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Résumé

La simulation numérique est un outil puissant pour la recherche scientifique et l’industrie, il est
considéré comme le troisième pilier de la science par les chercheurs. Le Calcul Haute-Performance
(HPC) est la science visant à améliorer les performances des ordinateurs pour répondre aux
besoins de la simulation numérique. Son objet d’étude est le supercalculateur : un ensemble
de nœuds de calcul interconnectés en réseau, chacun composé de processeurs contribuant en
parallèle à la simulation. Au fil des décennies, les superordinateurs ont connu une évolution
rapide, avec une augmentation et une diversification des unités de calcul au sein des nœuds. En
conséquence, la programmation de codes de simulation numérique portables et performants entre
les différentes générations de machines devient un défi.

Pour y répondre, les vendeurs de matériel et les chercheurs conçoivent des modèles de
programmation standards tels que « The Message Passing Interface (MPI) » ou « Open Multi-
Processing (OpenMP) ». Ces modèles servent de pont entre l’expression d’un calcul scientifique
par un code informatique et son exploitation par le matériel sous-jacent. La diversification du
materiel pousse les programmeurs à utiliser conjointement (ou « composer ») de multiples modèles
de programmation asynchrones afin d’utiliser toutes les unités de calcul du supercalculateur
de façon concurrente. La composition de modèles asynchrones présente des difficultés pour le
profilage des applications, leur programmation et leur niveau de performances.

Dans cette thèse, nous étudions la composition par tâche des modèles de programmation MPI
et OpenMP, et apportons les contributions suivantes en réponse à ces difficultés. Tout d’abord,
nous présentons un modèle de performance unifié par tâche pour l’hybridation MPI+OpenMP,
en définissant des métriques et en implémentant un profileur pour analyser un programme
après son exécution. Ensuite, nous concevons un ordonnanceur unifiant la progression et le
recouvrement d’opérations asynchrones et hétérogènes, telles que les transferts de mémoire par
le réseau, les tâches de calcul, ou les transferts mémoire/calcul depuis/vers un accélérateur.
Enfin, nous évaluons et améliorons l’hybridation par tâche sur des proxy-applications modélisant
des simulations scientifiques ; en caractérisant et atténuant des goulots d’étranglement aux
performances, tels que l’ordonnancement des communications, la limitation du nombre de tâches
en vol, ou la découverte du graphe des dépendances.

Keywords: Calcul Haute Performance, Modèle de Programmation, Tâche, MPI, OpenMP
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Abstract

Numerical simulations are a powerful tool for scientific research and the industry, considered
the third pillar of science by scientists. High-Performance Computing (HPC) is the science
of improving computer performances to meet numerical simulation needs. Testbeds for these
studies are supercomputers: a set of interconnected compute nodes, each composed of multi-core
processors contributing in parallel to perform a simulation. Over the last decades, supercomputer
architectures have been living a fast evolution; we observe an increase and a diversification of
processing units per compute node. Hence, programming portable and performing numerical
simulations across hardware generations is challenging. To meet this challenge, hardware vendors
and programmers from scientific laboratories conceive standard programming models such as « The
Message Passing Interface (MPI) » ou « Open Multi-Processing (OpenMP) ». These models serve
as bridges between numerical simulation code expression and its exploitation by the underlying
hardware. Hardware diversification leads programmers to use multiple programming models
jointly (or « compose ») to fully exploit the underlying hardware. Asynchronous programming
models composition presents difficulties on profiling, programming and performances.

In this thesis, we study the task-based composition of MPI and OpenMP, providing the
following contributions on the mentioned difficulties. First, we present a unified task-based
performance modeling of MPI+OpenMP composition, defining performance metrics and imple-
menting a run-time profiler with post-mortem analysis. Then, we conceive a scheduler unifying
the progression and the overlap of heterogeneous asynchronous operations, such as network
memory transfers, computational tasks, accelerator memory transfers and offloading. Finally, we
evaluate and improve the task-based composition on proxy-applications modeling real-world sci-
entific simulations, characterizing and mitigating performance bottlenecks such as communication
scheduling, throttling, or dependency graph discovery.

Keywords: High-Performance Computing, Programming Model, Task, MPI, OpenMP
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Chapter 1

Introduction

Contents
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Motivations

Numerical simulation have become a powerful tool for scientific research and the industry. The
use cases are wide: military defense, weather forecasting, chemistry, or vehicle security. In the
scientific field, Numerical Simulation is considered the third pillar of science, complementing
Theory and Experiment. It is, in particular, necessary for solving non-linear, multi-physics, and
large-scale problems [1]. In the industry, it improves the validation of systems; for instance,
simulating thousands of car accidents by varying initial conditions helps to characterize material
deformation. Their accuracy and speed are sometimes critical: in Japan, severe weather can
occur in less than 20 minutes, which motivated the development of simulations to explore
weather forecasts on a 100-m grid spacing over 30 minutes to evacuate citizens on time [2]. High
Performance Computing (HPC) is the science of improving the computational performances to
meet the accuracy and speed challenges of numerical simulations.

The high-performance computing object of study is supercomputer: a set of interconnected
machines (compute nodes) contributing in parallel to progressing a numerical application, such
as simulations. The performance of supercomputers are measured by the number of numerical
operations they perform per second (FLOPs/s). The TOP 500 list ranks worldwide supercom-
puters by their computational performances for resolving dense linear systems. It also provides
hardware details of each ranked supercomputer. Over the last 20 years, the trend shows the
evolution of compute nodes from single-core processors to multi-heterogeneous cores. In 2002,
EARTH-SIMULATOR1 supercomputer was ranked first using 5,120 single-homogeneous core
compute nodes for a total of 40 TFlop/s. In 2010, Tianhe-12 was the first supercomputer with
heterogenous cores (CPUs and GPUs) on the same compute nodes to perform above 1 PFlop/s.
As of 2023 writing this thesis, Frontier is now the most powerful supercomputer with compute
nodes embedding 64-core processors and 4 GPUs3 for more than 1 EFlop/s in total.

A numerical application efficiency is its ability to fully exploit the underlying supercomputer
to progress the computation. It can be quantified by comparing real execution performances
over theoretical system performances, or peak performances provided by the TOP 500. The

1https://www.top500.org/system/167148/
2https://www.top500.org/system/176929/
3https://www.top500.org/system/180047/
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fast hardware architecture evolution faced over the last 20 years degraded the efficiency of
existing simulation code that was originally conceived for single-core architectures: the problem
of performance portability consists in keeping simulations efficient over past, new and future
supercomputers architecture. In order to improve the performance portability of numerical
simulation, programmers conceive simulation codes using programming models. It consists of an
Application Programming Interface (API) providing the code building blocks and an Execution
Model (EM) specifying how the executing environment must interpret the API. Therefore,
Programming models serve as bridges between a calculation expression and its exploitation by
the underlying architecture.

To ensure coherent bridging, programming models such as the Message Passing Interface
(MPI)4 or Open Multi-Processing (OpenMP)5 are conceived by a large community of hardware
vendors, research laboratories and programmers. Modifications are discussed, voted and eventually
adopted in standard specifications. Such a collaborative approach to conceiving programming
models provides guarantees to numerical simulation programmers on their code performance
portability.

The diversity of processing units now imposes on programmers to use multiple programming
models jointly, for instance:

• MPI requests to send messages by the interconnection network through the network interface
controllers (NICs),

• pthreads or OpenMP to execute code on all available central processing units (CPUs),

• OpenMP for vectorized instructions (AVX, SVE...),

• CUDA/HIP/OpenCL/OpenMP to offload computation to accelerators (GPUs, FPGA),

• MPI-IO/Lustre to store data onto permanent storage (hard drive, magnetic tape).

Following historical hardware evolution, numerical simulation codes had been originally
distributed on compute nodes using MPI only; and then parallelized with OpenMP to benefit
intra-node parallelism introduced 20 years ago. Usually, computational loops are parallelized
using OpenMP (CPUs/GPUs) followed by a local synchronization on the compute-node to wait
for computation completion; and only then network communications (NICs) are initiated with
MPI, followed again by synchronizations before pursuing computational loops6. Such distinct
use of the two programming models simulation codes alternatively underload and overload each
processing unit with bulk workloads On the other hand, all these processing units are capable of
asynchronous execution: some iterations from computational loops could execute in parallel with
independant network communications (NICs). Using each programming models distinctly, codes
are not expressing such asynchrony leading to an inefficient use of the hardware.

The standard community primarily focused on using MPI with OpenMP before the in-
troduction of dependent tasking in 2013. Dependent task-based programming is a promising
approach to using multiple asynchronous programming models more tightly, which we refer to as
programming model composition. It divides applications into tasks (as a sequence of instructions)
and precedence constraints providing partial order of execution. Task-based execution models
are rather simple: (1) a task can only execute once all its precedence constraints are met, and (2)
only one task at a time can run per processing unit. This simplicity allows the representation of
other programming models building blocks (MPI requests, CUDA streams) as a set of dependent
tasks to be processed seamlessly by a shared execution model: the problem of performance
portability is then partly differed to a question of task scheduling.

4https://www.mpi-forum.org/meetings/
5https://www.openmp.org/about/members/
6https://asc.llnl.gov/coral-2-benchmarks

https://www.mpi-forum.org/meetings/
https://www.openmp.org/about/members/
https://asc.llnl.gov/coral-2-benchmarks
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1.2 Problem Statement

Recent advances in the OpenMP dependent task model open new doors to compose programming
models. Simulation codes can express a higher potential of asynchrony through smaller workload
units (tasks). This approach allows a more performant exploitation of the hardware, staggering
tasks on each processing unit over time instead of alternatively overwhelming them with bulk
workloads as done historically. Yet, since 2013, few to no applications have migrated towards
task-based programming due to three tied difficulties:

• Profiling. Distributed task-based applications execution is asynchronous and out-of-order,
making it difficult to understand their behavior. Hybrid profiling and visualization tools
(Gantt charts, graphs) are needed [3], but none supports standard MPI+(task-based
OpenMP) composition: performance issues can hardly be understood, as reported in [4].

• Programming. When modifying existing program, E. Aubanel [5] mentioned that "the
data flow is not as obvious as the control flow, and the function of the program is the
hardest to discover". In our case, porting an existing program to use dependent tasks
requires precise understanding of its data flow, so programmers express how communication
and computation tasks are interleaved using tasks and dependencies. In particular, side-
effects (or ’interoperability issues’) appear when mixing standard programming models
implementations in production environments (GCC, LLVM, Open MPI): running MPI
communications into OpenMP tasks most likely leads to deadlocks [6]. Hence, the need for
programming interfaces to ease programs porting and their maintenance in the future.

• Performances. Task-based application performances are a lot about finding a compromise
between the parallelism expression (tasks granularity, dependencies) and induced run-
time management costs [7]. They are also about task scheduling: misuse of the memory
hierarchy [8, 9] or the network [10] can significantly degrade performances.

1.3 Objectives and Contributions

In this thesis, we investigate and propose solutions to the three difficulties of migrating applications
to a task-based programming model composition to improve their performance portability. We
use the Open Multi-Processing (OpenMP) tasking model and the Message Passing Interface
(MPI), as their collaborative way of working will most likely make them survive in time. Most
developments had been made as part of the existing Multi-Processor Computing (MPC) [11]
OpenMP tasking runtime. We provide the following contributions to each difficulty:

• On profiling, we propose a unified task-based performance modeling of MPI+OpenMP
applications. We define performance metrics implemented as part of a run-time profiler
and post-mortem analysis. This toolchain allows precise assessment on the performances
of an instance of execution. Ultimately, it leads us to show impacts on the interleaving
between the OpenMP task dependency graph discovery and its parallel execution over
performances.

• On programming, and to respond the lack of applications using task-based composition of
MPI and OpenMP, we ported a benchmark (HPCG) and a proxy-applications (LULESH7)
to the task-based composition understudy. We provide porting experience feedback and
a few extension proposals to OpenMP aiming to ease the porting of existing production
simulation codes. We always consider our proposals by reflecting on their impacts on
user simulation codes, runtimes and compilers. In particular, we propose the removal of
some OpenMP restrictions which currently harden irregular dependencies expression; an

7https://github.com/rpereira-dev/LULESH

https://github.com/rpereira-dev/LULESH
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extension for heterogeneous memory address space dependency expression; new mechanisms
for tasks suspension/resumption; and an original OpenMP tasks priority management to
favor the early-bird posting of tasks performing MPI communications.

• On performances, our developments in MPC have lead to a cutting-edge and open-source
OpenMP tasking runtime implementing most recent standard interfaces8. Our cooperative
task scheduling design shows improved performances on fine-grain tasks offloading to GPU
over existing solutions. We also introduce and implement an original tasking extension
that drastically reduces fine-grain tasking overheads: task persistence.

A significant contribution also lies in evaluations conducted as part of this thesis: it provides an
idea on the level of performance to expect after porting existing simulation code to the task-based
composition understudy under current MPI and OpenMP technology readiness.

We organize the manuscript as follows. Part I presents the context of this thesis: Chapter 2
discusses general aspects of numerical simulations (what is / how to program a supercomputer);
and Chapter 3 focuses on standard programming models and their hybridization. Part II presents
our contributions we organized in three chapters: Chapter 4 presents the unified modeling
and profiling tools we built; Chapter 5 presents standard and runtime extensions to improve
scheduling capabilities; and Chapter 6 presents the porting of two mainstream HPC benchmarks
(HPCCG, LULESH) with standard extensions to ease the porting of future irregular applications,
and investigate issues related to the task dependency graph discovery. Finally, Part III concludes
and provides research perspectives.

8https://github.com/cea-hpc/mpc/tree/cea/2023/icpp-interop-tasks
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In order to execute on supercomputers, numerical simulations rely on a vast stack built upon
years of research and industrial uses. The iceberg Fig. 2.1 is an overview of the current HPC
ecosystem, which we propose to divide into four layers. On the lowest layer, the Hardware
represents electronic components provided by vendors, historically built through co-design to
meet supercomputer application needs. Above, the Operating System corresponds to standard
interfaces and the Linux kernel, which equip every supercomputer node to manage the Hardware
and provide a primary bridging interface to programmers. Finally, the Software layer, built on
top of the operating system, represents programming languages, compilers, libraries, tools, and
programming models.

2.1 Supercomputers Architecture

At the lowest layer of the HPC stack, hardware are the electronic components provided by vendors.
We describe modern HPC hardware architecture with a zoom on the CEA-HF supercomputer
compute nodes, which was recently in 2021-2022 and experimented as part of this thesis.

12



2.1. SUPERCOMPUTERS ARCHITECTURE 13

LIKWID

TOOLS

Molecular Dynamics

Laser-Plasma
Interactions

Seismic, Earthquake

LLVM HWLOC

Ha
rdw

are

Ope
rat

ing
  S

yst
em

Sci
en

tifi
c

Sim
ula

tio
ns

Ap
pli

cat
ion

So
ftw

are

Programming
Languages
and Compilers

Kokkos

Low-level
Libraries

POSIX
Standard Libraries,
Kernel,
Drivers

Many-cores Processors,
GPU, FPGA,
Hierarchical Memory,
Network Interfaces

High-level Programming ModelsAlgebra
Libraries

Low-level
Programming Models

Tools

LAPACK

BLAS

PLASMA

HPC Applications Stack

Figure 2.1: Scientific Simulations Application Stack Overview. Top-most "Scientific Simulations"
images from [12,13,14]



2.1. SUPERCOMPUTERS ARCHITECTURE 14

Bull X2415 Blade
x32 per cabinet

AMD EPYC 7H12
General Purpose Processor

x2 per blade

AMD Zen 2
Rome Core

x64 per processor
Supercomputer

CEA-HF
 Bull XH2000 cabinet

x200 in CEA-HF

Figure 2.2: CEA-HF Supercomputer Architecture

2.1.1 Introducing the CEA-HF Supercomputer

The CEA-HF supercomputer1 was installed between 2021-2022 as the successor of TERA-1000
in 2016-2017, ranked 22 on the top500 in June 2023. Fig. 2.2 provides an overview of its
architecture2. The supercomputer is made of 200 Bull XH2000 42U Cabinet (1U ≃ 4.5cm). Each
cabinet embeds a power management controller, a hydraulic cooler system; network switches for
the interconnection network, and 32 standardized entries for compute blades. 1U compute blade
installed in each cabinet is made of 2 AMD EPYC 7H12 General Purpose Processor (GPP) and
1 BullSequana eXascale Interconnect (BXI V2) network interface controller. For comparison, the
exaflopian Frontier machine uses the same GPPs on AMD blades accelerated with 4 Instinct
250X GPUs, assembled into Cray cabinet/interconnection.

2.1.2 Zoom on Modern Compute Blades

Supercomputers’ compute blades are the building blocks of a supercomputer, made of one or
multiple compute nodes interconnected within a network. Each blade may contain multiple
processors connected to a shared memory.

© 2008- 2018 by the MIT 6.172 Lecturers adapted by R. PEREIRA for this thesis
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2.1.2.1 General Purpose Processor (GPP)

A General Purpose Processor (GPP) is the processing unit equipping every personal computers
and supercomputers node. It is designed to perform any numerical operations (additions,
multiplications, conditions testing, reading/writing to the memory, sending a signal on a bus...).
It is built with multiple cores hierarchically connected to a shared memory.

Hierarchical Memory Fig. 2.3 shows the memory hierarchy of most GPPs (adapted from
the lecture [16]). Taking the AMD EPYC 7H12 64-core Processor as an example, each core has
its own register set and L1/L2 caches; L3 caches are shared between 4 cores; NUMA domain
is made of 16 cores that can access their local DRAM uniformly; and the processor is made of
4 NUMA domains. Each level of the hierarchy does not come with the same size and access
latency: the table on the right depicts the core-to-core compare-and-swap latency benchmark3

on AMD EPYC 7H12 GPP (entire results in annex Fig. 8.1). As mentioned in [17], we observe
an "inverse relationship between the size and access time of computer memories" that is inherent
of the hardware. An interactive history of the memory accesses latency over the past 20 years
has been made by C. Scott and is available online4.

Cache and Prefetching When a core reads from or writes to the DRAM, it first checks
if the data is already in a lower cache level. In such case, the processor reads or writes to
the cache instead of the DRAM accelerating its memory accesses latency: this is a cache-hit.
Otherwise, a block of memory from the DRAM is copied cache lines (of fixed size, typically
32, 64, or 128 bytes5): this is a cache-miss. Cache prefetching [17] consists in bringing memory
from the DRAM to caches before it is required by anticipating memory access pattern. Such
techniques reduce memory accesses latency by overlapping independent instructions with DRAM
fetching into caches. Prefetching can be implemented in the hardware and by software (done
mainly by compilers currently). A prefetching decision may be accurate or inaccurate depending
if the prefetched memory will actually be accessed by cores or not. Several research works
have been conducted on reducing inaccurate prefetching predictions, as they may pollute caches
erasing useful cache lines previously fetched, but there is none universal to any architecture and
applications [18].

Instructions Pipelining As soon as a GPP is booted, its cores start processing instructions
until they are physically shut down. An instruction is an opcode and a set of operands. Opcode
and operands are integers coding an operation to be performed by the architecture: the opcode
defines which operation, and operands are its parameters. The classic RISC instruction processing
is a five-stage: fetch > decode > execute > memory access > write-back6. Pipelining
performances are measured as the number of Instructions performed Per Cycle (IPC): in an ideal
single RISC pipeline, the IPC is 1 (with one write-back stage performed per cycle). In practice,
the IPC of a RISC pipeline is lower than 1 due to hazard : situations where it is necessary to
prevent the processing of an instruction stage to ensure correctness of the operation (Chapter 2
of [19]). For instance, a data missing into cache memory may lead to an hazard, and sometimes
a stall blocking entirely the core pipeline until the data arrives.

Cores Modes In addition, each core of a GPP can run multiple modes. For instance, the x86
architecture provides 4 modes (0 is kernel, 3 is user). In the kernel mode, cores can perform any
instructions implemented by the architecture: it may read/write every memory byte or even shut

3https://github.com/nviennot/core-to-core-latency
4https://colin-scott.github.io/personal_website/research/interactive_latency.html
5http://www.nic.uoregon.edu/~khuck/ts/acumem-report/manual_html/ch03s02.html
6https://en.wikipedia.org/wiki/Classic_RISC_pipeline

https://github.com/nviennot/core-to-core-latency
https://colin-scott.github.io/personal_website/research/interactive_latency.html
http://www.nic.uoregon.edu/~khuck/ts/acumem-report/manual_html/ch03s02.html
https://en.wikipedia.org/wiki/Classic_RISC_pipeline
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down hardware components. In the user mode, cores can only perform a subset of instructions
with limitations on their operands, as restricted operations could lead to irreversible damage to
the machine.

2.1.2.2 Network Interface Controller (NIC)

A Network Interface Controller (NIC) is a hardware component with its own memory and
processing units, typically connected to the GPP memory through a PCI bus. A compute blade
can embed multiple NIC per GPP, or multiple GPP per NIC: in any case, there is to interconnect
the compute blade of the supercomputer. This interconnection network allows any compute
nodes to communicate memory to one another, and the NIC manages transfer protocols. In
particular, NICs are implementing Remote Direct Memory Accesses (RDMA) protocols [20],
allowing concurrent accesses to the memory with GPP cores. RDMA enables zero-copy (to/from
GPP/NIC) communications from pinned memory regions, reducing transfer latency. In addition,
NICs now also embed processing units, partly removing the need for GPP clock cycle to progress
communications.

2.1.2.3 Graphic Processing Unit (GPU)

A Graphics Processing Unit (GPU) is a specialized processing unit used in HPC for its energy
efficiency on dense linear algebra. On the Green500 ranking, every supercomputer on the top 10
rankings uses GPUs, and performs with about 40 to 60 Gflops/watts. On the other hand, the
Chinese supercomputer Tianhe-2A ranked 10 on the Top500 is performing at 3 GFlops/Watt
with a pure-GPP architecture, which is one order of magnitude less energy-efficient than GPU
machines. This energy efficiency made it famous in the HPC industry and ultimately led to
the Frontier exaflopian machine under 20MW consumption: a power restriction set by the US
Department of Energy (DoE) in 2009 when power projection using existing technology where
estimating 300MW to reach exaflopian performances then [21].

2.1.2.4 Summary

In order to reach high performances on supercomputers, the diversity and complexity of hardware
must be taken into account. Our contributions in Chapters 4,5,6 primarily focus on GPP-only
compute nodes interconnected in network from their NICs, such as the CEA-HF supercomputer.
Results in Section 6.2 illustrate how an improved use of the memory hierarchy and caches can
reduce pipeline stalls and double computational performances. While it is not presented in this
document, preliminary results on accelerating the CEA-HF architecture with GPUs had been
published in [22].

2.2 Executing and Programming on a Supercomputer

Climbing up the scientific simulation iceberg Fig. 2.1, the Operating System (OS) is the lowest
software layer of a computer. It is responsible of managing presented hardware by providing
simpler and portable interfaces for upper-layer application software such as OpenMP. The
Portable Operating System Interface (POSIX) [23] specifies standard interfaces for operating
systems.

2.2.1 The Portable Operating System Interface (POSIX)

The Open Group is a worldwide consortium of 892 members at the time of writing this thesis7

including banks, IT companies (Fujitsu, Intel, Huawei...) or even governmental institutions
7https://opengroup.org/aboutushttps://opengroup.org/aboutus

https://opengroup.org/aboutus
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(Canadian Department of Defense, research institutes...)8. Its mission is to provide open and
vendor-neutral technology standards and certifications, and in particular, it provides the POSIX
specifications defining operating system concepts used in every implementation to some extent
(MS-Windows, GNU/Linux, Mac OS, NetBSD, ...). For instance, the 2017 specifications provide
the following definitions referenced in this thesis:

Program "A prepared sequence of instructions to the system to accomplish a defined task"

Thread "A single flow of control within a process. Each thread has its own thread ID, scheduling
priority and policy, errno value, floating point environment, thread-specific key/value bindings,
and the required system resources to support a flow of control. [...]"

Live Process "An address space with one or more threads executing within that address space,
and the required system resources of those threads."

Address Space "The memory locations that can be referenced by a process or the threads of a
process."

The GNU/Linux operating system mostly complies with the POSIX standard, and above
definitions, and is equipping every compute node of every supercomputer ranked on the Top 500
in the November 2022 list9. Therefore we introduce its Linux kernel briefly.

2.2.2 Operating System Kernels: a Fast Zoom on Linux

When booting a computer, the operating system kernel is one of the first programs executed. It
remains in a protected memory region until the computer shutdowns and is a critical piece of
software in terms of security and performance. Security-wide, cores process the kernel instructions
in the kernel mode, giving it entire access to the system resources. In addition, the kernel is
responsible for impactful mechanisms such as interrupts, multi-process scheduling, or memory
management that can have a significant impact on performances. As the Linux kernel [24,25]
runs on every supercomputer ranked on the Top 500, we briefly present a few of its components
that we reference later in this thesis.

2.2.2.1 Interrupts

Interrupts are a means of communication between hardware components and the kernel. This
mechanism was originally designed to ensure responsiveness between hardware interactions
(pressing a key) and the operating system (writing the letter on the terminal). Each interrupt
has an identifier that maps to an handler through an Interrupt Descriptor Table (IDT). When
an interrupt occurs, the CPU suspends its execution flow and switches to its associated handler
program. In the Linux Kernel Development guide [24], interrupts are presented as an alternative
with less impact on performance than periodical execution flow suspension and polling, as an
interrupt suspension is attached to an actual hardware event.

However, in the context of data centers, G. Regnier et al. [26] evaluated the operating system
footprint (system call, interrupts, memory copies) to represent 50% of TPC/IP communications
processing. This leads the HPC community to heavily optimize this part of the software
stack, particularly with the implementation of Direct Memory Accesses (DMA) to reduce kernel
involvement in communications. Using the Linux DMA driver API10, interrupts and memory
copy costs can be removed, as hardware components (NICs, GPUs...) can directly write into

8https://reports.opengroup.org/all.shtml
9https://www.top500.org/

10https://docs.kernel.org/driver-api/dmaengine/client.html

https://reports.opengroup.org/all.shtml
https://www.top500.org/
https://docs.kernel.org/driver-api/dmaengine/client.html
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Figure 2.4: Linux task_struct states adapted from [24]

the user-space process memory. In parallel and asynchronously of a DMA, cores eventually poll
the memory and may notice the completion of a request asynchronously without interrupting
execution. Note that DMA sometimes requires memory to be pinned (i.e., virtual memory
mapping to physical memory is constant); but not always: for instance, Bull BXI NICs can
translate virtual to physical addresses [27].

2.2.2.2 System Calls

System calls are interfaces provided by the operating system, so user-space programs can interact
with the kernel. As user-space programs cannot execute kernel code directly, Linux implements
system calls as an interruption with parameters passed using registers (instruction int x80,
and registers ebx, ecx, edx, esi, edi, and ebp on x86). The kernel implements a handler that
fall-backs to the associated kernel-space implementation of the system call.

Note that the cost of a system call is significantly higher than a traditional function call.
In [28], authors conducted several experiments on Intel Nehalem (Core i7) to quantify costs on
(1) switching processor mode (∼ 150 cycles), (2) memory pollution (caches) and (3) impacts
on IPC. Their results show that a system call is at least an order of magnitude higher than a
conventional x86 user-space function call.

2.2.2.3 Thread/Process Management and Scheduling

Linux provides interfaces for managing POSIX threads and processes. Internally, the kernel
represents both threads and processes using the struct task_struct data structure sizing
about 1.7KB on a 32-bit machine11. Fig. 2.4 depicts the five states of a Linux task_struct:
it can whether be not-ready, ready, running, waiting or completed. Each instance of a struct
task_struct is forked through the clone system call and may share attributes (e.g. virtual

11https://github.com/torvalds/linux/blob/a901a3568fd26ca9c4a82d8bc5ed5b3ed844d451/include/
linux/sched.h#L738-L1549

https://github.com/torvalds/linux/blob/a901a3568fd26ca9c4a82d8bc5ed5b3ed844d451/include/linux/sched.h#L738-L1549
https://github.com/torvalds/linux/blob/a901a3568fd26ca9c4a82d8bc5ed5b3ed844d451/include/linux/sched.h#L738-L1549
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memory mapping, file descriptors...). They embed multiple execution contexts (i.e. a stack and
registers copy): a kernel-mode execution contexts for executing kernel code and interruptions; and
a user-space execution context for executing user code. In this thesis, Kernel-Level Threads (KLT)
refers to Linux task_struct and User-Level Threads refers to user-level execution contexts.

Linux task_struct instances can be created by threading libraries implementations such as
the GNU POSIX threads (pthreads)12; a POSIX thread is created as such:

clone(CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, 0);
Scheduling-wise, since 2007, Linux schedules its task_struct on CPUs using the Completely

Fair Scheduling (CFS) scheduler implementation. In shorts:

• Tasks are sorted by their virtual run-time; a metric that is built upon their run-time on
physical cores (time spent in the running state).

• When returning from the kernel code to user-space (after the completion of a system call
or an interrupt handler), the kernel picks the ready task with the least virtual run-time
executes it.

In addition, the Linux kernel is configured on boot with a time period at which a timer interrupt
is raised, preempting the execution of the current task. The timer interrupt handler is defined in
the kernel/time/tick-common.c file13. It updates various timers, and in particular: the current
task virtual runtime. Hence, before returning, and just like any other interrupt handler, the
kernel may decide to switch tasks.

2.2.2.4 Summary

The GNU/Linux operating system is mostly compliant with POSIX, providing portable interfaces
on every supercomputer listed on the top500. As the lowest software layer of the HPC application
stack, the OS manages the hardware, making it a critical component for performance. The
operating system overheads on interruptions, system calls, and periodic preemption guided our
research towards user-level thread scheduling: threads with no existence for the Linux kernel,
running in the user-mode of CPUs. Section 5.1 presents OpenMP tasking extensions to enhance
its scheduling flexibility with user-level threads.

