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Résumé en Français

Au cours des dernières décennies, les demandes de trafic internet n’ont cessé d’augmenter. Aujourd’hui, les

nouveaux usages comme le cloud computing, les jeux en ligne, le streaming vidéo, l’IoT, etc. nécessitent une

augmentation incessante de la capacité. Le nombre total des usagers mobiles va croitre de 5.1 en 2018 à 5.7

milliards d’ici la fin de 2023.

Les systèmes de communication par fibre optique constituent les fondements des systèmes de communication

mondiaux actuels, des les systèmes sous-marins transocéaniques à longue distance aux réseaux terrestres. Pour

répondre aux besoins d’une plus grande capacité, ces systèmes de communication optique ont bien évolué, de

l’utilisation d’amplificateurs optiques et de la détection cohérente à la mise en œuvre d’algorithmes avancés de

traitement des signaux numériques (DSP). Pour accroître toujours plus la capacité d’câble de fibres, qui est le

produit entre le nombre de fibres par câble, l’efficacité spectrale (exprimée en bit/s/Hz) et la largeur de bande du

système (exprimée en Hz), la recherche sur les schémas à bande ultra-large (UWB) et la conception de réseaux à

faible marge sont fondamentaux.

Diverses solutions ont été proposées pour réaliser l’amplification UWB, certaines d’entre elles avec des confi-

gurations hybrides utilisant des amplificateurs Raman et des amplificateurs à fibre dopée à l’erbium (EDFA) ou des

amplificateurs optiques à semi-conducteurs (SOA) pour leur flexibilité, leur grande largeur de bande et la réduction

du bruit d’émission spontanée amplifiée (ASE) et des distorsions non linéaires. Étant donné que l’adaptation du

profil de gain spectral des amplificateurs optiques est essentielle pour les schémas de transmission UWB, plusieurs

méthodes ont été proposées pour prédire de manière efficace le gain Raman dans ces schémas d’amplification ou

pour trouver la configuration optimale des pompes Raman. Bien que la physique de la diffusion Raman soit bien

connue et modélisée, donc le gain peut être prédit en résolvant un système d’équations différentielles ordinaires

non linéaires régissant l’évolution du profil de puissance au cours de la propagation, mais malheureusement cette

méthode prend beaucoup de temps et sa complexité augmente avec l’extension de la largeur de bande du spectre

et le nombre de pompes. De plus, la tâche de conception inverse, c’est-à-dire la recherche de la configuration

optimale des pompes, peut être encore plus complexe et plus longue avec ces méthodes numériques ou itératives.

D’autre part, l’apprentissage automatique (ML) s’est révélé très prometteur pour de nombreux secteurs et a été

largement utilisé dans la communauté de la recherche scientifique, notamment dans le domaine des communica-
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tions optiques, en particulier lorsqu’il n’y a pas de réponse directe et simple dérivée des lois physiques. La ML a

démontré sa capacité à réduire la complexité des calculs et/ou à augmenter la précision d’une méthode classique.

Un autre défi à relever est la conception de systèmes à faible marge. Pour tirer pleinement parti de la capacité

d’un réseau optique, il est essentiel de disposer d’un outil d’estimation de la qualité de transmissionn (QoT) fiable

et précis. En outre, dans le contexte des réseaux optiques flexibles, le système doit réagir en temps réel à tout

changement. En effet, l’établissement ou la reconfiguration d’une connexion nécessite une prédiction précise et

rapide. Cela implique la bonne connaissance et la bonne maîtrise de tous les types de bruit présents dans le lien

de transmission. En effet, la performance des systèmes de transmission par fibre optique est sévèrement affectée

par l’atténuation de la fibre, le bruit ASE, la dispersion chromatique (CD), la dispersion des modes de polarisation

(PMD), le bruit de phase du laser (PN) et les effets d’interférence non linéaire (NLI) due à l’effet Kerr. Grâce au DSP

sophistié déjà mis en oeuvre, les dégradations linéaires peuvent être bien compensées, mais la mise en œuvre de

l’algorithme de compensation des effets non linéaires reste un défi. Il est donc fondamental de fournir rapidement

une estimation fiable de l’impact des dégradations non linéaires et des autres pénalités résiduelles.

Parmi toutes les pénalités qui contribuent au rapport signal-bruit (RSB) du signal transmis, le bruit ASE et le

bruit de l’émetteur-récepteur (TRX) sont faciles à caractériser, mais l’estimation de l’impact du bruit non linéaire et

du bruit de phase renforcé électroniquement (EEPN) est plus délicate.

En effet, dans nos réseaux complexes actuels, une estimation correcte de la variance du NLI pour les systèmes

WDM longue distance nécessite des simulations informatiques importantes avec la méthode de Fourier à pas divisé

(SSFM) et un grand nombre de paramètres. Le nombre de paramètres augmente avec le nombre de canaux WDM

et le nombre de tronçons de fibres.

Par conséquent, des modèles analytiques ont été proposés et le temps de calcul a été considérablement réduit

tout en atteignant une précision notable. Toutefois, le temps de calcul reste malheureusement trop long pour des

applications en temps réel, car les modèles analytiques sont basés sur le calcul des intégrales multidimensionnels

et des modèles approchés plus rapides induisent un manque de généralisation et de précision.

En ce qui concerne l’estimation du bruit EEPN, qui augmente avec la largeur de raie du laser, le débit symbol

et la dispersion accumulée (qui augmente donc avec la distance), il existe un modèle analytique, mais il semble

trop idéal et ne tient pas compte de l’impact du DSP. Des méthodes expérimentales ont été proposées, mais elles

nécessitent une mesure fine du bruit laser avec un équipement ou un montage avancés et une caractérisation des

impacts du TRX.

La motivation de ce travail est donc d’explorer différentes méthodes basées sur les données, y compris des mo-

dèles ML, pour améliorer la performance du système de transmission optique en répondant au problème complexe

de conception des amplificateurs UWB ou pour fournir un outil d’estimation de performance précis pour l’estimation

de la variance du NLI et de la variance de l’EEPN.
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Plan du manuscrit et mes contributions

Durant cette thèse, nous avons travailler sur de nouvelles solutions pour relever les défis posés par les sys-

tèmes de transmission UWB et à grand débit sur de longues distances. Nous nous concentrons sur les méthodes

d’estimation pour deux dégradations complexes dans les systèmes de transmission optique ainsi que sur un outil

efficace pour aider à la conception d’amplificateurs UWB.

Le manuscrit est organisé comme suit.

Dans le deuxième chapitre, nous passons en revue les notions fondamentales des systèmes de communication

optique et une brève introduction aux techniques de ML axées sur les réseaux neuronaux artificiels (ANN) et nous

discutons de l’impact de la qualité de l’ensemble des données d’apprentissage sur les performances des cadres

basés sur les réseaux neuronaux artificiels (ANN). Nous nous concentrons sur la description et la modélisation des

effets linéaires et non linéaires survenant dans les canaux de communication optique et présentons l’émetteur et le

récepteur cohérents à double polarization ainsi que les algorithmes DSP pour compenser les distorsions du signal

dues à sa propagation à travers la fibre optique.

Le troisième chapitre présente un modèle assisté par ML pour les amplificateurs Raman. En utilisant des don-

nées expérimentales, deux modèles sont formés : un modèle génératif pour prédire le profil de perte global (y

compris le profil de gain de l’amplificateur, l’atténuation et les effets de diffusion Raman stimulée à l’intérieur du

canal) et un modèle inverse pour prédire la configuration de pompe appropriée compte tenu d’un profil de perte

désiré. Nous démontrons les capacités de la solution basée sur l’ANN pour résoudre le problème complexe de

conception inverse des amplificateurs Raman hybrides UWB.

Une nouvelle méthode d’estimation de la qualité de transmission basée sur la ML fournissant une estimation

ultra-rapide et très précise de la variance NLI dans les systèmes de multiplexage par répartition en longueur d’onde

(WDM), appelée KerrNet, est décrite en détail dans le quatrième chapitre. L’outil KerrNet proposé est évalué par

des simulations pour des liaisons homogènes et hétérogènes arbitraires dans le cadre général de schémas de

chargement WDM aléatoires, de débits de symboles, de formats de modulation et de profils de gain-perte résiduels

arbitraires par portée, et ses capacités sont démontrées.

Le cinquième chapitre contient une description de la nouvelle méthode de caractérisation proposée pour un

autre bruit supplémentaire, résultant du DSP et du bruit de phase du laser : l’EEPN, qui ne peut plus être négligé

pour les systèmes de transmission longue distance à taux de symbole élevé. Cette solution est basée sur une

méthode phénoménologique avec des données expérimentales et une estimation des paramètres et ne nécessite

pas une connaissance a priori des caractéristiques du bruit de phase du laser ou une caractérisation du bruit de

l’émetteur-récepteur avec des mesures "back-to-back".

La dernière partie de ce manuscrit présente les conclusions de ce travail et les perspectives futures.
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Introduction

In the past decades, the internet traffic demands kept increasing. Nowadays, new usages like cloud computing,

online gaming, video streaming, IoT, etc., require a constant increase of the capacity. The total number of global

mobile subscribers will grow from 5.1 billion in 2018 to 5.7 billion by 2023 [1].

Optical fiber communications constitute the backbone of the current worldwide communication systems, from

long-haul transoceanic submarine systems to terrestrial networks. Optical communication systems have evolved to

meet the needs for higher capacity, from the use of optical amplifiers and coherent detection to the implementation

of advanced digital signal processing (DSP) algorithms. To further increase the capacity of an optical fiber cable,

which is the product between the number of fibers per cable, the spectral efficiency of the transmitted modulation

format (expressed in bit/s/Hz) and the system bandwidth (expressed in Hz), the works on ultra-wideband (UWB)

schemes [2, 3, 4, 5] are fundamental. Moreover, to fully exploit the capacity of existing and future networks, low

margin network design tools are indispensable.

Various solutions have been proposed to achieve UWB amplification, some of them employ hybrid configura-

tions, using Raman amplifiers with erbium-doped fiber amplifiers (EDFA) or with semiconductor optical amplifiers

(SOA), for their flexibility, large bandwidth, reduced amplified spontaneous emission (ASE) noise and little nonlinear

distortions. Since tailoring the spectral gain profile of optical amplifiers is essential for UWB transmission schemes,

several methods have been proposed to correctly predict the Raman amplifier gain profile in these amplification

schemes or to find the optimal pumps configuration to achieve a desired target gain profile. Although the physics of

the Raman scattering effects is well-known and modelled, so the Raman amplifier gain can be predicted by solving

a system of nonlinear ordinary differential equations governing the power evolution of the signal and the pumps

during the propagation [6], but unfortunately this numerical solver method is time-consuming, with an increase of

complexity with the extension of the spectrum bandwidth and the total number of pump lasers. Moreover, the inverse

design task, i.e. finding the optimal configuration of the pumps (frequency and power) for a gain profile we want to

achieve, can be even more complex and time-consuming with classical numerical methods or iterative methods.

On the other hand, machine learning (ML) is revealed to be of great potential for many sectors, and has been

used widely in the scientific research community including optical communication [7, 8, 9], in particular when there

is no direct simple answer derived from the laws of physics. ML has also shown its ability to reduce the computation
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complexity and/or increase the accuracy of a classical method.

Another challenge to face is the design of low-margin systems, to completely take advantage of the capacity of

an optical network. Thus, a reliable and accurate quality of transmission (QoT) tool is fundamental. Besides, in the

context of flexible optical networks, the system needs to react in real–time to any change. Indeed, the establishment

or reconfiguration of a connection requires accurate and ultra-fast prediction. That implies the good knowledge and

the good mastering of all types of noise in the transmission link. Indeed, the performance optical fiber transmission

systems is severely affected by fiber attenuation, ASE noise, chromatic dispersion (CD), polarization mode disper-

sion (PMD), laser phase noise (PN) and nonlinear interference (NLI) effects. Thanks to the already-implemented

advanced DSP, the linear impairments can be well compensated, however compensation algorithms for non-linear

effects impose more challenges from an implementation point of view. Thus, it is fundamental to provide a highly-

reliable and ultra-fast estimation of the impact of nonlinear impairments and other residual penalties on the QoT.

Among all penalties that contribute to the signal-to-noise ratio (SNR) of the transmitted signal, ASE noise and

transceiver (TRX) noise are easy to be characterized, but the estimation of the impacts of NLI and electronically

enhanced phase noise (EEPN) is more delicate.

Indeed, in current complex optical networks, the estimation of NLI effects for long-haul wavelength-division mul-

tiplexing (WDM) systems involves a large amount of parameters and the number of parameters increase with the

number of WDM channels and number of fiber spans and a proper estimation of NLI variance requires high com-

putational simulations with the split step Fourier method (SSFM). Consequently, analytical models were proposed

[10, 11, 12, 13] and the computation time has been tremendously reduced while achieving a notable accuracy.

However, unfortunately, the computation time with exact analytical models is still too long for real-time applications

since the computation requires operations with multi-dimensional integrals, while faster closed-form models are less

accurate and rarely generalizable.

As for the estimation of the EEPN noise, which increases with the laser linewidth, the symbol rate and the accu-

mulated dispersion (so it increases with transmission distance), an analytical model exists [14] but lacks accuracy

and it does not take into account the impact of DSP. Experimental methods have been proposed, yet they require an

fine measurement of the laser linewidth with advanced equipment or a built-in setup and a fine TRX characterization.

The motivation of this work is therefore to explore different ML-based or data-driven methods to provide an

accurate performance estimation tool for NLI variance and EEPN variance or to enhance the performance of optical

transmission systems by solving the complex design problem of UWB amplifiers.
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In this thesis, we investigate new approaches to meet challenges that arise with UWB and high-speed long-

haul transmission systems. We focus on estimation methods for two complex impairments in optical transmission

systems as well as an efficient tool to assist the design of UWB amplification.

The thesis is organized as follows.

In Chapter 1, we first review fundamental notions of optical communication systems. Then we provide a brief

introduction to ML techniques focused on artificial neural networks (ANN) and we discuss impact of the training

dataset quality on ANN-based frameworks’ performance. We focus on the description and modelling of the linear

and nonlinear effects arising in optical communication and present the dual-polarization coherent transmitter and

receiver as well as the DSP algorithms to compensate the signal distortions due to its propagation through the

optical fiber.

In Chapter 2, two ML-aided models for Raman amplifier are presented. Using experimental data, two models are

trained : a generative model to predict the overall loss profile (including amplifier gain profile, attenuation and intra-

channel stimulated Raman scattering effects) and an inverse model to predict the appropriate pump configuration

given a desired loss profile. We demonstrate the capabilities of the ANN-based solution to solve the complex inverse

design problem of UWB hybrid Raman amplifiers.

A new ML-based QoT method providing an ultra-fast and highly accurate estimation of the NLI variance in WDM

systems, called KerrNet is detailed in Chapter 3. The proposed KerrNet tool is evaluated through simulations for both

homogeneous and arbitrary heterogeneous links in the general setting of random WDM loading schemes, symbol

rates, modulation formats and arbitrary per-span residual gain/loss profiles and demonstrated its high accuracy and

high speed capabilities.

Chapter 4 contains description of the proposed new characterization method for another additional noise, re-

sulting from the DSP and the laser’s phase noise : the EEPN which cannot be neglected anymore for long-haul

transmission systems at high symbol rate. This solution is based on a phenomenological method with experimental

data and data-driven models’ parameter estimation and does not require a priori knowledge of the laser phase noise

characteristics or a characterisation of the transceiver noise with back-to-back measurements.

The final part of this thesis presents the conclusions of this work and future perspectives.
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Chapter 1

State of the art of modern fiber optical

communication systems

In this chapter, we first present the basic concepts of a coherent optical fiber system in Section 1.1 to provide

the context of our research work. We review the modelling of propagation effects in fiber optics and different impair-

ments, as well as classical DSP methods to mitigate the signal distortions, and finally different noise contributions

in the performance evaluation using the expression of the signal-to-noise ratio (SNR).

Then, in Section 1.2 we introduce fundamental notions of ML algorithm with a particular attention on feed-forward

ANN (FANN) architectures and the importance of well-prepared dataset.

1.1 Optical fiber coherent communication systems

1.1.1 Snapshot of current systems

In digital communications, information is coded at the transmitter by a sequence of bits (sequence of binary digits

composed of "0" and "1"). Then the coded information pass through a physical channel (free-space, fiber optics,

copper wires, etc.) and the goal is to be able to recover the information at the receiver.

An overview of the digital communication system through a fiber optic channel is presented in Fig. 1.1. The

digital source of information is coded with a source encoder in a sequence of bits then transformed into a sequence

of symbols X = {𝑥1, 𝑥2, ..., 𝑥𝑁 } with a coded modulation encoder including a forward error correction (FEC) to add

redundancy for a more robust and reliable transmission. Then the modulation mapper transforms the bits into a

constellation (also called modulation format). The coded symbols X with the chosen constellation are transmitted

via the optical communication channel. First, a digital signal processing (DSP) step is performed (including pulse-

shaping, digital compensation, etc.) to create an appropriate signal waveform for achieving a better transmission
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result. Then using a high-resolution digital-to-analog converter (DAC), the symbols X are converted to a radio-

frequency (RF) signal that will be used to generate the optical signal leveraging an electro-optical modulator and

a source laser. The resulting optical signal is sent to the fiber and at the output of the optical fiber transmission

link, the received optical signal is converted into a RF signal with an optical coherent receiver, then converted

into a digital signal with an analog-to-digital converter (ADC). The coherent receiver enables advanced modulation

format such as quadrature amplitude modulation (QAM) format which exploits both amplitude and phase domains of

optical signal to encode the information data. The DSP techniques (cf subsection 1.1.7 paragraph ii) are applied to

compensate different impairments due to the propagation inside the optical fiber to reconstruct the received symbols

Y. The demapper, that constitutes the first part of the coded modulation decoder, recovers the bits information from

the constellation of the recovered received symbols sequence. Then the FEC decoder corrects the errors using the

redundancy relationships with the bits to achieve a better performance. Finally, the recovered bits are decompressed

by source decoding (inverse of source encoding) and send to the final destination.
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FIGURE 1.1 – Diagram of a coherent optical fiber communication systems

1.1.2 Multiplexing

To enhance the transmission capacity, multiple multiplexing methods can be used. A brief description of three

commonly used multiplexing techniques is presented.
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i Wavelength division multiplexing

A popular multiplexing technique is wavelength division multiplexing (WDM), developed since 1992. WDM scheme

can transmit in parallel 𝑁 channels in the same fiber, one per optical wavelength. First, each source information is co-

ded as described in the section above (see 1.1.1) with a laser at carrier wavelength λ𝑇𝑋 and a dedicated transmitter.

Then all the modulated optical signal transmitting at different wavelength are combined together with a multiplexer

(Mux) before sending to the optical link. At the end of the transmission link, the optical signal is divided into 𝑁 signals

at different carrier wavelength λ𝑛 with a demultiplexer (Demux) then detected with a receiver separately. A generic

representation of a WDM point-to point long haul optical communication scheme, with a homogeneous multi-span

link configuration,commonly used for submarine links, is shown in Fig. 1.2.

The WDM system combined with multiple reconfigurable optical add-drop multiplexers (ROADM) are key compo-

nents of our currently deployed meshed networks. In Fig. 1.3, an illustration of a mesh network is represented and it

shows the flexibility of using such a system. Indeed, at each nodes, where ROADMs are placed, it is possible to add

or to drop one or several channels that either going to a different destination or coming from a distinct destination.
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FIGURE 1.2 – Representation of a WDM point-to-point long haul optical communication scheme with a homoge-
neous link

ii Ultra-wide band transmission

Conventionally, WDM optical transmission system was first performed in the C-band because of the emergence

of EDFAs within this bandwidth and the low power attenuation in this optical band. But over years, with the saturation

of the capacity of C-band systems, research projects to extend the transmission bandwidth by transmitting altogether

with other bands, such as S+C band, C+L band, S+C+L band, etc., are have extensively conducted because an

UWB system could provide a much larger available transmission bandwidth, thus achieving a higher overall capacity

[15, 16].
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FIGURE 1.3 – Representation of a meshed network

iii Polarization division multiplexing

Polarization is another interesting property of the optical signal that can be used to increase the capacity by a

factor of two by using a polarization division multiplexing (PDM) scheme. It consists in using a dual-polarization sys-

tem with two orthogonal polarizations to transmit the information as depicted in Fig. 1.4 where a single polarization

optical signal and a dual orthogonal polarization signal are represented.

Xpol
Ypol

Direction

Xpol
Ypol

Direction

(a) (b)

FIGURE 1.4 – Representation of (a) a single polarization and (b) a dual-polarization signal

iv Space division multiplexing

Using a coherent system (with I and Q components of the optical signal field) with two orthogonal polarizations

and multiplexed by the frequency in a ultra-wide band configuration can achieve a very-high data rate in single
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mode fiber (SMF). Fig. 1.5 illustrates the schematic representation of an SMF and its index distribution. Another

solution that has been intensively investigated since 2010 to further increase the capacity is to take the advantage

of the spatial dimension in space division multiplexed (SDM) systems. In this configuration, data streams can be

transmitted over different transmission paths of the same fiber. Moreover WDM and SDM can be combined to

achieve a remarkable increase in system capacity : in such case, multiplexing of 𝑁 wavelengths and 𝑀 parallel

transmission paths provides 𝑁 ×𝑀 independent data channels.

First attempts to achieve SDM scheme were by packaging several SMFs together to create a fiber bundle as

illustrated in Fig. 1.6 (a). Fiber bundles were already adopted in our current optical infrastructure but due to its larger

dimension, other solutions with a higher space efficiency have been studied.

Another idea is to build fibers using a different physical architecture. Several single mode cores are packed inside

the fiber coating to make multi core fibers (MCF) so the spatial multiplexing can be achieved over different cores (cf

Fig. 1.6). The cores inside MCF can be either coupled (coupling between co-propagating signals) or uncoupled. A

major drawback of MCF is the inter-core cross-talk causing interference between co-propagating signals of different

adjacent cores so many ongoing research projects are conducted to minimize this cross-talk.

Multi-mode fiber (MMF) can also be very efficient in short reach systems to design SDM scheme by exploiting

the transverse modes of an optical source transmitting at a given frequency and polarization. To enable multi modes

propagation of the optical signal, MMF’s core dimension is much higher than SMF (Fig. 1.6 (c) and Fig. 1.5). In long

distance transmission, the main obstacles are the modal dispersion, modal interference and high differential mode

group delay of co-propagation modes which leads to the implementation of computational heavy DSP algorithms.
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FIGURE 1.5 – Single-mode fiber (SMF) schematic representation and index distribution in the cladding/core

v Summary

In summary, many different multiplexing solutions can be implemented in optical communication systems to

increase the overall capacity and meet the increasing data streaming demands. In our work, we mainly used WDM

systems combined with PDM scheme. Solutions to optimize the performance of ultra wide band systems have also

been investigated but SDM schemes are not considered in this thesis.
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FIGURE 1.6 – SDM fiber section

1.1.3 Transmitter

The transmitter is used to convert source information into an analog signal which can propagate through the

physical channel. This sub-section presents an overview of the modulation format, pulse-shaping DSP technique

and the global structure of a coherent transmitter.

i Modulation format

In digital communications, bits of coded information are converted with a modulation mapper into a sequence

of symbols before transmitting through the channel. We plotted the mapping between bits and symbols for different

modulation format in Fig. 1.7.

The on-off keying (OOK) format was initially implemented, as direct-detection had been considered, before

replace by more advanced modulation format. This two-level modulation format assigns the bit "0" to the lower

level of the signal power and bit "1" to the highest level. Then coherent detection combined with DSP at receiver has

considered since 2006. It allows sensitivities for both amplitude and phase. Thus, complex-valued constellations are

commercially used for coherent systems by modulating the optical signal in both amplitude and phase domains over

the I and Q quadratures. For instance, multi-level square 2m quadrature QAM including phase shift keying (QPSK)

are predominantly used.

As shown in Fig. 1.7, Gray mapping ensure that neighbouring symbols of a constellation only differs by one

bit. This mapping method allows a more robust configuration for transmitting over a noisy channel. Indeed, DSP

to recover the transmitted symbols have more difficulty to estimate correctly a constellation from the neighbouring

constellation leading to transmission errors. Therefore Gray mapping helps reducing the bit-error rate (BER) which

is the number of incorrect bits received over the total number of transmitted bits for a given time.

The multi-level QAM constellation can be shaped or un-shaped. For a Gaussian channel, a Gaussian-distributed
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FIGURE 1.7 – Gray mapping between bits and symbols for three different modulation formats such as OOK, QPSK
(𝑚 = 2) and 16-QAM (𝑚 = 4).

input maximize the mutual information thus probabilistic constellation shaping (PCS) was invented because it re-

sembles more to a Gaussian-like distribution than the regular QAM constellation. For PCS-QAM, which is a popular

modulation format, a distribution matcher is employed to generate the constellation points with nonuniform distribu-

tion 𝑝𝑋 (𝑎) approximating the Gaussian distribution, according to a discrete Maxwell-Boltzmann distribution :

𝑝𝑋 (𝑎) =
exp

(
−ν|𝑎 |2

)∑
𝑎∈A exp

(
−ν|𝑎 |2

) (1.1)

where A is the constellation alphabet, 𝑎 a complex symbol ∈ A and ν ≤ 0 is a free parameter that we can tune to

change the distribution.

ii Pulse shaping

After the creation of complex symbols X = {𝑥1, 𝑥2, ..., 𝑥𝑘 , ...., 𝑥𝑛} according to a desired modulation format, we have

to convert the sequence into a signal waveform 𝑠 (𝑡) suitable for transmission. The signal waveform can be written

as :

𝑠 (𝑡) =
∑︁
𝑘

𝑥𝑘ψ𝑘 (𝑡) (1.2)

where 𝑥𝑘 are discrete symbols supposed to be transmitted and ψ𝑘 (𝑡) are the basis waveforms.

To limit cross-talk in a WDM system, the Fourier transform of ψ𝑘 (𝑡) in the frequency domain (𝐻𝑝𝑠 (𝑓 ) = F{ψ𝑘 (𝑡)})

must have a limited bandwidth.

In addition to the cross-talk concern, inter-symbol interference (ISI) also need to be avoid. We can re-write the
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FIGURE 1.8 – Pulse shaping function in time and frequency domain including rectangular, sinc and RC function with
ρ = 1 and ρ = 0.2

pulse-shaped signal waveform represented by the following expression :

𝑠 (𝑡) =
∑︁
𝑘

𝑥𝑘ℎ𝑝𝑠 (𝑡 − 𝑘𝑇𝑠 ) (1.3)

with 𝑇𝑠 the symbol duration time and the pulse shaping function.

To avoid ISI, the overall filter response ℎ𝑓 𝑖𝑙𝑡𝑒𝑟𝑠 that includes the pulse-shaping function and the additional filter at

the receiver should satisfy the following condition :

ℎ𝑓 𝑖𝑙𝑡𝑒𝑟𝑠 (𝑡 − 𝑘𝑇𝑠 ) =


0, if 𝑡 = 𝑘 ′𝑇𝑠 and 𝑘 ′ ≠ 𝑘

1 otherwise
(1.4)

Under this condition, the pulse at the receiver after the filter is 0 during all sample times, except when sampling the

𝑘𝑡ℎ symbols.

Several candidate pulse shaping functions are shown in Fig. 1.8. Using a rect pulse is the simplest way to

generate the waveform from symbols and it satisfies the first requirement (of Eq. (1.4)) limiting the ISI effect. Ne-

vertheless, we can clearly see in Fig. 1.8 and in its expressions that rect pulse has an infinite bandwidth in the

frequency domain. On the other hand, sinc pulse can achieve a limited bandwidth𝑊 = 1/𝑇𝑠 avoiding cross-talk. But

the disadvantage is that the pulse is infinite leading to important ISI over a larger number of symbols.

For those reasons, in practical, the root raised-cosine (RRC) pulse with a small roll-off factor ρ near 0 is predomi-

nantly used in optical communication. The RRC transfer function 𝐻𝑟𝑟𝑐 is defined as the root-square of raised-cosine

(RC) transfer function 𝐻𝑟𝑐 in the frequency domain and the RRC transfer function in the time-domain ℎ𝑟𝑟𝑐 (𝑡) is derived

from 𝐻𝑟𝑟𝑐 (𝑓 ).

