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Résumé de la thèse

Au cours de leur vie, les gens font des choix en matière dŠinvestissement, dŠépargne,

dŠalimentation, dŠéducation, de sport et de carrière professionnelle. Dans la

plupart des cas, ces choix ressemblent à des loteries en ce sens quŠils produisent

des résultats stochastiques.

Par exemple, un employeur ne sait pas, au moment où il embauche un salarié,

si ce dernier accomplira avec succès les tâches pour lesquelles il est embauché.

Le choix de lŠemployeur peut donc être associé à deux conséquences possibles :

(i) lŠemployé accomplit les tâches avec succès ou (ii) lŠemployé nŠaccomplit pas

les tâches.

De même, lors dŠune séance de tirs au but au football, le capitaine dŠune

équipe doit choisir lŠun des deux côtés (pile ou face) dŠune pièce de monnaie

équitable. Son choix permet, après que lŠarbitre a tiré à pile ou face, de savoir

si le premier tir sera effectué par lŠéquipe du capitaine ou par lŠéquipe adverse.

Dans cet exemple, le choix du capitaine a deux conséquences : (i) le visage qui

apparaît après le tirage au sort est le visage choisi par le capitaine et (ii) le

visage qui apparaît après le tirage au sort est lŠopposé du visage choisi par le

capitaine.

Dans de rares cas, les individus disposent dŠune mesure objective de la

probabilité de chaque conséquence possible de leurs choix. CŠest le cas dans

lŠexemple du capitaine. Il sait que le visage quŠil a choisi a 50% de chances

i



dŠapparaître et 50% de chances de ne pas apparaître à lŠissue du jeu de pile ou

face.

Cependant, dans la plupart des cas, les individus ne disposent pas dŠune

mesure objective de la probabilité de chaque conséquence possible de leurs choix.

CŠest par exemple le cas de lŠemployeur. Bien quŠil ne dispose pas dŠune mesure

objective des probabilités associées aux conséquences, lŠemployeur peut se forger

des probabilités subjectives (ou croyances) sur la base des informations (par

exemple, le diplôme, lŠuniversité, lŠexpérience professionnelle) quŠil a recueillies

au cours du processus de recrutement.

Suivant Knight (1921), en économie, on parle de risque lorsque les individus

ont des probabilités objectives des conséquences possibles de leurs choix. Les

probabilités sont objectives dans le sens où elles sont indépendantes de la personne

qui prend la décision. On parle de incertitude ou de ambiguïté, lorsque les

individus ne disposent pas de probabilités objectives des conséquences possibles

de leurs choix et que les individus doivent au contraire se forger des probabilités

(ou croyances) subjectives. Les probabilités sont subjectives dans le sens où elles

dépendent de la personne qui prend la décision.

Les probabilités associées aux conséquences, quŠelles soient objectives ou

subjectives, inĆuencent le choix des individus entre plusieurs alternatives. Par

exemple, le choix dŠun individu de frauder le Ąsc est fortement déterminé par

son appréhension (objective ou subjective) de la probabilité dŠêtre pris par le

Ąsc. De même, le choix dŠun individu dŠutiliser frauduleusement des services de

transport payants est fortement déterminé par son appréhension (objective ou

subjective) de la probabilité dŠêtre pris par les contrôleurs.

Mais au-delà des probabilités, il existe dŠautres caractéristiques propres aux

individus qui déterminent leur choix entre plusieurs alternatives. Une première

caractéristique est la valeur subjective (représentant le plaisir ou le bonheur)
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que les individus retirent de la réalisation de chaque conséquence. En économie,

cette valeur subjective est appelée utilité.

La théorie de lŠutilité espérée et la théorie de lŠutilité subjective éspérée

traitent respectivement de la prise de décision en situation de risque (les proba-

bilités objectives des conséquences sont connues) et en situation dŠincertitude

(les probabilités objectives des conséquences sont inconnues). Ces deux théories

standard considèrent que les choix des individus entre plusieurs alternatives sont

entièrement et uniquement déterminés par les probabilités et les utilités que les

individus associent aux conséquences des différentes alternatives. Ces théories

associent à chaque alternative la somme pondérée de lŠutilité des conséquences,

les poids étant les probabilités (objectives ou subjectives). Ces théories postulent

quŠun individu choisira lŠalternative qui maximise sa somme pondérée.

Cependant, les théories standard se heurtent à des difficultés empiriques qui

suggèrent que les probabilités et lŠutilité ne sont pas les seuls déterminants des

choix des individus. Une difficulté empirique importante des théories standard

est le paradoxe de Ellsberg (1961). Selon ces théories, les sujets devraient être

indifférents entre une urne connue contenant 50 boules rouges et 50 boules

noires et une urne inconnue comprenant 100 boules rouges et noires dans une

proportion inconnue, quelle que soit la couleur gagnante. Or, contrairement

à cette indifférence, les sujets ont tendance à préférer lŠurne connue à lŠurne

inconnue, quelle que soit la couleur gagnante. Dans le cadre de ces théories

standard, le fait que les sujets tendent à préférer lŠurne connue à lŠurne inconnue

(quelle que soit la couleur gagnante), implique que la somme des croyances

dŠavoir une boule rouge et dŠavoir une boule noire dans lŠurne inconnue est

inférieure à un.

Les difficultés empiriques des théories standard ont justiĄé le développe-

ment de théories de lŠutilité non attendue dans des conditions de risque et
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dŠincertitude qui intègrent de nouvelles caractéristiques individuelles en tant

que déterminants des choix. LŠutilité dépendante du rang (RDU ; voir Quiggin,

1982; Schmeidler, 1989a) et la théorie cumulative des perspectives (CPT ; voir

Tversky and Kahneman, 1992a, désormais TK92) sont apparues comme les

deux principales alternatives aux théories traditionnelles. Elles expliquent les

violations empiriques en introduisant des distorsions de probabilité (Bleichrodt

and Pinto, 2000) et lŠaversion aux pertes (Wakker, 2010a).

Cette thèse contribue à la littérature dŠéconomie comportementale et expéri-

mentale sur le risque et lŠincertitude. En particulier, cette thèse (i) propose de

nouvelles méthodes pour mesurer la fonction dŠutilité, la fonction de pondération,

lŠaversion aux pertes et les croyances et (ii) dérive de nouvelles idées théoriques

dans le domaine de la déĄnition des incitations ainsi que le développement dŠun

nouveau paradigme expérimental.

Le chapitre 1 établit une méthode semi-paramétrique complète qui satisfait

aux quatre propriétés souhaitables des méthodes paramétriques : traçabilité,

efficacité des données, robustesse des erreurs et facilité. Le chapitre 2 propose

une version non paramétrique de la méthode semi-paramétrique du chapitre 1

avec une approximation de la fonction dŠutilité par une spline de lissage. Les

applications des chapitres 1 et 2 à des données existantes concernant le risque

conĄrme les écarts par rapport à la théorie de lŠutilité espérée en mettant en

évidence la fonction de pondération des probabilités et lŠaversion pour les pertes.

Le chapitre 3 étend la méthode semi-paramétrique du chapitre 1 pour

mesurer les croyances et les attitudes dŠambiguïté à lŠégard de sources dis-

crètes dŠincertitude. Les sujets prennent des décisions dans ce type de situations

incertaines au quotidien. Dans diverses applications, la méthode passe avec

succès les tests de validité et fournit des résultats intéressants dans le cas des jeux

de conĄance et de coordination. Ce chapitre constate des déviations par rapport
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à la théorie de lŠutilité attendue subjective grâce à des preuves dŠattitudes am-

biguës. Il souligne que les gens sont plus insensibles à la probabilité en présence

dŠévénements asymétriques quŠen présence dŠévénements symétriques, ce qui

suggère que la formation des croyances est cognitivement exigeante. À sources

dŠincertitude égales, les individus présentent l’aversion à la dépendance des gains

et la recherche d’une variété de gains. Aversion à la dépendance des gains signiĄe

que les gens nŠaiment pas que leurs propres gains dépendent des préférences des

autres. Ce comportement est représenté par une fonction dŠutilité plus concave.

Recherche de la variété des gains signiĄe que les sujets préfèrent un plus grand

nombre de gains possibles lorsque ces gains dépendent des préférences des autres.

Ce comportement se traduit par un plus grand optimisme.

Le chapitre 4 étudie lŠexistence du compromis risque-incitations (RIT) en fonc-

tion de lŠutilité dépendante du rang (RDU) et de la moyenne-variance-squewness

(MVS). Les analyses théoriques montrent que le RIT est remarquablement ro-

buste sous RDU mais pas sous MVS. Avec des données basées sur un nouveau

modèle expérimental qui élimine les facteurs de confusion, le chapitre 4 fournit

des preuves de lŠexistence de la RIT même dans le cas dŠagents qui recherchent

le risque, ce qui est une prédiction distincte de la RDU. Les résultats conĄrment

lŠexistence de lŠIRT et suggèrent quŠelle sŠapplique à un large éventail de situ-

ations, y compris les cas où les agents recherchent le risque (par exemple, la

rémunération des dirigeants).
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General introduction

Over their lifetime, people make choices about investments, savings, food,

education, sports and professional careers. In most cases, these choices resemble

lotteries in that they produce stochastic outcomes.

For example, an employer does not know at the time he hires an employee

whether the employee will successfully perform the tasks for which he is hired.

The employerŠs choice can therefore be associated with two possible consequences:

(i) the employee successfully completes the tasks or (ii) the employee fails to

complete the tasks.

Also, during a penalty shoot-out in football, a team captain must choose

one of the two sides (heads or tails) of a fair coin. His choice allows, after

the referee has tossed the coin, to know if the Ąrst shot will be taken by the

captainŠs team or the opposing team. In this example, the captainŠs choice has

two consequences: (i) the face that appears after the coin toss is the face chosen

by the captain and (ii) the face that appears after the coin toss is the opposite

of the face chosen by the captain.

In rare cases, individuals have an objective measure of the probability of each

possible consequence of their choices. This is the case in the captainŠs example.

He knows that the face he has chosen has a 50% chance of appearing and a 50%

chance of not appearing at the end of the toss of the fair coin.
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General introduction

However, in most cases, individuals do not have an objective measure of the

probability of each possible consequence of their choices. This is for example the

case of the employer. Although he does not have an objective measure of the

probabilities associated with the consequences, the employer can form subjective

probabilities (or beliefs) based on the information (e.g. diploma, university,

professional experience) that he has collected during the recruitment process.

Following Knight (1921), in economics, we speak of risk when the individuals

have objective probabilities of the possible consequences of their choices. The

probabilities are objective in the sense that they are independent of the person

who makes the decision. One speaks about uncertainty or ambiguity, when

the individuals do not have objective probabilities of the possible consequences

of their choices and that individuals must on the contrary form subjective

probabilities (or beliefs). The probabilities are subjective in the sense that they

depend on the person who makes the decision.

The probabilities associated with the consequences, whether objective or

subjective, inĆuence the choice of individuals between several alternatives. For

example, an individualŠs choice of whether to evade taxes is strongly determined

by his or her apprehension (objective or subjective) of the probability of being

caught by the tax department (Dhami, 2016). Similarly, an individualŠs choice of

whether to use fare-paying transport services fraudulently is strongly determined

by his or her apprehension (objective or subjective) of the probability of being

caught by ticket inspectors.

But, beyond probabilities, there are other characteristics speciĄc to individu-

als that determine their choice between several alternatives. A Ąrst characteristic

is the subjective value (representing pleasure or happiness) that individuals get

from the realization of each consequence. In economics, this subjective value is

called utility.
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General introduction

Expected utility theory and subjective expected utility theory deal respec-

tively with decision-making under risk (objective probabilities of consequences

are known) and under uncertainty (objective probabilities of consequences are

unknown). These two standard theories consider that the choices of individuals

between several alternatives are entirely and solely determined by the probabili-

ties and utilities that individuals associate with the consequences of the different

alternatives. These theories associate with each alternative the weighted sum of

the utility of the consequences, the weights being the probabilities (objective or

subjective). These theories posit that an individual will choose the alternative

that maximizes his weighted sum.

However, standard theories face empirical difficulties that suggest that prob-

abilities and utility are not the only determinants of individualsŠ choices. An

important empirical difficulty of standard theories is the paradox of Ellsberg

(1961). According to these theories, subjects should be indifferent between

a known urn containing 50 red and 50 black balls and an unknown urn that

comprises 100 red and black balls in an unknown proportion, irrespective of the

winning color. However, contrary to this indifference, subjects tend to prefer

the known urn to the unknown urn, irrespective of the winning color. Under

these standard theories, the fact that subjects tend to prefer the known urn to

the unknown urn (irrespective of the winning color), implies that the sum of the

beliefs of having a red ball and having a black ball in the unknown urn is less

than one.

Empirical difficulties of standard theories (see Starmer, 2000, for a review) jus-

tiĄed the development of non-expected utility theories under risk and uncertainty

that incorporate new individual characteristics as determinants of choices. Rank

Dependent Utility (RDU; see Quiggin, 1982; Schmeidler, 1989) and Cumulative

Prospect Theory (CPT; see Tversky and Kahneman, 1992, henceforth TK92)
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emerged as two main alternatives to the traditional theories. They explain

empirical violations by introducing probability distortions (Bleichrodt and Pinto,

2000) and loss aversion (Wakker, 2010).

All chapters of the thesis are related to decision-making under risk and

uncertainty. Three chapters provide measurement methods of decision models

under risk and uncertainty. The Ąnal chapter derives new theoretical insights in

the realm of incentive setting along with the development of a new experimental

paradigm.

Measuring risk and uncertainty attitudes is of great value in many economic

applications. For example, measures of attitudes toward risk and uncertainty

can help explain behaviors in Ąnance (e.g. Baillon et al., 2018b), incentive setting

(e.g. Corgnet and Hernan-Gonzalez, 2019), health choices (e.g. Attema et al.,

2018), human behaviors in face of uncertainty generated by other humans or

strategic uncertainty (e.g. Li et al., 2018), the behaviors of sport professionals

(e.g. Bleichrodt et al., 2018), tax evasion (e.g. Dhami and Hajimoladarvish, 2020),

election or vote (e.g. Kemel and Mun, 2020).

I present in section 0.1 the prevalent theories that are widely used to model

decisions under risk and uncertainty. Section 0.2 reviews measurement methods

for risk attitudes. Finally, section 0.3 outlines the main goals of this thesis.

0.1 Decision theories under risk and uncertainty

Three prevailing theories are widely used to model decisions under risk and

uncertainty: (subjective) expected utility theory, rank dependent utility and

cumulative prospect theory. Before presenting them, we lay out the following

notations.
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0.1.1 Notations

Assume that consequences or outcomes are monetary, with R denoting the

outcome set. Let denote under risk a lottery that gives outcome xi with known

probability pi as follows:

L = (x1, p1;x2, p2; ..., xn, pn) (1)

Denote by S a source of uncertainty, i.e. a group of events generated by a

common mechanism of uncertainty. Denote by L a lottery that gives outcome

xi if event Ei ⊂ S occurs as follows:

L = (x1, E1;x2, E2; ..., xn, En) (2)

where the objective probabilities of Ei (i = 1, 2, ..., n) are unknown. For nota-

tional convenience, we assume that outcomes are ordered: x1 < x2 < ... < xn.

0.1.2 Traditional models

The traditional theory to model decisions under risk is expected utility theory

(Von Neumann and Morgenstern, 1947, EU henceforth). This theory postulates

that decision maker values the lottery speciĄed in (1) in term of expected utility:

EU(L) =
n∑

i=1

piu(xi) (3)

with u(.) the utility function over outcomes.

For uncertainty, the traditional theory is the Subjective Expected Utility (SEU)

of Savage (1954). Because objective probabilities of events are not available, the

decision maker forms subjective probabilities on events: P (Ei), i = 1, 2, ..., n.

5



The value of the prospect speciĄed in (2) under uncertainty is given by the sum

of the utility of each of the outcomes weighted by its subjective probabilities:

SEU(L) =
n∑

i=1

P (Ei)u(xi) (4)

A distinctive feature of EU and SEU, is that objective and subjective probabilities

are used linearly in the valuation of prospects. The paradox of Allais (1953)

under risk and the paradox of Ellsberg (1961) under uncertainty challenged

this feature. Rank Dependent Utility (RDU) and Cumulative Prospect Theory

(CPT) emerged as two main alternatives to the traditional models.

0.1.3 Rank Dependent Utility (RDU)

Quiggin (1982) proposes a rank dependent utility theory to evaluate the risky

lottery speciĄed in (1). The value of the prospect is given by the sum of the

utility of each of the outcomes weighted by a non-additive transformation of

probabilities:

RDU(L) =
n∑

i=1

[
w

(
n∑

j=i

pj

)
− w

(
n∑

j=i+1

pj

)]
u(xi) (5)

with w(.) the probability weighting function which is strictly increasing, trans-

forms probability from [0, 1] to [0, 1] and satisĄes w(0) = 1 − w(1) = 0.

Schmeidler (1989) provides a rank dependent utility theory to evaluate under

uncertainty the lottery speciĄed in (2) as follows:

RDU(L) =
n∑

i=1

[
W

(
n⋃

j=i

Ej

)
−W

(
n⋃

j=i+1

Ej

)]
u(xi) (6)

with the event weighting function that satisĄes:

1. if E ⊂ F , then W (E) < W (F )
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2. W (∅) = 1 −W (S) = 0

Abdellaoui et al. (2011a) show that event weighting function W (.) can be

decomposed in terms of a source function wS(.) and belief P (.):

W (E) = wS(P (E)) (7)

The source function wS(.) is strictly increasing, transforms subjective probability

(belief) from [0, 1] to [0, 1] and satisĄes wS(0) = 1 − wS(1) = 0.

0.1.4 Cumulative Prospect Theory (CPT)

Tversky and Kahneman (1992) considers that a person evaluate outcomes xi

(i = 1, 2, ..., n) of the lotteries speciĄed in (1) and (2) in deviation to a reference

point, say R:

xi −R (8)

The outcome xi is considered as gain (loss) if xi ≥ R (xi < R). Denote by m ≥ 0

(resp. t ≥ 0) the number of loss (resp. gain) outcomes:

y−m < y−m+1 < ... < y−1︸ ︷︷ ︸
Losses

< y0 = 0 < y1 < y2 < ... < yt︸ ︷︷ ︸
Gains

The risky prospect speciĄed in (1) becomes under CPT:

L = (y−m, p−m; y−m+1, p−m+1; ...; y−1, p−1; y0, p0; y1, p1; ....; yt, pt) (9)

with y−m = x1 − R, y−m+1 = x2 − R, ..., yt = xn − R; and p1 = p−m, p2 =

p−m+1, ..., pn = pt. The valuation of (9) is given by
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CPT (L) =
0∑

i=−m

[
w−

(
i∑

j=−m

pj

)
− w−

(
i−1∑

j=−m

pj

)]
v(yi)+

t∑

i=1

[
w+

(
t∑

j=i

pj

)
− w+

(
t∑

j=i+1

pj

)]
v(yi)

(10)

with v(.) the value function, w+(.) the weighting function in the gain domain and

w−(.) the probability weighting function in the loss domain. The value function

v() is continuous, strictly increasing and satisĄes v(0) = 0. The probability

weighting functions are strictly increasing, transform probability from [0, 1] to

[0, 1] and satisfy: w−(0) = 1 − w−(1) = 0 and w+(0) = 1 − w+(1) = 0.

Similarly, the prospect (2) under uncertainty becomes:

L = (y−m, E−m; y−m+1, E−m+1; ...; y−1, E−1; y0, p0; y1, p1; ....; yt, pt) (11)

with E1 = E−m, E2 = E−m+1, ..., En = Et

The valuation of (11) is given by

CPT (L) =
0∑

i=−m

[
W−

(
i⋃

j=−m

Ej

)
−W−

(
i−1⋃

j=−m

Ej

)]
v(yi)+

t⋃

i=1

[
W+

(
t⋃

j=i

Ej

)
−W+

(
t∑

j=i+1

Ej

)]
v(yi)

(12)

with v(.) the value function, W+(.) the event weighting function in the gain

domain and W−(.) the event weighting function in the loss domain. The value

function v() is continuous, strictly increasing and satisĄes v(0) = 0. The event

weighting functions satisfy:
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1. if E ⊂ F , then W+(E) < W+(F ) and W−(E) < W−(F )

2. W+(∅) = 1 −W+(S) = 0 and W−(∅) = 1 −W−(S) = 0

Following the seminal study by TK92, as well as the subsequent developments in

Köbberling and Wakker (2005) and Abdellaoui et al. (2008), the value function

v(.) is composed of the loss aversion index λ > 0 which reĆects the exchange

rate between gain and loss utility units, and the utility function u(.) that reĆects

the intrinsic value of outcomes:

v(x) =





u(x) if x ≥ 0

λu(x) if x < 0
(13)

Similarly to RDU, the event weighting functions W+(.) and W−() can be

decomposed in terms of source functions w+
S (.) and w−

S (.), and belief function

P (.) (e.g. Attema et al., 2018).

0.2 Measurement methods

This section provides a literature review of the main methods to elicit utility

functions, weighting functions, loss aversion and beliefs. The methods use binary

lotteries of the form L = (x, y; p, 1 − p) that gives outcome x with probability p

and outcome y with probability 1 − p. This notation corresponds to decision

under risk. In decision under uncertainty, we just replace p and 1 − p by E

and Ec respectively. E denotes an event of state space S and Ec denotes the

complement of E in S. For notational convenience, we assume that all prospects

L = (x, y; p, 1 − p) are rank-ordered. If a non-mixed prospect involves only gains

(resp. losses), we assume that x ≥ y ≥ 0 (resp.x ≤ y ≤ 0). For mixed prospect

we assume y ≤ 0 ≤ x.
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Three types of approachŮparametric, semi-parametric and nonparametricŮ

in decisions situation under risk and uncertainty are used.

0.2.1 Parametric approach

The parametric approach assumes parametric forms for utility and weighting

functions. This approach is followed for example by Fehr-Duda et al. (2006)

and Tversky and Kahneman (1992) and is not applicable for decisions under

uncertainty.

In this approach, the authors start by collecting certainty equivalents ceig

for N non-mixed binary lotteries Lg = (xg, yg; pg, 1 − pg) that involves different

probabilities and outcomes (xg and yg) and probabilities pg, with g = 1, 2, ..., N .

Under cumulative prospect theory (10), these certainty equivalents satisfy

ceig = u−1
(
wi(pg)u(xg) + (1 − wi(p))u(yg)

)
(14)

Second, the parametric forms of the utility and weighting functions are speciĄed.

For example, one can assumes a power utility function and the Prelec (1998)

two-parameters weighting function:

u(x) =





xα if x ≥ 0

−λ(−x)β if x < 0
(15)

wi(p) = exp
(
−δi(−ln(p))γ

i
)

(16)
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With these parametric forms, the equation (1.16) becomes in gain and loss

domains

ce+
g =

[
exp

(
−δ+(−ln(pg))γ

+
) (
xαg − yαg

)
+ yαg

]1/α

(17)

ce−
g = −

[
exp

(
−δ−(−ln(pg))γ

−
) (

(−xg)β − (−yg)β
)

+ (−yg)β
]1/β

(18)

The parameters α, β, δi and γi can then be estimated in the equations (17)

and (18) by nonlinear least squares or maximum likelihood. Also, Bayesian

estimation can be used by making prior assumptions about parameters.

The link between the utility functions of the two domains (gain and loss) is

required to elicit the loss aversion index (Abdellaoui et al., 2007b). Abdellaoui

et al. (2008) makes this link with one indifference. The indifference consists in

using a gain ce+
g elicited in the Ąrst step and in determining the loss Xg that

satisĄes (0.5, ce+
g ;Xg) ∼ 0. This implies in CPT framework that Xg and the loss

aversion index λ satisfy:

η+v(ce+
g ) + η−λv(Xg) = u(0) = 0 (19)

For the power utility function, this relation becomes:

η+
(
ce+
g

)α − η−λ
(
−Xg

)β
= u(0) = 0 (20)

or equivalently

λ =
η+
(
ce+
g

)α

η−
(
−Xg

)β (21)

Application of this method can be done under uncertainty (Gutierrez and

Kemel, 2021; Kemel and Mun, 2020; Baillon et al., 2018a). In this context,

11



subjective probabilities (beliefs) need to be estimated too.

This approach has four desirable properties: tractability, data-efficiency,

easiness, error-robustness. We deĄne these properties below.

Tractable: the method allows for estimating risk attitudes with standard tools,

like OLS or NLS (Abdellaoui et al., 2007a, 2008).

Error-robust: the method accounts for the fact that subjects make response

errors when answering questions(Abdellaoui et al., 2008).

Easy (not cognitively demanding): the method relies on simple choices

involving the lowest possible number of outcomes, that is 3 (Abdellaoui et al.,

2008). A useful benchmark comes from TK92 who ask their subjects to make

simple choices between a sure outcome and a binary lottery.

Data-efficient: the method requires few measurements (observations) to esti-

mate the parameters of the utility function and the probability weights. As a

rule of thumb, we take TK92 (with 28 measurements for 9 probability weights

and one utility parameter per domain) as benchmark, and consider a method

data-efficient if it requires no more than three measurements per estimate of a

probability weight.1

In addition to these four desirable properties, the parametric methods are

also Comprehensive in the sense that they allow for estimating utility function,

loss aversion and weighting function under risk as well as under uncertainty.

Nevertheless, this approach has several drawbacks. First, empirical estimates

are sensitive to the speciĄcation of the utility and probability weighting functions

1(Abdellaoui et al., 2008) use the term “efficient” instead. Since this property only relates
to the physical resources (such as time and money) used for data collection, we coin the term
data-efficiency to avoid confusion with the (unrelated) statistical notion of the efficiency of an
estimator.
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(Abdellaoui, 2000). Second, parametric methods only provide an overall measure

of the goodness of Ąt of the model, rather than separate measures for each of its

components Ű one for the utility function and one for the probability weighting

function (see Gonzalez and Wu, 1999).

0.2.2 Semi-parametric approach

The semi-parametric approach assumes parametric forms for the utility function

without imposing any parametric restriction on the probability weight. Methods

that use this approach can be found Abdellaoui et al. (2008) and Abdellaoui

et al. (2011b).

The semi-parametric method of Abdellaoui et al. (2008) entails three steps.

It resembles the previous parametric method that we had presented with two

important differences. First, the probabilities p in the binary lotteries is kept

Ąxed so that the decision weight wi(p) can be estimated directly as parameter

alongside those of the utility function. Second, an additional step is introduced

to estimate the loss aversion parameter λ. More precisely, the three steps are as

follows.

First step: Utility and probability (or event) weight elicitation in the

gain domain

The step starts by two choices from the researcher. First, the researcher has

to choose a probability p that will be kept Ąxed throughout the elicitation of

the utility function on the gain domain. Second, the authors have to choose a

parametric form for the utility function.

13



To elicit the probability (or event) weight and parameters related that deĄne

the selected utility function, the researcher collects certainty equivalents ce+
g

for N non-mixed binaries lotteries Lg = (xg, yg; p, 1 − p) that involves different

outcomes (xg and yg) and the Ąxed probability p, with g = 1, 2, ..., N . Under

cumulative prospect theory, these certainty equivalents satisfy:

ce+
g = u−1

(
η+u(xg) + (1 − η+)u(yg)

)
(22)

with η+ = w+(p). If for example, the authors choose p = 0.5 and the power

utility function 15, the equation (22) becomes:

ce+
g =

[
η+
(
xαg − yαg

)
+ yαg

]1/α

(23)

with η+ = w+(0.5). The parameter α and η+ = w+(0.5) in the relation 23 can

be estimated by nonlinear least squares.

Second Step: Utility and probability (or event) elicitation in the loss

domain

This step is similar to the previous one. The probability p in the series of

lottery Lg = (xg, yg; p, 1 − p) indexes g = 1, 2, ..., N that will be kept Ąxed

throughout the elicitation of the utility function on the loss domain is such that

p = 1 − p. This condition is necessary in the third step that elicits the loss

aversion paramater. Second, the authors have to choose a parametric form for

the utility function. Under prospect theory functional, the certainty equivalents

of Lg = (xg, yg; p, 1 − p) satisfy:

ce−
g = u−1

(
η−u(xg) + (1 − η−)u(yg)

)
(24)
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If authors have selected p = 0.5 in the Ąrst step and power utility function (15),

the equation (24) becomes

ce−
g = −

[
η−

((
−xg

)β −
(
−yg

)β)
+
(
−yg

)β
]1/β

(25)

with η− = w−(0.5). The parameter β and η− = w−(0.5) in the equation (25)

can be estimated by nonlinear least squares.

Third Step: Loss aversion elicitation

The elicitation of the loss aversion follows the same procedure as in the previous

parametric methods.

This method has been applied by Attema et al. (2013) with an exponential

utility function.

We can point out several limitations of this semi-parametric approach. First,

the estimation resultsŮnamely the estimations of the loss aversion index and

of the probability weightŮdepend on the choice of the utility function. Sec-

ond, it allows us to know only one probability weight in each domain (gain

and loss) so that the shape of the probability weighting function is not estimated.

Abdellaoui et al. (2011b) extends the method to the elicit a broader range of

points of the probability weighting function. Abdellaoui et al. (2011b) start by

eliciting the utility function and one probability weight as in Abdellaoui et al.

(2008). Having the estimation of the utility function, they elicit the certainty

equivalents cek for all desired probabilities pk, k = 1, 2, ..., K as follows:

cek ∼ (x∗, 0; pk, 1 − pk) for k = 1, 2, ..., K (26)
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with x∗ a Ąxed outcome that belongs to the elicited utility domain. The

probability weights can then be estimated as:

wi(pk) =
u(cek)
u(x∗)

for k = 1, 2, ..., K (27)

The semi-parametric approach can be applied to uncertainty (e.g. Baillon

et al., 2018a; Abdellaoui et al., 2011a). The semi-parametric method of Abdel-

laoui et al. (2008) keeps all appealing properties of parametric methods. Never-

theless, when extending it as in Abdellaoui et al. (2011b) to estimate probability

weighting function, the method is no longer error-robust (e.g. Etchart-Vincent,

2004).

0.2.3 Non-parametric approach

The non-parametric approach does not make any parametric assumption about

the utility and the weighting functions. Several methods are proposed in this

approach.

0.2.3.1 The gamble-tradeoff method

The Ąrst nonparametric method that offers the possibility to elicit utility function

in CPT frameworks is the tradeoff method proposed by Wakker and Deneffe

(1996). The utility elicitation using the tradeoff method is applicable in un-

certainty and risky contexts. Abdellaoui (2000), Bleichrodt and Pinto (2000)

and Etchart-Vincent (2009a) have extended this tradeoff method to be able to

estimate probability and/or event weights.
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First step: The utility function

The method consists in eliciting equally-spaced outcomes in terms of utility. To

do this, two outcomes R and r that have the same sign are Ąxed. In addition, a

probability p ∈ (0, 1) and initial outcome x0 are chosen. Once these values are

chosen, the outcome x1 is elicited from the following indifference:

(x0, R; p, 1 − p) ∼ (x1, r; p, 1 − p)

In the gain (resp. loss) domain the outcomes have to be chosen such that

0 ≤ r ≤ R ≤ x0 ≤ x1 (reps. 0 ≥ r ≥ R ≥ x0 ≥ x1). This indifference implies:

wi(p)
(
u(x1) − u(x0)

)
= (1 − wi(p))

(
u(R) − u(r)

)
(28)

After eliciting x1, the outcome x2 is elicited from the following indifference:

(x1, R; p, 1 − p) ∼ (x2, r; p, 1 − p)

This indifference implies in the gain domain:

wi(p)
(
u(x2) − u(x1)

)
= (1 − wi(p))

(
u(R) − u(r)

)
(29)

From equations 28 and 29, we have the following equality:

u(x2) − u(x1) = u(x1) − u(x0) (30)
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From equation 30, x1 is the midpoint of x0 and x2 in terms of utility2. The

previous procedure is repeated to have the sequence of outcomes x0, x1, ..., xn

with the following indiferrences

(xj−1, R; p, 1 − p) ∼ (xj, r; p, 1 − p) , j = 1, 2, ..., n

By setting u(x0) = 0, u(xn) = 1 in the gain domain, the valuations of elicited

outcomes in this domain are given by

u(xj) =
j

n
, j = 1, 2, ..., n (31)

Proceeding similar thing in the loss domain by setting u(xn) = −1 leads to

u(xj) = − j

n
, j = 1, 2, ..., n (32)

Second step: the weighting function

The gamble-tradeoff method does not specify how to estimate the weighting

function. Authors like Abdellaoui (2000), Bleichrodt and Pinto (2000) and

Etchart-Vincent (2009a) have extended the tradeoff-method to be able to esti-

mate the weighting function.

After determining the sequence x0, x1, ..., xn from the tradeoff method, Ab-

dellaoui (2000) proposed to elicit the sequence of probabilities p1, p2, ..., pn−1

from the following indifferences

(xn, x0; pj, 1 − pj) ∼ xj

2Indeed, we remark that u(x1) =
u(x0) + u(x2)

2
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From these indifferences, the weighting function is given by

wi(pj) =
u(xj) − u(x0)
u(xn) − u(x0)

=
j

n
, j = 1, 2, ..., n− 1 (33)

Also, Bleichrodt and Pinto (2000) proposed another way to elicit the weighting

function after determining the sequence x0, x1, ..., xn from the tradeoff method.

The authors proposed to determine probability weights with two types of ques-

tions. For any low probability p ∈ (0, 1), the probability weight wi(p) is elicited

by asking for outcome z such that:

(xi, xj; p, 1 − p) ∼ (xk, z; p, 1 − p)

with xk ≥ xi ≥ xj in the gain domain, xk ≤ xi ≤ xj in the loss domain and

xk, xi and xj are elements of the sequence elicited in the tradeoff part. From

the above indifference, the probability weight is given by

wi(p) =
u(xj) − u(z)[

u(xj) − u(z)
]

+
[
u(xk) − u(xi)

] (34)

Similarly, for any higher probability p ∈ (0, 1), the probability weight wi(p)

is elicited by asking for outcome z in the following indifference:

(xm, xn; p, 1 − p) ∼ (xq, z; p, 1 − p)

with xm ≥ xn ≥ xq in the gain domain, xm ≤ xn ≤ xq in the loss domain

and xm, xn and xq elements of the sequence elicited in the tradeoff part. The

above indifference implies that the probability weight is given by

wi(p) =
u(xn) − u(xq)

[
u(z) − u(xm)

]
+
[
u(xn) − u(xq)

] (35)
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The elicited outcomes z and z do not necessary belong to the sequence of

outcomes elicited in the tradeoff part. In this case their utilities are estimated

from the utilities of elements of the sequence obtained in the tradeoff part. More

precisely, a linear approximation is performed or parametric assumptions are

made on utility function to obtain utilities of z and z when these outcomes do

not belong to the sequence of outcomes. Doing so, this probability weighting

function elictation is semi-parametric3 as that of Etchart-Vincent (2009a).

The method of Etchart-Vincent (2009a) consists in determining CEj for any

Ąxed probability pj with the following indifference

CEj ∼ (xk, xi; pj, 1 − pj) (36)

with xi ≤ CEj ≤ xk in the gain domain, xk ≤ CEj ≤ xi in the loss domain and

xk, xi are elements of the standard sequence elicited in the tradeoff part. This

indifference implies:

wi(pj) =
u(CEj) − u(xi)
u(xk) − u(xi)

(37)

so that

w−(pj) =
nu(CEj) + i

i− k
(38)

w+(pj) =
nu(CEj) − i

k − i
(39)

3The methods of Bleichrodt and Pinto (2000) and Etchart-Vincent (2009a) start by eliciting
nonparametrically utility points using the tradeoff method. To elicit probability weights, they
make use of parametric fits or linear interpolation to the nonparametric utility points obtained
from the tradeoff method. The use of parametric fit (resp. linear interpolation) to find utility
value to compute a probability weight make the probability weight dependent on the non
linear utility function (resp. linear utility function over small interval) used to fit data. Doing
so these methods are semi-parametric even though Bleichrodt and Pinto (2000) qualify their
method to be parameter-free.
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When choosing xk = xn and xi = x0 as in Etchart-Vincent (2004), then

w−(pj) = −u(CEj) and w+(pj) = u(CEj). As in the case of Bleichrodt and

Pinto (2000), the CEj is unlikely to be an elements of the previously elicited

sequence. Hence, u(CEj) is estimated from parametric Ątting of utility points

obtained from elements of the sequence (in the tradeoff part).

