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Résumé

La modélisation de l’uplift vise à estimer l’impact d’un traitement,
comme une campagne marketing ou un médicament, sur le comporte-
ment d’un individu. Cette approche est très utile dans de nombreuses
applications, comme la médecine personnalisée et la publicité, car elle
permet de cibler la sous-population sur laquelle le traitement aura le
plus grand impact. La modélisation de l’uplift est une tâche ardue car
les données disponibles ne sont que partiellement connues (pour un
individu, les réponses aux traitements alternatifs ne peuvent pas être
observées).
Cette thèse, réalisée en collaboration avec la société française de télé-
communications Orange, est une contribution au domaine de la modé-
lisation de l’uplift. Plus précisément, elle traite de trois défis majeurs
rencontrés dans toute approche de modélisation d’uplift: 1. La para-
métrisation des algorithmes existants. 2. Le biais des données. 3. La
haute dimensionalité des données.
Cette thèse répond à ces défis en définissant une approche bayé-
sienne sans paramètre utilisateur pouvant être appliquée à une variété
d’algorithmes d’uplift. Nous introduisons d’abord une approche de
discrétisation bayésienne de l’uplift pour le prétraitement des données.
Nous l’étendons ensuite à la sélection des variables. Nous montrons
que les méthodes que nous proposons pour la transformation et la
sélection de variables sont efficaces pour la modélisation de l’uplift.
Puis, nous présentons une méthode sans paramètre utilisateur de
construction d’un nouvel arbre de décision. Cette méthode, appelée
UB-DT, transforme le problème d’apprentissage de l’arbre de décision
en un problème d’optimisation, avec pour objectif de trouver l’arbre
de décision le plus probable sachant les données. De plus, nous éten-
dons UB-DT aux forêts aléatoires et démontrons sa performance par
des évaluations expérimentales.
Nous répondons au défi du biais de sélection en concevant un protocole
expérimental de simulation sous contrôle de jeux de données biaisés
selon le biais de non affectation aléatoire. Cette démarche nous a
permis de tester rigoureusement nos méthodes ainsi que les solutions
existantes de l’état de l’art face à ce type de biais et de mieux déter-
miner lesquelles employer face à ce type de biais.
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Enfin, nous avons évalué nos méthodes en les confrontant à des jeux
de données télécom réels. Chaque méthode a été évaluée de façon
individuelle et dans le cas d’une chaîne de traitement d’un problème
d’uplift. Nous avons implémenté toutes nos approches proposées dans
une nouvelle bibliothèque Python nommée ’Kuplift’ que nous présen-
tons.
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Abstract

Uplift modeling aims to estimate the incremental impact of a treatment, such
as a marketing campaign or a drug, on an individual’s behavior. This approach is
very useful in a lot of applications such as personalized medicine and advertising,
as it allows targeting the specific population on which the treatment will have
the greatest impact. Uplift modeling is a challenging task because data are only
partially known (for an individual, responses to alternative treatments cannot be
observed).

This thesis, carried out in collaboration with the French telecommunications
company Orange, is a contribution to the field of uplift modeling. More specif-
ically, it addresses three major challenges encountered in any uplift modeling
approach.

1. The parameterization of existing algorithms.
2. Data bias.
3. The high dimensionality of the data.

This thesis achieves this by defining a user parameter-free Bayesian approach
that can be applied to a variety of uplift algorithms. We first propose a Bayesian
uplift discretization method that can be used as a data preprocessing approach.
We then extend it to the case of feature selection. We show that both the variable
transformation and feature selection approaches are powerful and important for
the case of uplift modeling.

We then design a new user-parameter-free Bayesian decision tree method. This
approach, named UB-DT, transforms the decision tree learning problem into an
optimization problem, where the goal is to find the decision tree that is most likely
given the data. In addition, we extend UB-DT to the case of random forests and
demonstrate its performance through experimental evaluations.

We then tackle the challenge of selection bias by developing an experimental
protocol specifically designed to simulate non-random assignment bias in uplift
datasets. This allowed us to rigorously test both our methods and existing state-
of-the-art solutions against this type of bias.

Finally, we conducted comprehensive evaluations of our proposed techniques
using real-world telecom datasets. Each method was evaluated both in isolation
and in combination. We implemented all of our proposed approaches. We intro-
duce them in a new Python package called ’Kuplift’.
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Chapter 1. Introduction

Contents
1.1 Context and motivation . . . . . . . . . . . . . . . . . 2
1.2 From conventional methods to uplift modeling . . . . 3

1.2.1 Response Modeling and A/B Testing . . . . . . . . . . . 3
1.2.2 The need for uplift modeling . . . . . . . . . . . . . . . 5

1.3 Background on Uplift Modeling . . . . . . . . . . . . . 6
1.4 Challenges we tackle in this thesis . . . . . . . . . . . 9

1.4.1 Automating Uplift Models . . . . . . . . . . . . . . . . . 9
1.4.2 Data Bias . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.3 High Dimensionality . . . . . . . . . . . . . . . . . . . . 10

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Corresponding Articles . . . . . . . . . . . . . . . . . . 12

1.1 Context and motivation
’Would a teenage boy buy the same clothes as his grandmother? Probably not. But
when they get sick, they’re likely to receive the same medical treatment, despite
their many differences. And so will everyone else’ [43]. This highlights the im-
portance of personalised medicine, which tailors medical treatment to a patient’s
unique characteristics and genetic information. However, estimating the effect of
medical treatments at the individual level is a complex task because it requires
observing an individual’s behaviour with and without treatment, which is impos-
sible to do simultaneously. This is because it is impossible to treat and not treat
the same person at the same time and to observe the difference between the two
alternative behaviours.

This problem exists in many fields, including marketing, medicine and the so-
cial sciences. We often face the challenge of identifying the individuals who are
most likely to benefit from a particular intervention (treatment), i.e. the individ-
uals on whom the treatment will have the most positive effect. In marketing, for
example, the goal is to design a campaign that effectively motivates customers to
buy a particular product. This is one of the current challenges faced by Orange,
a French telecommunications company where this thesis was carried out. Finding
the most effective marketing campaign, i.e. the optimal treatment, for each cus-
tomer that will result in the maximum number of purchases would be extremely
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1.2. From conventional methods to uplift modeling

valuable. Here, an optimal treatment is defined as the treatment among several
options that maximises the probability of a desired outcome. In economics, an-
other example is the analysis of the impact of funded training programmes on the
earnings of trainees and non-trainees in the labour market, as described in [2].

To identify the individuals who should receive a particular intervention (also
called a treatment or action), a first simple strategy is to compare the average
outcomes of the treatment group (those who receive the intervention) and the
control group (those who do not). This comparison helps determine whether or
not the intervention was beneficial on average, however such a comparison is not
sufficient in a lot of situations. To illustrate, let’s take a study of 200,000 individ-
uals, half of them, i.e. 100,000 individuals, were contacted about an internet offer
while the other half did not. (cf. Fig. 1.1). 70% of the contacted group purchased
the offer, while only 50% of the non-contacted group did. This suggests a positive
impact of the marketing campaign, with a 20% increase in purchases. However,
if we examine the data more closely, we will see that the treatment effect varies
across different subgroups. In our example, as shown in Fig. 1.1, the intervention
had a negative impact on younger people: only 30% of young customers made a
purchase when contacted, compared to an 80% purchase rate when not contacted.
This suggests that the intervention may have discouraged them from purchasing
the product. For seniors, the opposite effect was observed. All of the contacted
seniors took advantage of the internet offer, but only 20% of them took advantage
of the internet offer when no one contacted them. With this information, a mar-
keting team would not have targeted everyone, but only a subset of customers,
each with their optimal treatment.

1.2 From conventional methods to uplift model-
ing

1.2.1 Response Modeling and A/B Testing
Traditional methods, particularly in marketing, have been used to either identify
potential targets for marketing campaigns or to determine the optimal treatment
to assign to all customers. This has been done using response modeling and A/B
testing, respectively. In this section, we provide a brief discussion of each of these
techniques and highlight their limitations.

Response modeling [46] has long been used to predict the outcome of individ-
uals after treatment. It has been used to predict whether or not a person will
buy a product after receiving a marketing campaign. However, the disadvantage

3



Chapter 1. Introduction

Figure 1.1: Example of treatment effect estimation

of this method is that it tries to predict the probability of a particular outcome
without considering the effect of the treatment on that outcome. For example,
a person may decide to buy the product regardless of whether they receive the
marketing campaign. In this case, contacting them is an unnecessary cost. They
also might decide not to buy the product if they receive the campaign, whereas
their decision would be different if they do not receive it (like the young clients in
our previous example).

A/B testing [69] is also often used in these situations. It is most commonly
used to compare two versions of a web page of a software system on different
users. It involves randomly dividing a sample of users into two groups, a treat-
ment group and a control group, and then measuring a metric of interest, such as
the number of clicks or the conversion rate. By comparing the results of the two
groups with statistical tests, researchers can determine which version of the two
treatments (the variations of the web page) is more effective. The disadvantage of
A/B testing is that it does not search for individuals to target with a marketing
campaign, but it searches for the treatment that will be assigned to everyone and
will yield the greatest profit in average. So, it cannot discover groups that should
be avoided like the senior group in our previous example (cf. Fig. 1.1).

4



1.2. From conventional methods to uplift modeling

1.2.2 The need for uplift modeling
To address the limitations of traditional approaches, it is necessary to take into
account different categories of customers:

1. The persuadables: customers who respond positively to a marketing cam-
paign only because they have received the treatment ⇒Treatment has a
positive effect.

2. The sure-things: customers who will always respond positively to a market-
ing campaign ⇒Treatment has no effect in this case because they would buy
anyway.

3. The lost causes: customers who would not respond positively anyway
⇒Treatment has no effect in this case either.

4. The do-not-disturb: customers who would respond positively but did not
because of the marketing campaign⇒The treatment has a negative effect in
this case.

Estimating the treatment effect per subgroup as shown in Fig. 1.1 may be
complex in real scenarios, particularly in high-dimensional data where it may not
be possible to determine the relevant subgroups. This is where uplift modeling
can be useful. In marketing, "uplift" refers to the treatment effect, and uplift
modeling seeks to estimate the effect of a treatment on an outcome variable at
the individual level. It comes to overcome the drawbacks of response modeling
and A/B testing.

A formal difference between supervised learning and uplift modeling

Uplift modeling should not be confounded with supervised learning. Supervised
learning algorithms, such as those used in classification and response modeling,
aim to estimate a single probability distribution for a target variable and can help
avoiding lost causes (as presented above). This can be interpreted as training a
classifier to predict the individuals that are most likely to have a positive response.

On the other side, the goal of the treatment effect estimation, for example in mar-
keting applications, is not to predict likely buyers but to predict the people who
will buy only because they received a treatment. In uplift modeling, we distinguish
two different groups, the treatment group and the control group. The treatment
group consists of people who received a treatment, and the control group consists
of people who did not receive a treatment. The goal is then to create a model that
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Chapter 1. Introduction

learns not the probability of a particular response, but the difference between two
outcome probabilities: the outcome probability in the treatment group and the
outcome probability in the control group.

1.3 Background on Uplift Modeling

In this section, we will introduce the basic concepts and formal definitions related
to uplift modeling.

We begin with an example that we will refer to throughout this section to il-
lustrate the formal definitions. Consider the case of a telecom company with
customers subscribing to a basic internet package. The company is evaluating a
new promotional campaign offering selected customers a free one-month upgrade
to a premium internet package. It wants to predict the probability that customers
will retain the premium package (i.e. become paying customers) after the promo-
tional period based on this campaign. In this example, the treatment, denoted T ,
is whether the customer receives the promotional offer or not. This is coded as ’1’
if the customer receives the offer and ’0’ if she does not. The outcome, denoted Y ,
is also binary, whether the customer upgrades to the premium package and pays
for it after the promotion period (’1’ if yes, ’0’ if no). Each customer can have
two potential outcomes: Y (T = 0), the potential outcome if she had received no
treatment; and Y (T = 1), the potential outcome if she had received the treatment.

The ITE, which corresponds to the Individual Treatment Effect, can then be de-
fined as:

ITE = Y (T = 1)− Y (T = 0)

The goal of treatment effect estimation is to calculate the ITE. However, the ITE
can never be calculated because only one of Y (T = 1) and Y (T = 0) can be
observed, i.e. a client cannot be treated and not treated at the same time. This
issue is known as the Fundamental Problem of Causal Inference. The un-
observed potential outcome can also be called the counterfactual of the observed
outcome.

Since we cannot calculate the ITE, two communities simultaneously tackled this
challenge: (a) The Heterogeneous Treatment Effect community that focuses on
calculating the Conditional Average Treatment Effect (CATE) and (b) the up-
lift modeling community. The objectives of each of these two communities are
discussed below.
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Conditional Average Treatment Effect. Since the ITE cannot be calculated,
we can instead, under some assumptions that we state below, estimate the condi-
tional average treatment effect (CATE). A client being described by a vector x,
the CATE can then be defined as:

CATE : τ̂(x) := E[Y (T = 1)− Y (T = 0) | X = x] (1.1)

where X is a random variable describing a set of features.
It has been shown that the CATE is the best estimator for the ITE in terms

of the mean squared error [42].

Observational data. The CATE estimation approaches are often developed for
observational data. Observational data refers to data collected without the use
of a controlled experiment, where treatments are assigned to the individuals or
clients without randomization. Observational data are collected without the com-
pany assigning the promotional offer to specific customers. Instead, customers
may themselves decide whether or not to take up the offer, or the promotional of-
fer may be available only to a subset of customers who meet certain criteria (such
as being on a particular current plan or having a particular usage behaviour).
The company then collects data on outcomes (i.e. whether customers retain the
premium package after the promotional period) and any relevant characteristics of
the individuals. As a consequence, CATE estimation meets the challenge of non-
random assignment of the treatment leading to selection bias. Uplift data bias
will be described in Section 2.5 and non-random assignment will be particularly
discussed in Chapter 5.

Uplift Modeling. Uplift modeling is a practical branch of the CATE estimation
basically developed for the applications of the marketing field. Uplift modeling
assumes a randomized control trial, where data is collected in a controlled exper-
iment and customers are randomly assigned to treatment and control groups. In
other words, there is no dependence between the characteristics of the instances
(customers) and the treatment assignment. In this case the uplift of an individual
described by a vector x, denoted Uplift(x), is defined by:

Uplift(x) = E[Y | T = 1, X = x]− E[Y | T = 0, X = x]. (1.2)

The link between the CATE and Uplift estimation tasks. Both of the
CATE estimation task and the uplift estimation task are equivalent under a set
of assumptions:

7



Chapter 1. Introduction

• Conditional independence assumption (CIA) This assumption is also
referred to as the unconfoundedness assumption or the strong ignorability
assumption). It implies that the treatment assignment is independent of
the two potential outcomes:

(Y (T = 1), Y (T = 0)) ⊥ T | X

In the context of the earlier example, the CIA would assume that there is
no unobserved variable, such as customer satisfaction, that affects both the
customer’s decision to accept the offer and their decision to remain on the
free plan. If such a variable exists and is not accounted for, it may confound
the relationship between treatment and outcome and thus bias the estimate
of the treatment effect. This assumption is untestable and its validity is
based on expert knowledge of the data.

• Stable Unit Treatment Value (SUTVA) assumption The treatment
given to one subject has no effect on other subjects, i.e. subjects do not
interfere with each other. Again, in the context of our earlier example on
telecom data, this assumes that whether a client takes the offer does not
affect the decision of another customer(s), for example his neighbours or
friends, to buy the premium package. This is an important assumption,
because otherwise the treatment effect estimation will not be correct.

• Overlap assumption Each subject has a non-zero probability of being in
the treatment or control group. In other words, no sub-population is entirely
in the treatment or control group:

0 < P (T = 1 | X = x) < 1

The overlap assumption in our previous scenario means that for any given
customer, regardless of their characteristics (such as age, loyalty to the com-
pany, current plan, past usage data, etc.), there should be a non-zero proba-
bility that they will take up the promotional offer (treatment) and a non-zero
probability that they will not.

Given these assumptions, we can consider the tasks of CATE (Conditional
Average Treatment Effect) estimation (see Equation 1.1) and uplift estimation (see
Equation 1.2) to be equivalent (for a mathetmatical proof please refer to [77, 36]).
There is significant overlap in the methodologies used for uplift modeling and
CATE estimation, to the extent that certain approaches have been independently
reinvented within each community. Throughout this thesis, the terms ’Uplift’ and
’CATE’ will be used interchangeably to refer to the treatment effect.
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1.4 Challenges we tackle in this thesis
This thesis basically tackles 3 problems that already exist in the uplift modeling
literature: (1) Automating Uplift Models (2) Data bias (3) High dimensionality.
We discuss below each of them.

1.4.1 Automating Uplift Models
According to [82], Automated machine learning (AutoML) aims to reduce the de-
mand for data scientists by enabling domain experts to build machine learning
applications automatically without extensive knowledge of statistics and machine
learning. To the best of our knowledge, the challenge of automating uplift app-
proaches has not been tackled in the uplift modeling research area.

As we will see in Section 2.2, there is a wide range of uplift methods [77] such
as meta-learners and direct approaches. A meta-learner is an algorithm that com-
bines traditional supervised learning algorithms for uplift estimation while direct
approaches are a set of algorithms specifically designed for uplift modeling. The
main drawback of all these approaches is that they require parameters to be set.
Meta learners also present an additional requirement, which is the choice of the
machine learning algorithm to be used. All of these are clear limitations for non-
machine learning experts to use these tools. Even for machine learning experts,
they need to test different parameter values and different learning algorithms with
meta learners to find the optimal combination that fits the data at hand. That is
why automatic parameter-free uplift modeling algorithms are needed.

1.4.2 Data Bias
Uplift modeling assumes that treatment and control groups are drawn from the
same distribution. While this strong assumption is potentially valid in experi-
mental data and controlled trials, it often does not hold in real-world scenarios.
The CATE estimation example given above in Fig. 1.1 was relatively straightfor-
ward because the treatment and control groups were of equal size. In addition,
treatment assignment did not depend on the features of the instances. This was
reflected in the equal representation of young and old people in each of the treat-
ment groups. In real-world scenarios, it is easier to collect control data than to
collect treatment data. That is why the treatment group tends to be more biased:
it is difficult to apply treatments to individuals and collect the corresponding data,
often due to ethical, political or economic constraints. This often leads to unequal
sizes of treatment and control groups, which has been referred to in recent work
as Imbalanced Treatment Conditions (ITC) [7], and can complicate the estimation
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of CATE. Also, even when the two treatment groups are of equal size, there are
often dependencies between the treatment assignment and the characteristics of
the instances. For example, the treatment group may consist mostly of young
individuals, while the control group may consist mostly of older individuals.

1.4.3 High Dimensionality
Identifying subgroups with different treatment effects when there are hundreds to
thousands of features is a more complicated task. Telecom companies like Orange
often has this type of problem with marketing and telecom data. This data has
information generated and collected through their network infrastructure, cus-
tomer interactions, and billing systems. It includes various dimensions, customer
demographics, usage patterns, call records, service subscriptions, customer inter-
actions, and billing information. Uplift modeling algorithms can suffer when there
are large numbers of features, leading to overfitting and computational and inter-
pretability problems. Since uplift modeling is a different problem than supervised
learning, traditional feature selection approaches (which have been extensively
studied in the literature) are not applicable.

1.5 Contributions
The contributions of this thesis are as follows:

1. We propose a user parameter free Bayesian approach for uplift discretisa-
tion that we called UMODL. It uses a density estimation approach based on
the MDL principle. UMODL defines a space of discretization models and
a prior distribution. From this model space, a Bayesian optimal evaluation
criterion is defined to evaluate a discretization model. A search algorithm is
then used to find the model with the optimal criterion. An experimental pro-
tocol evaluates the discretisation approach as a univariate uplift estimator.
We show that UMODL is a good uplift estimator resistant to overfitting.

2. While a discretization approach is basically designed to handle continuous
data, we show how to take advantage of UMODL to handle categorical data
to do value grouping in order to be able to separate the different values of
the categorical variable with distinct uplift and group the ones with similar
behavior (similar treatment effect).

3. While the feature selection approaches for uplift modeling are very limited,
we introduce a new feature selection approach for uplift modeling called
UMODL-FS based on UMODL. Once the intervals dividing a variable X
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are found using the UMODL discretization approach, UMODL-FS calcu-
lates an importance score on the found intervals. An experimental protocol
shows that UMODL-FS is very resistant to noise and is able to find the
set of variables that lead to the best uplift model.

4. We propose a Bayesian decision tree algorithm for uplift modeling, UB-DT.
We transform the uplift tree learning problem into an optimisation problem.
The goal is to find the uplift tree model that is most probable given the
data according to Bayes law. So a global evaluation criterion for an uplift
tree model is described, and a search algorithm is presented to search for
the optimal uplift decision tree according to the global evaluation criterion.
A random forest extension, that we called UB-RF, is also presented. A
benchmark study shows the efficiency of our method against state-of-the-
art modeling algorithms.

5. We study a type of bias in the uplift modeling process called the Non-
Random Assignment (NRA) bias. We carry out an experimental study of
the effect of the NRA bias on the different uplift modeling approaches and
UB-DT. We propose a reweighting method to improve an uplift modeling
method called the class transformation approach, which our study found to
be the most sensitive to the NRA bias.

6. Finally, we provide an introduction to telecom data and show how uplift
modeling can be performed to deal with it. We apply our feature selection,
discretization, decision trees and random forests on real world telecom data.
We introduce Kuplift, a new Python package that we have developed to
implement our Bayesian algorithms.

1.6 Thesis outline
This thesis is structured as follows. Chapter 2 presents an overview of the
literature made in both the uplift modeling and CATE estimation communities,
including a description of the modeling approaches, evaluation metrics and feature
selection techniques. An overview of a density estimation approach called MODL
is then presented. Finally, an overview of possible biases in the uplift modeling
process is given. Chapter 3 presents UMODL, our Bayesian approach to uplift
discretisation and density estimation. We also show how UMODL can be used
for feature selection for uplift. In Chapter 4 we present UB-DT, a new Bayesian
decision tree for uplift modeling. We present our global evaluation criterion for an
uplift tree and a detailed proof. We discuss the algorithm used to find the uplift
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tree with the best criterion. We then extend it to a random forest algorithm. In
Chapter 5 we present the experimental study we conducted to evaluate the uplift
modeling approaches and UB-DT against the Non-Random Assignment bias.
In Chapter 6 we perform additional evaluation experiments for the UMODL
discretization approach, UMODL-FS, UB-DT, and UB-RF on real telecom
data. Finally, in Chapter 7 we summarise the contributions of the thesis and
discuss research perspectives.
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2.1 Introduction

The work presented in this thesis lies at the intersection of several topics (cf. Fig. 2.1):
uplift modeling, Bayesian approaches and data bias. In this chapter we provide
background information on each of these topics.

We start by addressing several points in uplift modeling. First, we review state-of-
the-art uplift modeling approaches in Section 2.2 and evaluation metrics for uplift
models in Section 2.3. In addition, we discuss in Section 2.4 feature selection
techniques developed in the literature specifically for uplift modeling problems.
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Figure 2.1: The structure of this chapter is around three topics: Uplift modeling,
Data bias and a Bayesian approach called MODL

Next, in Section 2.5 we discuss potential biases that may exist in the uplift mod-
eling process. We will divide them into two main categories: 1. modeling bias,
which occurs mainly during the training phase of an uplift model. 2. deployment
bias, which occurs when we apply a learned uplift model to a real-world scenario
during the deployment phase.

A large part of the contribution of this thesis is to propose Bayesian approaches
for uplift discretisation, uplift feature selection and uplift decision trees based on
a density estimation technique known as Minimum Optimised Description Length
(MODL) [8]. In the last section of this chapter, we will present the MODL density
estimation and the MODL decision tree approaches. These will serve as prelimi-
nary knowledge for our contributions presented in Chapter 3 and Chapter 4.

2.2 Review of existing Uplift modeling approaches

The uplift modeling literature and a branch of the causal inference literature have
recently approached each other [29]. In this section, we review uplift approaches
developed in both literatures. We divide them into two categories [77]: Metalearn-
ers, whose building blocks are traditional supervised ML algorithms, and Direct
approaches, which are algorithms tailored specifically for uplift modeling.
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2.2.1 Metalearners
Meta-learning, or learning to learn, is the science of systematically observing how
different machine learning approaches perform on a wide range of learning tasks,
and then learning from this experience [70]. Following the same idea, in uplift
modeling meta-learners are a set of algorithms that exploit traditional supervised
learning algorithms to estimate the CATE. One of the main advantages of these
algorithms is that they are constructed by merging off-the-shelf algorithms in a
specific way. They include simple and intuitive techniques such as the single-
model and two-model approaches, as well as more sophisticated methods such as
the X-Learner, R-Learner and DR-Learner. In this section, we will take a look at
each of these approaches.

The Single-model Approach [42, 5]

As its name implies, the Single-model approach (also called the S-learner) consists
of learning a single model using the treatment variable as an additional feature,
without giving it a special role. In other words, the Single-model approach consid-
ers the concatenation of the treatment and the covariates (T, X) as the features.
Thus a response function µ̂(x, t) is defined as: µ̂(x, t) := E [Y | (X = x, T = t)].
This function can be learnt using any ML algorithm. CATE estimation τ̂(x) is
then calculated as:

τ̂(x) = µ̂(x, 1)− µ̂(x, 0)

Although the Single-model approach is simple, it may not be able to predict the
difference between the two potential outcomes (i.e. uplift). It can have very poor
performance [42] and is not often used in practical problems. This is because the
approach relies on a single algorithm that is trained solely to learn the estimation
of the output variable. Also, in high dimensional data, the treatment variable
can have a less importance for the learnt model. In addition, algorithms such as
LASSO or decision trees that perform variable selection internally may not select
the treatment variable during the training phase.

