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Abstract

This project aims to develop a model for low Mach flow in pipelines and an industrial code
implementing it. The model can describe low mach regimes while avoiding blunt approxi-
mations, improving over legacy approaches like Boussinesq; as a result, our program is more
accurate. In order to build our model and program, we investigate gas flow at low veloc-
ities in a network of pipes. We consider a one-dimensional system of equations obtained
by averaging the Navier-Stokes equations for a compressible fluid over the pipe section. In
contrast to the classical Boussinesq approximation, we employ the Low Mach Expansion to
describe asymptotically compressible effects, aiming for a more accurate solution capable of
characterizing flows with significant temperature variations. We first apply the model we ob-
tained thus far to a well-known configuration of pipes called the "thermosyphon.”. This setup
consists of a loop of two horizontal adiabatic pipes and two vertical pipes with prescribed
wall temperatures, resulting in a temperature gradient that drives the flow. The application
of the model to this configuration gives us an exact but semi-implicit solution under laminar
and steady-state conditions. This solution serves as a benchmark against which we validate
our numerical results. By comparing our computed values with the quasi-exact solution,
we demonstrate the accuracy and reliability of our approach. To implement the low Mach
averaged model, we use a numerical method based on the characteristics method and the
projection technique. We incorporate in our algorithm the treatment of periodic conditions
and Dirac distributions as derivatives of the discontinuous gravity term at the corners. To
generalize the model to more complex configurations of pipes, we propose laws that govern
the junctions between multiple pipes. We study the ”three-rung ladder,” a closed configura-
tion comnsisting of horizontal adiabatic pipes and vertical ones with imposed wall temperatures
to induce a temperature-driven flow. To tackle the challenges junctions pose in this context,
we implemented an algorithm in the program capable of ensuring proper transmission con-
ditions. Whenever feasible, we provide quasi-exact solutions under laminar and steady-state
conditions to validate our numerical results further. Overall, this study investigates further
low Mach number gas flows, employing advanced numerical techniques and validating our

findings against established benchmarks.

Keywords: 1-D gas flow, pipeline network, low Mach assumption, thermosyphon, three-
rung ladder, laws at the junction, reference solution, periodic conditions, temperature gradi-

ent, fluid mechanics, numerical modeling, CFD.






Résumé

Cette étude porte sur les écoulements de gaz a faible vitesse dans des réseaux de tuyaux,
en se concentrant sur un régime caractérisé par un faible nombre de Mach. Nous utilisons
un modele unidimensionnel obtenu en moyennant les équations de Navier-Stokes pour un
fluide compressible sur la section d’une conduite. Notre approche utilise le développement
asymptotique a faible nombre de Mach pour décrire les effets compressibles de maniére plus
précise, contrairement a l’approximation classique de Boussinesq qui en est un cas limite
lorsque 1’élévation de température est assez faible. Nous utilisons un schéma numérique
fondé sur la méthode des caractéristiques et la méthode de projection pour traiter ce modele
a faible Mach. Nous présentons des résultats numériques pour une configuration appelée
”thermosiphon”. Cette configuration consiste en une boucle fermée constituée de deux tuyaux
horizontaux adiabatiques et de deux tuyaux verticaux avec des températures de paroi pre-
scrites, qui entrainent 1’écoulement. L’algorithme développé permet de prendre en compte
des distributions de Dirac, qui peuvent apparaitre en terme source dans le modele pour
représenter les coins de la géométrie. La méthode proposée est également adaptée au modele
pour des conditions aux limites de type périodique en plus des conditions de type Dirich-
let. Afin d’établir une référence pour le probleme du thermosiphon, nous fournissons une
solution exacte mais semi-implicite d’un écoulement laminaire en régime permanent. Cette
solution sert de référence pour valider la méthode proposée. Nous proposons également des
lois qui régissent les jonctions entre plusieurs conduites et présentons des résultats numériques
pour des configurations de conduites plus complexes. Nous nous intéressons en particulier a
I’échelle & trois barreaux, une configuration fermée qui corresponds & une extension du ther-
mosiphon. A partir de celle-ci, plusieurs configurations générales peuvent étre dérivées. Nous
développons un algorithme pour garantir des conditions de transmission adéquates aux jonc-
tions, en fournissant autant que possible des solutions stationnaires semi-analytiques pour
valider nos résultats numériques. Cette étude contribue a une meilleure compréhension des
principes qui régissent les écoulements de gaz a faible nombre de Mach en utilisant des tech-

niques numériques avancées et en les comparant a des références établies.

Mots-clés : écoulement 1-D de gaz, réseau de tuyauzx, hypothése de Mach faible, simula-
tion d’un thermosiphon, simulation d’une échelle a trois barreauz, lois d la jonction, solu-
tion de référence, conditions périodiques, gradient de température, mécanique des fluides,

modélisation numérique, CFD.
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Chapter 1

Introduction

Modeling gas flows in pipeline arrangements is crucial in many engineering applications.
Within fossil fuel exploitation, the industrial application we focus on is transporting liquefied
natural gas across oceans via ships. Among others, the company Gaztransport & Technigaz

(GTT) has developed technologies to carry the gas liquefied on ships like, for example, the

one in figure 1.1.

Figure 1.1: An example of a GTT ship transporting liquefied natural gas.

The natural gas is stored inside tanks at temperatures between 70K and 110K. Figure
1.2 highlights these structures inside a ship, and figure 1.3 shows two people working in an
empty tank to give an idea of the tank dimensions. Let the tanks directly contact the ship
exterior at temperatures between 290K and 310K leads to inefficiency. Indeed, the main
issue during transportation is pressure loss caused by the friction of the gas against the
walls of the tank and the heat exchange with its surroundings. In the overland context, the
natural gas is transported via pipeline networks, and it is possible to overcome this problem
by putting some stations throughout the network to restore the desired pressure, even if
that means losing three to five percent of the gas [WRMBS00]. In maritime transportation,
unfortunately, this is not feasible. Optimizing gas transportation by sea is a difficult task

with much room for improvement. The balance between minimizing losses and costs and
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maximizing the transported quantity of gas is still an open challenge.

Figure 1.2: An example of a GTT ship transporting liquefied natural gas by highlighting the

interior tanks.

e T T T ¥
T T T ]
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Figure 1.3: Two people working in an empty tank ship designed by GTT. This ship carries

liquefied natural gas. The control network is visible on the walls of the tank.

