
HAL Id: tel-04465424
https://theses.hal.science/tel-04465424

Submitted on 19 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predicting and understanding transcriptional regulation
of floral development by LEAFY

Laura Turchi

To cite this version:
Laura Turchi. Predicting and understanding transcriptional regulation of floral development
by LEAFY. Vegetal Biology. Université Grenoble Alpes [2020-..], 2023. English. �NNT :
2023GRALV064�. �tel-04465424�

https://theses.hal.science/tel-04465424
https://hal.archives-ouvertes.fr


THÈSE 
Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : CSV- Chimie et Sciences du Vivant
Spécialité : Biologie Végétale
Unité de recherche : LPCV - Laboratoire de Physiologie Cellulaire Végétale

Prédire  et  comprendre  la  régulation  transcriptionnelle  du
développement floral par LEAFY

Predicting  and  understanding  transcriptional  regulation  of  floral
development by LEAFY

Présentée par :

Laura TURCHI
Direction de thèse :

François PARCY
Directeur de Recherche CNRS, Université Grenoble Alpes

Directeur de thèse

Antoine FRENOY
MAITRE DE CONFERENCE, Université Grenoble Alpes

Co-encadrant de thèse

 

Rapporteurs :
Klaas VANDEPOELE
FULL PROFESSOR, Universiteit Gent
Marie-Laure MARTIN
DIRECTRICE DE RECHERCHE, INRAE Ile-de-France - Versailles-Saclay

Thèse soutenue publiquement le 26 octobre 2023, devant le jury composé de :
François PARCY
DIRECTEUR DE RECHERCHE, CNRS délégation Alpes

Directeur de thèse

Klaas VANDEPOELE
FULL PROFESSOR, Universiteit Gent

Rapporteur

Marie-Laure MARTIN
DIRECTRICE  DE  RECHERCHE,  INRAE  Ile-de-France  -  Versailles-
Saclay

Rapporteure

Cristel CARLES
PROFESSEURE DES UNIVERSITES, Université Grenoble-Alpes

Présidente

Gabriel KROUK
DIRECTEUR DE RECHERCHE, CNRS délégation Occitane Est

Examinateur

Invités :
Romain Blanc-Mathieu
CHARGE DE RECHERCHE, 
Nicolas Thierry-Mieg
CHARGE DE RECHERCHE, 



1 
 

 
 

 

 

 

 

 

 

 
Predicting and understanding transcriptional 

regulation of floral development by LEAFY 
 

The role of genomic context and cofactors, and the elusive impact 
of evolutionary conservation 

  



2 
 

Acknowledgements 

First and foremost, I would like to sincerely thank all jury members for agreeing to serve on 

this committee and for taking the time to evaluate my work, I truly enjoyed discussing with 

all of you. 

I would also like to thank the members of my PhD committee, who helped me shape and 

steer my PhD project(s) in the past three years by offering their expertise and an external 

point of view while constantly supporting my work. 

I am also extremely grateful to my team of supervisors, without whom I would not be here 

today. Thank you all for believing in me since the very beginning, for supporting and 

challenging me in the past three years while giving me time and space to figure things out on 

my own. I am amazed by how we always managed to find common ground for fruitful 

scientific discussions despite our different yet complementary expertise. I cannot fully 

express my gratitude in words, but I will do my best. Merci François pour ta curiosité et ta 

motivation inépuisables, pour l’énergie et la passion avec lesquelles tu te travailles pour 

rendre la science et la recherche accessibles au plus grand nombre. Surtout, merci d’avoir eu 

confiance en moi et en mes capacités dès mon stage de « découverte bioinformatique », 

sans lequel je n’aurais pas pu entreprendre le chemin de cette thèse. Merci Antoine pour ta 

disponibilité et ta porte toujours ouverte, pour ta patience, pour ton investissement dans 

ton rôle de formateur sous tous ses aspects et pour l'attention que tu as toujours portée à 

tous les membres de l'équipe. Tu as été un modèle de science et de recherche sereine, 

rigoureuse, engagée et attentive. Merci Romain d'avoir toujours été là quand j'avais besoin 

de toi, surtout ces derniers mois, que ce soit pour de petites questions ou de plus grandes 

discussions, ainsi que pour des moments de détente. Merci Nico pour tes conseils et ton 

souci du détail, qui m'ont toujours aidée à prendre du recul par rapport au projet et à porter 

une attention particulière aux analyses. Merci Jérémy d'avoir été si patient avec moi dès le 

début, en m'accueillant comme stagiaire malgré ma totale inexpérience en bio-informatique 

et en programmation. Merci pour les discussions au bureau, pour ton aide quand j'en avais 

besoin et plus généralement pour m'avoir montré, petit à petit, l'importance et la puissance 

de cette discipline que j'adore aujourd'hui. 

Science is a collective effort, and support from colleagues and friends has been crucial to get 

over the disappointments and slow patches that one inevitably faces while doing a PhD. Un 

grand merci à toute l'équipe de Flo_Re pour m'avoir accueillie à bras ouverts, pour les 

échanges scientifiques lors des réunions et pour les bons moments passés lors des journées 

et des retraites d'équipe. Un merci spécial à Gaby, pour son soutien et sa patience depuis le 

master, puis pendant les expériences que nous avons menées ensemble. Merci à Manu, 

Renaud, Moïra, Philippe, Loïc, Marianne et tous les stagiaires qui ont travaillé avec nous 

pendant ces trois ans. Un grand merci à l’équipe MAGe, pour l’ambiance toujours détendue 

et les goûters partagés, ainsi que pour l’effort constant de trouver un terrain commun de 

discussion et d’entraide malgré nos expertises parfois éloignées. Une mention spéciale pour 

Amandine, avec laquelle j’ai partagé l’intégralité de mon parcours de thèse, entre repas 

gourmands et accrobranche, aide technique et support moral dans les moments les plus 



3 
 

difficiles. Merci à Olivier, Mag, Nagi, Florence, Zakaria, Chloe, Elise et tous ceux qui ont fait 

partie de l’équipe au cours de ces trois ans. Merci à mes laboratoires d’accueil, LPCV et 

TIMC, et en particulier merci à la communauté « Science for dummies » du LPCV, qui a été 

une source de soutien et motivation à plusieurs reprises. Merci aussi à Tiffany et Sophie (la 

meilleure team admin du monde !) de m’avoir toujours aidée, jusqu’au dernier moment. Un 

grand merci à Camille, pour les apéros, l'escalade, les escapades dans le sud de la France, 

mais aussi pour avoir écouté et partagé dans les moments de stress de la thèse. 

Since it is vital to have interests and sources of joy and fulfillment out of the lab, and I am 

grateful for the wide network of friends that have supported me in a variety of ways 

throughout this journey. Grazie Emma per avermi affiancata, di fatto, dall’inizio del 

dottorato fino alla fine, per aver sempre rappresentato un’isola felice di interessi, attività e 

creatività, nonché la mia unica parentesi italiana in terra francese. Merci à Zoé et Irene, best 

colocs ever, et au groupe du jardin, qui a commencé comme une drôle aventure et qui 

m’accompagne toujours. 

Un grazie speciale alla famiglia e agli amici che mi hanno supportata (e sopportata) in questi 

ultimi anni, rispettando le mie scelte nonostante la distanza. Grazie per esserci sempre e per 

accogliermi ogni volta come se non fossi mai partita, spero che non cambi mai. 

Last but not least, I am not sure where I’d be today if it weren’t for Vangeli. Thank you for 

always being there for me since the beginning, for your endless patience and support 

(especially in the past few months), and more generally for being the best partner I could 

ever ask for. 

  



4 
 

Summary 

Ensuring correct gene expression is crucial for living organisms, as its disruption can compromise 

survival. Transcription factors (TFs) regulate gene expression through the binding of specific DNA 

sequences called transcription factor binding sites (TFBSs). LEAFY (LFY) is a plant-specific TF with a 

crucial role in floral development, and it is highly conserved in sequence and binding specificity 

throughout flowering plant evolution.  

LFY’s central role in flowering has been studied for decades, and yet it remains unclear why only a 

subset of the genomic regions bound by LFY are regulated. To elucidate this point, I present, in the 

first part of this manuscript, an approach to predict transcriptional regulation of LFY TFBSs in the 

model plant Arabidopsis thaliana. I used state-of-the-art LFY TFBS models and the genetically-

encoded genomic context of LFY sites to successfully build a classifier that can distinguish functional 

LFY sites (i.e. TFBSs that are bound and have an effect on gene expression in vivo) from nonfunctional 

ones (i.e. TFBSs that are not bound and are not associated with gene expression changes in vivo). My 

results suggest that the presence of surrounding LFY TFBSs and, to a lesser extent, the level of non-

LFY TFBS diversity around LFY sites, are important to distinguish functional and nonfunctional LFY 

sites. Moreover, this approach reveals a number of co-occurring TFs that contribute to set apart LFY-

regulated sites from nonfunctional ones. Despite previous evidence of the functional importance of 

conserved regions in gene regulation, including conservation of LFY sites in our model did not 

improve predictions, and I discuss some possible reasons behind this result. Overall, this approach 

allowed me to further characterize LFY’s binding to DNA, and it can be used on new genomic 

sequences to predict transcriptional regulation of LFY sites, as well as with new TFs. 

In addition to working on its own, LFY interacts with UNUSUAL FLORAL ORGANS (UFO), an F-box 

protein, to ensure correct petal and stamen development. While the LFY-UFO interaction and their 

implication in flower development were already known, the exact role of UFO in this process had yet 

to be determined. In the second part of this manuscript, I include a recently published article on the 

transcriptional role of the LFY-UFO complex in flower development that allows access to genomic 

regions distinct from those bound by LFY alone. Moreover, I present some additional results 

suggesting the implication of LFY and UFO in floral meristem establishment in the early stages of 

flower development, broadening their importance in this crucial developmental process. 
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1 Introduction 

1.1 Complexity of gene regulation in living organisms and open challenges 

Spatiotemporal regulation of gene expression is required for correct development and to 

ensure species survival. While genetic information is the same in all cells, the set of 

expressed genes can vary depending on developmental stage and environmental cues.  

During gene expression, information encoded in the DNA is transcribed to RNA and then 

translated to proteins (Figure 1.1-1). This is also known as the central dogma of molecular 

biology, first proposed by Francis Crick in lectures in 1957 and then published the following 

year (Cobb, 2017; Crick, 1958). Transcription Factors (TFs) are a particular class of proteins 

that can bind DNA at specific sites and recruit the transcriptional machinery to control the 

expression of specific genes.  

 

Figure 1.1-1 Francis Crick's first outline of the central dogma of molecular biology, later explained in 
(Crick, 1958). From (Cobb, 2017). 

Knowing when and where genes are expressed is crucial to increase our understanding of 

the physiological and developmental processes in which they are involved. Recent 

technological advances have dramatically increased the availability of total mRNA or protein 

profiles in many species and at increasing resolution, from whole tissues to single cells and 

even single nuclei (Bennett et al., 2023; Noor et al., 2019; Slyper et al., 2020). These data are 

valuable to better understand complex biological processes at the systemic level (Greene & 

Troyanskaya, 2010).  
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In recent years, powerful computational approaches have leveraged such data to tackle 

fundamental questions in gene regulation biology, reaching remarkable accuracy in 

previously unattainable tasks such as the prediction of gene expression from DNA sequence 

(Avsec, Agarwal, et al., 2021). However, building such models requires extensive data, which 

are hardly available outside of model organisms or simplified systems (e.g. tissue culture). 

Moreover, they often trade performance and accuracy for interpretability and robustness on 

different systems (Meyer & Saez-Rodriguez, 2021). 

As the general rules of gene expression presented in Figure 1.1-1 are common to all living 

organisms, leveraging data from multiple species can also offer new insights into 

fundamental questions about gene regulation in living systems. Multispecies comparisons 

have been instrumental in the study of noncoding regulatory regions, as highly conserved 

sequences have been shown to be functionally important (Berthelot et al., 2018; Lindblad-

Toh et al., 2011; Siepel et al., 2005; Wittkopp & Kalay, 2012). Despite multiple disciplines 

coming together to decipher the complexity of gene regulation, our understanding of living 

systems at higher scales remains fragmented and is far from complete. 

 

This manuscript mainly focuses on the early steps of gene regulation, namely the binding of 

TFs to DNA to regulate gene expression. In the rest of the introduction, I will first introduce 

the role of TFs in gene regulation in general, the factors influencing their binding and the 

main techniques to study their binding genome-wide, as well as the statistical models that 

can be used to study their binding specificity. As TFs can bind DNA with the help of other 

cofactors, I will go on to describe how different TF combinations can influence gene 

expression. Then, I will discuss how evolutionary information can be important to study the 

regulatory function of genomic sequences. Finally, I will focus on the model plant 

Arabidopsis thaliana (hereafter Arabidopsis) and on flowering as a system to study gene 

regulation, and I will conclude by focusing on one TF in particular, LEAFY (LFY), a master TF 

with a central role in flowering, as it will be at the core of chapter one and two. 

 



11 
 

1.2 Transcription factors in gene regulation 

Transcription factors (TFs) are proteins that can bind DNA at specific positions to regulate 

gene expression, either positively or negatively. They constitute about 5% of protein-coding 

genes in Arabidopsis and around 8% in the human genome (Lambert et al., 2018; Riechmann 

et al., 2000). 

TFs fulfill their regulatory function through the physical interaction of their DNA-binding 

domain (DBD) with short DNA motifs called TF binding sites (TFBSs). The recognition of such 

sequences on the genome is influenced by several factors that depend either on the nature 

of the DNA sequence itself, or on the presence of other proteins (Figure 1.2-1). 

DNA sequence is an important determinant of TF-DNA binding, and it is directly linked to the 

three-dimensional (3D) structure of the DBD (Figure 1.2-1A). TFs with similar DBDs tend to 

recognize similar motifs, and such similarities have led to the use of DBD structure as a basis 

for TFs classification in mammals and plants (Blanc-Mathieu et al., 2023; Wingender et al., 

2015). 

Regulatory regions are enriched in TFBSs bound by different TFs, and their arrangement and 

nature can also influence gene expression (Figure 1.2-1B) (Spitz & Furlong, 2012). This is the 

so-called combinatorial nature of the cis-regulatory code, whereby combinations of different 

TFs co-occur on related target regions at preferential distances from each other, establishing 

additional regulatory interactions. Such interactions can lead to cooperativity (i.e. binding of 

one TF increases the binding affinity of another TF) or competition (i.e. binding of a TF 

prevents binding of a second one) between TFs, which influence DNA binding and 

downstream gene expression (Figure 1.2-1B). This topic will be further developed in another 

section of the introduction: Combinatorial nature of the cis-regulatory code, p. 29. 

DNA shape has also been shown to influence TF-DNA binding (Figure 1.2-1C) (Rohs et al., 

2009). TFs can recognize specific DNA secondary structures (Spiegel et al., 2021), or their 

DBD can specifically allow binding on the minor or major groove of the DNA. For instance, 

the human AT-Hook factor HMGA1, like other AT-hook TFs, binds to the minor groove 

(Fonfría-Subirós et al., 2012), while the Arabidopsis AP2 family TEMPRANILLO 1 TF binds the 

major groove (Hu et al., 2021). LEAFY (LFY), a plant-specific TF, is an example of a 

transcription factor (TF) that can establish contacts with both the major and minor grooves 
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of DNA. Its helix-turn-helix-like DBD engages the major groove through its alpha helices and 

the minor groove through its N-terminal loop (Hamès et al., 2008). Such DNA shape 

constraints contribute to the binding specificity of TFs. 

 

Figure 1.2-1 Factors influencing TF-DNA binding, adapted from (Héberlé & Bardet, 2019). A: 

Recognition of a specific DNA sequence (Motif) by a TF, where the sequence logo of NRF1 (nuclear 

respiratory factor 1) represents its motif binding preference, is shown. B: Co-occurrence of multiple 

TFs on the same regulatory region, and how they influence each other’s binding through 

multimerization, i.e. the formation of multi-protein complexes, cooperative binding or competition. C: 

TFs can have DNA shape preferences, like an affinity for the major or minor groove of double-

stranded DNA or binding to secondary DNA structures. D: Chromatin context influences TF binding 

through nucleosome positioning, specific histone modifications (with activating, such as H3K9me3, or 

repressive functions, like H3K27me3) and DNA methylation (i.e. the presence of methylated cytosines 

at specific genomic regions). 

The ability of a TF to recognize and bind to its target regions is not only influenced by the 

presence of its binding partners, DNA shape or the formation of oligomeric complexes – DNA 

modifications and accessibility also impact TF binding (Figure 1.2-1D) (Spitz & Furlong, 2012). 



13 
 

Both these processes are highly dynamic and undergo major rearrangements throughout 

development (Lloyd & Lister, 2021). DNA methylation is the chemical modification of a 

cytosine by the addition of a methyl group to the fifth carbon atom, forming a 5-

methylcytosine, and it has been shown to influence, either positively or negatively, the 

binding of the majority of human and plant TFs (O’Malley et al., 2016; Yin et al., 2017). While 

in vertebrates this modification happens in a CpG context, in plants it also occurs in CHG or 

CHH contexts (Law & Jacobsen, 2010). DNA accessibility depends on a combination of 

nucleosome occupancy and specific histone modifications. While most TFs preferentially 

bind to nucleosome-depleted regions (F. Zhu et al., 2018), chromatin marks can also 

differentiate active enhancers (i.e. regulatory regions located far from the genes that they 

regulate) from inactive ones. Histone H3 lysine 27 acetylation (H3K27ac), and more recently 

histone H2B N-terminus multisite lysine acetylation, have been shown to mark active 

enhancers in human and mouse models, while H3K27ac does not seem indicative of active 

enhancers in Arabidopsis (Creyghton et al., 2010; Narita et al., 2023; Yan et al., 2019). 

There is a category of TFs, called pioneer TFs, that can recognize their DNA target sequence 

despite nucleosome occupancy, and trigger chromatin opening and nucleosome 

displacement to further facilitate the binding of other TFs. In mammals, examples of pioneer 

TFs include OCT4, SOX2 and SOX11, which bind exposed nucleosomal DNA and induce a 

distortion of the DNA structure that widens the minor groove (Kagawa & Kurumizaka, 2021; 

Soufi et al., 2012). In plants, LFY, APETALA1 (AP1) and SEPALLATA3 (SEP3) have been shown 

to have pioneer activities (Jin et al., 2021; Lai, Blanc-Mathieu, et al., 2021; Pajoro et al., 

2014). 

As the regulatory action of TFs is fulfilled upon DNA binding, it is essential to characterize 

how and where they are bound on the genome. Numerous techniques were developed over 

the years to detect and probe TF-bound regions and TF binding specificity, initially relying on 

binding assays on regulatory regions based on prior genetic insights. As high-throughput 

sequencing became more widely available and affordable, techniques to identify TF binding 

genome-wide quickly became state-of-the-art approaches to study TF-dependent gene 

regulation. Compared to techniques such as electrophoretic mobility shift assay (EMSA), 

which tests protein binding in vitro to a DNA probe, genome-wide techniques give a wider 

picture of the action of TFs in gene regulation. Techniques for genome-wide binding profiling 
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can provide information about TF specificity and genomic targets at once, and they have 

contributed to the characterization of binding specificity for thousands of TFs (Castro-

Mondragon et al., 2022; Matys et al., 2006). I will present some of these key techniques, 

their strengths and their weaknesses, in the next section. 

 

1.2.1 Experimental strategies to map TF-DNA binding genome-wide 

Knowing where a TF binds on the genome is an important step to find out how it controls 

gene expression. This section will present in more detail some of the most widely used 

techniques to capture TF-DNA binding genome-wide in vivo and in vitro (Figure 1.2-2). Since 

binding profiling in vivo (i.e. in the native chromatin context of the probed tissue at a given 

developmental stage, and in the presence of potential cofactors) can yield substantially 

different results from what is observed in vitro (i.e. with purified proteins and naked DNA), I 

deemed it necessary to introduce such techniques in different sub-sections. 
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Figure 1.2-2 Schematic representation of experimental techniques to capture genome-wide TF-DNA 

binding, adapted from (Wang et al., 2023). Blue box: techniques for genome-binding profiling in vivo; 

Green box: binding profiling in vitro. A: in ChIP-seq, chromatin and DNA are crosslinked and 

fragmented, followed by immunoprecipitation of the protein of interest with specific antibodies. Then, 

crosslinking is disrupted to separate chromatin and DNA, and the latter is purified to obtain the 

genomic regions bound by the protein of interest, which will eventually be sequenced. B: In CUT&RUN 

crosslinking is not required, and cells are first incubated with an antibody for the protein of interest 

and with pA-MN. Upon the addition of Ca++, the MNase cleaves DNA on the sides of the protein of 

interest, and fragmented DNA is prepared for sequencing. C: In CUT&Tag, an antibody targets the 

protein of interest on non-crosslinked chromatin, followed by the addition of pA-Tn5 enzyme. Upon 

the addition of Mg++, DNA cleavage and adapter ligation are performed simultaneously on the sides 

of the protein of interest, and samples are sent to sequencing. D: In DAP-seq, fragmented DNA is 

ligated to sequencing adapters, while the TF of interest, fused to a tag, is expressed in vitro and 

purified through binding to ligand-coupled beads. Then, DNA and TF-tag are incubated, unbound DNA 

fragments are washed away and DNA fragments bound by the TF of interest are sequenced. 
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1.2.1.1 In vivo genome-wide TF-DNA binding assays 

1.2.1.1.1 Chromatin immunoprecipitation assay followed by sequencing (ChIP-seq) 

To this day, ChIP-seq is one of the most widely used techniques to study genome-wide 

protein occupancy (Figure 1.2-2A). This technique was first developed in 2007 for 

mammalian cells, and has since become increasingly used in plants as well (Robertson et al., 

2007). ChIP-seq involves cross-linking of DNA-bound proteins and sonication, followed by 

the use of protein-specific antibodies to purify DNA through immuno-precipitation. This 

allows the isolation of DNA fragments specifically bound by the protein of interest, for 

instance a TF, in vivo. Sequencing of these fragments produces reads that one can map on a 

reference genome, highlighting enriched DNA regions, called “peaks”, which contain the 

sequences bound by the protein. In the case of TF ChIP-seq experiments, the peak 

maximum, i.e. the region where the maximum amount of immuno-precipitated sequenced 

reads align, should correspond to the DNA region where the protein is bound in vivo 

(Johnson et al., 2007; Robertson et al., 2007). 

A high-quality control experiment is important to exclude biases associated with different 

cross-linking, sonication and immunoprecipitation propensity in different genomic regions. 

The use of replicate samples increases the reliability of the obtained protein-DNA binding 

landscape. 

Over 15 years of intensive application of this technique have shown its inherent biases, as 

well as possible solutions. Namely, it was shown that some genomic regions are bound in 

ChIP-seq experiments across different and supposedly unrelated experiments, which has 

prompted the development of so-called blacklisted regions that are commonly removed in 

standard ChIP-seq analysis to enrich for protein-specific DNA-binding signal (Amemiya et al., 

2019; D. Park et al., 2013; Teytelman et al., 2013). Such bias has been observed in plants as 

well, leading to the recent construction of an Arabidopsis-specific blacklist (Klasfeld et al., 

2022). 

While ChIP-seq is still the experiment of choice for in vivo TF-DNA and chromatin mark 

profiling, some inherent limitations hinder its application in specific circumstances (P. J. Park, 

2009). First, as the technique is based on immuno-precipitation, antibody quality is crucial 

for its success. In the absence of a specific antibody for the protein of interest, a tagged 
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version can be used, but it is essential to run thorough controls to ensure it retains its native 

DNA-binding capacities. Second, the amount of starting material available is fundamental to 

obtain a high-quality ChIP-seq, which means that tissue-specific experiments on restricted 

cell populations can prove challenging and outcomes can vary significantly. Third, due to the 

relatively large size of the DNA fragments produced during sonication, ChIP-seq has a rather 

low resolution: the immuno-precipitated protein is bound within the ~200-500 bp of the 

recovered peak, supposedly with an enrichment at the peak maximum, but detailed TFBS 

determination and identification within the bound region requires additional motif-search 

analysis. Finally, as in every technique relying on high-throughput sequencing, sequencing 

depth is just as important as the technical caveats mentioned above.  

Over the years, a plethora of techniques to identify genome-wide protein-DNA binding has 

been developed to improve upon some of the limitations of ChIP-seq. ChIP-exo (from ChIP-

exonuclease) and ChIP-nexus (for ChIP experiments with nucleotide resolution through 

exonuclease, unique barcode and single ligation) were developed to obtain nucleotide-level 

resolution of in vivo protein binding. In ChIP-exo, immuno-precipitated DNA is treated with a 

5’ to 3’ exonuclease, which digests accessible DNA flanking the protein of interest. As a 

result, only a short stretch of DNA, made inaccessible by the presence of the bound protein, 

is left for sequencing, resulting in nucleotide-resolution mapping of genome-wide protein 

occupancy (Rhee & Pugh, 2011). A subsequent improvement of ChIP-exo, ChIP-nexus was 

developed to improve the efficiency of library preparation, and with the additional 

advantage of retaining strand information (He et al., 2015). ChIP-exo and ChIP-nexus data 

have been extensively used for deep learning-based modeling of TF binding for human TFs 

(Avsec, Weilert, et al., 2021; Y. Zhang et al., 2021), but they have not been implemented in 

plants. A more detailed overview of genome-wide binding techniques can be found in 

(Hajheidari & Huang, 2022; Lai, Stigliani, et al., 2019). 

 

1.2.1.1.2 CUT&RUN and CUT&Tag 

More recently, Cleavage Under Targets and Release Using Nuclease (CUT&RUN) and the 

closely related Cleavage Under Targets and Tagmentation (CUT&Tag) were developed to 

overcome the limitations of ChIP-seq in terms of required starting material and DNA-binding 

resolution for in vivo protein-DNA binding (Kaya-Okur et al., 2019; Skene & Henikoff, 2017). 



18 
 

CUT&RUN relies on the initial binding of a protein-specific antibody followed by the 

tethering of a Protein A/Micrococcal Nuclease (pA-MNase) to the antibody (Figure 1.2-2B). 

Addition of Ca2+ activates the pA-MNase, which cleaves accessible DNA around the protein 

of interest, and the protein-bound sequences in the supernatant will be used for library 

preparation and sequencing. In CUT&Tag, a protein-specific antibody first targets the protein 

of interest, and a secondary antibody binds to the primary one (Figure 1.2-2C). Then, a 

hyperactive Tn5 transposase-protein A (pA-Tn5) fusion protein, previously loaded with 

adapter sequences, binds to the antibodies and is activated through the addition of Mg2+. 

The addition of Mg2+ results in the immediate tagmentation (i.e. DNA fragmentation and 

inclusion of adapter sequences in a single step) of the accessible sites around the protein of 

interest and the production of library-level sequences ready for amplification and 

sequencing. However, it was reported that methods based on Tn5 transposase such as 

CUT&Tag are biased towards open chromatin regions (Wang & Zhang, 2021). While the 

impact of this bias seems rather limited in CUT&Tag, at least compared to other Tn5-based 

techniques, it should be taken into account.  

 

1.2.1.2 In vitro genome-wide TF-DNA binding assays 

1.2.1.2.1 DNA affinity purification followed by sequencing (DAP-seq) 

In addition to in vivo systems, some techniques have focused on finding sequences bound by 

a protein of interest in vitro. DAP-seq and its variations ampDAP-seq and seq-DAP-seq, 

provide fast and efficient ways to obtain direct, genome-wide binding of a protein (or, with 

some adjustments, protein complex) of interest in vitro. 

DAP-seq was obtained through the adaptation of an existing microarray-based technique to 

high-throughput sequencing (Figure 1.2-2D) (O’Malley et al., 2016; Rajeev et al., 2014). Like 

ChIP-seq, DAP-seq aims at finding DNA sequences bound by a (tagged) protein of interest, 

but in this case on genomic DNA devoid of its chromatin context. ampDAP-seq is proposed 

as a DAP-seq variation that includes an additional step of PCR amplification which gets rid of 

DNA methylation (O’Malley et al., 2016). The publication of the DAP-seq method by O’ 

Malley et al. came with public datasets of genomic regions bound in vitro by over 500 
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Arabidopsis TFs, which represented a significant contribution to the advancement of the 

plant regulatory landscape (O’Malley et al., 2016). 

While ampDAP-seq represents the ensemble of all potential target sites of a TF on the 

genome in vitro, ChIP-seq contains additional information about which targets are bound in 

a certain tissue and at a given developmental stage in vivo (Figure 1.2-3). As a result, not all 

ChIP-seq-bound regions are also bound in ampDAP-seq, and vice versa, due to differences in 

the presence/absence of cofactors and overall chromatin accessibility (O’Malley et al., 2016). 

Moreover, comparing a TF’s binding profile in vivo and in vitro or its genomic targets in vitro 

with (DAP-seq) or without (ampDAP-seq) DNA methylation can provide important insights 

about its binding preferences, if and where they require an intact chromatin context and its 

sensitivity to DNA methylation (Figure 1.2-3) (O’Malley et al., 2016; Lai, Blanc-Mathieu et al. 

2021). 

 

Figure 1.2-3 Schematic representation of the differences in TF-bound sequences retrieved with ChIP-

seq, DAP-seq and ampDAP-seq techniques. In ChIP-seq (left), immunoprecipitation of the protein of 

interest (TF) in its chromatin context indistinctly retrieves genomic sequences bound by the protein 

alone or in a bigger complex. In DAP-seq (middle), DNA is devoid of chromatin but it retains the DNA 

methylation marks (red dots) of the developmental stage and tissue that the DNA was extracted 

from. In ampDAP-seq (right), an additional step of PCR amplification gets rid of DNA methylation 

marks and allows the target protein to bind to its target sequences. In both DAP-seq and ampDAP-

seq, the experimental setting in vitro and the use of purified protein ensures that the retrieved 

sequences are bound by the protein of interest by itself. 
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1.2.2 Statistical modeling of TFBSs 

Whether it is through step-by-step TF-DNA binding assays or at the genome-wide level, 

knowing a TF’s binding specificity is crucial to pinpoint its TFBSs on regulatory regions, and 

several strategies have been developed to this end. 

 

1.2.2.1 Consensus sequences 

The most immediate way to represent a TFBS is through a consensus sequence, i.e. a short 

sequence of nucleotides typically recognized by a TF, which usually allows little to no 

nucleotide variation at each position (Boeva, 2016). 

The main limitation of consensus-based strategies is that TF-DNA binding can tolerate a 

certain degree of variation at given positions. This is not accounted for when using 

consensus sequences to define the presence of a TFBS. An example to illustrate this 

limitation is the binding of the Arabidopsis LEAFY (LFY) master TF, that has been shown to 

bind DNA motifs with up to three mismatches in vitro but that does not always bind 

consensus-matching sequences (Moyroud et al., 2011; Winter et al., 2011). Moreover, as 

consensus sequences are typically short (≤ 10 bp), their detection beyond specific (and 

experimentally tested) sets of cis-regulatory sequences is limited, as they can occur 

randomly on the genome. Therefore, some predicted sites are not actually recognized, while 

experimentally-bound, high-affinity sites that do not strictly display the canonical consensus 

sequence are not detected (Stigliani et al., 2019; Winter et al., 2011). 

 

1.2.2.2 Position Weight Matrices (PWMs) 

Position Weight Matrices (PWMs) are among the most widely adopted and flexible ways to 

model TF specificity. A PWM is typically 4-8 nucleotides long and it contains, at every 

position of the TFBS, a so-called ‘score’ for each nucleotide (A, C, T, G) which represents how 

beneficial or detrimental it is for TF binding, based on its position in the TFBS (Figure 1.2-4C) 

(Stormo, 2015). 

PWMs can be computed from the alignment of TF-bound regions identified from genome-

wide DNA-binding experiments such as ChIP-seq or DAP-seq (Figure 1.2-4A). By counting the 

occurrences of nucleotides A, C, T, and G at each position in the alignment, a position 
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frequency matrix can be constructed (Figure 1.2-4B). A position frequency matrix can be 

converted to a PWM (Figure 1.2-4C) based on the observed frequency of each nucleotide at 

each position relative to the expected genomic frequency of A, C, T and G. Any DNA 

sequence can then be assessed for its TFBS potential with a PWM by retrieving the score of 

each nucleotide at its corresponding position in the sequence (Figure 1.2-4D). Depending on 

the chosen implementation, the best possible TFBS has either a score of zero or a positive 

one; the more negative the sequence score, the worse the match between TF and DNA (Lai, 

Stigliani, et al., 2019; Stormo, 2015; Wasserman & Sandelin, 2004). TF binding specificity can 

be visually represented as a sequence logo (Figure 1.2-4E), where letter size represents the 

importance of each base for binding, i.e. the so-called Information Content (IC), expressed in 

bits (Schneider & Stephens, 1990). Maximum IC equals 2 bits, which represents a nucleotide 

that is always found at a certain position in all aligned sequences. The more variable the 

position, the lower its overall IC, so that, in a sequence logo, bigger letters imply a strict 

nucleotide requirement, while smaller letters reflect higher tolerance to nucleotide 

variability.  

Several databases collect PWMs computed from published ChIP-seq, DAP-seq and protein 

binding microarray data, in an ever-growing number of organisms (Matys et al., 2006; 

Weirauch et al., 2014). Among them, JASPAR, created in 2004 and since then regularly 

updated, provides a manually curated collection of PWMs that is widely used by the 

scientific community (Sandelin, 2004). As TFs belonging to the same family share a similar 

binding motif, the latest version of JASPAR also features binding archetypes where 

redundancy was removed to represent the binding specificity of TF groups (Castro-

Mondragon et al., 2022). 

One of the drawbacks of PWMs is that they quantify the binding affinity of a TF for a given 

DNA sequence, which ranges from sequences with a perfect match and high affinity to no 

affinity at all, passing through many sequences with suboptimal affinity but that are still 

bound in experimental settings. However, many applications require a threshold to identify 

which potential TFBS are considered as true TFBS, i.e. what score is good enough for the 

sequence to be reasonably bound. A strategy to overcome this is to use genome-wide 

distributions to set a percentile-based threshold, or to associate a p-value to each site 

(Ambrosini et al., 2018; Boeva, 2016). Moreover, PWMs are based on the assumption that 
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each nucleotide position contributes independently to protein binding, which may not 

always be the case (Benos et al., 2002; Jolma et al., 2013). Therefore, more complex models 

have been developed over the years to calculate and include position interdependencies 

within matrices, to detect changes in DNA shape or to combine PWM score with 

experimentally-determined biophysical properties of the TF itself (Mathelier et al., 2016; 

Mathelier & Wasserman, 2013; Moyroud et al., 2011; Roider et al., 2007; Workman et al., 

2005). 
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Figure 1.2-4 How to build a Position Weight Matrix (PWM), from (Wasserman & Sandelin, 2004). A: 

DNA sequences bound by the protein of interest are aligned. B: A Position Frequency Matrix (PFM) is 

computed, containing the number of sequences where each nucleotide (A, C, G, T) is found at each 

position of the binding site. C: The PFM is converted to a PWM, where each position represents the 

influence of each nucleotide on binding at each position, based on the expected frequency of each 

nucleotide on the genome. Negative values indicate a negative effect of the nucleotide to the binding 

of the protein to a DNA sequence. W(b,i) = weight (PWM value) of base b in position i; f(b,i) = 

frequency of nucleotide b in position i; 𝑓𝑒𝑥𝑝(b) = background probability of nucleotide b. D: The PWM 

can be used to probe the affinity of the TF to a new DNA sequence by summing the weight of each nt 

in the DNA sequence to its corresponding weight in the PWM. E: A PWM can be represented as a 

sequence logo, where taller letters indicate nucleotides that are important for binding at specific 

positions. 
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1.2.2.3 Predicted occupancy (POcc) 

The PWM score quantifies the affinity of a given TF for a DNA sequence of the same length 

as the PWM itself. Therefore, the presence of multiple TFBSs on the same regulatory region, 

and the TF’s properties of association and dissociation from DNA are not taken into account. 

A more sophisticated method was proposed to quantify the predicted occupancy (POcc) of a 

DNA sequence by a TF of interest, based on the TF’s biophysical properties in addition to its 

binding motif. This method was developed in yeast and subsequently adapted to the LFY TF 

in Arabidopsis (Moyroud et al., 2011; Roider et al., 2007). 

POcc is calculated as shown in Equation 1 and Equation 2: it is the sum of a TF’s predicted 

occupancy at all sites detected by a PWM of length 𝑊 on a sequence of length 𝐿, given the 

TF’s experimentally-determined equilibrium association constant at each site (𝐾𝐴,𝑠) and its 

concentration ([𝑇𝐹]). 𝐾𝐴,𝑠 is the inverse of the dissociation constant 𝐾𝐷,𝑠, which depends on 

the relationship between binding affinity quantified through the PWM score and the TF’s 

binding affinity (Equation 2), as measured experimentally through quantitative 

multifluorescence relative affinity (QuMFRA) assay (Moyroud et al., 2011). For example, 

LFY’s association constant was established through QuMFRA assay by quantifying the affinity 

between LFY’s DBD and 48 oligonucleotides with known PWM score (Moyroud et al., 2011). 

Put in simpler terms, POcc quantifies the occupancy of a TF on a DNA sequence by taking 

into account all the TF’s PWM-detected sites within that sequence, and the DNA association 

and dissociation properties of the TF itself. Crucially, this means that, unlike the PWM score, 

POcc can be calculated for DNA sequences of any size, provided that their length is at least 

greater than the length of their binding motif. 

 

Equation 1 Predicted occupancy (POcc) computation, from (Moyroud et al., 2011). L = length of the 
tested sequence; W = PWM length; 𝐾𝐴,𝑠 = relative equilibrium association (A) constant for sites (s), 
determined experimentally as 𝐾𝐴,𝑠 = 1/𝐾𝐷,𝑠; [TF] = TF concentration. 
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Equation 2 Calculation of 𝐾𝐷,𝑠, dissociation constant, based on site's PWM score and experimental 
data.𝐾𝐷,𝑠 is the inverse of the association constant, 𝐾𝐴,𝑠, shown in Equation 1. 

One of the limitations of POcc is that, as it relies on PWM score to define binding sites, it 

requires setting a PWM score threshold, as mentioned for PWMs before. Moreover, POcc is 

sensitive to input sequence length: longer sequences will be more likely to contain a higher 

amount of TFBSs, which will all contribute to the final POcc value. This becomes particularly 

important if one wants to compare POcc values on regulatory regions of different length, or 

in different species (Minguet et al., 2015). 

Nevertheless, POcc was instrumental to investigate the conservation of two important 

targets of LFY, AP1 and AGAMOUS (AG), during plant evolution through its application to the 

regulatory regions of multiple plant species (Minguet et al., 2015; Moyroud et al., 2011). 

Moreover, POcc accounts for LFY’s cooperative binding, as it calculates a global value of 

occupancy that takes into account the presence of multiple TFBSs within the given sequence 

(Sayou et al., 2016). 

 

1.2.2.4 Machine-learning algorithms to model TF binding 

Machine-learning algorithms can learn patterns from vast amounts of data and make new 

predictions based on those patterns. This can be particularly useful when handling 

sequencing data about thousands of genomic regions with different characteristics where 

several processes are at play. I would like to note that some of the methods described in the 

previous sections, e.g. computing a PWM from a set of bound sequences, also represent a 

form of machine learning, but in this new section I will focus on algorithms that are more 

suitable for more complex tasks. 

In so-called supervised machine learning algorithms, data are assigned a label so that the 

model can learn patterns that help it distinguish between different categories, and make 

predictions on new sets of unlabeled data (Libbrecht & Noble, 2015; van Dijk et al., 2021). 

Figure 1.2-5 shows an example of how a supervised algorithm can be trained on a set of 

sequences, which are labeled as either ‘TSS’ or ‘Not TSS’ and are associated with a series of 

features that describe them. The trained model can be tested on a new series of sequences 
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for which the label is not given and, based on the patterns learned during training on labeled 

sequences, it can now predict whether the new, unlabeled sequences belong to the ‘TSS’ or 

‘Not TSS’ category (Libbrecht & Noble, 2015).  

The advantage of supervised models is that it is possible to estimate their prediction 

capacities through cross-validation, a procedure whereby an algorithm is trained on a subset 

of the labeled data and is tested on the remaining part of the labeled dataset. This provides 

a way to evaluate whether the model can correctly separate input classes, before making 

predictions on new sequences. 

