional information.

Each file consists of a suite of logs relative to the execution of multiple cycles. Each

log contains a date as well as a message that can constitute a landmark to extract

information of interest. Information about the configuration such as the Sites, the

types of CEs supervised, the number of jobs, and waiting pilots at a specific moment

always appear first. Content about the submission and the monitoring activities can

show up afterward. To study the logs, we developed an analysis tool that draws on

repeated and common messages and their dates across the files. Its purpose is to

extract useful data from a given log file and summarize them into different graphs

such as Figure 3.5.

Figure 3.5 describes the execution’s length of some Site Directors handling dif-

ferent CE types. The Site Director managing ARC CEs (0) can spend around 6000

seconds to make a cycle while it can take 500 seconds in (1) and (2). This difference

can vary according to the number of pilots managed by the Site Directors, the type

of the supervised resources, their location, and their capabilities. In this example,

(1) manages slightly more pilots than (0), which indicates a potential issue in ARC

resources that we are going to investigate in Section 3.2.2.

On all the plots, one cycle out of ten exceed the minimum cycle duration set

to 120 seconds, despite they deal with distinct types of CEs. These specific cycles
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execute the submission of the pilots followed by the monitoring step, which is time-

consuming, while other cycles perform short operations. The monitoring task is the

longest operation according to Figure 3.5, and would probably explain some of the

Site Director limitation seen in Figure 3.4. Indeed, while monitoring the pilots, the

Site Director cannot generate and submit new pilots to fill in the LRMS queues.

One could think about isolating the monitoring part of the Site Directors into

a specific agent. On the one hand, this would prevent the stops occurring in the

execution of the Site Director and would ease the Pilot-Job submission. On the other

hand, it would only shift the monitoring issues elsewhere and would continue affecting

the Site Directors. In the same way, administrators could instantiate new Site Directors

to split resources across them. Having one Site Director per CE would likely provide

better results, but would partially help since it would make the maintenance part

difficult. Indeed, in the context of LHCb, we have hundreds of CEs, administrators

would not be able to manage so many Site Directors.

By mapping the log messages with their location within the source code, we

noticed that the communication between the DIRAC server and the CEs represent the

longest operations. Therefore, optimizing communication methods could probably

decrease the submission and monitoring duration, prevent stops in the submission of

the pilots and thus, could help to maintain max w ai ti ng pi lot s in the queues. We

are going to study several approaches in Section 3.2.2.

Better sharing the workloads between cycles could also ease the submission of

pilots on a more frequent basis. In (0), the submission of pilots is more frequent for a

limited time, and we observe that the submission duration decreases when shared

between cycles. This only occurs when max w ai ti ng pi l ot s is maintained for more

than 10 cycles in some queues.

The combination of both Figure 3.4 and 3.5 suggests that the submission of pilots

on a more frequent basis would help to maintain max w ai ti ng pi l ot s on the short

term on the one hand. On the other hand, it would likely increase the number of

running pilots and thus the monitoring period that would finally stop the submission

of new pilots for a while and would decrease the number of pilots available again.

The main idea would be to improve the monitoring process in order to decrease

its duration and submit more frequently and, consequently, reach and maintain
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max w ai ti ng pi lot s finding a balance between the number of pilots to submit and

the monitoring time.

3.2.2 Performance improvements of the DIRAC Site Director

We propose three different approaches to submit a larger number of pilots: (i) com-

municating with multiple CEs in parallel; (ii) better employing the interfaces of the

CEs; (iii) configuring Site Directors to submit pilots more frequently.

Parallel communication with the Computing Elements

DIRAC provides communication interfaces to communicate with different CEs. Such

interfaces take the form of plugins wrapping the necessary tools to connect to a

specific type of CE. They allow DIRAC services, and especially Site Directors, to interact

with the underlying LRMS queues and pilots. These communication interfaces include

methods to submit pilots to a given CE, kill pilots, get their outputs and/or their

statuses. Operations rely on communication with remote resources and require

several seconds or even minutes to get responses.

A Site Director sequentially communicates with the CEs, via the communication

interfaces, to submit pilots and monitor them. Moreover, the Site Director can admin-

ister tens of CEs containing hundreds of pilots, that would involve a large number of

requests to remote resources. To minimize duration first, one should privilege parallel

treatments and bulk operations.

Submitting pilots involves communication with the PilotsDB database containing

the pilot identifiers and their statuses. A Site Director reads the database before gener-

ating pilots for a given LRMS queue, and updates the pilot database after finishing a

submission in this LRMS queue. Because submissions are dependent from each other,

we cannot simply process submission in each LRMS queue in parallel, and thus, we

focus on monitoring.

Monitoring pilots from different CEs simultaneously would probably decrease the

waiting time to get remote data. As various communication interfaces exist to interact

with the different types of CEs and that new types often appear, we have decided to

tackle the issue at the Site Director level to preserve interfaces and avoid maintaining
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too many pieces of code. Classical approaches to make an application parallel include

processes and threads.

Multiple processes would allow the Site Director to manage multiple CEs in par-

allel. However, they would mainly depend on the number of available CPUs on the

DIRAC server and would not decrease the waiting time between requests. Multiple

threads should, in theory, take advantage of multiple CPUs. However, as DIRAC has

been written in Python, it has to deal with the Global Python Interpreter (GIL) (“Global

Interpreter Lock”, 2022). The GIL enables concurrency by preventing multiple threads

from executing Python bytecodes at once, which does not benefit CPU-bound opera-

tions. Nevertheless, the interpreter releases the lock on I/O operations such as reading

and writing in a file or connections to external resources, which is adapted to our

needs. Indeed, the monitoring task would imply IO-bound threads. Connections to

the CEs would create an opportunity to switch between threads and would minimize

the waiting time in the program execution.

Figure 3.6 presents a Site Director requesting the status of the pilots from three

different CEs, first sequentially, then using multi-threads. Each communication inter-

face performs little CPU tasks before and after the connection, while the central part

represents the waiting time due to the connection. We expect threads to switch during

I/O operations to avoid the program to stop, which would result in better execution

time.

Optimizations in the communication interfaces

Even though getting pilot status in each CE simultaneously would ease the monitoring

of the pilots and, thus, allow the submission of a larger number of them, it remains

incomplete. Indeed, CEs may interact with hundreds or even thousands of pilots,

and some of the communication interfaces could be better optimized. Some of them

do not exploit all the features of the underlying CEs. We have been focused on ARC,

CREAM and HTCondor resources that LHCbDIRAC mainly leverages to deal with

inner LRMSs.

In Section 3.2.1, we noticed an issue in the Site Directors dealing with ARC re-

sources. Some of them were taking up to 6000 seconds to monitor a small number

of pilots. The communication interface of the latter does not involve bulk methods
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Figure 3.6 – Schema of a sequential execution of the monitoring task at the top; schema
of a multi-threads execution of the monitoring task at the bottom
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and creates one request per pilot, which can result in a long execution time. Yet, the

ARC documentation mentions the presence of such methods grouped into a module

named JobSupervisor (“ARC Job Supervisor”, 2014), able to gather pilot identifiers

and perform a single connection to cancel and clean them, renew their credentials,

get their status and their outputs. While its integration within the interface would

remove the overhead generated by the sum of several single requests, a too large

number of pilots supervised would also generate timeouts. Thus, we split the pilots

into mid-size chunks as input of the JobSupervisor to efficiently use it. Furthermore,

as mentioned in Section 2.2.1, ARC developers are planning to drop GridFTP services,

in favor to the A-REX services. Many instances have already started the transition,

and some of them already dropped GridFTP services. The current communication

interface does not implement necessary components to communicate with the A-REX

services. Therefore, we created a second interface, inheriting from the current one,

able to automatically identify the services in place in a given ARC instance thanks to a

ComputingServiceRetriever module. The module takes an instance name in input

and provides services and queues available. We redefined the submission process

using it and favor A-REX services when available.

Additionally, we have worked on the CREAM communication interface and espe-

cially the proxy renewal frequency. Indeed, a pilot requires a proxy to interact with

DIRAC, mainly to fetch a job to run. A proxy has a limited lifetime and can expire while

the pilot waits for available resources in a LRMS queue, which can lead to its abortion.

To address this issue, before getting the status of a pilot, most of the communication

interfaces perform a check of the proxy lifetime left and renew it if necessary. The

communication interface attached to CREAM does not perform this checking and

renews the proxies of chunks of pilots in multiple requests every cycle involving the

monitoring, which remains unnecessary. Renewing them every n cycles, n being larger

than m the number of cycles to wait before invoking the monitoring would reduce the

amount of time spent to monitor the pilots on this kind of CEs occasionally. We set n

to 600 cycles by default, and we assume it would be always sufficient.

Finally, we have focused on the way DIRAC gets pilot outputs from HTCondor CEs.

The communication interface can interact with local and remote HTCondor schedd.

By default, and contrary to ARC and CREAM, the server hosting the communication

interface automatically receives outputs once pilots end, asynchronously. This mech-

anism can generate too many output files on the file system. Moreover, DIRAC may
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interact with multiple instances of HTCondor. To avoid erasing output files sharing

the same name, DIRAC developers decided to randomize output locations at every

submission and did not store these locations. Hence, the communication interface

has to perform a find command to get pilot outputs on the server, which can be

cumbersome. To address these issues, we integrated an option to use the HTCondor

spool mechanism, which allows to manually and synchronously retrieve the outputs.

Outputs are downloaded on demand only, copied to a database for a certain number

of days and deleted from the file system. We also based the output location on deter-

ministic attributes such as the CE name, the HTCondor job identifier, and a unique

pilot stamp.

Pilot-Job Submission Pace

A Site Director regulates the number of pilots to submit in a given LRMS queue

according to: (i) the number of running and waiting pilots, related to this queue, at

a given time (pi l ot s); (ii) the limit values it can support, namely max pi lot s and

max w ai ti ng pi lot s. Thus, we have:

pi l ot s to submi t = mi n((max pi l ot s −pi l ot s),

(max w ai ti ng pi lot s −w ai ti ng pi l ot s))
(3.1)

The Site Director computes this number before each submission in a given queue

to fill in every slot. To avoid having too many submissions of pilots that could slow

down the monitoring process afterward, DIRAC developers chose to stop computing

the number of slots available in a given LRMS queue for 10 cycles once slots have been

filled. Thus, a Site Director waits for 10 cycles, a minimum of 1200 seconds, before

submitting to the given LRMS. There are two main problems in this approach: (i)

there is no mechanism to balance the submissions of pilots between different cycles

and they often occur before the monitoring operation, which creates an overused

cycle; (ii) LRMS queues can quickly install pilots on WNs and could get new ones

in less than 1200 seconds. These problems probably explain the lack of submitted

pilots sometimes, previously seen in Section 3.2.1. Therefore, we have introduced a

new configuration option that intends to tune the number of cycles to wait before
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Figure 3.7 – Schema of the duration of the cycles when the number of slots available is
computed every ten cycles at the top; schema of the duration of the cycles when the
number of slots available is computed every cycle at the bottom

computing the number of slots available in LRMS queues. This would allow us to

split the submission operation between the different cycles and, combined with the

monitoring optimizations, would better meet the demanding pressure. Figure 3.7

emphasizes the benefits of such an approach.

3.2.3 Performance assessment of the DIRAC Site Director

To provide a complete assessment of the changes we introduced within the Site

Director, we performed a series of analysis. We studied individual changes first and

then a group of Site Director over a long period.
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Assessment of the individual changes

We measured the changes that we described in Section 3.2.2 to assess their distinct

contribution. From a DIRAC client, we wrote programs involving multi-threads and

communication interface developments to get the pilot statuses.

First, we study the benefit of multi-threads integrated within the Site Directors.

A program computes the monitoring process, both in parallel and sequentially. It

supervises different types of CEs, handling a diverse number of pilots. Figure 3.8

summarizes 10 program executions in a plot, both sequentially and in parallel. The

more CEs the program monitors, the larger the gap between both methods from what

we can observe. However, the duration does not increase linearly.
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Figure 3.8 – Mean duration, in seconds, that a Site Director spends to monitor tens of
pilots managed by a range of CEs: from 1 to 5; along with error bars representing the
standard deviation

Figure 3.9 provides an average of the 10 program runs and details about each CE

involved. The length of the sequential execution, tot alseq , corresponds to the sum of

every CEn , defined as the time spent by a CE to get the pilot statuses. On the other

hand, the parallel version duration, tot alpar , is close to CE1, which is the longest

one. The standard deviation remains low and results demonstrate the efficiency of

the threads and confirm this choice in this context.

We also measured changes brought to the communication interfaces. We eval-

uated the JobSupervisor integration into the ARC interface. First, the evaluation

program performs single requests as it was originally the case, and then bulk requests,
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Figure 3.9 – Mean duration, in seconds, that a Site Director spends to monitor pilots
in different Sites, managed by different CEs; along with error bars representing the
standard deviation

leveraging the JobSupervisor, to get the pilot statuses. The program execution was

launched three times to get an average of the results as well as a standard deviation.

Three CEs from distinct Sites, each of them handling 47 pilots, were available dur-

ing the experiment. The results appear in Figure 3.10. We can observe a significant

improvement in these CEs. Indeed, in all of these cases, it takes less than a second

to monitor the pilots using the JobSupervisor while it can reach 17 seconds for the

same treatment employing a request per pilot. The higher the number of pilots, the

larger the gap between the processes. By computing a linear regression on a CE, we

can obtain a theoretic time to process 500 pilots. For instance, based on the available

data, CE1 would spend 82 seconds to monitor such a number of pilots using a request

per pilot while a bulk operation would take 3.7 seconds.

Changes related to CREAM depend on the number of pilots and the time spent

to renew a proxy. However, Figure 3.11 estimates the time that a Site Director would

spend to renew the proxies of a certain number of pilots through CREAM resources,

and offers a brief idea of the time that could be saved in some cycles. The program

renews the proxies of 1 to 10 pilots on two CEs from different Sites five times. The du-

ration scale between the CEs is varying because of their location and their capabilities.

We could set up better and more accurate means to renew the proxies of the pilots,

but the support of CREAM has ended and resources of this kind should progressively

disappear. Furthermore, they would not be so worthwhile in terms of running time.
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Figure 3.10 – Mean duration, in seconds, of the single and bulk requests in ARC
resources along with error bars representing the standard deviation

Getting the benefits that the deterministic path setup to retrieve HTCondor pilot

outputs could bring is a complex operation that would be meaningless. LHCbDIRAC

administrators disabled the parameter to get the pilot outputs from the Site Directors

in production. Similarly, evaluating the gain of the option to finetune the submission

pace individually would depend on too many external factors such as the underlying

occupancy of the LRMS queues.

The next sections of our work assessment aim at providing insights: (i) about the

evolution of the throughput of the jobs and the pilot submission frequency over time;

(ii) about the involvement of the changes. Such points are necessary to answer our

initial research question: Does the improvement of the Pilot-Job provisioning tool

speed up the Pilot-Job submission frequency and, by extension, the throughput of the

jobs on grid resources? This will be plainly answered and discussed in Section 3.2.4,

after the presentation of our results.
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Figure 3.11 – Mean duration, in seconds, of the proxy renewal in CREAM resources
along with error bars representing the standard deviation

Evaluation of the LHCbDIRAC production environment: experimental conditions

We analyzed the Site Directors of the LHCbDIRAC production environment for 12

months to assess the contributions mentioned in this chapter in a real use case. Raw

data, results and figures are publicly available (Boyer, 2021a). We introduced three

different phases:

• Phase1: does not include any of the change (from week 1 to week 17).

• Phase2: include changes related to the monitoring task (from week 18 to week

41).

• Phase3: include changes related to the submission pace control (from week 42

to week 56).

Getting the overall benefit of the changes is a complex operation. Indeed, Site

administrators can add, replace, remove computing resources, LRMS queues and CEs

over time. They can also modify the scheduling policies; grant a varying number of

slots to VOs. Besides, DIRAC administrators can tweak parameters related to the Site

Directors such as the Sites and CEs they manage.

Over the analysis period, Sites, as well as all the Site Directors, were modified. We

removed data related to the Site Directors instantiated, largely modified, or deleted
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during the three phases, as it would skew the study (Table 3.1). This mainly concerns

Site Directors managing deprecated CREAM CEs. We also removed Site Directors

managing pilots via SSH, as we did not observe such a use case through this chapter,

and they deal with a minor part of computing resources.

Site Dir. Reason

SD2 Added during Phase3
SD5 Changes of CEs (ARC to HTCondor) since Phase3
SD8 Changes of CEs (CREAM to HTCondor) since Phase2
SD9 Changes of CEs (CREAM to HTCondor) since Phase2
SD11 Removed during Phase3
SD13 Removed during Phase2
SD15 Changes of CEs (CREAM to ARC) since Phase2
SD16 Removed during Phase3
SD18 Removed during Phase2
SD23 Changes of CEs (CREAM to HTCondor) since Phase2
SD25 Manage SSH CEs
SD26 Manage SSH CEs
SD27 Manage SSH CEs
SD28 Manage SSH CEs
SD29 Manage SSH CEs
SD30 Added and removed during Phase2
SD31 Added during Phase3

Table 3.1 – Site Directors from the LHCbDIRAC production environment removed
from the study

Thus, the study includes 13 out of 31 Site Directors managing pilots within a

total of 65 out of 77 Sites: five of them manage ARC CEs, five others interact with

HTCondor CEs, and the last ones supervise CREAM CEs. We configured the pilot

submission pace according to the type of CEs that Site Directors deal with: ARC Site

Directors submit every cycle while CREAM and HTCondor Site Directors submit every

5-6 cycles. Selected Site Directors were present during the three phases and received

small adjustments over time such as LRMS queues added or removed. Table 3.2

classifies the number of LRMS queues managed by the Site Directors and the changes

that occurred during the different phases.
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Site Phase1 Phase2 Phase3
Directors Added Removed Added Removed

queues queues queues queues

SD1 17 6 0 0 0
SD3 5 9 0 8 0
SD4 2 1 0 0 1
SD6 3 0 0 0 0
SD7 2 1 1 0 0
SD10 1 0 0 0 0
SD12 9 0 0 0 0
SD17 29 4 0 0 0
SD14 2 0 0 0 0
SD19 4 0 0 0 0
SD20 5 0 0 0 0
SD21 4 0 0 0 0
SD22 8 10 0 3 1

Table 3.2 – Selected Site Directors from the LHCbDIRAC production environment and
their evolution over the different phases

Evaluation of the LHCbDIRAC production environment: evolution of the through-

put of the jobs and the Pilot-Job submission frequency

First, we assessed the number of CPU seconds processed per second (Figure 3.12).

The metric corresponds to the number of jobs running simultaneously within the

Sites observed. It also represents the number of CPUs that the LHCb VO can exploit in

parallel on grid resources to process the workload.

In Figure 3.12, we averaged values per week. Dashed and dotted lines designate

the limits between the phases. We also grouped and averaged the values by phase.

LHCbDIRAC processed 40.86% more CPU seconds per second in Phase3 (80306) than

in Phase1 (57010). The largest increase occurs between Phase2 and Phase3 (21.64%)

but the gap between Phase1 and Phase2 remains meaningful (15.81%). Yet, we cannot

notice a clear distinction between the different phases. While the standard deviation

is relatively small in Phase1 (5917) and Phase3 (3675), it is larger in Phase2 (9121).

Values from Phase2 almost linearly increase from about 55,000 CPU seconds/second

in the first weeks to about 70,000 in the last ones.

Moreover, we studied the evolution of the number of pilots submitted - by the

selected Site Directors - per hour, averaged per week. Figure 3.13 illustrates the num-
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Figure 3.12 – CPU seconds processed per second by LHCb jobs on selected Sites over
12 months, averaged per week

ber of successfully submitted pilots per hour along with the pilots that Site Directors

failed to submit.

Dashed and dotted lines delimit the phases. We grouped and averaged the values

by phase. Site Directors intended to submit 60.23% more pilots per hour in Phase3

than in Phase1, with an increase of 33.10% between Phase2 and Phase3, and 20.38%

between Phase1 and Phase2. Nevertheless, the evolution of the number of successfully

submitted pilots per hour is much lower: values remained constant between Phase1

and Phase2 (+1.29%) and rose between Phase2 and Phase3 (16.90%). We can also see

peaks in Phase2 and Phase3 that were not reached in Phase1. The evolution of failed

submission per hour is much more noticeable in the figure (+671.41% between Phase1

and Phase3), but remains highly variable within the phases: the standard deviation is

about 725 in Phase1, 1325 in Phase2 and 2693 in Phase3. As we can observe, there is

no clear association between errors and phases, and most errors seem concentrated

at the end of Phase2 and the beginning of Phase3.

Additionally, to get a more accurate idea of the involvement of the changes, we fo-

cus on the status of the pilots for small periods during the phases. Using the command-

line interface, we got the status of every pilot on all the observed Sites between 144

and 432 times per phase. Figure 3.14 presents the distribution of waiting pilots per

Site Director over time, classified per phase.
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Figure 3.13 – Number of pilots submitted per hour, averaged per week

We summed the median value of each Site Director per phase. LRMS queues

contain 15% more waiting pilots between Phase1 and Phase2, and 53% more between

Phase2 and Phase3. We can also observe less variability in Phase3 than in Phase1,

indicating that values are relatively stable in general. Most of the ARC Site Directors

in (0) manage many more waiting pilots in Phase3 than in Phase1 (between +144%

to +805%) except SD4 (-76%). HTCondor Site Directors in (2) propose similar results:

more waiting pilots in Phase3 than in Phase1 with less variability (between +14.60%

and 62.88%). SD22, which has handled a growing number of queues in Phase2 and

Phase3 according to Table 3.2, monitors many more waiting pilots since the beginning

of the Phase3 (+584% compared to Phase1). At the same time, the number of waiting

pilots coming from SD20 declined in Phase3. On the contrary, in (1), CREAM Site

Directors interact with a more stable number of waiting pilots, but we can notice

a global decrease in Phase3 compared to Phase2. Results from SD10 remained low

and almost identical through the different phases. To complete these data, we also

analyzed the distribution of running pilots per Site Director over time, classified per

phase in Figure 3.15.