A possible solution that GTT implemented is to insert a double layer of reservoir lining that
allows the natural gas exchanges with its surroundings to be controlled. The interior of these
layers is filled with a mixture of gases in continuous motion due to the natural temperature
gradient between the ship exterior and the tank interior. These gases are confined inside a
pipeline network to have control of their streams. This control network is visible at the wall

of the tank in figure 1.3. Figure 1.4 shows a detail of the control network.
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Figure 1.4: A particular of the control network supervising the exchanges of the liquefied

natural gas with its surroundings inside the GTT transport ships.

What is needed is both efficient and robust simulations of this control network and inno-
vative optimization models and strategies. Studying complex networks with strong thermal
effects is a complicated fluid mechanics problem. Figure 1.5 shows the two-dimensional grid

corresponding to the network that will be the domain of the application of our algorithms.

Figure 1.5: The two-dimensional grid corresponding to the control network supervising the

exchanges of the liquefied natural gas with its surroundings inside the GTT transport ships.
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We start with a particular minimal network, the thermosyphon. It is a closed pipe of length 4L

where the gas is confined at some mean pressure and flows in

a loop from one pipe to another,
as in figure 1.6. The pipe at tem-
peratures T’y cools the gas, which
is denser and falls, and the one
at temperature 7. heats the gas,
which is less dense and moves up.
The inclination of the pipes 6 de-
pends on the geometry: in the
heated pipe, it is 5, in the cooled
one —5 and in the others 0. This
test case has practical utility as this
type of flow appears naturally. We
can exploit the algorithm designed
for the thermosyphon to construct
algorithms for more complex struc-
tures. The main issue of this exten-
sion is dealing with transmission
conditions at the junction between
more than two pipes. For this rea-

son, the next step is to focus on

bifurcation as the one in figure 1.7.

L

2
u

Adiabatic
sinf) = 0

T, \u!| | sing=1 sing = -1 |*| Ty

Adiabatic
sinf =0

T =24 wl T3

Figure 1.6: A sketch of the geometry of the ther-
mosyphon: a closed pipe of length 4L where the gas
is confined and flows between the temperatures T and

T..

the study of junctions, starting by analyzing an open

Figure 1.7: A sketch of an open domain made of three pipes, two inlets, and one outlet.

The last step is to put together the study of the thermosyphon and that of the junction. We

study a three-rung ladder in this optic. As shown in figure 1.8, it is a closed pipe configura-

tion that can be imagined as a thermosyphon with one more horizontal adiabatic pipe that

links the heated and the cooled pipes. In this configuration, the gas is confined at some mean
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pressure and flows in a loop from one canal to another, with a flow redistribution at each
pipe junction. The objective is to create more complex configurations by extension of a three-

rung ladder. We start to extend a three-rung ladder to a n-rung ladder, as shown in figure 1.9.

Ly
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Figure 1.8: A sketch of the geometry of Figure 1.9: A sketch of the geometry of

the three-rung ladder: a closed pipe where a more complex configuration, an n-rung
the gas is confined and flows between the ladder: a closed pipe where the gas is con-
temperatures T (cooled, it is denser, and fined and flows between the temperatures

falls) and T, (heated, it is less dense and Ty (cooled, it is denser, and falls) and T

moves up). (heated, it is less dense and moves up).

Since we face a gas flow, we use Navier-Stokes Equations to model the physical setting. We
combine the conservation of mass and momentum with energy conservation to consider the
thermal effects. We also have to choose a density law for the gas. Since the fluid is compress-
ible, we can search for a solution with the Riemann solver thanks to the hyperbolic structure
of the equations. We will present some of the features of this technique.

In our problem, the flow velocity is small compared to the wave speed of the medium, so it
is possible to propose quasi-incompressible approximations. We will present the Boussinesq
approximation, one of the most widespread models, showing its features. It is a powerful
tool since it is based on assumptions that fit most common real situations and is accurate
enough for most industrial applications. Another feature of our problem is that the flow is
temperature-driven, and the temperature variations are significant, of the order of 200K. In
this case, the Boussinesq model is no longer valid since it is based on the assumption of little

density variations.
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We propose a low Mach model capable of fitting more real issues than Boussinesq since it
does not suppose that the Mach number is null but small enough to be considered going to
zero. This subtle difference has significant consequences, such as more accuracy, as we will
see later. Using a low Mach model is justified because its order of magnitude in the industrial
application is about 10~4. Moreover, the low Mach model is valid for all temperature gradi-
ents, and its implementation results in better performance concerning the computing time.
In the following, we will see how the literature is based on Boussinesq for gas flows in pipeline
networks. Then, we highlight the engineering applications in which Boussinesq models are
no longer valid, and it is necessary to search for low Mach models. We will give an idea of
the main fields where they are commonly used nowadays, and we will show that there is still
a need for satisfactory low Mach models for pipeline flows. It is in filling such gaps that our
work fits.

The thermosyphon

We dedicate this section to the thermosyphon configuration since it is a common industrial
method of passive heat exchange based on natural convection, which circulates a fluid without
requiring a mechanical pump [Wik23]. Thermosyphons circulate liquids and volatile gases
in heating and cooling applications such as heat pumps, water heaters, boilers, and furnaces
[BVI90, SAJ95, GGYT18]. We speak of thermosyphon even in the presence of air temperature
gradients such as those utilized in a wood fire chimney or solar chimney [ZBBO05].

This circulation can either be open-loop, as when the substance in a holding tank is passed in
one direction via a heated transfer tube mounted at the bottom of the tank to a distribution
point, or it can be a vertical closed-loop circuit with a return to the original container. Its
purpose is to simplify the transfer of liquid or gas while avoiding the cost and complexity of
a conventional pump.

Natural convection of a fluid starts when heat transfer to the fluid gives rise to a temperature
difference from one side of the loop to the other. The warmer fluid on one side of the loop
is less dense and thus more buoyant than the cooler fluid on the other side. The warmer
fluid will float above the cooler fluid, and the cooler fluid will sink below the warmer fluid.
Convection moves the heated fluid upwards in the system as it is simultaneously replaced by
cooler fluid returning by gravity.

In some situations, the fluid low may be reduced or stopped because the loop is not full of
fluid. The system no longer convects in this case, so it is not a usual thermosyphon. Heat can
still be transferred in this system by the evaporation and condensation of vapor; however,
this system is properly classified as a heat pipe thermosyphon [Vas05, DR73, AMO07]. (Single-
phase) thermosyphons can only transfer heat upward or away from the acceleration vector.
Thus, orientation is much more important for thermosyphons than for heat pipes.
Thermosyphons are used in liquid-based solar heating systems to heat a liquid like water. The

water is heated passively by solar energy and relies on heat transferred from the sun to a solar
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collector. The heat from the collector can be transferred to water in two ways: directly, where
water circulates through the collector, or indirectly, where an anti-freeze solution carries the
heat from the collector and transfers it to water in the tank via a heat exchanger. Convection
allows the movement of the heated liquid out of the solar collector to be replaced by colder
liquid, which is, in turn, heated. Due to this principle, the water must be stored in a tank
above the collector [Norll].