 

Figure 1.2-5 Example of supervised machine learning algorithm to predict whether a given sequence 

is centered on a transcription start site (‘TSS') or not (‘Not TSS’), from (Libbrecht & Noble, 2015). The 

algorithm is given a ‘Training test’ from which it learns to distinguish labels (‘TSS’ or ‘Not TSS’) based 

on the information given by the features in each column (represented here as a red-blue gradient). 

When presented with a new series of sequences without labels (‘Testing set’), it can predict them 

based on the previously learned information. 

Another important distinction is between generative and discriminative models. The former 

will learn from the input data and generate new entries based on the learned pattern, while 

a discriminative model will learn how to divide input data into different classes (Libbrecht & 

Noble, 2015). 

As I mentioned before, computing a PWM from a set of bound sequences also represents a 

form of machine learning. However, PWMs only allow to predict binding affinity of a TF for a 

DNA sequence of the same length as the matrix itself. This means that they do not take into 
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account the broader genomic context in the bound sequences, which typically span several 

hundreds of bp. The availability of an ever-increasing amount of data has allowed the 

application of more complex machine learning algorithms that can take advantage of more 

features and generally a wider genomic context. Such models have been shown to 

outperform PWM models in predicting TFBS in mammals and plants (Avsec, Weilert, et al., 

2021; Liu et al., 2021; Shen et al., 2021). 

An example of a supervised model is DeepBind, which aims at predicting the binding 

specificity of DNA- and RNA-binding proteins from different types of binding data (Alipanahi 

et al., 2015). DeepBind correctly recognizes TF motifs from larger (~100 bp) sequences and it 

outperforms PWM-based methods, and it can be used to predict the effects of single 

mutations on binding affinity. 

DeepBind was initially developed on human and mouse data, but the same approach was 

used to build trans-species prediction of TFBS (TSPTFBS), which models TF binding in other 

species from Arabidopsis DAP-seq data (Liu et al., 2021). Like DeepBind, TSPTFBS reaches a 

higher performance than MEME, a commonly used tool to compute PWMs from input 

sequences. While DeepBind performed well on both in vitro and in vivo data, on both human 

and mouse sequences (Alipanahi et al., 2015), TSPTFBS gave underwhelming results on ChIP-

seq data from three other plant species, performing well only on a subset of rice TFs and not 

on maize or soybean data. This result may seem unsurprising, as the evolutionary scales 

between the plant species are wider than those between human and mouse. However, it 

highlights the fact that, despite the promising performances obtained by these algorithms, 

training them on model species in the hope of transferring the knowledge on other species 

where less data are available (“transfer learning”) is still challenging. 

Generative models have been developed to predict binding signals at nucleotide resolution, 

like in the case of BPNet, which was trained with ChIP-nexus data (see page  for more details 

about ChIP-nexus) (Avsec, Weilert, et al., 2021). BPNet can quantify strand-specific signal of 

TF binding on any DNA sequence, and predictions mirror experimentally determined 

occupancy with remarkable accuracy. Moreover, this model could recover TF binding syntax 

(i.e. TF-TF distance and orientation preferences) for multiple TFs simultaneously (Avsec, 

Weilert, et al., 2021). 
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Generative models have also been used to predict gene expression directly from DNA 

sequences, by indirectly learning binding syntax in regulatory regions. An example is 

Enformer, which is currently the state-of-the-art for deep learning-based generative models 

constructed for this task in humans (Avsec, Agarwal, et al., 2021). The key feature of 

Enformer is that it supposedly integrates long-range context information through the use of 

exceptionally long DNA sequences (up to 100 kb around the TSS), allowing it to account for 

distal regulatory regions and binding syntax. The Enformer model is a so-called “black-box” 

that does not allow direct investigation of the information used for predictions, and long-

range interactions were thought to contribute significantly to its high performance. 

However, it was recently reported that a sequence input window of 39 kb (20% of the ~200 

kb full sequence) was already sufficient to account for most of the binding signal (Karollus et 

al., 2023). 

Deep-learning strategies to predict DNA accessibility or gene expression output from 

sequence were also developed in plants. A first example is PlantDeepSEA, which leveraged 

DNA accessibility data from six plant species and can be used to (i) predict the effects of 

sequence variants on chromatin accessibility as well as to (ii) reveal important cis-regulatory 

elements on DNA sequences (Zhao et al., 2021). More recently, Akagi et al. combined public 

(amp)DAP-seq data for TF binding in Arabidopsis (O’Malley et al., 2016) and RNA-seq data at 

multiple tomato ripening stages to build another model that can correctly predict gene 

expression at specific developmental stages in tomato (Akagi et al., 2022). Once trained, the 

model can also be used to design synthetic promoters to drive gene expression in tomato 

(Akagi et al., 2022). These examples show that approaches to predict DNA accessibility and 

gene expression from sequence are not only available for mammalian systems but are 

becoming more and more widespread in plants as well.  
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1.2.3 Combinatorial nature of the cis-regulatory code 

TFs rarely act alone and, in most cases, several TFs bind together to common regulatory 

regions. From a mechanistic and structural point of view, TFs can work together through 

direct protein-protein interactions, but also in the absence of direct protein-protein contacts 

(Morgunova & Taipale, 2017). The latter can be explained by changes in DNA structure 

induced by the binding of one protein, or by nucleosome depletion as a result of the binding 

of one TF. Either way, TFs can facilitate the binding of additional proteins with or without 

direct protein-protein interactions.  

Protein-protein interactions can be involved in cooperative binding of multiple copies of the 

same TF, as TFs often bind the DNA as dimers or tetramers, and sometimes through higher-

order oligomeric structures (Amoutzias et al., 2008). The interactions stabilizing such 

oligomeric structures can occur at the level of the DBD, as it happens for basic helix-turn-

helix (bHLH) dimers (Brownlie et al., 1997), or through a different domain, as in plant Type II 

MADS box factors tetramers (Lai, Daher, et al., 2019). The nature of the binding partners 

participating in the oligomerization can contribute to the binding specificity of the complex, 

determining the recognition of different regulatory regions and therefore the activation of 

distinct genes (Smaczniak et al., 2012).  

TF-TF interactions between different TFs can also strengthen DNA binding. For example, it 

has been shown that PHYTOCHROME-INTERACTING 4 (PIF4), a bHLH TF involved in light and 

temperature responses, can directly interact with CYCLING DOF FACTOR 2 (CDF2), a DOF TF 

that is temporally regulated by the circadian clock, to promote hypocotyl cell elongation (H. 

Gao et al., 2022). PIF4 dimers can form tetramers that increase their DNA-binding affinity 

and can interact with CDF2 to enhance its binding strength on DNA, securing its access to 

genes involved in hypocotyl elongation in response to light.  

Transcriptional complexes can also involve non-TF proteins acting as cofactors, which can in 

some cases modify the binding specificity of the TF itself. This is what happens in the protein 

complex involving LFY, a master plant TF involved in flowering, and UNUSUAL FLORAL 

ORGANS (UFO), an F-box protein (Rieu et al., 2023). This recent and particular case will be 

treated in more detail in Chapter 2: The LFY-UFO complex regulates distinct genes from LFY, 

p. 67. 
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If multiple proteins bind to the same regulatory regions, it should be detectable when 

comparing their individual ChIP-seq binding profiles in the same tissue or cell line. Indeed, 

when integrating over 100 ChIP-seq datasets from the Encyclopedia of DNA Elements 

(ENCODE) project, Gerstein et al. found that different TF pairs associate on regulatory 

regions, and that those combinations differ between proximal (i.e. close to the TSS) and 

distal (i.e. far from the TSS) regulatory regions (Gerstein et al., 2012).  

A different approach relies on finding DNA-bound proteins by looking at accessible 

chromatin regions at high resolution. Techniques such as DNase-seq allow this approach at 

the genome-wide level. DNase I is an endonuclease that preferentially cleaves accessible 

DNA regions, and it has been extensively used to map gene regulatory regions (Sullivan et 

al., 2015). Combining DNase I digestion of isolated nuclei with high-throughput sequencing 

allows the identification of accessible regions genome-wide, and within them, the stretches 

of DNA that are protected by DNA-bound proteins and thus not cleaved. Such information 

can be used to find the (combinations of) TFs bound to accessible regulatory regions (Song & 

Crawford, 2010). 

Viestra et al. leveraged high-resolution mapping of DNase I hypersensitive sites (DHS) to 

dissect the TF combinations bound to accessible regulatory regions in hundreds of cell and 

tissue types (Vierstra et al., 2020). They were able to distinguish the occupancy of separate 

TFs as opposed to that of TF complexes based on the size of the identified TF footprint (i.e. 

the DNA stretch bound by the TF and thus protected from DNase I cleavage). Based on their 

results it appears that, in humans, accessible regulatory regions are, on average, bound by 5 

TFs at the same time, at a given distance from each other, within a ~200 bp region (Vierstra 

et al., 2020).  

While I focused on TF-DNA binding so far, it is crucial to note that total number and diversity 

of TFBS in regulatory regions can also influence downstream gene expression. TFBS diversity 

is intended here as the number of different TFs binding to a certain sequence. Synthetic 

enhancers tested in mouse and human embryonic stem cells revealed that, for a comparable 

number of TFBSs, more diverse regulatory regions showed higher enhancer activity than 

same-TF sequences (Singh et al., 2021). Moreover, enhancer activity was lost in cells with 

less than 10 different TFBSs, indicating that the (i) amount of TFBSs in regulatory sequences 

and (ii) their diversity are both important to regulate gene expression (Singh et al., 2021).  
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In addition to the overall amount and diversity of TFBSs in regulatory regions, their order has 

also been shown to be important for gene expression, with some TF-TF combinations in a 

precise order leading to a stronger transcriptional response than others (Georgakopoulos-

Soares et al., 2023). 

Not only are certain TF-TF combinations preferred compared to others, but their distance 

can also be informative. In plants, auxin response factor (ARF) TFs have been shown to bind 

at preferential distances and orientations on auxin response elements (Freire-Rios et al., 

2020; Stigliani et al., 2019). Such preferential distances can also be due to steric and 

conformational constraints, as in the case of tetrameric binding of MADS TFs (Lai, Stigliani, et 

al., 2019; Lai, Vega-Leon, et al., 2021). 

For most TFs, such steric constraints imposed by the interaction of a TF with other proteins 

contribute to specificity by restricting the pool of potential binding sites on the genome. This 

results in TFs from the same family sharing some target sites but not others. Indeed, 

experiments looking at genome-wide binding of DBDs without the rest of the protein 

showed that, for many TFs, potential target sites are a somewhat broader pool compared to 

those that are bound in vivo when the full protein is present (Brodsky et al., 2020). 

TF combinations driving the expression of specific genes or processes can be conserved 

across multiple species, although the relationship between conservation and regulatory 

function is not always straightforward. In the next section, I will try to highlight some key 

aspects of this relationship and of the relevance of evolutionary conservation evidence for 

the study of regulatory regions. 

 

1.2.4 Role of evolutionary conservation in the study of gene regulation 

Comparing the genomes of different species can give insights about which genomic regions 

are more or less prone to variation, and this can give information about their functional 

importance. As mutations in protein-coding regions can compromise protein function (and 

ultimately survival), such genomic regions are more conserved even between distantly 

related species; on the other hand, genomic regions that do not code for proteins, 
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commonly referred to as “noncoding regions”, generally display poor conservation (Thomas 

et al., 2003). 

Whole-genome alignments between different species can be used to estimate conservation 

scores at single-nt resolution.  This is the objective of methods such as PhastCons and 

PhyloP, although the two rely on slightly different assumptions. PhastCons aims at 

estimating the probability that a nucleotide is found in a conserved element as a result of 

negative selection, taking into account the level of conservation of its flanking regions (Siepel 

et al., 2005). On the other hand, PhyloP aims at estimating changes in substitution rates at 

individual nucleotides compared to expected levels under neutral drift, so that lower 

substitution rates than expected imply conservation while higher than expected indicate 

rapidly evolving regions (K. S. Pollard et al., 2010). Both PhastCons and PhyloP conservation 

scores have initially been computed on the human and mouse genome at multiple 

evolutionary scales (K. S. Pollard et al., 2010). More recently, the same methods have been 

applied to over 60 plant species (Tian et al., 2020). These resources are extremely valuable 

to estimate the conservation level of genomic regions and to give insights about their 

biological function. 

Detection of conservation in noncoding regions, similarly to conservation of gene-coding 

regions, is often interpreted as a sign of functional importance, as their mutation can impact 

the action of important regulators resulting in deregulation of downstream genes (D. A. 

Pollard et al., 2004; Siepel et al., 2005; Woolfe et al., 2004). Therefore, many comparative 

genomics methods aim specifically at identifying conserved noncoding sequences (CNSs, i.e. 

stretches of conserved nucleotides in noncoding regions). Such approaches revealed that 

CNSs are enriched in TFBSs and are associated with developmental genes (Bejerano et al., 

2004; Berthelot et al., 2018; Burgess & Freeling, 2014; Woolfe et al., 2004). 

CNSs have been detected in both animals and plants, but important differences in genome 

structure, evolutionary history and more recent whole genome duplication events in plants 

make it difficult to directly compare findings in the two kingdoms (Murat et al., 2012). When 

the same CNS detection approach was applied both on plant and animal genomes, it 

revealed important differences in the amount and features of CNSs, with animal CNSs being 

more abundant and longer, as well as being more syntenically conserved than those 
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detected in plants (Reneker et al., 2012). Therefore, as this section aims at providing 

examples of the presence, features and functional importance of highly conserved regions in 

gene regulation, evidence coming from animal and plant systems will be treated separately.  

 

1.2.4.1 Animal systems 

An important study published in 2004 showed that the human genome contains over 400 

loci of at least 200 bp that can also be found, identical, in the mice genome, despite their 

divergence nearly 100 million years ago (Mya) (Bejerano et al., 2004; Nei et al., 2001). Most 

of these highly conserved sequences were found, almost identical, in about 100 other 

vertebrate genomes with divergence times up to 400 Mya (Bejerano et al., 2004). The 

majority of these ultra-conserved loci, although not all of them, are found in noncoding 

regulatory regions and are associated with developmental genes, supporting their functional 

importance (Bejerano et al., 2004). 

Distal regulatory regions such as enhancers and their surrounding genes have also been 

reported to be evolutionarily conserved and, in some cases, to drive similar expression 

patterns in distant species (Dickel et al., 2018; Snetkova et al., 2021; Wong et al., 2020). 

While the high level of conservation in these regions may suggest that any mutation in their 

sequence leads to severe phenotypic defects, it was reported that this is not always the case 

(Dickel et al., 2018; Snetkova et al., 2021). In particular, a systematic mutational study of 

early embryonic development in mice showed that the majority of the tested highly 

conserved enhancers can tolerate the mutation of 2 to 5% of their most-conserved 

nucleotides (Snetkova et al., 2021). The fact that low rates of mutations are not lethal 

simultaneously highlights the functional importance of their conserved sequence (which 

leads to severe defects beyond 5% sequence mutation), and that highly conserved regions 

still tolerate low levels of mutation. 
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1.2.4.2 Plant systems 

As previously mentioned, whole-genome duplications and a complex evolutionary history 

can make the detection of CNSs more challenging in plant genomes compared to vertebrate 

genomes (Murat et al., 2012; Reineke et al., 2011). One of the most important CNS studies in 

plants was published in 2013, and found over 90,000 conserved sequences among a set of 

Brassicaceae species (Haudry et al., 2013). These sequences were rather short (median 

length less than 40 bp) and the majority of them was found in regulatory regions upstream 

of the TSS, which explains their enrichment in TFBS and transcription-associated motifs (e.g. 

TATA box). Interestingly, detection of these CNSs outside of Brassicaceae was rather low, 

ranging from less than 1% in rice to 3.4% in papaya (more recently diverged, less than 100 

Mya (Ming et al., 2008)), and it mostly concerned CNSs overlapping small noncoding RNAs. 

These findings are in stark contrast with the evidence previously presented for vertebrates, 

where longer elements were detected, mostly identical, at even higher evolutionary 

distances (Bejerano et al., 2004). 

The data from Haudry et al. were recently used to study conservation of Brassicaceae CNSs 

in different Arabidopsis accessions (Yocca et al., 2021). While most CNSs found in the 

reference Col-0 are also found in the other Arabidopsis accessions, a few hundreds of them 

are actually missing. Moreover, nearly 1000 CNSs exhibit positional variation in other 

Arabidopsis accessions, i.e. they are present in another accession but in a different locus 

compared to the Col-0 reference. Interestingly, CNSs showing positional variation are on 

average shorter (<20 bp) than CNSs retaining their position in multiple accessions (40 bp). 

These results highlight how CNSs can vary even within the same species. 

A different approach applied on 12 dicotyledonous species (not only Brassicaceae) also 

identified over 90k CNSs, which only partly overlapped with those found by Haudry et al. 

(Velde et al., 2014). Over three quarters of these CNSs were less than 20 bp long, and the 

majority was found up to 1 kb upstream of the TSS. By further increasing the evolutionary 

distance to include monocotyledonous species, another study found over 1M CNSs, of which 

>70k in Arabidopsis (Velde et al., 2016). Once again, the majority of these CNSs were found 

in regulatory regions, in this case within 500 bp upstream of the translation start site. CNSs 
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found in both of these studies were significantly enriched in ChIP-seq peaks, highlighting 

their biological and regulatory functions. 

More recently, over 1M Arabidopsis genomic regions were identified as conserved among 

over 60 genomes of flowering plants (both mono- and dicotyledonous species) diverging 

~160 Mya (Tian et al., 2020). Combining conservation information with binding and 

expression data for 21 TFs, the authors showed that TFBSs with high conservation scores and 

high binding affinity were more likely to have a functional role. It is worth mentioning that 

this study provided the community with the first plant resource of genome-wide 

conservation scores after multiple genome alignment of flowering plant species (Tian et al., 

2020). 

This evidence stresses the difference between sequence conservation, which can be 

detected by searching multiple genomes for CNSs to infer the functional importance of 

genomic regions, and gene regulation conservation, which requires experimental evidence 

of TF binding and expression profiling in multiple species. In distantly related species, 

conservation of regulatory modules seems to be the key to the conservation of gene 

regulatory networks, and it allows TFBS displacement in evolving regulatory sequences while 

retaining key TF combinations to drive gene expression (Maher et al., 2018; Ravel et al., 

2014; Taher et al., 2011; Wong et al., 2020).  
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1.3 Flowering in Arabidopsis: an ideal system to study gene regulation 

Arabidopsis is one of the most important model plants. It is a dicotyledonous species 

belonging to the group of angiosperm (flowering) plants. Its short life cycle, which lasts 8-12 

weeks from germination to seed harvesting, and its ability to self-fertilize, make it a suitable 

candidate for genetic studies as well as plant physiology and development (Figure 1.3-1) 

(Krämer, 2015). 

Arabidopsis was the first plant for which a reference genome was sequenced and published 

(The Arabidopsis Genome Initiative, 2000). The Arabidopsis nuclear genome is around 120 

Mb in size, it is diploid and it is organized in 5 chromosomes. It is, to this day, one of the 

best-annotated plant genomes available, and numerous resources exist to mine it (Berardini 

et al., 2015; Krishnakumar et al., 2015). In addition to the availability of a reference 

Arabidopsis genome, over a thousand different Arabidopsis accessions, native from all over 

the world, have been sequenced over the years, and they revealed a complex history of 

migration and a wide spectrum of variation within this species (Alonso-Blanco et al., 2016). 

All these features surely contributed to Arabidopsis becoming the plant species with the 

greatest amount of published genomic datasets (Fu et al., 2022). 

Arabidopsis is also an established model for plant development. After a first vegetative 

phase during which the SAM produces rosette leaves, there is a switch from vegetative to 

reproductive development. This change is visually apparent as Arabidopsis plants go through 

bolting, that is rapid stem elongation (Figure 1.3-1). 

The onset of flowering is a crucial step in plant development, as its timely initiation 

determines species survival. It is a tightly regulated process and it requires the integration of 

multiple environmental and endogenous signals, and therefore it provides an ideal system to 

study gene regulation in all its complexity. 

 



37 
 

 

Figure 1.3-1 Arabidopsis life cycle, from (Krämer, 2015). A: Adult Arabidopsis plant with developing 

siliques on its fully developed stems. Siliques contain the seeds (see panel D), each giving rise to 

seedlings with increasing numbers of rosette leaves during the vegetative stage (bottom part of the 

figure). Upon the transition to flowering (reproductive stage), the plant will undergo rapid stem 

elongation (see the difference in plant height between 39 d plants and 45 d plants) and start 

developing flowers. B: Arabidopsis flower, with four petals, six stamens and two fused carpels visible. 

C: Pollen grain of Arabidopsis, which contains the male gamete. D: Arabidopsis siliques, containing 

seeds. 

 

1.3.1 Flowering in Arabidopsis and the ABCDE model 

For flowering to happen in favorable conditions, plants perceive and integrate several 

environmental and endogenous signals. Such signals include day length, temperature and 

nutrient availability as well as phytohormones such as gibberellins and auxin. Several 

interconnected pathways, made of highly complex gene regulatory networks, participate in 

its regulation and eventually converge on a few so-called floral integrators that promote 



38 
 

flowering. I will not cover this topic in detail, but recent reviews of the main pathways 

involved are available about light signaling and photoperiod (Freytes et al., 2021), 

vernalization (Costa & Dean, 2019), ambient temperature and other environmental stimuli 

(Cho et al., 2017), age (Hyun et al., 2017), hormonal control (Izawa, 2021) and the 

autonomous pathway (Cheng et al., 2017). 

The floral transition leads to the conversion of the shoot apical meristem into an 

inflorescence meristem. Then, floral meristems are produced on the flanks of the 

inflorescence meristem, which will start developing floral organs. 

Arabidopsis flowers are composed of four whorls, which harbor, from the most external to 

the most internal one, four sepals, four petals, six stamens and two fused carpels (Figure 

1.3-2). Genetic studies in Arabidopsis identified five classes of floral homeotic genes 

governing the development of these structures: class A, containing APETALA1 (AP1) and 

APETALA2 (AP2); class B, represented by APETALA3 (AP3) and PISTILLATA (PI); class C, 

fulfilled by AGAMOUS (AG); class D, with SHATTERPROOF (SHP) and SEEDSTICK (STK), and 

class E, with SEPALLATA1-4 (SEP1-4) (Wellmer et al., 2014). A-class genes control sepal 

formation, petals are specified by a combination of A- and B-class genes, stamen 

development relies on B- and C-class combined activities and finally carpel formation is 

regulated by C-class gene AG (Figure 1.3-2). D-class genes control ovule development, while 

E-class genes are partially redundant and they are required for the specification of all floral 

organs in Arabidopsis (Figure 1.3-2). A-class TF AP2 also represses C-class AG expression in 

the outer whorls, to effectively separate their different action territories (Krogan et al., 

2012). All the floral organ identity genes mentioned code for MADS-box TFs with the 

exception of AP2, which encodes an AP2 family TF. The four classes of MADS TFs form 

tetrameric protein complexes that bind pairs of CArG-box motifs to regulate their target 

genes (Figure 1.3-2) (Mendes et al., 2013). 

Expression of ABCDE genes is regulated by LFY and AP1, in some cases through the 

interaction with cofactors. The role of LFY in flowering will be detailed in the following 

section. 
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Figure 1.3-2 Arabidopsis flower and the ABCDE model, from (Theißen et al., 2016). The floral quartet 

model and the underlying ABCDE model of organ identity determination in Arabidopsis thaliana. From 

top to bottom: floral quartet model, where the five floral organ identities (sepals, petals, stamens, 

carpels and ovules) are specified by the formation of tetrameric complexes of MADS-domain 

transcription factors by binding to cis-regulatory TFBSs (in green). Sepal identity is determined by a 

complex of two AP1 proteins and two SEP proteins; petals are specified by AP1, a SEP protein and B-

class TFs PI and AP3; stamens require AG, a SEP TF, and PI and AP3; two SEP proteins and two AG 

proteins specify carpel identity, and a combination of one SEP protein, AG, and SHP and/or STK 

control ovule identity. At the bottom, the ABCDE model with the corresponding gene classes and the 

whorls that they specify is displayed. 

 

1.3.2 LEAFY, a master floral regulator 

LFY is the master regulator of flower development and, in Arabidopsis, it controls both floral 

meristem fate and patterning (Parcy et al., 1998; Schultz & Haughn, 1991; Weigel et al., 

1992). Strong lfy mutants in Arabidopsis display delayed flowering and conversion of flowers 

to inflorescence- or leaf-like structures, often subtended by floral bracts, which are male 

sterile (Figure 1.3-3B, D, F) (Parcy et al., 1998; Schultz & Haughn, 1991; Weigel et al., 1992). 

Conversely, LFY overexpression induces early flowering, production of ectopic flowers in the 

axils of rosette leaves and conversion of meristem into solitary flowers (Figure 1.3-3G, H) 

(Chahtane et al., 2018; Kardailsky et al., 1999; Kobayashi et al., 1999; Sayou et al., 2016). 
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LFY is expressed since the early stages of flower development (Blázquez et al., 1997; Weigel 

et al., 1992; Yamaguchi et al., 2016). Because of its crucial involvement in flowering, its 

expression is tightly regulated to ensure its correct spatiotemporal induction. The 

photoperiod pathway regulates LFY levels and its temporal activation through SUPPRESSOR 

OF OVEREXPRESSION OF CO 1 (SOC1), AGAMOUS-LIKE24 (AGL24) and SHORT VEGETATIVE 

PHASE (SVP) TFs as follows. SOC1, a floral integrator, forms a complex with AGL24 to induce 

LFY (J. Lee et al., 2008), and both AGL24 and SVP have been shown to bind the LFY promoter 

and induce its expression (Grandi et al., 2012). Auxin increase in the floral anlage prompts 

LFY induction by MONOPTEROS (MP), an auxin-response factor (Yamaguchi et al., 2013), 

while the repressor and shoot identity TF TERMINAL FLOWER 1 (TFL1) prevents LFY 

expression in the SAM, ensuring spatial regulation (Bradley et al., 1997; Hanano & Goto, 

2011). LFY regulation by TFL1 is also linked to the photoperiodic pathway through the floral 

integrator FLOWERING LOCUS T (FT): TFL1 and FT seem to compete for complex formation 

with FD at target FD sites on LFY, with the TFL1-FD complex repressing and FT-FD inducing 

LFY expression, respectively (Y. Zhu et al., 2020). 

 

Figure 1.3-3 Effects of lfy knock-out mutation and overexpression in Arabidopsis, adapted from 

(Siriwardana & Lamb, 2012). Arabidopsis plants  (A, B, G), inflorescences (C, D, H) and flowers (E, F). 

Genotypes are indicated on the picture. In B, numbers indicate cauline leaves with subtending 

branches. Bracts (white arrows), partially fused carpel-like organs (red arrow) and leaf-like sepals 

(yellow arrowhead) are indicated on lfy plants. Terminal flowers (blue arrows) and single flowers 

formed at the base of the stem in place of branches (white arrowheads) are indicated on LFY 

overexpressor plants. 
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LFY induces the expression of ABCE flowering genes to control floral patterning. LFY can 

directly  induce A-class AP1 expression through binding to its target sites on the AP1 

promoter (Parcy et al., 1998; Wagner et al., 1999), but its proper induction additionally 

requires FT and FD (Wigge, 2005) as well as BLADE ON PETIOLE1 and 2 (BOP1 and 2) 

(Chahtane et al., 2018). Moreover, B- and C-class gene expression requires additional LFY 

cofactors. For correct AP3 and PI expression both LFY and UNUSUAL FLORAL ORGANS (UFO), 

an F-box cofactor, are required (Honma & Goto, 2000; Lamb et al., 2002). More details on 

how LFY works with UFO to regulate petal and stamen development will be given in Chapter 

2: The LFY-UFO complex regulates distinct genes from LFY, p. 67. Finally, C-class gene (AG) 

expression, which drives carpel development as well as flower termination, requires LFY and 

WUSCHEL (WUS), a homeodomain TF controlling shoot meristematic activity (Jha et al., 

2020; Lohmann et al., 2001). While these LFY co-factors are known, the exact mechanism is 

not. 

LFY’s involvement in the early stages of flower development is also made possible by its 

pioneer TF properties. LFY can bind nucleosome-occupied DNA in closed chromatin regions, 

and recruit chromatin remodelers at its AP1 binding site (Jin et al., 2021; Lai, Blanc-Mathieu, 

et al., 2021). Access to closed chromatin regions is possible thanks to the N-terminal SAM 

domain of LFY (Sayou et al., 2016). LFY also physically interacts with SPLAYED (SYD) and 

BRAHMA (BRM), two closely related SWI2/SNF2 chromatin remodelers, on AG and AP3 

regulatory regions (M.-F. Wu et al., 2012).  

In addition to the ABCE floral homeotic genes, LFY has also been shown to regulate genes 

involved in flowering time and meristem identity as well as organ polarity, hormone 

responses and resistance to pathogens (Winter et al., 2011). 

 

1.3.3 LFY is a highly conserved TF  

The structure of LFY’s N-terminal SAM domain, required for LFY-LFY oligomerization and 

cooperative binding, and its C-terminal DBD have been solved (Hamès et al., 2008; Sayou et 

al., 2016). LFY was initially indicated to bind a 7-bp CCANTG[G/T] consensus sequence (Busch 

et al., 2022; Lamb et al., 2002), but further studies have refined the LFY target motif to a 19-

bp palindromic site (Moyroud et al., 2011). Interestingly, the LFY motif presents trinucleotide 
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dependencies on the flanks of the core motif and between the three bases separating the 

two LFY monomers (Moyroud et al., 2011). 

The availability of LFY sequences from other plant species and the structure of the DBD 

allowed a thorough exploration of LFY’s functional evolution. LFY’s protein sequence is 

highly conserved throughout plant evolution, especially its SAM domain and DBD (B. Gao et 

al., 2019; Maizel, 2005; Sayou et al., 2014). Unlike most TFs, which are part of bigger and 

partially redundant TF families, LFY makes up a TF family of its own. Moreover, it is found in 

single copy in most plants, although some notable exceptions are some gymnosperm or 

moss species and crops such as maize and soybean, which contain two copies of LFY (B. Gao 

et al., 2019). 

The binding specificity of LFY is also highly conserved in the green lineage. LFY has three 

possible binding conformations, which are linked to few but crucial variations in the residues 

of its DBD. In embryophytes, LFY specificity is conserved and the TF binds as an obligate 

dimer, with two DBDs facing each other on the same side of the DNA and separated by 3 bp 

(Sayou et al., 2016).  

While LFY’s sequence and binding specificity are highly conserved, its importance for floral 

meristem initiation and patterning can vary in other plant species. LFY homologs have been 

shown to be involved in inflorescence and overall plant architecture in rice and maize, and 

additional roles in leaf dissection have also been reported in pea and petunia (Moyroud et 

al., 2009). 

 

1.3.4 LFY binding and expression resources in Arabidopsis 

Besides the central role of LFY in genetic, evolutionary and structural studies, this TF has 

been the subject of many binding and expression studies. 

Several datasets of in vivo genome-wide binding assays have been published over the years. 

The first ChIP-seq experiment to assess genome-wide LFY binding on DNA in vivo was 

performed on LFY-overexpressing seedlings and published in 2011 (Moyroud et al., 2011). A 

second ChIP-seq experiment in the same overexpression setting was published a few years 

later (Sayou et al., 2016). In 2017, a ChIP-seq on Arabidopsis inflorescences expressing 

35S:LFY-GR in the ap1 cal background was published (Goslin et al., 2017), and the latest 
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ChIP-seq experiment was performed on callus expressing the same 35S:LFY-GR transgene 

(Jin et al., 2021). In addition to in vivo binding profiling, in vitro binding was assayed more 

recently through DAP-seq and ampDAP-seq experiments (Lai, Blanc-Mathieu, et al., 2021). 

A variety of genome-wide expression datasets is also available for LFY, even though the 

majority is represented by microarray experiments (Schmid et al., 2003, 2004; William et al., 

2004). Only one LFY RNA-seq experiment has been published so far, performed on callus 

expressing 35S::LFY-GR recombinant protein (Jin et al., 2021). 

All the features of LFY mentioned above make it an excellent TF model to study 

transcriptional regulation in Arabidopsis.  
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2 Objectives 

The overall objective of my PhD work was to study transcriptional regulation by TFs in 

Arabidopsis, by taking LFY as a model TF. This objective has taken the shape of two main 

projects, which I will explain in further detail in the two following chapters of this 

manuscript: 

1. A machine-learning approach to characterize LFY’s transcriptional regulation 

genome-wide, distinguishing between transcriptionally active and inactive LFY sites 

on the genome. I built a classifier that can distinguish between the two classes of LFY 

sites based on site quality, genomic context and evolutionary conservation. This will 

be the focus of Chapter 1: A machine-learning model to predict transcriptional 

regulation of LFY sites genome-wide based on genomic context and evolutionary 

conservation, p. 45. 

2. An approach combining biochemistry, genomics and structural biology to elucidate 

the role of the LFY-UFO complex in the development of Arabidopsis petals and 

stamens. While I was not directly involved in the biochemical and structural parts of 

the project, the computational component I contributed to was instrumental to 

uncover the different specificity of the LFY-UFO complex compared to LFY’s canonical 

binding, as well as the role of UFO in allowing LFY to target new sites through its 

involvement in a transcriptional complex. This second project will be introduced in 

Chapter 2: The LFY-UFO complex regulates distinct genes from LFY, p. 67. 

The first chapter will contain a specific introduction, as well as results and discussion 

sections. In the second chapter, a short introduction will detail my involvement in the 

recently published study that constitutes the core of the chapter itself, and that will be 

followed by a section containing additional results and discussion integrating new recent 

findings on the same topic. Finally, an overall conclusion will end this manuscript.  
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3 Chapter 1: A machine-learning model to predict transcriptional 

regulation of LFY sites genome-wide based on genomic context 

and evolutionary conservation 

3.1 Introduction 

LFY is a master regulator of floral development, and it triggers major changes in this 

important process (Kaufmann & Airoldi, 2018; Parcy et al., 1998, p. 199; Wagner et al., 1999; 

Weigel et al., 1992; Weigel & Nilsson, 1995). Decades of research have elucidated its key role 

in multiple plant species, as well its structural and biophysical properties (Hamès et al., 2008; 

Moyroud et al., 2009, 2010, 2011; Sayou et al., 2014, 2016). 

As LFY holds a central role in flower development, its action is tightly regulated in space and 

time, making it an excellent TF model to study the complexity of gene regulatory processes. 

LFY’s binding profile has been extensively studied, both in vivo and in vitro, making it one of 

the plant TFs with the most binding data available (Goslin et al., 2017; Jin et al., 2021; Lai, 

Blanc-Mathieu, et al., 2021; Moyroud et al., 2011; Sayou et al., 2016; Winter et al., 2011). 

Moreover, the study of LFY’s DNA binding characteristics has led to the development of 

state-of-the-art TFBS models specifically tailored to predict its binding to DNA sequences. 

First, a PWM with nucleotide dependencies, which dramatically increases prediction 

accuracy compared to a classical PWM (Moyroud et al., 2011); second, POcc, a biophysical 

model outperforming the previous ones (Minguet et al., 2015; Moyroud et al., 2011). 

However, such models alone do not provide any information about whether the binding 

really happens in vivo, or whether it has a measurable effect on target gene expression, and 

this hinders their application. 

Upon TFBS recognition, TFs can recruit the transcriptional machinery to initiate gene 

expression (H. Chen & Pugh, 2021). Transcriptional profiling with microarrays or RNA-seq 

techniques can capture gene expression levels at the tissue or single-cell level, and this 

information could be integrated with binding profiles to better characterize the panorama of 

TFBSs with an active transcriptional role. Multiple studies have investigated LFY’s target 

genes, providing information about LFY-dependent gene expression at various 

developmental stages and through different experimental designs (Jin et al., 2021; Schmid et 

al., 2003, 2004; William et al., 2004). 
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TF-DNA binding does not determine effective transcriptional regulation of target genes, as 

gene expression can be influenced by other factors including the effect of multiple TFs on 

regulatory regions (Spitz & Furlong, 2012). Therefore, we sought to make a comprehensive 

model of genome-wide transcriptional regulation by TFs in Arabidopsis, and all the 

information stated above makes LFY an ideal candidate for this task. In particular, we 

wanted to know why only a subset of LFY-bound regions genome-wide are regulated by the 

protein in vivo, and whether the information present in their genomic context could help 

explain these preferences.  

To this end, I identified LFY sites genome-wide based on their score using LFY’s PWM with 

dependencies (Moyroud et al., 2011). Then, I analyzed and integrated LFY binding and 

expression data to define whether each PWM-identified LFY site was ‘functional’ (i.e. 

transcriptionally active, based on evidence of binding in vitro and in vivo, and having a 

significant effect on gene expression) or ‘nonfunctional’ (i.e. transcriptionally inactive, 

lacking any binding or gene expression evidence) (Figure 3.1-1). For each LFY site, I 

computed state-of-the-art PWM and POcc scores, and I investigated the presence of TFBSs 

for other TFs surrounding LFY sites, their density and diversity. I also looked at the distance 

between each LFY site and the closest TSS, as some TFs have been shown to bind at 

preferential distances from the TSS in Arabidopsis and maize, and we did not know whether 

this could also influence transcriptional regulation by LFY (Bernard et al., 2010; Rozière et al., 

2022). Moreover, I computed the level of conservation of each LFY site in flowering plants, 

under the hypothesis that conserved regulatory elements would be more likely to be 

transcriptionally active. Finally, I trained Random Forest algorithms to distinguish functional 

and nonfunctional LFY sites based on all of the information stated above (Figure 3.1-1).  

Once the model was trained, I used it to investigate the rules underlying transcriptional 

regulation by LFY, as well as to make predictions on LFY sites that were not included in 

training, revealing new potential targets of this TF (Figure 3.1-1). For this purpose, I took 

advantage of a set of LFY sites that I labeled as ‘unknown’ as they had some evidence of 

transcriptional regulation, but they did not fulfill all requirements to be confidently labeled 

as ‘functional’. These sites were not included in model training but were used to discover 

new LFY-regulated sites on the Arabidopsis genome for which the available evidence was 

inconclusive. 
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Figure 3.1-1 Graphical abstract for Chapter 1: A machine-learning model to predict transcriptional 

regulation of LFY sites genome-wide based on genomic context and evolutionary conservation. (1) LFY 

binding sites (pink boxes) are predicted genome-wide using a PWM model with nucleotide 

dependencies (Moyroud et al. 2011), and then they are labeled as ‘functional’ or ‘nonfunctional’ 

based on binding and expression assays. These labeled data are used to train a Random Forest model, 

which aims to accurately classify LFY sites as functional or not. (2) Genomic features describing each 

predicted LFY BS are fed into the Random Forest model. These features include the genomic context, 

which measures the presence of the binding site of all A. thaliana’s TFs nearby the LFY BS, and a 

measure of evolutionary conservation. Once the model achieves high performance, it can be used to 

predict the state of new sequences, providing valuable biological insights into TF biology. Moreover, 

we can identify which genomic features contribute significantly to the model's performance, shedding 

light on the molecular mechanics that govern gene regulation by LFY.  
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3.2 Results 

3.2.1 Genomic context features better predict functional LFY sites than features based 

on state-of-the-art LFY-DNA binding models 

As mentioned above, the first step consisted in defining LFY TFBSs on the Arabidopsis 

genome, and labeling them as either functional, nonfunctional or ‘unknown’ based on 

experimental data (more details in Definition of LFY sites genome-wide, p. 115 and 

Integration of binding and expression data and definition of 

nonfunctional/functional/‘unknown’ LFY , p. 115).  

Based on the amount of LFY TFBSs labeled as functional at increasing PWM score percentiles 

(Figure S3.4-1A and C), we chose the 99.9th percentile threshold, which corresponds to a 

PWM score of -18.45, to define genome-wide LFY TFBSs. Threshold choice was the result of a 

compromise between site quality, which increases at higher percentiles as the score gets 

close to 0, and the amount of functional sites (positive entries) that would be required to 

successfully train our algorithm. At 99.9th percentile threshold, 1204 LFY sites are labeled as 

functional (Figure S3.4-1, p. 65), 57699 as nonfunctional and 39488 as ‘unknown’. For the 

analyses presented next, I only considered functional and nonfunctional sites.  