We also summed the median value of each Site Director per phase. LRMS queues

contain 21% more running pilots between Phase1 and Phase2, and 68% more between

Phase2 and Phase3. In (0), there were many more running pilots in resources managed

by SD1, SD3 and SD4 in Phase3 than in Phase1 and Phase2 (between +43% and +172%).
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Figure 3.14 – Distribution of waiting pilots per phase, classified by Site Director. (0)
gathers Site Directors managing ARC CEs; (1) gathers Site Directors dealing with
CREAM CEs; (2) gathers Site Directors interacting with HTCondor CEs
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Figure 3.15 – Distribution of running pilots per phase, classified by Site Director. (0)
gathers Site Directors managing ARC CEs; (1) gathers Site Directors dealing with
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Yet we noticed in Figure 3.14 that SD4 monitored fewer waiting pilots in Phase3.

Similarly, SD7 monitored less running pilots in Phase3 than in Phase1, while it had

more waiting pilots in Phase3. Most of the results in (2) rose between 4% and 8%

between Phase1 and Phase3, which remains significant according to the large number

of pilots these Site Directors manage. As in Figure 3.14, SD22 monitored a larger

number of running pilots in Phase3 than in Phase1: more than 25,000 running pilots

at the same time, which represents the highest number of pilots monitored at the

same time by a Site Director. SD20 have also less running pilots. To finish, in (1), SD10

results did not change through time, while results from SD12 grew (+150%) and the

ones from SD17 went down (-6.53%).

While general results provide meaningful data about the evolution of the LHCb-

DIRAC production environment through time, they do not furnish any information

about monitoring duration and submission pace. After some details dealing with

failed submissions, involvements of the chapter contributions are analyzed in depth

in Section 3.2.3.

Evaluation of the LHCbDIRAC production environment: details about failed sub-

missions

The changes made could have potentially generated new errors: in this part, we

provide additional information about errors at the Site Director level to strengthen

the answer to our initial research question in Section 3.2.4.

Table 3.3 provides details about the number of errors that occurred at submission

within each Site Director. Errors mainly concern 8 out of the 13 Site Directors of

the study. We grouped Site Directors that got a small number of errors in the Others

category. Most of the Site Directors encountered more issues in Phase2 than in Phase1,

but the number fell in Phase3. Among them, SD1 got even fewer errors in Phase3

(400) than in Phase1 (663). Only three Site Directors got more errors in Phase3 than in

Phase2: SD19, SD20, and SD21 that interact with a common Grid Site. During Phase2,

65% of the errors were bound to three Site Directors: SD1, SD3 and SD21; while they

were only bound to 10% of the total number of errors in Phase3. Indeed, in Phase3,

SD19 was bound to 54% of the errors.
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Phase1 Phase2 Phase3

SD1 663 5536 400
SD3 87 5529 171
SD4 52 1862 667
SD17 654 1582 4220
SD19 958 2166 16976
SD20 872 1743 5567
SD21 596 5973 2637
SD22 505 1232 613
Others 218 325 72
Total 4605 25948 31323

Table 3.3 – Number of failed submission per Site Director, classified per phase

Evaluation of the LHCbDIRAC production environment: involvement of the con-

tributions

Decreasing the monitoring period is the primary way that we choose, in this chapter,

to go towards an efficient Pilot-Job provisioning on grid resources. We investigated

the evolution of the monitoring through the different phases and especially between

Phase1 and Phase2. We extracted the monitoring duration from the logs of the Site

Directors - each log file contains around 150 values - and we computed the mean for

each Site Director and each phase. We coupled monitoring values with successfully

submitted pilots from Figure 3.13 and, thus, we obtained Figure 3.16.

Monitoring duration dropped down from Phase2 (-49% on average). Indeed, in

Phase2, SD22 spent the longest time monitoring its pilots: 245 seconds on average;

while 6 Site Directors spent more than 850 seconds monitoring their pilots on average

during Phase1. In Phase3, monitoring duration slightly went up (+64% compared

to Phase2 on average, but -22% compared to Phase1): SD22 spent 423 seconds, on

average, which remained the longest monitoring duration. SD4 was the only Site

Director to increase its monitoring duration through time (from 30 seconds in Phase1

to 85 seconds in Phase2 and 112 seconds in Phase3). In Phase3, 7 out of 13 Site

Directors spend more than 120 seconds, the minimum cycle duration by default,

against 12 during Phase1.

Significant results on the monitoring duration do not always involve an increase

in the number of pilots successfully submitted per hour, according to Figure 3.16.

Indeed, 7 Site Directors submitted fewer pilots per hour from Phase2 despite spending
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116



Towards a better throughput on Grid Resources Chapter 3

less time on the monitoring operations. It involves 2 of the 3 CREAM Site Directors,

one ARC Site Director and 4 of the 5 HTCondor Site Directors. Changes have a more

significant impact on ARC Site Directors than on CREAM and HTCondor Site Directors.

HTCondor Site Directors provide diverse results: (i) SD14 submitted almost the same

number of pilots over time; (ii) SD17 submitted more pilots per hour in Phase2, but the

value went down from Phase3; (iii) SD22 submitted many more pilots in Phase2 and

especially in Phase3; (iv) SD19, SD20 and SD21, that work on the same Site, submitted

fewer pilots over time but handled many errors according to Table 3.3.

Increasing the number of pilots submitted per cycle is the second way - and

inherent to the monitoring duration - that we choose to go towards an efficient Pilot-

Job provisioning on grid resources. After configuring the pilot submission pace for

each Site Director, we investigated the number of pilots submitted per cycle per Site

Director and per phase (Figure 3.17). We extracted the number of pilots submitted per

cycle from the logs, which contain around 1500 values per log file.

In Phase1, Site Director submitted a median value of 0 pilot per cycle as submis-

sion occurred every 10 cycles, which correspond to outliers on the plot. ARC Site

Directors, after Phase3, submitted every cycle: they were all able to submit between

10 and 20 pilots per cycle (median value) and outliers were, in general, smaller than in

Phase1. Results from CREAM and HTCondor Site Directors are less meaningful, which

was expected as they have been configured to submit pilots every 5 or 6 cycles. Only

SD10, SD14 and SD22 submitted pilots more often.

3.2.4 Discussions

Does the improvement of the Pilot-Job provisioning tool speed up the Pilot-Job

submission frequency and, by extension, the throughput of the jobs on grid re-

sources?

The capacity of LHCb to leverage Grid Site resources considerably rose over a year, and

is probably the result of a combination of numerous factors. According to Figure 3.16,

changes applied on the monitoring step have, overall, considerably decreased the

monitoring duration of the Site Directors, and especially the ones managing ARC CEs

and the ones having a large number of queues. Indeed, contributions seem to have a

greater impact on Site Directors sharing these characteristics according to Figure 3.10
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Figure 3.17 – Evolution of the number of pilot submitted per cycle (median), classified
by Site Directors and phases
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and 3.8. Effects on the monitoring seem to last: Site Directors managing additional

queues and hundreds or even thousands more pilots have spent less or almost the

same time monitoring the pilots (see SD1, SD3 and SD22 on Figure 3.16). Yet, the

changes have had almost no visible impact on the number of pilots submitted per

hour. Indeed, changes have decreased the duration of the cycles to a value close to 120

seconds, the minimum duration of a cycle, but did not change the submission pace.

Thus, changes have only affected Site Directors that spent a long time monitoring

pilots, blocking the submission process, such as SD1.

Tweaking the submission pace after decreasing the monitoring duration has been

substantial. Site Directors submitting pilots more often, such as the ARC ones, have

better shared the workload between their cycles (Figure 3.17). They have filled LRMS

queues with waiting pilots more rapidly as we can observe in Figure 3.14. Thus, Grid

Sites have had more pilots at their disposal for available resources, which probably

explains the rise of running pilots (Figure 3.15).

Some external factors have complemented the results of the solutions. Many Site

Directors have managed a various number of LRMS queues through time according

to Table 3.2. Overall, there was an increase of LRMS queues: 42 added against 3 re-

moved. Site administrators have also tweaked max pi l ot s and max w ai ti ng pi lot s

over time according to the log files, but we did not keep track of the fluctuations.

Therefore, we cannot know with accuracy whether Site Directors have maintained

max w ai ti ng pi l ot s in the different LRMS queues. Such variations have probably

significantly modified the monitoring duration of the Site Directors along with the

number of pilots that they have supervised (see SD3 and SD22 in Figure 3.14, 3.15 and

3.16). Our changes have helped Site Directors to support a growing number of LRMS

queues that better handle the generation of new pilots and maximize the use of new

computing resources.

Errors have diluted the effect of the changes. Indeed, some Site Directors have

failed to submit a large number of pilots. Many failures have been likely independent

from our contributions: SD19, SD20 and SD21 have failed to submit plenty of pilots,

but errors occurred for a limited period and concerned the same Grid Site (Table

3.3). Overall, we noted a larger number of submission failures after the changes.

Further investigations in the logs suggest errors within the CEs and queues but remain

unclear. These errors were already existing in Phase1: changes have probably eased
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the submission process, even within these queues, which highlights them.

The role of the following components remains unclear, and their effects are diffi-

cult to measure. First, the number of jobs per pilot has changed over time (Figure 3.2).

In general, the more jobs a pilot handles, the longer it remains on a WN. In practice, it

also depends on the execution duration of the jobs, which leads to the second point.

Jobs and pilots have had a varying execution duration. A short job triggers: (i) the

generation of a pilot that can take several minutes before running; (ii) the allocation of

a WN for a limited time - a few seconds for instance -; which is not efficient. In theory,

the repetition of a large number of long jobs would reduce the risk of having unused

resources: Site Directors would have more time to generate pilots and they would be

replaced less often in the WNs. We did not keep track of such information over time

as it would represent a massive amount of data.

Some Site Directors - that have been positively affected by our contribution and

not significantly impacted by external factors that we can measure - have not produced

and submitted plenty of pilots: SD4, SD10 and SD12 for instance. Some Site Direc-

tors were probably already submitting max w ai ti ng pi lot s in the LRMS queues,

such as SD10, which had the same number of waiting and running pilots over time

(Figure 3.14 and 3.15) Other Site Directors were likely supervising a considerable

number of running pilots, which modified max w ai ti ng pi lot s. Indeed, the value

of max w ai ti ng pi lot s depends from max pi l ot s such as:

max w ai ti ng pi lot s = mi n(max w ai ti ng pi lot s,

max pi l ot s − r unni ng pi l ot s)
(3.2)

This is probably the case for SD4 and SD12 that have a low and steady number

of waiting pilots in Phase3 (Figure 3.14) while having a large and steady number of

running pilots (Figure 3.15).

The combination of all these component have likely increased and stabilized the

number of waiting pilots in the LRMS queues (Figure 3.14) and have even allowed

LHCb to exploit a larger number of allocations on Grid Sites (Figure 3.15 and 3.12).

This study has mainly focused on grid resources, especially in the context of the
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LHCb experiment, but remains appropriate for any pool of distributed and shared

computing resources aggregated into high-performance clusters and clouds. VOs

relying on supercomputers providing external connectivity, or cloud resources orches-

trated by LRMS, could reuse parts of the presented content.

Future Directions and Challenges

Here, we provide further recommendations on topics not covered by this study, to help

VOs depending on the distributed architecture to better exploit shared computing

resources.

CEs may have different numbers of pilots to handle, as well as heterogeneous

performances to execute a similar operation, as we can observe in Figure 3.9, 3.10

and 3.11. To better leverage the multi-threads integration, DIRAC administrators can

bind Site Directors to multiple CEs, and especially CEs having similar performances.

Indeed, the time spent in each thread should be equally distributed to avoid having

one thread spending more time than all the other together, which would result in a

duration close to the sequential one. One could propose an automated way to balance

the number of Site Directors and the number of CEs per Site Director to minimize the

duration of the cycles while maximizing the submission frequency.

Again for DIRAC administrators, in Section 3.2.1, we have demonstrated that jobs

were rarely processed by pilots generated for this purpose, which may call into ques-

tion the need to check the presence of jobs, before instantiating the pilots. Indeed, a

Site Director only generates a limited number of pilots according to the jobs available

that could run in a given resource, as well as the number of free slots. When pilots are

finally running, this limited number may not reflect the number of jobs previously

available as other pilots from different Site Directors may have already processed the

jobs. This case happens when the number of waiting jobs is inferior to the number

of free slots in the resources, which is rarely the case in production but can occur in

specific Sites. Thus, one could imagine a Site Director strategy consisting in continu-

ously sending pilots in the queues, which would slow down production rates in the

case that pilots do not fetch any job. The challenge in this approach lies in the various

scheduling policies of the Sites: while some Sites can prioritize VOs submitting the

most pilots, others can favor pilots that effectively run for a long time.
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DIRAC developers should maintain discussions with CE developers to integrate

features that could ease some WMS operations. For instance, HTCondor clients are

able to submit multiple pilots in a single command, whereas ARC clients have to

generate n requests to send n pilots. After discussing with VOs, ARC developers have

recently started to work on a small extension to support such a feature.

We have explained in Section 3.2.1 that getting an accurate value of the time left

allocated to a pilot is a complex operation due to the various batch systems composing

the grids: different types, versions and configurations. In combination with the time

left value, pilots need to get the "power" of the CPU, namely how efficient is a CPU to

run an application of interest. Indeed, two different processors will likely not spend

the same time running the same application. Solutions such as DIRAC Benchmark

have been developed to provide an estimation of the CPU power for Monte-Carlo

simulations in the LHC context, and will be studied in Section 3.3. Designing efficient

ways of getting accurate CPU power and time left values would help better exploiting

the allocations by fetching the most adapted jobs.

Lastly, we encourage VOs that would like to conduct similar research with other

systems to record and collect data about pilots, jobs and also about configuration

changes in the Sites in order to get a clear overview of the impact of the external factors.

The task remains challenging because (i) information from BDII is not always reliable

and (ii) the grid architecture involves many operations that are hard to follow: there

are external and internal issues, maintenances, upgrades involving various actors

every day.

3.2.5 Summary

Through Section 3.2, we have demonstrated the importance of continuously im-

proving Pilot-Job provisioning mechanisms to better exploit shared and distributed

heterogeneous computing resources. After exposing the advantages and limitations

of the Pilot-Job paradigm (Section 3.2.1), we explored one of the main Pilot-Job provi-

sioning tools: the DIRAC Site Director in the context of the LHCb experiment (Section

3.2.1). For 12 months, we analyzed 13 Site Directors managing 65 grid sites on WLCG,

dealing with 57,000 LHCb jobs simultaneously. By introducing multi-threading within

the Site Directors and including CE-specific performance improvements, we speeded
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up the monitoring mechanism: the duration of the activity dropped down (-22%).

Additionally, we better shared the workloads between the cycles of the Site Directors

to generate a fewer number of pilots more frequently (Section 3.2.2).

We conducted performance studies, repeated multiple times over one year, to

prove the efficiency of every change made (Boyer, 2021a). We measured an overall gain

of 18.41% of the number of pilots successfully submitted per hour, which represents

728 additional pilots per hour. We also recorded an increase of 40.86% of the number of

jobs processed simultaneously per second, which means that WLCG is simultaneously

in charge of 80,300 LHCb jobs (Section 3.2.3). Thus, this study enables the generation

of more pilots to meet the increasing demand for computing power. In this context,

computing power is essential to refine the analysis and increase the statistics and the

confidence that we can place in the discoveries made thanks to the LHC, which will

affect our understanding of the universe.

Future studies should focus on further increasing the Pilot-Job submission fre-

quency (Section 3.2.4). Automatically fine-tuning the parameters of the Site Directors

- the number and the nature of the queues that they supervise - depending on the load

on the Sites would be a solution. A complementary solution would consists in adapt-

ing the submission rate according to the scheduling policies of the Sites to optimize

the priority of the Pilot-Jobs within the queues. Working on a CPU benchmarking

solution providing accurate CPU power estimations for various processors would

constitute another approach to maximize the use of the allocated resources, and will

be discussed in Section 3.3.

3.3 DIRAC Benchmark

3.3.1 Presentation of DIRAC Benchmark

As reported in Section 2.4.2, DIRAC Benchmark is an open-source fast and synthetic

HEP CPU benchmarking solution created in 2012 (DB12). In 2016, Charpentier de-

signed an LHCb-specific version of DIRAC Benchmark: DB16. In Section 3.3.1, we

first describe how DIRAC Benchmark is used within DIRAC, and then we present its

main features and limitations.
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DIRAC Benchmark use cases

DIRAC Benchmark is mostly used to (i) fetch jobs appropriate to the underlying

computing resources and their constraints; (ii) determine the number of Monte-Carlo

simulation events a time-constrained worker node can run.

Three steps are necessary to efficiently run workloads on shared and time-con-

strained computing resources. First, a Pilot-Job is submitted to the LRMS of a site

(Figure 3.18 Step 2). Second, the LRMS, which orchestrates worker nodes, puts a

Pilot-Job on hold until a worker node is available (Figure 3.18 Step 3). At this moment,

it provides a slot, namely a WN for a certain duration, and executes the Pilot-Job in

this slot. Third, the Pilot-Job evaluates the WN before fetching a job from the central

WMS of the experiment. This evaluation implies (i) running DIRAC Benchmark to

obtain an estimation of the CPU power of the worker node (Figure 3.18 Step 4.1) and

(ii) interrogating the LRMS to get the time left (Figure 3.18 Step 4.2). The product of

both variables is equal to the CPU work, namely the amount of work in HS06seconds

allowed in the slot. Because the CPU work relies on an estimation of the CPU power,

a margin of 25% is usually applied to avoid jobs running out of time. In single-core

allocations, a Pilot-Job fetches and executes jobs sequentially until 75% of the CPU

work has been consumed. In multi-core allocations, jobs are fetched and executed in

parallel on the logical cores available.

Main features and issues

DIRAC Benchmark comprises three layers: a kernel, basic features based upon it

and more advanced features. The kernel is the computation of the CPU power of

a single core. It involves 12,500,000 iterations corresponding to 250 HS06 seconds.

During an iteration, the function generates a random variable X following the normal

distribution, such as X ∼N (10,1), and performs several basic operations with it, such

as additions and multiplications: the purpose is to artificially replicate the functioning

of a Monte-Carlo simulation job. To get a better estimation, the process can be

repeated multiple times. The score is then based on the CPU time needed to perform

the operations, the number of repetitions done and a constant to normalize the result,
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Basic features solely involve the computation of the CPU power on multiple cores

in parallel. The function takes a given number of copies that have to be run in parallel

m as input and performs a single-core benchmark in m distinct processes. Finally,

advanced features rely on the external variables - coming from the WN configuration

or from the Machine Job Features (MJF) mechanism introduced by HEPiX in 2016

and now discontinued - to run copies of the benchmark on a whole node or the

cores allocated by the LRMS. Figure 3.19 presents a schema representing the features

enumerated above.

DIRAC Benchmark has not been updated for years while software and hardware

are quickly evolving. The code itself is written in Python 2, deprecated since January

2020. We would need to update the code without creating discrepancies. In addition,
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Figure 3.19 – Composition and features of the DIRAC Benchmark

the code consists of a single file, not tested and not formatted in a standard approach,

which cannot be imported into other packages. DIRAC developers have decided to

copy-paste the code in their WMS to use it. We would need to generate an importable

Python package. In Section 3.3.2, we explain how we operated the transition of DIRAC

Benchmark to Python 3.

3.3.2 Maintenance and improvement of DIRAC Benchmark

The main challenge of this transition is to make sure that the benchmark will still

provide valuable and accurate - reproducible - scores in Python 3 and beyond. Indeed,

developers of Python 3 have included numerous optimizations and changes compared

to Python 2. The second objective is to provide a portable package so that users can

directly import the benchmark into their applications. The initial transition plan

includes three steps: (i) providing a tested and formatted code; (ii) rewriting the code

and assessing the changes; (iii) generating a portable package.
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Setting up a Continuous Integration pipeline

The first step consists in providing tools to maintain a clean and well-tested code

before the transition. First, we removed features related to MJF as the project was aban-

doned. Then, we reformatted the code using Black, a style guide auto-formatter for

Python Code compliant with Python Enhancement Proposals 8 (PEP8) (“Black”, 2022).

We also developed unit tests with pytest (“pytest: helps you write better programs”,

2021) in the repository to cover the program and make sure that:

• Each function produces a similar output when given the same inputs multiple

times on the same host. As the score relies on variable parameters, a difference

smaller than 20% is accepted.

• Each function generates a similar output regardless of the number of repetitions

passed as input.

• The score is positive and not unreasonably high, between 0 HS06 and 100 HS06.

Finally, we set up a continuous integration (CI) pipeline based on GitHub Actions

(“GitHub Actions”, 2022) to better handle future changes in the code. Each com-

mit triggers the CI pipeline, which (i) sets up a consistent environment with Conda

(“Conda”, 2022); (ii) runs Pylint (“Pylint”, 2022) to help enforce a coding standard and

highlight programming errors; (iii) runs the new code against the unit tests. To arrive

in production, the introduced code has to pass every step of the CI pipeline. To help

developers to produce quality code, we also included a pre-commit (“pre-commit”,

2022) module in the repository. It automatically formats the code using Black and

performs several checks before pushing the code to the repository.

Porting DIRAC Benchmark to Python 3

The second step introduces the transition to Python 3.9. The program only relies on

standard Python libraries and contains about 300 lines of code. Changes are minimal

and include:

• print statements has been followed by parenthesis in Python 3.

• Python 2 xrange has been redefined as range in Python 3 and has integrated

new features. Python 2 range has no equivalent in Python 3.
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• Python 2 long type has been renamed as int in Python 3. Python 2 int has no

equivalent in Python 3.