The Two-model Approach [31]

The Two-model approach, also known as the T-learner [42], is a simple and in-
tuitive approach for estimating the conditional average treatment effect (CATE).
The idea is to create two predictive models for the treatment and control groups
to estimate µ̂1(x) = E[Y |X, T = 1] and µ̂0(x) = E[Y |X, T = 0]. The CATE is
then estimated as the difference between the predictions of these two models:

τ̂(x) = µ̂1(x)− µ̂0(x)
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One advantage of the Two-model approach is that it can use any supervised learn-
ing algorithm to construct the predictive models. However, a problem with this
approach is that it tries to predict the outcomes separately in each of the treat-
ment and control groups, rather than the uplift itself. This can be problematic if
the average response is weak or noisy. Additionally, if the data used to estimate
the treatment effect is biased, the global estimator will be biased. A study on the
limitations of the Two-model approach can be found in [57].

Inverse Propensity Weighting (IPW) [59]

The idea behind inverse propensity weighting (IPW) is to estimate the treatment
effect while accounting for dependencies between the treatment and the instances’
features. Using the sampling probability in the treatment and control groups,
subjects are weighted by the inverse probability. That will give higher weights to
instances that are under-represented in the treatment group, and lower weights
for the ones who are over-represented. It’s like creating a "pseudo population" in
which the treatment is independent of the variables. The sampling probability
in the treatment group is called the propensity score [60] denoted e(x) = P (T =
1|X = x). Economists used the inverse propensity weighting for estimating the
Average Treatment Effect 1(ATE). Assuming that the real propensity scores are
known, the ATE for a population of size N indexed by i is defined as:

ATE = 1
N

∑
i

TiYi

e(Xi)
− 1

N

∑
i

(1− Ti)Yi

(1− e(Xi))

Also, the same principle can be used for CATE estimation. Then the inverse-
probability-weighted outcome for an individual i denoted Y IP W

i is:

Y IP W
i = (Ti − e(Xi))Yi

e(Xi)(1− e(Xi))

A regression of Y IP W
i would behave as an oracle estimator of the treatment effect

where counterfactuals are present in the data. However, the problem is that the
propensity score is usually unknown and must be estimated from the data. As
a result, Y IP W

i estimate may be incorrect if the propensity score function is not
correctly specified. Additionally, it can suffer from high variance, especially when
the estimated propensity score is small.

1The Average Treatment Effect (ATE) measures the difference in the average outcome be-
tween the treated group and the control group.

19



Chapter 2. State-of-the-art

Doubly-robust learner [39]

The Doubly-robust learner (also known as the DR-learner) combines the Two-
model approach and the inverse propensity weighting. Data is divided into three
parts of equal size. Conditional mean outcomes µ̂1(x) = E[Y |X, T = 1] and
µ̂0(x) = E[Y |X, T = 0] are learnt on the first part of the data. Propensity scores
e(X) are learnt on the second part of the data. The outcome is then transformed
to be :

Y DR−L
i = Ti − e(Xi)

e(Xi) (1− e(Xi))
(Yi − µ̂Ti

(Xi)) + µ̂1 (Xi)− µ̂0 (Xi)

and regressed on the third part of the data.

This approach is called "doubly robust" because it is unbiased if either the propen-
sity score or the conditional mean outcomes are correctly specified. However, it
can be more computationally intensive to implement than other methods.

X-learner [42]

The X-Learner is a meta-learner that estimates the treatment effect separately
for each treatment group. This may be helpful in case of imbalanced treatment
and control conditions. The X-Learner is composed of several stages. The first
one (identical to the Two-model approach) estimates the response functions µ̂0(x)
and µ̂1(x) using any supervised learning algorithm. The second step consists of
estimating the imputed treatment effect for each individual in the control and
treatment groups, denoted by D̃0

i , D̃1
i respectively. This is done by assigning

treatment effects to individuals in one group based on the outcome estimator of
the other group, that is:

D̃1
i := Yi − µ̂0 (Xi) , where subject i belongs to the treatment group

D̃0
i := µ̂1 (Xi)− Yi, where subject i belongs to the control group

The third step is to estimate uplift in two ways: by modeling the imputed treat-
ment effects in the treatment group and those of the control group. Thus we
obtain τ̂1(x) = E[D̃1 | X = x] and τ̂0(x) = E[D̃0 | X = x]. Finally, the CATE
estimation τ̂(x) is the weighted average of these two estimates:

τ̂(x) = ê(x)τ̂0(x) + (1− ê(x))τ̂1(x)
where ê(x) = P (T = 1 | X = x) is the propensity score estimation [60]. The
advantage of the X-learner is that it combines information from the control group
to estimate the treatment effect in the treatment group and vice versa. So it may
perform better than the Two-model approach. However, it requires learning four
models, increasing complexity and parameters tuning.
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R-learner [52]

The R-Learner is a two step algorithm that estimates the treatment and con-
trol outcomes µ̂(x) and the propensity score e(x). The CATE is estimated by
minimizing the following loss function:

L[τ̂(x)] = 1
n

N∑
i=1

{[(
Yi − µ̂(−i) (X i)

]
−
[
Ti − ê(−i) (X i)

]
τ̂ (X i)

}2

where ê(−i) and µ̂(−i) denote the out-of-fold held-out predictions made without
using the ith training sample.

Class-Transformation approach [38]

The principle of this approach is to map the uplift modeling problem to a usual
supervised learning problem. The outcome variable Y is transformed into a vari-
able Z as illustrated in Eq. 2.2.1. Then a machine learning algorithm is used to
learn a model and to predict P (Z|X). The estimated uplift of an individual i is
τ̂i = 2× P (Z = 1|Xi)− 1

Z =


1, if T = 1 and Y = 1
1, if T = 0 and Y = 0
0, otherwise.

Several studies [19, 38] show that this approach has a better performance than
the two-model approach. However, as shown in the experiments we conduct in
Chapter 5, the Class-Transformation approach may be very sensitive to the Non-
random assignment bias (see Section 2.5.1).

2.2.2 Direct Approaches
Unlike metalearners, direct approaches are specifically designed for treatment ef-
fect estimation and uplift modeling. Various algorithms have been proposed in the
literature, such as tree-based methods, SVM-based methods, and deep learning
methods. Random forest-based methods were also proposed as a natural exten-
sion of tree-based methods by combining several uplift tree models into a single
uplift model. In this section, we will examine these methods, focusing on tree-
based methods because they are one of the best learning approaches on tabular
data, while being interpretable, which is crucial in many fields such as marketing,
especially when dealing with customers, as is the case with the Orange Group.
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Tree-based and Random forest methods

Tree-based methods for uplift modeling build decision trees for estimating the
CATE or uplift. Unlike traditional decision trees, the goal is not to find leaves
with pure class distributions, but to find leaves that estimate the treatment effect.
The main advantage of tree-based methods lies in their interpretability, which is
very important for many applications. However, a major drawback is that the
induction of an optimal uplift decision tree from a data set is NP-hard [51], and
the tree-learning process is usually greedy.

To overcome the issue of high variance in decision trees, random forests have
been proposed for uplift modeling. They typically perform better when a large
number of trees are included in the forest. However, unlike decision trees, random
forests lack interpretability.

Uplift Decision Tree algorithm [63] is similar to traditional decision tree
algorithms in machine learning, but it introduces a new splitting criterion based
on information theory. It can handle multiple treatments and an arbitrary number
of classes. The proposed splitting criterion is based on distribution divergences,
with the goal of maximizing the differences between the class distributions in the
treatment and control sets. For each non-leaf node, the criterion for a split test
is calculated as follows:

Dgain(A) = D (P (Y |T = 1) : P (Y |T = 0) | A)−D (P (Y |T = 1) : P (Y |T = 0))

where A represents a split test performed on a non-leaf node (for example x < v,
where v is a real number, presents a test A) and where D(p : q) is a divergence
measure between two probabilities p and q such as Kullback-Leibler divergence
(KL), squared Euclidean Distance (ED), Chi-squared divergence (Chi). The cri-
terion selects a test that leads to the most divergent class distributions in each
branch. The gain Dgain(A) obtained from a test A is calculated by subtracting the
divergence between class distributions on the entire dataset from the divergence
between class distributions due to test A. The class divergence between treatment
and control groups of a test A is simply the sum of the class divergence between
treatment groups for each value of the test A (each child node, denoted by a). In
other words:

D (P (Y |T = 1) : P (Y |T = 0) | A) =
∑

a

N(a)
N

D (P (Y |T = 1, a) : P (Y |T = 0, a))

where N(a) denotes the number of instances for the outcome of the test A is a.
The authors argued that the ED divergence measure may perform better since
it’s symmetric and more stable.
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A normalization step is performed in order to prevent bias toward tests with
a large number of outcomes and tests that tend to separate treatment and control
groups. The algorithm is followed by a pruning step to avoid overfitting. Addi-
tionally, a number of parameters must be set, such as the maximum depth and
the minimum number of samples required to perform a split.

Uplift Incremental Value modeling (UpliftIVM) [31] is one of the earliest
tree-based uplift approaches proposed in the uplift modeling community. Unlike
the Uplift decision tree approach that tries to maximize the estimated treatment
effect in each child node, the UpliftIVM tries to maximize the difference between
the treatment effect of the left and right child nodes. UpliftIVM searches for the
split s that maximizes the following splitting criterion:

∆µ(s) := |τ̂L − τ̂R|

Each of τ̂L and τ̂R are estimated as the treatment effect in the left and right nodes.
More precisely:

τ̂L =
∑nL

i=1 TiYi∑nL
i=1 Ti

−
∑nL

i=1 (1− Ti) Yi∑nL
i=1 (1− Ti)

,

and

τ̂R =
∑nR

i=1 TiYi∑nR
i=1 Ti

−
∑nR

i=1 (1− Ti) Yi∑nR
i=1 (1− Ti)

where nL and nR denote the number of instances in the left and right child nodes.

Causal trees [4] are different from traditional decision trees in that they are
designed to be an honest approach. According to [72], an honest approach requires
that we do not use the same set of data to both learn and to conduct inference.
In a causal tree, the training data (of size ns) is used to create tree splits (to build
the entire tree) and the estimation data is used to estimate the uplift values in the
leaves. When learning a causal tree, the goal is to find the split s that maximizes
the following splitting criterion:

∆µ(s) :=
(

nL

n
τ̂ 2

L + nR

n
τ̂ 2

R

)
︸ ︷︷ ︸

Rewards treatment effect heterogeneity

−
( 1

n
+ 1

ns

)(
S2

1L

p
+ S2

0L

1− p
+ S2

1R

p
+ S2

0R

1− p

)
︸ ︷︷ ︸

Penalizes splits leading to small leaf nodes
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where S0L, S1L, S0R and S0R denote sample variances in treatment and control
groups in each of the left and right leaves. p denotes treatment probability in
the data. The CATE estimation in a Causal tree is done using inverse propensity
score in each leaf node.

The approaches mentioned previously belong to the category of tree-based
methods. In the literature, forest-based methods have also been developed as
a natural extension of these approaches [67]. Typically, a forest is constructed by
combining multiple trees and then computing their average predictions.

Causal forests [72] Causal forests is a random forest algorithm that uses
Causal trees as its base learner. Similar to random forest-like algorithms, k causal
trees are trained and then used to provide a treatment effect estimation τ̂t(x) for
each example x in a test set. The prediction of the Causal forest is then the av-
erage of the predictions provided by the Causal trees, i.e., τ̂(x) = 1

k

∑
t τ̂t(x). The

authors showed the estimations of the causal forests are asymptotically Gaussian
and unbiased.

The Contextual Treatment Selection (CTS) [79] algorithm is a random
forest algorithm designed to directly maximize a new performance measure called
the expected performance through its splitting criterion.

• Expected response: The expected response is an evaluation measure where
multiple treatments and/or outcomes can be considered. It defines a new
random variable zi, such that:

zi =
N∑

k=1

Yi

PT =k

I {h (xi) = k} I{T = k}

where PT =k is the prior probabilities of the treatment and h (xi) is an uplift
model resulting in the optimal treatment and I (.) is the Iverson bracket (the
0/1 indicator function), equal to one if the predicted optimal treatment is
equal to the assigned treatment, and zero otherwise.
When the predicted optimal treatment is equal to the observed treatment,zi

becomes equal to the outcome scaled by the probability of the treatment.
Thus the expected response of an uplift model is then the expectation of zi,
E[zi], calculated as follows:

E[zi] = E[Y | T = h(xi)] = 1
N

N∑
i=1

zi
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• Splitting criterion: Suppose s is a candidate split that divides a space ϕ into
left and right subspaces, resp. ϕl and ϕr. The goal is to perform the split
s that leads to the greatest increase in the expected response. The increase
in expected response is calculated as:

∆µ(s) =P {X ∈ ϕl | X ∈ ϕ} max
tl=0,...,K

E [Y | X ∈ ϕl, T = tl]

+P {X ∈ ϕr | X ∈ ϕ} max
tr=0,...,K

E [Y | X ∈ ϕr, T = tr]

− max
t=0,...,K

E[Y | X ∈ ϕ, T = t]

Note that we subtract the maximum response of the parent node, to be able
to calculate the gain achieved by s.

Note that all splits in the CTS approach are binary splits. Similarly to the Uplift
decision tree approach, a number of parameters should be set by the user, such
as the minimum number of samples required to split a node and a regularization
term.

Other forest-based methods were also proposed. [27] studied decision trees
for uplift modeling and pointed to their high variance problem. So, they presented
the Uplift Random Forest algorithm. Later, [28] presented the Causal Conditional
Inference Forest to solve both the variable selection bias in the splitting criterion
and the overfitting problem of the Uplift Random Forest algorithm. [67] performed
an extensive study on ensemble methods and proposed a bagging algorithm for
uplift modeling.

Support vector machine-based methods

The support vector machine algorithm has been adapted for uplift modeling prob-
lems [76, 75]. [76] proposed an SVM-based approach called L1-USVM, where the
main idea is to use two parallel hyperplanes that divide the sample space into three
regions of different treatment effects: positive, neutral and negative treatment ef-
fects. In this way, the uplift modeling problem becomes a three-class classification
problem. The two hyperplanes are:

H1 : ⟨w, x⟩ − b1 = 0, H2 : ⟨w, x⟩ − b2 = 0

where b1, b2 are the intercepts and w is the normal vector to the hyperplanes. The
CATE predictions are then obtained according to the following equations:

τ̂(x) =


+1 if ⟨w, x⟩ > b1 and ⟨w, x⟩ > b2,

0 if ⟨w, x⟩ ≤ b1 and ⟨w, x⟩ > b2,

−1 if ⟨w, x⟩ ≤ b1 and ⟨w, x⟩ ≤ b2
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The same authors then proposed Lp-USVM [75], which extends L1-USVM
by using the Lp norm for the regularisation for w instead of the L1 norm. Im-
proved optimisation algorithms were also proposed in the same paper. According
to [75], Lp-USVM does not suffer from discontinuity problems unlike L1-USVM
and improves convergence and efficiency.

The main drawback of this approach is its complexity due to the additional
hyperplane and its variables.

Deep Learning-based methods

Deep learning based methods have also been proposed in the literature. We briefly
review the different contributions. The Causal Effect Variational Autoencoder
(CEVAE) proposed by [47], is a neural network latent variable model for causal
effect estimation. It learns a latent set of confounders from the observed co-
variates. The Treatment Effect with Disentangled Autoencoder (TEDVAE) [78]
improves CEVAE by taking into account not only the confounding variables that
are correlated with both the treatment and outcome variables (see Section 2.5.1),
but also the instrumental factors that affect only the treatment and the risk factors
that affect only the outcome. Generative Adversarial Network for Individualised
Treatment Effects (GANITE) [74] attempts to learn the counterfactual distri-
butions using a Generative Adversarial Network (GAN) while generating CATE
estimates for the instances. Counterfactual Regression (CFR) [64] extends the
two-model approach. First, a representation learning is performed to minimise
the discrepancy between the two distributions P (X|T = 1) and P (X|T = 0),
then two neural networks are trained on each of the treatment and control groups
to estimate the CATE. DeepTreat [3] is a single-model based approach. First,
it consists of a bias-removing auto-encoder to control the trade-off between bias
reduction and information loss. It learns a new representation for the covariates
X where the treatment groups are balanced. It then trains a single neural net-
work to predict the outcome Y using the concatenated features and the treatment
variables.

Deep learning-based methods excel at learning large datasets, but are less
effective for small datasets (as in medical applications). In addition, they lack
interpretability, which is sometimes crucial in some applications. Their parameters
are also difficult to tune.

2.3 Evaluation metrics
An important part of building a machine learning model is being able to evaluate
it. An evaluation metric is used to evaluate the predictive performance of a
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learning algorithm. They help to evaluate model results in order to select the best
model among several. For example, in supervised learning, such as classification
or regression, metrics like the F1 score, accuracy, area under the curve (AUC)
can be used. They all depend on two values for each instance in the data set, the
predicted value and the actual value.

However, as mentioned earlier, one of the main problems with uplift modeling
is that the actual uplift values cannot be observed. We cannot simultaneously
observe both outcomes for a given individual with and without treatment. That’s
why performance measures of the supervised setting are inoperative.

In this section we present the performance measures used in the case of uplift
modeling to assess the quality of the predicted treatment effects.

2.3.1 Group-level uplift based metrics
Uplift per decile [46, 68] Evaluating the quality of the estimated uplift values
is a challenge, as it is not possible to do it directly or define a loss function. One
solution is to rank the instances based on their estimated uplift values and evaluate
the resulting ranking. Since comparing true uplift values is infeasible, researchers
proposed comparing the estimated uplift within bins or groups. Specifically this is
done by sorting the instances in descending order by their predicted uplift values
(separately for each of the treatment and control groups), then dividing them into
deciles, and calculating uplift per decile d,denoted µ̂(Xd), such that:

û (Xd) = E [Y | Xd, T = 1]− E [Y | Xd, T = 0]

where Xd denotes the individuals of a particular decile d.
The predictions of a good uplift model will yield a decreasing uplift-per-decile

bins as presented on the left figure of Fig. 2.2. On the contrary, a bad uplift model
will yield increasing uplift-per-decile bins or random bins as shown in the right
figure of Fig. 2.2.

The uplift-per-decile chart can help practitioners (for example in the marketing
field) to target the subjects in the first deciles (with higher predicted uplift values)
since they are persuadables and to avoid subjects in other bins. However, the
uplift-per-decile chart does not allow to compute the Gain of uplift targeting a
particular ratio of subjects and does not give us a numerical evaluation metric for
uplift models.

Qini Curve The Qini curve was first proposed in [56] to plot the absolute
incremental responses of the treated group compared to the control group. Let DT ,
DC be respectively the treatment and control groups, ordered by the predictions
of an uplift model; NT , NC be the total number of instances in DT and DC
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Figure 2.2: Results of a good uplift model (left) and a bad uplift model (right)
represented by an uplift-per-decile chart.

respectively; RT (k) and RC(k) be the number of treated and control responders,
respectively, among the top k percent of instances in each of DT and DC . The
values of the Qini curve V (k) are then obtained by varying the value of k between
0 and 100, such that:

V (k) = RT (k)−RC(k)NT

NC

Let’s take an example of qini curves similar to the one presented by [56]. As-
sume a dataset containing 100K treated individuals and 100K non-treated individ-
uals. The number of positive responses in the treatment group is 30K against 10K
in the control group. Fig. 2.3 shows two Qini curves presenting the performance of
two different uplift models, a Qini curve Vrandom showing the performance of the
random model [56] and a Qini curve V∗ showing the performance of an optimal
uplift model. A random model is the model that assigns treatment randomly to
subjects. An optimal model (in yellow) assigns higher scores to all treated respon-
ders than all non-responders. It is a theoretical curve that assumes that all treated
responders have positive outcomes because of the treatment. Thus it climbs at
45◦, assuming that positive outcomes are due to the treatment, then proceeds
horizontally and finally goes down due to the negative effects of the treatment.

By targeting the top 50% of instances according to model A, the gain will be
20K, while targeting the top 50% of instances according to model B the uplift
gain will be 25K It’s clear that the uplift model B outperforms model A. Note
that targeting the whole population will yield a gain equivalent to the average
treatment effect (ATE), which is 20K in our case.
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Several variants of the qini curve were used in the literature. Also the uplift
curve [62], which is quite similar to the qini curve, was introduced.

Figure 2.3: Example of qini curves. X-axis shows the percentage of targeted
individuals k, sorted by their predicted uplift values. Y-axis present the percentage
of the cumulative uplift.

Uplift curve As just mentioned, the uplift curve is an another variant of the
qini curve that was also widely used in the literature [62, 38, 50, 67]. To our
knowledge, [62] were the first to introduce the uplift curve. It is obtained by
subtracting the lift curve obtained on the control set from the lift curve obtained
on the treatment set. The values of the uplift curve can then be calculated by:

U(k) = RT (k)−RC(k)

In [63], the authors renormalized the curves by the number of examples of their
respective treatment groups. So U(k) can then be calculated by:

U(k) = RT (k)
NT

− RC(k)
NC

To compare several uplift models, we need a numerical value describing the
performance of each model. Mainly, two measures were proposed in the literature,
named the Qini coefficient and the AUUC :

• Qini Coefficient Q [56] The qini coefficient is a generalization of the Gini
coefficient. It provides an evaluation of how far the qini curve V (k) is from
the random curve Vrandom and how close it is from the optimal curve V∗.
The qini curve is generated by varying k from 0 to 100. Subsequently, the
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area under the qini curve, denoted as AUC(V ), can be computed. The qini
coefficient Q of an uplift model can then be calculated as follows:

Q = AUC(V )− AUC (Vrandom)
AUC (V∗)− AUC (Vrandom)

The Qini coefficient will be referred to as ’qini’ or ’qini value’ throughout
the remainder of the thesis.

• Area Under the Uplift Curve (AUUC) [62] As the name implies, it is
area under the uplift curve.

AUUC =
∫ 100

0
U(k)dk

Sometimes the area under the diagonal line is subtracted from this quantity [19,
38]. Several variants of the metrics described above were proposed in the litera-
ture. For the interested reader, please refer to [18].

2.3.2 Precision in the Estimation of Heterogeneous Effects
(PEHE)

When the ground truth uplift values are observed, which happens in synthetic
datasets, where data are simulated, the precision in the estimation of heteroge-
neous effect (PEHE) [32] can be used. It acts as a mean-squared error (RMSE)
for uplift problems.

PEHE = 1
n

n∑
i

(τ̂ (xi)− τ (xi))2

2.4 Feature selection for uplift models
The telecommunications industry collects huge amounts of data [14]. Data that
can be collected includes the location of phones, call records, timestamps and call
duration. In addition, SMS records such as SMS length, frequency and times-
tamps can be collected. The industry also collects information about internet
usage, such as user IDs, the types of websites visited and the number of bytes
transferred. It often has hundreds to thousands of features. This may cause seri-
ous challenges to machine learning models such as the curse of dimensionality [6].
Large number (and often noisy) features may lead machine learning algorithms
to overfitting and decreased performance. In addition, interpretability of machine
learning decisions in the presence of a large number of features is not practical.
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That’s why dimensionality reduction techniques, including feature selection, is
a crucial step in machine learning for improving the efficiency of models. Fea-
ture selection help to simplify models, making them easier to interpret, reducing
computation power, cost and training time, and facilitating data visualization.

The literature of feature selection is extensive [30]. In this section, we will first
provide a high-level overview of the main feature selection families of methods,
explain why they are not well-suited for uplift modeling problems, and then take
a look at the contributions of feature selection methods specifically for uplift
modeling.

2.4.1 Feature selection in classical machine learning
Feature selection is a very large research domain that was Different feature se-
lection techniques were designed for supervised, unsupervised and semi super-
vised learning. Supervised feature selection can be broadly categorized as filter,
wrapper, and embedded methods. Filter methods select subsets of variables as
a preprocessing step, independently of the chosen machine learning algorithm.
Wrapper methods evaluate subsets of features, allowing for the evaluation of in-
teractions between different variables. Embedded methods perform feature selec-
tion as part of the learning process; for example, decision trees such as CART [13]
perform internal feature selection, and LASSO method constructs linear models
while penalizing regression coefficients. Other feature selection techniques were
also developed for unsupervised learning. A review of unsupervised feature selec-
tion can be found in [1]. Finally, when high-dimensional data is available with
only a subset of labeled samples, semi-supervised feature selection techniques [80]
were developed to face a new challenge.

A new problem, a new challenge Conventional feature selection techniques
try to find the most relevant features for outcome prediction. However, as pre-
viously presented, in uplift modeling we try to estimate the difference between
two outcome distributions, which make traditional feature selection techniques
innoperative.

2.4.2 Feature selection for uplift modeling
To the best of our knowledge, only two articles in the uplift modeling literature
that discuss feature selection. Zhao et al. [81] propose filter and embedded feature
selection methods for uplift. They compare them with conventional feature selec-
tion methods. Their results show that traditional feature selection approaches are
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not effective in the uplift modeling context. In [34], the author suggests perform-
ing a second step in the feature selection process to remove redundant features.
The article calculates a correlation coefficient between each variable and all other
variables. If two features have a correlation coefficient greater than 0.8, one of
them is removed. While removing redundant features is an important step, this
approach may not be feasible on real data due to computational constraints.