These methods are neither error-robust nor easy. Furthermore, it is worth

to mention that the utility function in the gain domain (31) and that in the

loss domain (32) are not linked since they are elicited separately. This is due

to the fact that two values on the utility function (in addition to the utility of

the reference point) Ů i.e u(xn) = 1 in the gain domain and u(xn) = −1 in the

loss domainŮ are chosen. To link between the utility in the gain domain to the

utility in the loss domain, only one value on the utility function has to be chosen

and so that all the other values only depend on this choice. Consequently, these

methods do not allow for the elicitation of loss aversion.

0.2.3.2 Method of mirror image applicable only in a risky context

Abdellaoui et al. (2007b) provided the Ąrst non-parametric method to elicit the

utility functions in the gain and loss domains that are linked so that they allow

for the estimation of loss aversion. This method is applicable only in decision

under risk. The method elicits the probability that has one-half as weight and

utility function in the full domain (loss and gain simultaneously) in four steps.

The summary of the method is given in table 1.

First step: Elictation of pg and pℓ with w+(pg) = 0.5 and w−(pℓ) = 0.5
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Table 1: Four-Step Elicitation Procedure of Abdellaoui et al. (2007b)

Assessed quantity Indifference Under CPT Choice variables∗

Elicitation of pℓ and pg such thtat w−(pℓ) = 0.5 and w+(pg) = 0.5
Step 1

Loss domain
x1 (x0, R; p, 1 − p) ∼ (x1, r; p, 1 − p) u(x2) − u(x1) = u(x1) − u(x0) p = 0.33
x2 (x1, R; p, 1 − p) ∼ (x2, r; p, 1 − p) r = −100
pℓ x1 ∼ (x2, x0; pℓ, 1 − pℓ) w−(pℓ) = 0.5 R = −600

x0 = −1000
Gain domain

x1 (x0, R; p, 1 − p) ∼ (x1, r; p, 1 − p) u(x2) − u(x1) = u(x1) − u(x0) p = 0.33
x2 (x1, R; p, 1 − p) ∼ (x2, r; p, 1 − p) r = 100
pg x1 ∼ (x2, x0; pℓ, 1 − pℓ) w+(pg) = 0.5 R = 600

x0 = 1000
Elicitation of utility function

Step 2 Lr ∈ [L1, 0] Lr ∼ (LA, LB ; pℓ, 1 − pℓ) u(Lr) = 0.5u(LA) + 0.5u(LB) L1 = −100, 000
u(L1) = −1

Step 3 ℓ L1 ∼ (ℓ, 0; 0.5, 0.5) u(ℓ)w−(0.5) = −1
g 0 ∼ (ℓ, g; 0.5, 0.5) u(g)w+(0.5) = 1
G1 G1 ∼ (g, 0; 0.5, 0.5) u(G1) = u(g)w+(0.5) = 1

Step 4 Gr ∈ [0, G1] Gr ∼ (GA, GB ; pg , 1 − pg) u(Gr) = 0.5u(GA) + 0.5u(GB)
∗ All monetary amounts are in French francs (FF).

Each elicitation requires three indifferences. First, three outcomes x0, x1 and

x2 equally spaced in terms of utility are elicited by using (28) and (29) as in the

tradeoff method. These two indifferences entail

u(x1) = 0.5u(x0) + 0.5u(x2) (40)

In the case of the loss domain, where x2 ≤ x1 ≤ x0, pℓ is elicited with the

following indifference

(x2, x0; pℓ, 1 − pℓ) ∼ x1

This indifference entails

u(x1) = w−(pℓ)u(x2) + (1 − w−(pℓ))u(x0) (41)
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Using (40) and (41), by identiĄcation, w−(pℓ) = 0.5 as wanted. We proceed

similarly in the gain domain, where x2 ≥ x1 ≥ x0.

Second step: Elicitation of utility in the loss domain

Once pℓ is known from the Ąrst step, the utility midpoint of any two losses

LA and LB for which the utilities are already known can be measured by eliciting

just one indifference. By the uniqueness properties of the utility function in

prospect theory, we can Ąx a loss L1 < 0 and set

u(L1) = −1 (42)

This allows the elicitation of the outcome L0.5 such that u(L0.5) = −0.5 by

looking for the indifference (L1, 0; pℓ, 1 − pℓ) ∼ L0.5. This process is used to elicit

utility on the interval [L1, 0]. For example, by setting LA = 1 and LB = L0.5,

the outcome L0.75 such that u(L0.75) = −0.75 can be elicited via the following

indifference (L1, L0.5; pℓ, 1 − pℓ) ∼ L0.75.

Third step: Mirror image technique to link the utility between the two

domains

In the third step, utility in the loss domain is linked to utility in the gain

domain by eliciting three indifferences. The Ąrst indifference consists in taking

one of the outcomes that was obtained in the step 2, say L1, and elicit ℓ that

satisĄes (ℓ, 0; 0.5, 0.5) ∼ L1. This indifference implies

u(ℓ)w−(0.5) = −1 (43)
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The second indifference consists in eliciting a gain g that satisĄes (ℓ, g; 0.5, 0.5) ∼
0. This indifference implies:

u(g)w+(0.5) = 1 (44)

Finally the gain G1 is elicited from the following indifference (g, 0; 0.5, 0.5) ∼ G1.

This indifference implies

u(G1) = 1 (45)

G1 has utility 1 and is the Şmirror imageŤ of L1 in terms of utility.

Fourth step:

Once pg and G1 are elicited from step 1 and step 3, the fourth and Ąnal step

of the elicitation determines utility on the interval [0, G1] in a similar way as it

is done in the loss domain in step 2.

Even though this method elicits utility function simultaneously in the gain

and loss domains and then offer the possibility to estimate loss aversion, this

method has three drawbacks. First, this method is not applicable in uncertainty

contexts. Recognizing this limitation, Abdellaoui et al. (2016) extend this

method in uncertainty contexts. Second, the method only tells us how to elicit

probabilities that have a weight of 0.5. We can point out two solutions to this

drawback. The Ąrst solution is to follow Abdellaoui (2000) procedure to elicit

other points in the weighting function. The second solution is to generalize

how w+(pg) = 0.5 and w−(pℓ) = 0.5 are elicited in the Ąrst step of this method

as it is the case in the midweight method proposed by Van De Kuilen and

Wakker (2011). The third drawback that this method shares with the previous
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(Abdellaoui, 2000; Bleichrodt and Pinto, 2000; Etchart-Vincent, 2009a) is due

to the fact that before completely eliciting the weighting function, the utility

function has to be elicited. This can be time-consuming for the experimenter if

he is only interested in eliciting some features of the weighting function. It was

the case for example of Etchart-Vincent (2009a,b). To avoid this, it is important

to have a method that allows to elicit the weighting function without knowing

utility function. The midweight method proposed by Van De Kuilen and Wakker

(2011) was an important contribution in that direction.

0.2.3.3 Method of mirror image applicable in risky and uncertainty

contexts

Since the mirror image method of Abdellaoui et al. (2007b) is only applicable in

decision under risk, Abdellaoui et al. (2016) extended this method so that it could

be applied in uncertainty and risky contexts.4 As pointed out by Abdellaoui

et al. (2016) and Bleichrodt et al. (2018), this method constitutes the Ąrst one

that makes it possible to completely measure all the ingredients of prospect

theory without making simplifying assumptions. The method is split in three

steps.

First step: Connecting utility for gains and utility for losses (mirror

image step)

This step determines the loss x−
1 and a gain x+

1 that have the same utility (in

absolute value). The steps start by Ąxing a gain X and an event E (or probability

p in a risky context). Then, the loss Y that satisĄes the following indifference is

elicited

0 ∼ (X, Y ;E,Ec) (46)

4Blavatskyy (2021) proposes a similar procedure.
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This indifference means

w+(E)u(X) + w−(Ec)u(Y ) = u(0) = 0 (47)

The gain x+
1 is determined from the following indifference

x+
1 ∼ (X, 0;E,Ec) (48)

so that

u(x+
1 ) = w+(E)u(X) (49)

The loss x−
1 is determined from the following indifference

x−
1 ∼ (Y, 0;Ec, E) (50)

so that

u(x−
1 ) = w−(Ec)u(Y ) (51)

The relations (47), (49) and (51) imply:

u(x+
1 ) = −u(x−

1 ) (52)

Second step: Measurement of utility for gains

The second step serves to elicit the remainder standard sequence of gains, i.e

x+
2 , x

+
3 , x

+
1 , ..., x

+
n . The step starts by Ąxing a loss ℓ and eliciting the loss L < ℓ

that satisĄes:

(x+
1 ,L;E,Ec) ∼ (ℓ, 0;Ec, E) (53)

so that

w+(E)u(x+
1 ) + w−(Ec)u(L) = w−(Ec)u(ℓ) (54)
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or equivalently

u(x+
1 ) − u(0)

︸ ︷︷ ︸
=0

=
w−(Ec)
w+(E)

(
u(ℓ) − u(L)

)
(55)

Next, the gain x+
2 is elicited with the following indifference

(x+
2 ,L;E,Ec) ∼ (x+

1 , ℓ;E,E
c) (56)

so that

w+(E)u(x+
2 ) + w−(Ec)u(L) = w+(E)u(x+

1 ) + w−(Ec)u(ℓ) (57)

or equivalently

u(x+
2 ) − u(x+

1 ) =
w−(Ec)
w+(E)

(
u(ℓ) − u(L)

)
(58)

Then, we continue the elicitation sequentially as follows:

(x+
j ,L;E,Ec) ∼ (x+

j−1, ℓ;E,E
c) , j = 2, 3, ..., n (59)

so as to get

u(x+
j ) − u(x+

j−1) =
w−(Ec)
w+(E)

(
u(ℓ) − u(L)

)
(60)

Relations (55) and (60) imply that 0, x+
1 , x

+
2 , x

+
3 , x

+
1 , ..., x

+
n is a standard sequence

of gains, that is 0, x+
1 , x

+
2 , x

+
3 , x

+
1 , ..., x

+
n are equally spaced in term of utility

u(x+
1 ) − u(0) = u(x+

j ) − u(x+
j−1) , j = 2, 3, ..., n (61)

u(0) = 0 and u(x+
n ) = 1 lead to

u(x+
j ) =

j

n
, for j = 1, 2, ..., n (62)
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Third step: Measurement of utility for losses

Similar to the second step, the third steps serves to elicit the remainder standard

sequence of losses, i.e x−
1 , x

−
2 , x

−
3 , ..., x

−
n . The step starts by Ąxing a gain g and

eliciting the gain G > g that satisĄes

(G, x−
1 ;E,Ec) ∼ (g, 0;E,Ec) (63)

so that

w+(E)u(G) + w−(Ec)u(x−
1 ) = w+(E)u(g) (64)

or equivalently

u(0)
︸ ︷︷ ︸

=0

−u(x−
1 ) =

w+(E)
w−(Ec)

(
u(G) − u(g)

)
(65)

Next, the loss x−
2 is elicited with the following indifference

(G, x−
2 ;E,Ec) ∼ (g, x−

1 ;E,Ec) (66)

so that

w+(E)u(G) + w−(Ec)u(x−
2 ) = w+(E)u(g) + w−(Ec)u(x−

1 ) (67)

or equivalently

u(x−
1 ) − u(x−

2 ) =
w+(E)
w−(Ec)

(
u(G) − u(g)

)
(68)

Then, we continue the elicitation sequentially as follows:

(G, x−
j ;E,Ec) ∼ (g, x−

j−1;E,E
c) , j = 2, 3, ..., n (69)
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so as to get

u(x−
j−1) − u(x−

j ) =
w+(E)
w−(Ec)

(
u(G) − u(g)

)
(70)

Relations (68) and (70) imply that 0, x−
1 , x

−
2 , x

−
3 , x

−
1 , ..., x

−
n is a standard sequence

of losses, that is:

u(0) − u(x−
1 ) = u(x−

j−1) − u(x−
j ) , j = 2, 3, ..., n (71)

Because u(0) = 0 and u(x+
1 ) = 1

n
, it follows from the Ąrst step that u(x−

1 ) = − 1
n
.

So, it also follows from (71) that:

u(x−
j ) = − j

n
, for j = 1, 2, ..., n (72)

Attema et al. (2018) and Bleichrodt et al. (2018) complete this method by one

further step to elicit probability (or event) weights. This fourth step consists in

determining the following indifference

x+
E ∼ (x+

n , 0;E,Ec) and x−
E ∼ (x−

n , 0;E,Ec) (73)

These indifferences means that

w+(E) = u(x+
E) and w−(E) = −u(x−

E) (74)

The values of u(x+
E) and u(x−

E) are approximated using the utility function

elicited in steps 2 and 3. This way to elicit probability (or event) weight can

also be found in Etchart-Vincent (2004, 2009a). Finally, it is worth to notice

that this method is neither easy nor error-robust.
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0.2.3.4 Midweight method

The midweight method proposed by Van De Kuilen and Wakker (2011) allows

to elicit weighting function when the utility midpoint for at least one pair of out-

comes is known. This method is applicable both in risky and uncertainty context.

In the risky context, this method can be viewed as a generalization of how

the probability that has one half as weight is elicited in Abdellaoui et al. (2007b)

and can be split in two steps.

First step:

The Ąrst step consists in determining the sequence of three outcomes x0, x1,

x2 equally spaced in terms of utility by the tradeoff method proposed by Wakker

and Deneffe (1996) to obtain the equation 40. Recall this equation:

u(x1) =
u(x2) + u(x0)

2
(75)

with x0 < x1 < x2 in gain domain and x2 < x1 < x0 in the loss doamain.

Second step:

Once x0, x1 and x2 are determined in the Ąrst step, the method gen-

eralizes the relation (41) in Abdellaoui et al. (2007b). Formally, a lottery

L = (x2, x1, x0; p2, p1, p0) is constructed and the quantity ϵ is determined by

looking for the following indifference

(x2, x1, x0; p2, p1, p0) ∼ (x2, x0; p2 + ϵ, p0 + p1 − ϵ) (76)
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This indifference implies

u(x1) =

(
wi(p2 + ϵ) − wi(p2)
wi(p2 + p1) − wi(p2)

)
u(x2) +

(
1 − wi(p2 + ϵ) − wi(p2)

wi(p2 + p1) − wi(p2)

)
u(x0)

(77)

Using 75 and 77, by identiĄcation p2, p2 + ϵ and p2 + p1 are equally spaced

in terms of weight wi as follows

wi(p2 + ϵ) =
wi(p2) + wi(p2 + p1)

2
(78)

To use this formula, the weight of p2 and p2 + p1 have to be known be-

fore computing wi(p2 + ϵ). Then, the experimenter has to start with the case

(p0, p1, p2) = (0, 1, 0) that corresponds to eliciting ϵ so that wi(ϵ) = 0.5. Then,

use this ϵ to elicit other points on the weighting function and so on.

We can point out two drawbacks for this method. First, it only minimizes the

need to elicit the utility function before eliciting the weighting function because

the utility midpoint for at least one pair of outcomes is still required. Second

this method does not allow direct measurement of the weight of any desired

probability p in (0, 1). For example, if the experimenter is only interested to

measure the weight wi(p) of p = 0.2, the midweight method will force him to

elicit several points of the weighting function before reaching wi(0.2). This kind

of criticism applies also to Abdellaoui (2000). Again, this can be particularly

time-consuming for the experimenter.

Similarly to the decision under risk, one can elicit three outcomes x0, x1, x2

equally spaced in terms of utility by the tradeoff method proposed by Wakker

and Deneffe (1996) in a context of uncertainty. Once the outcomes x0, x1, x2
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are elicited, the events G ⊂ D and B ⊂ D with D = G ∪B are determined as

follows

(x2, x1, x0;A,D,C) ∼ (x2, x0;A ∪G,C ∪B) (79)

This indifference implies under CPT that:

wi(A ∪G) =
wi(A) + wi(D ∪ A)

2
(80)

Similar to the risky context, this formula can be used by starting with (A,D,C) =

(∅,Ω, ∅) so as to exploit the fact that wi(∅) = 0 and wi(Ω) = 1.

A main drawback of the midweight method under uncertainty is that it is

not always applicable. In fact, to be able to elicit G and B in the indifference

79, the event space Ω needs to be sufficiently rich such as a continuum (Van

De Kuilen and Wakker, 2011). Thus, if for example the event space Ω contains

only two events the midweight method will not be able to provide the probability

(or event) weights for that events. Finally, it is worth to notice that this method

is neither easy nor not error-robust.

0.2.3.5 Alternating least squares estimation method

This method is proposed by Gonzalez and Wu (1999). To implement this method,

the experimenter Ąxes the probabilities p1, p2, ..., pK for which he wants to elicit

probability weights. He also Ąxes n pairs of positive (or negative) outcomes

(x1, y1), (x2, y2),...,(xn, yn) with 0 ≤ yj < xj, j = 1, 2, .., n. The experimenter

elicits the following K × n certainty equivalents

cejk ∼ (xj, yj; pk, 1 − pk) for j = 1, 2, ..., n and k = 1, 2, ..., K
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The method assumes the equation that characterizes the certainty equivalent

with an additive and normally distributed error term at the scale of the utility

u as follows:

u(cejk) = w+(pk)u(xj) + (1 − w+(pk))u(yj) + ϵujk
(81)

The values of w+(pk), u(xj) and u(yj) are determined based on an alternating

least squares estimation method. The idea of the estimation is the following.

First, the starting values of w+(pk), u(xj) and u(yj) are chosen. Based on

these starting values of u(xj) and u(yj), the values of u(cejk) are approximated

through linear interpolation. Finally, the values of w+(pk), u(xj) and u(yj) are

determined iteratively.

The method is error-robust and easy. However, the method is not data-

efficient and tractable (Van De Kuilen and Wakker, 2011). Furthermore, the

method is applicable in the gain and loss domains separately so that the there

is no link between utility function in the two domains. As such, loss aversion

cannot be measured (Abdellaoui et al., 2007b). Most importantly, as pointed

out by Van De Kuilen and Wakker (2011), this method is not data-efficient (i.e

inefficient) and tractable. More importantly, deĄning the response error at the

utility scale is problematic because it produces solutions that are characterized

by unrealistic concavity of the utility and probability weighting functions. To

illustrate this point, suppose that we are interested in eliciting utility only over

strictly positive outcomes with a power utility function u(z) = zα. For an

extremely concave utility function (i.e., α > 0 and α −→ 0) and an extremely

concave weighting function (i.e., w+(pk) = 1 for k = 1, 2, .., K ) along with

the PT assumptions w+(0) = 0 and w+(1) = 1, we have ϵujk
= 0 for all
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j = 1, 2, ..., n and k = 1, 2, ..., K. For the the aim of estimating u(z) for z ∈
A(z) ≡ ¶$25, $50, $75, $100, $150, $200, $400, $800♢ and the probability weights

w+(p) for p ∈ B(p) ≡ ¶0.01, 0.05, 0.10, 0.25, 0.40, 0.50, 0.60, 0.75, 0.90, 0.95, 0.99♢,

it follows that the combination of an extremely concave utility function (i.e.,

u(z) = constant > 0 for z ∈ A(z) and u(0) = 0) and an extremely concave

weighting function (i.e., w+(p) = 1 for p ∈ B(p) and w+(0) = 1 − w+(p) = 0) is

the solution of the minimization of least squares estimation.

0.3 Aims and outline of the thesis

The thesis is at the intersection of behavioral economics and decision theory. It

has two main objectives. The Ąrst is to develop new methods to estimate the

different components of decision models under risk and under uncertainty. For

risk, the idea is to develop new methods for estimating (i) utility function, (ii)

probability weighting function and, (iii) loss aversion. In the case of uncertainty,

a fourth component must also be measured: (iv) beliefs (i.e. subjective proba-

bilities) that the decision maker forms about the different possible events. The

second objective is to use these methods to understand in a concrete way the

decision-making of individuals in various Ąelds of economics. For this second

objective, the thesis focuses on applications related to incentive setting and

strategic uncertainty in game theory.

To provide further details, Chapter 1, co-authored with Brice Corgnet and

Adam Zylbersztejn, establishes a comprehensive semi-parametric method that

satisĄes the four desirable properties of parametric methods: tractable, data-

efficient, error-robust, easy. Doing so, we develop a method that increases

the precision of parameter estimates of parametric methods while being easy
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to implement and estimate. The method can be seen as an extension of the

semi-parametric method of Abdellaoui et al. (2008) with respect to three points.

First, our method uses a single step to estimate the probability weights and

the utility function in the full domain, whereas Abdellaoui et al. (2008) propose

a two-step procedure. This feature of our method allows for testing several

important restrictions (partial reĆection, identical probability weighting functions

across domains, and duality) as well as imposing these restrictions whenever

necessary. Imposing partial reĆection helps avoid the problem of arbitrary

measurement of loss aversion with power utility functions (see Wakker, 2010).

The method allows for testing and imposing identical probability weighting

functions across domains (i.e., w+(p) = w−(p)) thus allowing us to test a key

assumption of OPT. Also, the method allows for testing and imposing duality

(i.e., w+(p) = 1 − w−(1 − p)).5 By allowing us to impose duality as well as

identical probability weighting across domains, our method can be applied under

RDU (Quiggin, 1982; Gilboa, 1987; Schmeidler, 1989) and Original Prospect

Theory (Kahneman and Tversky, 1979).

Second, unlike Abdellaoui et al. (2008), we can estimate multiple probability

weights and thus elicit the shape of the probability weighting function. This is

done without losing error-robustness.

Third, certainty equivalents for mixed prospects are obtained using a different

procedure than the one proposed by ABL. In ABL, subjects are asked to provide

a loss amount L for which they are indifferent between the status-quo (0) and

a binary lottery (G,L; pg, 1 − pg) where G is a Ąxed gain and L ∈ (−∞, 0] is a

loss. In this elicitation procedure, the researcher does not know the lower bound

of the loss interval. By contrast, our method keeps track of the upper and lower

5As pointed out by Abdellaoui (2000, pp. 1509-1510), testing for duality with parametric
methods and non-parametric methods based on the tradeoff approach requires using the
specific probability weighting function of Goldstein and Einhorn (1987) and Lattimore et al.
(1992).
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bounds of the loss interval because cek belongs to the interval (yk, xk). This is

an appealing property of our method for two reasons. First, asking subjects to

provide indifference values on unbounded intervals can be cognitively demanding

(Wakker and Deneffe, 1996; Abdellaoui et al., 2007b). This may lead to errors

that potentially inĆate the estimates of loss aversion, as reported by ABL (see

Table 11, pp. 263-264). Second, eliciting indifference values on bounded intervals

allows us to use a standard switching outcome procedure (Booij and Van de

Kuilen, 2009).

Chapter 2, single-authored, establishes a nonparametric method for measuring

utility function, weighting function and loss aversion under risk and uncertainty.

It satisĄes three desirable properties of parametric methods: tractable, error-

robust, and easy. The method builds upon the smoothing spline literature.

As such, the method is more data consuming than parametric methods (e.g.

Ahamada and Flachaire, 2010; Green and Silverman, 1993). This method

should thus be used in two main cases. First, behavioral studies often elicit

few observations per subject. In such cases, the method can be used to derive

estimates at the aggregate level by pooling subjects as in Tversky and Kahneman

(1992). Second, the method can be performed at the individual level if the number

of observations per subject is sufficiently large as in Gonzalez and Wu (1999).

The method includes smooth parameters. These parameters allow to control for

the collinearity between the value and weighting functions (e.g. Zeisberger et al.,

2012; lŠHaridon and Vieider, 2019) by penalizing deviation from the linear value

function.

Chapter 3, co-authored with another PhD student Maria Alejandra Erazo

Diaz, develops a new method to measure beliefs, utility function and weighting

function towards events that are not necessarily equally likely and belong to a

discrete set (i.e., discrete sources of uncertainty). It is a multi-stage method.
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In the Ąrst stage, we only specify utility and estimate events weights non-

parametrically. Based on event weights from the Ąrst stage, the method allows

to estimate the parameters of any weighting function. Our method thus allows

for more Ćexibility in the parametric choices of weighting function in comparison

to existing methods (e.g. Baillon et al., 2018b, 2021, 2018a) that rely on the

neo-additive weighting function of Chateauneuf et al. (2007). Using simulations,

we show that the multi-stage approach is more robust to misspeciĄcation issues

than the one-stage approach that speciĄes simultaneously the functional form

for the utility and weighting functions (e.g. Baillon et al., 2018a). The method

is based on simple choices that involve the lowest possible number of outcomes

(i.e., three). As such, this method is easy for subjects, compared to methods that

are based on exchangeable events or matching probabilities (e.g. Baillon et al.,

2018b; Gutierrez and Kemel, 2021; Abdellaoui et al., 2020), in which each choice

involves four outcomes (Kpegli et al., 2023; Abdellaoui et al., 2008). Finally,

contrary to previous methods (e.g. Baillon et al., 2018b,a), our method accounts

for response errors that are pervasive in experimental data (Kpegli et al., 2023).

We implement the method experimentally to both equal and different sources

of uncertainty in two contexts: trust and coordination games. The method

successfully passes validity tests and provides plausible results, showing the

reliability of the results derived from it. People are more insensitive to likelihood

in the presence of asymmetric events than symmetric events, suggesting that

belief formation is cognitively demanding. For equal sources of uncertainty,

people exhibit payoff dependence aversion and variety of payoffs seeking. Payoff

dependence aversion means that people dislike that their own payoffs depend on

the preferences of others. This behavior is captured by a more concave utility

function. Variety of payoffs seeking means that subjects prefer a greater number
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of possible payoffs when such possible payoffs depend on the preferences of others.

This behavior is captured by more optimism.

Chapter 4, co-authored with Brice Corgnet, Roberto Hernán-González and

Adam Zylbersztejn, provides new insights about the Risk Incentives Tradeoff

(RIT) originally established under EUT. The RIT is a fundamental result of

principal-agent theory (e.g. Holmström, 1979; Milgrom and Roberts, 1992).

Yet, empirical evidence has been elusive (Corgnet and Hernan-Gonzalez, 2019;

Dohmen et al., 2021). This could be due to a lack of robustness of the theory

outside of the standard expected utility framework (EUT) or to confounding

factors in the empirical tests. We Ąrst study RIT under alternative theories:

Rank-Dependent Utility (RDU) and Mean-Variance-Skewness (MVS). We show

that, under RDU, RIT is remarkably pervasive because it applies not only

when agents are risk-averse but also when they are risk-neutral or risk-seeking.

For example, RIT is present when risk-neutral or risk-seeking agents who are

moderately risk-seeking in the probability domain (i.e., they moderately over-

weight probabilities) are risk-averse in the utility domain (i.e., their utility is

concave). This result suggests RIT might be more widespread than predicted

by EUT. This observation contrasts with the limited empirical evidence for

RIT. However, MVS provides a setup in which, in line with existing evidence,

RIT is less pervasive. Although RIT applies whenever agents are risk-averse

under EUT, this is not the case under MVS. Indeed, RIT might not hold for

risk-averse agents who value positive skewness. Furthermore, under MVS the

optimal variable pay (Ąxed pay) can increase (decrease) with the shock, which

is what we refer to as reversed RIT. This occurs when the distribution of the

shock is positively skewed and the aversion to variance is less pronounced than

the value of skewness for a risk-averse MVS agent.
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These theoretical results show that non-EUT models provide reasons for

both hope and despair regarding the robustness of RIT. To test the predictions

of the alternative theories, we develop a novel lab test of RIT to eliminate

confounding factors. To do so, we directly elicit the minimum Ąxed pay agents

are ready to accept given a value of the variable pay. In this setup, the focus is

on agentsŠ decisions because principals do not make contractual decisions (see

e.g., Dohmen et al., 2021). This BareBone design (BB design, henceforth) allows

us to discard confounding factors related to the risk attitudes of principals. It

also eliminates any asymmetry of information between the principal and the

agent whose preferences are unknown. We also use monetary effort instead

of a real-effort task (e.g., Anderhub et al., 2002; Keser and Willinger, 2007;

Gächter and Königstein, 2009) to discard other confounding factors often present

in experimental data such as social motives and reference points (see Corgnet

and Hernan-Gonzalez, 2019). More generally, our design is such that common

confounding factors, such as organizational hierarchies, delegation, implicit

incentives, tacit knowledge, uncertainty and market dynamics (Jensen and

Meckling, 1995; Raith, 2008; DeVaro and Kurtulus, 2010; Edmans et al., 2012;

He et al., 2014), are absent. We do not mean to underplay the importance of

these confounding factors but implement a testbed for the basic mechanism

underlying RIT. It follows that a lack of evidence supporting RIT in our setup

would be a deĄnitive blow for the theory. To ensure that our BB design can be

used to study RIT, we analyze a BareBone (BB) principal-agent model.

Our experiment shows that RIT is remarkably robust and more pervasive

than predicted by EUT. In line with RDU but in contrast with EUT and MVS,

RIT arises even when agents are risk-seeking. This Ąnding has direct implications

for various applications of the theory in which agents are risk-seeking agents, as

is the case of executive compensation (Garen, 1994; Edmans and Gabaix, 2011;
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Edmans et al., 2012, 2017) and highly-paid work packages (Ma et al., 2019).

Risk-seeking is likely to be pervasive in these applications because of selection

arguments (MacCrimmon and Wehrung, 1990; Brenner, 2015). Furthermore,

executive packages are often positively skewed due to, for example, the use of

stock options (Edmans et al., 2017). As a result, an agent who appears to be

risk-averse when rewarded according to linear contracts might appear to be

risk-seeking when facing skewed compensation packages.
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Abstract

Eliciting all the components of prospect theory Űcurvature of the utility function,

weighting function and loss aversionŰ remains an open empirical challenge. We

develop a semi-parametric method that keeps the tractability of parametric

methods while providing more precise estimates. Applying the new method

to the datasets of Tversky and Kahneman (1992) and Bruhin et al. (2010),

we reject the convexity of the utility function in the loss domain and show

that the probability weighting function does not exhibit duality and equality

across domains, in line with cumulative prospect theory and in contrast with

original prospect and rank dependent utility theories. Furthermore, our method

highlights that the overweighting of tail probabilities is more pronounced in the

gain domain than in the loss domain. Overall, our results show that the utility

function varies little across domains, thus suggesting that probability distortions

are key to capture differences in risk attitudes in the gain and loss domains.

Keywords: Prospect theory; semi-parametric elicitation; risk attitudes; weight-

ing function; loss aversion.

JEL codes : D81, C91
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1.1 Introduction

There is now a large body of empirical evidence showing systematic violations

of expected utility theory (EUT; see Starmer, 2000, for a review). The original

version of prospect theory (OPT; see Kahneman and Tversky, 1979, henceforth

KT79) and its subsequent reĄnements, most notably cumulative prospect theory

(CPT; see Tversky and Kahneman, 1992, henceforth TK92), explain these

empirical violations by introducing probability distortions (Bleichrodt and Pinto,

2000) and loss aversion (Wakker, 2010). Classical methods for eliciting risk

attitudes (such as Holt and Laury, 2002) that are based on EUT may lead to

biased estimates (Abdellaoui et al. (2011a) and Abdellaoui et al. (2008, Figure 1;

henceforth ABL)) and produce incoherent results (Bleichrodt et al., 2001; Hershey

and Schoemaker, 1985). New methods have thus been proposed that build on

CPT instead of EUT (ABL). These methods fall into three broad categories:

parametric (with parametric form of utility and probability weighting functions),

semi-parametric (with parametric form of the utility function and parameter-free

probability weighting function) and non-parametric (no parametric form for

either function).

While all parametric methods rely on a parametric speciĄcation of both

utility and probability weighting, they may differ in terms of the required data

structures and the employed estimation procedures. The data used by parametric

methods usually involve certainty equivalents (e.g. Fehr-Duda et al., 2006; Bruhin

et al., 2010; lŠHaridon and Vieider, 2019, TK92), binary choices (e.g. Harrison

and Rutström, 2008, 2009; Harrison and Swarthout, 2020), as well as indifference

between non-degenerate lotteries from the so-called tradeoff method (Booij et al.,

2010). Then, commonplace estimation procedures range from simple arithmetic

calculations (Tanaka et al., 2010) to more convoluted econometric techniques

such as maximum likelihood estimation (MLE) (e.g. Fehr-Duda et al., 2006;
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Stott, 2006; Harrison and Rutström, 2008, 2009; Harrison and Swarthout, 2020),

nonlinear least squares (NLS)(e.g.TK92, Gonzalez and Wu, 1999, henceforth

GW99), OLS (Fox and Poldrack, 2009), and Bayesian methods (e.g. Nilsson

et al., 2011; Toubia et al., 2013; Murphy and ten Brincke, 2018; Spiliopoulos

and Hertwig, 2019; Baillon et al., 2020; Gao et al., 2020).

Parametric methods are more often used in applied research than non-

parametric and semi-parametric methods (ABL) because they have four appeal-

ing properties: tractable, data-efficiency, easy and error-robust (see Section 4.2

for deĄnitions), which are associated with minimal data requirements and simple

estimation procedures.

These virtues, however, come at a cost. First, empirical estimates are

sensitive to the speciĄcation of the utility and probability weighting functions

(Abdellaoui, 2000). Second, parametric methods only provide an overall measure

of the goodness of Ąt of the model, rather than separate measures for each of its

components Ű one for the utility function and one for the probability weighting

function (see GW99).

The aim of this paper is to establish a comprehensive semi-parametric method

that satisĄes the four desirable properties of parametric methods (see Section

4.2 for deĄnitions). Doing so, we develop a method that increases the precision

of parameter estimates of parametric methods while being easy to implement

and estimate. Our method also comes with an additional advantage because it

can be implemented not only under CPT but also under OPT and alternative

theories such as rank dependent utility theory (henceforth RDU; see Quiggin,

1982; Gilboa, 1987; Schmeidler, 1989)

This paper proceeds as follows. Section 4.2 outlines the existing semi-

parametric and non-parametric methods. Section 4.3 presents our elicitation

method under cumulative prospect theory. Section 1.4 focuses on identiĄcation
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and misspeciĄcation. Section 4.4 provides two applications of the method.

Section 3.7 concludes.

1.2 Existing semi-parametric and non-parametric

methods

In this section, we review the existing semi- and non-parametric methods of

eliciting risk attitudes under CPT. Table 1.1 provides an overview of these

methods along the four desirable properties of parametric methods (tractability,

data-efficiency, easiness, error-robustness) and comprehensiveness. We deĄne

these properties below.

Tractable: the method allows for estimating risk attitudes with standard tools,

like OLS or NLS (Abdellaoui et al., 2007a, ABL).

Error-robust: the method accounts for the fact that subjects make response

errors when answering questions (ABL).

Easy (not cognitively demanding): the method relies on simple choices

involving the lowest possible number of outcomes, that is 3 (ABL). A useful

benchmark comes from TK92 who ask their subjects to make simple choices

between a sure outcome and binary lottery.

Data-efficient: the method requires few measurements (observations) to esti-

mate the parameters of the utility function and the probability weights. As a

rule of thumb, we take TK92 (with 28 measurements for 9 probability weights

and one utility parameter per domain) as benchmark, and consider a method
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data-efficient if it requires no more than three measurements per estimate of a

probability weight.1

Comprehensive: Comprehensive: the method allows for estimating utility

function, loss aversion and weighting function under risk (i.e. known probability)

as well as under uncertainty (i.e. unknown probability).