Nevertheless, such minimal changes generated discrepancies in the results. In-

deed, Python 3 has included various optimizations under the hoods. Even though

operations integrating Python 3 int are slower than the ones employing Python 2 int,

Python 3 is generally faster than Python 2. Therefore, the Python 3.9 DIRAC Bench-

mark is faster than the original one, and thus, generally provides a better score for a

given machine. To assess the impact of the discrepancies, we originally attempted to

set up integration tests within the CI pipeline, to compare the results obtained with

different versions of Python. In practice, it was hard to guarantee a repeatable envi-

ronment for all the executions and the pipeline often failed because the discrepancies

were too large between the scores: beyond 20%. In Section 3.3.3, we will present

the experiment we conducted to better assess the impact of the discrepancies using

various CPU models.

Creating a Python package

Finally, the last step of the transition consisted in creating a Python package to embed

the benchmark and make it portable and easy to import in other Python projects.

We completely revisited the structure of the project by splitting the command line

interface options from the code related to the benchmark and adding configuration

files to set up a package. We added a continuous delivery (CD) module to the Github

Actions pipeline of the project. The CD module, triggered only when a GitHub tag is

created, generates a binary wheel as well as a source tarball from the repository and

publishes the files to PyPI (“PyPI”, 2022), a recognized repository of Python software.

We also added the package to Conda-Forge (“Conda-Forge”, 2022), a repository of

Conda recipes, to ease the integration of the DIRAC Benchmark in other projects.

In the next sections, we want to make sure that the DIRAC Benchmark scores

computed with Python 3.9 will remain correlated to LHCb Gauss tasks. As a first

step (Section 3.3.3), we are going to assess the potential impact of the discrepancies

observed in Section 3.3.2. We want to correct the discrepancies so that the Python

3.9 version of DIRAC Benchmark would still provide an approximation of the CPU

power in HS06, mainly for historical and compatibility reasons. As a second step

(Section 3.3.4), we are going to perform a new analysis of DIRAC Benchmark regarding
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Monte-Carlo simulation jobs of the LHCb experiment. We will compare the jobs to

the corrected Python 3.9 version of DB16, which should correspond to the Python 2.7

version of DB16 at this point. This may result in the creation of a new version of DIRAC

Benchmark that would better fit with Gauss than with the HEPSPEC06 benchmark.

3.3.3 Assessment of the DIRAC Benchmark scores: Python 3 versus

Python 2 executions

Conditions of the experiment

We conducted an experiment in the LHCb production environment to compare

Python 3.9 and Python 2.7 executions of DIRAC Benchmark. The experiment in-

volved computing resources of WLCG, namely 102 CEs involving 83 different CPU

models, as well as workloads containing both versions of the DIRAC Benchmark. On

average, each grid site was in charge of 10 jobs. A job consists in executing sequentially

the Python 2.7 and the Python 3.9 versions of the DIRAC Benchmark 11 times. To be

consistent, all jobs run in the same Conda environment and leverage Python binaries

coming from CVMFS instead of the local Python binaries. Indeed, for some reason,

some grid sites propose custom versions of Python. We collected data related to the

benchmark and the host environment. Programs, resources and results are publicly

available to facilitate the reproducibility of this work (Boyer and Stagni, 2021). For

the sake of clarity in the following figures, we established Table 3.4 providing short

identifiers for every CPU model.

Figure 3.20 shows the distribution of the DIRAC Benchmark executions on the

available grid sites - we assume that a CE corresponds to a site - per Python version

used. The executions are heterogeneously shared between the sites. Indeed, we can

observe a median of 99 executions - from 4 to 5 jobs - per site. The top quartile grid

sites were in charge of 198 executions while the bottom quartile handled 66 executions.

We submitted the same quantity of jobs on every grid site, but some of them - mainly

Tier2 and Tier3 sites - spent too much time executing the jobs or jobs failed for

external reasons. It is worth mentioning that we can find a similar distribution of the

LHCb production jobs among the sites: the experiment is representative of the LHCb

production environment.
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ID CPU model ID CPU model

A0 AMD EPYC 7282 16-Core Processor A1 AMD EPYC 7302 16-Core Processor
A2 AMD EPYC 7352 24-Core Processor A3 AMD EPYC 7451 24-Core Processor
A4 AMD EPYC 7452 32-Core Processor A5 AMD EPYC 7551 32-Core Processor
A6 AMD EPYC 7551P 32-Core Processor A7 AMD EPYC 7702 64-Core Processor
A8 AMD EPYC 7702P 64-Core Processor A9 AMD EPYC 7742 64-Core Processor
A10 AMD Opteron(TM) Processor 6276 A11 AMD Opteron(tm) Processor 4386
A12 AMD Opteron(tm) Processor 6128 A13 AMD Opteron(tm) Processor 6168
A14 AMD Opteron(tm) Processor 6172 A15 AMD Opteron(tm) Processor 6320
I0 Intel Xeon Processor (Skylake & IBRS) I1 Intel(R) Core(TM) i7 CPU 860
I2 Intel(R) Core(TM) i7-5960X CPU I3 Intel(R) Xeon Phi(TM) CPU 7210
I4 Intel(R) Xeon(R) CPU 5150 I5 Intel(R) Xeon(R) CPU E5420
I6 Intel(R) Xeon(R) CPU E5520 I7 Intel(R) Xeon(R) CPU E5620
I8 Intel(R) Xeon(R) CPU E5640 I9 Intel(R) Xeon(R) CPU E5645
I10 Intel(R) Xeon(R) CPU L5630 I11 Intel(R) Xeon(R) CPU L5640
I12 Intel(R) Xeon(R) CPU X5650 I13 Intel(R) Xeon(R) CPU X5660
I14 Intel(R) Xeon(R) CPU E5-2420 0 I15 Intel(R) Xeon(R) CPU E5-2450 v2
I16 Intel(R) Xeon(R) CPU E5-2618L v4 I17 Intel(R) Xeon(R) CPU E5-2620 v3
I18 Intel(R) Xeon(R) CPU E5-2620 v4 I19 Intel(R) Xeon(R) CPU E5-2630 0
I20 Intel(R) Xeon(R) CPU E5-2630 v2 I21 Intel(R) Xeon(R) CPU E5-2630 v3
I22 Intel(R) Xeon(R) CPU E5-2630 v4 I23 Intel(R) Xeon(R) CPU E5-2640 v3
I24 Intel(R) Xeon(R) CPU E5-2640 v4 I25 Intel(R) Xeon(R) CPU E5-2650 v2
I26 Intel(R) Xeon(R) CPU E5-2650 v3 I27 Intel(R) Xeon(R) CPU E5-2650 v4
I28 Intel(R) Xeon(R) CPU E5-2650L v4 I29 Intel(R) Xeon(R) CPU E5-2660 v2
I30 Intel(R) Xeon(R) CPU E5-2660 v3 I31 Intel(R) Xeon(R) CPU E5-2670 0
I32 Intel(R) Xeon(R) CPU E5-2670 v2 I33 Intel(R) Xeon(R) CPU E5-2670 v3
I34 Intel(R) Xeon(R) CPU E5-2680 v2 I35 Intel(R) Xeon(R) CPU E5-2680 v3
I36 Intel(R) Xeon(R) CPU E5-2680 v4 I37 Intel(R) Xeon(R) CPU E5-2683 v4
I38 Intel(R) Xeon(R) CPU E5-2695 v4 I39 Intel(R) Xeon(R) CPU E5-2697 v3
I40 Intel(R) Xeon(R) CPU E5-2697 v4 I41 Intel(R) Xeon(R) CPU E5-2698 v3
I42 Intel(R) Xeon(R) CPU E5-2698 v4 I43 Intel(R) Xeon(R) CPU E5-4610 0
I44 Intel(R) Xeon(R) Gold 5115 CPU I45 Intel(R) Xeon(R) Gold 5118 CPU
I46 Intel(R) Xeon(R) Gold 5120 CPU I47 Intel(R) Xeon(R) Gold 5218 CPU
I48 Intel(R) Xeon(R) Gold 5220 CPU I49 Intel(R) Xeon(R) Gold 6126 CPU
I50 Intel(R) Xeon(R) Gold 6130 CPU I51 Intel(R) Xeon(R) Gold 6132 CPU
I52 Intel(R) Xeon(R) Gold 6140 CPU I53 Intel(R) Xeon(R) Gold 6148 CPU
I54 Intel(R) Xeon(R) Gold 6226R CPU I55 Intel(R) Xeon(R) Gold 6230 CPU
I56 Intel(R) Xeon(R) Gold 6238R CPU I57 Intel(R) Xeon(R) Gold 6248 CPU
I58 Intel(R) Xeon(R) Gold 6248R CPU I59 Intel(R) Xeon(R) Gold 6252 CPU
I60 Intel(R) Xeon(R) Gold 6354 CPU I61 Intel(R) Xeon(R) Silver 4110 CPU
I62 Intel(R) Xeon(R) Silver 4114 CPU I63 Intel(R) Xeon(R) Silver 4116 CPU
I64 Intel(R) Xeon(R) Silver 4210 CPU I65 Intel(R) Xeon(R) Silver 4214R CPU
I66 Intel(R) Xeon(R) Silver 4216 CPU

Table 3.4 – CPU models and their identifiers
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Figure 3.20 – Distribution of the DIRAC Benchmark executions among the grid sites
grouped by Python version used: Python3 at the bottom, Python2 at the top.

Figure 3.21 presents the distribution of the DIRAC Benchmark executions on

the available CPUs. Sites mainly involve two brands of x86 processors: Intel and

AMD. Our studied sample comprises a majority of Intel processors: 80.7% against

19.3% AMD processors. We observe similar proportions with the distribution of the

executions: 81% (9614) happened on Intel processors while 19% (2266) occurred on

AMD processors. However, executions were not shared equally on every CPU model.

Indeed, the median is about 110 executions - namely 5 jobs per CPU model - but

the bottom quartile CPU models handled 44 executions while the top quartile was

in charge of 220 executions. The I23-Intel(R) Xeon(R) CPU E5-2640 v3 is way

above with 594 executions (27 jobs), probably because it is more present in the grid

sites and proposes a better price/performance ratio. We can also notice that both

versions of the DIRAC Benchmark are equally shared for a given CPU model.

It is worth noting that even within the same allocation, consecutive executions

of the benchmark can produce different results, as illustrated in Figure 3.22. In this

example, most of the consecutive executions remain relatively similar - Python 2

executions of DIRAC Benchmark in the job running in A3 have a standard deviation

of 0.3. Nevertheless, some of them are varying significantly - Python 2 executions of

DIRAC Benchmark in the job running in I40 have a standard deviation of 3.22. The

exact cause remains unknown but it is likely due to the fluctuating load in the shared
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Figure 3.21 – Distribution of the DIRAC Benchmark executions among the CPU models
grouped by Python version used: Python3 at the bottom, Python 2 at the top.
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nodes.

Results

In a job, we executed 11 times both versions of the DIRAC Benchmark. To emphasize

the discrepancies, we paired scores coming from the same iteration - the Python 2.7

and the Python 3.9 scores bound to an iteration - to generate coordinates. From these

coordinates, we designed Figure 3.23 to compare the gap between Python 2.7 and

Python 3.9 scores. We can notice that Python 3.9 scores are mostly higher than the

Python 2.7 scores. The gap seems to be almost constant across the paired scores.

Yet we can still distinguish two different cases: scores coming from AMD processors

would need a stronger correction than the scores coming from Intel processors. The
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root mean square error of the Python 3.9 scores with respect to the Python 2.7 scores is

about 2.86. Next, we will present the considered solutions to correct the discrepancies.

Solutions

To reduce the discrepancies, we designed three solutions that would be simple to

set up and easy to update. The first solution consists in applying a scaling factor to

the Python 3.9 scores. To define a scaling factor, we computed the ratio Python 2

score/Python 3 score for each pair and selected the median value: 0.85. The root

mean square error of the Python 3.9 scores × 0.85 with respect to the Python 2.7

scores is about 1.52. The solution remains simple in theory, developers would need

to update a single value over time. In practice, it would be probably more complex.

Indeed, in Section 3.3.3 we distinguished two different cases: Python 3.9 scores on

AMD processors were, in general, higher than Python 3.9 scores on Intel processors.

As hardware and Python evolve through time, we might need to handle many different

cases over time. Such a solution is still not accurate enough, and thus, could not allow

managing more complex cases.

To provide better estimations and handle future cases, we produced a second

solution: applying a scaling factor based on the underlying architecture and Python

version. We split the dataset into two parts: one is gathering the pairs related to AMD

processors and the other is bound to the Intel processors. As in the first solution,

we computed the ratio Python 2 score/Python 3 score for each pair of each part of

the dataset. By selecting the median values, we obtained two scaling factors: 0.86

for Intel processors and 0.71 for AMD processors. The root mean square error of

the transformed Python 3.9 scores with respect to the Python 2.7 scores is about

1.19. The second solution is significantly more accurate than the first solution but

remains complex to maintain. Indeed, developers would need to maintain a table

within the code and would need to conduct a similar experiment each time a new

CPU architecture or Python version is introduced.

The last solution consists in performing a linear regression to adjust the Python

3.9 scores. Based on inputs such as the Python 3.9 scores, the CPU model, the CPU

MHz, the number of cores available, the average load and the OS, we could determine

an approximate value of the Python 2.7 scores. We split the dataset into (i) a training

set (30% of the dataset) to train the model; (ii) a cross-validation set to plot the learning
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Figure 3.23 – Comparison of the benchmark scores depending on the Python version
and the CPU model used
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Figure 3.24 – Learning curves of the model for both training and validation. The shaded
region denotes the uncertainty of that curve measured as the standard deviation. The
model is scored using R2, the coefficient of determination

curves and adjust the training phase. As we have a small sample and the solution is

experimental, we did not create a test dataset to validate the model. The root mean

square error of the solution is about 1.25. The learning curve of the model presented

in Figure 3.24 shows a high variance, which seems to indicate that additional data or a

higher regularization would have provided a better model. The main advantage of this

solution lies in the ease of maintenance: developers would just have to run the model

with additional data regularly and integrate the model into the DIRAC Benchmark

code. However, developers would need a huge amount of data.

Finally, we chose to adopt the second solution for its accuracy and because it

allows developers to understand the problems. The solution takes the form of a new

function in the code, which analyzes the underlying processor and Python version

used, searches for a constant value to apply in a table, applies it if available, or sends a

warning to the user if not. Figure 3.25 presents a comparison between the transformed
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Python 3.9 scores and the Python 2.7 scores as Figure 3.23 did in Section 3.3.3.

3.3.4 Assessment of the DIRAC Benchmark scores: DIRAC Bench-

mark scores versus LHCb Gauss executions

As mentioned in Section 2.4.2, DIRAC Benchmark was created in 2012 based on the

execution of single-thread and single-process Monte-Carlo simulation workloads on

WLCG CPU resources. DIRAC Benchmark needed an update in 2016 to better fit with

the evolution of the CPU resources and workloads of the LHCb experiment. Until now,

there has been no further analysis following this evolution. Therefore, we perform

a new analysis of DIRAC Benchmark regarding Monte-Carlo simulation jobs of the

LHCb experiment.

Conditions of the experiment

We want to compare DB16 scores with Gauss jobs running on WLCG. It is worth

mentioning that this experiment took place after the introduction of Python 3.9 in

the LHCb production environment, Python 2.7 being not used anymore. Thus, we

now define DB16 as the corrected Python 3.9 DIRAC Benchmark with a factor of

1.54. The objective is to ensure DB16 is still adapted to the current workload or to

correct it if need be. We experimented by getting the list of the active Monte-Carlo

productions. We extracted the attributes and parameters of 4955 Gauss jobs bound

to 75 productions. Jobs ran on 98 distinct CPU models across 55 sites and provide

data such as the number of events processed, the CPU power of the WN involved

computed by DB16, the CPU time spent in the allocation as well as the estimated

value of the CPU work spent per event - C PUwor k o f 1event introduced in Section

2.4.2 -, which is related to the production.

Figure 3.26 shows the distribution of the job executions across the Sites and CPU

brands. The executions are heterogeneously shared between the sites and CPUs. 70%

of the executions happened on Intel CPUs against 30% on AMD CPUs. In the same way,

the four most productive sites handled 54% of the jobs. This distribution corresponds

to the LHCb production environment with Tier0 and Tier1 sites processing more jobs

than Tier2 and Tier3 sites.
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Figure 3.25 – Comparison of the benchmark scores depending on the Python version
and the CPU model used after applying constant values to Python 3.9 scores
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Figure 3.26 – Distribution of the job executions among the Sites and CPU models

Results

We compared the number of events produced with the CPU time spent in the alloca-

tions in Figure 3.27. Each point represents a Gauss task. We can notice that AMD CPUs

generally process more events in a shorter time than Intel CPUs available. Results

on AMD CPUs seem less scattered than on Intel CPUs, which could be due to the

imbalance between CPU brands across the studied grid sites.

We checked whether such behavior was taken into account by DIRAC Benchmark.

We compared the job power to the CPU power computed using DB16. We define the

job power as the event rate, namely the inverse of the CPU time spent per event: the

number of events we can process in a second. We obtained the job power by dividing

the number of events processed by the CPU time spent in the allocation. From this

definition, we designate j obpower /C PUpower as the number of events we can pro-

cess in a HS06.second. In theory, for a given production, the j obpower /C PUpower

value should be almost similar across various heterogeneous grid sites. In practice, it

depends on the accuracy of the scores computed by DB16.

Therefore, we standardized the j obpower /C PUpower values of each produc-

tion - computing their Z-scores. It allows comparing the variations of the scores across

many grid sites, regardless of the production parameters that could influence the job
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Figure 3.27 – Comparison of the number of events produced with the CPU time spent
in the allocations, classified by CPU brand
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Figure 3.28 – Standardized distribution of the j obpower /C PUpower values of the
jobs across different grid sites, classified by CPU brands.

power. A standardized value inferior to 0 would represent a j obpower /C PUpower

value inferior to the mean, which would indicate an overestimation of the CPU power.

Conversely, a standardized value superior to 0 would imply an underestimation of

the CPU power. The more values are centered, the more DB16 is accurate. Figure

3.28 presents the standardized distribution of the j obpower /C PUpower of all the

productions across the sites at our disposal.

We can observe higher standardized values on AMD CPUs than on Intel CPUs,

which indicates that DB16 underestimates capabilities of AMD processors to process

Gauss tasks. In the same way, we can also notice that results on Intel CPUs are

significantly scattered and more overestimated in general. Next, we evaluate an easy-

to-implement solution to better fit with Gauss tasks.
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Figure 3.29 – Standardized distribution of the j obpower /C PUpower -not-corrected
values of the jobs across different grid sites, classified by CPU brands.

DIRAC Benchmark 21

In Section 3.3.3, we noticed discrepancies between Python 2 and Python3 implemen-

tations of DIRAC Benchmark: scores computed on AMD CPUs were higher than on

Intel CPUs. Thus, disabling corrections applied to the DIRAC Benchmark scores could

provide results that would better fit with the current Gauss tasks. We standardized raw

results of the Python 3.9 implementation the same way as above to obtain Figure 3.29.

Raw scores computed on AMD CPUs are considerably more aligned and centered

around the mean, which implies a better accuracy (87% of the samples bound to AMD

CPUs lie 1 standard deviation around the mean against 74% with DB16). Conversely,

raw scores on Intel CPUs are slightly less grouped around the mean (78% of the

samples bound to Intel CPUs lie 1 standard deviation around the mean against 81%

with DB16). Even though raw scores are globally less accurate, this should not impact

the LHCb production environment as LHCbDIRAC maintains a margin of 0.75% of
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the CPU work available when computing the number of events to process (see Section

2.4.2). Such an approach breaks one of the key principles of the original DIRAC

Benchmark 12: providing an estimated value of the HEPSPEC06 benchmark. We

define the Python3.9 implementation of DIRAC Benchmark with no correction as

DIRAC Benchmark 21 (DB21).

In Section 2.4.2, we have addressed the Gauss elasticity mechanism: tasks process

a certain number of events depending on the CPU work left in the allocation, which

depends on the CPU power and the CPU time. We completed our study by comparing

the number of events processed with DIRAC Benchmark 16 with the estimated num-

ber of events that we would handle in the same allocation with DIRAC Benchmark

21. To compute the latter, we needed to use DIRAC Benchmark 21 CPU power and

an approximation of the C PUwor kDB21 o f 1event value. C PUwor kDB21 o f 1event

depends on the test site, which comprises 77% of Intel CPUs and 23% of AMD CPUs.

Thus, C PUwor kDB21 o f 1event was established as:

C PUwor kDB21 o f 1event =
C PUwor kDB16 o f 1event

AMD f actor ×0.77+ Intel f actor ×0.23
(3.4)

AMD f actor and Intel f actor refer to factors applied to port DIRAC Bench-

mark 12 to Python 3.9. C PUwor kDB21 o f 1event is expressed in HS06.seconds In this

way, we obtain an estimation of the number of events processed, such as:

event s to pr oduce =
C PUpower DB21 ×C PUt i me

C PUwor kDB21 o f 1event
×0.75. (3.5)

Figure 3.30 presents the results of the comparison. We can observe a clear dis-

tinction between AMD and Intel CPUs: LHCbDIRAC would process 1.15 times more

events using AMD CPUs, while it would manage 0.95 times fewer events on Intel CPUs.
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3.3.5 Discussions

Does the improvement of DIRAC Benchmark allow exploiting allocations longer

and, by extension, the throughput of the jobs on grid resources?

LHCbDIRAC developers drop the Python 2.7 implementation of the WMS a few

months after porting DIRAC Benchmark to Python 3.9. The initial work was manda-

tory to preserve the current behavior in grid computing resources. According to Figure

3.25, we have been able to replicate the results of the Python 2.7 implementation and,

by extension, of the HS06 benchmark, by applying corrections.