Following, we briefly present the filter and embedded methods that were pro-
posed by [81].

Filter methods

Filter methods are used in a pre-processing step independently of an uplift model.

F-Filter The F filter method uses the F statistic to test the significance of the
interaction between the treatment variable and a feature in a linear regression. An
interaction in linear regression occurs when the effect of an independent variable
(for instance a feature X) on the outcome variable Y depends on another indepen-
dent variable (in our case the treatment variable T ). In order to capture non-linear
interactions, the authors extended this approach by adding higher-order terms of
the feature in the regression. More specifically, a linear regression model with
interaction is presented as:

Y = α + δT +
R∑

r=1
βrX

r +
R∑

r=1
θrTXr

︸ ︷︷ ︸
The interaction term

+ϵ

where X is the feature for which a score is to be calculated. α, δ, β and θ are
the coefficients and ϵ represents the error term. R is the higher-order term (a
hyperparameter set by the user). Since θ is the coefficient of the interaction term,
its significance indicates the strength of the treatment effect for the feature X. To
examine the significance of θ, we should contrast the model with interaction above
with the linear regression model without an interaction term. A linear regression
model without interaction can be presented as:

Y = α′ + δ′T +
R∑

r=1
β′

rX
r + ϵ′

The F-filter feature selection calculates the importance score of a feature X as
the F-statistic for the coefficient of the interaction term θ:

F = (RSS −RSS ′/ R)
RSS ′/ (N −R− 2)
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where RSS and RSS ′ are the Residual Sum of Squares for the fitted model with
and without interaction respectively. The value of F can be used with an F-
distribution calculator with degrees of freedom (R, N − R − 2) to calculate a
p-value. The null hypothesis states that there is no statistical difference between
the linear regression model with and without interaction.

Likelihood ratio (LR) filter Similar to the F-filter, the LR filter uses the
likelihood ratio test statistic for the interaction coefficient in a logistic regression.
The likelihood test static measures whether adding a parameter to our model ,
e.g. the interaction term, will make our model fit the data significantly better.
Again, this is achieved by comparing the models that include the interaction term
with those that do not.

Bin-based divergence Filter Bin based Divergence filter approach comes from
the split criteria of the uplift trees. The bin-based method first divides a feature
into equally sized bins then estimates the divergence between the outcome dis-
tributions in each of the treatment groups. Let pi and qi denote the outcome
distribution in each of the treatment and control groups respectively for the bin
i:

I∑
i=1

Ni

N
D(pi : qi)

where Ni is the number of instances in the bin i and D corresponds to a dis-
tribution divergence measure. Three measures were used: the Kullback-Leibler
divergence (KL), the squared Euclidean Distance (ED) and the chi-squared diver-
gence (Chi).

Again, the number of bins is a hyperparameter to be set by the user.

Embedded methods

Embedded methods for feature selection generate importance scores by training
an uplift model. The authors proposed to generate importance scores from an
uplift decision tree model. At each split, the gain in the distribution divergence
is calculated:

∆ =
∑

k∈{ left, right }

nk

n
D (pk, qk)−D(p, q)

where n is the number of instances in the parent node.
The importance score of a feature X can be calculated by summing all the

gains of all the splits where X was used.
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The filter feature selection approaches described above are all parametric, while
embedded methods can be time consuming as they rely on the performance of
an uplift model. The authors showed that bin-based approaches outperformed
other methods. The F and LR filters showed improved performance when the
hyperparameter R was set to a value greater than 1, which allows non-linear
patterns in the data to be detected.

2.5 Biases in uplift modeling
Most machine learning algorithms work well when the training and test data come
from the same distribution. They guarantee their performance if the deployment
data has the same distribution as the data on which the learning algorithm was
trained. However, when the distributions are different, the performance of these
models deteriorates [40]. In other words, a machine learning model will not ”gen-
eralise” well if the training data does not reflect the population on which the
model is tested. This phenomenon is also called data bias.

To overcome this, it’s important to ensure that the training data matches the
distribution of the test data by collecting new data. However, in many applications
it is impossible or expensive to collect new data to rebalance the training and test
sets [54]. That’s why research areas such as domain adaptation have grown to
develop techniques to bring the training and test distributions closer together [40].

Like any other machine learning algorithm, uplift modeling can also be prone
to data bias. Additionally, as it is a distinct problem from conventional supervised
learning, there are specific types of bias that are unique to the uplift modeling
problem.

In this section we discuss different sources and types of bias that can be ob-
served in an uplift problem. We divide them into two categories: modeling bias
and deployment bias. As their names imply, a modeling bias occurs during the
training phase of an uplift model while the deployment bias occurs during the
deployment of the uplift model in a real world application.

2.5.1 Modeling bias
Modeling bias typically occurs during the training phase of an uplift model. In
principle, the ideal scenario for performing uplift modeling is within a randomised
control trial setting, where the data is generated under controlled conditions and
biases are minimised between the data from different treatments. However, in
practical applications, data is collected from observational studies, i.e. gathered
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without the subject of a research experiment, where the data generation process
is not controlled, and biases are often present.

In this section, we present three types of modeling bias: non-random assign-
ment bias (NRA), non-response bias and confounding variables.

Non-random assignment bias

Non-random assignment (also known as selection bias) [77] happens when there are
differences between treatment and control groups. Formally, this bias occurs when
P (T = 1|X) ̸= P (T = 0|X) (which also means P (X|T = 1) ̸= P (X|T = 0)). This
can be seen as a covariate shift (see Section 2.5.2) between treatment and control
groups. Usually it is easier to collect control data and the treatment group is the
most biased because it is more challenging to apply a treatment to individuals and
collect the corresponding data due to ethical, political or economic constraints.

This bias problem has been studied in the literature on clinical studies where the
goal is to estimate the "Average Treatment Effect" (ATE) defined as E[Yi(T = 1)−
Yi(T = 0)]. In order to estimate it, the "Propensity Score Matching" (PSM) [61] is
used to extract balanced treatment groups on which ATE is estimated. Similarly,
in the uplift literature, since uplift methods assume the homogeneity between
treatment groups, PSM is used to extract an unbiased sample from a biased
dataset. Uplift modeling is applied subsequently as carried in [53]. However, this
procedure clearly suffers from a loss of data.

This type of bias is discussed and an experimental evaluation of its effect is
carried out in Chapter 5.

Non-response bias

Let’s consider a marketing campaign for an internet offer. The treatment group
receives the campaign by e-mail, while the control group is not contacted. Non-
response bias occurs when some individuals in the treatment group are considered
to have received the treatment, however, they did not really receive it. For in-
stance, some individuals do not check their emails regularly, and hence they did
not read the received email. If there is a common pattern among the people who
do not read the email, this leads to non-response bias. For instance, if all older
persons in the treatment group do not check regularly their emails, we cannot
attribute their buying behaviour to the assigned treatment.

This type of bias is called non-response bias and refers to the case where indi-
viduals do not respond to the treatment (e.g. do not answer the phone call, do
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not read the received email or sms). These individuals are part of the treatment
group even though they did not actually receive the treatment.

Non-response bias is a phenomenon that also occurs in medical contexts, partic-
ularly in clinical trials. For example, consider a clinical trial in which researchers
give a drug to one group of people (the treatment group) and a placebo to an-
other group of people (the control group). Some people may not consume the
drug, perhaps because they experience more unwanted side effects. This can lead
to non-response bias.

The pattern in which non-response occurs can have a significant impact on
the data, introducing noise. Rubin’s noise taxonomy [44] provides a systematic
approach to classifying different types of noise and missing data. Through this
lens, non-response bias is identified as a form of noise that can be categorized:

• Missing not at random (MNAR): happens when the non-response depends
on unobserved causes (not included in the variables).

• Missing at random (MAR): occurs when non-response is conditional on co-
variates X. In other words, when the probability of being a non-response
depends only on the observed attributes.

• Missing completely at random (MCAR): occurs when the non-response is
completely independent of the initial variable and the covariates. Thus,
subjects with MCAR non-response are a random sample.

The specific patterns in which non-response bias occurs can affect the data in
distinct ways, presenting unique challenges in each case.

Confounding variables

Confounding variables are not exactly a type of bias, but can be considered a
problem in treatment effect estimation. They violate the conditional indepen-
dence assumption (or unconfoundedness assumption) described in Section 1.3.
Confounding variables are variables that are correlated with both the outcome
and the treatment variables. In other words, when individuals who are more
likely to have a particular outcome are more likely to receive a treatment. As
an example [55], let’s take a medical study investigating the relationship between
coffee drinking and lung cancer. If the people (coffee drinkers) in the treatment
group of the study were also smokers (without taking the effect of smoking into
account), the study might conclude that coffee drinking increases the risk of lung
cancer.
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According to [55, 37], there are 3 methods to reduce the effect of confounding
variables and distribute them evenly between the treatment groups:

• Randomization helps prevent selection bias. It consists of randomly as-
signing subjects to treatment and control groups.

• Matching can be used to match individuals from the treatment group with
another from the control group based on one or more selection criteria. For
example if age, sex and eating habits are the matching variables then a
vegeterian male of 25 years in the treatment group is matched with another
from the control group. Also, techniques like Propensity score matching can
be useful. This was also illustrated in an uplift modeling benchmark study
by [53]

• Restriction is used especially in clinical trials. If the confounder variable
is known, the idea is to eliminate variations in the study by restricting the
study for example on the same age or sex for example.

In summary, modeling bias primarily arises from the data used for training an up-
lift model. They can be caused by differences in the distribution of the treatment
and control groups, as is the case with non-random assignment, by the presence of
confounding variables or non-response bias. Such biases have the potential to yield
poor learning models and erroneous interpretation of the impact of a treatment
on the behavior of subjects.

2.5.2 Deployment bias
As with any machine learning problem, uplift modeling can face the problem of
deployment bias. Deployment bias occurs when the available data is not represen-
tative of the general population, also known as "data shift" [40, 48]. A data shift
occurs between a source domain (where we have access to training data) and a
target domain (where we apply our machine learning model and where labels are
typically not available). Reasons for data shifts can include an outdated train-
ing set, different or limited data sources, sample selection bias, or changes in the
behaviour of individuals.

Before proceeding, note that domain-specific functions given below are denoted
by the subscripts S and Ta for the "source" and "target" domains, respectively. For
example, PS(X|Y ) and PT a(X|Y ) denote the source and target class conditional
distributions, respectively. The most common data shifts are:
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• Prior shift: refers to changes in the distribution of the output variable.
A prior shift occurs when the prior probabilities of the classes are differ-
ent, i.e. PS(Y ) ̸= PT a(Y ), while the posterior distributions are equivalent,
PS(X|Y ) = PT a(X|Y ).

• Covariate shift: refers to the case where PS(X) ̸= PT a(X) while PS(Y |X) ̸=
PT a(Y |X). It most commonly occurs when there is a sample selection bias.
For example, a face recognition algorithm that has been trained on young
faces, but is used on a dataset of older faces, will suffer from the covariate
shift problem. The relationship between input and output is the same, but
the training data is not representative of the population of interest.

• Concept shift (also referred to as "concept drift" [24]) refers to the change
in relationships between input and output variables. For example, on a
property platform where users mark each listing as "interesting" or "not in-
teresting", changes in the economic situation may change consumers’ buying
habits over time. In this case, it is not the data distribution or the class dis-
tribution that has changed, but the relationship between the data and class
variables. Formally, a concept drift occurs if one of the following situations
occurs:

– PS(Y |X) ̸= PT a(Y |X) and PS(X) = PT a(X)
– PS(X|Y ) ̸= PT a(X|Y ) and PS(Y ) = PT a(Y )

It is also related to data drift, where models are trained and deployed online in
non-stationary environments.

To summarize, deployment bias can arise when the distribution of labels, co-
variates, or their relationship differs between the training and deployment data.
It is also possible for multiple types of shifts to occur simultaneously. Deployment
bias is not specific to uplift modeling problems, it is a commonly recognised issue
in various domains of machine learning.

2.6 MODL: Minimum Optimized Description Length

This thesis proposes an uplift discretization approach and a new Bayesian decision
tree algorithm for uplift modeling based on the Minimum Optimized Description
Length (MODL). MODL is a Bayesian approach for density estimation through
discretization for supervised learning. It is founded on the Minimum description
length (MDL) principle.
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In this section, we introduce the MDL principle and present the MODL dis-
cretization approach [8] and the MODL decision trees [71] as preliminaries for the
rest of the thesis.

2.6.1 MDL: Minimum Description Length principle
The Minimum Description Length (MDL) principle [58] is derived from Shannon’s
information theory [65] and allows finding the simplest model that best describes
the data. The MDL principle is used to select the best model, among a family of
models, by taking into account the complexity of the models and the complexity
of the data according to the model. According to the MDL principle, the best
model M that describes the data D is the model with the minimum description
length L(M, D), s.t. L(M, D) = L(M) + L(D|M), where L(M) is the model’s
description length and L(D|M) is the description length of the data encoded by
the model.

2.6.2 The MODL approach for discretization
The MODL (Minimum Optimized Description Length) [8] approach is a non-
parametric Bayesian approach for discretization and conditional probability esti-
mation, based on the Minimum Description Length (MDL) principle. Let us first
introduce the link between a Bayesian and a MDL model selection problem.

A Bayesian approach for model selection From a Bayesian perspective, the
best model M , among a family of models, is found by maximizing the posterior
probability P (M |D), i.e., to find the one that is most likely given the data. Using
Bayes rule, maximizing P (M |D), while taking into account that P (D) is constant
for all the candidate models, is equivalent to maximizing the product of the prior
and the posterior probabilities: P (M)P (D|M).

A MDL approach for model selection The previous approach can also be
seen from an information theory perspective by using the MDL approach [58]. As
previously mentioned, the goal of the MDL approach is to select the model with
the minimal description length L(M |D). Replacing the previously introduced
probabilities by their negative log, allows interpreting them as Shannon’s code
length [65], s.t.: − log P (M |D) corresponds to L(M |D).

Parameters of a discretization model The MODL approach comes to apply
the MDL approach to the discretization problem to help find the best discretiza-
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tion model M that maximizes the posterior probability P (M |D). First the data
values of a variable are sorted. Then a space of discretization models is defined.
A discretization model is described by a set of parameters:

• the number of intervals I

• the boundaries of the intervals, i.e. the number of instances in each inter-
val i denoted Ni

• the frequencies of the classes in each interval, i.e., the number of instances
in each interval i with class j denoted Nij

An Evaluation criterion for a discretization model Using these parame-
ters, the MODL approach defines a prior distribution on a discretization model
M . It exploits the hierarchy of the parameters and assumes a uniform distribution
at each stage of the hierarchy with independence across intervals. The MODL ap-
proach defines then the cost of a model C(M), i.e., which is the negative log of
the posterior probability by:

C(M) = log N + log
(

N + I − 1
I − 1

)
+

I∑
i=1

log
(

Ni + J − 1
J − 1

)

+
I∑

i=1
(1−Wi) log Ni!

Ni.1!..Ni.J !︸ ︷︷ ︸
Likelihood

Using a search algorithm the MODL approach can score all possible discretization
models and selects the one with the minimal criterion.

2.6.3 The MODL classification trees
The MODL approach can also be applied to classification trees [71]. It allows for
the definition of a global criterion for a decision tree model, enabling the selection
of the tree model with the minimal tree criterion among a family of tree models.
It is distinguished from other tree approaches by being a user parameter-free ap-
proach and by defining a global criterion to evaluate a tree model.

As a Bayesian approach, it tries to select the most probable tree model given
the data by maximizing the posterior probability P (Tree|Data) of a tree model
Tree. This is achieved by maximizing the product of the prior probability of the
tree and the likelihood of the data given the model, i.e., P (Tree)P (Data|Tree).
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Figure 2.4: Parameters of a MODL decision tree

A decision tree model is defined by its structure, the distribution of instances
in this structure and the distribution of the class values:

• The structure consists of:

– the set of internal nodes ST ree (an internal node is a node with at least
two children).

– the set of of leaf nodes LT ree

– the subset of variables KT ree used by Tree chosen among K variables
in the dataset, where KT ree is the number of variables in KT ree.

• The distribution of instances in the structure is described by:

– the choice of the test variable Xs (also called segmentation variable)
for each internal node s

– its number of partitions Is, where Is > 2 for all internal nodes.

– the distribution of instances in each partition i for each internal node
s, denoted by: {Nsi.}1≤i≤Is

• The distribution of the classes in the structure is defined by the class fre-
quency in each leaf node l denoted by: {Nl.j}1≤j≤J
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An Evaluation criterion for a tree model Using these parameters, the
prior distribution and the likelihood of Tree are defined. An evaluation criterion
C(Tree) is then presented as the negative logarithm of the posterior probability,
s.t.:

C(Tree) = − log P (Tree)P (Data|Tree)

= log(K + 1) + log
(

K + KT ree − 1
KT ree

)
+

+
∑

s∈STn

log KT ree + CRis (Is) log 2 + log
(

Ns. + Is − 1
Is − 1

)
+

+
∑

s∈STc

log KT ree + CRis (Is) log 2 + log B (VXs , Is) +

+
∑

l∈LT

CRis(1) log 2 + log
(

Nl. + J − 1
J − 1

)
+

+
∑

l∈LT

log Nl.!
Nl.1!Nl.2! . . . Nl.J !

where VXs is the number of values of a categorical variable Xs, B (VXs , Is) is
the number of possible divisions of VXs into Is groups and CRis(Is)2 is Rissanen
optimal encoding of an integer Is [73]. A detailed proof can be found in [71].

Once the tree criterion C(Tree) is defined, a greedy search algorithm is then
used to find the tree model that minimizes C(Tree). The algorithm starts from the
root node and looks for the best partition according to the tree criterion presented
above. The leaves are partitioned as long as the tree criterion is improved. Each
leaf is partitioned with MODL discretization presented earlier in Section 2.6.2.

The authors of [71] claimed that this algorithm may create under-fitted trees
and proposed a post-pruning algorithm to find trees that improve C(Tree).

2.7 Conclusion
The work of this thesis is at the intersection of Bayesian approaches, Uplift mod-
eling and Data bias.

In this chapter, we have first presented in Section 2.2 the state of the art
in uplift modeling approaches. We presented two types of approaches: the met-
alearners and the direct approaches. The metalearners divide the uplift estimation
problem into several steps, each of which can be performed using any supervised

2CRis (Is) = log2(2.865) + log2 (Is) + log2 (log2 (Is)) + . . .
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machine learning algorithm. The direct approaches, on the other hand, are a set
of algorithms specifically designed for uplift modeling. Several algorithms have
been proposed in the literature such as decision trees, random forests, SVM and
deep learning based methods.

Since one of the main problems with uplift modeling is that the actual uplift
values cannot be observed, special metrics have been developed to evaluate its
learning algorithms. We presented in Section 2.3 the evaluation metrics used to
assess the performance of uplift modeling algorithms. Among the most well-known
metrics are the AUUC and the Qini coefficient.

We thereafter introduced the feature selection approaches proposed in the up-
lift modeling literature. As uplift modeling is a different problem from supervised
learning, new feature selection algorithms are required to correctly find the fea-
tures that contain the treatment effect information. This is accentuated by the
fact that the applications of uplift estimation, such as telecommunications data,
contain a large number of collected features.

We went on to present the problem of data bias in the uplift problem. Again,
as this is a different problem to supervised learning, different types of bias occur
in each of the modeling and deployment phases. The modeling bias includes the
NRA bias, the non-response bias and the confounding bias.

Finally, the MODL approach is presented. The MODL (Minimum Optimized
Description Length) approach is a Bayesian density estimation approach devel-
oped in Orange. The MODL approach was designed for the supervised setting
and was later extended to the unsupervised setting [22], sequence mining [21], and
applied to the design of several learning algorithms such as Naive Bayes [10] and
Decision Trees [71]. This thesis proposes an uplift Bayesian approach based on
MODL.
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A Parameter-free Approach for Uplift Discretization and
Feature Selection
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3.1 Introduction
In this chapter, we present a parameter-free feature selection method for uplift
modeling founded on a Bayesian approach. Following a part of literature on fea-
ture selection that performs a discretization of numerical features [45, 66] as a
basis for feature selection, we first describe an automatic feature discretization
method for uplift modeling that we call UMODL - for Uplift MODL (c.f. Sec-
tion 2.6).

As a popular data preprocessing technique in data mining, data discretization
converts continuous data into a set of categories that appropriately retains as
much information as possible from the original continuous attribute. While data
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Figure 3.1: On the left figure, a variable X along with the output distributions.
On the right figure, the optimal discretization

discretization tasks have been extensively studied in the supervised learning lit-
erature, they have not yet been addressed in uplift modeling. Therefore, in this
chapter, we present a novel discretization technique specifically tailored to the
problem of uplift.

The newly proposed discretization technique can also be used as a univariate
uplift estimator. The uplift modeling problem can be viewed as a density esti-
mation challenge, where the goal is to estimate the regions in a variable space
where the density of the target variable Y significantly differs between the treat-
ment and control groups. A discretization method can then be useful. Our newly
proposed method, UMODL (Uplift Minimum Optimized Description Length), is
based on the MODL approach [8], a discretization approach that aims to split
a continuous feature into a list of intervals. UMODL discretizes a variable by
taking into account the presence of treatment and control groups and facilitates
the estimation of the density of the outcome variable for each treatment group
within each interval. This is achieved by simply counting the number of instances
in each interval and the number of positive outcomes for each treatment group.

For an intuitive understanding, consider the left part of Fig. 3.1, which shows
the variable X next to the output distribution in the treatment and control
groups. Our goal is to determine the optimal discretization shown in the right of
Fig. 3.1. The discretization process can be seen as an estimate of the treatment
effect, as it isolates regions with different treatment effect values. Consequently,
the uplift value can be calculated individually for each interval by calculating
CATEi = Pi(Y = 1 | T = 1)− Pi(Y = 1 | T = 0) for each interval i.
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UMODL is based on a space of discretization models and a prior distribu-
tion. From this model space, we define a Bayesian optimal evaluation criterion
of a discretization model for uplift. We then propose an optimization algorithm
that finds a near-optimal discretization for uplift estimation in O(n log n) time.
Experiments demonstrate the high performance of this new discretization method.

We then describe UMODL-FS a parameter-free feature selection method for uplift
built upon UMODL. Once UMODL identifies the Bayesian optimal discretization
for a feature, UMODL-FS is employed to assess the difference in outcome distri-
butions between the treatment and control groups. It is a filter-based method (c.f
Section 3.5) that can be used as a pre-processing step before training an uplift
model to eliminate features that are not relevant to the uplift estimation. Lastly,
we conduct an experimental protocol that validates the effectiveness of UMODL-
FS in eliminating irrelevant features and helping the uplift model in achieving
superior performance compared to state-of-the-art techniques.

The chapter is structured as follows: Section 3.2 first presents the evaluation
criterion of a Bayesian optimal discretization model for uplift and its proof. It
then presents the search algorithm and the post-optimisation steps to find the pa-
rameters that lead to the best evaluation criterion. Section 3.3 presents the quality
evaluation experiments of the discretization approach on a set of synthetic uplift
data samples and concludes with a discussion of the results. Finally, Section 3.5
presents the UMODL feature selection approach, the experimental protocol and
the results.

This work is the object of the following publication:
Rafla, M., Voisine, N., Crémilleux, B., & Boullé, M. (2023, March). A
non-parametric bayesian approach for uplift discretization and feature selec-
tion. In Machine Learning and Knowledge Discovery in Databases: Euro-
pean Conference, ECML PKDD 2022, Grenoble, France, September 19–23,
2022, Proceedings, Part V (pp. 239-254). Cham: Springer Nature Switzer-
land.

3.2 UMODL
This section introduces UMODL, a novel approach for uplift discretization. We
first describe the parameters of an uplift discretization model, which will be used
to define the prior and the likelihood of an uplift discretization. The defined
prior and likelihood are then used to compute an evaluation criterion for an uplift
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discretization model.
After establishing the evaluation criterion, we present the search algorithm

that identifies the Bayesian optimal uplift discretization for a given variable. In
other words, the search algorithm will be used to automatically find the parame-
ters that lead to the best criterion.

3.2.1 UMODL Criterion
In Section 2.6, we presented the MODL (Minimum Optimized Description Length)
approach. MODL is a Bayesian approach for density estimation through dis-
cretization for supervised learning. It is founded on the Minimum descriptiom
length (MDL) principle.

While MODL properly exploits discretization for density estimation, it is not
suitable for uplift modeling since uplift deals with two treatment groups and the
estimation of the conditional probabilities of the outcome variable Y given an
attribute X also depends on the treatment variable T .

We now introduce the new criterion that we propose to define the best dis-
cretization model for uplift. Let M be an uplift discretization model and D
denotes data. From a Bayesian point of view, the best uplift discretization model
is found by maximizing the posterior probability of the model given the data
P (M |D). Let us consider the Bayes rule:

P (M | D) = P (M)P (D |M)
P (D) (3.1)

Given that P (D) is constant, maximizing P (M |D) is equivalent to maximizing
P (M)P (D|M), i.e the prior probability and the likelihood of the data given the
chosen model.