We decided to build Random Forest classifiers to distinguish functional and nonfunctional 

LFY sites based on genomic context information and evolutionary conservation. We chose 

Random Forest algorithms because they have been widely applied in biology and genomics 

(Back & Walther, 2021; X. Chen & Ishwaran, 2012; Smet et al., 2023), and they accommodate 

multiple types of features, allowing us to use both continuous and categorical features. 

Moreover, they can account for nonlinear interactions between features. 

We first sought to compare the performance of Random Forest models in predicting 

functional LFY sites when trained with state-of-the-art LFY-DNA binding models (PWM with 

dependencies or POcc) and when trained on genomic context information. Genomic context 

was described by the following properties: 

 Distance, in bp, between each LFY site and the closest site of other TFs, called ‘co-

occurrence’ hereafter. To avoid redundancy between TFs with similar DNA-binding 

motifs, I used clusters of TF DNA-binding models available on JASPAR 2022 and 

computed based on motif similarity (Castro-Mondragon et al., 2022), and I applied 
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the same procedure as for LFY to define their binding sites on the Arabidopsis 

genome (see Computing co-occurrence and LFY-LFY distances, p. 117). 

 Distance, in bp, between each LFY site and the next closest LFY TFBS; called ‘LFYdist’ 

in Figure 3.2-1A (see Computing co-occurrence and LFY-LFY distances, p. 117). 

 Distance, in bp, between each LFY site and the closest TSS; called ‘TSS’ in Figure 

3.2-1A (see Computing LFY-TSS distances, p. 118). 

 Non-LFY TFBS density (i.e. total number of TFBSs) and diversity (through an 

adaptation of Shannon’s entropy (Shannon, 1948)) around each LFY site (± 500 bp). 

These features are named ‘density’ and ‘diversity’ in Figure 3.2-1A, respectively. 

More details about how I calculated TFBS density and diversity, and how we chose 

these two features to include this information, can be found in section Computing 

TFBS density and diversity around LFY TFBSs, p. 118).  

 Sequence type, i.e. whether each site was found within a promoter region, coding 

sequence, intron, downstream regulatory region, 5’ or 3’ UTR (see Encoding 

sequence type, p. 118). This feature is named ‘seq_type’ in Figure 3.2-1A. 

To evaluate the performance of Random Forest algorithms in classifying functional and 

nonfunctional LFY sites, I used cross-validation. Briefly, this strategy consists in dividing the 

data into a group that will be used to train a model and another one that will be given to the 

trained model to evaluate its prediction power on sequences with hidden labels. The 

splitting procedure can be repeated multiple times and each time a new model will be 

trained and evaluated. Once context features were computed, I used different combinations 

of them to train Random Forest algorithms to classify functional and nonfunctional LFY sites. 

As our data is unbalanced (few positives, i.e. functional sites, and many negatives, i.e. 

nonfunctional sites), I used Precision-Recall (PR) curves to evaluate and compare models 

built with different sets of features (more details about the proposed cross-validation 

strategy in Training and testing Random Forest models, p. 124). 

Random Forest models exclusively built with co-occurrence information of 46 TF clusters 

performed better than those built with LFY PWM or POcc alone, as indicated by a higher 

median PR AUC over 100 models (median PR AUC = 0.22 for co-occurrence, green boxplot in 

Figure 3.2-1A, compared to 0.05 for PWM and 0.14 for POcc alone) (more details on the 
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cross-validation strategy and why I obtained 100 models can be found in Training and testing 

Random Forest models, p. 124). Distance between two LFY sites (‘LFYdist’, Figure 3.2-1A) 

strongly improved predictions (median PR AUC = 0.29), while the addition of LFY sites to TSS 

distance, sequence type and TFBS density and diversity (‘TSS’, ‘density’, ‘diversity’, 

‘seq_type’, respectively) seemed to only marginally improve the PR curve’s AUC (Figure 

3.2-1A). Including PWM scores and POcc as features in addition to all genomic context 

information, for a total of 58 features in the model, further increased mean PR AUC to 0.37 

(Figure 3.2-1A and B), suggesting that, while their impact alone is limited, their integration 

within the genomic context of LFY sites provides new crucial information. Taken together, 

these results suggest that the genomic context of LFY sites is informative to distinguish 

functional and nonfunctional sites, and that context information leads to better predictions 

than with the exclusive use of previous state-of-the-art LFY models, PWM and POcc. 

 

 

 

 

 

 

Figure 3.2-1 Performance of random forest classifiers built with state-of-the-art LFY TFBS models 

(PWM with dependencies and POcc) and genomic context information. A: boxplot of PR AUC in 100 

models trained with different features as indicated. ‘PWM’ = score obtained with LFY PWM with 

dependencies; POcc = POcc score computed ±250 bp around each LFY site (more details on POcc 

calculation and the choice of the interval around LFY can be found in Computing POcc around LFY 

TFBS, p. 116); all other features named here are mentioned in the text just above. B: Detailed PR 

curves for the model trained with all features (bottom boxplot in A, in grey). Each line corresponds to 

a model built at each cross-validation iteration. Blue line is the average. Horizontal dashed line in grey 

corresponds to the expectation of a random model. More details on the cross-validation strategy I 

followed can be foundin Training and testing Random Forest models, p. 124. 
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3.2.2 Inclusion of evolutionary conservation does not improve predictions 

Next, we decided to integrate evolutionary conservation to the previous model containing 

genomic context and LFY models features, under the hypothesis that conserved sites would 

be more likely to have a functional role. After trying several ways to encode conservation at 

LFY sites, I decided to use the average PhastCons and PhyloP scores detected at LFY sites, as 

computed genome-wide by (Tian et al., 2020) on Arabidopsis after the multiple genome 

alignment of over 60 flowering plant genomes. More information on how I chose the 

average conservation score over LFY sites can be found in Computing average conservation 

at LFY sites, p. 121. Average PhyloP and PhastCons scores at each LFY site were included as 

two separate features, but were used together in the model when conservation is indicated 

(‘avg conservation’ in Figure 3.2-2A). Surprisingly, conservation alone was virtually 

uninformative for predictions, and its integration to our previous model with genomic 

context and LFY models even seemed to slightly decrease its overall PR AUC (Figure 3.2-2A). 

One possible explanation for this surprising result is that the evolutionary distance included 

in the model is too broad, and that site conservation may have been lost: LFY may no longer 

target the same sites, or the sites themselves may not be detected at the genome alignment 

stage. The range of species used by Tian et al. to compute PhyloP and PhastCons scores 

spanned over 100 million years of plant evolution, and included both mono- and 

dicotyledons (Tian et al., 2020). Therefore, I decided to use additional data sources to see 

whether decreasing the evolutionary distance of the species included to compute 

conservation could help understand the poor impact of conservation on predictions. As it 

was not possible to modify the species range used to compute PhyloP and PhastCons scores, 

I relied on four published datasets of conserved noncoding sequences (CNSs) at increasing 

evolutionary distances (Figure 3.2-2B), and I looked at the proportion of LFY sites 

overlapping with CNSs as a proxy of site conservation (Figure 3.2-2C). 

The first dataset I used comprises over 90,000 CNSs computed for Brassicaceae species, and 

it is the one with the shortest evolutionary distance from Arabidopsis (Haudry et al., 2013). 

The second dataset was computed on noncoding regions of 10 dicotyledon species (Velde et 

al., 2014), while the third one included 12 species of both mono- and dicotyledons (Velde et 

al., 2016). The fourth dataset was published along with the nucleotide-resolution 
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conservation scores that we had already used to encode conservation in the model, but in 

this case it represents conserved genomic regions among 63 mono- and dicotyledon species 

instead of continuous nucleotide-level conservation scores (Tian et al., 2020). As the first 

three datasets were specifically computed on noncoding regions, I focused on LFY sites in 

noncoding regions. 

Our results show that the proportion of functional LFY sites overlapping with CNSs is higher 

than that of nonfunctional sites in all the CNS datasets used (Figure 3.2-2C). Moreover, the 

ratio between the fraction of functional and that of nonfunctional sites overlapping with 

CNSs is highest when using Brassicaceae CNSs from the Haudry2013 dataset (Haudry et al., 

2013), while it seems to decrease as more species are taken into account and evolutionary 

distances increase (Figure 3.2-2D). It should be noted, however, that this decrease is not 

constant, as the ratio in the CNSs from the second dataset is lower than in the third one, 

despite the fact that the second one is limited to dicotyledons (Figure 3.2-2D). I also checked 

CNS enrichment in ‘unknown’ sites, and they tend to have a CNS-overlapping rate that is 

lower than that of functional sites but higher than the nonfunctional ones (Figure 3.2-2C). 

This is due to the fact that ‘unknown’ sites represent a mixture of functional and 

nonfunctional sites.  

Overall, these results suggest that functional sites in noncoding regions tend to be more 

evolutionarily conserved than nonfunctional ones, even at broad evolutionary distances. 

However, it remains unclear why conservation information has no impact on predictions 

(Figure 3.2-2A), even though the CNS dataset issued from the same publication as the data 

we previously used in our model (Tian2020 in Figure 3.2-2B, from (Tian et al., 2020)), still 

shows strong proportions of conserved sites among functional LFY sites.  

Another possibility is that the high conservation levels generally observed in coding 

sequences cannot be distinguished from high conservation levels linked to regulatory 

functions. This seems to be supported by Figure S3.4-1D, which was generated following the 

same procedure as Figure 3.2-2C but without excluding LFY sites in coding sequences, and 

which shows that in the fourth dataset the proportion of conserved functional LFY sites is 

similar to that of nonfunctional sites. Either way, we decided not to include conservation 
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features in the analyses that will be presented next, in consideration of the slight decrease in 

median PR AUC that they produced (Figure 3.2-2A). 

 

Figure 3.2-2 Including average conservation level of LFY sites does not improve predictions. A: 
Performance of random forest classifiers built with conservation information and/or genomic context 
and state-of-the-art LFY models. Each boxplot represents the PR AUC obtained from 100 models 
trained with different features as indicated (see Training and testing Random Forest models, p. 124, 
for details on cross-validation). Avg conservation = models built exclusively with average conservation 
scores (PhyloP and PhastCons) on LFY sites (see Computing average conservation at LFY sites, p. 121). 
Please note that the orange boxplot is the same as the one shown in Figure 3.2-1A in grey, and the 
green one corresponds to a model with the same features as the orange one plus two conservation 
features, for a total of 60 features in the Random Forest model. B: Species tree displaying the plant 
species used to compute different public CNS datasets, indicated with white numbers in boxes. As 
each dataset was computed with a different set of species, the ones displayed here are examples used 
in at least one dataset. The tree was built with TimeTree.org (Kumar et al., 2022). C: Proportion of 
noncoding LFY sites at least partially overlapping with CNSs at increasing evolutionary distances, 
based on their functionality label. 1 = functional LFY sites; 0 = nonfunctional LFY sites; U = ‘unknown’ 
LFY sites. Haudry2013 = CNSs computed by (Haudry et al., 2013); VV2014 = CNSs computed by (Velde 
et al., 2014); VV2016 = CNSs computed by (Velde et al., 2016); Tian2020 = CNSs computed by (Tian et 
al., 2020). More details on this analysis can be found in Calculating CNS enrichment at LFY sites, p. 
123. D: Ratio between the proportion of functional sites and the proportion of nonfunctional sites 
overlapping with CNSs in panel C, for each CNS dataset. 
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3.2.3 The model reveals important information about how LFY binds the DNA 

As I showed before, genomic context features combined with state-of-the-art LFY models 

lead to good predictions in cross-validation (Figure 3.2-1B, p. 50). However, the provided 

features (58 in total in this case) are not all equally important to separate functional and 

nonfunctional LFY sites. Therefore, I investigated which features were the most important 

for classification, as this information can be useful to understand more about the differences 

between the two site classes (functional and nonfunctional sites), and ultimately about how 

LFY fulfills its regulatory activity. 

I decided to look at the Gini importance given to each feature, which measures the total 

decrease in node impurity, i.e. in our case, how efficiently a given feature separates a group 

of sites into two separate classes of functional vs nonfunctional sites. I extracted the Gini 

importance of all features from each random forest model in Figure 3.2-1B (p. 50) and 

identified the most important ones (Figure 3.2-3A, see Extracting feature importance from 

Random Forest models, p. 126). POcc around LFY sites (‘pocc_250’) was consistently the 

most important feature, followed by the PWM score (‘PWM’) and the distance of each LFY 

site from the next LFY site (‘LFYdist’) (Figure 3.2-3A). Therefore, although POcc and PWM 

resulted in a lower PR AUC when separately used to build random forest classifiers, these 

two features, all directly related to LFY sites, have higher importance scores than any 

genomic context features individually. 

Besides LFY-related features, another important one was the level of TFBS diversity around 

LFY sites (‘Sindex_500’ in Figure 3.2-3A), highlighting that, while the position of other LFY 

sites is very informative, the overall presence of diverse TFBSs is also important to 

distinguish functional LFY sites from nonfunctional ones.  

Finally, the distance of LFY from specific TF clusters, which represent variable amounts of 

TFs, turned out to be important as well (Figure 3.2-3A and B). These relevant clusters and the 

TFs they represent are shown in Table 3.2-1. Cluster_1 contains 25 TFs belonging to the 

plant-specific Teosinte-branched 1/Cycloidea/Proliferating (TCP) family, which have been 

shown to be involved in many processes including plant development and flowering (D. Li et 

al., 2019; S. Li, 2015). Cluster_46 contains one TF, CELL DIVISION CYCLE5 (CDC5), which has 

been reported to be involved in cell cycle regulation in Arabidopsis (Lin et al., 2007). 
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Cluster_4 contains 41 TFs predominantly belonging to the bZIP TF family, as well as some 

NAC TFs. bZIP and NAC are among the largest TF families in Arabidopsis, and are involved a 

large spectrum of processes (Blanc-Mathieu et al., 2023). Clusters 38, 32 and 18 contain TFs 

from different families, including several growth-regulating factor (GRF), RELATED TO ABI3 

AND VP1 (RAV) and MADS TFs, which regulate a plethora of plant processes including flower 

development (Hugouvieux & Zubieta, 2018; Matías-Hernández et al., 2014; Omidbakhshfard 

et al., 2015). I want to stress the fact that the high importance of these clusters for 

predictions does not necessarily mean that LFY is interacting with any of them specifically; 

rather, it suggests that their distance from LFY differs between functional and nonfunctional 

LFY sites, and that this information helps classification. I will further discuss the relevance of 

these TF clusters in the appropriate discussion section. 

 

 

 

 

 

 

 

 

  

Figure 3.2-3 Most important features included in our Random Forest models. Ten features with the 

highest Gini importance (highest median value over 100 iterations) in our Random Forest models. 

‘pocc_250’ = POcc score computed within ±250 bp around LFY sites (see Computing POcc around LFY 

TFBS, p. 116). PWM = LFY site score obtained with LFY’s PWM with dependencies (Moyroud et al., 

2011) (see Definition of LFY sites genome-wide, p. 115). LFY_dist = distance between LFY and the next 

closest LFY site (see Computing co-occurrence and LFY-LFY distances, p. 117). Sindex_500 = non-LFY 

TFBS diversity within ±500 bp around LFY sites (see Computing TFBS density and diversity around LFY 

TFBSs, p. 118). Clusters = TF clusters from JASPAR 2022 (Castro-Mondragon et al., 2022). 
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Table 3.2-1 Six most important JASPAR 2022 clusters (Castro-Mondragon et al., 2022) shown in Figure 

3.2-3A. The table shows correspondence between JASPAR cluster names and the TFs they contain, as 

well as the TF families they belong to. 

JASPAR Cluster 
name 

Cluster motif TF(s) included in the cluster Function 

cluster_1 

 

 

25 TFs: 
TCP2, TCP3, TCP4, TCP5, TCP7, TCP8, 
TCP13, TCP16, TCP17, TCP19, TCP21, 
TCP22, TCP23, TCP24, StBRC1, TB1, 
OJ1581_H09_2, 
ARALYDRAFT_897773, 
ARALYDRAFT_496250, 
ARALYDRAFT_495258, 
ARALYDRAFT_484486, 
ARALYDRAFT_493022, OsI_08196, 
Glyma19g26560_1, 
Zm00001d038683 

TFs,  

TCP family 

cluster_46 

 

 

 

CDC5 
TF, Myb-

like family 

cluster_4 

 

 

 

41 TFs: 

NAC047, NAC035, O2, bZIP911, HYH, 

ABF4, BZIP28, BZIP68, BZIP16, 

BZIP48, BZIP44, BZIP11, BZIP53, 

BZIP3, BZIP2, BZIP63, BZIP43, 

BZIP42, TGA6, TGA5, TGA2, TGA7, 

TGA3, TGA10, TGA9, TGA4, TGA1, 

bZIP910, TGA1A, BZIP60, NAC043, 

NTL9, NAC029, NAC002, NAC055, 

NAC046, NAC079, NAC019, NAC025, 

NAC083, NAC018 

TFs, bZIP 

and NAC 

families 

cluster_38 

 

 

 

GRF4 
RAV1 

TFs, GRF 

and RAV 

families 

cluster_32 

 

 

 

 

GRF6, GRF9, 
SIZF2, GLYMA-07G038400 

TFs, GRF 

and C2H2 

ZF families 

cluster_18 

 

 

 

AGL55, AGL42, 

RAV2, TEM1 

TFs, MADS 

and RAV 

families 



57 
 

Taken together, these results indicate that transcriptionally active LFY sites display a 

different genomic context from nonfunctional ones, with features related to the presence of 

other LFY sites having a greater impact on predictions. Although to a lesser extent, 

differences in non-LFY TFBS diversity and the distance from specific TF groups also 

contribute to predicting functional LFY sites. 

 

3.2.4 The model can be used to make predictions of LFY functional sites on ‘unknown’ 

sites 

Once a model is trained, it can be used to make predictions on any site for which the same 

information (genomic context, LFY-related features) is available. This can be done either with 

a model trained on the entirety of LFY sites, or by following a strategy more similar to cross-

validation, where a subset of the data is used to train a new model, repeating the process 

many times. The advantage of the latter is that each trained model can be used to make 

predictions on new sites, revealing which ones display high probability of being functional 

over many iterations. Following this principle, I decided to train the random forest models 

shown in Figure 3.2-1B (p. 50) on functional and nonfunctional sites, and to make predictions 

with each one on ‘unknown’ sites, i.e. LFY sites with evidence of either binding or differential 

expression but which could not be confidently labeled as functional nor as nonfunctional 

(more details in Using trained Random Forest models to make predictions on ‘unknown’ 

sites, p. 126). 

Among the ‘unknown’ sites with the highest median probability of being functional (over 100 

models), a site located on chromosome 3, in the promoter of the BOP1 gene 

(chr3:21146118-21146137), looks particularly promising (Figure 3.2-4A). It is the site with 

the third highest median probability value, and it is surrounded by additional LFY sites 

(Figure 3.2-4B). This site was labeled as ‘unknown’ because it is bound in ChIP-seq and 

ampDAP-seq experiments, but there was no evidence of differential expression. When 

looking at the other four sites with the highest median probability of being functional (Figure 

3.2-4A), none is close to a gene for which the link to LFY regulation is as evident as BOP1 

based on existing literature (Figure S3.4-2). In absence of prior evidence of their potential as 

LFY functional sites, and of experimental validation, I decided not to explore these sites any 

further, and to focus on the site in the BOP1 promoter as an example.  
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Figure 3.2-4 The model can be used to predict whether ‘unknown’ LFY sites (which could not be 

confidently labeled as functional nor as nonfunctional) are functional or nonfunctional. A: Five 

‘unknown’ LFY sites with the highest median predicted probability of being functional, based on 100 

random forest models (see Training and testing Random Forest models, p. 124). Red dashed line 

marks a predicted probability value of 0.45, while the black dashed line marks 0.5, for a better visual 

assessment of the probability values displayed. B: Screenshot taken with Integrated Genome Browser 

(Freese et al., 2016) over the promoter of the BOP1 gene. From top to bottom: LFY binding signal in 

ChIP-seq experiments from (Goslin et al., 2017; Jin et al., 2021; Moyroud et al., 2011; Sayou et al., 

2016); LFY sites computed with LFY’s PWM with dependencies with score above the 99.90th 

threshold, where the site with the highest median probability shown in panel A is indicated with an 

arrow and its name; LFY ampDAP-seq signal from (Lai, Blanc-Mathieu, et al., 2021); two isoforms of 

the BOP1 gene as included in the TAIR10 annotation. 
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3.3 Discussion 

3.3.1 Genomic context carries key regulatory information 

We built a classifier that can distinguish between transcriptionally active and inactive LFY 

sites identified based on their PWM score. Instead of using ROC curves to evaluate and 

compare models built with different sets of features, I chose to focus on the metric of PR 

curve AUC because the data are strongly unbalanced, and in such cases ROC curves can lead 

to high AUC values inflated by an excessive prediction of the majority class. While the model 

itself, with an average PR AUC of 0.37, is far from being perfect (AUC = 1), it still suggests 

that the features we included can indeed help distinguish the two sites' categories. 

Our results show that co-occurrence, encoded as the distance between each LFY site and the 

closest site of each of over 40 groups of TFs, is more informative than state-of-the-art LFY 

DNA-binding models characterizing site quality (PWM score) or LFY occupancy in the ±250 

bp surrounding each reference LFY site (POcc) (Figure 3.2-1, p. 50). Nevertheless, combining 

context information and LFY models leads to the best results, indicating that, ultimately, LFY 

binding in vivo happens on regulatory regions with particular characteristics. 

Such characteristics are revealed by the importance given by the model to different features: 

the most important features are all related to LFY binding sites, with POcc having an 

especially strong impact on predictions. The importance of POcc over PWM highlights the 

fact that, beyond binding affinity, the biochemical properties of LFY and the presence of 

multiple LFY sites in the same region are signals of LFY active sites. This is in line with 

previous reports of the importance of the N-terminal SAM domain of the protein, which is 

crucial for cooperative binding of LFY oligomers on regulatory regions (Sayou et al., 2016). 

Using the same approach with other TFs that do not oligomerize will be crucial to determine 

the importance of this feature beyond LFY. Furthermore, it would be interesting to assess 

the importance of cooperative binding by looking at whether functional and nonfunctional 

LFY sites are more or less likely to lose binding signal when LFY’s cooperativity is disrupted, 

as it happens in a previously published mutated version of LFY (LFYTERE, where T75E, R112E 

substitutions alter the protein’s oligomerization properties) (Sayou et al., 2016). 

In addition to LFY-related features, TFBS diversity, which we encoded by adapting Shannon’s 

entropy measure (Shannon, 1948), also seems to be important for predictions. Previous 
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reports using synthetic promoters had shown the importance of diverse regulatory regions, 

containing TFBSs belonging to different TFs, for reporter gene expression, as opposed to a 

suite of the same amount of sites from the same TF (Singh et al., 2021). It is also possible 

that this measure simply helps setting apart regulatory regions from non-regulatory ones, 

although total amount of TFBSs around LFY sites (TFBS density), which is generally higher in 

regulatory regions, was less important than diversity. 

Distance between LFY sites and TFBSs belonging to some key TF clusters also seems to have 

an impact on predictions (Figure 3.2-3, p. 55). Cluster_1, which contains TCP TFs, is among 

the most important ones. While TCPs are involved in a variety of processes in Arabidopsis, 

TCP5, TCP13 and TCP17 have been shown to interact with the AP1 promoter, a major LFY 

target (D. Li et al., 2019). As cluster_1 is the cluster with the highest median importance for 

predictions, LFY could be sharing other targets with TCP proteins. 

Next, cluster_46 only contains one TF, CELL DIVISION CYCLE 5 (CDC5), a Myb-like TF. CDC5 is 

expressed in the shoot apical meristem and in inflorescences, and it has been shown to be 

involved in development and bacterial infection response in Arabidopsis (Hirayama & 

Shinozaki, 1996; Lin et al., 2007; Palma et al., 2007; S. Zhang et al., 2013). Moreover, cdc5 

mutants display phenotypic defects such as delayed flowering and sterility (Lin et al., 2007). 

While the importance of the distance between LFY and CDC5 TFBSs does not necessarily 

imply that the two proteins interact, the evidence reported above supports the fact that the 

two proteins are coexpressed, and that they could be regulating some common targets, 

leading to their sites being close to each other.  

As cluster_4, cluster_38, cluster_32 and cluster_18 represent a variety of proteins and TF 

families for which a direct implication with LFY is not evident, I do not want to over-

speculate on their importance in the context of LFY binding. In order to truly determine the 

role of the other clusters as potential TFs co-occurring with LFY, additional analyses and 

experimental validation will be required. Techniques such as TARGET, transiently expressing 

TFs in Arabidopsis protoplasts, could be instrumental to study the involvement of such 

clusters in co-regulating genes with LFY (Bargmann et al., 2013; Brooks et al., 2023). 

More broadly, I explicitly chose to focus on sites where LFY binds by itself and without strict 

requirement for cofactors, as I focused on LFY sites bound in ChIP-seq and ampDAP-seq 
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experiments. This means that clusters that are important for predictions are important 

because of the distance of their TFBSs from LFY’s, but not necessarily as direct interactors of 

LFY. If the objective were to look for potential interactors, for example, it would be possible 

to modify the classification labels in order to look for LFY sites that are bound in vivo and not 

in vitro, which could require binding partners and/or a chromatin context that is missing in 

ampDAP-seq experiments. While I have not tried this strategy so far, it could be interesting 

for exploratory analyses with LFY as for other TFs. 

 

3.3.2 Several possible reasons to why conservation of LFY sites does not help 

predictions 

Functionally important elements in regulatory regions have been reported to be 

evolutionarily conserved, and this information can be used to infer regulation (Vandepoele 

et al., 2006). We hypothesized that including evolutionary conservation of LFY sites in a 

predictive model would positively impact predictions as sites with a functional role in 

transcriptional regulation would tend to be more conserved than nonfunctional sites 

randomly arising in the genome. However, when I included the average conservation score 

(PhyloP and PhastCons) of LFY sites in the model, which already contained genomic context 

as well LFY PWM score and POcc, it did not have any significant effect on PR AUC, and even 

slightly decreased its median value (Figure 3.2-2, p. 53). 

We initially thought that the reason behind conservation not improving our classification 

could be that the evolutionary interval included to compute conservation scores was too 

broad, and that some transcriptionally important LFY sites were lost. Therefore, I 

investigated whether LFY sites were overlapping with conserved regions computed at 

increasing evolutionary distances. I first excluded LFY sites found in coding regions because 

three out of four datasets were specifically computed on noncoding regions. My results 

show that functional LFY sites are consistently more enriched in CNSs than nonfunctional 

ones, and that the ratio between the fraction of functional sites overlapping with CNSs and 

the proportion found for nonfunctional sites decreases as the evolutionary distance 

increases (Figure 3.2-2C and D, p. 53).  
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However, when I used a dataset including conserved regions in coding and noncoding 

sequences (Tian et al., 2020), the proportion of LFY sites that overlap with conserved regions 

was very similar between functional and nonfunctional sites (Figure S3.4-1D, p. 65). It is 

important to note that this dataset was published along with the PhastCons and PhyloP 

conservation scores that I included in the model (Tian et al., 2020). This difference could be 

amplified by the differences in sequence type distributions between the three classes of LFY 

sites (Figure S3.4-1B, p. 65). Therefore, it is possible that high conservation observed for sites 

found within coding regions cannot be distinguished from high conservation in noncoding 

regions, although the latter could be an indicator of functional importance of regulatory 

regions. While I did not try to build a model including conservation as a binary feature 

representing overlap (or lack thereof) of each LFY site with CNSs, it would be interesting to 

know whether this kind of information has any impacts on predictions, and whether the 

impact changes when using CNS datasets at increasing evolutionary distances. This 

approach, based on the results shown in Figure 3.2-2C (p. 53), has the potential to reveal a 

higher influence of conservation on predictions, but it should be exclusively applied to 

noncoding LFY sites. 

It is important to note that both strategies, the averaged PhyloP and PhastCons conservation 

per site and the overlap of at least a portion of LFY sites with conserved regions, have a 

caveat: neither of them take into account the importance of the conserved nucleotides (or 

portions of the LFY TFBS) for binding. As not all positions are equally important for binding, 

conservation of key positions could be more important than conservation of more variable 

positions within the TFBS. My previous attempts at using a weighted average to encode 

overall conservation of LFY sites, where the information content per position represents the 

weight, did not improve results, although I did not try to do the same when looking at 

overlap of LFY sites with CNSs and this remains to be tested.  

Another possibility that could be explored is to switch the focus from sequence conservation 

to the conservation of regulatory modules, which has been shown to be important for gene 

expression conservation over broad evolutionary distances (Nitta et al., 2015; Ravel et al., 

2014; Taher et al., 2011; Wong et al., 2020). As the model presented in this chapter is built 

to include features describing the genomic context of functional and nonfunctional LFY sites, 

the focus for encoding conservation could switch from single LFY sites towards the 
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conservation of the regulators in that context. This would require more complex 

comparative genomics approaches, but it holds great potential for functional site 

predictions. 

Bearing in mind all the considerations above, it is still possible that a low impact of site 

conservation on predictions is due to the fact that, while LFY’s sequence and specificity are 

highly conserved (Sayou et al., 2014), its targets may not be as conserved, and neither its 

sites. Previous reports of cis-regulation being rather restricted support the possibility that 

cis-regulatory targets could be scarcely conserved (Ballester et al., 2014; Tu et al., 2022). A 

particularly relevant example in plants is a study where only about 13% of Arabidopsis 

GOLDEN2-LIKE (GLK) TF targets were also found to be targeted by GLK orthologs in tomato, 

tobacco, maize and rice (Tu et al., 2022). From this point of view, despite evidence of LFY still 

targeting some important genes such as AP1 and AG outside of Brassicaceae (Minguet et al., 

2015; Moyroud et al., 2011), it is possible that its other targets, which have not been studied 

in such detail, may not be conserved. AP3 regulation, which requires both LFY and its 

cofactor UFO, is also conserved outside of Brassicaceae (Ingram & Coena, 1995.; S. McKim & 

Hay, 2010; Rieu et al., 2023; Souer et al., 2008). LFY has also been shown to be involved in 

additional developmental processes in other species than Arabidopsis (Moyroud et al., 2009, 

2010), suggesting that the gene regulatory networks where it is involved may have changed, 

and LFY target sites with them. Nevertheless, at the moment, we do not have enough 

evidence to establish whether this is the reason behind the poor results we obtained when 

adding LFY sites conservation scores to our model. 

 

3.3.3 New potential targets of LFY revealed by the model 

I used the model presented in Figure 3.2-1B to predict whether ‘unknown’ LFY sites, i.e. sites 

that only partially met the requirements to be labeled as functional, were transcriptionally 

active or not. My results indicate that an ‘unknown’ LFY site likely to be functional is found in 

the promoter of BOP1, a TF that has been shown to negatively regulate LFY protein 

(Chahtane et al., 2018). Like LFY’s, BOP1 expression is detected since the floral anlagen, and 

the BOP1 protein is detected since stage 5/6 and at the base of developing organs, which 

overlaps with LFY’s expression domain (Karim et al., 2009; S. M. McKim et al., 2008; Weigel 
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et al., 1992; Yamaguchi et al., 2016). The site within the BOP1 promoter predicted to be 

functional is bound in ChIP-seq and ampDAP-seq experiments, but the lack of BOP1 

differential expression led to its ‘unknown’ label. Based on the evidence presented above, 

LFY could be targeting the BOP1 promoter. Dual luciferase reporter assays in Arabidopsis 

protoplasts with the full BOP1 promoter sequence would be a good start to determine 

whether LFY can induce BOP1 expression. Furthermore, sequentially mutating the LFY site 

predicted to be functional as well as the other LFY sites on the BOP1 promoter would help 

determine the importance of that site in particular, as predicted by our model. None of the 

other sites with the highest probability of being functional (Figure 3.2-4A, p. 58) maps close 

to genes with apparent link to flowering or show enough compelling prior evidence of being 

targeted by LFY (Figure S3.4-2, p. 66).  

In our approach, we focused on LFY sites found within or around genes, up to 3 kb upstream 

of the TSS and 1 kb downstream of the TTS. However, trained models could be used to make 

predictions on LFY sites found in intergenic regions, i.e. even farther away from genes, 

following the same approach used for ‘unknown’ LFY sites. While in Arabidopsis the mean 

size of intergenic regions is about 1 kb (Lamesch et al., 2012), gene density can vary and it 

could reveal transcriptional activity at longer distances from genes. 

Finally, as our approach relies on learning the genomic context of transcriptionally active 

sites rather than direct TF-target links, a model trained on Arabidopsis data could be used to 

make predictions on TFBSs in other species. This could reveal if and to what extent the cis-

regulatory code that applies to a TF is, itself, conserved in other species. Binding and 

expression data in five plant species as published by (Tu et al., 2022) for GLK TFs could be 

instrumental to further develop and validate this approach. 
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3.4 Supplementary figures 
  

Figure S3.4-1 Supplementary information about LFY sites genome-wide. A: Distribution of LFY PWM 

scores as calculated on the whole Arabidopsis genome with LFY’s PWM with dependencies. The 

vertical line represents the 99.90th percentile threshold chosen for subsequent analyses; grey shaded 

part represents the LFY sites with a PWM score above the 99.90th threshold that were used in 

subsequent analyses. More details in Definition of LFY sites genome-wide, p. 115. B: Type of sequence 

to which functional (1), nonfunctional (0) and ‘unknown’ (U) LFY sites map on the Arabidopsis 

genome. UTR_5 = 5’ UTR, UTR_3 = 3’ UTR, CDS = coding sequence, downstream = 1 kb downstream of 

the 3’ UTR, promoter = 3 kb upstream of the 5’ UTR. LFY sites mapping at multiple sequences types 

(e.g. promoter and CDS) are shown multiple times. C: Total number of functional LFY sites (top panel) 

and ratio of functional/total functional + nonfunctional sites (bottom panel) at increasing PWM score 

percentile thresholds. More details in Definition of LFY sites genome-wide, p. 115. D: Proportion of LFY 

sites at least partially overlapping with conserved regions, LFY sites mapping to coding and noncoding 

regions confounded. The analysis was conducted as in Figure 3.2-2C (p. 53), but this time with all LFY 

sites in coding and noncoding regions confounded. 1 = functional LFY sites; 0 = nonfunctional LFY 

sites; U = ‘unknown’ LFY sites. Haudry2013 = CNSs computed by (Haudry et al., 2013); VV2014 = CNSs 

computed by (Velde et al., 2014); VV2016 = CNSs computed by (Velde et al., 2016); Tian2020 = CNSs 

computed by (Tian et al., 2020). See Calculating CNS enrichment at LFY sites, p. 123, for more details. 
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Figure S3.4-2 Snapshots of LFY sites labeled as ‘unknown’ and predicted to be functional in Figure 

3.2-4A, as indicated by their name at the top of each panel. Order and colors correspond to those in 

Figure 3.2-4A and are indicated in the legend on the right. 
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4 Chapter 2: The LFY-UFO complex regulates distinct genes from LFY 

4.1 Introduction 

4.1.1 LFY and UFO are involved in petal and stamen development 

As explained in the introduction of this manuscript, Arabidopsis flowers are made of four 

concentric whorls of organs: sepals, petals, stamens and carpels. The correct formation of 

these organs relies on effective spatiotemporal control of homeotic gene expression. Petal 

and stamen development is regulated by LFY and UFO through the activation of AP3 (I. Lee 

et al., 1997). 

This chapter will focus on LFY and UFO, and on their role in petal and stamen development. 

First, I will explain the proposed role of the LFY-UFO interaction based on previous findings, 

then I will explain the main findings of our article, published early in 2023, highlighting my 

contribution. I will include the article in this manuscript and, finally, I will show some 

additional results and discuss the possibility that LFY and UFO have a broader role in plant 

development. 

 

4.1.2 UFO has been proposed to interact with LFY to promote its ubiquitination and 

degradation 

UFO is an F-box protein that is part of an SCF E3 ubiquitin ligase complex, and it directly 

interacts with LFY to regulate AP3 expression (Chae et al., 2008). Unlike LFY, which is 

expressed throughout the floral meristem since the earliest stages of floral development 

(Weigel et al., 1992), UFO is expressed in the peripheral zone of the shoot apical and 

inflorescence meristems (Reddy, 2008). Therefore, the interaction between LFY and UFO has 

been proposed to allow the spatiotemporal control of AP3 expression in the appropriate 

domains for the development of petals and stamens (Parcy et al., 1998). 

Moreover, LFY can also be ubiquitinated in a UFO-dependent manner in inflorescences, as its 

ubiquitination level is lower in a ufo-2 background (Chae et al., 2008). This information 

pointed towards UFO interacting with LFY to promote its ubiquitination and subsequent 

proteasome-dependent degradation. An additional hint in this direction was provided by 
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Risseeuw et al., who showed that overexpression of UFO without its F-box domain in a WT 

background resulted in a phenotype similar to ufo weak alleles, suggesting that the 

involvement of UFO in protein ubiquitination and degradation constitutes an important part 

in its flower development role (Risseeuw et al., 2013). 

Despite this body of evidence, the exact molecular mechanism remained unclear. Is UFO 

recruited to AP3 to promote LFY’s degradation, or is it there to contribute to LFY’s 

transcriptional function? Does the presence of UFO alter LFY’s properties allowing its binding 

at the AP3 promoter? We addressed these questions through a combination of molecular, 

computational and structural approaches. 

 

4.1.3 LFY and UFO form a transcriptional complex that recognizes new genomic regions 

Our results suggest that UFO forms a transcriptional complex with LFY to control the 

expression of developmental genes such as AP3 (Figure 4.1-1). Interestingly, the F-box 

domain of UFO is partially dispensable for its transcriptional role, unlike what was previously 

suggested (Risseeuw et al., 2013), indicating that this action is independent of its 

involvement in an SCF ubiquitination complex. It is likely that the weak ufo phenotype 

observed in previous reports of plants expressing UFO without its F-box domain was due to 

protein folding issues of the truncated protein. 

Instead, we found that the LFY-UFO interaction changes LFY’s binding specificity to what we 

named a LFY-UFO Binding Site (LUBS), which is a variation of a LFY canonical motif with the 

addition of a UFO-recruiting motif at the 5’ end. I detected this motif thanks to a genome-

wide LFY-UFO binding assay in vitro (ampDAP-seq), performed by P. Rieu, after designing a 

procedure to retrieve complex-specific regions as opposed to regions bound by LFY alone in 

another ampDAP-seq experiment. Crucially, the UFO-recruiting motif at the 5’ end of LFY’s 

canonical motif was detected in LFY in vivo binding data. These findings were supported by 

evidence of the LFY-UFO complex binding to a LUBS in vitro in electrophoretic mobility shift 

assays, and by a strong reduction in AP3 expression upon mutation of the strongest LUBS 

sites in the AP3 promoter. 
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LFY-UFO and LFY targeting different genomic regions allows an additional layer of 

transcriptional control, by restricting the expression of a subset of genes to the tissues 

where both LFY and UFO proteins are present. Indeed, a LUBS is also present in a set of 

genomic regions that LFY can bind with UFO but not on its own, and that are distinct from 

LFY’s canonical targets. 

 

Figure 4.1-1 LFY and UFO form a transcriptional complex to regulate flower developmental genes. 

Credits: Philippe Rieu. 

Solving the cryo-EM structure of the LFY-UFO complex revealed that UFO directly 

participates in the binding, and that the bound DNA is slightly bent. Finally, yeast-two-hybrid 

assays using LFY proteins from several species at increasing evolutionary distances and UFO 

from Arabidopsis suggest this interaction to be conserved in angiosperms, gymnosperms and 

ferns, but not in mosses and algae. 

I contributed to the computational side of this project, by analyzing LFY and LFY-UFO 

ampDAP-seq data and comparing the read coverage (i.e. signal strength) of the regions 

bound in the two experiments. I also identified the new LUBS in LFY-UFO-enriched regions, 

and I analyzed public microarray data to identify new potential targets of the complex. I 

assembled bioinformatics-related figures, as well as the materials and methods and a first 
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draft of the main text relative to these parts. I received help from Jérémy Lucas on the 

analysis of the quality of LFY sites on LFY-UFO- vs LFY-specific regions, and Romain Blanc-

Mathieu was responsible for finding the UFO-recruiting motif in LFY ChIP-seq data. 