In locations historically dominated by permafrost conditions, thermosyphons may be used to
counter adverse geologic forces on the foundations of buildings, pipelines, and other structures
caused by the thawing of the permafrost [JSP06].

Thermosyphons are used for cooling internal computer components,[EPKC17] such as the
CPU. While any suitable liquid can be used, water is the most adopted liquid in thermosyphon
systems. The heated liquid water evaporates, removing heat, and moves from the components
upwards to a heat exchanger, where it liquefies and is able to return to the components. There,
the water is cooled and is ready to be recirculated. A radiator is the most commonly used
heat exchanger, where air is blown actively with a fan to remove the heat.

Some early cars, motor vehicles, and engine-powered farm and industrial equipment used
thermosyphon circulation to move cooling water between their cylinder block and radiator
[MJS15]. This water circulation method depends on keeping enough cool air moving past the
radiator to provide a sufficient temperature differential; the vehicle forward motion and the
fans accomplish the air movement. As engine power increased, an increased water flow was
required, so engine-driven pumps were added to assist circulation.

Many others are the application of the thermosyphon, such as nuclear plants [KPAT17],
hydrogen plants [SG09], or environmental problems [Dwg™20].

State of the art

The compressible Navier-Stokes are complex non-linear equations that describe fluid flows.
Sometimes, the features of the problem of interest allow the use of a valid approximation to
describe the fluid flow well. The most common approximation of the Navier-Stokes equations
assuming little overall density variations is the Boussinesq approximation [Bou97]; this is
equivalent to the hypothesis of incompressible flow (null divergence of velocity) and small
variations of pressure and temperature. Pressure remains close to the hydrostatic pressure,
and there is a linear relation between density and temperature variations. Furthermore,
"density variations are neglected where they are not multiplied by gravity g”, [Bou97] says.
Many engineering applications allow the adoption of the Boussinesq approximation within
the context of gas flows in pipeline arrangements. We analyze here the most common choices
in mathematical modeling under physical considerations. A common issue is dealing with
non-linear conservative hyperbolic equations; it is common to simplify some terms in the
momentum equations such as the non-linear or the gravity term; usual choices are a Boussi-

nesq or an isothermal assumption, see for example [ES04, HMS10, KT00, OCO01]. A frequent
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choice is to use an averaged one-dimensional model instead of the full three-dimensional one
and simplify the momentum equation like in [Osi87, KT00, RNB06]. The non-linear and the
inclination terms are neglected, and the energy equation is not considered; the former car-
ries on the simulation through an electrical analogy, while the latter uses a transfer function
model coupled with a linear interpolation of available temperature measurements instead of
the energy equation. Another application of an electrical analogy is proposed by [Cro36].
[HGCATRMO09] and [MGGO0] explore some alternatives. In particular, we took inspiration
from [HGCATRMO09] for the physical modeling of our problem, considering the same aver-
aged one-dimensional equations and improving the description by adding the energy equation.
Concerning the numerical schemes, it is possible to use finite differences combined with the
method of characteristics like in [Osi87]. In contrast, others have made some comparisons be-
tween finite differences and finite elements, like [San| and [MA89] or used only finite elements
like [Hen10]. Another aspect to consider in modeling pipeline networks is the integration of
the transmission conditions at the junctions. In [BHK06a, BHK06b, CGO06], we see several
possible coupling conditions based on Riemann solvers. The standard conditions used to deal
with junctions are the Kirchhoff ones that impose the mass flux conservation and the pressure
continuity [BCG*14]. Using these conditions allows us to make an electrical analogy in which
the pipeline network can be seen as an electric circuit with the velocities as currents and the
pressures as voltages. The problem with Kirchhoff conditions is that they do not consider
the geometry of the problem, and in some applications, it could cause issues. Works like
[KN17a, KN17b, BKKN18] proposed several modifications to these conditions to consider
the geometrical setting. Finally, we report articles aiming to optimize the losses of gas, such
as [DKL15, BKPR05, MMMO06, Ste07].

The Boussinesq approximation has limits since it is only sometimes valid, as in the case of sig-
nificant temperature gradients driving the flow. In the last decades, another approximation
based on the assumption of low Mach numbers has begun to be used in many applications
since it compensates the limits of the Boussinesq model.

In 1982, Paolucci introduced a model to remove sound waves (much faster than the average
fluid flow) from the governing equations [Pao82], improving the Boussinesq model. He ob-
tained a "Low Mach” model for the three-dimensional Navier-Stokes equations for general
domains by asymptotic analysis of the low Mach limit. One of the key features of the Paolucci
approach is to split the pressure into two terms: a thermodynamic one (noted P(t)) of the
dominant order and function of temperature only and a dynamic one (noted II) of the order of
magnitude of squared Mach, function of temperature and position. This model is then applied
to studying a differentially heated cavity [Pao94], the first of many works on the differentially
heated cavity with a low Mach model. In [QWP™05], they derive numerical reference solutions
for steady natural convection flows by varying the Rayleigh number and the viscosity law. In
[PVKea00], we see the effort of performing low Mach simulations through different methods,
using an asymptotic expansion and developing an algorithm for the fully compressible Navier-

Stokes equations with particular attention to the discretization when the Mach number is
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low. Over time, the assumption of low Mach number has been extended to more complex
physical problems like in [LMP92, MS85, Sch94, AR06, SAM*co, BSBF12, GJK21, Emb&9].
During the last decades, the low Mach models have become of great interest, so plenty of
studies consider this approximation in many fields. Let us cite some examples to show the
variety of applications of the low Mach assumption.

In atmospheric flows, there are many time and length scales. Multi-scale and asymptotic
analyses are performed to model the phenomena involved in air circulation. The vertical
scales of circulation and pressure variation are comparable at small scales, so the need to
filter acoustic modes arises. This necessity is addressed using anelastic models in which the
Mach number tends to 0. [Kle03] and [Kle00] perform a multiple asymptotic analysis by
taking the Mach, Froude, and Rossby numbers simultaneously, tending to 0. They obtain
similar results to Paolucci with the decoupling of pressure, with the difference that there is
no temporal variation for the pressure here.