Remark: This optimisation problem represents a trade-off between the prior
probability and the likelihood. A simple discretization model with an extremely
high prior probability can be represented by a single interval model. However,
the likelihood associated with such a model is significantly low. On the other
hand, a discretization model characterised by a very high likelihood would be an
elementary interval model, where each value of the variable has its own distinct
interval. However, this type of model is associated with a significantly low prior
probability.

Before determining the posterior probability for an uplift discretization model
and presenting the UMODL criterion, let us first introduce some notations:

49



Chapter 3. UMODL

• X : explanatory variable to discretize

• Y : binary outcome variable

• N : number of instances in the dataset

• J : number of classes of Y

• I : number of intervals

• Ni : number of instances in the interval i

• Nit. : number of instances in the interval i of treatment t

• Ni.j : number of instances in the interval i of class j

• Nitj : number of instances in the interval i of class j and the treatment t

• Wi : boolean term indicating if the treatment has an effect in interval i
(Wi=1) or not (Wi=0)

We define an uplift discretization model M by the number of intervals, the bounds
of the intervals, the presence or absence of a treatment effect, class frequencies per
interval or for each treatment per interval. In other words, a model M is defined
by the following parameters (cf. Fig. 3.2):

{I, {Ni}, {Wi}, {Ni.j}Wi=0, {Nitj}Wi=1}

These parameters are exploited according to a particular hierarchy when defin-
ing the prior distribution of M denoted P (M). This hierarchy requires the pa-
rameters to be selected in a particular order. We will discuss the hierarchy of the
parameters in the next section.
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Figure 3.2: Parameters of an uplift discretization model. The presence of a treat-
ment effect (Wi = 1) in interval i requires describing the distribution of the
outcome variable Y separately for each treatment (part right). In contrast, the
absence of a treatment effect (Wi = 0) indicates to consider the distribution of
the outcome variable Y for the interval i independently of the treatment variable
(part left).

The evaluation criterion C(M) which is the cost of an uplift discretization
model M is defined then by:

C(M) = − log
(
P (M)× P (D|M)

)
Taking the negative log turns the maximization problem to a minimization one.
M is optimal if C(M) is minimal.

How to define the prior distribution ?

To define the prior distribution of the model parameters P (M):

1. We first exploit the hierarchy of the parameters of a discretization
model. This hierarchy requires the parameters to be selected in a particular
order. First, we determine the number of intervals I, followed by the location
of these I intervals or boundaries. Next, we determine whether each interval
contains a treatment effect or not. Finally, we decide the distribution of the
outcome variable within each interval or the distribution of the outcome
variable for each treatment.
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2. Next, we assume a uniform distribution at each stage of this hier-
archy. In other words, we assume that

(a) The number of intervals I is equally likely to be any value between 1
and N .

(b) Given the number of intervals I, each possible way of dividing the data
into I intervals has an equal probability.

(c) There is an equal probability that an interval i contains a treatment
effect or not. Therefore, the value of the term Wi has an equal chance
of being either 1 or 0.

(d) Given an interval i and the value of Wi, every distribution of the class
values in the interval is equiprobable, or alternatively, every distribu-
tion of the class values for each treatment in the interval is equiproba-
ble.

3. Finally, we assume the independence of the distributions across in-
tervals. This assumption is based on the IID hypothesis [11]. This as-
sumption enables the evaluation of the model’s prior as a product of multi-
ple terms, which will be demonstrated next concerning the prior definition
(Eq. 3.3) and its proof, as well as the likelihood definition in Eq. 3.10. By
taking the negative logarithm, the prior can be assessed as the sum of these
terms, as illustrated in the UMODL criterion in Eq. 3.2.

The UMODL criterion

Using the components described above (the parameter hierarchy, the uniform
distribution assumption and the independence assumption), we express C(M) in
terms of the parameters of an uplift discretization model and obtain Eq. 3.2, which
we demonstrate below.

C(M) = log N + log
(

N + I − 1
I − 1

)
+ I × log 2

+
I∑

i=1
(1−Wi) log

(
Ni + J − 1

J − 1

)
+

I∑
i=1

(1−Wi) log Ni!
Ni.1!..Ni.J !︸ ︷︷ ︸

Likelihood

+
I∑

i=1
Wi

∑
t

log
(

Nit. + J − 1
J − 1

)
+

I∑
i=1

Wi

∑
t

log Nit.!
Nit1!..NitJ !︸ ︷︷ ︸

Likelihood

(3.2)
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Proof of Eq 3.2. We express P (M) and P (D|M) according to the parameters
of an uplift discretization model. We introduce a prior distribution by exploiting
the hierarchy of the models’ parameters. Assuming the independence of the local
distributions across the intervals, we obtain:

P (M) = P (I)× P ({Ni}|I)×∏
i

P (Wi|I)
[
(1−Wi)× P ({Ni.j}|I, {Ni}) + Wi ×

∏
t

P ({Nitj}|I, {Nit.})
]

(3.3)

We express each of the terms of Eq. 3.3 according to the parameters of M
assuming a uniform distribution for each parameter. Assuming that the number
of intervals I is uniformly distributed between 1 and N , the first term in Eq. 3.3
becomes:

P (I) = 1
N

(3.4)

Given a number of intervals I, all the discretizations into I intervals (i.e. the
choices of the bounds) are equiprobable. Computing the probability of an interval
set leads to a combinatorial calculation of the number of all possible interval sets or
equivalently the number of ways of distributing the N instances in the I intervals,
with counts Ni per interval. The second term of Eq. 3.3 is then:

P ({Ni}|I) = 1(
N+I−1

I−1

) (3.5)

For a given interval i, we assume that a treatment can have an effect or not, with
equal probability, i.e. P (Wi|I) = 1

2 . We obtain:

∏
i

P (Wi|I) =
(1

2

)I

(3.6)

In the case of an interval i where there is not effect of the treatment (Wi = 0),
UMODL describes one unique distribution of the outcome variable. Given an
interval i, its number of examples Ni is known. Assuming that each of the class
distributions is equiprobable, we end up also with a combinatorial problem:

P ({Ni.j}|I, Ni) = 1(
Ni+J−1

J−1

) (3.7)

In the case of an interval i with an effect of the treatment (Wi = 1), UMODL
describes two distributions of the outcome variable, with and without the treat-
ment. Given an interval i and a treatment t, we know the number of examples
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Nit.. Assuming that each of the distributions of class values is equiprobable, we
get:

P ({Nitj}|I, Nit.) = 1(
Nit.+J−1

J−1

) (3.8)

After defining the models’ prior, we define the likelihood P (D|M) of the data
given the uplift discretization model. For each multinomial distribution of the
outcome variable (a single or two distinct distributions per interval depending
on whether the treatment has an effect or not), we assume that all possible ob-
served data Di consistent with the multinomial model are equiprobable. Using
multinomial terms, we obtain the following likelihood term:

P (D|M) =
∏

i

P (Di|M) (3.9)

=
∏

i

[
(1−Wi)×

1
(Ni!/Ni.1!..Ni.J !) + Wi ×

∏
t

1
(Nit.!/Nit1!..NitJ !)

]
(3.10)

Combining the prior P (M) (Eq 3.4 to 3.8) with the likelihood P (D|M)
(Eq. 3.10), we obtain P (M)P (D|M). Taking the negative log yields to the
UMODL criterion presented in Eq. 3.2. Coming back to Eq. 3.2, the prior terms
of the first line come from Eq. 3.4 to 3.6. In the second line of Eq. 3.2 (modeling
a situation w/o a treatment effect) and the third line (situation with a treatment
effect), the first terms are prior terms (Eqs 3.7- 3.8) and the second terms are
likelihood terms (Eq. 3.10).

3.2.2 Search algorithm and post-optimization
We sketch below our search algorithm to find the best model w.r.t. the UMODL
criterion. This algorithm finds the optimal values of the parameters that minimize
C(M). The principle of this algorithm is inspired by the search algorithm [8] which
we adapt to our criterion. As an optimal search algorithm is not practical due to
the complexity of the problem, we build a greedy algorithm1.

Greedy Search algorithm

The search algorithm is a greedy bottom-up algorithm with the following steps:

• The algorithm starts by making an elementary discretization such that all
examples with the same value have their own interval,

1Our implementation is provided at https://github.com/MinaWagdi/UMODL
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• Compute the costs of all possible merges i.e. try to merge adjacent intervals,

• Merge the two adjacent intervals that decrease C(M) the most,

• Recalculate the cost of all possible adjacent merges and select the merge
that reduces C(M) the most,

• Repeat until no merge decreases C(M).

While this algorithm is complex, it can be implemented in O(n log n) time [8].

Post-optimization

This greedy search algorithm can fall into a local minimum, so post-optimization
steps are needed to perturb the interval bounds. We used post-optimization steps
that consist of recurrent splits, merges, merge splits, and merge merge splits of
adjacent intervals, as described in [8] but designed in this work for uplift.

3.2.3 Conclusion

The presented discretization approach is a density estimation approach for uplift
modeling. We model the probability of Y conditionally on the explanatory variable
X and a binary treatment variable T . The search algorithm we present is looking
for the parameters I, {Wi}, {Ni}, {Ni.j}, {Nitj}, and {Wi} that minimize the cost
of the model. In other words, the search algorithm tries to find the optimal dis-
cretization in the Bayes sense that best estimates the real densities of the outcome
variable Y conditionally on X and T . Once a discretization and its parameters
are defined, the estimation of the CATE for each interval is simple. As shown
in Fig. 3.2, assuming a binary outcome variable Y and given Wi = 1, we have
Pi(Y = 1|T = 1) = Ni11/(Ni11 + Ni10) and Pi(Y = 1|T = 0) = Ni10/(Ni01 + Ni00),
therefore CATEi = Pi(Y = 1|T = 1) − Pi(Y = 1|T = 0). For intervals with
Wi = 0, CATEi is considered insignificant.

The UMODL discretization method has the advantage of not relying on user-
specified parameters. All parameters are automatically determined by the search
algorithm (Section 3.2.2). In addition, UMODL does not require any prior as-
sumptions about the data distribution. It also facilitates interpretation, as each
identified interval represents the distribution of a set of examples.
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3.3 UMODL quality evaluation experiments
This section experimentally evaluates whether UMODL is a good estimator of
uplift. The principle of the experiments is to generate data with different syn-
thetic uplift patterns in order that results of UMODL can be compared to true
uplift. A synthetic uplift pattern is a data pattern where P (Y = 1|X, T = 1) and
P (Y = 1|X, T = 0) are identified for each example. Therefore several indicators
can be observed: (1) the number of intervals founded by UMODL w.r.t. the char-
acteristics of the uplift pattern, (2) the RMSE (root mean squared error) between
the real uplift and the estimated uplift by UMODL computed for each instance
and (3) the number of instances needed by UMODL to find the uplift pattern.
We generate synthetic uplift patterns of different characteristics for simulating
various situations.

3.3.1 Description
The experimental protocol is made of the following steps:

1. Define a particular synthetic uplift pattern of one dimension.

2. Generate several train samples according to the defined pattern with 40 dif-
ferent number of instances (also called data size) ranging from 10 to 100,000
instances. For each data size, generate ten datasets. All generated data
are uniformly distributed on the [0, 10] numerical domain for each of the
treatment (T = 1) and control groups (T = 0).

3. Generate a test set of 10,000 instances based on the defined uplift pattern.

4. For each training sample, apply the UMODL approach to search for the best
discretization model.

5. For each experiment, the obtained discretization model is then applied to the
test set, and RMSE is computed by comparing for each data point: (a) the
CATE estimation in the found interval and (b) the real CATE value.

6. By observing both the number of found intervals for each dataset and the
RMSE values, we can determine whether the UMODL approach manages
to find the synthetic pattern or not.

7. Repeat these steps with different synthetic uplift patterns.

56



3.3. UMODL quality evaluation experiments

(a) Crenel pattern 1 (b) Crenel pattern 2

(c) Trigonometric pattern (d) Scissors pattern

(e) Continuous pattern

Figure 3.3: Synthetic uplift patterns. The X-axis represents variable X and the Y-
axis represents P (Y = 1). For Crenel Pattern 1 and Crenel Pattern 2, five versions
are generated with different values of θ ∈ {0.6, 0.7, 0.8, 0.9, 1}. The difference
between P (Y = 1) in the treatment and control groups represents the uplift.
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3.3.2 Synthetic uplift patterns

We generate four bin-based patterns and one continuous pattern. We use patterns
of different characteristics2 to evaluate how UMODL performs both in various
situations and different rates of uplift. The patterns are illustrated in Fig. 3.3 and
depicted below.

• Crenel pattern 1 (cf. Fig. 3.3a): this crenel pattern is made of 10 intervals
containing a repeated sequence of a positive treatment effect followed by a
negative one. We generated five versions of this pattern with different uplift
values. In other words, this pattern was generated with different θ values,
where a positive treatment effect is equal to θ− (1− θ), resulting in 2θ− 1,
and a negative treatment effect is equal to (1 − θ) − θ, which simplifies to
1− 2θ.

• Crenel pattern 2 (cf. Fig. 3.3b): is a slightly different crenel pattern simi-
larly made of 10 intervals containing a repeated sequence of a positive treat-
ment effect followed by no treatment effect. We generated five versions of
this pattern with different treatment effects (uplift). In other words, this
pattern was generated with different θ values, where a positive treatment
effect is equal to θ − (1− θ), resulting in 2θ − 1.

• Trigonometric pattern (cf. Fig. 3.3c) is a particular bin-based pattern with
trigonometric shape where: P (Y = 1|T = 1) = 0.5 + (0.5× sin(i× 2π

10 )) and
P (Y = 1|T = 0) = 0.5 + (0.5× cos(i× 2π

10 ))

• Scissors pattern (cf. Fig. 3.3d) is a bin-based pattern where P (Y = 1|T =
1) = i

10 and P (Y = 1|T = 0) = 1− i
10 , where i is the interval number.

• Continuous pattern (cf. Fig. 3.3e) differs from bin-based patterns. Here
P (Y = 1|T = 1) = X/10 P (Y = 1|T = 0) = 0.5.

3.3.3 Results

Results are given in Figures 3.4, 3.5 and 3.6. We start by the central question "Is
UMODL a good estimator of uplift?" and provide complementary observations.

2Other patterns can be found using the github link provided previously.
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Figure 3.4: Results obtained for Crenel pattern 1 (cf. Fig. 3.3a). The left (resp.
right) figure shows the mean number of found intervals (resp. the mean value of
RMSE) on the test set by UMODL according to the dataset size. Different curve
colors correspond to different treatment effects. For example, the blue curve
corresponds to the crenel pattern of repeated positive uplift (= 1) followed by
negative uplift (= −1).

Is UMODL a good estimator of uplift? From Figures 3.4 (left) and 3.5
(left), we clearly see that even when the treatment effect is very small per inter-
val (grey curves), UMODL is able to find the proper number of intervals of the
uplift patterns. This is also illustrated by the RMSE curves (Figures 3.4 (right)
and 3.5 (right)) showing that RMSE always converges towards 0 for sufficiently
large datasets. Similar performances are reported with the trigonometric pattern
(cf. Fig. 3.6a), the scissors pattern (cf. Fig. 3.6b) and the continuous pattern (cf.
Fig. 3.6c) except that the number of estimated intervals is not a relevant indicator
for the continuous pattern because this pattern is continuous.

How many instances are needed to find the uplift pattern according to
its characteristics? When the differences of densities between adjacent inter-
vals get smaller, UMODL needs more instances to give prominence to a model with
more intervals. This is typically the case with the scissors pattern (cf. Fig. 3.6b).
Analogous behaviors are observed in Figures 3.4 and 3.5. For example, in Fig. 3.4,
the blue curve finds the uplift pattern with less instances than the red curve. In-
terestingly, UMODL succeeds in finding the appropriate intervals even when there
is no treatment effect (for example, identifying the intervals [1, 2], [3, 4], [5, 6], . . .
in the results of the crenel pattern 2, as depicted in Fig. 3.5).

Does UMODL overfit? Another important aspect of the UMODL discretiza-
tion is that the UMODL method does not overfit, i.e. UMODL always finds the
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Figure 3.5: Results obtained for Crenel pattern 2 (cf. Fig. 3.3b). The left (resp.
right) figure shows the mean number of found intervals (resp. the mean value of
RMSE) on the test set by UMODL according to the dataset size. Different curve
colors correspond to separate treatment effects. For example, the blue curve
corresponds to the crenel pattern of repeated positive uplift (=1) followed by zero
uplift.

ten intervals of the underlying patterns and does not consider extra intervals even
when the data size increases significantly (cf. Fig. 3.4 and Fig. 3.5). With the
continuous pattern, UMODL goes on to consider more intervals as long as the
size of the data increases (cf. Fig. 3.6c) which is appropriate since the pattern is
continuous and there is no defined intervals.

3.4 How to deal with categorical variables?
So far, our experiments have only been carried out on synthetic data with con-
tinuous attributes, as this type of data requires discretization when performing
density estimation. However, it is crucial to acknowledge the existence of another
type of data: categorical data, which can be considered as grouped information
covering categories such as job type, phone type, and subscription type, among
others.

When dealing with categorical data, the objective shifts from discretizing the
variable to performing value grouping. In other words, given a categorical variable,
the goal is to group the values of the variable that have similar behaviour: either
the same outcome distribution or the same treatment effect. Assuming a variable
’Subscription’ that has 3 possible values ’Prepaid’, ’Postpaid’, ’Family Plan’, the
number of possible groupings of these values is equal to the number of Bell, which
counts the number of possible partitions of a set. These sets are:
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(a) Trigonometric pattern (b) Scissors pattern

(c) continuous pattern

Figure 3.6: Fig 3.6a, 3.6b, 3.6c present the performances obtained with the
trigonometric pattern (cf. Fig. 3.3c), scissors pattern (cf. Fig. 3.3d) and con-
tinuous pattern (cf. Fig. 3.3e). Blue curves depict the mean value of the RMSE
per dataset size while the green curves indicate the number of found intervals.

• {(Prepaid),(Postpaid),(Family Plan)}

• {(Prepaid,Postpaid),(Family Plan)}

• {(Prepaid,Family Plan),(Postpaid)}

• {(Postpaid,Family Plan),(Prepaid)}

• {(Postpaid,Family Plan,Prepaid)}

When the number of variable values increases, the corresponding Bell number,
and therefore, the number of potential partitions, grows significantly. The Bell
numbers denoted by Bn count the number of different possible ways to partition
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a set of n elements. For example, the sequence of Bell numbers displays a rapid
increase: B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203, B7 = 877,
B8 = 4140 and so on. This represents the complexity of finding the optimal value
grouping with slightly higher number of values. A UMODL criterion specifically
designed for categorical variables can be designed, we propose this as a topic for
future research.

Yet a basic technique for dealing with categorical variables in data mining tasks
is unsupervised label encoding. Unsupervised label encoding involves assigning an
integer value to each instance of a categorical variable. This assignment can be
done either randomly or according to the lexicographic order of the categorical
values. The UMODL approach can then be used to discretize the variable as if
it were a continuous numerical attribute. However, unsupervised label encoding
alone may not be sufficient for a discretization task because UMODL considers an
order for the values, and this order may not be efficient. This inefficiency occurs
because the numerical values assigned to each category are random and unrelated
to the outcome distribution or the uplift.

In this section, I will show why an unsupervised label encoding is not efficient and
propose an adequate uplift-based label encoding that allows better value grouping
and improves the UMODL discretization approach.

3.4.1 Why unsupervised label encoding is not efficient ?
An unsupervised label encoding may be particularly inefficient in cases where there
is an imbalance in the size of different values. For instance, consider a scenario
with a ’subscription’ variable having three distinct values: ’Prepaid’, ’Postpaid’,
and ’Family Plan’, each having a different level of uplift (see Table 3.1).

Value T0Y0 T0Y1 T1Y0 T1Y1 P(Y=1|T=1) P(Y=1|T=0) Uplift
Prepaid 2102 883 1214 1771 0.6 0.3 0.3
Postpaid 2098 887 316 2669 0.9 0.3 0.6
Family Plan 21 9 12 18 0.6 0.3 0.3

Table 3.1: Description of the ’subscript’ variable. T0Y0 denotes the number of
examples with T = 0 and Y = 0. Similarly, T0Y1, T1Y0, and T1Y1 represent
examples with respective T and Y values.

By assigning the integer values 1, 2 and 3 to ’Prepaid’, ’Postpaid’ and ’Family
plan’ respectively, in the given order, we can encode these values. In this situation,
the resulting density plot is shown in Fig. 3.7.
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Figure 3.7: An unsupervised label encoding of the categorical variable ’subscrip-
tion’

In Fig. 3.7, an ideal discretization according to this encoding requires each cat-
egorical variable value to be separated into a separate interval, with the parameter
W = 1 in each interval. However, if there are very few examples for a ’Family
Plan’ value (as shown in Table 3.1), the robust UMODL method is less likely
to create an interval where there are very few examples. Although this would
improve the likelihood component (see Eq. 3.2), the three-interval model signifi-
cantly increases the cost of the prior component. Instead, UMODL would choose
a two-interval model, with the first interval consisting of ’Prepaid’ and the second
interval including both ’Postpaid’ and ’Family Plan’. This approach achieves a
trade-off that balances the costs of the likelihood and the prior components.

However, by reordering the encoding of the values, UMODL can achieve a
better trade-off, which will be discussed in the next section.

A numerical illustration For instance, let’s consider the the data in Table 3.1
comprising 12,000 examples, which includes 5,970 ’prepaid’, 5,970 ’postpaid’, and
only 60 ’Family Plan’. Each value is equally distributed between the treatment and
control groups. Assume we have randomly encoded the values of the categorical
variable as depicted in Fig. 3.7. In that case, as discussed before, UMODL will
opt the the two interval model named M1, as shown in Fig. 3.8. Based on the
information provided in Table 3.1, we can determine that C(M1) = 6737.02.
The prior cost of M1 is − log P (M1) = 52.1976, while the likelihood term cost
amounts to − log P (D|M1) = 6684.82. UMODL being a robust method would
choose the tradeoff between the prior and the likelihood of M1 rather than a
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three-interval model. A three-interval model, named M2 in Fig. 3.8 will have
a cost of C(M2) = 6740.88, consisting of a prior − log P (M2) = 68.439 and a
likelihood − log P (D|M2) = 6672.4.

As demonstrated, the cost of M1 is lower, despite having a worse likelihood.
This is because introducing an additional interval with a limited number of ex-
amples proved to be expensive.

M1 also proved to be much better than the null model M∅, i.e. the model
with only one interval. This model assumes that there is only one probability
distribution and treats the variable as a random variable. The null model is
shown in 3.9. Calculating the cost of this model yields C(M∅) = 8322.96. The
cost of the prior of this model is certainly less than the other models presented
− log P (M∅) = 19.47. However, the cost of the likelihood of our data given this
model is very large; − log P (D|M∅) = 8303.4,

Note: These calculations can simply be done using the criterion equation in Eq. 3.2
and the information of data sizes in Table 3.1.

Figure 3.8: Two different discretization models for a categorical variable
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Figure 3.9: The null model: the model with one interval

In summary, an unsupervised approach to label encoding assigns a random
ranking to categorical values, which is often not optimal. In the following section,
I present an uplift-based label encoding that allows UMODL to find a better
trade-off for value grouping for categorical variables.

3.4.2 An uplift-based label encoding for UMODL

In the earlier example, ’Family Plan’ and ’Postpaid’ values were grouped by
UMODL despite having different uplift values. A solution is to intelligently encode
categorical values by the order of the uplift values: ’Prepaid’ as 1, ’Family Plan’ as
2, and ’Postpaid’ as 3. This groups similar uplift values, as seen in Fig. 3.10. Based
on this encoding, the UMODL discretization method selects the two-interval
model, M3, as optimal. This model accurately groups {Prepaid, FamilyP lan}
and {Postpaid} together, effectively grouping values with similar uplifts.

The cost of M3 is given by C(M3) = 6728.4, with a prior’s cost of− log P (M3) =
52.19 and a likelihood of − log P (D|M3) = 6676.2.
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Figure 3.10: The resulting discretization model by encoding the values of the
’subscription’ variable by ascending uplift values

The proposed encoding does not always yield improvements, though it doesn’t
negatively affect discretization. If ’Family Plan’ had an uplift value of 0.9, re-
encoding and applying UMODL discretization would result in a two-interval model
grouping Postpaid, FamilyP lan. While not highly accurate, it is the best achiev-
able trade-off given the data.

Note: The examples above involve a situation with parameter W has the value
1 for each interval, indicating a treatment effect. The UMODL criterion (Eq. 3.2)
identifies intervals with significant uplift and unique outcome variable distribu-
tions, with the search algorithm determining parameter W for each interval. In
cases where the uplift for each categorical variable value is minimal (W = 0), en-
coding values based on uplift is ineffective. Instead, we focus on encoding values
according to the outcome distribution within each interval. I propose that the
ideal solution would involve developing an algorithm that combines both encod-
ing approaches (ranking by uplift values and ranking by outcome distribution).
Designing such an algorithm presents a promising perspective for this thesis.
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3.5 UMODL Feature Selection
As previously discussed in Section 2.4, the telecommunications sector collects
significant amounts of data (containing hundreds to thousands of features) derived
from services such as mobile internet, home internet, SMS and phone calls. This
data contains a significant amount of noise and irrelevant features, which can
cause significant challenges for supervised machine learning models, such as the
curse of dimensionality. Feature selection serves as an essential step to increase
model efficiency and improve interpretability.