The existing methods typically use the tradeoff approach of Wakker and

Deneffe (1996) in three steps.2 In the Ąrst step, the tradeoff method estimates the

utility function by eliciting a sequence of outcomes (x0, x1, x2, ..., xn) which are

equally spaced in terms of utility: u(xi)−u(xi−1) = constant for i = 1, 2, ..., n. In

the second step, the utility function obtained in the Ąrst step is used to estimate

the weighting function. If the utility function in the gain and loss domains is

elicited on the same scale (Abdellaoui et al., 2007b, 2016), the loss aversion

can then be inferred in a third step. The tradeoff method is not error-robust

because it assumes that the Ąrst-step values (x1, x2, ..., xn) are elicited without

errors. This assumption is particularly restrictive because the elicitation of these

values is subject to error propagation: any error in the Ąrst-stage elicitation of

a given value (xi) affects the subsequent estimates of values (xi+1, ..., xn).3 It

1ABL use the term “efficient” instead. Since this property only relates to the physical
resources (such as time and money) used for data collection, we coin the term data-efficiency

to avoid confusion with the (unrelated) statistical notion of the efficiency of an estimator.
2See, e.g. Abdellaoui (2000); Bleichrodt and Pinto (2000); Etchart-Vincent (2004); Abdel-

laoui et al. (2007b); Etchart-Vincent (2009a); Booij and Van de Kuilen (2009); Van De Kuilen
and Wakker (2011); Abdellaoui et al. (2016); Attema et al. (2018); Bleichrodt et al. (2018);
Blavatskyy (2021). The main reason of the popularity of the tradeoff method is that the
elicitation of the utility function is robust to probability distortions.

3Another issue with the standard tradeoff method is strategic responding (Harrison and
Rutström, 2008; Abdellaoui et al., 2020). For the sake of illustration, suppose that the
researcher is looking for outcomes x1 and x2 by eliciting a pair of chained indifference values x1

and x2 such that (x1, $1; 0.5, 0.5) ∼ ($10, $5; 0.5, 0.5) and (x2, $1; 0.5, 0.5) ∼ (x1, $5; 0.5, 0.5).
One of these four lotteries is picked at random for payoff at the end of the experiment. Hence,
the decision-making problem boils down to calibrating the following lottery: R(x1, x2) =
($1, $5, $10, x1, x2; 1/4, 1/4, 1/8, 1/4, 1/8). This, in turn, provides incentives to overstate the
values of x1 and x2, since x∗

1 > x1 and x∗
2 > x2 yields a lottery R(x∗

1, x
∗
2) that first-order

52



Chapter 1. All at Once! A Comprehensive and Tractable Semi-Parametric Method to Elicit

Prospect Theory Components

follows that semi-parametric and non-parametric elicitation techniques based

on the tradeoff method are not error-robust (see Table 1.1). Moreover, ABL

note that the complexity of the elicitation procedure makes the tradeoff method

cognitively demanding.4

The literature proposes three notable alternatives to the tradeoff method

(GW99; ABL; Abdellaoui et al., 2011c).5 However, GW99 is not a comprehensive

method because it does not elicit loss aversion. Also, Van De Kuilen and Wakker

(2011) point to the lack of tractability and efficiency of this method. Furthermore,

their method tends to produce an extremely concave (resp. convex) utility

function in the gain (resp. loss) domain (see footnote 13).

The semi-parametric method of ABL, in turn, satisĄes the four appealing

properties of parametric methods, and provides information on the goodness of

Ąt of the functional form chosen for estimating the utility function. Yet, ABL is

not a comprehensive method because it cannot estimate the weighting function.

Achieving comprehensiveness by including an additional step to estimate the

weighting function, as in Abdellaoui et al. (2011c), comes at the cost of potentially

multiplying response errors (Etchart-Vincent, 2004, pp. 221).

In addition, the approach in ABL and Abdellaoui et al. (2011c) has two

caveats when it comes to measuring loss aversion. First, estimating the utility

stochastically dominates R(x1, x2). Recently, Johnson et al. (2019) have developed a new
mechanism, called PRINCE, that alleviates this issue by ex ante fixing the real choice situation
that determines the final payment.

4This is because under the tradeoff method subjects need to compare two binary lotteries,
while other methods based on certainty equivalent elicitation only ask subjects to compare a
certain amount with a binary lottery. Thus, the tradeoff method requires processing more
information which makes it relatively cognitively demanding.

5A method related to Abdellaoui et al. (2011c) is the source method of Abdellaoui et al.
(2011a) that allows for eliciting the source function and the utility function under the biseparable
preference model of Ghirardato and Marinacci (2001). An additional assumption is that
decision makers can assign subjective probabilities (i.e., beliefs) to events even when they do
not maximize subjective expected utility. Another method proposed by Bertani et al. (2019)
elicits the probability weighting function. However, this method is restrictive because it is only
valid for the dual theory of Yaari (1987) in which the utility function is assumed to be linear.
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function separately in the gain and loss domains makes it impossible to impose

partial reĆection (i.e., identical utility curvature in both domains) which is often

required to circumvent the arbitrary measurement of loss aversion (see Wakker,

2010, pp. 267-270).6 By allowing for a joint estimation of the utility function

in both domains, our method allows for testing and imposing partial refection

whenever needed.7 The second problem, as pointed out by Wakker and Deneffe

(1996, pp. 1148), comes from the fact that the elicitation of loss aversion in

ABL and Abdellaoui et al. (2011c) is based on asking subjects to provide a loss

amount L on an unbounded interval (−∞, 0]. This procedure is more cognitively

demanding than stating L on a bounded interval (Abdellaoui et al., 2007b).

Then, not knowing the lowest possible value of the loss amount L could lead to

large response errors that potentially inĆate the estimates of loss aversion, as

reported in ABL (see Table 11, pp. 263-264).

6Note that this issue also applies to the parametric methods in TK92 and Fehr-Duda et al.
(2006) which estimate the utility function in the gain and loss domains in two separate steps.
Other parametric methods do not suffer from this problem (Harrison and Rutström, 2008;
Post et al., 2008; Tanaka et al., 2010).

7With our one-step procedure, it is also possible to test whether the probability weighting
functions are the same in the gain and loss domains. Outside the framework of CPT, our
method also allows for testing the duality of the probability weighting function under RDU.
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Table 1.1: Summary of literature on semi-parametric and non-parametric
methods

Method or Tractable Data-efficient Easy Error-robust Comprehensive

combination of methods

Non-parametric methods based on tradeoff method

Abdellaoui et al. (2007b) Yes Yes No No No

and Abdellaoui (2000) (only risk)

Abdellaoui et al. (2016)

Bleichrodt et al. (2018) Yes Yes No No Yes

and Attema et al. (2018)

Van De Kuilen and Wakker (2011) Yes Yes No No No

(only w)

Blavatskyy (2021) Yes Yes No No No

(only u and λ)

Semi-parametric methods based on tradeoff method

Etchart-Vincent (2004, 2009a) Yes Yes No No No

(only u and w)

Bleichrodt and Pinto (2000) Yes Yes No No No

(only u and w)

Chai and Ngai (2020) Yes Yes No No No

(only w)

Non-parametric method not based on tradeoff method

GW99 No No Yes Yes No

(only u and w)

Semi-parametric methods not based on tradeoff method

ABL Yes Yes Yes Yes No

(only u and λ)

Abdellaoui et al. (2011c) Yes Yes Yes No Yes

This paper Yes Yes Yes Yes Yes
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1.3 Method

1.3.1 Notations

Consider a binary lottery L = (x, y; p, 1 − p) yielding outcome x with probability

p and outcome y with probability 1 − p, both outcomes being real numbers.8

For notational convenience, let x > y ≥ 0 (x < y ≤ 0) for non-mixed prospects

involving only gains (losses). For mixed prospects (i.e., involving both gains

and losses), let y < 0 < x. ≿ is a preference relation over prospects with ≻ (∼)

denoting strict preference (indifference). Preferences are represented by CPT

with a probability weighting function wi and a value function v as deĄned in

equation (2.1) for non-mixed prospects and in equation (2.2) for the mixed ones:

CPT (L) =
(
v(x) − v(y)

)
wi(p) + v(y) (1.1)

CPT (L) = w+(p)v(x) + w−(1 − p)v(y) (1.2)

where wi and v are both continuous, strictly increasing and satisfying v(0) = 0,

wi(0) = 0 and wi(1) = 1, and i =Ş+Ť (i =Ş−Ť) stands for the gain (loss) domain.9

Following the seminal study by TK92, as well as the subsequent developments

in Köbberling and Wakker (2005) and ABL, we assume that the value function

v(.) is composed of the loss aversion index λ > 0 which reĆects the exchange

rate between gain and loss utility units, and the utility function u(.) that reĆects

the intrinsic value of outcomes:
8This notation is related to decision under risk. In the case of decisions under uncertainty,

one would simply replace p and 1 − p by E and Ec respectively. E denotes an event in a
state space Ω and Ec denotes its complement in Ω. In that case, L = (x, y;E,Ec) is a binary
prospect that gives outcome x if E occurs, and y otherwise.

9CPT makes no explicit link between weighting functions w+(.) and w−(.) which makes it
more general than OPT in which w+(p) = w−(p), or RDU that includes the duality condition
w+(p) = 1 − w−(1 − p).
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v(x) =





u(x) if x ≥ 0

λu(x) if x < 0
(1.3)

However, without further assumptions, loss aversion (λ) as deĄned in (1.3)

is not empirically identiĄable. Indeed, we can rescale the utility function

u(.) in the gain and loss domains with two different linear transformations

u∗(x) = ρu(x) for x ≥ 0 and u∗(x) = τu(x) for x < 0, so that we have a

linear transformation v∗(x) = ρv(x) for the value function by deĄning λ∗ = λ ρ
τ

(Wakker, 2010, p. 248):

v∗(x) =





u∗(x) if x ≥ 0

λ∗u∗(x) if x < 0
with λ∗ = λ

ρ

τ

As a result, as long as ρ ̸= τ , we have two different values for the loss aversion

index (λ and λ∗) that represent the same underlying preferences. However, one

can avoid this arbitrary measurement of loss aversion using utility functions

that are differentiable at 0 with u′(0) ̸= 0 (e.g. exponential utility in equation

(3.17)). In the case of power utility functions (see equation (3.16)), the issue of

identiĄcation of loss aversion is present unless partial reflection (i.e., identical

utility curvature in the full domain) is imposed.

1.3.2 Elicitation

We start by considering two standard utility functions that have been previously

shown to provide a good Ąt to experimental data: the power utility function (see,

e.g. GW99; Stott, 2006) and the exponential utility function (see, e.g. Attema
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et al., 2013).10 Next, we detail the steps for estimating the probability weighting

function, the curvature of the utility function, and the loss aversion index.

1.3.2.1 Utility function

As in Booij et al. (2010), we use the following notation for the power (3.16) and

exponential (3.17) utility functions:

u(x) = (1(x≥0) − 1(x<0)) ♣x♣αp1(x≥0)+βp1(x<0) (1.4)

u(x) = (1(x≥0) − 1(x<0))
1 − exp

(
(βe1(x<0) − αe1(x≥0))x

)

αe1(x≥0) + βe1(x<0)

(1.5)

where 1(.) refers to the indicator function. The important properties of these

functions are related to domain-speciĄc curvature, loss aversion, and partial

reĆection, and can be summarized as follows. For gains (losses), the power

function in (3.16) is concave if αp < 1 (βp > 1), linear if αp = 1 (βp = 1), and

convex if αp > 1 (βp < 1). For gains (losses), the exponential function in (3.17)

is concave if αe > 0 (βe < 0), linear if αe −→ 0 (βe −→ 0), and convex if αe < 0

(βe > 0). Furthermore, the two functions imply two different deĄnitions of loss

aversion. For (3.16), the loss aversion index is λ = −v(−$1)
v($1)

which corresponds

to the standard deĄnition in TK92. For (3.17), the loss aversion index is given

by the deĄnition in Köbberling and Wakker (2005), that is λ =
v′

↑
(0)

v′
↓
(0)

with v′
↑(0)

and v′
↓(0) representing the left and right derivatives of the value function at the

reference point.11 Finally, partial reĆection corresponds to αp = βp and αe = βe

in (3.16) and (3.17).

In addition, we use the following method for curvature comparisons of different

utility functions for a given interval, such as [0, x] in the gain domain or [x, 0] in

10Note, however, that our method is compatible with any utility function.
11Regardless of the exact definition, it is always the case that loss aversion (loss seeking)

corresponds to λ > 1(λ < 1), whereas λ = 1 captures loss neutrality.
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the loss domain. We compute the following measure of utility curvature (see

also Abdellaoui et al., 2016):

α =
1

xu(x)

∫ x

0
u(t)dt if x ≥ 0 (1.6)

β =
1

xu(x)

∫ 0

x
u(t)dt if x < 0 (1.7)

For power (exponential) utility function, this yields α = 1
1+αp

and β = − 1
1+βp

( α = 1
1−exp(−αex)

− 1
αex

and β = 1
exp(βex)−1

− 1
βex

.)

Then, α > 0.5 / α = 0.5 / α < 0.5 correspond to concave / linear / convex

utility functions in the gain domain. In the loss domain we have β > −0.5

/ β = −0.5 / β < −0.5 that correspond to concave / linear / convex utility

functions.

1.3.2.2 Estimating probability weighting functions and utility curva-

ture

The Ąrst step of our estimation procedure consists of three parts. First, we select

the set of probabilities ¶pk : k = 1, 2, ..., K♢ for which weights are estimated in

the gain and loss domains, with pk < pk+1. For any pk, its complement 1 − pk

must also be included in the set of probabilities, so that pK−k+1 = 1 − pk for

k = 1, 2, ..., K. Then, in a given domain, one elicits (at least) two certainty

equivalents for each probability pk:

ceij,k ∼ (xij,k, y
i
j,k; pk, 1 − pk) , j = 1, 2, ..., N i

k and N i
k ≥ 2 (1.8)
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where N i
k stands for the number of certainty equivalents for pk in domain

i ∈ ¶Ş+Ť;Ş−Ť ♢, and xij,k and yij,k are outcomes such that x+
j,k > y+

j,k ≥ 0 and

x−
j,k < y−

j,k ≤ 0.12

Thus, in total one needs to elicitN+ =
∑K
k=1 N

+
k ≥ 2×K certainty equivalents

in the gain domain and N− =
∑K
k=1 N

−
k ≥ 2×K certainty equivalents in the loss

domain. For invertible u and using (2.1) and (1.3), these certainty equivalents

satisfy the following condition:

ceij,k = u−1
[(
u(xij,k) − u(yij,k)

)
wi(pk) + u(yij,k)

]
(1.9)

Let ce,x and y be column vectors containing all the realizations of ceij,k,

xij,k and yij,k, respectively. Any column vector z ∈ ¶ce,x,y♢ is constructed as

follows:
12Note that having the same outcomes for each probability (xij,k = xij and yij,k = yij for all

k) allows for an immediate test of the monotonicity of preferences by checking if certainty
equivalents increase with probabilities for given pairs of outcomes (xij , y

i
j). This choice of

outcomes could also reduce the cognitive burden of the task.
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z =




z+
1

z+
2

.

.

.

z+
K

z−
1

z−
2

.

.

.

z−
K




with z+
k =




zi1,k

zi2,k

.

.

.

ziN i
k
,k




, i ∈ ¶Ş + Ť; Ş − Ť♢ and k = 1, 2, ..., K

As in the literature (e.g. ABL; Hey et al., 2009; Bruhin et al., 2010, henceforth

BFE10), we assume that certainty equivalents are observed with additive response

error with mean 0. Thus, the empirical counterpart of (2.9) is given by:13

13An alternative approach would be to introduce the response error term at the utility

level (GW99, eq. 7): u(cel) = (u(xl) − u(yl)) ×




K∑

k=1

(δ+
k D+

l + δ−
k D−

l )Ikl


 + u(yl) + eil.

However, defining the response error at the utility level is problematic when using certainty
equivalents data because it produces solutions that are characterized by unrealistic concavity
of the utility and probability weighting functions. To illustrate this point, suppose that we
are interested in eliciting utility only over strictly positive outcomes with a power utility
function u(z) = zα. For an extremely concave utility function (i.e., α > 0 and α −→ 0)
and an extremely concave weighting function (i.e., δ+

k = 1 for k = 1, 2, ..,K ) along with
the PT assumptions w+(0) = 0 and w+(1) = 1, we have e+

l = 0 for all l = 1, 2, ..., N+.
For the non-parametric method of GW99 which aims at estimating u(z) for z ∈ A(z) ≡
¶$25, $50, $75, $100, $150, $200, $400, $800♢ and the probability weights w(p) for p ∈ B(p) ≡
¶0.01, 0.05, 0.10, 0.25, 0.40, 0.50, 0.60, 0.75, 0.90, 0.95, 0.99♢, it follows that an extremely concave
utility function (i.e., u(z) = constant > 0 for z ∈ A(z) and u(0) = 0) and an extremely concave
weighting function (i.e., w(p) = 1 for p ∈ B(p) and w(0) = 1 − w(p) = 0) are solutions of the
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cel = u−1


(u(xl) − u(yl)) ×




K∑

k=1

(δ+
k D+

l + δ−
k D−

l )Ikl


+ u(yl)


+ eil (1.10)

where Ik is a dummy variable set to 1 if the probability equals pk and 0

otherwise, D+ (D−) is a dummy variable set to 1 for a positive (negative)

certainty equivalent and 0 otherwise, ei the response error term and l is the lth

line in ce, x, y, Ik and ei. Probability weights correspond to:14 15

w+(pk) = δ+
k and w−(pk) = δ−

k for k = 1, ..., K (1.11)

Note that u−1 in (1.10) should be written in the full domain. To do that,

one can Ąrst write u in the full domain using indicator functions as in (3.16) and

(3.17), and u−1 can be derived using standard algebra. Finally, the parameters

in (1.10) can be estimated as long as one provides a functional form for u (and

thus for u−1), such as (3.16) or (3.17).16

The estimation of equation (1.10) can be done with either NLS or MLE. Under

standard assumptions of normally distributed error terms and homoscedasticity,

optimization problem. A similar issue can be found in Section 4.3 of Green and Silverman
(1993).

14Take a probability ps for s ∈ 1, 2, ...,K. Isl equals 1 for any observation l that involves ps,
and all the other probability dummy variables Icl for c ̸= s are set to 0. In that case, we have∑K
k=1(δ+

k D+
l + δ−

k D−
l )Ikj = δ+

s D+
l + δ−

s D−
l . In the gain domain, the dummy variable D+

l

equals 1 while D−
l equals 0 so that we get

∑K
k=1(δ+

k D+
l + δ−

k D−
l )Ikj = δ+

s D+
l + δ−

s D−
l = δ+

s .

Hence, w+(pk) = δ+
k in (1.10) for k = 1, 2, ...,K. Analogously, w−(pk) = δ−

k in (1.10) for
k = 1, 2, ...,K.

15Note that we do not require monotonicity of the weighting function as is commonly done
in the literature (see e.g. GW99, p. 147). Requiring monotonicity in our method can be

achieved by adding the following restriction on weights: δik = δi1 +

k∑

j=2

exp(aij) for k ≥ 2. In

this case, the estimated parameters are δi1, ai2, a
i
3, ..., a

i
K .

16One can choose the functional form that best performs in terms of goodness of fit (e.g.
Hey and Orme, 1994; Fehr-Duda et al., 2006; Stott, 2006).
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both methods provide identical point estimates for risk-attitude components,

with MLE being a more efficient method (see, e.g. Wooldridge, 2010, p. 470).17

In addition, two sources of heteroscedasticity can be present at the level of

individual data: the variance of the error term may vary (i) with respect to

the range ♣xl − yl♣ of a lottery, but also (ii) across domains i = +,− (gains vs.

losses). Both of them can be accounted for by MLE (lŠHaridon and Vieider,

2019, BFE10). Herein, we adopt a more general form of heteroscedasticity than

these two studies by assuming that σi,l = σi♣xl − yl♣ψ with ψ ≥ 0 where ψ ̸= 0

implies there is heteroscedasticity due to the range of outcomes.18

Our method allows us to account for these various sources of heteroscedasticity

by applying MLE to equation (1.10). The log-likelihood function is:

logL(θi, δi, σi, ψ) = − (N+ +N−)log
(√

2π
)

−
N++N−∑

l=1

log(σi ♣xl − yl♣ψ)

− 1
2

N++N−∑

l=1


 eil

σi ♣xl − yl♣ψ




2 (1.12)

where θi stands for the parameters associated with the utility function in domain

i. Maximizing the log-likelihood with respect to all the parameters provides a

simultaneous estimation of the utility function and probability weights for the

gain and loss domains.

We use two criteria to assess the achieved goodness of Ąt: Akaike Information

Criterion (AIC) and leave-one-out Cross Validation (CV). AIC is a standard

measure in the literature (see, e.g. Fehr-Duda et al., 2006; Stott, 2006; Hey

and Orme, 1994) and is given as AIC = 2np − 2logL, where logL is the log-

17In Appendix 1.D, we also provide an illustration of how to apply Bayesian techniques
with our semi-parametric method using data from l’Haridon and Vieider (2019).

18A third source of heteroscedasticity may arise at the aggregate level (pooled data) when
the variance of response errors differs across individuals (e.g. Harrison and Rutström, 2008,
2009; l’Haridon and Vieider, 2019, BFE10)
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likelihood function given in equation (1.12) and np is the total number of

estimated parameters in the utility function, the probability weights and the

variance of response error. For a one-parameter and domain-speciĄc utility

function (as in equations 3.16 and 3.17), there are np = 2K + 5 parameters

in the AIC computation: 2K probability weights (gain and loss domains), 2

utility parameters (gain and loss domains), and 3 variance parameters σ+, σ−

and ψ. As a descriptive alternative to AIC, we also compute CV based on

the following multi-step procedure (see, e.g. Baillon et al., 2020, for a similar

approach). In each step, we estimate the model on N+ + N− − 1 non-mixed

lotteries and predict the certainty equivalent for the remaining (excluded) lottery.

The (absolute) difference between the predicted and actual certainty equivalents

is the (absolute) prediction error for that lottery. This out-of-sample prediction

procedure is repeated over N+ +N− steps such that each lottery is left out of

the sample once. Then, the value of the criterion is the mean absolute prediction

error.

The certainty equivalent in equation (1.10) is given by equations (1.13) and

(1.14) for power and exponential utility functions, respectively

cel =(D+
l − D−

l )



(

♣xl♣αpD+
l

+βpD−
l − ♣yl♣αpD+

l
+βpD−

l

)
×




K∑

k=1

(δ+
k D+

l + δ−
k D−

l )Ikl


+ ♣yl♣αpD+

l
+βpD−

l




1

αpD
+
l

+βpD
−
l

+ e
i
l

(1.13)
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cel =ln



(
exp((βeD

−
l − αeD

+
l )xl) − exp((βeD

−
l − αeD

+
l )yl)

)
×




K∑

k=1

(δ+
k D+

l + δ−
k D−

l )Ikl


+ exp((βeD

−
l − αeD

+
l )yl)


×

1

βeD
−
l − αeD

+
l

+ e
i
l

(1.14)

1.3.2.3 Estimating loss aversion

As a second step, we measure the loss aversion index λ as deĄned in (1.3) based

on the estimates of the utility function and the probability weights outlined in

subsection 1.3.2.2. Following Abdellaoui et al. (2007b), the estimation of the

loss aversion index can be done using a set of K indifference relationships that

involve mixed binary prospects:

cek ∼ (xk, yk; pk, 1 − pk) , k = 1, 2, ..., K (1.15)

where yk < 0 < xk. Under CPT, these indifferences imply that:

cek = v−1
[
w+(pk)v(xk) + w−(1 − pk)v(yk)

]
(1.16)

Because cek belongs to the interval (yk, xk), it could either be a gain or a

loss. Also, note that for each k both w+(pk) and w−(1 − pk) are known since

they have been elicited in the previous step. Echoing our previous notation,

let ce, x and y contain the realizations of cek, xk and yk. In addition, denote

by δ+ and δ− the column vectors such that δ+′ ≡ (δ+
1 , δ

+
2 , ..., δ

+
K) and δ−′ ≡

(δ−
1 , δ

−
2 , ..., δ

−
K) = (δ−

K , δ
−
K−1, ..., δ

−
1 ).19 Assuming that certainty equivalents are

19For clarity of exposition, we use underscores to refer to the loss domain so that: δ−
k ≡

δ−
K−k+1 = w−(1 − pk) for k = 1, 2, ...,K.
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observed with an additive and normally distributed response error term (ek),

the empirical counterpart of equation (1.16) then becomes:

cek = v−1
[
δ+
k v(xk) + δ−

k v(yk)
]

+ ek (1.17)

v−1 in (1.17) can be derived similarly to u−1 in (1.10). Then, the respective

certainty equivalent equations for power and exponential utility functions become:

cek = (D+
k − D−

k )


δ+

k (xk)αp − λδ−
k (−yk)βp

D+
k − λD+

k




1

αpD
+
k

+βpD
−
k

+ ek (1.18)

cek =
ln

[
1 − αeD+

k
+βeD−

k

D+
k

−λD−
k

(
δ+
k

(
1−exp(−αexk)

αe

)
− λδ−

k

(
1−exp(βeyk)

βe

))]

βeD
−
k − αeD

+
k

+ ek (1.19)

Using the values of the probability weights and the parameters of u(.) from the

Ąrst step, we can estimate (1.18) or (1.19) by NLS or MLE to obtain λ.

1.3.2.4 Key properties of our method

Comparison with ABL. We reĄne and extend the method previously proposed

by ABL in several ways.

First, unlike ABL, we can estimate multiple probability weights and thus

elicit the shape of the probability weighting function.

Second, our method uses a single step to estimate the probability weights

and the utility function in the full domain, whereas ABL propose a two-step

procedure. This feature of our method allows for testing several important
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restrictions (partial reĆection, identical probability weighting functions across

domains, and duality) as well as imposing these restrictions whenever necessary.

Imposing partial reĆection helps avoid the problem of arbitrary measurement

of loss aversion with power utility functions (see Wakker, 2010). Testing for

identical probability weighting functions across domains (i.e., w+(pk) = w−(pk)

for all k) allows us to test a key assumption of OPT. In addition, this assumption

must also be made under CPT whenever loss aversion is present and preferences

are homogeneous (Al-Nowaihi et al., 2008).20 Our method allows for testing and

imposing duality (i.e., w+(pk) = 1 − w−(1 − pk) for all k).21 By allowing for

testing and imposing duality as well as identical probability weighting across

domains, our method can be applied under RDU (Quiggin, 1982; Gilboa, 1987;

Schmeidler, 1989) and OPT (KT79). This is not the case for existing parametric,

semi-parametric, or non-parametric methods.

Third, certainty equivalents for mixed prospects are obtained using a different

procedure than the one proposed by ABL. In ABL, subjects are asked to provide

a loss amount L for which they are indifferent between the status-quo (0) and a

binary lottery (G,L; pg, 1 − pg) where G is a Ąxed gain and L ∈ (−∞, 0] is a loss.

In this elicitation procedure, the researcher does not know the lower bound of

the loss interval. By contrast, equation (1.15) keeps track of the upper and lower

bounds of the loss interval because cek belongs to the interval (yk, xk). This is

an appealing property of our method for two reasons. First, asking subjects to

provide indifference values on unbounded intervals can be cognitively demanding

(Wakker and Deneffe, 1996; Abdellaoui et al., 2007b). This may lead to errors

20Homogeneity of preferences holds whenever multiplying all the payoffs of a non-mixed
lottery by a positive constant c also leads the certainty equivalent of the lottery to be multiplied
by c.

21As pointed out by Abdellaoui (2000, pp. 1509-1510), testing for duality with parametric
methods and non-parametric methods based on the tradeoff approach requires using the
specific probability weighting function of Goldstein and Einhorn (1987) and Lattimore et al.
(1992).
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that potentially inĆate the estimates of loss aversion, as reported by ABL (see

Table 11, pp. 263-264). Second, eliciting indifference values on bounded intervals

allows us to use a standard switching outcome procedure (Booij and Van de

Kuilen, 2009).

Comparison to standard parametric methods. Our method retains all

the appealing properties of parametric methods. First, it is as data-efficient as

parametric methods because, for K probability weights to be elicited, the smallest

number of certainty equivalents required to measure all the three components

of risk attitudes in the full domain is 5K (i.e., 2K certainty equivalents in the

gain domain, 2K in the loss domain and K for mixed lotteries). Second, we

use simple choices (comparisons of certain outcomes and binary lotteries) so

that the method is not cognitively demanding for subjects. Third, our method

is tractable because we can measure risk attitudes using standard econometric

tools. Fourth, our estimation method accounts for response errors.

In parametric methods, it is key to assess the validity of the functional forms

used for the probability weighting and utility functions. However, parametric

methods do not allow the researcher to separately assess the goodness of Ąt

of each of these functions (GW99). In contrast, our semi-parametric method

does not make any parametric assumption regarding the probability weighting

function and allows the researcher to evaluate the goodness of Ąt of the utility

function separately. Thus, one can select the utility function with the best

Ąt, further improving the accuracy of the elicitation of risk attitudes of the

semi-parametric method compared to the parametric one.

Applicability to unknown probabilities. Our method is also directly ap-

plicable to cases of uncertainty where probabilities are unknown. It does not

require setting any speciĄc conditions on the event space, and hence can be
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applied to real-life uncertainty situations (Baillon et al., 2018).22 Extending our

method to the case of uncertainty can thus be done by replacing probability

dummy variables by event dummy variables in equations (1.10) and (1.17).

Robustness to monotonicity problem. We further note that the mono-

tonicity problem raised by Apesteguia and Ballester (2018), which could lead

to identiĄcation issues, does not apply to our case. First, our method is not

based on binary choices (as in random utility models), but on eliciting cer-

tainty equivalents. Second, we deĄne the error term at the certainty equivalent

level and not at the utility level. For power and exponential utility functions,

the certainty equivalent is monotonic in the utility parameters and probability

weights. This is also true for a broad range of utility functions once we use

the Arrow-Pratt approximation for binary lotteries in the context of RDU and

CPT. A related problem to Apesteguia and Ballester (2018) can arise with the

certainty equivalent method when the error term is deĄned at the utility level,

as in the non-parametric method of GW99 (see footnote 13 for a discussion of

these issues).

Spline extension. Our semi-parametric method requires specifying a utility

function which allows us to keep the data-efficiency property of parametric

methods. However, in the case of an extensive dataset (as in GW99), our

semi-parametric method can be extended to use spline approximation of the

utility function. In appendix 1.C, we provide a linear spline extension for our

semi-parametric method.

22Non-parametric methods (e.g. Van De Kuilen and Wakker, 2011; Abdellaoui et al., 2020)
require the event space to be rich (e.g. continuous). This means that in applied contexts, the
universal event is an interval on a real scale (e.g. temperature in town). The semi-parametric
method of Abdellaoui et al. (2011a) requires equally likely events either with (i) preset priors
(like in Ellsberg’s urn experiments), or (ii) a rich event space analogous to non-parametric
methods.
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1.4 Parameter recovery and misspecification

Following Gao et al. (2020), Nilsson et al. (2011) and Murphy and ten Brincke

(2018), we report in this section two types of simulation exercises: parameter

recovery and robustness to misspeciĄcation. In the parameter recovery exercise,

we estimate a model assuming that we know the speciĄcation of the utility

and weighting functions used to simulate the data. Our aim is to assess the

extent to which an estimation method can identify the parameters underlying

the simulated data. In the robustness to misspeciĄcation exercise, we estimate a

model assuming an incorrect speciĄcation of the utility and weighting functions

and check for the extent to which an estimation method identiĄes the underlying

parameters from simulated data. For the sake of comparison, the simulations are

made for both our semi-parametric method and parametric methods. Subsections

1.4.1 and 1.4.2 explain the simulation exercises and results are presented in

subsection 1.4.3.

1.4.1 Parameter recovery

The calibration of lotteries follows TK92. We consider 9 probabilities Ű 0.01,

0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, and 0.99 Ű along with possible outcomes

(x, y) in each domain: (0, 100), (0, 400) and (50, 150) for the gain domain, and

(−100, 0), (−400, 0) and (−150,−50) for the loss domain. Each of the 9 probabil-

ities is combined with each pair of outcomes, resulting in a lottery (x, y; p, 1 − p).

This gives a total of 27 lotteries in each domain, and each probability occurs

three times in the dataset.
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1.4.1.1 Our method

Simulation 1: Power utility function. We simulate data for 1000 (s =

1, 2, ..., 1000) hypothetical subjects. For each subject s, we generate random

parameters of the power utility functions in the gain and loss domains from a

uniform distribution U(0.1, 2.1) (Spiliopoulos and Hertwig, 2019, ABL).

For the 9 probabilities involved in the lotteries, we generate probability weights

using a uniform distribution U(0, 1), making sure that higher probabilities are

assigned to higher weights.

Then, these simulated power utility parameters (one per domain) and probability

weights (9 per domain) are plugged into CPT formulas to generate noiseless

certainty equivalents. In the last step of the data generation process, we use

two random variables from U(0, 0.025) to simulate standard deviations σs,i in

each domain i ∈ ¶+,−♢, and then draw 27 random values from N(0, σs,i♣x− y♣)
which we add to the previously generated 27 noiseless certainty equivalents to

obtain the noisy ones.23 Finally, we use the noisy certainty equivalents as input

data and compute MLE outcomes for our semi-parametric method.

Simulation 2: Exponential utility function. This simulation exercise is

based on the same principles as Simulation 1, the sole difference being the utility

function. This time, we draw exponential utility parameters for each domain

from U(−0.01, 0.01).24

23A standard deviation of 0.025 × ♣x− y♣ implies response errors of +/- $20 around the true
certainty equivalent value, which seems large given the range of lottery outcomes [0, $400].

24Note that the scale of the exponential utility parameter depends on the scale of the
outcomes used in the lotteries. Taking into account the midpoint of the outcome range [0, 400],
the index of absolute risk aversion generated by a power utility function with a parameter in
the range (0, 2) is approximately equal to the index generated by an exponential utility with a
parameter in the range

(
− 1

200 ,
1

200

)
. In the simulation exercise, we allow for a wider range for

that parameter: (−0.01, 0.01).
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1.4.1.2 Parametric methods

We consider eight common parametric speciĄcations. These parametric speciĄ-

cations arise from the combination of the two standard utility functions (power

and exponential) (see Stott, 2006) and four popular weighting functions (see

TK92; Goldstein and Einhorn, 1987; Lattimore et al., 1992; Prelec, 1998). These

weighting functions are:

wi(p) =
p(a1(i=+)+c1(i=−))

[
p(a1(i=+)+c1(i=−)) + (1 − p)(a1(i=+)+c1(i=−))

] 1
a1(i=+)+c1(i=−)

(1.20)

where a, c ∈ (0, 1]

wi(p) = exp

[
−
(

− ln(p)
)b1(i=+)+d1(i=−)

]
(1.21)

where b > 0, d > 0

wi(p) = exp

[
−
(
b1(i=+) + d1(i=−)

)
×
(

− ln(p)
)a1(i=+)+c1(i=−)

]
(1.22)

where a > 0, b > 0, c > 0, d > 0

wi(p) =
(b1(i=+) + d1(i=−))p(a1(i=+)+c1(i=−))

(b1(i=+) + d1(i=−))p(a1(i=+)+c1(i=−)) + (1 − p)(a1(i=+)+c1(i=−))
(1.23)

where a > 0, b > 0, c > 0, d > 0. Equation (1.20) represents the one-parameter

weighting function (per domain) of TK92. Equations (1.21) and (1.22) refer

to the one- and two-parameter weighting functions of Prelec (1998), and (1.23)

is the two-parameter weighting function of Goldstein and Einhorn (1987) and

Lattimore et al. (1992). The vast majority of parametric estimations in the

literature rely on one of these four weighting functions in combination with a

standard utility function (Stott, 2006). Henceforth, we refer to (1.20), (1.21),
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(1.22) and (1.23) as TK92, P98-I, P98-II and GE87 respectively.25

Simulation 3 and 4. We then run two additional series of simulations (Simu-

lations 3 and 4) that are based on the same principles as Simulations 1 and 2

(respectively), the sole difference being the weighting function. Depending on

the simulation, we specify one of the four parametric weighting functions. For

the weighting function of TK92, we draw the values for a and c from U(0.2, 1)

(e.g. Dhami, 2016, p. 122). For the remaining weighting functions, we draw a, b,

c and d from U(0.1, 1.5).

1.4.2 Parameter recovery under model misspecification

1.4.2.1 Our method

Simulation 5: Power utility function. We consider the data generated in

Simulation 4 under an exponential utility function in combination with each of

the four weighting functions in turn. We apply our estimation procedure to each

of these four simulated datasets, while misspecifying the utility function which

is assumed to be power instead of exponential.

Simulation 6: Exponential utility function. We follow the same procedure

as in Simulation 5, this time using the data generated in Simulation 3 with

power utility function. For the sake of model misspeciĄcation, we assume utility

to be exponential.