By comparing DIRAC Benchmark scores with LHCb Gauss tasks, we came to the

same conclusion as Valassi et al.: the HEPSPEC06 benchmark is no longer repre-

sentative of the LHC workload (Valassi, Andrea et al., 2020). DIRAC Benchmark 16

significantly underestimates AMD CPUs capabilities (Figure 3.28). DIRAC Benchmark

21 provides better results on AMD CPUs but slightly less accurate results on Intel CPUs

(Figure 3.29). Given the current state of WLCG, which is mainly composed of Intel

CPUs, the new version of the benchmark would not allow the WMS to longer exploit

allocations, and thus, we chose to keep employing DB16 in the LHCb production

environment. Nevertheless, AMD x86 CPUs are gaining ground, especially in the HPC

area. The situation could change over time and DIRAC Benchmark 21 could gain in

importance.

In the meantime, LHC experiments are exploring supercomputers and have

started to employ accelerators such as GPUs and FPGAs to speed up parts of their

workflows, and many-core allocations: DIRAC Benchmark has not been designed for

such use cases. Other approaches should be considered.

Despite this study has focused on x86 CPUs in the WLCG context and remains

specific to the LHCb experiment, the method could be reused in a variety of con-

texts implying CPU benchmarking tools bound to community-specific applications.

Further efforts would be needed to include components such as co-processors and

accelerators.
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Future Directions and Challenges

Here, we provide further recommendations on topics not covered by this study, to

help VOs employ fast CPU benchmarking tools and elastic jobs to get accurate results.

Elastic job completion largely depends on the C PUwor k o f 1event , which is

usually computed on a test site. To get accurate results on many distributed and

heterogeneous computing resources, the test site should contain a large part of the

components found in the targeted grid: CPUs and accelerators. The test site should

be representative of the grid state, and therefore, should be continuously checked. If

none of the sites could provide such a representation, then multiple sites should be

used as a reference. Even though many sites could be employed, there is currently no

mechanism in place in DIRAC to make sure that the C PUwor k o f 1event computed

was averaged using every needed component. Such a concept could be useful in the

short term.

In the long term, one could work on a new fast CPU benchmarking solution based

on the HEP Benchmark suite seen in Section 2.4.2. It would potentially provide much

more homogeneous results across a variety of computing resources, but might require

a deep understanding of the benchmark and the applications.

One could also extend the Machine Learning benchmarking solution introduced

in Section 3.3.4. It would take computing resource features as input - such as the CPU

model, the load on the machine, the number of cores, the CPU time available - and

would output the number of events to manage in a given allocation. This approach

would likely involve many sites to train the model and would need frequent updates

to remain up-to-date with the advancement of the components. This would represent

a CPU-intensive task, that could otherwise be used to compute the actual workload. A

study of the efforts to deploy to maintain such a model could be meaningful.

Finally, one could adopt the AES approach studied in Section 2.4.2. Designing

preemptible tasks would help exploit computing resources as long as possible. It

would not involve any benchmarking tool and would easily follow the evolutions.

Nevertheless, it would require a lot of changes in the code and would not be adapted

to grid resources: jobs running out of time would likely not be able to save the latest

events processed, which would represent a waste of computing resources that any

other community could have better used.
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3.3.6 Summary

Through Section 3.3, we have demonstrated the importance of maintaining a fast

CPU benchmarking solution up-to-date to longer exploit shared and distributed

heterogeneous computing resources. After exposing the main features of DIRAC

Benchmark (Section 3.3.1), we proposed a plan to continuously test the code and

deploy it as a package, and more importantly, to identify discrepancies in the results

after porting the code to Python 3.9 (Section 3.3.2).

We analyzed more than 4950 LHCb tasks, running on tens of sites and specifi-

cally on x86 CPUs. By defining correction factors relying on the CPU brand and the

Python version used, we have been able to reproduce original scores with a Python 3.9

implementation of the tool (Section 3.3.3). We also consider a new implementation

that would better fit with the LHCb Gauss tasks. We designed DIRAC Benchmark 21,

which significantly corrects the underestimation of the capabilities of AMD CPUs

(Section 3.3.3). Despite it would allow running 1.15 times more events on AMD CPUs,

we decided not to employ it in the LHCb context as WLCG is still largely bound to Intel

CPUs.

Future studies should focus on more accurate fast CPU benchmarking solutions,

integrating a diversity of components such as non-x86 CPUs and accelerators, as

well as many-core allocations. This will become essential in the near future and the

growing adoption of systems such as supercomputers.

3.4 Conclusion

This work primarily supports research efforts conducted by the LHC experiments - and

especially LHCb -, which mainly run Monte Carlo simulation workloads to replicate

experimental conditions and performance of the detectors. In the context of the

constant improvement of the LHC and the arrival of the High-Luminosity LHC, it is

critical to make the best use of the computing power available in order to increase the

quality of the analysis of the acquired data. More generally, this chapter should assist

any community working with distributed and shared computing resources - even

aggregated into High-Performance Computers or clouds - in processing a growing

amount of data.

147



Chapter 3 Towards a better throughput on Grid Resources

The approaches that we elaborate mainly target grid resources and specifically

WLCG. Improving tooling (i) to provision computing resources with additional Pilot-

Jobs and (ii) to maintain efficient and accurate CPU power estimations is the first part

of a large plan consisting in off-loading a significant part of the LHCb workload to

a few large supercomputers. Chapter 4 illustrates the second part and emphasizes

several solutions to integrate the LHCb workload in constrained environments such

as supercomputers.
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4.1 Introduction

In Chapter 3, we stated that WLCG resources were no longer sufficient to continuously

process the growing amount of data coming from the LHC experiments. We empha-

sized the significant efforts made by LHC experiments to integrate their workloads

in highly constrained environments such as supercomputers. Contrary to other LHC

experiments, the LHCb collaboration has recently started and benefits from years of

experience in this domain. Developers can rely on substantial literature but not ma-

ture enough to provide abstract models to help similar communities conduct similar

operations in different contexts - implying other WMS, workloads and/or constrained

supercomputers.

Through this chapter, we aim to offer a first draft plan to guide communities

in this process. We focus on a single application: Gauss, a Monte-Carlo simulation

application described in Section 1.4.1. Gauss tasks represent 71.7% of the offline

activities and consume 91.1% of the CPU time available. As a CPU-intensive and

limited-input application, the integration of Gauss tasks into supercomputers would

represent a significant starting point.

We first describe LHCb requirements and known constraints related to super-

computers (Section 4.2). Then, we introduce the outcome of our literature review

related to the integration of some LHC workload in supercomputers (Section 4.3.1).

We also describe solutions that we implemented within DIRAC WMS to extend its ca-

pabilities (Section 4.3.2). Most of them are based on existing but experiment-specific

approaches. Lastly, we present different use cases consisting in applying the solutions

we developed to different supercomputers (Section 4.4).

4.2 Analysis of constraints

4.2.1 LHCb requirements

We need to make sure that we have the right tools before offloading the Gauss soft-

ware from WLCG to supercomputers. In order to proceed, we should have a clear

understanding of Gauss requirements and DIRAC capabilities (Section 4.2.1), as well

as existing constraints related to supercomputers (Section 4.2.2).
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Reminder: Gauss needs

In Section 1.4.1, we saw that many ongoing efforts focused on optimizing the applica-

tion. Developers intend to reduce the memory footprint of the application or improve

its efficiency. These approaches leverage technologies from supercomputers such

as many-core nodes and accelerators. Yet, the original Gauss application based on

GEANT4 still largely dominates the LHCb distributed computing activities. Gauss

tasks require a huge amount of computing power to provide significant results.

Furthermore, it is worth reminding that Gauss is a CPU-intensive single-process

(SP), single-threaded (ST) application, with a memory footprint of 1.4 GB. It only

supports CISC x86 architectures and CERN-CentOS-compatible environments.

DIRAC capabilities

In Chapter 2, we emphasized DIRAC features and limitations. DIRAC can interact with

different types of CEs and LRMS - via ssh - to supply grid resources with Pilot-Jobs

(Section 2.2.1). Developers chose to entirely rely on the Pilot-Job paradigm, which

is much more efficient than pushing jobs to distributed computing resources but

requires ubiquitous external connectivity (Section 2.2.2). It is needed to: (i) fetch

Pilot-Job code; (ii) request jobs from the DIRAC matcher service; (iii) handle input

and output data before and after the execution of the jobs.

DIRAC administrators can access the configuration service to specify the number

of cores available per allocation. Through the configuration, DIRAC administrators

can also set up tags related to the capabilities of the resources such as memory or

storage. These tags are generally matched with tags bound to jobs, to make efficient

scheduling decisions. While there exist mechanisms to regulate the number of cores

used within an allocation at run time, there is no solution for preventing jobs from

running out of memory or checking storage availability at run time.

DIRAC supports Singularity/Apptainer to instantiate tasks within a controlled

and compatible environment (Section 2.3.1). LHCbDIRAC, as well as many other

VO-DIRAC implementations, relies on CVMFS to provide dependencies of the jobs

(Section 2.3.2). CVMFS has to be mounted on the WNs by the site administrators.

DIRAC mainly requests single-core allocations but embeds a fat-node partitioning
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mechanism to exploit multi-core allocations(Section 2.4.1). DIRAC does not support

all the features provided by LRMS, which may prevent the fat-node partitioning

solution from working properly: if DIRAC cannot get CPU time or wallclock time

left within the allocations, then running jobs might run out of time and be killed by

the system.

4.2.2 Supercomputer: many challenges to address

As described in Section 1.4.2, supercomputers offer a significant amount of computing

power but remain highly heterogeneous. In practice, this poses two main integra-

tion challenges (Stagni et al., 2020): (i) a distributed computing challenge, and (ii) a

software architecture challenge.

Software architecture challenge

The software architecture challenges refer to the capability of an application to effi-

ciently exploit the computing power of a range of different processor architectures

available. Nowadays supercomputers generally include multi-core and many-core

x86 CPUs as well as non-x86 and RISC CPUs (ARM, Power9) that are gaining ground.

Most of them integrate accelerators such as GPUs. Besides, supercomputers are

mainly made for parallel processing involving inter-process communications and fast

inter-node connectivity. They usually tend to favor a small number of multi-node allo-

cations rather than many single-core allocations. Many-core nodes generally cannot

support an instance of Gauss per core due to the memory footprint of the application.

Overall, Gauss cannot exploit such resources by itself and needs support from DIRAC.

Distributed computing challenge

The distributed computing challenges refer to the capacity of DIRAC of providing

an allocation and a proper environment including all the dependencies - data and

software - to successfully execute a given task in a supercomputer. For security rea-

sons, supercomputers may prohibit outbound connections from the WNs. DIRAC

does not support such a use case and would need to be adapted accordingly. More-

over, despite all recent supercomputers leveraging Linux to administer the activities

of the system, there exist various distributions of this OS. To get a compatible OS,
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DIRAC administrators can set up the Apptainer interface to instantiate jobs within

containers, as long as the technology is supported. In the same way, CVMFS is not

installed on such infrastructures. DIRAC administrators can intend to collaborate

with site administrators to cope with such an obstacle, but it is not guaranteed. To

finish, supercomputer administrators may require users to connect to a VPN to access

computing resources. Theoretically, DIRAC administrators should be able to install

a Site Director on the edge node to communicate with DIRAC services and submit

jobs to the local LRMS. In practice, the use case has not been tested and depends

on security policies: running a program from an edge node might be prohibited or

external connectivity might be disabled.

While WLCG Grid Sites provide a relatively uniform computing environment,

supercomputers may differ significantly from one another. The singularity of super-

computer resources demands specific solutions for each of them, generally expensive

in terms of manpower and operations. Thus, the strategy of LHCb consists in (i)

exploiting x86 CPU supercomputer partitions to limit software changes; (ii) collaborat-

ing with the local system administrators and performance experts, which has proved

to be mutually beneficial and has helped to address many specific issues. Adapting

LHCb workloads and DIRAC to supercomputers is essential regarding the substan-

tial amount of computing power they offer and the growing computational needs to

process future LHC data. In Section 4.3, we are going to propose a general plan and

implementations to fine-tune the DIRAC WMS according to known constraints.

4.3 Design of software blocks to integrate workloads

4.3.1 General plan

In Chapter 2, we have analyzed various use cases involving teams intending to inte-

grate their HTC workloads on supercomputers. Most solutions required an immediate

development not grounded on any analytical understanding of underpinning ab-

stractions. In Section 4.3, we aim to guide communities that would start this process.

Our guide takes the form of an activity diagram appearing in Figure 4.1. It remains

relatively bound to LHC experiments and does not treat data movement problems

but could serve as a basis to further projects, especially ones interacting with grid

resources.
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Our guide is designed to interrogate communities about the constraints of a given

supercomputer. Following paths allow communities to test the capabilities of the

system and set up the required components to cope with the obstacles that could

hamper the integration of their workloads.

The first question implies a choice of provisioning model. Getting external con-

nectivity from the WNs allows contacting external services, and thus, employing the

Pilot-Job paradigm. Getting partial connectivity - WNs having only access to the

edge nodes, which can contact services outside - is similar but requires a gateway

service. The role of a gateway service is to redirect network traffic from Pilot-Jobs

and tasks running on WNs to external services. A gateway service is composed of a

client installed within the allocation on a WN, and a service hosted on an edge node.

Tovar et al. built a VPN client and server acting as a gateway (Section 2.3.2). We could

study the utility and, potentially, use it in the context of the LHCb experiment, even

though we have no such a use case at the moment. The service works provided system

administrators allow communities to install their components on an edge node, which

is not always the case. Otherwise, jobs need to be pushed to the supercomputer. WMS

have to embed or communicate with a Job Manager, installed outside of the machine,

functioning similarly to a Pilot-Job provisioning tool. A Job Manager pre- and post-

processes jobs - including interactions with external services -, and solely submits

the tasks to a remote middleware. It also monitors jobs and controls the throughput.

The most known example is the ARC Control Tower (aCT), which intends to offer a

generic interface to WMS. Because DIRAC jobs embed a linear workflow of connected

operations, developers would have to develop their utility based on the foundations

of aCT. The first response of the activity diagram leads to significant changes in the

approach to adopt and appears as two distinct paths in the diagram. Currently, DIRAC

does not support any solution to push jobs directly to a LRMS.

The second question is related to LRMS accessibility. In some cases, LRMS are

only reachable locally, because of an unstable ssh connection for instance, or hidden

behind a VPN. WMS should implement a module to automatically connect to VPN

and submit jobs via ssh. If there is no outbound connectivity within the system and

the connection is unstable, then it is impossible to deal with the supercomputer. In

the other case, communities can install a Pilot Manager directly on an edge node

to locally submit to the LRMS without passing through an ssh connection and/or a

VPN. As for the gateway service, the solution requires system administrators to allow
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communities to run their services on edge nodes. The DIRAC Site Director should be

able to run on an edge node if allowed, but the option would need to be studied.

The third question is specific to communities managing their dependencies

through CVMFS. In Section 2.3.2 we discussed various approaches to use CVMFS

from unprivileged and/or non-connected environments. So far, DIRAC administra-

tors have been able to collaborate with system administrators proposing outbound

connectivity. They have been allowed to mount CVMFS on the WNs, but this is not al-

ways the case. To execute certain applications, container technologies are mandatory

but not always present on supercomputers. The exploitation is declared impossible if

this technology is not present.

The last questions concern the size of the allocations. Teams that work on the

subject leverage inter-node communication libraries such as MPI and OpenMP to

develop wrappers around Pilots and/or jobs in order to exploit many-core allocations.

In the case WNs have no access to the external network, wrappers embed a fixed

number of jobs, which means they should have a similar duration to avoid waste of

resources. Otherwise, wrappers can embed Pilot-Jobs and better control the allocated

space. Overall, solutions present on the left side of Figure 4.1 are more generic but

less efficient than approaches on the right side. In Sections 4.3.2, 4.3.3 and 4.3.4, we

will study how we integrated or developed the solutions mentioned above to exploit a

larger number of supercomputers and better leverage allocations.

4.3.2 Reintroducing the Push model

EuroHPC and PRACE offer access to different European supercomputers. Many

of them embed a significant but highly restricted computing power: nodes have

no outbound connectivity. We need to define a strategy and implement solutions

within DIRAC to leverage such supercomputers. In Section 4.3.2, we first analyze the

ARC Control Tower, one of the most used tools to supply nodes having no external

connectivity with jobs. Then, we emphasize the limitations of the current DIRAC

Pilot-Job workflow and, finally, introduce a solution to push jobs, based on the ARC

Control Tower principles.

156



LHCb workflow integration into Supercomputers Chapter 4

Analysis of ARC Control Tower

Nilsen et al. provides many details about aCT implementation (Nilsen et al., 2015).

aCT is a middleware aiming to connect an external job provider, such as a WMS, with

many ARC CE. The purpose is to ease the management of jobs pushed to an ARC CE

(Figure 4.2). The App engine pulls job descriptions from the external job provider,

converts them into XRSL and sends them to the ARC table. The ARC table stores data

related to jobs and their states and is used to feed the ARC engine with new jobs. Then,

the ARC engine submits the XRSL descriptions to ARC CEs and monitors the state of

the jobs until finished. Once done, the ARC engine fetches the outputs of the jobs

and sends them to the ARC table. They are verified by the App engine before the ARC

engine cleans them from the system. Finally, the App engine sends the result back to

the job provider.

It is worth noting that during the run time, the App engine communicates with the

job provider to update the job heartbeats and check whether a job should be canceled.

The ARC engine automatically resubmits jobs when they fail due to a known error

coming from the resource side. Also, the ARC engine can interact with other CE types

such as HTCondor.

aCT allows communities to design their App engine and use their database as App

table to define how specific job descriptions should be translated to XRSL. While the

solution is highly-configurable and extensible, it would not bring so many benefits

to DIRAC, which already embeds communication interfaces to interact with CEs. We

would still need to develop components to push jobs to aCT. We decided to rely on

DIRAC components to develop a first push service prototype.

Analysis of the LHCbDIRAC Pilot-Job workflow

DIRAC developers develop Pilot (“Pilot”, 2022), a repository containing the programs

used during the Pilot-Job execution once installed on a WN. Developers implemented

Pilot using a command pattern. Each command performs an atomic operation and

the repository already embeds various commands specific to DIRAC. Communities

can extend Pilot and develop their commands. By default, the DIRAC pilot installs

and configures the full DIRAC environment on the WN and analyzes the environment.

It computes the CPU power using DIRAC Benchmark before invoking a special agent
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Figure 4.2 – ARC Control Tower workflow.

named JobAgent.

JobAgent runs multiple cycles. Each cycle, it: (i) checks whether there are still

cores available; (ii) computes the CPU work left; (iii) requests one job to the DIRAC

Matcher service (Figure 4.3 step 3); (iv) generates a job wrapper (Figure 4.3 step 4) and

submits it to an inner CE (Figure 4.3 step 5). Inner CEs correspond to interfaces to

manage jobs within an allocation. DIRAC embeds 3 base inner CEs:

• InProcessCE: executes the job in the same process as the caller.

• SudoCE: executes the job in a spawned process with a different user namespace.

It allows isolating the caller environment from the user job and is used on VMs.

• SingularityCE: executes the job within a Singularity/Apptainer container.

In multi-core allocations, DIRAC calls the PoolCE, which manages a pool of sep-

arate processes. When a PoolCE receives a job, it checks whether a core is available.

If it is the case, it instantiates a process and transfers the job to a base inner CE. The

PoolCE is a major component of the fat-node partitioning mechanism seen in Section

2.4.1.
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The job wrapper is a composition of 3 files: a JobWrapper executable, a JobWrap-

per template and a configuration file. The JobWrapper template is a Python module

using the configuration file to get job arguments. It initializes a JobWrapper object,

downloads the input sandbox and resolves‘ the input data related to the job, executes

the JobWrapper object and uploads some of the outputs to an output sandbox (Figure

4.3 step 7, 8, 9 and 12). If an error occurs, it reschedules the job. The JobWrapper exe-

cutable is a bash script invoking the JobWrapper template with additional parameters

such as the logging level.

The JobWrapper object launches two components simultaneously. The first one

is the job executor, dirac-jobexec by default (Figure 4.3 step 10). It is a Python

script decoding an XML file containing the workflow of operations and executing the

modules sequentially. The second one is a Watchdog object monitoring the system

resource consumption and returning information via a heart-beat mechanism (Figure

4.3 step 11).

We define a workflow of sequential operations as a DIRAC workflow. A DIRAC

workflow contains steps, which are independent of each other. The output of a

given step serves as the input to the next one. Steps are composed of operations

called modules in this context. The default DIRAC workflow comprises one step of

one module, which simply executes the task. LHCbDIRAC substantially extends the

concept of DIRAC workflow. The WMS proposes different DIRAC workflows depending

on the type of jobs. Gauss production tasks are wrapped into a DIRAC workflow

comprising two steps: Gaudi_App_Step and Job_Finalization. Gaudi_App_Step is

related to the execution of Gauss (1 module) and the verification and formatting of the

results and errors (4 modules). Job_Finalization intends to upload outputs to external

services (4 modules).

It is worth noting that communities may choose not to use the DIRAC workflow.

In this case, the JobWrapper object can launch a simple task, generally taking the form

of a bash script. In place of dirac-jobexec, one could also provide another type of

job executor, to interpret different workflows for instance.

Figure 4.3 describes the Pilot-Job implementation of DIRAC and emphasizes the

components and external communications involved in the job execution. It starts

with the Site Director submitting the Pilot to finish with the DIRAC workflow execution.
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Figure 4.3 – Schema of the Pilot-Job implementation of DIRAC, focused on the job
execution. Red crosses indicates external communications impossible within super-
computers with no outbound connectivity.
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The execution of a job implies many connections to external services: first, we need

to request the job, then to get its input data, to update its status and to upload results

and output data. In constrained environments with no external connectivity, a Pilot

could not even fetch a job. Because this workflow is intensively used in production,

and that constrained environments currently represent an insignificant fraction of

the available computing resources, we aim to design a simple and seamless solution

by minimizing the changes in the architecture.