In multi-phase flows, we refer to [Penl0] for an analysis of droplet flows consisting of a
two-phase immiscible flow peculiar to the interior of nuclear reactors or to [BSD*21] for an
analysis of the interaction of a compressible phase with an incompressible one.

Concerning combustion processes in [MS85] and [LASK19], we find the analysis of a combus-
tion process of propagation of a flame in a closed vessel while in [PNB*16] and [NBD"12] we
notice the analysis of complex reacting flows with the coupling of advection, diffusion, and
reaction.

In thermoacoustic, we have the results developed in [MWC*ce|] and [HWC™10] for the sim-
ulation of thermoacoustic engines and [WBCLQB10] concerning the interaction between the
thermal and the acoustic phenomena that are at the base of the working of a thermoacoustic
engine.

Recently, in [RCBeal8], we can see how to extend to low Mach regimes the methods for re-
duced models through proper orthogonal decomposition of Navier-Stokes equations coupled
with thermal effects. [BGH11| performs an asymptotic analysis combining the asymptotic
limit of several small parameters, including the Mach number.

We have seen how, in pipe flows, state of the art is Boussinesq based and how the low Mach
assumption is employed in many fields. In this work, we apply the Low Mach approach to

flows in pipeline networks.

The structure of the work

This work is structured in three parts. At first, we present the theoretical background with
the physical and mathematical modeling of the problem. Then, we construct numerical
algorithms and perform numerical simulations for different pipeline configurations. We dis-
tinguish between two different cases: the study of the thermosyphon and the extension of the
simulation to more complex configurations, including the issues of transmission conditions at

S——
eintroduce the model in Chapters 2, 3, and 4 and perform a theoretical analysis.
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In Chapter 2, we introduce the equations of interest starting from the conservation laws. We
give the averaged one-dimensional version of Navier-stokes equations and non-dimensional
analysis. We also introduce the Poiseuille and the Graetz model for studying the behavior of
velocity and temperature in pipes. Then, we briefly digress into the Boussinesq model, intro-
duce the low Mach model, and perform a non-dimensional analysis. In the end, we compare
the two models.

Chapter 3 introduces the analytical solutions for unsteady laminar regimes. We derive the
solutions for every pipe and explain how to extend them to a general arrangement of pipes.
We obtain a reference quasi-analytical solution for the thermosyphon.

In Chapter 4, we introduce the open bifurcation configuration and study the junction trans-
mission conditions. We also introduce the three-rung ladder and provide its reference quasi-

analytical solution.

In Chapters 5, 6 and 7, we study the numerical algorithms we constructed.

In Chapter 5, we handle the delicate problem of the Dirac deltas that originates when we
differentiate the gravity term and compare different approaches. We first directly discretize
it without special treatment, then introduce possible ways to approximate it through some
regularization functions, and finally apply an algorithm inspired from [Boy10].

In Chapter 6, we study the discretization of transmission conditions at the junction between
more than two pipes for open domains. We apply the theoretical results to an open fork.
In the first stage, we study the case of constant temperature through an electrical analogy
introduced in the appendix [C]. Then, we consider the more general case where we apply the
conservation of mass and energy.

In Chapter 7, we present the solving algorithm of a general closed pipeline network.

In Chapters 8 and 9, we give the numerical results.

In Chapter 8, we see the implementation of the discretization of the laws at the junction.
In Chapter 9, we start by showing the numerical solution for the thermosyphon, and we
analyze how the behavior of the flow is affected by the variation of physical parameters and
dimensionless numbers characterizing the flow. Then, we deal with a three-rung ladder. We
study the resulting flow behavior by varying the position of the middle peg and compare
our results with a two-dimensional Boussinesq solution obtained with both FreeFem+4 and
Mathematica. We then show the extension to a ladder with a general number of pegs and a

general network.
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This part presents the derivation of models for gas flows through cylindrical pipes and their
analysis from the mechanical and mathematical points of view.

We construct a model that will have applications in various concrete settings. The devel-
opment of such a model became necessary out of an industrial need, specifically within the
context of natural gas exploitation. The industrial application we focus on is transporting
liquefied natural gas across oceans via ships. A gas network is implemented to ensure its
successful transit, assuring the supervision of natural gas exchanges with its surroundings.
This gas remains in constant motion, driven by a significant natural temperature gradient
between the ocean temperature of 283-293K and the interior temperature of the tank of
73-110K. The velocity of this gas is small enough that the Mach number is around 10~%.
Our primary objective is to derive an unsteady and one-dimensional low Mach model for pipe
flows by applying an asymptotic expansion. We first present one-dimensional Navier-Stokes
equations by averaging them over the cross-section of a pipe. By expanding the equations
around the small Mach number, we develop a quasi-incompressible model that lies between
the compressible Navier-Stokes equations and the Boussinesq model.

One of the most remarkable achievements of our model lies in the decomposition of the pres-
sure into two distinct and significant components. The first component is a thermodynamic
pressure, denoted as P(t), uniformly distributed through the entire domain with temporal
variations based on the heat flux at the pipe lateral surface. The second component, a
dynamic pressure represented as II(x,t), appears in the equation of conservation of the mo-
mentum. This decomposition is typical in low Mach models.

Our model exhibits minimal variations in pressure and velocity due to the influence of ther-
modynamic effects of small magnitude, but they are not negligible. Our low Mach method
offers enhanced flexibility as it does not limit the magnitude of temperature gradients and
accommodates significant variations in density and changes of the reference pressure P(t).
Consequently, it surpasses the predictive capabilities of the Boussinesq model.

Moreover, we examine the analytical solution for an open pipe. Subsequently, we expand our
investigation to closed arrangements of pipes, accounting for the interdependencies among
them. We understand that our inlet boundary conditions for the single pipes are now un-
known parameters. The solution is quasi-analytical because we obtain a final non-linear
equation containing the unknown A, representing the inlet characteristic length. To approxi-
mate it numerically, we will propose two methods: the Newton method and the linearization
approach. We neglect the non-linear term in the velocity to simplify our analysis.

We will investigate several geometrical configurations but provide an analytical solution for
the thermosyphon and the three-rung ladder.

In this part, we also present the transmission conditions at the junctions. We show how to
derive an analytical solution around the junctions. We apply our findings to the case of an
open bifurcated domain.

We emphasize that our current investigation is concerned with laminar flows of ideal gases.