  

The full paper will be included in the next section. It will be followed by a section showing 

some additional results and discussing the role of the LFY-UFO complex in plant 

development in the light of recent findings. 

 

4.2 Article 
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The F-box protein UFO controls flower 
development by redirecting the master 
transcription factor LEAFY to new 
cis-elements

Philippe Rieu1, Laura Turchi    1,2, Emmanuel Thévenon1, Eleftherios Zarkadas3,4, 
Max Nanao5, Hicham Chahtane    1,6, Gabrielle Tichtinsky    1, Jérémy Lucas1, 
Romain Blanc-Mathieu    1, Chloe Zubieta1, Guy Schoehn    3 & 
François Parcy    1 

In angiosperms, flower development requires the combined action of the 
transcription factor LEAFY (LFY) and the ubiquitin ligase adaptor F-box 
protein, UNUSUAL FLORAL ORGANS (UFO), but the molecular mechanism 
underlying this synergy has remained unknown. Here we show in transient 
assays and stable transgenic plants that the connection to ubiquitination 
pathways suggested by the UFO F-box domain is mostly dispensable.  
On the basis of biochemical and genome-wide studies, we establish that  
UFO instead acts by forming an active transcriptional complex with LFY at 
newly discovered regulatory elements. Structural characterization of the 
LFY–UFO–DNA complex by cryo-electron microscopy further demonstrates 
that UFO performs this function by directly interacting with both LFY and 
DNA. Finally, we propose that this complex might have a deep evolutionary 
origin, largely predating flowering plants. This work reveals a unique 
mechanism of an F-box protein directly modulating the DNA binding 
specificity of a master transcription factor.

The formation of flowers is key to the reproductive success of angi-
osperms. Flowers are made of four types of organs (sepals, petals, 
stamens and carpels) arranged in concentric whorls. The patterning 
of flower meristems requires the localized induction of the ABCE flo-
ral homeotic genes that determine specific floral organ identities. In 
Arabidopsis thaliana, this developmental step is largely controlled 
by the master transcription factor (TF) LEAFY (LFY) that activates the 
ABCE genes1,2. LFY directly activates the A class gene APETALA1 (AP1) 
uniformly in the early flower meristem3,4, while activations of B and C 

genes are local and require the activity of cofactors. For instance, LFY 
regulates the C class gene AGAMOUS (AG) in conjunction with the TF 
WUSCHEL to specify third whorl (stamen) and fourth whorl (carpel) 
identities5. The activation of the B class gene APETALA3 (AP3), neces-
sary to specify the identity of the second (petal) and third whorls of the 
flower, requires the combined activity of LFY and the spatially deline-
ated cofactor UNUSUAL FLORAL ORGANS (UFO)6–8. In Arabidopsis, the 
main function of LFY and UFO is to activate AP3 (ref. 9), but in numer-
ous species (such as rice, wheat, tomato and petunia), their joint role 
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and that a ubiquitination-independent mechanism determines the  
LFY–UFO synergy.

LFY and UFO form a transcriptional complex on a 
new DNA motif
Protoplast assays established that the AP3 and RBE promoter sequences 
contain the information that dictates their specific activation by 
LFY–UFO. Several regulatory regions driving AP3 regulation in early 
floral meristem have been identified, including the distal and proxi-
mal early elements (DEE and PEE; Fig. 2a)23,24. The DEE contains a pre-
dicted canonical LFYBS, but in protoplasts, like in plants24, this site 
is not sufficient to explain pAP3 activation (Extended Data Fig. 2). By 
systematically testing AP3 promoter variants in the transient assay, we 
identified a 20-base-pair (bp) DNA element around the PEE important 
for LFY–UFO-dependent activation but devoid of canonical LFYBS  
(Fig. 2b and Extended Data Fig. 3a–c). We investigated the possibility 
that LFY and UFO form a complex on this DNA element using elec-
trophoretic mobility shift assays (EMSAs). For this, we mixed either 
recombinant LFY-DBD (the LFY domain interacting with UFO)18 
or in-vitro-produced FL LFY with a reconstituted ASK1–UFO com-
plex. None of the proteins bound the DNA probe alone, but a shift 
was observed when LFY–DBD or FL LFY was mixed with ASK1–UFO 
(Fig. 2c). Thus, a presumptive ASK1–UFO–LFY complex was formed 
on a pAP3 DNA element (hereafter named LFY–UFO Binding Site 0 
(LUBS0)) that each partner did not bind on its own. We did note 
that UFO had a weak affinity for DNA, as ASK1–UFO shifted the DNA 
probe when we performed EMSAs with low competitor DNA con-
centrations (Extended Data Fig. 3d). EMSAs performed with LUBS0 
mutated at various bases provided evidence that the formation of 
the complex is sequence-specific and suggests a bipartite DNA motif  
(Extended Data Fig. 3f).

To identify all genome regions possibly targeted by the ASK1–
UFO–LFY complex, we performed amplified DNA affinity purifica-
tion sequencing (ampDAP-seq) with a reconstituted ASK1–UFO–LFY 
complex (Extended Data Fig. 4a,b). We identified numerous genomic 
regions where LFY binding was strongly enhanced by the presence of 
ASK1–UFO. For each bound region, we computed the ratio (the cover-
age fold change (CFC)) between the coverage of peaks in the presence 
or absence of ASK1–UFO (Fig. 2d). Searches for enriched DNA motifs 
in the 600 regions with the highest CFC (>4.7) identified two bipartite 
motifs made of a 6-bp RRNRCA (N indicates A/C/G/T; R indicates A/G) 
sequence, four bases of variable sequence and either a monomeric 
or a dimeric site resembling canonical LFYBS but with more variabil-
ity (Fig. 2e). Consistent with the presence of a sequence resembling 
LFYBS, we found that pAP3 activation in protoplasts required the LFY 
amino acid residues involved in binding to canonical LFYBS (Extended  
Data Fig. 4c,d).

We named the identified motifs mLUBS and dLUBS for monomeric 
and dimeric LFY–UFO Binding Sites, respectively (Fig. 2e). Since it is 
observed specifically with ASK1–UFO, the RRNRCA element was named 
the UFO Recruiting Motif (URM). Position weight matrices (PWMs) 
for dLUBS and to a lesser extent mLUBS outperformed the canoni-
cal PWM for LFY, showing that they reliably predicted the binding of 
ASK1–UFO–LFY (Extended Data Fig. 4e). The LFYBS present within 
the LUBS of high-CFC regions tended to have a lower predicted affin-
ity than those present in regions bound by LFY alone (Extended Data  
Fig. 4f), explaining why LFY binding to those sequences occurs only 
with UFO and the URM. Remarkably, we also identified the URM de novo 
from published LFY chromatin immunoprecipitation sequencing 
(ChIP-seq) data (Extended Data Fig. 4g)25. Moreover, we found that 
the LFY ChIP-seq performed in inflorescences25 correlates better with 
 the ASK1–UFO–LFY ampDAP-seq than with the LFY ampDAP-seq 
(Spearman rank correlation of 0.481 versus 0.338 for the first 1,000 
ChIP-seq peaks), strongly suggesting that many regions are bound 
in vivo by UFO (see examples of such regions in Extended Data Fig. 7b,c).

goes well beyond B gene activation and is key to floral meristem and 
inflorescence development10–13.

At the molecular level, little is known on the nature of LFY–UFO 
synergy. Unlike most floral regulators, UFO encodes not for a TF but 
for an F-box protein, one of the first to be described in plants14–16. 
UFO is part of a SKP1–Cullin1–F-box (SCF) E3 ubiquitin ligase com-
plex through the interaction of its F-box domain with ARABIDOPSIS 
SKP1-LIKE (ASK) proteins15,17. In addition, its predicted carboxy-terminal 
Kelch-type β-propeller domain physically interacts with LFY DNA Bind-
ing Domain (DBD)18. As the control of TF activity through proteolytic 
and non-proteolytic ubiquitination is a well-described mechanism19, it 
has been suggested that LFY is targeted for ubiquitination and possibly 
degradation by the SCFUFO complex. Other data have shown that add-
ing a repression or activation domain to UFO changes its activity and 
that UFO is recruited at the AP3 promoter in a LFY-dependent manner, 
suggesting a more direct role of UFO in gene regulation18,20. However, 
direct evidence explaining how UFO regulates a specific subset of LFY 
targets was still missing, and the molecular mechanism underlying 
LFY–UFO synergistic action remained elusive.

Here we show that the connection of UFO to the SCF complex is 
largely dispensable for this protein’s activity and that an important 
role of UFO is to form a transcriptional complex with LFY at genomic 
sites devoid of canonical high-affinity LFY binding sites (LFYBS). Our 
study presents a unique mechanism by which an F-box protein acts as 
an integral part of a transcriptional complex.

The UFO F-box domain is partially dispensable for 
its floral role
A dual luciferase reporter assay (DLRA) in Arabidopsis protoplasts was 
used to study floral promoter activation by LFY and UFO. We used pro-
moter versions known to allow full complementation of mutants or to 
be able to recapitulate a wild-type (WT) expression pattern (Methods).  
We found that the AP3 promoter (pAP3) was more strongly activated 
when LFY (or LFY–VP16, a fusion of LFY with the VP16 activation 
domain) was co-expressed with UFO (or UFO–VP16) than by either 
effector alone (Fig. 1a,e). Similar results were obtained with the pro-
moter of RABBIT EARS (RBE), another UFO target (Fig. 1b)21. We also 
analysed the promoters of AP1 (pAP1) and AG (pAG), two LFY targets 
regulated independently of UFO3,4,22 that are required for organ identity 
of the first and second (AP1) or third and fourth (AG) floral whorls. We 
found that their activation by LFY and LFY–VP16 was insensitive to UFO  
(Fig. 1c,d). Thus, the protoplast assay accurately reproduced several 
floral promoter activation patterns.

We next investigated the involvement of an SCFUFO-dependent 
ubiquitination pathway in pAP3 activation by LFY–UFO. We found that, 
when co-expressed with LFY, amino-terminally truncated UFO versions 
lacking the F-box domain (UFOΔFbox and UFOΔFbox–VP16) activated 
pAP3 similarly to the full-length (FL) UFO (Fig. 1e). The connection of 
UFO to an SCF complex thus appears dispensable for pAP3 activation 
in transient protoplast assays. The previously reported inactivity of 
UFO with an internal deletion of its F-box probably reflects the poor 
folding of this protein variant rather than the functional importance 
of the F-box domain (Extended Data Fig. 1a–c)20.

We also constitutively expressed tagged versions of UFO and 
UFOΔFbox in Arabidopsis. Irrespective of the presence of the F-box, 
plants displaying a detectable UFO or UFOΔFbox expression (Extended 
Data Fig. 1d) showed a typical UFO gain-of-function phenotype  
(Fig. 1f,g). In addition, both UFO versions complemented the strong 
ufo-1 mutant and induced gain-of-function phenotypes (Fig. 1h and 
Extended Data Fig. 1e,f)8. Still, minor defects (such as some missing or 
misshapen petals and disorganized flowers) were specifically observed 
in the absence of the F-box, suggesting that this conserved domain 
might be important for a subset of UFO functions (Fig. 1h and Extended 
Data Fig. 1g). Overall, UFO and UFOΔFbox have very similar activi-
ties, showing that the role of the F-box domain is largely dispensable 
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The ampDAP-seq findings were validated by EMSAs with DNA 
probes corresponding to optimal mLUBS and dLUBS motifs (Fig. 2f 
and Extended Data Fig. 4h). We observed a complex of slower mobil-
ity with dLUBS than with mLUBS, consistent with the presence of two 
LFY molecules on dLUBS. ASK1–UFO also supershifted LFY bound 
to canonical LFYBS from pAP1 and pAP3 DEE (Extended Data Fig. 4i), 
sometimes (but not systematically) increasing apparent LFY binding.

LUBS are functional regulatory elements
Examination of the pAP3 genomic region in ASK1–UFO–LFY 
ampDAP-seq revealed a peak that is absent in the experiment performed 
with LFY alone (Fig. 3a). This peak is roughly located on the PEE and is 

consistent with LFY ChIP-seq peaks25,26. We searched for LUBS under 
this peak, and, to our surprise, we identified several sites predicted to 
be better than LUBS0 (Fig. 3a). In EMSAs, the two highest-scoring sites, 
LUBS1 and LUBS2, were specifically bound by LFY in the presence of 
ASK1–UFO (Fig. 3b and Extended Data Fig. 5a). EMSAs performed with 
a LFY mutant version affected in its ability to dimerize further con-
firmed the stoichiometry of LFY–UFO complexes on LUBS1 and LUBS2 
(Extended Data Fig. 5b). A similar binding was also observed when com-
bining LFY and UFO∆Fbox (Extended Data Fig. 5c,d), consistent with 
the F-box being facultative for LFY–UFO transcriptional activity (Fig. 1). 
In the protoplast assay, altering LUBS1 or LUBS2 (or both) significantly 
reduced pAP3 activation (Fig. 3c); the LUBS1 alteration had a stronger 
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Fig. 1 | UFO action is largely independent of its F-box domain. a–e, Promoter 
activation in Arabidopsis protoplasts, with the indicated effectors (right) and 
promoters (below each graph). EV, empty vector. The data are mean ± s.d. (n = 4 
biological replicates). We used one-way analysis of variance (ANOVA) with Tukey’s 
multiple comparisons test (a,c–e) or Welch’s ANOVA with Games–Howell post 
hoc tests (b). For a and b, the ANOVAs were performed on log-transformed data 
(Methods). The asterisks represent a significant statistical difference compared 
with GFP (a–d) or 3xHA–LFY + EV (e), non-significant (NS) otherwise. Other 
comparisons are indicated with brackets. NS, P > 0.05; *P < 0.05; ***P < 0.001; 

****P < 0.0001. f, Representative pictures of the different phenotypic classes 
obtained in the T1 population of the indicated transgenic plants (scale bars, 
1 mm for flowers and 1 cm for rosettes). g, Distribution of T1 plants in phenotypic 
classes as described in f. The distribution of 35S::UFO and 35S::UFO∆Fbox lines 
within phenotypic classes is not significantly different (χ2 tests; NS, P > 0.05).  
n, number of independent lines. h, ufo-1 complementation assay by the 35S::UFO 
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available in Supplementary Data 4.
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effect. Specifically altering the URM of pAP3 LUBS1 and LUBS2, which 
abolished LFY–UFO binding on individual sites in EMSAs (Extended 
Data Fig. 5e), also reduced pAP3 activation, albeit less effectively than 
altering the whole LUBS (Extended Data Fig. 5f). Finally, the previously 
described pAP3::GUS staining pattern in the second and third whorls of 
early floral meristems in Arabidopsis was severely reduced when LUBS1 
and LUBS2 were altered, demonstrating the importance of these sites 
in vivo (Fig. 3d and Extended Data Fig. 5g). Similarly, the RBE promoter 
contains an ASK1–UFO–LFY ampDAP-seq peak that is absent with LFY 
alone (Extended Data Fig. 6a), and the functional importance of the 
single LUBS identified under this peak was confirmed using EMSAs, 
transient assays in protoplasts and stable reporter constructs in plants 
(Extended Data Fig. 6b–e).

In addition to AP3 and RBE, LFY and UFO together probably 
regulate many other genes in Arabidopsis. To identify such potential  
LFY–UFO targets, we established a list of genes bound (in ampDAP and 
ChIP) and regulated by LFY–UFO (Extended Data Fig. 7a). This proce-
dure identified the other B gene PISTILLATA (PI), previously proposed as 
a LFY–UFO target but through an unknown regulatory element that the 
LUBS model precisely localized (Extended Data Fig. 7b). We also found 
floral regulators such as SQUAMOSA PROMOTER BINDING PROTEIN- 

LIKE 5 and FD as well as additional candidates probably regulated by 
LFY and UFO (Extended Data Fig. 7a,c).

The LFY K249R substitution specifically affects 
UFO-dependent LFY functions
In Arabidopsis, LFY performs UFO-dependent and independent 
functions3, and we wondered whether they could be uncoupled by 
introducing specific alterations in LFY. As we were initially looking 
for LFY ubiquitination mutants, we substituted exposed lysines of 
LFY–DBD with arginines and tested the effect of such alterations on 
LFY–UFO-dependent pAP3 activation in protoplasts. We found one 
substitution (LFY K249R; Extended Data Fig. 8a) that strongly reduced 
pAP3 activation by LFY–UFO (Fig. 4a) or LFY–VP16–UFO (Extended 
Data Fig. 8b) without affecting the UFO-independent pAG activation 
(Extended Data Fig. 8c) or the LFY–UFO interaction (Extended Data  
Fig. 8d). AmpDAP-seq experiments showed that the LFY K249R sub-
stitution specifically impaired the binding of LFY–UFO but not that of 
LFY alone (Fig. 4b,c and Extended Data Fig. 8e–i), revealing that Lys249 
plays a key role in LFY–UFO interaction with the LUBS DNA.

The importance of LFY Lys249 for UFO-dependent LFY functions 
was also confirmed using complementation assays of the Arabidopsis 
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codon. TSS, transcription start site. The orange triangles represent canonical 
LFYBS. The orange rectangle represents the 107-bp region and the black square 
represents the mutation introduced in pAP3 LUBS0 (LUBS0m). The detailed 
functional dissection of the 107-bp region and the LUBS0 mutation (LUBS0m) 
are described in Extended Data Fig. 3. The other rows show the promoter 
versions used in b. b, pAP3 activation in Arabidopsis protoplasts. The data are 
mean ± s.d. (n = 4 biological replicates). We used one-way ANOVA with data 
from the same effector and Tukey’s multiple comparisons tests. The asterisks 
represent a significant statistical difference compared with WT pAP3 (*P < 0.05; 
**P < 0.01). c, EMSA with LUBS0 DNA probe and the indicated proteins. Size 
exclusion chromatography (SEC) coupled to multi-angle laser light scattering 

(MALLS) established a mass of 102 ± 3.3 kDa for the ASK1–UFO–LFY–DBD–LUBS0 
complex, consistent with a 1:1:1:1 stoichiometry (Extended Data Fig. 3e). The 
drawings represent the different complexes with FL LFY (blue), LFY–DBD  
(pale blue) and ASK1–UFO (red) on DNA. d, Comparison of peak coverage  
in LFY and LFY–UFO ampDAP-seq experiments, coloured by CFC. The  
LFY–UFO-specific peaks used to build the mLUBS and dLUBS motifs in e are 
triangle-shaped. RPKM, reads per kilobase per million. e, Logos for mLUBS, 
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strongest LFY ampDAP-seq signal. f, EMSAs with the mLUBS and dLUBS DNA 
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different complexes with LFY (blue) and ASK1–UFO (red) on DNA. Source data are 
available in Supplementary Data 4.
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lfy-12 null mutant27. lfy-12 plants expressing LFYK249R or LFYK249S under 
the control of the LFY promoter developed flowers with normal sepals 
and carpels but with defective third-whorl and, more importantly, 
second-whorl organs, resulting in flowers similar to those observed 
in weak ufo mutants (Fig. 4d). When expressed under the constitutive 
35S promoter, LFYK249R triggered ectopic flower formation and early 
flowering like WT LFY (Extended Data Fig. 8j), consistent with these 

LFY functions being independent of UFO and thus not affected by the 
K249R substitution28.

Structural characterization of the ASK1–UFO–
LFY–DNA complex
To understand how the LFY–UFO complex recognizes its cognate DNA 
binding site and how the Lys249 alteration impedes this interaction, 
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blue)26, LFY–UFO ampDAP-seq (yellow), and LFY ampDAP-seq (pink)48. The y axis 
indicates the read number range. Bottom, identification of LUBS in pAP3. The 
predicted binding sites using dLUBS and mLUBS models and the LFY PWM are 
shown; the y axis represents score values. LUBS1 and LUBS2 are indicated with 
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(blue) and ASK1–UFO (red) on DNA. c, pAP3 activation in Arabidopsis protoplasts. 
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One-way ANOVAs were performed with data from the same effector (one-way 
ANOVA with Tukey’s multiple comparisons tests for 3xHA–LFY + UFO–3xFLAG 
data and Welch’s ANOVA with Games–Howell post hoc tests for 3xHA–LFY–
VP16 + UFO–3xFLAG data). The asterisks represent a statistical difference 
compared with the WT promoter (****P < 0.0001). d, In vivo analysis of pAP3::GUS 
fusions. The percentage of transgenic lines with an AP3 pattern, a faint AP3 
pattern or absence of staining is shown (top). The pattern distributions differ 
between the two constructs (χ2 test; ****P < 0.0001). n, number of independent 
lines. Representative pictures of plants with an AP3 pattern (bottom left) and 
a faint AP3 pattern (bottom right) are also shown. Scale bars, 50 µm. Note the 
staining in the ring corresponding to the second and third whorl primordia in the 
left picture. Source data are available in Supplementary Data 4.
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we purified the ASK1–UFO–LFY–DBD–LUBS1 complex and structurally 
characterized it using cryo-electron microscopy (cryo-EM) (Fig. 5a 
and Extended Data Fig. 9a–d). A structure at a 4.27 Å resolution was 
obtained (Extended Data Fig. 9g–i) into which were fit the AlphaFold2 
predicted structures for UFO and ASK1, and the LFY–DBD dimer/DNA 
crystallographic structure29 (PDB, 2VY1; Fig. 5b and Extended Data  
Fig. 9e,f). Due to the modest resolution, specific interacting amino acids 
could not be unambiguously identified. However, the major protein–
protein and protein–DNA interaction surfaces were clearly identifiable.

The structure revealed that UFO directly contacts the DNA in the 
major groove around the URM (Fig. 5c). This binding probably involves 
basic residues present on loops projecting from the UFO Kelch-type 
β-propeller and results in a bend of roughly 30 degrees in the DNA 
double helix (Extended Data Fig. 9f). The structure also shows an inter-
face between UFO and one LFY–DBD monomer (Fig. 5c). The LFY–DBD 
loop containing the Lys249 residue lies in this interface and probably 
interacts with one of the DNA-binding loops of UFO, consistent with the 
key role of LFY Lys249 in the ternary complex formation. As expected, 

ASK1 interacts with the UFO F-box domain15 (Fig. 5d). These data show 
how a β-propeller protein is able to modify the specificity of a TF, and 
they offer a structural explanation of how LFY and UFO synergisti-
cally recognize a specific DNA element via direct interactions by both 
proteins with the DNA.

The LFY–UFO complex might have a deep 
evolutionary origin
As genetic and physical LFY–UFO interactions have been described in 
diverse angiosperms, we wondered whether the mechanism unravelled 
for Arabidopsis proteins could also apply to LFY from other species, 
including non-angiosperm ones. We selected LFY orthologous pro-
teins from several species and with different DNA binding specificities  
(Fig. 6a). LFY specificity has evolved with three major DNA binding 
specificities30. Type I specificity is the one described in Arabidopsis 
and is valid for other angiosperms, gymnosperms, ferns and the moss 
Marchantia polymorpha, with two half-sites separated by a 3-bp spacer  
(Fig. 2e). LFY from the moss Physcomitrium patens has a type II 
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activation in Arabidopsis protoplasts. The data are mean ± s.d. (n = 4 biological 
replicates). We used Welch’s ANOVA with Games–Howell post hoc tests. The 
asterisks indicate a statistical difference compared with 3xHA–LFY + UFO–
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shown. d, lfy-12 mutant complementation assay. The WT, the lfy-12 mutant and 
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available in Supplementary Data 4.
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specificity with specific half-sites (different from type I half-sites) 
also separated by a 3-bp spacer. Finally, type III specificity is found 
for LFY from algae and corresponds to a type II motif without the 
spacer. Because functional UFO homologues have not been identi-
fied outside angiosperms, we used Arabidopsis UFO (AtUFO) in all the  
following experiments.

We tested the interactions of various LFY orthologues with AtUFO 
in yeast two-hybrid (Y2H) (Fig. 6b), in DLRAs in protoplasts with  
Arabidopsis pAP3 (Fig. 6c) and in EMSAs (Fig. 6d). In Y2H, all LFYs except 
LFY from P. patens (type II) interacted with AtUFO (Fig. 6b). However, 
only type I LFYs from angiosperms, gymnosperms and ferns formed 
a complex on pAP3 LUBS and activated pAP3 in the protoplast assay 
(Fig. 6c,d). These results suggest that the ability of LFY and UFO to 
act together by forming a complex is ancient, largely predating the 
origin of angiosperms. We obtained no evidence that type II and III 
LFYs (from moss and algae) could form a complex with AtUFO on LUBS1 
and LUBS2. A detailed and more trustworthy history of the LFY–UFO 
interaction will await further analyses, notably with the identification 
of UFO orthologues from non-angiosperm genomes.

Discussion
LFY has long been known to interact with UFO to control flower and 
inflorescence development in numerous angiosperm species. However, 
the molecular nature of their synergistic action remained unknown. 
As UFO encodes an F-box protein taking part in an SCF complex17,31,32, 
it was thought to target proteins for SCFUFO-dependent ubiquitination 

and possible degradation. LFY was an obvious target candidate, but 
clear evidence of LFY ubiquitination was missing12,18. The results we 
present here suggest that the F-box domain, required for ubiquit-
ination, is dispensable for most UFO-dependent LFY activity. Nev-
ertheless, the high conservation level of the UFO F-box sequence in 
angiosperms, together with slight differences in UFO activity when 
the F-box is deleted, suggests that this domain might still be needed 
for some elusive facets of UFO function. UFO may work redundantly 
with other F-box proteins in ubiquitination pathways, such as the 
F-box protein HAWAIIAN SKIRT identified in a genetic screen as an 
enhancer of the ufo mutant phenotype33. It is thus possible that UFO 
acts as a moonlighting protein34 with functions in both transcrip-
tion and ubiquitination, and these two activities could be related  
or independent.

The molecular mechanism we discovered here is consistent 
with most published data on AP3 and PI regulation18,23,35,36. However, a 
detailed understanding of the expression patterns of AP3 and RBE will 
require further work on other cis- and trans- elements. Why AP3 is not 
transcribed in floral stage 0–1 despite the expression of LFY and UFO 
is unclear20. It could be because SUPPRESSOR OF OVEREXPRESSION 
OF CO 1 (SOC1), AGAMOUS-LIKE 24 (AGL24) and SHORT VEGETATIVE 
PHASE (SVP) act as early AP3 repressors, as AP3 mRNA is detected in 
the floral anlage in a soc1 svp agl24 mutant37,38. Another explanation 
could be that AP3 expression requires the SEPALLATA3 activator39. Why 
pAP3 is not activated by LFY (or LFY–VP16) alone through the canonical 
LFYBS is also an open question.
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Fig. 5 | Structural characterization of the ASK1–UFO–LFY–DNA complex.  
a, Cryo-EM density map of the ASK1–UFO–LFY–DBD–LUBS1 complex under two 
angles, coloured with regard to the underlying macromolecule (green for LUBS1 
DNA, pale and dark blue for LFY–DBD, red for UFO, and purple for ASK1). b, The 
same views of the cryo-EM density map in transparent grey with fitted structures 
of the LFY–DBD dimer, UFO, ASK1 and LUBS1 DNA. The colours are the same as 
in a. The frames roughly indicate the regions shown in c and d. c, Zoom on the 

UFO–DNA contact region (left) and on the LFY–UFO interface (right). Only the 
high-information CA of the URM and its complement are highlighted by filled 
colouring the rings for each base (red for A, blue for T, pale green for G and purple 
for C). The LFY–DBD loop containing the Lys249 residue is highlighted in dark 
blue. d, Zoom on the ASK1–UFO interface, with the UFO F-box highlighted in gold. 
Source data are available in Supplementary Data 4.
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Our work unravelled an unsuspected function unrelated to ubiq-
uitination for UFO: it forms a transcriptional complex with LFY at 
regulatory sites that are different from the canonical sites bound by a 
LFY homodimer. UFO was previously proposed to act in transcription, 

but in the absence of direct evidence that a LFY–UFO complex forms 
on new binding sites, it was difficult to understand how UFO controls 
only a subset of LFY targets. These new regulatory sites (mLUBS and 
dLUBS) are made of a low-affinity or half LFYBS (poorly or not bound 
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indicated with a blue triangle. DNA binding specificities are colour-coded: types 
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FLOWER. b, Interaction between LFY orthologues and AtUFOΔFbox in Y2H. The 
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synthetic defined. See Extended Data Fig. 4d for the legends. c, pAP3 activation 
measured by DLRAs in Arabidopsis protoplasts. 3xHA–LFY* refers to the different 
LFY orthologues indicated under the x axis. The data represent averages of 
independent biological replicates and are presented as mean ± s.d., with each dot 

representing one biological replicate (n = 4). One-way ANOVAs were performed 
with data from the same effector (one-way ANOVA with Tukey’s multiple 
comparisons tests for 3xHA–LFY* + EV data and Welch’s ANOVA with Games–
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****P < 0.0001). d, EMSAs with the indicated DNA probes (bottom). URM and 
LFYBS bases are depicted in red and blue, respectively. The pAP3 LUBS1 sequence 
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green); these DNA probes were used as positive controls for the binding of LFYs 
alone and for LFY–UFO complex formation. 5xmyc–LFY* refers to the different 
LFY orthologues indicated next to each EMSA and described in a. Source data are 
available in Supplementary Data 4.
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by LFY alone) and a motif located at a fixed distance from it and respon-
sible for UFO recruitment. The formation of such a sequence-specific 
complex is explained at the structural level by the capacity of UFO to 
interact with both LFY and DNA. The poor ability of UFO to bind DNA 
alone explains its complete dependence on LFY to perform its tran-
scriptional functions in planta6,20. Thus, depending on the cis-elements 
present in regulatory regions, LFY either binds DNA as a homodimer 
or requires UFO to form a ternary complex. The alteration of the LFY 
Lys249 residue allows these two types of binding to be uncoupled by 
specifically disrupting the formation of the LFY–UFO–DNA complex. 
The position of this residue in the three-dimensional structure at the 
interface among LFY, UFO and DNA is consistent with the key role of 
this residue in the complex formation. It is possible that replacing 
Lys249 with a bulkier Arg residue displaces the UFO loops involved in 
DNA binding without affecting the LFY–UFO interaction. Obtaining 
a higher-resolution structure will help us precisely understand the 
interactions occurring in this complex.

Although it might be a common regulatory mechanism, only a few 
cases where non-TF proteins modify TF DNA binding specificity have 
been described so far (for example, Met4 and Met28 modifying the bind-
ing of TF Cbf1 in yeast40, or the herpes simplex virus transcriptional acti-
vator VP16 changing the specificity of the Oct-1/HCF-1 complex41). None 
of these examples involves an F-box protein or a Kelch-type β-propeller 
protein, and none has been characterized at the structural level. The 
modification of TF DNA binding specificity by non-TF proteins offers 
additional possibilities for the combinatorial control of gene expres-
sion and explains how a master regulator such as LFY accesses specific 
cis-elements to perform different functions in distinct territories.

Since LFY and UFO play key roles together in numerous plant 
species (including ornamental, crop and model plants), our findings 
expand the molecular understanding of flower and inflorescence devel-
opment in a large variety of angiosperms. Because the LFY–UFO syn-
ergy is observed with LFY orthologues from gymnosperms and ferns 
as well, we speculate that this complex largely predated the origin of 
flowers and could have been co-opted for flower development from a 
yet-unknown ancestral role.

Methods
Arabidopsis growth
All mutants and transgenic lines are in the A. thaliana Columbia-0 
(Col-0) accession. Seeds were sown on soil, stratified for three days 
at 4 °C and then grown at 22 °C under long-day conditions (16 h light). 
Transgenic plants were obtained with Agrobacterium tumefaciens 
C58C1 pMP90 using the floral dip method. Transformants were identi-
fied using GFP or Basta selection.

Arabidopsis cell suspension culture
Arabidopsis thaliana (ecotype Col-0) cells in suspension cultures were 
grown under continuous light (90 µmol of photons per m2 per s) at 
21 °C with shaking in Murashige and Skoog medium supplemented 
with 30 g l−1 sucrose and 2 mg l−1 2,4-dichlorophenoxyacetic acid, pH 
5.5. The suspension cells were subcultured every week with a fivefold 
dilution. Suspension cells at four or five days following subculture were 
used for protoplast preparation.

Cloning
DNA fragments were amplified by PCR with Phusion high-fidelity 
polymerase (NEB). Plasmids were all obtained by Gibson Assembly 
with either PCR-amplified or restriction-enzyme-digested backbone 
vectors. We used the 420-amino-acid LFY version. For site-directed 
mutagenesis, primers containing the desired mutations were used for 
Gibson Assembly mutagenesis. Plasmids were obtained using DH5α 
bacteria and were all verified by Sanger sequencing. A list of plasmids 
and cloning procedures is provided in Supplementary Data 1. The oli-
gonucleotide sequences are listed in Supplementary Data 2.

Y2H
The coding sequences were cloned in pGADT7-AD or pGBKT7 vec-
tors (Clontech) by Gibson Assembly. Y187 and AH109 yeast strains 
(Clontech) were transformed with pGADT7-AD or pGBKT7 vectors 
and selected on plates lacking leucine (SD −L) or tryptophan (SD −W), 
respectively (MP Biomedicals). After mating, the yeasts were restreaked 
on plates lacking leucine and tryptophan (SD −L−W) for two days. The 
yeasts were then resuspended in sterile water, and OD600nm was adjusted 
to the indicated values for all constructions; two tenfold dilutions were 
performed, and 6 µl drops were done on SD −L−W or SD −L−W−A−H 
(lacking leucine, tryptophan, histidine and adenine) plates. The yeasts 
were grown at 28 °C, and pictures were taken at the indicated times.

DLRAs in Arabidopsis protoplasts
Effector plasmids with a 3xHA tag were obtained by cloning the 
indicated genes in the modified pRT104 vector containing a 3xHA 
N-terminal tag (pRT104–3xHA)42. The pRT104 empty plasmid was 
reengineered to insert a 3xFLAG C-terminal tag. For reporter plasmids, 
the indicated promoter fragments were cloned upstream of a firefly 
luciferase gene in pBB174 (ref. 43). We used a 975-bp pAP3 fragment 
and a 2-kilobase (kb) pRBE promoter fragment upstream of the ATG, 
known to induce a WT pattern in planta23,44. pAG corresponds to the AG 
second intron fused to a minimal 35S promoter, known to induce a WT 
pattern in planta22. For pAP1, we used a 600-bp fragment upstream of 
the ATG. This version is sufficient to give a WT pattern in planta45, and 
the use of longer promoter versions induced a very high background 
noise in protoplasts. The pRLC reference plasmid contains a Renilla 
luciferase sequence under the control of the 35S promoter. Plasmids 
were obtained in large amounts using a NucleoBond Xtra Maxi Plus kit 
(Macherey-Nagel). Protoplasts were prepared from Arabidopsis Col-0 
cell suspension and transformed following the procedure described 
by Iwata et al.46. The cell walls were digested using Onuzuka R-10 cel-
lulase and macerozyme R-10 (Yakult Pharmaceutical). The digested 
cells were passed through two layers of Miracloth to remove debris, 
and the protoplast concentration was adjusted to 2–5 × 105 cells per ml. 
The protoplasts were then PEG-mediated transformed using 10 µg of 
the indicated effector and reporter plasmids and 2 µg of the reference 
plasmid. After 17 h of incubation at room temperature, the protoplasts 
were lysed. Firefly (F-LUC) and Renilla luciferase (R-LUC) activities were 
measured using a Dual Luciferase Reporter Assay System (Promega) 
and a TECAN Spark 10 M 96-well plate reader. F-LUC/R-LUC lumines-
cence ratios were calculated with background-corrected values. Four 
biological replicates were done for each plasmid combination.

EMSAs
The DNA probes used in EMSAs are listed in Supplementary Data 2. 
Complementary oligonucleotides were annealed overnight in anneal-
ing buffer (10 mM Tris (pH 7.5), 150 mM NaCl and 1 mM EDTA). Then, 
4 pmol of double-stranded DNA was fluorescently labelled with 1 unit 
of Klenow fragment polymerase (NEB) and 8 pmol of Cy5-dCTP (Cytiva) 
in Klenow buffer for 1 h at 37 °C. The enzymatic reaction was stopped 
with a 10 min incubation at 65 °C.

The proteins used in EMSAs were obtained by different methods 
(bacteria, insect cells or quick coupled transcription/translation (TnT)). 
The concentrations of recombinant proteins (6xHis–LFY–DBD and 
UFOΔFbox–3xFLAG) and recombinant complexes (ASK1–UFO and 
ASK1–UFO–3xFLAG) were adjusted to 500 nM for all reactions. All the 
5xmyc-tagged proteins were obtained in vitro by TnT. We did 50 µl TnT 
reactions by mixing 5 µg of pTNT–5xmyc plasmid containing the gene of 
interest with TnT SP6 High-Yield Wheat Germ Protein Expression System 
(Promega) for 2 h at 25 °C. For EMSAs with TnT-produced proteins, 5 µl 
of TnT reaction was used. Recombinant protein buffer or TnT mix was 
used as a control when comparing reactions with multiple proteins.

All binding reactions were performed in 20 µl of binding buffer 
(20 mM Tris (pH 7.5), 150 mM NaCl, 1% glycerol, 0.25 mM EDTA, 2 mM 
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MgCl2, 0.01% Tween-20 and 3 mM TCEP) with 10 nM labelled probe. 
The reactions were supplemented with 140 ng µl−1 fish sperm DNA 
(Sigma-Aldrich) for EMSAs performed with in-vitro-produced LFY and 
200 ng µl−1 for EMSAs performed with recombinant 6xHis–LFY–DBD. 
The binding reactions were incubated for 20 min on ice and then loaded 
on a 6% native polyacrylamide gel. The gels were electrophoresed at 
90 V for 75 min at 4 °C and revealed with an Amersham ImageQuant 
800 imager (Cytiva). The uncropped gels are shown in the Source data.

Recombinant protein production and purification from 
bacteria
We produced 6xHis–LFY–DBD in E. coli Rosetta2 (DE3) cells (Novagen) 
and purified it as previously described29. ASK1 was cloned into the 
pETM-11 expression vector47, and the resulting plasmid was trans-
formed into E. coli BL21 cells (Novagen). The bacteria were grown in LB 
medium supplemented with kanamycin and chloramphenicol at 37 °C 
up to an OD600nm of 0.6. The cells were then shifted to 18 °C, and 0.4 mM 
isopropyl β-d-1-thiogalactopyranoside was added. After an overnight 
incubation, the cells were sonicated in UFO buffer (25 mM Tris (pH 8), 
150 mM NaCl and 1 mM TCEP) supplemented with one EDTA-free Pierce 
Protease Inhibitor Tablet (Thermo Fisher). The lysed cells were then 
centrifuged for 30 min at 27,000 g. The supernatant was mixed with 
Ni Sepharose High Performance resin (Cytiva) previously equilibrated 
with UFO buffer (25 mM Tris (pH 8), 150 mM NaCl and 1 mM TCEP). 
The resin was then washed with UFO buffer containing 20 and 40 mM 
imidazole. Bound proteins were eluted with UFO buffer containing 
300 mM imidazole and dialysed overnight at 4 °C against UFO buffer 
without imidazole.