In the next sections, we climb-up the HPC application stack towards the "Application
Software" layer. We first provide a brief history on HPC programming languages and presents
existing technologies.

2.2.3 Programming Languages and Compilers

Programming is the action of creating a program, that is, writing down a sequence of
instructions to perform a specific task. Early in the 1950s, programming consisted in writing a
sequence of CPU instructions opcode and operands. This is depicted on Listing 2.1 using x86
GNU Assembly (that could be directly converted to opcode/operands machine code), whose
task is to compute 4× 5 and output the result. Such a programming approach presented major
drawbacks: programs are difficult to conceive, maintain and understand, and they needed to be
more portable across processor architectures. J. Backus [29] mentions that back then, low-level
programming was not economically sustainable as programmer costs were "at least as great as the
cost of the computer itself [...] [and] as computers got cheaper, this situation would get worse".

This lead to the development of the FORTRAN programming language and compiler by J.
Backus team at IBM in 1954. The programmer write a program in a language (FORTRAN)
agnostic of the processor architecture, and the compiler is responsible of converting it to an

12https://www.gnu.org/software/libc/manual/html_node/POSIX-Threads.html
13https://github.com/torvalds/linux/blob/a901a3568fd26ca9c4a82d8bc5ed5b3ed844d451/kernel/time/

tick-common.c#L107-L147

https://www.gnu.org/software/libc/manual/html_node/POSIX-Threads.html
https://github.com/torvalds/linux/blob/a901a3568fd26ca9c4a82d8bc5ed5b3ed844d451/kernel/time/tick-common.c#L107-L147
https://github.com/torvalds/linux/blob/a901a3568fd26ca9c4a82d8bc5ed5b3ed844d451/kernel/time/tick-common.c#L107-L147
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1 section .data
2 num1 dd 4
3 num2 dd 5
4 format db "%d", 0
5 result dd 0
6
7 section .text
8 global _start
9

10 _start:
11 mov eax, [num1] ; move ’4’ from the data segment to the ’eax’ register
12 mov ebx, [num2] ; move ’5’ from the data segment to the ’ebx’ register
13 imul ebx ; compute ’4 x 5 = 20’ to the ’eax’ register
14 mov [res], eax ; move ’20’ from the ’eax’ register to the data segment
15
16 ; call printf to print the result
17 push dword [res]
18 push dword format
19 call printf
20 add esp, 8 ; remove arguments from the stack
21
22 ; exit the program
23 mov eax, 1 ; ’sys_exit’ system call
24 xor ebx, ebx ; set the system call argument to 0
25 int 0x80 ; raise the system call

Listing 2.1: X86 Assembly program

architecture-specific low-level program (assembly, machine-code) so the hardware can execute
it. Listing 2.2 illustrates a FORTRAN program that could be compiled to the Assembly code
Listing 2.1. Abstracting programs from architecture through programming languages and
compilers tackle machine-code programming drawbacks. It has led, since then, to significant
development of programming languages and compilers.

1 program multiplication
2 implicit none
3 integer :: num1, num2, res
4
5 ! Multiply 4 x 5
6 num1 = 4
7 num2 = 5
8 res = num1 * num2
9

10 ! Print the reuslt
11 write(*,*) res
12
13 end program multiplication

Listing 2.2: Fortran program

1 int main(void) {
2 int num1 = 4;
3 int num2 = 5;
4 int res = num1 * num2;
5 printf("%d", res);
6 return 0;
7 }

Listing 2.3: C program

1 num1 = 4;
2 num2 = 5;
3 res = num1 * num2;
4 print("%d", res);

Listing 2.4: Python program

2.2.3.1 A Brief History on Programming Languages and Compilers in Scientific
Simulations

FORTRAN (1954), C [30] (1970), C++ [31] (1985), Python [32] (1991) are the top 4 programming
languages used by HPC programmers. The Gordon Bell Prize 14 has been awarded each year since

14https://awards.acm.org/bell

https://awards.acm.org/bell
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1987 by a committee from the Association for Computing Machinery (ACM). It awards HPC
applications (scientific simulation, engineering, or large-scale data analytics) showing notable
performances and portability. Most Gordon Bell papers do not provide source code, and for
some of them, too few implementation details to conclude on the programming languages used.
Still, we observe the following trends. Between 1987 and 2000, we observe the domination of
Fortran in the Gordon Bell Prize awards. After 2000, simulation programming languages start
transitioning from Fortran to C/C++, with both languages being about equally represented. On
the recent winners (2015 to 2022), simulations are whether using pure C/C++ [33,34], or a mix
of C/C++/Python [35,36] using C/C++ as low-level programming languages for computations
kernel, and Python as a higher-level programming language to orchestrate computational kernels.

C/C++ The C programming language was initially conceived at the Bell Laboratories by D.
Ritchie, who presents the language development history in [37]. The language was motivated
to create the Unix operating system commands and kernel. It showed to be portable across
hardware, which led to the development of compiler support on most existing architectures at
the same time, and its use was extended from operating system to application development.
Listing 2.3 illustrates our minimal code example using the C programming language. The C++
programming language was initially developed at Bells Laboratories by B. Stroustrup to create
a successor to C providing additional facilities15. Since then, the language has shown stable
evolution and support by compilers. B. Stroustrup is no longer part of the language committee
but is still influential. He recently (2021) expressed in an interview16 that in the future, C++
could evolve toward better integration of heterogeneous processing units programming (CPUs,
FPGA, GPU), in particular using hardware CPU/GPU uniform address spaces to relieve the
burden of data movement from the programmer, as the hardware would embed implicit support.

The Gnu Compiler Collection (GCC [38]) and LLVM’s Clang [39] currently are the two
dominating C and C++ compilers. GCC first release was in 1987, and LLVM in 2007, whose
motivations were primarily to provide more flexibility (with Just-In-Time compilation, or cross-file
optimization, for instance) and faster compilation than the production compiler of that time.
Both GCC and Clang are Free and Open-Source Software (FOSS) supporting most of the latest
C/C++ language features. They are respectively distributed under the GNU GPL license and
the Apache License 2.0. The Apache license allows a close-source and commercial redistribution
of LLVM. When selling a machine, vendors would typically sell a compiler (ICC for Intel, AOCC
for AMD) that is a patched clone of Clang, finely tuning the compiler for the targeted hardware.

Python As opposed to Fortran/C/C++ implementations, the Python programming language
main implementation (CPython17) relies on an interpreter. It means that on each execution,
a Python program is converted (or interpreted) to machine-code while this conversion is only
done once for all at compilation-time with Fortran/C/C++ programs. Moreover, the Python
language does not support concurrent multi-threading due to shared responsibility between
standard definition and runtime implementation18. Hence, at first sight, Python sounds like a
poor candidate for HPC programming. However, the language is excessively simple (as shown
on Listing 2.4) and modular: it can be extended with high-performant C/C++ libraries doing
the critical scientific simulation (parallel) computation to be called by the Python interpreter
through (sequential) interfaces. According to the TIOBE index19, the language’s popularity kept
increasing over the last 20 years, making it the most popular language in 2022.

15https://www.stroustrup.com/1st.html
16https://www.youtube.com/watch?v=Bycec3UQxOc
17https://github.com/python/cpython
18In order to enable concurrent multi-threading, the Python Enhancement 703 (PEP703) proposes the removal

of the global lock from the CPython runtime implementation, that restricts the interpretation of Python code to
a single thread at a time. The Python community is (in 2023) still actively discussing.

19https://www.tiobe.com/tiobe-index/

https://www.stroustrup.com/1st.html
https://www.youtube.com/watch?v=Bycec3UQxOc
https://github.com/python/cpython
https://www.tiobe.com/tiobe-index/
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2.2.4 HPC-oriented Programming Languages

Many more programming languages have been created specifically for the development of scientific
simulations but are, in practice, less represented than Fortran/C/C++/Python.

High Performance Fortran (HPF) The High-Performance Fortran (HPF) [40] was pro-
posed in 1992 as an extension to Fortran for distributed machine programming, but failed to
become popular mainly due to immature technology and a lack of efficient implementations [41].
Nevertheless, HPF failure led to important research on Partitioned Global Address Space (PGAS)
programming, with for instance: X11, Chapel, Fortress, SHMEM, Dash, XCalableMP (XMP).
PGASs provide a global memory address space logically partitioned between processing units.
Even though the memory is physically distributed, it can be accessed by the program as if it
was shared. The execution parallelization and data transfers are managed implicitly from the
partitioning.

Julia is a recent programming language released in 2012. V. Churavy et al. [42] describe
the language as a bridging alternative between two communities: the scientific simulation
programmers using low-level programming languages (C/C++/Fortran) and the data analysts
using high-level programming languages (Python/Matlab). Julia uses the LLVM toolchain, and
its implementation enables online interpretation and compilation to machine code, but also
just-in-time compilation. Its syntax is close to scripting languages like Lua or Python, but as a
compiled language, its performances can approach C/C++. As a recent programming language,
its ecosystem is still immature and lacks stability. Only time will tell if its popularity in the HPC
field will tackle these drawbacks.

Domain Specific Programming Languages (DSL) are, as their name suggests, program-
ming languages dedicated to a certain domain of problems. For instance, NabLab [43] and
Devito [44] target simulation over grids/meshes using finite-differential equation solvers, and
PPML [45] target hybrid particle-mesh simulations. As opposed to general-purpose programming
languages (GPL) (C, C++, Python, ...), domain-specific programming languages can restrict the
language. It provides a few specific interfaces tied to the domain so that simulation programmers
can focus on the science and not on any architectural aspects. DSL programming is often close
to mathematical notations familiar to scientific code programmers, as shown on Listing 2.5 which
is a NabLab program.

1 ComputeLjr: ∀ c ∈ cells(), ∀ n ∈ nodesOfCell(c), res{c,n} = 4 * 5

Listing 2.5: NabLab program line of code, computing 4 x 5 on every mesh node

2.2.5 Programming Models in HPC

Programming Models (PMs) are programming language extensions defining an Application
Programming Interface (API) and an Execution Model (EM). APIs provide the building blocks for
calculation expressiveness to programmers, while the EM specifies how the executing environment
must interpret the API. PMs adds an additional layer on top of programming languages, and
serve as bridges between a calculation expression and its execution by the underlying hardware
in a portable manner over hardware architectures. In the HPC application stack iceberg Fig. 2.1,
a programming model is low-level if it is self-sufficient (i.e. not dependent on any others PMs),
and high-level otherwise (i.e. built upon low-level PMs).

Low-level programming models include for instance OpenMP [46], OpenCL [47], MPI [48],
CUDA20 and HIP 21. OpenMP and OpenCL primarily focuses on portability at the compute-

20https://docs.nvidia.com/cuda/cuda-runtime-api/
21https://github.com/ROCm-Developer-Tools/HIP

https://docs.nvidia.com/cuda/cuda-runtime-api/
https://github.com/ROCm-Developer-Tools/HIP
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node level; that is, ensuring programs compatibility and performances for any hardware vendor,
from a single CPU to a multi-GPP / multi-GPU compute node. CUDA is maintained by
the Nvidia vendor to program their GPU hardware. HIP is maintained by the AMD vendor
with a CUDA compatibility, so it can run on both Nvidia and AMD vendors hardware. MPI
provides standardization for communications between compute nodes through the interconnexion
network of supercomputers; it is the most widely adopted PM for distributed parallelism in HPC
applications.

To improve the portability of codes and performances, higher-level programming models
such as Raja [49], Kokkos [50] or Arcane [51] were developed. They provide higher abstracted
interfaces which fallbacks to different lower-level programming models such as OpenMP, OpenCL,
CUDA, HIP or MPI.

2.3 Task-based Programming Models

Many programming models falls under the category of Task-based Programming Models (TPMs)
[46, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]. We introduce a common set of definitions for TPMs,
and then we retrieve and extend the taxonomy on task-based programming model API from
P. Thoman et al. [63].

2.3.1 A Definition for Task-based Programming Models

Transition Systems were introduced by R. M. Keller [64] (1975) for modeling asynchronous
parallel computation. He defines transition system as a pair (S,→) where S is a set of state
and → a binary relation on S, which can be represented as a directed graph with the nodes S
and the edges (s, s′) ∈ S2 if and only if s → s′. Task-based Programming Models (TPM) are
parallel and concurrent programming models which mostly comes with a single task transition
system. Tasks are attached a program and precedence constraints, such as the completion of
other tasks. In its simplest form, tasks can be represented as a three-state transition system:
not-ready, ready and completed as shown on Fig. 2.5. It transitions from not-ready to ready
state once all its precedence constraints are fulfilled and from ready to completed state after the
sequential execution of its program instructions.

ReadyNot-ready Completed

Once precedence
constraints
are fulfilled

After the sequential
execution of the

program

Figure 2.5: A Task Transition System

Task-based programming models usually represent relationship between tasks using graphs,
where nodes represents tasks and edges relation between one another. In particular, the Task
Control Flow Graph (TCFG) and the Task Dependency Graph (TDG) are commonly used.

Task Control Flow Graph (TCFG) During its program execution, a task T1 (the parent)
may instantiate a new task T2 (the child). The parent/child binary relation between tasks can
be represented as a Direct Acyclic Graph (DAG): this is the Task Control Flow Graph. Fig. 2.6
illustrates a TCFG using OpenMP; for instance, C and D tasks are children of the task A ,
as they are created as part of its instruction flow.

Task Dependency Graph (TDG) If the completion of a task T1 is a precedence constraint for
the task T2, then T1 is a predecessor of T2, and T2 is a successor of T1. The predecessor/successor
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1 # pragma omp task depend(out: x)
2 {
3     # pragma omp task depend(out: y)
4         y = 42;
5
6     # pragma omp task depend(in: y)
7         func(y);
8
9     x = 1;

10 }
11
12 # pragma omp task depend(in: x)
13 {
14     # pragma omp task depend(out: z)
15         z = 1;
16
17     # pragma omp task depend(in: z)
18         func(z);
19
20     func(x);
21 }

C

E

}
}

}
}

D

F

A

B

}}
Task Control Flow Graph

(TCFG)

A B

C D E F

Task Dependency Graphs

(TDG)

A

B

C

D

E

F

Figure 2.6: Task Control Flow and Dependency Graphs

binary relation between tasks can also be represented as a direct acyclic graph: this is the Task
Dependency Graph.

2.3.2 A Taxonomy of Task-based Programming Models

Many task-based programming models have been developed. The wide range of their features and
applicability motivated P. Thoman et al. to propose a taxonomy of TPM APIs [63]. However, it
has a few limitations which lead us to propose a slightly extended version.

2.3.2.1 P. Thoman et al. Taxonomy

Fig. 2.7 depicts P. Thoman et al. taxonomy from their original publication [63]. They considered
an important set of TPMs and made a classification out of 13 multi-value parameters. The
C++ Standard Library (STL)22 is considered as a TPM through the std::async interface. The
Threading Building Blocks (TBB) [52] is a parallel library provided by Intel. OpenMP [46] is
a 25 year old general parallel programming language extension for Fortran/C/C++; originally
targeting shared-memory architectures and providing a TPM since 2008. ParSEC [53] and
StarPU [54] are two libraries providing standard C interfaces for task-based programming.
Legion [55] or HPX [56] are TPM executing in a Global Address Space (GAS). Cilk Plus [57],
Chapel [58], or X10 [59] are programming languages with their own compilers.

However, the original taxonomy has a few issues:

• The "Graph Structure" parameter specifies "The type of task graph dependency structure
supported by the given API " which could be a tree structure, an acyclic graph (dag), or
an arbitrary graph. This parameter is probably not relevant, as a graph is simply the
representation of a binary relation between tasks. For instance, a CFG is always a DAG,
and TDGs are mostly DAGs as well even though D. Alvarez et al. [65] recently suggested
cyclic TDGs in OmpSs.

• The AllScale project seems abandonned since its European Project ended in September
201823 and there is no clear documentation on its API accessible online anymore.

22https://en.cppreference.com/w/cpp/thread/async
23https://cordis.europa.eu/project/id/671603

https://en.cppreference.com/w/cpp/thread/async
https://cordis.europa.eu/project/id/671603
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direct acyclic graph
explicit
implicit

shared memory
message

global address space

Figure 2.7: Task-Based Programming Models API Taxonomy from [63]

• StarPU define itself as a "task programming library" and not a programming language
extension24 (On "Implementation Type" parameter value).

• OpenMP does provide a distinct interface to execute a task on a specific hardware but was
still classified as "implicit heterogeinity".

• OpenMP has both implicit (task construct) and explicit (device clause) work-mapping.

• OpenMP can support "Distributed Memory" to a certain extent; its lack of support is more
of related to implementations than its API issue. For instance, A. Patel and J. Doerfert [66]
proposed computation offloading from a source node to a target remote (distributed) nodes,
without modifying OpenMP API.

• OpenMP does not prohibit implicit "Worker Management" to implementers; for instance,
the LLVM implementation does have hidden helper threads [67], that are workers capable
of executing specific tasks even outside a parallel region.

2.3.2.2 Extending the Taxonomy

We fixed the P. Thoman et al. original taxonomy and extended it with NESL [68], Athapascan-
1 [61], XKaapi [60], CPP-Taskflow [62] and MPI. NESL is a programming language designed for
parallel and vector supercomputers. Athapascan-1 is a C++ language extension and library for
task-based programming with data-flow synchronizations. XKaapi is a C library for fine-grain
data-flow synchronizations. It also comes with a C++ library interface and support for the
Athapascan-1 C++ extensions. CPP-Taskflow is a C++ TPM library that gained important

24https://starpu.gitlabpages.inria.fr/

https://starpu.gitlabpages.inria.fr/
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Figure 2.8: Task-Based Programming Models API Taxonomy adapted from [63]

traction25. We also removed the AllScale entry due to it lack of documentation; and we replaced
the "Graph Structure" with a "Dependency Support" parameter. It characterizes whether the
API support fine-grain synchronization between tasks using dependencies or not (i.e. whether
the API support the expression of task dependency graphs).

The complexity of the taxonomy shows the diversity of existing TPM and the difficulty of
sorting them out. They all come with different features, often as a trade of between performances
and automation for programmers

2.4 Conclusion

In this chapter, we briefly presented every layer that constitute the HPC applications stack.
We introduced the diversity and levels of parallelism provided by hardware vendors building
supercomputers. We presented the programming and execution of HPC applications over
supercomputers: the operating system, programming languages, and programming models. They
all provide a piece of the answer to the code and performance portability across hardware
architectures. In particular, the task-based programming model is gaining traction, one argument
being their composability with one another, which enables full exploitation of the underlying
hardware. An important set of task-based programming models had been developed in the past,
as shown by the discussed taxonomy. In the midst of these numerous existing programming
models, standards such as the Message Passing Interface (MPI) and Open Multi-Processing
(OpenMP) try to bring order.

25Over 8k stars on the public repository: https://github.com/taskflow/taskflow

https://github.com/taskflow/taskflow
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In this thesis, we focus on the C/C++ programming language extended with MPI and
OpenMP and compiled with GCC/Clang on a GNU/Linux operating system. This programming
environment is reasonably common in the HPC community. We study the benefits of mixing the
two standard to conceive programs taking advantages of both the shared and distributed memory
parallelism. The next chapter presents furthermore each programming model individually and
their mixed-used using tasks.
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In the midst of the numerous existing programming models, standard programming models
such as the Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) try to
bring order. The standard designation means they are designed jointly by hardware vendors and
research laboratory. Such a collaborative approach aims to ensure code portability over past,
current and future architectures, often through co-design between hardware and software. It
also aims to maintain a certain level of performances, referred in the literature as the problem
of performances portability [69]. Over the last 20 years, programmers had been hybridizing (or
"mixing" [70]) the two standards as they both provide complementary benefits to entirely exploit
supercomputers. We present each programming models and hybridization attempts proposed in
the literature.

3.1 The Message Passing Interface (MPI)

The Message Passing Interface (MPI) is an asynchronous, concurrent and parallel programming
model. It provides interfaces for process communication over a supercomputer interconnection
network. In [46], L. Dagum mentions that "Message passing is the native model for these
architectures, and developers can only build higher-level models on top of it.".

MPI Processes, Program, Communications Within the MPI standard, an MPI process
can be a POSIX process or thread depending on the implementation executing a (POSIX)
program. An MPI program is a set of MPI processes executing the same POSIX program, that
may communicate to one another through the MPI API such as requests.

28
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Instruction Pointer
is here

MPI Request states
0 - uninitialized (source)
1 - initialized

2 - started
3 - consumed (sink)

2

MPI_Start

if persistent and
test success 
MPI_Test 
MPI_Wait

MPI_Request_free

0

1

MPI_Isend
MPI_Irecv
[...] 
MPI_Ibcast

if non persistent
and test success
MPI_Test
MPI_Wait

3

MPI_Send_init
MPI_PSend_init
MPI_Recv_init
[...]
MPI_Bcast_init

if test fails
MPI_Test

Figure 3.1: MPI Requests as a transition system

The Request API The MPI specifications [48] define an MPI_Request transition system,
depicted on Fig. 3.1. The colored node shows the left-side instance state after processing
instructions line 5. An MPI_Request is a transition system instance representing a local handle
for a communication that can be:

• synchronous if MPI_Request instances involved in the same communication must be started
before any instance can be consumed, or asynchronous otherwise.

• point-to-point or collective respectively if only two MPI processes are involved in the
communication (a receiver and a sender), or if it involves a group of MPI processes. In
particular, many collective types had been developed to optimize specific communication
pattern encountered in scientific simulation codes. For instance, the Allreduce collective
defines a global reduction operation (such as a sum, an extremum...) whose result is
returned to each member of the group.

• persistent or nonpersistent. An MPI request can be marked as persistent on initialization
using the MPI_*_init family routines (* ∈ {Send, Recv, ..., Bcast}) as shown on Fig. 3.1.
Otherwise, the request is nonpersistent. The original motivations of persistent requests was
to amortize communication initialization overheads by executing only once the transition
0 → 1 but multiple times 1 → 2 .

• partitionned if the message data may be cut into multiple partite, where each partite can
be marked "ready" by the programmer using the MPI_Pready routine. As soon as a partite
is ready, it may be sent/received independentely to one another. A nonpartitionned MPI
request can be seen as a 1-partite MPI request (e.g. MPI_Send). MPI partitionned requests
original motivations were two-fold [71]. The first motivation was similar to persistent
requests: overhead reduction by executing 0 → 1 only once. The second motivation is
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early-bird posting, so network transfers can start as soon as the data is locally ready: using
MPI partitioned requests, a partite may be sent as soon as its data was written to the send
buffer without the need to fill the buffer entirely with every partite of the message. Note
that in the current specifications, partitionned requests are necessarily point-to-point and
persistent requests.

MPI Requests Progression Transitioning MPI request instances requires some CPU cycles to
ensure run the communication protocol logic. For instance, this is the case for routing hierarchical
messages or simply emptying the network interface controller memory buffers. Progressing MPI
requests consist in dedicating CPU cycles to run this logic. Even though it is not clearly defined
in the standard specifications yet1 the community distinguishes two types of communication
progression: strong and weak progressions.

Strong progression can be seen as mechanisms providing upper bounds on communications
time. For instance, kernel threads preempting the execution dedicated to MPI communication
progression had been studied by H. Taboada [72] and F. Reynier [73]; with a study on the impacts
of dedicating or ovesubscribing (having multiple kernel threads competing CPU time) cores on
computational performances [74]. Other techniques, such as Direct Memory Accesses (DMA) by
the NIC or offloading communication progression logic to computing units integrated into the
NIC (known as "Smart NIC" [75]), can also be considered as strong progression mechanisms.

Weak progression does not provide bounds on communication time. It often refers to lazy
and opportunistic progression mechanisms. Pioman [76] is a pthread-based multi-threaded com-
munication engine whose design considered weak progression on idle periods or any explicit point
raised by the program. MPC collaborative polling [77] is another form of weak progression: any
thread may progress MPI requests during idle periods, which can improve latency and bandwidth
in some cases by dynamically adjusting the number of cores contributing to communication
progressions.

In this thesis, we extended MPC collaborative polling so MPI requests can be polled not only
during idle periods, but also on specific OpenMP tasking events. This work is further presented
in Section ??.

Implementations Currently, the two main implementations of MPI are Open MPI [78] and
MPICH [79]; and their derivatives. Open MPI derivatives include for instance, Bull-MPI for
BXI Interconnect, which relies on the Portals4 low-level network API2. MPICH derivatives
include, for instance, the Intel MPI Library, Cray MPT, or MVAPICH; which standardized their
Application Binary Interface (ABI) so the MPI runtime implementation can be switched without
the need to recompile the MPI program. Both implementations provide high-level standard
specification support and performances on existing interconnection networks. Their working
method by publications and open-source implementations lead to a friendly competition in which
one can unlikely outperform the other for a long time3.

A few more MPI implementations non-derivative from Open MPI or MPICH exists, but
at much less used in production environment and are mainly used for research purposes.
MPC-MPI [11] implements MPI processes as threads. MAD-MPI is built on top of the New-
Madeleine [80] communication engine, and was originally motivated to improve non-continuous
memory transfers. ExaMPI [81] is "an experimental MPI implementation designed to simplify
learning, modifying and use for middleware research".

1https://github.com/mpi-forum/mpi-issues/issues/637
2https://www.sandia.gov/portals/portals-4-0-specification-clone-2/
3https://stackoverflow.com/questions/2427399/mpich-vs-openmpi - J. Hammond on differences between

Open MPI and MPICH

https://github.com/mpi-forum/mpi-issues/issues/637
https://www.sandia.gov/portals/portals-4-0-specification-clone-2/
https://stackoverflow.com/questions/2427399/mpich-vs-openmpi
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Conclusion The MPI specifications include many more interfaces for managing inter-MPI
process communications on supercomputers, such as: network topology, file I/O, one-sided
operations, sessions... As part of this thesis, we primarily focus on the MPI request interface. In
Chapter 5, we explore how it can be mixed with the Open Multi-Processing (OpenMP) standard
programming model to improve data transfers with early-bird posting, and weak-progress not
only on idle periods, but also opportunistically in the MPC-OMP runtime.

3.2 Open Multi-Processing (OpenMP)

OpenMP is a programming model initially designed for intra-node parallel programming. Its spec-
ification is a 600+ pages document defining C/C++/Fortran extensions with compiler directives,
library interfaces, and environment variables. In addition, some members of the Architecture
Review Board (ARB) in charge of maintaining the standard specifications also developed a
document with a minimal example for each interface4. The two main implementations of the
standard are currently LLVM OpenMP [82] and GNU OpenMP [83] implementations, respectively
with 587 and 228 commits merged in their production branches between February 01 2022 and
March 30 2023. They both extend C/C++ compilers and provide a runtime system.

Other implementations exists but are mostly research projects with few uses in production
environment. For instance, MPC-OMP [84], XKaapi [60] or Argobots [85] implements their own
OpenMP runtime relying on GCC/LLVM Application Binary Interfaces (ABIs). OmpSs [86]
and its compiler Mercurium is a programming model extends the C programming language with
directives similarly to OpenMP, and influences the standard specifications.

3.2.1 Before Tasking

The OpenMP 1.0 specifications were originally proposed as a portable programming interface for
shared-memory multi-processor in 1997 [46]. Back then, it was proposed as a simpler alternative
to MPI, HPF and pthreads for shared memory parallelism, which we judged too low level for
scientific applications. For instance, this very first version already included the parallel do
(Fortran) and the parallel for (C) constructs to execute loops iterations in parallel, distributing
iterations evenly and continuously between threads. This is also known as implicit tasking.
Version 2.0 published in 2002 provided minor additions, for instance, with the addition of
the num_threads clause onto the parallel construct, which could only be configured globally
through OMP_NUM_THREADS variable previously.

3.2.2 After Tasking

Version 3.0 published in 2008 extended specifications with the concept of explicit tasks with the
task construct heavily inspired by Cilk 5 [87]. This was the first step in moving OpenMP to a
task-based programming model that led to significant work over the past 15 years.

The original tasking design was motivated to improve the expression of irregular parallelism [88]
on compute-node with an increasing number of CPUs. This first version of the OpenMP task
specification [89] only provided means to manage independent tasks in a control-flow graph. To
ensure the correct order of execution, programmers were given barriers (taskwait construct, or
implicit region barriers), which suspends the execution of the current task until every previously
created children tasks completed. Interfaces for managing dependent tasks were only added in
specifications 4.0 (2013) five years after the extension proposal [90] to provide finer control on the
order of execution through a dependency graph. For instance in 2014, the Kastors benchmark
suite [91] showed that dependent tasking could outperform independent tasking on SparseLU and
Strassen benchmarks. Specifications 5.0 in 2018 introduced a few new tasking features, such as

4https://github.com/OpenMP/Examples

https://github.com/OpenMP/Examples
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the taskloop construct, the detach clause to differ completion until an external event is fulfilled,
and the capability to perform task-based reductions.

3.2.2.1 Tasks as a Transition System

Task Dependency Node states
0 - uninitialized
1 - not_queuable
2 - queuable
3 - queued
4 - scheduled

5 - suspended
6 - executed
7 - detached
8 - completed
9 - deleted

7

10 2 3 4 6 8

5

9

Transition Occurs Concurrency Note
0 → 1 - upon encountering a task or a target

nowait construct (l.9)
1 state 1 is internal to the runtime, and

protect from being queued until every
dependences are treated (l.16)

1 → 2 - upon encountering a task or a target
nowait construct (l.14)

1 state 2 is internal to the runtime, en-
suring tasks may not be queued until
each dependency had been treated

2 → 3 - upon encountering a task or a target
nowait construct (l.15)
- after a predecessor completed (l.25)

n The producer or any consumer thread
may transition once each predecessor
executed

3 → 4 - on any scheduling point (l.28) n The specifications define conditions
where the current task may change
(scheduling points) such as the tasking
constructs, barriers ...