The expression of the RC transfer function in the time domain ℎ𝑟𝑐 and in the frequency domain 𝐻𝑟𝑐 are described
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by :

ℎ𝑟𝑐 (𝑡) =


π
4 sinc

(
1

2ρ

)
, if 𝑡 = ±𝑇𝑠

2ρ

sinc
(
𝑡
𝑇𝑠

)
cos(πρ𝑡/𝑇𝑠)
1−4ρ2𝑡2/𝑇 2

𝑠
, otherwise

(1.5)

𝐻𝑟𝑐 (𝑓 ) =


𝑇𝑠, if |𝑓 | ≤ 1−ρ

2𝑇𝑠

𝑇𝑠
2

(
1 + cos

(
π𝑇𝑠
ρ

(
|𝑓 | − 1−ρ

2𝑇𝑠

)))
, if 1−ρ

2𝑇𝑠 < |𝑓 | ≤ 1+ρ
2𝑇𝑠

0, otherwise

(1.6)

with ℎ𝑟𝑐 satisfying the condition in Eq. (1.4) and the roll-off factor ρ > 0. First, this function decreases faster than

sinc thus reduces the ISI. Second, it has a limited bandwidth 𝑊 = (1 + ρ)/𝑇𝑠 that one can control by adjusting the

roll-off factor ρ. In Fig. 1.8 (b), we draw the frequency response of RC pulse for two different roll-off factors.

At first glance, RRC pulses do not satisfy Eq. (1.4) so RRC will produce ISI. However, assuming the signal is

transmitted through a channel with additive white Gaussian noise (AWGN), the matched filter is the optimal filter to

obtain the highest SNR. The matched filter is the complex conjugate time reversal of the filter, so ℎ∗𝑝𝑠 (−𝑡) for us. In

this case, RRC filter is its own match filter because of its symmetry. So the configuration where we place a RRC

filter at the transmitter and the same RRC filter at the receiver side, not only optimizes the SNR in presence of noise

but also creates an overall RC waveform satisfying the two previous requirements : avoiding both ISI and cross-talk

effects

iii Coherent transmitter

A representation of a coherent dual polarization transmitter, that generates two signals waveform 𝑥𝐻 (𝑡) and 𝑥𝑉 (𝑡)

for two orthogonal polarizations (𝐻 for horizontal and 𝑉 for vertical) from a sequence of complex symbols 𝑥𝐻
𝑘

and 𝑥𝑉
𝑘

is presented in Fig. 1.9. For each orthogonal polarization, the real and imaginary components (I and Q components)

of their waveforms (after pulse-shaping filter) are extracted and converted to an electrical analog signal by using

DACs. The four resulting electrical waveforms, denoted as 𝑥𝐻𝐼 (𝑡), 𝑥𝐻𝑄 (𝑡), 𝑥𝑉 𝐼 (𝑡), 𝑥𝑉𝑄 (𝑡), are created as follow :

𝑥𝐻𝐼 (𝑡) =
∑︁
𝑘

𝑅𝑒 (𝑥𝐻
𝑘
)ℎ𝑟𝑟𝑐 (𝑡 − 𝑘/𝑅𝑠 ) (1.7)

𝑥𝐻𝑄 (𝑡) =
∑︁
𝑘

𝐼𝑚(𝑥𝐻
𝑘
)ℎ𝑟𝑟𝑐 (𝑡 − 𝑘/𝑅𝑠 ) (1.8)

𝑥𝑉 𝐼 (𝑡) =
∑︁
𝑘

𝑅𝑒 (𝑥𝑉
𝑘
)ℎ𝑟𝑟𝑐 (𝑡 − 𝑘/𝑅𝑠 ) (1.9)

𝑥𝑉𝑄 (𝑡) =
∑︁
𝑘

𝐼𝑚(𝑥𝑉
𝑘
)ℎ𝑟𝑟𝑐 (𝑡 − 𝑘/𝑅𝑠 ) (1.10)
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with the symbol rate 𝑅𝑠 = 1/𝑇𝑠

Most of the time, the four outgoing electrical analog signals need to be amplified by drivers before undergoing an

electro-optical conversion with a modulator. Two in-phase and quadrature modulators (IQ-modulators) are used, one

for each polarization, to modulate the real and imaginary parts of 𝑥𝐻 (𝑡) and 𝑥𝑉 (𝑡). The IQ-modulator is composed

of two Mach-Zehnder modulators (MZM) to modulate a laser source carrier according to the electrical waveform

signals. The IQ-modulator also exploits a π/2 hybrid to perform an appropriate phase shift between I and Q compo-

nents before combining the two output components. Then, a polarization beam coupler (PBC) is placed at the output

of the two IQ-modulators to combine the two polarizations. The same process is performed for all WDM channels

then a WDM multiplexer combines all amplified channels (as described in subsection i) before sending the signal to

the optical fiber.
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FIGURE 1.9 – Dual-polarization coherent transmitter. After the pulse-shaping, an additional pre-distortion filter can
be applied to the transmitted waveform to compensate for the impairments due to the propagation.

1.1.4 Impairments during propagation

The refractive index is defined by 𝑛 = 𝑐/𝑣𝑝 with 𝑐 the light speed in the vacuum and 𝑣𝑝 the velocity in the medium.

Fig. 1.5 illustrates the composition of a SMF fibre where the core and cladding parts are shown and their respective

refractive indexes are plotted. This difference in refractive index with 𝑛𝑐 > 𝑛𝑐𝑙 , combined with an appropriate choice

of their diameter dimensions, makes the confinement of the optical field within the fiber core possible thanks to total

internal reflection. The propagation of the optical signal inside the fiber core may encounter several effects. In this
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sub-section, linear and nonlinear effects impacting the performance of optical transmission are presented. First, we

explain the physical effect for a scalar propagation (without PDM), then the generalization to a dual-polarization

propagation scheme is presented.

For a scalar optical field composed of WDM channels, its waveform can be written as :

𝐸 (𝑧, 𝑡) =
∑︁
𝑘,𝑠=0

𝑥𝑘,0ψ𝑘,0 (𝑧, 𝑡) exp
(
𝑖β(ω)𝑧

)
+

∑︁
𝑘,𝑠≠0

𝑥𝑘,𝑠ψ𝑘,𝑠 (𝑧, 𝑡 − 𝑡𝑠 (𝑧)) exp
(
−𝑖Ω𝑠𝑡 + 𝑖Φ𝑠 (0) + 𝑖β(ω)𝑧

)
(1.11)

where the channel of interest (COI) corresponding to 𝑠 = 0 and 𝑠 ≠ 0 corresponds to the other WDM channels’ label.

𝑥𝑘 is the kth symbol of the COI, 𝑥𝑘,𝑠 is the kthsymbol of the sth adjacent channel, Ω𝑠 is the center frequency detuning

of the sth adjacent channel with respect to COI, β(ω) is the propagation constant, 𝑡𝑠 (𝑧) is the time shift of the sth

adjacent channel with respect to COI, Φ𝑠 (0) is the initial (𝑧 = 0) relative phase offset of the sth adjacent channel with

respect to COI, ψ𝑘,0 (𝑧, 𝑡) is the pulse-shape of the COI, and ψ𝑘,𝑠 (𝑧, 𝑡) is the pulse-shape of the sth channel.

For the rest of the work, we suppose the pulse shaping is the same for all WDM channel where :

ψ0,𝑠 (0, 𝑡) = ψ0 (0, 𝑡) (1.12)

i Linear effects

i.A Fiber attenuation

Except in the vacuum, light propagating in any physical medium will be affected by the power attenuation. In this

section, we delve into one major limitation for optical fiber : the fiber loss which is due to absorption and scattering

effects.

For a optical field 𝐸 (𝑧, 𝑡), its power 𝑃 is defined by 𝑃 (𝑧) = ⟨|𝐸 (𝑧, 𝑡) |2⟩𝑡 . So the power decrease during the propaga-

tion is determined by :

𝑃 (𝑧) = 𝑃0 exp(−α𝑧) (1.13)

where 𝑃0 is the input power at 𝑧 = 0 and α the attenuation coefficient in [m-1] and 𝑧 the distance in [m].

In optical communications, the attenuation coefficient α𝑝 is commonly expressed in [dB/km] :

α𝑝 [dB/km] = 10
𝑧

log10 (
𝑃0

𝑃 (𝑧) ) (1.14)

with 𝑧 the distance in [km].

This attenuation coefficient depends on the fiber type and wavelength of the optical signal. The attenuation profile

α𝑝 (λ) for a standard SMF (SSMF) taken from [17] is shown in Fig. 1.10. The C-band (C for "conventional") ranged

between 1530–1565 nm has the minimum attenuation value with α𝑝 around 0.2 dB/km for SSMF. This is the reason
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why it has become the preferred choice for long-distance transmissions.

FIGURE 1.10 – Attenuation profile of a SSMF. Note that the absorption peak between 1350 and 1400 nm is due to
OH- ions. Modern fibers nearly eliminate the OH- peak (for instance the G652-D fiber)

To compensate the fiber loss, long-haul optical systems can integrate periodic optical amplifiers for the transmis-

sion link (cf. subsection 1.1.6) .

i.B Chromatic dispersion

The speed of the light inside an optical fiber is not constant for all frequencies, so the different spectral compo-

nents propagate at different velocities. The speed of the spectral component at angular frequency ω = 2π𝑓 is given

by the phase velocity 𝑣𝑝 = 𝑐/𝑛(ω). This effect called chromatic dispersion (CD) leads to a pulse broadening problem

during the propagation and causes ISI over long distances that affects the system’s performance. If only CD effect

is considered, the evolution of the scalar optical field 𝐸 along the optical fiber can be described by :

∂𝐸

∂𝑧
= − 𝑗

β2

2
∂2𝐸

∂𝑡2 +
β3

6
∂3𝐸

∂𝑡3 (1.15)

where β𝑖 is the ith derivative of the propagation constant β with respect to ω. They are defined with the Taylor series

development of β(ω) = ω/𝑣𝑝 with respect to the COI’s angular frequency ω0 with the following expression ;

β(ω) = β0 + β1 (ω − ω0) +
β2

2
(ω − ω0)2 +

β3

6
(ω − ω0)3 + ... (1.16)

β0 in [km-1] is the phase shift constant and the first order dispersion parameter β1 [ps/km] is related to the
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envelope propagation speed 𝑣𝑔 (also called group velocity) as 𝑣𝑔 = 1/β1. The first two order parameters β0 and β1 do

not cause any signal degradation during transmission. β2 is called group velocity dispersion (GVD) corresponding

to the acceleration of the spectral components of the pulse and is expressed in [ps2/nm]. Finally, β3 expressed in

[ps3/nm] is the GVD slope corresponding to the variation of GVD as a function of the angular frequency.

In optical communications, it is more common to use the dispersion factor, 𝐷, and its slope 𝑆0, which are related

to β2 and β3, to quantify the CD effects. D expressed in [ps.nm-1.km-1] quantifies the delay with respect to the COI

and is defined as :

𝐷 (λ) = −2π𝑐
λ2 β2 (1.17)

with 𝑐 the light speed.

And the slope 𝑆0 (expressed in [ps.(nm-2·km-1)]) of the dispersion coefficient 𝐷 (λ) around reference wavelength

λ0 is defined with :

𝑆0 =

(
∂𝐷

∂λ

)
λ0

=
4π𝑐
λ3

0
β2 +

(2π𝑐)2

λ4
0
β3 (1.18)

For most of fibers deployed in optical transmission systems, 𝐷 usually has a positive value (around 17 ps/nm/km

for SSMF at 1550 nm). We plot the dispersion 𝐷 with respect to the wavelength for a SMF (data from [18]) in Fig. 1.11.

But fibers with negative dispersion constant also exist and they can be used in dispersion-managed (DM) systems to

compensate the accumulated chromatic dispersion. For instance, a periodic configuration with several short spans

of dispersion compensation fiber (DCF), which has the dispersion coefficient 𝐷 around −50 to −80 ps/nm/km and

up to around 120 ps/nm/km, can achieve a total accumulated CD around 0 ps/nm/km. However DM scheme lost its

popularity because it introduces higher nonlinear effects and current deployed coherent systems prefer a dispersion

un-managed (DU) scheme where CD is compensated by DSP thus offering more flexibility.

ii Nonlinear effects

In high power regime (high launched channel power), the performance of the system is predominantly limited by

nonlinear effects. Indeed, the response of optical fiber for intense electromagnetic fields is nonlinear.

When nonlinear effects are also considered, the propagation is given by the the nonlinear Schrödinger equation

(NLSE), which is derived from the Maxwell’s equations [19] :

∂𝐸

∂𝑧
= −α

2
𝐸︸︷︷︸

attenuation

− 𝑗
β2

2
∂2𝐸

∂𝑡2︸     ︷︷     ︸
dispersion

+
β3

6
∂3𝐸

∂𝑡3︸   ︷︷   ︸
dispersion slope

+ 𝑗γ|𝐸 |2𝐸︸    ︷︷    ︸
Kerr nonlinear effect

− 𝑗γ𝑇𝑅
∂|𝐸 |2
∂𝑡

𝐸︸          ︷︷          ︸
Raman nonlinear effect

(1.19)

where α is the attenuation coefficient, β2 is the GVD, β3 is the GVD slope, γ =
2π𝑛2
λ0𝐴𝑒𝑓 𝑓

is the nonlinear coefficient,λ0

is the COI wavelength, 𝐴𝑒 𝑓 𝑓 is the effective area, 𝑛2 is the nonlinear refractive index (see definition in [19]) and 𝑇𝑅

is the Raman time constant. The last term in the equation can be neglected because the time-dependent effect of
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FIGURE 1.11 – CD profile of a SSMF

stimulated Raman scattering (SRS) crosstalk is negligible due to the longer impulse duration in optical communica-

tion.

In this subsection, a brief description of the two nonlinear effects is provided. A more detailed description about

their respective models are presented afterwards (in section 3.3 for Kerr non-linearities and section 2.2 for Raman

effects).

ii.A Kerr effect

Kerr effects cause the change of the refractive index of the physical medium depending on the optical power of

input electromagnetic field |𝐸 |2 governed by [19, 12] :

𝑛 (ω, |𝐸 |2) = 𝑛(ω) + 𝑛2 |𝐸 |2 (1.20)

with 𝑛(ω) the index 𝑛 evaluated at ω depending of the CD influence and 𝑛2 the nonlinear refractive index.

The main Kerr nonlinear impairments can be categorized in two classes : intra-channel effect (interaction of

COI with itself) and inter-channel effect (interaction between COI and neighbouring WDM channels). The effect

that accounts for intra-channel non-linearities is called self-channel interference (SCI). On the other hand, we can

distinguish two different types of cross-channel interference (XCI) accounting for inter-channel non-linearities : de-

generate XCI (when the interaction happens with only one single WDM neighbouring channel) and non-denegerate

XCI (when the COI distortions arise from 2 other channels)
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To quantify the nonlinear noise due to Kerr effect and its impact on WDM transmission systems, the NLSE has

to be solved through heavy numerical simulations. Thus, several analytical models have been proposed. In Chapter

3 subsection 3.3), we give an overview of the analytical models to estimate the Kerr nonlinear interference variance.

ii.B Stimulated Raman scattering

SRS is a non-elastic scattering effects originate from the interaction of the optical field with the silica molecules

in the optical fiber where the photon transfers part of its energy to the silica molecules [19, 12].

𝑓

𝑃(𝑓)

𝑓

𝑃(𝑓)

𝑓

𝑃(𝑓)

Fiber span

FIGURE 1.12 – Schematic representation of I-SRS in the fiber for WDM system resulting in a power tilt

The intra-channel SRS effect (I-SRS) effects occur in WDM systems and considers optical propagating waves at

higher frequency as "pumps" and waves at lower frequency as "signals" thus a power tilt in the signal power profile

happens, as shown in Fig. 1.12

This SRS nonlinear effect can also be exploited to build amplifier called Raman amplifier but using additional

lasers at higher frequency to transfer their energy to the nonlinear medium that enables amplification of the optical

signal at lower frequency. The Raman-induced stimulated emission only occurs when the optical field power is above

the SRS threshold value which depends on the type of fiber. The maximum efficiency of SRS power transfer is found

around 13.2 THz ( 100 nm) frequency shift from the original frequency.

Raman effect modelling and equations as well as Raman effects impact and application in fiber optic communi-

cation systems are are further discussed in the chapter 2 section 2.2
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iii Polarization effects

We now consider the optical field in a vectorial form composed of two orthogonal polarisation states : E(𝑧, 𝑡) =

[𝐸𝐻 (𝑧, 𝑡), 𝐸𝑉 (𝑧, 𝑡)]𝑇

iii.A Polarization mode dispersion

Optical signals propagate at different velocities for different polarizations because the refractive index of the fiber

core also depends on the polarization. This phenomenon is called birefringence. Indeed, real life fibers do not

conserve a perfect cylindrical symmetry due to manufacturing imperfections, external stress on the fiber or even

temperature. The delay between the modes propagating over the different axes called differential group delay (DGD)

in [ps] is defined by :

Δ𝑡 = 𝐿 |βf − βs | (1.21)

with βf and βs are propagation constants for the fast and slow axes and 𝐿 is propagation distance.

For standard fibers, the fiber constraints vary randomly with time and distance due to the instability of the envi-

ronment. So does the induced birefringence. So a real fiber as a concatenation of infinitesimal birefringent sections

randomly coupled Consequently, DGD is a stochastic process and PMD is defined as its mean value. For current

system, PMD can reach a small value around 0.05 ps/
√

km.

Due to DGD, the two orthogonal polarization input are mixed together during propagation but DSP can be used

to track and separate them.

iii.B Polarization dependent loss

Another effect affecting polarization-sensitive systems is the polarization-dependent loss (PDL). Indeed, optical com-

ponents in the optical link (for instance amplifiers, couplers, etc.) may have a different behaviour at each polarisation.

At the output of a PDL element, two effects may appear : on the one hand, the signal attenuation can be different

between the two polarization, on the other hand the two polarization tributaries can be no longer orthogonal.

The impact of PDL is out of the scope of this thesis and is not taken into account in the propagation modeling.

iii.C Manakov equation

For dual-polarization case, Eq. (1.19) can be be extended to the well-know Manakov equation :

∂E
∂𝑧

= −α
2
E − 𝑗

β2

2
∂2E
∂𝑡2 +

β3

6
∂3E
∂𝑡3 + 𝑗

8
9
γE†EE (1.22)

where the superscript † stands for Hermitian conjugation operation (complex conjugation followed by matrix trans-

pose). It is worth to notice that the coefficient 8/9 weighting the Kerr effect contribution comes from the averaging of

the birefringence-induced polarization rotations assuming a random birefringence in the fiber.
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FIGURE 1.13 – SSFM representation

1.1.5 Split-step Fourier simulation method

Since the NLSE equation governing the optical signal propagation has no exact analytic solutions, the split-step

Fourier method was proposed to simulate the propagation through an optical fiber [19]. This numerical method solve

the NLSE equation with 𝑛𝑠 steps : it divides the entire fiber into small steps with length 𝑑𝑧. From the transmitter to

the end of the link at 𝑧 = 𝐿, for each step, a linear or a nonlinear operator will be performed. Fig. 1.13 illustrates a

general representation of the SSFM.

We can re-write Eq. (1.19) in the form :
∂𝐸

∂𝑧
= (𝐿̂ + 𝑁̂ )𝐸 (1.23)

where 𝐿̂ is the linear operator that accounts for dispersion and absorption and 𝑁̂ is a nonlinear operator that accounts

for Kerr nonlinear effect (SRS effect neglicted here). These operators are given by :

𝐿̂ = −α
2
− 𝑗

β2

2
∂2

∂𝑡2 +
β3

6
∂3

∂𝑡3 (1.24)

𝑁̂ = 𝑗γ
(
|𝐸 |2

)
(1.25)

Finally we have :

𝐸 (𝑧 + 𝑑𝑧, 𝑡) = 𝑒𝑥𝑝 (𝑑𝑧𝑁̂ )𝑒𝑥𝑝 (𝑑𝑧𝐿̂)𝐸 (𝑧, 𝑡) (1.26)

The linear operation can be evaluated in the Fourier domain (cf. Fig. 1.13). The step size 𝑑𝑧 has to be chosen

carefully because the SSFM is more accurate when used with smaller step size but the number of computations

inversely increase with the step size.

A modified version called symmetrical SSFM can improve the performance by inserting the nonlinear operator
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in the middle of two linear operator :

𝐸 (𝑧 + 𝑑𝑧, 𝑡) = 𝑒𝑥𝑝

(
𝑑𝑧

2
𝐿̂

)
𝑒𝑥𝑝

(
𝑑𝑧𝑁̂

)
𝑒𝑥𝑝 (𝑑𝑧

2
𝐿̂)𝐸 (𝑧, 𝑡) (1.27)

The SSFM has been widely adopted to evaluate the accuracy of the analytical models to compute the NLI but its

computational time can be very long : minutes (for a single channel) to several hours depending on the numbers of

total spans and the number of co-propagating channels (and even days of computation for a long-haul system with

fully-loaded UWB WDM scheme).

1.1.6 Loss compensation

To compensate the attenuation of the optical power, optical amplifiers can be used. Indeed, without amplifiers

that can compensate the fiber loss, we need to regenerate the signal after a few tens of km of transmission. Current

long-haul systems implement periodic optical amplification to amplify the whole WDM channels. So, the transmission

link consists of consecutive fibre spans separated by optical amplifiers.

i Amplifier types

In this section, three different types of commonly used optical amplifiers are described.

i.A EDFA

The most widely used optical amplifier is the erbium-doped fiber amplifier (EDFA), proposed in late 1980 [20, 21].

Laser pumps are sent into a silica fiber that has been doped with erbium ions to amplify the attenuated low-power

signal. Since the amplification medium is not the transmission fiber, EDFA amplifies the signal in a so-called lumped

way. The excitation of the erbium ions leads to two physical phenomena : the stimulated emission of photons at

same frequency as the signal (causing signal amplification) and the spontaneous emission of photons generating

noise, also called amplified spontaneous noise (ASE).

EDFA amplification provides an optical amplification window of 35 − 40 nm bandwidth in either C (Fig. 1.14) or L

band, depending on the pump configuration and doped fiber length. Because of the EDFA gain spectrum shape, a

gain flattering filter (GFF) is usually inserted compensate the non-flat spectrum gain.

i.B Raman amplifier

Raman amplifier is based on the SRS effect with external pumps with higher frequency to amplify the transmitted

signal. During a SRS, a new photon is generated at the signal frequency, that is downshifted from the pumps

frequencies. The frequency difference between the pump and the signal photon is called the Stokes shift, and

22



0

2

4

6

8

10

1460 1480 1500 1520 1540 1560 1580

G
a

in
 [

d
B

/m
]

Wavelength [nm]

FIGURE 1.14 – Gain profile of an EDFA whose core was codoped with germania (taken from [18])

in standard transmission fibers, the peak of this frequency shift is about 13.2 THz. The gain spectrum is shown

in Fig. 1.15 and multiple lasers at different frequencies can be used to achieve a broadband amplifier for WDM

transmission. The pump lasers can be either injected in the same direction as the one of the transmitted signal

(co-propagating) or in the opposite direction (contra-propagating) or in both direction (bi-directional). More details

about SRS and Raman amplification are provided in Chapter 2 Section 2.2, in particular the ordinary differential

equations (ODEs) governing the evolution of the signal and pump powers.
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FIGURE 1.15 – Raman spectrum at 1550 nm for SSMF

i.C SOA

Semiconductor optical amplifiers (SOA) are composed of a Fabry-Perot cavity in semiconductor gain medium

pumped with an electric current where the light is amplified through stimulated emission. Compared to EDFAs, the

relaxation time of the excited state for SOAs is lower (≃ 10 ps instead of > 1 µs for EDFAs) Consequently, SOA gain
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varies with input power of the optical signal thus can lead to nonlinear distortions which is the main drawback of this

amplifier. Despite this disadvantage, its compact size and ability to cover wide bandwidth make them very attractive

for UWB communication. In [22], the authors experimentally demonstrated a data rate of 115.9 Tb/s over 100 km,

based on a 100+nm-wide SOA.

ii Amplification noise

The noise figure of an amplifier 𝐹 is defined by :

𝐹 =
𝑆𝑁𝑅𝑖𝑛

𝑆𝑁𝑅𝑜𝑢𝑡
(1.28)

with 𝑆𝑁𝑅𝑖𝑛 and 𝑆𝑁𝑅𝑜𝑢𝑡 the amplifier input and output SNR and we can define it in dB which is more commonly used

as :

𝑁𝐹 in [dB] = 10 log10 (𝐹 ) (1.29)

The noise figure can be evaluated as :

𝐹 =
𝑃𝐴𝑆𝐸,𝐵𝑟𝑒𝑓

ℏω0𝐵𝑟𝑒 𝑓𝐺
+ 1
𝐺

(1.30)

with the 𝑃𝐴𝑆𝐸,𝐵𝑟𝑒𝑓
integrated ASE power in 𝐵𝑟𝑒 𝑓 , the reference bandwidth, ω0 the reference angular frequency ℏ is

the reduced Planck constant and 𝐺 the amplifier gain.

For EDFA, the amount of ASE added, integrated over the reference bandwidth 𝐵𝑟𝑒 𝑓 , is :

𝑃𝐴𝑆𝐸,𝐵𝑟𝑒𝑓
= 𝑁𝐴𝑆𝐸𝐵𝑟𝑒 𝑓 (1.31)

where 𝑁𝐴𝑆𝐸 in [W/Hz] is the power spectral density per polarisation. Standard EDFAs’ noise figure (NF) is usually

between 4.5 − 5.5 dB.

For dual-polarization, the power spectral density of a single EDFA is given by :

𝑁𝐴𝑆𝐸 = 2𝑛𝑠𝑝ℏω0 (𝐺 − 1) (1.32)

𝐹 = 2𝑛𝑠𝑝
(𝐺 − 1)

𝐺
(1.33)

The total noise factor of a chain of amplifiers with noise factor 𝐹𝑛 and gain 𝐺𝑛 can be expressed with the Friis

formula :

𝑁𝐹𝑡𝑜𝑡 = 𝑁𝐹1 +
𝑁𝐹2 − 1

𝐺1
+ 𝑁𝐹3 − 1

𝐺1𝐺2
(1.34)

For a transmission link with 𝑁𝑡𝑜𝑡 spans, and assuming that λ0 ≈ 1550 nm and 𝐵𝑟𝑒 𝑓 = 12.5 GHz (0.1 nm), we can
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approximate the optical SNR (OSNR) after transmission as follows :

𝑂𝑁𝑆𝑅 [dB] ≈ 10 log10

(
𝑃𝑖𝑛

(𝐹 − 1)ℏω0𝐵𝑟𝑒 𝑓 𝑁𝑡𝑜𝑡

)
= 58[dBm] + 𝑃𝑖𝑛 [dBm] − 𝑁𝐹 − 10 log10 (𝑁𝑡𝑜𝑡 ) (1.35)

1.1.7 The coherent receiver and DSP

At the output of the optical link, channels are demultiplexd with a Demux then each channel pass through a

coherent receiver to obtain tow electrical signals which are then converted in digital domain. Then DSP algorithms

are performed to recover the corresponding symbols for each polarisation attribute.

i Opto-electric frontend
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FIGURE 1.16 – Dual-polarization coherent receiver schematic.

The general representation of a coherent receiver used in a dual-polarization scheme is represented in 1.16.

This receiver detect the I and Q components of two orthogonal but arbitrary polarizations 𝐸𝑉
𝑆

and 𝐸𝐻
𝑆

by the mean

of a polarization beam splitter (PBS), 90◦-hybrid and a local oscillator (LO) laser with a frequency 𝑓𝐿𝑂 close to the

signal’s frequency 𝑓𝑇𝑋 . As a result, the eight optical fields at the output are expressed as follows :
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

𝐸𝐻1

𝐸𝐻2

𝐸𝐻3

𝐸𝐻4


=

1
√

2



+𝐸𝐻
𝑆
+ 𝐸𝐿𝑂

−𝐸𝐻
𝑆
+ 𝐸𝐿𝑂

+𝐸𝐻
𝑆
+ 𝑗𝐸𝐿𝑂

−𝐸𝐻
𝑆
+ 𝑗𝐸𝐿𝑂


and



𝐸𝑉1

𝐸𝑉2

𝐸𝑉3

𝐸𝑉4


=

1
√

2



+𝐸𝑉
𝑆
+ 𝐸𝐿𝑂

−𝐸𝑉
𝑆
+ 𝐸𝐿𝑂

+𝐸𝑉
𝑆
+ 𝑗𝐸𝐿𝑂

−𝐸𝑉
𝑆
+ 𝑗𝐸𝐿𝑂


(1.36)

The four resulting photocurrents after detection with balanced photodiodes (i.e only the beating signal is preser-

ved) are given by :



𝐼𝐻𝐼

𝐼𝐻𝑄

𝐼𝑉 𝐼

𝐼𝑉𝑄


= 2R



Re
{
𝐸𝐻
𝑆
𝐸∗
𝐿𝑂

}
Im

{
𝐸𝐻
𝑆
𝐸∗
𝐿𝑂

}
Re

{
𝐸𝑉
𝑆
𝐸∗
𝐿𝑂

}
Im

{
𝐸𝑉
𝑆
𝐸∗
𝐿𝑂

}


(1.37)

where R is the responsitivity of the photodiode, Re{.} and Im{.} give the real and imaginary part of a complex signal.

ii Digital signal processing

DSP’s goal is to recover the symbol sequences sent over the two orthogonal polarizations from the four sampled

photocurrents from the coherent receiver, after an analog-to digital conversion. Then the performance is be estima-

ted with those recovered symbols 𝑦𝐻 and 𝑦𝑉 . The standard DSP, operating after the analog-to digital conversion, is

illustrated in Fig. 1.17.