Introduction of the Push Job Agent

To cope with external connectivity issues while preserving the current architecture,

we introduced two components: PushJobAgent and RemoteRunner. The main idea

consists in solely submitting the tasks - Gauss in this context - and executing pre- and

post-processing steps requiring external connectivity outside the targeted system.

PushJobAgent acts similarly to the App engine of the ARC Control Tower, namely fetch-

ing jobs, whereas RemoteRunner behaves as the ARC engine of the ARC Control Tower.

The latter submits the tasks to a CE and monitors them using the communication

interfaces of DIRAC. Figure 4.4 presents the integration of these new components

within the Pilot-Job implementation of DIRAC.

PushJobAgent is a DIRAC agent. It inherits from JobAgent and proposes a similar

structure: it checks whether there are still slots available, requests jobs to the DIRAC

Matcher service, generates job wrappers and submits them to a PoolCE. While not

inheriting from SiteDirector, it borrows a few features from it. It can supervise multiple

sites, CEs and queues and puts queues on hold for a certain number of cycles when

an error occurs.

Contrary to JobAgent, instances of PushJobAgent are installed outside of the tar-

geted system and are permanently running. Because an instance can manage multiple

sites, it sequentially fetches jobs and submits them until the targeted LRMS queues

of the sites are fully loaded, in a single cycle. To get the most adapted jobs, the

PushJobAgent instance provides the DIRAC Matcher service with attributes of the

targeted sites, CEs and queues, instead of the attributes of its host. Then, to guide the

jobs to a RemoteRunner instance, the agent adds a special tag to the attributes of the

targeted computing resources to inform the next components that the embedded task

should be pushed. It is worth mentioning that, as some modules of the DIRAC work-
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Figure 4.4 – Schema of the PushJobAgent implementation of DIRAC, focused on the
job execution.

flows are executed in the host of the PushJobAgent instance, DIRAC administrators

can configure the maximum number of jobs the instance can support in parallel to

avoid reaching the limits of the host. The dirac-jobexec executor is thus run outside

the targeted system.

RemoteRunner is a Python module initializing a communication interface to

interact with the targeted CE. It is instantiated and employed by a DIRAC workflow,

providing that the targeted computing resources have been tagged by a PushJobAgent

instance. RemoteRunner submits the embedded task with its input files, monitors its

status and gets its outputs once it is finished. It formats the result to return it to the

caller module as if it was executed locally.
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With this feature, DIRAC can partially support supercomputers with no external

connectivity. It can push tasks to the system but cannot provide its dependencies.

The current implementation solely allows exploiting single-core allocations. We

have imagined a BundleCE that would be a service between RemoteRunner and a

communication interface. It would receive many tasks and wrap them in an MPI

script as a bundle that would be submitted to the targeted CE. In Section 4.3.3, we

focus on the implementation of a generic pipeline to deploy a subset of CVMFS in a

constrained environment.

4.3.3 SubCVMFS: providing job dependencies in no-external con-

nectivity environments

As stated in Section 2.3.2, we developed an open-source pipeline to identify dependen-

cies of a given application, extract them, test them and deploy them on constrained

computing resources (Boyer et al., 2022c).

Input and output data

The utility takes a directory as input that should contain: (i) a list of applications of

interest (apps): a command along with its input data in a separate sub-directory for

each application to trace; and/or (ii) a list of files composed of paths to include in

the subset of CVMFS (namelists). Additionally, user communities can embed a (iii)

container image compatible with Singularity/Apptainer to get a specific environment

to trace and test the applications; (iv) and a configuration file to fine-tune the utility

with variables related to the deployment process, or information about repositories. A

schema of the inputs is available in Figure 4.5.

The expected output can take different forms depending on the utility configura-

tion:

• The subset of CVMFS, generated as a standalone. In this case, administrators

representing their user communities need to provide the right environment by

themselves, which might also involve discussions with the system administra-

tors.

• The subset of CVMFS embedded within the given Singularity/Apptainer con-

163



Chapter 4 LHCb workflow integration into Supercomputers

inputs

apps

appC1

command.sh
command-input1.conf

appC2

command.sh
command-input1.json

command-input2.sh

appC3

command.sh

namelists

appA.txt

appB.txt

container-image.sif

pipeline-config.json

Figure 4.5 – Schema of the input structure given to the utility.
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tainer image. The utility merges both elements and submits the resulting image,

which can be long to generate and deploy but may limit manual operations on

the remote location.

Features

We break down the process into four main steps, namely:

• Trace: consists in running applications contained in apps and trapping their

system calls at runtime, using Parrot, to identify and extract the paths of their

dependencies. Applications can run in a Singularity/Apptainer container when

provided, which delivers further software dependencies and a reproducible

environment. Dependencies are then saved in a specific file namelist.txt.

In this context, Parrot is only used to capture system calls and, thus, is not

impacted by the issues mentioned in Section 2.3.2. If the step detects an error

during the execution of an application, then the program is stopped. The step is

particularly helpful for users of the utility having no technical knowledge of the

applications of interest.

• Build: builds a subset of CVMFS based on the paths coming from Trace and the

namelists directory. First, the step merges the namelist files to remove dupli-

cated or non-existent path references, and then separates the paths in different

specification files related to repositories. Finally, the step calls cvmfs_shrinkwrap

to generate the subset of CVMFS. Figures 4.6 and 4.7.3 illustrate an example.

The utility deduplicates the files, and hard-link data to populate a directory,

ready to be exported in various formats as shown in Figure 4.7.3.

• Test: consists in testing certain applications - in the given Singularity/Apptainer

container environment when provided - using the subset of CVMFS obtained

during the Build step (see Figure 4.7.4). By default, applications from apps are

used but further tests can also be provided by modifying the utility configuration.

All the applications have to complete their execution to go to the next step.

• Deploy: deploys the subset of CVMFS (Figure 4.7.5) embedded or not within

the container image depending on the configuration options. If such is the

case, then the utility (i) generates a new container definition file that includes

the files with the container image, (ii) executes it to produce a new read-only
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in namelist1.txt:
/cvmfs/repoA/path/to/file
/cvmfs/repoB/path/to/another/file
in namelist2.txt:
/cvmfs/repoA/path/to/file
/cvmfs/repoB/path/to/yet/another/file

in repoA.spec:
/path/to/file
in repoB.spec:
/path/to/another/file
/path/to/yet/another/file

Figure 4.6 – Transformation process occurring during the Trace step: CVMFS depen-
dencies are extracted from namelist.txt and moved to specification files.

container image. The utility supports ssh deployment via rsync, provided the

right credentials in the configuration.

Implementation

The utility is built as a 2-layer system. The first layer, subcvmfs-builder (Boyer, 2022b),

is the core of the system and is self-contained. It takes the form of a Python package,

which embeds the steps described in Section 4.3.3, and provides a command-line

interface to call and execute steps independently from each other. The first layer is,

and should remain, simple and generic to be easily managed by developers and used

by various communities.

The second layer is the glue code: it consists of a workflow executing - all, or some

of - the steps of the first layer. It contains the complexity required to generate and

deliver a subset of dependencies according to the needs of its users. Unlike the first

layer, the second one can take several forms and each community can tailor it for its

software stack.

We propose a first, simple and generic layer-2 implementation calling each step

one after the other: subcvmfs-builder-pipeline (Boyer, 2022c). This layer-2 imple-

mentation is executed from a GitLab CI/CD (“Gitlab CI/CD”, 2022), which provides a

runner and a docker executor bound to a CVMFS client to execute the code (see Figure

4.8) GitLab includes features such as log preservation to help debug the implemen-
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Figure 4.7 – Schema of the utility workflow: from getting an application to trace to a
subset of CVMFS on the Data Transfer Node (DTN) of a High-Performance Computing
cluster.
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Figure 4.8 – Schema of a layer-2 implementation within GitLab CI.

tation and integrates a pipeline scheduling mechanism to regularly update a subset

of dependencies. Even though this layer-2 solution is adapted for basic examples -

implying a few commands to trace and test, having a small number of dependencies -,

it might require further fine-tuning for more advanced use cases.

Indeed, this generic layer-2 implementation is not scalable as it (i) is a single-

threaded and single-process program, and (ii) requires manual operations to insert

additional inputs in the process. This is not adapted to communities having to trace

and test hundreds of various applications to generate large subsets of CVMFS. Two

possibilities for such communities: building a new layer-2 implementation - able to

automatically fetch applications and trace/test them in parallel - based on subcvmfs-

builder-pipeline or creating one from scratch.

Next, we are going to study how the LHCb experiment leverages subcvmfs-builder

to deliver Gauss on WNs of a supercomputer with no external connectivity.
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LHCb implementation

Running embarrassingly parallel applications such as Gauss on a supercomputer can

be seen as counterproductive. While it is true that the interconnect of the supercom-

puter partitions has not been designed for millions of small Monte-Carlo runs, it is

better to use available, otherwise unused, cycles in agreement with the management

of the supercomputer sites. In the meantime, developers are adapting software, but it

remains a long process, requiring deep and technical software inputs.

To deliver Gauss on Mare Nostrum, LHCb can rely on (i) subcvmfs-builder to

produce a subset of CVMFS containing the required files; (ii) a CernVM Singulari-

ty/Apptainer container to provide a Gauss-compatible environment and to mount

the subset of CVMFS as if it was a CVMFS client.

Nevertheless, as we explained in Section 1.4.1, Gauss execution can involve differ-

ent packages, extra packages, options, data and versions. Encapsulating its ecosystem

requires a good understanding of the application and/or a large amount of storage to

encapsulate the right dependencies. Therefore, different options are available:

• Include the whole LHCb CVMFS repository: would not require any specific

knowledge about Gauss and would involve all the necessary files to run any

Gauss instance. However, this option would imply a tremendous quantity of

storage - the full LHCb repository needs 5.2 Terabytes -, long periods to update

the subset and many unnecessary files.

• Include the dependencies of various Gauss runs: as the first option, would not

need any specific knowledge about Gauss and would include a few gigabytes

of data. Nevertheless, such an option would not guarantee the presence of all

needed files and would require a tremendous amount of computing resources

to trace Gauss workloads continuously.

• Include all the known dependencies of Gauss: would require a deep understand-

ing of Gauss and its dependencies to include all the required files in a subset

of CVMFS. While this option would not involve many computing or storage

resources, it would include human resources to update the content of the subset

of CVMFS according to the releases of Gauss and its extra packages.

As the size of the LHCb repository is important, we decided to reject the first

option. LHCb has access to tremendous computing power: it interacts with hundreds
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of WLCG Sites to run Gauss workloads and could theoretically trace them and extract

their requirements. In practice, tracing Gauss workloads in production could slow

down the applications and their execution, which is not an option. Similarly, LHCb

does not have human resources to update the subset of CVMFS according to the

changes done. Thus, we chose to combine the second and the third options to propose

a light and easy-to-update and maintain solution. The process consists in getting

insights into the structure of the Gauss dependencies by running and tracing a small

set of Gauss workloads and analyzing the system calls before including the structure

in subcvmfs-builder-pipeline.

After analyzing 500 commands calling Gauss from the LHCb production envi-

ronment and tracing 3 Gauss applications using subcvmfs-builder (Boyer, 2022a), we

noticed that:

• 97% of the workloads studied were running the same Gauss versions (v49r20)

with the same extra packages and versions. The versions of Gauss and its extra

packages seem related to the underlying architecture.

• 846 Mb of files were needed to run 3 Gauss (v49r20) workloads. About 95% of

the size is related to the Gauss version and the underlying architecture, and

is common to the Gauss workloads traced, while the 5% left is bound to the

options and Geant4 data used that are specific to a given Gauss workload.

• Integrating all the options and Geant4 data related to Gauss v49r20 would

correspond to 1.8 Gb of files.

Based on these assumptions, we designed an LHCb-custom layer 2 implemen-

tation based on the generic one. As the generic layer 2, it takes the form of a GitLab

CI pipeline, which consists in: (i) getting the latest Gauss definitions from the active

LHCb production; (ii) extracting the versions and plugins involved; (iii) comparing

the results to the previous CI run. The CI runs once per day. If the results are similar

to the ones of the previous run, then the pipeline is stopped. In this case, the process

lasts around 10 minutes. Else, the not-known Gauss definitions are transformed as

inputs for the pipeline and the steps are launched. The input tasks are configured to

execute a single event to avoid consuming too much CPU time. The whole execution

is variable, but currently takes about 1 hour and 30 minutes.
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The CernVM container is deployed manually and is not merged with the subset of

CVMFS. The CernVM container allows providing a reproducible environment for the

workload but does not require regular updates. Merging it with the subset of CVMFS

is also a time-consuming operation, which might take up to 24 hours.

This results in a CernVM container occupying 6.4 Gb combined with a subset of

CVMFS covering 6 Gb: dependencies occupy 3.2 Gb of space while 2.8 Gb are required

for the cvmfs_shrinkwrap metadata. Thus, 12.4 Gb of space on the shared file system

of a supercomputer is currently sufficient to run most of the Gauss workloads: 0.24%

of the LHCb repository.

To avoid duplicating executions of tasks, one could also integrate the trace com-

mand of subcvmfs-builder within the LHCb production test phase, which consists

in running a few events of upcoming Gauss workloads on a given Grid Site. LHCb

developers could trace some of them during the process and store the traces in a

database. An LHCb-specific subcvmfs-builder-pipeline could then periodically fetch

the content of the database to build, test and deploy a new subset of dependencies to

Mare Nostrum.

Pushing jobs and providing a subset of CVMFS allows the experiment to exploit a

large number of supercomputers, but remains heavy. There are a significant number

of supercomputers proposing external connectivity and more adapted solutions could

be set up to exploit them. In Section 4.3.4, we study different approaches to integrate

Gauss tasks on such supercomputers.

4.3.4 Exploiting multi-core/node allocations in environments with

external connectivity

Supercomputers embed many-core nodes and generally propose a limited number

of allocations. This approach encourage users to exploit multiple cores and even

multiple nodes within a same allocation. Thus, we need to improve the fat-node

partitioning mechanism, develop mechanisms to leverage multiple nodes in parallel,

while making sure that DIRAC Benchmark will keep proposing valuable and accurate

CPU power estimations.
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Improving the fat-node partitioning mechanism

We added configuration parameters to the DIRAC fat-node partitioning mechanism.

In the initial configuration, the JobAgent instances embedded in the Pilot-Jobs are

able to fetch a single job every cycle, until available cores are all busy. A cycle, by

default, lasts a minimum of 120 seconds even if operations are completed. In this

context, it would take 96 minutes to load 48 logical cores and 512 minutes for 256

logical cores: most of the cores would remain idle for hours and would represent a

waste of CPU time. We changed the default minimum value to 5 seconds, while the

operations of a cycle usually needs 15 seconds. It allows to fully load a multi-core

allocation 87.5% faster. Parallelizing JobAgent cycles would not bring significant

benefits as the matching processes and the submissions of the jobs to the PoolCE

depend on each other and could not be executed simultaneously.

By default, JobAgent instances stop when all the logical cores are used or when

there is no more job to process. Short-lived and unreliable jobs might create a waste of

resources in this configuration. Within an allocation composed of one job running for

12 hours and 47 jobs running for 1 hour, a JobAgent instance would stop and would

not be able to fetch further jobs to load idle logical cores. Therefore, we prevented

JobAgent to stop for such reasons. While it allows filling in idle logical cores until

almost the end of the allocation, it is efficient in allocations mixing different types of

jobs, especially Gauss and user jobs. The combination of these options maximizes the

use of single-node allocations in terms of space. Nevertheless, the current approach

does not support multi-node allocations, which are essential to leverage the resources

of the supercomputer.

Supporting multi-node allocations in environments with external connectivity

Administrators of supercomputers generally limit the number of allocations per user

or project. At the same time, users can request multiple nodes per allocation. Getting

multiple nodes per allocation would allow using a larger number of nodes, and by

extension, to process more pilots and jobs. Moreover, some partitions of nodes only

accept allocations of n > m nodes, m being superior to one.

We have imagined several solutions to support multi-node allocations. The first

one consists in binding a pilot identifier to a JobAgent and a WN (Figure 4.9.a). In
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this context, the Site Director submits a pilot to get a fixed, or a range of, number

of nodes in the allocation. The LRMS provides the requested nodes and the pilot is

installed, either on one of them or on all the nodes in parallel. Each pilot registers

as a pilot and runs a JobAgent instance. Interacting with the pilots depends on the

underlying CE and LRMS. On the one hand, the solution allows to identify every

pilot, their status and outputs, and by extension, every node and job associated with

them. On the other hand, the number of pilot identifiers would not correspond to

the number of allocations and would break the functioning of the Site Director that

does not currently support such as use case, especially when the number of nodes

allocated is not known in advance. Additionally, we cannot get the status of the pilots

until they start running.

The second solution consists in binding a pilot identifier to an allocation, with

one JobAgent per WN (Figure 4.9.b). In this context, one of the pilots is considered

a pilot whereas the other ones are sub-pilots. The Site Director submits a pilot to

get a fixed, or a range of, number of nodes in the allocation. The LRMS provides the

requested nodes and the pilot is installed, either on one of them or on all the nodes in

parallel. Only one pilot is registered in the DIRAC server by the Site Director and all

the sub-pilots are identified with the same pilot identifier. Each sub-pilot can then

run a JobAgent instance, fetches and runs many jobs in parallel. We can interact with

the pilot identifier but not the underlying sub-pilots. The solution does not require

any change on the Site Director as the pilot identifier is still bound to an allocation.

However, it might lead to debugging issues as the access to sub-pilots would not be

straightforward. Figure 4.9 offers a schema of the solutions.

We chose to implement the second solution to minimize the changes in the

code. As we have a limited number of use cases and they rely on the same LRMS, we

currently draw on a specific solution based on the SLURM LRMS and srun, which

allows running MPI jobs involving many nodes on a cluster managed by SLURM.

Within the SLURM communication interface, we implemented a method to use srun

when the number of nodes requested is superior to 1. It is possible to specify a range

of nodes and let the LRMS choose the exact number of nodes at run time according

to the load in the cluster. It copies the pilot content and executes it on all the nodes

in parallel, under the same pilot identifier. It gets the status of the allocation, which

corresponds to the status of the sub-pilots alive. We parameterized the allocation to

keep running even if one of the sub-pilots or nodes fails to avoid killing a large number
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Figure 4.9 – At the top, a schema of three independent pilots running on three WNs
in the same allocation; at the bottom, a schema of three pilots bound to the same
identifier running on three WNs in the same allocation
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of jobs for one error. It automatically extracts the outputs of the pilots on the nodes

and orders them by date. In the SLURM communication interface, we reorder the

outputs per sub-pilot and per date to provide a clear text to the DIRAC administrators.

Better exploiting CPU work in multi-core allocations

As explained in Section 3.3.1, the Pilot-Job computes DIRAC Benchmark prior to

fetching a job. DIRAC Benchmark execution is performed by DIRAC via a script

called dirac-cpu-normalization. The script calls a single-core execution of DIRAC

Benchmark 12 and applies a correction factor to the result in order to construct a

community-specific score: a DIRAC Benchmark 16 score in the context of the LHCb

experiment for instance. While this approach has worked well within single-core

allocation, it might not be adapted to more complex allocations.

In Figure 4.10, we studied DB16 results in a multi-core environment: a node

composed of an Intel Xeon E5-2695 v2 Ivy Bridge processor with 24 hardware threads.

In the same allocation, we executed DIRAC Benchmark on a range of hardware threads

in parallel (1, 2, 5, 10, 15, 20, 24). We can notice a decrease of 12% on average when

more than 10 hardware threads are involved in the calculation, whereas we could

have expected a linear decrease proportional to the number of hardware threads

used. Such variations seem to indicate that (i) the load in an allocation significantly

impacts the performance of the processor, and thus, the DIRAC Benchmark scores;

(ii) DIRAC Benchmark is not adapted to multi-core environments and would need to

be extensively analyzed in this context.

To reduce the impact of such a gap, we introduced a parameter within dirac-cpu-

-normalization. The script is now able to find the number of processors available

from the DIRAC configuration and executes as many DIRAC Benchmark copies as

logical cores within the allocation. From that, the minimum value computed is

selected as the CPU power estimation. This should provide better CPU Power, and

thus, CPU work left estimations in multi-core allocations.

To maximize the use of the nodes depending on the SLURM LRMS, we also added

code to support SLURM features known as min-time and time. It lets the system

choose the duration of the allocation, between min-time and time, at run time. When

the supercomputer is overused, the LRMS allocates resources for about min-time,
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Figure 4.10 – CPU Work estimated by DB16 according to the number of hardware
threads involved in the calculation.

while it gives us resources for a duration between min-time and timewhen the system

is underused. In this way, we quickly get any available resources.

Through Section 4.3, we have strengthened the DIRAC WMS by proposing further

mechanisms to support more constraints, mostly within supercomputers. The DIRAC

WMS is now able to manage single-core allocations in environment with no external

connectivity and better support many-core allocations. Next, we are going to apply

these mechanisms on real supercomputers. We study two of them in depth: Mare

Nostrum from Spain (Section 4.4.1) and Santos Dumont from Brazil (Section 4.4.2).

4.4 Work on supercomputers: use cases

4.4.1 Mare Nostrum 4

To start integrating their workflows on High-Performance computing resources, LHC

experiments can benefit from a collaboration with PRACE and GÉANT (“CERN, SKAO,

GÉANT and PRACE to collaborate on high-performance computing”, 2020). This

collaboration gives them access to several European supercomputers such as Marconi

in Italy and Mare Nostrum in Spain.
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Computing resources available

Managed by the Barcelona Supercomputing Center (BSC), Mare Nostrum is the most

powerful and emblematic supercomputer in Spain (Vicente and Bartolome, 2010).