4 → 5 - upon encountering a taskwait con-
struct (l.48)
- upon encountering a task construct
of an undeferred task

1

4 → 3 - upon encountering a taskyield con-
struct

1

5 → 3 - once every children tasks has com-
pleted (l.53)
- if an undeferred task executed

1 or n 1 or n respectively if the task is tied or
untied

4 → 6 - after the task structure block executed
(l.33)

1

4 → 7 - if the task had been canceled and is
detachable

1

4 → 8 - if the task had been canceled and is
not detachable

1

6 → 7 - after executing a detachable task
(l.20)

1

6 → 8 - after executing a non-detachable task
(l.23)

1

7 → 8 - after the event of a detachable task is
fulfilled (l.23)

1

8 → 9 - once the task is deleted n the task is implicitly deleted by the run-
time; usually using a reference counter

Figure 3.2: OpenMP Task Transition System in the MPC-OMP runtime

Fig. 3.2 presents the OpenMP task implementation in the MPC-OMP [84] runtime as a
transition system, and refers to the simplified implementation depicted on Listing 3.1. Note that
as a standard implementation, the LLVM, GCC and even Nanos6 [92] implementations are very
close to the MPC-OMP behavior.

MPC-OMP tasks are a 10-state transition system, with concurrency on some transitions
such as 2 → 3 meaning that multiple threads may try to transition the same task instance in
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1 void init(task_t * task, int size, void * data, void (*f)(), int flags, int priority) {
2 task->f = f; /* Save outlined function pointer */
3 task->data = data; /* Copy shared/private data */
4 task->omp_priority = priority; /* Save task priority */
5 setup(task, flags); /* Convert passed flags (untied, final, ...) */
6 Set ’task’ not_queuable /* 0 → 1 */
7 }
8
9 void construct(void * data, int size, void (*f)(), int flags, int priority, depends_t * deps)

10 {
11 task_t * task = (task_t *) malloc(size); /* Set state 0 */
12 init(task, flags, priority);
13 for (int i = 0 ; i < deps.size() ; ++i) /* Link dependences in the TDG */
14 dependency_insert(task, deps[i]);
15 Set ’task’ queuable /* 1 → 2 */
16 process(task);
17 }
18
19 void finalize(task_t * task) {
20 if (task->detach_event) { /* If a ‘detach(event)‘ clause is specified */
21 Set ’task’ detached /* 4 , 6 → 7 */
22 wait(task->detach_event);
23 }
24 Set ’task’ completed /* 4 , 6 , 7 → 8 */
25 for (task_t succ : task->successors)
26 process(succ);
27 }
28
29 void schedule(void) {
30 task_t * task = next_ready_task();
31 Set ’task’ scheduled /* 3 → 4 */
32 if (’task’ was not cancelled) {
33 task->f(task->data);
34 Set ’task’ executed /* 4 → 6 */
35 }
36 finalize(task);
37 }
38
39 void process(task_t * task) {
40 if (each ’task’ predecessor state ≥ completed) {
41 queue(task);
42 Set ’task’ queued /* 2 → 3 */
43 }
44 if (task is undeferred)
45 while (state of ’task’ is < executed)
46 schedule();
47 }
48
49 void wait(void) {
50 Set ’current_task’ suspended /* 4 → 5 */
51 while (’current_task’ has children tasks in state < executed)
52 schedule()
53 queue(task);
54 Set ’current_task’ queued /* 5 → 3 */
55 }

Listing 3.1: OpenMP Simplified Tasking Runtime
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parallel. The first column of the table is a transition; the second column provides events/interfaces
that can lead to transitioning; the third column is the level of concurrency, that is the amount of
thread that may concurrently try to transition a task instance; and the last column provides
additional information on the transition.

On the simplified runtime implementation, the init and construct routines create a new
task. The data parameter represents the task passed private variables, but could be more
generally assimilated to a "task local storage". The dependency_insert routine inserts the
task into the dependency graph. Any thread may run the schedule routine upon reaching a
scheduling point; that is when a new task may be elected to run. After executing the task,
the thread runs the finalize routine waiting for the associated event if the task had been
detached, and then fulfill its dependencies. The process routine queue the passed task if its
dependences are met, and waits for its execution if it is an undeferred task; that is, with respect
to the if or final clauses, or if the runtime scheduler internally decides to serialize it through
task throttling [93] to prevent excessive memory use if enough tasks had already been created.
For instance by default, GCC and LLVM respectively limits the number of pending tasks to
64× nthreads and 256 tasks.

Standard version Additions
< 3.0 (< 2008) - parallel for, section, single (implicit task)

3.0 (2008)

- concept of tasks in the execution model
- task construct (explicit tasks)
- taskwait construct (explicit synchronization)

3.1 (2011)
- taskyield construct (explicit scheduling point)
- final, mergeable and depend clause to the task construct

4.0 (2013)

- taskgroup construct
- cancel construct with the taskgroup clause)
- depend clause on the task construct (implicit synchronizations)
- target construct (synchronous target task)

4.5 (2016)

- taskloop construct
- priority clause on the task construct
- nowait and depend clause on the target construct (asynchronous target tasks)

5.0 (2018)

- array shaping and array sections for (target update and depend clause)
- iterator and depobj on the depend clause
- task-based reductions
- taskloop clause on the cancel construct
- depend clause on the taskwait construct
- mutexinoutset dependency type
- detach clause on the task construct

5.1 (2021)

- grain_size and num_tasks clause on the taskloop construct
- inoutset dependency type
- nowait clause on the taskwait construct

5.2 (2022) - omp_in_explicit_task API

Figure 3.3: OpenMP Specifications evolutions on tasking concepts

3.2.2.2 Target Tasks

As accelerators (such as GPU) were appearing in supercomputers nodes, the OpenMP speci-
fications provided the target interface in its specification 4.0 to enable portable computation
offloading [94]. Programmers can define a target code region to be executed on a specific device
connected to the host compute node. The memory model assumes that memory space between
the host and the device are different: if memory spaces are unified, programmers must explicitly
specify the requires(unified_shared_memory) clause. The execution model is host-centric:
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the host decides explicitly which data to move when to move, and on which device. Initially,
the target was separated from tasking in the specifications, but version 4.5 (2015) added the
nowait and depend clause so target region are considered as dependent tasks, allowing fine
synchronizations between the host and the device computation and memory transfers using the
task dependency graph.

3.2.2.3 Conclusion

To follow intra-node evolutions, the OpenMP specifications had lived several extensions since its
original specifications in 1999. Since the many-cores era in the mid 2000s, specifications had been
moving towards a task-based programming model; which task-related evolution is summarized
on Fig. 3.3. Still, the specifications original spirit of focusing on intra-node parallelism mostly
remains. Therefore, stand-alone OpenMP is not a sufficient solution to efficiently exploit a
supercomputer with distributed-memory. Another programming model, such as MPI, is required
to perform memory movements over the inter-connexion network, which had lead the HPC
community to mix both programming models.

3.3 Hybridizing MPI and OpenMP

Before the many-core era that started in the 2000s, supercomputer compute-node used to be
single-core processors with a NIC interconnected in a network. Parallelizing applications using
only MPI was sufficient to exploit the machine efficiently [70]. In particular, the Bulk-Synchronous
Parallel (BSP) [95] bridging model was widely implemented in application codes, where processors
repetitively perform 3-stages super-steps: computation, communication, and synchronization. In
the model, computation from super-step n+ 1 cannot start until the synchronization of every
processor of the super-step n is completed. Note that in the original model, each super-step has
a fixed time duration; but hardware and software implementations were not rigorously providing
such guarantees.

3.3.1 Historical Bulk-Synchronous Parallel Program Structure

As compute-node became themselves parallel architecture with the apparition of many cores,
relying only on MPI was no longer sufficient [70]. A mixed-use of standard presents benefits
to exploit this new intra-node parallelism using a shared memory programming model such as
OpenMP; in particular for applications suffering from load imbalance between MPI processes,
memory limitations due to data replication or a restriction on the number of MPI processes
combinations. In 2009, M. Tsuji et al. [96] conducted evaluations of the T2K supercomputer
reporting results in that direction: mixed versions provide improved performances over MPI-only
versions of the evaluated benchmarks on a multi-core multi-socket node cluster, and using one
MPI process per socket running a multi-threaded OpenMP runtime. Since then, mixed-use
of the standard became usual and found in a wide range of applications, but mostly consists
in preserving existing BSP programs parallelizing the computation stage (and sometimes the
communication stage) using # pragma omp parallel for loops. However, preserving original
BSP program structure, communications may not start until its executing thread previously
completed its computation stage, limiting the potential of network communication overlap with
computation [6]. In addition, the synchronization stage remains which limits load balancing and
overlap furthermore.

3.3.2 Task-based Hybridization

On the other hand, mixed use of the standards using a task-based composition provides additional
advantages over a BSP use. In particular, it allows the implicit overlap of communication with
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independent computation [97] as the task dependency graph expressed by the programmer
provides the degree of parallelism to the task scheduler. However, it requires porting applications
from a BSP to a task-based model; and executing MPI communications within OpenMP tasks
most likely leads to the loss of an OpenMP worker thread issue.

3.3.2.1 Nesting MPI Communications into OpenMP Tasks

1 # pragma omp task depend(out: x)
2 {
3 [...] /* some work on which depends on the request completion */
4 MPI_Start(&req);
5 [...] /* some independent work */
6 MPI_Wait(&req, &status);
7 [...] /* some work that depends on the request completion */
8 }
9

10 # pragma omp task
11 {
12 [...] /* some independent work */
13 }

Listing 3.2: MPI and OpenMP task-based hybridization

Listing 3.2 presents a minimal and motivating example illustrating the loss of an OpenMP
worker thread under a task-based hybridization. The objective of this code is to overlap the MPI
synchronization line 6, switching the executing thread to any other ready tasks (such as the one
line 10). However, such behavior is not granted by standards. In practice, the thread would
block into the MPI runtime line 6, leading to the loss of worker thread [98] on the OpenMP
runtime; and ultimately to low performances or even deadlocks. This problem motivated the
community to propose various solutions.

Solution (1) Test+Yield In [4], programmers replaced the MPI_Wait with a loop calling
MPI_Test and the taskyield construct as shown on Listing 3.3. Authors initially assumed the
executing thread would schedule any other ready tasks until the request is completed.

1 # pragma omp task
2 {
3 while (1)
4 {
5 int completed;
6 MPI_Test(&req, &completed, &status);
7 if (completed) break ;
8 # pragma omp taskyield
9 }

10 }

Listing 3.3: Suspending tasks using the taskyield construct

However, the OpenMP standard does not guarantee such behavior, as it only specifies that:
"The taskyield region includes an explicit task scheduling point in the current task region.".
It means the executing thread may not necessarily switch to ready tasks. This motivated J.
Schuchart et al. [99] to explore various implementations on the taskyield construct for switching
tasks. Their circular-yield algorithm suspend the current task until every other task executed
at least once, enabling the expected behavior with MPI. Their stack-yield algorithm executes
a new task on the current thread on top of the current one. Regarding OpenMP runtime
implementations, GCC and MPC-OMP taskyield construct is a no-op.
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yield (stack)

T1

T2

suspend until
T1 resumes
(deadlock)

Figure 3.4: Deadlock of
stack-yield algorithm

With LLVM, if the task is annotated untied, the compiler au-
tomatically privatizes variables from the outermost scope to a task
local storage. It also rewrite its memory accesses accordingly. During
the execution, as long as the instruction pointer remains in the task
outermost scope, the task remains stack-less. In such case, the entire
execution context fits into fixed-size task’ local storage. Hence, when-
ever the executing thread reaches a scheduling point on the outermost
scope, it can return to the LLVM OpenMP runtime leaving no foot-
print on the current thread stack and get re-queued. When the task
is re-scheduled, the underlying thread jumps to the scheduling point
where the task was suspended. As an explicit scheduling point, the
taskyield construct follows this rule if appearing in the outermost
scope of an untied task; else if the scheduling point appears in a nested function call, or if the
task is tied, LLVM uses a stack-yield algorithm. Hence, LLVM mixes J. Schuchart and al.
approaches but presents limitations:

• The stack-yield algorithm triggering by default can lead to the deadlock of valid OpenMP
programs. Fig. 3.4 is a minimal example deadlock scenario: T1 is scheduled, yields to T2,
and T2 yields until T1 completed. T1 will never be able to resume as it is blocked T2 on the
thread stack, leading to a deadlock. The OpenMP program of this scenario is provided in
Annex 8.4.

• A circular-yield alike algorithm triggers only on untied tasks, and if scheduling points
appear on the outermost scope of the task. However, programmers cannot use Variable
Length Array (VLA) or the Linux alloca function, as the thread stack may be rewritten
between scheduling points. Doing such currently causes the compiler to crash5.

TAMPI

Application Source code

MPI/Nanos6(OmpSs) (TAMPI)

Shared Threading Library
(Argobots)

Application Source code

BOLT/MPICH (Argobots)

Figure 3.5: MPI and OpenMP interoperability

Solution (2) Runtime Interoperability A second solution consisted in preserving existing
code structure and having runtimes implicitly managing task suspension.

MPICH+ULT [100] (2015) proposed to automate threads suspension by using Argobots as a
threading library for MPICH. In 2019, they implemented an OpenMP runtime (BOLT [101]) that
also relies on the Argobots threading library. Their objectives were to automate interoperability
between MPI and OpenMP through the common Argobots threading library. With such approach,
as opposed to TAMPI, user code may remain unchanged. However, BOLT only provided Argobots
support for threads on parallel region, and have not yet investigated explicit task suspension.

The Task-Aware MPI (TAMPI) [6] library was proposed as an extra layer above MPI,
to suspend tasks that would block in the MPI runtime otherwise. The authors provided an
implementation for the Nanos6 tasking runtime of the OmpSs standard. Using this library,

5https://github.com/llvm/llvm-project/issues/61499

https://github.com/llvm/llvm-project/issues/61499
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programmers must replace MPI blocking calls with their TAMPI equivalent (for instance,
MPI_Wait by TAMPI_Wait).

Both approaches are summarized on Fig. 3.5. Nevertheless, no standard solutions have been
adopted in the standard OpenMP or MPI specifications when executing blocking MPI operations
in a task-based environment, so it remains implementers and programmers responsibility to
ensure there is no loss of threads.

Solution (3) Task Detach A third solution came with the task’ detach clause introduced in
OpenMP 5.0 specifications (Nov. 2018). Set on a task construct, the clause differs its completion
until an external event is fulfilled. This would be used in codes as depicted in Listing 3.4 which
we retrieved from [6, 102] as follows: Using the task detach(event) construct, application

1 omp_event_handle_t ev_handle;
2 # pragma omp task detach(ev_handle) depend(out: y)
3 {
4 [...] /* some work on which depends on the request completion */
5 MPI_Start(&req);
6 MPIX_Detach(&req, omp_fulfill_event, ev_handle);
7 [...] /* some independent work */
8 }
9

10 # pragma omp task depend(in: y) depend(out: x)
11 {
12 [...] /* some work that depends on the request completion */
13 }
14
15 # pragma omp task depend(out: x)
16 {
17 [...] /* some independent work */
18 }

Listing 3.4: MPI and OpenMP task-based using the detach clause

programmers must express two dependent tasks for managing asynchronous operations: the
launch (line 2) and its continuation after completion (line 8). MPIX_Detach (line 6) registers
the omp_fulfill_event(ev_handle) callback on the MPI request completion, which raises an
allow-completion event to the OpenMP runtime.

This new clause also impacted other asynchronous programming models. For instance,
proposals were made to the MPI specifications to register a callback on request completion [102,
103] which are currently being standardized 67. As opposed to the solution (1), this clause
provides a portable solution for synchronization overlapping with independent tasks. Nevertheless,
as opposed to (2), it increases programming costs for users, moving interoperability responsibility
from runtime systems to user codes. Still, this has become the standard way of hybridizing
asynchronous programming models using task-based OpenMP.

What about Requests Progression ? All these solutions enable the suspension of tasks
waiting on an MPI request completion. It can therefore overlap the MPI request completion time
with other independent work through the OpenMP task scheduler. Yet remains questions on the
responsibility of progressing communication (i.e. such as copying memory buffers, forwarding
messages, computing collectives algorithm...) and raising the completion callback. In the
MPI_Detach proposal [102], authors provided an implementation where a single kernel (p)thread
progresses every MPI requests and raises the omp_fulfill_event callback on completion. This

6https://github.com/mpiwg-hybrid/hybrid-issues/issues/6
7https://github.com/devreal/ompi/tree/mpi-continue-master

https://github.com/mpiwg-hybrid/hybrid-issues/issues/6
https://github.com/devreal/ompi/tree/mpi-continue-master
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strong progress as the kernel preemption on cores ensures that the MPI requests will be granted
CPU time to progress regularly, bounding communications during in time. Other approach
relying on weak progress such as MPC collaborative polling [77] during idle periods is also a
solution to progressing MPI requests and raising the OpenMP callback on completion.

3.4 Multi-Processor Computing (MPC)

MPC is a modular runtime system
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Figure 3.6: MPC layers and source tree overview

The Multi-Processor Computing (MPC) is an implemention of MPI, OpenMP, and pthreads
specifications, distributed as a Free Open Source Software (FOSS) 8. It is an active research
project at the CEA. Fig. 3.6 depicts the current software architecture as a modular parallel
runtime system.

A Thread-based MPI Implementation MPC initial design in 2008 consisted in a unified
implementation of POSIX Threads (pthreads) and MPI. pthreads and MPI processes are virtual-
ized with user-level threads known as "MPC threads" [11]. The shared "Thread" layer of the
MPC software architecture is responsible of scheduling each MPC threads on virtual processors
(VPs) implemented as Linux kernel threads. While existing MPI runtimes used to implement
MPI processes as Linux processes, MPC-MPI processes running on the same compute-node
may run as MPC threads in the same virtual memory address space. This created issues for
supporting existing codes, in which developers assumed that an MPI processes are always a
POSIX process with their own virtual address space. For instance, global variables were assumed
private per MPI processes unlike thread-based MPC-MPI processes. Therefore, compilers and
linkers had been extended to support an extra layer of Thread Local Storage (TLS) which stores
the MPI process data [104]. The MPC compiler privatizes global variables into this TLS so that
each MPC-MPI process has its own copy, supporting previous code assumptions.

The MPC OpenMP Implementation In 2010, MPC was extended with an OpenMP
runtime supporting both GCC and Clang ABIs [84]. OpenMP threads were implemented as
MPC threads scheduled by the shared "Thread" layer like any other threads. In the "OpenMP"
layer, A. Mahéo et al. [105] organized MPC-OMP threads in a tree based on hardware topology
primarily motivated to accelerate thread synchronizations and activations. Fig. 3.7 illustrates
such representation. In this example, the last level 2 represents cores (threads), level 1 represents

8https://github.com/cea-hpc/mpc

https://github.com/cea-hpc/mpc
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the NUMA domain shared by cores, and level 0 is the compute node. In their conclusion, A.
Mahéo et al. suggested reusing this data structure for a topology-aware task scheduling strategy;
so that threads favor stealing on the closest threads queue in the hardware. They since then
implemented into the MPC-OMP runtime and evaluated as part of his Ph.D. manuscript [106].

N2,2N2,1 N2,2N2,1Level 2 (cores)

N1,1 N1,1Level 1 (NUMA)

N0Level 0 (socket)

Figure 3.7: Topological Representation of Threads

MPC in this thesis As part of this thesis, we mostly restricted our use of the MPC runtime to
the OpenMP layer. Threads are always bound 1:1 onto virtual processors, themselves bound 1:1 to
physical cores, mostly ignoring low-level MPC threads details to focus on OpenMP aspects. One
source of motivation to that decision was to take advantage of previous work on the MPC-OMP
work-stealing task scheduler by A. Mahéo, which we heavily re-used throughout this thesis.

3.5 Conclusion

Since the many-core era, mixing OpenMP and MPI showed to be crucial to efficiently exploit
supercomputers. Original mixed-use were partly motivated by memory overheads of the MPI-only
approach; on which OpenMP provide a response as a shared-memory programming model. Since
the many-core era, OpenMP had been moving to a task-based programming model that could
offers new benefits to the mixed-use with MPI. For instance, the overlap of MPI communications
with OpenMP tasks through a task dependency graph scheduling was recently studied ( 2015-
2019) [6]. However, interoperability issues makes it hardly achievable in practice, with poor
performance portability of existing solutions over environments of execution. In Section 5.1, we
introduce mechanisms in the MPC-OMP runtime for suspending/resuming tasks in the presence of
MPI synchronizations (implementing effective taskyield) towards the automation and portability
of runtime interactions. Mixed-use of the programming models using tasks presents another
important benefit: the early-bird of MPI communications by OpenMP dependent task scheduling.
In Section 5.2, we present how we extended the MPC-OMP tasks with priorities to guide the
scheduler to electing tasks performing communications at the earliest.

In order to evaluate these extensions on real-world applications, Chapter 6 presents our port-
ing experience of two mainstream HPC applications. During our journey, we discuss the three
profiling/programming/performances difficulties introduced earlier. For instance, we propose
standard and MPC-OMP runtime extension on task in Chapter 5 for task suspension/resump-
tion, and standard extensions in Section 6.1.1 to ease the expression of irregular dependencies.
Evaluations suggested the task dependency graph creation can be a performance bottleneck in
current OpenMP implementations, that lead us yet again to extend the standard and MPC-OMP
task transition system with persistence in Section 6.2.3.2.

But first, the next Chapter 4 introduces the profiler we developed to overcome the current
lack of tools for dependent task-based hybridization; that we extensively used in almost all of
the experiments of this thesis.
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Chapter 4

Measuring Performances of Task-based
Applications
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This chapter present our contributions on the performance profiling difficulty of MPI and task-
based OpenMP applications. We respond to the lack of tool dedicated to dependent task-based
programming proposing an hybrid profiler. First, we present a modeling of hybrid applications
to a unified task graph scheduling problem, in order to formally define performance metrics in
the context of dependent task-based programming. Then, we implement a profiler and analysis
to synthesize metrics from actual executions.

4.1 Defining Metrics

Applications are often modelled through a graph where nodes represent sequential sets of
instructions (tasks) and edge their precedence constraints [107,108, 109]. Task Graph Scheduling
is then studied as the assignation of tasks to their starting on a processing unit with solutions as
couples (σ, a) mapping each node v to its starting time σ(v) on a processor a(v).

4.1.1 Task Graph Scheduling Problem and Observation

Classical modelings assume that each node and edge completion time is fixed and independent
on the schedule itself. However multiple phenomena can cause tasks completion time to vary
at execution. Hierarchical memory accesses [9], process stalls from cache misses [110], memory
contention [111], network contention [10], or even Dynamic Voltage and Frequency Scaling
(DVFS or CPU throttling) [112] are examples of what can impact the duration of the exact
same workload depending on the scheduling itself. Therefore in our modeling, nodes, and edges
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completion time are part of the scheduling solutions themselves, named below as observations to
be constructed by profiling executions.

We define a Problem as a processor set P = {1, 2, ..., p} with p ∈ N∗ the number of processors
and an application as a directed acyclic graph (V,E) with V the nodes representing tasks and E
the edges representing tasks precedence constraints. An Observation is a triplet (σ, a, d) with

• σ : V ↦→ R+ mapping tasks to their starting time,

• a : V ↦→ P mapping tasks to processors,

• d = (dt : V ↦→ R , dc : E ↦→ R) mapping nodes and edges respectively to work and
communication time,

veryfing the precedence (4.1) and the processor (4.2) constraints:

∀e = (u, v) ∈ E,

σ(u) + dt(u) + dc(e) ≤ σ(v) (4.1)

a(u) = a(v)⇒

{︄
σ(u) + dt(u) ≤ σ(v)

or σ(v) + dt(v) ≤ σ(u)
(4.2)

4.1.2 Metrics Definition

Total

Work Non-WorkNon-Work

Overhead Idle

includes

Figure 4.1: Time Breakdown

Given a problem (P, V, E) and an observation S =
(σ, a, d), we define multiple to assess the perfor-
mances.

Time Breakdown In [113], the authors proposed
the time breakdown depicted in Fig. 4.1 to assess
multithreaded application performances. It allows
performance characterization of a multithreaded ex-
ecution to balance the parallelism (idleness) with
management costs (overheads). They illustrated this
time breakdown on OpenMP before introducing dependent tasking [114] in 2009. Hence, we
adapted the time breakdown for dependent tasking while preserving the sense of these metrics.
We define the total time as the duration from the first task schedule to completing the last task
on any threads. The work is the time spent within an explicit task program, the overhead is the
time spent outside of any explicit task program while there are tasks ready, and the idleness is
the time spent outside of any task program while there are no tasks ready.

Work Time Inflation The time breakdown provides an overview of the parallelism but lacks
details on the work time performances. S. L. Oliver and al [9] introduced the work time inflation
metric defined as "the additional time spent by threads in a multithreaded computation beyond
the time required to perform the same work sequentially.". They illustrated that work time can
significantly inflate in the presence of non-uniform memory accesses. However, work time inflation
can be seen more generally as a matter of task scheduling, instead of a matter of the number of
threads. For instance, depth-first scheduling can improve cache reuse [8] and reduce the work
time, independently of the number of threads. Therefore, we propose a different definition of work
time inflation: instead of an "additional time" (in seconds), we define the work time inflation it
as a ratio. (no units) between two observations Sref = (_,_, dref ) and S = (_,_, d).

it(u) =
dt(u)

dreft (u)
and it(V ) =

∑︁
u∈V

dt(u)∑︁
u∈V

dreft (u)
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it(u) is the work time inflation of the task u for the observation S, using the u work time on the
observation Sref as a reference. it(V ) is the global work time inflation for the observation S
using the observation Sref as a reference. In practice, we usually choose Sref the observation
with the least work time.

Communication Time and Inflation P. Swartvagher and al. [111] studied the impact of
concurrent communication and computation on performances. In particular, they have shown
that communication time can increase in case of memory contention where CPUs and NICs
concurrently access the DRAM. In task-based applications, similarly to work time inflation,
communication time degradation can be seen as a scheduling matter. We define communication
time inflation metric to quantify degradation due to scheduling decisions, between two observations
observation Sref and S as:

it(e) =
dc(e)

drefc (e)
and ic(E) =

∑︁
e∈E

dc(e)∑︁
e∈E

drefc (e)

In practice, we usually choose Sref the observation with the least communication time.
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Figure 4.2: Overlaped work on a communication edge

Communication Overlap with Computation The overlap of communication with compu-
tation is the capacity of CPUs to perform computation while data transfers occur asynchronously
onto the network. Dependent task parallelism enables automatic communication overlap with
computation having cores switching to ready tasks during synchronizations. Such an approach
was used with SmpSs in [97,115], but the overlap itself was not explicitly quantified, making it
hard to ensure that overlap is the reason for observed performance gain (and not other phenomena
such as work/communication time inflation).

Garcia et al. [3] proposed multiple visualization panels for task-based applications to under-
stand performances from a given task scheduler. In particular, one panel is the network activity
over time and another the cores activity over time. Placed on top of each other, this visualization
gives hints on the communication overlap with computation. However, this approach is mainly
visual, which depends on the analyst’s subjectivity, in particular with the presence of visual
artifacts.
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Richard et al. [116] proposed to report a global ratio that quantifies the overlap. Their
approach only assumes that MPI operations are serialized on a single thread and does not permit
to report of any information on time sub-interval for finer analysis than ours. Reynier et al. [117]
proposed an overhead ratio metric and benchmarks to quantify computational/communication
overheads when overlapping MPI collectives that are close to our communication inflation metric.
Just like F. Richard, quantification only considers the activity on a single thread.

We propose a task-based definition of the overlap ratio from a given observation to quantify
the amount of work processed on a set of processing units in parallel with communications on
any time window, allowing fine analysis of multi-threaded and multi-phase applications.
Let Run : P (P) × I(R) ↦→ P (V ) mapping the set of tasks running on a set of processors on a
time interval. It is defined as:

∀Q ∈ P (P), ∀I ∈ I(R), Run(Q, I) = {u ∈ V | a(u) ∈ Q and I ∩ [σ(u) ; σ(u) + dt(u)] ̸= ∅ }

The overlapped work on the set of processor Q and time interval [a, b] is:

ov : (Q, [a, b]) ↦→
∑︂

u∈Run(Q,I)

min(b, σ(u) + dt(u))−max(a, σ(u))

P (P)× I ↦→ R

and inferred on edges execution time interval as

ov : (Q, e = (u,_)) ↦→ ov(Q, [σ(u) + dt(u) ; σ(u) + dt(u) + dc(e)])

P (P)× E ↦→ R

We define Ê(Q) the set of outgoing edges from a given processor partite Q ∈ P (P) as

Ê : Q ↦→ {e = (u, v) ∈ E | a(u) ∈ Q and a(v) /∈ Q}
P (P) ↦→ P (E)

The overlap ratio reduces the overlapped work on every outgoing edges of the processor partite Q

roverlap : Q ↦→

∑︁
e∈Ê(Q)

ov(Q, e)

| Q |
∑︁

e∈Ê(Q)

dc(e)

In practice with MPI, the overlap ratio. is measured using MPI processes as partites Q.
Fig. 4.2 illustrates the overlap ratio. definition on the processor partite Q = {p1, p2} for a
graph G = (V,E) with V = {0, 1, 2, 3, 4, 5, 6}, E = Ê(Q) = {(0, 5)}. This definition is the
multi-threaded generalization of the usual single-thread overlap metrics found in the literature:
| Q |

∑︁
e∈Ê(Q)

dc(e) is an ideal overlapable work time on the multi-threaded MPI process Q during

time intervals progressing communications e, and
∑︁

e∈Ê(Q)

ov(Q, e) is the work performed in parallel

on any threads.