1.4.2.2 Parametric methods

Simulation 7 and 8. As before, we run two additional series of simulations for

parametric methods. In Simulation 7 (8), we rely on data previously generated

25For these specifications, identical probability weighting across domains corresponds to
a = c and b = d. Note that an appealing property of the GE87 specification is that it allows
for a straightforward test of duality (Abdellaoui, 2000) by checking whether a = c and b = 1

d
.
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in Simulation 2 (1) and misspecify the model in the same way as in Simulation

5 (6).

1.4.3 Result of parameter recovery and misspecifcation

Table 1.2 shows the average absolute error in parameter estimates, which is

deĄned as the absolute difference between the true parameter value and its

estimate. Figure 1.1 plots the average absolute error in parameter estimates

across all parameters and all simulations. When a point is above the 45◦ line,

this means that the average absolute error in the parametric speciĄcation is

greater than the corresponding simulation in the semi-parametric speciĄcation.

For parameter recovery exercises (Figure 1.1, panel (a)), parametric speciĄca-

tions tend to perform better than the semi-parametric method. However, for

misspeciĄcation exercises, the semi-parametric method performs better than

parametric methods (Figure 1.1, panel (b)). Taking both types of simulations

into account (Ągure 1.1, panel (c)), we highlight that average absolute errors

in parameter recovery exercises are substantially smaller than misspeciĄcation

errors. Overall, we conclude that the semi-parametric method (i) is less sensitive

to model misspeciĄcation and (ii) produces more reliable estimates when the

model is misspeciĄed than standard parametric methods.
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Figure 1.1: Absolute error in estimates: semi-parametric vs. parametric
methods

(a) Parameter recovery (b) Misspecification

(c) Parameter recovery and
misspecification
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Table 1.2: Simulation results

Simulation n◦ Estimation Data generation Average absolute value of error

u() w() u() w() α w+ β w−

Parameter recovery

1 Power our method Power our method 0.0059 0.0087 0.0058 0.0084

2 Expo our method Expo our method 0.0050 0.0069 0.0051 0.0068

3 Power TK92 Power TK92 0.0043 0.0024 0.0034 0.0023

3 Power P98-I Power P98-I 0.0023 0.0019 0.0024 0.0018

3 Power P98-II Power P98-II 0.0062 0.0053 0.0059 0.0054

3 Power GE87 Power GE87 0.0082 0.0076 0.0083 0.0079

4 Expo TK92 Expo TK92 0.0048 0.0023 0.0042 0.0023

4 Expo P98-I Expo P98-I 0.0031 0.0018 0.0028 0.0018

4 Expo P98-II Expo P98-II 0.0078 0.0090 0.0050 0.0041

4 Expo GE87 Expo GE87 0.0048 0.0035 0.0047 0.0033

Misspecifcation

5 Power our method Expo TK92 0.0703 0.0180 0.0710 0.0179

5 Power our method Expo P98-I 0.0672 0.0194 0.0690 0.0203

5 Power our method Expo P98-II 0.0611 0.0198 0.0624 0.0200

5 Power our method Expo GE87 0.0667 0.0184 0.0681 0.0188

6 Expo our method Power TK92 0.0688 0.0776 0.0663 0.0741

6 Expo our method Power P98-I 0.0695 0.0724 0.0699 0.0753

6 Expo our method Power P98-II 0.0707 0.0709 0.0713 0.0704

6 Expo our method Power GE87 0.0678 0.0761 0.0679 0.0734

7 Power TK92 Expo our method 0.1143 0.1046 0.1170 0.1072

7 Power P98-I Expo our method 0.0972 0.0948 0.1004 0.0961

7 Power P98-II Expo our method 0.0690 0.0597 0.0676 0.0581

7 Power GE87 Expo our method 0.0714 0.0576 0.0696 0.0554

8 Expo TK92 Power our method 0.1127 0.1168 0.1017 0.1047

8 Expo P98-I Power our method 0.0974 0.0934 0.0992 0.0944

8 Expo P98-II Power our method 0.0683 0.0957 0.0713 0.0983

8 Expo GE87 Power our method 0.0691 0.0917 0.0720 0.0938

1.5 Applications

In this section we use existing experimental data to compare our semi-parametric

method and parametric methods. Because our method relies on the elicitation

of certainty equivalents, we compare it to parametric methods that also make
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use of certainty equivalents. Since our exercise requires the use of datasets that

allow for the elicitation of certainty equivalents, we start this section by detailing

our choice of datasets before comparing the methods in terms of goodness of Ąt

and providing estimation results.

1.5.1 Data

To apply our method, we need to elicit certainty equivalents in the gain and

loss domains for two-outcome lotteries. These lotteries should vary each of the

outcomes as well as the corresponding probabilities, and at least two certainty

equivalents should be elicited for each probability.

We made an extensive search of the literature to identify available datasets

from which we could make individual estimates. We reviewed the datasets

from Harrison and Rutström (2009); Eisenberg et al. (2019); lŠHaridon and

Vieider (2019); Pedroni et al. (2017); Andersson et al. (2020); BFE10; GW99

and TK92. The data used in Harrison and Rutström (2009); Eisenberg et al.

(2019); Pedroni et al. (2017); Andersson et al. (2020) rely on binary choices,

which cannot be used as input in our method. The data of Bruhin et al. (2010);

lŠHaridon and Vieider (2019); GW99 and TK92 contain certainty equivalents for

binary lotteries. However, the dataset in lŠHaridon and Vieider (2019) does not

match our criteria at the individual level because it only contains one certainty

equivalent for some of the probability weights. The dataset of GW99 satisĄes

our criteria, with an important caveat that it contains observations from only

10 subjects and solely in the gain domain. By contrast, BFE10 [and more

speciĄcally, their ŞZurich 03Ť experiment]26 collected data on 179 subjects in the

gain and loss domains with several certainty equivalents per probability, thus

26The authors also conducted two other experiments, but these datasets do not match our
criteria at the individual level since they include only one certainty equivalent for some of the
probability weights.

77



Chapter 1. All at Once! A Comprehensive and Tractable Semi-Parametric Method to Elicit

Prospect Theory Components

fully matching our selection criteria. However, this dataset does not include

mixed lotteries, thus not allowing us to estimate loss aversion. In addition, TK92

provide median data that contain several certainty equivalents per probability

in the gain and loss domains, also in line with our selection criteria. They also

include mixed lotteries so that we can elicit loss aversion. We thus apply our

method to the median data of TK92 and to the individual data of BFE10.

1.5.2 Goodness of fit across models

We start by evaluating the goodness of Ąt of our method relative to parametric

alternatives. The corresponding values of AIC and CV are reported in Tables

1.3 and 1.4.

For the data of TK92 (BFE10), power (exponential) utility function best

Ąts the data under our semi-parametric method according to both AIC and

CV. The best parametric speciĄcation is the combination of a power utility

function and the one-parameter weighting function of TK92 (an exponential

utility function and the two-parameter weighting function of GE87) for the data

of TK92 (BFE10).

For each dataset and each criterion, the best-Ątting speciĄcation under our

semi-parametric method outperforms the best-Ątting parametric speciĄcation.

This implies that our semi-parametric method Ąts the data better than standard

parametric methods.
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Table 1.3: Goodness of Ąt across methods: data of TK92

Parametric Semi-parametric

AIC∗ CV∗ AIC CV

u(.)

w(.)
TK92† P98-I† P98-II† LG92† TK92† P98-I† P98-II† LG92† - -

Power 320 327 321 318 3.41 3.57 3.52 3.87 284‡ 3.15‡

Exponential 339 347 328 320 6.21 4.35 4.06 5.39 286 3.31

∗ AIC: Akaike information criterion, CV: Leave one out of sample cross-validation. The best

specification is the one that minimizes a considered criterion (AIC or CV).

† TK92 (one-parameter weighting function of Tversky and Kahneman (1992)), P98-I (one-

parameter weighting function of Prelec (1998)),P98-II (two-parameter weighting function of

Prelec (1998), LG92 (two-paramete weighting function of Lattimore et al. (1992)))

‡ The semi-parametric method with power utility function provides smaller AIC and CV

Table 1.4: Goodness of Ąt across methods: data of BFE10

Parametric Semi-parametric

AIC∗ CV∗ AIC CV

u(.)

w(.)
TK92† P98-I† P98-II† LG92† TK92† P98-I† P98-II† LG92† - -

Power 51110 50980 50895 50828 10.005 4.381 4.383 4.375 50776 4.400

Exponential 51489 51066 50704 50636 4.842 4.512 4.304 4.253 50601‡ 4.249‡

∗ AIC: Akaike information criterion, CV: Leave one out of sample cross-validation. The best

specification is the one that minimizes a considered criterion (AIC or CV).

† TK92 (one-parameter weighting function of Tversky and Kahneman (1992)), P98-I (one-

parameter weighting function of Prelec (1998)),P98-II (two-parameter weighting function of

Prelec (1998), LG92 (two-paramete weighting function of Lattimore et al. (1992)))

‡ The semi-parametric method with exponential utility function provides smaller AIC and CV

1.5.3 Results

In this section, we focus our analysis on the best-Ątting speciĄcations under

parametric and semi-parametric methods, as highlighted in the previous section.
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1.5.3.1 Curvature of the utility function for gains and losses

Table 1.5 summarizes the semi-parametric and parametric estimates of the main

components of the CPT value function (curvature in each domain and loss

aversion) for the data of TK92 and BFE10.27 In the remainder of the results

section, we use z-tests to assess whether a coefficient is equal to a speciĄc value

and whether two coefficients are equal, and χ2-tests for joint hypotheses. Tests

are two-sided, unless stated otherwise.

Our semi-parametric estimations show that the utility function is concave

in the gain domain: the estimated values of α = 0.525 (TK92) and α = 0.587

(BFE10) are signiĄcantly greater than 0.5 (p − values < 0.0292). In the loss

domain, the estimated values also suggest the utility function is concave because

β = −0.483 and β = −0.425 are greater than -0.5 (p − value < 0.0757 and

p−value < 0.0001, respectively). Concavity in the loss domain is in line with the

Ąndings of ABL, Attema et al. (2013) and Etchart-Vincent and lŠHaridon (2011).

Furthermore, we reject partial reĆection (H0 : α+ β = 0, p− values < 0.0058).

1.5.3.2 Loss aversion

With our semi-parametric method, we replicate the standard Ąnding of loss

aversion, with λ = 1.751.28 Our estimate of the loss aversion index is close to

the estimated value of 1.6 that was elicited in both Booij et al. (2010) who use

27The utility curvature is computed based on equations (2.14) and (2.19). Detailed results
for the semi-parametric method are reported in Appendix 1.A.2 for TK92 and in Appendix
1.B for BFE10.

28In section 4.3, we propose to estimate loss aversion λ in a second step after estimating
utility and weighting functions in a first step. This two-step procedure we propose can be
applied regardless of whether elicitation of loss aversion is of interest (which requires both
steps) or not (which only requires the first step of estimation). In the former case, one could
alternatively apply a one-step procedure (e.g. l’Haridon and Vieider, 2019) that simultaneously
estimates equations (1.10) and (1.17). Table 1.A.11 in appendix 1.A.4.1 summarizes the
maximum likelihood estimates of utility curvature, probability weights and loss aversion
obtained through a one-step procedure. In the one-step procedure, estimated loss aversion is
1.688 compared to the median value of 1.751 in the two-step procedure.
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structural estimation techniques, and ABL for pooled data. It is also similar to

the estimates reported by Tom et al. (2007), Pennings and Smidts (2003), and

Booij and Van de Kuilen (2009): λ = 1.93, λ = 1.8, and λ = 1.87, respectively.

Note that a large meta-analytical study by Brown et al. (2021) suggests that the

mean loss aversion coefficient lies between 1.8 and 2.1. From that perspective,

our estimates are on the conservative side and come close to the lower bound of

that interval.

Table 1.5: Curvature of the utility function and loss aversion

Data of TK92 Data of BFE10

Semi-parametric Parametric Semi-parametric Parametric

Curvature Gain (α) 0.525 0.544 0.587 0.589

Curvature Loss (β) -0.483 -0.525 -0.425 -0.428

Loss aversion (λ) 1.751 1.730 - -

1.5.3.3 Probability weighting function

Data of TK92. Figure 4.2.1 presents the estimates of the probability weighting

function across domains (labeled Semi-para) for the data of TK92. In the gain

domain, probabilistic risk neutrality w+(p) = p is rejected for most probabilities

(all p − values < 0.0258), except for 0.25 (p − value = 0.0671). Overall, we

reject the joint hypothesis of linearity of the probability weighting function over

the whole range of probabilities in the gain domain (p− value < 0.0001). The

resulting weighting function is inverse S-shaped because there is overweighting

for p ∈ (0, 0.25], and underweighting for p ∈ (0.25, 1). Similar patterns emerge in

the loss domain, with overweighting starting for lower probabilities p ∈ (0, 0.1],

and then shifting to underweighting for p ∈ (0.1, 1). We cannot reject H0 :

w−(0.1) = 0.1 (p− value = 0.7042).

Over the 9 probabilities in the data of TK92, the hypothesis of identical

probability weights across domains (w+(pk) = w−(pk)) is rejected for 4 probabil-
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ities (0.01, 0.05, 0.25 and 0.90; all p− values < 0.0241), but not for others (0.1,

0.5, 0.75, 0.95 and 0.99; all p− values > 0.1192). For tail probabilities (p = 0.01

and 0.05 in this dataset),29 overweighting is more pronounced in the gain than

in the loss domain (p− values < 0.0121). Using a joint test, the hypothesis of

identical probability weights across domains is rejected (p− value < 0.0001).

The hypothesis of duality (w+(pk) = 1 − w−(1 − pk)) is rejected for 7

probabilities (all p − values < 0.001), with the exception of probabilities 0.01

and 0.05 (both p− values > 0.2365). Using a joint test, the duality hypothesis

is rejected (p− value < 0.0001).

Data of BFE10. Figure 1.3 presents the estimates of the probability weighting

function across domains (once again, labeled Semi-para) for the data of BFE10.

In the gain domain, probabilistic risk neutrality w+(p) = p is rejected for

all probabilities (all p− values < 0.0001), except for 0.5 (p− value = 0.9496).

Overall, we reject the hypothesis of linearity of the probability weighting function

over the whole range of probabilities in the gain domain. The resulting weighting

function is once again inverse S-shaped with overweighting for p ∈ (0, 0.5] and

underweighting for p ∈ (0.5, 1).

Similar patterns emerge in the loss domain with overweighting for p ∈ (0, 0.5],

and underweighting for p ∈ (0.5, 1). We cannot reject H0 : w−(0.5) = 0.5

(p− value = 0.8881).

Over the 7 probabilities in the data of BFE10, the hypothesis of identical

probability weights across domains (w+(pk) = w−(pk)) is rejected for the proba-

bility p = 0.05 (p−values < 0.0204), but not for others (all p−values > 0.0553).

For tail probability (p = 0.05 in this dataset), overweighting is more pronounced

for gains that for losses. Using a joint test, the hypothesis of identical probability

weights across domains is rejected (p− value < 0.0001).

29Tail probabilities are typically considered to be equal to 5% or less (see Barron and Erev,
2003; Erev, 2007; Erev et al., 2017; Hertwig et al., 2004; Corgnet et al., 2020).
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Finally, the hypothesis of duality (w+(pk) = 1 − w−(1 − pk)) is rejected

for p = 0.9 (p − value < 0.0146) but not for the remaining probabilities (all

p− values > 0.1159). A joint test rejects the duality hypothesis (p− value <

0.0467).

Figure 1.2: Semi-parametric and parametric measurements of the probability
weighting function (median data from TK92)
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Figure 1.3: Semi-parametric and parametric measurements of the probability
weighting function (results on pooled data of BFE10)

1.5.3.4 Discussion

Table 1.6 summarizes the discussion for both datasets. Echoing the seminal

Ąndings in TK92,30 the parametric estimates reported in Table 1.5 imply con-

cavity in the gain domain (α = 0.544, statistically different from 0.5 with

p− value < 0.0001) and convexity in the loss domain (β = −0.525, statistically

different from −0.5 with p−value = 0.001). In addition, partial reĆection cannot

be rejected at the 5% signiĄcance level (H0 : α+β = 0, p−value = 0.0936). When

considering the data of BFE10, the parametric estimates imply concavity in both

gain (α = 0.589, statistically different from 0.5 with p−value < 0.0001) and loss

30See Appendix 1.A.4 for detailed information about parametric specifications and results.
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(β = −0.428, statistically different from −0.5 with p− value < 0.0001) domains.

In addition, partial reĆection is rejected (H0 : α+ β = 0, p− value < 0.0001).

We note that parametric estimates lead to inconsistent results across datasets

for utility curvature in the loss domain and partial reĆection. By contrast,

semi-parametric estimates lead to different Ąndings: (i) concave utility in both

domains and (ii) rejection of partial reĆection. Unlike parametric methods, these

Ąndings are consistent across datasets. The absence of convexity of the utility

function in the loss domain is consistent with a number of previous studies (ABL;

BFE10 Abdellaoui et al., 2011c; Attema et al., 2013, 2016; Kemel and Mun,

2020). ABL, Attema et al. (2013, 2016), Abdellaoui et al. (2011c) and Kemel

and Mun (2020) use the semi-parametric method developed by ABL, whereas

BFE1031 use a parametric method with the two-parameter probability weighting

function of GE87. In contrast, studies based on the tradeoff method Ąnd support

for the convexity of the utility function in the loss domain (Abdellaoui, 2000;

Etchart-Vincent, 2004, 2009b; Abdellaoui et al., 2007b, 2013, 2016; Booij and

Van de Kuilen, 2009; Hajimoladarvish, 2017; Attema et al., 2018; Bleichrodt

et al., 2018). From a theoretical standpoint, people who exhibit a concave utility

in the loss domain can still be risk seeking (Chateauneuf and Cohen, 1994). Our

semi-parametric method thus allows for such a possibility.

The empirical evidence on partial reĆection in the literature is mixed. Our

rejection of partial reĆection is consistent with some studies (Abdellaoui et al.,

2013, 2016; Attema et al., 2013, 2016, ABL) but not others (e.g. Abdellaoui,

2000; Andersen et al., 2006; Abdellaoui et al., 2007b; Booij and Van de Kuilen,

2009; Harrison and Rutström, 2009; Booij et al., 2010).

Parametric estimates on the data of TK92 lead to a rejection of equality of

probability weighting function across domains (p−value < 0.0001). As observed

31We also report similar results in Table 1.5.
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by TK92, parametric estimates imply that both w+(0.5) and w−(0.5) are less

than 0.5 so that the duality condition is rejected. When considering the data of

BFE10, identical probability weighting cannot be rejected (p− value < 0.0001).

Using data of BFE10, parametric estimates imply the equality of probability

weighting functions across domains (p − value = 0.9172) and the rejection of

duality (p− value < 0.0001). Again, parametric estimates lead to inconsistent

results across datasets for the comparison of probability weighting functions

across domains.

In contrast, our method provides consistent results for the comparison of

probability weighting functions across domains. We reject duality (RDU, Quiggin,

1982; Gilboa, 1987; Schmeidler, 1989) and identical probability weights across

domains across datasets(OPT, Kahneman and Tversky, 1979). Tests of duality

and identical probability weightings that cover the whole range of probabilities

are scarce in the literature. Our Ąndings echo Abdellaoui (2000) who reject

both duality and identical probability weighting functions across domains under

risk. However, under uncertainty, Abdellaoui et al. (2005) do not reject duality,

although they reject identical weighting functions across domains. Importantly,

our rejection of both duality and identical probability weights provides support

for CPT.32

Our method also reveals an interesting pattern in the probability weighting

function Ű more overweighting of tail probabilities in the gain domain than

in the loss domain Ű which fully stands in line with CPT, but does not arise

under the parametric approach.33 Hence, the level of optimism for very small

probabilities of gains is more pronounced than the level of pessimism for very

small probabilities of losses.

32Even though we reject both duality and identical probability weights, in Appendix 1.A.3
we show how to impose such constraints in our method.

33In addition, this pattern also holds for the Bayesian estimations reported in Appendix
1.D.
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Two important similarities with TK92 also emerge. First, our estimates of

loss aversion (λ) are close to 2, in line with the estimate provided by TK92.

Second, echoing the central tenets of CPT, we Ąnd that the probability weighting

function is domain-speciĄc. Furthermore, in both domains it is characterized by

the overweighting of small probabilities and the underweighting of large ones.

Altogether, our results mesh well with CPT. In both domains, the inverse

S-shaped probability weighting function affects risk preferences alongside the

utility function.

Table 1.6: Summary of the discussion

Data of TK92 Data of BFE10 Consistent

Semi-para Para Semi-para Para Semi-para Para

Curvature Gain (α) Concave Concave Concave Concave Yes Yes

Curvature Loss (β) Concave Convex Concave Concave Yes No

Loss aversion (λ) Loss aversion Loss aversion - - - -

Partial reflection No Yes No No Yes No

OPT: w+() = w−() No No No Yes Yes No

RDU: w+(p) = 1 − w−(1 − p) No No No No Yes Yes

1.6 Conclusion

ABL and Abdellaoui et al. (2011b) deploy a semi-parametric method to elicit

the utility function and loss aversion. In this paper, we go one step further by

developing a semi-parametric method that elicits all dimensions of risk attitudes,

including the whole range of probability weights. Importantly, it retains the

four appealing properties of the parametric methods that have been discussed

at length in the literature.
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Our method is also Ćexible because it can be applied to both risk and

uncertainty. Furthermore, it can be used to extend the popular elicitation

technique of Holt and Laury (2002) to the case in which probabilities are

distorted, following the approach of Abdellaoui et al. (2011b). Finally, even

though our method does not readily apply to the context envisioned by Kőszegi

and Rabin (2007),34 one can speculate on a possible procedure combining Köszegi

and RabinŠs approach and our semi-parametric method. This procedure could

start by introducing probability weighting functions in Kőszegi and Rabin (2007)

following the work of Baillon et al. (2020). We see this as a promising avenue

for future research.

34They assume a stochastic reference point and the absence of any probability distortions,
whereas we assume a fixed reference point and probability distortions.
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1.A Appendix on TK92 data

1.A.1 Data

a) Source

We use median data previously reported by TK92. They run a computerized

experiment with 25 graduate students from Berkeley and Stanford with no par-

ticular training in decision theory. Each subject participated in three separate

one-hour sessions organized over several days, and received $25 for participation.

We use all the median observations from non-mixed prospects (see their Table

3) as well as the Ąrst six median observations from mixed prospects (see their

Table 6).

b) Procedure

The data are generated via the switching outcome procedure in which an

indifference value is inferred through a list of equally spaced certain outcomes,

ranging from the admissible maximum indifference value to the admissible mini-

mum indifference value. Note that an alternative approach, the direct matching

procedure in which subjects are directly asked to provide their indifference

values, tends to produce more inconsistencies (Bostic et al., 1990; Booij and

Van de Kuilen, 2009). Internal consistency of the responses to each prospect is

monitored by the computer software to reduce response errors.

c) Data for the Ąrst step
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All outcomes are expressed in US dollars. In Table 3 of TK92, there are 28

median values of certainty equivalents for binary lotteries that involve 7 pairs

of positive monetary outcomes (0, 50), (0, 100), (0, 200), (0, 400), (50, 100),

(50, 150) and (100, 200), and 9 probabilities of getting the higher outcome: 0.01,

0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95 and 0.99.

Also, the same Table 3 in TK92 provides 28 median values of certainty

equivalents for binary lotteries that involve 7 pairs of negative monetary outcomes

(0, -50), (0, -100), (0, -200), (0, -400), (-50, -100), (-50, -150) and (-100, -200),

and the same list of 9 probabilities as in the gain domain. These probabilities

are now associated to losing the higher outcome.

As required by our method, at least two certainty equivalents for each of

the nine probabilities are available per domain so as to perform a simultaneous

measurement of the utility function and the probability weighting function in

the full domain.

c) Data for the second step

All outcomes are expressed in US dollars. In Table 6 of TK92, there are 6

cases of indifferences involving mixed prospects. The Ąrst four items consist in

eliciting the values of gains x to make subjects indifferent between the mixed

prospects (x, y; 0.5, 0.5) and 0. The values of y are -25, -50, -100 and -150.

The two others cases consist in eliciting gains x that make subjects indifferent

between two mixed prospects (x, y; 0.5, 0.5) and (z, w; 0.5, 0.5). The triplets

(y, z, w) take the values of either (-50,50,-20) or (-125,150,-50). Note that here

the experimenter has no control over the maximum level of x which may hinder

the use of the switching outcome procedure for Ąnding indifference value. For

this reason, we make changes in the third step of the original method of ABL
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through equations (1.16) - (1.19). Also, our method is based on the comparisons

of binary lotteries and sure outcomes. Hence, these data do not exactly Ąt our

method. With the present data, we compute loss aversion for each of the six

questions and take the median as estimated value to account for response error

(following ABL). For the Ąrst four items, we compute loss aversion as follows:

λ =
w+(0.5)
w−(0.5)

× xαp

(−y)βp
(1.24)

λ =
w+(0.5)
w−(0.5)

× 1 − exp(−αex)
1 − exp(βey)

× βe
αe

(1.25)

Formulas (1.24) and (1.25) correspond to power and exponential speciĄca-

tions, respectively.

For the last two questions, we compute loss aversion as follows:

λ =
w+(0.5)
w−(0.5)

× zαp − xαp

(−w)βp − (−y)βp
(1.26)

λ =
w+(0.5)
w−(0.5)

× exp(−αex) − exp(−αez)
exp(βey) − exp(βew)

× βe
αe

(1.27)

Formulas (1.26) and (1.27) correspond to the power and exponential spec-

iĄcations, respectively. Finally, following ABL, we compute the median loss

aversion.

1.A.2 Our main semi-parametric measurements

Our semi-parametric measurements are presented in Tables 1.A.1 and 1.A.2.
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Table 1.A.1: Results of the Ąrst step

Power utility Exponential utility

No constraint Constraint αp = βp

Gain domain

αp or αe 0.904∗∗∗ (0.0366) 0.976∗∗∗ (0.0314) 0.00158∗ (0.000886)

α 0.525∗∗∗ (0.0101) 0.506∗∗∗ (0.00804) 0.552∗∗∗ (0.0290)

w(0.01) 0.0471∗∗∗ (0.00828) 0.0369∗∗∗ (0.00659) 0.0445∗∗∗ (0.00874)

w(0.05) 0.167∗∗∗ (0.0138) 0.157∗∗∗ (0.0138) 0.164∗∗∗ (0.0143)

w(0.10) 0.134∗∗∗ (0.0151) 0.115∗∗∗ (0.0133) 0.124∗∗∗ (0.0142)

w(0.25) 0.276∗∗∗ (0.0142) 0.263∗∗∗ (0.0142) 0.274∗∗∗ (0.0155)

w(0.50) 0.410∗∗∗ (0.0139) 0.388∗∗∗ (0.0123) 0.409∗∗∗ (0.0176)

w(0.75) 0.571∗∗∗ (0.0137) 0.558∗∗∗ (0.0140) 0.573∗∗∗ (0.0164)

w(0.90) 0.686∗∗∗ (0.0137) 0.666∗∗∗ (0.0133) 0.692∗∗∗ (0.0201)

w(0.95) 0.791∗∗∗ (0.0124) 0.783∗∗∗ (0.0133) 0.793∗∗∗ (0.0139)

w(0.99) 0.947∗∗∗ (0.00474) 0.943∗∗∗ (0.00520) 0.957∗∗∗ (0.00834)

Loss domain

βp or βe 1.069∗∗∗ (0.0485) 0.976∗∗∗ (0.0314) -0.00154∗ (0.000931)

β -0.483∗∗∗ (0.0113) -0.506∗∗∗ (0.00804) -0.449∗∗∗ (0.0305)

w(0.01) 0.0244∗∗∗ (0.00570) 0.0337∗∗∗ (0.00646) 0.0236∗∗∗ (0.00551)

w(0.05) 0.0924∗∗∗ (0.0127) 0.103∗∗∗ (0.0136) 0.0932∗∗∗ (0.0123)

w(0.10) 0.105∗∗∗ (0.0139) 0.127∗∗∗ (0.0135) 0.106∗∗∗ (0.0126)

w(0.25) 0.207∗∗∗ (0.0140) 0.222∗∗∗ (0.0140) 0.205∗∗∗ (0.0141)

w(0.50) 0.414∗∗∗ (0.0152) 0.440∗∗∗ (0.0123) 0.405∗∗∗ (0.0186)

w(0.75) 0.602∗∗∗ (0.0146) 0.617∗∗∗ (0.0139) 0.595∗∗∗ (0.0168)

w(0.90) 0.758∗∗∗ (0.0139) 0.776∗∗∗ (0.0121) 0.746∗∗∗ (0.0190)

w(0.95) 0.810∗∗∗ (0.0133) 0.819∗∗∗ (0.0132) 0.805∗∗∗ (0.0148)

w(0.99) 0.947∗∗∗ (0.00552) 0.951∗∗∗ (0.00512) 0.936∗∗∗ (0.0107)

Log Likelihood -120.9645 -124.5477 -121.9931

N 56 56 56

AIC criterion 283.9289 289.0954 285.9861

CV 3.149 3.344 3.305

Standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 to test the significance of coefficients.
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Table 1.A.2: Results of the second step (loss aversion)

Observations Power utility Exponential utility

No constraint Constraint αp = βp

1 1.304 2.106 2.306

2 0.981 1.751 1.815

3 0.875 1.751 1.616

4 0.762 1.622 1.355

5 0.892 1.786 1.741

6 0.739 1.735 1.247

Median 0.884 1.751 1.679

1.A.3 Semi-parametric results under identical probabil-

ity weighting function and duality assumptions

This appendix show results under the constraints of identical probability weight-

ing (OPT) and duality assumption (RDU). Tables 1.A.3 and 1.A.4 present these

results.
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Table 1.A.3: Results under identical probability weighting assumption

Power utility Exponential utility

αp or αe 0.904∗∗∗ (0.0456) 0.00132 (0.000942)

α 0.525∗∗∗ (0.0126) 0.544∗∗∗ (0.0310)

βp or βe 1.053∗∗∗ (0.0523) -0.00127 (0.000961)

β -0.487∗∗∗ (0.0124) -0.458∗∗∗ (0.0316)

w+(0.01) = w−(0.01) 0.0326∗∗∗ (0.00760) 0.0301∗∗∗ (0.00700)

w+(0.05) = w−(0.05) 0.128∗∗∗ (0.0148) 0.125∗∗∗ (0.0137)

w+(0.10) = w−(0.10) 0.119∗∗∗ (0.0161) 0.114∗∗∗ (0.0137)

w+(0.25) = w−(0.25) 0.242∗∗∗ (0.0156) 0.237∗∗∗ (0.0153)

w+(0.50) = w−(0.50) 0.414∗∗∗ (0.0159) 0.408∗∗∗ (0.0184)

w+(0.75) = w−(0.75) 0.587∗∗∗ (0.0155) 0.584∗∗∗ (0.0169)

w+(0.90) = w−(0.90) 0.720∗∗∗ (0.0151) 0.715∗∗∗ (0.0200)

w+(0.95) = w−(0.95) 0.801∗∗∗ (0.0141) 0.799∗∗∗ (0.0147)

w+(0.99) = w−(0.99) 0.947∗∗∗ (0.00557) 0.950∗∗∗ (0.00962)

N 56 56

Log Likelihood -145.7 -143.2982

AIC 315.400 310.596

CV 3.456 3.518

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.A.4: Results under duality assumption w+(p) = 1 − w−(1 − p)

Power utility Exponential utility

αp or αe 0.738∗∗∗ (0.0476) 0.00771∗∗∗ (0.00174)

α 0.575∗∗∗ (0.0157) 0.724∗∗∗ (0.0381)

βp or βe 0.754∗∗∗ (0.0465) 0.00270∗ (0.00155)

β -0.570∗∗∗ (0.0151) -0.588∗∗∗ (0.0488)

w+(0.01) = 1 − w−(0.99) 0.0431∗∗∗ (0.00819) 0.0330∗∗∗ (0.0125)

w+(0.05) = 1 − w−0.95) 0.170∗∗∗ (0.0200) 0.178∗∗∗ (0.0220)

w+(0.10) = 1 − w−0.90) 0.182∗∗∗ (0.0190) 0.187∗∗∗ (0.0267)

w+(0.25) = 1 − w−0.75) 0.327∗∗∗ (0.0208) 0.347∗∗∗ (0.0255)

w+(0.50) = 1 − w−(0.50) 0.478∗∗∗ (0.0195) 0.516∗∗∗ (0.0297)

w+(0.75) = 1 − w−(0.25) 0.662∗∗∗ (0.0205) 0.693∗∗∗ (0.0241)

w+(0.90) = 1 − w−0.10) 0.755∗∗∗ (0.0203) 0.817∗∗∗ (0.0272)

w+(0.95) = 1 − w−(0.05) 0.834∗∗∗ (0.0196) 0.856∗∗∗ (0.0189)

w+(0.99) = 1 − w−(0.01) 0.953∗∗∗ (0.00812) 0.989∗∗∗ (0.00555)

Log Likelihood -165.9685 -161.7984

N 56 56

AIC 355.937 347.597

CV 4.977 9.024

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 to test the significance of coefficients.

1.A.4 Parametric measurements

We consider the following parametric speciĄcations (1.28) and (1.29)

cel =(D+
l − D−

l )



(

♣xl♣αpD+
l

+βpD−
l − ♣yl♣αpD+

l
+βpD−

l

)
×Wl+

♣yl♣αpD+
l

+βpD−
l




1

αpD
+
l

+βpD
−
l

+ e
i
l

(1.28)
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cel =ln



(
exp((βeD

−
l − αeD

+
l )xl) − exp((βeD

−
l − αeD

+
l )yl)

)
×Wl+

exp((βeD
−
l − αeD

+
l )yl)


 1

βeD
−
l − αeD

+
l

+ e
i
l

(1.29)

with Wl can be one of the four speciĄcations of TK92, P98-I, P98-II and

GE87:

Wl =
p

(aD+
l

+cD−
l

)

l
(
p

(aD+
l

+cD−
l

)

l + (1 − pl)(aD+
l

+cD−
l

)

) 1

aD
+
l

+cD
−
l

Wl = exp

[
−
(

− ln(pl)
)aD+

l
+cD−

l

]

Wl = exp

[
−
(
bD+

l + dD−
l

)
×
(

− ln(pl)
)aD+

l
+cD−

l

]

Wl =
(bD+

l + dD−
l ) × p

(aD+
l

+cD−
l

)

l

(bD+
l + dD−

l ) × p
(aD+

l
+cD−

l
)

l + (1 − pl)(aD+
l

+cD−
l

)

Equation (1.28) and (1.29) allow us to elicit the utility and probability

weighting function parameters in the full domain.

Once the parameters of the utility function and the probability weighting

function are obtained, we estimate loss aversion as described in equations (1.24)

- (1.27).