Chapter 2

The low Mach model

In this chapter, we derive the mechanical and mathematical models we will study. We will
apply this model to several geometrical configurations, both open and closed. In the case of
open domain, we will provide inlet and outlet Dirichlet boundary conditions, while for closed
domains, we will consider periodic boundary conditions. We briefly remind how to obtain
the full Navier-Stokes equations and their one-dimensional average across the cross-section
of a pipe. We make some physical considerations to close the system and perform a non-
dimensional analysis. We use the perturbation theory tools to make an asymptotic analysis
with respect to the Mach number and derive a low Mach model. We compare it with the
Boussinesq model and show what makes our model more accurate. We give the analytical
solution in each pipe in the case of both the presence and absence of the non-linear term in the
velocity. We first study the dimensionless form to better understand the physics underlying

the equations; then, we use the linearization tools to find approximate solutions.

2.1 The equations

We first give the formulation of the conservation laws for mass, momentum, and energy.
We put them together to constitute Navier-Stokes equations and give a simplified averaged

version in the particular case of the flow in a pipe.

2.1.1 Conservation laws

Let us take a moving control volume 2 and a moving quantity ¢ associated with a flow at
velocity . We have that the variation in time of an elementary portion of volume df) is
given by the product Vg - Gid2. We refer to [GNS83] for more details. A conservation law
for ¢ consists of imposing that the rate of change of its integral all over the control volume

is equal to the amount of the associated flux Jy lost (or gained) through the boundary 0
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plus the amount created (or consumed) by the supply 14 in the control volume. Concisely:

D
r dQ:—/Jd +/ a0,
Dt/Q(b agd’a Q%

where the total derivative operator is defined as:

D 0 >

— A 2.1
Dt T TV (21)
that in the following will be often reduced to Dy(:). By the Reynolds transport theorem for

the left-hand side term, we obtain the following:

"

;/QMQ:/Q;(z)dQJF/Q(ﬁ;dQ:/Q(Zerﬁﬁ@JrN -ﬁ)dQ. (2.2)

Using equation (2.2) and the divergence theorem for the boundary term, the general global

conservation law is:

&bdQJr/ Vi - (¢1i)dQ = —/ 6§-J¢,d9+/ PydQ.
o Ot Q Q Q

By moving all to the left-hand side and for the arbitrariness of the control volume, the most

general local conservation law reads:

% + 6,2 . (Jqs + o) — Py = 0. (2.3)

Table 2.1 reports the values of ¢, J, and 14 for each conservation law.

Table 2.1: The values of the conserved quantity ¢, its associated flux

Jy and supply 1), for each conservation law.

¢ Jo Vg
Mass ) 0 0
Momentum pu -0 oy
Energy p(e—k%\ﬁ\?) g—o-u pg -

Mass

Concerning the mass the quantity ¢ plays the role of the density p and the sources are null
so that equation equation (2.3) becomes the mass conservation law:
dp =

ot + Vz - (pid) = 0. (24)
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Momentum

Concerning the momentum, the quantity ¢ plays the role of the mass flux pi. The sources
are normally divided into two classes: the internal stresses and the body forces that give this
conservation law the name of the Cauchy momentum equation.

The body forces f are given by the gravity force, while the internal stresses o are constituted
by the normal stresses given by pressure P and the shear stresses T, the viscous stresses

corresponding to the dissipative part of the stress tensor:
o:=—PI+7.

‘We obtain that:

— = _ — —

= Vg (-PI+7)=VgP Vg -7, ty:=f=pg

=

V,-(“Jd) = —65{'-

Qi

In this way, equation (2.3) becomes the momentum conservation law:

a(aptll) +6§ . (pﬁ@ﬁ) + ﬁgp = 6;{’

Bl

+ pg. (2.5)

By exploiting equations (2.1) and (2.4), there exists a non-conservative form of equation (2.5)
that reads:
4 VgP=Vjz-T+pg. (2.6)

Energy

Let us introduce the kinetic energy per unit mass K := %\1‘1’\2. The internal energy per unit
mass F can be defined as the sum of the potential energy per unit mass e and K, F := e+ K.
In this case the quantity ¢ is the energy pF and the sources are given by:

=

Jy:=Vgz-(—o-d+dr), Vg = pg -

=)

v

%L

In this way the energy conservation law reads:

o(pE - - - . -
L) | G (W(pE + P) = Vg (76— dir) + p -1

In compact form, we have:

—E=Vg-(6-d—dr)+pg- . (2.7)
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Let us multiply equation (2.6) by the velocity u:

—

D . .
pﬁ-ﬁ+ﬁ-ViP:ﬁ~Vg-

—

+ pg - u.

Bl

By arranging the terms, we obtain the balance of the kinetic energy K:

-D = — s = = s — —
pEK =—0:D(U)+Vz- (o U+ pg- U, (2.8)
where 1:)(1_1') = % (6;?1 + (6§ﬁ)T) is the symmetric part of the gradient of velocity. Notice
that the first term on the left-hand side represents the power of the internal stresses, while

the other two terms represent the power of the external forces.

By subtracting equation (2.8) by equation (2.7) we obtain:

+
>
<
Wl
cl
Il
S0
wll

(i) — Vg - Gr. (2.9)

2.1.2 Energy equation with temperature

We want to use the thermodynamics theory to write the energy conservation law in terms
of thermodynamic variables. Classical thermodynamics (defined thermostatic by [GNS83,
Gat23]) deals with phenomena at equilibrium in time and space. The problem in fluid flows
is the movement and variation of all quantities in space and time. To overcome this difficulty,
we use the hypothesis of the local accompanying equilibrium state [Gat23]: although the
system is in motion (and therefore in disequilibrium), each elementary volume unit can be
considered approximately in equilibrium from the thermodynamics point of view. In our case,
the first thermodynamics principle is expressed by equation (2.7) in which the variation of
energy is given by the sum of the exchanged work o : 1:7(1_1’) and the exchanged heat ﬁ,z - qr-
Notice that in the expression of &, the pressure term represents the reversible work and 7
the irreversible one. Let us now introduce entropy. The first principle can be written in the
following form:

de = §W + 6Q,

where W is the work and @ is the heat. For a quasi-static reversible transformation we can
use the relations 6W,.., = —Pd (%) and ds = (;Q% to write the second principle, which reads
for the variation of entropy as follows:
de av
ds = —+P—.
T T
Notice that we then deal with power instead of variation of energy. We obtain the following

conservation equation for the entropy:

Ds 1 De PD(l)(2;4)1De P= (29

Dt TDt TDt\s TDt  or XY T T
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This equation can be written as:

p% =-Vsz- <(¥> + 4, with ¢ := %7:' : B(ﬁ) +dr- Vg (1> ,
where the term ¢ is called entropy creation term. The second principle of thermodynamics
states that & > 0. To satisfy this condition, in the framework of first gradient theory,
we have to impose T to be proportional to D and gr to ﬁgT. Consequently, the common
definitions we use for 7 and qgr derive from the application of the thermodynamics principles,
see [GNS83] and [Gat23] for more details. We obtain:

— —

7= \Vg-dl +2uD(#),  Gr:= —kVgT,

N~

where )\ and p are the Lamé parameters and k is the thermal conductivity. Notice that these
parameters are functions of the thermodynamic quantities, but we will suppose them to be
constant.