4.1.3 MPI+OpenMP(tasks): A Unified Modeling

In order to fall back to a task graph scheduling problem, observations, and defined metrics, we
model distributed MPI+OpenMP(tasks) applications to a single unified graph: the Global Task
Dependency Graph (GTDG).
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1 # pragma omp task depend(out: x)
2 {
3    [...]
4    MPI_Start(req);
5    [...]
6    MPI_Wait(req);
7    [...]
8 }
9
10 # pragma omp task depend(in: x)
11 {
12    [...]
13 }
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Figure 4.3: From Hybrid Code to a Global Task Dependency Graph

From Hybrid Code to a Global Task Dependency Graph The modeling relies on OpenMP
TDG presented in 2.3.1, and MPI requests transition system presented in 3.1. It consists in
building a GTDG by refining the OpenMP TDG of each MPI process and interconnecting them
to one another. It is created as follows:

• (a) Building the OpenMP TDG of each MPI process,

• (b) Dividing OpenMP task nodes into sub-nodes: each MPI request state transition becomes
a sub-node, and sequential instructions in-between MPI calls are grouped into sub-nodes,

• (c) Adding intra-process edges between (b) sub-nodes to preserve both the parallelism
expressed through MPI and the sequential order of execution,

• (d) Adding inter-process edges between MPI requests states transition nodes so that
transitions to state (3) for collective, receive, and synchronous send operations depends on
transitions to state (2) nodes of other processes involved in the communication.

Fig. 4.3 illustrates this algorithm. Bold elliptic nodes correspond to OpenMP tasks on step (a).
Nodes {B,D, I,K} (MPI request state) and {A,C,E, F,G,H, J, L} (sequential instructions
in-between) correspond to the OpenMP-task division on step (b).
Paths {(A,B,D,E), (A,C,E), (H, I,K,L), (H,J, L)} correspond to step (c) intra-process edges.
Dotted edges {(B,K), (I,D)} correspond to inter-process edges of step (d).

Note that step (d) must respect both the order of execution and the parallelism specified
by MPI. For instance, it models the implicit barrier induced on each collective communication
but also models that an MPI_Wait on an asynchronous send operation could return before the
paired-receive is posted remotely. It also models the explicit overlap parallelism expressed between
a started/completed transition state, as shown with independent nodes B and C.

Sn}
Wn}

1 # pragma omp task
2 {
3    MPI_Ibcast(_, w, MPI_BYTES, 1, _, req);
4    MPI_Wait(req);
5 }

Same code on every process

S0

W0

Process 0

S2

W2

Process 2

S1

W1

Process 1

Figure 4.4: MPI Collective Modeling
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Fig. 4.4 illustrates another example of an MPI Broadcast collective, with nodes {Si,Wi}
corresponding to the initialization and completion state of the MPI request.

4.2 Profiling MPI+OpenMP(tasks) Task-based Execution

Both OpenMP and MPI specifications come with profiling interfaces (OMPT and PMPI) which
can allow to build such modelling, and ultimately the defined metrics. The two profiling interfaces
are based on callbacks: PMPI overloads every MPI library call while OMPT raises callbacks on
specific events. Tools like HPCToolkit [118] or TAU [119] exists and take use of these interfaces
to provide information on each programming model. However, they do not compute the time
breakdown and the communication overlap we previously defined; as each programming model
is profiled independently. Hence, we made a unified profiler using both interfaces. First, it
records events during a program execution, and saves them to trace files on termination. After
termination (or post-mortem), events are replayed sequentially to model the distributed execution
to a single task graph scheduling problem (P, V, E) and an observation (σ, a, d), to synthesize
previously defined metrics.

4.2.1 Hybrid Tracing: Recording PMPI and OMPT Events

For our concerns, we profile the states of MPI requests (see 3.1) and task-based OMPT events
(implicit task launch/completion, task creation, task schedules, and task dependency completion).

MPC extensions In addition, MPC-OMP provides extra profiling capabilities. A label, a color,
internal runtime flags, and up to 4 hardware counters are attached to records. Hardware counters
are retrieved using the Performance Application Programming Interface (PAPI) [120] per thread,
and on each task schedule. Hence, hardware events can be counted at a task-level precision,
in between two task schedule. It enables portable hardware event counters measurements on
the task-level, as opposed to tools like perf or likwid which only provide hardware counters on
overall execution. The task-level precision enables fine performance characterization on the work,
removing idleness/overhead noise.

Moreover, an additional non-standard event has been added: the task deletion. The task
deletion event is raised when the runtime releases a task that can occur asynchronously any time
of the execution. This event helped runtime debugging to track the very asynchronous tasks’
lifecycle and ensure no tasks were leaking into memory.

Timing Events Each event is timed using omp_get_wtime routine under a microsecond
precision and sharing clock time reference between cores of the same compute node. It means that
we only have a precisely timed observation per MPI process partite, with no clock synchronizations
mechanisms between MPI processes.

From Events to Trace Files From raised events, our profiler generates machine-code records
storing events information. During the execution, all records are enqueued per core to a pre-
allocated memory region and flushed to disk on termination to limit the profiler impact onto
the scheduling itself. Profiled execution presented in this manuscript has shown from 0% to 5%
slowdown enabling the profiler.

4.2.1.1 From Events to an Observation

An observation is made of four functions (σ, a, d = (dt, dc)), which are to be defined for each
graph node from a traced execution. Given a node u, its schedule time σ(u) is an OpenMP task
schedule event or a PMPI callback on the transition state associated to the node. Its processor
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a(u) is set from its OpenMP thread and its MPI rank in the MPI_COMM_WORLD communicator. Its
duration dt(u) corresponds to the time taken to execute instructions associated with the node but
for MPI nodes dt(u) = 0. Instead, MPI nodes’ weights are moved to edges: given an inter-process
edge e, dc(e) is set to the duration of the associated MPI transition state. Intra-process edges
duration is set to 0.

4.2.2 Analyzing Traces

In order to synthetize metrics previously defined, we made a framework to analyze execution
traces that consists of a virtual scheduler and passes.

4.2.2.1 Virtual Scheduler

The virtual scheduler reads trace files and replay recorded events sequentially. It provides
callbacks and data structures for tracking each OpenMP runtime scheduler event, such as a list
of ready tasks, a list of blocked tasks, but also MPI communication state transitions.

4.2.2.2 Analysis Passes

Analysis passes implement the scheduler emulator callbacks; they are called sequentially on the
event’s callback they implement. Passes can depend on other passes, and the dependencies are
automatically resolved by sorting their sequential order of execution (an error is raised in case of
a dependency cycle).

Figure 4.5: Gantt chart of a nbody simulation, showing important load imbalance

Figure 4.6: Gantt chart of a Cholesky factorization, arrows represent MPI point-to-point
communications

List of Analysis Passes Multiple analysis passes have been implemented to build the metrics
defined previously. Their source code is available online 1. Here is the exhaustive list:

• the Global Task Dependency Graph (GTDG) builds the unified graph modeling. It provides
a graph data structure and synthesizes the observation to be exploited by other passes.

• the GTDG - Critical compute the critical path from the GTDG. It implements the shortest
path algorithm 24.5 DAG-SHORTEST-PATHS in [121], by setting edges (u, v) weight to −dt(u).
This pass computes the critical path time, the average parallelism, and execution time
bounds proposed by Cilk [87].

1https://github.com/cea-hpc/mpc/tree/cea/2023/icpp-interop-tasks/src/MPC_OpenMP/tools/python

https://github.com/cea-hpc/mpc/tree/cea/2023/icpp-interop-tasks/src/MPC_OpenMP/tools/python
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Figure 4.7: Unified Modeling generated by the GTDG analysis pass

• the GTDG - Dot exports the TDG to a .dot file to be visualized with Graphviz for instance.
Fig. 4.7 depicts the modeling for the Cholesky matrix decomposition presented in [99]
distributed on 4 MPI processes.

• the GTDG - Metrics exports general graph metrics: the number of nodes, edges, and
minimum/average/median/maximum degrees.

• the Time Breakdown constructs the time breakdown metrics depicted on Fig. 4.1. Work
time is the sum of each node duration. Non-work time is split into overheads and idleness
by checking the scheduler emulator lists at each raised event.

• the Gantt pass export the scheduling observation to a Chrome Trace Event2 file format, to
be imported by a viewer such as Catapult3 or Perfetto4. The y-axis represents the MPI
processes and the OpenMP threads, and the x-axis the time. Boxes represent work time
(tasks), while the blank spaces represent non-work time. Fig. 4.5 depicts the visualization
of a task-based nbody application, in which we can observe load imbalance between tasks
leading to important idleness. Fig. 4.6 depicts the Gantt chart of a Cholesky factorization

2https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview
3https://chromium.googlesource.com/catapult
4https://ui.perfetto.dev

https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview
https://chromium.googlesource.com/catapult
https://ui.perfetto.dev
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on two MPI processes, and arrows illustrate the tasks performing point-to-point MPI
communications. Note that times are only coherent for cores using the same time reference.

• the Communication - Duration computes the duration of each MPI communications.

• the Communication - Overlap computes the overlap ratio.

• the PAPI aggregates hardware event counter per node for each schedule event. As opposed
to tools like perf or likwid, which only provide hardware counters for the entire Linux
process execution, this pass allows the extraction of hardware event counters occurring
within explicit tasks for finer performance analysis.

4.2.3 Repos and Documentation

The profiler was built directly into the MPC-OMP runtime for historical reasons (the runtime
was not supporting the OMPT interface at the start of the thesis). The MPI profiler is a dynamic
library interacting with the MPC-OMP runtime profiler. Post-mortem analyses are built in Python
and read from profilers’ traces. Source are available online at https://mpc.hpcframework.com or
https://github.com/cea-hpc/mpc as free-software under the CeCILL-C5 license.

4.3 Related Works

Amdahl’s Law and Average Parallelism Amdahl’s Law provides the theoretical maximum
speedup obtainable by increasing the number of processors for a given work time w = ws + wp

with ws the in-compressible sequential time, and p embarrassingly parallel time (i.e.that could
be parallelized on any additional processing units). The law can hardly be applied in practical
task-based programming, as there is rarely such thing as pure sequential or embarrassingly parallel
time: instead, tasks are interdependent and the amount of parallelism available varies over the
execution. Therefore, Cilk’ average parallelism [122] defined as p̂ = Wt

T∞
is more suitable to

determine how the execution time is sensitive the number of processors. The work/idle/overhead
time breakdown [113] we adapted to task-based executions is also well-suited for determining
execution time sensibility to the number of processors: important idleness may be linked to a
lack of parallelism.

OpenMP Tools ScalOMP [123] is an OMPT plugin that can provide hints on loop paralleliza-
tion and scalability performances over the number of threads. However, it is restricted to loop
constructs and does not consider dependent tasking as we do.

Tikki [124] is an OMPT-based plugin that can profile task-based OpenMP applications. It
attaches hardware event counters to tasks using PAPI, enabling performance characterization at
the task level. Our profiler re-implemented the same capability.

OMPTracing [125] is another OMPT plugin that can profile OpenMP applications. From
an execution, OMPTracing generates a Gantt chart and a task dependency graph from a single
process OpenMP application. Our approach differs on two points. First, we not only consider
task-based OpenMP information but also MPI distribution and build a global task dependency
graph partitionned between MPI processes. OMPTracing does not provide such a global view and
restricts its analysis to a single process. Secondly, OMPTracing generates its analysis at run-time,
while our profiler only records execution information to be analyzed post-mortem. This gives us
more flexibility for analysis; for instance, we could synthesize metrics such as the time breakdown
or critical path that is hardly doable at run-time. Note that OMPTracing [125] was published
in 2020, which is concurrent to my thesis and my work on the MPC-OMP profiler. Somehow

5http://www.cecill.info/

https://mpc.hpcframework.com
https://github.com/cea-hpc/mpc
http://www.cecill.info/
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funny, we both are using Chrome trace viewer6 for visualizing Gantt charts and Graphviz7 for
generating dependency graphs.

OmpSs/Extrae/Paraver and StarPU/Pajé/ViTE The Nanos runtime (OmpSs-2 pro-
gramming model) implements a built-in tracer (Extrae), whose trace can be visualized in Paraver
as a Gantt chart8. The OmpSs Mercurium compiler [126] (source to source) can compile standard
OpenMP to target the Nanos runtime, so tools shall be working on standard OpenMP as well.
The OmpSs-1 runtime implementation (Nanox) is capable of profiling hybrid MPI+OmpSs
applications9.

Similarly to OmpSs/Extrae/Paraver chain, StarPU [54] can generate Pajé [127] trace files
to be visualized in the ViTE software [128]. StarVZ [129] is a R package and provide several
visualization of task-based application executions using StarPU.

In our work, we built yet another minimal trace format optimized only for the MPC-OMP
tasking runtime. We built a trace converter for visualization in Chrome Catapult viewer using
an analysis pass of our framework. Additional analysis passes targetting Paraver or ViTE could
be developed to benefit from their existing visualization, but was not explored as part of this
thesis. In particular, the Catapult viewer for Chrome limits the visualization of traces up to
400Mo which showed to be limiting at some points. However, our tracing toolchain also comes
with original analysis such as the time breakdown and communication overlap quantification as
we defined in Section 4.1.2, which require virtualization of the execution post-mortem, that are
not present in Paraver or ViTE.

Distributed Tools HPCToolkit [118] or TAU [119] support hybrid profiling using both OMPT
and PMPI, and provides fine information on each programming model independently. In our
work, we provide a joint view of hybrid OpenMP-dependent tasks and MPI communications
through unified modeling, metrics, profiler, and analysis. Our approach could be integrated into
existing production tools that are also capable of more advanced profiling features such as event
sampling, massive data processing, or even time coherency between distributed MPI processes.

4.4 Conclusion

The lack of performances profiling tools for the task-based hybridization of MPI and OpenMP
understudy lead us to develop our own toolchain as part of the MPC-OMP runtime. We introduced
a unified performance modelling of task-based hybridization of MPI and OpenMP, on which we
formally defined metrics: the work/idle/overhead time breakdown, the work/communication
time inflation, and the overlap ratio. These metrics are well-known and fundamental for assessing
on multi-threaded execution performances, but were mainly conceived for the historical bulk-
synchronous parallel hybridization of MPI and OpenMP. In order to compute these metrics under
the task-based hybridization understudy, we developed a new profiler into the MPC-OMP runtime.
An instance of execution can be traced, and post-processed with analysis passes to compute
mentioned metrics, but also to export visualizations (Gantt Charts, or the unified performance
modelling graph). The profiler and its analysis passes had been widely used throughout this
thesis in the results depicted in the upcoming chapters.

6https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/
7https://graphviz.org/
8https://pm.bsc.es/ftp/ompss/doc/user-guide/faq-track-deps.html
9https://www.olcf.ornl.gov/wp-content/uploads/2019/08/extrae_paraver_day_2.pdf

https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/
https://graphviz.org/
https://pm.bsc.es/ftp/ompss/doc/user-guide/faq-track-deps.html
https://www.olcf.ornl.gov/wp-content/uploads/2019/08/extrae_paraver_day_2.pdf
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Scheduling MPI communications as
OpenMP tasks
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Executing MPI communications as OpenMP tasks could improve the overlap of communi-
cations with computations [97]: The task dependency graph provides a sufficient description
of the degree of parallelism so that ready-work is known to the runtime for overlapping data
transfers. In addition, it could also lead to early-bird posting of MPI communications which "can
help alleviate a major cost of bulk-synchronous parallelism" [71] by using tasks synchronizations
over coarse threads barriers. Then, early-bird posting becomes the responsibility of the OpenMP
runtime task scheduler, which may favor task paths leading to MPI communications in the
TDG. However, executing MPI communications within OpenMP tasks with current production
implementations (LLVM, GOMP, Open MPI, MPICH) most likely leads to poor performances [99]
or even deadlocks [4]. Particularly, one issue happens when an OpenMP thread executes an
MPI synchronization: the OpenMP thread ends up blocking within the MPI runtime without
scheduling other OpenMP tasks: we refer to this problem as the loss of thread issue.

In this chapter, our contributions are two-fold. First, Section 5.1 presents extensions of the
MPC-OMP runtime to tackle the loss of thread issue. Then, Section 5.2 presents improvements in
the scheduler capabilities for the early-bird posting of communications, guiding decisions towards
MPI communications with priorities. Most of this work had been published in the International
Workshop on OpenMP (IWOMP) [130,131].

5.1 Executing MPI Requests within MPC-OMP Tasks

In order to overlap blocking operations with useful work in a tasking environment, the idea
consists of giving hand back to the task scheduler. Hence, it schedules any other independent

52
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ready tasks until the blocking operation asynchronous completion. However, such behavior
is currently not granted by programming standards and depends on the implementation. In
practice, running MPI blocking operations as part of OpenMP explicit tasks most likely leads to
a loss of OpenMP worker thread [4]. In Section 3.3.2, we presented the three solutions explored
for blocking tasks suspension/resumption. We resume briefly each approach that ultimately
motivated us to propose our design and implementation in the MPC-OMP runtime.

5.1.1 State of the art

The first solution consists of replacing blocking calls (such as MPI_Wait) with non-blocking
test-for-completion calls (such as MPI_Test), and yielding to the OpenMP task scheduler (pragma
omp taskyield) until the test passes. However, the OpenMP taskyield construct provides no
guarantees that the scheduler will switch tasks, limiting the portability of such an approach.
With existing implementations, it currently only works with the LLVM compiler, and its OpenMP
runtime, and only if:

• The taskyield is placed on the outermost scope of the task so it is visible by the compiler
when compiling the task.

• There are no dynamic stack allocations (C’s variable length array, or alloca API)

Otherwise, in LLVM, the taskyield is implemented following the stack-yield algorithm
executing a new task on top of the blocking one on the current thread stack, meaning the
blocking task cannot resume until the stacked task completed, and cannot migrate between
threads. In GCC, it is implemented as a "no-op" (GCC), meaning no other tasks are scheduled.

The second solution proposed by TAMPI [6] consists of automating the first solution through
an additional "interoperability" layer that overrides MPI blocking operations, ensuring task
suspension/resumption if executing as part of a task-based environment, such as OpenMP.
The authors only provided implementation for the Nanos6 (OmpSs-2) runtime. It consists in
suspending/resuming the kernel (p)thread on which the task executes using conditions and signals,
and forking a new one so there is no "thread lost". Their implementation tackles the stack-yield
stacking/migration issues, but kernel threads management introduces new overheads such as
system calls; moreover, the scheduling of the blocking task is delegated from the task-based
environment (OpenMP) to the operating system scheduler.

The third solution comes with the detach(event) clause on the task construct [132] intro-
duced in 2018. It differs the completion of a task (and its dependencies release) once the associated
event is fulfilled through the omp_fulfill_event(event) callback API: the task is detachable.
This approach delegates the problem to programmers by removing blocking operations from
tasks and replacing them with their non-blocking counterparts in detachable tasks. Programmers
also have to raise the callback to complete the task asynchronously and ensure the correct order
of execution with dependencies. It ultimately leads to the MPI_Detach proposal [133] (2022)
that assists programmers in such a direction. However, back in 2020, at the beginning of this
thesis, the detach clause was not well-supported in OpenMP runtimes: LLVM support was
implemented in 2019 and merged in early 2020, GCC added support with release 12.1 in 2022),
and MPC-OMP had no support.

5.1.2 Solutioning the loss of thread issue

While many solutions to the loss of thread issue had been proposed, they still needed to be
implemented as part of the MPC-OMP environment. Inspiring ourselves from the state of the
art, we designed and implemented interfaces to support the execution of MPI communications
within MPC-OMP tasks.
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5.1.2.1 Motivations

Stacking Tasks Using Nanos6’s TAMPI implementation or the LLVM stack-yield algorithm,
multiple tasks may be pushed onto the same thread’s stack. Such an approach blocks the
resumption of tasks previously stacked until the last stacked one is completed, which can raise
issues. For instance, in single-producer/multi-consumer scenarios, the producer thread may end
up scheduling tasks at some point. If it schedules a blocking task B on top of its original implicit
task A, the task A may not resume until B is unblocked. In the best-case scenario, it only
reduces the available parallelism (blocking A from producing further tasks until B is completed);
but in the worst-case scenario, it can lead to a deadlock if unblocking B requires resuming A.
Hence, detecting tasks that may block is essential to avoid such scenarios. However, this is
not straightforward. A task may execute code from dynamic libraries that ends-up performing
blocking operations at some point. Additionally, not every MPI blocking operation may retain
the executing thread. For instance, this is the case when the sent data is small enough to be
copied directly to the NIC or when the destination MPI process executes as part of the same
POSIX process (MPC-MPI [11]) where a simple memcpy may be sufficient without requiring MPI
processes synchronization. It is only with fine application knowledge or at execution time that
the thread may decide whether it is worth suspending the current task in favor of another.

Oversubscribing Cores State-of-the-art solutions using MPI_Detach and Nanos6 implemen-
tation rely on kernel thread with periodic preemption. D. Tsafrir [134] showed up to 22%
slowdown on a computation thread sorting an array of integers, preempted by a thread period-
ically repetitively making a system call to trigger the kernel scheduler. In [135], authors also
show computational slowdown due to cache-related delays induced by preemption. Therefore,
state-of-the-art solutions may degrade the performances of other tasks, preempting them in the
middle of their execution.

5.1.2.2 Design and Implementation

To tackle the task stacking and oversubscription problems of the state-of-the-art solutions, we
implemented the following design in the MPC-OMP runtime.

First, we differ in the detection of blocking task detection to programmers. Programmers
have to annotate any MPC-OMP task that may be suspended with a context(stack-size)
clause, asking the MPC-OMP runtime to attach a fixed-size stack of stack-size bytes to the
task. Whenever such annotated tasks are scheduled, the executing thread switches to the task’
stack using the ucontext.h library. Once the task is completed, the thread switches back to its
original stack pointer and resumes execution where it stopped.

Secondly, we extended the MPC-OMP runtime with an API to suspend the current task in
the middle of its execution and prohibit its scheduling until an asynchronous event (such as MPI
requests completion). Full details on the API standardization and implementation have been
published in [131].

Lastly, we added callbacks on the MPC-OMP runtime for progressing MPI requests and
allowing the resumption of their associated OpenMP task. Right before suspending the current
task, the executing thread registers the request and the task in a list. Then, on each OpenMP
schedule event, threads progress requests using MPI_Test calls. If the test passes, then the task
is unblocked so it may be scheduled once again. Our implementation allows progression on
any thread, but only one at a time, and every request is tested once before pursuing execution.
While this could have been implemented as an OpenMP Tool (OMPT), this progression callback
mechanism was implemented as a built-in of the MPC-OMP runtime due to its lack of stable
support for OMPT back in 2020.

The implementation is summarized in the Annex 8.1 as a one-header file TAMPI imple-
mentation for the MPC-OMP runtime, providing a portability layer across MPI runtimes for
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suspending MPC-OMP tasks on MPI_Wait synchronizations. It had also been re-used to sup-
port the execution of blocking GPU operations in the context of OpenMP target tasks, with
preliminary results published in [22].

5.1.2.3 Discussions

Our design and implementation come with the following benefits over existing solutions:

• A task may suspend at any time, resume on any thread, with full compatibility across
codes assuming the existence of a linear stack (i.e. providing support to dynamic stack
allocation, recursivity...).

• Suspension/resumption can be automated by simply executing blocking operations within
tasks and having the MPI runtime give a hand back to the OpenMP runtime scheduler.
This can be seen as an extension of the Argobots/BOLT [101] approach not only for parallel
regions but also for tasking. Automation had been implemented as part of the MPC-MPI
runtime, meaning that using MPC-OMP with MPC-MPI, programming can simply wrap
blocking MPI operations into OpenMP tasks, and suspension/resumption occurs seamlessly.
This is illustrated on the Listing 5.1 where the thread executing the MPI_Send line 2 may
eventually yield to the task line 4 if blocking on an MPI synchronization.

• The MPI request progression on each OMPT schedule event ensures up-to-date knowledge
of ready tasks before the OpenMP scheduler makes a new scheduling decision. In addition,
it likely reduces interferences over state-of-the-art solutions with no preemption in the
middle of their execution.

1 # pragma omp task context(stack-size) untied
2 MPI_Send(...); // blocking operation
3
4 # pragma omp task
5 {
6 // independent work
7 }

Listing 5.1: MPC-OMP and MPC-MPI program with automated task suspension/resumption

However, our design and implementation also come with at least the following drawbacks:

• Programmers have to guess and annotate tasks that may block with a new context clause,
so our runtime executes them using a dedicated stack (otherwise, they are executed on top
of the thread original stack). Automatically managing OpenMP task stacks without the
need of a new programmer annotation and evaluating induced performance overheads is
yet to be evaluated more precisely.

• The use of a dedicated task’ stack may have unnecessary overheads: (1) annotated tasks
may never block (for instance, MPI eager protocol), meaning that stacking them onto the
parent thread stack would have been acceptable, and (2) stack-less execution using LLVM
detach implementation removes stack management costs (allocations, context switches).

• The context clause comes with a stack-size parameter raising the problem of optimizing
it. Too small, execution may stack overflow; too big, we may consume unnecessary memory.
In [136], authors propose an automated verification of stack size requirements for C programs
at compile-time. Their approach is limited by Variable-Length Array (VLA) or alloca,
which can hardly be predicted at compile-time. Outside these cases, their prediction is
convincing and could lead to the automation of optimal stack-size parameters by the
compiler.
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• Our implementation relies on the <ucontext.h> library that is deprecated. It was in-
troduced in POSIX.1-2001 as a portable interface for threads execution context at the
user-space level. The POSIX.1-2008 made this interface deprecated, recommending ap-
plications to be rewritten using POSIX threads1. Yet, practice showed the library to be
portable across the recent Fugaku (2020) and CEA-HF (2022) supercomputers.

5.1.3 Summary

In this section, we have motivated and presented our design and implementation to tackle the
loss of thread issue. It enables the execution of MPI requests as part of OpenMP tasks. In such a
way, the overlap of MPI synchronization with independent OpenMP tasks may occur seamlessly,
as the task dependency graph already provides the parallelism available to the task scheduler.
This work enables the task-based hybridization of MPC-OMP with any MPI implementation,
which leads us to explore the early-bird posting of communications by favoring tasks leading to
MPI operations in the following section.

5.2 Early-bird Posting with Tasks Scheduling

In the previous section, we have introduced extensions towards automating the overlapping and
progression of MPI communications through the OpenMP task scheduler. However, a second
motivation of the task-based hybridization of MPI and OpenMP is the early-bird posting of MPI
communication by scheduling OpenMP tasks leading to them in the TDGs. Let us motivate
furthermore the benefits of early-bird communication posting with the following minimal example.

5.2.1 Motivations

The reference benchmark in the HPC tasking community is the matrix Cholesky decomposition.
Given a matrix A, the benchmark computes the lower triangular matrix L so that A = L.LT ;
which can also be used to resolve the A.x = b system. Implementations of the literature mostly
rely on executing dense algebra kernels (from BLAS, LAPACK, CuBlas...) into tasks. It makes
Cholesky a great example of tasking for such calculation that are sometimes on the core of
scientific simulation. In 2018, J. Schuchart et al. [99] implemented a tiled Cholesky factorization
mixing MPI and OpenMP using tasks. We use it as a motivational example for early-bird
communication posting using OpenMP task scheduling.

Fig. 5.1 depicts a subgraph of the Cholesky factorization TDG, and its scheduling on 2 MPI
processes of 2 OpenMP threads each from a real execution. Tasks are scheduled following MPC-
OMP default "First-In, First-Out" (FIFO) scheduling policy: first-ready tasks are scheduled
first. In this minimal example, such policy led to 61% idleness on cores. If task work and
communication time are assumed constant, a portion of the idleness could be reduced by earlier
posting of the MPI send requests, as shown on the alternative execution presented Fig. 5.2
(which is not a real execution). In this alternative scheduling, we favored the execution of
tasks performing MPI send requests and their predecessors. Once yellow tasks L and H are

completed, three tasks P , M , and J become ready. In the first-case scenario following a
FIFO policy, J is favored over the communication task P on process 1. In parallel, the process
0 thread ends up idling: there are no more ready tasks, as local pending tasks depend on remote
data sent by P . Delaying the communication P on process 0 lead process 1 to idle. In the
second case scenario, P is favored over J : the send request is posted as soon as it is ready.
Hence, process 0 spend less time idling for data to arrive and can schedule tasks F and C
earlier. In the end, idleness is reduced to 36% thanks to the earlier send request posting.

1https://man.netbsd.org/NetBSD-8.0/i386/ucontext.2

https://man.netbsd.org/NetBSD-8.0/i386/ucontext.2
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It must be noted that favoring only tasks performing MPI communications is not sufficient:
favoring their predecessors as well led to early posting of the task O for instance.

A

BC E

D

F

G

H

IJ

K

L

MP

N

O

Process 1Process 0 gemm

send

recv

syrk

trsm

potrf

OpenMP dependency

MPI communication

Figure 5.1: Top: sub-graph of a distributed blocked Cholesky factorization mapped onto 2 MPI
Ranks (matrix size: 2048x2048 with tile of size 512). Bottom: Gantt chart with 2 threads per
MPI process (real execution).

Figure 5.2: Alternative scheduling for the graph in Fig. 5.1 (not real execution)

Contributions In this section, we present how we enabled early-bird posting of MPI commu-
nication through the MPC-OMP tasking runtime scheduler. Section 5.2.2 presents a current
limitations of existing OpenMP runtimes that limits the scheduler visions of the TDG, and
therefore, early-bird communication scheduling. Section 5.2.3 presents MPC-OMP runtime
extensions so tasks can be assigned priorities interpreted by the runtime scheduler, to favor tasks
leading to communications. Finally Section 5.2.4 presents tasks priority heuristics with different
level of automation for application programmers to guide the runtime scheduler towards the
early-bird posting of MPI communications.