Mare Nostrum was built in 2004 (Mare Nostrum 1), has been updated 3 times since

then (Mare Nostrum 2,3 and 4) and was ranked 82th in the June 2022 Top500 list

(“Top500 The List”, 2022). The general purpose partition of Mare Nostrum comprises

153,216 cores distributed in 3,456 computational nodes and has a peak performance

of 11.15 Petaflops. Each node composing the general-purpose block is equipped

with two Intel Xeon Platinum 8160 24 cores at 2.1 GHz chips, and at least 2GB of

DDR4-2667 RAM: this configuration matches Gauss requirements. Nodes and users

share access to a shared file system, where they have access to 5 TB of storage. Nodes

also host a non-CERN compatible version of Linux: SUSE Linux Entreprise Server 12.

Administrators manage the nodes using the SLURM LRMS.

As mentioned in Section 1.4.2, a certain number of CPU hours are reserved for

the experiments. Allocations are renewed every six months and tailored for the needs

of the experiments. For its first round, the LHCb experiment receives an allocation

of 50,000 CPU hours for testing purposes. Currently, the collaboration has access

to a 6-month allocation of 500,000 CPU hours and has been allowed to manage a

maximum of 366 allocations in parallel. Once reached, the experiment can still exploit

the nodes of Mare Nostrum via a special queue. In this case, jobs are not prioritized in

the system.

Nevertheless, Mare Nostrum is more restrictive than a traditional grid site on

WLCG. By default, CVMFS is not mounted on the nodes and administrators would not

allow it. Worker nodes and edge nodes have no external connectivity and no service

can be installed on the edge nodes. Thus, it is impossible to supply nodes with Gauss

tasks as we generally do on a WLCG grid site. Next, we are going to focus on solutions

we set up to exploit the current EuroHPC and PRACE allocation and pinpoint the

limitations of our approach.

Software blocks leveraged

To provide tasks with Gauss dependencies and a reproducible environment, we first

created and transferred a CernVM Singularity/Apptainer container to the shared
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file system of Mare Nostrum. Then, we set up the LHCb subcvmfs-builder-pipeline,

introduced in Section 4.3.3, to push the latest Gauss dependencies to the shared file

system of the supercomputer.

To ease the management of the workloads on Mare Nostrum, the team of the Port

d’Informació Científica (PIC) installed an ARC instance on their infrastructure. We

installed and configured a PushJobAgent to push Gauss tasks to Mare Nostrum via the

ARC instance hosted by PIC. With the help of the PIC administrators, we fine-tuned the

ARC instance to leverage RunTime Environments (RTE). RTEs allow users to flexibly

contextualize a job execution environment. We set up an RTE to launch Gauss tasks

within a CernVM container mounting a subset of CVMFS as CVMFS.

Results

We have run Gauss jobs on Mare Nostrum for 1 month. We have measured the

number of jobs processed per hour over this period using the accounting service of

the LHCbDIRAC production instance. Figure 4.11 shows the results. We configured

the PushJobAgent instance to manage 200 jobs in parallel first and we increase the

limit to 300 jobs from the 7th day. We also modified the site parameters so that Gauss

tasks run for about 12 hours.

During this month, 96.3% of the jobs ran successfully, while 3.7% of them failed.

Failed jobs occurred after issues within the supercomputer. The last errors were

caused by an unexpected issue with the shared file system causing the blocking of I/O

operations and about 84% of the job failures. We can notice a gap towards the middle

of the month. BSC requires the LHCb collaboration to manually and electronically

submit a report about the status of the project every two weeks. Any oversight results

in the blocking of the allocation of the CPU hours until the report is submitted. We

can also observe that the PushJobAgent rarely process the maximum number of jobs

allowed: in average, 179 jobs are managed in parallel. This will be investigated below.

According to BSC data, our approach is sufficient to exploit an allocation of

750,000 CPU hours for 6 months (Figure 4.12). In a month, we have consumed 133,630

(17.82%) CPU hours available. Consumption of the CPU hours remains significantly

variable through the weeks, which can be explained by the configuration changes,

issues on the supercomputers and the forgotten report mentioned above.
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BSC data also provide insights about the storage usage (Figure 4.13). We have a

limit of 5 TB and we let the system clean the inputs and outputs of the LHCb jobs from

time to time. The current approach generates around 3 TB of data on the shared file

system. The CernVM container represents 5 GB while the subset of CVMFS currently

weighs 40 GB. To avoid exporting the whole subset of CVMFS every time an update

is required, we keep the existing files on the system, which explains the size of the

subset after 3 months of updates. 300 jobs running simultaneously for 12 hours

are responsible for 98.5% of the storage used, which represents 60% of the available

storage. To exploit further jobs on the supercomputer, we would need to clean inputs

and outputs once jobs are done. The PushJobAgent instance should also be able to

manage a larger number of jobs.

We monitored the computing resource usage of the machine hosting the PushJob-

Agent instance interacting with Mare Nostrum for one week (Figure 4.14). The ma-

chine comprises an Intel Xeon Skylake CPU of 16 cores (32 hardware threads) and 64

GB of RAM, and 48 GB of storage are reserved for the DIRAC installation and data. It is
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worth noting that the PushJobAgent instance is the only DIRAC component running

on the machine.

Our approach has a minimal impact on CPU usage: 98% of the hardware threads

remain idle most of the time (Figure 4.14.a). In the same way, the space used observed

in Figure 4.14.b is the share of the DIRAC installation compared to the whole system

(about 40%). Peaks correspond to input and output data related to jobs managed

by the PushJobAgent instance. It represent a few MB of storage. We implemented a

cleaning mechanism to prevent overloading the machine. Conversely to the previous

metrics, the memory of the machine is significantly impacted by the solution. An

analysis of the running processes emphasizes the association between running jobs

and memory consumption. Managing 300 jobs with the current approach requires

about 54 GB of RAM, namely around 180 MB per job.

As we have seen in Section 4.3.2, the PushJobAgent instantiates a JobWrapper

template and a dirac-jobexec processes for each job. While the execution happens on

the supercomputer, each process remains running to interrogate the ARC instance

every 2 minutes and gets the status and outputs of the jobs. Even though the size of

the processes is not important, the sum of many of them results in a heavy memory

load on the machine. Furthermore, as the Site Director, the PushJobAgent instance

executes 500 cycles of 120 seconds by default, before restarting. Because it spawns

processes, they remain bound to it until the end of their execution, forcing it to stay

active until the end of all the processes. As a consequence, a single JobWrapper

template started towards the end of the PushJobAgent instance execution can force

it to stay active whereas no other JobWrapper templates is running. In practice, this

blocks the submission of further jobs for many hours and explains why the instance

rarely processes the maximum number of jobs in parallel.

The current approach constitutes a simple solution, minimizing the changes in

the code. To manage further jobs, short-term solutions could consist in tweaking

the parameters of the machine and the configuration of the PushJobAgent instance.

Dumping and reloading the memory of the dirac-jobexec processes could free up

some space but would likely stress the storage while scaling up at some point. As jobs

are all very similar, deduplicating memory could help until we start mixing Gauss

tasks with other types of jobs. In addition, configuring the PushJobAgent instance to

run a larger number of cycles would minimize issues related to processes blocking the
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Figure 4.14 – CPU and memory usage of a PushJobAgent instance running in one
of the production servers of LHCbDIRAC, as well as disk occupancy of the DIRAC
installation. The instance solely targets Mare Nostrum.

183



Chapter 4 LHCb workflow integration into Supercomputers

end of the agent execution.

In the long term, we should design the WMS workflow differently. The PushJob-

Agent instance could work similarly to a Site Director. It would execute directly the

JobWrapper template and a modified version of dirac-jobexec that would split pre-

processing and post-processing steps and modules. In this context, the PushJobAgent

instance would fetch jobs and execute each JobWrapper template in parallel. It would

instantiate the first part of the DIRAC workflows containing the pre-processing steps

in parallel. After that, the PushJobAgent submits the tasks to a remote CE and monitor

multiple tasks with a single command using the same communication interface.

Finally, it would execute the second and last part of the DIRAC workflows containing

the post-processing steps in parallel.

4.4.2 Santos Dumont

LHCb also benefits from a close collaboration with the Laboratório Nacional de Com-

putação Científica (LNCC) in Brazil, which provides opportunistic allocations to the

collaboration.

Computing resources available

The LNCC is a public, interdisciplinary research center focused on the simulation

and computational modeling of complex problems (Gitler et al., 2020). The center

coordinates SINAPAD, a network of several supercomputers funded by the Brazilian

Ministry of Science, Technology and Innovations (MCTI) including Santos Dumont,

also known as SDumont.

In 2015, the French company Atos installed Santos Dumont (SDumont), the first

Petascale supercomputer in Brazil, designed by Bull (“Archive for Santos Dumont su-

percomputer”, 2019). Updated in 2019, SDumont remained the largest supercomputer

dedicated to research in Latin America until 2020. Ranked 424th of the Top500 in June

2022, the supercomputer still acts as a central node of SINAPAD, with a processing

capacity in the order of 5.1 Petaflops and a total of 36,472 CPU cores, distributed in

1,134 computational nodes, mainly composed of CPUs with multi-core architecture

(“SDumont”, 2021). Table 4.1 presents the configuration of SDumont in further detail.
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Table 4.1 – Configuration of SDumont

Number of Nodes Name Processor Co-Processor Memory
(hardware threads)

504 (12.096) B710 2x Intel Xeon E5-2695v2 Ivy Bridge 64GB DDR3
198 (4.752) B715 2x Intel Xeon E5-2695v2 Ivy Bridge 2x NVIDIA K40 GPU 64GB DDR3
54 (1.296) B715 2x Intel Xeon E5-2695v2 Ivy Bridge 2x Xeon Phi 7120 64GB DDR3
1 (240) MESCA 2 16x Intel Xeon Ivy Bridge 6TB
246 (11.808) BS X1120 2x Intel Xeon Cascade Lake Gold 6252 384GB
36 (1.728) BS X1120 2x Intel Xeon Cascade Lake Gold 6252 768GB
94 (4.512) BS X1120 2x Intel Xeon Cascade Lake Gold 6252 4x NVIDIA Volta V100 GPU 384GB
1 (40) BS 2x Intel Xeon Skylake Gold 6148 8x NVIDIA Tesla V100-16GB 384GB DDR4

Table 4.2 – Configuration of the cpu partitions

Partition Min. Max. Max. Max. Max.
Number of Number of Wall-Clock Number of Number of
Nodes Nodes Waiting Jobs Running Jobs

cpu 21 50 96h 24 4
cpu-dev 1 4 20m 1 1
cpu-small 1 20 72h 96 16
cpu-long 1 10 31d 18 3
cpu-shared 1 20 72h 96 16
cpu-scal 51 128 18h 8 1

Nodes are interconnected by an Infiniband network offering low latency and high

throughput for access to the file system and communication between processes. In

combination with Infiniband, SDumont also integrates a parallel Lustre file system

with a gross storage capacity of 1.7 PB. Local system administrators have installed

RedHat Linux 7.6 - Gauss-compatible - on the nodes and manage computational

resources and their use with SLURM. They also allow external connectivity from the

WN. SDumont is only available through SSH via the LNCC VPN.

Contrary to Mare Nostrum, the LHCb experiment does not benefit from reserved

CPU hours on SDumont. Computing resources available have to be used opportunis-

tically. We have access to 504 B710 nodes, which corresponds to a total of 12,096

hardware threads, spread through 5 partitions. Their configuration and the number

of resources granted to the users are available in Table 4.2. The cpu-shared partition

allows core allocation, so we allocate 20 hardware cores per allocation instead of the

whole node. We mainly focus on cpu-small and cpu-long, where we allocate one node

of 24 hardware threads per allocation. With the current configuration, we have the

possibility to run a maximum of 16×24+3×24+16×20 = 776 jobs at the same time.
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Software blocks leveraged

Thanks to a close collaboration with LNCC, system administrators installed and

mounted CVMFS on the nodes, and created an SSH bridge from an LHCbDIRAC

host to an edge node of the supercomputer so that LHCb administrators and develop-

ers do not need to deal with the presence of a VPN. We have leveraged Pilot-Jobs and

the fat-node partitioning to exploit the available resources opportunistically.

Results

We have run Gauss jobs on cpu-small, cpu-long and cpu-shared for 3 months. We have

measured the CPU usage of the resources over this period using the accounting service

of the LHCbDIRAC production instance (Boyer, 2021b). Figure 4.15 shows the results.

On average, about 196 CPU seconds are consumed per second, which corresponds to

196 jobs running simultaneously. This represents 1.6% of the B710 nodes available,

and 25% of the theoretic maximum number of jobs (776) that we could run on the 3

partitions that we are using. Besides, the theoretic maximum number has not even

been reached, the maximum being 514 CPU seconds consumed per second. The

amount of CPU seconds consumed per second is significantly variable over time.

Furthermore, jobs that fail before their completion consume 15% of the CPU seconds

used. We are going to study the source of the jobs failures firstly, and the usage of the

resources secondly.

The LHCbDIRAC production instance produces plots of the number of jobs per

job status. We extracted the error statuses in Figure 4.16. We observe that 99.4% of the

failures occur because pilots were not running during the execution of the jobs, which

means that pilots end unexpectedly before the end of the jobs (Job stalled: pilot not

running). To avoid many job failures, we did not leverage multi-node allocations and

we limited the number of jobs to the number of hardware threads available on a node,

which prevents replacing a job once finished before the end of the allocation.

To get further information about this issue, we extracted details about 1840 pilots

by interrogating the SLURM instance of SDumont. Figure 4.17 presents the number

of pilots that SDumont processed, classified by partition and status. 46.8% of the

pilots failed because they run out of the time that SLURM allocated for them, which

explains the large amount of stalled jobs (Timeout). In cpu-long and cpu-small, there
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Figure 4.15 – CPU seconds used on SDumont per real second. Done corresponds to
the CPU usage of the jobs done; F ai led to the CPU usage of the jobs that failed.
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Figure 4.16 – Percentage of jobs per error status.

were even more Timeout pilots than Completed pilots, namely the pilots managing

to finish their execution properly. The cpu-shared has a better ratio of Completed

pilots. Contrary to cpu-small and cpu-long that share a large part of their nodes with

each other, cpu-shared has a dedicated set of nodes that cannot be used by any other

partition. This could partially explain the difference in ratios between the partitions.

Despite it has the worst ratio of Completed pilots (34.72%), cpu-small is also the most

used partition for LHCb workloads (61.4%). The SLURM instance seems to favor the

usage of cpu-small over cpu-long and cpu-shared.

To better understand the Timeout issues, we focus on the CPU work computation.

Thus, we studied the status of the pilots based on the available CPU time, and the

CPU power resulting from DB16. Figure 4.18 shows the results in the form of a scatter

plot. Outputs of the Timeout are empty, thus we do not have information about the

number of jobs they manage to process, and this explains the fact that all Timeout

pilots have a total of 0 job on the scatter plot. We distinguish 4 main clusters of pilots:

• in the top-left corner (Cluster1): only Completed pilots from cpu-shared that
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processed 20 jobs. Pilots had 250,000 seconds at their disposal, and the CPU

power was estimated between 16 and 19 HS06.

• in the top-right corner: same features as Cluster1, except that CPU power was

estimated between 20 and 24 in this case. As both clusters are close, we will

group them and call them Cluster1.

• in the bottom-left corner (Cluster2): a combination of Completed and Timeout

pilots from all the partitions but especially cpu-small, that processed between

0 and 24 jobs. Pilots had between 0 and 100,000 seconds at their disposal, and

the CPU power was estimated between 16 and 19 HS06. We can see that the

higher the CPU power, the more we have Timeout issues. Nevertheless, there is

no clear boundary.

• in the bottom-right corner (Cluster3): mostly Timeout pilots from all partitions,

but especially cpu-small. Pilots had between 0 and 100,000 seconds at their

disposal, and the CPU power was estimated between 21 and 24 in this case,

which is the major difference with Cluster2.

The CPU power seems to have a significant impact on the failures. To get an insight

into the accuracy of the CPU power estimations, we compared the C PUwor k o f 1event

values of several productions computed on the test site (further explanation in Section

2.4.2) with the C PUwor k o f 1event values computed from several allocations on the

supercomputer (Figure 4.19). A total of 2754 completed jobs were analyzed. Failed

jobs were not taken into account as they did not include information such as the

number of events successfully processed. Results suggest that DB16 overestimates the

CPU power of the Intel Xeon E5-2695v2 Ivy Bridge processors on SDumont by 27% on

average, which is critical. This issue echoes results obtained in Section 3.3 and also

puts into question the viability of DB16 in multi-core environments, which has never

been tested in a real use-case beforehand. We would need to run an extensive analysis

of DIRAC Benchmark in this context to identify issues, associate them with the results

from Section 3.3 and propose a reliable solution to improve it.

On the one hand, there are external factors that we cannot control that could ex-

plain the variability observed in Figure 4.15. For instance, we probably never reached

the theoretical maximum number of jobs because of the competition for the resources

within the supercomputer. Indeed, many other VOs use these resources at the same
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Figure 4.18 – Status of the pilots, the number of jobs they processed and the partition
they used depending on the CPU time they had and the CPU power they computed.
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Figure 4.20 – Number of jobs processed per pilot, classified by partition.

time and some of them even have more priority compared to LHCb. We also got some

issues with the CVMFS installation and the SSH access that was blocked from time

to time. During these moments, we had no means of running jobs on SDumont, and

this would likely explain the values close to 0 or some of the decreases in Figure 4.15.

However, we have many waiting pilots in the partitions in case we cannot submit

newer pilots: the LRMS can continue to execute waiting pilots while we deal with the

issues.

On the other hand, we can monitor some of these factors to identify problems

that we could resolve. For instance, we analyzed the outputs of the Completed pilots

to determine the number of jobs that they usually process. According to Figure 4.20,

pilots generally use all the hardware threads, available for them, on the WNs.

Figure 4.21 presents the CPU time that Completed pilots effectively use, compared

to the CPU time that SLURM allocates for them. They are classified by cluster -

according to the CPU time allocated and the CPU power computed -, which are

defined above. Pilots from Cluster1 - which is characterized by a high CPU time - use

generally 35% (median) of the CPU work allocated, which is rather low compared to
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Figure 4.21 – Percentage of CPU time, that SLURM allocates to the pilot, effectively
used, classified by cluster. Cluster1 includes all the pilots with a CPU time available
superior to 200,000; Cluster2 comprises all the pilots with a CPU time available inferior
to 200,000 and a CPU power approximation inferior to 19; Cluster3 contains all the
pilots with a CPU time available inferior to 200,000 and a CPU power approximation
superior to 19.

Cluster2 and Cluster3 that use 97% (median) of the CPU time available. Even though

the number of Gauss events is defined at run time, there is a maximum number of

events that each job can process, which seems to be reached in Cluster1. As jobs

are not replaced once they are finished, we do not maximize the usage of allocated

resources. Pilots from Cluster2 and Cluster3 use much more CPU time than allowed

(the maximum being 75% of the total CPU time allocated).

We also analyzed the CPU time effectively used by jobs compared to the CPU time

that SLURM allocates to the pilots (Figure 4.22). Jobs from Cluster1 run during 31%

(median) of the allocated time. The standard deviation is relatively small, values are

close to the mean, which demonstrates that 34% (3-quantiles) of 250,000 seconds

- 72,500 seconds - are sufficient to run 75% of the Gauss jobs in their current form.
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The maximum job duration represents 47% of the allocated CPU time, which shows

that pilots having around 250,000 seconds available could run 48 (2×24, the number

of hardware threads on the B710 nodes) Gauss jobs per node. Jobs from Cluster2

consume generally between 83% (1-quantile) and 91% (3-quantiles) of the time at

their disposal, which shows that jobs exceed the CPU time margin (75% of the CPU

time allocated) and supports the fact that the CPU power computation is not accurate

enough on this platform, and thus should be revised. Cluster3 has a larger standard

deviation (26), probably because there are fewer jobs in Cluster3 (148) compared to

Cluster1 and Cluster2 (respectively 6679 and 11449). Nevertheless, we can note that

the median of Cluster3 is much smaller (48%) than the one of Cluster2, for almost

the same CPU time available. The difference likely explains the fact that these pilots,

having a higher CPU power value, managed to complete their execution: jobs run less

long than in Cluster2.

Pilot-Manager on the edge node

The SSH connection provided by the SDumont administrators is unique and only

accessible to some members of the LHCbDIRAC team, and thus, might not run in the

long term. Additionally, the SDumont team wants us to renew our access passwords

frequently. Trying to automatically submit pilots many times at these moments blocks

our accounts for many hours or even days.

To be less dependent on this connection, we have built a DIRAC prototype in-

stalled on an edge node of SDumont, based on the Harvester principle. The prototype

consists of a Site Director that directly submits pilots from the edge node to SLURM.

Because system administrators do not allow services running from the edge nodes, we

set up a cron job instantiating a Site Director every 10 minutes and running a single

cycle. The Site Director communicates with the LHCbDIRAC production server via

HTTPS, to get waiting jobs as well as registered pilots.

This approach raises two issues:

• LHCbDIRAC administrators would need to set up a delivery and update man-

agement system. Indeed, LHCbDIRAC administrators deploy releases every two

weeks on the dedicated servers. While the operation could be done manually

on SDumont, this would be cumbersome.
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Figure 4.22 – Percentage of CPU time, that Slurm allocates to the job, effectively used,
classified by cluster. Cluster1 includes all the pilots with a CPU time available superior
to 200,000; Cluster2 comprises all the pilots with a CPU time available inferior to
200,000 and a CPU power approximation inferior to 19; Cluster3 contains all the pilots
with a CPU time available inferior to 200,000 and a CPU power approximation superior
to 19.
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• The Site Director would need the host X.509 certificate of the edge node of

SDumont to securely communicate with LHCbDIRAC services. Local system

administrators do not provide such a certificate.

The solution would need to be expanded and accepted by the local system admin-

istrators to be used on additional supercomputers. We have not developed the idea on

SDumont as the SSH connection is sufficient to run Gauss jobs on the supercomputer

despite the issues that we mentioned above. Figure 4.23 presents a schema of the SSH

delivery system and the DIRAC extension on the edge node.