Let us now write equation (2.9) as a conservation law for the temperature. We recall from

[BS09] that the specific enthalpy h can be expressed as:

P
h=e+—. (2.10)
p
By injecting (2.10) in (2.9) we obtain:
Dh D = = -
—=—P+7:D(i)—Vgz-qr. 2.11
Ppr ~ it TP =V dr (211)

Let us recall that we must choose a pair of variables in thermodynamics to express all the
thermodynamic quantities. We choose pressure P and temperature T, so that h = h(T, P).

Equation (2.11) can be written as:

oh oh - = -
—| DI+ —| DiP| =D;P+7:D(d)— Vg qr.
P(aTPt +8PTt> 4+ T () % dr
And so:
pc, DT = arDiP 4+ 7 : D(d) — Vg - dr, (2.12)
where we introduce the expansion coefficient ap := — % % and the heat capacity at constant
P
_ Oh

pressure ¢, 1= 5x

Remark 1 It can be proven that 1—,03—1@ = ar by introducing the Gibbs energy g, expressed
T

thanks to the second law of thermodynamics as g = h —T's, and the specific volume % (=V).
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2.1.3 Three-dimensional Equations

Equations (2.4), (2.5) and (2.12) have as unknowns p,u, P,T. Let us introduce a law for the

density of the gas, and we obtain the full compressible Navier-Stokes equations:

% + Vg (pii) =0, (2.13a)
o(pd) = . Lo
(5:) F Vg (pi@d) + VgP = Vg 7+ pg, (2.13b)
oT . DP . = .
pCp <t +u- ViT) =ar - +7:D(d) — Vg - qr, (2.13c)
p=f(PT). (2.13d)

Let us specify the 7 terms. Thanks to the additional hypothesis of null bulk viscosity, we
have A = —%u and T = 2u (—%6,? -l + D(ﬁ')). We have:

Vi 7= Ve (5 Vol + (Vs (Fed)”) ) = o (¥ (V- ) + Via)
= 3 = =
7:D(d) =) Y 7D =Tr7D

Now that we have the full three-dimensional equations, we focus on deriving a one-dimensional

model.

2.1.4 Thin layer equations

We study the flow through a pipe-like domain as in figure 2.1 by considering the compressible

Navier-Stokes equations written with a long wave (or thin layer) approximation.

Figure 2.1: Sketch of an oriented inclined pipe with axial velocity u(x).

We express our variables in cylindrical coordinates so that, for example, the velocity reads:

u = u,€, +ug€y + u,€,. We assume axisymmetric flow so that the components of our vectors
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along the direction €y are null (we suppose no swirling flow, which may nevertheless appear

in our configuration). We write equations (2.13) by components as follows:

dp 10pru, Opuy
ot +r or + ox

%4’_ %4_ % _;’_aj— 18( BUT)_A'_aZuT_&
p ot Ur or Y Ox or —H r Or Ox? r2

:07

+1 g lﬁrur+3u$ B 0
3Har \7 or Oz PG oS,
Ouy n Ouy n Oug 8j B 16(7‘%) N 0%u, n 1 0 larur n Ouy B 00
ot o T or or r  Or Ox? 310z \r or Ox pgsInG,
or . oT ory\ op _ OP 0P\ _ 10 (rk2L) +82kT - . 5
ot Ty Ty o Ty T )T i Ty g TP

Let us express the scalar 7 : D(d) in axisymmetric coordinates. The corresponding matrices

in R? are:
L2 ge) n(Be o)
= Ouz | Oup 2, (Qur | ur  odug |’
M( + 3 ) 3“(8r+r 2am>
- Se o (B )
- (8% + 8“7‘) 88%
x

The double contraction between these matrices is:

. D) = 4 <8ur)2 M(@ur)2+4u<8ux>2 “(8%>2
or ox 3 ox or

% ou, 8u$+2 Ouy Ou, g Ur Oty 2 Uy Oug
3% or ox “ar or

-l I

37 oz

— 2.15
3" r Or ( )
At this stage, adding some assumptions to simplify the equations is possible: the thin layer
approximation. We suppose that the ratio between the radius and the length of the pipe is
of the order of 1072, and we obtain:

R <1l = 0 > — 8 @) (R)

_ —_— Uy = — | Uy

L or~ oz L)
Consequently, we can neglect some radial components and the second-order mixed derivatives.
Notice that the radial transport term for the temperature is not negligible since ur%—T =
O (uz gx) Suppose we also neglect the second-order derivatives in spaces. In that case, we

= 2
obtain that equation (2.15) reduces to 7 : D(ii) = p (%%) and that the one-dimensional
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axisymmetric compressible thin layer equations are:

dp | Opuy | 10pru,
ot ox r or
2 9 (e 2
Opuy n Opus lﬁrpuxur 87]3 1 ( or ) n 1&6 U,
ot Ox r  Or or 'ur or 37 OxOr

(2 28 028 o (20,20 - (8%)118(’”’“%?)
Per Ot e Oz U or ar ot b or) H or r Oor

p=F(P,T).

=0,

— pgsinf,

This one-dimensional Boundary Layer equation is averaged across the section [HGCATRMO09].
We define the general operator of integration across the pipe section Ig(f) := [ fdS. We
assume that the pipe is circular, and in this case, the operator becomes fUR 27 frdr. Given
a quantity &, the first mean value theorem for definite integrals states that its mean value

across the pipe section é reads:

_ 1 R

We assume that the mean value of a product of n quantities is the product of their mean

values:

n 1 R n 1 R 1 R no
1;[@—7@2/0 QWE[{irdr%?TRz/o or&irdr ... TR?/O 27T§nrd7“:1:[§,-. (2.18)

Note that this relation becomes an equivalence if we add a constant coefficient depending
on the shape of the velocity profile (this will be discussed later). We apply the integration
operator to the mass equation to show the procedure to obtain an averaged model. The same

argument can be applied to the other equations. The integrated mass equation reads:

R R R
(‘?t/o 27Tp7'd7’—|—8(1/0 27rpuxrd7'+/0 21 a/gurrdrzo.

r or
Thanks to equations (2.17) and (2.18) we obtain:
R

=0.
0

Opr R? N 0p Tz R?
ot or

+ 2mpru,

Classical no-slip conditions at the pipe walls entail that u,.(R) = 0, so the averaged mass

conservation equation is:

OprR?  Op ugmR?
ot + Ox =0
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Remark 2 We understand that the radial velocity is absent in the averaged conservation
equations by making similar computations for the other equations. Consequently, we will use

the notation u, = u.