5.2.2 The Issue of Task Throttling

Task Throttling is a runtime mechanism originally motivated to reduce tasking operational and
memory overheads [93]. Once a threshold is reached, producer threads stop producing and start
consuming tasks instead. This mechanism limits the vision of the runtime scheduler of the future
of the execution [116], making it impossible to perform early-bird communication task scheduling
as tasks may not even be known by the runtime scheduler.
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In [93], authors proposed to prune task creation and sequentialize their execution at run-time,
using dynamic information such as the task depth in the control flow graph (CFG). Both GCC
and LLVM runtimes implements a threshold bounding the number of ready-tasks that can co-exist
which was developed in the context of OpenMP independent task model (version 3.0), as an
efficient solution to bound the memory consumption. It is set to 64 × nthreads in GCC and
256 in LLVM. Though, it can be totally disabled in LLVM2 deferring the memory bounding
responsibility to the application programmer.

In case of dependent tasks, ready-tasks throttling threshold not only limits the vision of
the runtime scheduler; it is also insufficient to bound memory consumption overhead: as many
successors tasks may be created but not marked as ready. Therefore, we extended the MPC-OMP
runtime with a threshold on the total number of tasks that can co-exist (ready or not). This
threshold can be configured through the MPCFRAMEWORK_OMP_TASK_MAXIMUM environment variable
set to 10, 000, 000 by default. With a task descriptor of 512bytes and 16bytes per edge, this
default values ensure at most 5Go of memory for task descriptors. This represents 4% of the
available DRAM on AMD EPYC processors used in Exa or Titan supercomputers. A patch has
also been submitted for adoption into LLVM3.

5.2.3 Scheduling Tasks with Priorities

In order to control task scheduling, the OpenMP specifications provide a priority(p) clause
on the task construct, taking an integer parameter h. This clause is a hint, and the standard
recommends implementations to favor the scheduling of tasks with higher priority values. It
also mentions that programs should not rely on this mechanism to ensure the correct order of
execution as these are only recommendations, and implementers remain free to do as they please.

As we have shown in our minimal example on the Cholesky decomposition, not only tasks
performing MPI communications should be favored, but also their predecessors in the task
dependency graph. On this point, the standard provides no means or guidelines for propagating
over the task dependency graph: under current specifications (and its production implementations
GCC/LLVM), it is the programmer’s responsibility to set priorities for every task of its application.
Note that back-propagating priorities by the runtime to predecessors may increase furthermore
task creation overheads.

5.2.3.1 A Design for Dependent Tasks Priority

In order to assist application programmers on favoring tasks leading to MPI communications, and
limit induced overheads, we extended the interpretation of priority hint with three parameters:
(VALUE, PROPAGATION, SYNCHRONY). Each parameter is defined with environment variables for the
entire execution and they cannot be safely changed during the execution.

• VALUE ∈ {ZERO, INF, COPY} - controls the task priority. ZERO means the hint is ignored
and the priority is set to 0, INF means tasks with non-zero hint will have an INT_MAX
priority, and COPY means tasks priority will be set to the hint.

• PROPAGATION ∈ {NONE, EQUAL, DECREMENT} - controls how the priority should be propa-
gated to predecessors. NONE means the priority will not be back-propagated, EQUALS means
the priority will be copied to predecessors recursively, DECREMENT means the priority will
be decremented and copied to predecessors recursively.

• SYNCHRONY ∈ {SYNCHRONOUS, ASYNCHRONOUS} - controls when the priority should be back-
propagated (if PROPAGATION is not NONE). SYNCHRONOUS means it should be propagated

2https://reviews.llvm.org/D63196
3https://reviews.llvm.org/D158416

https://reviews.llvm.org/D63196
https://reviews.llvm.org/D158416
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on task creation by the producer thread that is between lines 16 and 17 of Listing 3.1.
ASYNCHRONOUS means it should be propagated opportunistically any time by the runtime.

Algorithm 1 summarizes this design and provides the priority P (T ) for a given task T of hint
H(T ) depending on the parameters VALUE and PROPAGATION. The routine Successors returns
the set of successors for the given task.

Remark Configuration (COPY, NONE, _) corresponds to GCC and LLVM interpretation of the
priority clause.

Algorithm 1 Task Priority
Input: Task T
Output: Integer P(T) the priority of T
1: function P(T)
2: if PROPAGATION = NONE or Successors(T ) = Ø then
3: if VALUE = ZERO then
4: return 0
5: else if VALUE = COPY then
6: return H(T)
7: else ▷ If VALUE = INF
8: return INT_MAX
9: else if PROPAGATION = EQUAL then

10: return max({P (S) | S ∈ Successors(T )})
11: else ▷ If PROPAGATION = DECREMENT
12: return max({P (S)− 1 | S ∈ Successors(T )})

5.2.3.2 Implementation of Priority Support in the MPC-OMP Runtime

Back in 2019, the original MPC-OMP runtime used to ignore the priority hint at all. This lead
us to propose an implementation following the design we just introduced.

First, to sort-out tasks following their priorities, we implemented a red-black tree data
structure following Chapter 13 of [137]. It is a binary search and self-balancing tree that can
perform operations (search, insert, delete) with O(log2 n) time and O(n) memory complexity,
where each node of the tree is a list of tasks with the same priority. Fig. 5.3 depicts tree example
where the root node contains the tasks T3 and T8 with priority 5. Whenever a task must be
elected from a red-back tree, the runtime first selects the list with most priority (list 9 in the
example), and then pops a task following a "First In, First Out" (FIFO) or "Last In, Last Out"
(LIFO) strategy, that can be configured at launch with an environment variable.

We replaced MPC-OMP original task lists with red-black trees of 4 types that can be placed
on different topological levels as shown in Fig. 5.4.

• NEW trees placement is configurable: in the example, they are placed per NUMA domain.
It stores ready tasks with no predecessors.

• SUCCESSORS trees are placed on the lowest topological level (one per core), storing ready
tasks successors of previously completed tasks on that core to favor temporal locality as
in [138],

• TIED trees are also placed on the lowest topological level, storing suspended tied tasks,

• UNTIED trees placement is configurable: in the example, they are placed per socket. It
stores suspended untied tasks.

Algorithm 2 summarizes which tree is elected whenever a task has to be queued.
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Figure 5.3: Red/Black Tree with nodes as task list of the same priority

Algorithm 2 Task Queuing into the Topological Red Black Trees
Input: Task T
1: if T has started then
2: if T is tied then
3: Queue in TIED tree of the current core
4: else
5: Queue in UNTIED tree of the current core
6: else
7: if T has no predecessors then
8: Queue in NEW tree of the current core
9: else

10: Queue in SUCCESSORS tree of the core on which T last predecessor completed

Note that each couple (C, TYPE) with C a core and TYPE a red-black tree type identifies a
unique red-black tree in the topology in the path from C to the root node: for instance on
Fig. 5.4, (3, NEW) identifies the NEW tree of NUMA 2. Algorithm 3 presents the decision taken by
a thread executing on core C whenever a new task is scheduled. The pop routine pops the task
from the list with most priority of the red-black tree identified by the couple (C, TYPE). The
steal routine steals work into trees of type TYPE from core C.

Algorithm 3 Task Schedule
Input: Core C
1: return pop (C, SUCCESSORS) if not null
2: return pop (C, NEW) if not null
3: return steal(C, NEW) if not null
4: return steal(C, SUCCESSORS) if not null
5: return pop (C, TIED) if not null
6: return pop (C, UNTIED) if not null
7: return steal(C, UNTIED)

Regarding the ASYNCHRONOUS propagation mode, we implemented it so that any thread can
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Figure 5.4: Hierarchical Red/Black Tree Scheduling

propagate priorities in the TDG during idle periods, but restricting to only one thread at a
time. The propagation algorithm is depicted on Algorithm 4 and is executed by the first thread
idling. It consists of two-step alternating: (1) finding leaves of the TDG from a root task and
(2) computing and back-propagating priorities to parent tasks in the TDG. On line 20, we do
not allow ready tasks to change priority. The reason is the work-first principle: the propagation
only occurs when threads are idling. Updating a task priority would mean popping it off queues
and reinserting it back, which would prevent another worker from scheduling the task during the
priority update. Following the same principle, our implementation of this algorithm also embeds
a stopping criterion: if enough tasks are ready, the propagating thread breaks.

5.2.3.3 Evaluation

In order to evaluate impacts on performance of our task priority management, we made the
micro-benchmark in Annex 8.3. On this benchmark, each thread creates 1, 000, 000 empty tasks
with a priority set using the system pseudo-random number generator. Note that this benchmark
is among the worst case scenario, as (1) we are running empty tasks, hence emphasizing runtime
structures contentions; and (2) setting a random priority p ∈ [0; 231 − 1], so its very likely that
every tasks has its own priority, hence a red-black tree with 16,000,000 nodes.

We compile it with GCC 13.2.0 and executed it on 16 AMD EPYC 7H12 cores with 16
threads bound 1:1 to cores. We set the OMP_MAX_TASK_PRIORITY environement variable to
INT_MAX (231− 1) and execute in two modes to compare against GCC 13.2.0 and LLVM 16.0.0
runtime implementations:

• no-priority with (VALUE, PROPAGATION, SYNCHRONY) = (ZERO, NONE, SYNCHRONOUS). This
way, every tasks are assigned a 0 priority and scheduled using the default LIFO policy.

• with-priority with (VALUE, PROPAGATION, SYNCHRONY) = (COPY, NONE, SYNCHRONOUS).
This way, task copy the passed priority value and are inserted into the thread red-black
tree.

We performed 5 executions and Table 5.1 reports minimum/median/maximum execution times.
A first observation comparing runtimes, is that MPC-OMP tasking management seems to have
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Algorithm 4 Priority propagation (single-thread, during idle periods)
1: Variables
2: List D, U ▷ D, U stands for DOWN, UP
3: Task T, S, P
4:
5: procedure Propagate(ROOTS) ▷ Propagate priority from existing root tasks
6: D = [], U = [] ▷ Empty lists
7: for T in ROOTS do
8: Push T to D tail
9: while D is not empty do ▷ Step (1) Search for leaves

10: T = Pop D head
11: if T has successors then
12: for S in Successors(T) do
13: if S is not VISITED then
14: Mark S as VISITED
15: Push S to D tail
16: else
17: Push T to U tail ▷ Store the leaf T to the list U
18: while U is not empty do ▷ Step (2) Climb-up the TDG from leaves
19: T = Pop U head
20: if T is not queued then ▷ T is already queued, not updating its priority
21: for P in Predecessors(T) do
22: Update P priority ▷ Based on T priority
23: Push P to U head

much more overheads than LLVM and GCC respectively with a 3.18x and 1.78x slowdown in the
no-priority mode. A second observation comparing the two modes:

• LLVM is whether deadlocking or very slow when enabling priorities, as we couldn’t complete
the execution.

• GCC has no overheads when enabling priorities. Our interpretation comes from its task
throttling limiting only 64 tasks per threads to co-exist, which likely reduces priority
management costs.

• MPC-OMP has a 2.6x slowdown when enabling priorities, as tasks requires sorting in
red-black trees.

Time (in s.) Time (in s.) Time (in s.)
LLVM 16.0.0 GCC 13.2.0 MPC 5f91c6

Min. Med. Max. Min. Med. Max. Min. Med. Max.
no-priority 6.09 7.10 7.11 3.68 3.99 4.81 12.60 12.70 13.00

with-priority N/A N/A N/A 3.70 3.93 5.19 33.05 33.57 34.38

Table 5.1: Performance of the micro-benchmark Annex 8.3

5.2.4 Communication-Aware Task Scheduling Strategies

As the Cholesky motivational example illustrated, favoring tasks performing MPI communications
and their predecessors could improve performances. Using the new MPC-OMP priority-based
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scheduling infrastructure, we evaluated four priority heuristics with various intrusivity in user-
code and runtimes in that direction. This work has been mostly published in [130] with a few
more recent evaluations in the end of the section.

5.2.4.1 Guiding the Task Scheduler with Priorities

Manual 1 (MA-1) The runtime is configured with (COPY, NONE, _), and tasks performing
MPI_Send communications are annotated with priority(1) on the user-code. It means ready
tasks performing MPI_Send communications will always be chosen first against any other ready
tasks.

Manual 2 (MA-2) The runtime is configured with (COPY, EQUAL, SYNCHRONOUS), and tasks
performing MPI_Send communications are annotated with priority(1) on the user-code. It
means ready tasks on a path from any roots to an MPI_Send communications will always be
chosen first against other tasks.

Semi-Automatic (SA) The runtime is configured with (INF, DECREMENT, SYNCHRONOUS), and
tasks performing MPI_Send communications are annotated with priority(1) on the user-code.
It means that given a set of ready tasks, the closest task to any MPI_Send communications will
be favoured over other tasks.

Fully-Automatic (FA) The runtime is configured with (ZERO, DECREMENT, ASYNCHRONOUS),
and tasks performing MPI_Send communications are not annotated the priority clause. Instead,
the MPI runtime notifies the OpenMP runtime whenever it performs an MPI_Send operation.
Then, the MPC-OMP runtime saves a task profile and automatically sets the priority to INT_MAX
for future tasks with the same profile. The profile is made of tasks information such as its
function pointer, its data size, its properties (tiedness, final-clause, undeferability, mergeability,
if-clause), its parent task identifier, its number of predecessors, and its number of successors. As
opposed to SA, FA does not require the programmer to annotate any tasks, but on the other
hand, it has two limitations:

• The first tasks performing MPI_send communication (and their predecessors) will not be
favored, as our OpenMP runtime has no clue about a task’s content until it executes it
once.

• The profile matching may lead to false-negative; for instance, the number of successors may
not be fully known if tasks are being consumed as soon as they are produced.

Illustration Fig. 5.5 illustrates the task ordering on a Cholesky matrix decomposition, with
the default scheduling heuristics (FIFO) with the third heuristic (SA): the redder the task, the
earlier it is scheduled. Diamond tasks represent tasks performing MPI_send communication. As
it can be seen on the SA ordering, the scheduler favors tasks leading to these communications,
while the FIFO heuristic lead to a breadth-first scheduling. These figures illustrates that the SA
heuristics manages to favor not only tasks performing MPI_Send but also their predecessors.

5.2.4.2 Evaluation

Fig. 5.6 shows the impact of cores spreading between MPI and OpenMP on the performance,
varying scheduling heuristics, using the median over 20 executions. Note that the amount
of computational tasks on each configuration remains constant: there is precisely 2,829,056
computational tasks distributed across MPI processes, while the number of communication
increases with the number of MPI ranks. Table 5.2 shows the total number of point-to-point
MPI requests in total (receive and send), with one request per OpenMP task.
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Figure 5.5: Task Ordering (the redder, the earlier schedule) depending on the heuristic used, on
two MPI processes for n = 6, 144 and m = 512. The SA heuristic favors MPI_Send (diamond
tasks) and their predecessors, while FIFO lead to breadth-first scheduling
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Figure 5.6: Cholesky factorisation time varying heuristics, and the MPI/OMP cores spreading
on 16 Skylakes nodes (e.g., 16-48 stands for 16 MPI ranks of 48 threads each) - with a matrix of
size n = 131, 072, and blocks of size m = 512 - Using MPC-MPI and MPC-OMP

Table 5.2: Number of point-to-point communication tasks in Fig. 5.6 runs

Cores spreading (MPI-OpenMP) 16-48 32-24 64-12 128-6
P2P communication tasks (overall) 388.624 640.632 892.640 1.372.880

These results show that the scheduling heuristic used can have a significant impact on
performance in the presence of MPI communications.

Overall Performances The MA-1 and MA-2 heuristics do not improve performances over the
reference FIFO policy, but SA and FA do, respectively by 20% and 14%. It means that only
favoring ready communication tasks is not sufficient, but their predecessors must be favoured as
well. Note that the performance gain is directly reflected in idleness reduction, as MPI processes
spend less time synchronizing due to earlier communication posting. Even though FA improves
performances, it is never as good as SA for the two limitations mentioned previously.

Idleness As a general observation, increasing the number of MPI processes seems to increase
the average idleness, likely due to the increase in the number of MPI synchronizations as heuristics
SA and FA attenuate this phenomenon.

Work time On each spreading, threads are bound 1:1 compactly to the NUMA domain; which
means on the 16-48 spreading, the 48 OpenMP threads are bound on 2 different 24-cores NUMA
domain. Inter NUMA domain memory accesses likely is the source of the work time inflation
observed [9], as work stealing may lead tasks’ successors to migrate between NUMA domains. On
the other spreadings, the work time remains about the same, independently of the heuristic used.

Overhead While overheads seem slightly higher on the FIFO, MA-1 and MA-2 heuristics, the
actual reasons are not fully understood yet. A potential explanation could be the contention
while accessing runtime internal data structures: the more idleness, the more concurrency on
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accesses. This behavior is specific to the MPC-OMP runtime, where threads almost never sleep
at the kernel level and perform a lot of active waiting.

5.2.4.3 Another More Recent Evaluation

The previous experiment were conducted at the beginning of this thesis in 2021. We reproduced
the experiment in 2023, but using an updated version of MPC-OpenMP, and switching from
MPC-MPI to OpenMPI 4.1.5. We only reproduced the configuration with 32 MPI processes
of 24 OpenMP threads each. Table 5.3 depicts the results: the first column is the scheduling
parameters, the second and third column are the TDG execution (makespan) and discovery time;
and the last three columns provide the time breakdown averaged on threads. We provide the
median time for each value and its standard deviation over the 20 runs.

Mode Makespan Discovery Work Idle Overhead
no priority (+ FIFO) 28.45 ± 1.63 0.44 ± 0.06 20.83 ± 0.76 7.96 ± 1.85 0.18 ± 0.01
no priority (+ LIFO) 28.05 ± 1.58 0.45 ± 0.05 20.70 ± 0.82 7.67 ± 1.96 0.18 ± 0.01
SA (+ LIFO) 27.04 ± 1.72 0.61 ± 0.05 21.72 ± 1.60 5.71 ± 3.03 0.18 ± 0.03
FA (+ LIFO) 27.25 ± 1.71 0.51 ± 0.05 20.74 ± 1.57 6.62 ± 2.35 0.38 ± 0.20

Table 5.3: Cholesky Factorization Performances varying scheduling parameters with MPC-OMP
2023 and OpenMPI 4.1.5. Times are given in seconds (s.)

These results validate previous results obtained in 2021, but gains on idleness and overall
performances are smaller. A first reason is that we switched from MPC-MPI to OpenMPI,
that ultimately lead us to detect a performance issue in the MPC-MPI runtime related to
communications route creation. A second reason is that overheads also significantly reduced since
2021, likely due to the MPI runtime switch but also with MPC-OMP runtime improvements over
the 2 years.

The SA configuration inflates the discovery time (about 36%) over the no priority con-
figurations, explained by the synchronous priority propagation in the TDG by the producer
thread. It also inflates the work time by about 5% which reasons remains to be investigated.
The FA configuration slightly inflates the discovery time (about 14%) over the no priority
configurations, likely because of runtime lock contention between the asynchronous priority
propagation occurring in parallel of the discovery.

In both the SA and FA versions, performances gain (makespan) are explained by reducing
idleness on cores, most likely because favoring tasks performing MPI_Send operations and their
predecessors reduces idleness from remote data missing, as shown in the motivating example
previously.

5.3 Related Works

OpenMP as a Low-Level Parallel Runtime OpenMP is used as a low-level back-end
runtime for intra-node parallelization of higher-level programming models such as Kokkos [50] or
Raja [49], PGAS (XcalableMP [139]), or Domain Specific Languages/Abstraction (DSL/DSA) (
Devito [140], Nablab [43]). They provide a higher abstraction that allows programmers to write
codes without low-level parallel considerations. In the specific case of DSL using MLIR [141]
compilers, OpenMP is easily targetable, and merging/suspending tasks can be achieved. Our
extensions on task context and suspensipn could be used in the code generated as a portable
and low-overhead solution for suspending/resuming tasks until the completion of an external
asynchronous event.
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Scheduling Tasks in a Non-Uniform Memory Space Non-Uniform Memory Accesses
(NUMA) architectures are now widely adopted by GPPs equipping supercomputers. This had
lead to several works on the scheduling of tasks on such architectures [138,142,143]. Olivier et
al. [142] showed that hierarchical task scheduling with respect to the hardware topology can
significantly impact performances. Debres et al. [143] proposed a joint scheduling and memory
allocation algorithm, mixing a memory allocator with a work-stealing strategy, for task-parallel
programs execution on NUMA systems. Virouleau et al. [138] presented runtime strategies for
scheduling dependent OpenMP tasks on NUMA architectures. In particular, they draw the
conclusion that both the topology and the initial task data placement impact performances.

User-Level Threads Scheduling While GNU/Linux and its (kernel) pthread implementation
is now equipping most supercomputers, other implementations were proposed. In particular,
the SunOS [144]. (later known as "Solaris") provided a support of the PTHREAD_SCOPE_PROCESS
pthread scope; said differently, it implemented a user-level threading pthread-compliant library
with lightweight overheads.

The Parallel Multi-threaded Machine (PM24) is a distributed multi-threaded programming
environment. Its original design (1995) consisted in Marcel (its threading library) and Madeleine
(its communication library) [145]. Similarly to MPI, a PM2 program is replicated across a cluster
of compute node, where each PM2 process can communicates to one another. Back in 1997, the
PM2 environment already proposed the co-scheduling of user-level threads to reduce threading
management overheads.

The Multi-Processor Computing runtime (MPC) [11] implements virtual processors (VPs)
with kernel threads, which can schedule MPI processes, OpenMP threads or even pthreads as
user-level threads (MPC threads) on top of it. MPC threads are slightly more rigid than OpenMP
tasks, and re-using MPC threads for the tasks execution context management would have implied
important modifications of MPC threading layer: for instance, load balancing of MPC threads
on VPs is much more limited than OpenMP tasks work-stealing strategy between OpenMP
threads [146].

Argobots [85] is a low-level threading and tasking library. Authors conducted an important
set of evaluations on user-space execution context management costs, and proposed several
optimizations (such as « Not saving the context of terminating ULT ») that we could be
integrated into MPC to reduce execution context management costs. The Bolt [101] OpenMP
runtime implements its threads using Argobots. The task execution context extension we
proposed could be implemented with Argobots fibers, but bridging the two worlds (OpenMP
tasks, and Argobots fiber) would likely raise a few difficulties.

5.4 Conclusion

By nesting MPI communications into OpenMP tasks, programmers can differ the responsibility of
overlapping, progression, and early-posting of MPI communication to the OpenMP task scheduler.
However, current standard and implementations have limitations that makes it hard to achieve
in practice. In this chapter, we have presented several extensions (in the OpenMP standard
and runtimes) towards the automation of interactions between MPI and OpenMP to improve
task-based hybridization.

In shorts:

• Tasks can be attached a user-level threads so they may suspend at any point of their
execution without blocking the executing threads as per-before.

• A standard interface had been proposed for suspending/resuming tasks until the completion
of an asynchronous operation. As opposed to existing interfaces, it goes towards standard

4https://pm2.gitlabpages.inria.fr/

https://pm2.gitlabpages.inria.fr/
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OpenMP interface to be used by runtimes, hiding the suspension/resumption burden from
applications developers.

• MPI progression callbacks can be registered into the runtime and raised at different
execution point (such as scheduling points) of the runtime scheduler. This approach ensures
weak progression of MPI communications in-between the task scheduler decisions, and the
resumption of suspended tasks.

• We proposed a design and an implementation for task priorities in OpenMP, that not only
favor annotated tasks (as currently) but also their predecessors. Performances results on
the heuristics evaluations have shown that priority propagation to predecessors is necessary
to ensure actual early-bird posting of MPI communications.

Ultimately, all these extensions lead us to show slight performance improvements on a
Cholesky factorization, as we compared scheduling heuristics with various level of automation for
programmers. Results show that early-bird posting slightly improve performances over naive
breadth-first or depth-first scheduling, by reducing idleness that was mostly likely due to remote
data being sent lately.
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While state-of-the-art solutions enable working task-based hybridization, few applications
migrated towards a task-based composition. At least one attempt led to convincing performances
with the porting of the Cholesky factorization by J. Schuchart and al. [99]. Other attempts
whether failed to implement functional applications due to interoperability issues [4], had to
tinker application codes [116] to sequentialize communications or added coarse barriers losing
potential communication overlap [147]. The lack of applications comes from the difficulties
to reach functional and high-performance codes using a task-based composition of the current
standards and their runtime implementation.

In the introduction of this manuscript, we declined these difficulties in three sources all tied
together: Performances, Profiling, and Programming. Our work investigates these difficulties
jointly and provides pieces of answers to each. Chapter 4 presented an hybrid profiler providing
answers profiling and performances difficulties. Chapter 5 proposed an important set of extensions
to improve both programming and performances aspects, that we evaluated on small benchmarks.
In the Chapter 6, we pursue this work on applications more realistic of scientific simulation codes.
Firstly, we present the porting of the HPCG benchmark and the LULESH proxy-application;
with a few standard extension proposal during our journey that shall ease future applications
porting. Then, preliminary evaluations of the ported applications guided us towards investigating
impacts on the task dependency graph discovery on performances; and yet again to extend the
standard and runtime.

69
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6.1 Porting Irregular Applications with Task-based Programming

Production scientific codes are usually complex and closed-source codes. Therefore, computer
scientist bases their research on benchmarks and proxy-applications. Benchmarks are usually
small codes to assess raw computational power. Proxy-applications model production scientific
simulations extracting their critical components to smaller and simpler open-source codes. Proxy
applications aim to explicit scientific simulation needs to help design hardware, programming
models, and end-codes.

The High-Performance Conjugate Gradient (HPCG [148]) benchmark and the Livermore
Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH [149]) proxy-application are
two mainstream HPC use-cases Both original codes were parallelized with OpenMP workshare
loops (# pragma omp parallel for) and MPI non-blocking and non-persistent communications.
This section introduces in detail each application, and presents our porting experience towards
the task-based composition of MPI and OpenMP, restricting our use of the standard as follows:

• The entire program runs into a parallel and a single region.

• The single thread discovers the application parallelism using the task and taskloop
construct and the depend clause. Therefore, the task graph discovery occurs on a single
producer thread concurrently and in parallel with its execution by every thread (including
the producer). Note that using the depend clause on the taskloop construct is not allowed
by the standard specifications, but our use follows the proposal made by M. Maroñas et
al. [150].

• The computation is distributed through MPI, and communications are nested into task
regions, inserted into the task dependency graph as any other tasks.

Remark At some point, we considered extending our use of the OpenMP standard to the
teams construct, typically placing a single MPI process and OpenMP runtime per compute-node
and one team per NUMA domain. This way, we could 1/ dampen the number of MPI processes
furthermore and 2/ remove shared-memory messages. Yet, it implied important programming
efforts; while 1/ the number of MPI processes has never shown to be limiting in the experiments
of this thesis, and 2/ MPI implementations are already capable of automatically detecting and
optimizing shared-memory message passing [151]. Therefore, we keep extra levels of partitioning
as future optimization work, which could be, for instance, through the OpenMP team construct
or new constructs such as hierarchical tasking [152,153].

6.1.1 Conjugate Gradient (HPCCG)

The High-Performance Linpack1 (HPL) [154] and the High-Performance Conjugate Gradient2

(HPCG) [148] are two complementary benchmarks for assessing on a supercomputer performance.
Both benchmarks resolve linear system A.x = b and provides a Flops/s metric corresponding
to the number of floating point operations (additions, multiplications) performed per second.
However, HPL performs dense algebra (few zeroes in matrices) algebra with regular memory
accesses; while HPCG performs sparse algebra (elements are mostly zeroes) with irregular memory
accesses. This makes the HPL compute-bound and HPCG memory-bound on most systems;
respectively meaning respectively that HPL execution time is mostly determined by the CPU
speed, while HPCG execution time is mostly determined by memory accesses speed. In term of
raw performances, it results in HPL computing 85x (on Frontier) and 27x (on Fugaku) more
Flops/s on HPL against HPCCG.

1https://netlib.org/benchmark/hpl/
2https://hpcg-benchmark.org/

https://netlib.org/benchmark/hpl/
https://hpcg-benchmark.org/
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The HPCG benchmark implements the Conjugate Gradient method depicted on Algorithm 5.
It consists of a sequence of dot products (dot), scaled vector addition (axpby), and sparse
matrix-vector multiplication (SpMV). Each operation is implemented with element-wise loops
and originally parallelized using the parallel for construct as shown on Listing 6.1.