In this section I describe how the UMODL discretization method can be used
to develop a novel feature selection technique, which I have named ’UMODL-FS’,
tailored to uplift modeling. I then present the experimental protocol we used to
evaluate whether UMODL-FS efficiently improves the uplift models.

3.5.1 Description of UMODL feature selection
In this section I will explain the UMODL feature selection technique. The
UMODL Feature Selection (UMODL-FS) calculates the importance of a feature
X by first discretizing it using the UMODL discretization approach. The method
then computes the summed Euclidean distances between the outcome distribu-
tions within the treatment and control groups over the intervals found. To elab-
orate further:

1. Given a feature X, we apply the UMODL discretization method to find the
optimal uplift discretization model as presented in Section 3.2.1.

2. Compute for X an importance score (described below), denoted by imp.s(X),
which is the divergence measure of the treatment effect over the found in-
tervals.

3. We repeat these steps for each feature of the dataset.

4. All features with imp.s(X) > 0 are considered relevant for the uplift esti-
mation, while any feature with imp.s(X) = 0 is eliminated.

We define imp.s(X) as follows. Assuming pi = Pi(Y = 1|T = 1) and qi =
Pi(Y = 1|T = 0). We define:

imp.s(X) =

∑I

i=1
Ni

N
D(pi : qi), if I > 1

0, otherwise .
(3.11)
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where the distribution divergence measure D is the squared euclidean distance.
We choose the squared euclidean distance for the divergence since it is symmetric
and stable [63]. UMODL-FS considers irrelevant for the uplift estimation any
feature with imp.s(X) = 0 and keeps for the uplift modeling any feature with
imp.s(X) > 0. When UMODL finds a single interval for a feature, it means there
is only one distribution for all instances and thus a non-informative feature (i.e
. imp.s(X) = 0). Unlike feature selection methods of the literature [81], our
approach does not require parameters to set, and there is no need to give the
number of features to keep or delete.

3.5.2 Experimental Protocol
To compare UMODL-FS to the state-of-art uplift feature selection methods (cf.
Section 3.5), we design the following experimental protocol:

1. For each dataset, we generate eleven variants of the dataset, each with an
incremental total number (from 0 to 100) of noise features. Noise features
are sampled from N (0, 1) for each of the treatment and control groups.

2. For each variant, we apply the following feature selection methods (pre-
viously described in Section 2.4): (a) KL-filter (b) Chi-filter (c) ED-filter
(d) LR-filter (e) F-filter (f) UMODL-FS.

For KL-filter, Chi-filter and ED-filter, we set the number of bins to 10.

3. To have the same number of features for each feature selection method and
perform a fair comparison, we pick the M most important features, where
M is the number of all features deemed informative by UMODL-FS.

4. With these sets of features, we build uplift models: a two-model approach
with logistic regression [33] and X-Learner with linear regression [36].

5. The learning process is done with stratified ten-fold cross-validation. Test
samples are used to evaluate the performance of uplift models based on the
selected features.

6. The qini coefficient metric [18] is used to evaluate the performance of the
uplift model.
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3.5.3 Datasets

Experiments are conducted on two publicly available datasets which are usual on
the uplift community:

1. Criteo dataset [19]: a real large scale dataset constructed by assembling
data resulting from several incrementality tests in advertising. In the exper-
iments, we use a random sample of 10,000 instances with the ’visit’ variable
as outcome variable.

2. Zenodo synthetic dataset 3: this dataset was created for evaluating feature
selection methods for uplift modeling. It has three types of features: (a) up-
lift features influencing the treatment effect on the conversion probability
(outcome variable is ’conversion’); (b) classification features influencing the
conversion probability independent of the treatment effect; (c) irrelevant
features. This dataset consists of 100 trials of different patterns. Each trial
has 10,000 instances and 36 features.

3.5.4 Results

Fig. 3.11 presents the results on the use of UMODL-FS for uplift modeling. In all
experiments, UMODL-FS selects the set of features leading to the uplift model
with the best qini coefficient (therefore the best uplift model) whatever the used
uplift approach. Remarkably, the more noisy features are added, the more the qini
difference between UMODL-FS and other feature selection methods increases.

Fig. 3.12 indicates the percentage of added noisy features which are selected
by the different feature selection methods according to the number of added noisy
features. UMDOL-FS never selects a noisy feature. It illustrates the clear ability
of UMODL-FS to remove noisy features. On the contrary, all other methods
select noisy features and the percentage of the selected noisy ones increases as
the number of added noisy features increases. To sum up, the more the number
of added noisy features, the more the feature selection methods of the literature
select irrelevant features as informative. In contrast, UMODL-FS always neglects
irrelevant features and has the most stable qini coefficients. Moreover, UMODL-
FS does not require to set a parameter giving the number of features to keep.

3https://doi.org/10.5281/zenodo.3653141
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(a) Zenodo with two-model approach (b) Zenodo with X-Learner

(c) Criteo with two-model approach (d) Criteo with X-Learner

Figure 3.11: Average qini coefficients and their variances according to the number
of added noisy features. The X-axis indicates the total number of added noisy
features. Y-axis represents the qini coefficients achieved by uplift models.

3.6 Conclusion

In this chapter, we have proposed a new non-parametric Bayesian approach for
uplift discretization and feature selection. We have defined UMODL, a Bayes
optimal evaluation criterion of a discretization model for uplift modeling and a
search algorithm to find the best model. We have conducted an experimental pro-
tocol to assess UMODL as an uplift estimator through discretization. We defined
different synthetic uplift patterns and generated accordingly several datasets with
several data sizes. The use of synthetic data gave us the advantage to know the
true uplift value and thus be able to compare the estimated uplift value by our
approach and the true one. By observing the RMSE of the predicted uplift values
and the number of found intervals by data size, we were able to infer the following
chacarteristics:
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(a) Zenodo (b) Criteo

Figure 3.12: Percentage of selected noisy features according to the number of
added noisy features.

1. UMODL is a good uplift estimator through discretization.

2. UMODL does not overfit

3. It needs sufficient number of instances to give prominence to a model with
more intervals

We have also shown that UMODL can effectively handle categorical variables,
and we have introduced an adequate label encoding technique that helps UMODL
to identify more appropriate intervals, especially when there is an imbalance in
the values of a variable.

Finally, we have presented UMODL-FS, a feature selection method for uplift.
We conducted an experimental protocol on real and synthetic datasets, where the
idea was to gradually add noisy features and build several uplift models, each
with a different feature selection method as a preprocessing step. Experiments
show that UMODL-FS removes irrelevant features and clearly outperforms state
of the art methods by providing uplift models with the highest and most stable
qini coefficients. The method is parameter free, making it easy to use.
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4.1 Introduction
Decision tree algorithms have been developed in state-of-the-art uplift modeling
approaches (see Section 2.2.2). These algorithms aim to partition the feature
space into distinct branches with the aim of identifying leaf nodes that have the
most important difference in the outcome distribution between the treatment and
control groups. The main advantage of these algorithms is their interpretability,
which is very important for telecom companies when dealing with clients.

However, a significant drawback of state-of-the-art uplift decision tree algorithms
is the need for user-defined parameters to train a decision tree model [63]. Exam-
ples of these parameters include the maximum depth of the tree, the maximum
number of features to be used, and the minimum number of instances required in a
leaf node. These decision tree algorithms depend only on local independent splits
at each node. Once a tree model has been trained, a pruning step is performed
to avoid overfitting and improve the predictive performance of the model.

This chapter introduces a novel user parameter-free decision tree algorithm called
UB-DT that is specifically designed for uplift modeling. UB-DT is characterized
by a Bayesian global criterion for an uplift decision tree that evaluates the quality
of an induced uplift decision tree. The Bayesian evaluation global criterion for
uplift decision trees T is defined by the posterior probability of T given uplift data.
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In this chapter, we first define the parameters of an uplift decision tree model
and demonstrate how to derive an uplift tree global criterion using these parame-
ters. Our aim is to convert the uplift tree learning problem into an optimization
problem, in which the goal is to search for the parameters that yield the best
possible uplift tree model (i.e., with the highest global criterion score). Then, we
present a search algorithm and introduce an extension for random forests, namely
UB-RF.

Finally, we evaluate our proposed approaches using large scale experiments on
real and synthetic datasets. These experiments show the efficiency of our meth-
ods over other state-of-art uplift modeling approaches.

The chapter is structured as follows: Section 4.2 presents the evaluation crite-
rion for an uplift decision tree T. It starts by presenting the parameters of T and
the notations associated. Then it presents the evaluation criterion with a detailed
proof in Section 4.2.3. We then present the decision tree algorithm that searches
for the Bayesian optimal uplift tree model with the best criterion and its extension
to a random forests algorithm. Finally in Section 4.3, we compare UB-DT and
UB-RF with several uplift approaches on real and synthetic datasets.

This work is the object of the following publication:
Rafla, M., Voisine, N., & Crémilleux, B. (2023, May). Parameter-Free
Bayesian Decision Trees for Uplift Modeling. In Advances in Knowledge
Discovery and Data Mining: 27th Pacific-Asia Conference on Knowledge
Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25–28,
2023, Proceedings, Part II (pp. 309-321). Cham: Springer Nature Switzer-
land.

4.2 Uplift Bayesian Decision Tree approach

UB-DT is made up of two ingredients: a global criterion C(T) for a binary uplift
decision tree T and a tree search algorithm to find the most probable optimal tree.
We start by presenting the structure of an uplift tree model. Then we describe the
new global criterion for an uplift decision tree and the algorithm to give the best
tree. Finally we show how the approach is straightforwardly extended to random
forests.
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4.2.1 Parameters of an uplift tree model

Figure 4.1: Example of an uplift tree model. Internal nodes are described by
the segmentation variable Xs and the distribution of instances in each of the two
children {Nsi}. Leaf nodes containing a treatment effect (i.e Wl = 1) are described
by the class distribution for each treatment. This applies to leaves 4, 5 and 7.
Leaf nodes containing no treatment effect (i.e Wl = 0) are only described by the
class distribution (this is the case of leaf 6).

We define a binary uplift decision tree model T by its structure and the distri-
bution of instances and class values in this structure. The structure of T consists
of the set of internal nodes ST and the set of leaf nodes LT. The distribution of
the instances in this structure is described by the partition of the segmentation
variable Xs for each internal node s, the class frequency in each leaf node where
there is no treatment effect, and the class frequency on each treatment in the leaf
nodes with a treatment effect. More precisely, T is defined by:

• the subset of variables KT used by model T. This includes the number of the
selected variables KT and their choice among a set of K variables provided
in a dataset, we note K = |K|.

• a binary variable In indicating the choice of whether each node n is an
internal node (In = 1) or a leaf node (In = 0).
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• the distribution of instances in each internal node s, which is described by
the segmentation variable Xs of the node s and how the instances of s are
distributed on its two child nodes.

• a binary variable Wl indicating for each leaf node l if there is a treatment
effect (Wl = 1) or not (Wl = 0). If Wl = 0, l is described by the distribution
of the output values {Nl.j.}1≤j≤J , where Nl.j. is the number of instances of
output value j in leaf l. If Wl = 1, l is described by the distribution of the
class values per treatment {Nl.jt}1≤j≤J,1≤t≤2, where Nl.jt is the number of
instances of output value j and treatment t in leaf l.

These parameters are automatically optimized by the search algorithm (presented
in Section 4.2.4) and not fixed by the user. In the rest of the paper, the following
notations Ns., Nsi., Nl. and Nl..t will additionally be used to respectively designate
the number of instances in node s, in the ith child of node s, in the leaf l and
treatment t in leaf l.

4.2.2 Uplift tree evaluation criterion
We now present the new global criterion C(T) which is an uplift tree model evalu-
ation criterion. UB-DT applies a Bayesian approach to select the most probable
uplift tree model T that maximizes the posterior probability P (T|Data). Let us
consider the Bayes rule:

P (T|Data) = P (T)P (Data|T)
P (Data)

Following the same approach of the UMODL discretization model criterion in
Chapter 3, giving that P (Data) is constant, maximizing P (T|Data) is equivalent
to maximizing the product of the prior and the likelihood i.e. P (T) × P (Data |
T). This product represents a trade-off problem. On one hand, maximising the
likelihood component requires a tree model with a number of leaf nodes equal to
the number of data points. However, this leads to a smaller prior component.
On the other hand, optimising the prior probability requires a decision tree model
consisting of only a root node, but this results in a significantly reduced likelihood
component.

Taking the negative log turns the maximization problem into a minimization
one:

C(T) = − log (P (T)× P (Data|T))
where C(T) is the cost of the uplift tree model T. T is optimal if C(T) is minimal.
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How to define the prior distribution P (T)?

To define the prior distribution of a tree model T, we first exploit the hierarchy
of the presented uplift tree parameters. This hierarchy describes the dependence
relationships between parameters and requires the parameters to be selected in a
particular order. The hierarchy of the tree model is described from the root node
to its children and recursively to the leaves.

We also assume the independence of the distribution of the outcome values
between children nodes. This assumption allows the prior of the model to be
evaluated as a product of several terms. Taking the negative log, the prior can be
evaluated as the sum of these terms (cf. Eq. 4.1).

Furthermore, we assume a uniform distribution of parameters at every stage
of the hierarchy, as described in Section 4.2.3.

Using the components of the prior term described above (the parameter hier-
archy, the uniform distribution assumption and the independence assumption),
we show next the global evaluation criterion for an uplift decision tree and its
detailed proof.

The Bayesian decision tree criterion

Combining the prior term P (T) and using the likelihood terms on the tree leaves,
we express the negative log of the posterior probability, our criterion C(T), as
follows (cf. Eq. 4.1):
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C(T) = log(K + 1) + log
(

K + KT − 1
KT

)
︸ ︷︷ ︸

Variable selection

+
∑

s∈STn

log 2 + log KT + log(Ns. + 1)
︸ ︷︷ ︸

Prior of internal nodes

+
∑
l∈LT

log 2
︸ ︷︷ ︸

Treatment effect W

+
∑
l∈LT

log 2 +
∑
l∈LT

(1−Wl) log
(

Nl. + J − 1
J − 1

)
+
∑
l∈LT

Wl

∑
t

log
(

Nl..t + J − 1
J − 1

)
︸ ︷︷ ︸

Prior of leaf nodes

+
∑
l∈LT

(1−Wl) log Nl.!
Nl.1.!Nl.2.! . . . Nl.J.!

+
∑
l∈LT

Wl

∑
t

log Nl..t!
Nl.1t!..Nl.Jt!︸ ︷︷ ︸

Tree Likelihood
(4.1)

The next section explains the different terms shows the proof of the criterion
in.Eq. 4.1.

4.2.3 C(T) proof of Equation 4.1
We express the prior and the likelihood of a tree model, resp. P (T) and P (Data|T)
according to the hierarchy of the uplift tree parameters. Assuming the indepen-
dence between all the nodes, the prior probability of an uplift decision tree is thus
defined as:

P (T) = P (KT)︸ ︷︷ ︸
Variable selection

×

∏
s∈ST

P (Is) P (Xs | KT) P (Nsi. | KT, Xs, Ns., Is)︸ ︷︷ ︸
Prior of internal nodes

× P ({Wl})︸ ︷︷ ︸
Treatment effect W

×

∏
l∈LT

P (Il)
[
(1−Wl)× p ({Nl.j} | KT, Nl.) + Wl ×

∏
t

P ({Nl.jt} | KT, Nl..t)
]

︸ ︷︷ ︸
Prior of leaf nodes

(4.2)

The first line is the prior probability of the variable selection, the second line
the prior of internal nodes and the third line the prior of the leaf nodes.
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Variable selection probability

A hierarchical prior is chosen: first the choice of the number of selected variables
KT, then the choice of the subset KT among K variables. By using a uniform
prior the number KT can have any value between 0 and K in an equiprobable
manner. For the choice of the subset KT, we assume that every subset has the
same probability. Then the prior of the variable selection can be defined as:

P (KT) = 1
K + 1

1(
K + KT − 1

KT

)

Prior of internal nodes

Each node can either be an internal node or a leaf node with equal probability.
This implies that:

P (Is) = 1
2

The choice of the segmentation variable is equiprobable between 1 and KT. We
obtain:

P (Xs|KT) = 1
KT

All splits of an internal node s to two intervals are equiprobable. We then obtain:

P (Nsi. | KT, Xs, Ns., Is) = 1
Ns + 1

Prior of leaf nodes

Similar to the prior of internal nodes, each node can either be internal or a leaf
node with equal probability leading to

P (Il) = 1
2

For each leaf node, we assume that a treatment can have an effect or not, with
equal probability, we get:

P ({Wl}) =
∏

l

1
2

In the case of a leaf node l where there is not effect of the treatment (Wl = 0),
UB-DT describes one unique distribution of the class variable. Assuming that
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each of the class distributions is equiprobable, we end up also with a combinatorial
problem:

P ({Nl.j} | KT, Nl.) = 1(
Nl. + J − 1

J − 1

)
In a leaf node with an effect of the treatment (Wi = 1), UB-DT describes two
distributions of the outcome variable, with and without the treatment. Given a
leaf l and a treatment t, we know the number of instances Nl..t Assuming that
each of the distributions of class values is equiprobable, we get:

P ({Nl.jt} | KT, Nl..t) = 1(
Nl..t + J − 1

J − 1

)

Tree likelihood

After defining the tree’s prior probability, we establish the likelihood probability
of the data given the tree model. The class distributions depend only of the leaf
nodes. For each multinomial distribution of the outcome variable (a single or
two distinct distributions per leaf depending on whether the treatment has an
effect or not), we assume that all possible observed data Dl consistent with the
multinomial model are equiprobable. Using multinomial terms, we end up with:

P (Data | T) =
∏
l∈L

P (Datal|T) =

∏
l∈L

[
(1−Wl)×

1
Nl.!/Nl.1.!Nl.2.! . . . Nl.J.!

+ Wl ×
∏

t

1
(Nl..t!/Ni.1t!..Ni.Jt!)

] (4.3)

By combining the prior and the likelihood (resp. Eq. 4.2 and 4.3) and by taking
their negative log, we obtain C(T) and thus Eq. 4.1 is proved.

4.2.4 Search algorithm
The induction of an optimal uplift decision tree from a data set is NP-hard [51].
Thus, learning the optimal decision tree requires exhaustive search and is limited
to very small data sets. As a result, heuristic methods are required to build
uplift decision trees. Algorithm 1 (see below) selects the best tree according to
the global criterion. Algorithm 1 chooses a split among all possible splits in all
terminal nodes only if it minimizes the global criterion of the tree. The algorithm
continues as long as the global criterion is improved. Since a decision tree is a
partitioning of the feature space, a prediction for a future instance is then the
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average uplift in its corresponding leaf. This algorithm is deterministic and thus
it always leads to the same local optimum. In Section 4.3 we perform several
experiments that show the quality of the trees that are built. The next section
shows how to extend this algorithm to build random forests.

Algorithm 1: UB-DT algorithm
input : T the root tree
output: the tree T∗ which minimizes the proposed criterion
T∗ ← T
while C(T∗) decreases:

T′ ← T∗

for leaf l in LT:
for X in K:

Get the best Split SX(l) according to UMODL
TX ← T∗ + SX(l)
if C(TX)<C(T′):

T′ ← TX

if C(T′)<C(T∗):
T∗ ← T′

Prediction: The output of a tree is a partition of the feature space. The
predicted uplift for each instance is the average uplift of its leaf node.

4.2.5 UB-RF

Random forests are an ensemble machine learning algorithm consisting of mul-
tiple decision trees. They were first proposed by [12], where the author showed
their efficiency against other classifiers such as support vector machines. Random
forests were shown to have better performance and lower variance. However, one
problem is that they lack the interpretability provided by a single decision tree.

UB-DT can be easily extended to random forests. In this extension, a split is
randomly selected from all possible splits that improve the global criterion. The
number of individual trees included in the random forest is determined by the
analyst, and the overall prediction of the forest is calculated as the mean of all
individual tree predictions. Algorithm 2 provides a detailed description of the
Random Forest algorithm, hereafter referred to as UB-RF.
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Algorithm 2: UB-RF algorithm
input : training data, number of trees ntree
output: A forest of ntree trees
for n← 1 in ntree:

Tn ←− root tree
S ←−emply list
while True:

for l in LTn:
for X in K:

Get the best split Sn
X(l) according to UMODL

/* add Sn
X(l) to S if it improves the global

criterion */
if C(Tn + Sn

X(l)) < C(Tn):
Add Sn

X(l) to S

Split←− rand(S)
/* Stop when there is no more splits to improve the

criterion */
if Split←− ∅:

break
/* Perform the split in the tree Tn */
Tn ←− Tn + Split

Predictions: The predicted uplift is the average of the predictions of the
ntree trees

4.3 Experiments
We experimentally evaluate the quality of UB-DT as an uplift estimator in Sec-
tion 4.3.1 and compare UB-DT and UB-RF versus state-of-art uplift modeling
approaches in Section 4.3.2.

We use the following state-of-art methods: (1) metalearners: two-model ap-
proach (2M), X-Learner and R-Learner, each with Xgboost; (2) uplift trees: CTS-
DT,KL-DT, Chi-DT, ED-DT; (3) uplift random forests: CTS-RF,KL-RF, Chi-
RF, ED-RF [63]; (4) and causal forests. All approaches were used with 10 trees
(Other experiments with 50 trees are shown in Appendix A.1).

4.3.1 Is UB-DT a good uplift estimator?
As we have done previously in Chapter 3, we start our experiments with synthetic
datasets. Synthetic datasets are useful because they allow us to create the real
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(a) Grid pattern (b) Continuous pattern

Figure 4.2: Uplift for 2 synthetic patterns. Fig. 4.2a (grid pattern): uplift val-
ues for each cell. Fig. 4.2b (continuous pattern): uplift values are P (Y |T =
0, x1, x2) = 1− (x1 + x2)/20 while P (Y |T = 1, x1, x2) = (x1 + x2)/20.

uplift for each example and thus assess the quality of the estimated uplift by an
uplift modeling algorithm.

Fig. 4.2 depicts two synthetic uplift patterns where P (Y = 1|X, T = 1) and
P (Y = 1|X, T = 0) are identified for each instance. The grid pattern can be
considered as a tree-friendly pattern whereas the continuous pattern is much more
difficult. We generated several datasets according to these patterns with several
different numbers of instances (also called data size) ranging from 100 to 100,000
instances. Uplift models were built using 10-fold stratified cross validation and
the RMSE (Root Mean Squared Error) was used to evaluate the performance of
the models.

Results: Fig. 4.3 gives the RMSE for the two synthetic patterns according to the
data size for different uplift methods. We see that UB-DT is a good estimator
for uplift. With UB-DT, RMSE decreases and converges to zero when data
sizes increase both for the grid and continuous patterns. This is the expected
behavior of a good uplift estimator. This also means that UB-DT, thanks to its
global criterion, avoids overfitting of uplift trees. The two-model approach with
decision trees also shows competitive performance. UB-DT clearly outperforms
the other tree-based methods, these latter having similar performances. With the
continuous pattern, KL-DT, Chi-DT, ED-DT and CTS-DT approaches have lower
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performances (their RMSE are around 0.5). To avoid a cluttered visualisation,
their performances are not included in Fig. 4.3b.

(a) Grid Pattern

(b) Continuous Pattern

Figure 4.3: RMSE obtained by training tree-based methods.

4.3.2 UB-DT and UB-RF versus state of the art methods
Datasets We conducted experiments on 8 real and synthetic datasets widely
used in the uplift modeling community:

1For efficiency purposes, model learning was conducted on a random sample of 200,000 in-
stances for each fold.
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Dataset No.
Rows

No.
Columns

Treatment
ratio

Outcome
Ratio

Average
Uplift Treatment variable Outcome variable

Hillstrom-m 42,613 10 0.5 0.145 0.076 ’mens’ ’visit’
Hillstrom-w 42,693 10 0.5 0.128 0.045 ’womens’ ’visit’
Hillstrom-mw 64,000 10 0.67 0.146 0.06 ’mens’ & ’womens’ ’visit’
Gerber-N 229,444 16 0.166 0.31 0.081 ’neighbour’ ’voted’
Geber-S 229,461 16 0.166 0.304 0.04 ’self’ ’voted’
Starbucks 84,534 9 0.5 0.012 0.009 ’promotion’ ’purchase’
Information 20,000 69 0.5 0.2 0.0018 ’treatment’ ’purchase’
Bank-tel 15,926 17 0.18 0.05 0.09 ’telephone’ ’Y’
Bank-cell 42,305 17 0.6 0.115 0.11 ’cellular’ ’Y’
Bank-tel-cel 45,211 17 0.71 0.116 0.107 ’telephone’&’cellular’ ’Y’
Megafon 600,000 52 0.5 0.2 -0.18 ’treatment’ ’conversion’
Criteo-v1 13,979,592 12 0.85 0.047 0.68 ’treatment’ ’visit’
Criteo-c1 13,979,592 12 0.85 0.0029 0.37 ’treatment’ ’conversion’
RHC 5735 62 0.38 0.35 -0.05 ’RHC’ ’swang1’

Table 4.1: Summary of datasets specifications.