DSP is performed compensate for the accumulated CD with a filter, to mitigate PMD with an adaptive multiple-

input multiple-output (MIMO) equalizer, compensate for the frequency and phase offsets between the transmitter

(TX) and the LO lasers and equalize transmitter/receiver IQ imbalances and timing deskews with a adaptive post-

equalizer.
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𝑦𝑉

FIGURE 1.17 – Coherent DSP chain block to mitigate the distortion during the propagation. For the final step, a
post-equalizer can be applied to compensate any phase or gain mismatch between I and Q components of each
polarization
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ii.A Signal conditioning

From the four photocurrents, four quantized are sampled at the sampling rate of the oscilloscope. To respect the

Shannon-Nyquist theorem, first the received signal is re-sampled at a rate of 2 samples per symbol (SpS). Then we

can use a brickwall bandpass filter to suppress out-of-band noise.

ii.B CD compensation

To mitigate the accumulated CD after propagating a distance 𝐿, a filter is applied with a transfer function given :

𝐻𝐶𝐷𝐶 (ω) = 𝑒− 𝑗ω
2 β2

2 𝐿 (1.38)

This frequency domain equalizer using overlap-and-save methods and fast Fourier transforms (FFT) [23] is able to

minimize the computational complexity of the CD compensation.

ii.C Adaptive MIMO equalizer

Due to fiber birefringence, the two polarizations will be coupled during the propagation and the received two

components will be orthogonal by with arbitrary polarization state. To compensate these impairments, an adaptive

MIMO equalizer with a butterfly structure is applied where the output 𝑦𝐻
𝑘

and 𝑦𝐻
𝑘

is given by :


𝑦𝐻
𝑘

𝑦𝑉
𝑘

 =


(h𝐻𝐻

𝑘
)𝑇 (h𝑉𝐻

𝑘
)𝑇

(h𝐻𝑉
𝑘
)𝑇 (h𝑉𝑉

𝑘
)𝑇



x𝐻
𝑘

x𝑉
𝑘

 (1.39)

with x𝐻
𝑘

= [𝑥𝐻
𝑘−𝑁𝑇

, ..., 𝑥𝐻
𝑘
, ..., 𝑥𝐻

𝑘+𝑁𝑇
]𝑇 a (2𝑁𝑇 + 1) 1-D vector and the four vectors, h𝐻𝐻

𝑘
, h𝑉𝐻

𝑘
, h𝐻𝑉

𝑘
, h𝑉𝑉

𝑘
each containing

(2𝑁𝑇 + 1) taps of the equalizer, can be estimated with blind approach such as constant modulus algorithm (CMA)

[24]. This approach forces the output towards a constant amplitude on both polarization states by updating the

equalizers’ taps by minimizing the following error function ϵ𝑘 on the two polarizations :

ϵ𝐻
𝑘
= 1 −

��𝑦𝐻
𝑘

��2
ϵ𝑉
𝑘
= 1 −

��𝑦𝑉
𝑘

��2 (1.40)

27



Using the gradient descent method, the 2𝑁𝑇 + 1 equalizer taps update can be written as :

h𝐻𝐻
2𝑘+2 := h𝐻𝐻

2𝑘 + µ · ε
𝐻
2𝑘 · 𝑦

𝐻
2𝑘 ·

(
x𝐻2𝑘

)∗
h𝑉𝐻

2𝑘+2 := h𝑉𝐻
2𝑘 + µ · ε

𝐻
2𝑘 · 𝑦

𝐻
2𝑘 ·

(
x𝑉2𝑘

)∗
h𝐻𝑉

2𝑘+2 := h𝐻𝑉
2𝑘 + µ · ε

𝑉
2𝑘 · 𝑦

𝑉
2𝑘 ·

(
x𝐻2𝑘

)∗
h𝑉𝑉2𝑘+2 := h𝑉𝑉2𝑘 + µ · ε

𝑉
2𝑘 · 𝑦

𝑉
2𝑘 ·

(
x𝑉2𝑘

)∗
(1.41)

with µ as a constant parameter to control the speed of the convergence.

ii.D Frequency offset estimation

The LO laser used for the coherent receiver, has a frequency close the transmitter laser but slightly different. This

leads to a small frequency offset and also phase offset because of the slowly time-varing phase noise (PN). Thus,

the carrier recovery consist of two steps : first, an estimation of the frequency offset, followed by a phase estimation.

The problem of carrier estimation can be modeled as :

𝑦𝑘 = 𝑥𝑘𝑒
( 𝑗ϕ𝑘𝑘+𝑗θ𝑘 ) + 𝑛𝑘 (1.42)

with 𝑦𝑘 being previous DSP blocks output for one polarization(after CD compensation and polarization de-multiplexing),

corrupted with respect to the true transmitted symbols 𝑥𝑘 , ϕ𝑘 = δω𝑇𝑠 the unknown phase due to the frequency offset

δω at symbol time 𝑇𝑠 , θ𝑘 the unknown discrete time-varing phase offset due to the PN of the laser and 𝑛𝑘 an additive

zero-mean circularly-symmetric complex Gaussian noise.

For 2m QAM constellations, the estimation of ϕ𝑘 can be performed by maximizating the periodogram as presen-

ted in [25] :

ϕ̂𝑘 =
1
4

argmax
ϕ

����� 1
2𝑁 + 1

𝑁∑︁
𝑚=−𝑁

(𝑦𝑘+𝑚)4𝑒− 𝑗ϕ𝑚
����� (1.43)

with 2𝑁 + 1 the number of samples used.

ii.E Phase estimation

After the frequency estimation, the signal for one single polarization can be modelled as :

𝑦𝑘 = 𝑥𝑘𝑒
𝑗θ𝑘 + 𝑛𝑘 (1.44)

with 𝑥𝑘 the kth sent symbols, 𝑛𝑘 the additive Gaussian noise and θ𝑘 the unknown phase noise we want to estimate.
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Phase estimation can be achieved with the well-know blind phase search (BPS) algorithm. It consists in minimi-

zing the following cost function [26] with 2𝑁 + 1 symbols to find θ̂𝑘 :

θ̂𝑘 = argmin
θ

𝑁∑︁
𝑚=−𝑁

���𝑦𝑘+𝑚 − 𝑥𝑘+𝑚𝑒− 𝑗θ���2 (1.45)

where 𝑥𝑘 is the closest estimated symbol rotated by 𝑒− 𝑗θ. Square QAM modulation formats have a rotational sym-

metry of order 4 thus introducing an phase ambiguity. Consequently, the BPS algorithm tests phases between 0 and

π/2 and then one can use the 𝑁𝑝 know pilots symbols sent with the source symbol sequence to remove the cycle

slip ambiguity.

1.1.8 Performance evaluation

To evaluate the performance, the SNR is one popular metric. If we assume that the received signal is impaired

with an additive noise, the SNR can be estimated from the transmitted and received symbol sequences x and y as

[27] :

𝑆𝑁𝑅 =

[
1 −

��xy†
��2

|x|2 |y|2

]−1

(1.46)

with † the Hermitian operator representing the conjugate transpose.

Under the assumption of the additive white uncorrelated Gaussian noise model is used for all impairments, then

the total noise variance is the sum of all different noises. Thus the resulting total SNR can be expressed as :

1
𝑆𝑁𝑅

=
1

𝑆𝑁𝑅𝑇𝑅𝑋
+ 1
𝑆𝑁𝑅𝐴𝑆𝐸

+ 1
𝑆𝑁𝑅𝑁𝐿𝐼

(1.47)

with 𝑆𝑁𝑅𝑇𝑅𝑋 accounting for the transceiver impairments, 𝑆𝑁𝑅𝐴𝑆𝐸 representing the ASE contribution and 𝑆𝑁𝑅𝑁𝐿𝐼 for

the nonlinear distortions. In this expression, we neglect other extra effects such as guided acoustic wave Brillouin

scattering (GAWBS) (not studied in this thesis) or EEPN (see Chapter 3).

i Impairment sources

i.A Transceiver penalties

The first term in Eq. (1.47) accounts for TRX and DSP impairments and is independent of the input power, thus the

maximum achievable SNR is :

𝑆𝑁𝑅𝑇𝑅𝑋 =
1

𝑘𝑇𝑅𝑋
(1.48)

with 𝑘𝑇𝑅𝑋 the normalized variance and can be experimentally measured with a back-to-back (B2B) set-up on recei-

ved constellation (i.e. at the DSP chain output).
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i.B Amplified spontaneous emission noise

The second term in Eq. (1.47) represents the linear part of distortions due to ASE noise produced by amplifiers and

is expressed as :

𝑆𝑁𝑅𝐴𝑆𝐸 =
𝑃𝑐ℎ

σ2
𝐴𝑆𝐸

=
𝐵𝑟𝑒 𝑓

𝑅𝑠
𝑂𝑆𝑁𝑅 (1.49)

where 𝑃𝑐ℎ is the channel power, 𝐵𝑟𝑒 𝑓 the reference bandwidth (usually 0.1 nm), 𝑅𝑠 the symbol rate and OSNR is

defined as :

𝑂𝑆𝑁𝑅 =
𝑃𝑐ℎ

𝑃𝐴𝑆𝐸
(1.50)

and 𝑃𝐴𝑆𝐸 is computed according to the used amplifiers type and characteristics. For EDFAs, its expression can be

found in subsection ii.

i.C Nonlinear distortion

The last term in Eq. (1.47) accounts for the Kerr nonlinear effects. The variance of the NLI, σ2
𝑁𝐿

, can be expressed

with the nonlinear coefficient 𝑎𝑁𝐿𝐼 as :

σ2
𝑁𝐿 = 𝑎𝑁𝐿𝐼𝑃

3
𝑐ℎ

(1.51)

with 𝑃𝑐ℎ the channel-wise power. 𝑎𝑁𝐿𝐼 depends on the fiber link characteristics, the WDM channels configuration

and the COI characteristics such as modulation format, symbol rate, etc. .

Finally, the SNR accounting for the NLI is expressed as follows :

𝑆𝑁𝑅𝑁𝐿 =
𝑃𝑐ℎ

σ2
𝑁𝐿

=
1

𝑎𝑁𝐿𝐼𝑃
2
𝑐ℎ

(1.52)

and the overall SNR of the transmission system accounting for TRX impairments, ASE noise and Kerr NLI can

be written as :

𝑆𝑁𝑅 =
𝑃𝑐ℎ

𝑘𝑇𝑅𝑋𝑃𝑐ℎ + σ2
𝐴𝑆𝐸
+ 𝑎𝑁𝐿𝐼𝑃

3
𝑐ℎ

(1.53)

𝑘𝑇𝑅𝑋 can be measured with a B2B configuration and σ2
𝐴𝑆𝐸

can be either measured or computed with the noise figure

of each amplifier. The computation of 𝑎𝑁𝐿𝐼 can be achieved numerically with SSFM simulations (see subsection

1.1.5) or predicted with analytical models such as the frequency domain Gaussian noise model (GN) and enhanced

GNM (EGN), and the time-domain perturbation approach (more details about the NLI modelling are described in

section 3.3). The estimation of the NLI contribution is the main challenge for analytical models since the computation

time can be very long. In this thesis, we described a method to accelerate the prediction of the NLI coefficient 𝑎𝑁𝐿𝐼

SNR can be maximized with a optimal power value called nonlinear threshold (NLT) is given by [28] :

𝑃𝑐ℎ,𝑁𝐿𝑇 =

(
σ2
𝐴𝑆𝐸

2𝑎𝑁𝐿𝐼

)1/3

(1.54)
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and this maximum value of the SNR is thus :

𝑆𝑁𝑅𝑜𝑝𝑡 =
©­­«𝑘𝑇𝑅𝑋 + 3 ©­«

(
σ2
𝐴𝑆𝐸

2

)2

𝑎𝑁𝐿𝐼
ª®¬

1/3ª®®¬
−1

(1.55)

for 𝑃𝑐ℎ < 𝑃𝑐ℎ,𝑁𝐿𝑇 , ASE noise is dominant and the system behave in a linear regime so the performance can be

improved by increasing the launch power and the amplifier output. But after the NLT, Kerr effects become dominant

and the performance is degraded with the increase of channel power. NLI is consequently a trade-off between those

two limiting impairments and 𝑆𝑁𝑅𝑁𝐿𝑇 is commonly used to predict the performance of transmission system.

ii Channel capacity

The concept of entropy was introduce by Shannon in 1948 and its expression for the random variable 𝑋 defined

as :

𝐻 (𝑋 ) = −
∑︁
𝑥∈𝑋

𝑃 (𝑋 = 𝑥) log2 (𝑃 (𝑋 = 𝑥)) (1.56)

To quantify the average information shared between two random variables 𝑋 and 𝑌 , we use the mutual informa-

tion which can be expressed as an entropy difference [29] :

𝐼 (𝑋 ;𝑌 ) = 𝐻 (𝑋 ) − 𝐻 (𝑋 |𝑌 ) (1.57)

and the capacity of the channel is defined as the maximum of the MI and for an AWGN channel with a complex

Gaussian source, the capacity is given by the well-known Shannon capacity formula :

C = max
𝑃𝑥

𝐼 (𝑋 ;𝑌 ) = log2 (1 + 𝑆𝑁𝑅) (1.58)

where 𝑆𝑁𝑅 = 𝑃/𝑁0 is the signal to noise ratio and C is measured in bits/s/Hz. The channel capacity represents

the maximum achievable information rate for a given SNR value when an ideal modulation and coding scheme are

employed.

1.2 Introduction to machine learning and artificial neural networks

ML have gained attention over the past years in the optical communication community [9] because of its powerful

ability to learn from data using algorithms and computational statistics [30, 31, 32]. We may divide the ML problems

into four categories : regression, classification, clustering and reinforcement learning. For regression, the ML outputs

are real or continuous values whereas for a classification problem, the goal is to find the right class category to
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FIGURE 1.19 – Four popular activation functions for regression problems : linear, sigmoid, tanh and ReLU

which the data belongs. Clustering consists in dividing the data into several clusters based on their specificity.

Consequently, regression and classification problems need a supervised learning algorithm, thus the data need

to be labeled, however clustering problems rely on unsupervised algorithms and the data set does not need to

be labeled, avoiding the time-consuming and expensive step of data labelling. Semi-supervised learning is also

possible using only partially-labeled data. On the other hand, reinforcement learning consists in making decisions

following a reward-based system where the algorithm learns the adequate behaviour from a defined environment.

This method can be applied to games or to resolve optimization problems. In this thesis, the studied problems are

all regression problems, since, for each of our applications, we want to predict an output vector for a given input

vector.

1.2.1 Structure of Artificial Neural Networks

One popular ML algorithm for regression is the ANN which is inspired by the interconnected structure of biological

neural networks. The most common feedforward ANN (FANN) is the multi-layer perceptron (MLP). The MLP is
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FIGURE 1.20 – Generic architecture of a classical MLP with two hidden layers

composed of several layers of neurons where each neuron in a layer is connected to every neuron in the subsequent

layer through weighted connections. The general representation of a simple artificial neuron is depicted in Fig. 1.18.

The neuron has multiple inputs and one output. The weights determine the strength of the influence that one neuron

of layer number 𝑙 − 1 has on another neuron of layer number𝑙 . Those layers composed of neurons can be fully

connected or partially connected (i.e. at least one neuron in layer number 𝑙 is not connected to all neurons of the

layer number 𝑙 − 1). Fig. 1.20 shows a fully connected MLP with one input layer, one output layer and two layers

between them, called hidden layers. The output of the layer 𝑙 , a(𝑙 ) is computed as follows :

a(𝑙 ) = φ(z(𝑙 ) ) (1.59)

with

z(𝑙 ) = W(𝑙 )a(𝑙−1) + b(𝑙 ) (1.60)

z(𝑙 ) is the weighted sum of the inputs, W(𝑙 ) the weights, b(𝑙 ) the bias and φ(.) the activation function of layer 𝑙 . The

first layer is the input layer so a(0) = x and the last layer, indexed as number 𝑁𝑙 ,l is the output layer so a(𝑁𝑙 ) = y.

Fig. 1.19 shows four different popular activation functions commonly used in regression problems : the linear

function, the sigmoid, the hyperbolic tangent (tanh) and the rectified linear unit (ReLU). Their equations are repre-

sented by the following expressions.

φ𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) =
1

1 + 𝑒−𝑥 (1.61)

φ𝑡𝑎𝑛ℎ (𝑥) =
𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 (1.62)

φ𝑅𝑒𝐿𝑈 (𝑥) =


0, if 𝑥 < 0

𝑥, otherwise
(1.63)
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1.2.2 Training step

After choosing the desired ML model and before training the model with data, we need to initialize its parameter

set θθθ e.g. for the ANN, θθθ is the set of weights and bias values to be initialized. Usually, we use Xavier [33] or Kaiming

[34] initialization methods for the weights. Then, the bias can either be set to zero or also initialized randomly.

On the other hand, we also have to divide the data into three independent classes : training, validation, and test

data sets. The training data set is dedicated to train the model by updating the parameters. For ANNs, the weights

and biases are updated through this step. The validation data set is used to evaluate the model or compare trained

models between them. Finally, the test data set is used to test and assess the overall performance of the final model.

The three data set have to be non-overlapping to get solid results and conclusions because it is evident that ML

models always perform better on already seen data compared to new data. So if the validation/test data has already

been fed to the model during training stage, the result would be misleadingly better.

The widely used back-propagation procedure to train a feed-forward ANN by updating the parameters was

proposed in 1986 by [35]. The algorithm is composed of two steps : the forward pass and the backward pass.

In the forward pass, each sample of the training data that constitutes the input vector or the matrix is fed to the input

layer and goes through all the hidden layers to finally reach the output layer with a predicted output vector or output

matrix. Then, a loss value is computed to evaluate the deviation of the prediction from the target output, called

ground truth (GT) using a cost function. In regression problems, we usually choose to use the mean square error

(MSE) or mean absolute error (MAE) defined in Eq. (1.64) and (1.65) respectively. Finally, according to the gradients

computed through a chain of calculus operations, the backward pass starts from the output layer and propagates

the errors backward to update the parameters of the network. By iteratively updating the parameters based on the

gradients, the network gradually improves its performance.

𝐽𝑀𝑆𝐸 (𝑦, 𝑦) =
1
𝑁

𝑁∑︁
𝑖=1
(𝑦𝑖 − 𝑦𝑖 )2 (1.64)

𝐽𝑀𝐴𝐸 (𝑦, 𝑦) =
1
𝑁

𝑁∑︁
𝑖=1
|𝑦𝑖 − 𝑦𝑖 | (1.65)

where 𝑦𝑖 is the ground truth target value, 𝑦𝑖 the predicted output value and 𝑁 the number of samples.

There are several optimization algorithms to update the parameters during the back-propagation step to minimize

the cost function. The basic one is the gradient descent. It consists in calculating the gradients of the loss function

with respect to the parameters and adjusting the parameters in the opposite direction of the gradients to minimize

the loss. Eq. (1.66) to Eq. (1.71) show the fundamental steps of the update algorithm. (𝑙 ) and (𝐿) are respectively

the error in the 𝑙𝑡ℎ layer and in the output layer. Using the chain rule, their expressions are given by :

δδδ
(𝐿)

= ∇z(𝐿) 𝐽 = ∇a(𝐿) 𝐽 ⊙ φ′ (z(𝐿) ) (1.66)
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δδδ
(𝑙 )

= ((W(𝑙+1) )𝑇 δδδ(𝑙+1) ) ⊙ φ′ (z(𝑙 ) ) (1.67)

with ∇z(𝐿) 𝐽 the gradient of the loss 𝐽 with respect to the weighted sum z(𝐿) , φ′ is the derivative of the activation

function and ⊙ represents element-wise multiplication. By combining Eq. (1.66) with Eq. (1.67), we can compute the

error δδδ(𝑙 ) for any layer in the network. Starting from computing δδδ(𝐿) , then δδδ(𝐿−1) , then δδδ(𝐿−2) and so on, all the way

back through the network, hence the term of back-propagation. Moreover, the gradients of the loss with respect to

the weights and biases can be computed as follows :

∇W(𝑙 ) 𝐽 = ∇z(𝑙 ) 𝐽 · a(𝑙−1)𝑇 = δδδ
(𝑙 ) · a(𝑙−1)𝑇 (1.68)

∇b(𝑙 ) 𝐽 = ∇z(𝑙 ) 𝐽 = δδδ(𝑙 ) (1.69)

Finally, weights and biases are updated with one important hyper-parameter : the step size η, called the learning

rate.

W(𝑙 ) ←W(𝑙 ) − η · ∇W(𝑙 ) 𝐽 (1.70)

b(𝑙 ) ← b(𝑙 ) − η · ∇b(𝑙 ) 𝐽 (1.71)

Loss

Parameters θ

Loss

Parameters θ

Loss

Parameters θ

(a) (b) (c)

FIGURE 1.21 – Impact of learning rate (LR) during the gradient descent steps. (a) LR is too low, so it requires more
steps before reaching the minimum point ; (b) efficient learning with an optimal LR ; (c) large LR leads to oscillations

Fig. 1.21 illustrates the gradient descent step for different learning rates with the length of the arrow representing

the learning rate value. A higher learning rate can lead to faster convergence, as the algorithm takes larger steps

in the parameter space towards the minimum. However, using a learning rate that is too high can lead to instability

because the algorithm may oscillate or even diverge entirely. Fig. 1.22 which represents the loss evolution during

training for different learning rate values, also illustrates the impact of learning rate. If the chosen learning rate is too

high, the loss can explode and the minimum will never be reached, but if it is too small, the algorithm can be stuck

in a local minimum or may be too slow to converge.
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FIGURE 1.22 – Evolution of loss (a) during training stage using different learning rates ; (b) for the training set and
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Aside from the gradient descent algorithm, another very popular approach is the Adam (Adaptive Moment Esti-

mation) [36], its popularity is mainly due to its high performance among several optimizers. Adam optimizer works

similarly as the gradient descent algorithm but it adapts the learning rate for each parameter based on the histo-

rical gradient information. This allows larger updates in sparse gradients and smaller updates in dense gradients.

It also incorporates momentum, which helps the optimizer move faster in the relevant directions and smoothes out

the optimization process. It also helps to avoid sub-optimal solutions in which a local minimum instead of a global

minimum is reached. Adam has demonstrated good performance and robustness across a wide range of machine

learning tasks specially when the neural network is deep.

Shuffle

Total dataset

Batch 1

…

Epoch 1 Epoch 2

Shuffle

Batch 1

… …

Batch 2 Batch 2

FIGURE 1.23 – Batch processing : dataset are divided into several mini-batches and a random shuffling is applied
before each epoch to remix them

We can perform the update of parameters during this back-propagation step with all the data set or with batches

of the data set. Batch is a subset of the data set that can be used in one iteration. Batch processing has several

advantages : for a large data set, processing the entire data set can be be computationally expensive and slow
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and requires a large amount of memory. Furthermore, mini-batches can fully take advantage of parallel computing,

specially when using modern hardware such as GPUs and TPUs.

Consequently, to exploit the benefits of mini-batch gradient descent, the training data sets are divided into mini-

batches then they are fed to the ANN through the forward pass, as depicted in Fig. 1.23. Hence, 𝑁 in Eq. (1.64) and

Eq. (1.65) can either be the number of total samples (for batch gradient descent when the parameter-update step

only happens after all training samples have been evaluated) or the number of samples in a batch (for mini-batch

gradient descent that computes the error for each mini-batch during the forward pass). Random shuffle before each

training epoch reveals beneficial, so that the data set can be remixed and divided to reduce the bias and possible

data imbalances in batches. The forward pass followed by the backward update step over the entire training data

set is called an epoch.

Since the available data set is never of infinite size, we need to pay attention to two common problems, over-fitting

and under-fitting. Over-fitting leads to a trained model which outperforms with training data but gives a very poor

result with new data. This situation has to be avoided because a good model should have the ability to generalize.

Fig. 1.24 illustrates three possible scenarios for training a model with the given data set. When the model under-

fits, the performance will be poor on training data and unseen data but if the model over-fits, the performance will

be very good over the training data set but will not give the best prediction for unseen data. To avoid over-fitting

we can use the validation data set to stop the training right after reaching the sweet point (number of epochs that

ensure the smallest errors on both validation and training dataset). This method is called early-stopping. As shown

in Fig. 1.22(b), after a certain number of epochs, if we keep on training the model with the same data set, the loss

will still decrease for the training set but it becomes flat or even begins to increase for the validation data set. Another

way to prevent over-fitting is to use a regularisation method by adding a regularization term in the cost function or

using other techniques like dropout [37] where neurons and connections of the network are randomly selected to

be ignored with a given probability, during an epoch of the training stage. This helps in avoiding the co-adaption

problem (i.e. when some layers correct mistakes from prior layers instead of contributing completely to the ANN),

and makes the network more robust. On the other hand, under-fitting occurs when the model did not learn correctly

the mapping between the input and the output. This situation leads to poor prediction performance on both training

data and new data. This can happen, for instance, when the ML model does not fit to solve the problem (the model

may be too simple model with respect to the complex problem or the hyper-parameters may not be optimized) or

when the used data set is inconsistent.

1.2.3 Hyper-parameters

A hyper-parameter is a high-level parameter that concerns either the learning algorithm (for instance the learning

rate, the cost function, the optimization algorithm, etc.) or the model structure (the number of neurons and layers, the
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FIGURE 1.24 – The trained model (a) over-fits the data set ; (b) is a good fit ; (c) under-fits the data set.

used activation functions, etc.). They are called hyper-parameters to distinguish them from the model parameters

(weights and biases for ANN) and so are not trainable parameters.

However, hyper-parameters are as important as the model selection itself, as they have a tremendous impact on

the performance of the trained ML model. A tuning step is needed to choose carefully the best combination of all

hyper-parameters. The validation data set can be useful for this process, as we can compare the performance of all

trained models (using the same data set, under different hyper-parameter configurations) with the same unseen data

set. This also explains why sometimes we need an independent and non-overlapping test data set, so that the best

chosen model can be tested for performance evaluation. Several methods can be used to achieve a proper selection

of the hyper-parameters, such as the grid search or random search. Grid search consists of defining a vector for

each hyper-parameter in the search space, and performs an exhaustive search over all the possible combination.

This method is basic but not efficient. [38] showed that random search leads to a better result. Random search

consists in a random sampling of each hyper-parameter under a given statistical distribution (for instance the normal

distribution) in the search space.

In Fig. 1.25, we show an illustration of grid and random search for 2 hyper-parameters θℎ𝑦𝑝𝑒𝑟,1 and θℎ𝑦𝑝𝑒𝑟,2 over

the search space (black square). We also plotted the evolution of the cost function 𝐽 (θℎ𝑦𝑝𝑒𝑟,1,θℎ𝑦𝑝𝑒𝑟,2) with respect to

each hyper-parameter. We can assume that the total cost function is a combination of 𝐽 (θℎ𝑦𝑝𝑒𝑟,1, .) and 𝐽 (.,θℎ𝑦𝑝𝑒𝑟,2).

From the curves in the figure, we can call θℎ𝑦𝑝𝑒𝑟,1 the important hyper-parameter as the cost function 𝐽 mainly

depends on it and θℎ𝑦𝑝𝑒𝑟,2 is a less important hyper-parameter. This behavior is also observed in the case of general

problems with multiple hyper-parameters. With this conceptual illustration of the hyper-parameter tuning, we can

notice that the grid search is inefficient compared to the random search. Indeed, only three values of the important

hyper-parameter θℎ𝑦𝑝𝑒𝑟,1 are sampled in nine trials whereas for the random research method, nine samples of

θℎ𝑦𝑝𝑒𝑟,1 can be generated, making the search for the best hyper-parameters configuration more effective. The global
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minimum of the cost function 𝐽 is closer to one of the nine sampled configuration using random search than using

grid search.

In summary, a grid of points can provide an even coverage in the original multidimensional space, but projec-

tions onto the different hyper-parameters sub-spaces (here, the θℎ𝑦𝑝𝑒𝑟,1 or θℎ𝑦𝑝𝑒𝑟,2 sub-spaces) produce an ineffi-

cient coverage of the subspace itself. In contrast, random points are slightly less evenly distributed in the original

multidimensional space, but far more evenly distributed in the hyper-parameter sub-space.

In addition, one can choose to stop the search based on different metrics : for instance, when the maximum

number of tryouts is reached or when we reach an acceptable error. Another effective stopping way is letting the

random search process run until the minimum error for the validation data set (over all trials) stops decreasing.

Bayesian optimization methods are also promising solutions to choose the hyper parameters [39] by using know-

ledge from the previous tryout to choose the candidate hyper-parameter values for the next try. This iteration process

continues until the convergence to the minimum of 𝐽 .
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FIGURE 1.25 – Grid search and random search of nine trials for optimizing a function 𝐽 (θℎ𝑦𝑝𝑒𝑟,1,θℎ𝑦𝑝𝑒𝑟,2) in the
search space represented by the black square.