Table 1.A.5 presents the results of the Ąrst step that simultaneously estimates

the utility and probability weighting functions in the full domain. Table 1.A.6

summarizes the estimates of loss aversion using parameters of the utility and

probability weighting functions from the Ąrst step as inputs.
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Table 1.A.5: Results of the Ąrst step: power utility (without constraint)

TK92 P98-I P98-II GE87

Gain domain

αp 0.839∗∗∗ (0.0280) 0.772∗∗∗ (0.0224) 0.834∗∗∗ (0.0510) 0.907∗∗∗ (0.0537)

α 0.544∗∗∗ (0.00828) 0.564∗∗∗ (0.00715) 0.545∗∗∗ (0.0151) 0.524∗∗∗ (0.0148)

a 0.643∗∗∗ (0.0120) 0.589∗∗∗ (0.0158) 0.590∗∗∗ (0.0145) 0.620∗∗∗ (0.0181)

b 1.076∗∗∗ (0.0557) 0.693∗∗∗ (0.0555)

Loss domain

βp 0.906∗∗∗ (0.0286) 0.867∗∗∗ (0.0254) 1.042∗∗∗ (0.0709) 1.058∗∗∗ (0.0641)

β -0.525∗∗∗ (0.00786) -0.536∗∗∗ (0.00729) -0.490∗∗∗ (0.0170) -0.486∗∗∗ (0.0151)

a 0.704∗∗∗ (0.0153) 0.676∗∗∗ (0.0205) 0.680∗∗∗ (0.0189) 0.708∗∗∗ (0.0239)

b 1.186∗∗∗ (0.0687) 0.673∗∗∗ (0.0568)

N 56 56 56 56

Log Likelihood -155.124 -158.499 -153.315 -152.111

AIC 320 327 321 318

CV 3.41 3.57 3.52 3.87

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1.A.6: Results of the second step for Loss aversion: power utility (without
constraint)

Observations TK92 P98-I P98-II GE87

1 1.618 1.429 1.143 1.405

2 1.318 1.156 0.846 1.066

3 1.258 1.082 0.734 0.979

4 1.253 1.058 0.732 0.961

5 1.146 0.980 0.630 0.841

6 1.127 0.920 0.580 0.822

Median 1.256 1.070 0.773 0.970
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Table 1.A.7: Results of the Ąrst step: power utility (with constraint)

TK92 P98-I P98-II GE87

Gain domain

αp 0.872∗∗∗ (0.0204) 0.814∗∗∗ (0.0179) 0.926∗∗∗ (0.0441) 0.978∗∗∗ (0.0425)

α 0.534∗∗∗ (0.00582) 0.551∗∗∗ (0.00544) 0.519∗∗∗ (0.0119) 0.506∗∗∗ (0.0109)

a 0.635∗∗∗ (0.0110) 0.583∗∗∗ (0.0165) 0.590∗∗∗ (0.0152) 0.629∗∗∗ (0.0185)

b 1.166∗∗∗ (0.0511) 0.632∗∗∗ (0.0422)

Loss domain

βp 0.872∗∗∗ (0.0204) 0.814∗∗∗ (0.0179) 0.926∗∗∗ (0.0441) 0.978∗∗∗ (0.0425)

β -0.534∗∗∗ (0.00582) -0.551∗∗∗ (0.00544) -0.519∗∗∗ (0.0119) -0.506∗∗∗ (0.0109)

a 0.713∗∗∗ (0.0152) 0.681∗∗∗ (0.0225) 0.678∗∗∗ (0.0199) 0.695∗∗∗ (0.0226)

b 1.083∗∗∗ (0.0474) 0.741∗∗∗ (0.0477)

N 56 56 56 56

Log Likelihood -156.499 -162.219 -156.147 -153.719

AIC 321 332 324 319

CV 3.313 3.586 3.426 3.589

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1.A.8: Results of the second step for Loss aversion: power utility (with
constraint)

Observations TK92 P98-I P98-II GE87

1 2.040 2.009 2.076 2.175

2 1.738 1.723 1.764 1.844

3 1.730 1.723 1.743 1.808

4 1.730 1.716 1.743 1.808

5 1.668 1.637 1.704 1.792

6 1.615 1.616 1.496 1.674

Median 1.730 1.720 1.743 1.808

105



Chapter 1. All at Once! A Comprehensive and Tractable Semi-Parametric Method to Elicit

Prospect Theory Components

Table 1.A.9: Results of the Ąrst step: exponential utility

TK92 P98-I P98-II GE87

Gain domain

αe 0.00168∗∗∗ (0.0006) 0.00314∗∗∗ (0.0005) 0.0004 (0.0008) -0.000550 (0.0007)

α 0.556∗∗∗ (0.0193) 0.602∗∗∗ (0.0157) 0.513∗∗∗ (0.0257) 0.482∗∗∗ (0.0243)

a 0.649∗∗∗ (0.0189) 0.639∗∗∗ (0.0243) 0.595∗∗∗ (0.0190) 0.628∗∗∗ (0.0179)

b 1.216∗∗∗ (0.0540) 0.588∗∗∗ (0.0405)

Loss domain

βe 0.0016∗∗ (0.0007) 0.00225∗∗∗ (0.0006) -0.0006 (0.0011) -0.0006 (0.0007)

β -0.551∗∗∗ (0.0222) -0.574∗∗∗ (0.0189) -0.479∗∗∗ (0.0368) -0.459∗∗∗ (0.0326)

a 0.721∗∗∗ (0.0238) 0.709∗∗∗ (0.0281) 0.673∗∗∗ (0.0221) 0.695∗∗∗ (0.0213)

b 1.183∗∗∗ (0.0670) 0.658∗∗∗ (0.0552)

N 56 56 56 56

Log Likelihood -164.567 -168.725 -157.124 -152.808

AIC 339 347 328 320

CV 6.21 4.35 4.06 5.39

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1.A.10: Results of the second step for Loss aversion: exponential utility

Observations TK92 P98-I P98-II GE87

1 2.234 2.238 2.328 2.300

2 1.824 1.794 1.906 2.028

3 1.800 1.701 1.897 1.979

4 1.747 1.637 1.832 1.940

5 1.577 1.434 1.700 1.912

6 1.496 1.192 1.641 1.807

Median 1.774 1.669 1.865 1.960
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1.A.4.1 One step estimation of utility function, weighting function

and loss aversion

Table 1.A.11: Simultaneous estimation of utility function, weighting function
and loss aversion

Power utility Exponential utility

No constraint Constraint αp = βp

Gain domain

αp or αe 0.896∗∗∗ (0.0433) 0.991∗∗∗ (0.0326) -0.000209 (0.000922)

α 0.528∗∗∗ (0.0121) 0.502∗∗∗ (0.0082) 0.493∗∗∗ (0.0307)

w+(0.01) 0.0484∗∗∗ (0.00990) 0.0351∗∗∗ (0.00696) 0.0327∗∗∗ (0.00798)

w+(0.05) 0.169∗∗∗ (0.0161) 0.155∗∗∗ (0.0154) 0.152∗∗∗ (0.0162)

w+(0.10) 0.136∗∗∗ (0.0179) 0.111∗∗∗ (0.0143) 0.107∗∗∗ (0.0149)

w+(0.25) 0.278∗∗∗ (0.0166) 0.260∗∗∗ (0.0158) 0.256∗∗∗ (0.0175)

w+(0.50) 0.412∗∗∗ (0.0165) 0.384∗∗∗ (0.0134) 0.377∗∗∗ (0.0185)

w+(0.75) 0.572∗∗∗ (0.0160) 0.555∗∗∗ (0.0157) 0.551∗∗∗ (0.0190)

w+(0.90) 0.688∗∗∗ (0.0161) 0.662∗∗∗ (0.0147) 0.656∗∗∗ (0.0227)

w+(0.95) 0.792∗∗∗ (0.0143) 0.781∗∗∗ (0.0150) 0.778∗∗∗ (0.0172)

w+(0.99) 0.948∗∗∗ (0.00547) 0.943∗∗∗ (0.00590) 0.940∗∗∗ (0.0111)

Loss domain

βp or βe 1.045∗∗∗ (0.0383) 0.991∗∗∗ (0.0326) -0.000979 (0.000723)

β -0.489 (0.0092) 0.502∗∗∗ (0.0082) -0.467∗∗∗ (0.0239)

w+(0.01) 0.0265∗∗∗ (0.00496) 0.0320∗∗∗ (0.00554) 0.0262∗∗∗ (0.00470)

w+(0.05) 0.0950∗∗∗ (0.0107) 0.101∗∗∗ (0.0113) 0.0957∗∗∗ (0.0100)

w+(0.10) 0.110∗∗∗ (0.0117) 0.123∗∗∗ (0.0120) 0.111∗∗∗ (0.0103)

w+(0.25) 0.211∗∗∗ (0.0116) 0.220∗∗∗ (0.0119) 0.210∗∗∗ (0.0114)

w+(0.50) 0.421∗∗∗ (0.0123) 0.436∗∗∗ (0.0115) 0.415∗∗∗ (0.0146)

w+(0.75) 0.606∗∗∗ (0.0120) 0.615∗∗∗ (0.0119) 0.602∗∗∗ (0.0132)

w+(0.90) 0.762∗∗∗ (0.0112) 0.773∗∗∗ (0.0107) 0.755∗∗∗ (0.0147)

w+(0.95) 0.812∗∗∗ (0.0109) 0.818∗∗∗ (0.0110) 0.809∗∗∗ (0.0116)

w+(0.99) 0.948∗∗∗ (0.00448) 0.950∗∗∗ (0.00436) 0.941∗∗∗ (0.00800)

Mixed Prospect

λ 0.864∗∗∗ (0.242) 1.688∗∗∗ (0.0786) 1.684∗∗∗ (0.135)

Log Likelihood -131.289 -134.001 -133.181

N 60 60 60

AIC criterion 308.5782 312.0025 312.3615

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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1.B Appendix for the application to the data

of BFE10

In this appendix, we provide details on individual and pooled results based on

the data of BFE10. We also allow for heteroscedastic errors, as discussed in

Section 1.3.2.2.

1.B.0.1 Pooled data

Tables 1.B.1 and 1.B.2 summarize our pooled data estimates that we present in

the main text.
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Table 1.B.1: Semi-parametric estimation results: pooled data

Power Exponential

Gain domain

Utility

parameter 1.031∗∗∗ (0.0216) 0.00710∗∗∗ (0.0007)

w+(0.05) 0.191∗∗∗ (0.0062) 0.220∗∗∗ (0.0063)

w+(0.10) 0.250∗∗∗ (0.0083) 0.276∗∗∗ (0.0068)

w+(0.25) 0.330∗∗∗ (0.0076) 0.359∗∗∗ (0.0067)

w+(0.50) 0.450∗∗∗ (0.0067) 0.501∗∗∗ (0.0060)

w+(0.75) 0.606∗∗∗ (0.0074) 0.635∗∗∗ (0.0064)

w+(0.90) 0.734∗∗∗ (0.0075) 0.756∗∗∗ (0.0063)

w+(0.95) 0.779∗∗∗ (0.0069) 0.799∗∗∗ (0.0061)

Loss domain

Utility

parameter 1.088∗∗∗ (0.0259) -0.00606∗∗∗ (0.00072)

w−(0.05) 0.193∗∗∗ (0.0077) 0.195∗∗∗ (0.0065)

w−(0.10) 0.263∗∗∗ (0.0091) 0.270∗∗∗ (0.0068)

w−(0.25) 0.374∗∗∗ (0.0083) 0.373∗∗∗ (0.0068)

w−(0.50) 0.518∗∗∗ (0.0073) 0.501∗∗∗ (0.0063)

w−(0.75) 0.659∗∗∗ (0.0078) 0.655∗∗∗ (0.0069)

w−(0.90) 0.730∗∗∗ (0.0082) 0.730∗∗∗ (0.0071)

w−(0.95) 0.798∗∗∗ (0.0064) 0.787∗∗∗ (0.0065)

N 8906 8906

Log Likelihood -25191.14 -25103.62

AIC 50776.27 50601.23

CV 4.400 4.2494

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.B.2: Parametric estimation results with power utility: pooled data

TK92 P98-I P98-II GE87

Gain domain

αp 1.219∗∗∗ (0.0152) 1.102∗∗∗ (0.0115) 1.043∗∗∗ (0.0212) 1.040∗∗∗ (0.0215)

α 0.451∗∗∗ (0.00310) 0.476∗∗∗ (0.00260) 0.490∗∗∗ (0.00509) 0.490∗∗∗ (0.00517)

a 0.591∗∗∗ (0.00490) 0.484∗∗∗ (0.00704) 0.483∗∗∗ (0.00705) 0.870∗∗∗ (0.0196)

b 0.955∗∗∗ (0.0140) 0.475∗∗∗ (0.00708)

Loss domain

βp 1.442∗∗∗ (0.0186) 1.330∗∗∗ (0.0148) 1.091∗∗∗ (0.0257) 1.078∗∗∗ (0.0249)

β -0.409∗∗∗ (0.00312) -0.429∗∗∗ (0.00274) -0.478∗∗∗ (0.00587) -0.481∗∗∗ (0.00577)

a 0.616∗∗∗ (0.00539) 0.508∗∗∗ (0.00792) 0.506∗∗∗ (0.00799) 1.049∗∗∗ (0.0256)

b 0.853∗∗∗ (0.0147) 0.477∗∗∗ (0.00753)

N 8906 8906 8906 8906

Log Likelihood -25369 -25305 -25260 -25227

AIC 51110 50980 50895 50828

CV 10.005 4.381 4.383 4.375

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.B.3: Parametric estimation results with exponential utility: pooled data

TK92 P98-I P98-II GE87

Gain domain

αe -0.0008 (0.0005) 0.0004 (0.0004) 0.0066∗∗∗ (0.0007) 0.0072∗∗∗ (0.0007)

α 0.490∗∗∗ (0.0065) 0.505∗∗∗ (0.0056) 0.581∗∗∗ (0.0079) 0.589∗∗∗ (0.0079)

a 0.345∗∗∗ (0.0132) 0.502∗∗∗ (0.0071) 0.492∗∗∗ (0.0072) 1.025∗∗∗ (0.0163)

b 0.862∗∗∗ (0.0093) 0.467∗∗∗ (0.0068)

Loss domain

βe -0.0171∗∗∗ (0.0009) -0.0144∗∗∗ (0.0007) -0.0068∗∗∗ (0.0007) -0.0059∗∗∗ (0.00069)

β -0.307∗∗∗ (0.0087) -0.333∗∗∗ (0.0067) -0.416∗∗∗ (0.0083) -0.428∗∗∗ (0.0083)

a 0.319∗∗∗ (0.0146) 0.492∗∗∗ (0.0077) 0.490∗∗∗ (0.0079) 1.015∗∗∗ (0.0167)

b 0.871∗∗∗ (0.0096) 0.468∗∗∗ (0.0071)

N 8906 8906 8906 8906

Log Likelihood -25560 -25348 -25165 -25131

AIC 51489 51066 50704 50636

CV 4.842 4.512 4.304 4.253

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

1.B.1 Individual results

This appendix provides results based on individual estimates. We focus on the

exponential utility function which is found to provide a better Ąt to the data

than the power utility function under both our semi-parametric method and the

parametric one. Analyses presented below are based on median comparisons

of coefficients using Sign Rank tests. All tests are two-sided, unless stated

otherwise.
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1.B.1.1 Curvature of the utility function

The distributions of the curvature coefficients obtained under both methods are

plotted in Figures 1.B.1 and 1.B.2, and their median values are summarized in

Table 1.B.4.

Figures 1.B.1 and 1.B.2 indicate that, regardless of the estimation method

at hand, the dominant pattern is the concavity of the utility function in both

domains.

For gains, the estimated median exponential utility parameter under the semi-

parametric method is 0.0068 and signiĄcantly greater than 0 (p−value < 0.0001,

one-sided Sign Rank test). In the loss domain, the median exponential utility

parameter is estimated at -0.0065 and signiĄcantly below 0 (p− value < 0.0001).

Furthermore, partial reĆection is rejected: comparing the median estimates of

both coefficients yields p − value < 0.0001. The parametric method leads to

very similar results.35

1.B.2 Probability weighting function

Table 1.B.5 and Figure 1.B.3 summarize the estimated probability weighting

functions across domains. In addition, Figures 1.B.4 and 1.B.5 show the under-

lying distributions of individual estimates. Both methods consistently point to

an inverse S-shaped weighting function across domains, with a crossover point

around p = 0.5. We cannot reject H0 : w+(0.5) = 0.5 or H0 : w−(0.5) = 0.5 with

p− values > 0.3698.

Focusing on our semi-parametric method, we report that the median difference

in probability weights between gains and losses is positive and signiĄcant (p−
35The corresponding median values are 0.0081 and -0.0063. The respective statistical tests

all yield p − values < 0.0001. In addition, the differences between the median estimates
obtained through both methods are small and insignificant for gains (p− value = 0.6539) as
well as for losses (p− value = 0.8812).
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values < 0.0361) for the probabilities p = 0.05 and p = 0.10, and insigniĄcant

for the remaining probabilities (all p − values > 0.1347). This suggests that

there is stronger overweighting of probabilities p = 0.05 and p = 0.10 in the

gain domain than in the loss domain. Hence, subjects are more optimistic

about very small probabilities of gaining money than they are pessimistic about

very small probabilities of losing money. In contrast, identical probability

weighting cannot be refuted with the parametric method because the median

differences in the estimated probability weights are systematically insigniĄcant

(all p− values > 0.7651).36

Table 1.B.4: Median estimates for exponential utility function using individual
estimates

Semi-parametric Parametric

Median IQR† Median IQR†

Utility parameter (Gain) 0.0068 [-0.0001; 0.0152] 0.0081 [0.0007; 0.0136]

Utility parameter (Loss) -0.0065 [-0.0172; 0.0001] -0.0063 [-0.0158; 0.0002]

AIC⋆ 50,601.23 50,636.95

CV⋆ 4.2494 4.2529

† IQR stands for interquartile range

⋆ AIC and CV are from pooled estimates

36The same results hold on the median differences of the parameters of the probability
weighting function (all p− values > 0.6539)
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Table 1.B.5: Median values of probability weights based on individual estimates

Semi-parametric Parametric

Median IQR+ Median+ IQR+

Gain

w+(0.05) 0.2156 0.1339; 0.3181 0.2033 0.1273; 0.3030

w+(0.10) 0.2666 0.1826; 0.3696 0.2670 0.1865; 0.3502

w+(0.25) 0.3635 0.2763; 0.4521 0.3741 0.2971; 0.4437

w+(0.50) 0.5046 0.4196; 0.5660 0.5163 0.4302; 0.5685

w+(0.75) 0.6441 0.5251; 0.7269 0.6323 0.5549; 0.7067

w+(0.90) 0.7900 0.6524; 0.8720 0.7315 0.6420; 0.8135

w+(0.95) 0.8038 0.6916; 0.8961 0.7991 0.6999; 0.8698

Loss

w−(0.05) 0.1886 0.0908; 0.3026 0.1922 0.1184; 0.3000

w−(0.10) 0.2545 0.1490; 0.3811 0.2521 0.1729; 0.3688

w−(0.25) 0.3628 0.2750; 0.4907 0.3663 0.2906; 0.4568

w−(0.50) 0.5076 0.4289; 0.5724 0.4928 0.4345; 0.5645

w−(0.75) 0.6506 0.5770; 0.7392 0.6398 0.5463; 0.6967

w−(0.90) 0.7488 0.6340; 0.8353 0.7560 0.6564; 0.8118

w−(0.95) 0.7922 0.6867; 0.8821 0.8131 0.7123; 0.8721

IQR stands for interquartile range

+ For parametric methods, the median weights and IQR are

computed from the individual probability weighting function
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Figure 1.B.1: Curvature of the utility function across domains: semi-parametric
estimates
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Figure 1.B.2: Curvature of the utility function under different estimation
methods
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Figure 1.B.3: Median probability weights under different estimation methods
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Figure 1.B.4: Distribution of probability weights for gains
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Figure 1.B.5: Distribution of probability weights for losses

1.C Spline extension

Our semi-parametric method requires specifying a utility function. Using spline

instead may further serve to reduce or eliminate such parametric assumptions.

In this section, we provide a linear spline extension for our semi-parametric

method.37

37The use of linear spline to approximate the utility function meshes well with the observation
that utility is quasi-linear over a small range of outcomes (see Wakker and Deneffe, 1996;
Bleichrodt and Pinto, 2000; Rabin, 2000; Fehr-Duda et al., 2006).
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1.C.1 Estimating probability weighting functions and

utility curvature

We consider utility function over a range
[
q, 0

]
∪ [0, q]. We divide this range in

arbitrarily small intervals [qj, qj+1] over which utility is assumed to be linear,

with q ≡ q−τ− < q−τ−+1 < ... < q0 ≡ 0 < q1 < ... < qτ+−1 < qτ+ ≡ q and

j ∈ ¶−τ−,−τ− + 1, ...,−1, 0, 1, ...., τ+ − 1, τ+♢. Notations (cel, xl, yl, Ikl , D+
l

and D−
l ) are the same as in Sections 1.3.2.2 and 1.3.2.3. We assume that all

the outcomes xl and yl in the binary lotteries are such that ¶xl,yl♢ ∈ ¶q ≡
q−τ− , q−τ−+1, ..., q0 ≡ 0, q1, ..., qτ+−1, qτ+ ≡ q♢. A linear spline approximation of

the utility of any certainty equivalent cel ∈ [qj, qj+1] is thus given by:

u(cel) = u(qj) +
u(qj+1) − u(qj)

qj+1 − qj
(cel − qj) (1.30)

where u(0) = 0. The subsequent identiĄcation of loss aversion as in Köbberling

and Wakker (2005) requires the utility function to be differentiable at 0 with

u′(0) = 1. This implies that u(q−1) = q−1 and u(q1) = q1. We assume response

errors at the level of the utility ratio and get the equation:38

u(cel) − u(yl)
u(xl) − u(yl)

=
K∑

k=1

(δ+
k D+

l + δ−
k D−

l )Ikl + eil (1.31)

with the scaling u(0) = 0, u(q−1) = q−1 and u(q1) = q1. Equation (1.31) then

allows us to estimate the probability weights and the utility evaluated at the

knots: q−τ− , q−τ−+1, ..., q−2, q2, ..., qτ+−1, qτ+ .

38We choose to define the error term at the level of the utility ratio rather than the utility
itself so as to circumvent the problem of extreme utility curvature (see footnote 13 for further
explanation).
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1.C.2 Estimating loss aversion

With utility function and probability weights estimated in the previous steps,

we can rewrite equation (1.16) as follows:

(
1(cek≥0) + λ1(cek<0)

)
u(cek) = w+(pk)u(xk) + λw−(1 − pk)u(yk) (1.32)

where ¶xk,yk♢ ∈ ¶q ≡ q−τ− , q−τ−+1, ..., q0 ≡ 0, q1, ..., qτ+−1, qτ+ ≡ q♢ and 1(.)

refers to the indicator function. Using the same notation as in Section 1.3.2.3

and assuming an additive error at the basic utility scale (ek), the empirical

counterpart of equation (2.21) then becomes:

(
D+

k + λD−
k

)
û(cek) = δ̂+

k û(xk) + λδ̂
−

k û(yk) + ek (1.33)

We can then estimate the loss aversion index of Köbberling and Wakker (2005)

from equation (2.22) by minimizing the sum of squared errors with respect to λ.

1.C.3 Comparing our semi-parametric method with its

non-parametric spline version

To conduct spline estimations, we need data with a high number of certainty

equivalents per subject. Among the several existing datasets that we reviewed

(e.g. GW99; BFE10; lŠHaridon and Vieider, 2019; Harrison and Rutström, 2009;

Andersson et al., 2020; Pedroni et al., 2017; Eisenberg et al., 2019), the one of

GW99 is best suited for our analysis because it includes 165 certainty equivalents

per subject.

The 165 values of certainty equivalents correspond to binary lotteries that

involve 15 pairs of positive monetary outcomes (0, 25), (0, 50), (0, 75), (0,

100), (0, 150), (0, 200), (0, 400), (0, 800), (25, 50), (50, 75), (50, 100), (50,
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150), (100, 150), (100, 200) and (150, 200) and 11 probabilities of obtaining

the higher outcome: 0.01, 0.05, 0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 0.9, 0.95 and 0.99.

The subjects are 10 graduate students in psychology. GW99 use the switching

outcome procedure for eliciting certainty equivalents, resulting in a total of 1650

certainty equivalents.

1.C.4 Results

We perform both semi-parametric and linear spline estimations using individual-

level and median data. Figures 1.C.1 and 1.C.2 show the estimates for the utility

and probability weighting functions.39 For the median data, both methods lead

to remarkably similar estimates for both the utility and probability weighting

functions. Both methods estimate a concave utility function and an inverse

S-shaped weighting function with crossover point around p = 0.4. Even though

we cannot reject the absence of differences in probability weights between the

two methods (all p− values > 0.3438), the concavity of the utility function is

more pronounced in the spline estimation (p− value = 0.0010).

At the individual level, the utility function is also found to be predominantly

concave in both methods. The typical inverse S-shaped weighting function is

also pervasive across methods, with the exception of Subject 6 whose weighting

function is weakly concave.

39To compare the utility function over the range [$0, $800] from these two estimations, we
convert them into a common scale, so that u($800) = 1 and u(0) = 0.
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Figure 1.C.1: Estimated utility functions
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Figure 1.C.2: Estimated weighting functions

1.D Hierarchical Bayesian Parameter Estima-

tion

The goal of this application is to illustrate how to deploy Bayesian techniques

with our method. To that end, we use the data of lŠHaridon and Vieider (2019)

who elicit risk parameters from individual decisions of 2,939 subjects across 30

countries.

We use Hierarchical Bayesian Parameter Estimation (HBPE) (Nilsson et al.,

2011; Murphy and ten Brincke, 2018; Baillon et al., 2020; Gao et al., 2020) to
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estimate world-level and country-level utility functions, probability weights and

loss aversion. To perform HBPE, we rewrite equation (1.10) to account for the

fact that risk preferences are elicited at the country level (c):

ces,c,l = u−1
c


(uc(xl) − uc(yl)) ×




K∑

k=1

(δc,+k D+
l + δc,−k D−

l )Ikl


+ uc(yl)


+ eis,c,l

(1.34)

with δc,+k = F (zc,+k ), δc,−k = F (zc,−k ), F (.) is the normal cumulative distri-

bution function, c refers to the country of residence and eis,c,l is a normally

distributed error term N(0, σ2
i ). As in lŠHaridon and Vieider (2019), we consider

a country-speciĄc exponential utility function uc(.) characterized by αce and βce.

Following Rouder and Lu (2005), Nilsson et al. (2011) and Gao et al. (2020),

we assume the following prior and hyperprior distributions. As priors we take:

αce ⇝ N(αe, σα2
e
), βce ⇝ N(βe, σβ2

e
), zc,ik ⇝ N(zik, σ

2
zi

k

), σ2
+ ⇝ IG(0.001, 0.001)

and σ2
− ⇝ IG(0.001, 0.001) where IG(.) stands for inverse gamma distribution.

As hyperpriors, we take: αe ⇝ N(0, 10), βe ⇝ N(0, 10), zik ⇝ N(0, 1),

σ2
αe
⇝ IG(0.001, 0.001), σ2

βe
⇝ IG(0.001, 0.001), σ2

zi
k

⇝ IG(0.001, 0.001). We

estimate the posterior distributions of world- and country- speciĄc parameters

by using Markov Chain Monte Carlo (MCMC) with blocked Gibbs sampling

(Baillon et al., 2020; Gao et al., 2020). After discarding a burn-in of 10000

samples, we collect 40000 samples to approximate the posterior distributions of

the parameters of interest. We conĄrm the convergence of the MCMC chain by

visual inspection of the trace plots, the autocorrelation plots and kernel densities

of parameters based on the Ąrst and second halves of the sample.

We then use mean estimates of utility curvature and probability weights as

inputs to estimate loss aversion. Like Nilsson et al. (2011), Spiliopoulos and

Hertwig (2019) and Gao et al. (2020), we assume that the country-speciĄc loss
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aversion λc follows a log-normal distribution LN(λ, σ2
λ) with λ⇝ N(0, 10) and

σ2
λ ⇝ IG(0.001, 0.001).

Results

Utility and probability weighting functions

Figures 1.D.1 and 1.D.2 show the posterior distributions of the world-level

utility curvature in the gain and loss domains. The mean of the posterior

distribution of the utility curvature in the gain (loss) domain is 0.0085 (-0.0055)

suggesting that the utility function is generally concave. In the gain domain,

the 95% credible interval is [0.0021, 0.0150] showing that the utility function

deviates signiĄcantly from linearity. In the loss domain, linearity of the utility

function cannot be rejected at the 5% signiĄcance level with the 95% credible

interval of [−0.0165, 0.0057].
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Figure 1.D.1: Posterior distributions of curvature and probability weights in the
gain domain (world-level)
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Figure 1.D.2: Posterior distributions of curvature and probability weights in the
loss domain (world-level)

Turning to probability weights (see the posterior distributions in Figures

1.D.1 and 1.D.2 in the gain and loss domains for each weight), we present

the mean of the posterior distribution for each weight in Figure 1.D.3. We

observe the standard results of an underweighting of small probabilities and

an overweighing of large probabilities in both domains (lŠHaridon and Vieider,

2019). The crossover point is around 3/8 in both domains as the estimated mean

lies within the 95% credible interval (see Table 1.D.1). We have overweighting

for probabilities of 1/8 and 2/8, and underweighting for probabilities 4/8, 5/8,

6/8 and 7/8.
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Figure 1.D.3: Estimated weighting functions

129



Chapter 1. All at Once! A Comprehensive and Tractable Semi-Parametric Method to Elicit

Prospect Theory Components

Table 1.D.1: Posterior statistics for utility and probability weights

Mean Std. Dev. MCSE Median 95% credible interval

Gain domain

αe 0.0085 0.0033 0.0000 0.0085 0.0021 ; 0.0150

w+(1/8) 0.2674 0.0102 0.0001 0.2673 0.2477 ; 0.2874

w+(2/8) 0.3096 0.0102 0.0001 0.3096 0.2895 ; 0.3301

w+(3/8) 0.3765 0.0071 0.0004 0.3765 0.3624 ; 0.3904

w+(4/8) 0.4877 0.0050 0.0002 0.4876 0.4777 ; 0.4977

w+(5/8) 0.5724 0.0056 0.0002 0.5724 0.5614 ; 0.5837

w+(6/8) 0.6758 0.0074 0.0001 0.6758 0.6610 ; 0.6903

w+(7/8) 0.7773 0.0108 0.0001 0.7774 0.7556 ; 0.7981

Loss domain

βe -0.0055 0.0056 0.0000 -0.0055 -0.0165 ; 0.0057

w−(1/8) 0.2027 0.0116 0.0001 0.2025 0.1805 ; 0.2263

w−(2/8) 0.2801 0.0122 0.0001 0.2799 0.2565 ; 0.3047

w−(3/8) 0.3678 0.0111 0.0003 0.3677 0.3461 ; 0.3898

w−(4/8) 0.4689 0.0088 0.0003 0.4689 0.4516 ; 0.4862

w−(5/8) 0.5810 0.0103 0.0003 0.5810 0.5606 ; 0.6013

w−(6/8) 0.6889 0.0120 0.0001 0.6890 0.6648 ; 0.7121

w−(7/8) 0.7538 0.0112 0.0001 0.7540 0.7312 ; 0.7755

∗ MCSE stands for Monte Carlo standard errors

Loss aversion

Figure 1.D.4 shows the posterior distribution of the world-level loss aversion

coefficient. The mean of the posterior distribution is 1.785, pointing to a

substantial degree of loss aversion. The 95% credible interval of [1.6228, 1.9594]

also rejects loss neutrality and points to λ > 1.
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Figure 1.D.4: Posterior distribution of loss aversion (world-level)
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Chapter 2

Smoothing Spline Method for

Measuring Prospect Theory

Components

This chapter is single-authored paper.



Abstract

Prospect theory is today the main descriptive model for decision making

under risk and uncertainty. Measurement methods of its components are key to

many behavioral applications. This paper presents a smoothing spline method for

measuring utility function, weighting function and loss aversion. The method is

nonparametric and includes a penalty term to control the collinearity between the

value and the weighting functions. It is applicable to both risk and uncertainty.

We apply the method to individual data of Tversky and Kahneman (1992) and

Gonzalez and Wu (1999). In line with original prospect theory, the probability

weighting function is not sign-dependent. The value function is S-shaped with a

loss aversion coefficient of 1.6.

Keywords: H prospect theory, risk attitudes elicitation, smoothing spline

JEL codes: D81, C91
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2.1 Introduction

Empirical violations of expected utility theory (EUT; see Starmer, 2000, for

a review) explain the development of alternative theories of decision makings.

Cumulative Prospect Theory (CPT; see Tversky and Kahneman, 1992, henceforth

TK92) emerged as the theory with more descriptive validity (e.g. Blavatskyy,

2021; Attema et al., 2013).

Under CPT, Risk attitudes result simultaneously from the value and weighting

functions. As result, several combinations of the shapes of the value and weighting

functions can lead to the same level of risk-attitudes. A main challenge when

measuring CPT is how to deal with the collinearity between the value and

weighting functions (e.g. Zeisberger et al., 2012; Abdellaoui et al., 2011a).

Measurement methods of CPT can be done under three approaches: para-

metric (with parametric speciĄcation of the utility and probability weighting

functions)1, semi-parametric (with parametric speciĄcation of the utility func-

tion and parameter-free probability weighting function) and non-parametric (no

parametric speciĄcation for either function).

Parametric (e.g. TK92) and semi-parametric (Abdellaoui et al., 2008) meth-

ods are more often used because their implementations are quick and easy. Yet,

collinearity between the value and the weighting functions makes estimation

results sensitive to parametric speciĄcations (e.g. Abdellaoui, 2000; Abdellaoui

et al., 2008). A pragmatic and limited way to get rid of this collinearity is to

assume a linear value function (e.g. lŠHaridon and Vieider, 2019) in line with

the dual theory of Yaari (1987).

1For the utility function, Power and Exponential are popularly used and sometime a mixture
of them called Expo-Power (Saha, 1993; Holt and Laury, 2002; Abdellaoui et al., 2007a). For
the distortion of probability, one-parameter (e.g. TK92) and two-parameter (Prelec, 1998;
Goldstein and Einhorn, 1987; Chateauneuf et al., 2007; Abdellaoui et al., 2010) weighting
functions (for a review, see table 4 of Epper and Fehr-Duda, 2020) are available.
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The so-called tradeoff method of Wakker and Deneffe (1996) is an alternative.

This method is non-parametric and the collinearity between utility and weighting

functions does not play a role in the elicitation procedure. This explains why most

non-parametric methods (e.g. Abdellaoui, 2000; Abdellaoui et al., 2007b, 2016;

Blavatskyy, 2021) are built upon the tradeoff method (see Kpegli et al., 2023,

for detailed discussions on elicitation methods). The nonparametric method of

Gonzalez and Wu (1999, henceforth GW99) is a notable exception which does

not rely on the tradeoff method.2 However, the collinearity between utility and

weighting function takes a stronger form in this method. Irrespective to the data

under consideration, the method can lead to unrealistic concave value function

and probability weights close to 1 (see footnote 4).

This paper establishes an alternative nonparametric method to the tradeoff-

type methods. The proposed method approximates the value function with

smoothing spline. The smooth parameter allows to control for the collinearity

between the value and weighting functions by penalizing deviation from the

linear value function. In contrast to the tradeoff-type methods, the proposed

method accounts for response errors and rely on simple questions. The method

remains applicable under uncertainty where probabilities of events are unknown.

The method is applied on the two datasets of TK92 and GW99. Results indicate

that the probability weighting function is not sign-dependent. The value function

is S-shaped with a loss aversion coefficient of 1.6.

The rest of the paper is organized as follows. Section 2.2 presents the spline

value function. Section 2.3 develops the smoothing spline method for eliciting

cumulative prospect theory components. Section 2.4 presents the key features of

the method. We illustrate the method in Section 2.5 using the data of TK92

and GW99. Sections 2.6 and 2.7 provide discussion and conclusion.

2See the appendix of Fehr-Duda and Epper (2012) for a similar procedure.
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2.2 Spline value function for CPT

2.2.1 Prospect theory for binary lottery

Consider a binary lottery L = (x, y; p, 1 − p) yielding outcome x with probability

p and outcome y with probability 1 − p, both outcomes being real numbers.3

For notational convenience, let x > y ≥ 0 (x < y ≤ 0) for non-mixed prospects

involving only gains (losses). For mixed prospects (i.e., involving both gains

and losses), outcomes are denoted with an asterisk and y∗ < 0 < x∗. ≿

is a preference relation over prospects with ≻ (∼) denoting strict preference

(indifference). Preferences are represented by CPT with a probability weighting

function wi and a value function v as deĄned in equation (2.1) for non-mixed

prospects and in equation (2.2) for the mixed ones:

CPT (L) =
(
v(x) − v(y)

)
wi(p) + v(y) (2.1)

CPT (L) = w+(p)v(x) + w−(1 − p)v(y) (2.2)

where wi and v are both continuous, strictly increasing and satisfying v(0) = 0,

wi(0) = 0 and wi(1) = 1, and i =Ş+Ť (i =Ş−Ť) stands for the gain (loss) domain.

CPT makes no explicit link between weighting functions w+(.) and w−(.) which

makes it more general than the original version of prospect theory (OPT,

Kahneman and Tversky, 1979) in which w+(p) = w−(p), or rank dependent

utility theory (RDU, Quiggin, 1982; Gilboa, 1987; Schmeidler, 1989) that includes

the duality condition w+(p) = 1 − w−(1 − p).