1 # pragma omp parallel for
2 for (Index_t i = 0; i < n; i++)
3 local_result += x[i] * y[i];

Listing 6.1: HPCCG’ dot product implementation

Algorithm 5 Conjugate Gradient Algorithm
Input: Matrix A, Vector b, Vector x0
Output: Vector x - solution of A.x = b
1: function CG(A, b)
2: r0 ← b−A.x0
3: if r0 is small-enough then ▷ for a given norm
4: return x0
5: p0 ← x0
6: k ← 0
7: loop
8: αk ← rk·rk

pTk .A.pk

9: xk+1 ← xk + αk.pk
10: rk+1 ← rk + αk.A.pk
11: if rk+1 is small-enough then
12: return xk+1

13: βk ←
rTk+1·r

T
k+1

rTk ·rTk
14: pk+1 ← rk+1 + βk.pk
15: k ← k + 1

6.1.1.1 Task-based Porting of HPCCG

The task granularity is a critical parameter to reach high performances with task-based appli-
cations: finely tuning the granularity is necessary to balance tasking management costs with
expressed parallelism [91, 155]. To do so, we cut each of the three algebraic operations into
sub-operations over vector/matrix blocks (or "tiles"), and assigning one or more blocks to tasks.
We cut operations using two parameters (T1, T2) ∈ N while preserving the correct order of
execution by inferring dependencies on block data accesses, as shown on the following equations.
Let

(Ai,j) ∈Mn(R), (xi) ∈ Rn, (yi) ∈ Rn, (wi) ∈ Rn,

T1 ∈ J1 . . nK and B1 = ceil(n/T1),

T2 ∈ J1 . . B1K and B2 = ceil(B1/T2)

(α, β) ∈ R2,

then dot products are computed as

n∑︂
i=1

xiyi =

T1−1∑︂
t1=0

min(n,(t1+1)B1)∑︂
i=t1B1+1

xiyi = α⏞ ⏟⏟ ⏞
# pragma omp task depend(in: x[t1B1], y[t1B1]) depend(out:α)

(6.1)
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# pragma omp task depend(in: α, β, x[0], y[0])
                 depend(out: w[0])
{
    for (int i = 0 ; i < B1 ; ++i)
       w[i] = α.x[i] + β.y[i]
}
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# pragma omp task depend(in: x[0], x[0], x[4])
                  depend(inoutset: y[0])
{
    y[0] = A[0][2].x[2]
    y[1] = A[1][1].x[1] + A[1][5].x[5]
}
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# pragma omp task depend(in: x[0], y[0])
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{
   for (int i = 0 ; i < B1 ; ++i)
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Figure 6.1: HPCCG tasks for n = 8 and T1 = T2 = 2

waxpby as

∀t1 ∈ J0 . . T1 − 1K, I1 := t1B1 + 1 and I2 := min(n, (t1 + 1)B1)

∀i ∈ JI1 . . I2K, wi = αxi + βyi⏞ ⏟⏟ ⏞
# pragma omp task depend(in: x[t1B1], y[t1B1]) depend(out: w[t1B1])

(6.2)

SpMV with

∀i ∈ J1 . . nK, ze(A, i) = {j ∈ J1 . . nK | Ai,j ̸= 0}
zb(A, i) = {t1B1 | t1B1 ≤ j < (t1 + 1)B1 | j ∈ ze(A, i)}

as

∀t1 ∈ J0 . . T1 − 1K, ∀t2 ∈ J0 . . T2 − 1K,
I1 := t1B1 + t2B2 + 1

I2 := min(n,min(t1B1 + (t2 + 1)B2, (t1 + 1)B1))

∀i ∈ JI1 . . I2K, yi =
∑︂

j∈ze(A,i)

Ai,jxj⏞ ⏟⏟ ⏞
# pragma omp task depend(in: x[k] so that k ∈

⋃︂
i∈JI1. .I2K

zb(A, i)

⏞ ⏟⏟ ⏞
not real code

) depend(inoutset: y[t1B1])

(6.3)

Remark Our implementation does not balance the number of non-zeroes element between
tasks. Though, each line of the matrix has consecutive 27 non-zero elements per line in the
reference version of HPCCG, meaning that

∀i ∈ J1..nK,≤ Card(zb(A, i)) ≤ 27

Sets zb(A, i) | J1..nK are indices of the vector blocks for which the matrix has non-zero
elements in an SpMV multiplication: they are computed only once on the initialization.

Fig. 6.1 illustrates each task for n = 8 and T1 = T2 = 2, and depicts the first task of
each operation, that is, for t1 = t2 = 0. In this example, computing the first block of y,
zb(A, 0)∪ zb(A, 1) = {0, 4} are the two x blocks for which A has columns with non-zero elements,
hence the dependencies on x[0] and x[4].

Fig. 6.2 depicts a task dependency graph on a single iteration for the reference parallel-for
implementation on 2 threads, and our task-based implementation for (T1, T2) = (2, 1). The
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Figure 6.2: Conjugate Gradient Graph for the parallel-for and task version, on a 1 iteration
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diamond white nodes are control-flow synchronization tasks, modeling, for instance, a for
loop barrier or an inoutset reduction. Using tasks over work-share loops, we express finer
synchronizations through dependencies over barriers: the task-based version allows the concurrent
execution of A and B while the work-share version does not. In the context of MPI, such approach
can lead to earlier posting of communication removing coarse synchronization of work-share
constructs.

Task type FLOPs Median grain (ms.) Performance (GFLOPs/s)
dot 2. nT1

12.3 0.43
waxpby 3. nT1

25.9 0.30
SpMV 2× 27. n

T1.T2
517.3 0.27

Table 6.1: HPCCG: the number of FLOPs performed per task, and the median grain measured
on 16 AMD EPYC 7H12 cores for n = 41, 943, 040, T1 = 16 and T2 = 1

6.1.1.2 Expressing Irregular Tiled Dependencies

The main programming difficulty faced when porting the HPCCG application to task-based
OpenMP was on expressing irregular dependencies. While expressing regular dependencies
is rather straight-forward with OpenMP (dot 6.1 and waxpby 6.2), expressing tiled-irregular
dependencies is more challenging.
1 std::list<int> indices;
2 int k2 = MIN(k+B2, (k/B1+1)*B1, n);
3 for (int i = k; i < k2; ++i)
4 for (int j = row[i]; j < row[i+1]; ++j)
5 indices.insert(inds.end(), col_idx[j]/B1*B1);
6
7 auto it = indices.begin();
8 # pragma omp task depend(iterator(i=0:indices.size()), in: x[*it++]) depend(out: y[k/B1*B1])
9 {

10 for (int i = k; i < k2; ++i) {
11 y[i] = 0;
12 for (int j = row[i]; j < row[i+1]; ++j)
13 y[i] += data[j] * x[col_idx[j]];
14 }
15 }

Listing 6.2: Matrix Vector Multiplication redundant and tiled dependencies

1 std::set<int> indices;
2 [...]

Listing 6.3: Matrix Vector Multiplication tiled dependencies, filtering redundant dependency

Listing 6.2 is our first implementation of the SpMV irregular dependencies using the Com-
pressed Sparse Row (CSR) matrix format. With the current 5.2 specifications, indices from the
union

⋃︁
zb(A, i) on SpMV (6.3) must be computed and placed into a list, iterating on it using

OpenMP iterator within a depend clause, as shown on Line 7 for Listing 6.2. Lines 1 to 4 are
executed once on the matrix initialization, placing column block indices with non-zero elements
consecutively into a C++ std::list, for the matrix lines k to k2. On the first SpMV block
(k = 0) of the example Fig. 6.1, the list would be [0, 0, 4] as it depends on the x vector blocks
starting at indices 0 and 4. The block 0 appearing twice in the list is said redundant. Redundant
dependencies are not programming errors of the OpenMP standard, and the runtime is capable
of filtering them out. However, it unnecessarily and repetitively stresses out the runtime on
every iteration. On a second implementation, we simply replaced the C++ list with a std::set
as shown on Listing 6.3; filtering-out redundancies once for all on matrix initialization in the
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user-code, so there are no redundancies passed to the runtime on a task construct.

6.1.1.3 The Impact of Redundant Dependencies

Task dependencies management is a significant source of overheads for processing dependent
tasks with OpenMP [155]. We experimented to evaluate its impact on performance. Table 6.2
presents results on 16 AMD EPYC 7H12 cores on a matrix of size n = 262, 144 with T1 = 16
and T2 = 1.

Columns present the number of dependencies passed to the runtime, the task graph creation
time, and the task graph execution.

Row (a) presents measurements for the reference parallel-for HPCCG implementation
(hence with no explicit tasks nor dependencies). Row (b) uses task with redundant and per-
scalar dependencies, meaning one distinct dependency is expressed for each memory address
accessed by the task. Row (c) uses task with redundant and tiled dependencies, meaning there
is one dependency expressed for each memory address accessed by the task, pointing to the
vector/matrix block of that address (and so, likely many redundancies). It corresponds to the
previous Listing 6.2. Row (d) uses tasks with no redundant and tiled dependencies, meaning one
dependency is expressed for each vector/matrix block accessed by the task. It corresponds to the
previous Listing 6.3.

Dependencies passed Discovery Execution
(a) parallel-for N/A N/A 0.21s.
(b) tasks, redundant per-scalar dependencies 605,705,049 158s. 158s.
(c) tasks, redundant tiled dependencies 438,992,697 33s. 33s.
(d) tasks, non-redundant tiled dependencies 19,641 0.02s. 0.23s.

Table 6.2: HPCG Performances on Dependencies Expression

Using per-scalar task dependencies leads to a 752x slowdown over the reference version due
to higher task discovery costs. Tiling dependencies slightly improved performances reducing the
slowdown to 157x ; but filtering redundancies was the key to reaching reasonable performances
(1.09x slowdown). The runtime has several less order of magnitude dependencies to process,
resulting in faster task creation.

6.1.1.4 Automating Filtering with an API Extension

As previous results suggest, removing redundancies and tiling irregular dependencies is crucial
for performances. OpenMP provides the depobj interfaces for pre-allocating dependencies, that
can then be passed several time to the same task through the depend clause. While it looks like
a good candidate for such dependency scheme (for instance, filtering redundancies and tiling
only once for all at matrix initialization), its current restrictions currently makes it impossible in
practice. Therefore, we propose the following extensions and restriction relieves so that Listing 6.4
becomes standard-compliant.

• (1) We remove the following constraint on the depobj construct: "A depend clause on a de-
pobj construct can only specify one locator". On the listing, writing x[col_idx[j]/B_1*B_1]
(line 3) and y[k] (line 4) on the same depobj construct is illegal currently.

• (2) We extend the depobj construct so it can have multiple dependency types. On the
listing, writing on the same depobj construct both in: (line 3) and out: (line 4) is illegal
currently.

• (3) We remove the ’unique’ property from the iterator modifier on a depend clause. On
the listing, writing two iterator in the same depend clause (line 3) is illegal currently.
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Implementation and evaluation of these extensions are kept as future work, and here are a few
suggestions for implementers:

• Compiler: (1) redundant dependencies should be filtered-out at compile-time if possible;
and (2) the compiler shall inform the runtime with the total number of dependencies n,
and an upper-bound on the number of redundancies m ∈ [0, n].

• Runtime: filtering-out redundancies consists in building a set from a sequence of n integer
with m redundancies at most. A high-quality implementation should adapt to special cases
such as m = 0 and m = n (yet very common in regular applications). As a matter of fact,
results presented Table 6.2, SpMV tasks had 70, 116, 861 redundancies for 2 or 3 unique
dependencies. Refining tasks with T1 = 512 and T2 = 16 (optimal grain), we had 68, 758
redundancies for 1 or 2 unique dependencies.

1 omp_depend_t obj;
2 # pragma omp depobj(obj)
3 depend(iterator(i=k:k+B2), iterator(j=row[i]:row[i+1]), in: x[col_idx[j]/B1*B1])
4 depend(out: y[k])
5 [...]
6 # pragma omp task depend(obj)
7 [...]

Listing 6.4: Sparse Matrix / Vector Multiplication Task with no restrictions on depobj (deps.
per block filtering redundancies)

6.1.1.5 Studying the Impact of Task Granularity
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Figure 6.3: HPCCG Task Graph Execution (left) and Discovery (right) time on 16 AMD EPYC
7H12 cores

Tasks granularity can have a significant impact over performances. Too coarse, it may lead
to a lack of parallelism and important idleness; too fine, management overheads may deteriorate
performances [7]. Fig. 6.3 presents a task grain study on HPCCG, it shows the task graph
execution (left) and its discovery (right) time. The discovery is the time from the first to the
last task creation, occuring on a single producer thread concurrently of its execution by any
threads (including the producer). The execution corresponds to wall-clock time from the first
task schedule to the completion of the last task. Each point of the figure correspond to a single
run on 16 AMD EPYC 7H12 cores. We set n = 41, 943, 040 occupying 62% of the NUMA domain
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memory capacity over 32 iterations, varying grain parameters T1 ∈ [16; 1536] with a step of 16
and T2 ∈ [1, 96] with a step of 1. It means there are few coarse tasks on the bottom-left points
and many fine tasks on the top-right points. Colors indicate the time: the lighter, the shorter.
We observe that both the graph execution and discovery time significantly vary with the number
of tasks. More precisely, we observe 3 areas:

• (1) is the execution-bound area; tasks discovery is slower than their parallel execution, and
the total time is bound by tasks execution.

• (2) is the execution/discovery frontier area; tasks discovery and their parallel execution
time are close, and the total time may be slowed down due to tasks being discovered too
slowly.

• (3) is the discovery-bound area; tasks discovery time and their parallel execution time are
close, and the total time is mostly bound by task discovery, and threads end up idling
waiting for work to be discovered.

For this HPCCG problem, the best performances are reached in area (1), which gives a
range of efficient task grains for this problem size. We observe a rebound effect between areas
(2) and (3). Going through the frontier area (2), the tasks are getting consumed as soon as
they are created. It makes the producer thread prune dependency edges since predecessors
no longer exist on successors’ discovery. Even though more tasks are discovered in the end,
this accelerates the task graph discovery as there are fewer edges created. After the reddish
region ((T1;T2) = (1, 200; 64)), there are almost no edges generated: a sign that we reached the
discovery-bound area (3). Discovery is slightly faster than within the frontier area (2); until
there are too many tasks (upper-right-most corner at (T1;T2) = (1, 536; 96)), and refining tasks
furthermore would only slow down the execution time.

6.1.2 Simplified Hydrodynamic Simulation (LULESH)

While benchmarks primarily focus on performances, they are not representative of 1M+ lines
production codes needs in term of programming. To respond to this limitation, the Collaboration
of Oak Ridge, Argonne, and Livermore (CORAL) [156] laboratory from the United States
Department of Energy (DOE) provided an important set of proxy applications, parallelized
hybridizing MPI and OpenMP, which are more realistic of production application codes. The
original purpose was co-designing machines, codes, and programming models towards exascale,
that ultimately lead to the Frontier machine. As part of this thesis, we study the Livermore
Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH [149]) proxy application.
This proxy application is modeling the core of ALE3D [157], a 3D multi-physics simulation
software capable of simulating multiple physical phenomena such as heat transfers or chemistry
models.

6.1.2.1 A brief introduction on LULESH

LULESH models an hydrodynamic simulation of materials motion subject to forces over an
unstructured mesh. The simulation duration and the mesh can be configured with command line
arguments. We briefly introduce these concepts that guided our porting to the task-based model.

Unstructured Mesh An unstructured mesh is a set of nodes connected into elements. Each
node is a multi-dimensional object embedding some properties such as a position vector (x, y, z),
a velocity (vx, vy, vz) or a mass m. The mesh represents a discrete three-dimensional spatial
domain, with nodes being points and hexahedrons elements representing volumetric units. On
LULESH, the mesh data structure is built-in for simplicity purposes: each element is made of 8
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1 typedef struct { /* a node data structure */
2 double x, y, z; /* position */
3 double vx, vy, vz; /* velocity */
4 double m; /* mass */
5 } node_t;
6
7 typedef struct { /* a mesh data structure */
8 node_t nodes[n]; /* set of nodes */
9 int elements[m][8]; /* set of elements pointing to 8 nodes */

10 } mesh_t;

Listing 6.5: Simplified LULESH mesh data structure

nodes represented as an indirection array, as depicted on Listing 6.5. Internally, the LULESH
benchmark uses a uniform cartesian grid, but its still represented as an unstructured mesh so
researches on it are applicable to more complex irregular meshes used in production simulations.
The mesh is a cube partitioned into sub-cubes distributed on MPI processes; therefore the
application can only runs using a cubical number of MPI processes. On each MPI rank, local
mesh nodes and elements lists are ordered along axes so that nodes and elements at position
(x, y, z) in the cube are placed at index x.s2 + y.s.+ z in lists.

An Hydrodynamic Simulation Zooming into the code, it looks something similar to the
code Listing 6.6. Line 3, the simulation iterates until a certain amount of iterations max_iter had
been executed. Then each iteration starts with a global reduction (MPI_Allreduce) to compute
a dynamic time step dt on line 5 to 7. Afterward from line 9 to 19, there is multiple mesh-wide
computational loops iterating, so the simulation approximates hydrodynamics equations solutions
discretely onto elements. In the original version provided by LLNL, each computational loop
is parallelized using # pragma omp parallel for construct, and 9 out of the 38 loops also are
annotated with the nowait clause. Then at some point of the iteration (line 22 to 30), frontier
nodes are exchanged between MPI processes. Each MPI process can have up to 27 neighbors
connected through faces, edges or nodes; and only one layer of ghost nodes is used. Finally after
exchanging, there is a few more computational loops (line 32) before the next iteration starts.

Parameters The command line argument -i controls the number max_iter of simulation
iterations, and -s the mesh size. For a given size s distributed on p MPI processes, the total
number of elements is p× s3 and the total number of nodes is p× (s+1)3 with each MPI process
working on s3 elements and (s+ 1)3 nodes.

6.1.2.2 Reference parallel-for version

The original LLNL version of the code relies on a fork-join programming model; the computation
is parallelized through OpenMP parallel for (line 10 and 15 of Listing 6.6) and distributed
with MPI communications outside of OpenMP constructs: the two programming models are used
separately in the code. It also comes with two reports [149,158] presenting how the code must
be used to remain representative of production user needs. For instance, constraints include the
mesh data structure representation, the loop structure, and some extra computation. In [159],
authors show that LULESH original code is poorly optimized but reports constraints limit the
applicability of their optimizations. Though, their global allocation of temporary work arrays
optimization is compatible. It consists of preallocating memory buffers instead of repetitively
calling malloc and free within the inner-most loops. Hence, we backported it, which increased
performances by about 24% on our configuration. In future evaluation, this optimized version is
used as the parallel-for reference.
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1 mesh_t mesh;
2 double dt;
3 for (int iter = 0 ; iter < max_iter ; ++iter)
4 {
5 /* compute the time step (MPI_Allreduce) */
6 double local_dt = compute_local_timestep();
7 MPI_Allreduce(&dt, &local_dt, sizeof(double), MPI_MIN, MPI_COMM_WORLD);
8
9 /* nodes-wise loop: update nodes properties */

10 # pragma omp parallel for
11 for (int i = 0 ; i < mesh.nodes.size() ; ++i)
12 work_on_nodes(mesh.nodes[i], dt);
13
14 /* elements-wise loop: resolve partial differential equations */
15 # pragma omp parallel for
16 for (int i = 0 ; i < mesh.elements.size() ; ++i)
17 work_on_elements(mesh.elements[i], dt);
18
19 /* more loops [...] */
20
21 /* Exchange frontier nodes */
22 MPI_Irecv(recv_buffer, ...);
23
24 Pack(send_buffer, mesh);
25 MPI_Isend(send_buffer, ...);
26
27 /* more send/recv [...] */
28
29 MPI_Waitall(...);
30 Unpack(rbuffer, mesh);
31
32 /* more computational loops [...] (38 loops overall) */
33 }

Listing 6.6: Simplified code of LULESH simulation
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1 mesh_t mesh;
2 double dt;
3 for (int iter = 0 ; iter < max_iter ; ++iter)
4 {
5 # pragma omp task depend(out: dt)
6 {
7 double local_dt = compute_local_timestep();
8 MPI_Allreduce(&dt, &local_dt, sizeof(double), MPI_MIN, MPI_COMM_WORLD);
9 }

10
11 # pragma omp taskloop depend(in: dt) depend(out: mesh.nodes[i]) firstprivate(iter)

num_tasks(tnl)
12 for (int i = 0 ; i < mesh.nodes.size() ; ++i)
13 work_on_nodes(mesh.nodes[i], dt);
14
15 # pragma omp taskloop depend(in: dt, mesh.nodes[...]) depend(out: mesh.nodes[...])

firstprivate(iter) num_tasks(tel)
16 for (int i = 0 ; i < mesh.elements.size() ; ++i)
17 work_on_elements(mesh.elements[i], dt);
18
19 /* more loops [...] */
20
21 # pragma omp task depend(out: mesh.nodes[...])
22 {
23 MPI_Recv(rbuffer, ...);
24 Unpack(rbuffer, mesh);
25 }
26
27 /* more send/recv [...] */
28
29 # pragma omp task depend(in: mesh.nodes[...])
30 {
31 Pack(sbuffer, mesh);
32 MPI_Send(sbuffer, ...);
33 }
34
35 /* more computational loops [...] (38 loops overall) */
36 }

Listing 6.7: Simplified task-based code of LULESH simulation
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6.1.2.3 Task-based Porting

With a particular attention on the two reports constraints, we ported LULESH to the task-based
model composition understudy. The porting follows lessons learned from the HPCCG porting:
dependencies are tiled, and redundancies are filtered once and for all on the mesh initialization.

Computational Loops We transformed the reference version parallel for computational
loops (lines 10 and 15 of Listing 6.6) to dependent-tasks generating loops (lines 11 and 15 on
Listing 6.7) with consecutive nodes or elements in the original loop computed in the same task.
The number of tasks generated from node-wise and element-wise loops can be configured with a
command line parameter, respectively -tnl and -tel, using a num_tasks clause on the taskloop
construct. Dependencies are inferred from the loop breakdown into tasks with respect to the
sequential data accesses (read/write) on the mesh, ensuring a correct order of execution while still
exposing as much parallelism as possible. The annex Table 8.1 presents the average grain of each
task (in µs.) measured on 24 Intel(R) Xeon(R) Platinum 8168 cores for s = 384, tel = tnl = 1024,
and i = 16 compiled with GCC 12.2.0.

Communications We split frontier communications into multiple MPI persistent requests
with balanced sizes. Similarly to loop parallelization, consecutive nodes in lists are communicated
in the same MPI request. Each MPI request is placed into an OpenMP task with appropriate
dependency to ensure its correct order of execution. The number of requests per frontier can
be configured with the command line argument -rpf and -rpe respectively for the number of
requests per face and per edge (nodes-frontier are always made of 1 request). Note that both
parameters were fixed to 1 in the rest of this thesis to fall back to the reference application
coarse-grain communication pattern (-rpf=1 and -rpe=1). Fine study on communication grain
is kept as future work.

Minimal Example Fig. 6.4 illustrates the mesh partitioning into tasks on a minimal example.
It shows a 2-dimensional slice of the domain along the x and y axes on 8 MPI ranks (only
4 shown). In this example, parameters value are -s 2, -tnl 2, -tel 2, -rpf 1 and -rpe 1.
Listing 6.7 illustrates a minimal porting to dependent tasking of Listing 6.6. On line 14, the
mesh.nodes[...] refers to irregular dependencies (to be understood as: "the elements’ nodes
on which the task is computing"). The num_tasks clause specifies the number of tasks on loops,
and the grainsize is inferred from it similarly to the for schedule(dynamic) num_tasks()
construct.

6.1.2.4 Studying the Impact of Task Granularity

As HPCG, we conducted an evaluation on the impact of task granularity on overall performances.
Fig. 6.5 presents results as the execution time and the task dependency graph discovery time
varying grain parameters on 16 AMD EPYC 7H12 cores. We set s = 256 occupying 72% of the
NUMA domain memory capacity over 16 iterations, varying grain parameters tel = tnl varying
in [16, 2048] with a step of 16, increasing and refining tasks from left to right. We make three
following observations on this result:

• The same three areas as of HPCCG appears, annotated with (1), (2) and (3) on the figure
x-axis.

• There are some specific grains where the graph discovery appears to be very slow, for
instance, on tel = 1, 168 or tel = 1, 520.

• On coarse grain, the execution time is inflated to 60s and reduces to about 30s when
refining tasks grain.
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The first observation finds the same reasons as HPCCG: the runtime automatically prunes
edges from already consumed predecessors. The second observation is explained in the following
paragraph. The third observation is studied in Section 6.2.

6.1.2.5 The Impact of Dependency Hashing on the Graph Discovery

The MPC-OMP runtime relies on an hash table to build tasks precedence constraints. The
runtime uses the uthash library [160] that implements hash table methods summarized in [161].
The table hashes variables virtual memory addresses passed through the depend clause with tasks
and infer precedence constraints following the standard specifications on dependency modifiers
(in, out, inout, mutexinoutset, inoutset). Listing 6.8 is the data structure mapped by a
dependency variable. The same dependency management relying on address hashing is used in
GOMP, KMP, and Nanos6 (OmpSs-2); but GOMP/KMP implements their own hash tables,
and Nanos6 uses the C++ std::unordered_map. We instrumented the MPC-OMP runtime and
found out that get/put operations on this hash table were much slower on the low-performance
peaks of the figure. Hence, we reproduced the same experiment varying the hashing function
on Fig. 6.6. We compare the original MPC-OMP hash function also used in KMP (xor-6-2),
GOMP (xor-0-32), Nanos6/MPC-OMP (div-8), and a Jenkins (lookup2) hash functions whose
definition are provided in Listing 6.9.

Left-side figures report the parallel execution time (gray filled area), the single-thread discovery
time (green dotted line), and the portion of the discovery time corresponding to hash map get/put
accesses (blue dashed/dotted line). Right-side figures report the average number of collisions in
the hash table for a single LULESH iteration.

The hash table was configured to resize automatically if more than 10 collisions for a given
key occur, to preserve O(1) access costs. Nevertheless, the uthash implementation will not resize
if it detects that the hash function is not a good fit for the key domain losing O(1) access time3.
For some task grains, such as 1, 158 on xor-6-2, the number of collisions goes above 500 meaning
that the function is not a good fit and that the runtime stopped resizing the hashmap; hence the
peak number of collisions. This ends up slowing down hash map operations and therefore the
graph discovery, which is ultimately bounding the execution time.

Another important result of these experiments is that in MPC-OMP, even for a "good fit"
hash function (lookup2), the hash map accesses represent from 6% to 52% of the task graph
discovery costs (37.17% on average), making it a critical component of the tasking runtime for
dependency management overheads. Note that these costs is related to the number of expressed
dependencies: reducing it while preserving the correct order of execution would reduce hash map
accesses overheads.

1 /* KMP */
2 uintptr_t xor_6_2(void * addr)
3 {
4 uintptr_t v = (uintptr_t) addr;
5 return (v >> 6) ^ (v >> 2);
6 }
7
8 /* GOMP */
9 uintptr_t xor_0_32(void * addr) {

10 uintptr_t v = (uintptr_t) addr;
11 v ^= v >> (sizeof (uintptr_t) / 2 * CHAR_BIT);
12 return v;
13 }
14
15 /* Nanos6 and original MPC-OMP */
16 uintptr_t div_8(void * addr) {
17 return ((uintptr_t)addr) >> 3;

3https://github.com/cea-hpc/mpc/blob/master/src/MPC_Common/include/uthash.h#L1120-L1125

https://github.com/cea-hpc/mpc/blob/master/src/MPC_Common/include/uthash.h#L1120-L1125
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1 struct {
2 /* address for the dependency */
3 void * addr;
4
5 /* mutex for accessing attributes */
6 mutex_t lock;
7
8 /* last ’out’ or ’inout’ task for this address */
9 task_t * out;

10
11 /* list of ’in’ and ’inoutset’ tasks for this address */
12 task_list_t * ins, inoutset;
13
14 /* last task that depend on this address (used for redundancy check) */
15 int task_uid;
16
17 /* the uthash handle */
18 UT_hash_handle hh;
19 };

Listing 6.8: Hash table entry for dependency management

18 }
19
20 /* Jenkins Lookup 2 (uthash implementation) */
21 uintptr_t xor_0_32(void * addr) {
22 uintptr_t hashv;
23 HASH_JEN(&addr, sizeof(void *), hashv);
24 return hashv;
25 }

Listing 6.9: Dependency Hashing Functions
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6.2 Investigating The Task Dependency Graph Discovery Impacts
on Performances

Our third observation on the LULESH task grain was that the execution time is almost half
between coarse and fine grain. There may be multiple reasons on such gain, but in particular,
fine grain-dependent tasking and depth-first scheduling following the data flow can improve the
use of the hardware caches [8]. Using task-based OpenMP, task dependency graphs (TDGs)
can be built following the actual application data flow. Therefore, if the data accessed by a
task is fine-enough to fit into cache memory, scheduling its successors onto the same core can
result in faster work execution, as cached memory is at least one order of magnitude faster to
access than the DRAM. However, as the dependency graph creation (its discovery) is concurrent
to its execution, the entire graph is never fully known by the task scheduler at run-time. In
addition, refining tasks means more nodes to be processed by the runtime, and so it may slow
down the discovery. Hence, refining tasks grain and accelerating the graph discovery are two
critical concepts to balance: tasks must be fine-enough so that their accessed data fit into caches,
but the discovery must be fast enough to provide an in-depth vision of the TDG to the runtime
scheduler to benefit from predecessors cached-memory.

6.2.1 Motivations on the Dependency Graph Discovery

Fig. 6.7 presents our task-based version of LULESH performances using LLVM 16 and GCC
12.2.0 filling 78% of the DRAM (-s 384 -i 16), and with default throttling parameters. Each
run is performed on a single process of 24 threads bound 1:1 onto Intel(R) Xeon(R) Platinum
8168 CPU @2.70GHz cores sharing a NUMA domain. The parallel for version takes about 86s
to execute with 98% work time reported by Caliper [162]. From left to right on the task-based
version, the number of tasks increases, and grains are refined. Figures report the time (in seconds)
for the task dependency graph execution (blue filled curve) and its discovery (green dotted
curve). The discovery is the time from the first to the last task creation, occurring on a single
producer thread concurrently with its execution by any threads (including the producer). The
execution corresponds to wall-clock time from the first task schedule to the completion of the
last task. It only depends on the scheduler and the architecture: the performance increases while
refining tasks, thanks to better data reuse enabled by the depth-first scheduler, until the task
discovery becomes too slow and bounds the total execution time. Regardless of the number of
tasks generated per loop, the performance is at most 12.8% better than the OpenMP parallel
for version using LLVM (86s vs 75s) which is not enough relative to the effort of porting the
application to the OpenMP dependent task model. GCC does not report any improvements using
dependent tasks because throttling cannot be adjusted and does not allow depth-first scheduling,
as too few tasks can co-exist.