1.2.4 Impact of data quality

In addition to the previously described techniques for training robust ML models, high-quality data is essential to

yield accurate ML models. However, raw data is often noisy, incomplete, or contains outliers ; hence analyzing data

and pre-processing it are critical steps before feeding it to the model.
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Data cleaning ensures the reliability and accuracy of the training data, that directly impacts the model’s perfor-

mance. Data cleaning consists of pre-processing the data set to deal with missing values, outliers, and other data

inconsistencies. Outliers can also be detected and either removed or treated separately.

Data imbalance occurs when the distribution of classes in the data set is significantly skewed, with one class

being much more prevalent than others. This can lead to less accurate and biased models that favor the majority

class. For instance, for a binary-classification problem with 2 classes A and B, if the proportion of labeled data from

class A is highly disproportional compared to B. The trained model will also tend to label the predicted result as from

the class A. To address data imbalance problem, various techniques can be employed. One of them is oversampling

involving replicating examples from the minority class. Random under-sampling that removes examples from the

majority class is also often useful. These techniques aim to improve the model’s performance on underrepresented

classes. Data augmentation, for the minority class data, can also achieve the goal by increasing the amount of data

by generating new data points from existing data. For instance, for tasks involving image inputs, different image

processing techniques can be used including gray-scaling, re-scaling, flipping, etc.

In regression tasks, the range of output values (and input values) has also a important impact, especially when

the values show a significant difference in orders of magnitude. If the target data has a wide range with extremely

small but also large values, then normalization (or standardization) method combined with a logarithmic function to

pre-process the data is one effective way to help in compressing the data. Once the model has been trained, an

inverse transformation is needed to convert and scale the predicted values into the original values.

1.3 Summary

In this chapter, first, we have introduced key elements of the optical coherent communication systems using WDM

architecture. We have presented the models of the different sources of impairments during the propagation of the

transmitted signal in a long-haul fiber-optic link as well as the DSP techniques that are used to recover the signal.

The different metrics to quantify the final system performance were also recalled. Different optical amplification

techniques were also presented with their benefits and disadvantages. Then, we have introduced the ML methods

and particularly described the structure of ANNs and important elements of their training procedure leading to an

accurate model that meets the needs of our applications that will presented in the next chapters.
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Chapter 2

Raman amplifier design

This chapter focuses on the study of a machine learning based method for the design of an S+C+L UWB Raman

amplifier in a hybrid Raman/SOA scheme. In the first part, we demonstrate experimentally the ability of an ANN

to predict the overall loss profile taking into account several effects including fiber attenuation, inter-channel SRS

and backward pumping, for any Raman pump current configuration. In the second part, we use another ANN to

design the UWB Raman amplifier, by predicting the required pump currents given a target loss profile, and we

experimentally validate our method in a 3× 100 km SSMF configuration. Finally, we evaluate the performance of this

inverse design ML method to realize an arbitrary pre-selected loss profile for a real-case multi-span transmission

setup.

2.1 Introduction

Raman amplifiers were firstly proposed in 1972 [40], but their applications started after 2000s thanks to the

development of high power and compact lasers. Instead of lumped amplification, one or multiple high power lasers

are injected inside the in-line transmitted fiber (i.e they co/contra-propagate with the signal), called pump lasers so

their power can be transferred to lower frequency transmitted signal hence amplifying the signal. Raman amplifiers

present a significant advantage over EDFAs in terms of noise figure (NF) and their ability to provide arbitrary gain

profiles over a broad bandwidth.

In subsection ii, we will see that the power evolution is governed by Eq. (2.5). To obtain the gain profile and

NF of a Raman amplifier, the key parameters are : the number of pump lasers, their power and their frequency

values, and the input powers of the WDM channels. This flexibility allows Raman amplifier to deliver arbitrary gain

profiles for ultra-large band systems. Nevertheless, for each desired Raman amplifier configuration, heavy and time-

consuming computations are still needed, if one uses a numerical method to solve simultaneously the set of coupled

ODEs for all WDM channels. Besides, the SRS effect, which causes a power transfer from higher frequencies to
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lower frequencies, also need to be considered in UWB systems. Fig. 2.1 illustrates different loss profiles, measured

form a 100-km SSMF span output and input spectra, with different Raman amplifier power configurations in a contra-

propagating scheme. The loss profiles account for backward Raman amplifier gains, fiber loss and impact of SRS. To

account for SRS, given a WDM comb with 𝑁 channels, an additional set of coupled ODEs, one for each transmitted

channel, has to be solved likewise. Consequently, Raman amplifier gain, combined with fiber attenuation and inter-

channel SRS effect, make the prediction of the spectral profile even more complex, because it requires a heavy

computational effort.
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FIGURE 2.1 – Loss profiles for different backward Raman amplifier configurations

2.2 Raman effect in fiber optics

The spontaneous Raman scattering was named after Sir Chandrasekhara Venkata Raman, who discovered the

effect in 1928. Photons of the incident optical field can be scattered by quantized vibrations called optical phonon

generating a lower-frequency photon. Raman scattering can occur in all materials but in optical fibers, the dominant

effect is caused by the Si-O-Si bound.

Raman scattering can also be stimulated by a pump leading to the nonlinear phenomenon of stimulated Raman

scattering (SRS) that was briefly described in subsection ii of section 1.1.4. The initial signal photon is thus amplified

by the pump photon. SRS can occur both in forward and backward directions.

2.2.1 Intra-channel SRS

For WDM signal transmission scheme, the SRS is an undesirable effect, specially for broadband transmission

configuration. Indeed, an equalized WDM channels configuration is essential. However, this intra-channel SRS (I-

SRS) effect induces a power tilt with an energy transfer of the optical propagating waves at higher frequency consi-
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dered as "pumps" to waves at lower frequency considered as "signals", as shown in Chapter 1. The accumulated

tilt effect leads to a degraded performance of some channels at higher frequencies in long distance transmissions.

The power evolution of the WDM signal propagating in the same positive direction (forward) is governed by a set

of 𝑀 coupled ordinary differential equations (ODE) with 𝑀 being the total number of all frequency components [41,

6, 42]. The average power of each optical wave 𝑃 (ν) at frequency ν obeys :

𝑑𝑃 (𝑧, ν)
𝑑𝑧

= − α(ν)𝑃 (𝑧, ν)︸        ︷︷        ︸
attenuation

+
∫
µ>ν

𝐶𝑟 ( |ν − µ|)𝑃 (𝑧,µ)𝑃 (𝑧, ν)︸                          ︷︷                          ︸
Raman stimulated emission

+ 2ℎν 𝐶𝑟 ( |ν − µ|)𝑃 (𝑧,µ)
[
1 + 𝑛𝑠𝑝,𝑟 (µ − ν)

]︸                                                ︷︷                                                ︸
Raman spontaneous emission

 𝑑µ

−
∫
µ<ν


(µ
ν

)
𝐶𝑟 ( |ν − µ|)𝑃 (𝑧,µ)𝑃 (𝑧, ν)︸                                 ︷︷                                 ︸

Raman stimulated absorption

+ 4ℎν𝐶𝑟 ( |ν − µ|)𝑃 (𝑧,µ)
[
1 + 𝑛𝑠𝑝,𝑟 (ν − µ)

]︸                                                ︷︷                                                ︸
Raman spontaneous absorption


𝑑µ

(2.1)

with α(ν) the attenuation in [km-1], 𝑃 power in [W], 𝐶𝑟 ( |ν − µ|) the Raman gain efficiency of the fiber between

frequencies µ and ν, expressed in [W-1·km-1]. It is defined as follows :

𝐶𝑟 ( |ν − µ|) =
𝑔𝑟 ( |ν − µ|)

𝐴𝑒 𝑓 𝑓

(2.2)

with 𝑔𝑟 the measured Raman gain coefficient which is specific to the fiber and expressed in [m/W] and 𝐴𝑒 𝑓 𝑓 the

effective core area. The Raman gain does not depend on the direction of the pumps and the signals, it mainly

depends on the frequency difference between them. The normalized 𝑔𝑟 of an SSMF is illustrated in Fig. 2.2. The

gain bandwidth is over 40 THz wide, with the dominant peak near 13 THz frequency difference.

The temperature-dependant phonon occupancy factor 𝑛𝑠𝑝,𝑟 is defined as :

𝑛𝑠𝑝,𝑟 (ΔΩ) =
1

𝑒
ℎΔΩ
𝑘𝐵𝑇 − 1

(2.3)

with ℎ the Plank’s constant, 𝑘𝐵 the Boltzmann constant,𝑇 the temperature of the fiber in kelvin and ΔΩ the frequency

difference.

This model includes physical effects such as attenuation, stimulated Raman scattering, spontaneous Raman

scattering and its temperature dependence. The term
(
µ

ν

)
accounts for the energy difference between photons

at frequency µ and ν. The factor of 2 in the first term accounts for the two polarization modes of the fiber. An

additional factor of 2 in the second term includes emission in both the forward and the backward directions, after the

spontaneous absorption of photons at frequency ν that causes a depletion of the signal power 𝑃 (ν).
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FIGURE 2.2 – Normalised Raman gain at 1550 nm for a SSMF adapted from [40]

2.2.2 Raman amplifier

Compared to the adverse effect of I-SRS, we could benefit from the SRS effect by using additional external high

power pumps to amplify the propagating optical signal and thus build a so-called "Raman amplifier".

i Raman amplifier types

Raman amplifiers are mainly divided into two classes : distributed amplifiers and discrete amplifiers. For the

discrete scheme, a lumped element is inserted into the transmission line as a gain medium. Shorter-length fiber

span (a few kilometers) with a smaller effective area 𝐴𝑒 𝑓 𝑓 , hence larger Raman gain efficiency 𝐶𝑟 such as dispersion

compensation fibers (DCF) and highly nonlinear fibers, are commonly used. However, those fiber’s CD and nonlinear

coefficient γ can also significantly affect the generation and accumulation of nonlinear noise. On the other hand,

the distributed amplification gained in popularity because it does not require any additional special fibers and can

produce less nonlinear noise. In a distributed configuration, the amplifying medium is the transmission optical fiber

itself. Fig. 2.3 shows a simple schematic of a distributed Raman amplifier in a a bi-directional configuration with one

co-propagating pump laser and another one in a contra-propagating mode.

Since the Raman amplification does not depend on the propagation direction, the pumps and signals can propa-

gate in different directions. We denote with a “+” sign the forward propagation and a “−” sign the backward one. For

a signal propagating in the positive direction (𝑧 > 0), “ + ” denotes the co-propagating pumps (same direction than

the signal) and “ − ” denotes the contra-propagation pumps (opposite direction of the signal). A bi-directional ampli-

fier employs both co-propagating and contra-propagating pumps. The contra-propagating scheme is more common

since it reduces the total optical power at the beginning of the fiber thus causing less nonlinear distortions because

the pump power is not added to the signal power like when using the co-propagating scheme.
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FIGURE 2.3 – Schematic illustration of distributed Raman amplifier with one single pump (forward or backward
mode)

ii Raman amplification ODEs

Similarly to Eq. (2.1), the pump’s power and signal’s power evolutions are governed by a set of ODEs. Since the

lasers used in the Raman amplifier operate at high power, the spontaneous Raman effect can be ignored because

it would be weak compared to the other terms derived from the SRS effects.

Under this configuration with one pump and one signal, the set of two coupled ODEs that governs the evolution

of pump and signal powers is expressed as follows :


𝑑𝑃𝑠
𝑑𝑧

= −α(ν𝑠)𝑃𝑠 +𝐶𝑟 ( |ν𝑠 − ν𝑝 |)𝑃±𝑝 𝑃𝑠

± 𝑑𝑃±𝑝
𝑑𝑧

= −α(ν𝑝)𝑃±𝑠 −
(
ν𝑠
ν𝑝

)
𝐶𝑟 ( |ν𝑠 − ν𝑝 |)𝑃𝑠𝑃±𝑝

(2.4)

with 𝑃𝑠 the signal power at frequency ν𝑠 and 𝑃𝑝 the pump power at frequency ν𝑝 . The sign ± corresponds to co-

propagating pump 𝑃+𝑝 and counter-propagating pump 𝑃−𝑝 , respectively, since the signal wave is propagating in the

forward direction.

We can generalize Eq. (2.4) for a broadband Raman amplification. The optical power of each pump or signal

component at frequency ν is governed by :

±𝑑𝑃
± (𝑧, ν)
𝑑𝑧

= − α(ν)𝑃± (𝑧, ν)

+
∫
µ>ν

{
𝐶𝑟 ( |ν − µ|)𝑃𝑎𝑙𝑙 (𝑧,µ)𝑃± (𝑧, ν)

}
𝑑µ

−
∫
µ<ν

{(µ
ν

)
𝐶𝑟 ( |ν − µ|)𝑃𝑎𝑙𝑙 (𝑧,µ)𝑃± (𝑧, ν)

}
𝑑µ

(2.5)

where the sign ± corresponds to forward-propagating wave and backward-propagating wave respectively and the

total pump power at frequency µ (accounting forward-propagating and backward-propagating waves) 𝑃𝑎𝑙𝑙 (𝑧,µ) =

𝑃 (𝑧,µ)+ + 𝑃 (𝑧,µ)−.

Consequently, to obtain numerically the Raman amplifier gain profiles, one need to solve a set of 𝑀 +𝑁 coupled
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ODEs with 𝑀 frequency components of the signal and 𝑁 laser pumps used in the Raman amplifier. Thus, the

computation of the gain profiles are very time-consuming.

Like all optical amplifiers, Raman amplifiers also produce ASE noise generated by spontaneous Raman scatte-

ring and amplified by SRS. Similar to Eq. (2.1), the evolution of the ASE power 𝑃𝐴𝑆𝐸 (ν) at frequency ν of a Raman

amplifier is given by [6] as follows :

±
𝑑𝑃±

𝐴𝑆𝐸
(𝑧, ν)

𝑑𝑧
=

− α(ν)𝑃±𝐴𝑆𝐸 (𝑧, ν)

+
∫
µ>ν

{
𝐶𝑟 ( |ν − µ|)𝑃𝑎𝑙𝑙 (𝑧,µ)𝑃±𝐴𝑆𝐸 (𝑧, ν) + 2ℎν 𝐶𝑟 ( |ν − µ|)𝑃𝑎𝑙𝑙 (𝑧,µ)

[
1 + 𝑛𝑠𝑝,𝑟 (µ − ν)

]}
𝑑µ

−
∫
µ<ν

{(µ
ν

)
𝐶𝑟 ( |ν − µ|)𝑃𝑎𝑙𝑙 (𝑧,µ)𝑃±𝐴𝑆𝐸 (𝑧, ν) + 4ℎν 𝐶𝑟 ( |ν − µ|)𝑃𝑎𝑙𝑙 (𝑧,µ)

[
1 + 𝑛𝑠𝑝,𝑟 (ν − µ)

]}
𝑑µ

(2.6)

By ignoring the absorption effect of the ASE, the generation and amplification of total ASE is expressed as

follows :

±
𝑑𝑃±

𝐴𝑆𝐸

𝑑𝑧
=−α(ν)𝑃±𝐴𝑆𝐸︸       ︷︷       ︸

attenuation

+
∫
µ>ν

𝐶𝑟 ( |ν − µ|)𝑃𝑎𝑙𝑙 (𝑧,µ)𝑃±𝐴𝑆𝐸︸                           ︷︷                           ︸
amplification through SRS

+2ℎν 𝐶𝑟 ( |ν − µ|)𝑃𝑎𝑙𝑙 (𝑧,µ)
[
1 + 𝑛𝑠𝑝,𝑟 (µ − ν)

]︸                                                     ︷︷                                                     ︸
generation through spontaneous emission

 𝑑µ
(2.7)

with the boundary conditions that 𝑃+
𝐴𝑆𝐸
(0) = 0 and 𝑃−

𝐴𝑆𝐸
(𝐿) = 0

Finally the NF is defined as [6] :

𝑁𝐹 ≈
2𝑃+

𝐴𝑆𝐸
(𝐿)

ℎν𝐵𝑟𝑒 𝑓𝐺𝑛𝑒𝑡

+ 1
𝐺𝑛𝑒𝑡

(2.8)

with 𝐵𝑟𝑒 𝑓 being the reference bandwidth and where the net gain is defined as follows :

𝐺𝑛𝑒𝑡 =
𝑃𝑠 (𝐿)
𝑃𝑠 (0)

(2.9)

For a transmission link composed of several fiber spans, we can use the chain rule in Eq. (1.34).

iii Advantages and challenges

Distributed Raman amplification exhibits several benefits compared to lumped amplification using EDFAs. First, it

has been shown that the Raman amplifier has a lower total NF [6]. To understand this NF reduction, we can consider

a link composed of one single fiber span and an amplifier as an example. For distributed Raman amplification, the

signal and ASE are both attenuated (cf. Eq. (2.7)) in the fiber whereas for a lumped amplifier, only the signal will
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be attenuated as the amplifier is placed at the end of the fiber span. Moreover, a multi-pump amplification scheme

makes the design of broad-band amplifiers with a large gain bandwidth possible. This advantage makes it popular for

ultra wide-band transmission experiments. Finally, another advantage is the flexibility of the gain spectrum design. A

Raman amplifier achieving a desired gain spectrum can be tailored by adjusting the pump wavelengths and powers.

However this advantage also leads to one of the main challenges in designing the adequate configuration since it

involves solving a set of coupled ODE though time-consuming numerical solvers.

2.2.3 Hybrid Raman amplification

Conventional amplification methods such as Raman amplifiers, EDFAs and SOAs were used in deployed WDM

networks. Each of these amplification techniques has its own drawbacks and benefits. The main issue of SOAs is

their production of a large amount of ASE as well as the introduction of serious distortions to the optical signal. On

the other hand, EDFAs produce less signal distortions and less ASE but their gain spectrum bandwidth is narrower,

only about 40 nm. Besides, EDFA’s gain profiles are not flat. For Raman amplifiers, they introduce even less noise

and they allow for the achievement of flexible gain profiles as it can be adjusted by varying the number of pumps

as well as the frequency and power of each pump. However, high power pumps are often needed to achieve high

gains so its use as a unique amplification solution is not economically viable. In addition, high power pumps can

also induce higher nonlinear distortions which impact the system performance.

Hybrid optical amplification techniques are a promising technology for future WDM multi-terabit systems provi-

ding good transmission performance and energy efficiency [2, 3, 4, 5]. Indeed, hybrid optical amplifiers are designed

to achieve large gain bandwidth, to minimize the impairments, due to ASE or nonlinear distortions, and to maximize

the transmission length. Hybrid Raman/EDFA [43] and hybrid Raman/SOA [44, 45] schemes showed promising re-

sults for UWB transmission and achieved world-record transmission capacities. For instance in [45], they achieved

a 107-Tb/s transmission throughput over a continuous 103 nm optical bandwidth using this hybrid configuration.

2.2.4 Raman amplifier design challenges

One major advantage of a Raman amplifier is the ability to shape the spectral gain profile by changing the power

and frequency of the pump lasers. However, it is problematic to inverse design the appropriate Raman amplifier,

i.e. to obtain the pump lasers’ configuration to obtain a desired gain profile. For instance, in a multi-span wide-

band transmission system, flat-gain, tilted-gain or flat-power configurations are desired. A well-designed link should

operate with almost flat power in every span which may be adjusted using Raman amplifiers. Arbitrary gain profiles

are also needed in hybrid Raman amplification configurations (hybrid Raman-EDFA or hybrid Raman-SOA) and can

be obtained thanks to the flexibility of Raman amplifiers.

Nevertheless, finding the right configuration of the pump lasers can be very time-consuming with numerical
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methods, i.e. solving a system of nonlinear ODE, as discussed above. Moreover, the multi-dimensionality of the

problem increases with the number of used pumps. Besides, the system of coupled ODE does not always guaranty

a solution. So ML-based methods have been proposed to tackle this problem. Indeed, ML solutions become popular

in the optical communications community and different applications have been explored in the last years [9]. From

channel estimation and signal recovery to performance monitoring or prediction, ML showed its high potential [7, 9,

8]

Over the past few years, ML has also been applied to analyse and design broadband Raman amplifiers. Prior to

this work, two different approaches have been proposed. First, [46] proposes to address this problem using iterative

optimization algorithms such as genetic algorithms. However, one major drawback of this method is that every

small change in the system configuration requires to restart the full time-consuming and high-latency optimization

process. Besides, the initialization has a high impact on its performance and a solution is not always guaranteed.

Other methods based on optimization loops [47] also encountered the same issue because they require multiple

iterations to find an optimized solution and they have to be rerun for each desired Raman gain configuration.

Another approach is to directly use ML to learn the mapping between the Raman amplifier configuration para-

meters and the resulted gain profile. Once the ML model has been correctly trained, arbitrary gain profile can be

used as the input of the model to make a prediction of the corresponding pump configuration. One major benefit of

this method, compared to the optimization algorithm, is that the prediction process, called inference in ML language,

is very fast. Another one is that it does not require re-training the ML model when the desired gain profile of the

Raman amplifier changes, for fixed operation conditions (same transmission setup, same propagation orientations,

etc.).

Prior to this work, the training dataset was essentially generated from pure simulations and ML-based models

were mainly evaluated with a simulated setup [48, 49, 50]. In [51], the authors used experimental data to train and

evaluate the ML framework for the Raman amplifier design in a hybrid Raman/EDFA scheme, but only in C+L band.

In our study, we demonstrated an ML method for UWB Raman amplifier, in a hybrid Raman/SOA configuration, with

experimental data. We show that the method is fast and accurate over a 100 nm S+C+L UWB spectrum with 5 Raman

pumps. Not only the approach considers the Raman amplifier gain, but also takes into account the attenuation in

the fiber span and the I-SRS effect.

2.3 Experimental setup

To generate the experimental data, we use the setup in Fig. 2.4. Three different ASE noise sources and an UWB

WSS generate a 100 nm continuous spectrum, spreading from 1515 to 1615 nm. This spectrum is amplified by an

UWB SOA before being sent to the fiber under test, which is a 100 km SSMF fiber span. We use backward Raman

amplification with 5 pumps per polarization located at 1410, 1435, 1455, 1490, and 1510 nm. A 99%/1% coupler, an
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optical switch and an optical spectrum analyzer (OSA) are used to obtain the UWB power spectrum at the span

input and output respectively as shown in Fig. 2.4. Input and output calibrated spectra are respectively shown in

black and green lines in dB scale in Fig. 2.4. We define the span loss profile as the difference between those power

profiles, as represented in red in Fig. 2.4. This loss profile accounts for the backward Raman pumping contribution

which depends on the values of the 5 pump currents, but also on the fiber attenuation and on the SRS occurring in

high power UWB transmission. We set the same current value on both polarization states for each wavelength.

In this work, we operate the SOA to provide, at the fiber input, a 21 dBm optical spectrum with a 6 dB tilt over

the whole bandwidth, to meet the operation conditions of a previous transmission experiment from our group [52].

We then randomly and independently choose the values of each of the pump currents from a uniform distribution

between [200, 1500] mA and measured 10000 random configurations. The data set has been arbitrarily split into 80%

for training and 20% for validation respectively.
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FIGURE 2.4 – Setup for a single span SSMF with 5 pumps for data collection, training and validation of the ML
model.

2.4 Machine learning-aided model

ML can be a powerful tool in solving our problem. Indeed, if a small and simple ML model can be correctly

trained, then the computation time for the predictions will be largely reduced without degrading the accuracy. So

the most challenging part is the choice of the ML model (trade-off between accuracy and speed), and the way

to train efficiently the chosen model. As presented in section 1.2.1 of Chapter 1, ANN is a popular ML model for

regression problems thanks to its simple structure and very good results. In what follows, we will test and evaluate

the performance of two ANN models for two use-cases.

2.4.1 Generative model

First, we aim to find a model that predicts the loss spectrum of the Raman amplifier (including Raman amplifier

gain, SRS and attenuation in the span). We call this model "generative model" and we will use it for the design
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of transmission lines, for instance to predict the behaviour of the Raman amplifier. Fig. 2.5 illustrates its principle

and its ANN architecture. The ANN for the generative model is composed of an input layer with 𝑛 = 5 neurons

(corresponding to the number of Raman pump currents used in the experiment), an output layer with 𝑚 = 100

neurons (corresponding to the spectral locations) to compute the loss profile and 2 hidden layers with 𝑝 = 150

neurons. The activation function was selected to be ReLU for the hidden layers and linear for the output layer. Those

hyper-parameters are chosen following a random search method. RMSE is the used cost function defined as :

𝐽𝑅𝑀𝑆𝐸 (𝑦, 𝑦) =

√√√
1
𝑁

𝑁∑︁
𝑖=1
(𝑦𝑖 − 𝑦𝑖 )2 (2.10)

with 𝑦𝑖 and 𝑦𝑖 are the target and predicted loss values in dB.
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FIGURE 2.5 – ANN architecture for generative model A

After the training stage with 8000 configurations, we evaluate the performance of our ANNs over a validation set

containing the remaining 2000 configurations. For each pump configuration of the validation set, we predict the loss

profile with the ANN. Fig. 2.6 shows the prediction error distribution for 10 wavelengths in the spectrum : the ends

of the whiskers indicate the 5𝑡ℎ and 95𝑡ℎ percentiles of the population, the box captures the half population between

the 1𝑠𝑡 quartile and 3𝑟𝑑 quartile, and the horizontal line inside the box indicates the population median. Outside

cross markers correspond to predictions that are considered as outliers. We observe that for all wavelengths, the

median error does not exceed ±0.2 dB, and that 90% of the validation set show prediction errors less than ±0.6 dB.

To evaluate the performance of our method, we use the root mean square error (RMSE), defined in Eq. (2.10).

Fig. 2.7 shows the probability density function (PDF) and cumulative density function (CDF) of the RMSE bet-

ween the initial measured profile and the predicted one over the whole validation set. The mean value of RMSE

is 0.25 dB. Besides, the CDF indicates that 95% of the predictions give an RMSE less than 0.51 dB. Finally, we plot

in Fig. 2.8 the true spectrum (solid line) and the prediction of our ANN (diamond markers), for the best fit with an

RMSE of 0.099 dB and for the case corresponding to the 95th RMSE percentile with an RMSE of 0.51 dB. This figure

clearly illustrates the high accuracy of the prediction for our 100 nm-wide optical signal.
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FIGURE 2.6 – Whisker plot of the loss profile error distribution vs. wavelength. The ends of the whiskers indicate
the 5𝑡ℎ and 95𝑡ℎ percentiles of the population, the box captures the half population between the 1𝑠𝑡 and 3𝑟𝑑 quartiles,
and the horizontal line inside the box indicates the population median
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FIGURE 2.7 – RMSE of validation errors.

2.4.2 Inverse model

The role of the "inverse model" is to generate the configuration of the Raman pump according to a desired loss

profile. In our case, the output of the inverse model is a vector of pump currents. Fig. 2.9 shows the chosen ANN

architecture. The ANN architecture to model the inverse problem is composed of an input layer with𝑚 = 100 neurons,

an output layer with 𝑛 = 5 neurons and 2 hidden layers with 𝑘 = 300 neurons. The selected activation functions are

the same as the one in model A : ReLU for the hidden layers and linear for the output layer. Like the model A, those

hyper-parameters are also chosen with a random search method. It is worth to notice that the number of neurons

in the hidden layers is larger for the best inverse ANN model compared to the best generative ANN model (𝑘 > 𝑝).

Indeed, the inverse design problem is more complex so it requires a larger ML model.

To evaluate the performance of our inverse model, we use the same validation set containing 2000 measure-

ments. For each measurement in the validation data set, we feed the loss profile as the input of the ANN and we

predict the pump current configuration. To assess the performance of our ANN, we first show in Fig. 2.10 (a), the
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relative current prediction errors for the whole validation set. The prediction error for the 5 currents {𝐼1, ... , 𝐼5} is less

than ±13% for 90% of the cases. However, given that the solution for the current pump configuration is not unique, a

high error in the pump current prediction does not always lead to a high error in the achieved loss profile. Hence, for

the 2000 cases of the validation dataset, we re-measure the loss spectrum to observe the impact of current prediction

error on the loss spectrum.

The proposed workflow show in Fig. 2.11 carries out the following steps in sequence :

— For the 2000 target loss profiles, we use our trained ANN to predict the currents ;

— We update the Raman amplifier’s configuration with the obtained 2000 vectors of pump current vectors in our

initial experimental ;

— We measure the obtained loss profile with those pump current configuration ;

— We then compute the error between the initial target loss profile and the re-measured loss profile.