3This notation is related to decision under risk. In the case of decisions under uncertainty,
one would simply replace p and 1 − p by E and Ec respectively. E denotes an event in a
state space Ω and Ec denotes its complement in Ω. In that case, L = (x, y;E,Ec) is a binary
prospect that gives outcome x if E occurs, and y otherwise.
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Following the seminal study by TK92 and the meta-analysis of Brown et al.

(2021), the value function v(.) is composed of the loss aversion index λ > 0,

which reĆects the exchange rate between gain and loss utility units, and the

(basic) utility function u(.) that reĆects the intrinsic value of outcomes:

v(x) =





u+(x) if x ≥ 0

−λu−(−x) if x < 0
and u(x) =





u+(x) if x ≥ 0

−u−(−x) if x < 0

(2.3)

with u+ : R+ −→ R+, u− : R+ −→ R+ and u+(0) = u−(0) = 0. LetŠs

assume that the basic utility function u is twice differentiable over R − ¶0♢
and differentiable at 0. Assuming that the utility function is differentiable at 0

means that the loss aversion index in the relation 2.3 corresponds to the ratio

of the left and right derivative of the value function as deĄned by Köbberling

and Wakker (2005). Loss aversion (loss seeking) corresponds to λ > 1(λ < 1),

whereas λ = 1 captures loss neutrality.

2.2.2 Spline value function

The spline approximation of the function ui(.) corresponds to (e.g., Ahamada

and Flachaire, 2010; Ruppert, 2002; Green and Silverman, 1993):

ui(z) = ai0 +
Ji∑

j=1

aijz
j +

Qi∑

t=1

bit(z− qit)
Ji
+ for z ≥ 0 and i = +,−

(2.4)

with Ji ≥ 1 the order of the spline, Qi the number of internal knots, qi1 < qi2 <

... < qiT and

(z − qit)
Ji
+ =





(z − qit)
Ji if z ≥ qit

0 otherwise
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To accommodate with u(0) = 0 of Prospect Theory, the scaling ai0 = 0 is used.

Without loss of generality, the scaling ai1 = 1 is used to allow identiĄcation of

the loss aversion index à la Köbberling and Wakker (2005). This scaling means

that the utility function is differentiable at 0, with u′(0) = 1.

A main advantage of (2.4) is that the shape of the utility function is very

Ćexible. The following three quadratic splines (2.5) - (2.7) illustrate this Ćexibility.

The spline (2.5) leads to a concave utility function (Figure 2.2.1, panel (a)).

The spline (2.6) leads to a convex utility function. The spline (2.7) leads to a

concave utility function over two intervals [0, 0.25] and [0.5, 0.75], and also leads

to a convex utility over the two intervals [0.25, 0.50] and [0.75, 1].

ui(z) = z − 0.47z2 − 0.01(z − 0.25)2
+ − 0.01(z − 0.25)2

+ − 0.01(z − 0.25)2
+ (2.5)

ui(z) = z + z2 + 0.1(z − 0.25)2
+ + 0.1(z − 0.50)2

+ + 0.1(z − 0.75)2
+ (2.6)

ui(z) = z − 1.75z2 + 3(z − 0.25)2
+ − 2.5(z − 0.25)2

+ + 2.5(z − 0.25)2
+ (2.7)
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Figure 2.2.1: Spline: exemple of shapes

(a) Spline function (2.5) (b) Spline function (2.6)

(c) Spline function (2.7)

2.3 Elicitation method

2.3.1 Step 1: utility and weighting functions in the gain

domain

In the gain domain, the method can be implemented by following three substeps.

First, a set of probabilities ¶pk : k = 1, 2, ..., K♢ are selected, with pk < pk+1.

Second, at least two certainty equivalents for each probability pk are elicited:

cej,k ∼ (xj,k, yj,k; pk, 1 − pk) , j = 1, 2, ..., N+
k and N+

k ≥ 2 (2.8)

where N+
k stands for the number of certainty equivalents for positive outcomes

xj,k and yj,k such that xj,k > yj,k ≥ 0. Thus, in total N+ =
∑K
k=1 N

+
k ≥
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2 ×K certainty equivalents are elicited. Using (2.1) and (2.3), these certainty

equivalents satisfy the following condition:

u+(cej,k) =
(
u+(xj,k) − u+(yj,k)

)
w+(pk) + u+(yj,k) (2.9)

Let ce,x and y be the column vectors containing all the realizations of cej,k, xj,k

and yj,k, respectively. Let also Ik be a dummy variable set to 1 if the probability

equals pk and 0 otherwise. For k = 1, .., K, denote δ+
k ≡ w+(pk) ∈ (0, 1).

Arranging the terms in equation (2.9) and taking the log leads to the following

equation:

log
(
u+(cej,k) − u+(yj,k)

)
= log

(
u+(xj,k)) − u+(yj,k)

)
+ log

(
w+(pk)

)
(2.10)

Adding an error term e to the log-transformation (2.10) leads to the following

empirical equation:4

log
(
u+(cel) − u+(yl)

)
= log

(
u+(xl) − u+(yl)

)
+ log

( K∑

k=1

δ+
k Ikl

)
+ el (2.11)

4An alternative approach would be to introduce the response error term at the utility level

(GW99, eq. 7): u(cel) = (u(xl) −u(yl))

K∑

k=1

δ+
k Ikl +u(yl) + el. However, defining the response

error at the utility level is problematic when using certainty equivalents data because it
produces solutions that are characterized by unrealistic concavity of the utility and probability
weighting functions. To illustrate this point, suppose that we are interested in eliciting utility
only over strictly positive outcomes with a power utility function u(z) = zα. For an extremely
concave utility function (i.e., α > 0 and α −→ 0) and an extremely concave weighting function
(i.e., δ+

k = 1 for k = 1, 2, ..,K ) along with the PT assumptions w+(0) = 0 and w+(1) = 1, we
have el = 0 for all l = 1, 2, ..., N+. For the non-parametric method of GW99 which aims at
estimating u(z) for z ∈ A(z) ≡ ¶$25, $50, $75, $100, $150, $200, $400, $800♢ and the probability
weights w(p) for p ∈ B(p) ≡ ¶0.01, 0.05, 0.10, 0.25, 0.40, 0.50, 0.60, 0.75, 0.90, 0.95, 0.99♢, it
follows that an extremely concave utility function (i.e., u(z) = constant > 0 for z ∈ A(z)
and u(0) = 0) and an extremely concave weighting function (i.e., w(p) = 1 for p ∈ B(p) and
w(0) = 1 − w(p) = 0) are solutions of the optimization problem (Kpegli et al., 2023).
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where l is the lth line in ce, x, y, Ik and e. Denote by θ+ the vector of

parameters (¶a+
j ♢J+

j , ¶b+
t ♢Q+

t=1) associated with the smooth approximation of the

utility function u+(.). Minimizing the following penalized sum of squared error

allows to estimate the utility function and the probability weights as follows:5

min
θ+,δ+

1 ,...,δ
+
K

N+∑

l=1

e2
l + ρ+

∫ x

0

[
u′′

+(z)
]2
dz (2.12)

where ρ+ ≥ 0 is the smooth parameter, u′′
+(.) the concavity (second derivative) of

the utility function and [0, x] the range over which the utility function is elicited.

Each level of the smooth parameter ρ+ corresponds to a speciĄc combination of

utility curvature and probability weighting function. For example, when subject

exhibits risk-aversion, the case ρ+ −→ +∞ corresponds to the linear utility

function and the less elevated probability weighting function that will result

from an estimation based on the dual theory of Yaari (1987). Then, the smooth

parameter allows to chose the combination of shapes of the utility and weighting

functions by penalizing deviation from the linear utility function.

Following the literature (e.g. Ahamada and Flachaire, 2010; Green and

Silverman, 1993), the optimal values of the smooth parameter ρ+ and the order

of the spline Q+ corresponds to the ones that minimize the leave-one cross-

validation (CV). Formally, the optimal ρ+ and Q+ provide the smallest value

for:

CV =
1
N+

N+∑

l=1

∣∣∣ĉe−l − cel
∣∣∣ (2.13)

5Note that we do not require monotonicity of the utility and weighting functions as is
commonly done in the literature (see e.g. GW99, p. 147).
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where ĉe−l is the predicted value of cel based on data without the lth observa-

tion.6

The following measure of utility curvature over [0, x] in the gain domain (see

Kpegli et al., 2023; Abdellaoui et al., 2016) is used to classify the utility function

as concave or convex:

α =
1

xu+(x)

∫ x

0
u+(t)dt (2.14)

The utility function u+(.) is considered to be concave, linear and convex on the

interval [0, x] when α > 0.5, α = 0.5 and α < 0.5 respectively.

2.3.2 Step 2: utility and weighting functions in the loss

domain

This step is similar to the Ąrst step. At least two certainty equivalents for each

probability pk are elicited:

cej,k ∼ (xj,k, yj,k; pk, 1 − pk) , j = 1, 2, ..., N−
k and N−

k ≥ 2 (2.15)

where N−
k stands for the number of certainty equivalents for negative outcomes

xj,k and yj,k such that xj,k < yj,k ≤ 0. Thus, in total N− =
∑K
k=1 N

−
k ≥ 2 ×K

certainty equivalents are elicited.

6Denote by û+(.) and δ̂+
k (k = 1, 2, ...,K) the estimated utility function and decision

weights. The predicted certainty equivalent ĉel is the solution to the equation û+(ĉel) =

(
û+(xl) − û+(yl)

) K∑

k=1

δ̂+
k Ikl + û+(yl).

143



Chapter 2. Smoothing Spline Method for Measuring Prospect Theory Components

Consider the following log-transformation of prospect theory functional form

with an additive error term:

log
(
u−(−cel) − u−(−yl)

)
=log

(
u−(−xl) − u−(−yl)

)
+

log
( K∑

k=1

δ−
k Ikl

)
+ el

(2.16)

where l is the lth line in ce, x, y, Ik and e. Denote by θ− the vector of

parameters (¶a−
j ♢J−

j , ¶b−
t ♢Q−

t=1) associated with the smooth approximation of the

utility function u−(.). Minimizing the following penalized sum of squared error

provides the estimate of the utility function and the probability weights:7

min
θ−,δ−

1 ,...,δ
−
K

N−∑

l=1

e2
l + ρ−

∫ −x

0

[
u′′

−(z)
]2
dz (2.17)

where ρ− ≥ 0 is a (Ąxed) smooth parameter, u′′
−(.) the concavity (second

derivative) of the utility function and [x, 0] the range on which the utility

function is elicited. As in the gain domain, the smooth parameter controls

the concavity of the utility function by penalizing deviation from linear utility

function or the dual theory of Yaari (1987).

As in the gain domain, the optimal values of the smooth parameter ρ− and

the order of the spline Q− correspond to the ones that minimize the leave-one

cross-validation (CV):

CV =
1
N−

N−∑

l=1

∣∣∣ĉe−l − cel

∣∣∣ (2.18)

7As in gain domain, the method does not require monotonicity of the utility and weighting
functions as is commonly done in the literature (see e.g. GW99, p. 147).
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where ĉe−l is the predicted value of cel based on data without the lth observa-

tion.8

As in the gain domain, the following measure of utility curvature over the

loss interval [x, 0] is used to classify the utility function as concave or convex

(see Kpegli et al., 2023; Abdellaoui et al., 2016):

β =
1

xu−(x)

∫ 0

x
u−(t)dt (2.19)

The utility function u−(.) is considered to be concave, linear and convex on the

interval when β > −0.5, β = −0.5 and β < −0.5 respectively.

2.3.3 Step 3: measuring loss aversion

The third step allows to measure the loss aversion index λ as deĄned in (2.3).

Following Abdellaoui et al. (2007b), the estimation of the loss aversion index

can be done using a set of K indifference relationships that involve mixed binary

prospects:

cek ∼ (xk, yk, pk, 1 − pk) , k = 1, 2, ..., K (2.20)

with yk < 0 < xk. Under CPT these indifferences imply that:

(
1(cek≥0) + λ1(cek<0)

)
u(cek) = w+(pk)u(xk) + λw−(1 − pk)u(yk) (2.21)

where 1(.) refers to the indicator function. Denote by D+ a dummy variable that

takes the value 1 if the certainty equivalent is positive (or zero) and 0 otherwise.

Similarly, D− is a dummy variable that takes value 1 if the certainty equivalent

8Denote by û−(.) and δ̂−
k (k = 1, 2, ...,K) the estimated utility function and decision

weights. The predicted certainty equivalent ĉel is solution to the equation û−(−ĉel) =

(
û−(−xl) − û−(−yl)

) K∑

k=1

δ̂−
k Ikl + û−(−yl).
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is negative and 0 otherwise. Assuming additive error at the basic utility scale

(ek), the empirical counterpart of equation (2.21) then becomes:

(
D+

k + λD−
k

)
û(cek) = δ̂+

k û(xk) + λδ̂
−

k û(yk) + ek (2.22)

with û, δ̂+
k and δ̂

−

k the estimates of the utility function û, the probability weights

in the gain domain w+(pk) and the probability weights in the loss domain

w−(1 − pk) from steps 1 and 2.

Estimate of loss aversion index λ of Köbberling and Wakker (2005) is given

by the minimization of the sum of squared error:

min
λ

K∑

k=1

e2
k (2.23)

2.4 Key features of the method

This section highlights six features of the method.

Robust to collinearity. The method controls for the collinearity between

utility and weighting functions (e.g. Zeisberger et al., 2012) with smooth param-

eters. Indeed, these smooth parameters allow to choose optimal combination of

curvatures of utility and weighting functions in the gain and loss domains.

Applicability to unknown probabilities. The use of Ąxed effects for esti-

mating decision weights is taken from Kpegli et al. (2023). The method is then

directly applicable to cases of uncertainty where probabilities are unknown. The

probability dummy variables can then be replaced by the event dummy variables

in equations (2.11) and (2.16). It does not require setting any speciĄc conditions

146



Chapter 2. Smoothing Spline Method for Measuring Prospect Theory Components

on the event space, and hence can be applied to real-life uncertainty situations

(Baillon et al., 2018).9

Error-robust. In contrast to the tradeoff method (Wakker and Deneffe, 1996),

the smoothing spline method considers that subjects can make error in their

responses. Estimations of prospect theory components result from a minimization

of (penalized) sum of squared response errors.

Easy (not cognitively demanding). The method is a certainty equivalent

method. As such, it uses simple questions that involves the lowest possible

number of outcomes (i.e., 3): comparisons of certain outcomes and binary

lotteries. Hence, the method is less cognitively demanding than the tradeoff

method that rely on comparison of two non-degenerate lotteries (e.g. Abdellaoui

et al., 2008).

Tractable. The method can be implemented by using optimization programs

available in standard statistical software. For example, the ML routine for Stata

popularized by Harrison and Rutström (2008) and Moffatt (2015) for parametric

risk elicitation can be used to implement the smoothing spline method.

Data-inefficient. The method builds upon the smoothing spline literature.

Application of the method is more data consuming than parametric methods

(e.g. Ahamada and Flachaire, 2010; Green and Silverman, 1993). This method

should thus be used in two main cases. First, behavioral studies often elicit

few observations per subjects. In such case, the method can be used to derive

estimates at the aggregate level by pooling subjects as in TK92. The dataset

include 25 subjects. For each subject, only 28 observations are available to

derive estimates of utility and weighting function in each domain. The pooled

data with 700 (= 25 × 28) observations per domain can then be used to derive

9Previous methods require that the universal event is an interval of real numbers (e.g.
temperature in a town) which is most suitable to deal with artificial uncertainty situations
that can be created in the laboratory (Van De Kuilen and Wakker, 2011).
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estimate at the aggregate level. Second, the method can be performed at the

individual level if the number of observations per subjects is sufficiently large as

in GW99. For each subject, the dataset include 165 observations to measure

utility and weighting functions in the gain domain.

2.5 Application

This section applies the smoothing spline method on the data of TK92 and

GW99.

2.5.1 Data

2.5.1.1 Data of TK92

Subjects: TK92 run a computerized experiment with 25 graduate students

from Berkeley and Stanford with no particular training in decision theory. Each

subject participated in three separate one-hour sessions organized over several

days, and received $25 for participation.

Procedure: the data are generated via the switching outcome procedure in

which an indifference value is inferred through a list of equally spaced certain

outcomes, ranging from the admissible maximum indifference value to the ad-

missible minimum indifference value. Internal consistency of the responses to

each prospect is monitored by a computer software to reduce response errors.

Data for the first and second steps: all outcomes are expressed in US dollars.

For each subject, there are 28 values of certainty equivalents for binary lotteries

that involve 7 pairs of positive monetary outcomes (0, 50), (0, 100), (0, 200), (0,

400), (50, 100), (50, 150) and (100, 200), and 9 probabilities of getting the higher

148



Chapter 2. Smoothing Spline Method for Measuring Prospect Theory Components

outcome: 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95 and 0.99. Also, there are, for

each subject, 28 values of certainty equivalents for binary lotteries that involve 7

pairs of negative monetary outcomes (0, -50), (0, -100), (0, -200), (0, -400), (-50,

-100), (-50, -150) and (-100, -200), and the same list of 9 probabilities as in the

gain domain. These probabilities are now associated to losing the higher outcome.

Data for the third step: for mixed prospects, individual data are not available.

We then use the median values reported in Table 6 of TK92. We use the four

indifferences on mixed prospects that consist in eliciting the values of gains x

to make subjects indifferent between the mixed prospects (x, y; 0.5, 0.5) and 0.

The values of y are -25, -50, -100 and -150.

2.5.1.2 Data of GW99

Subjects and procedure: GW99 run a computerized experiment with 10

graduate students in psychology. They also use the switching outcome procedure

for eliciting certainty equivalents.

Data for the first step (only gain): Each subject has 165 certainty equivalents.

The 165 values of certainty equivalents correspond to binary lotteries that involve

15 pairs of positive monetary outcomes (0, 25), (0, 50), (0, 75), (0, 100), (0, 150),

(0, 200), (0, 400), (0, 800), (25, 50), (50, 75), (50, 100), (50, 150), (100, 150),

(100, 200) and (150, 200) and 11 probabilities of obtaining the higher outcome:

0.01, 0.05, 0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 0.9, 0.95 and 0.99.
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2.5.2 Results

2.5.2.1 Utility function

Figure 2.5.1 provides the estimated utility functions on both datasets.10 The

pool estimate on the data of TK92 leads to a concave (resp. convex) utility

in the gain (resp. loss) domain. The utility curvature in gain domain is

α = 0.554 and is signiĄcantly different from linearity (p − value = 0.0011)11,

which corresponds to α = 0.5. In the loss domain, the mean of utility curvature

in the gain domain is β = −0.517 and is signiĄcantly different from linearity

(p− value = 0.0036) where β = −0.5. Furthermore, partial reĆection is rejected

(H0 : α+ β = 0, p− values = 0.0355).

For the data of GW, the mean of individual utility function in the gain

domain is also concave.12 The utility curvature is α = 0.623 and is signiĄcantly

different from linearity (p− value < 0.0001).

Figure 2.5.1: Utility function

(a) Data of TK92 (pool estimate)
(b) Data of GW99 (mean of individual

estimates)

10Appendixes 4.A and 4.B provides detailed informations about estimates.
11All p-values are computed on the basis of Bootstrap with 1000 replications.
12see appendix for detailed results at the individual level
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2.5.2.2 Weighting function

Figure 2.5.2 provides the estimated probability functions. For the data of

TK92, probabilistic risk neutrality in the gain domain w+(p) = p is rejected

for most probabilities (all p − values < 0.0004), except for 0.25 (p − value =

0.3978). Similar patterns emerge in the loss domain. Probabilistic risk neutrality

w−(p) = p is rejected for most probabilities (all p − values < 0.0014), except

for 0.25 (p− value = 0.8598). Hence, the weighting function in both domains

is inverse S-shaped with overweighting for p ∈ (0, 0.25] and underweighting for

p ∈ (0.25, 1). The data of GW99 in the gain domain also leads to a crossing

point at p = 0.25 (p− value = 0.6189). For the data of GW99, probabilistic risk

neutrality in the gain domain w+(p) = p is rejected for most probabilities (all

p− values < 0.0127), except for 0.40 (p− value = 0.3710).

Over the 9 probabilities in the data of TK92, the hypothesis of identical

probability weights across domains (w+(pk) = w−(pk)) of OPT cannot be rejected

for all probabilities (all p − values > 0.0514). In contrast, the hypothesis of

duality (w+(pk) = 1 − w−(1 − pk)) of RDU is rejected for all probabilities (all

p− values < 0.0327).

Figure 2.5.2: Probability weighting function)

(a) Data of TK92 (b) Data of GW99
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2.5.2.3 Loss aversion

The estimated value of loss aversion is λ = 1.636 and is signiĄcantly different

from loss neutrality (p− value < 0.0001). Hence, subjects exhibit loss aversion.

2.6 Discussion

The estimation result of concave utility function in the gain domain is a very

common Ąnding in the literature, irrespective to the approach: parametric (e.g.

lŠHaridon and Vieider, 2019, TK92), semi-parametric (e.g. Abdellaoui et al.,

2008, 2011a; Kpegli et al., 2023) and non-parametric (e.g. Wakker and Deneffe,

1996; Abdellaoui et al., 2016; Blavatskyy, 2021, GW99).

In the loss domain, the Ąnding of convex utility function corroborates the

original parametric estimates of TK92. Though, the evidences about utility

curvature in loss domain are mixed in the literature. Results based on non-

parametric methods (e.g. Abdellaoui et al., 2011b; Attema et al., 2018; Abdellaoui

et al., 2016; Blavatskyy, 2021; Hajimoladarvish, 2017) tend to provide evidences

in favor of a convex utility function. In contrast, results based on semi-parametric

methods (e.g. Abdellaoui et al., 2008; Attema et al., 2013, 2016; Kpegli et al.,

2023) tend to provide evidences in favor of a concave utility function.

The methods also leads to the rejection of partial reĆection (α + β = 0).

Empirical evidences on partial reĆection in the literature is mixed. The rejection

of partial reĆection is consistent with some studies (Abdellaoui et al., 2013, 2016;

Attema et al., 2013, 2016, ABL), but not with others (e.g. Abdellaoui, 2000;

Andersen et al., 2006; Abdellaoui et al., 2007b; Booij and Van de Kuilen, 2009;

Harrison and Rutström, 2009; Booij et al., 2010).

The estimation results provide support for identical probability weighting

function across domains of OPT and reject the duality condition of RDU.
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Tests of identical probability weightings and duality are scarce in the literature.

Abdellaoui (2000) and Kpegli et al. (2023) reject both duality and identical

probability weighting functions across domains under risk. Abdellaoui et al.

(2005) do not reject duality under uncertainty although they reject identical

weighting functions across domains. The observation of identical probability

weights and the rejection of duality provide support for OPT.

The method conĄrms loss aversion, with a loss aversion index of λ = 1.636.

This estimate is less than the 2.25 reported by TK92. Our estimate is close to

the estimated value of 1.6 that was elicited in both Booij et al. (2010) who use

structural estimation techniques, and Abdellaoui et al. (2008) for pooled data.

It is also close to the estimates of λ = 1.8 reported by Pennings and Smidts

(2003). The evidence of loss aversion is a very common Ąnding in the literature

as only few studies Ąnd evidences for loss seeking (e.g. Abdellaoui et al., 2013;

Nilsson et al., 2011).

2.7 Conclusion

In sum, this paper introduces a smoothing spline method to elicit the utility

function, the weighting function and the loss aversion. The method allows to

control for the collinearity between utility and weighting function and can be

applied under both risk and uncertainty. Its application on experimental data

provides reliable results.
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2.A Appendix Data of TK92

Table 2.A.1 provides detailed results on the data of TK92. We use three internal

knots that correspond to quartile of the certainty equivalent (e.g. Ahamada and

Flachaire, 2010).

Table 2.A.1: Individual estimates: data of TK92

Domain Gain (i = +) Loss (i = −)

Utility function

ai
2 -0.00207 -0.00220

ai
3 0.00000662 0.00000898

bi
1 -0.0000120 -0.00000555

bi
2 0.0000152 0.00000192

bi
3 -0.00000901 -0.00000510

Probability weights

wi(0.01) 0.0501 0.0378

wi(0.05) 0.133 0.104

wi(0.10) 0.183 0.154

wi(0.25) 0.263 0.252

wi(0.50) 0.415 0.407

wi(0.75) 0.515 0.545

wi(0.90) 0.661 0.675

wi(0.95) 0.707 0.714

wi(0.99) 0.916 0.919

Order of the spline and smooth parameter

Q+ 3 3

ρ+ 9500 9000

CV 12.42 11.49

N 700 700

2.B Appendix Data of GW99

Table 2.B.1 provides detailed results for the 10 subjects in the data of GW99. We

use three internal knots that correspond to quartile of the certainty equivalent

(e.g. Ahamada and Flachaire, 2010).
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Table 2.B.1: Individual estimates: data of GW99

Subject 1 2 3 4 5 6 7 8 9 10

Utility function

a+
2 -0.0005 -0.0007 -0.0006 -0.0045 -0.0219 -0.0008 -0.0067 -0.0067 -0.0053 -0.0085

a+
3 −5 × 10−6 −7 × 10−4

b+
1 7 × 10−6 4 × 10−6 −1.1 × 10−4 −1.3 × 10−7 0.0205 −3.4 × 10−4 9.5 × 10−4 2.2 × 10−4 0.0013 0.0038

b+
2 −6 × 10−7 6.3 × 10−6 1.3 × 10−4 5.25 × 10−5 0.0008 −0.0001 0.0041 0.0022 0.0020 0.0035

b+
3 −1.2 × 10−6 −3 × 10−6 0.0004 0.0040 0.0006 0.0009 0.0015 0.0040 0.0020 0.0012

Probability weights

w+(0.01) 0.137 0.0801 0.340 0.101 0.233 0.0682 0.127 0.162 0.0282 0.196

w+(0.05) 0.177 0.155 0.334 0.175 0.281 0.113 0.237 0.171 0.0689 0.225

w+(0.10) 0.175 0.286 0.428 0.130 0.365 0.133 0.230 0.187 0.121 0.301

w+(0.25) 0.240 0.347 0.485 0.220 0.451 0.280 0.256 0.283 0.245 0.404

w+(0.40) 0.255 0.420 0.507 0.154 0.517 0.440 0.281 0.242 0.359 0.489

w+(0.50) 0.195 0.434 0.523 0.183 0.535 0.542 0.246 0.221 0.442 0.523

w+(0.60) 0.315 0.448 0.489 0.178 0.574 0.623 0.319 0.355 0.492 0.595

w+(0.75) 0.406 0.537 0.563 0.217 0.597 0.795 0.352 0.396 0.687 0.576

w+(0.90) 0.415 0.779 0.640 0.238 0.681 0.931 0.443 0.434 0.799 0.699

w+(0.95) 0.458 0.885 0.612 0.255 0.730 0.960 0.466 0.469 0.896 0.737

w+(0.99) 0.661 0.819 0.738 0.362 0.850 0.968 0.530 0.620 0.769 0.866

Order of the spline and smooth parameter

Q+ 3 3 2 2 2 2 2 2 2 2

ρ+ 10000 9000 5100 1700 1 3000 600 3500 500 400

CV 14.00 14.02 18.63 7.23 14.49 6.24 8.31 11.86 11.68 14.01

N 165 165 165 165 165 165 165 165 165 165
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Figure 2.B.1: Individual estimates: data of GW99

(a) Subject 1 (b) Subject 2

(c) Subject 3 (d) Subject 4

(e) Subject 5 (f) Subject 6

(g) Subject 7 (h) Subject 8

(i) Subject 9 (j) Subject 10
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Chapter 3

Measuring Beliefs and Ambiguity

Attitudes Towards Discrete

Sources of Uncertainty

This chapter is based on a paper co-authored with Maria Alejandra Erazo Diaz.



Abstract

This chapter proposes a new method to measure beliefs and ambiguity attitudes

towards events that are not necessarily equally likely and belong to a discrete

set (i.e., discrete sources of uncertainty). Our method increases robustness to

misspeciĄcation and allows Ćexibility in parametric choices compared to previous

methods. We implement our method experimentally to both equal and different

sources of uncertainty in two contexts: trust and coordination games. We Ąnd

two main results. First, for equal sources of uncertainty, our method successfully

reveals that subjects have context-independent beliefs on events, but context-

dependent utility and weighting functions. This result indicates that comparing

different sources of uncertainty requires a complete measurement of the utility

and weighting functions. Second, different sources of uncertainty where the

events are not equally likely lead to an increase in likelihood insensitivity, which

indicates that the beliefs formation process of unknown events is cognitively

demanding.

Keywords: Subjective beliefs, ambiguity attitudes, sources of uncertainty, trust

game, coordination game.

JEL codes: D81, C91
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Uncertainty

3.1 Introduction

Ambiguous situations are pervasive in human decisions. These decisions vary

from choosing a place to work to important investment decisions. Subjects decide

under ambiguous situations when the objective probabilities of the possible events

are unknown (Knight, 1921). In contrast, subjects make decisions under risk

when the objective probabilities are known.

The standard theory under ambiguity Ű Subjective Expected Utility (SEU) Ű

considers that subjects (i) form subjective probabilities or beliefs on events, (ii)

have the same utility function under ambiguity as under risk, and (iii) value

lotteries as expected utility over outcomes in which the weights are the beliefs.

Ellsberg (1961)Šs paradox showed that people deviate from SEU by exhibiting

ambiguity attitudes (aversion or even seeking). Consequently, several models

(e.g. Gilboa, 1987; Schmeidler, 1989; Tversky and Kahneman, 1992; Klibanoff

et al., 2005) have been proposed to account for ambiguity attitudes by allowing

events weighting function and a difference in utility between risk and ambiguity.

The estimation of the utility and weighting functions Ű as a measure of ambi-

guity attitudes Ű has been focused on continuous-valued sources of uncertainty,

meaning that the universal event is an interval of real numbers (Abdellaoui et al.,

2021b; Van De Kuilen and Wakker, 2011). The main advantage of continuous-

valued sources of uncertainty is that the concept of exchangeability of events,

introduced by Baillon (2008), can be used to build elicitation methods (see

subsection 3.2.2). Two events are exchangeable for a decision maker when she

is indifferent towards permutations of their outcomes. Exchangeability allows

to iteratively partition the universal event in equally likely events. Then, with

a set of exchangeable events for which the subjective probabilities are known,

elicitation methods can provide a measurement of the utility and weighting

functions.
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In our daily life, situations of continuous-valued sources of uncertainty are

not common compared to situations that involve discrete sources of uncertainty.

A Discrete source of uncertainty refers to any source of uncertainty that takes

their values in a discrete set of events, which are not necessarily equally likely.

The universal event is no longer an interval of real numbers. As such, it excludes

the possibility of building exchangeable events. Baillon et al. (2018a,b) shed

light on this regard by proposing two methods that do not require exchangeable

events; therefore, the two methods can be used for discrete sources of uncertainty.

However, these methods rely on restricted parametric assumptions (source inde-

pendent utility function and the neo-additive weighting function of Chateauneuf

et al. (2007)), which makes them prone to misspeciĄcation issues.

The objective of this chapter is to develop a method to completely estimate

utility function, weighting function and beliefs for discrete sources of uncertainty.

Examples of discrete sources of uncertainty are present in almost all Ąelds of

economics. Some of the experimental from game theory include trust, ultimatum,

and public good games. In the trust game (e.g. Bohnet et al., 2008), for instance,

the universal event of the Trustor is often the union of two unequally likely

events; either the Trustee reciprocates or betrays. Also, in the ultimatum game

(e.g. Slonim and Roth, 1998), the universal event for the Ąrst mover is the union

of two unequally likely events; either the second mover accepts or rejects the

money sent by the Ąrst mover. Similarly, in a public good game with two players

(e.g. Kosfeld et al., 2009), the universal event of each player is the union of two

unequally likely events; either the other player contributes or the other player

does not contribute.

Further examples of discrete sources of uncertainty can be found in health

economics. For instance, the universal event of someone that consumes harmful

products (e.g., tobacco, alcohol, unhealthy diets) can be represented as the union
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of two unequally likely events: either the development of a non-communicable

disease or stay healthy (e.g. Bloom et al., 2020; Mane et al., 2019). This

example can also be extended to communicable diseases like AIDS or COVID-19,

where people do not know the exact probability of getting sick and they decide

whether or not to wear condoms or masks (e.g. Cuddington, 1993; Rieger et al.,

2020). Additionally, transport economics (e.g Guarda et al., 2016) and taxation

economics (e.g. Dhami and Al-Nowaihi, 2007; Dhami and Hajimoladarvish, 2020)

exempliĄed these situations. For instance, subjects who do not pay for the

transport tickets face the union of two unequally likely events; being checked or

not by controllers. Similarly, subjects who avoid taxes can be caught or not.

To measure these types of discrete sources of uncertainty, we propose a

two-stage method in which the parametric assumptions of the utility function

and the weighting function are made sequentially. The method allows for

source-dependent utility function and any two-parameter weighting function (e.g.

Goldstein and Einhorn, 1987; Prelec, 1998; Chateauneuf et al., 2007). Using

simulations, we show that the two-stage structure of the method favors robustness

to misspeciĄcation issues (see subsection 3.D).

We combine our method and the empirical data from an experiment conducted

based on the trust and coordination game, in which subjects make decisions

under different sources of uncertainty. Our data allows us to confront the method

with two validity tests on (i) symmetric events and (ii) stability of beliefs for

unequally likely events of the same sources of uncertainty involved in different

decision contexts. Our method successfully passes validity tests, which supports

the reliability of the results derived from it.

We provide three mains results. First, we identify which sources of uncertainty

are captured by likelihood insensitivity or pessimism. We Ąnd that several forms

of uncertainty attitudes operate through variations in the likelihood insensitivity

165



Chapter 3. Measuring Beliefs and Ambiguity Attitudes Towards Discrete Sources of

Uncertainty

component, the main driver of the inverse S-shaped weighting function in the

literature (e.g. Wakker, 2010; Åstebro et al., 2015; Abdellaoui et al., 2011a).

Subjects exhibit more likelihood insensitivity towards sources of uncertainty

involving not symmetric events, which indicates that the beliefs formation

process of unknown events is cognitively demanding. Second, empirical evidence

supports theories that model ambiguity attitudes with the weighting function

rather than with the utility function. Finally, our method reveals that subjects

exhibit two additional behaviors which are not related to attitudes toward the

source of uncertainty: payoff dependence aversion and variety of payoffs seeking.

Payoff dependence aversion refers to the fact that subjects dislike that their own

payoffs depend on the preferences of others, this behavior is captured by a more

concave utility function. Variety of payoffs seeking means that subjects prefer a

greater number of possible payoffs, when such possible payoffs depend on the

preference of others, this is captured by a decrease in pessimism.

The remainder of this chapter proceeds as follows. Section 3.2 presents

different theoretical approaches to model ambiguity attitudes and existing mea-

surement methods. Section 4.3 presents our elicitation method. Section 4.4

provides a review of related literature about attitudes towards sources of uncer-

tainty in the coordination and trust game. Section 3.5 presents the experimental

design. Section 3.6 provides the results. We discuss the results in section 3.7

and, conclude in section 3.8.

3.2 Theoretical background

This section presents a general theoretical framework of ambiguity attitudes.

Also, we present existing methods of measuring ambiguity attitudes and beliefs

and, the explanation of their limits.
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3.2.1 Biseparable preferences model

Denote by L = (x, y;E,Ec) a binary lottery that gives the outcome x if the

event E occurs and y otherwise. E denotes an event of the state space Ω and Ec

denotes the complement of E in Ω. Outcomes are real numbers. For notational

convenience, we assume that x > y ≥ 0. We denote ≽ as the preference

relation of the decision-maker over prospects. The relations ≻ and ∼ denote

strict preference and indifference, respectively. The preference relation of the

decision-maker is represented by the following model that values the prospect

L = (x, y;E,Ec) as

V (L) = W (P (E))(U(x) − U(y)) + U(y) (3.1)

where W (.) is the weighting function or source function for uncertainty (Abdel-

laoui et al., 2011a), P (E) is the subjective probability or beliefs of E occurring,

and U(.) the utility function that captures the attitude toward outcomes. Both

W (.) and U(.) are strictly increasing functions.