Concerning the integration of the other conservation equation, we compute the following
meaningful integrals:

8uT ou
/ 27r'ru ————dr = 27rru8’

2mr—
r or T

)

r=R
R Ay \ 2 Oouy

2 _— = 2 _—

/0 7rr,u( o ) dr T 4 g o

We define the heat flow through the lateral surface of the pipe ¢, = —

/R 17 (TL(?T) dr = 27Tr]<:a—T

r=R

or
k or

and the shear

stress on the lateral surface of the pipe 7, = p agfrz

R The integral of the viscous dissipation
(155D;;) is proportional to u,7,. We will give an expression to these quantities to close the

system. The one-dimensional axisymmetric averaged Navier-Stokes equations are:

0 0
thS + . —puS =0, (2.19a)
o_ _ J_ 4 0 .
g uS + 5 —pu‘S+ a—PS = —7umD — pSgsin 6, (2.19b)
0 oT 0 oP
<8tTS + uS8 > —ar ((‘%PS +uS 895) = Ig(7y : D) — 2w Rqy, (2.19¢)

p=f(P,T), (2.19d)

where:

e (2.19a) is the averaged continuity equation, (2.19b) is the averaged momentum equation,

(2.19¢) is the averaged temperature (or energy) equation, and (2.19d) is the gas law;
o system (2.19) is a 1D motion in (x,t) due to the averaging across a section;

e the unknowns are defined through integration across the cross-section of the pipe: pres-
sure P(x,t), temperature T'(x,t), density p(x,t) and average velocity u(x,t) (in the

following we will remove the bar to lighten the notation);
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o S = [dS is the area of the pipe cross-section. It can be a function of both time and
space. For a circular cross-section of radius R, S = fOR 2mrdr, but few extra hypotheses
allow it to be extended to any cross-section; hence D is the hydraulic diameter (and
R the hydraulic radius), € is the angle of inclination of the pipe, g is the gravitational

acceleration;

e @y is the parietal heat flow and 7, the parietal shear stress that, e.g., in the case of
a turbulent flow, can also be expressed in function of the Fanning friction factor as:

Tw = f p“2—2. We will give more details about modeling these two quantities later.

The following will refer to the axial velocity as u to lighten the notation.

2.1.5 Closure of the system

Here we set the closure relations needed for our model to express quantities like g, and 7.
We give a law for p suitable for studying ideal gases, clarify the physical meaning of 7 and

Gw in the averaged equations, and give them expressions as functions of 7" and w.

The shape factor

As we said, (2.18) depends on the shape of the velocity profile. If the velocity is flat (plug
flow), then (2.18) with n = 2 and & = & = w is an equality. If the profile is supposed to be
Poiseuille shape, then if £ = £ = u, there is a "shape factor” of value % (when written with
the flux @ = wS)[GFL17]. An empirical "shape factor” may be defined for other velocity

profiles. Of course, the same argument can be carried on for the temperature.

The shear stress at the wall

We know that for x > Lentrance = RRe, where Leptrance is the dynamic entrance length, the
flow is completely developed [Tooa] and so it could be seen as a Poiseuille flow [Pfi76], at
least in isothermal flows.

From the digression in Appendix (A), we can deduce that the velocity could be considered
constant along the x-axis and parabolic along the radial axis (see (A.4)). By using the

Poiseuille velocity, we can give an expression for 7 at the wall:

du(r) _ buu 6pu’

Tw =

Har | _.~ D ~ Rep’
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where Rep = % is the Reynolds dimensionless number. The general expression for the

shear stress at wall is 7, = %qu with f := %. We focus on laminar flows, for which the

expression of the shear stress at the wall reduces to 7, = %pu with [ := 1%”. Here, we

suppose v = % to be constant, a valid approximation in our configurations which will be
useful for the analytical solution.
Let us compute the integral of the viscous dissipation 7 : l:)(ﬁ') in the case of Poiseuille flow.

Recall that u(r) = %Umaz (1 — (%)2) and dqjl—(:) = —3%% We obtain that:

R = (= R du(r) 2 U’r%m:c R 3 3
/0 27rT D(u)dr—/O 27TT‘M< o ) dr = 1871'”?/0 rodr = §Umax7rRTw.

Notice that u(R) = %Umax so that the integral is proportional to u(R)7, as previously

mentioned.

The Graetz solution for the temperature

Let us consider the same geometrical configuration in which we have found the Poiseuille
solution for the velocity. Let us suppose that for negative x, the temperature at the wall
is constant and equal to Ty and that at * = 0, there is an abrupt temperature change at
the wall to the temperature T7. In Appendix (A) we find a solution for the dimensionless

temperature 6 of the form:

0= aidi(y) Xi(e).

We find that ¢; ~ sin((2i —1)my) Vi € N, and that the first term of the sum gives
a sufficient approximation of the solution. The non-dimensional temperature is given by

2
iz

O(z,y) = sin (my)e , with A\; a fundamental constant coming out from the application of

the superposition method.

The Nusselt number

The Nusselt number is defined as the dimensionless temperature gradient at the surface,
and it measures the convective heat transfer occurring at the surface compared with the

conductive one. It is defined as:

_or
Nu := 29,
—kT
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For the Graetz problem, we compute Nusselt as:
oT

Nu := __orlr=R .
oT
_2‘[W T:Rdx

We obtain that the Nusselt number tends asymptotically to 3.77035 as * — oo in two-

dimensional plane coordinates.

The heat flow at the wall

To estimate g, for any configuration, we use the Nusselt number previously computed [Ce06].
We exploit the Nusselt number to define the heat transfer coefficient at the wall as h = N u%.