The loss error distribution is given in Fig. 2.10(b) : 90% of the cases show a prediction error less than ±0.9 dB,

with 50% of the cases with ±0.6 dB error. The PDF and CDF of the RMSE are shown in Fig. 2.12 showing good
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FIGURE 2.10 – Box-plot of the prediction errors : (a) pump current prediction error distribution ; (b) loss profile error
distribution after re-measurement with predicted currents.

accuracy between target profile and re-measured profile after the prediction of current values, with a mean RMSE

of 0.41 dB, and 95% of predictions resulting in loss RMSE less than 0.74 dB. We show in Fig. 2.13 the initial loss

profiles as target profiles (solid line) and the re-measured loss profiles (diamond makers) using the predicted pump

currents from the ANN model B for the best fit with an RMSE of 0.099 dB and for the case corresponding to the 95𝑡ℎ

RMSE percentile, i.e. with RMSE of 0.74 dB.

For this Raman amplifier design method, we attribute the worse performance, compared to the one of the gene-

rative model, to the higher complexity of the prediction in the inverse problem and to the uncertainties of loss profile

re-measurements after applying the predicted pump currents.
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FIGURE 2.11 – The schematic flowchart to evaluate the performance of our ANN-based inverse model, the ML
model B.

2.5 Application to a multi-span transmission

After analyzing the ANNs on a single-span system, we apply them in this section to optimize a multi-span

transmission setup composed of a 3-spans homogeneous link so the three spans are identical. In a multi-span

experiment, we usually aim at setting the transmission line such that the power spectrum is identical at each span
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input, as shown in the inset 1 of Fig. 2.14. With the power configuration described in a previous transmission work

from our research group [52], we define our target loss profile as a linear profile with a tilt of 6 dB over 100 nm,

yielding the power spectrum of the inset 2 of Fig. 2.14at the input of the next SOA.

We use the ANN of our design model to generate the corresponding pump current values, then measure the

resulting loss profile for the first span and show the result in Fig. 2.15 (solid line in red). We also show on this

figure the loss profile measured from an iterative optimization of the pump currents by hand-tuning without using

the ML algorithm (solid line in blue). The loss profile resulting from the hand-tuned method oscillates around the

target gain profile (dashed line) while the measured loss profile using ANN prediction of pump currents greatly limits

the ripples. The magnitude of the oscillations, induced by the multi-pump design, is much smaller when using the

trained ANN model B. The measured loss profile shows good agreement with the target loss profile, exhibiting a

maximum absolute error of 1.52 dB and an RMSE of 0.76 dB. On the other hand, the hand-tuned solution shows a

maximum absolute error of 3.9 dB and RMSE of 2.1 dB. We had similar results with the two other spans since the

54



three spans are exactly identical.
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2.6 Conclusion

The aim of this chapter was to find an ML method to accurately and rapidly design Raman amplifiers in the

context of UWB optical transmission system design. The key enabling technique is the ANN framework, in particular

using three-layers ANN framework which presents a good compromise between complexity and precision.

In the first part of this chapter, we designed and experimentally tested the performance of our ANN model which

predicts the 100 nm-wide loss spectrum given a set of pump currents. We achieved a mean RMSE of 0.25 dB with

95% of predictions with an RMSE less than 0.51 dB.
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In the second part of this chapter, we described the inverse design ANN framework to predict the pump confi-

guration according to a target loss profile and characterized its performance by fitting the predicted pump current

vector to the initial setup and comparing the re-measured loss profile to the initial one. We achieved a mean RMSE

of 0.41 dB with 95% of predictions with an RMSE less than 0.74 dB.

Finally, we applied our solution to a real-case transmission experiment and achieved outstanding performance.

Following the requirements of previous experiments, we wanted the ANN to deliver a target loss profile for which

we ignored whether a plausible pump-current configuration exists. We demonstrated the capacity of our solution to

tackle this problem with a maximum absolute error of 1.52 dB and RMSE of 0.76 dB. Therefore, the proposed method

can be employed in the multi-span long haul network to realize desired distributed Raman gain profiles and achieve

an optimization of the overall system throughput for S+C+L UWB transmissions.

To conclude, we reported on the experimental demonstration of the use of ANNs to learn the mapping between

Raman pump currents and UWB loss profile over a continuous 100 nm-wide optical spectrum in a 100 km-long

SSMF span. This ML framework can be used for S+C+L UWB Raman amplifier design.

2.7 Recent developments

After this work was published, other research teams continued to study this field and proposed further ML

methods to address the challenge of Raman amplifier design.

First, fine-optimization [53, 54, 55] methods and ensemble methods [56] were used to to further enhance the

accuracy of the designed Raman amplifier through a gradient descent method by combining the predicted pump

configuration with a previously trained ML model (which gives a prediction of the gain profile given a set of pump

parameters).

More recently, a physics-aided ML framework has also be proposed [57, 58] to make the ODE fully differentiable

and then a gradient-based optimization was used to achieve an optimal design. This approach avoids re-generation

of the training dataset and re-training of the model, if the constraint of the amplifier differs from its initial conditions ;

for instance, if the total number of pumps changes.

Besides, other configurations of the Raman amplifier have also been investigated mixing discrete and distributed

amplification schemes using forward, backward or bi-directional amplifiers.
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Chapter 3

KerrNet : a fast, accurate and general QoT

tool using machine learning

In this chapter, we focus on the estimation of the Kerr nonlinear interference (NLI) variance (in absence of

nonlinear compensation) in C-band using a ML-based framework to accelerate the numerical computation of the

time-domain regular perturbation (TD-RP) analytical model. Our solution provides an reliable and ultra-fast quality

of transmission (QoT) estimation tool for both existing and future optical networks.

First, we present a review of previous studies. Second, we review the basics of the TD-RP model derived from the

first order perturbation method in the time domain. Then, we explain and validate our solution, called KerrNet, in a

simplified case of a twenty-span homogeneous transmission link. Finally, we extend our solution to the general case

with arbitrary WDM combs configuration with heterogeneous spans composed of different fiber spans (non-identical

fiber types and lengths).

3.1 Introduction

Optical fiber communication systems have revolutionized the way we transmit data over long distances, forming

the backbone of modern telecommunications networks. The success of these systems hinges on the ability to

accurately estimate and manage various impairments that can degrade signal quality. Driven by a rapid increase of

the throughput demand and loads, the control and optimization of the capacity of our current and future networks,

is becoming a main concern. To enable dynamic traffic-driven service provisioning, a robust and real-time QoT

estimation method is required.

Different sources of impairments that affect the signal quality were presented in Chapter 1 subsection i. While

other impairments such as transceiver penalties and ASE noise are more readily estimated, the most challenging
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but crucial part in QoT estimation, is the calculation of the Kerr NLI noise variance. Indeed, transceiver impairments

are often well-characterized and can be quantified through back-to-back characterizations. These parameters can

be directly measured or calculated based on transceivers’ specifications. As for the ASE noise, it primarily depends

on the inline optical amplifiers’ characteristics and can be estimated through measurements or simple models based

on amplifier NF.

On the other hand, the nonlinear distortions estimation, arising from the Kerr effect, is the most challenging step

considering computational time. Thus, low margin optical network planning and optimization is becoming increa-

singly complex because of the large number of parameters and NLI computation time. Since the complexity rises

with the number of channels, it is essential to have a low-complexity method that can give accurate predictions for

wide-band WDM systems.

The accurate estimation of NLI based on split-step Fourier method (SSFM) simulations is prohibitively com-

plex. Consequently, analytical models have been developed using the regular perturbation (RP) method in either

frequency domain or time domain. However, the proposed analytical model either contain multi-dimensional inte-

grals that make them unsuitable for real-time use, or otherwise assume an "ideal" system. The Gaussian noise

(GN) model [28] is based on RP method in the frequency domain and many assumptions are made to simplify

the model and reduce the computation time significantly, albeit at the cost of a reduced accuracy. In particular, the

modulation format impact is ignored. An upgraded version of the GN model called enhanced GN (EGN) model [10]

is modulation-aware by introducing a corrective term computed with multi-dimensional integrals at the expense of

increased computational complexity. Consequently, the exact EGN model does not meet the need of ultra-fast QoT

estimation and closed-form EGN models have been developed with an unavoidable sacrifice on the accuracy and

generalization ability of the model.

The time-domain regular perturbation (TD-RP) model proposed by [12], exactly expresses nonlinear distortions

up to the first-order of fiber nonlinear coefficient. This model also requires the computation of multi-dimensional inte-

grals via Monte-Carlo (MC) integration. While accurate up to the first-order, the EGN and its time-domain equivalent

TD-RP models’ bottleneck is the numerical evaluation of various multi-dimensional integrals.

In the recent years, many research groups have published on applications of ML in estimating the QoT of optical

networks, aiming to develop ultra-fast and reliable tools for network planning and control, and system design opti-

mization [7]. The ML-based techniques can be classified into two categories : either they use binary classification

to decide whether or not a specific light-path is feasible [59] ; or they use regression to predict crucial metrics, for

instance, bit error rate, SNR , NLI variance [60, 61], etc. For the performance metric estimation, some authors have

proposed to use ML to approximate the accurate EGN theory, or to improve the approximate closed form formu-

lations by introducing and fine-tuning fiddling parameters [60, 61, 62] ; however, relying on simplifying hypotheses

and introducing fitting parameters require that the training be done by sampling over an extremely large space of

physical parameters (wavelength-dependent dispersion and attenuation coefficients, fiber lengths, etc.) and all sys-
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tem configurations (number of channels, modulation formats, channel spacing, loading scheme, etc.) ; therefore the

generalization and reliability of the resulting tool is a challenge. The same sampling and generalization issues are

faced by ML-based estimation tools that purely relies on the outputs of SSFM to train the ML model [63].

In our study, we assume that all physical parameters of the link are known and can be used directly as input fea-

tures for our QoT models. The study on parameter uncertainty, which affects the performance of the QoT estimation,

has also been investigated in several papers [64, 65].

In this chapter, we present a bank of feed-forward artificial neural networks (FANN)s, that we call KerrNet, to

exactly reproduce the semi-analytical TD-RP model in a general setting of optical transmission links. The FANNs

reproduce the exact TD-RP theory and significantly reduce the computation time. Our ML-based KerrNet solution

requires training only over the various values of physical parameters (fiber span parameters, symbol-rate) but not

over the transmission system configurations (channel power, modulation format). Thus, this approach significantly

simplifies the sampling requirements and leads to a more robust and general tool. Moreover, using the TD-RP model

to train the FAANs can further accelerate the computation time of NLI variance σ𝑁𝐿𝐼 when various transmission

scenarios (channel power or the modulation format) need to be tested for the same optical link. Indeed, one major

advantage of the chosen TD-RP theory is that the computation of σ𝑁𝐿𝐼 relies on two distinct steps. The first step is

time-consuming because of the computation of perturbation coefficients X (that will be defined later in this chapter)

based on multi-dimensional integrals, which only depends on the physical parameters and are independent of

modulation format, channel power and loading scheme (fully-loaded or sparsely occupied). Then the second step

consists in computing σ𝑁𝐿𝐼 with elementary algebraic operations with the obtained X coefficients and parameters

such as the channel power, moment of the constellation, and channel occupation scheme. Consequently, it becomes

unnecessary to redo from scratch the computation of σ𝑁𝐿𝐼 if only the transmission scheme has been changed while

the physical parameters remain unchanged (for instance when only the modulation format and/or channel power is

different) while a re-computation is always needed for ML-models trained with data generated using other methods

such as EGN or SSFM.

3.2 Nonlinear interference variance estimation

3.2.1 System under study

Let us consider a general transmission case where one need to predict the performance (we only consider the

NLI variance σ2
𝑁𝐿𝐼

in this chapter) of a transmitted signal in the WDM scheme. 𝑁𝑐 WDM channels are transmitted

from A to B through the designated target path inside a meshed network (cf. Fig. 3.1). The heterogeneous link

is composed of 𝑁𝑠 non-identical spans and nodes. A stretched version of the system under study is illustrated in

Fig. 3.2.
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FIGURE 3.1 – Representation of the mesh network with 5 nodes
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FIGURE 3.2 – Representation of the stretched optical transmission link

Each fiber span, indexed 𝑘 is defined by its parameters : the dispersion coefficient profile Dk, attenuation profile

ak, nonlinear coefficient profile k, and the length 𝐿𝑘 . The power spectrum P𝑘 after the 𝑘𝑡ℎ span is non-flat due to

residual gain ripples and/or tilts of EDFAs and/or non-flat response of the WSSs in the optical nodes.

Fig. 3.3 represents the configuration of our transmitted WDM channels : the 𝑁𝑐 channels are transmitting in

the C-band the same symbol rate 𝑅. The transmission configuration with variable symbol rate WDM channels is

not studied in this thesis but the same principles can be extended to this application. We also suppose that all

WDM channels are modulated with the same modulation format. Moreover, the rest of the study do not account for

intra-channel SRS (ISRS) as it has been negligible over the C-band.
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FIGURE 3.3 – The spectrum of 𝑁𝑐 = 2𝑀 + 1 WDM channels. The channel of interest (COI) is indexed 𝑠 = 0 and the
center frequency of the 𝑠𝑡ℎ channel is 𝑠ΔΩ with ΔΩ the channel spacing. Each channel is transmitting at the same
symbol-rate 𝑅
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FIGURE 3.4 – Schematic representation of the parameters space influencing the NLI variance : the symbol rate 𝑅

and channel spacing ΔΩ, and D, , are 𝑁𝑠 × 𝑁𝑐 matrix (with 𝑁𝑐 the number of WDM channel and 𝑁𝑠 the number of
spans) containing the all spans’ dispersion, attenuation, non-linear coefficients respectively for all WDM channels.
L is a vector of size 𝑁𝑠 containing the length of each fiber span of the link

3.2.2 Parameters space

We represent the parameters space in Fig. 3.4. It is worth to notice that the number of parameters that impact

the variance of the NLI is extremely large. Thus, the expression of an analytical model, including the GN model,

is complex. Consequently closed-form EGN and GN models have been proposed to simplify the expressions by

making a trade-off between accuracy and computation speed. Thus, some authors proposes to leverage ML to

approximate the accurate EGN theory, or to improve the approximate closed form formulations by introducing and

fine-tuning fiddling parameters. However, it is obvious that this require sampling and training to be done over the

entire huge space of all physical parameters and all system configurations. Therefore the generalization ability of

the proposed methods is compromised. Furthermore, the sampling step is even more challenging since the number

of parameters is not fixed but increases with the number of spans and the number of WDM channels. That is also
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the reason why we do not rely on SSFM data to train an ML-based NLI estimation tool but use the TD-RP model

instead.

In the next section, an overview of the above- mentioned analytical models are presented with an emphasis on

the advantages of TD-RP and its suitability to train the ML-based NLI estimation tool.

3.3 Analytical model for nonlinear distortions

The NLI variance can be estimated by SSFM by solving numerically the NLSE. This method presented in sub-

section 1.1.5 is very time-consuming due to the usage of large amount of fast Fourier transforms and other mathe-

matical operations (hours to days of computation time for a link). Thus, analytical model have been developed by

different research groups using regular perturbation method to provide an analytical solution (to the first order) to

NLSE for dual-polarization WDM transmissions over multi-span links. Indeed, nonlinear distortion is relatively small

compared to the useful signal for relevant power levels in optical communications, thus, it can be treated as a small

perturbation, hence the name "regular perturbation" method.

Fig. 3.5 show an overview of different models derived from RP methods to compute the NLI variance, using

different approaches. To obtain the analytical solution, two approaches are possible. The first approach relies on

an analysis in the spectral domain and leads to GN and EGN models. A different second approach is based on a

time-domain analysis and the expressions derived from this model are the ones used in this thesis to compute the

NLI variance.

All models presented here do not take into account the ISRS. For a matter of simplicity, we will present the

analysis for a scalar field and then present the final solution generalized for a dual polarization case. For the same

reason, only the second-order dispersion term is considered (β3 and higher order terms are neglected but they can

be included in the analysis without problem).

3.3.1 Frequency domain analysis

In this subsection, we review the essential parts of the frequency-domain analysis.

The NLSE in Eq. (1.19) can be re-written in frequency domain by applying the Fourier transform.

∂

∂𝑧
𝐸 (𝑧, 𝑓 ) = −α

2
𝐸 (𝑧, 𝑓 ) + 𝑗2π2β2 𝑓

2𝐸 (𝑧, 𝑓 ) + 𝑗γ (𝐸 (𝑧, 𝑓 ) ∗ 𝐸∗ (𝑧,−𝑓 ) ∗ 𝐸 (𝑧, 𝑓 )) (3.1)

with 𝐸 (𝑧, 𝑓 ) = F {𝐸 (𝑧, 𝑡)} where F {.} is the Fourier transform and 𝑓 ∗ 𝑔 denotes the convolution operation
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FIGURE 3.5 – NLI analytical model classes

i Regular first-order perturbation method

A regular first-order perturbation (RP1) approach was exploited where the optical field is written as a perturbation

series with respect to the nonlinearity parameter γ as :

𝐸 (𝑓 ) = 𝐸 (0) (𝑓 ) + γ𝐸 (1) (𝑓 ) +𝕆(γ2) (3.2)

By substituting (3.2) into (3.1) and neglecting second-order terms 𝕆(γ2), we obtain :

∂

∂𝑧
𝐸 (0) (𝑓 ) = (−α

2
+ 𝑗2π2β2 𝑓

2)𝐸 (0) (𝑓 ) (3.3)

∂

∂𝑧
𝐸 (1) (𝑓 ) = [−α

2
+ 𝑗2π2β2 𝑓

2]𝐸 (1) (𝑓 ) + 𝑗 [𝐸 (0) (𝑓 ) ∗ 𝐸 (0)∗ (−𝑓 ) ∗ 𝐸 (0) (𝑓 )] (3.4)

Thus, the zeroth-order solution is simply the linear part of the NLSE given by :

𝐸 (0) (𝑧, 𝑓 ) = 𝐸 (0) (0, 𝑓 ) exp
(
−α

2
𝑧 + 𝑗2π2β2 𝑓

2𝑧
)

(3.5)
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The initial condition for the first-order solution at 𝑧 = 0 is :

𝐸 (1) (𝑧 = 0, 𝑓 ) = 0 (3.6)

So using Eq. (3.6) and Eq. (3.4), the first-order solution is given by :

𝐸 (1) (𝑧, 𝑓 ) = exp
(
(−α

2
+ 𝑗2π2β2 𝑓

2)𝑧
) ∫ 𝑧

0

𝐸 (0) (𝑧′, 𝑓 ) ∗ 𝐸 (0)∗ (𝑧′,−𝑓 ) ∗ 𝐸 (0) (𝑧′, 𝑓 )
exp

(
(−α2 + 𝑗2π2β2 𝑓 2)𝑧′

) 𝑑𝑧′ (3.7)

ii Gaussian noise model

To simplify the analytical model, GN model has been proposed by Poggiolini, Carena, et al. in [13], [66], and [28]

with two key assumptions : the non-linear interference (NLI) is treated as an additive Gaussian noise. Moreover,

the WDM signal is supposed to be composed of an infinite frequency comb that is shaped according to the power

spectral density (PSD) of the signal. Each discrete spectral tone carries a zero-mean complex Gaussian distributed

symbol with uncorrelated phase and quadrature components. Under those assumptions, the signal in frequency can

be written as :

𝐸 (𝑧 = 0, 𝑓 ) =
√︁
𝑓0𝐺𝑊𝐷𝑀

∞∑︁
𝑛=−∞

ξ𝑛δ(𝑓 − 𝑛𝑓0) (3.8)

where 𝐺𝑊𝐷𝑀 is the PSD of the signal at the transmitter (𝑧 = 0), ξ𝑛 are the Gaussian distributed random symbols for

the spectral tones and 𝑓0 → 0 for a "continuous spectrum". Inserting Eq. (3.8) and Eq. (3.7) in the NLSE equation

for dual polarisation case, the PSD of the NLI for a WDM signal at the end of the link 𝐺𝐺𝑁
𝑁𝐿𝐼
(𝑓 ) is given in [28]. This

expression is the famous so-called GN model reference formula (GNRF).

In a simplified system approximation, the expression can be simple and a fast computation of NLI variance is pos-

sible but in the general case, for heterogeneous links and general configuration of WDM channels, this expression

is still complex.

Moreover, it has been shown that GN model overestimates the amount of NLI with respect to QAM formats due

to the neglected modulation format dependence [67]. Indeed, due to the Gaussian assumption of the signal, GN

model is unable to predict the modulation format dependence property of NLI.

iii Enhanced Gaussian noise model

In order to accurately estimate the NLI variance, it is required to have a modulation-format aware model. An

upgraded version of the GN model, called enhanced GN-model (EGN), was presented and validated in [10], [68]

and [69]. To take into account the transmitted constellation influence on NLI, we need to drop the assumption that

the transmitted signal statistically behaves as Gaussian noise.

Finally, the PSD of the total NLI can be written as a superposition of a Gaussian constellation (with 𝐺𝐺𝑁
𝑁𝐿𝐼
(𝑓 )
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predicted by the GN model) and a modulation format dependent correction term 𝐺𝑐𝑜𝑟𝑟
𝑁𝐿𝐼
(𝑓 ) :

𝐺𝐸𝐺𝑁
𝑁𝐿𝐼 (𝑓 ) = 𝐺𝐺𝑁

𝑁𝐿𝐼 (𝑓 ) +𝐺
𝑐𝑜𝑟𝑟
𝑁𝐿𝐼 (𝑓 ) (3.9)

More details about the expression of 𝐺𝑐𝑜𝑟𝑟
𝑁𝐿𝐼

are provided in [10]. It is worth mentioning that three or more nested

integrals are computed in any of the NLI contributions (for the corrective term) with Monte Carlo (MC) integration

(see subsection 3.3.3 for more details). The accuracy of the EGN model comes at the cost of a higher computation

time.

3.3.2 Time-domain perturbation analysis

In this subsection, we describe the RP1 analysis in the time-domain developed in [70] and [11] to analyze the

NLI. For the rest of this thesis, we will refer to it as TD-RP model. This model will be used to compute the NLI

variance and then serve as a ground truth (GT) for the ML-based model described in section 3.2.

i General formulation

We assume that all WDM channels have the same pulse shaping (Eq. (1.12)) so we define the energy of the

pulse-shapes ε by :

ε =

∫ ∞

−∞
|Ψ0 (0, 𝑡) |2 (3.10)

To simplify the developments, we define a normalized total optical field 𝑈 (𝑧, 𝑡) as :

𝐸 (𝑧, 𝑡) = Ψ(𝑧)𝑈 (𝑧, 𝑡) (3.11)

where Ψ(𝑧) is the power enveloppe with the initial condition Ψ(0) =
√
ε leading to :

𝐸 (𝑧, 𝑡) = 𝑓 (𝑧)
√
ε𝑈 (𝑧, 𝑡) (3.12)

with 𝑓 (𝑧) the normalized power profile function expressed as :

𝑓 (𝑧) = exp
{∫ 𝑧

0
𝑑𝑧′ [𝑔(𝑧′) − α(𝑧′)]

}
(3.13)

with 𝑔(𝑧) and α(𝑧) the local power gain and attenuation coefficients. When we assume a lumped amplification with

EDFAs operating at constant gain mode (each EDFA exactly compensates the attenuation in the fiber span), we

have :

𝑓 (𝑧) = exp {−α(𝑧 − 𝑧𝑛−1)} for 𝑧𝑛−1 ≤ 𝑧 ≤ 𝑧0 and 𝑛 = 1, · · · , 𝑁𝑠 (3.14)
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Then, the expression of the normalized scalar NLSE can be derived from [70],[11] :

∂𝑈

∂𝑧
= − 𝑗

β2

2
∂2𝑈

∂𝑡2 + 𝑗εγ𝑓 (𝑧) |𝑈 |
2𝑈 + 𝑛(𝑧, 𝑡)√︁

ε𝑓 (𝑧)
(3.15)

with 𝑛(𝑧, 𝑡) the ASE noise source.

For the dual polarization case, the normalized Manakov equation is expressed as follows :

∂U
∂𝑧

= − 𝑗
β2

2
∂2U
∂𝑡2 + 𝑗

8
9
ε̄γ𝑓 (𝑧)U†UU + n(z,t)√︁

ε̄𝑓 (𝑧)
(3.16)

with U(𝑧, 𝑡) = [𝑈𝐻 (𝑧, 𝑡),𝑈𝑉 (𝑧, 𝑡)]𝑇 , n(𝑧, 𝑡) = [𝑛𝐻 (𝑧, 𝑡), 𝑛𝑉 (𝑧, 𝑡)]𝑇 and ε̄ = ε/2.

In the following part, we will use the scalar NLSE for simplicity and then provide the analytical solution for a dual

polarization configuration. Similar to the RP1 method used in subsection 3.3.1 and Eq. (3.2), we can approximate

𝑈 (𝑧, 𝑡) as a perturbation series with respect to γ but here, in the time domain :

𝑈 (𝑧, 𝑡) = 𝑢 (0) (𝑧, 𝑡) + γ𝑢 (1) (𝑧, 𝑡) +𝕆(γ2) (3.17)

By substituting Eq. (3.17) in Eq. (3.15) we obtain :

∂𝑢 (0) (𝑧, 𝑡)
∂𝑧

= − 𝑗
β2

2
∂2𝑢 (0) (𝑧, 𝑡)

∂𝑡2 + 𝑛(𝑧, 𝑡)√︁
ε𝑓 (𝑧)

(3.18)

and
∂𝑢 (1) (𝑧, 𝑡)

∂𝑧
= − 𝑗

β2

2
∂2𝑢 (1) (𝑧, 𝑡)

∂𝑡2 + 𝑗γε𝑓 (𝑧) |𝑢 (0) (𝑧, 𝑡) |2𝑢 (0) (𝑧, 𝑡) (3.19)

The zeroth order solution is expressed as :

𝑢 (0) (𝑧, 𝑡) = 𝐷̂𝑧

[
𝑢 (0) (0, 𝑡) + 𝑢𝐴𝑆𝐸 (𝑧, 𝑡)

]
(3.20)

with 𝐷̂𝑧 the dispersion operator defined in time domaine by :

𝐷̂𝑧 (𝑥 (𝑧, 𝑡)) = F −1
[
exp

(
𝑗
ω2

2

∫ 𝑧

0
β2 (𝑧”)𝑑𝑧”

)
F [𝑥 (𝑧, 𝑡)]

]
(3.21)

where F {.} is the Fourier transform and F −1{.} the inverse Fourier transform operation.

The first order solution is expressed as follows :

𝑢 (1) (𝑧, 𝑡) = 𝑗γ𝐷̂𝑧

[∫ 𝑧

0
𝑓 (𝑧′)𝑑𝑧′

]
× 𝐷̂†𝑧

[���𝑢 (0) (𝑧, 𝑡)���2 𝑢 (0) (𝑧, 𝑡)] (3.22)

Finally, the nonlinear signal-signal distortion Δ𝑥𝑘,𝑁𝐿 on the 𝑘𝑡ℎ symbol of the COI can be computed [11]. According
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to the central limit theorem, Δ𝑥𝑘,𝑁𝐿 are zero-mean Gaussian random variables : Δ𝑥𝑘,𝑁𝐿 ∼ N(0, σ2
𝑆𝑆
). The variance of

signal-signal interaction σ2
𝑆𝑆

is computed in [70],[71] and [32] as :

σ2
𝑆𝑆 (𝑃) = γ2𝑃2

{
2X1 +

(
µ4

µ2
2
− 2

)
[X2 + 4X3 + 4X4]

+
(
µ6

µ3
2
− 9

µ4

µ2
2
+ 12

)
X5 + 4

∑︁
𝑠

[
X1,𝑠 +

(
µ4

µ2
2
− 2

)
X3,𝑠

]
+
∑︁
𝑠

∑︁
𝑠′
X1,𝑠,𝑠′

} (3.23)

with 𝑃 = ε/𝑇 the same average power for all WDM channels, 𝑇 the symbol duration, µ𝑛 the nth moment of the

constellation. In this study, we only consider the signal-signal interaction and noise-signal nonlinear interaction

(NSNI) term is neglected (interaction between the signal and the noise produced by amplifiers). A general theory

involving nonlinear signal-signal and signal-noise interaction theory is presented in [11]

Finally, the variance of NLI is given by :

σ2
𝑁𝐿𝐼 = σ

2
𝑆𝑆,𝐷𝑃 =

16
81
γ2𝑃2

{
3X1 +

(
µ4

µ2
2
− 2

)
[X2 + 5X3 + 4X4]

+
(
µ6

µ3
2
− 9

µ4

µ2
2
+ 12

)
X5 + 4

∑︁
𝑠

[
6X1,𝑠 + 5

(
µ4

µ2
2
− 2

)
X3,𝑠

]
+2

∑︁
𝑠

∑︁
𝑠′
X1,𝑠,𝑠′

} (3.24)

with σ2
𝑆𝑆,𝐷𝑃

the total variance of the signal-signal nonlinear distortion for a dual polarization scheme. The coefficients

X1, X2, X3, X4, X5 correspond to intra-channel (SCI) effects. The X-coefficients with sub-index 𝑠 corresponds to

degenerate inter-channel (XCI) and the sub-index 𝑠, 𝑠′ for the non-degenerate inter-channel four-wave mixing (FWM)

terms. The X1, X1,𝑠 and X1,𝑠,𝑠 coefficients correspond to the modulation independent contribution to the total NLI

variance whereas X3 and X3,𝑠 coefficients correspond to the modulation dependent contribution.