Model (3.1) corresponds to the biseparable preferences model of Ghirardato

and Marinacci (2001), with the assumption that the decision maker can assign

subjective probabilities to events, even when she does not maximize SEU (e.g.

Ellsberg, 1961, p. 659). The biseparable preference model is a very general

ambiguity model (e.g., Attema et al., 2018; Abdellaoui et al., 2021a) because

it contains many of the ambiguity models (e.g. Gilboa, 1987; Schmeidler, 1989;

Gilboa and Schmeidler, 1989; Tversky and Kahneman, 1992) that have been

proposed to explain EllsbergŠs paradox as special cases.

For decisions under risk, the objective probabilities of events are known.

Denote by L = (x, y; p, 1 − p) a binary lottery that gives outcome x with

probability p and y otherwise. The preference relation of the decision-maker is
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represented by the following model that values the prospect L = (x, y; p, 1 − p)

as

V (L) = w(p)(u(x) − u(y)) + u(y) (3.2)

with w(.) as the weighting function or source function for risk and u(.) the utility

function that captures the attitude toward the outcomes. Both w(.) and u(.)

are strictly increasing functions.

Source-dependent Utility (SDU) models assume identical weighting functions

between risk and uncertainty, i.e. W (.) = w(.). Source-dependent weighting

(SDW) models assume identical utility functions between risk and uncertainty,

i.e. U(.) = u(.).

3.2.2 Existing methods

3.2.2.1 Elicitation methods based on exchangeability of events

The main difficulty for measuring the ambiguity model (3.1) resides in how to

disentangle the weighting function W (.) from the beliefs P (.) (e.g. Li et al., 2020)

(LW, hereafter). The solution proposed in the literature is based on the concept

of exchangeability of events (Baillon, 2008). Two events are exchangeable for a

decision-maker when she is indifferent towards permutations of their outcomes.

Formally, two events E1 and E2 are exchangeable if (x,E1, y) ∼ (x,E2, y), which

implies that such events are equally likely or symmetric: P (E1) = P (E2). If

these events are complementary, then the subjective probability associated with

each event should be 1
2
, assuming the additivity of P (.).

Based on this concept of exchangeability of events, several methods have

been proposed (e.g. Abdellaoui et al., 2011a; Van De Kuilen and Wakker,

2011; Abdellaoui et al., 2021a; Gutierrez and Kemel, 2021). The common idea

underlying these methods is to start by splitting the universal event into two
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exchangeable events E1 and E2, such that P (E1) = P (E2) = 1
2
. The following

steps of these methods consist of splitting E1 and E2 into exchangeable events

that will result in 1
4

as the subjective probability. Repeating the procedure allows

to construct iteratively a series of exchangeable events that have a subjective

probability of 1
2i

, with i = 1, 2, ..., n. With the set of exchangeable events

for which one knows the subjective probability, these methods can provide a

measurement for W (.) and U(.).

The construction of these exchangeable events are only possible for continuous-

valued sources of uncertainty, which means that the universal event is an interval

of real numbers (Abdellaoui et al., 2021b; Van De Kuilen and Wakker, 2011).

For instance, when the source of uncertainty is the temperature in a town or

the stock market index.

3.2.2.2 Elicitation method not based on exchangeable events

Oppositely, a discrete source of uncertainty comes from a source of uncertainty

that takes their values in a discrete set of events which are not necessarily

equally likely. Consequently, the universal event is no longer an interval of real

numbers, therefore, it is not longer possible to build exchangeable events. In

the next subsection, we introduce the indexes of Baillon et al. (2018b) (BW,

hereafter), which are applicable to measure ambiguity towards discrete sources

of uncertainty.

Belief hedges method of BW

For discrete sources of uncertainty, BW introduced the belief hedges method that

consists of evaluating ambiguity attitudes through two indexes. BW assume a

minimal degree of richness of the state space Ω, meaning that there should be

three nonnull events E1 = A, E2 = B and E3 = C that are mutually exclusive
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and exhaustive: E1 ∪ E2 ∪ E3 = Ω and Ei ∩ Ej = ∅ for i ̸= j. Denote by Eij

the union Ei ∪ Ej of two events. We call Ei a single event and Eij a composite

event. Denote by Ω∗
1 = ¶E1, E2, E3♢ = ¶A,B,C♢ the set of single events and by

Ω∗
2 = ¶E12, E13, E23♢ the set of the composite events.

BW propose their two indexes in the framework of SDW. The difference in

the weighting functions under ambiguity and risk is measured by the ambiguity

function f(.) = w−1[W (.)]. The matching probability mE of an event E is the

probability that ensures the following indifference (x, y;E,Ec) ∼ (x, y;mE, 1 −
mE). Under SDW, the ambiguity function corresponds to the matching probability

(Dimmock et al., 2016, Theorem 3.1):

mE = f [P (E)] (3.3)

The two indexes of the ambiguity function of BW are given by:

b = 1 − (m1 +m2)

a = 3
[1
3

− (m2 −m1)
]

with m1 = 1
3
[mA+mB +mC ] and m2 = 1

3
[mAB +mAC +mBC ] being the averages

matching probability for the single and composite events.

The quantity b, called ambiguity aversion index, approximates the elevation of

the decision makerŠs ambiguity function. Ambiguity neutrality (i.e. w(.) = W (.))

implies b = 0. A higher value of b is associated with more ambiguity aversion

from the pessimism component of the weighting function. The quantity a, called

ambiguity-generated insensitivity (a-insensitivity), approximates the Ćatness

of the ambiguity function in the middle region. Ambiguity-neutrality implies

a = 0. A higher value of a is associated with more ambiguity aversion from the

likelihood insensitivity component of the weighting function.
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The main purpose of the two indexes of BW is to compare a risky situation

with an ambiguous situation. Although, it can be tempting to use these two

indexes to compare two different sources of uncertainty, our main point (for-

mulated in Proposition 1) is to stress the fact that this second use of the two

indexes could be misleading.

Proposition 1. Consider two different sources of uncertainty 1 and 2 involving

each three mutually exclusive and exhaustive events Ei, i = 1, 2, 3. Denote by

Wj(.) and Pj(.) the weighting and belief functions for the source of uncertainty

j, with j = 1, 2. Assume that subjects have:

(A1) the same non-linear weighting functions for the two sources of uncertainty

: W1(.) = W2(.) ≡ W (.)

(A2) different beliefs for events : P1(.) ̸= P2(.).

Assumptions (A1) and (A2) imply that a1 ̸= a2 and b1 ̸= b2

Proof

Under (A1), we have the same ambiguity function f1(.) = f2(.) = w−1[W (.)] ≡
f(.), with w(.) being the probability weighting function for risk. So, there is no

difference in ambiguity attitudes in the sense of SDW. The two indexes of BW

for the two sources of uncertainty are given by

bi = 1 − 1
3



∑

E∈Ω∗
1

f [Pi(E)] +
∑

E∈Ω∗
2

f [Pi(E)]


 i = 1, 2

ai = 1 −



∑

E∈Ω∗
2

f [Pi(E)] −
∑

E∈Ω∗
1

f [Pi(E)]


 i = 1, 2
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Since the ambiguity function f(.) is bijective and P1(.) ̸= P2(.), there is

no reason, a priori, to expect that b1 = b2 and a1 = a2. To illustrate, letŠs

consider the following numerical example. For the source of uncertainty 1,

assume that E1, E2, and E3 are symmetric: P1(E1) = P1(E2) = P1(E3) = 1
3
.

For the source 2, assume P2(E1) = 1
10
, P2(E2) = 1

10
and P3(E3) = 8

10
. Also,

assume w(p) = p for risk and the non-linear Prelec (1998) compound invariance

family W (z) =
(
exp(−(− ln(z))α)

)β with α = 0.65 and β = 1.05 (Wakker,

2010, pg. 270) for both treatments 1 and 2. With these values, we have

b1 = 0.11 ̸= 0.06 = b2 and a1 = 0.31 ̸= 0.19 = a2. QED.

The Proposition 1 shows that the indexes of BW may be misleading to

learn about the differences in ambiguity functions related to different sources

of uncertainty when the distributions of beliefs differ markedly between these

sources. Note that the only case where the indexes of BW work perfectly, is

when the ambiguity function is linear (Baillon et al., 2021, Theorem 16). This

happens when the weighting functions w(.) and W (.) are the speciĄcation of

Chateauneuf et al. (2007).

Our point applies in particular to LW, who compare the indexes of BW

between uncertainty generated by nature with uncertainty generated by a second

player in the trust game. In this case, events are symmetric for nature (e.g

Abdellaoui et al., 2011a), while they are asymmetric for the trust game. Hence,

the results found by LW might be driven by the beliefs. A second drawback is

that the indexes are proposed under the framework of SDW and this does not

allow for ambiguity attitudes to be captured by the utility function.

Neo-additive method

Baillon et al. (2018a) proposed a method which releases the assumption of

identical utility functions across sources or, in particular, between risk and
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uncertainty. This method allows to elicit the utility function, the neo-additive

weighting function W (P (E)) = sP (E)+c proposed by Chateauneuf et al. (2007),

and the beliefs do not require exchangeable events.1 The method consists of

using certainty equivalent data of binary lotteries that involve three mutually

exclusive and exhaustive events (E1, E2, E3) and, one composite event (say E12).

The neo-additive weighting function and the parametric utility function (e.g.

power utility xα) are speciĄed. The certainty equivalent data can be used in

three-stages or one-stage procedure to estimate the utility, the neo-additive

weighting function, and the beliefs of each P (Ei), i = 1, 2, 3.

In the three-stages procedure, parametric assumptions are made sequentially.

In the one-stage, the certainty equivalent data associated to one event (say E1)

is used to estimate the utility function parameter (say α) and the one event

weight (say W (P (E1))), according to the method of Abdellaoui et al. (2008). In

the second stage, the certainty equivalent data related to the three remaining

events (E2, E3 and E12) are used to compute, in a deterministic way, the three

event weights W (P (E2)), W (P (E3)) and W (P (E12)), according to Abdellaoui

et al. (2011b). In the third stage, the four event weights from the Ąrst and

second stage allow to estimate the two-parameter of the neo-additive weighting

function and the three beliefs as follows

c = W (P (E1)) +W (P (E2)) −W (P (E12)) (3.4)

s =
3∑

i=1

W (P (Ei)) − 3
(
W (P (E1)) +W (P (E2)) −W (P (E12))

)
(3.5)

P (Ei) =
W (P (Ei)) − c

s
for i = 1, 2, 3 (3.6)

1Similar procedure is proposed by Gutierrez and Kemel (2021, study C), but they keep the
assumption of same utility for all sources of uncertainty.
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In the one-stage procedure, the parametric assumption of the utility and

the weighting functions are not made sequentially, but simultaneously. Then,

the certainty equivalent data is used in a single step to estimate the utility

function parameter (say α), the two-parameters (s and c) of the neo-additive

weighting function, and the two beliefs P (E1) and P (E2), knowing that P (E3) =

1 − P (E1) − P (E2).

Even though the one-stage and three-stages neo-additive methods allow for

source-dependent utility function, they might suffer from two drawbacks. The

Ąrst drawback applies to both methods. This drawback relies on the fact that

the assumption of the neo-additive weighting function may be restrictive to Ąt

the data (e.g. Li et al., 2018), probably due to misspeciĄcation issues (Kpegli

et al., 2022). Second, in the case of the three-stages approach, the certainty

equivalents that are used to compute the event weights in a deterministic way

during the second stage contain with response errors. These response errors

are not controlled and, then they could bias the future estimates of the event

weights in the second stage, as well as generate additional bias in the beliefs of

the third stage (Etchart-Vincent, 2004, pg. 221).

3.3 Elicitation Method

In this section, we extend the multistage neo-additive method of Baillon et al.

(2018a) to any two-parameter weighting function to elicit beliefs P (.), utility

function U(.), and weighting function W (.) for discrete sources of uncertainty. In

addition, we show that the two-stage method is more robust to misspeciĄcation

than the one-stage method. We keep the same notations as in section 3.2.
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3.3.1 Stage 1: Elicitation of utility function and willing-

ness to bet

This stage is based on the all at once method of Kpegli et al. (2022). The

researcher starts by considering a set of m = 3 mutually exclusive and exhaustive

nonnull events Ω∗
1 = ¶E1, E2, E3♢.2 The resulting set of composite events is

given by Ω∗
2 = ¶E12, E13, E23♢. Further, the researcher will pick a composite

event in Ω∗
2, say E12 (see also Baillon et al., 2018a). Subsequently, the researcher

elicits in an experiment, at least two certainty equivalents for each single event

and the chosen composite event E ∈ Ω∗
1 ∪ E12

cehk ∽ (xhE, y
h
E;E,Ec), h = 1, 2, . . . , NE and NE ≥ 2 (3.7)

with NE being the number of certainty equivalents that involve the event E.

xhE and yhE refer to the outcomes such that xhE > yhE. In total, the number of

certainty equivalents elicited is N =
∑

E∈Ω∗
1∪E12NE ≥ 2(m+ 1) = 8.

Now, we denote by ce, x, and y the variables that collect the values cehE,

xhE, and yhE, respectively. Also, we denote by IE a dummy variable that takes

the value 1 if the event E occurs and 0 otherwise. Denote δE ≡ W (P (E)) for

E ∈ Ω∗
1 ∪E12. We call δE the willingness to bet on the event E (Ghirardato and

Marinacci, 2001; Abdellaoui et al., 2011a). Also, we assume that the certainty

equivalents are observed with additive response error terms e. Assuming that U

is invertible, it turns out

cel = U−1


(U(xl) − U(yl))




∑

E∈Ω∗
1∪E12

δEIEl


+ U(yl)


+ el (3.8)

2We cover the cases of m ̸= 3 in the subsection 3.3.2.
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where l is the lth line in ce, x, and y. Finally, the Eq. (3.8) is estimated by

nonlinear least squares, by giving an explicit functional form for U (and thus for

U−1). The two-popular utility function are power (eq. 3.16) and exponential

(eq. 3.17).

From the estimations results, one gets the parameter(s) of the utility function

U(.) and the willingness to bet δE on the event E ∈ Ω∗
1 ∪E12. These willingness

to bet correspond to the compound function W (P (.)) evaluated at each single

and composite events in the set Ω∗
1 ∪ E12.

This stage allows to reject subjective expected utility theory (that is W (z) =

z), if any of the following two equalities is not satisĄed

∑

E∈Ω∗
1

δ̂E = 1 and δ̂E12 = δ̂E1 + δ̂E2 (3.9)

The following stage allows to break down the willingness to bet in terms of

weighting function W (.), and beliefs P (E) for E ∈ Ω∗
1 ∪ E12.

3.3.2 Stage 2: Elicitation of weighting function and be-

liefs

Following Gonzalez and Wu (1999), we assume that the weighting function

W (.) is characterized by two parameters η and γ, which correspond to the

insensitivity of the decision-maker to likelihood information, and the decision-

makerŠs pessimism/optimism, respectively. To make explicit the dependence of

the weighting function on η and γ, we write W (.) ≡ Wη,γ(.).

With m = 3 single events, we have the following system of 5 equations:

Wη,γ(P (Ei)) = δ̂Ei
, i = 1, 2, ...,m = 3 (3.10)
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Wη,γ(P (E1) + P (E2)) = δ̂E12 (3.11)

m∑

i=1

P (Ei) = 1 (3.12)

The system of equations (3.10)-(3.12) contains exactly 5 unknown elements:

P (E1), P (E2), P (E3), η, and γ. The Ąrst three equations in (3.10) come from

Eq. (3.8). The fourth Eq. in (3.11) comes from Eq. (3.8) and, the fact that the

events E1 and E2 are mutually exclusive. The last Eq. in (3.12) comes from the

fact that the events E1,E2, and E3 are exhaustive. Any two-parameter weighting

functions can be speciĄed (see Epper and Fehr-Duda, 2020, for a review) in the

system of equations (3.10)-(3.12). The three popular weighting functions in the

ambiguity literature are the speciĄcations3 of GE87 (eq. 3.18), P98 (eq. 3.19)

and CEG7 (eq. 3.20).

When the estimated decision weights satisfy strict monotonicity4 in the sense

that δE12 > δE1 and δE12 > δE2 , the system of equations (3.10) - (3.12) could be

solved (numerically) to estimate the strictly increasing two-parameter weighting

function (i.e. η and γ) and the beliefs P (E1), P (E2), and P (E3).

It is noteworthy to talk about our method when the number m of single

events is different from 3. When the number of single events is more than 3, the

procedure to apply our method remains unchanged. The beliefs of additional

single events can be estimated by using the corresponding number m of the single

events in equations (3.10) and (3.12). When the number of single events is m = 2,

the Eq. (3.11) collapses from the method because W (1) = 1 by assumption.

In this case, our method does not allow to identify two-parameters weighting

3We refer to Goldstein and Einhorn (1987) as GE87.
4Monotonicity at the aggregate level (e.g. pooled data, mean data and median data) will

naturally hold. But, at the individual level this condition might not be satisfied.
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function. Instead, it allows to identify one-parameter weighting function (e.g.

Tversky and Kahneman, 1992; Prelec, 1998).

Despite the fact that we focus on the presentation of our method on dis-

crete source of uncertainty, it can also apply to continuous-valued sources of

uncertainty (see Appendix 3.A for details). In this context, using the subjective

probabilities of the three exclusive and exhaustive events E1, E2, E3 ⊂ R allows

to completely estimate continuous two-parameter distribution like the beta

distribution (Abdellaoui et al., 2021a). Consequently, our method covers all

types of sources of uncertainty.

Also, the method accommodates both SDU and SDW since we do not require

equality of utility or weighting functions between risk and uncertainty. Then,

the data allows to discriminate between SDU and SDW.5

3.4 Related literature on uncertainty attitudes

in experiments

The reminder of the chapter shows how our method can be used to measure

beliefs and disentangle crucial forms of uncertainty in trust and coordination

games. In this section, we present some of the related literature.

3.4.1 Crucial forms of uncertainty in trust and coordina-

tion games

In economic experiments, subjects playing the traditional trust game, face two

sources of uncertainty: strategic uncertainty and social ambiguity. First, subjects

5In Appendix 3.D we present the parameter recovery and misspecification exercises (e.g.
Gao et al., 2020; Kpegli et al., 2022; Nilsson et al., 2011) with the aim of comparing our
multi-stage approach with the one-stage approach.
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face strategic uncertainty when the actions of others are uncertain in strategic

interactions. Strategic uncertainty confronts individuals with the delicate task

of forming beliefs about other individualsŠ decisions (Renou and Schlag, 2010).

Second, decision-makers face social ambiguity, when the uncertainty comes

from the non-strategic decisions of other individuals. Social ambiguity refers to

the fact that subjects treat acts by humans, even in the absence of strategic

interactions, differently from acts of nature, which do not involve human agency

(LW). Hence, behind any strategic uncertainty, there is also social ambiguity,

which might play a role in the decision-making process.

Additionally, social preferences play a role in trust games since players are

aware that their actions impact not only their payoffs, but also the payoffs of

others (Bohnet et al., 2008) (BZ, hereafter). Also, in a modiĄed version of the

trust game, Trustors can interact with nature instead of another person, in which

case, they face nature ambiguity. This means that the ambiguous outcomes are

determined by a non-human source.

Besides social ambiguity, strategic uncertainty, and social preferences (all

present in strategic interactions), a key component that differentiates the trust

game from other games that comprise strategic interactions in game theory (e.g.,

beauty contest, and coordination games) is betrayal aversion. Betrayal aversion

represents a cost for the Trustor when trust is violated (BZ). This cost is viewed

by BZ as a dis-utility that enters into the utility function alongside the utility

towards oneŠs own payoffs and social preferences. It becomes clear that strategic

uncertainty, social ambiguity and betrayal aversion can play a major role in

strategic interactions and trust decisions.
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3.4.2 Social ambiguity, strategic uncertainty and betrayal

aversion

Under SDU, strategic uncertainty, social ambiguity and betrayal aversion would

be captured by the utility function. Contrary, under SDW, they would be

captured by the weighting function. The weighting function captures such

ambiguous attitudes into two components: optimism/pessimism and likelihood

insensitivity (Gonzalez and Wu, 1999). Optimism/pessimism reĆects the extent

to which subjects overweight/underweight the beliefs regarding whether the

resulting outcome will be beneĄcial for them. On the other hand, likelihood

insensitivity refers to subjectsŠ cognitive ability to distinguish between several

levels of subjective probabilities or beliefs (e.g. Choi et al., 2022). Wakker (2010)

refers to optimism/pessimism as a motivational component and, to likelihood

insensitivity as a cognitive component in the decision-making process.

BZ develop an experiment, using a version of the trust game, to identify

betrayal aversion through the Minimum Acceptable Probability (MAP) related

to the utility function. The MAP is the probability for which the Trustor is

indifferent between trust and distrust. BZ identify betrayal aversion as the

difference in MAP between two treatments: the trust game and the risky

dictator game (RDG). In the trust game treatment, if the Trustor decides to

trust, the Ąnal payoffs for both Trustor and Trustee are determined by the

Trustee. Contrary, in the RDG, if the Trustor trusts, the payoffs for both players

are determined by nature. The possible payoffs under both treatments are the

same. Their results show that subjects state higher MAPs in the trust game

compared to the RDG, which means that subjects are betrayal averse. Quercia

(2016) provides an improvement of MAP design and conĄrm betrayal aversion.

LW show that the MAP design of BZ does not hold under SDW. The

difference in MAP across treatments can be explained by the weighting function
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and beliefs instead of the utility. The authors use the two indexes of pessimism

and likelihood insensitivity provided by BW to disentangle social ambiguity

and strategic uncertainty in the trust game. They Ąnd that pessimism is lower

when subjects face social ambiguity than when they face nature ambiguity. Also,

they Ąnd that strategic uncertainty and betrayal attitudes only have cognitive

implications by making subjects more likelihood insensitive in the trust game

compared to nature ambiguity. The fact that social ambiguity is captured by the

pessimism component of the weighting function in the trust game, suggests that

social ambiguity plays a major role in strategic uncertain situations. Therefore, it

is important to control for social ambiguity when studying strategic uncertainty.

Nevertheless, a vast majority of previous studies (e.g., Heinemann et al., 2009;

Ivanov, 2011; Bruttel et al., 2022), do not control for social ambiguity when

they investigate strategic uncertainty. In this chapter, we also aim to identify

which components of the utility function and the weighting function (pessimism

and likelihood insensitivity) capture the effect of social ambiguity, strategic

uncertainty, and betrayal aversion.

3.5 Experimental Design

We recruit 174 students to participate in a computerized experiment, which is

conducted online. Subjects are invited through the subjects pool of GATE-Lab.

Subjects are told that the experiment could last up to 45 minutes, that they

would receive e1.5 as a participation fee and, they could additionally earn a

variable amount up to e20. Such additional payment corresponds to a randomly

selected outcome of one of the decisions made during the experiment. The mean

age of subjects is 21 years and 56.9% are female. Our experiment follows a

within-subjects design.
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The experiment consists of 5 experimental conditions. Four out of these

conditions have two stages, the remaining condition consists only of the second

stage. In the Ąrst stage, we implement experimental treatments based on the

coordination game and the trust game. In the second stage, we apply a binary

decisions task between a safe option and a lottery to elicit beliefs, ambiguity

attitudes, and utility functions.6 The order in which subjects play the Ąve

experimental conditions is randomized.

We refer to the blocks containing one or two stages as experimental conditions

and to the task implemented in each of the stages as experimental treatments.

The goal of the conditions and treatments is to implement our method ex-

perimentally and combine it with empirical data. Each of the experimental

conditions allows to elicit ambiguity attitudes linked to different crucial forms of

uncertainty.

3.5.1 First stage

We use a within-subjects design along the experiment. In four out of the Ąve

conditions of the experiment, the Ąrst stage contains the following experimental

treatments: social ambiguity – coordination game (social ambiguity - cg), strategic

uncertainty - coordination game (strategic uncertainty - cg), social ambiguity –

trust game (social ambiguity - tg), and betrayal ambiguity. In these conditions,

89 subjects play the role of Player 1 and, 85 subjects take the role of Player 2.

Subjects keep their role along the whole experiment. For each condition, new

couples formed by Player 1 and Player 2 are randomly re-matched. Subjects are

informed that they do not play against the same partner more than once and,

they do not receive feedback about the decisions of their counterparts until the

end of the experiment.

6The complete instructions can be found in the Appendix 3.C
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At the beginning of each condition, Player 1s are informed whether the

condition contains one or two stages, speciĄc instructions for each stage are

given at the beginning of each stage. Our implemented procedure for incentives

allows to avoid hedging issues and it is established as follows. Player 1 received

the payoff of one randomly selected decision in either one of the two stages of

the four conditions, or one of the decisions made in the remaining treatment

(nature). Also, one out of the four decisions done by Player 2, is randomly

selected for payoff.

With the social ambiguity - cg treatment, we measure ambiguity attitudes

and social ambiguity. Player 1s make a strategic decision between Left (L), Right

(R), and Middle (M). On the other hand, Player 2s receive e5 and, their task is

to answer where they would prefer to spend this money between an Amazon

voucher, a Google Play voucher, and an Apple Store voucher. Player 2s do

not know the payoff matrix. As such, Player 2s decide between three possible

options that represent their own preferences and are independent of Player 1sŠ

decisions. Therefore, Player 1s should not base their decisions on a strategic

interaction. However, decisions of Player 2s directly affect Player 1sŠ payoff,

which is why Player 1s face social ambiguity. The structure of the payments7

for this treatment is displayed in Table 3.5.1.

Table 3.5.1: Social ambiguity - coordination game treatment.

Player 2

Player 1

Amazon Google Play Apple Store
Left 15, 5 10, 5 8, 5

Right 8, 5 15, 5 10, 5
Middle 10, 5 8, 5 15, 5

To measure strategic uncertainty, we implement the strategic uncertainty -

cg treatment. The matrix of the game, which follows a traditional coordination
7The exchange rate is such that 1 ECU = 1 euro.
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game, and is known by both Player 1 and Player 2, is shown in Table 3.5.2.

Both Players 1 and 2 make a strategic decision between alternatives L, R, or

M . Hence, subjects make their decisions under ambiguity attitudes, strategic

uncertainty, and social ambiguity. Contrary to the choice alternatives presented

to Player 2 in the social ambiguity - cg treatment, in the strategic uncertainty -

cg treatment, we use the frame L, R, and M in order to keep a neutral language

unrelated with preferences.

Table 3.5.2: Strategic uncertainty - coordination game treatment.

Player 2

Player 1

Left Right Middle
Left 15, 15 10, 18 8, 22

Right 8, 22 15, 15 10, 18
Middle 10, 18 8, 22 15, 15

Treatments social ambiguity – tg and betrayal ambiguity are based on the

experimental design of LW. In the social ambiguity – tg treatment (see Figure

4.4.3), Player 1 decides between distrust (D) or trust (T). If Player 1 decides

D, she receives a payoff of 10 ECU with certainty. On the other hand, if Player

1 decides T, the payment is determined based on the preferences of Player 2.

Player 2s receive e5 and are asked to decide where they would prefer to spend

this money between an Amazon voucher, a Google Play voucher, or an Apple

Store voucher. In this treatment, as in the social ambiguity – cg, Player 1s make

their decisions facing ambiguity attitudes and social ambiguity.
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Figure 3.5.1: Social ambiguity - trust game treatment
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Finally, we study ambiguity attitudes, social ambiguity, strategic uncertainty,

betrayal aversion, and social preferences in the betrayal aversion treatment.

Player 1 decides between the safe option D and the ambiguous option T. In case

Player 1 chooses D, both Players 1 and 2 receive 10 ECU and no further decisions

are made. Differently, if Player 1 decides T, Player 2Šs decision between L, R, or

M, determines the Ąnal payoffs for both players. Player 2Šs decisions L, R, and

M represent reciprocation, no hurt, and betrayal, respectevely. The structure of

the game and payments are shown in Figure 3.5.2. In this treatment, Player 1

faces ambiguity regarding the strategic decision made by Player 2, which also

leads to the possibility for Player 1 to be betrayed by Player 2.
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Figure 3.5.2: Betrayal aversion treatment
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3.5.2 Second stage: elicitation of beliefs, ambiguity atti-

tudes, and utility function

Only Player 1s perform the second stage of each condition and the remaining

condition. The Ąrst stage in every condition is followed by the second stage.

Therefore, Player 1 perform the second stage of each condition immediately after

each of the treatments and, only when the task of the second stage is completed,

Player 1 moves to the next condition. We elicit Player 1sŠ certainty equivalents

through the switching outcome technique (Gonzalez and Wu, 1999; Tversky and

Kahneman, 1992) for a list of 12 binary lotteries L = (x, y;E,Ec) that involved

Player 2sŠ decisions as events. Such events can be either L, R, and M, or Amazon,

Google Play, and Apple Store vouchers, depending on the immediately latest

treatment performed by the participant. To infer the certainty equivalent of

each lottery L = (x, y;E,Ec), Player 1s are asked to make a series of binary
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decisions between a lottery and a list of equally spaced safe payoffs, ranged from

the maximum value x to the minimum value y of the lottery.

Table 3.5.3 displays an example of the lotteries corresponding to the second

stage of the conditions containing the treatments strategic uncertainty - cg and

betrayal aversion, where the decisions done by Player 2s correspond to the options

L,R, or M . Consider for example, lottery number 1 in the Ąrst set of lotteries

in Table 3.5.3. In this case, Player 1 is asked to make eight decisions between a

safe outcome and a lottery. Payoffs for the safe option vary from 15 ECU to 8

ECU, while the lottery remains constant.

Table 3.5.3: Binary lotteries

No. of lottery x y E Ec Midpoint of outcome
lotteries

First set of lotteries
1 15 ECU 8 ECU E1 = L Ec

1 = R ∪M 11.5 ECU
2 15 ECU 8 ECU E1 = R Ec

1 = L ∪M 11.5 ECU
3 15 ECU 8 ECU E1 = M Ec

1 = L ∪R 11.5 ECU
4 15 ECU 8 ECU E1 = L ∪R Ec

1 = M 11.5 ECU
Second set of lotteries

5 10 ECU 0 ECU E1 = L Ec
1 = R ∪M 5 ECU

6 10 ECU 0 ECU E1 = R Ec
1 = L ∪M 5 ECU

7 10 ECU 0 ECU E1 = M Ec
1 = L ∪R 5 ECU

8 10 ECU 0 ECU E1 = L ∪R Ec
1 = M 5 ECU

Third set of lotteries
9 15 ECU 0 ECU E1 = L Ec

1 = R ∪M 7.5 ECU
10 15 ECU 0 ECU E1 = R Ec

1 = L ∪M 7.5 ECU
11 15 ECU 0 ECU E1 = M Ec

1 = L ∪R 7.5 ECU
12 15 ECU 0 ECU E1 = L ∪R Ec

1 = M 7.5 ECU

Finally, Player 1s complete another set of binary decisions which are not linked

with any treatment performed before by the participant. Such an additional set

of binary decisions is the experimental condition called nature ambiguity. In this

task, Player 1s also decide between a safe outcome or a lottery. However, in this

case, the outcome of the lottery is determined by nature, which is a randomly

equally likely selection between L, R, or M made by the computer. Therefore,

this condition allows us to measure only ambiguity attitudes. Figure 3.5.3 shows
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a screen shot of some of the binary decisions contained in the nature ambiguity

task.8

Figure 3.5.3: Nature ambiguity.

Example of one of the screens of the task in the nature ambiguity treatment.

Our experimental design allows us to disregard social preferences in this part

of the experiment. Therefore, at the stage of elicitation of certainty equivalents,

social preferences collapse for Player 1sŠ decision-making process. We use the

data of certainty equivalents as input to elicit the utility function, weighting

function, and beliefs with our method presented in Section 4.3.

3.5.2.1 Comparison between treatments and hypotheses

We perform a series of comparisons based on the decisions done by Player 1

in the second stage of the conditions previously presented. The aim of these

comparisons between the Ąve treatments is to isolate and capture the effect of

social ambiguity, strategic uncertainty, and betrayal aversion. The following are

our conjectures.

1. Comparison between social ambiguity - cg and strategic un-

certainty - cg: the condition social ambiguity - cg measures ambiguity

attitudes and social ambiguity. The strategic uncertainty - cg condition,

8The image is presented in English for illustration purposes. However, the experiment was
conducted in French.

188



Chapter 3. Measuring Beliefs and Ambiguity Attitudes Towards Discrete Sources of

Uncertainty

measures ambiguity attitudes, social ambiguity, and strategic uncertainty.9

Hence, with the comparison between these two conditions, we are able to

capture the effect of strategic uncertainty.

2. Comparison between nature ambiguity and social ambiguity -

cg: the nature ambiguity condition captures only ambiguity attitudes and,

the social ambiguity - cg condition captures both ambiguity attitudes and

social ambiguity. Consequently, the comparison of these two conditions,

allows us to capture the effect of social ambiguity under the context of the

coordination game.

3. Comparison between nature ambiguity and social ambiguity -

tg: nature ambiguity condition measures ambiguity attitudes and, social

ambiguity - tg measures both ambiguity attitudes and social ambiguity.

Hence, through the comparison of these conditions, we are able to capture

the effect of social ambiguity in the context of the trust game.

4. Comparison between social ambiguity - tg and betrayal aversion:

the condition social ambiguity - tg measures ambiguity attitudes and social

ambiguity. The betrayal aversion condition, captures ambiguity attitudes,

social ambiguity, strategic uncertainty, and betrayal aversion. Through the

comparison of these two treatments we can capture the combined effect

of strategic uncertainty and betrayal aversion. In addition, we are able

to disentangle the effect of strategic uncertainty and betrayal aversion by

controlling for the isolated effect of strategic uncertainty obtained from

9Following Li et al. (2020), social preferences collapse in the second stage of the conditions.
Therefore, social preferences are not considered in these comparisons.
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comparison 1.10 Consequently, comparing social ambiguity - tg and betrayal

aversion, allows to measure the effect of betrayal aversion.

5. Comparison between social ambiguity - cg and social ambiguity

- tg: these two conditions have the same source of uncertainty, but differ

in two aspects. First, in the social ambiguity - cg treatment, Player 1

does not have the possibility to make her payoffs independent from the

preferences of Player 2. Contrary, the social ambiguity - tg offers this

possibility. We call such difference dependence payoff attitudes. Second, in

the social ambiguity - cg, Player 1 has multiple options of payoffs (8, 10,

and 15) associated to each preference (i.e. Amazon, Google Play and Apple

Store) of Player 2. Opposite, the social ambiguity - tg treatment does not

offer such variety of payoff to Player 1 associated to each preference of

Player 2. We call this second difference variety of payoff attitudes.

Based on the previous comparisons, we aim to test the following predictions.11

Hypothesis 1: social ambiguity is captured by pessimism.

Hypothesis 2: strategic uncertainty is captured by likelihood insensitivity.

Hypothesis 3: betrayal aversion is captured by the utility function.

3.6 Results

All statistical tests are two-sided z-test computed from median regressions, unless

otherwise stated. Inline with the simulation results (see Appendix 3.D), we

perform our multi-stage method by assuming sequentially power utility function

(Eq. 3.16) in the Ąrst stage and the weighting function of GE87 (Eq. 3.18) in

10Comparison 1 refers to the difference found between the treatments social ambiguity - cg

and strategic uncertainty - cg.
11This design and behavioral conjectures have been pre-register at AsPredicted (#71020).
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the second stage. First, we estimate the utility and willingness to bet on the

events. Second, we estimate beliefs, likelihood insensitivity, and pessimism. The

details of individual estimates are provided in Appendix 3.B.

3.6.1 First stage: utility and event weights

In the Ąrst stage, we estimate at the individual level, the utility and willingness

to bet on the events.

Utility curvature: Figure 3.6.1 displays the cumulative distributions of the

utility curvature and Table 3.6.1 provides the summary of the estimated values.

The median utility curvatures are 0.930, 0.876, 0.988, 0.968 and 0.968 for nature

ambiguity, social ambiguity - cg, strategic uncertainty - cg, social ambiguity -

tg, and betrayal aversion, respectively. These values are less than 1, the utility

functions are concave in all treatments. Also, the utility curvature in the social

ambiguity -cg is signiĄcantly different from linear (p− values < 0.0001). Con-

trary, for the other treatments, we cannot reject null hypothesis of linear utility

(all p− values > 0.0733).