Recombinant protein production and purification from  
insect cells
The different tagged versions of ASK1, LFY and UFO were cloned in 
acceptor and donor plasmids (pACEBac1, pIDK and pIDS, respectively; 
Geneva Biotech). The final acceptor plasmids containing the desired 
combination of coding sequences were obtained with Cre recombi-
nase (NEB). DH10EmBacY-competent cells containing the baculovi-
rus genomic DNA (bacmid) were transformed with the final acceptor 
plasmids. Blue-white selection was used to identify colonies with a 
recombinant bacmid with the acceptor plasmid inserted. Bacmid was 
then isolated from bacteria and mixed with X-tremeGENE HP DNA 
Transfection Reagent (Roche) to transfect Sf21 insect cells. At 96 h 
after transfection, supernatant containing the recombinant baculo-
virus (V0) was collected and used to infect fresh Sf21 cells. When the 
infected cells reached the day post arrest, V1 virus was collected. For 
large expression, Sf21 cells were infected with either V1 virus or frozen 
baculovirus-infected cells. The pellet of a 0.75 l culture was sonicated in 
50 ml of UFO buffer supplemented with one EDTA-free Pierce Protease 
Inhibitor Tablet (Thermo Fisher). The sonicated cells were centrifuged 
for 1.5 h at 120,000 g at 4 °C. The supernatant was then incubated for 
1 h at 4 °C with Ni Sepharose High Performance resin (Cytiva) previ-
ously equilibrated with UFO buffer. The beads were transferred into a 
column and washed with 20 column volumes of UFO buffer, then UFO 
buffer + 50 mM imidazole. Proteins were eluted with UFO buffer con-
taining 300 mM imidazole. The elution was dialysed overnight at 4 °C 
against UFO buffer. TEV protease was added to cleave tags (0.01% w/w). 
When ASK1 was limiting compared with UFO, recombinant 6xHis–ASK1 
from bacteria was added. The following day, the elution was repassed 
on Dextrin Sepharose High Performance (Cytiva) and Ni Sepharose 
High Performance resins (Cytiva) to remove tags and contaminants. 
For ASK1–UFO, ASK1–UFO–3xFLAG or UFOΔFbox–3xFLAG, the pro-
teins were concentrated with a 30 kDa Amicon Ultra Centrifugal filter  
(Millipore) and further purified by SEC. For ASK1–UFO–LFY–DBD com-
plex purification, contaminant DNA was removed by passing proteins 
on Q Sepharose High Performance resin (Cytiva) pre-equilibrated 
with UFO buffer. Increasing salt concentrations allowed us to obtain 

DNA-free proteins. The indicated annealed HPLC-purified oligonucleo-
tides (Supplementary Data 2) were then added and incubated with pro-
teins on ice for 20 min. The proteins were concentrated with a 30 kDa 
Amicon Ultra Centrifugal filter (Millipore) and further purified by SEC.

SEC and SEC–MALLS
SEC was performed with a Superdex 200 Increase 10/300 GL column 
(Cytiva) equilibrated with UFO buffer. Unaggregated proteins of inter-
est were frozen in liquid nitrogen and stored at −80 °C. SEC–MALLS was 
performed with a Superdex 200 Increase 10/300 GL column (Cytiva) 
equilibrated with UFO buffer. For each run, 50 µl containing 1 mg ml−1 
of complex was injected. Separations were performed at room tem-
perature with a flow rate of 0.5 ml min−1. The elutions were monitored 
by using a Dawn Heleos II for MALLS measurement (Wyatt Technology) 
and an Optilab T-rEX refractometer for refractive index measurements 
(Wyatt Technology). Molecular mass calculations were performed 
using ASTRA software with a refractive index increment (dn/dc)  
of 0.185 ml g−1.

ampDAP-seq
We used pTnT–5xmyc–LFY48 to produce 5xmyc–LFY in vitro using a TnT 
SP6 High-Yield Wheat Germ Protein Expression System (Promega). We 
used the ampDAP-seq libraries described in Lai et al.48. The ampDAP-seq 
experiments were performed in triplicates (LFY–UFO) or in duplicates 
(LFYK249R and LFYK249R–UFO).

A 50 µl TnT reaction producing 5xmyc–LFY was mixed with an 
excess of recombinant ASK1–UFO–3xFLAG (2 µg) and 20 µl of Pierce 
Anti-c-Myc Magnetic Beads (ThermoScientific). DAP buffer (20 mM 
Tris (pH 8), 150 mM NaCl, 1 mM TCEP and 0.005% NP40) was added 
to reach 200 µl. The mix was incubated for 1 h at 4 °C on a rotating 
wheel. The beads were then immobilized and washed three times with 
100 µl of DAP buffer, moved to a new tube and washed once again. The 
ampDAP-seq input libraries (50 ng) were then added, and protein–DNA 
mixes were incubated for 1.5 h at 4 °C on a rotating wheel. The beads 
were immobilized and washed five times with 100 µl of DAP buffer, 
moved to a new tube and washed two more times. Finally, the beads 
were mixed with 30 µl of elution buffer (10 mM Tris (pH 8.5)) and heated 
for 10 min at 90 °C.

Immunoprecipitated DNA fragments contained in the elution were 
amplified by PCR according to the published protocol49 with Illumina 
TruSeq primers. The remaining beads were mixed with 20 µl of 1× 
SDS–PAGE Protein Sample Buffer, and western blots were performed 
to check the presence of tagged proteins. The PCR products were puri-
fied using AMPure XP magnetic beads (Beckman Coulter) following 
the manufacturer’s instructions. Library molar concentrations were 
determined by quantitative PCR using a NEBNext Library Quant Kit 
for Illumina (NEB). The libraries were then pooled with equal molarity. 
Sequencing was done on Illumina HiSeq (Genewiz) with the specifica-
tion of paired-end sequencing of 150 cycles.

GUS staining
The different promoter versions were cloned upstream of the GUS gene 
in the pRB14 backbone vector45. Transformants were selected with GFP 
seed fluorescence. The number of independent lines analysed for each 
construct is indicated in each figure. GUS staining was performed on 
the apex of primary inflorescences of T2 plants. Tissues were placed 
in ice-cold 90% acetone for 20 min at room temperature and then 
rinsed in GUS buffer without X-Gluc (0.2% Triton X-100, 50 mM NaPO4 
(pH 7.2), 2 mM potassium ferrocyanide and 2 mM potassium ferri-
cyanide). The tissues were transferred to GUS buffer containing 2 mM 
X-Gluc substrate (X-Gluc DIRECT) and placed under vacuum for 5 min. 
The samples were then incubated overnight at 37 °C unless otherwise 
specified in the legend. Finally, the tissues were washed with different 
ethanol solutions (35%, 50% and 70%), and pictures were taken with a 
Keyence VHX-5000 microscope with a VH-Z100R objective.

http://www.nature.com/natureplants
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In planta overexpression and mutant complementation assays
Tagged versions of UFO and UFOΔFbox were cloned under the control 
of the 35S promoter in pEGAD50. Transformants were selected with 
Basta treatment. Overexpressing lines with a strong gain-of-function 
phenotype were crossed with the strong ufo-1 mutant. Basta-resistant 
F2 plants were individually genotyped to select ufo-1 −/− homozygous 
plants. For this, a fragment was amplified by PCR with the oligonu-
cleotides oGT1085 and oPR578 (Supplementary Data 2) and digested 
with DpnII enzyme (NEB). On the basis of the digestion profile, ufo-1 
−/− plants were kept and analysed once they reached flowering.

Altered versions of LFY were cloned in pETH29 (ref. 29) or pCA26 
(ref. 51) to express LFY complementary DNA under the control of its 
endogenous promoter or the 35S promoter, respectively. For the  
lfy-12 complementation assay, heterozygous lfy-12/+ plants were trans-
formed. The transformants were selected with GFP fluorescence and 
genotyped with a previously described protocol45 to select lfy-12 −/− 
plants. The complementation assay was performed with T2 plants and 
was based on the analysis of the first ten flowers from the primary inflo-
rescence. Pictures were taken with a Keyence VHX-5000 microscope 
with a VH-Z20R objective.

Western blots
For western blots on plant total protein extracts, the indicated tissues 
were crushed in 2× SDS–PAGE Protein Sample Buffer (100 mM Tris  
(pH 6.8), 20% glycerol, 2% SDS, 0.005% Bromophenol blue and 0.8% w/v 
dithiothreitol) at a 1:2 w/v ratio and boiled for 5 min. The samples were 
then loaded on a 12% acrylamide SDS–PAGE gel. For all western blots, 
transfer was performed with an iBlot2 Dry Blotting System (Invitro-
gen) using the default parameters. Membranes were blocked for 1 h at 
room temperature with 5% milk TBST and then incubated overnight at 
4 °C with 5% milk TBST solution containing HRP-conjugated antibody 
(1:1,000 for anti-FLAG (Sigma-Aldrich; Cat. No. A8592) and 1:5,000 for 
anti-myc (Invitrogen; Cat. No. R951-25)). Revelation was performed 
with Clarity Western ECL substrate (Bio-Rad). Pictures were taken 
with a ChemiDoc MP Imaging System (BioRad). The uncropped gels 
are shown in the Source data.

Cryo-EM sample preparation, data collection and data 
processing
An aliquot of the SEC-purified ASK1–UFO–LFY–LUBS1 complex was 
thawed on ice (see Supplementary Data 2 for the LUBS1 DNA sequence). 
Subsequently, 3.5 µl of the complex at 1 mg ml−1 was deposited onto 
glow-discharged (25 mA, 30 s) C-flat Au grid R 1.2/1.3 300 mesh  
(Electron Microscopy Sciences), blotted for 5.5 s with force 0 at 20 °C 
and 100% humidity using a Mark IV Vitrobot (FEI, Thermo Fisher Sci-
entific), and plunge-frozen in liquid ethane for specimen vitrification. 
A dataset of about 1,000 videos of 40 frames was acquired on a 200 kV 
Glacios (Thermo Fisher Scientific) electron microscope (Supplemen-
tary Data 3) at a nominal magnification of 36,000 with a physical pixel 
size of 1.145 Å.

The raw videos, acquired with SerialEM on a Gatan K2 Summit 
camera (Supplementary Data 3), were imported to Cryosparc live52 
for motion correction and CTF estimation. The dose-weighted micro-
graphs were used for particle picking with crYOLO v.1.7.6 and the gen-
eral model for low-pass filtered images53. Particle coordinates were 
imported to Cryosparc, where all subsequent steps were performed. 
After manual inspection, a subset of 761 micrographs was selected on 
the basis of CTF fit resolution, total and per-frame motion, average 
defocus and relative ice thickness. A raw particle stack of 282,567 
images was extracted at a box size of 256 × 256 pixels2, binned twice and 
subjected to two-dimensional classification to remove false positive 
picks. A total of 207,392 particles from the selected class averages were 
re-extracted, re-centred at full size and submitted for a second round of 
two-dimensional classification. All class averages showing clear protein 
features were selected, and the resulting 147,849 particles were used 

for ab initio reconstruction with three classes and subsequent hetero-
geneous refinement of the resulting volumes. Of those three classes, 
two looked like a protein–DNA complex, with the most apparent dif-
ference being the presence or absence of an extra electron density at 
one edge of the DNA helix. The last class had no recognizable features 
and was used as a decoy to remove ‘junk’ particles. Each subset and 
volume of the two first classes was refined separately with non-uniform 
refinement54, resulting in two distinct reconstructions of about 4.2 Å 
resolution, where the DNA model, the crystal structure of LFY–DBD 
and the AlphaFold2 models of UFO and ASK1 could be unambiguously 
fitted into the electron density. The second of these classes could fit  
a LFY–DBD dimer, while in the first class there was density only for the 
LFY–DBD molecule that directly interacts with UFO (Extended Data 
Fig. 9d). The unsharpened maps of each reconstruction were used for 
post-processing with DeepEMhancer55. The figures were prepared with 
Chimera56 or ChimeraX57.

Cryo-EM model building
Ideal B-form DNA was generated in Coot58 and then manually built into 
the electron density. The resulting model was further refined using 
phenix.real_space_refine59. A single monomer of LFY–DBD was manu-
ally placed in the electron density, followed by fitting in ChimeraX57. 
The biological LFY–DBD dimer was then downloaded from the RCSB 
PDB (2VY1)29 and used as a guide to place the second LFY monomer, 
followed by fitting to density in ChimeraX. Alphafold models60 of ASK1 
(uniprot ID: Q39255) and UFO (uniprot ID: Q39090) were both down-
loaded from the EBI, preprocessed to remove low-confidence regions 
in phenix.process_predicted_model61, and then placed manually and 
fit to density in ChimeraX.

Bioinformatic analyses
Read mapping and peak calling. Read processing and peak calling 
of LFY, LFY–UFO, LFYK249R and LFYK249R–UFO ampDAP-seq data were 
performed as previously published62. Briefly, the quality of sequencing 
data was analysed with fastQC v.0.11.7, and adapters were removed with 
NGmerge v.0.2_dev63. Bowtie2 v.2.3.4.1 was used for mapping to the 
TAIR10 A. thaliana reference genome64. Reads mapped to a single loca-
tion and with a maximum of two mismatches were retained. Duplicates 
were removed with the samtools dedup program v.1.8. Bound regions 
(that is, peaks) were identified with MACS2 v.2.2.7.1, using input DNA 
from Lai et al. as a control48. Consensus peaks were selected with MSPC 
v.4.0.0 (ref. 65) by retaining peaks called in all replicates and resizing 
them by ±200 bp around the peak maximum for further analysis.

Analyses of ampDAP-seq experiments. To compare binding in dif-
ferent experiments, peaks were merged according to a previously 
published procedure62. Bound peaks were considered as common if 
they overlapped by at least 80%, while the remaining non-overlapping 
portion of either peak was <50%. Peaks that did not overlap by at least 
50% were considered as new peaks. The same procedure was used to 
assess experimental reproducibility (comparisons between replicates 
of the same experiment), where peaks were normalized by the number 
of reads mapped in the library (RPKM).

As the fraction of reads mapped in peaks is much lower for LFY than 
LFY–UFO ampDAP-seq (~25% versus ~40%, respectively), normalizing 
the read count by all reads mapped along the genome would intro-
duce a bias and estimate the LFY relative coverage (RPKM) towards 
lower values compared with LFY–UFO. In addition to this considera-
tion, experimental proof from EMSAs suggests that UFO does not 
strongly affect the binding intensity of the complex at canonical LFYBS 
(which represent most peaks). Hence, the read count at each peak 
was normalized by the total number of reads mapped within all LFY 
and LFY–UFO merged peaks. Then, the mean normalized coverage 
from each experiment, divided by the peak size, was computed for 
each peak. The same strategy was applied when comparing LFYK249R 
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and LFYK249R–UFO (Fig. 4b), LFYK249R and LFY (Extended Data Fig. 8h), 
and LFY, LFY–UFO, LFYK249R and LFYK249R–UFO (Fig. 4c). The CFC was 
computed on merged peaks as the ratio between the mean normalized 
peak coverage in LFY–UFO and LFY (Fig. 2d) or the mean normalized 
coverage in LFYK249R–UFO and LFYK249R (Fig. 4b).

Motif search in bound regions. Merged peaks of the LFY and LFY–UFO 
datasets were sorted on the basis of decreasing CFC value. The top 600 
peaks (that is, the highest CFC values) were used for a motif search using 
MEME-ChIP v.4.12.0 using the options nmeme, 600; meme-maxsize, 
600*1000; meme-nmotifs, 1; dreme-m, 0; and noecho and the JASPAR  
2018 core plants non-redundant database66. For dLUBS, we used the 
options meme-minw, 20; meme-maxw, 30; while for mLUBS, we used 
meme-minw, 16; meme-maxw, 19. To retrieve the LFY motif in Fig. 2e, 
the 600 LFY ampDAP-seq peaks with the strongest coverage were 
fed to MEME-ChIP with the options nmeme, 600; meme-nmotifs,  
1; meme-minw, 19; meme-maxw, 19; pal.

Receiver operating characteristics analysis. From the dataset of 
merged peak sets (peaks found in LFY or in LFY–UFO experiments or 
in both), the peaks were sorted on the basis of decreased CFC value, the 
top 20% peaks were selected, and among these, the first 600 used for 
motif determination were excluded to avoid overfitting, for a total of 
3,243 final peaks. A negative set of the same size was created using a pre-
viously published method, which allows searching for sequences from 
the A. thaliana genome (TAIR10 reference) with the same GC content 
and genomic origin as the positive set67. Both sets were scanned with 
dLUBS and mLUBS PWMs as well as with the LFY PWM with dependen-
cies as published previously68 using an in-house script available on 
our GitHub page. The receiver operating characteristics plot was then 
created with the R package plotROC v.2.2.1 (ref. 69).

LFY in dLUBS within LFY–UFO-specific regions versus LFY in 
LFY-specific regions. To assess whether the scores of LFYBS within 
dLUBS were comparable to the scores of canonical LFYBS, we used 
the peaks from the comparison of LFY versus LFY–UFO ampDAP-seq 
and resized them (±50 bp around the peak maximum). We used the 
dLUBS matrix to scan the resized sequences and retained the best 
site per sequence. We then retrieved sequences corresponding to the 
dLUBS site and computed the score of the LFYBS present in dLUBS using 
the LFY PWM68. The values obtained in the 20% most LFY–UFO-specific 
sequences (20% highest CFC) are shown in the box plot. The 20% lowest 
CFC peaks were scanned with the LFY PWM to generate the box plot in 
Extended Data Fig. 4f.

Microarray data analysis. Microarray data were retrieved from AtGen-
Express70 for inflorescence tissue in the ufo background (ATGE_52A-C) 
versus the Col-0 background (ATGE_29A-C). The R package gcrma 71 
was used to adjust probe intensities and convert them to expression 
measures, and then the limma package 72 was used to fit the model 
and smooth standard errors. A Benjamini–Hochberg correction was 
applied to the P values, and fold change (FC) was computed as the 
ratio between expression in the WT and that in the ufo mutant. Only 
genes with |log2(FC)| > 0.5 and adjusted P < 0.05 were considered as 
significantly differentially expressed.

ChIP-seq datasets and analysis of ChIP-seq versus ampDAP-seq. We 
collected the raw data of all available LFY ChIP-seq datasets: GSE141704 
(ref. 73), GSE96806 (ref. 25), GSE64245 (ref. 26) and GSE24568 (ref. 68). 
Mapping and peak-calling analysis were performed with the same 
procedure as for ampDAP-seq, except that the peaks were resized to 
600 bp around the peak maximum, and the q option of MACS2 was set 
to 0.1. Coverage of the resulting peaks was calculated as the average of 
the normalized read coverage for each replicate. Peaks from the four 
datasets were merged through a four-way comparison following the 

same procedure used for ampDAP-seq. Bedtools intersect (v.2.30.0)74 
was used with the options wa; f, 0.8; F, 0.8; and e to find the peaks com-
mon to the merged ChIP-seq peaks and the 20% most LFY–UFO-specific 
genomic regions (the highest CFC value from ampDAP-seq). The peaks 
were assigned to genes by extending gene regions 3 kb upstream of 
the transcription start site and 1 kb downstream of the transcription 
termination site and using bedtools intersect (options f, 0.8; F, 0.8; e). 
The bound genes obtained were crossed with the list of differentially 
expressed genes in ufo inflorescences.

Identification of the URM from published LFY ChIP-seq data. To 
test whether the URM could be identified de novo (Extended Data  
Fig. 4g), we collected the 298 regions bound by LFY ChIP-seq data from 
inflorescence tissue25 for which the binding intensity was twice greater 
in vivo relative to in vitro (LFY ampDAP-seq). We resized these regions 
to ±55 bp around the ChIP-seq peak maximum. The corresponding 
sequences were searched with the LFY PWM68 to identify all LFYBS 
with a PWM score greater than −23. Assuming that a recruiting motif 
should be at a fixed distance from the LFYBS, we created 140 batches, 
corresponding to sequences with sizes ranging from 4 to 10 bp, dis-
tant from 1 to 20 bp at both sides of the canonical LFYBS. Each of the  
140 batches of sequences was used as input with MEME-ChIP for motif 
discovery with the motif size constrained to the length of the sequences 
in a given batch.

Statistics and reproducibility
All DLRA data were analysed using RStudio software75 and are pre-
sented as mean ± s.d. All statistical methods are indicated in the figure 
legends. One-way ANOVA was used to analyse experimental data with 
more than two experimental groups (with two-sided Tukey’s mul-
tiple comparisons tests). Welch’s ANOVA was performed when the 
homogeneity-of-variance assumption was not met (with two-sided 
Games–Howell post hoc tests). For Fig. 1a,b, the strong promoter activa-
tion by 3xHA–LFY–VP16 + UFO–3xFLAG skewed the model and did not 
allow us to analyse other differences; a log-transformation was applied 
to the data before performing ANOVA. Two-tailed unpaired Student’s 
t-tests were used for the other data analyses. For the GUS experiments 
and plant complementation assays, two-sided χ2 tests were used to test 
for independency between constructs and measured phenotypes. The 
raw data and exact P values are provided in the Source data files as well 
as the number of independent repetitions for each experiment.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The ampDAP-seq data have been deposited at GEO and are publicly 
available as of the date of publication (GSE204793). The cryo-EM struc-
ture determined in this study is deposited in the EM data bank under the 
reference number EMD-15145. The .pdb file of the model is available in 
the Supplementary Information. Any additional information required 
to reanalyse the data reported in this paper is available from the cor-
responding author upon request. The biological materials generated 
in this study are available from the corresponding author without 
restriction. Source data are provided with this paper.

Code availability
All original code has been deposited at GitHub (https://github.com/
Bioinfo-LPCV-RDF/LFYUFO_project) and is publicly available as of the 
date of publication.
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Extended Data Fig. 1 | UFO has SCF-dependent and independent functions. 
a-c, pAP3 activation measured by DLRA in Arabidopsis protoplasts. EV = Empty 
Vector (pRT104-3xHA). UFOΔFbox corresponds to a deletion of the whole 
N-terminal part comprising the F-box domain (aa. 1-90), while UFOdelF 
corresponds to a previously-described internal deletion in the F-box domain  
(aa. 50-62)20. Data represent averages of independent biological replicates and 
are presented as mean ± SD, each dot representing one biological replicate 
(n = 4). One-way ANOVA with Tukey’s multiple comparisons tests. Stars above 
bars represent a significant statistical difference compared to 3xHA-LFY + EV 
or 3xHA-LFY-VP16 + EV negative controls (NS: p > 0.05,*: p < 0.05, **: p < 0.01, 
***: p < 0.001 and ****: p < 0.0001). d, Western Blot on protein extracts from 
independent T1 plants from different phenotypic classes described in Fig. 1g (one 
independent line per lane). 35S::UFO-5xmyc (line 178-#19) and 35S::UFO-3xFLAG 
(line 177-#6) plants were used as positive controls. Total proteins were extracted 
from rosette leaves. Note the difference of molecular weight between UFO and 

UFOΔFbox. Loss-of-function defects are likely due to silencing of both transgene-
encoded UFOΔFbox and endogenous UFO. e, Western Blot on protein extracts 
from F2 plants described in Fig. 1h. Total proteins were extracted from rosette 
leaves. f, ufo-1 complementation assay with other 35S::UFO and 35S::UFO∆Fbox 
lines. Rosette leaves (right, scale bar, 1 cm), inflorescence (middle, scale bar 
1 mm) and flower (right, scale bar, 0.5 mm) phenotypes are shown. Primary 
inflorescences were removed to observe rosette phenotype. For each construct, 
at least 5 plants were analyzed per line. As in Risseeuw et al, our 35S::UFO lines 
displayed relatively milder phenotypes than the 35S::UFO phenotypes reported 
by Lee et al.6,20. Note that the 35S::UFO-5xmyc 178-#2 line did not display the 
serrated leaves phenotype. g, Sequence alignment of UFO N-terminal region. 
The F-box domain is represented76. In selected species, presented proteins were 
identified as UFO homologs and their role was confirmed genetically7,11,12,16,77–84. 
Source data are available in Supplementary Data 4.
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Extended Data Fig. 2 | pAP3 DEE LFYBS is not required for LFY-UFO-
dependent pAP3 activation. a, Schematic representation of pAP3. Top row 
represents WT pAP3 with regulatory regions and cis-elements. Orange triangle 
represents LFYBS. The second row represents the scores for the best LFYBS 
obtained by scanning WT pAP3 sequence with LFY PWM68 (the best binding sites 
correspond to the less negative score values). Other rows represent the different 
pAP3 versions used in (b) and (c). LFYBS mutation corresponds to the previously 

described site1m-site2m mutation24. b,c, pAP3 activation with promoter 
versions described in (a) and indicated effectors. For bar charts, data represent 
averages of independent biological replicates and are presented as mean ± SD, 
each dot representing one biological replicate (n = 4). Unpaired t-tests (b,c). 
(NS: p > 0.05,*: p < 0.05, **: p < 0.01, ***: p < 0.001). Source data are available in 
Supplementary Data 4.
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Extended Data Fig. 3 | Analysis of pAP3 activation by LFY-UFO. a, Description 
of pAP3. Top line represents WT pAP3 with regulatory regions and cis-elements. 
Coordinates are relative to AP3 start codon. TSS: Transcription Start Site. Orange 
triangle represents LFYBS. Other rows show the promoter versions used in (b) 
and (c). Green rectangles in swapped versions correspond to the same random 
sequence. b,c, pAP3 LFY-UFO response element mapping with pAP3 versions 
described in (a) by DLRA in Arabidopsis protoplasts. Data represent averages 
of independent biological replicates and are presented as mean ± SD, each dot 
representing one biological replicate (n = 4). One-way ANOVA with Tukey’s 
multiple comparisons test (c). One-way ANOVA was performed with data from 
the same effector, and stars represent a statistical difference compared to WT 
pAP3. Unpaired t-tests (b). (NS: p > 0.05,*: p < 0.05, **: p < 0.01; ***: p < 0.001).  
d, EMSA with ASK1-UFO, LFY-DBD and LUBS0 DNA probe. Different competitor 
DNA concentrations were tested as indicated. e, Molecular mass determination 
for ASK1-UFO-LFY-DBD in complex with LUBS0 DNA by SEC-MALLS (top). Elution 

profiles correspond to absorbance at 280 nm and 260 nm (left ordinate axis,  
A.U: Arbitrary Unit). The black line shows the molecular mass distribution  
(right ordinate axis). A mass of 102 ± 3.3 kDa was found for this ASK1-UFO-
LFY-DBD-LUBS0 complex, consistent with one copy of each protein per DNA 
molecule (theoretical mass of 108 kDa). Coomassie-stained SDS-PAGE gel of 
the different SEC-MALLS fractions (bottom). Each lane corresponds to a 0.5 mL 
fraction. Molecular weights of the protein standards are indicated (BioRad 
Precision Plus). Faint bands above UFO likely correspond to contaminants.  
f, EMSA with ASK1-UFO, LFY-DBD and indicated DNA probes. Sequences with 
coordinates relative to AP3 start codon (left). Red letters indicate mutated bases. 
Bars under sequences represent the regions required for ASK1-UFO-LFY-DBD 
binding. EMSA with described DNA probes (right). Each DNA probe was mixed 
with the same ASK1-UFO-LFY-DBD protein mix. Note that the LUBS0 mutation 
also reduced pAP3 activation in protoplasts (Fig. 2b). Source data are available  
in Supplementary Data 4.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Genome-wide analysis of LFY-UFO binding. a, Western 
Blot after DNA elution during ampDAP-seq experiment. After DNA elution, 
20 µL of 1X SDS-PAGE Protein Sample Buffer was added to the remaining beads 
to run WB. Each lane represents one replicate. b, Assessment of experimental 
reproducibility of ampDAP-seq experiment through the comparison of replicates 
datasets 2 by 2. c, Effect of the LFY KARA mutation (K303A-R233A)51 on pAP3 
activation in Arabidopsis protoplasts. Data represent averages of independent 
biological replicates and are presented as mean ± SD, each dot representing one 
biological replicate (n = 4). Unpaired t-tests (**: p < 0.01; ****: p < 0.0001). d, The 
LFY KARA mutation (K303A-R233A) does not disrupt LFY-UFO interaction in 
Yeast-Two-Hybrid (Y2H). EV = Empty Vector. LFY-40 is a LFY version lacking the 
first 40 aa and better tolerated by yeast cells. Values correspond to the different 
dilutions (OD = 7, 0.7 and 0.07). Top picture corresponds to the non-selective 
plate lacking Leucine and Tryptophan (SD -L-W), and bottom picture to the 
selective plate lacking Leucine, Tryptophan, Histidine and Adenine (SD -L-W-
A-H). Pictures were taken at day + 4. e, Receiver operating characteristics (ROC) 
curves for mLUBS, dLUBS and LFY using the top 20% high-CFC LFY-UFO-specific 
peaks. Area under the curve (AUC) values are shown. TPR: True Positive Rate,  
FPR: False Positive Rate. f, Score distribution of LFY PWM with dependencies68 
within dLUBS (best site on 20% most LFY-UFO-specific genomic regions, high 

CFC, n = 3843 genomic regions) and in canonical LFYBS (best site on 20% most 
LFY-specific genomic regions, low CFC, n = 3843 genomic regions). Best  
sites were selected within ±25 bp around the peak maximum. Wilcoxon rank  
sum test (****: p < 0.0001). Median (solid line), interquartile range (box edges),  
±1.5 × interquartile range (whiskers) and outliers (black dot) are shown.  
g, De novo identification of URM from LFY ChIP-seq data25. Motifs identified  
at a fixed distance from LFY canonical binding sites in 298 regions harboring  
high LFY ChIP-seq to LFY ampDAP-seq coverage ratio. The text above each  
motif gives the motif’s start position relative to the canonical LFYBS, its length  
and the number of sites used to build the motif. h, EMSA with mLUBS and  
dLUBS highest score sequences. 6xHis-LFY-DBD is recombinant. UFO* refers to 
either recombinant ASK1-UFO-3xFLAG complex (top gel) or in vitro produced 
 UFO-3xFLAG (bottom gel). Drawings represent the different types of complexes 
involving LFY-DBD (pale blue) and ASK1-UFO (red) on DNA. LFY-DBD binds as a 
monomer as previously reported29. The fact that in vitro produced UFO-3xFLAG 
shifts DNA in the presence of LFY indicates that ASK1 is not required for  
the UFO-LFY-DNA complex formation in vitro. i, EMSA with DNA probes 
corresponding to pAP1 and pAP3 DEE LFYBS and indicated proteins. Note that 
probes used here have the same length as those used to study LUBS. Source data 
are available in Supplementary Data 4.
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Extended Data Fig. 5 | pAP3 LUBS are required for LFY-UFO-dependent 
activation. a, EMSA with indicated probes and proteins. LUBS3 is the third 
highest-score pAP3 LUBS. Because LUBS0 is bound with a lower affinity by  
LFY-UFO compared to LUBS1 and LUBS2, we then focused on LUBS1 and  
LUBS2. b, EMSA with pAP3 LUBS1 and LUBS2 DNA probes and indicated proteins.  
LFYH383A-R386A (LFYHARA) is a LFY mutated version affected in its ability to 
dimerize29,51. Note the absence of the complex with a slower mobility on LUBS1 
with LFYHARA. c, EMSA with pAP3 LUBS1 and LUBS2 DNA probes and indicated 
proteins. LFY* refers to either in vitro-produced 5xmyc-LFY (top) or recombinant 
6xHis-LFY-DBD (bottom). Note the difference of complex size between  
UFO and UFOΔFbox. d, Same as in (c) except that UFO-3xFLAG and UFO∆Fbox-
3xFLAG were produced in vitro. Note that in vitro produced UFO-3xFLAG and 
UFO∆Fbox-3xFLAG behave similarly as recombinant UFO versions. e, EMSA 
with indicated proteins and DNA probes corresponding to pAP3 LUBS1 (left) and 
LUBS2 (right), WT or with URM mutated. f, Promoter activation measured by 

DLRA in Arabidopsis protoplasts with indicated effectors. Different promoter 
versions were tested as indicated under x-axis. Either 2 bp (high-informative 
CA) or 6 bp (whole URM) of pAP3 LUBS1 and LUBS2 URM were mutated. Data 
represent averages of independent biological replicates and are presented 
as mean ± SD, each dot representing one biological replicate (n = 4). One-
way ANOVA with Tukey’s multiple comparisons tests. One-way ANOVA were 
performed with data from the same effector and stars represent a statistical 
difference compared to WT pAP3 promoter. (NS: p > 0.05,*: p < 0.05, **: p < 0.01, 
***: p < 0.001 and ****: p < 0.0001). g, In vivo analysis of pAP3LUBS1-2m::GUS fusions. 
Same as in Fig. 3d, except that staining incubation time was increased to 17 h  
(4 h incubation in Fig. 3d). Representative pictures are shown (top scale bar, 
100 µm, bottom scale bar, 50 µm). The faint AP3 pattern suggests that other  
LUBS (such as LUBS0) may take over but less efficiently. Note that with this 
staining incubation time, all plants expressing pAP3::GUS showed a highly 
saturated staining. Source data are available in Supplementary Data 4.
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Extended Data Fig. 6 | pRBE LUBS is required for LFY-UFO-dependent 
activation. a, IGB view of pRBE showing LFY ChIP-seq in inflorescences  
(light blue)25 or seedlings (dark blue)26, LFY-UFO ampDAP-seq (yellow),  
LFY ampDAP-seq (pink)48, numbers indicate read number range (top). 
Identification of LUBS in pRBE (bottom). Predicted binding sites using dLUBS 
and mLUBS models from Fig. 2e and LFY PWM with dependencies68, y-axis 
represents score values (bottom). The best binding sites correspond to the less 
negative score values. Studied LUBS is indicated with a purple square. b, EMSA 
with probes corresponding to pRBE LUBS, WT or with URM mutated. c, pRBE 
activation in Arabidopsis protoplasts. Effect of mutations (underlined) in URM 
(red) and in LFYBS (blue) bases of pRBE LUBS were assayed. Data represent 
averages of independent biological replicates and are presented as mean ± SD, 

each dot representing one biological replicate (n = 4). One-way ANOVA with 
Tukey’s multiple comparisons test. One-way ANOVA were performed with data 
from the same effector, and stars represent a statistical difference compared 
to WT promoters (****: p < 0.0001). d, In vivo analysis of pRBE::GUS fusions. The 
percentage of transgenic lines with RBE pattern, unusual pattern or absence of 
staining was scored (top; χ² test, **: p < 0.01). n = number of independent lines. 
Unusual pattern refers to staining in unexpected tissues, each pattern seen in a 
single line. Representative pictures of plants with no staining (bottom left)  
and a RBE pattern (bottom right) are shown (scale bar, 50 µm). e, In vivo analysis  
of pRBE::GUS fusions. Same as in (d), with another view showing staining 
in the four petal primordia (scale bar, 50 µm). Source data are available in 
Supplementary Data 4.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | LFY and UFO likely regulate other genes in Arabidopsis. 
a, List of candidate LFY-UFO target genes selected as i) present in regions 
specifically bound by LFY-UFO in ampDAP-seq (high CFC) ii) bound in vivo 
in LFY ChIP-seq experiments (A25; B26; C68; D73) and iii) deregulated in ufo 
inflorescences70. b, IGB view of PISTILLATA promoter region showing LFY  
ChIP-seq in inflorescences (light blue)25 or seedlings (dark blue)26, LFY-UFO 
ampDAP-seq (yellow), LFY ampDAP-seq (pink)48, numbers indicate read number 

range (top). Predicted binding sites using the dLUBS, mLUBS models from  
Fig. 2e and LFY PWM with dependencies68, y-axis represents score values 
(bottom). c, IGB view of selected genes showing LFY ChIP-seq in inflorescences 
(light blue)25, LFY-UFO ampDAP-seq (yellow), LFY ampDAP-seq (pink)48, numbers 
indicate read number range. Genes in red are deregulated in ufo inflorescences70. 
ChIP-seq peaks better explained by LFY-UFO than by LFY alone are shaded in grey. 
Source data are available in Supplementary Data 4.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | The LFY K249 is essential for LFY-UFO-LUBS complex 
formation. a, Structure of LFY-DBD29. Residues were colored by conservation 
using Consurf with default parameters85. K249 residues on each LFY monomer 
are represented as sticks and indicated with arrows. Note that the K249-
containing loop is highly conserved. b,c, Promoter activation measured by 
DLRA in Arabidopsis protoplasts with indicated effectors (right). EV = Empty 
Vector (pRT104-3xHA). Tested promoters are indicated below each graph. Note 
that for 3xHA-LFY + UFO-3xFLAG on pAG only n = 3 biological replicates are 
shown. Data represent averages of independent biological replicates and are 
presented as mean ± SD, each dot representing one biological replicate (n = 4 
unless specified). One-way ANOVA with Tukey’s multiple comparisons tests 
(b) or Welch’s ANOVA with Games-Howell post-hoc test (c). In (c), stars above 
bars represent a statistical difference compared to GFP. Other comparisons are 
indicated with brackets. (NS: p > 0.05,*: p < 0.05, **: p < 0.01, ***: p < 0.001 and 
****: p < 0.0001). d, Effect of the LFYK249R mutation on LFY-UFO interaction in 
Y2H. EV = Empty Vector. LFY-40 is a LFY version lacking the first 40 aa and better 
tolerated by yeast cells. Values correspond to the different dilutions (OD = 7, 0.7 
and 0.07). Top picture corresponds to the non-selective plate lacking Leucine 
and Tryptophan (SD -L-W), and bottom picture corresponds to the selective plate 

lacking Leucine, Tryptophan, Histidine and Adenine (SD -L-W-A-H). Pictures were 
taken at day + 4. e, EMSA with DNA probes corresponding to pAP3 DEE LFYBS  
and pAP3 LUBS1 and indicated proteins. pAP3 DEE LFYBS DNA probe was used  
as a control for binding on canonical LFYBS. f, WB after DNA elution during 
ampDAP-seq experiment. After DNA elution, 20 µL of 1X SDS-PAGE Protein 
Sample Buffer was added to the remaining beads to run WB. Each lane represents 
one replicate. g, Reproducibility of ampDAP-seq experiments with LFYK249R 
(left) and LFYK249R-UFO (right) through the comparison of replicates datasets 
2 by 2. h, Comparison of peak coverage in LFYK249R (y-axis, this study) and LFY 
(x-axis)48 ampDAP-seq experiments. i, Integrated Genome Browser (IGB) view 
of pAP3 showing LFY ChIP-seq in inflorescences (light blue)25 or seedlings (dark 
blue)26, LFY-UFO ampDAP-seq (yellow; this study), LFY ampDAP-seq (pink)48 and 
LFYK249R ampDAP-seq (purple; this study). Numbers indicate read number range. 
j, Pictures of WT and representative transgenic plants expressing 35S::LFY or 
35S::LFYK249R (scale bar, 1 cm). The white arrows indicate ectopic rosette flowers. 
35S::LFY was obtained previously26. 42 T1 plants expressing 35S::LFYK249R were 
analyzed; the percentage of plants with a LFY overexpressing phenotype is 
comparable to the one obtained with 35S::LFY26. Source data are available in 
Supplementary Data 4.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | UFO binds DNA and LFY DBD. a, A representative 
micrograph of the ASK1-UFO-LFY-DNA complex in vitreous ice (scale bar, 
20 nm). b, Selected 2D class averages of the particles submitted to ab initio 
reconstruction and heterogeneous refinement for 3D classification.  
c, Intermediate reconstructions of the 3D classes after heterogeneous 
refinement. d, Final reconstructions of ASK1-UFO-LFY-DNA complexes  
(involving either a LFY-DBD monomer (pink) or a LFY-DBD dimer (gray)) after 
Non-Uniform refinement. e, Unprocessed AlphaFold2 model for ASK1 (top, 
purple; uniprot ID, Q39255), UFO (middle, red; uniprot ID, Q39090) and the  
LFY-DBD dimer/DNA crystallographic structure (bottom, pale and dark blue for 

the LFY-DBD dimer and green for the DNA; PDB, 2VY1). f, Cryo-EM density  
map color-coded by fitted molecule. Note the kink on DNA induced by the 
presence of UFO. g, Heat map of the angular distribution of particle projections 
contributing for the final reconstruction of the complete ASK1-UFO-LFY-DNA 
complex (with a LFY-DBD dimer). h, Gold-standard Fourier shell correlation 
(FSC) curves. The dotted line represents the 0.143 FSC threshold, which indicates 
a nominal resolution of 6.4 Å for the unmasked (red) and 4.3 Å for the masked 
(blue) reconstruction. i, View of the post-processed map of the complete  
ASK1-UFO-LFY-DNA complex, colored according to the local resolution.

http://www.nature.com/natureplants
https://www.uniprot.org/uniprot/Q39255
https://www.uniprot.org/uniprot/Q39090
https://doi.org/10.2210/pdb2VY1/pdb
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4.3 Additional results and discussion 

4.3.1 The role of LFY-UFO extends beyond petals and stamens development 

In addition to its role in determining floral meristem identity and patterning, LFY has also 

been shown to control floral meristem emergence in the early stages of flower development 

(Moyroud et al., 2009, 2010). In Arabidopsis, LFY contributes to meristem emergence 

through the induction of REGULATOR OF AXILLARY MERISTEMS1 (RAX1), a Myb family TF 

(Figure 4.3-1G) (Chahtane et al., 2013; Denay et al., 2018). The LFY pathway to trigger 

meristem emergence works in parallel with another one involving REVOLUTA (REV), a 

homeodomain leucine zipper (HD-ZIP) family TF that is also involved in lateral meristem 

formation and in the establishment of the dorsoventral axis in leaves (Figure 4.3-1G) (Denay 

et al., 2018; Otsuga et al., 2001; Prigge et al., 2005). While rev flowers often lack inner 

structures compared to WT (Figure 4.3-1C and A, respectively), their flower phenotype is not 

as affected as the one observed in lfy-12 plants (Figure 4.3-1B) (Denay et al., 2018; Otsuga et 

al., 2001; Weigel et al., 1992). However, rev-c4 lfy-12 double mutant plants display a strong 

spike phenotype where lateral structures are reduced to filaments (Figure 4.3-1D), 

suggesting that the rev background provides a sensitized context to study the early 

meristematic role of LFY in Arabidopsis (Denay et al., 2018).  