6.2.2 Profiling LULESH with MPC

In order to provide finer analysis on the performances, we reproduced the previous experiment
using the MPC-OMP runtime and our profiler to compute the time breakdown and collect
hardware counters. Results are shown on Fig. 6.8

6.2.2.1 Overview of the results

On each graph of Fig. 6.8, the x-axis represents the number of Tasks per Loop (TPL), fixing
tel = tnl = TPL. Fig. 6.8 (a) represents the overall number of tasks and edges discovered and
Fig. 6.8 (b) depicts the average overheads and average work time per task (overhead and work
time divided by the number of tasks). As shown on Fig. 6.8 (a,b), the right-most point reaches a
total number of 7,5M OpenMP tasks with an average grain of 250µs. Fig. 6.8 (c) depicts the time
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Figure 6.7: LULESH performances on 24 Intel(R) Xeon(R) Platinum 8168 CPU @2.70GHz.
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from distinct iterations.



6.2. INVESTIGATING THE TDG DISCOVERY IMPACTS ON PERFORMANCES 88

breakdown averaged on threads. The bottom blue stack is the work time, the middle red stack is
the idle time, and the top yellow stack is the overhead. The green dotted line represents the TDG
discovery time on the single producer thread. Fig. 6.8 (d) shows the work time inflation of each
TPL instance using the TPL instance with the shortest work time as a reference. Fig. 6.8 (e,f)
respectively depicts the number of misses and stalled cycles per cache level occurring when cores
execute task work.

6.2.2.2 Interpretation of the results

Coarse grain We observe that the left-most point is the less inflated. Our interpretation
comes from LULESH being memory-bound by the DRAM bandwidth: having only 48 tasks per
loop reduces the amount of parallelism, which increases idleness on cores, as it can be seen on
the time breakdown Fig. 6.8 (c). It can also be seen on the gantt chart Fig. 6.9, which shows
iterations 2 and 3 of the left-most point (for TPL=48). In average, cores spends more time idling
reducing the contention on the DRAM as less cores are likely to access the DRAM in parallel,
which ends up accelerating accesses of the few actual cores working.

Middle grain From 192 to 1,872 TPL, on Fig. 6.8 (d), the work time deflates significantly
from 40% inflation to 10%. Fig. 6.8 (e,f) provide an explanation: on this TPL range, we observe
a reduction of L3 cache misses (L3CM) and stalled cycles due to cache-miss. Whenever a data
access causes an L1DCM or an L2DCM, the memory controller will more likely find the data
in the L3 memory without having to retrieve it from the DRAM. It accelerates memory access
with fewer process stalls, hence the observed work time deflation. This better use of the memory
hierarchy is the result of two tasking mechanisms: (1) task refinement reduces average data
size accessed per task, and (2) the depth-first scheduling heuristic favors the execution of tasks’
successors, improving cached-data reusability.

Fine grain After 1,872 TPL, the application execution time is bound by the TDG discovery
time. Many edges are pruned because tasks are getting consummed as soon as they are produced
and no longer exists on their successors’ discovery, as it can be seen on Fig. 6.8 (a) This is also
reflected by an increase in the idle time on Fig. 6.8 (c) where threads ends up idling waiting for
tasks to spawn. Being discovery-bound limits the vision of the TDG to the OpenMP scheduler:
the depth-first scheduling heuristic cannot be effective because successors are not known by the
scheduler on predecessors completion. Threads end up scheduling whatever is ready (in a breadth
first manner) resulting in poor cache re-usability.

Instance Idle (s.) Work (s.) L2DCM L3CM
1,872 TPL (concurrent) 3.5 1,477 98B 73B
4,608 TPL (concurrent) 766.6 1,589 98B 91B
4,608 TPL (non-concurrent) 1.2 1,077 84B 53B

Table 6.3: Impact of the task graph discovery on the work time

6.2.2.3 Impact of the task dependency graph discovery on the work time

Overlapping TDG discovery with its execution has an impact on the task scheduler that promotes
data reuse: if the TDG discovery is too slow, the data-producing task will never activate its
successor as it has not been discovered yet. To measure the impact of the TDG discovery on
its execution time, we run a complementary experiment blocking execution by threads until the
TDG has been fully discovered so that the MPC-OMP scheduler has access to the description of
all the dependencies before making decisions.
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Table 6.3 shows the cumulated work and idle time on threads, the number of L2 data cache
misses, and L3 cache misses on different configurations. Instances with tag concurrent correspond
to execution with TDG concurrent execution and discovery of the TDG. The Instance with tag
non-concurrent means the graph is first fully discovered before starting its parallel execution.
The two first rows present results from the best (1,872 TPL) and finest (4,608 TPL) grain
execution shown on Fig. 6.8, under the concurrent configuration. The third row presents results
with 4,608 TPL with the non-concurrent configuration. Comparing the two configurations with
4,608 TPL, in-depth knowledge of the TDG leads to significantly reducing the cache misses in
L2 (−15%) and L3 (−42%) for a 32% work time reduction. We also observe almost no idleness,
as threads do not have to wait for tasks to spawn. Work time and idleness gain lead to a 40%
parallel execution time reduction. Though, the total execution time is still much slower in the
non-overlapped configuration because the entire graph must be unrolled sequentially first: 357s
with the non-overlapped experiment and 112s for the normal execution.

6.2.2.4 Summary

In this section, we presented an analysis of the gains from a task-based LULESH against the
parallel for version. The task-based version executes in 69s with MPC-OMP against 86s
for the parallel for version on LLVM 16. We measure a minimal time and work time at
TPL=1,872, showing the importance of refining tasks until the TDG discovery speed becomes
too limiting. Moreover, we also report that accelerating the TDG discovery on the task-based
version would:

• allows reaching finer task grain so accessed data fits into the L2 cache level, which could
reduce work time by 37% with effective depth-first scheduling.

• slightly reduces idleness as more parallelism is discovered.

Therefore, in the following section, we propose various techniques and evaluations for accelerating
the TDG discovery.

6.2.3 Accelerating the Dependency Graph Discovery

As the TDG discovery speed is a limiting factor to reach high performances, we explored way to
accelerating it. In this section, we present OpenMP TDG discovery optimizations on OpenMP
on runtime and user codes. Some of them are standard, but we also propose an extension caching
internal tasks data structure (or task persistence) with very lite intrusive cost in terms of user
code modification. Altogether, optimizations accelerate the TDG discovery, and we report their
individual impact on performances in the evaluation Table 6.4.

6.2.3.1 Reducing the number of edges

In the TDG, an edge corresponds to a precedence constraint between two tasks. Because of the
sequential task submission and the very local view (per-procedure) of tasks, some unnecessary
edges may appear between tasks which the correct order of execution is already guaranteed
from other edges. Removing these edges can accelerate the TDG discovery: we present three
optimizations in this direction.

The optimization (a) is depicted in Fig. 6.10a. It consists in minimizing the number of
dependencies expressed from the user code, preserving both the parallelism and the correct order
of execution. In this example, task line 1 writes (x, y), which is only read by task line 8. This
provides two data addresses to be processed by the runtime while only one is really needed. Such
dependency pattern appeared in our original porting of LULESH in [22].
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1 # pragma omp task depend(out: x, y)
2 {
3     x += dx * dt;
4     y += dy * dt; 
5 }
6  
7 # pragma omp task depend(in:  x, y)
8     printf("%f %f\n", x, y);

(a) Multiple edges (user code)

 1 void link(task_t * pred, task_t * succ)
 2 {
+3     if (pred->successors->head == succ)
+4         return ;
 5     insert_head(pred->successors, succ); 
 6 }

inoutset(x, y)inoutset(x) inoutset(y)

in(x, y)in(x) in(y)

T

(b) Multiple edges (runtime)

Figure 6.10: Optimizations (a) and (b)

Fig. 6.10b presents the optimization (b). It consists in suppressing multiple dependency edges
between the two same tasks automatically by the runtime. The function link corresponds to the
runtime procedure whenever an edge is created from the task pred to succ, by inserting succ to
pred successors’ list. Because of the sequential task flow semantic of OpenMP, multiple edges
can be detected with a simple O(1) comparison, as if multiple edges are being generated, then
succ is necessarily the last task inserted in pred successors’ list. The highlighted code was added
to the runtime, and perform such checking before inserting it. Note that optimization (a) differs
from (b) in the sense that it not only merges multiple edges but also the cost of processing and
detecting them in (b). This optimization is implemented into GCC 12.2.0 but not into LLVM 16:
we implemented it in MPC-OMP.

m.n edges

...

Y1 Y2 Yn...

X1 X2 Xm

m+n edges

...X1 XmX2

R

Y1 YnY2 ...

1 for (int i = 1 ; i <= m ; ++i)
2 {
3     # pragma omp task depend(inoutset: x)
4         x[i] = i;
5 }
6
7 for (int j = 1 ; j <= n ; ++j)
8 {
9     # pragma omp task depend(in: x)
10         work(x, y[j]);
11 }

Yj}

Xi}

Figure 6.11: Optimization (c) - inoutset edges reduction

The optimization (c) is related to the inoutset dependency type. Tasks ti having a depend
clause of type inoutset on the same data can run concurrently, but successor tasks with any
other dependency type on the same data will depend on every ti task. This dependency type
is also known as concurrent write in Athapascan [61], Kaapi [60] or OmpSs [86], and expresses
that multiple tasks can write concurrently in a memory block. This knowledge can be used by
the runtime for optimizations on the TDG edges. Fig. 6.11 depicts a minimal example of an
inoutset dependency scheme where m tasks (Xi)i∈[1,m] concurrently write onto the vector x
which is read by the n tasks (Yj)j∈[1,n]. The optimization (c) consists in inserting an extra empty
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control-flow node R by the producer thread on the first inoutset for a given data, reducing
the number of edges from m.n to m+ n. This optimization had been implemented in LLVM 4

but not into GCC: we implemented it in MPC-OMP.

1 # pragma omp persistent
2 for (int iter = 0 ; iter < iter_max ; ++iter)
3 {
4 # pragma omp taskloop firstprivate(iter) num_tasks(t)
5 depend(in: dt) depend(out: mesh.nodes[i])
6 for (int i = 0 ; i < mesh.nodes.size() ; ++i)
7 work_on_nodes(mesh.nodes[i], dt);
8
9 # pragma omp taskloop firstprivate(iter) num_tasks(tel)

10 depend(in: dt, mesh.nodes[...]) depend(out: mesh.elements[i])
11 for (int i = 0 ; i < mesh.elements.size() ; ++i)
12 work_on_elements(mesh.elements[i], dt);
13 }

Listing 6.10: Persistent Task Graph - API

1 mpc_omp_persistent_region_begin();
2 for (int iter = 0 ; iter < iter_max ; ++iter)
3 {
4 mpc_omp_persistent_region_iterate();
5 # pragma omp taskloop firstprivate(iter) num_tasks(t)
6 depend(in: dt) depend(out: mesh.nodes[i])
7 for (int i = 0 ; i < mesh.nodes.size() ; ++i)
8 work_on_nodes(mesh.nodes[i], dt);
9

10 # pragma omp taskloop firstprivate(iter) num_tasks(tel)
11 depend(in: dt, mesh.nodes[...]) depend(out: mesh.elements[i])
12 for (int i = 0 ; i < mesh.elements.size() ; ++i)
13 work_on_elements(mesh.elements[i], dt);
14 }
15 mpc_omp_persistent_region_end();

Listing 6.11: Persistent Task Graph - Runtime calls

6.2.3.2 Persistent Task Dependency Graph

Scientific simulations often are iterative applications with similar existing parallelism over
iterations. For instance, LULESH is a simulation on an unstructured mesh, and the task
dependencies are built upon the mesh nodes and elements that do not change over iterations.
To accelerate the TDG discovery furthermore, we propose an original interface and runtime
implementation that adds persistence to tasks and edges. Looking back at OpenMP tasks
transition system (see Fig. 3.2), persistence means adding a transition 8 → 1 .

Implementation The optimization (p) is illustrated on Listing 6.10, and from a programmer’s
point of view, it only consists in annotating a loop generating dependent tasks in the same
order and with the same dependency scheme on each iteration (line 1). Listing 6.11 shows the
code generated by the pragma. Line 1, the mpc_omp_persistent_region_begin initializes a
persistent region. Then on the first loop iteration, the application TDG is discovered just as
before, but:

• Marking tasks as persistent, so they are not destroyed on completion,
4https://reviews.llvm.org/D97085

https://reviews.llvm.org/D97085
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• Putting tasks in a list L sorted by their discovery order.

• Creating every edge, as opposed to the non-persistent mode, which would prune edges
from tasks already consumed: since no edges are created on the next iterations, generating
every edge ensures the correct order of execution with no race conditions on the discovery.
It also makes the first iteration of persistent TDG discovery slightly more costly than its
non-persistent version.

In every iteration, the mpc_omp_persistent_region_iterate waits for the completion of every
persistent task previously instantiated, and moves a pointer p to the beginning of L. On the next
iterations, the producer thread executes the same execution flow, but on a task construct, it only:

• Retrieves the persistent task t pointed by p and increment p,

• Copies t firstprivate data (such as the loop iter variable),

• Transition t to a queuable state,

Persistence relieves the runtime from other tasking overhead sources such as the internal task
descriptor allocation, dependencies processing (depend clause), or Internal Control Variable (ICV)
management. Therefore, a task initialization cost is reduced to a single memcpy on firstprivate
data, representing 8 to 100 bytes in LULESH tasks. An implicit barrier at the beginning of each
iteration ensures that every task is completed before re-instancing them.

Remark Coupling optimization (c) with (p) required a specific treatment by the runtime, as
the control-flow tasks inserted by (c) are not only discovered by the producer thread once when
processing dependencies on the first iteration. Instead, control-flow tasks are re-instantiated by
the first consumer thread that executes one of its inoutset predecessors of the current iteration.

Applicability A persistent task graph assumes that dependencies between tasks remain
constant over iterations. However, on simulation over unstructured meshes like LULESH,
Adaptive Mesh Refinement (AMR) may occur at some point, slightly changing the mesh.
Nevertheless, because of the inherent costs of mesh adaptation, simulations try to amortize it
over a few iterations. The persistent task graph could be invalidated when AMR occurs so that
the producer thread re-construct is entirely on the next iteration. Such an approach would allow
fast integration of persistent task graphs into existing applications with this already existing
strategy every few iterations.

On the other hand, AMR only slightly changes the mesh, and it may be unnecessary to re-
build the entire graph, as only a small portion of the nodes and edges may have changed.
Removing a persistent task from the TDG is rather straightforward: We even added an
mpc_omp_persistent_region_pop_task API that deletes the task currently pointed by the
producer thread and increments the pointer to the next task. However, inserting a new task is
more complex and was not studied furthermore as part of this thesis.

Impact on user codes and runtimes The impact of persistent TDG on user code is lite:
from given task-based applications, a single line of code (LoC) annotation on a loop enabled
persistence. Our implementation moderately impacted MPC-OMP runtime, adding only 175
LoC but changing critical and highly concurrent runtime code related to tasks’ life-cycle.

6.2.3.3 Evaluation

Table 6.4 depicts the number of edges, the TDG discovery, the total execution time, and the
work/idle/overhead time breakdown, crossing each optimization on the same problem as of
Fig. 6.8 with TPL = 1, 872; for about 2.9 M. tasks of 365µs grain in average. We make the
follow interpretations comparing pairs of lines:
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optimizations n° of tasks n° of edges discovery execution work idle overhead
none 2,802,400 56,320,296 76.67 77.48 1,612 3.49 229.50
(a) 2,802,400 58,168,382 71.79 73.40 1,533 3.00 211.40
(b) 2,802,400 21,926,084 67.53 71.83 1,546 2.85 131.70
(c) 4,853,811 30,246,767 71.91 73.19 1,568 3.07 167.44
(a)+(b) 2,802,400 31,144,779 66.60 69.39 1,503 3.23 144.26
(a)+(c) 3,614,124 36,239,253 56.38 69.43 1,512 3.31 128.51
(b)+(c) 4,858,307 24,837,165 71.73 72.95 1,568 2.85 163.29
(a)+(b)+(c) 3,613,737 27,633,254 55.56 69.17 1,517 2.64 116.77
(a)+(b)+(c)+(p) 3,557,840 19,177,294 5.97 70.80 1,655 12.22 27.30

Table 6.4: Optimizations crossing on Intel Skylake nodes LULESH -s 384 -s 16 -TPL 1872. Times
are given in seconds

• (b) against (a)+(b) - more edges are generated in the second case even though TDGs
discovery are about the same. This rebound-effect phenomenon occurs because the TDG
discovery is faster with optimization enabled, leading to more predecessors existing on
successors’ creation; therefore, less automatic pruning occurs. The same phenomenon
occurs comparing none against (a).

• (a) against (a)+(c) - about 800, 000 more tasks are generated, corresponding to the empty
tasks of the optimization (c). However, they dampen the number of edges (n.m against
n + m as shown on Fig. 6.11) for about 22, 000, 000 fewer edges. In this configuration,
the execution is no longer discovery-bound, meaning that the scheduler likely manages to
perform effective depth-first scheduling.

• none against (a)+(b)+(c) - enabling all optimization but (p) led to 2.04 fewer edges and
1.38 speedup on the discovery over the non-optimized version.

• (a)+(b)+(c) and (a)+(b)+(c)+(p) - enabling tasks’ persistence optimization (p) drastically
reduces the discovery time by an order of magnitude. Among the 5.97s of discovery, 4.11s
corresponds to the first iteration discovery, and the remaining corresponds to the 15 other
iterations taking 0.12s on average: the first iteration is about 34 times slower than the
others, as it is the one responsible for building the dependency graph while the others
simply update tasks private data. The first persistent iteration (4.11s) is more costly than
non-persistent iterations (3.47s on average), and even though every edge is created (the
runtime does not prune edges to tasks already consumed with persistent tasking enabled),
we observe fewer edges enabling (p). This is a side effect of our runtime persistence
implementation, which has an implicit barrier on each iteration, removing inter-iteration
edges. Moreover, this barrier leads optimization (p) to increase the total execution time
(69.17s to 70.80s): the work and idle times increase because the barrier prohibits successor
tasks of iterations n+ 1 from starting until every task of iteration n is completed. This is
shown on the Gantt chart Fig. 6.14 where one color represents one iteration. Threads spend
more time idling in this synchronization barrier, and the work time inflates as depth-first
scheduling is constrained per iteration. However, as (p) accelerates the graph discovery,
overheads are reduced, enabling effective depth-first scheduling at a much finer grain.

Fig. 6.12 shows the same metrics as in Fig. 6.8 but enabling every optimization. The TDG
execution is no longer bound by its discovery and enables effective depth-first scheduling. It
leads to 1.56x speedup over the parallel for version and 1.27x speedup over the non-optimized
task-based version. The 4,608 TPL configuration reaches a 1, 230s work time for 82B L2DCM
and 54B L3CM.

METG report The Minimum Effective Task Granularity metric was proposed [163] as a
way to assess the overheads of tasking runtimes. For a given application and runtime system,
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Figure 6.12: LULESH on Intel Skylake node with optimizations

METG(X%) gives the minimum task grains for which an instance of execution reaches X% of
the best performances measured on any runtime system. Their results on GCC/LLVM show
a METG(95%) = 1ms for several applications. Running LULESH with GCC, LLVM, and
MPC-OMP tasking runtime, we measured an METG(95%) of 65µs with 9,216 TPL using
MPC-OMP, which is 1.5 order of magnitude less than the best OpenMP METG reported in [163]
for such efficiency.
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Figure 6.13: LULESH -s 256 -i 64 on 125 MPI processes, 54 AMD EPYC 7763. Time breakdown
(top) and communication performances (bottom) on a profiled MPI process (rank 82)

6.2.4 Impacts on Distributed Execution

The TDG discovery speed also impacts distributed applications of applications using MPI. We
evaluate three applications (LULESH, HPCG, Cholesky) with different parallel characteristics
(computation, communication) that will lead to three conclusions. We performed evaluations
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Figure 6.14: Gantt chart of task-based execution for TPL=1,152

on AMD EPYC 7763 64-core CPU, interconnected with Atos BXI V2 running Open MPI
4.1.4. In our experiment, we place MPI processes per NUMA domain with 16 OpenMP threads
compactly bound 1:1 to cores. LULESH was scaled to fill 72% of each NUMA domain on this
new architecture (-s 256), running on 16 nodes with 125 MPI processes.

6.2.4.1 Distributed Execution Performances

LULESH comes with 3 types of point-to-point (P2P) requests communicating mesh partite
frontiers with neighbors: a single node, an edge, or a face, respectively, with O(1), O(s) and O(s2)
bytes transfers. For our given problem size and our Open MPI configuration, O(1) and O(s)
bytes MPI requests are performed with an eager protocol, but O(s2) requests are performed using
rendezvous. As opposed to the parallel for version, which implies the entire mesh-wide O(n3)
computation to complete before starting communications, the task-based version allows posting
of MPI requests as soon as predecessor tasks working on frontier nodes have been completed.
Hence, a depth-first scheduling strategy can lead to earlier communication posting and preserve
independent work for overlapping communication, which is the subject of this study. Fig. 6.13
presents performances on an MPI process connected whose mesh partite is connected to 26 other
MPI processes. It shows the time breakdown and the communication time for the parallel
for version (LLVM 16), the non-optimized task-based version (MPC-OMP), and the optimized
task-based version (MPC-OMP).

Computational Performances Times were retrieved using our profiler for MPC-OMP and
Caliper for LLVM (which only provides work/non-work times). We observe the same performance
gain as on the previous architecture. The optimized task-based is 2.0x and 1.2x more performant
than the parallel for and the non-optimized task-based version, for the exact same reason of
hierarchical memory accesses. Note that we observe work time deflation on the non-optimized
task-based version after 2,176 TPL. Above this threshold, the TDG discovery becomes too slow
to feed every core (as shown by the important idleness), reducing the DRAM contention, which
in turn, accelerates memory accesses of the few threads working in parallel.

Communication Overlap with Computation The parallel for version exhibits no overlap
potential on P2P send communications. All the requests are posted in non-blocking mode, and
the execution flow waits for every completion before pursuing any computation. The collective is
in blocking mode, posted at the beginning of a new iteration. The collective of iteration n+ 1
depends on every task of iteration n. However, the Gantt chart of the task-based version on
Fig. 6.14 shows that there are some independent computational tasks of iteration n+ 1 such as
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CalcFBHourglassForceForElems ready for overlap. On the parallel for version, all this work
would have been processed synchronously after the collective operation completion following
the sequential instruction flow. On the task-based versions, the overlap ratio is improved when
enabling optimizations and remains above 80% on any TPL against 50% on average without
optimizations as shown Fig. 6.13: the application parallelism is discovered faster and more work
is ready for overlap masking communication costs.

To estimate the gain from integrating MPI communications into OpenMP TDG following
the data flow, we added explicit # pragma omp taskwait before and after communication se-
quences. This way, we reproduce the original application BSP communication pattern: every
communications are posted once the entire domain is computing, meaning there is no computa-
tion/communication overlap nor early-bird posting. With the tracing disabled and on the most
performant configuration (TPL=4,608), we measured 131.0s with taskwait against 121.9s with
no taskwait, meaning that fine integration of MPI communications into OpenMP TDG reduced
by 7% the total execution time.

On every iteration, with or without optimizations, we observe an idleness period on every
thread on the Gantt chart Fig. 6.14. During this idle period, a single MPI_Irecv is blocking,
and no more work is ready until its data are received. This behavior is similar to what we
observed on the Cholesky factorization in Section 5.2. Therefore, we enabled our heuristic
favoring send operations and evaluated for TPL = 1, 152, hoping that the MPI_Recv idleness
observed on the Gantt chart may be removed due to earlier data posting remotely. Nevertheless,
preliminary results have shown no improvement nor degradation on any of the work/idle/overhead
metrics, likely because the default depth-first scheduling heuristic already lead to early-bird
communication anyway.

Communication Time We made a breakdown of the communication time of each TPL, and
on average, 94% of the communication time corresponds to the MPI_Iallreduce collective, and
the remaining 6% are the 26 P2P send operations. The variation observed in the communication
is, therefore, mostly related to this single collective.

Gantt charts Fig. 6.14 shows the execution of tasks from iterations 11 to 15 on the two
task-based versions of TPL = 1, 152 of Fig. 6.13. Boxes represent task schedules, and each color
identifies a different iteration. Time origins had been offset on each chart along the x-axis to align
with the first task of iteration 12 (green). Because of the implicit task barrier on each iteration
induced by our persistent TDG implementation, no tasks from iteration n+ 1 can start until
every task from iteration n is completed (bottom chart). Looking at the two charts, this behavior
seems to inflate collective synchronization time globally. This phenomenon may explain why the
(collective) communication time is faster on the non-optimized version on 128 < TPL < 1, 280.
Though, it has really little impact on performances as it is getting overlapped with work anyway.

Refining from 128 to 1, 280, we also observe a reduction in communication time. We believe
it comes from faster local execution (as shown on the time breakdown), allowing, on average
earlier collective communication matching on every MPI process.

However, refining furthermore on the non-optimized version leads to important idleness, as
the TDG discovery becomes too slow to feed every core with work. A possible explanation is
that every MPI process must wait for the slowest local OpenMP TDG discovery, as results show
that accelerating discovery lead to lower communication time at a fine grain.

6.2.4.2 Scaling to 65k cores

We performed a strong and weak scaling on LULESH for both the parallel for (GCC 11.2.0)
and our optimized task-based version (MPC-OMP). We increased the number of simulation
iterations from 64 to 1,024. Table 6.5 presents wall clock time results scaling from 8 MPI
processes (= 1 node) to 4,096 processes on a single run. No performances could be recorded on
the weak-scaling above 1,331 processes because all versions abort on a numerical error.
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MPI processes 8 27 64 128 216 343 512 729 1,000
weak - for (s.) 3,926 3,935 3,953 3,954 3,979 4,006 4,012 4,141 4,181
weak - task (s.) 2,065 2,136 2,074 2,088 2,153 2,077 2,093 2,185 2,089
strong - for (s.) 3,926 895 305 150 85 61 44 30 19
strong - task (s.) 2,065 627 267 148 88 69 49 43 29
strong - TPL 2,048 599 256 129 74 47 32 21 16
strong - nodes per tasks 8,192 8,202 8,192 8,226 8,298 8,276 8,192 8,362 8,290
strong - memory used 72% 21% 9% 4.6% 2.6% 1.7% 1.1% 0.8% 0.6%

MPI processes 1,331 1,728 2,197 2,744 3,375 4,096
weak - for (s.) N/A N/A N/A N/A N/A N/A
weak - task (s.) N/A N/A N/A N/A N/A N/A
strong - for (s.) 15 11 10 8 10 11
strong - task (s.) 23 16 16 11 13 9
strong - TPL 16 16 16 16 16 16
strong - nodes per tasks 6,083 4,630 3,707 2,916 2,456 2,048
strong - memory used 0.4% 0.3% 0.3% 0.2% 0.2% 0.1%

Table 6.5: LULESH -s 256 -i 1024 - Weak and Strong scaling from 8 to 1,000 MPI processes

From 8 to 1,000 MPI processes with 2,048 TPL, task-based executions lasted about 2,000 s.
with more than 95% weak-scaling efficiency and a 2.0x speedup compared to the parallel for
version. The strong scaling from 8 to 4,096 MPI processes uses a dynamic TPL to balance
parallelism and workload per task, ensuring at least 16 tasks per loop and, at most 8,192 mesh
nodes per task, as shown in the last row. The task-based version improves performances over the
parallel for version until 128 MPI processes for about 5% DRAM use.

6.2.4.3 HPCCG
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Figure 6.15: HPCCG performances on 32 MPI processes on Intel processors for a matrix with
n=41,943,040 on i=128 iterations

The High-Performance Conjugate Gradient (HPCCG) is a benchmark used to rank supercom-
puters as a complement to the LINPACK (HPL) benchmarks [148]. The baseline implementation
is parallelized using parallel for construct and barriers before communicating with MPI.
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Section 6.1.1 presented the porting of HPCG to OpenMP dependent task model with two grains
parameters defining the number of block for vector-wise operations (TPL) and the number of
sub-blocks for SpMV operations, that we fix to 32 in future experiments. Fig. 6.15 present
our results on 32 MPI processes of 24 threads varying the TPL parameters on Intel Skylake
processors.

On Communications Depending on the TPL, the communication time varies from 5 to 37
s. for an accumulated work time of around 700s. It means with perfect overlap, at most 5% of
the work time would be overlapping communication. Moreover, even though TDG discovery is
fast-enough, the overlap ratio remains low (≤ 23%), meaning little work is available in parallel of
communications. Therefore, there is little no to gain to expect from overlapping communication
with computational tasks on HPCG.

Time Breakdown Regarding work time, the best performances are reached for an average
tasks grain of 80µs using the right-most 1,536 TPL. It allows 20% work time reduction compared
to the baseline parallel for version. The reasons are the same as LULESH: memory accesses
are faster due to better cache reuse. Even though TDG discovery optimizations were enabled,
fine-grain tasks management overheads deteriorated total execution time more than the work
time gain. Though, the minimal total time (30.6s) is obtained with TPL=144 (1ms/tasks) for
10% performances gain over the parallel for version with LLVM 16 (34.1s. with 95% work
time). Above this grain, overheads, and idleness deteriorates more performances than the work
time improvement. We explain this by the tasking runtime contention: as shown in Fig. 6.15,
the number of edges per task grows linearly from 24 to 1,536 TPL while the workload per task
decreases. Runtime-side, this is reflected by more threads accessing more often shared data
structures, such as the task dependency graph.