The different X-coefficients are computed using Monte Carlo (MC) integration over multidimensional integrals.

Their expressions are presented in the Appendix. The MC integration method is presented briefly in subsection

3.3.3

One major advantage of using the TD-RP model to train the ML-based KerrNet QoT tool is that the model

calculations do not need to be run at different launch powers and modulation formats. This highly reduces the

parameters space for sampling and training. It also reduces the computation time of NLI variance since the X

coefficients are unchanged and do not require to be re-computed with multi-dimensional integration. Once all X

coefficients are computed, elementary algebraic operations are performed with the configuration parameters of the

WDM channels (channel power, channel loading scheme) as described in Eq. (3.24).

For the rest of the study, the perturbative coefficients X2, X3, X5 in Eq. (3.24) are neglected because, for scenarios
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addressed in this study, their small values are negligible. Moreover, we do not take into account the non-degenerate

FWM effects in this study so X𝑠,𝑠′ is also ignored.

ii Cross-correlation function

A different approach is to compute NLI using the cross correlation function between 𝑖𝑡ℎ span and 𝑗𝑡ℎ span. For

a transmission link with a total length of 𝑧 = 𝐿𝑡𝑜𝑡 km composed of 𝑁𝑠 fiber spans amplified by EDFAs at the end of

each span. The 𝑖𝑡ℎ and 𝑗𝑡ℎ span end at 𝑧 = 𝑧𝑖 and 𝑧 = 𝑧 𝑗 respectively.

We can re-write Eq. (3.24) for the four X coefficients as follows :

X1,00 (𝐿𝑡𝑜𝑡 , 𝑓𝑠 ) =
𝑁𝑠∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1
ρ
(𝑠𝑐 )
1 (𝑖, 𝑗)

X3,00 (𝐿𝑡𝑜𝑡 , 𝑓𝑠 ) =
𝑁𝑠∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1
ρ
(𝑠𝑐 )
3 (𝑖, 𝑗)

X1,0𝑠 (𝐿𝑡𝑜𝑡 , 𝑓𝑠 ) =
𝑁𝑠∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1
ρ
(𝑥𝑐 )
1 (𝑖, 𝑗)

X1,0𝑠 (𝐿𝑡𝑜𝑡 , 𝑓𝑠 ) =
𝑁𝑠∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1
ρ
(𝑥𝑐 )
3 (𝑖, 𝑗)

(3.25)

with

ρ
(𝑠𝑐 )
1 (𝑖, 𝑗) = 1

𝑇

∫
ℝ3

𝑑3ω

(2π)3
∫ 𝑧𝑖

𝑧𝑖−1

𝑑𝑧 𝐻−→
ω
(𝑧)

∫ 𝑧 𝑗

𝑧 𝑗−1

𝑑𝑧′ 𝐻 ∗−→
ω
(𝑧′)

ρ
(𝑠𝑐 )
3 (𝑖, 𝑗) =

∫
ℝ3

𝑑3ω

(2π)4
∫ 𝑧𝑖

𝑧𝑖−1

𝑑𝑧 𝐻−→
ω
(𝑧)

∫ 𝑧 𝑗

𝑧 𝑗−1

𝑑𝑧′ 𝐻 ∗−→
ω ′′
(𝑧′)

ρ
(𝑥𝑐 )
1 (𝑖, 𝑗) = 1

𝑇

∫
ℝ3

𝑑3ω

(2π)3
∫ 𝑧𝑖

𝑧𝑖−1

𝑑𝑧 𝐻−→
ω ,𝑠
(𝑧)

∫ 𝑧 𝑗

𝑧 𝑗−1

𝑑𝑧′ 𝐻 ∗−→
ω ,𝑠
(𝑧′)

ρ
(𝑥𝑐 )
3 (𝑖, 𝑗) =

∫
ℝ3

𝑑3ω

(2π)4
∫ 𝑧𝑖

𝑧𝑖−1

𝑑𝑧 𝐻−→
ω ,𝑠
(𝑧)

∫ 𝑧 𝑗

𝑧 𝑗−1

𝑑𝑧′ 𝐻 ∗−→
ω ′′,𝑠
(𝑧′)

(3.26)

where the expressions for the kernel function 𝐻 and −→ω −→ω ′′ −→ω, 𝑠 and −→ω ′′, 𝑠 are defined in the Appendix.

The function ρ(𝑖, 𝑗) in Eq. (3.26) corresponds to the universal cross-correlation function between the NLIs gene-

rated at 𝑖𝑡ℎ and 𝑗𝑡ℎ span (whose lengths, dispersion and loss coefficients are 𝐿𝑖 , 𝐿 𝑗 , 𝐷𝑖 , 𝐷 𝑗 , and α𝑖 , α𝑗 , respectively).

The labels ′𝑠𝑐′ and ′𝑥𝑐′ stand for ’self-channel’ and degenerate ’cross-channel’ interference, respectively.

iii Comparison of the two versions of the TD-RP model

The first version of the TD-RP model (’TD-RP V1’) has been commonly adopted for NLI variance computation

thanks to its faster speed compared to the second version (’TD-RP V2’, using cross-correlation function ρ) which is

slower by a factor equal to the total number of span 𝑁𝑠 .

On the other hand, the ’TD-RP V2’ model has the advantage of being more general and reusable. If the NLI
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Model TD-RP V1 : product to sums TD-RP V2 : sum of products
Speed Faster Slower by 𝑁𝑠

Compatible with ANN × ✓
Re-usability and scalability × ✓

TABLE 3.1 – Summary of the comparison between the two versions of the TD-RP model

variance needs to be computed for a new path (composed of the previous 𝑁𝑠 -spans link plus one additional span), we

can reuse the old data containing the 𝑁𝑠 previously computed ρ and only compute the cross-correlation coefficients

ρ between the 𝑁𝑠 + 1𝑡ℎ span and the 𝑁𝑠 other spans. Consequently, the computation time is reduced by reusing

the old data since we do not need to recompute from scratch the (𝑁𝑠 + 1)2 integral based coefficients but only the

additional (2𝑁𝑠 − 1) coefficients.

Another advantage of using the ’TD-RP V2’ model to build an ML-based framework is that this model has a fixed

number of input parameters for arbitrary links. The size of the input features to compute X for ’TD-RP V1’ model

increases with the number of spans whereas the size of the input features to compute ρ with the ’TD-RP V2’ model

is fixed and do not increase with the total number of spans. This property of the ’TD-RP V2’ model makes it perfectly

suitable for an ANN structure with a fixed number of input neurons.

A summary of the advantages and the drawback of the two versions of the model is presented in Tab. 3.1

iv Summary

To conclude, this time-based regular perturbation model provides us an accurate (up to the first-order) computa-

tion of the NLI variance. Without the Gaussian-distributed symbols assumption, this model is modulation format sen-

sitive. This TD-RP model is equivalent to the frequency domain EGN model. Compared to SSFM, its computational

speed has been seriously reduced but still requires a large computation effort by computing the multi-dimensional

integration for all spans and all channels of a WDM transmission.

The novelty of our work, presented in the next section of this chapter, lies in proposing a bank of shallow FANNs

to efficiently interpolate the smooth function of either X or ρ as the key building block to compute the nonlinear

interference variance. Our KerrNet method provides an acceleration of the exact models for NLI variance without

compromising the accuracy of the model.

3.3.3 Monte-Carlo integration

Monte-Carlo (MC) integration has been used in the computation of NLI variance for integral-based models, such

as in the work of Dar et al. [67], [72]. This integration method is also adopted for GN/EGN model or the TD-RP

model that we use.

MC integration method proved its efficiency compared to a deterministic approach to perform numerical integra-

tion in the case of evaluating multi-dimensional integrals since the standard deviation of the error is independent of
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the number of dimensions [73]. MC integration can be seen as the probabilistic interpretation of an integral. For a

function 𝑓 , an estimation of its integral can be expressed as :

∫
V
𝑓 (𝑥)𝑑𝑥 ≈ 𝑉

𝑁𝑀𝐶

𝑁𝑀𝐶∑︁
𝑗=1

𝑓 (𝑥 𝑗 ) (3.27)

where 𝑁𝑀𝐶 is the number of 𝑥 𝑗 samples generated following a uniform distribution in the subset V which has a

volume 𝑉 , and 𝑓 (𝑥 𝑗 ) is the integral evaluated for the sample 𝑥 𝑗 .

The choice of 𝑁𝑀𝐶 number of integration points is important as it affects the performance since the standard

deviation of the error scales with 1/
√
𝑁𝑀𝐶 . But the computation speed is also determined by 𝑁𝑀𝐶 .

3.4 KerrNet : an ANN-based framework to speed-up the TD-RP model

Our proposed solution to compute the NLI variance σ2
𝑁𝐿𝐼

is based on the TD-RP theoretical semi-analytical

model which is exact up to the first order of perturbation and a ML framework with a bank of small FANNs. Thus,

the ground truth (GT) data is the output of the MC integration result of TP-RP model. We only use ANNs to predict

the perturbative coefficients X or the cross-correlation coefficients ρ and then the computation of the overall σ2
𝑁𝐿𝐼

can be obtained by simply applying elementary multiplications and summations involving power profiles, nonlinear

coefficients, and modulation moments. Since X and ρ only depends on the physical parameters, this drastically

reduces the parameters space for sampling and training, hence this approach results in a better generalization of

the trained ML-framework. The longest step of the NLI variance computation is the calculation of X or ρ which will be

only performed once even if one wants to test different power configurations or modulation formats or even removing

several channels in the WDM combs. This is not the case if other methods such as EGN or SSMF are used where

the computation of σ2
𝑁𝐿𝐼

also needs to be run at different launch powers and modulation formats.

This perturbation analysis-based model has been extensively validated in [11] comparing the theoretical semi-

analytical SNR values (i.e., using MC integration to compute theoretical X coefficients, and then SNR) vs. simulated

SNR values (i.e., symbol-level MC and split-step Fourier method for transmission, followed by ideal coherent detec-

tion and SNR extraction) for various submarine and terrestrial links. Hence, in this work we only compare our ML

model (indexed ”𝑀𝐿”) and the theoretical semi-analytical model (indexed ”𝑡ℎ”).

3.5 Nonlinear interference estimation in homogeneous links

In this section, we first present our study for a homogeneous link i.e. all the fiber spans are identical : same type

and same length. In this case, we can simplify the vector of the physical parameters D, L to a single value. We also

assume that all WDM channels have the same average launched power per channel, 𝑃 , the same symbol rate 𝑅

70



and the same modulation format. Besides, we assume that all EDFAs, placed at the end of each span, operate in

the constant output power mode and compensate exactly the fiber attenuation occurring in each span.

The NLI variance σ2
𝑁𝐿𝐼

and the nonlinear coefficient 𝑎 can be computed according to the following equation :

σ2
𝑁𝐿𝐼 = 𝑃2𝑎 =

16
81
γ2𝑃2 (

3X1,00
)
+

(
µ4

µ2
2
− 2

) (
5X3,00

)
+ 4

∑︁
𝑠

[
6X1,0𝑠 + 5

(
µ4

µ2
2
− 2

)
X3,0𝑠

]
(3.28)

where various perturbation coefficients X are calculated with multi-dimensional triple and quadruple frequency-

domain integrals (computed with numerical MC integration as described in subsection 3.3.3) and the non-degenerate

FWM effects are ignored in our study.

The variable 𝑠 stands for the index of the adjacent WDM channels ; 𝑠 = 0 for the COI. The X coefficients with

00 sub-index represent the nonlinear self-channel interference of the COI, and X coefficients with 0𝑠 sub-index

represent the degenerate nonlinear cross-channel interference between the COI and the 𝑠𝑡ℎ adjacent channel. We

propose to compute the four types of X coefficients, i.e., X1,00, X3,00, 𝑋1,0𝑠 and X3,0𝑠 , each with a dedicated FANN to

approximate the time-consuming MC integration.

3.5.1 FANN framework
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FIGURE 3.6 – Computation of the nonlinear coefficient 𝑎 via the calculation of four 𝑋 coefficients with a bank of four
small ANNs

Fig. 3.6 illustrates the computation of the four perturbation coefficients X with our KerrNet tool, composed of

four FAANs, with its input features defined by the super-vector I1 containing the physical parameters. Consequently,

the training dataset is generated only by sampling the input super-vector I1. Once trained, KerrNet automatically

works for all choices of the input super-vector I2 containing the link configuration parameters since for both TD-RP

model and for KerrNet, the passage from 𝑋 coefficients to the nonlinear coefficient 𝑎 requires the same elementary

multiplications and summations involving power profiles, nonlinear coefficients, and modulation moments defined in
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Parameters Range
𝐿 [km] 10 to 200, step = 1

𝐼 1 to 20, step =1
𝑅 [GBd] 20 to 150, step = 1

𝑠 0 to fully-loaded in C-band, step = 1
ΔΩ [GHz] 12.5

TABLE 3.2 – Parameters space to generate data sample

Eq. (3.28). This significantly reduced the parameters space to generate the training dataset since I2 is not involved in

the training step. Then, the ML-estimated nonlinear coefficient 𝑎𝑀𝐿 is compared with the theoretical value 𝑎𝑡ℎ, com-

puted with the integral-based TD-RP model and the deviation Δ𝑎 is calculated in [dB] to evaluate the performance

of the KerrNet framework.

We use a dedicated FANN to predict each of the four different types of X coefficients because the ranges of the

absolute values of these four types of X coefficients are different by at least one order of magnitude. Using this prior

knowledge this "divide-and conquer" approach help in improving the accuracy of the prediction.

ANN1 to ANN4 are trained using Pytorch library. The ANNs have three layers where the activation function is the

Relu function for the two first layers and the linear function for the output layer. The cost function is the MSE. Several

learning rates have been tested. Hyper-parameters are chosen with independent hyper-parameters optimization

according to the random search method presented in section 1.2). Moreover, hyper-parameters are deliberately

geared towards the smallest size FANNs with acceptable accuracy, since reducing computational time is the main

objective of this study. For this reason, we decided to train FANNs with only two hidden layers and each layers

are composed of 50, 70, 90 or 110 neurons. Of course, data generation and pre-processing as well as training these

ANNs take time, but once done, the resulting tool will be faster in predicting NLI than the semi-analytical approach

by several orders of magnitude in execution time.

In the first study presented in this section, we only considered identical spans of SSMF, so 𝑋1,00 and 𝑋3,00 depend

on three parameters : symbol rate 𝑅, span length 𝐿, and the span index 𝐼 of the 20-span link. 𝑋1,0𝑠 and 𝑋3,0𝑠 depend

on 4 parameters : 𝑅, 𝐿, 𝐼 and the frequency spacing between the COI and 𝑠𝑡ℎ adjacent channel Ω𝑠 = 𝑠ΔΩ with ΔΩ

the frequency slot granularity. The parameters space of the dataset is summarized in Tab. 3.2.

The dataset was generated by calling the semi-analytical tool based on MC integration, with 107 integration points

if 𝑅 > 80 GBd or with 1.5 × 106 integration points otherwise (we need more integration points when the symbol rate

increases). This choice was made after studying the MC statistical error to guarantee that the error in evaluating

the nonlinear coefficient is less than ±0.05 dB. The dataset is generated by sampling non-uniformly the input super-

vector 𝐼1 of all physical parameters (range of the parameters is summarized in Tab. 3.2).
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FIGURE 3.7 – Flowchart of the data pre-processing step while training the ML framework

3.5.2 Impact of data and pre-processing

As explained in section 1.2, the data quality and the pre-processing step to transform the dataset may have a

major impact on the performance of an ML model. To evaluate the impact of data pre-processing and the distribution

used to generate the input parameters on ther performance of the ML framework, we trained the FAANs under three

configurations :

— Configuration (a) that serves as a reference where the entire dataset is generated using uniform distribution

for all input parameters and without the data pre-processing step.

— Configuration (b) is trained with a dataset generated uniformly but this time, a data pre-processing step is

performed.

— Configuration (c) where the dataset is generated following a non-uniform distribution and also includes the

data pre-processing step.
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START

𝐿~ʯ([10 ; 200])

p ~ ʯ([0 ; 1])

s ~ʯ([ −
2000

ΔΩ
; +

2000

ΔΩ
])

R ~ʯ([20 ; 150])

s ~ʯ([ −
200

ΔΩ
; +

200

ΔΩ
])

𝐼 = 1, 2, 3, 4, 𝑖5, 𝑖6, 𝑖7, 𝑖8, 𝑖9, 𝑖10
with ik~ʯ([5 ; 20]) for k∈ {5,6,7,8,9,10}

R > 80

Nw = 1.5E6 Nw = 1E7

ANN1 

or

ANN3

p > 0.5

𝛺𝑠 = s * ∆𝛺
with ∆Ω = 12.5 𝐺𝐻𝑧

STOP

STOP

YESNO

YESNO

NO

YES

Data generation process

FIGURE 3.8 – Flowchart to generate the data

For a fair comparison, the three models are trained with the same quantity of data (4 × 105 data points for X1,00 or

X3,00 ; and 8 × 105 points for X1,0𝑠 or X3,0𝑠 ).

The three models are also evaluated with the same test dataset. The test dataset is composed of 104 data points

representing 500 different homogeneous link configurations. Similar to the training stage, our link configurations

were made of twenty SSMF spans, and the span length 𝐿 was generated randomly with the uniform distribution

from typical fiber lengths (𝐿 ∈ [20, 40, 60, 80, 100, 120] km). The symbol rate 𝑅 was also generated uniformly : 𝑅 ∼

U [20, 150] GBd. All configurations are fully loaded in C-band (i.e., Ω𝑠 = 𝑠 ×ΔΩ ∈ [−2, 2] THz) and ΔΩ depends on 𝑅 :

ΔΩ = 𝑘 × 12.5 GHz, with 𝑘 the smallest integer that avoids channel overlapping (12.5𝑘 ≥ 𝑅). The chosen modulation

format is QPSK.

The pre-processing is described in Fig. 3.7. We used min-max scaling to normalize the inputs of ANNs and the
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parameter Ω𝑠 was separated into two auxiliary inputs log |Ω𝑠 | and sign(Ω𝑠 ), and we used 1/𝑅 instead of 𝑅 at the

ANN input. We also use log(X) as the output of the ANN instead of using X to "compress" the dataset because of

its values’ large range.

The non-uniform distribution to generate the dataset is illustrated by the flowchart in Fig. 3.8. After careful optimi-

zations, we settled for generating 𝑅 ∼ U [20, 150] GBd and 𝐿 ∼ U [10, 200] km, where U [𝑎, 𝑏] stands for uniform dis-

tribution between 𝑎 and 𝑏, and Ω𝑠 as following : Ω𝑠 ∼ U [−200, 200] GHz with a probability 𝑝 = 0.5 and Ω𝑠 ∼ U [−2, 2]

THz with a probability 𝑞 = (1 − 𝑝) = 0.5. Besides, for each {𝑅, 𝐿,Ω𝑠 } configuration, the span index variable 𝐼 runs

through [1, 2, 3, 4, 𝑖5, · · · , 𝑖10] with 𝑖𝑘 ∼ U [5, 20] for 𝑘 ∈ {5, 6, · · · , 10}.
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FIGURE 3.9 – PDF and CDF of errors evaluated for the non-linear coefficient |Δ𝑎 | in dB for three different training
configurations : (a) with dataset generated uniformly and without data pre-processing, (b) with dataset generated
uniformly and with data pre-processing, (c) with dataset generated non-uniformly and with data pre-processing

We evaluate the performance of the three trained ML models by computing the absolute error |Δ𝑎 | = 𝑎𝑡ℎ − 𝑎𝑀𝐿

[dB] of the nonlinear coefficient on the test dataset between the ML prediction and the theoretical result (computed

with MC integration with the TD-RP model). The probability density function (PDF) and the cumulative distribution

function (CDF) of the error |Δ𝑎 | are plotted in Fig. 3.9. The curves shows the benefit of the chosen pre-processing

step. The case (a) shows the highest errors with a mean absolute error of 0.27 dB and max absolute error of

11.60 dB whereas the case (b) only have a mean absolute error of 0.06 dB and max absolute error of 0.84 dB.

Moreover, generating data using the uniform distribution for every parameter gave poorer results after training. 95%

of the predictions of the case (b) have an absolute error less than 0.34 dB but this value can be further decreased

to 0.23 dB when we apply a non-uniform distribution to sample the dataset. The max absolute error is also reduced

from 0.84 dB to 0.53 dB. Indeed, important link configurations for the training occur rarely, hence we need to use

a non-uniform distribution of some input features to get a "more balanced" dataset. To conclude, we will use the

configuration (c) for our KerrNet to achieve the best performance.
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3.5.3 Final result

Finally, after finding the best training process (case (c)) as explained in the previous subsection, the training of

the four FAANs was re-performed with ten times more data : 4 million (X1,00 or X3,00) or 8 million (X1,0𝑠 or X3,0𝑠 ) data

points generated according to the chosen distribution and pre-processed similarly to the case (c). The dataset is

split in 80% for training and 20% for validation. The same early-stopping method was used with the validation dataset

to stop the training process when the precision stops increasing and the random search method was used to find

the best hyper-parameters : ANN1 to ANN4 are composed of two hidden layers with 70, 110, 90, and 50 neurons

respectively.

We evaluated our four trained ANNs separately with 105 (X1,00 or X3,00) data points or 2 × 105 (X1,0𝑠 or X3,0𝑠 )

data points using the relative error =
���𝑇𝑎𝑟𝑔𝑒𝑡−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑇𝑎𝑟𝑔𝑒𝑡

���. The independent test dataset was generated with the same

parameters space listed in Tab. 3.2, but using the uniform distribution for all parameters 𝑅, 𝐿, 𝐼 and Ω𝑠 .
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relative error for (a) X1,00 and X3,00 ; (b) for X1,0𝑠 and X3,0𝑠

Fig. 3.10 illustrates the error statistics of KerrNet’s prediction for X coefficients : 90% of samples show errors

below 1% for X1,00, 2% for X3,00, 4% for X1,0𝑠 and 5% for X3,0𝑠 . Errors are larger for X coefficients corresponding to

the cross-channel nonlinear interference (the ones with sub-index 𝑠) compared to the ones related to self-channel

nonlinear interference due to the higher sensitivity of the perturbation coefficients to the channel spacing.

To evaluate the accuracy of our KerrNet tool, the important quantity to compute is the overall error between the

ground-truth value of the nonlinear interference coefficient 𝑎𝑡ℎ and the predicted 𝑎𝑀𝐿 in dB. For 𝑎𝑡ℎ, we only consider

the TD-RP theory’s result. Indeed, this perturbation analysis-based model has been extensively validated in [11]

and re-generating stimulative result 𝑎𝑠𝑖𝑚 with SSFM is extremely long.

In order to demonstrate the efficiency of the proposed approach, we also calculated the absolute error |Δ𝑎 | [dB]

of the nonlinear coefficient on the same test dataset than the one used to compare the impact of pre-processing

and data generation methods (cf subsection 1.2 in Chapter 1) so on 104 data points representing 500 different
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homogeneous link configurations composed of twenty spans of SSMF. The modulation format chosen is still QPSK.

For each link configuration, we computed the nonlinear coefficient 10 log10 (𝑎/1 mW2) using X coefficients calcu-

lated with our KerrNet, and with the MC integration for the theoretical results. Fig. 3.11 illustrates the statistics of the

NLI error where the CDF (blue line) and PDF (orange line) of |Δ𝑎 | are plotted and show the high accuracy of our

KerrNet solution. On 95% of the dataset, the absolute error between those two methods is less than 0.092 dB, and

the mean absolute error is 0.033 dB.

Fig. 3.12 shows the scatter plot 𝑎𝑀𝐿 vs. 𝑎𝑡ℎ and the absolute error |Δ𝑎 | as a function of ground truth theoretical

𝑎𝑡ℎ. This figure shows the accuracy of the predicted nonlinear coefficient 𝑎𝑀𝐿 with most of the errors below 0.1 dB

and also shows the KerrNet framework has a stable performance in different transmission schemes impacted by

different strengths of the nonlinear effects.
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We also evaluated the RMSE of each of the 500 links and plotted the evolution of 𝑎 and the absolute errors |Δ𝑎 |

with respect to the number of spans 𝐼 for three selected cases : in Fig. 3.13 and Fig. 3.14, we plotted the worst and

best prediction cases (according to the computed RMSE) respectively. For the worst case, the prediction gives an

RMSE of 0.26 dB and 0.01 dB for the best prediction case. In Fig. 3.15, we have drawn the evolution of 𝑎 for the link

corresponding to 95𝑡ℎ percentile for evaluated RMSE. This figure also illustrates the high accuracy of our KerrNet

with 95% of links prediction having most of errors less than 0.1 dB.

3.5.4 Speed comparison

As explained in the subsection 3.3.3, there is a trade-off between the integration points (higher number leads to

, more precise but computational time higher) and the MC uncertainty. For instance, MC requires less integration

points 𝑁𝑚𝑐 for a smaller symbol rate 𝑅 compared to higher 𝑅. Consequently, we compare the computation speed

for two extreme scenarios : on the one hand, WDM combs transmitting 20 GBd (case (A)) have the highest number

of co-propagating channels, so a larger number of X coefficients need to be computed ; on the other hand, WDM

combs transmitting 150 GBd (case (B)) have the smallest number of co-propagating channels but requires higher

MC integration points 𝑁𝑚𝑐 , so each X coefficients computation time would be longer.

For the case (A), the evaluation of computation time is performed with a twenty-span link with 50km-long SSMF

span, fully loaded with 161 channels, each transmitting at 20 GBd. For the case (B), the same link configuration is

used but fully loaded with 27 channels transmitting at 150 GBd .

We timed the computation of the X coefficients with those two methods, on an “Intel Xeon Processor E5-2640

v4” CPU. The results are summarized in Tab. 3.3. For case (A), KerrNet computation time is 1.7×10−3 s vs. 3.9×102 s
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case (𝐴) case (𝐵)
WDM configuration fully loaded (C band) fully loaded

with 161 channels with 27 channels
symbol rate 𝑅 𝑅 = 20 GBd 𝑅 = 150 GBd

Number of integration points 𝑁𝑤 1.5 × 106 1 × 107

Computation time with MC integration [seconds] 3.9 × 102 4.6 × 102

KerrNet computation time [seconds] 1.7 × 10−3 3.4 × 10−4

Speed-up factor 2.3 × 105 1.35 × 106

TABLE 3.3 – Computation time comparaison

for theoretical semi-analytical tool based on MC integration with 1.5 × 106 integration points, and for case (B), it is

3.4 × 10−4 s for KerrNet vs. 4.59 × 102 s for the semi-analytical tool with 1𝐸7 integration points. Hence, machine

learning helped us to reach at least five orders of magnitude speeding using the same CPU device. We also clocked

the computational time on a GPU, and the speed-up factor is even larger if we use large batches during the feed-

forward inference with our KerrNet : we could obtain 2.9 × 10−4 s for case (A) and 5.4 × 10−5 s for case (B).

3.6 Nonlinear interference estimation in heterogeneous links

In this section, we present the generalization of the work presented in the previous section in which we only

addressed homogeneous link cases. A representation of the general system under study was shown in Fig. 3.2,

but we have made the assumption later that fiber parameters are constant for all channels (i.e. dispersion slope or

channel dependent attenuation are ignored).

In this section, we deal with arbitrary loss/gain profiles (wavelength dependence) at each span. These gain/loss
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profiles can be due to residual gain ripples and/or tilts of EDFAs and/or non-flat response of the WSSs in optical

nodes . With this approach, the channel power is no longer considered constant for all WDM channels and changes

from span to span. Fig. 3.16 illustrates the transmission link under study with some examples of the arbitrary

gain/loss wavelength dependent profiles 𝑔𝑘 (𝑓 ) at the input of the 𝑘𝑡ℎ span.

For instance, at the input of the first span of the link, the power profile is given by 𝑃1 (𝑓 ) = 𝑃𝑐 × 𝑔1 (𝑓 ) with 𝑃𝑐 the

initial average channel power at the output of the transmitter and 𝑔1 is the residual gain/loss profile arising from the

booster EDFA. Moreover, we consider that γ is constant for all channels (but γ can also be wavelength dependent

since it does not appear in the computation of ρ thus it is not part of the input feature of the KerrNet framework

either).

As described in subsection ii of 3.3.2, the computation of the nonlinear coefficient 𝑎 (thus, also the NLI variance

σ2
𝑁𝐿𝐼

) can also be performed by the means of the cross-correlation function ρ to compute the perturbative coefficients

X (cf Eq. (3.25)) and then applying Eq. (3.28).