1. Hillstrom2: a classical dataset for uplift modeling with data of customers
who either received emails featuring men’s or women’s products, or received
no emails,

2. Criteo [19] (previously introduced in Section 3.5.3): a usual marketing
dataset for uplift modeling,

3. Bank [49]: a marketing campaign conducted by a bank,

4. Information3: a marketing dataset in the insurance domain, a part of the
Information R package,

5. Megafon4: a synthetic dataset created for uplift modeling. It is generated
by telecom companies in order to reproduce the situations encountered by
these companies,

6. Starbucks5: an advertising promotion tested to improve customers pur-
chases,

7. Gerber [25]: a policy-relevant dataset used to study the effect of social
pressure on voter turnout,

2http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.
html

3https://cran.r-project.org/web/packages/Information/index.html
4https://ods.ai/tracks/df21-megafon/competitions/megafon-df21-comp/data
5https://github.com/joshxinjie/Data_Scientist_Nanodegree/tree/master/

starbucks_portfolio_exercisejoshxinjie
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8. Right Heart Catheterization (RHC) [16]: a real dataset from the medical
domain, the treatment indicates whether a patient received a RHC and
the outcome is whether the patient died at any time up to 180 days after
admission to the study.

Each dataset was used with different settings of treatment and outcome vari-
ables. For all datasets, each treatment and outcome variables are binary. Table 4.1
provides the most relevant specifications about the data sets.

Results 6 We evaluate the uplift models by using the qini coefficient metric [18].
Fig. 4.4a (resp. Fig. 4.4b) shows the overall average ranking of tree based methods
(resp. meta-learners and forest-based methods) according to its qini coefficient
performance against each dataset. Compared to other tree-based methods and
to the two-model approach with decision trees, Fig. 4.4a shows that UB-DT
achieves the best performance. Table 4.2 reports the results of the experiment
for the qini coefficient. This table shows that UB-DT is also a good estimator
of the uplift on real data. Fig. 4.4b shows that both UB-RF, X-Learner and 2M
have the best rank. Table 4.3 indicates that the random forest strategy improves
the performance of the uplift models (the values of the qini coefficients are higher
with UB-RF than UB-DT). UB-RF has the best performance on 4 out of the
14 experiments. With no altering to the main conclusions, a comparative study
between the uplift approaches with 10 and 50 trees is shown in Appendix A.1.
UB-RF has the best average ranking when the number of trees is increased to 50.

6Supplementary results with different uplift approaches can be found in https://github.
com/MinaWagdi/UB-DT
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(a) tree-based methods (b) meta-learners and forest-based methods

Figure 4.4: Overall average ranking of the uplift approaches

Dataset 2M-DT KL-DT Chi-DT ED-DT CTS-DT UB-DT
Hillstrom-m 0.3(1.0) 1.1(1.9) 1.0(1.9) 0.0(1.4) 0.2(1.0) 1.6(1.6)
Hillstrom-w 0.8(1.6) 5.2(2.5) 5.2(2.6) 6.4(1.2) -0.4(2.0) 4.8(2.3)
Hillstrom-mw -0.6(0.8) -0.1(1.2) -0.8(1.1) 4.4(2.7) -0.0(1.0) -0.4(1.4)
Gerber-n 5.6(0.8) 1.3(0.8) 1.2(0.8) 1.1(0.6) 1.3(0.8) 1.9(0.6)
Gerber-s 5.5(1.1) 0.4(0.5) 0.4(0.6) 0.5(0.3) 0.4(0.4) 0.8(0.6)
Criteo-c 8.0(1.5) 4.1(1.4) 4.8(1.5) 15.2(0.3) 1.7(0.3) 13.7(3.2)
Criteo-v 0.4(0.3) -1.2(0.2) -1.1(0.3) -1.3(0.3) 0.4(1.1) 3.6(1.2)
Megafon 5.1(0.6) 4.5(0.9) 4.7(0.9) 4.7(0.9) 4.9(0.8) 7.8(0.8)
Bank-tel 5.4(7.6) -12.5(2.8) -10.8(7.0) -10.2(7.8) -12.8(2.9) 12.8(8.0)
Bank-cell 11.1(3.0) -2.0(1.5) -1.4(2.5) -2.2(1.5) -3.7(1.5) 38.4(3.4)
Bank-tel-cell 10.3(1.6) -1.9(1.2) -1.2(2.1) -1.8(1.2) -3.4(1.4) 37.1(2.6)
Information 4.6(3.4) -6.3(2.8) -6.3(2.8) -2.8(1.5) -5.4(1.5) 11.8(2.4)
Starbucks 1.4(1.4) 20.1(3.0) 18.3(3.4) 19.9(3.2) 13.9(3.9) 20.2(3.5)
RHC 12.8(1.9) 18.4(3.8) 19.9(4.2) 18.4(3.8) 16.7(2.5) 20.7(5.0)

Table 4.2: Average qini coefficients and standard deviation (multiplied by 100).
The best qini coefficient for each dataset is marked in bold.
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Dataset XLearner RLearner DR 2M KL-RF Chi-RF ED-RF CTS-RF UB-RF CausalForest
Hillstrom-m 0.3(2.3) 0.3(1.8) 1.2(1.6) 0.7(2.3) -0.0(2.1) -0.9(1.5) 0.7(1.5) 1.1(1.9) 1.8(1.6) -0.2(1.6)
Hillstrom-w 6.2(1.7) 6.2(1.4) 6.0(1.4) 4.9(1.1) 6.2(1.1) 7.0(1.0) 6.2(1.1) 5.7(1.3) 6.7(1.1) 2.1(1.9)
Hillstrom-mw 3.7(2.3) 3.9(2.7) 3.8(2.8) 3.0(2.0) 3.0(1.3) 2.8(1.5) 3.6(2.5) 2.3(2.4) 3.1(1.7) 0.1(1.7)
Gerber-n 3.7(0.6) 1.9(0.7) 0.5(0.9) 3.1(0.6) 1.8(1.0) 2.1(1.1) 1.9(0.5) 1.4(1.0) 2.7(0.7) 2.9(1.0)
Gerber-s 2.4(0.9) 1.7(0.7) 0.6(0.9) 2.2(0.8) 1.3(1.0) 1.4(0.6) 1.6(0.8) 1.4(0.7) 1.8(0.8) 3.1(0.5)
Criteo-c 22.3(1.8) 19.4(1.0) 20.0(0.6) 19.5(1.6) 14.6(3.5) 12.4(4.3) 21.1(2.3) 7.3(3.9) 18.7(1.5) 10.9(2.4)
Criteo-v 0.3(0.8) 5.3(0.5) 4.8(1.5) 3.9(0.5) 5.4(1.2) 4.8(1.7) 6.1(1.0) 2.4(0.8) 5.7(0.7) 0.4(0.4)
Megafon 18.2(0.6) 2.6(0.5) 2.2(0.9) 16.6(0.9) 11.2(0.7) 11.0(1.2) 10.8(0.8) 9.2(1.1) 12.8(1.0) 9.7(0.7)
Bank-tel 14.5(7.6) 2.8(8.8) 16.0(9.0) 21.1(11.6) -15.5(6.3) -6.1(12.6) -15.8(5.6) -18.7(2.9) 26.7(7.2) 25.4(5.3)
Bank-cell 18.8(4.7) 23.3(3.6) 17.4(6.5) 31.0(3.9) 0.4(2.3) 1.5(2.5) -2.5(2.6) -1.0(1.9) 45.5(2.7) 20.8(2.6)
Bank-tel-cell 16.2(5.6) 23.8(2.5) 17.0(3.4) 30.5(2.7) 1.4(3.4) -0.4(5.7) -1.7(3.1) -0.5(2.3) 46.1(2.1) 23.5(2.9)
Information 14.9(3.3) 10.0(3.1) 4.1(2.3) 13.7(4.1) 9.6(2.0) 9.7(3.1) 11.2(2.9) 10.6(2.9) 12.0(3.1) 10.5(3.2)
Starbucks 22.3(4.5) 22.4(3.9) 22.4(3.7) 22.7(4.1) 22.4(2.1) 21.4(3.4) 23.4(3.2) 20.8(3.1) 20.2(3.3) 8.1(3.7)
RHC 32.4(3.5) 31.3(4.3) 30.3(5.0) 34.6(4.3) 29.6(4.2) 29.7(5.0) 30.0(4.1) 29.1(3.7) 27.2(5.0) 27.6(4.5)

Table 4.3: Average qini coefficients and standard deviation (multiplied by 100)
across datasets and uplift approaches. In bold, the best value for each dataset

Computation time In this part, we compare the computation time of different
uplift modeling algorithms. However, comparing the computation time of these
uplift methods should be performed carefully, as it is strongly influenced by the
quality of the implementation and the programming language used. For meta-
learners, it also depends on the complexity of the chosen supervised learning
algorithm. We present in Table 4.4 the computation time for each uplift approach
with respect to the first fold in each dataset. This allows us to get a general idea
of the time consumption of the current implementation of our approach compared
to the other state-of-the-art approaches, and to determine whether it is tractable
and can still be used by the research community.

Table 4.4 shows that causal forests are the fastest learning approach of all
tested uplift modeling approaches. We also note that the tested version is imple-
mented in the C programming language. Their computation times range from 1.4
seconds to 16.9 seconds. X-learner, R-learner, DR-learner and 2M come in second
place, their computation times range from 7.6 seconds (for the 2M approach) to
33.2 seconds (for the DR-learner).

The uplift random forests (KL-RF, Chi-RF, ED-RF, CTS-RF, UB-RF) have
the longest computation times. Especially UB-RF is computationally expensive.
UB-RF is based on the UMODL discretization approach (see Chapter 3), for
which the complexity is N log N . The search algorith of the UMODL discretiza-
tion depends on the size of the data, the type of columns and the number of
unique values in the columns. The UB-RF algorithm takes longer to find the
optimal split for continuous variables. The more values a variable has, the longer
the algorithm takes. For example, UB-RF takes the longest time on the criteo
dataset, which contains 14 continuous variables, half of which have more than
1000 values. On the contrary, the gap between the time consumption of UB-RF
and other forest-based approaches is the smallest on the Hillstrom and Starbucks
datasets, which each contain a small number of continuous variables.
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In addition, our implemented version of UB-RF is in Python and its imple-
mentation is sub-optimal. This observation leads to future works to optimize the
algorithm and its implementation.

Dataset XLearner RLearner DR 2M KL-RF Chi-RF ED-RF CTS-RF UB-RF CausalForests Cont.
cols

Cont. cols
> 1000 values

Hillstrom-m 14.769 14.926 15.624 7.966 64.8 66.202 66.728 44.485 60.609 2.023 5 1
Hillstrom-w 14.486 14.614 15.629 7.664 63.912 61.765 63.633 41.815 65.537 2.03 5 1
Hillstrom-mw 15.614 14.857 15.78 7.914 99.732 97.967 102.941 69.53 102.351 2.275 5 1
Gerber-n 19.194 18.79 20.257 9.202 398.158 503.291 350.923 346.62 1139.27 5.37 6 2
Gerber-s 30.319 29.136 34.821 15.233 432.648 381.878 505.065 300.064 1009.788 16.936 6 2
Criteo-c 25.204 20.918 21.782 14.061 382.942 375.397 468.533 132.642 2944.905 9.041 14 7
Criteo-v 24.423 21.084 21.837 13.612 382.189 348.73 337.542 145.127 3013.66 9.218 14 7
megafon 26.844 24.472 26.519 12.519 205.696 195.138 253.749 229.131 2443.51 24.945 50 50
Bank-tel 18.47 17.566 17.596 8.826 26.652 28.367 24.809 20.773 61.075 1.413 7 2
Bank-cell 19.167 19.279 19.328 9.471 91.581 96.933 80.902 53.773 250.195 2.032 7 2
Bank-tel-cell 19.251 18.681 33.251 15.924 57.693 62.99 52.842 37.069 279.54 2.102 7 2
Information 25.163 24.581 40.833 21.038 29.226 30.676 28.871 21.899 601.167 1.561 67 13
Starbucks 22.398 24.225 26.289 7.942 130.392 86.709 69.791 99.973 84.962 5.406 2 1
RHC 23.142 20.442 20.648 9.644 15.301 15.295 15.663 12.427 166.619 2.153 7 7

Table 4.4: Computational time (in seconds) per Uplift approach for the first fold
in each dataset. The last two columns represent the number of continuous columns
and those with over 1000 values.

4.4 Conclusion
In this chapter, we have presented a new parameter-free method called UB-DT
for uplift decision trees. We have designed a Bayesian approach to select the most
probable uplift tree model T that maximizes the posterior probability P (T|Data).
Contrary to state-of-art uplift decision tree approaches, UB-DT is characterized
by a global criterion to build a tree, so the splits in one node depend on the
splits in the other nodes. This approach avoids overfitting and the need for a
pruning step. A search algorithm finds the tree that optimizes this criterion. We
have shown that our approach is easily extended to random forests and we have
defined UB-RF. Evaluations on real and synthetic data sets show that UB-DT
is a good uplift estimator and our tree and forests methods perform competitively
with state-of-art uplift modeling approaches including non tree methods.
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5.1 Introduction

Uplift modeling algorithms assume that the treatment and control groups are
drawn from the same distribution. While this strong assumption is potentially
valid in experimental data and controlled trials, it often does not hold in real-
world scenarios. The nature of real-world data is mainly observational, which
means that it is collected without conducting a controlled experiment. Conse-
quently, we cannot guarantee that the treatment and control groups have the
same distribution.

As outlined in Section 1.3, two distinct communities are attempting to ad-
dress the problem of treatment effect estimation: the heterogeneous treatment
effect estimation community, via the CATE estimation task, and the uplift mod-
elling community. In the former, CATE estimation algorithms take into account
non-random assignment bias (described in Section 2.5.1) and any difference be-
tween the distributions of the treatment and control groups. Examples of these
algorithms include DR-Learner and X-Learner, as discussed in Section 2.2.1. Con-
versely, uplift modeling assumes equivalence of the two distributions. This is a
strong assumption that rarely holds in real-world data, such as the telecom data.

In this chapter, we revisit the definition of the non-random assignment bias and
we address the following research questions:
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1. What is the impact of NRA bias on the main uplift modeling and CATE
estimation approaches 1?

2. Does our newly proposed Uplift Bayesian Decision Tree (UB-DT) algorithm
perform well in the presence of NRA bias?

3. How can the bias effect be reduced?

To answer the first and second questions, we design an experimental protocol
to evaluate the impact of NRA bias on state-of-the-art uplift methods. Our study
allows us to identify several behavioural aspects of uplift methods. To address the
third question, we define a reweighting method based on the inverse propensity
weighting (IPW) approach to reduce the impact of NRA bias on the performance
of the class transformation approach, which is found to be one of the methods
most affected by NRA bias. Our experimental results show that this bias reduc-
tion method significantly improves the performance of the class transformation
approach in the presence of NRA bias.

The remainder of this chapter is organized as follows. Section 5.2 describes the
problem setting and our experimental protocol for evaluating the impact of NRA
bias. We present our reweighting method in Section 5.3 then conclude in Sec-
tion 5.4

This work is the object of the following publication:
Rafla, M., Voisine, N., & Crémilleux, B. (2022, April). Evaluation of Uplift
Models with Non-Random Assignment Bias. In Advances in Intelligent Data
Analysis XX: 20th International Symposium on Intelligent Data Analysis,
IDA 2022, Rennes, France, April 20–22, 2022, Proceedings (pp. 251-263).
Cham: Springer International Publishing.

5.2 Evaluation of uplift with biased data

This section presents the NRA bias and the experimental protocol that we de-
signed to assess performance of uplift methods under this bias.

1For simplicity, both methods will be referred to as ’uplift modeling approaches’.
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5.2.1 Problem setting
Some state-of-art uplift methods assume that data are unbiased and that the
treatment group comes from the same distribution as the control group, which is
not true for real data. In practice, there are often differences between treatment
and control groups, also known as Non-Random Assignment bias, a prevalent type
of bias in uplift modeling [77]. Formally, this bias occurs when P (T = 1|X) ̸=
P (T = 0|X) (which also means P (X|T = 1) ̸= P (X|T = 0)). Usually it is easier
to collect control data and the treatment group is the most biased because it is
more challenging to apply a treatment to individuals and collect the corresponding
data due to ethical, political or economic constraints.

This bias problem has been studied in the literature on clinical studies where
the goal is to estimate the "Average Treatment Effect" (ATE) defined as E[Yi(T =
1) − Yi(T = 0)]. In order to estimate it, the "Propensity Score Matching"
(PSM) [61] is used to extract balanced treatment groups on which ATE is es-
timated. Similarly, in the uplift literature, since uplift methods assume the ho-
mogeneity between treatment groups, PSM is used to extract an unbiased sample
from a biased dataset. Uplift modeling is applied subsequently as carried in [53].
However, this procedure clearly suffers from a loss of data.

5.2.2 Designing of the experimental protocol
This section describes the experimental protocol that we designed to evaluate the
behavior of uplift methods under the NRA bias. The principle, to create a NRA
bias and observe its impact, is to introduce imbalances in the data regarding
the initial distribution of the variables. We do this by modifying proportions
of individuals in a non-random way (for example, decreasing the proportion of
specific socio-professional categories or ages till it disappears in the data). Such a
protocol must satisfy several conditions to correctly evaluate the impact of NRA
in order to avoid introducing a bias due to the protocol itself.

• The chosen variables to introduce bias have to be correlated with the out-
come Y or Y given the treatment T , otherwise the bias will not affect the
uplift modeling.

• In contrast, the choice of the values of the variables, according to which the
proportions of individuals vary, is random. If not, the construction of the
populations E1 and E2 (which will be explained below) may be biased.

• The bias must be tunable in order to change its rate and quantify its impact
on the uplift methods.
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• The created bias is only in the treatment group in order to imitate the
natural phenomena as previously explained in Section 5.2.1.

• The total size of each of the biased learning samples is always the same in
order to avoid any variation in the performance due to different learning
data sizes.

More precisely, as shown in Fig. 5.1, two populations E1 and E2 are created.
This is done by choosing a set of variables V and dividing its values into two
groups, C1 and C2, such that the number of individuals defined by the values of
C1 is equivalent to the number of individuals defined by C2. Let E1 (resp. E2) be
the population whose variables correspond to C1 (resp. C2) and whose sizes are
N1 and N2 respectively. We use a 10-fold cross-validation. In the first training
sample, E1 and E2 have an equal size (i.e. N1 = N2), it is considered unbiased
and gives a reference value of the qini coefficient. The NRA bias is gradually
introduced in the treatment group by increasing the size of E1 and decreasing the
size of E2 while preserving the total size of the treatment group. We identify the
bias rate of a sample by the variable b where b = (N1−N2)×100/N . b goes from
b = 0 in the unbiased situation to b = 100 the most biased situation according to
the NRA bias. An uplift model is then learned on each biased sample defined by
b. All models are then tested on the same test sample and evaluated using the
qini coefficient. The evolution of the qini coefficient according to b allows studying
the behavior of an uplift method towards the NRA bias.

5.2.3 Experiments
In this section, we introduce the datasets, the uplift modelling approaches and
the details of the experiments.

Datasets We use several real and synthetic datasets from different fields that
are widely used in the literature. All these datasets have been previously described
in Section 3.5.3 and in Section 4.3.2. Below is a brief description of the datasets
used:

1. Criteo [19]: a usual marketing dataset for uplift modeling.

2. Hillstrom2: another classical marketing dataset for uplift modeling.

3. Gerber [25]: a policy-relevant dataset.
2http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.

html/
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Figure 5.1: Biased samples generation procedure for one fold (a 10-fold cross
validation is used): (1) Variable(s) V is chosen to create E1 and E2. (2) Creating
training and test sets with 10-fold cross validation. (3) Random sampling of
treatment and control groups. (4) The sizes of the treatment and control groups
are always the same throughout the biasing process.

4. Retail Hero3: a marketing dataset of the X5 sales group.

5. Megafon4: a synthetic dataset created by telecom companies for uplift mod-
eling.

6. Zenodo5: a synthetic dataset containing trigonometric patterns specifically
designed for uplift modeling. This dataset consists of 100 trials of different
patterns. We only used the first trial of the dataset.

7. Continuous and Grid patterns: two synthetic datasets, each consisting of
two variables.

8. Information: a marketing dataset.

9. Starbucks: an advertising promotion dataset.

10. Bank: a marketing campaign conducted by a bank.
3https://ods.ai/competitions/x5-retailhero-uplift-modeling/data
4https://ods.ai/tracks/df21-megafon/competitions/megafon-df21-comp/data
5https://zenodo.org/record/3653141#.YUCYEufgoW8
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Uplift methods We test 18 uplift methods: two-model approach (2M); class-
transformation approach (CT), each with Xgboost and logistic regression (LR);
DR-learner (DR); X-learner, R-learner and S-learner, each with Xgboost and lin-
ear regression (LinR). Direct-approaches based on random forests (RF) and deci-
sion trees (DT) are tested as well: KL, ED [63] and CTS [79].

Implementation details For each dataset (except Synth1 and Synth2) and
for each uplift method, the experimental protocol is run twice with different com-
positions of the set of variables V on which the bias is created: once including
the most important variable within the dataset and once with the second most
important variable (The use of a non-informative or random variable in the bias
generation process won’t yield a difference between the treatment and control
groups). For Synth1 and Synth2, V contains the two variables of these datasets.
Moreover, given a set V , the experiment is repeated twice in order to provide
different splittings of C1 and C2.

5.2.4 Results

Qini coefficients variability according to b

Fig. 5.2 illustrates a subset of the results. We observe that the NRA bias strongly
affects the performance of uplift models (the higher the bias rate, the more sig-
nificant the decrease of the qini coefficient).

To provide a global view of the results, we compute for each dataset and
each uplift method the average qini coefficient, i.e., the average of qini coefficients
according to the bias rates going from b = 0 to b = 100. We show the result of
the average qini for all datasets in Table 5.1 and Table 5.2. Each dataset name
is followed by the variable V used to introduce the bias. We have tested different
splits of V in C1 and C2. These variations are indicated by an apostrophe after
the variable name in both Table 5.1 and Table 5.2.

Overall ranking

To better compare the methods according to their resistance to NRA bias, Fig. 5.3
shows the average rank obtained by each method based on the average qini coef-
ficient (all divisions of V are taken into account).