4.5 Conclusion

This work promotes and relies on research efforts conducted by LHC experiments

which keep developing tools to exploit supercomputers. We mainly highlighted so-

lutions related to Monte Carlo simulations as they are, in general, the easiest tasks

to offload from WLCG. This chapter should assist any community working with dis-

tributed, shared and, especially, constrained computing resources in processing a

growing amount of data. The sections are relatively bound to LHCb but they could be

transposed to any other similar projects.

We have started by specifying our requirements and abilities to deal with con-

strained environments (Section 4.2). Next, we have presented the plan to guide

any communities in this process: it raises questions about the constrained environ-

ment and prescribes generic answers to overcome the issues (Section 4.3.1). The

plan is followed by implementations of these generic answers, specific or not, to our

project. In this case, we added support for resources with no external connectivity: (i)

PushJobAgent, a DIRAC agent to perform pre and post operations from LHCb servers

and only submit the tasks to supercomputers (Section 4.3.2); (ii) subcvmfs-builder-

pipeline, a generic CI pipeline to automatically generate and deploy subset of CVMFS

(Section 4.3.3). We also improve abilities of DIRAC to manage many-core allocations

in supercomputers with external connectivity (Section 4.3.4).

Finally, we have presented supercomputers and followed the logic of the plan to

integrate Gauss tasks on their computing resources (Section 4.4). It is worth noting

that the examples that we have are significantly different from each other in their ar-

chitectures and policies. It raised two main limitations in our solutions: PushJobAgent
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Figure 4.23 – At the top, a pilot delivery system based on SSH; at the bottom, a pilot
delivery prototype based on HTTPS and the edge node
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cannot scale to manage more than 300 Gauss tasks in parallel and DIRAC Benchmark

may not be adapted to certain processors in supercomputers. Nevertheless, we have

been able to exploit an allocation of 750,000 CPU hours on Mare Nostrum and oppor-

tunistic allocations on Santos Dumont, which represents around 500 jobs in parallel.

While this is still insignificant compared to the resources that we can exploit on WLCG,

it lays the foundations for further and larger upcoming allocations of computing

resources.
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Conclusion

This thesis is made in the context of the LHCb experiment and focuses on the efforts

that have to be made in the DIRAC WMS to provide additional computing power in

order to manage the upcoming LHCb workload from the LHC Run3 and HL-LHC

infrastructure. Through the 4 chapters of this manuscript, we have: (i) presented

the nature of the LHCb tasks and computing resources at our disposal; (ii) studied

how to efficiently leverage them; (iii) implemented and evaluated solutions to better

exploit already available distributed grid resources and integrate LHCb workload on

supercomputers.

Summary

First, we have presented consumer needs and supplier offers at the dawn of the

2020s (Chapter 1). After having defined tasks and workloads, their structures and

requirements, we have surveyed the evolution of computing components, classes

and paradigms used to widely share computing resources. AI is currently influencing

large companies leading the hardware market and shaping the computing landscape

of a new decade: specialized and heterogeneous components aggregated in large

infrastructures and mostly offered as cloud computing services. A focus has been

made on the difficulty to integrate tasks on many distributed computing resources,

especially when owned by independent institutions. The LHCb collaboration is fol-

lowing the trend to handle a growing amount of data. Many developments focus

on Monte-Carlo simulation tasks that represent 71.7% of the offline activities and

consume 91.1% of the CPU time available. Developers have started to integrate AI in

fast simulations to speed up the process but the experiment still primarily depends

on full simulation tasks that remain CPU-intensive and require a large number of

computing resources to provide meaningful results. Decision-makers are encouraging

experiments to integrate their workloads on supercomputers, which represents a huge

but highly-heterogeneous computing power. Thus, we established a strategy consist-

ing in integrating Monte-Carlo simulation tasks on supercomputers and improving
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the use of WLCG computing resources to process other types of tasks.

Then, we have surveyed different approaches to integrate CPU-intensive and em-

barrassingly parallel tasks with limited inputs on distributed and shared computing

resources, mainly related to grid computing clusters and supercomputers (Chapter 2).

We have defined the grid architecture and enumerated existing provisioning models.

It is worth noting that the Pilot-Job paradigm has had a great impact in the High-

Throughput Computing community for two decades as it addresses issues of the push

model, but remains impossible to set up in constrained environments with no external

connectivity as we often find in supercomputers. We have also provided solutions

to cope with result reproducibility in distributed and heterogeneous computing re-

sources. Both HPC and HTC communities have been concerned about the subject and

worked on containers, package managers as well as a distributed file system to export

environments across many sites. CVMFS, combined with package managers, has been

largely used for years in WLCG. Many teams have worked on project-specific solutions

to integrate the model in constrained resources with no external connectivity, but

there is still a lack of genericity. We have reviewed current approaches to efficiently

exploit computing allocations in terms of space and time. DIRAC developers are able

to leverage multi-core allocations but there is still a lack of support for multi-node

allocations, common in HPC clusters. When it comes to running jobs as long as possi-

ble, DIRAC depends on a fast CPU benchmarking solution named DIRAC Benchmark.

Coded in Python 2 in 2012, the utility had to be ported to Python 3 and should still

provide accurate results about CPU power across many different architectures.

In Chapter 3, we have focused on the efforts to make better use of WLCG resources.

In this part, we have aimed at increasing the job throughput with the same number

of computing resources. This includes an analysis of the Site Director, the Pilot-Job

provisioning mechanism involved in DIRAC and their interactions with distributed

CEs, as well as an analysis of DIRAC Benchmark, making sure it still provides valuable

results. By parallelizing operations of the Site Director, using efficiently the API to

communicate with CEs and finetuning several configuration options within DIRAC,

we have been able to increase the number of pilots successfully submitted per hour,

from an average of 3955 to 4683 (18.41%). This represents an increase of 40.86% of the

number of jobs processed simultaneously per second across the sites studied (from

an average of 57,000 jobs to 80,300).
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Porting DIRAC Benchmark to Python3 generated discrepancies: Python 3 results

were generally higher than Python 2 scores, especially on AMD CPUs. By applying

factors depending on the CPU brand and the Python version used, we have been able

to provide results close to the original DB12 implementation. Comparing DB16 to

the LHCb Monte-Carlo simulation jobs emphasizes further discrepancies: Python 3

results were more representative of the workload without corrections on AMD CPUs.

It resulted in a new benchmark called DB21, which would allow the experiment to

process 1.15 times more events on AMD CPUs. DB21 was not applied in production

as LHCb still largely depends on Intel CPUs.

In Chapter 4, we have worked on the integration of Monte-Carlo simulation jobs

on supercomputers. In this part, we have aimed at increasing the job throughput from

resources with new types of constraints. We have designed a plan aggregating all the

raised issues and developments made by LHC experiments on supercomputers and

provided guidance to any HTC community that would like to start exploiting such

resources. We have implemented solutions to exploit supercomputers with no external

connectivity: (i) we have integrated the PushJobAgent component within DIRAC,

which is based on the ARC Control Tower concept from ATLAS; (ii) we have created

subcvmfs-builder and subcvmfs-builder-pipeline to assist any community requiring

a subset of CVMFS on constrained nodes. We have also made efforts on supporting

multi-core and multi-node allocations in supercomputers with external connectivity.

This allows the LHCb collaboration to exploit an allocation of 750,000 CPU hours on

Mare Nostrum (82th of the June 2022 Top500) and opportunistic allocations on Santos

Dumont (424th of the June 2022 Top500), which represents around 500 jobs in parallel.

While this proof of concept is still insignificant compared to the resources that we can

exploit on WLCG, it lays the foundations for further and larger upcoming allocations

of computing resources.

Research prospects

Revisiting the computing infrastructure choices

Choosing the infrastructures that would fit the most with LHCb workloads implies

complex decisions and operations. The current strategy of the experiment is to use

all the available computing resources. Nevertheless, through this manuscript, we
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have been able to observe how heterogeneous the computing landscape is nowadays.

Therefore, in practice, there is a trade-off between computing power theoretically

available and efforts required to support and maintain applications and middleware in

order to exploit this computing power. Efforts required also depend on the manpower

available for the experiment.

LHCb decision-makers have favored supercomputers to extend the computing

power of the experiment. Supercomputers are more and more powered with GPUs,

and ARM CPUs are gaining ground. On the one hand, it represents the opportunity of

pushing forward to adapt certain applications and middleware to novel architectures

and platforms, and makes the experiment more resilient to computing model changes.

On the other hand, not all applications can be ported to such platforms, and there is

still a high demand for CISC x86 CPUs. It also requires significant manpower to adapt

applications and middleware to such heterogeneous and unique systems. The LHCb

experiment, like many other projects requiring computing power and leveraging

EuroHPC calls, needs a lot of commodity CISC x86 CPUs, which becomes rare and

demanded in such infrastructures.

Also, running LHCb tasks on a few large partitions of supercomputers instead

of many medium-sized distributed clusters would be easier to manage for WMS

administrators that would have to deal with less distributed sites. In this case, however,

any incident on infrastructure would result in a more significant loss of computing

power theoretically. From what we have observed in Section 4.4, temperature and

shared file system issues, as well as maintenance of the machines often happen and

block the submission and the execution of the jobs on a whole partition.

When it comes to sharing computing resources, cloud computing will likely be-

come the reference for both HTC and HPC communities in the upcoming years. Most

cloud infrastructures provide flexibility and virtualization and represent an asset

for businesses and academics. Commodity CPUs should remain one of the most

requested resources by businesses, despite the growing demand for specialized hard-

ware. Nevertheless, there are still many parameters to take into account. Famous

public cloud providers are efficient and reliable but remain centralized and propri-

etary. For instance, most of them are from the USA and, therefore, are bound to the

Clarifying Lawful Overseas Use of Data Act (Cloud Act) which allows the US govern-

ment to access any data on the servers of a US company, wherever their location.
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While there exist regulation limiting their influence, such as the General Data Protec-

tion Regulation (GDPR) in Europe, it is recommended to encrypt sensitive data on

such infrastructures.

Concomitantly to EuroHPC, Europe is also building a federated cloud named

European Open Science Cloud (EOSC) to host and process research data in order to

support European science. It provides European researchers, innovators, companies

and citizens with an open multi-disciplinary environment where they can publish, find

and re-use data, tools and services for research, innovation and educational purposes

(“EOSC Portal - A gateway to information and resources in EOSC”, 2022). A federated

cloud aims at connecting cloud environments from various cloud providers using a

common standard. According to Honorato et al., EGI was one of the main actors and

the coordinator of EOSC-Hub, a three-year project, aimed at starting the design and

implementation of EOSC (Honorato et al., 2021). In this way, EGI contributes to EOSC

by offering services such as HTC and cloud computing resources, workload managers

and security mechanisms based on tokens (Check-in). EGI developers have started to

work on cloud resources in 2014. They have designed and implemented EGI Federated

Cloud, a standards-based open cloud system that offers a scalable and flexible e-

infrastructure to the European research community. EGI Federated Cloud extends the

EGI computational offer beyond the traditional High Throughput Computing of the

grid platform with new models like long-lived services and on-demand computation

(Fernández-del-Castillo et al., 2015). LHCb would have constant needs for computing

power and would not need flexibility features, but cloud resources might remain

interesting to test novel applications on specific platforms not available at CERN for

instance.

Global computing remains a great source of computing power in 2022. CERN

made a BOINC server available, common to all LHC experiments (Barranco et al.,

2017). In July 2022, the ATLAS experiment ran 23,000 jobs simultaneously using

BOINC: about 10,000 on volunteer PCs and the rest on volunteer grid sites. LHC

developers intended to develop mechanisms to leverage BOINC resources and were

concerned about security issues related to the deployment of X.509 proxies on trust-

less computing resources. To cope with security issues, ATLAS has deployed an aCT

instance to only deploy tasks and their inputs to the volunteer PCs (Adam-Bourdarios

et al., 2015). Interactions with services are done on the aCT instance.
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LHCbDIRAC developers designed a secure gateway service running on a trusted

machine having a valid certificate and accepting a dummy Grid certificate signed by

a dummy certification authority (CA) (Barranco et al., 2017). The service receives all

calls coming from the jobs and transfers them to the DIRAC services. Before the real

storage upload is performed, the output data produced by the volunteer machines

are uploaded on the gateway machine where a check has to be performed to avoid

storing wrong data on LHCb storage resources. The solution was declared difficult to

support and maintain and was abandoned from the production environment. The

BelleII experiment, which is also relying on DIRAC, implemented an aCT-like solution,

which is close to the PushJobAgent solution (Wu et al., 2017) but was not included

in the generic DIRAC code base. LHCb could benefit from the development of the

PushJobAgent to investigate the use of BOINC computing resources. Though, the

solution would need to be improved to avoid overloading the host. It would mostly

work with Gauss tasks that do not require input files. In this case, we would also need

to implement mechanisms to handle preemptible resources in DIRAC.

In the end, the LHCb experiment has to follow the trend and invest efforts in the

integration of its applications to HPC resources. Because of limited manpower, the

decision-makers have to carefully choose where the focus should be.

Supporting further computing resources and use cases

The plan presented in Section 4.3.1 contains problems related to the integration

of CPU-intensive tasks with limited input to supercomputers and generic ideas to

solve them. While there exist many project-specific implementations to solve these

problems, they are not all adapted to DIRAC and, furthermore, to the LHCb context.

In the context of this thesis, we have not been dealing with supercomputers with

partial outbound connectivity. Therefore, we did not develop a gateway service to

transfer calls from Pilot-Jobs to external services, or wrappers to use CVMFS as an

unprivileged user.

Conversely, we developed solutions that would need to be expanded and further

tested. For instance, we implemented a mechanism to support multi-node allocations.

While we had the opportunity of testing it in SDumont, there was limited interest as

the supercomputer was already overloaded. As explained in Section 4.4.1, improving
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the memory consumption of the PushJobAgent approach and expanding it to allocate

multi-core/node allocations would likely be significant for the future.

Furthermore, the plan we designed only gathers information related to practical

use cases, and thus, is incomplete. LHC experiments are just starting to exploit

supercomputers. Because these infrastructures are distinct from each other, there is

probably still room for further minor problems and solutions.

DIRAC developers are also working on different approaches to integrate cloud

resources. They recently implemented CloudComputingElement, a communication

interface based on Apache Libcloud to interact with various cloud providers. Solutions

related to BOINC were implemented years ago and would need to be updated or

built from PushJobAgent. In the same way, DIRAC developers would have to support

preemptible computing resources, which would require non-trivial changes to the

code.

Towards an efficient exploitation of already supported computing re-

sources

Remaining work in already supported computing resources is more about maintaining

the DIRAC WMS than optimizing its services, at least in the short term. As we have

seen in Section 3.2.5, there is still room for improvements in the Site Directors. We

could adapt the submission rate according to the number of jobs processed by the

Pilots and automatically fine-tune the load on the Sites.

Otherwise, it is a matter of maintaining DIRAC Benchmark so that it still provides

accurate CPU power estimations. We could set up a more reliable method to compute

the number of seconds to process an event of a given production. For instance, by

relying on many different CPU architectures. This might prevent failures observed

in SDumont in Section 4.4.2. In the long-term, we would probably need to use or

create a new fast CPU benchmarking solution based on HEP-Benchmarks suite seen

in Section 2.4.2.

Finally, transitioning from X.509 certificates to tokens also becomes an urgent

matter. In Section 2.2.3, we have explained that middleware developers were planning

to drop support of the GSI of the Globus Toolkit by 2023. We would need to implement
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WMS components to follow the changes or we will be unable to distribute tasks to a

large number of sites.
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A Pilot-Job provisioning on Grid Re-

sources: Collecting Analysis and Per-

formance Evaluation Data

This appendix was published in the Data In Brief journal (Boyer et al., 2022b) and

was developed as a companion paper describing data related to an article published

in the Future Generation Computer Systems (FGCS) journal: "DIRAC Site Director:

Improving Pilot-Job provisioning on grid resources" (Boyer et al., 2022a).

A.1 Introduction

To take advantage of the computing power offered by grid and opportunistic re-

sources, the CERN Large Hadron Collider (LHC) experiments have adopted the Pilot-

Job paradigm. In this work, we study the DIRAC Site Director, one of the existing

Pilot-Job provisioning solutions, mainly developed and used by the beauty exper-

iment (LHCb). The purpose is to improve the Pilot-Job submission rates and the

throughput of the jobs on grid resources. To analyze the DIRAC Site Director mech-

anisms and assess our contributions, we collected data over 12 months from the

LHCbDIRAC instance. We extracted data from the DIRAC databases and the logs. Data

include (i) evolution of the number of Pilot-Jobs/jobs over time; (ii) slots available in

grid Sites; (iii) number of jobs processed per Pilot-Job.
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A.2 Specifications Table

Subject Software Engineering

Specific subject

area

Analysis and evaluation of the Pilot-Job provisioning on grid resources

Type of data Text, Comma Separated Files (CSV), JavaScript Object Notation (JSON), Figures

How data were ac-

quired

A Local Resource Management System (LRMS) of a grid site provides a state of

the computing resources and their usage. Computing Elements (CEs) aggregate

data from one or multiple LRMS and record information about jobs and Pilot-Jobs.

They transfer data between grid sites and Workload Management System (WMS).

A Site Director generates Pilot-Jobs and stores related data in a PilotAgentsDB

database and an accounting service (DIRAC Accounting service). It supplements

Pilot-Jobs data with information coming from CEs and produces logs containing

details about the operations performed.

Data format Raw, Filtered, Analyzed

Description of data

collection

Data collected provided insights about the limits of the Site Director and the impact

of our contributions to improve the throughput of the jobs on grid resources. Data

collection was performed for 12 months and targeted a specific group of Site

Directors. It was split into three different phases: (i) the first phase (4 months)

represents the original state of the group; (ii) the second phase (4 months) is related

to a contribution introduced in production; (iii) in the same way, the last phase

(4 months) corresponds to another contribution. The evolution of the number of

jobs processed in parallel and the number of Pilot-Jobs submitted per hour was

collected at the end of the analysis from the DIRAC web interface, which interacts

with the Accounting service.

Further details about the operations of the Site Directors and the activities of the

Pilot-Job were extracted, from the log files and from client interfaces interacting

with the PilotAgentsDB database and the CEs, for a short period (a few hours),

multiple times per phase.

Data source loca-

tion

Institution: European Organization for Nuclear Research (CERN)

City: Meyrin

Country: Switzerland

Latitude and longitude: 46.2338702,6.0469869

Data accessibility Repository name: DIRAC Site Director: Analysis and Performance Evaluation

Data identification number: 10.17632/6r388827fz.2

Direct URL to data: https://data.mendeley.com/datasets/6r388827fz/2

Related research ar-

ticle

Alexandre F. Boyer, Christophe Haen, Federico Stagni, David R.C. Hill, DIRAC

Site Director: Improving Pilot-Job provisioning on grid resources, Future Gen-

eration Computer Systems, Volume 133, 2022, Pages 23-38, ISSN 0167-739X,

https://doi.org/10.1016/j.future.2022.03.002.
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A.3 Value of the Data

• This dataset provides metrics and directions to analyze and assess the efficiency

of a Pilot-Job provisioning system on grid resources.

• DIRAC is an open-source interware used by various experiments such as LHCb,

Belle II and CTA; in different contexts: WLCG, EGI. DIRAC administrators could

directly reuse this work. This dataset could also provide insights and guidance

to any virtual organization applying the Pilot-Job paradigm on grid resources.

• These data might be used to analyze the limits of a Pilot-Job provisioning tool,

to assess the scaling capabilities of performance improvement contributions.

• These data could potentially help virtual organizations to better understand the

functioning of grid computing resources, and thus to better exploit them.

A.4 Data Description

The dataset is split into two parts:

• Resources: raw data coming from LHCbDIRAC, divided into subsections ac-

cording to the nature of the data. Each subsection contains data along with a

short markdown description (README.md) and a set of Python programs used

to extract and filter data (tools). They are proposed and designed in order to

facilitate the reproducibility of the experiments.

• Results: processed data including figures and tables. They are produced by a

Jupyter notebook program (DIRACSiteDirector.ipynb) exploiting raw data.

A.4.1 Raw data

Grid computing resources are heterogeneous and volatile. They are owned by many

different institutes across the world and shared by several virtual organizations. Thus,

an exhaustive analysis of a Pilot-Job provisioning system requires data from many

remote sources. In the Resources directory, information is sorted into subsections

according to its source and nature:
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• configInfo: gives information about associations between Site Directors, sites

and CEs: (i) cesPerSite.json is a dictionary where the Site Director name is

the key and names of the CEs bound to it is the value. The CE identifier contains

the grid name, the site name and the CE name such as g r i dI D .si te I D .ce I D . (ii)

siteDirectortypeCE.csv is another dictionary bounding a type of CE to a

Site Director. Indeed, in LHCbDIRAC, administrators chose to associate a Site

Director to a single type of CE. Information comes from the DIRAC configuration

service relying on BDII, a database centralizing data from grid sites and CEs.

• jobsPerPilot: provides a table representing the average number of jobs fetched

and processed per Pilot-Job, grouped by CE, in a month (jobsPerPilot.csv).

Each line corresponds to a day, each column to a CE, and the values to the aver-

age number of jobs processed per Pilot-Job. Data come from the Accounting

service and were extracted from the DIRAC web interface.

• pilot-jobsSubmitted: represents the evolution of (i) the number of Pilot-Jobs

submitted per hour (pilotsSubmitted); (ii) the number of jobs processed in

parallel (jobs Processed). pilotsSubmitted contains two files: failed-0101-

20-190121.csv the evolution of the failed submission of pilots and success-01-

0120-190121.csv the progression of the successfully submitted pilots. In both

files, each line represents a week, each column a Site Director and values the

average number of pilots submitted by a given Site Director for a given week.

jobsProcessed has one file (010120-190121.csv): each line corresponds to

a week, each column to a grid site, and the values to the average number of

jobs processed by a given site for a given week. Files were downloaded from the

Accounting service through the DIRAC web interface.