 

Figure 4.3-1 Investigating the role of LFY and UFO in floral meristem identity establishment. Panels A-

D are from (Denay et al., 2018). Scale bars are 1 mm unless indicated differently. 
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Interestingly, while ufo-1 flowers only lack petals and stamens (Figure 4.3-1E) (Durfee et al., 

2003; Hepworth et al., 2006), double rev-c4 ufo-1 mutants have a spike phenotype 

indistinguishable from the one observed in rev-c4 lfy-12 plants (Figure 4.3-1F and D, 

respectively). This could suggest that the meristematic role of LFY also involves UFO (Figure 

4.3-1G). I performed an RNA-seq experiment to test whether the gene expression profiles of 

rev-c4 lfy-12 and rev-c4 ufo-1 apices were mirroring their phenotypic similarity, and whether 

it could reveal new targets of the LFY-UFO complex beyond petal and stamen development. 

On top of that, the sensitized rev-c4 background could reveal the presence of LFY- or UFO-

specific targets. 

 

Figure 4.3-2 Differentially expressed genes in RNA-seq experiments with rev-c4, rev-c4 lfy-12 and rev-

c4 ufo-1 inflorescences. LFY- and UFO-upregulated genes (left) are those with log2(fold change) > 1 

compared to the rev-c4 background and false discovery rate (FDR) < 0.01. Downregulated genes 

(right) have log2(fold change) < -1 and FDR < 0.01. 

When comparing the expression profile of rev-c4 and rev-c4 lfy-12 inflorescences, more than 

500 genes are significantly upregulated, and more than 80% of them (471) are also 

upregulated in rev-c4 vs rev-c4 ufo-1 inflorescences (Figure 4.3-2, left). A similar trend is 

observed when comparing downregulated genes in the two experiments: in this case, over 

90% of genes displaying significantly lower expression levels in rev-c4 plants compared to 

rev-c4 lfy-12 plants are also downregulated when comparing rev-c4 to rev-c4 ufo-1 (Figure 

4.3-2, right). 

These results suggest that the sensitized rev background reveals many targets of LFY + UFO 

in early flower meristem development. However, different transcriptional levels can also 

simply indicate indirect targets, especially given that, while we have inflorescence tissue in 

rev-c4 plants, rev-c4 lfy-12 and rev-c4 ufo-1 apices are different enough to represent a 
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separate tissue (see Figure 4.3-1C, D and F, p. 102). Such tissue differences affect the 

comparison of the transcriptional profiles of the three genotypes. 

The availability of LFY and LFY-UFO ampDAP-seq data allowed me to make a list of genes 

that could be direct targets of the LFY-UFO complex and also be involved in an early 

meristematic role. Of the genes upregulated in both rev-c4/rev-c4 lfy-12 and rev-c4/rev-c4 

ufo-1, 87 (18%) are also bound by the LFY-UFO complex in ampDAP-seq. These genes include 

known targets of LFY-UFO such as AP3, but also new potential targets such as CAULIFLOWER 

(CAL), a paralog of AP1 also involved in flower meristem identity that was previously 

suggested as a LFY target (William et al., 2004), and SQUAMOSA PROMOTER-LIKE4 (SPL4), 

which is involved in the transition to flowering (Jung et al., 2016). For downregulated genes, 

44 out of 213 (20%) genes differentially expressed in RNA-seq are also bound by LFY-UFO, 

but none of them has an apparent flowering or meristem-related function. 

While comparing differentially expressed genes (DEGs) to a list of genes bound in ampDAP-

seq is missing the crucial information of in vivo binding of the complex, these results suggest 

that the role of LFY and UFO in floral development may also include floral meristem 

establishment. 

 

4.3.2 UFO could have LFY-independent targets 

In addition to LFY and UFO having common targets in floral meristem establishment, as 

shown by the large overlap covering almost the entirety of LFY-related DEGs, the rev-c4/rev-

c4 ufo-1 comparison reveals a large share of DEGs that are not LFY-dependent (Figure 4.3-2). 

This is surprising given that the phenotypes of rev-c4 lfy-12 and rev-c4 ufo-1 plants are very 

similar, and even more so considering LFY’s central role in several flowering-related 

processes, as compared with UFO being mostly known as LFY’s cofactor to regulate B-class 

genes. I did not investigate UFO-specific DEGs in greater detail but I suggest here some 

possible ways to broaden our understanding of UFO’s LFY-independent roles. 

The observation of UFO-specific, LFY-independent DEGs suggests a broader role of UFO in 

plant development, supported by the fact that UFO is also expressed in the peripheral zone 

of the SAM in Arabidopsis plants (Durfee et al., 2003; Laufs et al., 2003; Reddy, 2008). These 
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additional roles could act at the transcriptional level, like the LFY-UFO complex, with UFO 

collaborating with other TFs. However, finding new UFO partners requires more 

experimental data and computational power. For starters, UFO genome-wide binding 

profiling in vivo, whether through a ChIP-seq or techniques such as CUT&Tag or CUT&RUN, 

would be valuable to better characterize UFO’s transcriptional role, with or without LFY. 

Prior to or in combination with this approach, Y2H screens and/or co-immunoprecipitation 

with potential TF partners could help identify new interactors, whose DNA-binding profile 

could be probed like LFY-UFO’s. In the era of protein folding predictions with AlphaFold2 and 

protein-protein interaction predictions with AlphaFold Multimer, a prior computational 

exploration of potential UFO interactors could significantly increase the success of 

experimental interaction assays (Evans et al., 2021; Jumper et al., 2021). More exploratory 

computational approaches could leverage RNA-seq results for UFO to find common TFs with 

TFBSs on their regulatory regions, and possibly checking if the flanks of their TFBSs show an 

enrichment in an element of fixed length such as the UFO-recruiting motif found in the LFY-

UFO binding site. 

Although we showed that the F-box domain of UFO is dispensable for its transcriptional role 

with LFY, it is possible that the LFY-independent roles of UFO in Arabidopsis are related to its 

involvement in protein ubiquitination and degradation. In the absence of UFO-mediated 

degradation, its targets could go unrepressed and activate their own target genes. Potential 

degradation targets could be found by scanning the promoter regions of LFY-independent, 

UFO-dependent DEGs, to see if there are any known TFs enriched with TFBSs in those 

promoter regions. An additional ubiquitination-related role of UFO in development would be 

supported by recent findings that will be discussed in the next section. 

 

4.3.3 Double action of UFO as a transcriptional cofactor in the nucleus and an F-box in 

the cytoplasm 

Our ampDAP-seq experiment revealed that UFO works as a LFY cofactor for the expression 

of flower development genes, and that this function is independent of its protein-

ubiquitination role as AP3 expression is not lost in the absence of UFO’s F-box. Moreover, 

transcriptional data suggests UFO’s involvement in the early establishment of the flower 
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meristem, at least partially alongside LFY. However, this does not mean that UFO exclusively 

works as a cofactor, but rather that it could have a dual role in transcriptional regulation 

(where its F-box is dispensable) and in protein homeostasis control (F-box required). 

A recent report found that LFY can form liquid droplets in the cytoplasm, and that those 

droplets can be targeted by UFO to trigger LFY’s ubiquitination and subsequent degradation 

(Dolde et al., 2023). This process could be a way to control the turnover of LFY protein, and it 

is compatible with previous reports of LFY exiting the nucleus and working cell non-

autonomously (X. Wu et al., 2003), as well as with LFY’s UFO-dependent ubiquitination and 

degradation (Chae et al., 2008). 

However, many aspects remain unclear. First, while the authors specifically focus on UFO-

dependent LFY degradation, the same mechanism of cytoplasmic-specific ubiquitination and 

degradation by UFO could also apply to the regulation of other proteins, and possibly other 

TFs. More importantly, it remains unclear how the same complex that works in the nucleus 

to regulate developmental genes, can also lead to the ubiquitination and degradation of LFY 

in the cytoplasm. Further investigation will be required to dig into the mechanistic details of 

how LFY’s turnover is regulated, what are the signals and protein modifications that lead to 

LFY’s exit from the nucleus and UFO-mediated degradation. Finally, it should be noted that 

both our results and those of Dolde et al. relied on UFO overexpression, which highlights the 

need to see what happens when UFO is expressed under its endogenous promoter to check 

whether this function truly has a role in planta. 
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5 Conclusions and perspectives 

5.1 Genomic context can be used to characterize transcriptional regulation of LFY 

sites and shed new light on LFY’s regulatory properties 

Gene regulation is a highly complex process involving several players, and TFs play a key role 

in this process as they bind to regulatory regions to control gene expression. In particular, 

master TFs are involved in the regulation of major developmental switches, such as the 

transition from vegetative to reproductive development. 

The main aim of my PhD was to develop a model to predict transcriptional regulation of 

TFBSs genome-wide based on genetically-encoded information in their surroundings, namely 

genomic context and evolutionary conservation. I focused on LFY, a plant-specific master TF 

with a central role in flower development and on the model plant Arabidopsis. 

My approach leveraged differences in genomic context to distinguish transcriptionally active 

(‘functional’) LFY TFBSs from inactive (‘nonfunctional’) ones. Such context included crucial 

determinants of the cis-regulatory code, from state-of-the-art LFY TFBS models (a PWM with 

nucleotide dependencies and POcc) to the presence of TFBSs belonging to other TFs at given 

distances from LFY, their density and diversity. The distance of LFY sites from each other was 

also included. 

This approach allowed the classification of functional and nonfunctional LFY sites (Figure 

3.2-1, p. 50). Moreover, it revealed that LFY has specific regulatory preferences in 

Arabidopsis, and that they are genetically encoded: the presence and quality of other LFY 

TFBSs in the surroundings of a LFY site is particularly important to distinguish functional and 

nonfunctional sites (Figure 3.2-3, p. 55). 

Our model also reveals that, while to a lesser extent, the presence of non-LFY TFBSs around 

LFY sites and their diversity is also an important determinant of functional LFY sites (Figure 

3.2-3, p. 55). Some TFs and TF groups in particular seem to differ between functional and 

nonfunctional sites, although their exact role and their presence on regulatory regions with 

LFY remain to be determined. 
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We used our trained model to look for functional LFY sites among those that we could not 

confidently label as functional nor as nonfunctional. While I do not have experimental 

validation of these predictions yet, some of these sites predicted as functional are likely to 

be transcriptionally active based on prior biological knowledge. Experimental validation will 

be crucial to better assess the biological relevance of our findings and the importance of co-

occurring TFs. 

Our approach could be applied to other TFs different from LFY, and this would give insights 

about whether the features important for LFY binding (e.g. presence of other LFY sites close 

by) are also important for other TFs, or if this is a particular characteristic of LFY’s binding 

mode. Like other SAM-containing proteins, LFY can dimerize and form higher-order 

complexes that are lost upon SAM mutation (Hope et al., 2018; Qiao et al., 2020; Sayou et 

al., 2016). While most TFs can di- and tetramerize, examples of higher-order complexes are 

more rare (Amoutzias et al., 2008; Blanc-Mathieu et al., 2023; Puranik et al., 2014). Using our 

approach on other TFs could reveal whether features related to cooperative binding and 

oligomerization are important for other factors, or if it is specific to (e.g. SAM-containing) 

proteins that can form higher-order complexes. 

Additionally, our model could be trained on Arabidopsis data and tested on other plant 

species, to see whether it can predict transcriptional regulation of LFY sites at increasing 

evolutionary distances. To this end, the pipeline I developed for LFY on Arabidopsis could be 

applied to virtually any other plant species to recover LFY sites and their surrounding non-

LFY TFBS context. As an example, the availability of ChIP-seq and RNA-seq data for two GLK 

TFs in five plant species (Tu et al., 2022) could be a good TF to start testing our approach 

with other TFs and to probe its potential for transfer learning. 

More generally, the tradeoff between model performance and interpretability is central to 

the use of machine learning algorithms to describe biological phenomena, and particularly in 

genomics, where the availability of vast data offers endless opportunities to study gene 

regulation (Meyer & Saez-Rodriguez, 2021; Watson, 2022). Our approach, based on the 

inclusion of relevant genomic features for supervised learning, offers a major advantage in 

model interpretability, which has led us to important biological insights into how LFY 

regulates the genome. 
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5.2 Could conservation still be useful to model transcriptional regulation? 

In our quest to find biologically relevant features to include in our model, we hypothesized 

that the conservation of LFY TFBSs in flowering plants could be informative about their 

transcriptional activity, with conserved sites more likely to have a functional role. Moreover, 

the documented conservation of LFY’s sequence and specificity in the plant lineage (Guo et 

al., 2019; Sayou et al., 2014) made it the ideal TF, once again, to test our hypothesis.  

Nevertheless, our attempts at including conservation in our Random Forest model 

highlighted that the conservation of LFY sites in flowering plants, expressed as the average 

conservation score (PhyloP and PhastCons) over the LFY TFBS, was not informative to 

distinguish functional sites from nonfunctional ones (Figure 3.2-2A, p. 53). The same was 

true when we combined conservation information with all genomic context features (Figure 

3.2-2A, p. 53).  

Rather than being due to the evolutionary distance used to compute conservation scores, 

this result could be linked to the fact that, in our model, we studied LFY sites found both in 

coding and noncoding regions (Figure 3.2-2C, p. 53, compared to Figure S3.4-1D, p. 65). Our 

results show that, when looking at LFY sites exclusively in noncoding regions, there is a stark 

difference between the enrichment in CNSs in functional and nonfunctional sites, with a 

stronger proportion of functional sites overlapping with CNSs. This difference remains 

marked even at increasing evolutionary scales, including the one we included in our model, 

although it slightly decreased. When we looked at all LFY sites in our model, found in both 

coding and noncoding regions, the levels of conserved sequence enrichment were very 

similar in functional and nonfunctional sites. Therefore, in our model, high conservation of 

LFY sites regardless of their transcriptional activation status could hinder the potential of this 

important feature for predictions.  

Previous work on the first intron of AG, which provides a restricted regulatory sequence 

across many plant species, highlighted that (i) the location of LFY sites could change in 

distantly related species, and that (ii) POcc proved instrumental to reconstruct the evolution 

of AG regulation by LFY without relying on alignment-based sequence conservation 

(Moyroud et al., 2011). While this can be a powerful strategy when looking at specific, 
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restricted regions, as POcc is sensitive to sequence length, it is also sensitive to changes in 

promoter size and TFBS location across multiple species. 

More generally, given the functional importance of conserved regulatory modules rather 

than sequence conservation of the TFBS itself (Maher et al., 2018; Nitta et al., 2015), the 

insights provided by our model on LFY binding preferences and co-occurring factors could be 

employed to further develop comparative genomics approaches.  

I only tested a portion of the endless possible strategies to include conservation in our 

model, and to try to understand why our method was not useful to classify LFY sites as 

functional or nonfunctional. Nevertheless, I think that this information will be crucial in 

future models aiming at studying gene regulation, and in particular the differences between 

TFBSs with comparable quality but different transcriptional status, in plants and beyond. 

 

5.3 The action of LFY-UFO in plant development could extend beyond petal and 

stamen development 

The model presented in Chapter 1 focused on the study of LFY binding when LFY acts alone 

to regulate gene expression. However, LFY can also work with other protein partners, 

including the F-box protein UFO. Our recent paper reveals that LFY and UFO form a 

transcriptional complex to orchestrate, in particular, petal and stamen development, and 

that UFO modifies LFY’s canonical binding specificity to bring it to new regulatory regions 

(Rieu et al., 2023). 

LFY and UFO also seem to share an early function in floral meristem establishment, further 

extending the regulatory role of the LFY-UFO complex in plant development, and the 

implication of LFY in the early stages of floral meristem establishment (Figure 4.3-1, p. 102). 

Moreover, our results show that UFO could play a larger role in these early stages, in 

opposition to LFY’s generally wider function in flower development in Arabidopsis. This 

change in power balance between LFY and UFO in floral meristem establishment is in line 

with what has been observed in other plant species such as pea and petunia (Moyroud et al., 

2009), and opens up new possibilities in their joint role as transcriptional regulators. 
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It would be interesting to test our approach for LFY functional sites prediction on the 

genomic regions specifically bound by the LFY-UFO complex (Rieu et al., 2023), and on the 

DEGs revealed by the rev background (Figure 4.3-2, p. 103), to determine whether the cis-

regulatory context of LFY sites changes when it works alone or with UFO. In the coming 

years, new techniques such as CUT&Tag or CUT&RUN will be crucial to determine UFO’s in 

vivo genome-wide binding profile, which could be used in approaches like ours to investigate 

if and how the cis-regulatory context of transcriptionally active LFY sites changes when LFY 

works alone or with other binding partners. 

In addition to its role as a LFY partner for transcriptional regulation in flower development, 

UFO has recently been shown to regulate LFY’s turnover by degrading the TF in liquid 

droplets in the cytoplasm (Dolde et al., 2023). While it remains unclear how UFO exerts both 

roles, this evidence opens new questions concerning the convergence of protein turnover 

and transcriptional regulation on the same TF-F-box complex in Arabidopsis. 

Overall, we have probably barely scratched the surface of LFY’s role in transcriptional 

regulation with partners. Indeed, UFO does not explain the entirety of genomic regions 

bound by LFY in vivo and not in vitro (Rieu et al., 2023), and there is previous evidence of LFY 

working with WUS, another TF, to regulate AG expression (Lohmann et al., 2001). In the 

future, comparing binding data in vivo and in vitro will make it possible to determine at a 

higher scale which TFs require partners to regulate their target genes, how widespread this 

behavior is and whether TF families differ in their cofactor preferences. 
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I started this manuscript talking about the complexity of gene regulation, and then I focused 

on TFs and their role in the control of gene expression. While I could not cover the endless 

exciting research avenues stemming from the study of TF-dependent gene regulation, some 

recent examples that I find particularly exciting include the role of intrinsically disordered 

regions in TF-target recognition (Brodsky et al., 2020; Jonas et al., 2023; Staller, 2022), and 

the relevance of TF-RNA interactions (Oksuz et al., 2023) as well as 3D genome organization 

and dynamics (Kim & Shendure, 2019; Wagh et al., 2021) in gene regulation. These findings 

show that the TF paradigm that I focused on, i.e. that TFs are proteins that recognize specific 

motifs on gene regulatory regions through their DBD, is a non-exhaustive definition that is 

still being questioned (Samee, 2023), and there is still much to be done in the coming years 

to increase our understanding of how TFs regulate gene expression in all organisms. 

  



113 
 

6 Materials and Methods 

6.1 ChIP-seq and ampDAP-seq analysis 

LFY ChIP-seq data from (Goslin et al., 2017; Jin et al., 2021; Moyroud et al., 2011; Sayou et 

al., 2016) were taken from GEO (GSE96806, GSE141706, GSE24568, GSE64245, respectively). 

LFY ampDAP-seq data was from GEO GSE160013 (Lai, Blanc-Mathieu, et al., 2021). 

Fastq files were processed as in (Rieu et al., 2023). Sequencing data quality was evaluated 

with fastQC v.0.11.7, and adapters were removed with NGmerge v.0.2_dev (Gaspar, 2018). 

Bowtie2 v.2.3.4.1 was used to map reads to the TAIR10 A. thaliana reference genome 

(Lamesch et al., 2012). We only retained reads mapped to a single location and with a 

maximum of two mismatches. We used samtools dedup v.1.8 to remove duplicates. We 

identified bound regions (“peaks”) with MACS2 v.2.2.7.1 (Y. Zhang et al., 2008), with input 

DNA from Lai et al. as a control (Lai, Blanc-Mathieu, et al., 2021) and with –q 0.05 for ChIP-

seq and -q 0.0001 for ampDAP-seq. Consensus peaks called in all replicates were identified 

with MSPC v.4.0.0 (Jalili et al., 2015) and, finally, peaks were resized around the peak 

maximum (±200 bp) for further analysis. 

 

6.2 Microarray analysis 

Microarray data were retrieved from GEO (GSE28062) for 35S::LFY-GR seedlings after the 

addition of dexamethasone (Winter et al., 2011), from (Chahtane et al., 2013) for 35S::LFY 

experiments and from AtGen-Express (Schmid et al., 2004) for inflorescence tissue in the lfy 

background. Each mutant or overexpressing genotype was compared to WT (Col-0). The R 

package gcrma (Z. Wu & Irizarry, 2022) was used to adjust probe intensities and convert 

them to expression measures, and then the limma package (Ritchie et al., 2015) was used for 

differential expression analysis. A Benjamini–Hochberg correction was applied to the P 

values, and fold change (FC) was computed as the ratio between expression in the 

overexpression line/WT (for 35S::LFY-GR and 35S::LFY) or WT/lfy mutant. Only genes with 

|log2(FC)| > 1 and adjusted P < 0.05 were considered as significantly differentially 

expressed. 
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6.3 RNA-seq experiments and analyses 

6.3.1 WT vs lfy RNA-seq experiment 

WT (Col-0) and lfy-12 seeds were grown for 5 weeks in short day (SD) conditions (8h light, 

16h dark), then moved to long days (LD) conditions (16h light, 8h dark) for another two 

weeks before inflorescence dissection. All flower-looking structures were removed, and only 

the inner part of the inflorescence was sampled (2-3 mm). We only sampled primary 

inflorescences for a total of four samples per genotype, each sample containing multiple 

inflorescences. RNA was extracted with the Qiagen Rneasy Kit, and sent for paired-end 

mRNA sequencing. After sequencing, fastq files were trimmed with BBduk to remove 

adapter sequences. Trimmed reads were fed to Salmon (Patro et al., 2017) using the --gcBias 

and --validateMappings flags for mapping on the Arabidopsis TAIR10 transcriptome 

(Lamesch et al., 2012) and read counting. The tximport R package (Soneson et al., 2015) was 

used to import read counts computed by Salmon of all samples to RStudio v1.3.959 (RStudio 

Team, 2020), and the DESeq2 package v1.28.1 (Love et al., 2014) was used to normalize raw 

counts by transcript length. Transcript length-normalized counts were analyzed with the 

NOISeq package (Tarazona et al., 2015). The ARSyNseq function was applied for noise 

removal, followed by the noiseqbio function for differential analysis with the options lc = 0, 

norm = "tmm", cpm = 1, filter = 1 and all other options with default values. Genes were 

considered as differentially expressed if their |log2(FC)| was > 1 and the associated adjusted 

p-value (corresponding to 1 - Probability calculated by the noiseqbio function) was less than 

0.01. 

 

6.3.2 lfy rev vs rev, ufo rev vs rev RNA-seq experiment 

rev-c4, lfy-12 rev-c4 and ufo-1 rev-c4 plants were grown in long days conditions (16h light, 8h 

dark) for 6 to 7 weeks prior to the collection of inflorescences. All flower-looking structures 

were removed, and only the inner part of the inflorescence was sampled (2-3 mm). We only 

sampled primary inflorescences for a total of four samples per genotype, each sample 

containing multiple inflorescences. RNA was extracted with the Qiagen Rneasy Kit and sent 

for QuantSeq 3′ mRNA-Seq sequencing with Unique Molecular Identifiers (UMIs). After 

sequencing, UMIs were extracted with umi_tools extract command by UMI-tools v1.1.2 

(Smith et al., 2017) and reads were trimmed with Bbduk v 38.18 to remove adapter 
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sequences. STAR v2.7.9a (Dobin et al., 2013) was used to align reads on the Arabidopsis 

TAIR10 genome and then the umi_tools dedup command by UMI-tools v1.1.2 was used to 

remove PCR duplicates. Reads were counted with HTSeq v0.13.5 (Putri et al., 2022) and 

differential analysis was performed with DESeq2 v1.28.1 (Love et al., 2014) on RStudio 

v1.3.959 (RStudio Team, 2020). Genes were considered as differentially expressed if their 

|log2(FC)| was > 1 and the associated adjusted p-value was less than 0.01. 

 

6.4 Data matrix to classify LFY sites based on genomic context and conservation 

6.4.1 Definition of LFY sites genome-wide 

The LFY PWM with dependencies (Moyroud et al., 2011) was used to scan the Arabidopsis 

genome (TAIR10) (Lamesch et al., 2012) to predict LFY TFBS, and a PWM score was assigned 

to every genomic position. All genomic scores were used to determine an overall distribution 

(Figure S3.4-1A, p. 65), which was used to select LFY TFBSs based on percentile thresholds. I 

tested multiple score-thresholds ranging from the 99th to the 99.99th percentile (Figure 

S3.4-1C, p. 65), but we ended up choosing the 99.9th percentile threshold for further 

analyses, i.e. we only retained the top 0.1% best-scoring sites. LFY site names (unique 

identifiers) were defined with the following nomenclature: chromosome number, start and 

end position of the site’s genomic coordinates (e.g. “chr1:10000017-10000036”). 

 

6.4.2 Integration of binding and expression data and definition of 

nonfunctional/functional/‘unknown’ LFY sites 

To build a model that is able to predict for which LFY TFBS binding elicits a transcriptional 

response (i.e. ‘functional’ LFY TFBS) in vivo, we integrated LFY binding and expression data. 

We created a table where each row contained a LFY site on the Arabidopsis genome over a 

given PWM score threshold, and the three columns had information about experimental 

evidence of binding (in vivo with ChIP-seq data, in vitro thanks to ampDAP-seq data) or 

differential expression (microarrays and RNA-seq experiment). A site was considered to be 

associated with a significant change in gene expression if it was found in the genomic 

interval from 3 kb upstream of the transcription start site (TSS) of an Arabidopsis gene to 1 

kb downstream of its transcription termination site (TTS). All columns are binary, with ‘1’ for 
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overlap between a given LFY site and the corresponding source of data and ‘0’ for no 

overlap. LFY sites overlapping with genomic regions bound by LFY in ChIP-seq and ampDAP-

seq experiments, and associated with differentially expressed genes, were labeled as 

‘functional’ (‘1’). The rationale behind this choice is that we wanted to select LFY TFBS bound 

in vivo and by LFY alone, not in a complex. LFY sites with no evidence of binding or of 

differential expression close by were labeled as ‘nonfunctional’ (‘0’). Functional and 

nonfunctional sites were then used to train random forest models. All sites satisfying one of 

the previous criteria but not all of them at once, e.g. found in a region bound in ChIP-seq but 

not in ampDAP-seq, or bound in ChIP-seq and DAP-seq but close to a gene that is not 

differentially expressed, were labeled as ‘unknown’ (‘U’), as they could not be confidently 

labeled as either functional or nonfunctional. 

 

6.4.3 Computing POcc around LFY TFBS 

POcc was calculated using the method published in (Moyroud et al., 2011) and explained in 

Equations 1 and 2 (see Computing POcc around LFY TFBS, p. 116) with LFY’s PWM with 

dependencies. We used DNA sequences spanning ± 250 bp or ± 500 bp around each LFY 

TFBS (Figure 6.4-1). To define the presence of LFY TFBS around each reference site, we used 

the same score threshold as to identify LFY sites genome-wide, i.e. the top 0.1% best scoring 

sites (99.9th percentile). We chose the ± 250 bp genomic window for further analyses based 

on a greater PR curve AUC compared to the one obtained for the ± 500 bp interval (Figure 

6.4-1). 
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Figure 6.4-1 PR (top row) and ROC (bottom row) curves of random forest models trained with only 

one feature, POcc, computed over a window of ± 250 bp (graphs on the left) or ± 500 bp (graphs on 

the right) around each LFY site. Each thin line represents a separate random forest model trained on 

75% of LFY sites and tested on the remaining 25%, for a total of 100 models (see Training and testing 

Random Forest models, p. 124); the thick blue line shows the mean of all models. Mean AUC is shown 

for both PR and ROC curves, at both genomic windows around LFY sites. The red square indicates the 

genomic window that is used in Figure 3.2-1, p. 50. 

 

6.4.4 Computing co-occurrence and LFY-LFY distances 

To compute co-occurrence distances, I downloaded PWMs of 47 TF clusters representing 

over 500 plant TFs from JASPAR 2022 (Castro-Mondragon et al., 2022) and I used them to 

scan the Arabidopsis genome. As for LFY sites (see Definition of LFY sites genome-wide, p. 115), 

I computed each cluster’s genome-wide score distribution and set a PWM score threshold at 

the 99.9th percentile. Then, I used bedtools closest with options -t all -mdb each –d (Quinlan 

& Hall, 2010) to find the distance, in bp, of each LFY site from the closest site of each TF 

cluster. I then transformed such distance to the distance between the central position of 

each matrix (LFY-cluster) based on matrix length. 
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One of the clusters, ‘cluster_47’, represented a single TF, LFY, and was excluded from further 

analyses. Instead, to compute LFY-LFY TFBS distances, I used the LFY sites detected with the 

PWM with dependencies (Moyroud et al., 2011) with score above the 99.9th percentile 

threshold, as explained in Definition of LFY TFBS genome-wide. This time, I used bedtools 

closest with options -t all -mdb each –d –io (Quinlan & Hall, 2010) to avoid overlaps.  

 

6.4.5 Computing LFY-TSS distances 

The same way I computed distances between LFY and TF clusters or LFY and other LFY sites, I 

included the distances, in bp, of each LFY site from the closest TSS. This time, I used bedtools 

closest with option -D a (Quinlan & Hall, 2010) to keep positive or negative distance 

information based on whether the LFY site was upstream or downstream of the closest TSS, 

respectively. TSS positions were determined based on TAIR10 annotation (Lamesch et al., 

2012), taking one isoform per Arabidopsis gene. 

 

6.4.6 Encoding sequence type 

Six binary features were dedicated to the type of sequence where each LFY TFBS was found: 

CDS, 5’ UTR, 3’ UTR, intron, promoter and downstream regulatory region. Promoters were 

defined as 3 kb upstream of the TSS, and downstream regulatory regions as 1 kb 

downstream of the TTS. Both promoters and downstream regulatory sequences can overlap 

neighboring genes, thus some genomic regions can be categorized as multiple types at once. 

For each feature column in the data matrix, ‘1’ indicated that the corresponding TFBS was 

found in that type of sequence. For LFY TFBS overlapping multiple sequence types, multiple 

feature columns contained a ‘1’. The TAIR10 gff annotation file was used as a reference 

(Lamesch et al., 2012).  

 

6.4.7 Computing TFBS density and diversity around LFY TFBSs 

TFBS density was computed as the total amount of non-LFY TFBSs (‘totTFBS’ in Figure 3.2-1A, 

see example in Figure 6.4-2). 

To compute TFBS diversity around LFY sites, I used two methods: 
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1. The first method (‘sindex’ in Figure 3.2-1A, p. 50, and Figure 6.4-2, p. 120, example in 

Figure 6.4-2, p. 120) was an adaptation of the Shannon entropy formula to quantify 

non-LFY TFBS diversity as in Equation 3: 

𝐻′ = −∑𝑝𝑖

𝑆

𝑖=1

𝑙𝑛𝑝𝑖  

Equation 3 Shannon's entropy formula adapted to quantify non-LFY TFBS diversity around LFY sites. 𝑝𝑖  
is the proportion of non-LFY TFBS of clusteri over the total amount of non-LFY TFBSs in the genomic 
region considered (± 250 bp or ± 500 bp around each LFY site), and S is the total amount of clusters 
considered (46 here).  

2. For the second method (‘diff_tfs’ in Figure 3.2-1A, p. 50, and Figure 6.4-3, p. 121), I 

counted the number of different non-LFY TFs with a TFBS around LFY, as shown in the 

example in Figure 6.4-2, p. 120. 

Non-LFY TFBS density and diversity were computed within a window of ± 250 bp or ± 500 bp 

around each LFY site (Figure 6.4-2, p. 120). I tried different combinations of these three 

features, either one at a time or two at a time, to train and test 40 Random Forest models 

(Figure 6.4-2, p. 120). As the AUC of PR curves was always close to 0, I chose a combination 

of Shannon’s entropy (for TFBS diversity) and total non-LFY TFBSs (for TFBS density) features 

at a ± 500 bp window for further analyses, based on a greater median ROC AUC compared to 

the other combinations. 
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Figure 6.4-2 Schematic example of methods to compute non-LFY TFBS density and diversity around 

LFY sites. From top to bottom: scheme showing a LFY TFBS with extensions on both sides, 

representing the two genomic windows we tested: ±250 bp or ±500 bp. Below, scheme showing non-

LFY TFBSs belonging to TF2, TF3 and TF4 and found within the selected genomic region. Based on the 

methods explained above, values corresponding to TFBS density and TFBS diversity, both through the 

adaptation of Shannon’s entropy and as the number of different TFs, are circled in red. 
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Figure 6.4-3 AUC for PR (graphs on the left) and ROC (graphs on the right) curves of Random Forest 

models trained with different features representing TFBS density and diversity around LFY sites. 

Density and diversity values were computed at two genomic windows around LFY sites: ± 250 bp (top 

row) and ± 500 bp (bottom row). ‘Sindex’: models trained with one feature representing TFBS 

diversity as computed with Equation 3, in the previous page; ‘totTFBS’: models trained with one 

feature representing the total amount of non-LFY TFBSs around LFY sites; ‘diff_TFs’: models trained 

with one feature representing the total number of different non-LFY TFBSs around LFY sites; 

‘sindex_totTFBS’: models trained with two features, ‘sindex’ and ‘totTFBS’; ‘diff_tfs_totTFBS’: models 

trained with two features, ‘diff_tfs’ and ‘totTFBS’. Each dot represents the AUC of the (PR or ROC) 

curve obtained with a separate random forest model trained on 75% of LFY sites and tested on the 

remaining 25%, for a total of 40 models (this is the only case with 10 repeats instead of 25; see 

Training and testing Random Forest models, p. 124). Boxplots display lower and upper quartile values 

(box edges), median (line between the two box edges), and whiskers extend from the box at 1.5 the 

interquartile range. The red arrow indicates the combination of TFBS diversity and density features 

used in Figure 3.2-1A and B, p. 50. 

 

6.4.8 Computing average conservation at LFY sites 

PhastCons and PhyloP conservation scores on the Arabidopsis genome were downloaded 

from the PlantRegMap database (Tian et al., 2020). Conservation at each position of each 

LFY TFBS was retrieved with bwtool extract (Pohl & Beato, 2014) and several strategies were 

tested to encode conservation: 

1. Average conservation score at each site, for both types of scores (PhyloP and 

PhastCons). See ‘Average’ in Figure 6.4-4, p. 123. 
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2. Weighted average of the conservation score, where the IC of each nucleotide in a LFY 

palindromic PWM (obtained from ampDAP-seq peaks) was used as weight, 

depending on its position within LFY’s binding site. This meant that e.g. if the selected 

LFY site had an A in position 1, the IC of the A nt in the LFY’s palindromic PWM was 

used as weight, while if the selected LFY site had a T in position 1, the IC of the T nt in 

the PWM was used as weight. See ‘Weighted average*’ in Figure 6.4-4, p. 123. The 

same strategy was used for both types of scores (PhyloP and PhastCons). 

3. Weighted average of each conservation score, using the total IC per position as 

weight. This meant that a fixed weight was used per position, independently of the 

nature of the nt at each particular position of the selected LFY site. See ‘Weighted 

average**’ in Figure 6.4-4, p. 123. The same strategy was used for both types of 

scores (PhyloP and PhastCons). 

I used conservation features computed with each strategy to train and test 100 Random 

Forest models (see Training and testing Random Forest models, p. 124, for more details 

about my cross-validation strategy). As precision-recall curves for all models had an AUC of 

0.01, I decided to keep conservation features as computed with the average method 

described above based on a slightly higher average ROC AUC (Figure 6.4-4, p. 123, red box). 
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Figure 6.4-4 PR (top row) and ROC (bottom row) curves of random forest models trained with two 

conservation features (PhastCons and PhyloP scores) computed with three different methods: 

Average (graphs on the left), Weighted average* (graphs in the middle) and Weighted average** 

(graphs on the right). Average: mean conservation score over the LFY site; Weighted average*: 

weighted average of each conservation score, where each nucleotide’s IC is used as weight, 

depending on its position within LFY’s binding site; Weighted average**: weighted average of each 

conservation score, where the total IC per position is used as weight. Each thin line represents a 

separate random forest model trained on 75% of LFY sites and tested on the remaining 25%, for a 

total of 100 models (see Training and testing Random Forest models, p. 124); the thick blue line 

shows the mean between all the separate models. The mean AUC is shown for both PR and ROC 

curves, at both genomic windows around LFY sites. The red square indicates the conservation 

computation method used in Figure 3.2-2, p. 53. 

 

6.5 Calculating CNS enrichment at LFY sites 

To determine whether LFY functional, nonfunctional and ‘unknown’ sites were overlapping 

with CNSs, I retrieved CNS datasets from four publications and I kept their genomic 

coordinates (Haudry et al., 2013; Tian et al., 2020; Velde et al., 2014, 2016). For each 

dataset, I used bedtools intersect with option –wao to check whether any CNSs were 

overlapping with LFY sites coordinates by at least 1 nt. Then, for each LFY site class, I 

calculated and plotted the proportion of sites overlapping with CNSs comparing to those 

with no overlap. For the analysis in Figure 3.2-2C (p. 53), I removed LFY sites found in coding 
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regions (as previously determined: Encoding sequence type) before calculating the 

proportion of sites overlapping with CNSs. For Figure S3.4-1 (p. 65) I used all LFY sites to 

calculate proportions of overlapping CNSs. 

For Figure 3.2-2D (p. 53), for each CNS dataset, I calculated the ratio between the proportion 

of functional sites overlapping with CNSs in Figure 3.2-2C (p. 53) and the proportion of 

nonfunctional sites of nonfunctional overlapping with CNSs shown in the same figure. 

 

6.6 Training and testing Random Forest models 

I used the scikit-learn python package (v1.2.0) to run Random Forest algorithms on our data 

with the RandomForestClassifier function and max_depth option set to 20 (Pedregosa et al., 

2011). Then, I used cross-validation to evaluate whether the model was capable of 

distinguishing functional LFY sites from nonfunctional ones.  

In cross-validation, a dataset is divided into a given amount of equal subsets (“folds”), and all 

except one are used to train a model. The remaining fold is used to test the trained model, 

i.e. to see whether it is capable of predicting the label of an entry in the dataset, which it has 

never seen, based on the entry’s features. There are many possible strategies for cross-

validation, and the best one depends on one’s data. In our case, as the data are highly 

unbalanced, two popular options are to use Repeated Stratified k-fold cross-validation 

(Figure 6.6-2) or to undersample the majority class (i.e. nonfunctional sites) to match the 

amount of the minority class (functional sites) in each fold, and thus obtain a balanced 

dataset. 

To determine the best cross-validation strategy for our data, I set up a procedure to 

compare the performance of Stratified vs Balanced cross-validation on the dataset 

containing all features except conservation, for a total of 58 features. My procedure worked 

as follows: I trained a model with the balanced strategy and another with the stratified one, 

and I tested each model on the leftover functional and nonfunctional LFY sites, i.e. those not 

used to train either model. For both strategies I used 4 folds. At each round of my procedure 

I trained a Balanced and a Stratified model, I tested them on the same unused data and I fed 

true labels and model predictions to scikitlearn’s function ‘precision_recall_curve’ to plot PR 

curves and retrieve AUC values for each. Then I repeated by changing the folds used for 
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training. As the resulting PR AUC was greater for models cross-validated with the stratified 

strategy, I used it all models presented in this manuscript (Figure 6.6-1). 