Finally, to integrate the new features in this extended version of the KerrNet, all four X coefficients can be re-

written using the cross-correlation function ρ leading to a new expression to compute σ2
𝑁𝐿𝐼

and 𝑎 as follows :

σ2
𝑁𝐿𝐼 = 𝑃2

𝑐𝑎 =
16
81

𝑃2
𝑐

(
3X1,00

)
+

(
µ4

µ2
2
− 2

) (
5X3,00

)
+ 4

∑︁
𝑠

[
6X1,0𝑠 + 5

(
µ4

µ2
2
− 2

)
X3,0𝑠

]
(3.29)

with 𝑃𝑐 the mean channel power at the input of the link and an example of the expression for one of the four X

coefficients is given by :

X1,00 (𝐿𝑡𝑜𝑡 , 𝑓0) =
𝑁𝑠∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1
γ𝑖γ𝑗𝑔𝑖 (𝑓0)𝑔 𝑗 (𝑓0)ρ(𝑠𝑐 )1 (𝑖, 𝑗) (3.30)
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where 𝑔𝑖 (𝑓0) and 𝑔 𝑗 (𝑓0) is the gain/loss factor at the input of the 𝑖𝑡ℎ and 𝑗𝑡ℎ span respectively, evaluated for the COI

(frequency 𝑓0) and γ𝑖 , γ𝑗 are the nonlinear coefficients for those two spans. ρ(𝑠𝑐 )1 (𝑖, 𝑗) represents the cross-correlation

interaction between 𝑖𝑡ℎ and 𝑗𝑡ℎ spans for self-channel interference which does not contribute to the modulation effect.

The expressions of ρ are defined in Eq. 3.26.

For a matter of simplicity, here we only write the expression of X1,00 as an example (see the Appendix for the

expression of X3,00, X1,0𝑠 and X3,0𝑠 using cross-correlation functions).

The fiber spans that compose our transmission link have different lengths, dispersion, loss and nonlinear coeffi-

cients so finally the cross-correlation function ρ depends on a reduced parameters space with only 12 parameters :

ρ(𝑖, 𝑖) = ρ(𝑏𝑧𝑖 , 𝑏𝑧 𝑗 , 𝐷𝑖 , 𝐷 𝑗 ,α𝑖 ,α𝑗 , 𝐿𝑖 , 𝐿𝑗 , 𝑓0, 𝑓𝑠 , 𝑅0, 𝑅𝑠 ) (3.31)

with 𝑏𝑧, 𝐷, α, 𝑙 corresponding to the accumulated dispersion, dispersion coefficient, fiber attenuation and span length

respectively (for the 𝑖𝑡ℎ and 𝑗𝑡ℎ spans), and 𝑓0, 𝑅0, 𝑓𝑠 , 𝑅𝑠 correspond to the frequency and the symbol rate of the COI

and 𝑠𝑡ℎ channels respectively. The goal of this work lies in proposing a bank of eight shallow FANNs to efficiently

interpolate the eight 12-variable smooth functions of ρ in Eq. (3.31) as the key building block to compute the NLI
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FIGURE 3.17 – Reduced parameters space with only 12 input features for arbitrary heterogeneous link performance
estimation using the cross-correlation function ρ

variance for an arbitrary link.

In the following, we present the results only for the case 𝑅0 = 𝑅𝑠 = 𝑅 and for the COI at 1550 nm so 𝑓0 is constant

among our generated dataset, thus 𝑓0 will not be included in the input parameters for the KerrNet and we used Ω𝑠

(which is the center frequency de-tuning of the 𝑠′𝑡ℎ adjacent channel) instead of 𝑓𝑠 . To summarize, the input features

of our KerrNet version presented below only include 10 input parameters.

3.6.1 KerrNet configuration

We propose to compute eight types of ρ coefficients : ρ(𝑠𝑐,𝑠𝑠 )1 , ρ(𝑥𝑐,𝑠𝑠 )1 , ρ(𝑠𝑐,𝑑𝑠 )1 , ρ(𝑥𝑐,𝑑𝑠 )1 , ρ(𝑠𝑐,𝑠𝑠 )3 , ρ(𝑥𝑐,𝑠𝑠 )3 , ρ(𝑠𝑐,𝑑𝑠 )3 ,

ρ
(𝑥𝑐,𝑑𝑠 )
3 with eight different and dedicated FANNs called ANN1 to ANN8. The labels 𝑠𝑐 and 𝑥𝑐 stand for SCI and

degenerate XCI respectively, and the labels 𝑠𝑠 and 𝑑𝑠 stand for ‘same-span’ (𝑧𝑖 = 𝑧 𝑗 ) and ‘different-span’ (𝑧𝑖 ≠ 𝑧 𝑗 )

NLI contributions, respectively. ρ coefficients with the sub-index 3 will contribute to the modulation-dependent terms

in Eq. (3.29) and those with the sub-index 1 will not contribute to it.

We train eight FANNs (ANN1 to ANN8), each with only two hidden layers - to reduce the computational time - cor-

responding to the eight aforementioned types of cross-correlation functions ρ (see Fig. 3.18). The activation function

is the ReLU for the two first layers and the linear function for the output layer. Hyper-parameters are determined with

a random search. The dataset is generated by sampling the input super-vector I1 of all physical parameters (in this

study I1 contains 10 parameters). Once trained, KerrNet automatically works for all choices of the input super-vector

I2 containing the link configuration parameters since for both theory and for KerrNet, the passage from ρ coefficients
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Parameters Range
𝐷 [ps/km/nm] [2, 20], step = 0.01
α [dB/km] [0.13, 0.30], step = 0.01
𝐿 [km] [50, 100], step =1
𝐿𝑡𝑜𝑡 [km] [0, 10 000]
𝑅 [GBd] [20, 150], step = 1
Ω𝑠 [THz] [-2,2] (C band), step = 1GHz
γ[1/W/km] 1.3174

Residual gain/loss [dB] [-1,1]
Modulation format QPSK, QAM, PCS (with various entropy values 𝐻 )

TABLE 3.4 – Parameters range

to NLI requires the same elementary multiplications and summations involving power profiles, nonlinear coefficients,

and modulation moments.

The range of the parameters is described in Tab 3.4. The upper six rows of the table summarize the physical

parameters space for training and/or validating our FANNs (i.e., for I1 ) while the lower three rows include the system

configuration parameters space only for validation (i.e., for I2 ).

3.6.2 Data generation and pre-processing

In this study with arbitrary heterogeneous links where the NLI is estimated by learning and interpolating the cross-

correlation function ρ with FANNs, similar to the homogeneous case, we also apply this ’divide and conquer’ method

which has already proved its capabilities. Besides, the eight ρ coefficients (ρ(𝑠𝑐,𝑠𝑠 )1 , ρ(𝑥𝑐,𝑠𝑠 )1 , ρ(𝑠𝑐,𝑑𝑠 )1 , ρ(𝑥𝑐,𝑑𝑠 )1 , ρ(𝑠𝑐,𝑠𝑠 )3 ,
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ANN Input parameters
ANN1 for ρ(𝑠𝑐,𝑠𝑠)1 (𝐷,α, 𝑙, 𝑅)
ANN2 for ρ(𝑥𝑐,𝑠𝑠)1 (𝐷,α, 𝑙, 𝑅,Ω𝑠)
ANN3 for ρ(𝑠𝑐,𝑑𝑠)1 (𝑑𝑏𝑧, 𝐷𝑖, 𝐷 𝑗 ,α𝑖,α 𝑗 , 𝐿𝑖, 𝐿 𝑗 , 𝑅)
ANN4 for ρ(𝑥𝑐,𝑑𝑠)1 (𝑑𝑏𝑧, 𝐷𝑖, 𝐷 𝑗 ,α𝑖,α 𝑗 , 𝐿𝑖, 𝐿 𝑗 , 𝑅,Ω𝑠)
ANN5 for ρ(𝑠𝑐,𝑠𝑠)3 (𝑏𝑧, 𝐷,α, 𝑙, 𝑅)
ANN6 for ρ(𝑥𝑐,𝑠𝑠)3 (𝑏𝑧, 𝐷,α, 𝑙, 𝑅,Ω𝑠)
ANN7 for ρ(𝑠𝑐,𝑑𝑠)3 (𝑑𝑏𝑧, 𝑏𝑧𝑖, 𝐷𝑖, 𝐷 𝑗 ,α𝑖,α 𝑗 , 𝐿𝑖, 𝐿 𝑗 , 𝑅)
ANN8 for ρ(𝑥𝑐,𝑑𝑠)3 (𝑑𝑏𝑧, 𝑏𝑧𝑖, 𝐷𝑖, 𝐷 𝑗 ,α𝑖,α 𝑗 , 𝐿𝑖, 𝐿 𝑗 , 𝑅,Ω𝑠)

TABLE 3.5 – Input parameters for each FANN

ANN Input parameters
ANN1 for ρ(𝑠𝑐,𝑠𝑠)1 𝑚 = 0
ANN2 for ρ(𝑥𝑐,𝑠𝑠)1 𝑚 = 0
ANN3 for ρ(𝑠𝑐,𝑑𝑠)1 𝑚 = 1, ϵ𝑑𝑏𝑧 = 0
ANN4 for ρ(𝑥𝑐,𝑑𝑠)1 𝑚 = 1, ϵ𝑑𝑏𝑧 = 0
ANN5 for ρ(𝑠𝑐,𝑠𝑠)3 𝑚 = 1, ϵ𝑏𝑧 = 5 × 10−25

ANN6 for ρ(𝑥𝑐,𝑠𝑠)3 𝑚 = 1, ϵ𝑏𝑧 = 1 × 10−25

ANN7 for ρ(𝑠𝑐,𝑑𝑠)3 𝑚 = 1, ϵ𝑑𝑏𝑧 = 5 × 10−25, ϵ𝑏𝑧 = 1 × 10−25

ANN8 for ρ(𝑥𝑐,𝑑𝑠)3 𝑚 = 1, ϵ𝑑𝑏𝑧 = 1 × 10−25, ϵ𝑏𝑧 = 5 × 10−25

TABLE 3.6 – Pre-processing parameters for each FANN

ρ
(𝑥𝑐,𝑠𝑠 )
3 , ρ(𝑠𝑐,𝑑𝑠 )3 and ρ(𝑥𝑐,𝑑𝑠 )3 ) are different by at least one order of magnitude and depend on different parameters. We

summarize in Tab. 3.5 the input feature for each of the eight FANNs (with their basic form, without mentioning the

pre-processed form of parameters). For instance, the values of the accumulated dispersion for the 𝑖𝑡ℎ and 𝑗𝑡ℎ span

𝑏𝑧𝑖 and 𝑏𝑧 𝑗 respectively, are less important to compute ρ(𝑠𝑐,𝑑𝑠 )1 and ρ(𝑥𝑐,𝑑𝑠 )1 but it is their difference 𝑑𝑏𝑧 = 𝑏𝑧𝑖 − 𝑏𝑧 𝑗

which affects the computation result of these two ρ coefficients. At the contrary, the values of 𝑏𝑧𝑖 and 𝑑𝑏𝑧 are both

important to calculate ρ(𝑠𝑐,𝑑𝑠 )3 and ρ(𝑥𝑐,𝑑𝑠 )3 .

With our previous study with the homogeneous link case, we noted that data generation and pre-processing have

a huge impact on the performance of the FANNs. The pre-processing step employed for our KerrNet framework is

illustrated in Fig. 3.19. We use the log function to compress input and output features which have a large range, to

manage the data dynamic range. In Fig. 3.19, three pre-processing parameters (in yellow) appears :𝑚, ϵ𝑏𝑧 and ϵ𝑑𝑏𝑧 .

Indeed, to avoid having very small numbers (near 0 or null) inside the log function, we also add the quantity ϵ before

computing its log value. We called the quantity added to the parameter 𝑏𝑧 (accumulated dispersion), ϵ𝑏𝑧 and ϵ𝑑𝑏𝑧 for

𝑑𝑏𝑧 (difference of accumulated dispersion between two spans).

Since the number of integration points 𝑛𝑤 is finite, there is always a tiny uncertainty on the results computed with

MC integration. Thus, we always take the average value of ρ over five computations. Moreover, we noticed that for
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Min-max scaling

ANN8 for 𝜌3
(𝑥𝑐,𝑑𝑠)
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𝜌 𝑚

𝜖𝑏𝑧

𝜖𝑑𝑏𝑧

+

𝑏𝑧𝑗 𝐷𝑖 𝐷𝑗 𝛼𝑖 𝛼𝑗 𝐿𝑖 𝐿𝑗

-

Log | . | > 0

Log | . | > 0

Log | . | > 0

+

+

Output feature

Input feature

> 0

FIGURE 3.19 – Flowchart of the an example of the data pre-processing step while training the ANN8 of the KerrNet
framework for heterogeneous link

small values of ρ, the uncertainty of the MC integration result leads to a larger uncertainty when the log is applied

leading to larger MSE during the training. To avoid this issue, we propose to smooth the oscillations by adding a

constant 𝑚 before computing the log : the output of the FANN will be log
��ρ +𝑚�� instead of unprocessed value of ρ.

Finally, the min-max scaling is applied for all input features.

The training dataset quality is crucial in ML applications. Using a uniform distribution over the range of the

parameters to generate the dataset is the simplest way and commonly adopted to train an ML framework but it is

not optimal in our case. This would result in poor performance and large errors for the NLI estimation. Consequently,

without a well-optimized distribution to generate the optimal training data - which is not a trivial task and requires a

lot of effort - an ML-based solution with a high prediction accuracy is not feasible. Indeed, due to the large number

of parameters, the important case which depends on the combination of several parameters, occurs more rarely,

compared to noisy and small ρ coefficients.

To conclude, the distribution for the generation of each parameter has to be meticulously tailored. Second, the

input and output vectors have to be pre-processed before feeding them to any of the FANNs. This also requires a fine
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FIGURE 3.20 – PDF and CDF of the absolute error of the nonlinear coefficient |Δ𝑎 | in dB over test dataset without
residual loss/gain and fully-loaded scheme.

investigation of the range of the input parameters and the nonlinear coefficient dependency on the input parameters.

3.6.3 Results without residual per-span gain/loss

After finding the adequate distribution to generate the dataset for each of the eight FAANs, we generated 105 data

points for ANN1 (for ρ(𝑠𝑐,𝑠𝑠 )1 ) and ANN2 (for ρ(𝑠𝑐,𝑑𝑠 )1 ) and 2 × 105 data points for the six other FAANs. The generated

dataset is split into training/validation dataset with an 80/20 ratio. The validation dataset is used to avoid overfitting

with the early-stop method as described in section 1.2 and for hyper-parameters searching.

Similar to the homogeneous link results, to evaluate the performance of KerrNet, we also only compare our

ML prediction 𝑎𝑀𝐿 computed by KerrNet, with 𝑎𝑡ℎ computed with the theoretical integral-based TD-RP model. The

performance evaluation was performed over a randomly generated test dataset : 7570 different and arbitrary trans-

mission configurations are generated in total. The fiber characteristic vectors D and ααα, together with the fiber length

vector L , the symbol rate 𝑅, and the number of total spans 𝑁𝑠 , are parts of the input “super vector” I1 generated

with a uniform distribution over their range (cf Tab. 3.4) during the performance evaluation. The channel spacing is

12.5𝑘 GHz, where 𝑘 is a random integer, and channel overlap is avoided. The random input super-vector I2 consis-

ted of the vectors µ2, µ4 of the 2nd and 4th moments of the modulation formats ranging through unshaped and

probabilistic-amplitude-shaped (PAS) QAMs with different entropy values. We set γ = 1.3174 W-1km-1. All the above

mentioned generated parameters and the resulting computed ρ constitute the test dataset to evaluate the overall

performance of the KerrNet framework compared the the theoretical results. In this subsection, we do not consider

any extra gain/loss profiles in any spans.

86



0

5

10

15

20

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3

P
D

F
 (

a
.u

.)

C
D

F

|Δa| [dB]

CDF

PDF

Partially-loaded

0.0888 dB

95%
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residual loss/gain and partially-loaded scheme

i Fully-loaded scheme

First, we present the result in a fully-loaded WDM scheme (in C-band). We plotted in Fig. 3.20 the PDF and

the CDF of the absolute error in dB between the target theoretical estimation of the nonlinear coefficient 𝑎𝑡ℎ and

the KerrNet framework’s prediction 𝑎𝑀𝐿. The mean value |Δ𝑎 | is 0.03 dB and 95% of the predictions give an absolute

error less than 0.086 dB. This figure clearly illustrates the high accuracy of the KerrNet prediction for our arbitrary

heterogeneous links with fully-loaded WDM channels.

ii Partially-loaded scheme
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FIGURE 3.22 – (a) Scatter plot of the model predictions over the fully-loaded test dataset (with redisual gain/loss)
𝑎𝑀𝐿 vs. theoretical estimation 𝑎𝑡ℎ and statistics prediction errors and (b) the absolute error |Δ𝑎 | vs. 𝑎𝑡ℎ
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Next, we present the result in a partially-loaded WDM scheme (in C-band). The WDM channels loading rate is

between 38% and 100% generated uniformly. Fig. 3.21 illustrates the PDF and the CDF of |Δ𝑎 |. The CDF indicates

that 95% of the predictions give an absolute error less than 0.089 dB and the mean value |Δ𝑎 | is 0.034 dB. This figure

shows that our KerrNet framework is a general QoT tool and it provides a highly accurate prediction of the nonlinear

coefficient 𝑎 for both fully-loaded and partially-loaded scheme. Besides, this also proves the high generalization

capability of our solution since the retraining of the ML models is unnecessary to apply the KerrNet in arbitrary

partially-loaded transmission scenarios. It is worth mentioning that if we use the SSFM or frequency-based EGN

model as ground-truth data, an adequate sampling over all the WDM loading schemes will be indispensable and

make the data generation and training much more complex.

3.6.4 Results with residual per-span gain/loss

In this subsection, we present the performance of our KerrNet framework in the general setting of a transmission

link with residual gain/loss for each span and where the WDM channels are fully-loaded. The gain/loss profiles are

generated randomly between [−1, 1] dB and independently for each span. Then we use a window function to smooth

the generated profiles.

Fig. 3.22 shows in (a) the scatter plot of the KerrNet’s predicted 𝑎𝑀𝐿 vs. the theoretical estimation of 𝑎𝑡ℎ and in

(b) the error Δ𝑎 vs. 𝑎𝑡ℎ as a function of ground truth theoretical 𝑎𝑡ℎ. We observe that for all intensity of the nonlinear

effect (with 𝑎 ranging between −48 dB/mW2 and −8 dB/mW2), our KerrNet solution has a stable performance.

In Fig. 3.23, we report the statistics of the NLI error |Δ𝑎 | where Δ𝑎 = 𝑎𝑡ℎ − 𝑎𝑀𝐿 [dB] over the generated test

dataset. The mean absolute error is 0.031 dB. Moreover, the CDF shows that the deviation from the theoretical value

of 𝑎𝑡ℎ is less than ±0.085 dB for 95% of the cases and less than ±0.13 dB for 99% of the cases.

Fig. 3.24 shows the evolution of 𝑎𝑡ℎ and 𝑎𝑀𝐿 over distance for six distinct link configurations from our test dataset.
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The evolution of the nonlinear coefficient 𝑎 versus the total transmission distance 𝐿𝑡𝑜𝑡 for heterogeneous links is

not trivial, but KerrNet outputs (markers) match the theoretical values (lines). This figure also illustrates the quality

of our KerrNet tool : despite the form of the curves, our results match the theoretical one, which is not trivial.
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3.6.5 Computation time
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FIGURE 3.25 – Computation time with KerrNet and integral-based TD-RP theoretical model

In Fig. 3.25, we plot the theoretical and KerrNet computation time 𝑡 vs. total number of spans 𝑁𝑠 . The target

configuration is a 200-span link fully loaded with 27 channels at 150 GBd. For the theoretical EGN computation, we

used 3 × 106 integration points based on numerical error analysis of integral evaluations. We achieved a speed-
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up factor up to 8 × 105 using a single CPU core and up to 7.5 × 106 using a single GPU. Moreover, thanks to the

configuration that we have chosen (with a bank of eight small FANNs), our KerrNet is highly parallelable and the

computation time can be further decreased using parallel processing enabling real-time applications.

3.7 Conclusion and perspectives

A new method for the QoT estimation in WDM system using machine learning is proposed and its accuracy and

speed have been tested compared with an accurate semi-analytical model : the time-domain regular perturbation

model. This tool, called KerrNet, speeds up the exact computation of the nonlinear interference variance up to six

orders of magnitude without scarifying the accuracy. Moreover, we emphasised on and showed in this chapter the

importance and non-trivial steps of the data generation and data pre-processing to successfully train the FANN-

based ML framework.

For homogeneous links, the KerrNet is composed of four small FANNs and can predict the perturbative coeffi-

cients X of the semi-analytical TD-RP model with an exceptional level of accuracy (< 0.033 dB mean absolute error

on estimation of 𝑎, the NLI coefficient with 95% of the prediction having an absolute error below 0.092 dB) and faster

by up to five to six orders of magnitude. Our proposed method has been tested for 500 different links composed of

twenty-spans of SSMF for a total transmission distance between 400 and 2400 km, and a C-band fully-loaded WDM

scheme with symbol rate 𝑅 between 20 and 150 GBd .

In the second part of this chapter, we reported an accurate ML-based framework to estimate the NLI for arbitrary

heterogeneous links up to 10000 km, with WDM channels transmitting between 20 and 150 GBd and with arbitrary

unshaped or shaped QAM formats (with various entropy values). This time, our KerrNet framework is composed of

eight small FANNs to compute the perturbative coefficients X of the semi-analytical TD-RP model via the prediction

of the cross-correlation function ρ(𝑖, 𝑗) between the 𝑖𝑡ℎ and 𝑗𝑡ℎ spans. We numerically evaluated the performance

of our solution compared to the theoretical estimation at various configurations but without the need to perform the

time-consuming re-training step for our trained FANNs. First, both fully-loaded and partially-loaded (loading rate

between 38 and 100%) C-band WDM schemes are tested but without accounting the gain/loss profile at each span.

The deviation from the theoretically estimated nonlinear coefficient Δ𝑎 is less than ±0.09 dB for boht fully-loaded

and partially-loaded links for 95% of the cases from our tested dataset composed of 7570 distinct and arbitrary

transmission heterogeneous links and different symbol rates and modulation formats. Finally, the evaluation was

performed over the same test dataset but also integrating arbitrary residual gain/loss profiles at each span. The

absolute error was below 0.085 dB for 95% of the cases.

Our implementation using a single GPU required only 36 ms for handling an example of full C-band transmission

over 10000 km, but it can be parallelized in a straightforward way. With parallel processing and/or optimization of the

neural network implementation, sub-millisecond execution times are feasible ; thus, enabling future real-time optical
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network planning and control.

In this study, the dispersion and attenuation coefficients are considered constant for all WDM channels. An

extension of this study for accounting for wavelength dependence of these effects can be achieved by re-training the

ML model while increasing the number of its input features by adding six more input parameters. The six additional

parameters include the fiber physical parameters value for the 𝑠𝑡ℎ neighbouring channel at the frequency 𝑓𝑠 : i.e.

𝐷𝑖 (𝑓𝑠 ), 𝐷 𝑗 (𝑓𝑠 ),α𝑖 (𝑓𝑠 ),α𝑗 (𝑓𝑠 ), 𝑏𝑧𝑖 (𝑓𝑠 ), 𝑏𝑧 𝑗 (𝑓𝑠 ) for the dispersion, attenuation and accumulated dispersion of the 𝑖𝑡ℎ and

𝑗𝑡ℎ span. However, there is no need to add the 𝑠𝑡ℎ channel’s nonlinear coefficient γ value to the input features since

γ does not account for the computation of ρ but only appears in the computation of the nonlinear coefficient 𝑎.
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Chapter 4

Phenomenological estimation of the

equalization enhanced phase noise

In this chapter, we focus on the characterization of the equalization enhanced phase noise (EEPN). In coherent

dispersion-unmanaged (DU) transmission systems, the accumulated chromatic dispersion (CD) is compensated at

the receiver side with DSP. The CD compensation is performed with an electronic equalizer as explained in 1.1.7

and is indispensable for high baud rate transmissions over long-distance fibers. However, this step generates an

additional impairment from the interaction of the phase noise (PN) of the LO with the CD compensation equalizer

called EEPN.

4.1 Introduction

The PN of a laser is the deviation of its electrical field from an ideal sinusoidal wave. It can also be described by a

frequency-domain view of the frequency noise spectrum around the laser signal and the laser linewidth is related to

this frequency noise PSD. Ideally, a laser has a Lorentzian spectral shape with a full width at half maximum (FWHM)

defined as the laser linewidth.

In many applications, such as coherent optical fiber communication, this PN can impact the performance of the

system. For coherent optical communications, two narrow-linewidth lasers are used : one at the transmitter side as

a carrier, and one at the receiver side as a local oscillator (LO). As described in Chapter 1 in paragraph ii, the laser

PN can be well mitigated by using the carrier phase estimation (CPE) in the DSP algorithm. But another impact of

the phase noise called EEPN is also deteriorating the performance of DU transmission system. This effect emerges

from the interaction between the widely used electronic CD compensation (CDC) and the PN of the LO laser. A first

theoretical analysis of EEPN impairments was proposed by [14] using a time-domain impulse response approach
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to compute the variance of EEPN.

It has been shown in [14] that if the CDC is performed at the receiver side, the transmitter PN do not induce EEPN

because it goes through both the fiber channel (with CD effect) and the CDC equalizer, which perfectly cancels the

effect. In [74], they also concluded that we can neglect the transmitter laser PN effect for EEPN with respect to the

LO PN. Lau et al. have shown in [75] that designing a DSP algorithm to fully mitigate the EEPN, thus providing a

significant performance improvement, is not easy. Moreover, the previous study has concluded that EEPN penalty

increases with LO laser linewidth, accumulated dispersion and symbol rate. Thus, with recent transceivers operating

near 100−150 GBd, a reliable characterization method is needed specially for high speed and long haul transmission

system.

However, the analytical model of EEPN assumes that the LO has a Lorentzian shape, and the EEPN is modeled

as an additive, white and Gaussian noise. On the one hand, the laser linewidth measurement can be a tedious

task requiring a dedicated setup with additional equipments. On the other hand, the ideal Lorentzian-shaped laser

hypothesis does not hold for commercially available laser sources.

Besides, the work in [76] has shown that the DSP, in particular the CPE block, can mitigate partially the EEPN

impairments. Thus, the estimation of the EEPN should be DSP-aware. Experimental characterization of the EEPN

has been proposed in [77] but it requires using extremely a low PN laser as "EEPN-free" laser and back-to-back

measurements are also indispensable.

In this chapter, we present a new experimental method to characterize the residual EEPN variance that truly

affects the system’s performance, without measuring the linewidth of the laser used as LO using the invalid notion

of Lorentzian laser. One advantage of our method is that we do not rely on the use of extremely low PN lasers.

Furthermore, this phenomenological method is also independent of the TX impairments, so it does not require a

TX-impairments characterization.

4.2 Analytical estimation method

In this section, we describe the analytical estimation of EEPN firstly proposed by Shieh and Ho [14] and then

discuss the limits of the model.

4.2.1 Equivalent model

To describe the EEPN effect, let us consider a multi-span coherent optical transmission system without inline

dispersion compensation. The homogeneous link is composed of 𝑁𝑠𝑝𝑎𝑛 identical fiber spans, each one amplified by

an EDFA to compensate the power loss. Each fiber span’s chromatic dispersion constant is 𝐷 and the total length of

the link is 𝐿. At the receiver side, a coherent receiver with an LO laser are used to convert the received optical field
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into a digital signal. We only consider a simplified model with CD, ASE noise, and PN of the two lasers (Tx and LO).

At the output of the coherent receiver, a DSP algorithm including CD compensation (considered ideal) and CPE are

performed.

Fig. 4.1 shows the frequency-domain baseband-equivalent model that can be used to study the EEPN impaire-

ment. The first block of the simplified model accounts for both RRC pulse-shaping and CD accumulated during the

propagation in the fiber with the transfer function 𝐻 (𝑓 ). Then the ASE noise generated by all EDFAs n(t), considered

AWGN is added to the model. Then, the signal is multiplied by the LO field for coherent detection. Finally, the DSP

step begins with the application of an equalization filter 𝐻 ∗ (𝑓 ) representing the RRC matched filter and sampling at

rate 𝑅𝑠 = 1/𝑇𝑠 with 𝑇𝑠 being the transmitted symbol duration, followed by the CPE block.