• submission-matchingTime: is composed of two tables: (i) pilotDuration.csv

and jobDuration.csv. pilotDuration.csv represents the time a Pilot-Job

spends from its submission to its execution on a computing resource. Each line

represents a Pilot-Job. Columns 1, 4 and 5 provide information about sites and

CEs involved and columns 2 and 3 are the installation date and the submission

date, respectively. jobDuration.csv is relatively similar but contains fewer

details. In this file, each line describes a job as two dates: the moment when the

job arrives in DIRAC, the moment when the job is fetched by a Pilot-Job running

in a grid site. To produce the files, one has to (i) get job and Pilot-Job identifiers
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from the DIRAC web interface; (ii) call DIRAC client interfaces interrogating the

DIRAC databases to get further details about the chosen entities.

• pilotsActivities: contains information about the statuses of the Pilot-Jobs

under the form of JSON files. The directory contains several files named result-

_sorted_<date>, where date corresponds to the moment where data were

extracted. Each file contains the number of Pilot-Jobs grouped by status and by

date. Values were extracted every 5 minutes for 12 hours using a DIRAC client

interface interacting with the PilotAgentsDB database.

• individualEvaluation: used to assess individual contributions brought to

the Pilot-Job provisioning tool. arcEvalOutput.csv is the result of 3 executions

of a script that compared two methods to get the status of a variable number

of Pilot-Jobs on 3 ARC CEs. creamEvalOutput.csv was generated by a script,

executed 5 times, comparing two methods to renew the proxy of 2 CREAM CEs.

parallelEvalOutput.csv was built by a program comparing the monitoring

operations of a Site Director interacting with a variable number of CEs - from 1

to 5 - with (i) one thread and (ii) multiple threads.

• logs: embeds several directories named <date> corresponding to the date of

extractions of the underlying log files. Each directory contains log files bound to

Site Directors. Logs have information of interests that have to be extracted, such

as the number of slots available in the grid sites, the number of pilots submitted

and the duration of the operations.

A.4.2 Processed data

Once collected from different sources, data have to be combined and easily readable to

provide insights to the developers. DIRACSiteDirector.ipynb was used to process

raw data from Resources in order to generate figures and tables in Results:

• jobsPerPilot.pdf: generated from Resources/jobsPerPilotunder the form

of a heat map.

• submission-matching.pdf: box plot combining data from Resources/submi-

ssion-matchingTime. It compares the duration from the pilot generation to
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the pilot installation on a worker node to the duration from the job arrival to

the job matching.

• pilotActivities.pdf: combines information coming from Resources/pilo-

tsActivities and Resources/logs to highlight the variations Pilot-Jobs in

certain sites.

• SDsMonitoring.pdf: compares duration of the operations using data from the

logs (Resources/logs).

• individualEval<contribution>.pdf: highlight the results of a given contri-

bution.

• cpuTimeUsedPerSecond.pdf and pilotsSubmittedPerHour.pdf: represent

the evolution of the number of jobs processed in parallel and the number of pi-

lots submitted, respectively, in bar plots. They both use data from Resources/pi-

lot-jobsSubmitted

• runningPilots.pdf and scheduledPilots.pdf: box plots using Pilot-Jobs

activities information located in Resources/pilotsActivities. It represents

the evolution of the number of running and waiting pilots through different

phases.

• monitoringNumberPilotsSubmitted.pdf: plot describing the evolution of

the monitoring time and the number of Pilot-Jobs submitted per hour through

different phases. Data comes from logs and raw data from various subsections

of Resources and involves 13 Site Directors.

• errorsPerSD.tex: is a table containing the number of failed submissions ob-

served in Site Directors grouped by phase. Data comes from Resources/pilo-

t-jobsSubmitted.

• numberOfPilotsSubmittedEvolution.pdf: box plot relying on logs show-

ing the evolution of the number of pilots submitted per cycle of Site Director,

through different phases.
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A.5 Experimental Design, Materials and Methods

A.5.1 Getting data from grid resources

Getting data from a large number of heterogeneous and remote computing resources

require centralization mechanisms at some point:

• Administrators can install BDII agents on grid sites, which are able to collect

LRMS configuration data (Figure A.1.1.1 and A.1.1.2). These data are centralized

and can directly be used by WMS.

• LRMS orchestrate computing resources of grid sites and gather data about the

state and the use of the resources to schedule jobs. To ease the interactions

with a large number of grid sites with various types and versions of LRMS, WMS

deal with entry points called CEs. CEs receive jobs and Pilot-Jobs from WMS

and transfer them to a LRMS of a grid site. They generally embed a service

to record and send information about the Pilot-Jobs and their status. A Pilot-

Job provisioning tool - such as the DIRAC Site Director - generally acts as a

centralization point: (i) it generates and submits Pilot-Jobs to different CEs

bound to several grid sites; (ii) it gets information about the submitted Pilot-

Jobs and records information in one or more databases (Figure A.1.2.1 and

A.1.2.2).

• Pilot-Jobs, once installed, communicate information about worker nodes to the

WMS services. They are also stored in one or more databases (Figure A.1.3.1).

A.5.2 Collecting Pilot-Jobs provisioning related data

The DIRAC interware provides different means to interact with WMS-related data:

• A web interface: an administrator can generate plots and CSV files about Pilot-

Jobs and jobs, for a given period. The web interface is linked to (i) the Accounting

service aggregating data from many DIRAC services; (ii) a JobManager service to

interact with the JobDB database; (iii) a PilotManager service to get information

from the PilotAgentsDB.
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Figure A.1 – Interactions between grid components to centralize data.

• Command-line interfaces: in the same way, an administrator can use command-

line interfaces from a terminal to interrogate DIRAC databases.

• Logs: DIRAC services produces logs that are stored in files. Access to the DIRAC

server is generally required.

We collected data about Pilot-Jobs and jobs related to the LHCb experiment

offline activities on WLCG for 12 months split into 3 phases. The experiment involved

a group of 13 Site Directors supplying 65 sites with Pilot-Jobs. They were interacting

with different types of CEs and LRMS. During the first phase (4 months), we analyzed

the Site Directors to find their limits. The second phase (4 months) started after we

introduced changes: we decreased the number of communications and their duration

with CEs. Finally, the third phase (4 months) began after we configured Site Directors

to submit Pilot-Jobs more frequently.

The process was similar for the 3 phases. We extracted the logs of the Site Director

that contained 2 to 3 days of information, and we accessed database information,

multiple times for short periods, to produce average results (Figure A.2.1.1). Getting

average values limits the bias that could be introduced if grid sites are in maintenance
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for instance. We also got CSV files from the web application to perform an analysis in

the long term and at a large scale (Figure A.2.1.2).

A.5.3 Extracting knowledge from raw data

We ended up with data from different sources, and we wanted to combine them to

build knowledge that would help to improve the Pilot-Job provisioning tool (Figure

A.2.2). First, we designed programs to filter information from raw and processed data:

site and CE names were replaced by identifiers. Then, we created a Jupyter notebook

to import log, CSV and JSON files - filtered - and we built programs to combine data

and generate figures and tables A.2.3).
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Figure A.2 – Workflow: collecting and processing WMS data.
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B Porting DB12 to Python3: Collecting

CPU power estimations

This appendix was partly developed as a Zenodo repository. It aims at complementing

an article presented at the International Conference on High Energy Physics (ICHEP)

2022, not yet published: "Porting DIRAC Benchmark to Python3: impact of the dis-

crepancies and solution".

B.1 Introduction

DB12 has been originally conceived with Python2 to estimate the power of a given

CPU to run HEP applications. However, since January 2020, Python2 is no longer

maintained and we decided to port the code to Python3, which contains several

optimizations. In October 2021, we effectively ported DB12 to Python3.9, but the

optimizations brought by the language generated discrepancies in the norm score,

which is a critical component to evaluate the power of CPUs. The purpose is to

evaluate the impact of these discrepancies and study approaches to mitigate them. We

extracted data from thousands of jobs across 102 distributed grid sites. Data include

(i) the results of DB12 executed with Python2 and Python3; (ii) the environments of

the nodes.
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B.2 Specifications Table

Subject Software Engineering

Specific subject

area

Analysis and evaluation of the DIRAC Benchmark scores using Python3

Type of data JavaScript Object Notation (JSON), Figures

How data were ac-

quired

Jobs are executed across distributed grid sites and produce JSON files. At the end

of their executions, jobs upload outputs in a sandbox, accessible from outside. The

DIRAC Workload Management System (WMS) provides scripts to interact with

jobs and their outputs.

Data format Raw, Analyzed

Description of data

collection

Data collected provide insights into the impact of the discrepancies between the

Python2 and Python3 executions of the DIRAC Benchmark. Analyzed data also

highlight experiments conducted in order to correct the scores. Data collection

was performed for 2 hours and targeted 102 sites.

Data source loca-

tion

Institution: European Organization for Nuclear Research (CERN)

City: Meyrin

Country: Switzerland

Latitude and longitude: 46.2338702,6.0469869

Data accessibility Repository name: Porting DB12 to Python3: Analysis of the scores

Data identification number: 10.5281/zenodo.5647834

Direct URL to data: https://zenodo.org/record/5647834

Related research ar-

ticle

Alexandre F. Boyer, Imane Iraoui, Christophe Haen, Federico Stagni, David R.C. Hill,

Porting DIRAC Benchmark to Python3: impact of the discrepancies and solution,

International Conference on High Energy Physics, 2022, to be published

B.3 Value of the Data

• This dataset provides metrics and directions to analyze and assess the changes

brought to a CPU benchmarking tool used across distributed and heterogeneous

computing resources.

• DIRAC is an open-source interware used by various experiments such as LHCb,

Belle II and CTA; in different contexts: WLCG, EGI. DIRAC administrators could

directly reuse this work. This dataset could also provide insights and guid-

ance to any virtual organization employing DIRAC Benchmark on distributed

computing resources.

• These data might be used to provide insights to mitigate involved discrepancies.
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• These data could potentially help virtual organizations to better exploit heteroge-

neous and time-limited computing resources, and thus improve the throughput

of the jobs.

B.4 Data Description

The dataset is split into two parts. Resources contains raw data coming from LHCb-

DIRAC as well as the scripts to generate them, whereas Results is composed of pro-

cessed data taking the form of plots. A Jupyter notebook program (DB12Analysis.ip-

ynb) exploits raw data contained in Resources to produce plots in Results allowing

us to better understand the differences between Python 2 and Python 3 executions. It

also covers several aspects of the experiment conducted.

B.4.1 Raw data

The Resources directory is split into two subsections:

• Tools: shell and python scripts used to: (i) submit jobs executing both DB12

with Python2 and Python3; (ii) collect results and generate JSON files in Resour-

ces/Results. They are proposed and designed in order to facilitate the repro-

ducibility of the experiments, even though they rely on dynamic components

such as CVMFS, and therefore, might not work as expected in the future.

• Results: processed data including JSON files ordered by creation date. They

are produced by the scripts mentioned above.

Figure B.1 describes the structure of a JSON file resulting from the experiment

conducted. As we can observe, the JSON file is composed of several job identifiers

that were part of the process. Each job identifier refers to technical details about:

• The environment of the host: computed by the scripts present in Tools that aim

at extracting data related to the WN such as its name, the CPU model involved

and its frequency, the OS installed and the amount of memory available.

• The parameters of the job: mostly coming from the Pilot-Job which also evalu-

ates the environment of the host. The Pilot-Job also computes DB16 to get an
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estimation of the CPU power and interrogates the batch system to get CPU time

left within the allocation.

• The scores: computed by many iterations of DB12 executions, both with Python

2 and Python 3. Each score is designated by a combination of an iteration

identifier and a Python version. NORM denotes the CPU power computed by

DB12.

B.4.2 Processed data

Once collected, raw data have to be combined to provide insights to the develop-

ers. DB12Analysis.ipynb was used to process raw data from Resources in order to

generate figures and tables in Results:

• cpu-model.csv: table associating an identifier to a CPU model name. We

decided to use identifiers instead of CPU model names within the plots to make

them clear and readable.

• distribCPU.pdf: distribution of the DB12 executions among the CPU models.

• distribSites.pdf: distribution of the DB12 executions among the sites.

• distribIterations.pdf: line plots highlighting variations of the DB12 results

after consecutive executions in the same environment.

• py3vspy2_<original/sol>.pdf: scatter plot comparing Python3 and Python2

executions. The sol suffixes indicate that the Python3 results to better match

Python2 results.

• learning_curves.pdf: line plot bound to py3vspy2_sol3.pdf emphasizing

the learning curves produced during the training phase.

B.5 Experimental Design, Materials and Methods

The DIRAC interware combined with a grid certificate allows us to interact with a large

number of distributed and heterogeneous computing resources embedding various
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{
"<JobID>": {

"environment": {
"<Details about the host machine>": [

"name, CPU model, OS, memory..."
]

},
"jobparams": {

"<Details about the parameters of the job>": [
"CE and queue names",
"DB16 result",
"CPU time",
"Pilot-Job reference and version"

]
},
"results": {

"<iteration>_<python version>": {
"PythonVersion": {

"Major": "X",
"Minor": "Y",
"Micro": "Z",

},
"scores": [

{
"UNIT": "DB12"
"TYPE": "single",
"COPIES": "<number of copies>",
"ITER": "<iteration ID>",
"NORM": 29.342723004694836,
"CPU": 8.52,
"WALL": 8.53999999910593,

}
]

},
...

}
}
...

}

Figure B.1 – Structure of the JSON file resulting from the execution of the jobs.
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types of CPU models. In the context of the LHCb experiment, we have access to WLCG

computing resources that mainly contain Intel and AMD CPUs.

We designed submit.sh to generate and submit a given number of jobs to given

sites. The script relies on the DIRAC API to create job objects. Each job object is

composed of executable.sh, which aims at (i) downloading DIRAC Benchmark from

GitHub, (ii) enhancing it with further commands to collect data within a JSON file and

(iii) executing it using Python2 and Python3 multiple times.

Once launched, jobs take about 55 minutes to complete and we get their results

using getDB12Scores.py. It extracts data from the outputs of the Pilot-Jobs and the

jobs involved and gets the JSON files generated during the execution of the jobs. It

creates a JSON file gathering these data, following the pattern presented in Figure B.1.

We end up with one JSON file containing all the raw data needed to perform an

analysis. We designed a Jupyter notebook to import the JSON file and transform it

into a data table object to manipulate data. From this object, we developed programs

to produce the plots stored in (Results).
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Santos Dumont supercomputer: Col-

lecting Pilot-Jobs and Jobs Outputs

This appendix was partly developed as a Mendeley Data repository (Boyer, 2021b). It

presents data related to the integration of the LHCb workload on SDumont and aims

at providing the source of many results described in chapter 4.

C.1 Introduction

To handle the growing amount of data coming from the LHC Run3 and then the High-

Luminosity LHC phases, LHCb aims at integrating Monte-Carlo simulation workflows

into supercomputers such as Santos Dumont, hosted in LNCC, in Brazil. Data focus

on the use of Santos Dumont CPU resources for three months, in the context of

LHCb. Data mainly include CSV files related to the CPU usage of the resources (CPU

benchmark results, CPU seconds processed per second, statuses of the jobs, wallclock

time allocated and used), as well as a Jupyter Notebook to present plots based on

data. Data show that providing a more accurate CPU power value and leveraging

multi-node allocations would ease the exploitation of a larger number of resources.
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C.2 Specifications Table

Subject Software Engineering

Specific subject

area

Analysis and evaluation of the jobs within the Santos Dumont supercomputer

Type of data Text, Comma Separated Files (CSV), JavaScript Object Notation (JSON), Figures

How data were ac-

quired

Pilot-Jobs are executed on Santos Dumont. They collect data related to their

environment and fetch jobs from the DIRAC WMS. Jobs are executed on the worker

nodes and produce further data: mainly JSON and text files. Pilot-Job outputs are

accessible from the shared file system of the supercomputer while job outputs

are available via output sandboxes located outside of the cluster. The DIRAC

Workload Management System (WMS) provides scripts to interact with jobs and

their outputs.

Data format Raw, Analyzed

Description of data

collection

Data collected provide insights into the executions of the LHCb jobs within the

Santos Dumont supercomputer. Data collection targeted more than 19700 Pilot-

Jobs executed in the supercomputer.

Data source loca-

tion

Institution: European Organization for Nuclear Research (CERN)

City: Meyrin

Country: Switzerland

Latitude and longitude: 46.2338702,6.0469869

Data accessibility Repository name: Integration of LHCb workflows on the Santos Dumont super-

computer

Data identification number: 10.17632/c7w3cgfzgt.1

Direct URL to data: https://data.mendeley.com/datasets/c7w3cgfzgt/1

Related research ar-

ticle

C.3 Value of the Data

• This dataset provides metrics and directions to analyze and assess some of the

obstacles to the integration of LHCb workload on supercomputers.

• DIRAC is an open-source interware used by various experiments such as LHCb,

Belle II and CTA; in different contexts: WLCG, EGI. DIRAC administrators could

directly reuse this work. This dataset could also provide insights and guidance to

any virtual organization intending to integrate similar tasks on supercomputers

with outbound connectivity.

250

https://data.mendeley.com/datasets/c7w3cgfzgt/1


SDumont Supercomputer: Collecting data Chapter C

• These data could potentially help virtual organizations exploit further heteroge-

neous and highly-constrained computing resources, getting access to additional

CPU power and thus improving the throughput of the jobs.

C.4 Data Description

The dataset is split into two parts. data contains raw data coming from LHCbDIRAC

and the supercomputer, whereas res is composed of processed data taking the form

of plots. A Jupyter notebook program (SDumontAnalysis.ipynb) exploits raw data

contained in data to produce plots in res allowing us to better understand the usage

of SDumont.

C.4.1 Raw data

The data directory is split into two subsections:

• hpc: gathers data extracted directly from the supercomputer (DB12 and Pilot).

• webapp: contains information coming from the DIRAC web application and the

CLI (Accounting and Jobparams).

Each directory within these subsections have a similar structure:

• README.md: a text file describing data and how to get them.

• Tools: shell and python scripts used to extract, anonymize and enhance raw

data. They are proposed and designed in order to facilitate the reproducibility

of the experiments.

• <result>: one or multiple file presenting data to analyze. It generally takes the

form of a CSV or a JSON file. They are produced by the scripts mentioned above.

C.4.2 Processed data

Once collected, raw data have to be combined to provide insights to the develop-

ers. SDumontAnalysis.ipynb was used to process raw data from data in order to
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generate figures and tables in res:

• benchmarkResult.pdf: line plots emphasizing DB16 scores depending on the

number of hardware threads occupied.

• cpuTimeCpuPower.pdf: scatter plot comparing the CPU Power computed, the

CPU time consumed and the status of the pilots.

• cpuTimeJobs.pdf: distribution of the CPU time consumed by jobs compared

to the CPU time allocated by Slurm.

• cpuTimePerSecond.pdf: number of CPU seconds processed during a second

for 3 months, classified by job status.

• cpuTimePilots.pdf: distribution of the CPU time consumed by pilots com-

pared to the CPU time allocated by Slurm.

• CPUWorkeventsResults.pdf: scatter plot comparing the CPU Work per event

computed during the test phase for a given production, to the CPU Work per

event computed on SDumont, classified by partition used.

• jobsPerHour.pdf: number of jobs processed per hour for 3 months, classified

by job status.

• jobsPerPilot.pdf: distribution of the number of jobs processed per pilot,

classified by partition.

• jobsStatus.pdf: pie plot presenting the percentage of jobs according to their

final status.

• nbPilots_per_status.pdf: number of pilots per status.

• nbPilotsPerStatusPerPartition.pdf number of pilots per status and parti-

tion.

C.5 Experimental Design, Materials and Methods

The DIRAC WMS combined with a grid certificate allows us to interact with a large

number of distributed and heterogeneous computing resources. It aggregates data
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coming from various sources of information within an Accounting database accessible

via the web application or the command-line interface. It also retrieves parameters

and attributes related to Pilot-Jobs and jobs. To get additional data about the LRMS

used, we can also extract data directly from the Site if we have access to it.

C.5.1 Leveraging the LHCbDIRAC Accounting service to get aggre-

gated data

The web interface allows DIRAC users to generate plots and CSV files about Pilot-Jobs

and jobs, for a given period. The web interface is linked to (i) the Accounting service

aggregating data from many DIRAC services; (ii) a JobManager service to interact

with the JobDB database; (iii) a PilotManager service to get information from the

PilotAgentsDB. Leveraging the web application of LHCbDIRAC, we requested CSV files

of the number of jobs processed per hour and the number of CPU seconds consumed

per second, classified per job status, for 3 months.

C.5.2 Analyzing DIRAC Benchmark in SDumont

We also used the web interface to get job identifiers that we passed to the DIRAC

command line interface to extract the parameters of the jobs, namely (i) the number

of Monte-Carlo simulation events consumed; (ii) the CPU work consumed; (iii) the

CPU work per event computed during the test phase; and (iv) the partition used on

the supercomputer. Results are stored in a JSON file and converted to a CSV file to be

manipulated easily.

To get further information about DIRAC Benchmark in such a context, we also

accessed the HPC system and executed DIRAC Benchmark in multi-core allocations

multiple times. The script ran DIRAC Benchmark on 1, 2, 5, 10, 15, 20 and 24 cores and

stored the result in a JSON file. The JSON files generated are then combined within a

CSV file.
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C.5.3 Getting further details about Pilot-Jobs within SDumont

SDumont hosts pilot outputs and allows users to get details about the executions by

interrogating the LRMS. We designed getPilotDetails.py to extract data from the

pilot outputs and the LRMS such as the partition used, the wall clock time limit, the

CPU time consumed, the state of the pilots and the jobs, the execution dates of each

pilot and job. These data are aggregated into a JSON file, which is then converted to a

CSV file.

Lastly, we designed a Jupyter notebook to import the CSV files and transform

them into data table objects to manipulate data. From these objects, we developed

programs to produce the plots stored in (res).
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