All figures in Chapter 1: A machine-learning model to predict transcriptional regulation of 

LFY sites genome-wide based on genomic context and evolutionary conservation were 

generated with a Repeated Stratified k-fold cross-validation strategy with k=4 and 25 repeats 

(Figure 6.6-2, in the next page). As each round of cross-validation (one train-test iteration) 

produces a model of its own, I generated a total of 100 models with the same parameters 

but with different training and testing sets (Figure 6.6-2). The only case in which I used less 

than 25 repeats was to determine which combination of TFBS diversity and density features 

to include in the model, where I ran a Repeated Stratified k-fold cross-validation strategy 

with k=4 and 10 repeats for a total of 40 models (see Computing TFBS density and diversity 

around LFY TFBSs, p. 118).  

At each cross-validation test step, I fed true labels and model predictions to scikitlearn’s 

functions RocCurveDisplay.from_predictions and precision_recall_curve to plot ROC and PR 

curves, respectively, and retrieve AUC values for each.  

 

Figure 6.6-1 PR curve to compare balanced vs stratified cross-validation strategies. Green and orange 

curves obtained when testing stratified and balanced Random Forest models, respectively. 
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Figure 6.6-2 Schematic representation of the Repeated Stratified k-fold cross-validation strategy used 

in all Random Forest models shown in this manuscript. The original dataset, which contains a certain 

amount of positive and negative entries (in our case, an unbalanced dataset with few positives, i.e. 

functional LFY sites, and many negatives, i.e. nonfunctional LFY sites), is split into 4 folds, each one 

with the same positive to negative ratio as the original one. Then, three of these four folds are used to 

train a model (with labels), and the fourth one is used to test the trained model (hidden labels); the 

same thing is repeated three more times until each fold has been used once for testing. When this 

process is completed, the original dataset is once again split in four folds, different from the previous 

ones, and the training-testing process is repeated. 

 

6.7 Extracting feature importance from Random Forest models 

Following the cross-validation strategy explained above, after each training round I used the 

function feature_importances_ from scikitlearn to retrieve Gini importance for each feature 

included in the model. 

 

6.8 Using trained Random Forest models to make predictions on ‘unknown’ sites 

Following the cross-validation strategy explained in Training and testing Random Forest models, 

after each training round I tested the trained model on LFY sites labeled as ‘unknown’ and I 

retrieved prediction probabilities for the ‘1’ (LFY functional site) class.  



127 
 

7 References 

Akagi, T., Masuda, K., Kuwada, E., Takeshita, K., Kawakatsu, T., Ariizumi, T., Kubo, Y., Ushijima, K., & 
Uchida, S. (2022). Genome-wide cis-decoding for expression design in tomato using cistrome 
data and explainable deep learning. The Plant Cell, 34(6), 2174‑2187. 
https://doi.org/10.1093/plcell/koac079 

Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of 
DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 33(8), 831‑838. 
https://doi.org/10.1038/nbt.3300 

Alonso-Blanco, C., Andrade, J., Becker, C., Bemm, F., Bergelson, J., Borgwardt, K. M., Cao, J., Chae, E., 
Dezwaan, T. M., Ding, W., Ecker, J. R., Exposito-Alonso, M., Farlow, A., Fitz, J., Gan, X., Grimm, 
D. G., Hancock, A. M., Henz, S. R., Holm, S., … Zhou, X. (2016). 1,135 Genomes Reveal the 
Global Pattern of Polymorphism in Arabidopsis thaliana. Cell, 166(2), 481‑491. 
https://doi.org/10.1016/j.cell.2016.05.063 

Ambrosini, G., Groux, R., & Bucher, P. (2018). PWMScan : A fast tool for scanning entire genomes 
with a position-specific weight matrix. Bioinformatics, 34(14), 2483‑2484. 
https://doi.org/10.1093/bioinformatics/bty127 

Amemiya, H. M., Kundaje, A., & Boyle, A. P. (2019). The ENCODE Blacklist : Identification of 
Problematic Regions of the Genome. Scientific Reports, 9(1), 1. 
https://doi.org/10.1038/s41598-019-45839-z 

Amoutzias, G. D., Robertson, D. L., Van de Peer, Y., & Oliver, S. G. (2008). Choose your partners : 
Dimerization in eukaryotic transcription factors. Trends in Biochemical Sciences, 33(5), 
220‑229. https://doi.org/10.1016/j.tibs.2008.02.002 

Avsec, Ž., Agarwal, V., Visentin, D., Ledsam, J. R., Grabska-Barwinska, A., Taylor, K. R., Assael, Y., 
Jumper, J., Kohli, P., & Kelley, D. R. (2021). Effective gene expression prediction from 
sequence by integrating long-range interactions. Nature Methods, 18(10), 1196‑1203. 
https://doi.org/10.1038/s41592-021-01252-x 

Avsec, Ž., Weilert, M., Shrikumar, A., Krueger, S., Alexandari, A., Dalal, K., Fropf, R., McAnany, C., 
Gagneur, J., Kundaje, A., & Zeitlinger, J. (2021). Base-resolution models of transcription-
factor binding reveal soft motif syntax. Nature Genetics, 1‑13. 
https://doi.org/10.1038/s41588-021-00782-6 

Back, G., & Walther, D. (2021). Identification of cis-regulatory motifs in first introns and the 
prediction of intron-mediated enhancement of gene expression in Arabidopsis thaliana. BMC 
Genomics, 22(1), 390. https://doi.org/10.1186/s12864-021-07711-1 

Ballester, B., Medina-Rivera, A., Schmidt, D., Gonzàlez-Porta, M., Carlucci, M., Chen, X., Chessman, K., 
Faure, A. J., Funnell, A. P., Goncalves, A., Kutter, C., Lukk, M., Menon, S., McLaren, W. M., 
Stefflova, K., Watt, S., Weirauch, M. T., Crossley, M., Marioni, J. C., … Wilson, M. D. (2014). 
Multi-species, multi-transcription factor binding highlights conserved control of tissue-
specific biological pathways. eLife, 3, e02626. https://doi.org/10.7554/eLife.02626 

Bargmann, B. O. R., Marshall-Colon, A., Efroni, I., Ruffel, S., Birnbaum, K. D., Coruzzi, G. M., & Krouk, 
G. (2013). TARGET : A Transient Transformation System for Genome-Wide Transcription 
Factor Target Discovery. Molecular Plant, 6(3), 978‑980. https://doi.org/10.1093/mp/sst010 

Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W. J., Mattick, J. S., & Haussler, D. (2004). 
Ultraconserved Elements in the Human Genome. Science, 304(5675), 1321‑1325. 
https://doi.org/10.1126/science.1098119 

Bennett, H. M., Stephenson, W., Rose, C. M., & Darmanis, S. (2023). Single-cell proteomics enabled 
by next-generation sequencing or mass spectrometry. Nature Methods, 20(3), 3. 
https://doi.org/10.1038/s41592-023-01791-5 

Benos, P. V., Bulyk, M. L., & Stormo, G. D. (2002). Additivity in protein–DNA interactions : How good 
an approximation is it? Nucleic Acids Research, 30(20), 4442‑4451. 
https://doi.org/10.1093/nar/gkf578 



128 
 

Berardini, T. Z., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., Strait, E., & Huala, E. (2015). The 
arabidopsis information resource : Making and mining the “gold standard” annotated 
reference plant genome. Genesis, 53(8), 474‑485. https://doi.org/10.1002/dvg.22877 

Bernard, V., Lecharny, A., & Brunaud, V. (2010). Improved detection of motifs with preferential 
location in promoters. Genome, 53(9), 739‑752. https://doi.org/10.1139/G10-042 

Berthelot, C., Villar, D., Horvath, J. E., Odom, D. T., & Flicek, P. (2018). Complexity and conservation of 
regulatory landscapes underlie evolutionary resilience of mammalian gene expression. 
Nature Ecology & Evolution, 2(1), 1. https://doi.org/10.1038/s41559-017-0377-2 

Blanc-Mathieu, R., Dumas, R., Turchi, L., Lucas, J., & Parcy, F. (2023). Plant-TFClass : A structural 
classification for plant transcription factors. Trends in Plant Science, 0(0). 
https://doi.org/10.1016/j.tplants.2023.06.023 

Blázquez, M. A., Soowal, L. N., Lee, I., & Weigel, D. (1997). LEAFY expression and flower initiation in 
Arabidopsis. Development, 124(19), 3835‑3844. https://doi.org/10.1242/dev.124.19.3835 

Boeva, V. (2016). Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding 
and Transcriptional Regulation in Eukaryotic Cells. Frontiers in Genetics, 7. 
https://www.frontiersin.org/articles/10.3389/fgene.2016.00024 

Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R., & Coen, E. (1997). Inflorescence Commitment and 
Architecture in Arabidopsis. Science, 275(5296), 80‑83. 
https://doi.org/10.1126/science.275.5296.80 

Brodsky, S., Jana, T., Mittelman, K., Chapal, M., Kumar, D. K., Carmi, M., & Barkai, N. (2020). 
Intrinsically Disordered Regions Direct Transcription Factor In Vivo Binding Specificity. 
Molecular Cell, 79(3), 459-471.e4. https://doi.org/10.1016/j.molcel.2020.05.032 

Brooks, M. D., Reed, K. M., Krouk, G., Coruzzi, G. M., & Bargmann, B. O. R. (2023). The TARGET 
System : Rapid Identification of Direct Targets of Transcription Factors by Gene Regulation in 
Plant Cells. In Q. Song & Z. Tao (Éds.), Transcription Factor Regulatory Networks (p. 1‑12). 
Springer US. https://doi.org/10.1007/978-1-0716-2815-7_1 

Brownlie, P., Ceska, T., Lamers, M., Romier, C., Stier, G., Teo, H., & Suck, D. (1997). The crystal 
structure of an intact human Max–DNA complex : New insights into mechanisms of 
transcriptional control. Structure, 5(4), 509‑520. https://doi.org/10.1016/S0969-
2126(97)00207-4 

Burgess, D., & Freeling, M. (2014). The Most Deeply Conserved Noncoding Sequences in Plants Serve 
Similar Functions to Those in Vertebrates Despite Large Differences in Evolutionary Rates. 
The Plant Cell, 26(3), 946‑961. https://doi.org/10.1105/tpc.113.121905 

Busch, C. A., Supriya, K., Cooper, K. M., & Brownell, S. E. (2022). Unveiling Concealable Stigmatized 
Identities in Class : The Impact of an Instructor Revealing Her LGBTQ+ Identity to Students in 
a Large-Enrollment Biology Course. CBE—Life Sciences Education, 21(2), ar37. 
https://doi.org/10.1187/cbe.21-06-0162 

Castro-Mondragon, J. A., Riudavets-Puig, R., Rauluseviciute, I., Berhanu Lemma, R., Turchi, L., Blanc-
Mathieu, R., Lucas, J., Boddie, P., Khan, A., Manosalva Pérez, N., Fornes, O., Leung, T. Y., 
Aguirre, A., Hammal, F., Schmelter, D., Baranasic, D., Ballester, B., Sandelin, A., Lenhard, B., … 
Mathelier, A. (2022). JASPAR 2022 : The 9th release of the open-access database of 
transcription factor binding profiles. Nucleic Acids Research, 50(D1), D165‑D173. 
https://doi.org/10.1093/nar/gkab1113 

Chae, E., Tan, Q. K.-G., Hill, T. A., & Irish, V. F. (2008). An Arabidopsis F-box protein acts as a 
transcriptional co-factor to regulate floral development. Development, 135(7), 1235‑1245. 
https://doi.org/10.1242/dev.015842 

Chahtane, H., Vachon, G., Masson, M. L., Thévenon, E., Périgon, S., Mihajlovic, N., Kalinina, A., 
Michard, R., Moyroud, E., Monniaux, M., Sayou, C., Grbic, V., Parcy, F., & Tichtinsky, G. 
(2013). A variant of LEAFY reveals its capacity to stimulate meristem development by 
inducing RAX1. The Plant Journal, 74(4), 678‑689. https://doi.org/10.1111/tpj.12156 

Chahtane, H., Zhang, B., Norberg, M., LeMasson, M., Thévenon, E., Bakó, L., Benlloch, R., Holmlund, 
M., Parcy, F., Nilsson, O., & Vachon, G. (2018). LEAFY activity is post-transcriptionally 



129 
 

regulated by BLADE ON PETIOLE2 and CULLIN3 in Arabidopsis. New Phytologist, 220(2), 
579‑592. https://doi.org/10.1111/nph.15329 

Chen, H., & Pugh, B. F. (2021). What do Transcription Factors Interact With? Journal of Molecular 
Biology, 433(14), 166883. https://doi.org/10.1016/j.jmb.2021.166883 

Chen, X., & Ishwaran, H. (2012). Random forests for genomic data analysis. Genomics, 99(6), 323‑329. 
https://doi.org/10.1016/j.ygeno.2012.04.003 

Cheng, J.-Z., Zhou, Y.-P., Lv, T.-X., Xie, C.-P., & Tian, C.-E. (2017). Research progress on the 
autonomous flowering time pathway in Arabidopsis. Physiology and Molecular Biology of 
Plants, 23(3), 477‑485. https://doi.org/10.1007/s12298-017-0458-3 

Cho, L.-H., Yoon, J., & An, G. (2017). The control of flowering time by environmental factors. The 
Plant Journal, 90(4), 708‑719. https://doi.org/10.1111/tpj.13461 

Cobb, M. (2017). 60 years ago, Francis Crick changed the logic of biology. PLOS Biology, 15(9), 
e2003243. https://doi.org/10.1371/journal.pbio.2003243 

Costa, S., & Dean, C. (2019). Storing memories : The distinct phases of Polycomb-mediated silencing 
of Arabidopsis FLC. Biochemical Society Transactions, 47(4), 1187‑1196. 
https://doi.org/10.1042/BST20190255 

Creyghton, M. P., Cheng, A. W., Welstead, G. G., Kooistra, T., Carey, B. W., Steine, E. J., Hanna, J., 
Lodato, M. A., Frampton, G. M., Sharp, P. A., Boyer, L. A., Young, R. A., & Jaenisch, R. (2010). 
Histone H3K27ac separates active from poised enhancers and predicts developmental state. 
Proceedings of the National Academy of Sciences, 107(50), 21931‑21936. 
https://doi.org/10.1073/pnas.1016071107 

Crick, F. H. C. (1958). On protein synthesis. https://doi.org/pmid:13580867 
Denay, G., Gabrielle, T., Marie, L. M., Hicham, C., Sylvie, H., Irene, L.-V., Christian, W., Manuel, F.-Z. J., 

Rüdiger, S., Lohmann, J. U., & François, P. (2018). Control of stem-cell niche establishment in 
Arabidopsis flowers by REVOLUTA and the LEAFY-RAX1 module (p. 488114). 
https://doi.org/10.1101/488114 

Dickel, D. E., Ypsilanti, A. R., Pla, R., Zhu, Y., Barozzi, I., Mannion, B. J., Khin, Y. S., Fukuda-Yuzawa, Y., 
Plajzer-Frick, I., Pickle, C. S., Lee, E. A., Harrington, A. N., Pham, Q. T., Garvin, T. H., Kato, M., 
Osterwalder, M., Akiyama, J. A., Afzal, V., Rubenstein, J. L. R., … Visel, A. (2018). 
Ultraconserved Enhancers Are Required for Normal Development. Cell, 172(3), 491-499.e15. 
https://doi.org/10.1016/j.cell.2017.12.017 

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., & 
Gingeras, T. R. (2013). STAR : Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 
15‑21. https://doi.org/10.1093/bioinformatics/bts635 

Dolde, U., Muzzopappa, F., Delesalle, C., Neveu, J., Erdel, F., & Vert, G. (2023). LEAFY homeostasis is 
regulated via ubiquitin-dependent degradation and sequestration in cytoplasmic 
condensates. IScience, 26(6), 106880. https://doi.org/10.1016/j.isci.2023.106880 

Durfee, T., Roe, J. L., Sessions, R. A., Inouye, C., Serikawa, K., Feldmann, K. A., Weigel, D., & 
Zambryski, P. C. (2003). The F-box-containing protein UFO and AGAMOUS participate in 
antagonistic pathways governing early petal development in Arabidopsis. Proceedings of the 
National Academy of Sciences, 100(14), 8571‑8576. 
https://doi.org/10.1073/pnas.1033043100 

Evans, R., O’Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., Blackwell, S., 
Yim, J., Ronneberger, O., Bodenstein, S., Zielinski, M., Bridgland, A., Potapenko, A., Cowie, A., 
Tunyasuvunakool, K., Jain, R., Clancy, E., … Hassabis, D. (2021). Protein complex prediction 
with AlphaFold-Multimer [Preprint]. Bioinformatics. 
https://doi.org/10.1101/2021.10.04.463034 

Fonfría-Subirós, E., Acosta-Reyes, F., Saperas, N., Pous, J., Subirana, J. A., & Campos, J. L. (2012). 
Crystal Structure of a Complex of DNA with One AT-Hook of HMGA1. PLOS ONE, 7(5), 
e37120. https://doi.org/10.1371/journal.pone.0037120 

Freire-Rios, A., Tanaka, K., Crespo, I., Wijk, E. van der, Sizentsova, Y., Levitsky, V., Lindhoud, S., 
Fontana, M., Hohlbein, J., Boer, D. R., Mironova, V., & Weijers, D. (2020). Architecture of DNA 



130 
 

elements mediating ARF transcription factor binding and auxin-responsive gene expression in 
Arabidopsis. Proceedings of the National Academy of Sciences, 117(39), 24557‑24566. 
https://doi.org/10.1073/pnas.2009554117 

Freytes, S. N., Canelo, M., & Cerdán, P. D. (2021). Regulation of Flowering Time : When and Where? 
Current Opinion in Plant Biology, 63, 102049. https://doi.org/10.1016/j.pbi.2021.102049 

Fu, L.-Y., Zhu, T., Zhou, X., Yu, R., He, Z., Zhang, P., Wu, Z., Chen, M., Kaufmann, K., & Chen, D. (2022). 
ChIP-Hub provides an integrative platform for exploring plant regulome. Nature 
Communications, 13(1), 1. https://doi.org/10.1038/s41467-022-30770-1 

Gao, B., Chen, M., Li, X., & Zhang, J. (2019). Ancient duplications and grass-specific transposition 
influenced the evolution of LEAFY transcription factor genes. Communications Biology, 2(1), 
1‑10. https://doi.org/10.1038/s42003-019-0469-4 

Gao, H., Song, W., Severing, E., Vayssières, A., Huettel, B., Franzen, R., Richter, R., Chai, J., & 
Coupland, G. (2022). PIF4 enhances DNA binding of CDF2 to co-regulate target gene 
expression and promote Arabidopsis hypocotyl cell elongation. Nature Plants, 1‑12. 
https://doi.org/10.1038/s41477-022-01213-y 

Gaspar, J. M. (2018). NGmerge : Merging paired-end reads via novel empirically-derived models of 
sequencing errors. BMC Bioinformatics, 19(1), 536. https://doi.org/10.1186/s12859-018-
2579-2 

Georgakopoulos-Soares, I., Deng, C., Agarwal, V., Chan, C. S. Y., Zhao, J., Inoue, F., & Ahituv, N. 
(2023). Transcription factor binding site orientation and order are major drivers of gene 
regulatory activity. Nature Communications, 14(1), 1. https://doi.org/10.1038/s41467-023-
37960-5 

Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan, K.-K., Cheng, C., Mu, X. J., Khurana, E., 
Rozowsky, J., Alexander, R., Min, R., Alves, P., Abyzov, A., Addleman, N., Bhardwaj, N., Boyle, 
A. P., Cayting, P., Charos, A., Chen, D. Z., … Snyder, M. (2012). Architecture of the human 
regulatory network derived from ENCODE data. Nature, 489(7414), 7414. 
https://doi.org/10.1038/nature11245 

Goslin, K., Zheng, B., Serrano-Mislata, A., Rae, L., Ryan, P. T., Kwaśniewska, K., Thomson, B., 
Ó’Maoiléidigh, D. S., Madueño, F., Wellmer, F., & Graciet, E. (2017). Transcription Factor 
Interplay between LEAFY and APETALA1/CAULIFLOWER during Floral Initiation. Plant 
Physiology, 174(2), 1097‑1109. https://doi.org/10.1104/pp.17.00098 

Grandi, V., Gregis, V., & Kater, M. M. (2012). Uncovering genetic and molecular interactions among 
floral meristem identity genes in Arabidopsis thaliana. The Plant Journal, 69(5), 881‑893. 
https://doi.org/10.1111/j.1365-313X.2011.04840.x 

Greene, C. S., & Troyanskaya, O. G. (2010). Integrative Systems Biology for Data-Driven Knowledge 
Discovery. Seminars in Nephrology, 30(5), 443‑454. 
https://doi.org/10.1016/j.semnephrol.2010.07.002 

Guo, T., Wang, N., Xue, Y., Guan, Q., van Nocker, S., Liu, C., & Ma, F. (2019). Overexpression of the 
RNA binding protein MhYTP1 in transgenic apple enhances drought tolerance and WUE by 
improving ABA level under drought condition. Plant Science, 280, 397‑407. 
https://doi.org/10.1016/j.plantsci.2018.11.018 

Hajheidari, M., & Huang, S. C. (2022). Elucidating the biology of transcription factor–DNA interaction 
for accurate identification of cis-regulatory elements. Current Opinion in Plant Biology, 68, 
102232. https://doi.org/10.1016/j.pbi.2022.102232 

Hamès, C., Ptchelkine, D., Grimm, C., Thevenon, E., Moyroud, E., Gérard, F., Martiel, J.-L., Benlloch, 
R., Parcy, F., & Müller, C. W. (2008). Structural basis for LEAFY floral switch function and 
similarity with helix-turn-helix proteins. The EMBO Journal, 27(19), 2628‑2637. 
https://doi.org/10.1038/emboj.2008.184 

Hanano, S., & Goto, K. (2011). Arabidopsis TERMINAL FLOWER1 Is Involved in the Regulation of 
Flowering Time and Inflorescence Development through Transcriptional Repression. The 
Plant Cell, 23(9), 3172‑3184. https://doi.org/10.1105/tpc.111.088641 



131 
 

Haudry, A., Platts, A. E., Vello, E., Hoen, D. R., Leclercq, M., Williamson, R. J., Forczek, E., Joly-Lopez, 
Z., Steffen, J. G., Hazzouri, K. M., Dewar, K., Stinchcombe, J. R., Schoen, D. J., Wang, X., 
Schmutz, J., Town, C. D., Edger, P. P., Pires, J. C., Schumaker, K. S., … Blanchette, M. (2013). 
An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer 
regulatory regions. Nature Genetics, 45(8), 8. https://doi.org/10.1038/ng.2684 

He, Q., Johnston, J., & Zeitlinger, J. (2015). ChIP-nexus : A novel ChIP-exo protocol for improved 
detection of in vivo transcription factor binding footprints. Nature biotechnology, 33(4), 
395‑401. https://doi.org/10.1038/nbt.3121 

Héberlé, É., & Bardet, A. F. (2019). Sensitivity of transcription factors to DNA methylation. Essays in 
Biochemistry, 63(6), 727‑741. https://doi.org/10.1042/EBC20190033 

Hepworth, S. R., Klenz, J. E., & Haughn, G. W. (2006). UFO in the Arabidopsis inflorescence apex is 
required for floral-meristem identity and bract suppression. Planta, 223(4), 769‑778. 
https://doi.org/10.1007/s00425-005-0138-3 

Hirayama, T., & Shinozaki, K. (1996). A cdc5+ homolog of a higher plant, Arabidopsis thaliana. 
Proceedings of the National Academy of Sciences, 93(23), 13371‑13376. 
https://doi.org/10.1073/pnas.93.23.13371 

Honma, T., & Goto, K. (2000). The Arabidopsis floral homeotic gene PISTILLATA is regulated by 
discrete cis-elements responsive to induction and maintenance signals. Development, 
127(10), 2021‑2030. https://doi.org/10.1242/dev.127.10.2021 

Hope, C. M., Webber, J. L., Tokamov, S. A., & Rebay, I. (2018). Tuned polymerization of the 
transcription factor Yan limits off-DNA sequestration to confer context-specific repression. 
eLife, 7, e37545. https://doi.org/10.7554/eLife.37545 

Hu, H., Tian, S., Xie, G., Liu, R., Wang, N., Li, S., He, Y., & Du, J. (2021). TEM1 combinatorially binds to 
FLOWERING LOCUS T and recruits a Polycomb factor to repress the floral transition in 
Arabidopsis. Proceedings of the National Academy of Sciences, 118(35), e2103895118. 
https://doi.org/10.1073/pnas.2103895118 

Hugouvieux, V., & Zubieta, C. (2018). MADS transcription factors cooperate : Complexities of complex 
formation. Journal of Experimental Botany, 69(8), 1821‑1823. 
https://doi.org/10.1093/jxb/ery099 

Hyun, Y., Richter, R., & Coupland, G. (2017). Competence to Flower : Age-Controlled Sensitivity to 
Environmental Cues. Plant Physiology, 173(1), 36‑46. https://doi.org/10.1104/pp.16.01523 

Ingram, G. C., & Coena, E. S. (1995). Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, 
Genes Controlling Flower Development in Arabidopsis and Antirrhinum. 10. 

Izawa, T. (2021). What is going on with the hormonal control of flowering in plants? The Plant 
Journal, 105(2), 431‑445. https://doi.org/10.1111/tpj.15036 

Jalili, V., Matteucci, M., Masseroli, M., & Morelli, M. J. (2015). Using combined evidence from 
replicates to evaluate ChIP-seq peaks. Bioinformatics, 31(17), 2761‑2769. 
https://doi.org/10.1093/bioinformatics/btv293 

Jha, P., Ochatt, S. J., & Kumar, V. (2020). WUSCHEL : A master regulator in plant growth signaling. 
Plant Cell Reports, 39(4), 431‑444. https://doi.org/10.1007/s00299-020-02511-5 

Jin, R., Klasfeld, S., Zhu, Y., Fernandez Garcia, M., Xiao, J., Han, S.-K., Konkol, A., & Wagner, D. (2021). 
LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate. Nature 
Communications, 12(1), 1. https://doi.org/10.1038/s41467-020-20883-w 

Johnson, M. P., Havaux, M., Triantaphylidès, C., Ksas, B., Pascal, A. A., Robert, B., Davison, P. A., 
Ruban, A. V., & Horton, P. (2007). Elevated Zeaxanthin Bound to Oligomeric LHCII Enhances 
the Resistance of Arabidopsis to Photooxidative Stress by a Lipid-protective, Antioxidant 
Mechanism. Journal of Biological Chemistry, 282(31), 22605‑22618. 
https://doi.org/10.1074/jbc.M702831200 

Jolma, A., Yan, J., Whitington, T., Toivonen, J., Nitta, K. R., Rastas, P., Morgunova, E., Enge, M., 
Taipale, M., Wei, G., Palin, K., Vaquerizas, J. M., Vincentelli, R., Luscombe, N. M., Hughes, T. 
R., Lemaire, P., Ukkonen, E., Kivioja, T., & Taipale, J. (2013). DNA-Binding Specificities of 



132 
 

Human Transcription Factors. Cell, 152(1), 327‑339. 
https://doi.org/10.1016/j.cell.2012.12.009 

Jonas, F., Carmi, M., Krupkin, B., Steinberger, J., Brodsky, S., Jana, T., & Barkai, N. (2023). The 
molecular grammar of protein disorder guiding genome-binding locations. Nucleic Acids 
Research, 51(10), 4831‑4844. https://doi.org/10.1093/nar/gkad184 

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., 
Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, 
A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate 
protein structure prediction with AlphaFold. Nature. https://doi.org/10.1038/s41586-021-
03819-2 

Jung, J.-H., Lee, H.-J., Ryu, J. Y., & Park, C.-M. (2016). SPL3/4/5 Integrate Developmental Aging 
and Photoperiodic Signals into the FT-FD Module in Arabidopsis Flowering. Molecular Plant, 
9(12), 1647‑1659. https://doi.org/10.1016/j.molp.2016.10.014 

Kagawa, W., & Kurumizaka, H. (2021). Structural basis for DNA sequence recognition by pioneer 
factors in nucleosomes. Current Opinion in Structural Biology, 71, 59‑64. 
https://doi.org/10.1016/j.sbi.2021.05.011 

Kardailsky, I., Shukla, V. K., Ahn, J. H., Dagenais, N., Christensen, S. K., Nguyen, J. T., Chory, J., 
Harrison, M. J., & Weigel, D. (1999). Activation Tagging of the Floral Inducer FT. Science, 
286(5446), 1962‑1965. https://doi.org/10.1126/science.286.5446.1962 

Karim, M. R., Hirota, A., Kwiatkowska, D., Tasaka, M., & Aida, M. (2009). A Role for Arabidopsis PUCHI 
in Floral Meristem Identity and Bract Suppression. The Plant Cell, 21(5), 1360‑1372. 
https://doi.org/10.1105/tpc.109.067025 

Karollus, A., Mauermeier, T., & Julien Gagneur. (2023). Current sequence-based models capture gene 
expression determinants in promoters but mostly ignore distal enhancers. Genome Biology, 
24(1), 56. https://doi.org/10.1186/s13059-023-02899-9 

Kaufmann, K., & Airoldi, C. A. (2018). Master Regulatory Transcription Factors in Plant Development : 
A Blooming Perspective. In N. Yamaguchi (Éd.), Plant Transcription Factors : Methods and 
Protocols (p. 3‑22). Springer. https://doi.org/10.1007/978-1-4939-8657-6_1 

Kaya-Okur, H. S., Wu, S. J., Codomo, C. A., Pledger, E. S., Bryson, T. D., Henikoff, J. G., Ahmad, K., & 
Henikoff, S. (2019). CUT&Tag for efficient epigenomic profiling of small samples and single 
cells. Nature Communications, 10(1), 1. https://doi.org/10.1038/s41467-019-09982-5 

Kim, S., & Shendure, J. (2019). Mechanisms of Interplay between Transcription Factors and the 3D 
Genome. Molecular Cell, 76(2), 306‑319. https://doi.org/10.1016/j.molcel.2019.08.010 

Klasfeld, S., Roulé, T., & Wagner, D. (2022). Greenscreen : A simple method to remove artifactual 
signals and enrich for true peaks in genomic datasets including ChIP-seq data. The Plant Cell, 
34(12), 4795‑4815. https://doi.org/10.1093/plcell/koac282 

Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., & Araki, T. (1999). A Pair of Related Genes with 
Antagonistic Roles in Mediating Flowering Signals. Science, 286(5446), 1960‑1962. 
https://doi.org/10.1126/science.286.5446.1960 

Krämer, U. (2015). Planting molecular functions in an ecological context with Arabidopsis thaliana. 
eLife, 4, e06100. https://doi.org/10.7554/eLife.06100 

Krishnakumar, V., Hanlon, M. R., Contrino, S., Ferlanti, E. S., Karamycheva, S., Kim, M., Rosen, B. D., 
Cheng, C.-Y., Moreira, W., Mock, S. A., Stubbs, J., Sullivan, J. M., Krampis, K., Miller, J. R., 
Micklem, G., Vaughn, M., & Town, C. D. (2015). Araport : The Arabidopsis Information Portal. 
Nucleic Acids Research, 43(Database issue), D1003‑D1009. 
https://doi.org/10.1093/nar/gku1200 

Krogan, N. T., Hogan, K., & Long, J. A. (2012). APETALA2 negatively regulates multiple floral organ 
identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone 
deacetylase HDA19. Development, 139(22), 4180‑4190. https://doi.org/10.1242/dev.085407 

Lai, X., Blanc-Mathieu, R., GrandVuillemin, L., Huang, Y., Stigliani, A., Lucas, J., Thévenon, E., Loue-
Manifel, J., Turchi, L., Daher, H., Brun-Hernandez, E., Vachon, G., Latrasse, D., Benhamed, M., 



133 
 

Dumas, R., Zubieta, C., & Parcy, F. (2021). The LEAFY floral regulator displays pioneer 
transcription factor properties. Molecular Plant. https://doi.org/10.1016/j.molp.2021.03.004 

Lai, X., Daher, H., Galien, A., Hugouvieux, V., & Zubieta, C. (2019). Structural Basis for Plant MADS 
Transcription Factor Oligomerization. Computational and Structural Biotechnology Journal, 
17, 946‑953. https://doi.org/10.1016/j.csbj.2019.06.014 

Lai, X., Stigliani, A., Vachon, G., Carles, C., Smaczniak, C., Zubieta, C., Kaufmann, K., & Parcy, F. (2019). 
Building Transcription Factor Binding Site Models to Understand Gene Regulation in Plants. 
Molecular Plant, 12(6), 743‑763. https://doi.org/10.1016/j.molp.2018.10.010 

Lai, X., Vega-Leon, R., Hugouvieux, V., Blanc-Mathieu, R., Wal, F. van der, Lucas, J., Silva, C. S., 
Jourdain, A., Muino, J., Nanao, M. H., Immink, R., Kaufmann, K., Parcy, F., Smaczniak, C., & 
Zubieta, C. (2021). The Intervening Domain Is Required For DNA-binding and Functional 
Identity of Plant MADS Transcription Factors. BioRxiv, 2021.03.10.434815. 
https://doi.org/10.1101/2021.03.10.434815 

Lamb, R. S., Hill, T. A., Tan, Q. K.-G., & Irish, V. F. (2002). Regulation of APETALA3 floral homeotic gene 
expression by meristem identity genes. Development, 129(9), 2079‑2086. 
https://doi.org/10.1242/dev.129.9.2079 

Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., Chen, X., Taipale, J., Hughes, T. 
R., & Weirauch, M. T. (2018). The Human Transcription Factors. Cell, 172(4), 650‑665. 
https://doi.org/10.1016/j.cell.2018.01.029 

Lamesch, P., Berardini, T. Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R., Dreher, K., 
Alexander, D. L., Garcia-Hernandez, M., Karthikeyan, A. S., Lee, C. H., Nelson, W. D., Ploetz, L., 
Singh, S., Wensel, A., & Huala, E. (2012). The Arabidopsis Information Resource (TAIR) : 
Improved gene annotation and new tools. Nucleic Acids Research, 40(D1), D1202‑D1210. 
https://doi.org/10.1093/nar/gkr1090 

Laufs, P., Coen, E., Kronenberger, J., Traas, J., & Doonan, J. (2003). Separable roles of UFO during 
floral development revealed by conditional restoration of gene function. Development, 
130(4), 785‑796. https://doi.org/10.1242/dev.00295 

Law, J. A., & Jacobsen, S. E. (2010). Establishing, maintaining and modifying DNA methylation 
patterns in plants and animals. Nature Reviews Genetics, 11(3), 204‑220. 
https://doi.org/10.1038/nrg2719 

Lee, I., Wolfe, D. S., Nilsson, O., & Weigel, D. (1997). A LEAFY co-regulator encoded by UNUSUAL 
FLORAL ORGANS. Current Biology, 7(2), 95‑104. https://doi.org/10.1016/S0960-
9822(06)00053-4 

Lee, J., Oh, M., Park, H., & Lee, I. (2008). SOC1 translocated to the nucleus by interaction with AGL24 
directly regulates LEAFY. The Plant Journal, 55(5), 832‑843. https://doi.org/10.1111/j.1365-
313X.2008.03552.x 

Li, D., Zhang, H., Mou, M., Chen, Y., Xiang, S., Chen, L., & Yu, D. (2019). Arabidopsis Class II TCP 
Transcription Factors Integrate with the FT–FD Module to Control Flowering1. Plant 
Physiology, 181(1), 97‑111. https://doi.org/10.1104/pp.19.00252 

Li, S. (2015). The Arabidopsis thaliana TCP transcription factors : A broadening horizon beyond 
development. Plant Signaling & Behavior, 10(7), e1044192. 
https://doi.org/10.1080/15592324.2015.1044192 

Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in genetics and genomics. 
Nature Reviews Genetics, 16(6), 6. https://doi.org/10.1038/nrg3920 

Lin, Z., Yin, K., Zhu, D., Chen, Z., Gu, H., & Qu, L.-J. (2007). AtCDC5 regulates the G2 to M transition of 
the cell cycle and is critical for the function of Arabidopsis shoot apical meristem. Cell 
Research, 17(9), 9. https://doi.org/10.1038/cr.2007.71 

Lindblad-Toh, K., Garber, M., Zuk, O., Lin, M. F., Parker, B. J., Washietl, S., Kheradpour, P., Ernst, J., 
Jordan, G., Mauceli, E., Ward, L. D., Lowe, C. B., Holloway, A. K., Clamp, M., Gnerre, S., Alföldi, 
J., Beal, K., Chang, J., Clawson, H., … Kellis, M. (2011). A high-resolution map of human 
evolutionary constraint using 29 mammals. Nature, 478(7370), 7370. 
https://doi.org/10.1038/nature10530 



134 
 

Liu, L., Zhang, G., He, S., & Hu, X. (2021). TSPTFBS : A Docker image for trans-species prediction of 
transcription factor binding sites in plants. Bioinformatics, 37(2), 260‑262. 
https://doi.org/10.1093/bioinformatics/btaa1100 

Lloyd, J. P. B., & Lister, R. (2021). Epigenome plasticity in plants. Nature Reviews Genetics, 1‑14. 
https://doi.org/10.1038/s41576-021-00407-y 

Lohmann, J. U., Hong, R. L., Hobe, M., Busch, M. A., Parcy, F., Simon, R., & Weigel, D. (2001). A 
Molecular Link between Stem Cell Regulation and Floral Patterning in Arabidopsis. Cell, 
105(6), 793‑803. https://doi.org/10.1016/S0092-8674(01)00384-1 

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for 
RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-
014-0550-8 

Maher, K. A., Bajic, M., Kajala, K., Reynoso, M., Pauluzzi, G., West, D. A., Zumstein, K., Woodhouse, 
M., Bubb, K., Dorrity, M. W., Queitsch, C., Bailey-Serres, J., Sinha, N., Brady, S. M., & Deal, R. 
B. (2018). Profiling of Accessible Chromatin Regions across Multiple Plant Species and Cell 
Types Reveals Common Gene Regulatory Principles and New Control Modules. The Plant Cell, 
30(1), 15‑36. https://doi.org/10.1105/tpc.17.00581 

Maizel, A. (2005). The Floral Regulator LEAFY Evolves by Substitutions in the DNA Binding Domain. 
Science, 308(5719), 260‑263. https://doi.org/10.1126/science.1108229 

Mathelier, A., & Wasserman, W. W. (2013). The Next Generation of Transcription Factor Binding Site 
Prediction. PLoS Computational Biology, 9(9), e1003214. 
https://doi.org/10.1371/journal.pcbi.1003214 

Mathelier, A., Xin, B., Chiu, T.-P., Yang, L., Rohs, R., & Wasserman, W. W. (2016). DNA Shape Features 
Improve Transcription Factor Binding Site Predictions In Vivo. Cell Systems, 3(3), 278-286.e4. 
https://doi.org/10.1016/j.cels.2016.07.001 

Matías-Hernández, L., Aguilar-Jaramillo, A. E., Marín-González, E., Suárez-López, P., & Pelaz, S. (2014). 
RAV genes : Regulation of floral induction and beyond. Annals of Botany, 114(7), 1459‑1470. 
https://doi.org/10.1093/aob/mcu069 

Matys, V., Kel-Margoulis, O. V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., Reuter, I., Chekmenev, 
D., Krull, M., Hornischer, K., Voss, N., Stegmaier, P., Lewicki-Potapov, B., Saxel, H., Kel, A. E., 
& Wingender, E. (2006). TRANSFAC and its module TRANSCompel : Transcriptional gene 
regulation in eukaryotes. Nucleic Acids Research, 34(Database issue), D108-110. 
https://doi.org/10.1093/nar/gkj143 

McKim, S., & Hay, A. (2010). Patterning and evolution of floral structures—Marking time. Current 
Opinion in Genetics & Development, 20(4), 448‑453. 
https://doi.org/10.1016/j.gde.2010.04.007 

McKim, S. M., Stenvik, G.-E., Butenko, M. A., Kristiansen, W., Cho, S. K., Hepworth, S. R., Aalen, R. B., 
& Haughn, G. W. (2008). The BLADE-ON-PETIOLE genes are essential for abscission zone 
formation in Arabidopsis. Development, 135(8), 1537‑1546. 
https://doi.org/10.1242/dev.012807 

Mendes, M. A., Guerra, R. F., Berns, M. C., Manzo, C., Masiero, S., Finzi, L., Kater, M. M., & Colombo, 
L. (2013). MADS domain transcription factors mediate short-range DNA looping that is 
essential for target gene expression in Arabidopsis. The Plant cell, 25(7), 2560‑2572. 
https://doi.org/10.1105/tpc.112.108688 