6.2.4.4 Tile-based Cholesky Factorization

Tile-based Cholesky dense matrix factorization is a widely studied application of dependent
task-based programming. We retrieved the version of [99] with dependent task and MPI commu-
nications performed by tasks. Optimizations (a), (b), and (c) does not provide any performance
improvement/degradation as they are not reflected in the application: its dense dependency
scheme is simpler than sparse and indirection-based data structures found in HPCG and LULESH.
The optimization (p) provides performance gain on TDG when iteratively decomposing matrices
of the same dimensions and tile size. We evaluated the TDG discovery speed gain for a matrix of
size n = 65, 536 with block sizes b = 512, distributed on 32 MPI processes of 24 cores over 16 Intel
nodes. Our results showed 5x asymptotic5 speedup on the discovery when increasing the number
of iterations. It showed no significant impact on performances as the TDG discovery is already
fast due to coarse tasks and regular dependencies (<2% of total time). On 16 Skylake nodes
(768 cores), we measured 269s (with) and 274s (without) optimizations for matrix n=65,536 with
block-size m=512.

6.2.4.5 Summary

In this section, we combined optimizations to hasten the TDG discovery. Optimization (a) is
well-known, (b) is implemented in GCC, (c) is implemented concurrently to us in LLVM, and (p)
is original. One contribution lies in combining them and evaluating their gain.

Then, through the LULESH case study, we analyzed the impact of the TDG discovery on
performances. Our best result shows a 2.0x speedup on LULESH using OpenMP tasking over

5the asymptotic speedup corresponds to tp
tnp

with tp and tnp respectively the discovery time of a persistent
iteration, and a non-persistent iteration
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parallel for weak-scaled to 16,000 cores, thanks to task grain refinement and effective depth-
first scheduling, that were only possible by setting up a suitable task throttling and hastening
the TDG discovery. Finely composing MPI and OpenMP by integrating communications into
dependent tasks led to 7% execution time reduction. HPCG evaluations report moderate
performances with a 1.1x speedup due to difficulties in balancing work time gains with runtime
contention. Cholesky results do not provide either performance improvements or degradation.

6.3 Related Works

Persistent Task Graph In 2021, C. Yu et al. [164] proposed an extension to the OpenMP
specifications for taskgraph to capture the graph unrolled by a code section in order to re-execute
it. Their proposal slightly differs from ours, as all the closures are only captured in the first
iteration with their taskgraph: the producer thread execution flow is not re-executed on next
iterations, so the firstprivate data may not be updated. Moreover, they only report provides
a standard interface simulated results, while we also provide a runtime implementation and
experimental results. In late 2022, the same authors uploaded complementary work on arVix [165]
with a runtime implementation and speedup evaluations on shared-memory microbenchmarks.
As opposed to their approach, our producer thread re-executes the instruction flow on every
iteration. It can update task parameters (firstprivate data, if clause, ...) which preserves partially
taskified programs conformity; authors conclude that it is a limit of their approach. Additionally,
we evaluated an irregularly distributed proxy application (LULESH) reporting metrics; and
showing impacts of/on the TDG discovery that are ignored on the arVix paper (cache re-use,
communication overlap, throttling): they only report speedups on single-node Cholesky/Heat/Mi-
crobenchmark that may be inflated due to arbitrary fine-grained tasks. Nevertheless, their
compile-time proposal nicely complements our runtime implementation.

In 2023, D. Alvarez et al. [166] proposed a cyclic data-flow task graph interface and implemen-
tation for iterative applications. Their approach is semantically identical to our persistent task
graph: marking a loop generating the same TDG on every iteration, with the possibility to replay
the producer task execution flow to update firstprivate data. However, as opposed to our
runtime implementation, theirs does not have an implicit barrier on every iteration. Instead, the
correct order of execution is guaranteed through a cyclic graph. To do so, their runtime stores
multiple versions for each task and keep track of the TDG roots and leaves to insert cyclic edges.
The detailed analysis and results we presented in this thesis on LULESH motivate the removal of
our persistent task graph barrier on every iteration, as it limits scheduling possibilities and leads
to work time inflation. Yet, remains to be evaluated if cyclic graph additional costs (multiple
instances on-fly for the same task and leaves/roots tracking) will not deteriorate performances
more than the gain obtained from the barrier removal. Likely, there is no fix answer on this, and
an interface flexible-enough to have control on the iteration barrier could make sense.

Optimizations in Tasking Runtimes The OpenMP dependent task model was adopted
since the specifications 4.0 [90] but implementations induces important overhead [7]. The history
of optimization in task graph runtime starts at least twenty years before OpenMP 4.0. Cilk [87]
was the precursor by considering end-to-end optimizations from the compilation a fast and slow
versions of each task to the implementation of the stealing protocol without costly lock operation
on the general case execution path. This was the starting point to several paper related to work
stealing scheduler optimization which is outside the scope of our TDG optimization. Parsec [167]
based their graph model on the parametrized graph model [168] to implicitly represent tasks and
their dependencies. It was a huge step in optimizing the memory space related to a task graph.
Nevertheless, because this model does not fit well with irregular applications, the authors have
also added a the classical task graph model proposed since the mid-90s [54,60,61,86] built at
run-time from description of tasks and their accesses (read,write) to the memory. Task graph
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optimizations presented in this chapter are almost present in all these runtime, but our runtime
is the first OpenMP runtime that systematically integrates them.

6.4 Conclusion

The lack of applications using the task-based composition of MPI and OpenMP lead us to port a
benchmark (HPCCG) and a proxy-application (LULESH) ourselves. During our porting journey,
we faced the three programming/performances/profiling difficulties that motivated this thesis,
and proposed solutions.

On programming aspects, both HPCCG and LULESH present irregular accesses which
are hard to express under the current OpenMP specifications 5.2. Removing a few standard
restrictions could ease future porting of applications. On profiling and performances aspects, our
results on LULESH suggests that OpenMP TDGs discovery, which rely on a read-after-write
(RaW) model, implies important runtime overheads with about 37% of the total discovery time
on the LULESH producer thread. It makes it a critical component of task-based applications
and runtimes to be profiled for assessing on performances; and optimized whenever bounding the
execution time.

In our evaluation cases saturating the DRAM capacity, the TDGs discovery speed was an
issue on both Intel Skylake and AMD EPYC nodes. It lead us to propose several performances
optimizations: in applications code (reducing the number of dependencies expressed, and using
the inoutset type); in the MPC-OMP runtime (redundancies filtering, inoutset efficient imple-
mentation, and task persistence); and in the OpenMP programming standard (task persistence).
We evaluated the impact of each optimization on performances which lead us to the following
conclusions:

• Fine-grain dependent tasking can improve performances of memory-bound applications
whenever the domain computed does not fit into caches. Using a depth-first scheduling
strategy, we showed 2x work time deflation thanks to temporal locality into caches.

• If an execution is discovery-bound, tasks may be consumed before an independent communi-
cation is discovered (and therefore, consumed), reducing the available work for overlapping.

• Whenever using task persistency (or cyclic graphs), a barrier at the end of each graph
iteration may improve (by reducing overheads) or deteriorate performances (by inflating
work time). If such persistence interface were to be standardized in OpenMP, programmers
should probably be given a way to enable/disable this implicit barriers to match their use-
cases. Further evaluations should be conducted to assess more precisely on benefits/losses
of such a barrier, for instance by comparing our approach (with a barrier) to D. Alvarez et
al. [166] (with no barriers).
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Chapter 7

Conclusion and Perspectives

7.1 Conclusion

Executing numerical simulations on supercomputers is a powerful tool for scientific research.
To assist scientific simulation programmers, the HPC community has been developing several
programming models bridging codes with the ever-complexifying hardware. In particular, the
Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) are two standard
programming models developed by large and diverse communities. They respectively target
inter-node and intra-node parallelism, so their mixed-use appears as a well-suited solution to
ensure both source code and performance portability across supercomputer architectures.

OpenMP dependent task-based programming model opens the door to new ways and ben-
efits of mixed-use, such as the implicit overlap of MPI communications with OpenMP tasks
or the early-bird posting of MPI communications through the OpenMP task scheduler. How-
ever, porting existing scientific simulation codes to this new hybrid model raises the three
Profiling/Programming/Performance difficulties we introduced in Chapter 1.

In this thesis, our contributions consisted of the investigation and solution proposals on these
three difficulties:

• On profiling, we proposed a unified task-based performance modeling of MPI+OpenMP
applications. We defined performance metrics and developed a run-time profiler and
post-mortem analysis. For such mixed-use, the work/idle/overhead time breakdown and
overlap metrics we profile are original, and their use throughout this thesis shows how
necessary they are to assess performances. Additionally, task-based metrics (number of
tasks, edges, granularity, per-task hardware counters) and visualizations (Gantt charts,
dependency graphs) for such mixed-use were significantly helpful for interpreting presented
results. Finally, our work on the task dependency graph showed the interleaving between
its discovery and its execution (work time inflation, overlap potential reduction): it must
be taken into account when profiling task-based applications.

• On programming, and to respond to the lack of applications currently taking benefits of the
mixed-use using tasks, we ported two mainstream HPC applications: the High-Performance
Conjugate Gradient (HPCG) and the Livermore Unstructured Lagrangian Explicit Shock
Hydrodynamics (LULESH) providing experience feedback.

• On performances, our developments in the MPC-OMP runtime led to a cutting-edge and
open-source OpenMP tasking runtime implementing the most recent features. In Chapter 6,
we showed the criticality of the task dependency graph discovery and cross-evaluated several
optimization techniques for its acceleration. Finally, preliminary results on our cooperative
target task design suggests potential performances improvements over existing solutions at
fine-grain GPU offloading.
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Each of research axis contributed to propose extensions to the OpenMP specifications.

• Section 5.1 propose to differ the responsibility of tasks execution context to programmers
and a new task suspension/resumption mechanism. They aim to automate the overlap and
progression of external asynchronous operation through the OpenMP task scheduler.

• Section 5.2.3 extends the interpretation of the priority clause so it is back-propagated to
predecessors. This way, programmers can guide the task scheduler towards critical tasks
without the need to manually compute priorities of every tasks.

• Section 6.1.1 proposes an extension on existing the depobj construct and iterator to
simplify the expression of irregular dependencies.

• Section 6.2.3.2 introduces task persistence to cache the task dependency graph of iterative
applications, drastically reducing fine-grain tasking overheads.

This work lead to two publications in the International Workshop on OpenMP (IWOMP) [130,131]
and a publication in the International Conference on Parallel Processing (ICPP) [169]. Another
publication in IWOMP [22] presented preliminary experiments which was not presented as part
of this document, adapting our work for GPU offloading using OpenMP target tasks.

Finally, even though tasking comes with management overheads over traditional work-sharing
loops, our contributions illustrates it may still be beneficial to overall performances:

• Early-bird posting using tasks reduced idleness and slightly improved overall performances
(∼ 3%) on a Cholesky factorization.

• Application-wide load balancing and depth-first scheduling - significantly reduced idleness
and work time on LULESH for a 2x speedup when saturating the DRAM capacity.

In the end, our contributions only provide partial responses on each of the three original
difficulty, which lead us to present a few research directions to pursue our work.

7.2 Perspectives

7.2.1 Tools for Assisting Dependent Task-based Programming

We introduced a new profiler for the mixed-use of MPI and OpenMP using tasks. An important
contribution was the post-mortem computation of the work/idle/overhead time breakdown heavily
used for performance interpretation throughout this thesis. Still, mixed-use of the standard
using tasks currently lacks such fundamental performance analysis tool accessible to a non-expert
audience. We propose a few directions to explore to improve on debugging and profiling aspects.

Extending Our Profiler Firstly, our profiler would need to be ported toward standard
OpenMP Tools (OMPT) interfaces; so it can run on any OpenMP runtime and reach a broader
audience than MPC-OMP niche users. The porting had been initiated and would only require
further engineering work.

Secondly, our analysis passes do not scale with the number of processing units and perfor-
mances are rather poor. On scalability, computing the time breakdown (work/idle/overhead) is
a rather sequential task anyway: each event must be treated sequentially, so the time frame in
between can be classified as ’idleness’ or ’overhead’ depending on the virtual scheduler state. On
performances, reading trace files with our analysis tools showed to be particularly slow. Even
filtering-out traced events at run-time, converting the bytecode trace files to CPython PY_Object
represents from 20% to 40% of the total analysis time. Removing memory conversion costs could
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be achieved improving the trace file format, or performing in-situ analysis (similarly to libyt1),
dedicating cores to performance profiling; but it may increase interference with the execution
over the current design (records are enqueued and flush to disk on program termination).

Finally, our profiler framework provides Python scripting interfaces to create new post-
mortem analysis passes. Such scripting approach had already been proposed by V. G. Pinto [3]
in StarPU, a source of motivation being the flexibility by a scripting language that allows
adapting visualizations and analysis. Our scripting framework could serve future research work
on mixed-use of MPI and (MPC)-OMP using dependent tasks: for instance, an idea could be
extending I. Daoudi work on task-based OpenMP application performance simulation [170] to
simulate not only shared-memory but also distributed execution.

Finally, another direction to explore is static graph analysis to detect unoptimized pattern that
could slow down the discovery speed, such as multiple edges or edges redundant by transitivity.

Ensuring the Correct Order of Execution As we ported LULESH and HPCG, most of
the efforts were on setting up the correct dependencies between tasks. Ensuring the correct
order of execution through dependencies (built upon data-flow) is significantly harder than
fork-join parallelization (built upon control-flow). Any mistakes would lead to wrong calculations:
debugging is painful and curretly mostly done by adding taskwait barriers to enforce execution
order. This difficulty had already been characterized by S. Royuela et al. [171] in 2015, which lead
them to design compile-time analysis of dependencies to provide correctness tips to programmers.
However, as a static analysis tool, their approach was limited to what the compiler can see. It
lead them to extend this work in [172] (2020) with Dynamic Binary Instrumentation (DBI) to
detect any mistakes in dependencies expression at run-time by tracking tasks memory accesses.
Standardizing such tool for OpenMP is necessary to reduce debugging efforts of dependent
task-based programs. Following S. Royuela approach, additional run-time analysis on the task
dependency graph could be conceived. For instance, we have shown in Section 6.2.3.1 that
removing unnecessary dependencies (while preserving the correct order of execution) improves
the task graph discovery speed and overall performances. It is not always trivial for programmers
and mixed-use of static and dynamic analysis could help.

7.2.2 Compiler and Runtime Collaboration on Memory Prefetching

Performance gains on LULESH and HPCG of Section 6.2 were mostly from taking advantage of
temporal locality using a depth-first scheduling heuristic. Applications are memory-bound, so
accelerating memory access significantly improves performance. In order to accelerate memory
accesses further-more, a way could be cache prefetching. For instance, attaching actual memory
accesses performed to each task could lead to earlier and more accurate cache prefetching by the
runtime; over traditional compiler/hardware prediction techniques.

In our porting of the application, we built task dependencies upon actual memory accesses;
hence the OpenMP runtime even already has this information. Hence, it could perform explicit
prefetching (__builtin_prefetch2) likely earlier than a compiler could detect by itself. Potential
benefits would be improving the overlapping of data movements in the memory hierarchy with
the execution of independent instructions with earlier prefetching. However, the co-existence of
hardware/compiler/runtime memory prefetching could interfere and we believe collaboration of
each layer may be needed to enhance performances.

7.2.3 Orchestrating Strong and Weak Progress of Asynchronous Operations

Supercomputers are getting massively parallel and heterogeneous: many-cores GPP, GPUs,
FPGAs, NICs, someday Quantum Processing Units (QPUs). In order to fully use the hardware

1https://github.com/yt-project/libyt
2https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

https://github.com/yt-project/libyt
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
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capability, programmers must use multiple programming models jointly, usually:

• one per device type,

• each requiring CPU time for transition system initialization and progression, which can
overlap one another

For instance, MPI requires CPU time to "to respond to control messages, post network read/write
operations or poll the Host Channel Adapter (HCA), and orchestrate collective operations." [173];
or Cuda requires CPU time to construct and schedule Cuda Graph, or perform memory transfers.
Asynchronous operation progression mechanisms are often classified as

• strong - if it bounds the asynchronous operation duration,

• weak - else (if no such bound is guaranteed).

Strong progress is usually implemented through dedicated resources (physical cores, or kernel
threads preempting the execution [6,102]). It can lead to interferences degrading performances
of each programming model [111, 174]: dedicating a physical core restricts the number of
workers for each programming models, and ovesubscribing with kernel threads can deteriorate
performances of each thread sharing the same core [174, 175]. In this manuscript, we have
shown the importance of the task dependency graph discovery: sharing CPU time between
producer threads and a progression thread would probably severely deteriorate performances
of discovery-bound applications. On the other hand, weak progress is usually implemented
with opportunistic polling, such as MPC collaborative polling on idle periods [77] or in-between
OpenMP task scheduling decisions as we proposed in this thesis. Such approach can limit
interferences removing kernel preemption with a 1:1 threads/core binding model; but it is not
sufficient to bound asynchronous operation duration. Hence, a research direction to pursue is the
orchestration of both strong and weak progress to provide both a duration time bound while
limiting interferences at most.

7.2.4 Speculative Execution, and Distributed Task Graph Cancellation

Parallel iterative applications consists in re-iterating a computation scheme until a solution
converged. The solution convergence test usually requires a global synchronization. Hence, it can
be tested whether naively synchronizing on each iteration, or every few iteration as a tradeoff
between the synchronization overheads and induced extra-computation [176].

In Section 6.1, we presented our task-based porting of the LULESH and HPCG applications
which are both iterative. LULESH and HPCCG criteria are the following:

• LULESH - the simulation finished (on the time-axis).

• HPCG - the residual rk+1 = rk − ak.A.pk is small-enough, providing an acceptable solution.

On the reference parallel-for versions, stopping the execution is straightforward due to the
really-synchronous structure of the code, simply testing criteria after each iteration barrier.
However, in the task-based versions, such barriers are removed, and criteria are only known after
executing a specific task:

• LULESH - the task computing the time-step for the next iteration; line 4 on Listing 6.7.

• HPCG - the task computing the residual; represented in orange in the middle of Fig. 6.2.

When such "stopping criterion tasks" execute, tasks from many more iterations may already have
been discovered by the producer thread. This in particular interesting to overlap (a) the task
graph discovery with computation and (b) the completion of the iteration i with independent work
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from iterations j > i. (b) is also known as speculative computation: even though the execution of
tasks from iteration i+ 1 may not be needed, they are still executed speculatively, assuming the
next iteration is actually needed. Speculative computation on LULESH is very-visible on the
Gantt chart Fig. 6.14, where tasks of the same iteration are grouped per color.

However, once the stopping criterion is met, tasks from future iterations must be somehow
canceled. As part of this thesis, we faced two difficulties to cancel a distributed task dependency
graph with MPI and OpenMP under the current standard specifications. The first one is related
to shared-memory cancellation with OpenMP, and the second one is related to on-going MPI
communications cancellation.

Canceling OpenMP Tasks OpenMP provides a task cancellation interface. Using the
OpenMP task transition system Fig. 3.2, the semantic of the cancel construct with specifications
5.2 is the following; after executing the construct:

• scheduled tasks finish execution; transition 4 → 6 .

• un-scheduled tasks does not execute; transition 4 → 7 , 8 .

However, it remains the programmer responsibility to ensure the consistency of the computed
solution, even if cancelled in the midsts of an interation.

Canceling MPI Requests Though, not only local tasks but also on-going communications
and remote tasks must be cancelled. MPI specifications provide the MPI_Cancel interface to
cancel a request. However, it only specifies its use on point-to-point receive requests3. Canceling
point-to-point send requests used to be specified by MPI, but led to implementation issues4.
Supporting cancellation on send requests implied overhead on every request, and there were no
clear motivating use cases, leading the committee to remove it from the specification. In the
context of speculative computation with task-based mixed use of MPI+OpenMP, canceling send
operations and even collectives could be a motivating use case.

Nevertheless, canceling each request individually still implies unnecessary overheads on
historical use cases (that would never cancel), and does not provide solutions to remote OpenMP
tasks cancellation. That’s why exploring cancellation on a coarser level (communicator or session)
is probably a more suitable solution.

Going Forward In this thesis, we always ensured that stopping criteria were never met: in all
our evaluations, the application always executes in a fixed amount of iterations, hence avoiding
cancellation difficulties. Note that LULESH leap/frog solver (at most 2 different iterations on the
fly), and the conjugate gradient (at most 1 iteration on the fly) remains inherently synchronous
algorithm due to global reductions, limiting speculative computation possibilities. Asynchronous
algorithm could benefit more from such speculative tasking approach. Providing solutions to
mentionned difficulties and studying the impacts of distributed cancellation is a future work to
be conducted to assess on benefits and drawbacks.

7.2.5 Co-Scheduling Task-based Programs to Maximize Resources Usage

As we discussed in our publication [177], executing multiple programs on the same compute node
is a way to maximize compute resources use. The general idea is to overlap the idleness of a
given application with useful work from another application. The first possibility is through cores
over-subscription with kernel threads (e.g., pthreads), letting the operating system preemptively
schedule threads. With n cores and m > n threads, this is the m : n co-scheduling approach.

3https://www.mpich.org/static/docs/v3.2/www3/MPI_Cancel.html
4https://github.com/mpi-forum/mpi-forum-historic/issues/480

https://www.mpich.org/static/docs/v3.2/www3/MPI_Cancel.html
https://github.com/mpi-forum/mpi-forum-historic/issues/480


7.2. PERSPECTIVES 107

Over-subscription had been widely adopted in parallel runtimes for overlapping synchronization
idleness on cores, for instance, in AMPI [178] or LLVM OpenMP [67]. Yet, it can degrade
performances when a high number of asynchronous operations concurrently progressed [175, 179],
one source of overhead being the operating system.

The second possibility is an n : n approach: each core is assigned a single kernel thread,
and the scheduling decision is taken by a user-space scheduler cooperatively (such as MPC).
A motivating result is Figure 8.2 of C. Barbossa Ph.D. thesis [180]. Her objective was to
reduce idleness induced by OpenMP synchronization from unbalanced work between threads of a
parallel for loop. In her experiment, she compared the performances of three scenarios co-
scheduling two applications (MiniFE and Quicksilver), showing that letting the operating system
manage scheduling is not sufficient to maximize resource usage in the HPC proxy-applications
understudy. Precise reasons remain to be investigated but could include, for instance, preemption
costs or CPU resource retention during synchronizations (spinlock).

A research direction we would like to conduct in the future is the co-scheduling of multiple
task-based applications.

7.2.6 Task-based MPI and OpenMP Composition: Who is the Audience ?

Throughout this thesis, we have demonstrated that the mixed-use of MPI and OpenMP could
respond to the problem of performance portability. We provided a few answers to the programming,
profiling, and performance difficulties we introduced; however, hardware complexity remains:
heterogeneity, hierarchical memory, interconnection network... As hardware becomes more
complex, standard interface follows, and programming both performant and portable applications
become almost impossible for a non-expert audience. In order to ease programming to a non-HPC
expert audience and fully embrace the problem of performance portability, a promising long-term
solution consists in designing higher-level and constrained interfaces such as Domain Specific
Languages (DSL) on top of MPI and OpenMP: MPI and OpenMP would target HPC experts
conceiving DSLs; while DSLs target scientific simulation programmers. In the literature, a few
have initiated this approach, such as NabLab [43] for simulations over unstructured mesh. In the
future, designing, optimizing, and maybe even unifying DSL are research directions to conduct
for the performance portability of scientific simulations.
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1 // User code
2 # pragma omp task context(stack-size)
3 {
4 [...]
5 MPI_Start(&req);
6 [...]
7 TAMPI_Wait(&req, &status);
8 [...]
9 }

10
11 // MPC-OMP Portability Interface
12 int
13 progress(progress_info_t * infos)
14 {
15 int completed;
16 MPI_Test(infos.req, &flag, infos.statuses);
17 if (completed)
18 omp_fulfill_event(infos->ev_handle;)
19 return completed ? MPC_OMP_CANCEL : MPC_OMP_REQUEUE;
20 }
21
22 int
23 TAMPI_Wait(MPI_Request * req, MPI_Status * status)
24 {
25 omp_event_handle_t ev_handle = mpc_omp_task_continuation_event();
26
27 progress_info_t infos = {
28 .req = req,
29 .status = status,
30 .ev_handle = ev_handle,
31 };
32 mpc_omp_callback(progress, &infos, OMP_CALLBACK_TASK_SCHEDULE);
33
34 mpc_omp_taskwait_detach(ev_handle);
35 }

Listing 8.1: MPI and OpenMP runtime interoperability approach

1 # include <stdio.h>
2
3 int
4 main(void)
5 {
6 # pragma omp parallel
7 {
8 # pragma omp single
9 {

10 int x = 0; (void) x;
11 # pragma omp task depend(out: x)
12 while (1);
13
14 while (1)
15 {
16 # pragma omp task depend(in: x)
17 {}
18 if (++x % 100 == 0) printf("submitted␣%d␣tasks\n", x);
19 }
20 }
21 return 0;
22 }

Listing 8.2: A program generating a lot of dependant tasks
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Figure 8.2: Fugaku’s A64FX Compute Node
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LULESH Detailed task grain

Task Label Work (µs) TOT_INS/TOT_CYC DP_OPS/LST_INS
AABCForNodes 4307 0.03 2E-05
ApplyMaterialPropertiesForElems 68.18 1.97 1.98
CalcAccelerationForNodes 726.41 0.27 0.33
CalcCourantConstraintForElems 639.95 0.36 0.25
CalcCourantConstraintForElems_reduce 3.14 0.42 0.01
CalcEnergyForElems1 595.48 0.25 2.32
CalcEnergyForElems2 1077.53 0.58 1.12
CalcEnergyForElems3 209.08 0.55 1.99
CalcEnergyForElems4 1274.39 0.61 1.12
CalcEnergyForElems5 905.58 0.49 0.73
CalcFBHourglassForceForElems1 18344.26 1.9 1.41
CalcFBHourglassForceForElems2 5478.5 0.23 0.67
CalcForceForNodes 246.13 0 0.01
CalcHourglassControlForElems 22436.32 1.98 0.63
CalcHydroConstraintForElems 210.4 0.72 0
CalcHydroConstraintForElems_reduce 1.18 0.5 0.01
CalcKinematicsForElems 7210.77 2.69 1.08
CalcLagrangeElements 281.53 0.6 1.2
CalcMonotonicQGradientsForElems 4256.46 2.15 0.87
CalcMonotonicQRegionForElems 3089.27 1.15 1
CalcPositionForNodes 440.9 0.57 0.67
CalcPressureForElems1 315.06 0.22 1.32
CalcPressureForElems2 548.12 0.53 0.33
CalcSoundSpeedForElems 590.05 0.42 0.86
CalcTimeConstraintsForElems_init 0.5 0.74 0.01
CalcTimeConstraintsForElems_reduce_courant 1.5 0.23 0.01
CalcTimeConstraintsForElems_reduce_hydro 1 0.36 0.01
CalcVelocityForNodes 483.58 0.94 0.67
EvalEOSForElems1 1988.75 0.15 0
EvalEOSForElems2 676.42 0.46 1
EvalEOSForElems3 249.7 0.39 0
EvalEOSForElems4 124.25 0.92 0
EvalEOSForElems5 80.25 0.01 0.01
EvalEOSForElems6 961.96 0.2 0
InitStressTermsForElems 1028.95 0.22 0.4
IntegrateStressForElems1 14786.62 2.58 0.66
IntegrateStressForElems2 5549.58 0.22 0.65
TimeDump 174.5 0.13 0
TimeIncrement 5.5 0.29 0.02
UpdateVolumesForElems 143.54 1.18 0.5

Table 8.1: LULESH per-task: (1) average work, (2) instructions per cycle, and (2) double
operation per load/store instructions ; for -s 384 -tel 1024 -tnl 1024 on 24 Intel(R) Xeon(R)
Platinum 8168
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1 # include <stdlib.h>
2 # include <stdio.h>
3 # include <time.h>
4 # include <omp.h>
5
6 # define N 1000000
7
8 int
9 main(void)

10 {
11 srand(time(NULL));
12
13 // warm-up runtime
14 # pragma omp parallel
15 {
16 int i;
17 for (i = 0 ; i < 16 ; ++i)
18 {
19 int p = rand();
20 # pragma omp task priority(p)
21 {}
22 }
23 }
24
25 // benchmark
26 const double t0 = omp_get_wtime();
27 # pragma omp parallel
28 {
29 int i;
30 for (i = 0 ; i < N ; ++i)
31 {
32 int p = rand();
33 # pragma omp task priority(p)
34 {}
35 }
36 }
37 const double tf = omp_get_wtime();
38 printf("took␣%lf\n", tf - t0);
39
40 return 0;
41 }

Listing 8.3: Microbenchmark on the priority clause
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1 # include <omp.h>
2
3 static volatile int T1_completed = 0;
4 static volatile int T2_started = 0;
5
6 static void
7 T1(void)
8 {
9 while (!T2_started)

10 {
11 # pragma omp taskyield
12 }
13 T1_completed = 1;
14 }
15
16 static void
17 T2(void)
18 {
19 T2_started = 1;
20 while (!T1_completed)
21 {
22 # pragma omp taskyield
23 }
24 }
25
26 int
27 main(void)
28 {
29 # pragma omp parallel
30 {
31 // block every threads but thread 0, to force schedule on thread 0
32 while (!T1_completed && omp_get_thread_num() != 0);
33
34 # pragma omp single
35 {
36 // send ’T2’ then ’T1’, as LLVM follows a LIFO strategy,
37 // so ’T1’ is scheduled first
38
39 # pragma omp task untied
40 T2();
41
42 # pragma omp task untied
43 T1();
44 }
45 }
46 return 0;
47 }

Listing 8.4: Valid OpenMP program deadlocking with LLVM
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