The results of our experiments show the following conclusions:

• The models with the highest resistance to the NRA bias are mainly the
meta-learners: the X-learner, the R-learner, the DR-learner and our newly
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Figure 5.2: Qini coefficients of uplift methods based on NRA bias rates. The
figure title consists of the dataset name followed by the variable used to generate
the bias. In the legend, a method name is followed by the associated learning
algorithm.
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Dataset KL-DT CTS-DT ED-DT UB-DT
zenodo-trial0-x32 6.08(1.45) 1.82(0.36) 7.02(0.39) 5.08(0.76)
zenodo-trial0-x32’ 6.18(0.61) 1.82(0.36) 5.97(0.56) 6.03(1.02)
zenodo-trial0-x34 5.6(0.47) 1.58(0.44) 5.67(0.49) 2.88(1.48)
zenodo-trial0-x34’ 6.83(0.72) 3.94(1.94) 7.28(0.76) 4.65(0.68)
GridPattern-Comb2 16.77(0.77) 12.18(1.3) 17.14(0.2) 20.7(3.19)
GridPattern-Comb2’ 17.11(0.29) 7.09(0.48) 17.29(0.23) 21.17(1.6)
ContPattern-Comb2 24.27(0.12) 23.49(0.16) 24.59(0.34) 29.0(2.46)
ContPattern-Comb2’ 24.33(0.13) 23.34(0.2) 24.82(0.09) 29.61(0.65)
hillstrom-w-mens 2.84(1.77) 0.22(1.29) 4.2(2.05) 0.26(2.1)
hillstrom-w-mens’ 6.08(0.33) 6.01(1.3) 6.18(0.17) 4.79(2.84)
hillstrom-w-womens -0.7(3.68) -2.13(2.24) 0.2(4.49) 2.97(1.57)
hillstrom-w-womens’ -0.7(3.68) -2.13(2.24) 0.2(4.49) 2.97(1.57)
hillstrom-m-mens 0.66(0.32) 1.1(0.34) 0.82(0.48) 0.61(0.41)
hillstrom-m-mens’ 1.2(0.18) 1.31(0.23) 1.12(0.3) 1.66(0.73)
hillstrom-m-womens 1.0(0.31) 1.14(0.35) 0.96(0.37) 1.56(0.7)
hillstrom-m-womens’ 1.0(0.31) 1.14(0.35) 0.96(0.37) 1.56(0.7)
Criteo50K-f2 -0.64(2.58) -0.15(1.58) 0.58(3.12) 9.27(3.29)
Criteo50K-f2’ 7.03(2.89) 8.51(1.97) 8.14(2.39) 9.43(0.52)
Criteo50K-f8 -1.39(1.54) 0.52(2.54) -0.14(1.97) 9.33(2.17)
Criteo50K-f8’ -2.31(2.55) 0.15(1.04) -0.55(3.16) 9.85(0.99)
megafone100K-f35 -1.77(0.7) -2.23(1.44) -1.81(0.81) 7.93(0.42)
megafone100K-f35’ -0.17(0.68) 0.04(0.22) -0.47(0.63) 6.28(0.68)
megafone100K-f16 -0.65(1.22) -0.26(0.61) -1.28(1.54) 5.67(1.62)
megafone100K-f16’ -0.2(0.29) -0.18(0.24) -0.21(0.41) 7.17(0.4)
Bank3-duration -0.91(1.11) -4.53(0.54) 0.07(0.31) 14.15(6.78)
Bank3-duration’ -0.96(1.11) -2.45(1.81) -1.59(0.77) 15.06(2.55)
Bank3-month 0.17(2.1) -28.61(27.27) -1.43(1.47) 8.79(5.22)
Bank3-month’ 0.53(2.57) -4.64(1.54) -5.42(10.13) 14.98(3.57)
Information-N-OPEN-REV-ACTS -2.92(1.9) 0.67(2.82) -3.32(0.8) 10.57(1.54)
Information-N-OPEN-REV-ACTS’ -0.26(3.01) -0.8(2.03) -1.27(2.01) 9.8(0.83)
Information-PREM-BANKCARD-CRED-LMT 0.15(2.59) 0.46(2.4) -0.59(1.97) 10.9(0.67)
Information-PREM-BANKCARD-CRED-LMT’ -4.86(1.25) -3.41(1.69) -3.97(1.27) 9.81(0.97)
Starbucks-V4 7.75(2.68) 2.87(1.72) 12.02(2.57) 2.69(3.91)
Starbucks-V4’ 7.75(2.68) 2.87(1.72) 12.02(2.57) 2.69(3.91)
Starbucks-V5 12.08(2.2) 11.77(2.03) 14.01(2.29) 1.67(3.24)
Starbucks-V5’ 13.38(0.77) 11.03(1.9) 13.9(0.89) 11.81(2.19)
Gerber-cluster 0.28(0.32) 0.15(0.34) 0.11(0.23) -1.43(0.21)
Gerber-cluster’ 1.0(0.09) 0.88(0.12) 0.96(0.13) -1.65(0.15)
Gerber-yob 0.85(0.14) 0.79(0.07) 0.76(0.08) -2.26(0.3)
Gerber-yob’ 0.46(0.22) 0.51(0.2) 0.42(0.2) -1.69(0.34)
Retail-express-spent-mean -0.09(0.17) 0.0(0.18) -0.12(0.17) 0.7(0.25)
Retail-express-spent-mean’ -0.59(0.1) -0.55(0.18) -0.6(0.07) 0.89(0.22)
Retail-first-redeem-date 0.11(0.09) 0.29(0.15) 0.05(0.09) 0.87(0.1)
Retail-first-redeem-date’ -0.14(0.24) -0.21(0.37) -0.15(0.24) 0.69(0.19)

Table 5.1: Average qini coefficients with standard deviation for tree. In bold, the
best value for each dataset.
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-2.08(0.39)
1.29(0.18)
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0.56(0.39)
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1.61(0.18)
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-0.28(0.57)
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-1.77(0.24)
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1.5(0.08)
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-1.88(0.33)
1.45(0.1)

-2.16(0.21)
-0.09(0.47)

-1.26(0.77)
-0.78(0.37)

-0.62(0.35)
-1.64(0.3)
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1.23(0.42)
1.38(0.16)

-3.57(0.39)
0.02(0.13)

0.17(0.55)
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-2.47(0.33)
1.52(0.12)

-2.23(0.21)
-1.31(0.54)

-1.54(0.43)
-1.39(0.35)

-0.79(0.46)
-1.55(0.3)

R
etail-express-spent-m

ean
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0.79(0.21)
0.77(0.25)

0.98(0.33)
0.79(0.18)
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1.21(0.43)

0.72(0.18)
0.68(0.21)
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1.26(0.16)

1.26(0.15)
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0.92(0.11)
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0.96(0.5)
0.89(0.09)

0.56(0.57)
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0.83(0.33)
0.86(0.27)
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1.21(0.17)
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0.59(0.04)

0.89(0.07)
0.44(0.4)

0.82(0.45)
0.57(0.05)

0.58(0.33)
0.41(0.22)

0.84(0.03)
-0.31(0.19)
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1.65(0.12)

1.64(0.11)
1.63(0.18)
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R
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0.89(0.05)

0.79(0.3)
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0.78(0.24)
0.97(0.04)

0.15(0.15)
0.82(0.02)

1.37(0.28)
1.34(0.32)

1.28(0.34)
0.91(0.17)
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5.2. Evaluation of uplift with biased data
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Chapter 5. Evaluation of Uplift Models with Non-Random Assignment Bias

Figure 5.3: Overall ranking for the dif-
ferent uplift approaches.

Figure 5.4: Heat map to visualize the
comparison between uplift methods. A
value of p smaller than 0.05 means that
the null hypothesis is rejected.

proposed UB-RF method. The qini coefficient generally decreases only
when the bias rate is increased. Table 5.3 shows the reference qini and
the average qini coefficients for each of these methods. The reference qini
coefficient (denoted Ref.qini) is the qini coefficient when b = 0

• While traditional tree-based methods show limited effectiveness, their ran-
dom forest counterparts show improved performance, especially the ED-RF
model.

• In contrast to other tree-based techniques, our UB-DT model shows com-
petitive performance compared to meta-learners and the UB-RF method.
Although it does not perform better - which is an expected behaviour for a
simple decision tree - the effectiveness of the UB-DT model is remarkable.
In fact, it even has a higher average rank than state-of-the-art random forest
algorithms.

• The class-transformation approach is particularly sensitive to the bias in-
troduced, as its qini coefficient performance deteriorates significantly even
in the presence of minimal bias.

Methods comparison with statistical tests

We study now the significance of the results regarding the comparison of the
uplift methods (cf. Table 5.2) by using a statistical test. Following the study [17],
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5.3. Method to reduce the NRA bias impact

we choose the Friedman test with the post hoc test of Nemenyi to compare the
performance (average qini coefficient) of more than two methods across several
datasets. Fig. 5.4 depicts the results with a heatmap. The null hypothesis states
that there is no significant difference in performance according to the average
qini coefficients between two methods across the datasets. With a value of p (p-
value) smaller than 0.05, the null hypothesis is rejected (in green in Fig. 5.4).
Figures 5.4 and 5.3 confirm our previous conclusions. They show that the class-
transformation and tree-based approaches are the least resistant to NRA bias,
and their performance differs significantly from the most resistant methods. The
methods that show the most resistance to NRA bias include our method UB-
RF, the R-learner, X-learner and DR-learner. Notably, there are no significant
differences between these top performers in terms of their resistance to NRA bias.

5.3 Method to reduce the NRA bias impact

5.3.1 Method Description
In the previous section, our experimental protocol showed that the class-transformation
approach is highly sensitive to the NRA bias. In this section, we examine the im-
pact of reweighting individuals using propensity scores on the resilience of the
class transformation approach to the NRA bias. Propensity scores represent the
probability of an individual receiving a treatment (T = 1) based on their vector
of observed variables Xi, i.e. P (T = 1|Xi). This strategy is inspired by the lit-
erature on domain adaptation, where samples from a source dataset are weighted
according to their relevance to a target dataset [40].

The principle of the method is to weight individuals in the treatment group
based on their corresponding weights in the control group, thereby making the
biased population (treatment group) more similar to the unbiased population
(control group). In observational studies, the propensity scores are not directly
known, but can be estimated from the data using a regression algorithm. This
method weights each individual i of the treatment group by w(Xi) s.t.:

w(Xi) = P (T = 0|Xi)/P (T = 1|Xi) (5.1)

We estimate the probabilities of Eq. 5.1 by using logistic regression and xg-
boost. Then the uplift method integrates the weights to amplify the role of the
under-represented individuals in the treatment group and estimate τ̂i. We named
wt-1 (resp. wt-2) the use of the logistic regression (resp. xgboost) in the weighting
method.

We evaluate our weighting method with the class-transformation approaches
since they are the most affected approaches by the NRA bias according to our
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experiments and they use traditional machine learning algorithms where weights
can be given directly at each line (individual).

5.3.2 Results
Results show a large enhancement in the performance with the class-transformation
methods (cf. Fig. 5.5). Table 5.4 details the results with the class-transformation
based methods. The same as before, "Ref.qini" denotes the reference qini, that is
the qini value of a method without bias (i.e. b = 0) and without weighting. The
Mean Absolute Error (MAE), given by the formula MAE = 1

n

∑n
j=1 |Ref.qinij −

Averageqinij|, indicates the difference between the qini obtained by an uplift
method and the reference qini. Here n is the total number of experiments per-
formed. The smaller the gap is, the better the weighting.

With the reweighting method, the gap is much smaller especially when the class
transformation is combined with the logistic regression (LR). The best average
qini values are also obtained with weighting, except for the Zenodo, Bank and
Gerber datasets. It is also worth noting that on the Bank and Gerber datasets,
the class transformation approach shows poor performance (as indicated by the
negative Ref.qini values) even when no bias is introduced (b = 0). In these cases,
the reweighting method does not improve much or at all the class transformation
approach, specially when the dataset is already hard to learn an uplift model.

5.4 Conclusion

In this chapter we define the non-random assignment bias (NRA) in the context
of uplift modeling. NRA bias occurs when samples are not equally distributed
between the treatment and control groups, i.e. when P (T = 1) ̸= P (T = 0). This
bias is often observed in real world data. To explore the impact of NRA bias, we
have designed an experimental protocol that simulates it in a dataset. The goal
of the protocol is to generate NRA bias and study its effects on state-of-the-art
uplift methods, as well as our newly proposed decision tree and random forest
approaches, UB-DT and UB-RF.

Our experiments revealed different behaviours between the uplift methods.
Our novel random forest approach, UB-RF, showed resilience to NRA bias. Sev-
eral meta-learners, such as the X-learner, R-learner and DR-learner, also main-
tained strong performance when confronted with NRA bias. Also, our proposed
decision tree method UB-DT, showed to have a good performance compared to
the state-of-the art decision tree and random forest approaches. In contrast, the
class transformation approach proved to be the least resilient to NRA bias.
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Figure 5.5: The qini values obtained through class-transformation with Xgboost
for varying levels of NRA bias rates, both with and without reweighting. Each
figure’s title is composed of the dataset’s name, followed by the specific variable
utilized to generate the bias.
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Dataset Class-Transformation with LR Class-Transformation with Xgboost
Ref.qini w/o weights wt_1 wt_2 Ref.qini w/o weights wt_1 wt_2

zenodo-trial0-x32 8.27(3.23) 9.65(0.59) 9.39(0.44) 7.12(0.8) 5.81(2.08) 7.06(1.14) 7.03(0.93) 5.84(1.11)
zenodo-trial0-x32’ 8.15(2.33) 9.7(0.48) 9.15(0.96) 7.2(0.97) 5.81(2.08) 7.51(0.98) 7.51(0.73) 5.84(1.11)
zenodo-trial0-x34 7.85(2.31) 8.99(0.75) 9.66(0.31) 8.1(0.37) 6.45(3.98) 7.9(1.22) 7.57(1.36) 6.97(1.06)
zenodo-trial0-x34’ 7.25(1.94) 10.21(0.21) 8.79(2.62) 6.29(0.77) 5.12(3.36) 8.41(0.85) 7.57(1.36) 4.47(1.36)
GridPattern-Comb2 18.73(0.0) 18.69(0.04) 18.69(0.03) 18.72(0.03) 21.24(0.1) 21.1(0.21) 21.06(0.35) 21.11(0.25)
GridPattern-Comb2’ 18.73(0.0) 18.71(0.02) 18.71(0.04) 18.7(0.09) 21.25(0.02) 20.96(0.38) 21.09(0.26) 21.08(0.29)
ContPattern-Comb2 30.92(0.0) 30.92(0.0) 30.92(0.0) 30.92(0.0) 30.35(0.0) 30.35(0.02) 30.32(0.06) 30.23(0.19)
ContPattern-Comb2’ 30.92(0.0) 30.92(0.0) 30.91(0.0) 30.92(0.0) 30.35(0.0) 30.35(0.03) 30.32(0.02) 30.23(0.17)
hillstrom-w-mens 6.07(2.11) -4.33(3.78) 4.74(3.55) 4.36(3.56) 1.93(2.05) -4.31(2.29) 0.39(2.1) 0.96(2.25)
hillstrom-w-mens’ 6.29(2.61) 6.21(0.19) 6.15(0.21) 6.23(0.29) 1.49(1.64) 4.62(1.29) 2.05(1.25) 2.61(1.07)
hillstrom-w-womens 6.02(1.72) -5.43(3.65) 4.7(3.38) 4.1(3.55) 2.89(2.53) -4.78(2.54) 0.31(2.24) 1.6(2.56)
hillstrom-w-womens’ 6.02(1.72) -5.03(3.72) 4.7(3.38) 4.1(3.55) 2.89(2.53) -4.56(2.63) 0.31(2.24) 1.6(2.56)
hillstrom-m-mens 1.19(1.64) -0.0(0.71) 0.89(0.67) 0.99(0.74) -0.45(2.99) 0.2(0.35) 0.07(0.31) 0.22(0.45)
hillstrom-m-mens’ 1.05(2.71) -0.05(0.6) 1.73(0.93) 1.56(0.85) 0.28(2.42) -0.65(0.28) -0.19(0.67) -0.25(0.73)
hillstrom-m-womens 1.51(2.56) -0.16(0.55) 1.3(0.82) 1.33(0.91) -0.51(2.57) -1.48(0.53) -0.83(0.72) -1.03(0.54)
hillstrom-m-womens’ 1.51(2.56) -0.16(0.55) 1.3(0.82) 1.33(0.91) -0.51(2.57) -1.48(0.53) -0.83(0.72) -1.03(0.54)
Criteo50K-f2 10.33(1.86) 2.01(7.11) 6.33(7.24) 8.26(6.97) 6.48(2.22) 0.09(6.61) 2.75(5.97) 5.27(5.39)
Criteo50K-f2’ 8.91(2.11) 7.07(1.9) 7.54(3.53) 7.31(4.16) 5.97(2.46) 7.27(1.07) 5.33(1.11) 4.21(1.38)
Criteo50K-f8 10.35(1.52) 1.57(7.56) 5.58(7.93) 7.98(7.36) 6.26(2.32) -0.35(6.92) 3.05(6.21) 5.27(5.76)
Criteo50K-f8’ 9.87(1.6) -1.9(6.06) 6.27(7.31) 7.44(6.42) 4.32(2.43) -2.47(5.1) 0.94(5.53) 2.69(4.84)
megafone100K-f35 2.04(1.27) 1.77(0.44) 1.91(0.6) 2.05(0.25) 13.35(0.81) 11.12(1.65) 11.07(1.75) 12.41(1.43)
megafone100K-f35’ 2.34(1.23) 1.21(0.67) 2.21(0.24) 2.08(0.56) 13.36(1.62) 7.53(3.44) 7.63(3.59) 11.6(2.75)
megafone100K-f16 2.52(1.55) 2.4(0.23) 2.23(0.32) 2.33(0.33) 13.1(0.99) 5.58(4.57) 5.53(4.52) 10.44(3.43)
megafone100K-f16’ 2.35(1.0) 2.18(0.13) 2.64(0.21) 2.2(0.25) 12.7(1.24) 11.81(0.9) 11.79(0.9) 12.43(0.82)
Bank3-duration -15.86(15.84) -8.92(3.61) -40.62(20.65) -24.42(9.24) -60.72(61.04) -13.49(5.09) -22.48(6.23) -48.71(11.48)
Bank3-duration’ -31.91(58.88) -19.22(2.88) -31.59(20.92) -17.64(6.13) -46.25(36.52) -22.36(4.2) -30.34(3.35) -46.31(5.45)
Bank3-month -19.5(11.11) -16.51(4.57) -58.88(15.59) -16.23(4.8) -48.47(25.77) -25.64(9.16) -31.7(6.11) -51.89(10.59)
Bank3-month’ -11.88(17.11) -14.49(1.38) -40.14(12.24) -18.8(5.58) -54.38(43.57) -17.42(3.99) -26.54(3.27) -44.99(6.93)
Information-N-OPEN-REV-ACTS 0.31(2.09) 2.33(1.64) 4.16(0.61) -0.2(1.02) 8.26(3.16) 7.69(0.72) 8.05(0.73) 7.95(0.86)
Information-N-OPEN-REV-ACTS’ 2.04(2.92) 2.23(2.27) 5.06(0.59) 0.23(1.69) 7.26(3.34) 6.46(1.0) 6.75(0.63) 7.18(0.74)
Information-PREM-BANKCARD-CRED-LMT 0.96(2.33) -0.05(2.24) 2.96(2.41) -1.51(1.65) 5.71(2.27) 6.46(1.07) 5.9(1.0) 6.3(0.9)
Information-PREM-BANKCARD-CRED-LMT’ 0.65(2.45) 3.75(0.2) 4.12(0.37) 0.71(0.69) 7.77(3.79) 5.05(1.43) 5.63(1.43) 7.11(1.15)
Starbucks-V4 10.73(4.72) -8.4(5.17) 10.75(7.58) -4.14(7.05) 1.79(3.52) -10.3(4.15) -2.34(4.27) -2.63(4.6)
Starbucks-V4’ 10.73(4.72) -8.4(5.17) 10.75(7.58) -4.14(7.05) 1.79(3.52) -10.3(4.15) -2.34(4.27) -2.63(4.6)
Starbucks-V5 15.22(4.33) 10.43(1.67) 15.12(1.48) 11.18(3.51) 4.17(6.69) 10.96(2.62) 10.69(2.06) 6.31(1.88)
Starbucks-V5’ 14.72(5.44) 8.81(2.01) 16.63(0.61) 11.46(3.91) 3.4(5.22) -6.7(3.56) -7.12(2.95) -0.39(3.98)
Gerber-cluster -0.4(1.72) -0.05(0.17) -0.78(0.3) -0.64(0.27) -3.37(3.29) -3.71(0.19) -3.42(0.3) -3.72(0.24)
Gerber-cluster’ -0.7(2.22) 0.08(0.02) -0.72(0.39) -0.29(0.38) -3.73(3.45) -3.88(0.18) -2.89(0.29) -3.81(0.16)
Gerber-yob -1.18(1.61) 0.02(0.01) -0.29(0.4) -0.59(0.26) -4.18(2.8) -3.81(0.25) -2.84(0.47) -3.77(0.4)
Gerber-yob’ -0.9(1.98) 0.02(0.13) -1.44(0.32) -0.64(0.35) -3.65(3.17) -3.57(0.39) -3.2(0.38) -3.6(0.25)
Retail-express-spent-mean 1.32(0.8) 0.98(0.33) 0.61(0.46) 1.0(0.5) 0.73(0.88) 0.77(0.25) 0.92(0.32) 0.45(0.22)
Retail-express-spent-mean’ 1.02(0.72) 0.92(0.11) 0.96(0.12) 1.06(0.28) 0.29(0.89) 0.84(0.45) 0.73(0.41) 0.37(0.3)
Retail-first-redeem-date 1.22(1.03) 0.82(0.45) 0.68(0.27) 1.01(0.22) 0.8(0.98) 0.44(0.4) 0.51(0.38) -0.06(0.42)
Retail-first-redeem-date’ 1.14(1.36) 1.2(0.24) 1.24(0.27) 1.1(0.29) 0.1(1.06) 0.79(0.3) 0.79(0.2) -0.02(0.26)
MAE 0 0.036 0.03 0.021 0 0.05 0.03 0.014

Table 5.4: Average qini and its variance (shown in brackets) with the class-
transformation based methods (in bold, the best value for each dataset). Dataset
name is followed by the names of the V variables used to generate the NRA bias.

In the final section of this chapter, we propose to reweight the data using the
inverse of the propensity scores when using the class transformation approach.
This reweighting technique significantly improves the performance of the class
transformation method in the presence of NRA bias.
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6.1 Introduction
Telecommunications data refers to the vast amount of information generated and
collected by telecommunications companies through their network infrastructure,
customer interactions, and billing systems. As discussed in Section 2.4, this data
includes various dimensions, customer demographics, usage patterns, call records,
service subscriptions, customer interactions, and billing information. Leveraging
this wealth of telecom data can provide valuable insights into customer behavior
and churn prediction, enabling telecom companies to proactively manage customer
retention strategies.

That is why data scientists and decision makers are trying to get the most out
of telecom data by pre-processing it and learning uplift models to predict uplift
scores for each of their future customers. Learning uplift models may seem simple
when using state-of-the-art uplift algorithms, but it is often very challenging be-
cause of the parameters that should be defined by the user. The main drawback of
all the uplift approaches is that they require parameterization. Meta learners also
have an additional requirement, which is the choice of the machine learning algo-
rithm to be used. All this is a clear limitation for non-machine learning experts
to use these tools. Even for machine learning experts, they need to test different
parameter values and different learning algorithms with meta learners to find the
optimal combination that fits the data at hand. Therefore, the parameter-free
approaches proposed in this thesis are very much needed, especially in industrial
contexts.

In this chapter, we first show how uplift modeling can be performed to deal
with telecom data. Then we evaluate state-of-the-art uplift approaches for model
learning and feature selection and compare them to our proposed approaches.

108



6.2. Uplift methodology

This work is the object of the following publication:
Rafla, M., Voisine, N., & Crémilleux, B. (2023, September). A Parameter-
Free Bayesian Framework for Uplift Modeling - Application on Telecom
Data. In Uplift Modeling and Causal Machine Learning for Operational De-
cision Making workshop, co-located with European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD).

6.2 Uplift methodology
In this section we provide important steps to follow when applying uplift modeling
on telecom data:

• Outcome Definition. The outcome variable needs to be defined based on
the marketing goal. For example, it could be whether a customer made a
purchase or renewed their subscription within a specific time period after
receiving the treatment. This outcome will be used to measure the uplift.

• Treatment Assignment. A group of customers needs to be exposed to a mar-
keting treatment, while another group serves as a control group that does
not receive the treatment. The treatment can be a specific marketing cam-
paign, promotional offer, or any other intervention. Uplift is then modeled
from the data of 2 groups.

• Data Preparation. The telecom data needs to be preprocessed and prepared
for uplift modeling. This includes cleaning the data, handling missing values,
and transforming variables into a suitable format. Data bias should also be
addressed either at this step using propensity score matching or in the next
step of model learning.

• Uplift model learning. The model predicts the uplift score, which represents
the difference in the probability of a positive outcome between the treatment
and control groups.

• Model Evaluation. The uplift model needs to be evaluated using appropriate
metrics. These metrics help assess the model’s performance in identifying
customers who are most likely to respond positively to the marketing treat-
ment.

• Targeting and Decision Making. Once the uplift model is built and evalu-
ated, it can be used to target customers for the marketing intervention. The
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model can identify customers who have a high likelihood of being positively
influenced by the treatment. These customers can then be prioritized for
the marketing campaign, maximizing the impact and return on investment.

• Iterative Refinement. Uplift modeling is an iterative process. The model’s
performance should be continuously monitored and refined based on the
observed outcomes. This helps improve the targeting strategy and optimize
the uplift achieved from the marketing interventions.

6.3 An experimental study on telecom data
In this section, we conduct different experiments to evaluate our Bayesian ap-
proaches on real data, specifically derived from Orange marketing campaigns con-
ducted in 2013 (data specifications are shown in Table 6.1). The original Orange
dataset contains 2700 variables. However, for the purpose of efficient computa-
tion, we have selected a subset of this dataset using Khiops software1, keeping
only 101 variables. We also added 50 noise variables to this dataset to better
evaluate the feature selection approaches.

First, we compare our uplift Bayesian decision trees and random forests ver-
sus the state-of-art uplift modeling algorithms. We then evaluate the impact
of UMODL discretization and feature selection as preprocessing steps on these
state-of-the-art uplift modeling algorithms.

Size P(Y=1|T=0) P(Y=1|T=1) P(T=1) No. columns No. continuous variables
20000 0.13 0.35 0.89 151 44

Table 6.1: Data specifications

6.3.1 UB-DT and UB-RF
In this part, we conduct a study to evaluate the performance of the UB-DT and
UB-RF algorithms on our dataset. We also compare their performance with the
state-of-art uplift modeling algorithms. More particularly, we evaluate the follow-
ing algorithms: 1. X-learner 2. R-learner 3. DR-learner 4. Two model approach
5. Random forest algorithm based on the ED criterion 6. UB-RF 7. UB-DT Each
of the X-learner, R-learner, DR-learner and the Two model approach was used
with a random forest algorithm and a logistic regression as base models. All ran-
dom forests are learnt using 10 trees. Each model is learnt using a 10-fold cross
validation. We use the qini metric [18, 56] to evaluate the uplift models.

1https://www.khiops.com/
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Figure 6.1: Qini curves: The x-axis denotes the number of individuals targeted,
while the y-axis shows the number of incremental positive outcomes.

X-learner R-learner DR-learner 2M
LR RF LR RF LR RF LR RF ED-RF UB-RF UB-DT

8.6(2.6) 5.6(3.8) 8.8(2.5) 8.0(2.5) 4.0(4.6) -0.5(2.0) 7.9(2.5) 7.5(4.4) 7.8(2.3) 14.4(5.3) 10.2(3.6)

Table 6.2: Qini values multiplied by 100 and variance for each uplift model. In
bold the biggest qini value.

Results Figure 6.1 shows the qini curves [18] for each model, aggregating data
from all test folds. The corresponding qini values are given in Table 6.2. Looking
at the results, we see that UB-RF (shown in pale pink color) outperforms all
other uplift modeling algorithms. Even a single decision tree with the UB-DT
approach shows remarkable efficiency and competes well with other methods.

6.3.2 Variable transformation
This section demonstrates the impact of employing a variable transformation with
the UMODL discretization as an initial preprocessing step. When the UMODL
discretization is applied to a non-informative variable, the result is a single inter-
val, i.e. the transformed variable follows a uniform distribution for all examples.
In such cases, UMODL discretization discards this variable. Consequently, the
process of transforming variables can be seen as inherently involving a feature
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selection step.
We carry out our experiments in three stages: the first with the original vari-

ables, the second with only a feature selection step, and the third with the variable
transformation incorporated as a preprocessing step. As just mentioned, it should
be noted that this third stage is considered to combine both feature selection and
transformation. Again the model is built using a 10-fold cross-validation approach.