𝐻 (𝑓 )

√
𝑃𝑇𝑋𝑥𝑘𝑒

𝑗ϕ𝑇𝑋 (𝑡 )

+

𝑛(𝑡)

×

√
𝑃𝐿𝑂𝑒

𝑗ϕ𝐿𝑂 (𝑡 )

𝐻 ∗ (𝑓 ) CPE

𝑇𝑠

𝑦𝑘 𝑦𝑘

𝐻 (𝑓 ) = 𝐻𝑟𝑟𝑐 (𝑓 ) exp
(
𝑗 π𝑐𝐷𝐿

𝑓 2
0

𝑓 2
)

Optical channel Receiver Digital signal processing

FIGURE 4.1 – Equivalent model schematic representation adapted from [76] with 𝑥𝑘 transmitted symbols, Φ𝑇𝑋 (𝑡) :
TX source laser PN process, 𝐻 (𝑓 ) : channel frequency response, 𝐻𝑟𝑟𝑐 (𝑓 ) : RRC function in frequency domain, 𝐶 :
the speed of light, 𝐷 : fiber CD coefficient, 𝐿 : total transmission length, 𝑓 : frequency, 𝑓0 : channel center frequency,
𝑇𝑠 : symbol duration, 𝑛(𝑡) : ASE noise, Φ𝐿𝑂 (𝑡) : LO PN process, 𝑃𝑇𝑋 : signal mean power at the transmitter, 𝑃𝐿𝑂 : LO
laser power

4.2.2 Hypotheses of the ideal model and its limits

In the theoretical analysis, the transmitted symbols are assumed to be independent and identically distributed

(iid) and filtered with an ideal Nyquist pulse shaping. We also suppose that the LO laser has a Lorentzian shape,

so the PN can be approximated as a random walk following a Wiener process with the step size proportional to the

laser linewidth Δν. EEPN is also assumed to be independent to LO field.

Finally, the EEPN arising from LO PN and the CD compensation filter is assumed to be a zero-mean additive,

white and Gaussian noise having a variance defined as follows [14] :

σ2
𝐸𝐸𝑃𝑁 =

π𝑐 (𝐷𝐿)𝑅𝑠Δν
2𝑓 2

0
(4.1)

with 𝑐 the speed of light, 𝐷 the dispersion coefficient, 𝐿 the total length of transmission, Δν the LO laser linewidth, and

𝑓0 the LO frequency. We can notice that indeed, the EEPN variance increases proportionally with the accumulated
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CD (𝐷 multiplied by distance 𝐿), the signal symbol rate 𝑅𝑠 and the laser linewidth Δν.

However, the work in [76] studied the statistical properties of EEPN and concluded that EEPN noise is not a

Gaussian-shaped noise, and highlighted the non-white nature of EEPN. They also demonstrated that it is strongly

correlated to the LO field. Besides, the previous analyses of EEPN did not take into account the DSP impact,

in particular the impact of CPE on the EPPN mitigation leading to an overestimation of its actual impact. Finally,

lasers do not always show a Lorentzian shape (or equivalently a flat frequency noise spectrum, cf. Fig. 4.3) and the

definition of their spectral shape and the value of their linewidth strongly depend on the observation window of these

sources.

4.3 Phenomenological method

4.3.1 Characterization technique

Our characterization technique is based on the following well-known expression of the SNR of the signal at

distance 𝐿, average power per channel 𝑃 , and symbol rate 𝑅 :

𝑆𝑁𝑅 =
𝑃

𝑁0𝐿𝑅 + η(𝑅)𝑃 + σ2
𝐸𝐸𝑃𝑁

𝑃𝐿𝑅 + 𝑎𝑃3 (4.2)

where 𝑁0 is the spectral level of the ASE, η(𝑅)𝑃 is the variance of the residual TRX noise in back-to-back, σ2
𝐸𝐸𝑃𝑁

is

the EEPN noise variance coefficient that we aim to characterize in this work, and 𝑎 is the Kerr nonlinear coefficient.

To eliminate the dependence of the SNR on the variance of the residual TRX noise (which does not depend on the

transmission distance), we choose to derive the Eq. (4.2) with respect to transmission distance 𝐿.

Let us define 𝑠 = 1/𝑆𝑁𝑅 and consider the following equation :

∂𝑠 (𝑃, 𝐿, 𝑅)
∂𝐿

=
𝑁0𝑅

𝑃
+ σ2

𝐸𝐸𝑃𝑁𝑅 +
𝑎𝑁𝐿𝐼

𝐿
𝑃2

=
α

𝑃
+ β + γ𝑃2

(4.3)

∂𝑠/∂𝐿 is called the slope in the following.

Starting from this equation to estimate the EEPN noise variance, we propose to first measure the quantity 𝑠 for

various values of transmission distance 𝐿, and per-channel power 𝑃 , and compute the approximate slope of 𝑠 with

respect to 𝐿 based on the experimental dataset. Finally, we propose to numerically fit the model of the slope vs.

power as per Eq. (4.3)to the experimental slope vs. power curve and characterize the EEPN noise variance σ2
𝐸𝐸𝑃𝑁

.

Moreover, we repeat the same procedure for various values of 𝑅 for the sake of checking the consistency of the

measured results.
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4.3.2 Experimental setup
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FIGURE 4.2 – Experimental setup
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The setup for our transmission experiment is shown in Fig. 2.4. The transmitted signal was synthesized using

a WDM loading comb composed of 40 C-band DFB lasers spaced at 50 GHz, modulated with 49 GBd PDM QPSK

signals. The test channel is made of a tunable laser source (TLS), separately modulated with PDM-QPSK signals

at various symbol rates using a CMOS DAC operating at 120 GSamples/s. Digital pre-distortion is applied for the

channel under test to provide a flat channel spectrum. The loading channels comb passed through a polarization

scrambler (PS) before being multiplexed with the test channel. The test channel and the dummy WDM comb were

multiplexed together and launched into the re-circulation loop. This loop consisted of 11 spans of 55 km Corning

EX3000 fibers, with 0.157 dB/km loss coefficient, 𝐷 = 20.5 ps/nm/km dispersion coefficient at 1550 nm, and 150 µm2

effective area. The span loss was compensated at the end of each span by a C-band EDFA followed by a GFF. A
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50 GHz-grid-resolution WSS was used after the last span of the loop to equalize WDM channels across the whole C-

band. Each loop thus emulated transmission over 605 km. We then performed transmission experiments at different

total launched powers ranging from 11 to 17 dBm which were repeated for three different symbol rates of 80 GBd,

85 GBd and 90 GBd. For each configuration of launch power and symbol rates, we measured the channel under
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FIGURE 4.4 – The inverse of SNR, 𝑠, with respect to transmission distance for several configurations of 𝑃
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test after 10 to 15 loops by steps of one loop, so as to obtain distances ranging between 6050 and 9075 km by steps

of 605 km. The signal at the loop output was received by a standard coherent receiver front-end with another TLS

used as LO in this work. The frequency noise of the LO is illustrated in Fig. 4.3. The front-end signal is sampled at

256 Gsamples/s using a 110 GHz real-time sampling scope, and the standard DSP is applied off-line to the recorded

sampled waveforms. The standard DSP suite consisted of chromatic dispersion compensation, complex MIMO 2× 2

CMA, frequency offset compensation, and BPS carrier phase recovery with2% pilot overhead to remove cycle-slips,
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followed by an LMS post-equalizer to mitigate transmitter imperfections.

4.3.3 Experimental results
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FIGURE 4.6 – The schematic flowchart to illustrate the extraction of the fitting parameters α, β and γ

The SNR of the received signals was calculated and the quantity 𝑠 = 1/𝑆𝑁𝑅 was obtained. Then, the approximate

experimental slope of 𝑆 vs. power was computed for each data set. We intend to numerically extract three parameters

α, β, γ to fit the model of Eq. (4.3). i.e., ∂𝑠/∂𝐿 = α/𝑃 + β + γ𝑃2 to the measured slope vs. power curves.

Fig. 4.4 illustrates experimental 𝑠 vs. distance 𝐿 curves for various powers, together with the linear fits in dashed

lines using Huber cost function to suppress outliers’ impact. The slope of these fitted lines are considered as the

approximate experimental slope ∂𝑠/∂𝐿. Fig. 4.5 now illustrates the measured experimental slope vs channel power

𝑃 . We can see from this graph the evolution of the measured slope in the linear and slightly nonlinear regimes as

a function of the channel power. To extract the EEPN noise variance as expected from Eq. (4.3), we proceeded in

two steps. The flowchart illustrating this process is plotted in Fig. 4.6. First, we exhaustively searched for α, such

that the ASE-corrected slope : ∂𝑠/∂𝐿 − α/𝑃 becomes as flat as possible for the powers corresponding to the linear

regime below 14 dBm launch power (by minimizing the slope of the fitted line to the ASE-corrected slope).

Then, we plotted in Fig. 4.7 the ASE-corrected slopes for the measured channel powers at the baud rate of

85 GBd. As can be seen, the highest launched powers reveal the presence of nonlinearity as expected by the last

term in Eq. (4.3). We finally interpolated the ASE-corrected slope according to the following form : β + γ𝑃2, i.e a

constant term plus a parabolic law in order to estimate the γ = σ2
𝐸𝐸𝑃𝑁

𝑅 and deduce the EEPN noise variance for
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each symbol rate. Fig. 4.8 now shows the resulting EEPN noise variance estimated for our three measurement

datasets at 80, 85 and 90 GBd.

Fig. 4.3 illustrates the PSD of the frequency noise of our LO TLS directly measured by a commercial optical

phase noise test and measurement system. The LO TLS is clearly not a Lorentzian laser (otherwise the PSD of

the frequency noise should be a flat line). Moreover, the PSD is not flat over the observation window pertinent

to the EEPN characterization. This window is determined by the memory introduced by the CD compensation

filter. For 𝑅 = 90 GBd (i.e., Δλ = 0.72 nm), at 𝐿 = 9075 km, the length of the impulse response of the CD filter is

𝐷𝐿Δλ ≈ 133 ns ( ∼ 7.5 MHz-1). This means that the PSD of the frequency noise should be integrated from 7.5 MHz

onwards to obtain the variance of the phase noise of the LO under consideration here. This procedure allows us

to estimate the actual frequency noise PSD by an equivalent constant level which results in the same area under

the curve. The constant level is 14.7 × 103 Hz2/Hz for our TLS LO. Then, following [78], we multiply this value by

2π and find the equivalent two-sided Lorentzian linewidth Δν for our TLS LO. This value is then used to compute
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the variance of EEPN given by the DSP-agnostic analytical expression in Eq. (4.1). The EEPN noise variance

obtained from the DSP-agnostic analytical expression is also plotted in Fig. 4.8 for comparison. We can clearly

see that the measured EEPN noise variances measured at the three symbol rates are consistent although well

below the theoretical expectations taken from Eq. (4.1). This is consistent with previous published results [77] where

experimental results showed that the analytical result overestimates the EEPN variance. Although there is a slight

deviation among the estimated variances at different baud rates, we expect that the quality of estimation can be

improved in future work if more data is collected to enhance the accuracy.

4.4 Conclusion

In this chapter, we detailed a new method to characterize the actual impact of EEPN in a real optical system.

To estimate the EEPN variance, we conducted WDM transmission experiments in linear and slightly nonlinear

regime without a priori knowledge of the laser phase noise characteristics. This phenomenological method, based on

parameter extraction of a well-known analytical model for the evolution of the SNR along the link, is also independent

from the transceiver imperfections.

Experimental validation of the technique has been performed over a submarine testbed with transmission dis-

tances ranging from 6050 to 9075 km. With the growing importance of EEPN effect in modern coherent systems over

ultra-long haul distances, further improvement of the accuracy of the technique will be the subject of future works

through the collection of more experimental data to enhance the accuracy of parameter extraction.

It is also worth to note that if the CDC is performed at the transmitter side, with a pre-dispersion compensation,

the EEPN still exists but in this case it arises from the transmitter laser PN [74].
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Conclusion

Over the past decades, optical network and submarine transmission systems have become the backbone of

world transmission systems. The main goal of the thesis was to investigate several ML-based or data-driven methods

to increase the transmission capacity or to analyze the performance of fiber-optic transmission systems for providing

a reliable QoT estimation tool for low-margin design of the optical networks.

First, we can enhance the transmission capacity by increasing the bandwidth of the transmission system using

ultra-wide band schemes. Since the bandwidth of EDFAs is not wide enough, hybrid Raman amplifier has gained

popularity for its flexibility and performance but finding the optimal design of such amplifier is a complex task. Among

possible solutions we considered, in this thesis, machine learning methods, and in particular ANNs, to design ultra-

wideband Raman amplifier deployed in a hybrid amplification configuration with an SOA.

On the other hand, to meet the increasing internet traffic demands, we should fully exploit the optical network

capacity with low-margin design. Consequently, a highly-accurate and ultra-fast QoT tool is indispensable including

the estimation of each impairments impact. Among the major impairments, that occur during the propagation in the

fiber, the estimation of the NLI and EEPN variances are the most challenging parts. To tackle this challenge, ANNs

are also employed to estimate the most complex impairments contributions : the NLI variance estimation. Aside

from ML-based solution, a new method was investigated to predict phenomenologically the impact of EEPN with

experimental data.

Thesis summary and contributions

In Chapter 1, we first presented an overview of fundamental concepts of digital communication systems and the

specificity of optical coherent transmissions. The state-of-the-art of the coherent systems and DSP algorithms are

described, together with the presentation of different types of impairment and their contribution to the system’s SNR.

In the same chapter, we also introduced a short description about basic knowledge of ML and ANN. In parti-

cular, their structure and the training process have been presented, as well as the influence of the important data

processing step.

In Chapter 2, we illustrated the use of ANN to model the behavior of Raman amplifiers deployed in a hybrid
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SOA/Raman configuration, to predict their gain profiles for a given pump currents configuration. Besides, we pro-

posed another ANN to inverse design the ultra-wideband hybrid Raman amplifier for a given target gain profile.

Moreover, we demonstrated that this solution is suitable for multi-span usage for arbitrary gain profile. We achieved

a high accuracy ML-based framwork with 95% of predictions with an RMSE less than 0.51 dB for the generative

model and 95% of predictions with an RMSE less than 0.74 dB for the inverse model.

In Chapter 3 we introduced ANN-based solution, called KerrNet, to provide a highly-accurate, ultra-fast and

general QoT estimation tool for the Kerr NLI variance estimation for WDM transmission over the C-band. This

framework is based on the theoretical time-domain regular perturbation model which is accurate up to the first-

order of perturbation. The analysis has been conducted for both homogeneous and heterogeneous transmission

link. First, we introduced a bank of four ANNs to estimate the perturbative coefficients X for homogeneous link

with one-to-twenty spans of SSMF and fully-loaded WDM channels transmitting at 𝑅 between 20 and 150 GBd in C-

band. Then, the computation of the nonlinear coefficient 𝑎 is straight-froward. We were able to achieve an absolute

prediction error less than 0.092 dB for 95% of the cases between the KerrNet-predicted and TD-RP model-estimated

nonlinear coefficient 𝑎 while achieving a speed-up factor of five to six orders of magnitude of the TD-RP model

computation time.

The second step consists in an extended version of our KerrNet framework to a more general configuration with

heterogeneous link, up to 10, 000 km, composed of arbitrary fiber parameters (random dispersion and attenuation

coefficients) and arbitrary fiber span length. Our proposed ML-based solution learns the cross-correlation function ρ

between two spans instead of the perturbative coefficients X to guaranty a fixed number of parameters as input fea-

ture for the FANNs. Then the X is obtained by summing over the cross-correlation coefficients ρ for all spans and the

nonlinear coefficient 𝑎 is computed. The analysis has been conducted in both fully–loaded and partially–loaded sce-

narios and the general case, where the residual per span gain/loss profiles are included, have also be investigated.

The prediction errors distributions were presented for all above-mentioned scenarios for arbitrary modulation format,

symbol rate, WDM loading scheme and arbitrary wavelength-dependent gain/loss coefficients for each span. And

the same level of low prediction errors over various scenarios highlighted the accuracy and the generalizability of

our KerrNet solution. Meanwhile, we time the computation time for both KerrNet framework and integral-based TD-

RP semi-analytical model (using MC integration). The obtained results are very promising : our proposed KerrNet

framework can provide an speed-up up to six orders of magnitude while ensuring an average prediction error less

than 0.13 dB for 99% of the tested cases composed of 7570 distinct and arbitrary heterogeneous transmission links,

different symbol rate, modulation formats and per-span gain/loss profiles. Moreover, we investigated the importance

of the data-generation and pre-processing step in the performance of our FANNs and highlighted the necessity of an

optimized and tailored distribution for input parameters generation and a well-designed pre-processing algorithm.

Finally, in the last part of this work (Chapter 4), we investigated a new method to phenomenologically characterize

the EEPN variance value in ultra-long haul WDM transmission experiments without a priori knowledge of the LO
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laser PN characteristics. Based on parameter extraction of the well-known analytical model for the evolution of the

SNR along the link, the technique is also independent from the transceiver imperfections and only measure the

residual EEPN variance after CPE, that really affects the system’s performance, contrary to other methods. We

carried out experimental validation of the technique over a submarine test-bed with transmission distances ranging

from 6050 to 9075 km for three symbol rate.

Perspectives

In this thesis, ML-based or data-driven methods to enhance or predict the optical transmission system’s perfor-

mance have been presented and these pave the way for future investigations.

Further extensions of the proposed ML-based solution presented in Chapter 2 would include a joint optimization

for the hybrid Raman/SOA amplifier by also modelling the SOA with an ML framework.

The presented KerrNet framework (in Chapter 3) has showed promising results and there is still much room for

improving this ML-based approach : future works of the proposed methodology could also include transmission link

scenarios with negative dispersion fibers as well as transmission configurations composed of variable symbol rate

WDM channels. Moreover, I-SRS can also be included in the framework for the NLI estimation of UWB systems.

Besides, one challenging step in all ML framework is the data acquisition part, because of the high amount of data

needed for training the ML framework. Several techniques, such as transfer learning, could also be implemented to

accelerate the data collection stage.

Furthermore, we have seen in Chapter 4 that the phenomenological method to estimate the EEPN variance

relies on the estimation of the parameters of a fitting function, thus further improvement of the accuracy of the

technique would be possible through the collection of more experimental data.
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Appendix A

Time domain-regular perturbation model

for nonlinear interference variance

computation

The Chapter 3, we presented an summary and some examples of the expressions used in TD-RP method to

compute the NLI variance σ2
𝑁𝐿𝐼

and the nonlinear coefficient 𝑎. This appendix aims to give more details about the

computation of the perturbative coefficients X and the cross-correlation function ρ.

The X-coefficients appearing in the variance of the signal-signal distortions inf Eq. (3.24) are defined in [11] as

follows :

X1,00 =
1
𝑇

∫
ℝ3

𝑑3ω

(2π)3
∫ 𝐿

0
𝑑𝑧𝐻 ®ω (𝑧)

∫ 𝐿

0
𝑑𝑧′𝐻 ∗®ω (𝑧

′)

X2,00 =

∫
ℝ4

𝑑4ω

(2π)4
∫ 𝐿

0
𝑑𝑧𝐻 ®ω (𝑧)

∫ 𝐿

0
𝑑𝑧′𝐻 ∗®ω′ (𝑧

′)

X3,00 =

∫
ℝ4

𝑑4ω

(2π)4
∫ 𝐿

0
𝑑𝑧𝐻 ®ω (𝑧)

∫ 𝐿

0
𝑑𝑧′𝐻 ∗®ω (𝑧

′)

X4,00 =

∫
ℝ3

𝑑3ω

(2π)3
∫ 𝐿

0
𝑑𝑧𝐻 ∗®ω′′ (𝑧)

X5,00 = 𝑇

∫
ℝ5

𝑑5ω

(2π)5
∫ 𝐿

0
𝑑𝑧𝐻 ®ω (𝑧)

∫ 𝐿

0
𝑑𝑧′𝐻 ∗®ω′′′ (𝑧

′)

X1,0𝑠 =
1
𝑇

∫
ℝ3

𝑑3ω

(2π)3
∫ 𝐿

0
𝑑𝑧𝐻 ®ω,𝑠 (𝑧)

∫ 𝐿

0
𝑑𝑧′𝐻 ∗®ω,𝑠 (𝑧

′)

X3,0𝑠 =

∫
ℝ4

𝑑4ω

(2π)4
∫ 𝐿

0
𝑑𝑧𝐻 ®ω,𝑠 (𝑧)

∫ 𝐿

0
𝑑𝑧′𝐻 ∗®ω′′,𝑠 (𝑧

′)

X1,𝑠𝑠′ =
1
𝑇

∫
ℝ3

𝑑3ω

(2π)3
∫ 𝐿

0
𝑑𝑧𝐻 ®ω,𝑠,𝑠′ (𝑧)

∫ 𝐿

0
𝑑𝑧′𝐻 ∗®ω,𝑠,𝑠′ (𝑧

′)

(A.1)
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with kernel function 𝐻 defined as :

𝐻 ®ω,𝑠,𝑠′ (𝑧) = Π ®ω,𝑠,𝑠′ 𝑓 (𝑧) × exp
{
𝑖ϕ𝑠,𝑠′ + 𝑖β2 (𝑧)

[
(ω2 − ω3) (ω2 − ω1) − 𝑠𝑠′ΔΩ2]} (A.2)

where 𝑓 (𝑧) is the normalized power profile function and ϕ𝑠,𝑠′ = ϕ𝑠 (0) + ϕ𝑠′ (0) − ϕ𝑠+𝑠′ (0) and ϕ𝑠′ is the relative phase

shift between COI and the 𝑠′ 𝑡ℎ channel, ΔΩ the channel spacing and β(𝑧) is the local GVD coefficient and Π ®ω,𝑠,𝑠′ is

defined by :

Π ®ω,𝑠,𝑠′ = 𝑢̃
(0)
0 (0,ω1 − Ω𝑠 ) 𝑢̃ (0)∗0 (0,ω2 − Ω𝑠+𝑠′ ) × 𝑢̃ (0)0 (0,ω3 − Ω𝑠′ ) 𝑢̃ (0)∗0 (0,ω1 − ω2 + ω3) (A.3)

with Ω𝑠 = 𝑠ΔΩ and 𝑢̃
(0)
0 (0,ω) is the Fourier transform of the normalized base-band pulses assumed to be the Nyquist

pulses defined as follows :

𝑢̃
(0)
0 (0,ω) =


√
𝑇, |ω| < π

𝑇

0, |ω| ≥ π
𝑇

(A.4)

Note that the following notation simplifications are used : 𝐻 ®ω,𝑠 = 𝐻 ®ω,0,𝑠 , Π ®ω,𝑠 = Π ®ω,0,𝑠′ , 𝐻 ®ω = 𝐻 ®ω,0,0 and Π ®ω = Π ®ω,0,0

and we have also used the following shorthand notations

®ω′ = (ω4,ω2,ω1 + ω3 − ω4)

®ω′′ = (ω1,ω4,ω3 − ω2 + ω4)

®ω′′′ = (ω4,ω5,ω1 − ω2 + ω3 − ω4 + ω5)

(A.5)

with ω𝑖 , for 𝑖 = 1, . . . , 5, are independent real dummy integration variables.

The four X coefficients can be re-written by the means of the cross-correlation function as follows :

X1,00 (𝐿𝑡𝑜𝑡 , 𝑓𝑠 ) =
𝑁𝑠∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1
γ𝑖γ𝑗𝑔𝑖 (𝑓𝑠 )𝑔 𝑗 (𝑓𝑠 )ρ(𝑠𝑐 )3 (𝑖, 𝑗)

X3,00 (𝐿𝑡𝑜𝑡 , 𝑓𝑠 ) =
𝑁𝑠∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1
γ𝑖γ𝑗𝑔𝑖 (𝑓𝑠 )𝑔 𝑗 (𝑓𝑠 )ρ(𝑥𝑐 )1 (𝑖, 𝑗)

X1,0𝑠 (𝐿𝑡𝑜𝑡 , 𝑓𝑠 ) =
𝑁𝑠∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1
γ𝑖γ𝑗𝑔𝑖 (𝑓𝑠 )𝑔 𝑗 (𝑓𝑠 )ρ(𝑥𝑐 )3 (𝑖, 𝑗)

X3,0𝑠 (𝐿𝑡𝑜𝑡 , 𝑓𝑠 ) =
𝑁𝑠∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1
γ𝑖γ𝑗𝑔𝑖 (𝑓𝑠 )𝑔 𝑗 (𝑓𝑠 )ρ(𝑠𝑐 )1 (𝑖, 𝑗)

(A.6)

where 𝑔𝑖 (𝑓𝑠 ) and 𝑔 𝑗 (𝑓𝑠 ) is the gain/loss factor at the input of the 𝑖𝑡ℎ and 𝑗𝑡ℎ span respectively, evaluated for the

𝑠𝑡ℎ channel (frequency 𝑓𝑠 ), γ𝑖 and γ𝑗 are the nonlinear coefficients for those two spans and ρ(𝑖, 𝑗) represents the

cross-correlation interaction between 𝑖𝑡ℎ and 𝑗𝑡ℎ spans.
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Résumé : La demande croissante de trafic internet
a nécessité une augmentation continue de la capa-
cité des systèmes de communication par fibre op-
tique, fondement des réseaux de communication glo-
baux. Cette thèse se propose des solutions inno-
vantes pour relever les défis posés par l’amplifica-
tion à bande ultra-large et l’estimation fine du bruit
dans les systèmes de transmission optique. Les sys-
tèmes de communication par fibre optique ont connu
une évolution significative pour répondre aux exi-
gences croissantes en matière de capacité. Ils sont
passés des amplificateurs optiques et de la détec-
tion cohérente aux formats de modulation et aux al-
gorithmes de traitement numérique du signal avan-
cés. Pour répondre à la demande croissante de trafic
dans les réseaux optiques, l’intégration de schémas
UWB et la mise en œuvre d’outil de conception de
réseaux à faible marge sont devenues primordiales.
Ce travail explore les aspects fondamentaux de l’am-
plification UWB. La prédiction précise des profils de
gain Raman et la conception de configuration opti-
male sont primordiales, mais les méthodes conven-
tionnelles s’avèrent très gourmandes en ressources
de calcul. Dans ce contexte, l’apprentissage automa-
tique apparaît comme un outil puissant, simplifiant la
complexité et améliorant la précision dans ces scéna-

rios. En outre, la thèse aborde le défi de la concep-
tion de systèmes à faible marge en développant un
outil fiable de qualité de transmission. Les systèmes
de transmission par fibre optique sont confrontés à
diverses dégradations telles que l’atténuation de la
fibre, le bruit des amplificateurs, le bruit de phase
du laser, l’interférence non linéaire, etc. Alors que
les détériorations linéaires peuvent être efficacement
compensées et caractérisées, les méthodes tradition-
nelles peuvent manquer d’efficacité dans l’estimation
de certaines détériorations non linéaires principales,
car elles posent des problèmes en termes de préci-
sion et de complexité. Par conséquent, ce travail se
penche sur les approches basées sur les données, y
compris les modèles ML, afin de fournir une estima-
tion efficace du bruit non linéaires Kerr et du bruit de
phase renforcé électroniquement. En résumé, cette
thèse s’appuie sur des méthodes d’apprentissage ou
orientées données pour améliorer les performances
des systèmes de transmission optique. Ces avan-
cées sont prêtes à façonner l’avenir des systèmes de
communication optique, en contribuant à des capaci-
tés plus élevées et à des transmissions plus fiables
dans notre environnement numérique qui évolue rapi-
dement.

Title : Applications of Artificial Intelligence to Control and Analyze the Performance of Fiber-Optic Transmission

Systems

Keywords : Artificial Intelligence, Optimization, Fiber-Optic Communications, Quality of transmission

Abstract : The surging demands for internet traf-
fic have necessitated continuous expansion in opti-
cal fiber communication systems capacity, corners-
tone of global communication networks. This thesis
delves into innovative solutions addressing the chal-
lenges posed by ultra-wideband (UWB) amplification
and precise noise estimation in optical transmission
systems. Optical fiber communication systems have
undergone significant evolution to meet escalating ca-
pacity requirements. Progressing from optical ampli-
fiers and coherent detection to advanced modulation
format and digital signal processing (DSP) algorithms.
To meet the need for higher traffic demands in opti-
cal networks, integrating UWB schemes and imple-
menting low-margin network designs have become
primordial. This work explores fundamental aspects
of UWB amplification. Accurate prediction of Raman
gain profiles and optimal pump configurations design
is paramount, yet conventional methods prove com-
putationally intensive. Here, Machine Learning (ML)
emerges as a powerful tool, simplifying complexity

and enhancing accuracy in these scenarios. Additio-
nally, the thesis addresses the challenge of designing
low-margin systems by developing a reliable Quality
of Transmission (QoT) tool. Optical fiber transmission
systems contend with diverse impairments such as fi-
ber attenuation, ASE noise, laser phase noise, nonli-
near interference (NLI), etc. While linear impairments
can be effectively mitigated and characterized, tradi-
tional methods may falter in estimating some major
nonlinear impairments, posing challenges in accuracy
and complexity. Consequently, this work delves into
data-driven approaches, including ML frameworks,
to provide effective estimation of Kerr nonlinear im-
pairments and electronically enhanced phase noise
(EEPN) In summary, this thesis leverages ML and
data-driven methods to enhance the performance of
optical transmission systems. These advancements
are poised to shape the future of optical communica-
tion systems, facilitating higher capacities and more
reliable transmissions in our rapidly evolving digital
environment.
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