Given T,y the temperature at the wall, the Newton law gives the heat flux at the wall g,:

Extra relation: the density law

Concerning the averaged model, in the ideal gas case, we can fix the law for p as:

= —. 2.20
p rT ( )

Consequently, the thermodynamic parameter ap is precisely 1, and we can give a more
suitable expression for ¢, to simplify the model [Toob]. Let us introduce 7 as the ratio of the

heat capacity at constant pressure (cp) to the heat capacity at constant volume (¢, ):

v =2, (2.21)

For an ideal gas, the specific enthalpy h and potential energy e are linearly dependent on the

temperature through the heat capacities as follows:
h=c,T e=c¢,T. (2.22)

If we insert equations (2.20) and (2.22) in equation (2.10) we obtain ¢,T" = ¢, T + rT.
By deriving with respect to the temperature and exploiting the definition (2.21) of v, we find
the following expression for c,:

cp = : (2.23)
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2.1.6 Dimensionless model

Let us take some characteristic quantities [LP16]:
u. the characteristic velocity, L. and R. two characteristic lengths such that R. < L, t. the
characteristic time, p. the characteristic density, 7. the characteristic temperature, P, the

characteristic pressure, and gy, the characteristic g,,. Set:
r=Li&, t=td, u=ucd, T=TT, P=P.P, p=pp, S=R.S, R=R.R

We define the dimensionless numbers:

R
Re = teftePe e Reynolds number [tJMDMT76];
e
M 2 ug _ pcuz .
a® = — = ——% the squared Mach number [YMOH10];
c vP,
w2
Fr? = LC the Froude number [Whi99];
c9

Pr = % the Prandtl number [CR99];

the Strouhal number [Mas86].

Let us take gy = ki:cpc [BSLO7] and the time ¢, so that: St = 1. The dimensionless

model reads:

oSp  9Spu
gop = 2.24
ot 07 0 (2.24a)
oSpu  0Spu? 1 aSp Le 1 f -
p _ LA D— 2.24
ot O yYMa2? 0% R.Re2 ™" 2opsind, (2.24D)

. - - -
5 (95’~T +€L85~T _ P. ozTDt(SP) n L. 1 wu; f7T 27 2R
ot ozx
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We observe that for ideal gases, we can set the relation p. = ﬁ Tf o and ar = 1, so equation
(2.24c) becomes:
(88T 98T y=1_ -~ L. 1 of o~ 27R _
- = Diy(SP)+ ——(y—1)Ma*= D — : 2.25
p( o o ) S DSt g e O T DMaTy oD = e (2:29)

2.2 The Boussinesq model

This section presents the Boussinesq model and highlights the main differences with the low
Mach model. We refer to [Lage, Lagb, Lagd, Lagc, Laga, Ce98, Scals, GB12| for further
information. The main hypothesis is that the flow is slow, almost non-compressible; for this

reason, we apply the Boussinesq approximation to give an estimate of the density p(T', P):

dp op
P = Pref —+ aT(T - Tref) + 87P(P - Pref) = praf(l - a(T - Tref) +/8(P - Pref))

= pref(1 — (T = Trey)) + O(Ma?),

with o = T%7 8= P%Cfor some characteristic pref, Tref, Pref, Tc and P of the flow.

Notice that P,y is here a reference pressure ( the equilibrium for example) around which there
is motion, so that §§Pref — 0 and —VzP ~ piVgi so that P = O (plid|?). Consequently
B(P — Prey) =0 (@) = O(Ma?). Notice that here we used the fact that ¢? = 'y%.

We assume the translational invariance in every pipe so that the velocity is a radial function.
Another assumption is the neglect of rotations in the corners and the effect of inertia. As a
first approximation, the velocity profile remains Poiseuille with as the driving terms the ones
of Boussinesq and the small variations of pressure with respect to the barometric level. We
also suppose that the viscosity remains constant (generally, it depends on the temperature)
and that the flow is incompressible (V- u = 0). The Boussinesq model assumes that the sum

of two contributions gives the pressure as follows:
P = Pref — Prefgz sin ¢ + D,

where p is the dynamic contribution to the pressure, and p,.rgzsin@ is the contribution due
to the barometric level (the pressure varies with the height). We suppose that p(z) < Py and
p(x) < prepL. We neglect the inertia and average over the section by assuming Poiseuille
velocity. Remember that in Poiseuille flows, we have the x-invariance for the velocity and

the condition d,u = 0.

Remark 3 In the Boussinesq assumption, a priori, we suppose that the density is linear as
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a function of the temperature variation. Still, the temperature variations could be considered

so small (% < 1) that the density is assumed to be constant.

By analyzing the conservation equations, let us construct the Boussinesq model for one-

dimensional flows in pipes.

Mass

The equation for the mass is:

dp  0pUS
5t e =0 (2.26)

where U is the average velocity of the flow. We define as ) := U S the mass flux and suppose
the section S = wR? constant. Since p = pres as first approximation, as a consequence,
pQ = C for some constant C, and Q = C, with C' = %, so that the velocity of the flow is

constant.

Momentum

Since we consider little perturbations around the reference pressure Py, the equation for the

conservation of the momentum reads:

Ju 0 ) 6
Por = —8—§ + (T = Tref)prepgsing — r;@- (2.27)

Energy
The stationary equation for the energy integrated over the section gives:

osT 0
Prefcpw + %(preprQT) = =27 Rqy, (2.28)

where the flux at the wall is given by ¢, = h(T' — Trey). This system will be discussed further

in chapter 3.

2.3 The low Mach Expansion

The gas velocity can be so low that the Mach number can be considered tending to 0. This
behavior could be an issue in (2.24b) in the pressure term. The idea is to use the perturbation
theory tools [BOon] to rewrite equations (2.24) under this hypothesis of Ma — 0 by following

the procedure of [smil9]. Paolucci performs a similar procedure in [Pao82]. The asymptotic
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expansions of our variables read:

i(z,t) = dg(z,t) + Maiiy (x,t) + O(Ma?), (2.29a)
T(z,t) = To(x,t) + MaTy(z,t) + O(Ma?), (2.29h)
plx,t) = po(x,t) + Mapy (z,t) + O(Ma?), (2.29¢)
P(x,t) = Py(x,t) + MaPy(z,t) + Ma*yPy(z,t) + O(Md®), (2.294d)

where we assume that the densities at different order are functions of the corresponding vari-
ables at the same order or less, briefly p;(xz,t) := pi(Tp(z,t), ..., Ty(x, 1), Py(x, 1), ..., Pi(x,1)).
They are the fundamental expansions; all the other terms appearing in the equations can ex-

pand using them. For example, the expansion of the terms involving density is the following:

(pit) = potio + Ma(fiop1 + i fo) + O(Ma?), (2.30)

(pu?) = poud + Ma(2tgtypo + ipr) + O(Ma?). (2.31)
2.3.1 A general model

Let us substitute equations (2.29a) to (2.29d), (2.30) and (2.31) in (2.24). At the orders —1
and —2 we have terms only in the momentum equation: 9;FPy = 0, 93P, = 0. The two
first terms of the pressure expa