Results Table 6.3 presents the performance of uplift modeling algorithms under
the three scenarios given above: 1. without any preprocessing step (i.e. original
variables) 2. with UMODL-FS as a preprocessing step 3. with variable transfor-
mation as a preprocessing step. The results indicate that feature selection sig-
nificantly improves the performance of all uplift modeling algorithms compared
to the original dataset (without any preprocessing). Applying variable transfor-
mation yields similar improvements for all uplift modeling algorithms, with the
exception of ED-RF. When comparing the impact of feature selection and vari-
able transformation, the benefits appear to depend on the uplift approach used.
For example, when logistic regression is used as the base learner, variable trans-
formation appears to offer better improvements. In the contrary, when random
forests are used as the base learner, feature selection shows to perform better.
By performing feature selection and variable transformation, the state-of-the-art
uplift models achieved the best results, close to those obtained with UB-RF (see
Table 6.2).

X-learner R-learner DR-learner Two Model
LR RF LR RF LR RF LR RF ED-RF

w/o preprocessing 8.6(2.6) 5.6(3.8) 8.8(2.5) 8.0(2.5) 4.0(4.6) -0.5(2.0) 7.9(2.5) 7.5(4.4) 7.8(2.3)
w/ feature selection 14.2 (3.3) 13.1(4.0) 14.1(3.1) 13.6(3.6) 12.3(5.2) -0.06(1.0) 12.8(1.7) 14.1(3.8) 14.3(4.2)
w/ transformation 14.3(4.6) 11.6(2.7) 14.0(5.1) 13.6(5.0) 14.3(4.8) 1.7(7.5) 14.8(5.5) 10.0(3.1) 0.4(3.1)

Table 6.3: Qini values and variance (multiplied by 100) for each uplift model. In
bold the biggest qini value among all the values.

6.3.3 Feature Selection
We evaluate the following feature selection methods: KL, LR filter, F filter and
UMODL-FS. Each feature selection method gives a score to each variable in the
data. The principle of the experiment is to feed the top-k features selected by
each of the feature selection method into an uplift modeling algorithm and then
observe the performance of the model. We use an incremental approach, first
introducing only the top-1 feature. We then incrementally add an additional set
of fifteen features at each step, continuing this iterative process until all features
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(a) (b)

Figure 6.2: Uplift models with the top features

are integrated into the model. UMODL-FS allows us to continue selecting top
features, as long as it gives them an importance score greater than zero. Once
a score of zero is reached, no additional features are selected, thus establishing a
threshold for feature selection.

Results Figure 6.2 shows the performance obtained with the two model ap-
proach and X-learner respectively. Each of these two models are used with a
random forest of 10 trees. UMODL-FS shows a good performance selecting the
top features leading to performant uplift models. In addition, UMODL-FS au-
tomatically determines the features to eliminate without user intervention. In
contrast, the other feature selection methods cannot automatically determine an
appropriate cut-off score for a feature to be discarded or considered.

6.4 Kuplift Library
This section gives a brief introduction to Kuplift 2 and how to use it. Kuplift is
a Python library that implements our parameter-free Bayesian methods. It im-
plements uplift Bayesian decision trees, random forests, discretization and feature
selection. It provides a standard interface (like scikit-learn [41] and causalml [15]).

UB-DT and UB-RF

# Uplift Bayesian Decision Tree
from kuplift import BayesianDecisionTree

2https://github.com/UData-Orange/kuplift
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T=BayesianDecisionTree(df_train,treatment_column,outcome_col)
T.fit()
preds=T.predict(df_test)
# To visualize a tree in a text form
print(T.export_tree())

# Uplift Bayesian Random Forest
from kuplift import BayesianRandomForest
T=BayesianRandomForest(df_train,treatment_column,outcome_col)
T.fit()
preds=T.predict(df_test)

UMODL discretization

from kuplift import UnivariateEncoding
ue = UnivariateEncoding()
ue.fit(df_train,treatment_column, outcome_col)
df_test=ue.transform(df_test)

UMODL-FS

from kuplift.FeatureSelection import FeatureSelection
fs = FeatureSelection()
important_vars = fs.filter(data, treatment_column, outcome_col)

6.5 Conclusion
In this chapter, we first discussed in Section 6.2 important steps required to per-
form uplift modeling on telecommunications data. These steps include defining the
outcome, assigning the treatment, preparing the data, learning the uplift model,
and finally evaluating the model. We highlight that the uplift modeling process is
iterative and requires ongoing monitoring and refinement to achieve the greatest
possible benefit from a marketing campaign.

Then in Section 6.3, we conducted a series of experiments using real telecom
data from the French company Orange. First, we compared our proposed uplift
modeling methods, UB-DT and UB-RF, with state-of-the-art approaches. The re-
sults show the efficiency of our methods. We then implemented variable transfor-
mation and feature selection as preprocessing steps for the traditional approaches
to improve their performance. We explained how variable transformation inher-
ently involves feature selection. Based on our experimental results, these two pre-
processing steps significantly improved the effectiveness of the uplift algorithms.
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We observed that variable transformation was particularly useful when the base
learner was a logistic regression model. However, feature selection showed higher
efficiency when the base learner was a random forest algorithm. In our final
experiment, we highlighted the advantages of a parameter-free feature selection
approach. This method automatically identifies the cutoff number of informative
features in the data, eliminating the need for users to manually set this parameter.

Our conclusion suggests that it is advantageous to use parameter-free ap-
proaches when developing an uplift model. These techniques eliminate the need
to select a specific base learner, set parameters for a specific algorithm, perform
extensive preprocessing, or determine a cutoff number of features for a feature
selection approach. This strategy simplifies the modeling process and reduces the
potential for error.

Finally, in Section 6.4, we introduced Kuplift, our Python package which im-
plements all the algorithms mentioned in this thesis.
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7.1 Conclusion
This thesis contributes to the field of uplift modeling. It was conducted in collab-
oration with the French telecommunications company Orange. In particular, this
thesis addresses three main challenges:

1. The parameterization problem for existing uplift modeling algorithms.

2. Data bias in uplift modeling.

3. The high dimensionality problem in uplift modeling.

We address these challenges by first proposing in Chapter 3 the UMODL
approach. UMODL aims to identify the model that is most likely given the
data. This means finding the model that maximizes the posterior probability
P (M |D). By applying Bayes’ theorem, we find that maximizing the posterior
probability is similar to maximizing the product of the prior probability and the
likelihood. Thus, UMODL specifies a space of models and a prior distribution.
From this model space, a Bayesian optimal evaluation criterion is defined, which
is determined by taking the negative logarithm of the stated posterior probability.
A search algorithm is then used to find the model with the optimal criterion.
This approach is completely user parameter free and can be applied to a variety
of model types.

For an uplift discretization model (see Section 3.2.1), the prior distribution
is defined by the number of intervals, the bounds of those intervals, the presence
or absence of a treatment effect in each interval, and the class frequencies per
treatment in each interval (or per interval). The prior distribution is defined by
assuming the independence of the distributions across intervals and by assuming
a uniform distribution for each parameter. We have shown that the UMODL

118



7.1. Conclusion

discretization, being a density estimation approach, is a good univariate uplift es-
timator. Finding a set of intervals with different treatment effects is equivalent to
estimating the treatment effect for each instance in those intervals. We have con-
ducted an experimental protocol to assess UMODL as an uplift estimator through
discretization. We have defined different synthetic uplift patterns and generated
accordingly several datasets with several data sizes. The use of synthetic data
gave us the advantage to know the true uplift value and thus be able to compare
the estimated uplift value by our approach and the true one. By observing the
RMSE of the predicted uplift values and the number of found intervals by data
size, we were able to infer the following characteristics: 1. UMODL is a good
uplift estimator through discretization. 2. UMODL does not overfit 3. It needs
sufficient number of instances to give prominence to a model with more intervals

We proceeded to show the application of the UMODL discretization technique
to categorical variables. Essentially, the discretization attempts to create a set
of intervals that can partition a continuous variable into distinct categories while
preserving the maximum amount of information from the original continuous at-
tribute. One obvious method for applying the UMODL discretization strategy
to a categorical variable is to transform the categorical values into numerical
values using traditional label encoding. In the same chapter, Section 3.4, we ex-
plain why traditional label encoding is inadequate, and then propose a supervised
uplift-based label encoding. The proposed encoding ranks the categorical values
of a variable according to their respective uplift values. This technique efficiently
groups instances with similar uplift values, as explained in Section 3.4.2.

In the last part of Chapter 3, we introduced UMODL-FS, a feature selection
method that was shown experimentally to be efficient at eliminating noise vari-
ables and to find the set of variables that lead to uplift models with the best qini.
The UMODL-FS approach computes a divergence measure between the treatment
and control distributions for each interval found in a variable. The sum of the
divergences over the intervals becomes the score of the variable. Additionally to
selecting the most informative set of features, UMODL-FS allows us to continue
selecting top features, as long as it gives them an importance score greater than
zero. Once a score of zero is reached, no additional features are selected, thus
establishing a threshold for feature selection. However, determining an appro-
priate cut-off score for feature selection cannot be done for other state-of-the art
feature selection approaches. We conducted an experimental protocol on real and
synthetic datasets, where the idea was to gradually add noisy features and build
several uplift models, each with a different feature selection method as a prepro-
cessing step. Experiments show that UMODL-FS removes irrelevant features and
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clearly outperforms state of the art methods by providing uplift models with the
highest and most stable qini.

Following the same Bayesian approach, in Chapter 4 we propose a new user-
parameter-free uplift Bayesian decision tree approach, which we call UB-DT. Un-
like conventional decision tree learning approaches, we transform the uplift de-
cision tree learning problem into an optimization problem, where the goal is to
find the uplift tree that is most likely given the data. UB-DT consists of two
components: a global evaluation criterion for a binary uplift decision tree and a
search algorithm to find the optimal tree. A global evaluation criterion evaluates
an entire tree model, taking into account all splits in the tree at once. Following
the same logic, we have defined the parameters and the evaluation criterion for
an uplift decision tree. We have defined the uplift tree model by:

• its structure (a set of internal and leaf nodes),

• the distribution of instances in internal nodes. This is described by the
segmentation variable for each node and the way the instances are divided
into two child nodes,

• the distribution of instances in leaf nodes. Here, each leaf node could either
have a treatment effect, which is described by the distribution of instances
per treatment, or it could have no treatment effect, in which case it’s repre-
sented by the distribution of instances.

These parameters were formally defined as well as their hierarchy, which describes
the dependencies between the parameters. The hierarchy of the uplift tree model
is described from the root node to its children and recursively to the leaves. We
also assume independence of the distribution of outcome values between child
nodes and a uniform distribution for each parameter. Again, the global evaluation
criterion is defined as the negative logarithm of the posterior probability of an
uplift tree model given the data. A search algorithm is then used to find the
optimal tree model. The extension of the uplift decision tree search algorithm to
random forests is also presented in Section 4.2.5. We evaluated UB-DT versus
state-the-art tree-based approaches on 2 synthetic patterns. We generated several
datasets according to these patterns with several different numbers of instances
ranging from 100 to 100,000 instances. For each dataset, models are learnt using
10-fold cross validation and evaluated using the RMSE. With UB-DT, RMSE
decreases and converges to zero when the data size increases for both synthetic
patterns. Subsequently, we evaluated UB-DT and UB-RF against state-of-the-
art uplift algorithms on real and synthetic datasets widely used in the uplift
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modeling community. The results show that our proposed approaches remain
competitive when compared to existing state-of-the-art algorithms.

In Chapter 5, we address the problem of data bias. More particularly, we
define the non-random assignment bias (NRA) in the context of uplift modeling.
The NRA bias occurs when the treatment and control groups do not have the
same distributions of the samples. We designed an experimental protocol to sim-
ulate the NRA bias in uplift datasets. The goal of the protocol was to generate
the NRA bias in the data and study its effects on state-of-the-art uplift meth-
ods, as well as our proposed decision tree and random forest approaches, UB-DT
and UB-RF. The results of our experiments showed that the models with the
highest resistance to the NRA bias are mainly the meta-learners and our newly
proposed UB-RF method. Our UB-DT approach, although being a single
tree, showed competitive performance versus the NRA bias. Another conclusion
was that the class-transformation approach is particularly sensitive to the NRA
bias. In the second contribution of this chapter, we proposed to use a reweighting
method based on the propensity scores to weight individuals in the treatment
group based on their corresponding weights in the control group, thereby making
the biased population more similar to the unbiased population. We tested this
approach with the class transformation approach, that was greatly improved with
the reweighting method.

In Chapter 6 we performed additional evaluations of our proposed approaches
on real telecom data. We first illustrate the steps involved in an uplift model-
ing process as practiced in telecom companies. Following this, we run a series
of experiments to compare UB-DT and UB-RF approaches against state-of-the-
art methods using real telecom data provided by the French company Orange.
We highlighted the importance of parameter-free approaches to liberate us from
choosing parameters and/or base learners for meta-learners. We then investigated
the effects of preprocessing uplift data via feature selection (using UMODL-FS)
and/or variable transformation (using UMODL discretization) on the resultant
uplift models. Our analysis showed that when logistic regression is used as the
base learner, variable transformation is significantly more beneficial than feature
selection. Conversely, when random forests are used as the base learner for meta-
learners, feature selection becomes the more favorable option. In all our experi-
ments (except the tests with ED-RF approach), preprocessing the data with fea-
ture selection or variable transformation was found to lead to better uplift models
than only using the original data without preprocessing.
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7.2 Future directions
In this section we give several perspectives for this thesis. We begin by presenting
two axes of perspectives: one that focuses on future directions for our Bayesian
uplift approach, and the second on exploring perspectives for uplift modeling.
Fig. 7.1 shows a visual illustration of these two axes. Finally, we present a third
axis about exploring data bias in the context of uplift modeling.

7.2.1 Extension of our Bayesian approach
Several extensions to our Bayesian approach can be proposed. First, the proposed
criterions for UMODL and UB-DT were designed for continuous attributes.
For categorical variables, in Section 3.4 we proposed an uplift-based encoding for
categorical data. We used this encoding to efficiently convert categorical variables
into numerical variables and thus apply the UMODL approach.

However, a new UMODL criterion for categorical variables could be designed.
Given a categorical variable, this criterion would aim to group together values
that exhibit similar behavior, i.e., have the same uplift density. The MODL
approach for categorical variables [9] could be considered as a first reference. This
new criterion can also be used for uplift feature selection to give more reliable
importance scores for categorical variables.

Subsequently, the UMODL criterion for continuous variables that we presented
in Chapter 3 could be integrated with the UMODL criterion for categorical vari-
ables to extend the uplift decision tree approach. Thus, a new UB-DT criterion
could be proposed that makes appropriate splits for both continuous and categor-
ical variables.

Concerning our proposed uplift decision tree approach, we emphasize that
improving the search algorithm design and implementation is crucial to make the
developed algorithms more tractable. In addition, our proposed uplift decision
tree search algorithm can be improved by using a post-optimization algorithm to
prevent our search algorithm from falling into local minima [71].

We also note that for simplicity, our proposed UB-DT criterion and search
algorithm were designed for binary trees. An extended criterion to General Trees,
where each node can have many children, can be defined. This will give the
UB-DT approach the freedom to do binary splitting and/or multiple splittings
depending on the value of its criterion. This may allow uplift Bayesian decision
trees to model more complex patterns.

Finally, the Bayesian approach we present in this thesis is a general approach
that can also be applied to a variety of models such as Selective Naive Bayes [10],
k-nearest-neightbours [23]. The difference for each type of model is how we de-

122



7.2. Future directions

Figure 7.1: Future directions

termine the prior distribution and the model space. As discussed in Chapter 3
and Chapter 4, in general, a prior distribution is determined by exploiting the
hierarchical structure of its parameters (each model type has its own set of pa-
rameters). This hierarchy indicates the dependencies between parameters and
implies that the parameters must be chosen in a certain order when defining the
prior distribution.

7.2.2 Future directions for the uplift modeling problem
So far, our Bayesian approach, as well as most of the literature on uplift modeling,
has been designed for the case of binary treatment and binary outcome. However,
there are applications with multiple treatments, such as when we try to find the
optimal marketing campaign among several types of campaigns. Examples of
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multiple treatments in marketing include choosing the optimal treatment for each
customer such as offering a discount on a customer’s monthly bill or offering extra
data for free or offering free access to a premium service. To our knowledge, the
problem of multiple treatments has not been studied much in the literature. Some
studies include tree-based approaches for multiple treatments [53, 63, 26].Our
Bayesian criterion for discretization and uplift decision trees can also be extended
to the case of multiple treatments.

In addition, the continuous treatment problem is very interesting and very
needed in various domains such as medical and marketing domains. Examples of
continuous treatments are the drug dosage to be given to a patient in the medical
field and the length of SMS sent in the marketing field. Modeling continuous
variables using the MODL approach was studied in [35] and can be used as a
basis of a new uplift criterion for continous treatments and outcomes.

Another type of an uplift modeling problem is the estimation of individual
uplift based on sequence data [20]. Essentially, this involves determining the
uplift for each individual, taking into account a sequence of their behaviors. An
example of sequence data: a customer initially accepted an Internet offer, then
upgraded to a premium package, and then subscribed to a movie platform.

7.2.3 Data bias in uplift modeling
A third axis of perspective is data bias. In this thesis, we have studied a particular
type of bias called the non-random assignment bias. In Section 2.5, we have also
introduced other types of bias, such as the non-response bias and the deployment
bias. These types of biases can be studied in the future. Experimental protocols
can be designed to simulate them in the datasets, similar to what we did in Chap-
ter 5. As an example, one potential experimental protocol could be to simulate
the deployment bias within the data and then examine its effect on the uplift
modeling approaches. This could be accomplished by designing experiments in
which we first apply the uplift approach to training data and then test it on data
from an identical distribution. Gradually, we would introduce variation into the
test data, moving it away from the distribution of the training set. In this way, we
can observe the ability of different uplift methods to maintain their generalization
and the degree to which they can resist these changes.
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A.1 Experimental results with 50 trees
In Chapter 4, we conduct an experimental protocol to compare the performance of
the UB-RF approach with state-of-the-art uplift modeling approaches on several
datasets. For all approaches, we use 10 trees to construct the uplift models. In
this appendix, we present supplementary results in which each of the algorithms is
built using 50 trees. The corresponding average qini values are shown in Table A.1.

Dataset XLearner RLearner DR 2M KL-RF Chi-RF ED-RF CTS-RF UB-RF CausalForest
Hillstrom-m 1.1(2.6) 0.6(2.0) 1.1(1.8) 0.3(2.7) -1.0(1.5) -0.3(1.6) -0.4(1.8) -0.1(1.5) 1.5(1.4 -0.2(2.1)
Hillstrom-w 4.2(0.9) 6.1(1.6) 6.0(1.7) 4.7(1.5) 4.3(1.5) 4.7(1.3) 4.4(1.2) 4.5(1.4) 6.5(0.9 4.0(1.6)
Hillstrom-mw 2.9(2.3) 3.8(2.6 3.4(2.7) 2.8(1.9) 0.4(1.1) 0.7(1.0) 0.6(1.8) 1.1(1.1) 3.0(1.7) 0.5(1.0)
Gerber-n 6.1(0.6 1.9(0.6) 0.6(1.0) 5.7(0.6) 5.3(1.0) 5.4(1.0) 5.7(0.6) 4.2(0.9) 2.8(0.8) 4.5(0.9)
Gerber-s 5.4(0.8 1.7(0.7) 1.1(0.9) 4.9(1.0) 4.9(0.7) 5.0(1.0) 5.0(0.7) 4.5(0.6) 2.1(0.8) 4.7(0.8)
Criteo-c 19.6(2.3) 19.3(1.0) 16.6(6.0) 18.4(1.3) 19.6(1.9) 19.1(1.8) 22.0(1.6 10.0(1.9) 20.8(0.9) 15.3(1.9)
Criteo-v 3.1(0.7) 5.0(0.5) -3.4(3.5) 2.6(0.7) 5.9(0.5) 5.1(0.6) 6.5(0.5 2.9(0.8) 6.1(0.6) 1.6(0.4)
Megafon 18.8(0.6 2.6(0.5) 2.3(0.4) 18.3(0.7) 16.5(0.6) 15.9(0.4) 17.2(0.5) 13.8(0.7) 14.3(0.8) 14.0(0.5)
Bank-tel -4.8(8.2) 0.9(5.2) -2.7(13.1) 16.4(9.1) -13.9(5.4) -9.1(8.1) -16.6(4.2) -20.5(3.9) 26.0(5.9) 38.5(8.2
Bank-cell 11.8(4.6) 19.9(5.1) 5.7(11.2) 27.5(3.4) 0.6(3.1) 0.9(2.3) -0.6(3.1) -1.7(2.8) 49.0(2.7 30.9(2.3)
Bank-tel-cell 10.3(4.2) 17.4(8.3) 3.7(10.1) 27.6(3.9) 1.5(3.0) 1.3(3.2) -2.5(3.7) -0.6(1.9) 48.6(1.5 32.0(0.9)
Information 13.0(3.2) 10.1(2.8) 3.3(2.2) 11.8(4.6) 12.9(3.2) 13.1(3.3) 13.3(3.0) 12.4(3.6) 13.6(3.3) 14.1(2.4
Starbucks 17.9(4.6) 22.5(3.8 22.4(3.9) 17.6(3.3) 17.3(3.8) 16.9(5.7) 17.1(5.3) 16.9(3.8) 20.2(3.3) 13.8(4.3)
RHC 33.0(2.8) 29.3(4.1) 28.2(5.0) 36.8(2.9 34.1(4.8) 34.3(5.1) 34.5(4.7) 32.6(4.6) 30.6(4.4) 30.4(3.7)

Table A.1: Average qini values and standard deviation (multiplied by 100) across
datasets and uplift approaches. In bold, the best value for each dataset. Each
approach was learnt with 50 trees.

(a) 10 trees (b) 50 trees

Figure A.1: Overall average ranking of the uplift approaches

We show in Fig. A.1b the overall average ranking of the uplift approaches with
50 trees. Compared to the average ranking of the uplift approaches with 10 trees
(cf. Fig. A.1a), the UB-RF has a slight improvement in ranking, but for the rest
of the uplift approaches no significant ranking difference can be observed.
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To facilitate the comparison of the performance of different methods on 50
trees (see Table 4.3) and 10 trees (see Table A.1), we show the delta values in
Table A.2. They represent the difference between the qini values in both tables,
associated with each uplift approach and each respective dataset. A positive delta
value means an improvement in performance when increasing the number of trees
from 10 to 50.

When evaluating Table A.2, we note that the performance of UB-RF, along
with other forest-based methods (KL-RF, Chi-RF, ED-RF, Causal Forest), shows
an improvement as the number of trees increases. Particularly noteable are the
positive delta values observed in the Causal Forest approach for all datasets. How-
ever, it is to be noted that the initial performance of the Causal Forest approach
with 10 trees was poor. The performance of metalearners using xgboost as a base
learner decreases as the number of trees is increased. When increasing the number
of trees, the performance of UB-RF shows an improvement and at the same time
maintains its position among the best uplift approaches. With 50 trees, it has the
best average ranking among all the uplift approaches.

Dataset XLearner RLearner DR 2M KL-RF Chi-RF ED-RF CTS-RF UB-RF CausalForest
Hillstrom-m 0.8 0.4 0.1 -0.4 -1.0 0.6 -0.5 0.2 -0.3 -0.2
Hillstrom-w -2.0 -0.1 0.0 -0.2 -1.9 -2.3 0.7 0.2 -0.2 2.0
Hillstrom-mw -0.8 0.0 -0.4 -0.2 -2.6 -2.1 0.6 0.7 -0.1 -0.6
Gerber-n 2.4 0.0 0.3 2.6 3.5 3.3 1.4 1.0 0.1 2.1
Gerber-s 3.0 0.0 0.7 2.7 3.6 3.6 1.5 1.2 0.3 1.9
Criteo-c -2.7 0.0 -3.5 -1.1 5.0 6.7 1.6 0.7 2.1 4.0
Criteo-v 2.8 -0.3 -6.7 -1.3 0.5 0.3 1.2 0.5 0.4 1.4
Megafon 0.6 0.0 0.1 1.7 5.3 4.9 6.4 4.6 1.5 4.3
Bank-tel -19.3 -1.5 -18.6 -4.7 1.6 -3.0 -2.2 -2.1 -0.7 12.7
Bank-cell -7.0 -5.0 -15.0 -3.5 0.2 -0.6 2.3 -0.5 3.5 10.2
Bank-tel-cell -5.9 -5.8 -14.2 -2.9 0.1 1.7 0.4 1.0 2.5 11.6
Information -1.9 0.3 -0.9 -1.9 3.3 3.4 2.2 0.9 1.6 3.3
Starbucks -4.4 0.0 -0.1 -5.1 -5.1 -4.5 2.2 2.7 0.0 4.0
RHC 0.4 -2.3 -1.7 2.1 5.4 5.0 1.9 1.9 4.1 5.9
Mean -2.4 -1.0 -4.3 -0.9 1.3 1.2 1.4 0.9 1.1 4.5

Table A.2: The delta values (the difference) between qini values when the model
is trained with 50 trees and qini values when the model is trained with 10 trees.
The last row shows the average of the delta values.
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