Meyer, P., & Saez-Rodriguez, J. (2021). Advances in systems biology modeling : 10 years of 
crowdsourcing DREAM challenges. Cell Systems, 12(6), 636‑653. 
https://doi.org/10.1016/j.cels.2021.05.015 

Ming, R., Hou, S., Feng, Y., Yu, Q., Dionne-Laporte, A., Saw, J. H., Senin, P., Wang, W., Ly, B. V., Lewis, 
K. L. T., Salzberg, S. L., Feng, L., Jones, M. R., Skelton, R. L., Murray, J. E., Chen, C., Qian, W., 
Shen, J., Du, P., … Alam, M. (2008). The draft genome of the transgenic tropical fruit tree 
papaya (Carica papaya Linnaeus). Nature, 452(7190), 7190. 
https://doi.org/10.1038/nature06856 



135 
 

Minguet, E. G., Segard, S., Charavay, C., & Parcy, F. (2015). MORPHEUS, a Webtool for Transcription 
Factor Binding Analysis Using Position Weight Matrices with Dependency. PLOS ONE, 10(8), 
e0135586. https://doi.org/10.1371/journal.pone.0135586 

Morgunova, E., & Taipale, J. (2017). Structural perspective of cooperative transcription factor 
binding. Current Opinion in Structural Biology, 47, 1‑8. 
https://doi.org/10.1016/j.sbi.2017.03.006 

Moyroud, E., Kusters, E., Monniaux, M., Koes, R., & Parcy, F. (2010). LEAFY blossoms. Trends in Plant 
Science, 15(6), 346‑352. https://doi.org/10.1016/j.tplants.2010.03.007 

Moyroud, E., Minguet, E. G., Ott, F., Yant, L., Posé, D., Monniaux, M., Blanchet, S., Bastien, O., 
Thévenon, E., Weigel, D., Schmid, M., & Parcy, F. (2011). Prediction of Regulatory 
Interactions from Genome Sequences Using a Biophysical Model for the Arabidopsis LEAFY 
Transcription Factor. The Plant Cell, 23(4), 1293‑1306. 
https://doi.org/10.1105/tpc.111.083329 

Moyroud, E., Tichtinsky, G., & Parcy, F. (2009). The LEAFY Floral Regulators in Angiosperms : 
Conserved Proteins with Diverse Roles. Journal of Plant Biology, 52(3), 177‑185. 
https://doi.org/10.1007/s12374-009-9028-8 

Murat, F., Peer, Y. V. de, & Salse, J. (2012). Decoding Plant and Animal Genome Plasticity from 
Differential Paleo-Evolutionary Patterns and Processes. Genome Biology and Evolution, 4(9), 
917‑928. https://doi.org/10.1093/gbe/evs066 

Narita, T., Higashijima, Y., Kilic, S., Liebner, T., Walter, J., & Choudhary, C. (2023). Acetylation of 
histone H2B marks active enhancers and predicts CBP/p300 target genes. Nature Genetics, 
55(4), 4. https://doi.org/10.1038/s41588-023-01348-4 

Nei, M., Xu, P., & Glazko, G. (2001). Estimation of divergence times from multiprotein sequences for 
a few mammalian species and several distantly related organisms. Proceedings of the 
National Academy of Sciences, 98(5), 2497‑2502. https://doi.org/10.1073/pnas.051611498 

Nitta, K. R., Jolma, A., Yin, Y., Morgunova, E., Kivioja, T., Akhtar, J., Hens, K., Toivonen, J., Deplancke, 
B., Furlong, E. E. M., & Taipale, J. (2015). Conservation of transcription factor binding 
specificities across 600 million years of bilateria evolution. eLife, 4, e04837. 
https://doi.org/10.7554/eLife.04837 

Noor, E., Cherkaoui, S., & Sauer, U. (2019). Biological insights through omics data integration. Current 
Opinion in Systems Biology, 15, 39‑47. https://doi.org/10.1016/j.coisb.2019.03.007 

Oksuz, O., Henninger, J. E., Warneford-Thomson, R., Zheng, M. M., Erb, H., Vancura, A., Overholt, K. 
J., Hawken, S. W., Banani, S. F., Lauman, R., Reich, L. N., Robertson, A. L., Hannett, N. M., Lee, 
T. I., Zon, L. I., Bonasio, R., & Young, R. A. (2023). Transcription factors interact with RNA to 
regulate genes. Molecular Cell, 83(14), 2449-2463.e13. 
https://doi.org/10.1016/j.molcel.2023.06.012 

O’Malley, R. C., Huang, S. C., Song, L., Lewsey, M. G., Bartlett, A., Nery, J. R., Galli, M., Gallavotti, A., & 
Ecker, J. R. (2016). Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. 
Cell, 165(5), 1280‑1292. https://doi.org/10.1016/j.cell.2016.04.038 

Omidbakhshfard, M. A., Proost, S., Fujikura, U., & Mueller-Roeber, B. (2015). Growth-Regulating 
Factors (GRFs) : A Small Transcription Factor Family with Important Functions in Plant 
Biology. Molecular Plant, 8(7), 998‑1010. https://doi.org/10.1016/j.molp.2015.01.013 

Otsuga, D., DeGuzman, B., Prigge, M. J., Drews, G. N., & Clark, S. E. (2001). REVOLUTA regulates 
meristem initiation at lateral positions. The Plant Journal, 25(2), 223‑236. 
https://doi.org/10.1111/j.1365-313X.2001.00959.x 

Pajoro, A., Madrigal, P., Muiño, J. M., Matus, J. T., Jin, J., Mecchia, M. A., Debernardi, J. M., Palatnik, 
J. F., Balazadeh, S., Arif, M., Ó’Maoiléidigh, D. S., Wellmer, F., Krajewski, P., Riechmann, J.-L., 
Angenent, G. C., & Kaufmann, K. (2014). Dynamics of chromatin accessibility and gene 
regulation by MADS-domain transcription factors in flower development. Genome Biology, 
15(3), R41. https://doi.org/10.1186/gb-2014-15-3-r41 

Palma, K., Zhao, Q., Cheng, Y. T., Bi, D., Monaghan, J., Cheng, W., Zhang, Y., & Li, X. (2007). Regulation 
of plant innate immunity by three proteins in a complex conserved across the plant and 



136 
 

animal kingdoms. Genes & Development, 21(12), 1484‑1493. 
https://doi.org/10.1101/gad.1559607 

Parcy, F., Nilsson, O., Busch, M. A., Lee, I., & Weigel, D. (1998). A genetic framework for floral 
patterning. Nature, 395(6702), 561‑566. https://doi.org/10.1038/26903 

Park, D., Lee, Y., Bhupindersingh, G., & Iyer, V. R. (2013). Widespread Misinterpretable ChIP-seq Bias 
in Yeast. PLOS ONE, 8(12), e83506. https://doi.org/10.1371/journal.pone.0083506 

Park, P. J. (2009). ChIP–seq : Advantages and challenges of a maturing technology. Nature Reviews 
Genetics, 10(10), 10. https://doi.org/10.1038/nrg2641 

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon provides fast and bias-
aware quantification of transcript expression. Nature Methods, 14(4), 4. 
https://doi.org/10.1038/nmeth.4197 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, 
M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn : Machine Learning in Python. Journal of 
Machine Learning Research, 12(85), 2825‑2830. 

Pohl, A., & Beato, M. (2014). bwtool : A tool for bigWig files. Bioinformatics, 30(11), 1618‑1619. 
https://doi.org/10.1093/bioinformatics/btu056 

Pollard, D. A., Bergman, C. M., Stoye, J., Celniker, S. E., & Eisen, M. B. (2004). Benchmarking tools for 
the alignment of functional noncoding DNA. BMC Bioinformatics, 5(1), 6. 
https://doi.org/10.1186/1471-2105-5-6 

Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R., & Siepel, A. (2010). Detection of nonneutral 
substitution rates on mammalian phylogenies. Genome Research, 20(1), 110‑121. 
https://doi.org/10.1101/gr.097857.109 

Prigge, M. J., Otsuga, D., Alonso, J. M., Ecker, J. R., Drews, G. N., & Clark, S. E. (2005). Class III 
Homeodomain-Leucine Zipper Gene Family Members Have Overlapping, Antagonistic, and 
Distinct Roles in Arabidopsis Development. The Plant Cell, 17(1), 61‑76. 
https://doi.org/10.1105/tpc.104.026161 

Puranik, S., Acajjaoui, S., Conn, S., Costa, L., Conn, V., Vial, A., Marcellin, R., Melzer, R., Brown, E., 
Hart, D., Theißen, G., Silva, C. S., Parcy, F., Dumas, R., Nanao, M., & Zubieta, C. (2014). 
Structural Basis for the Oligomerization of the MADS Domain Transcription Factor 
SEPALLATA3 in Arabidopsis. The Plant Cell, 26(9), 3603‑3615. 
https://doi.org/10.1105/tpc.114.127910 

Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E., & Zanini, F. (2022). Analysing high-throughput 
sequencing data in Python with HTSeq 2.0. Bioinformatics, 38(10), 2943‑2945. 
https://doi.org/10.1093/bioinformatics/btac166 

Qiao, P., Bourgault, R., Mohammadi, M., Matschi, S., Philippe, G., Smith, L. G., Gore, M. A., Molina, I., 
& Scanlon, M. J. (2020). Transcriptomic network analyses shed light on the regulation of 
cuticle development in maize leaves. Proceedings of the National Academy of Sciences, 
117(22), 12464‑12471. https://doi.org/10.1073/pnas.2004945117 

Quinlan, A. R., & Hall, I. M. (2010). BEDTools : A flexible suite of utilities for comparing genomic 
features. Bioinformatics, 26(6), 841‑842. https://doi.org/10.1093/bioinformatics/btq033 

Rajeev, L., Luning, E. G., & Mukhopadhyay, A. (2014). DNA-affinity-purified Chip (DAP-chip) Method 
to Determine Gene Targets for Bacterial Two component Regulatory Systems. JoVE (Journal 
of Visualized Experiments), 89, e51715. https://doi.org/10.3791/51715 

Ravel, C., Fiquet, S., Boudet, J., Dardevet, M., Vincent, J., Merlino, M., Michard, R., & Martre, P. 
(2014). Conserved cis-regulatory modules in promoters of genes encoding wheat high-
molecular-weight glutenin subunits. Frontiers in Plant Science, 5. 
https://www.frontiersin.org/articles/10.3389/fpls.2014.00621 

Reddy, G. V. (2008). Live-imaging stem-cell homeostasis in the Arabidopsis shoot apex. Current 
Opinion in Plant Biology, 11(1), 88‑93. https://doi.org/10.1016/j.pbi.2007.10.012 



137 
 

Reineke, A. R., Bornberg-Bauer, E., & Gu, J. (2011). Evolutionary divergence and limits of conserved 
non-coding sequence detection in plant genomes. Nucleic Acids Research, 39(14), 6029‑6043. 
https://doi.org/10.1093/nar/gkr179 

Reneker, J., Lyons, E., Conant, G. C., Pires, J. C., Freeling, M., Shyu, C.-R., & Korkin, D. (2012). Long 
identical multispecies elements in plant and animal genomes. Proceedings of the National 
Academy of Sciences, 109(19), E1183‑E1191. https://doi.org/10.1073/pnas.1121356109 

Rhee, H. S., & Pugh, B. F. (2011). Comprehensive Genome-wide Protein-DNA Interactions Detected at 
Single-Nucleotide Resolution. Cell, 147(6), 1408‑1419. 
https://doi.org/10.1016/j.cell.2011.11.013 

Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C.-Z., Keddie, J., Adam, L., Pineda, O., 
Ratcliffe, O. J., Samaha, R. R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J. Z., Ghandehari, 
D., Sherman, B. K., & Yu, G.-L. (2000). Arabidopsis Transcription Factors : Genome-Wide 
Comparative Analysis Among Eukaryotes. Science, 290(5499), 2105‑2110. 
https://doi.org/10.1126/science.290.5499.2105 

Rieu, P., Turchi, L., Thévenon, E., Zarkadas, E., Nanao, M., Chahtane, H., Tichtinsky, G., Lucas, J., 
Blanc-Mathieu, R., Zubieta, C., Schoehn, G., & Parcy, F. (2023). The F-box protein UFO 
controls flower development by redirecting the master transcription factor LEAFY to new cis-
elements. Nature Plants, 9(2), 2. https://doi.org/10.1038/s41477-022-01336-2 

Risseeuw, E., Venglat, P., Xiang, D., Komendant, K., Daskalchuk, T., Babic, V., Crosby, W., & Datla, R. 
(2013). An Activated Form of UFO Alters Leaf Development and Produces Ectopic Floral and 
Inflorescence Meristems. PLOS ONE, 8(12), e83807. 
https://doi.org/10.1371/journal.pone.0083807 

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). Limma powers 
differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids 
Research, 43(7), e47‑e47. https://doi.org/10.1093/nar/gkv007 

Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., 
Varhol, R., Delaney, A., Thiessen, N., Griffith, O. L., He, A., Marra, M., Snyder, M., & Jones, S. 
(2007). Genome-wide profiles of STAT1 DNA association using chromatin 
immunoprecipitation and massively parallel sequencing. Nature Methods, 4(8), 651‑657. 
https://doi.org/10.1038/nmeth1068 

Rohs, R., West, S. M., Sosinsky, A., Liu, P., Mann, R. S., & Honig, B. (2009). The role of DNA shape in 
protein–DNA recognition. Nature, 461(7268), 7268. https://doi.org/10.1038/nature08473 

Roider, H. G., Kanhere, A., Manke, T., & Vingron, M. (2007). Predicting transcription factor affinities 
to DNA from a biophysical model. Bioinformatics, 23(2), 134‑141. 
https://doi.org/10.1093/bioinformatics/btl565 

Rozière, J., Guichard, C., Brunaud, V., Martin, M.-L., & Coursol, S. (2022). A comprehensive map of 
preferentially located motifs reveals distinct proximal cis-regulatory sequences in plants. 
Frontiers in Plant Science, 13. https://www.frontiersin.org/articles/10.3389/fpls.2022.976371 

RStudio Team. (2020). RStudio : Integrated Development Environment for R. 
http://www.rstudio.com/ 

Samee, Md. A. H. (2023). Noncanonical binding of transcription factors : Time to revisit specificity? 
Molecular Biology of the Cell, 34(9), pe4. https://doi.org/10.1091/mbc.E22-08-0325 

Sandelin, A. (2004). JASPAR : An open-access database for eukaryotic transcription factor binding 
profiles. Nucleic Acids Research, 32(90001), 91D ‑ 94. https://doi.org/10.1093/nar/gkh012 

Sayou, C., Monniaux, M., Nanao, M. H., Moyroud, E., Brockington, S. F., Thévenon, E., Chahtane, H., 
Warthmann, N., Melkonian, M., Zhang, Y., Wong, G. K.-S., Weigel, D., Parcy, F., & Dumas, R. 
(2014). A Promiscuous Intermediate Underlies the Evolution of LEAFY DNA Binding 
Specificity. Science, 343(6171), 645‑648. https://doi.org/10.1126/science.1248229 

Sayou, C., Nanao, M. H., Jamin, M., Posé, D., Thévenon, E., Grégoire, L., Tichtinsky, G., Denay, G., Ott, 
F., Peirats Llobet, M., Schmid, M., Dumas, R., & Parcy, F. (2016). A SAM oligomerization 
domain shapes the genomic binding landscape of the LEAFY transcription factor. Nature 
Communications, 7(1), 1. https://doi.org/10.1038/ncomms11222 



138 
 

Schmid, M., Henz, S., Davison, T., Pape, U., Vingron, M., Schölkopf, B., Weigel, D., & Lohmann, U. 
(2004). AtGenExpress : Expression atlas of Arabidopsis Development. 485. 

Schmid, M., Uhlenhaut, N. H., Godard, F., Demar, M., Bressan, R., Weigel, D., & Lohmann, J. U. 
(2003). Dissection of floral induction pathways using global expression analysis. 
Development, 130(24), 6001‑6012. https://doi.org/10.1242/dev.00842 

Schneider, T. D., & Stephens, R. M. (1990). Sequence logos : A new way to display consensus 
sequences. Nucleic Acids Research, 18(20), 6097‑6100. 
https://doi.org/10.1093/nar/18.20.6097 

Schultz, E. A., & Haughn, G. W. (1991). LEAFY, a Homeotic Gene That Regulates lnflorescence 
Development in Arabidopsis. 

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 
27(3), 379‑423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x 

Shen, W., Pan, J., Wang, G., & Li, X. (2021). Deep learning-based prediction of TFBSs in plants. Trends 
in Plant Science, 0(0). https://doi.org/10.1016/j.tplants.2021.06.016 

Siepel, A., Bejerano, G., Pedersen, J. S., Hinrichs, A. S., Hou, M., Rosenbloom, K., Clawson, H., Spieth, 
J., Hillier, L. W., Richards, S., Weinstock, G. M., Wilson, R. K., Gibbs, R. A., Kent, W. J., Miller, 
W., & Haussler, D. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and 
yeast genomes. Genome Research, 15(8), 1034‑1050. https://doi.org/10.1101/gr.3715005 

Singh, G., Mullany, S., Moorthy, S. D., Zhang, R., Mehdi, T., Tian, R., Duncan, A. G., Moses, A. M., & 
Mitchell, J. A. (2021). A flexible repertoire of transcription factor binding sites and a diversity 
threshold determines enhancer activity in embryonic stem cells. Genome Research, 31(4), 
564‑575. https://doi.org/10.1101/gr.272468.120 

Siriwardana, N. S., & Lamb, R. S. (2012). The poetry of reproduction : The role of LEAFY in Arabidopsis 
thaliana flower formation. International Journal of Developmental Biology, 56(4), 4. 
https://doi.org/10.1387/ijdb.113450ns 

Skene, P. J., & Henikoff, S. (2017). An efficient targeted nuclease strategy for high-resolution mapping 
of DNA binding sites. eLife, 6, e21856. https://doi.org/10.7554/eLife.21856 

Slyper, M., Porter, C. B. M., Ashenberg, O., Waldman, J., Drokhlyansky, E., Wakiro, I., Smillie, C., 
Smith-Rosario, G., Wu, J., Dionne, D., Vigneau, S., Jané-Valbuena, J., Tickle, T. L., Napolitano, 
S., Su, M.-J., Patel, A. G., Karlstrom, A., Gritsch, S., Nomura, M., … Regev, A. (2020). A single-
cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nature 
Medicine, 26(5), 5. https://doi.org/10.1038/s41591-020-0844-1 

Smaczniak, C., Immink, R. G. H., Muiño, J. M., Blanvillain, R., Busscher, M., Busscher-Lange, J., Dinh, 
Q. D. (Peter), Liu, S., Westphal, A. H., Boeren, S., Parcy, F., Xu, L., Carles, C. C., Angenent, G. 
C., & Kaufmann, K. (2012). Characterization of MADS-domain transcription factor complexes 
in Arabidopsis flower development. Proceedings of the National Academy of Sciences, 109(5), 
1560‑1565. https://doi.org/10.1073/pnas.1112871109 

Smet, D., Opdebeeck, H., & Vandepoele, K. (2023). Predicting transcriptional responses to heat and 
drought stress from genomic features using a machine learning approach in rice. Frontiers in 
Plant Science, 14. https://www.frontiersin.org/articles/10.3389/fpls.2023.1212073 

Smith, T., Heger, A., & Sudbery, I. (2017). UMI-tools : Modeling sequencing errors in Unique 
Molecular Identifiers to improve quantification accuracy. Genome Research, 27(3), 491‑499. 
https://doi.org/10.1101/gr.209601.116 

Snetkova, V., Ypsilanti, A. R., Akiyama, J. A., Mannion, B. J., Plajzer-Frick, I., Novak, C. S., Harrington, 
A. N., Pham, Q. T., Kato, M., Zhu, Y., Godoy, J., Meky, E., Hunter, R. D., Shi, M., Kvon, E. Z., 
Afzal, V., Tran, S., Rubenstein, J. L. R., Visel, A., … Dickel, D. E. (2021). Ultraconserved 
enhancer function does not require perfect sequence conservation. Nature Genetics, 53(4), 
521‑528. https://doi.org/10.1038/s41588-021-00812-3 

Soneson, C., Love, M. I., & Robinson, M. D. (2015). Differential analyses for RNA-seq : Transcript-level 
estimates improve gene-level inferences. F1000Research, 4, 1521. 
https://doi.org/10.12688/f1000research.7563.1 



139 
 

Song, L., & Crawford, G. E. (2010). DNase-seq : A High-Resolution Technique for Mapping Active Gene 
Regulatory Elements across the Genome from Mammalian Cells. Cold Spring Harbor 
Protocols, 2010(2), pdb.prot5384. https://doi.org/10.1101/pdb.prot5384 

Souer, E., Rebocho, A. B., Bliek, M., Kusters, E., de Bruin, R. A. M., & Koes, R. (2008). Patterning of 
Inflorescences and Flowers by the F-Box Protein DOUBLE TOP and the LEAFY Homolog 
ABERRANT LEAF AND FLOWER of Petunia. The Plant Cell, 20(8), 2033‑2048. 
https://doi.org/10.1105/tpc.108.060871 

Soufi, A., Donahue, G., & Zaret, K. S. (2012). Facilitators and Impediments of the Pluripotency 
Reprogramming Factors’ Initial Engagement with the Genome. Cell, 151(5), 994‑1004. 
https://doi.org/10.1016/j.cell.2012.09.045 

Spiegel, J., Cuesta, S. M., Adhikari, S., Hänsel-Hertsch, R., Tannahill, D., & Balasubramanian, S. (2021). 
G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biology, 
22(1), 117. https://doi.org/10.1186/s13059-021-02324-z 

Spitz, F., & Furlong, E. E. M. (2012). Transcription factors : From enhancer binding to developmental 
control. Nature Reviews Genetics, 13(9), 9. https://doi.org/10.1038/nrg3207 

Staller, M. V. (2022). Transcription factors perform a 2-step search of the nucleus. Genetics, 222(2), 
iyac111. https://doi.org/10.1093/genetics/iyac111 

Stigliani, A., Martin-Arevalillo, R., Lucas, J., Bessy, A., Vinos-Poyo, T., Mironova, V., Vernoux, T., 
Dumas, R., & Parcy, F. (2019). Capturing Auxin Response Factors Syntax Using DNA Binding 
Models. Molecular Plant, 12(6), 822‑832. https://doi.org/10.1016/j.molp.2018.09.010 

Stormo, G. D. (2015). DNA Motif Databases and Their Uses. Current Protocols in Bioinformatics, 51(1), 
2.15.1-2.15.6. https://doi.org/10.1002/0471250953.bi0215s51 

Sullivan, A. M., Bubb, K. L., Sandstrom, R., Stamatoyannopoulos, J. A., & Queitsch, C. (2015). DNase I 
hypersensitivity mapping, genomic footprinting, and transcription factor networks in plants. 
Current Plant Biology, 3‑4, 40‑47. https://doi.org/10.1016/j.cpb.2015.10.001 

Taher, L., McGaughey, D. M., Maragh, S., Aneas, I., Bessling, S. L., Miller, W., Nobrega, M. A., 
McCallion, A. S., & Ovcharenko, I. (2011). Genome-wide identification of conserved 
regulatory function in diverged sequences. Genome Research, 21(7), 1139‑1149. 
https://doi.org/10.1101/gr.119016.110 

Tarazona, S., Furió-Tarí, P., Turrà, D., Pietro, A. D., Nueda, M. J., Ferrer, A., & Conesa, A. (2015). Data 
quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. 
Nucleic Acids Research, 43(21), e140. https://doi.org/10.1093/nar/gkv711 

Teytelman, L., Thurtle, D. M., Rine, J., & van Oudenaarden, A. (2013). Highly expressed loci are 
vulnerable to misleading ChIP localization of multiple unrelated proteins. Proceedings of the 
National Academy of Sciences, 110(46), 18602‑18607. 
https://doi.org/10.1073/pnas.1316064110 

The Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant 
Arabidopsis thaliana. Nature, 408(6814), 6814. https://doi.org/10.1038/35048692 

Theißen, G., Melzer, R., & Rümpler, F. (2016). MADS-domain transcription factors and the floral 
quartet model of flower development : Linking plant development and evolution. 
Development, 143(18), 3259‑3271. https://doi.org/10.1242/dev.134080 

Thomas, J. W., Touchman, J. W., Blakesley, R. W., Bouffard, G. G., Beckstrom-Sternberg, S. M., 
Margulies, E. H., Blanchette, M., Siepel, A. C., Thomas, P. J., McDowell, J. C., Maskeri, B., 
Hansen, N. F., Schwartz, M. S., Weber, R. J., Kent, W. J., Karolchik, D., Bruen, T. C., Bevan, R., 
Cutler, D. J., … Green, E. D. (2003). Comparative analyses of multi-species sequences from 
targeted genomic regions. Nature, 424(6950), 6950. https://doi.org/10.1038/nature01858 

Tian, F., Yang, D.-C., Meng, Y.-Q., Jin, J., & Gao, G. (2020). PlantRegMap : Charting functional 
regulatory maps in plants. Nucleic Acids Research, 48(D1), D1104‑D1113. 
https://doi.org/10.1093/nar/gkz1020 

Tu, X., Ren, S., Shen, W., Li, J., Li, Y., Li, C., Li, Y., Zong, Z., Xie, W., Grierson, D., Fei, Z., Giovannoni, J., 
Li, P., & Zhong, S. (2022). Limited conservation in cross-species comparison of GLK 



140 
 

transcription factor binding suggested wide-spread cistrome divergence. Nature 
Communications, 13(1), 1. https://doi.org/10.1038/s41467-022-35438-4 

van Dijk, A. D. J., Kootstra, G., Kruijer, W., & de Ridder, D. (2021). Machine learning in plant science 
and plant breeding. IScience, 24(1), 101890. https://doi.org/10.1016/j.isci.2020.101890 

Vandepoele, K., Casneuf, T., & Van de Peer, Y. (2006). Identification of novel regulatory modules in 
dicotyledonous plants using expression data and comparative genomics. Genome Biology, 
7(11), R103. https://doi.org/10.1186/gb-2006-7-11-r103 

Velde, J. V. de, Bel, M. V., Vaneechoutte, D., & Vandepoele, K. (2016). A Collection of Conserved 
Noncoding Sequences to Study Gene Regulation in Flowering Plants. Plant Physiology, 171(4), 
2586‑2598. https://doi.org/10.1104/pp.16.00821 

Velde, J. V. de, Heyndrickx, K. S., & Vandepoele, K. (2014). Inference of Transcriptional Networks in 
Arabidopsis through Conserved Noncoding Sequence Analysis. The Plant Cell, 26(7), 
2729‑2745. https://doi.org/10.1105/tpc.114.127001 

Vierstra, J., Lazar, J., Sandstrom, R., Halow, J., Lee, K., Bates, D., Diegel, M., Dunn, D., Neri, F., Haugen, 
E., Rynes, E., Reynolds, A., Nelson, J., Johnson, A., Frerker, M., Buckley, M., Kaul, R., 
Meuleman, W., & Stamatoyannopoulos, J. A. (2020). Global reference mapping of human 
transcription factor footprints. Nature, 583(7818), 7818. https://doi.org/10.1038/s41586-
020-2528-x 

Wagh, K., Garcia, D. A., & Upadhyaya, A. (2021). Phase separation in transcription factor dynamics 
and chromatin organization. Current Opinion in Structural Biology, 71, 148‑155. 
https://doi.org/10.1016/j.sbi.2021.06.009 

Wagner, D., Sablowski, R. W. M., & Meyerowitz, E. M. (1999). Transcriptional Activation of APETALA1 
by LEAFY. Science, 285(5427), 582‑584. https://doi.org/10.1126/science.285.5427.582 

Wang, M., Li, Q., & Liu, L. (2023). Factors and Methods for the Detection of Gene Expression 
Regulation. Biomolecules, 13(2), 2. https://doi.org/10.3390/biom13020304 

Wang, M., & Zhang, Y. (2021). Tn5 transposase-based epigenomic profiling methods are prone to 
open chromatin bias [Preprint]. Genomics. https://doi.org/10.1101/2021.07.09.451758 

Wasserman, W. W., & Sandelin, A. (2004). Applied bioinformatics for the identification of regulatory 
elements. Nature Reviews Genetics, 5(4), 4. https://doi.org/10.1038/nrg1315 

Watson, D. S. (2022). Interpretable machine learning for genomics. Human Genetics, 141(9), 
1499‑1513. https://doi.org/10.1007/s00439-021-02387-9 

Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., & Meyerowitz, E. M. (1992). LEAFY controls floral 
meristem identity in Arabidopsis. Cell, 69(5), 843‑859. https://doi.org/10.1016/0092-
8674(92)90295-N 

Weigel, D., & Nilsson, O. (1995). A developmental switch sufficient for flower initiation in diverse 
plants. NATUR E, 377. 

Weirauch, M. T., Yang, A., Albu, M., Cote, A. G., Montenegro-Montero, A., Drewe, P., Najafabadi, H. 
S., Lambert, S. A., Mann, I., Cook, K., Zheng, H., Goity, A., van Bakel, H., Lozano, J.-C., Galli, 
M., Lewsey, M. G., Huang, E., Mukherjee, T., Chen, X., … Hughes, T. R. (2014). Determination 
and Inference of Eukaryotic Transcription Factor Sequence Specificity. Cell, 158(6), 
1431‑1443. https://doi.org/10.1016/j.cell.2014.08.009 

Wellmer, F., Graciet, E., & Riechmann, J. L. (2014). Specification of floral organs in Arabidopsis. 
Journal of Experimental Botany, 65(1), 1‑9. https://doi.org/10.1093/jxb/ert385 

Wigge, P. A. (2005). Integration of Spatial and Temporal Information During Floral Induction in 
Arabidopsis. Science, 309(5737), 1056‑1059. https://doi.org/10.1126/science.1114358 

William, D. A., Su, Y., Smith, M. R., Lu, M., Baldwin, D. A., & Wagner, D. (2004). Genomic 
identification of direct target genes of LEAFY. Proceedings of the National Academy of 
Sciences of the United States of America, 101(6), 1775‑1780. 
https://doi.org/10.1073/pnas.0307842100 

Wingender, E., Schoeps, T., Haubrock, M., & Dönitz, J. (2015). TFClass : A classification of human 
transcription factors and their rodent orthologs. Nucleic Acids Research, 43(Database issue), 
D97-102. https://doi.org/10.1093/nar/gku1064 



141 
 

Winter, C. M., Austin, R. S., Blanvillain-Baufumé, S., Reback, M. A., Monniaux, M., Wu, M.-F., Sang, Y., 
Yamaguchi, A., Yamaguchi, N., Parker, J. E., Parcy, F., Jensen, S. T., Li, H., & Wagner, D. (2011). 
LEAFY Target Genes Reveal Floral Regulatory Logic, cis Motifs, and a Link to Biotic Stimulus 
Response. Developmental Cell, 20(4), 430‑443. https://doi.org/10.1016/j.devcel.2011.03.019 

Wittkopp, P. J., & Kalay, G. (2012). Cis-regulatory elements : Molecular mechanisms and evolutionary 
processes underlying divergence. Nature Reviews Genetics, 13(1), 1. 
https://doi.org/10.1038/nrg3095 

Wong, E. S., Zheng, D., Tan, S. Z., Bower, N. I., Garside, V., Vanwalleghem, G., Gaiti, F., Scott, E., 
Hogan, B. M., Kikuchi, K., McGlinn, E., Francois, M., & Degnan, B. M. (2020). Deep 
conservation of the enhancer regulatory code in animals. Science, 370(6517), eaax8137. 
https://doi.org/10.1126/science.aax8137 

Woolfe, A., Goodson, M., Goode, D. K., Snell, P., McEwen, G. K., Vavouri, T., Smith, S. F., North, P., 
Callaway, H., Kelly, K., Walter, K., Abnizova, I., Gilks, W., Edwards, Y. J. K., Cooke, J. E., & Elgar, 
G. (2004). Highly Conserved Non-Coding Sequences Are Associated with Vertebrate 
Development. PLOS Biology, 3(1), e7. https://doi.org/10.1371/journal.pbio.0030007 

Workman, C. T., Yin, Y., Corcoran, D. L., Ideker, T., Stormo, G. D., & Benos, P. V. (2005). enoLOGOS : A 
versatile web tool for energy normalized sequence logos. Nucleic Acids Research, 
33(suppl_2), W389‑W392. https://doi.org/10.1093/nar/gki439 

Wu, M.-F., Sang, Y., Bezhani, S., Yamaguchi, N., Han, S.-K., Li, Z., Su, Y., Slewinski, T. L., & Wagner, D. 
(2012). SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and 
control floral organ identity with the LEAFY and SEPALLATA3 transcription factors. 
Proceedings of the National Academy of Sciences, 109(9), 3576‑3581. 
https://doi.org/10.1073/pnas.1113409109 

Wu, X., Dinneny, J. R., Crawford, K. M., Rhee, Y., Citovsky, V., Zambryski, P. C., & Weigel, D. (2003). 
Modes of intercellular transcription factor movement in the Arabidopsis apex. Development, 
130(16), 3735‑3745. https://doi.org/10.1242/dev.00577 

Wu, Z., & Irizarry, R. (2022). gcrma : Background Adjustment Using Sequence Information. 
Yamaguchi, N., Jeong, C. W., Nole-Wilson, S., Krizek, B. A., & Wagner, D. (2016). AINTEGUMENTA and 

AINTEGUMENTA-LIKE6/PLETHORA3 Induce LEAFY Expression in Response to Auxin to 
Promote the Onset of Flower Formation in Arabidopsis. Plant Physiology, 170(1), 283‑293. 
https://doi.org/10.1104/pp.15.00969 

Yamaguchi, N., Wu, M.-F., Winter, C. M., Berns, M. C., Nole-Wilson, S., Yamaguchi, A., Coupland, G., 
Krizek, B. A., & Wagner, D. (2013). A Molecular Framework for Auxin-Mediated Initiation of 
Flower Primordia. Developmental Cell, 24(3), 271‑282. 
https://doi.org/10.1016/j.devcel.2012.12.017 

Yan, W., Chen, D., Schumacher, J., Durantini, D., Engelhorn, J., Chen, M., Carles, C. C., & Kaufmann, K. 
(2019). Dynamic control of enhancer activity drives stage-specific gene expression during 
flower morphogenesis. Nature Communications, 10(1), 1. https://doi.org/10.1038/s41467-
019-09513-2 

Yin, Y., Morgunova, E., Jolma, A., Kaasinen, E., Sahu, B., Khund-Sayeed, S., Das, P. K., Kivioja, T., Dave, 
K., Zhong, F., Nitta, K. R., Taipale, M., Popov, A., Ginno, P. A., Domcke, S., Yan, J., Schübeler, 
D., Vinson, C., & Taipale, J. (2017). Impact of cytosine methylation on DNA binding 
specificities of human transcription factors. Science, 356(6337), eaaj2239. 
https://doi.org/10.1126/science.aaj2239 

Yocca, A. E., Lu, Z., Schmitz, R. J., Freeling, M., & Edger, P. P. (2021). Evolution of Conserved 
Noncoding Sequences in Arabidopsis thaliana. Molecular Biology and Evolution, 38(7), 
2692‑2703. https://doi.org/10.1093/molbev/msab042 

Zhang, S., Xie, M., Ren, G., & Yu, B. (2013). CDC5, a DNA binding protein, positively regulates 
posttranscriptional processing and/or transcription of primary microRNA transcripts. 
Proceedings of the National Academy of Sciences, 110(43), 17588‑17593. 
https://doi.org/10.1073/pnas.1310644110 



142 
 

Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C., Myers, R. 
M., Brown, M., Li, W., & Liu, X. S. (2008). Model-based Analysis of ChIP-Seq (MACS). Genome 
Biology, 9(9), R137. https://doi.org/10.1186/gb-2008-9-9-r137 

Zhang, Y., Wang, Z., Zeng, Y., Zhou, J., & Zou, Q. (2021). High-resolution transcription factor binding 
sites prediction improved performance and interpretability by deep learning method. 12. 

Zhao, H., Tu, Z., Liu, Y., Zong, Z., Li, J., Liu, H., Xiong, F., Zhan, J., Hu, X., & Xie, W. (2021). 
PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of 
genomic variants in plants. Nucleic Acids Research, 49(W1), W523‑W529. 
https://doi.org/10.1093/nar/gkab383 

Zhu, F., Farnung, L., Kaasinen, E., Sahu, B., Yin, Y., Wei, B., Dodonova, S. O., Nitta, K. R., Morgunova, 
E., Taipale, M., Cramer, P., & Taipale, J. (2018). The interaction landscape between 
transcription factors and the nucleosome. Nature, 562(7725), 7725. 
https://doi.org/10.1038/s41586-018-0549-5 

Zhu, Y., Klasfeld, S., Jeong, C. W., Jin, R., Goto, K., Yamaguchi, N., & Wagner, D. (2020). TERMINAL 
FLOWER 1-FD complex target genes and competition with FLOWERING LOCUS T. Nature 
Communications, 11(1), 5118. https://doi.org/10.1038/s41467-020-18782-1 

 
  



143 
 

Résumé 

Le contrôle de l’expression des gènes est essentiel pour les organismes vivants, et sa 

perturbation peut compromettre la survie. Les facteurs de transcription (TFs) régulent 

l'expression génique en se liant à des séquences d'ADN spécifiques appelées sites de liaison 

des facteurs de transcription (TFBS). LEAFY (LFY) est un TF spécifique aux plantes qui joue un 

rôle crucial dans le développement floral. Il est fortement conservé en termes de séquence 

et de spécificité de liaison tout au long de l'évolution des plantes.  

Le rôle central de LFY dans la floraison a été étudié pendant des décennies, avec pourtant 

d’importantes zones d’ombres qui subsistent en ce qui concerne l’identification des cibles 

(gènes régulés) :  pourquoi régule-t-il certaines régions génomiques in vivo et pas d'autres ? 

Pour élucider ce point, dans la première partie de ce manuscrit, je présente une approche 

permettant de prédire la régulation transcriptionnelle des TFBS de LFY dans la plante modèle 

Arabidopsis thaliana. J'ai utilisé des modèles classiques de liaison de LFY à l’ADN ainsi que le 

contexte génomique des sites LFY pour construire un modèle capable de distinguer les sites 

LFY fonctionnels (c'est-à-dire ceux liés par LFY et ayant effet sur l'expression génique in vivo) 

des sites non fonctionnels. Mes résultats suggèrent que la présence de TFBS de LFY 

environnants et, dans une moindre mesure, le niveau de diversité des TFBS d’autres TFs 

autour des sites LFY, sont importants pour distinguer les sites LFY fonctionnels des non 

fonctionnels. De plus, cette approche révèle plusieurs TFs qui co-occurrent avec LFY et qui 

contribuent à distinguer les sites régulés par LFY des sites LFY non fonctionnels. Malgré des 

preuves antérieures de l'importance fonctionnelle des régions conservées dans la régulation 

génique, l’inclusion de la conservation des sites LFY dans notre modèle n'a pas amélioré les 

prédictions, et je discute de raisons possibles derrière ce résultat. Dans l'ensemble, cette 

approche m'a permis de mieux caractériser la liaison de LFY à l'ADN, et elle peut être utilisée 

sur de nouvelles séquences génomiques pour prédire la régulation transcriptionnelle des 

sites par LFY, ainsi que par de nouveaux facteurs.  

En plus de son action indépendante, LFY interagit avec UNUSUAL FLORAL ORGANS (UFO), 

une protéine F-box, pour garantir le développement correct des pétales et des étamines. 

Bien que l'interaction LFY-UFO et leur implication dans le développement floral soient déjà 

connues, le rôle exact d'UFO dans ce processus devait encore être déterminé. Dans la 

seconde partie de ce manuscrit, j'inclus un article récemment publié sur le rôle 

transcriptionnel du complexe LFY-UFO dans le développement floral, permettant à LFY de se 

lier à des régions génomiques distinctes de LFY seul. De plus, je présente quelques résultats 

supplémentaires suggérant l'implication de LFY et UFO dans l'établissement du méristème 

floral aux premiers stades du développement floral, élargissant ainsi leur importance dans ce 

processus développemental crucial. 
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