Table 3.6.1: Utility function

Nature Social ambiguity- cg Strategic Social ambiguity- tg Betrayal

uncertainty aversion

Median (α) 0.930 0.876 0.988 0.968 0.968

IQR [0.771, 1.196] [0.625, 1.042] [0.760, 1.194] [0.790,1.259] [0.750 ,1.248]

IQR: interquartile range
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Figure 3.6.1: Cumulative distribution of utility curvature

(a) Coordination game (b) Trust game

Events weights: Figure 3.6.2 provides the cumulative distribution of the event

weights and Table 3.6.2 provides the summary of the estimated values. SEU is

true if we cannot reject both that (i) the weights of three mutually exclusive

events sum 1 and, (ii) the weight of the composite event is equal to the sum

of the weights of the two single events involved in the composition (Eq. 3.9).

Condition (i) cannot be rejected for social ambiguity -cg (p− value = 0.7642)

and it is rejected in all the other treatments (all p−values < 0.0002). Condition

(ii) is systematically rejected in all the treatments (p− values < 0.0045). Also,

a join test of conditions (i) and (ii) leads to a strong rejection in all treatment

(all p− values < 0.0001). Then, subjects violate SEU.
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Figure 3.6.2: Cumulative distribution of event weights

(a) Nature (b) Social ambiguity - cg

(c) Strategic uncertainty - cg (d) Social ambiguity - tg

(e) Betrayal aversion
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Table 3.6.2: Median of event weights or willingness to bet

Nature Social ambiguity- cg Strategic Social ambiguity- tg Betrayal

uncertainty- cg aversion

W (P (L)) 0.305 0.382 0.284 0.341 0.288

[0.235 , 0.369] [0.258, 0.478] [0.203, 0.364] [0.231, 0.432] [0.204, 0.383]

W (P (R)) 0.292 0.303 0.274 0.247 0.282

[0.212, 0.292] [0.206, 0.399] [0.202, 0.361] [0.158, 0.354] [0.211, 0.361]

W (P (M)) 0.291 0.325 0.273 0.289 0.323

[0.212 , 0.364] [0.219 , 0.392] [0.187 , 0.369] [0.185 , 0.370] [0.235 , 0.390]

W (P (L ∪ R)) 0.467 0.549 0.474 0.454 0.459

[0.337 , 0.600] [0.421 , 0.660] [0.363 , 0.586] [0.367 , 0.625] [0.335 , 0.540]

Interquartile ranges are in [.]

L, R and M mean Amazon, Google Play and Apple Store in social ambiguity- cg and social ambiguity- tg

L, R and M mean Reciprocate, No hurt strategy and Betray in Betrayal aversion

L, R and M mean Left, Right and Middle in nature and strategic uncertainty- cg

3.6.2 Second stage: beliefs and weighting function

In the second stage, we used the weights of single and composite events from the

Ąrst stage (see Figure 3.6.2) to estimate the beliefs (P (.)), likelihood sensitivity

(γ), and the pessimism (η) at the individual level.

Beliefs

Figure 3.6.3 displays the cumulative distributions of beliefs and Figure 3.6.4

plots the mean of the estimated values.

The null hypothesis of equally likely events cannot be rejected for the nature

(p − value = 0.6656) and strategic uncertainty - cg treatments (p − value =

0.2974). A priori, symmetry of events is expected for the treatment nature.

Similarly, symmetry of events for the strategic uncertainty - cg treatment can be

expected, since the coordination game does not have any dominated strategy.

These results provide a Ąrst successful validity test of our method.

On the other hand, symmetry of events is rejected for the social ambiguity -

cg (p− value = 0.0061) and social ambiguity - tg (p− value = 0.0001). In these

two conditions, the cumulative distribution function of the beliefs of Player 1
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about Player 2 choosing an Amazon voucher Ąrst order stochastically dominates

the Player 1Šs beliefs about Player 2 choosing a Google Play and an Apple Store

voucher. In the social ambiguity - cg treatment, Player 1 thinks that Player

2 chooses to spend money in Amazon, Google Play and Apple Store vouchers

with probability 40.6%, 28.1% and 31.3%, respectively. In the treatment social

ambiguity - tg, Player 1 believes that Player 2 chooses to spend money in Amazon,

Google Play and Apple Store vouchers with probability 43.4%, 25.7% and 30.9%,

respectively. Join test leads to the conclusion that the distribution of beliefs are

the same in these two social ambiguity treatments (p− value = 0.7106). This

result provides a second successful validity test of our method. In fact, these

two social ambiguity treatments involve the same events. Therefore, the beliefs

in these two different ambiguity situations should remain the same.

Symmetry of events is also rejected for betrayal aversion (p-value =0.0051).

The cumulative distribution function of the beliefs about the fact that the

Trustee will follow the ŞbetrayŤ strategy Ąrst order stochastically dominates the

strategies of Şno hurtŤ and ŞreciprocateŤ. We Ąnd that Player 1 (Trustor) thinks

that Player 2 (Trustee) reciprocates, adopts a no hurt strategy, and betrays with

probability 29.3%, 29.7% and 41.0%, respectively.
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Figure 3.6.3: Cumulative distribution of subjective probability (beliefs)

(a) Nature (b) Social ambiguity - cg

(c) Strategic uncertainty - cg (d) Social ambiguity - tg

(e) Betrayal aversion
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Figure 3.6.4: Mean of subjective probability (beliefs)

(a) Nature (b) Social ambiguity - cg

(c) Strategic uncertainty - cg (d) Social ambiguity - tg

(e) Betrayal aversion

Weighting function

Figures 3.6.5 and 3.6.6 provide the cumulative distributions of pessimism (η)

and likelihood insensitivity (γ).12 Figure 3.6.7 displays the plots of the weighting

functions based on the median estimates of η and γ. Table 3.6.3 summarizes the

12The smaller η is, the higher is the level of pessimism. The smaller γ is, the higher is the
level of likelihood insensitivity.
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results of the weighting function: pessimism (η) and likelihood insensitivity (γ).

The usual pattern of over-weighting of small likelihoods and under-weighting

intermediate and high likelihoods is reproduced. The cross-over points are

0.210, 0.345, 0.193, 0.266, and 0.264 in the treatments nature, social ambiguity

- cg, strategic uncertainty - cg, social ambiguity - tg, and betrayal aversion,

respectively.

Table 3.6.3: Median weighting function by treatment

Nature Social ambiguity- cg Strategic Social ambiguity- tg Betrayal

uncertainty- cg aversion

Median (η) 0.615 0.736 0.570 0.611 0.613

IQR [0.450, 0.973] [0.472, 1.071] [0.408, 0.802] [0.438, 1.018] [0.508, 0.888]

Median (γ) 0.633 0.534 0.607 0.513 0.524

IQR [0.425, 0.837] [0.361, 0.797] [0.327, 0.922] [0.272, 0.861] [0.291, 0.931]

Pessimism and insensitivity correspond to small values of η and γ respectively

IQR: Interquartile ranges are presented in [.]

Figure 3.6.5: Cumulative distribution of pessimism (η)

(a) Coordination game (b) Trust game
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Figure 3.6.6: Cumulative distribution of likelihood insensitivity (γ)

(a) Coordination game (b) Trust game
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Figure 3.6.7: weighting function based median of individual estimates

(a) Nature (b) Social ambiguity - cg

(c) Strategic uncertainty - cg (d) Social ambiguity - tg

(e) Betrayal aversion

3.6.2.1 Social ambiguity, strategic uncertainty, and betrayal aversion

Now we turn into the main purpose of the application of this chapter: the

identiĄcation of social ambiguity, strategic uncertainty and betrayal aversion

through pessimism, likelihood insensitivity and utility curvature. Table 3.6.4
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presents the results of the estimation of the utility curvature (α), pessimism (η)

and likelihood insensitivity (γ).

Table 3.6.4: Ambiguity attitudes by treatments

Nature Social ambiguity Strategic Social ambiguity Betrayal

- cg uncertainty- cg - tg aversion

Utility function

curvature (α) 0.930 0.876 0.988 0.968 0.968

[0.771, 1.196] [0.625, 1.042] [0.760, 1.194] [0.790,1.259] [0.750 ,1.248]

Weighting function

Pessimism (η) 0.615 0.736 0.570 0.611 0.613

[0.450, 0.973 ] [0.472, 1.071] [0.408, 0.802] [0.438, 1.018] [0.508, 0.888]

Insensitivity (γ) 0.633 0.534 0.607 0.513 0.524

[0.425, 0.837] [0.361, 0.797] [0.327, 0.922] [0.272, 0.861] [0.291, 0.931]

Pessimism and insensitivity correspond to small values of η and γ respectively

Interquartile ranges are presented in [.]

1. Social ambiguity

The difference between treatments 0 (nature) and 1 (social ambiguity - cg),

as well as the difference between the treatments 0 (nature) and 3 (social

ambiguity - tg) corresponds to what Li et al. (2020) called social ambiguity.

Utility curvature (α): the estimates of the CRRA parameter for treat-

ments 0, 1 and 3 are 0.93, 0.876, and 0.968, respectively. The difference

in the utility parameters between treatments 0 and 1 is not signiĄcant

(p − value=0.332, two sided sign test). This is also the case for the dif-

ference between the treatments 0 and 3 (p − value= 1, two sided sign

test).

Pessimism (η): the estimates of pessimism for treatments 0, 1, and 3 are

0.615, 0.736, and 0.611, respectively. Pessimism is lower in treatment 1 in

treatment 0 (p− value= 0.0030). Pessimism is the same in treatment 3

and in treatment 0 (p− value= 0.9245).
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Likelihood insensitivity (γ): the estimates of the likelihood insensitivity

for treatments 0, 1 and 3 are 0.633, 0.534, and 0.513, respectively. Likeli-

hood insensitivity is lower in treatment 0 than 1 (p−value= 0.0001). Also,

the likelihood insensitivity is lower in treatment 0 than in 3 (p− value =

0.0037).

Consequently, we conclude that social ambiguity is captured by an increase

in likelihood insensitivity. Also, social ambiguity can operate through a

decrease in pessimism (treatments 0 vs 1). This partially conĄrms our

Hypothesis 1: social ambiguity is capture by pessimism.

2. Strategic uncertainty

The difference between treatments 1 (social ambiguity - cg) and 2 (strategic

uncertainty - cg) corresponds to strategic uncertainty.

Utility curvature (α): the estimate of CRRA parameter for treatments

1 and 2 are 0.876 and 0.988, respectively. The difference in the utility

parameters between treatment 1 and 2 is not signiĄcant (p−value= 0.5900,

two sided sign test).

Pessimism (η): the estimate of pessimism for treatments 1 and 2 are

0.736 and 0.570, respectively. Pessimism is lower in treatment 1 than in

treatment 2 (p− value < 0.0001).

Likelihood insensitivity (γ): the estimates of likelihood insensitivity

for treatments 1 and 2 are 0.534 and 0.607, respectively. The likelihood

insensitivity in treatment 1 is larger than in treatment 2 (p − value=

0.0037).

Consequently, we conclude that strategic uncertainty is captured by a

decrease in likelihood insensitivity and by an increase in pessimism. This
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partially conĄrms our Hypothesis 2: strategic uncertainty is captured by

likelihood insensitivity.

3. Betrayal aversion

The difference between treatments 3 (social ambiguity - tg) and 4 (betrayal

aversion) corresponds to the mixture of strategic uncertainty and what

BZ called betrayal aversion.

Utility curvature (α): the estimate of CRRA parameter for treatments

3 and 4 are both 0.968. The difference in the utility parameters between

treatment 3 and 4 is not signiĄcant (p − value= 0.5203, two sided sign

test).

Pessimism (η): the estimate of pessimism for treatments 3 and 4 are

0.611 and 0.613, respectively. The difference in pessimism between these

treatments is not signiĄcant (p− value= 0.9343).

Likelihood insensitivity (γ): the estimate of likelihood insensitivity for

treatments 3 and 4 are 0.513 and 0.524, respectively. The difference in

the likelihood insensitivity between treatments 3 and 4 is not signiĄcant

(p− value= 0.8122).

In the previously presented results from strategic uncertainty (treatment 1

versus 2), we show that strategic uncertainty decreases likelihood insensitiv-

ity. Additionally, the analysis of betrayal aversion shows a non-signiĄcant

difference of the likelihood insensitivity between treatments 3 and 4. Nev-

ertheless, given that the comparison between treatments 3 and 4 contains

the effect of strategic uncertainty, we should Ąnd different likelihood in-

sensitivities. This opposite result is due to the fact that the effect of

strategic uncertainty offsets the betrayal aversion effect, leading to a lack

of difference in likelihood insensitivity between treatments 3 and 4. In
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other words, betrayal aversion and strategic uncertainty are captured by

likelihood insensitivity in two opposites directions: strategic uncertainty is

captured by a decrease in likelihood insensitivity, while betrayal aversion

is captured by an increase in likelihood insensitivity. Consequently, we

conclude that betrayal aversion is captured by an increase in likelihood

insensitivity. This rejects our Hypothesis 3: betrayal aversion is captured

by the utility function.

3.6.3 Dependence payoff aversion and variety of payoff

seeking

Besides the previously presented results, we Ąnd that subjects exhibit two

additional behaviors which are not related to attitudes toward the source of

uncertainty. In this section, we present these Ąndings. Treatments 1 (social

ambiguity - cg) and 3 (social ambiguity - tg) have the same source of uncertainty

(i.e., preferences of Player 2, which constitutes social ambiguity). Hence, any dif-

ferences in the utilities and the weighting functions between these two conditions

is not due to attitudes toward the underlying source of uncertainty. Instead, the

difference between treatments 1 (social ambiguity - cg) and 3 (social ambiguity -

tg) corresponds to the mixture of dependence payoff aversion and the variety of

payoff attitudes.

Utility curvature (α): the estimates of CRRA parameter for treatments 1

and 3 are 0.876 and 0.968, respectively. The difference in the utility parameters

between treatments 1 and 3 is signiĄcant (p − value= 0.0165, two sided sign

test). Hence, utility is more concave in treatment 1 than in treatment 3.

Pessimism (η): the estimate of pessimism for treatments 1 and 3 are 0.736

and 0.611. The difference between these treatments is signiĄcant (p− value=

0.0001). Therefore, pessimism is lower in treatment 1 than in treatment 3.
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Likelihood insensitivity (γ): the estimates of the likelihood insensitivity

for treatments 1 and 3 are 0.534 and 0.513. The difference in the insensitivity

between treatments 3 and 4 is not signiĄcant (p− value= 0.5884).

We conclude that the greater concavity of the utility function in treatment 1

compared to treatment 3, represents a payoff dependence aversion. Also, the

higher pessimism in treatment 1 compared to treatment 3 constitutes variety of

payoff seeking.

3.7 Discussion

3.7.1 Experimental discussion

Our method allows to replicate some well known results. First, we conĄrm that

the weighting function, in the case of uncertainty, is not an identity function.

Consequently, subjects distort beliefs and then violate the traditional SEU

theory (e.g. Abdellaoui et al., 2005, 2011a, 2016, 2021a; Attema et al., 2018;

Li et al., 2019, 2020; Tversky and Fox, 1995; Camerer and Ho, 1994; Bruttel

et al., 2022; Bleichrodt et al., 2018; Fehr-Duda and Epper, 2012; lŠHaridon and

Vieider, 2019). Typically, subjects overweight small subjective probability and

underweight intermediate and high subjective probability. Also, we Ąnd that

only the weighting function differs across different sources of ambiguity, but

not the utility function. This provides support for ambiguity theories based on

the weighting function (e.g. Schmeidler, 1989), but not for ambiguity theories

based on the utility function (e.g. Klibanoff et al., 2005). These results are

consistent with previous studies (e.g. Abdellaoui et al., 2016; Attema et al., 2018;

Abdellaoui et al., 2022; Bruttel et al., 2022).

We make two internal validity tests for our method. First, the treatments

social ambiguity - cg and social ambiguity - tg involve the same events. Therefore,
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the distributions of beliefs in these two conditions should be the same. Our

method successfully produces this results. Second, the events in the nature

treatment are a priori symmetric; as well as the beliefs in the strategic uncertainty

- cg treatment, which does not have any dominated strategy. Our method also

successfully satisĄes the symmetry test for both nature and strategic uncertainty

- cg treatments. Replicating well known results and successfully passing validity

tests provide support for our method (Abdellaoui et al., 2008).

We apply our method to measure beliefs towards different discrete sources

of uncertainty. One of the remarkable Ąndings in this regard concerns the

beliefs about trustworthiness. When subjects trust, they put themselves in a

vulnerable situation based upon the belief the other will respond in a positive

way (Özer and Zheng, 2017). As Arrow (1972) wrote Şvirtually every commercial

transaction has within itself an element of trust". Because decisions of trust

play a major role in social and economic interactions, it becomes important to

be able to measure beliefs about trustworthiness, considering that the trustor

distorts her own formation of beliefs (weighting functions). We Ąnd that the

cumulative distribution function of the beliefs about trustworthiness is Ąrst order

stochastically dominated by being betrayed. Most subjects believe that trust is

not reciprocated with a mean of subjective beliefs of people being trustworthy

equal to 29%.

Regarding our empirical aim of identifying the role of social ambiguity,

strategic uncertainty and betrayal attitudes, our method provides the following

contributions.

First, we Ąnd that social ambiguity operates mainly through an increase

in the likelihood insensitivity. Therefore, subjects prefer social ambiguity over

nature ambiguity when there is a small probability of winning, and prefer nature

ambiguity over social ambiguity when there is a high probability of winning. The
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increase in likelihood insensitivity suggests that subjects Ąnd social ambiguity

more cognitively demanding compared to nature ambiguity (e.g. Wakker, 2010;

Choi et al., 2022). Social ambiguity can also operate through a decrease in

pessimism compared to nature ambiguity. The fact that subjects are less

pessimistic towards ambiguity caused by other humans than ambiguity coming

from nature, was pointed out by other studies (e.g. Li et al., 2020; Bolton et al.,

2016; Chark and Chew, 2015). The decrease in pessimism due to social ambiguity

could be explained by the competence hypothesis (Li et al., 2020; Heath and

Tversky, 1991; Fox and Weber, 2002). Fox and Tversky (1995) propose under

the competence hypothesis that, subjectsŠ conĄdence is undermined when they

contrast their limited knowledge about an event with their superior knowledge

about another event. They argue that this contrast between states of knowledge

is the predominant source of ambiguity aversion. SubjectsŠ perception of their

own knowledge about other humansŠ choices could be higher than their knowledge

perception about choices done by nature.

Second, strategic uncertainty also operates, as social ambiguity, through like-

lihood insensitivity and pessimism, but in opposite directions. Contrary to social

ambiguity, strategic uncertainty leads to a decrease in likelihood insensitivity

and an increase in pessimism. The difference of likelihood insensitivity supports

that subjects prefer social ambiguity over strategic uncertainty for small prob-

abilities of winning and, prefer strategic uncertainty over social ambiguity for

high probabilities of winning. These two opposite effects offset. Accordingly, we

did not Ąnd a difference of likelihood insensitivity between the treatments nature

and strategic uncertainty - cg. This result suggests that subjects tend to exhibit

a similar level of likelihood insensitivity towards sources of uncertainty in which

events are symmetric (e.g. strategic uncertainty - cg and nature treatments). In

contrast, subjects tend to exhibit a high likelihood insensitivity when events are
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asymmetric, like in our two conditions of social ambiguity (social ambiguity - cg

and social ambiguity - tg). This corroborates that beliefs formation process is

cognitively demanding.

Third, betrayal aversion also operates through the likelihood insensitivity.

Betrayal aversion increases likelihood insensitivity. We Ąnd that subjects prefer

betrayal and social ambiguities over nature ambiguity for small probabilities

of winning and prefer nature ambiguity over betrayal and social ambiguities

for a high probabilities of winning. Li et al. (2020) do not make a distinction

between betrayal aversion and strategic uncertainty. The authors Ąnd that the

overall effect of betrayal aversion and strategic uncertainty increases likelihood

insensitivity, suggesting that the effect of betrayal aversion is larger than the

effect of strategic uncertainty. However, according to our Proposition 1, we

should be cautious with the possibility of having a greater effect of betrayal

aversion. Indeed, the fact that events are symmetric under nature ambiguity

while they are highly asymmetric in the betrayal aversion treatment, can mislead

to a difference in likelihood insensitivity measured with the method of Baillon

et al. (2018b).

Finally, we identify two main behaviors which are not related to attitudes

towards sources of uncertainty. First, the behaviour we call dependence payoff

aversion, which represents the fact that subjects dislike situations in which their

possible payoffs depend on the preferences of others. This behaviour operates

by increasing the concavity of the utility function. Second, the behavior we

call variety of payoffs seeking, which proposes that subjects prefer to have more

options of possible payoffs, when these payoffs depend on others. The variety

of payoffs seeking is captured by a decrease in pessimism for situations that

contain more possible payoffs (e.g. social ambiguity - cg) compared to situation

containing a lower amount of possible payoffs (e.g. social ambiguity -tg).
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3.7.2 Methodological discussion

Our method allows to completely measure the utility function, it is more robust

to misspeciĄcation issues, it is easy, and error-robust. Below we discuss these

features.

Complete measurement of utility function. Throughout the com-

bination of our method with experimental data, we show the importance of

measuring the utility function, which contrasts with previous methods, in which

the utility function is not measured (e.g. Baillon et al., 2018b; Gutierrez and

Kemel, 2021; Abdellaoui et al., 2021a). We show that the utility function can

capture additional behaviors (e.g. payoff dependence aversion), unrelated to the

source of uncertainty. This implies that not measuring the utility function makes

more difficult to have a clean empirical measurement of ambiguity attitudes

from the existing methods that do not allow the estimation of utility function

(e.g. Baillon et al., 2018b; Gutierrez and Kemel, 2021; Abdellaoui et al., 2021a).

More robust to misspecification. We propose a multistage method

instead of one-stage method (Gutierrez and Kemel, 2021). In the Ąrst stage, we

only specify utility and estimate events weights non-parametrically. Based on

event weights from the Ąrst stage, the method allows to estimate the parameters

of any weighting function. Our method thus allows for more Ćexibility in the

parametric choices of weighting function in comparison to existing methods

(e.g. Baillon et al., 2018b, 2021, 2018a) that rely on the neo-additive weighting

function of (Chateauneuf et al., 2007).

Easy and error-robust. Our method is based on simple choices that involve

the lowest possible number of outcomes (i.e., three). As such, this method is

not cognitively demanding - easy - for subjects, compared to methods that are

based on exchangeable events or matching probabilities (e.g. Baillon et al., 2018b;

Gutierrez and Kemel, 2021; Abdellaoui et al., 2021a), in which each choice
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involves four outcomes (Kpegli et al., 2022; Abdellaoui et al., 2008). Finally,

contrary to previous methods (e.g. Baillon et al., 2018b,a), our method account

for response errors that are pervasive in experimental data (Kpegli et al., 2022).

3.8 Conclusion

We proposed a two-stage method that clearly measures beliefs and ambiguity

attitudes towards discrete sources of uncertainty. Subjects make decisions under

these types of uncertain situations in a daily life basis. The method successfully

passes validity tests and provides plausible results for trust and coordination

games, showing the reliability of the results derived from it. In this chapter,

we implement our method to discrete sources of uncertainty; nevertheless, it

also applies to continuous-valued sources of uncertainty. Therefore, this method

allows to measure beliefs and ambiguity attitudes related to several Ąelds in

Economics.
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3.A Applicability of the method for continuous-

valued sources of uncertainty

This appendix aims to show the validity of our method for continuous-valued

sources of uncertainty. Consider the case in which an experimenter aims to mea-

sure the distribution of beliefs that a subject holds about a source of uncertainty

S that takes its values in an interval I = [s0, s3] ⊂ R. The experimenter can

proceed through the following three stages.

First stage: utility and event weights. In this step, the experimenter

needs to arbitrarily split the universal event I in three exclusive and exhaustive

events E1 = [s0, s1], E2 = (s1, s2] and E3 = (s2, s3] with s0 < s1 < s2 < s3.

Hence, we have the composite event E12 = [s0, s2]. Applying the stage 1 of our

method, presented in section 4.3 allows us to estimate the utility function and

the four event weights: δ̂E for E = E1, E2, E3, E12.

Second stage: weighting and beliefs of single events. Applying the

second stage presented in section 4.3 allows us to break down the estimated

events weights δ̂E into the weighting function (i.e. δ̂, γ̂) and the beliefs of the

single events ̂P ([s0, s1]), ̂P ([s1, s2]), and ̂P ([s2, s3]).

Third stage: density and cumulative distribution over the range

[0, 1]. This stage complements the two stages presented in section 4.3 because

S is a continuous-valued sources of uncertainty. The interval I can be re-scaled

to be in the range Ĩ = [0, 1]: s̃ = s−s0

s3−s0
∈ [0, 1] for s ∈ I = [s0, s3].

At this stage, a two-parameter speciĄcation of the distribution is needed. A

common and Ćexible distribution is the beta distribution B(a, b) with param-
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eters a, b. Denote by Fa,b(.) the cumulative distribution function of the beta

distribution. We then have the following three equations

Fa,b(s̃i) − Fa,b(s̃i−1) = ̂P ([s̃i−1, s̃i]) , i = 1, 2, 3 (3.13)

with Fa,b(s̃0) = 0 and Fa,b(s̃3) = 1. These three equations in (3.13) are summa-

rized in the following two equations

Fa,b(s̃2) = ̂P ([s̃0, s̃1]) + ̂P ([s̃1, s̃2]) (3.14)

1 − Fa,b(s̃1) = ̂P ([s̃1, s̃2]) + ̂P ([s̃2, s̃3]) (3.15)

Solving (numerically) the system of the two equations (3.14) and (3.15)

provides the estimation of the distribution of beliefs (i.e. a, b).

For illustration purposes, lets consider that an experimenter aims to elicit the

beliefs of a subject A about the IQ score of a subject B. The IQ score belongs to

[0, 1], with high values meaning a high IQ score. After applying stages 1 and 2

with E1 = [0, 0.25], E2 = [0.25, 0.50] and E3 = [0.5, 1], the experimenter Ąnds the

following: ̂
P
(
[0, 0.25]

)
= 0.1, ̂

P
(
[0.25, 0.5]

)
= 0.7 and ̂

P
(
[0.5, 1]

)
= 0.2. Then,

the equations (3.14) and (3.15) of the third stage corresponds to Fa,b
(

2
3

)
= 0.8

and 1 − Fa,b
(

1
3

)
= 0.9. Solving these two equations, provides â = 6.62 and

b̂ = 9.95. The density and cumulative functions are provided in Ągure 3.A.1.

218



Chapter 3. Measuring Beliefs and Ambiguity Attitudes Towards Discrete Sources of

Uncertainty

Figure 3.A.1: beliefs of subject A about the IQ score of subject B: probability
density (pdf) and cumulative density (cdf) functions.

3.B Individual estimates

Tables 3.B.1 - 3.B.9 give results of our Ąrst stage (α and W (P (.)) and second

stage (η, γ and P (.)). Dots in tables mean monotonicity violation and then η, γ

and P (.) cannot be estimated.

Table 3.B.1: Individual estimate: nature

id α W (P (L)) W (P (R)) W (P (M)) W (P (L ∪R)) η γ P (L) P (R) P (M)

1 0.549 0.494 0.447 0.491 0.643 1.319 0.525 0.361 0.283 0.356

2 0.754 0.386 0.365 0.365 0.672 1.086 0.874 0.348 0.326 0.326

3 1.399 0.235 0.235 0.235 0.337 0.395 0.365 0.333 0.333 0.333

4 0.821 0.385 0.385 0.385 0.601 0.973 0.633 0.333 0.333 0.333

5 3.180 0.113 0.113 0.206 0.113 . . . . .

6 0.554 0.369 0.369 0.415 0.553 0.937 0.584 0.309 0.309 0.382

Continued on next page
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Table 3.B.2 – continued from previous page

id α W (P (L)) W (P (R)) W (P (M)) W (P (L ∪R)) η γ P (L) P (R) P (M)

7 2.088 0.153 0.134 0.141 0.153 0.172 0.006 1 0 0

8 0.891 0.229 0.229 0.229 0.483 0.527 0.828 0.333 0.333 0.333

9 0.768 0.243 0.317 0.288 0.358 0.476 0.253 0.176 0.478 0.346

10 1.589 0.174 0.151 0.209 0.197 0.254 0.216 0.294 0.164 0.542

11 0.729 0.305 0.327 0.259 0.327 . . . . .

12 0.580 0.540 0.540 0.540 0.774 2.002 0.772 0.333 0.333 0.333

13 1.392 0.299 0.270 0.309 0.299 0.437 0.013 0.136 0 0.864

14 1.471 0.200 0.220 0.184 0.282 0.297 0.237 0.322 0.441 0.237

15 0.912 0.324 0.308 0.308 0.515 0.687 0.592 0.352 0.324 0.324

16 0.867 0.368 0.368 0.368 0.650 1.038 0.837 0.333 0.333 0.333

17 1.524 0.371 0.467 0.393 0.467 0.753 0.010 0 1 0

18 1.129 0.348 0.295 0.361 0.388 0.599 0.237 0.380 0.180 0.440

19 3.523 0.145 0.098 0.020 0.230 . . . . .

20 0.713 0.410 0.431 0.463 0.683 1.364 0.825 0.306 0.329 0.364

21 3.675 0 0 0.032 0.001 0.006 3.379 0.114 0.267 0.618

22 0.744 0.306 0.374 0.374 0.580 0.907 0.743 0.275 0.363 0.363

23 1.064 0.256 0.296 0.296 0.533 0.692 0.815 0.298 0.351 0.351

24 1.478 0.050 0.067 0.058 0.067 0.067 0.018 0 0.984 0.016

25 0.654 0.291 0.317 0.317 0.613 0.857 0.943 0.314 0.343 0.343

26 1.493 0.323 0.323 0.323 0.458 0.635 0.413 0.333 0.333 0.333

27 1.196 0.284 0.235 0.214 0.289 . . . . .

28 0.772 0.424 0.406 0.406 0.702 1.268 0.857 0.347 0.327 0.327

29 0.695 0.319 0.273 0.273 0.363 0.463 0.182 0.519 0.241 0.241

30 1.108 0.269 0.246 0.246 0.640 0.762 1.164 0.349 0.325 0.325

31 1.490 0.133 0.113 0.094 0.284 0.203 0.671 0.398 0.333 0.269

32 0.532 0.412 0.412 0.442 0.580 1.046 0.517 0.316 0.316 0.368

33 0.858 0.293 0.293 0.293 0.447 0.578 0.483 0.333 0.333 0.333

34 1.269 0.235 0.217 0.261 0.292 0.382 0.288 0.320 0.247 0.433

35 0.809 0.287 0.297 0.269 0.413 0.509 0.355 0.340 0.373 0.286

36 0.783 0.238 0.238 0.238 0.485 0.542 0.797 0.333 0.333 0.333

37 1.228 0.070 0.070 0.070 0.334 0.194 1.364 0.333 0.333 0.333

38 1.122 0.214 0.201 0.201 0.214 . . . . .

39 0.667 0.285 0.236 0.236 0.471 0.525 0.635 0.394 0.303 0.303

40 0.934 0.316 0.300 0.300 0.534 0.701 0.673 0.350 0.325 0.325

41 0.537 0.550 0.550 0.550 0.749 1.911 0.644 0.333 0.333 0.333

42 0.775 0.373 0.373 0.377 0.373 . . . . .

43 0.790 0.076 0.076 0.076 0.076 . . . . .

44 0.884 0.361 0.361 0.361 0.670 1.071 0.922 0.333 0.333 0.333

Continued on next page
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Table 3.B.2 – continued from previous page

id α W (P (L)) W (P (R)) W (P (M)) W (P (L ∪R)) η γ P (L) P (R) P (M)

45 0.832 0.354 0.326 0.326 0.644 0.936 0.890 0.354 0.323 0.323

46 1.018 0.273 0.273 0.273 0.465 0.571 0.607 0.333 0.333 0.333

47 0.411 0.455 0.546 0.464 0.861 2.320 1.276 0.310 0.374 0.316

48 1.962 0.307 0.142 0.129 0.482 0.371 0.671 0.566 0.231 0.203

49 0.472 0.369 0.369 0.369 0.634 1.005 0.783 0.333 0.333 0.333

50 0.742 0.254 0.207 0.207 0.391 0.409 0.517 0.411 0.294 0.294

51 1.042 0.348 0.348 0.348 0.669 1.038 0.963 0.333 0.333 0.333

52 1.101 0.272 0.248 0.248 0.419 0.488 0.505 0.370 0.315 0.315

53 1.080 0.322 0.322 0.322 0.443 0.615 0.371 0.333 0.333 0.333

54 0.992 0.246 0.044 0.203 0.878 1.353 3.052 0.385 0.248 0.367

55 1.158 0.313 0.313 0.294 0.600 0.791 0.839 0.341 0.341 0.318

56 0.799 0.386 0.394 0.385 0.394 . . . . .

57 2.902 0.077 0.077 0.077 0.141 0.117 0.489 0.333 0.333 0.333

58 1.334 0.212 0.212 0.212 0.422 0.444 0.719 0.333 0.333 0.333

59 1.334 0.188 0.164 0.164 0.262 0.264 0.343 0.405 0.298 0.298

60 0.884 0.361 0.361 0.361 0.670 1.071 0.922 0.333 0.333 0.333

61 0.871 0.306 0.292 0.163 0.335 . . . . .

62 0.281 0.486 0.524 0.620 0.524 1.338 0.016 0 0 1

63 0.699 0.348 0.205 0.394 0.659 1.120 1.294 0.360 0.243 0.396

64 0.843 0.377 0.444 0.350 0.582 0.864 0.425 0.301 0.453 0.246

65 1.018 0.273 0.273 0.273 0.465 0.571 0.607 0.333 0.333 0.333

66 0.379 0.515 0.414 0.414 0.556 0.941 0.180 0.662 0.169 0.169

67 3.812 0.210 0.146 0.402 0.210 0.423 0.043 0 0 1

68 0.884 0.361 0.361 0.361 0.670 1.071 0.922 0.333 0.333 0.333

69 0.930 0.216 0.258 0.258 0.430 0.512 0.666 0.284 0.358 0.358

70 1.081 0.349 0.349 0.349 0.503 0.735 0.459 0.333 0.333 0.333

71 2.117 0.092 0.092 0.092 0.274 0.195 0.949 0.333 0.333 0.333

72 0.891 0.372 0.372 0.291 0.426 . . . . .

73 1.204 0.218 0.243 0.243 0.386 0.450 0.550 0.296 0.352 0.352

74 1.018 0.273 0.273 0.273 0.465 0.571 0.607 0.333 0.333 0.333

75 0.802 0.074 0.074 0.074 0.965 1.492 4.225 0.333 0.333 0.333

76 1.172 0.451 0.176 0.201 0.533 0.536 0.463 0.715 0.121 0.164

77 0.929 0.281 0.281 0.281 0.536 0.672 0.781 0.333 0.333 0.333

78 0.963 0.373 0.333 0.333 0.400 0.577 0.111 0.571 0.215 0.215

79 0.926 0.346 0.286 0.346 0.471 0.686 0.500 0.373 0.255 0.373

80 1.799 0.083 0.083 0.044 0.437 0.188 1.368 0.369 0.369 0.262

81 0.821 0.385 0.385 0.385 0.601 0.973 0.633 0.333 0.333 0.333

82 0.949 0.323 0.266 0.217 0.497 0.523 0.501 0.455 0.325 0.220

Continued on next page
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Table 3.B.2 – continued from previous page

id α W (P (L)) W (P (R)) W (P (M)) W (P (L ∪R)) η γ P (L) P (R) P (M)

83 0.039 0.889 0.889 0.889 0.976 18.021 1.170 0.333 0.333 0.333

84 0.941 0.291 0.291 0.291 0.430 0.556 0.441 0.333 0.333 0.333

85 0.702 0.396 0.368 0.270 0.481 . . . . .

86 0.762 0.246 0.246 0.246 0.468 0.535 0.716 0.333 0.333 0.333

87 1.074 0.300 0.300 0.364 0.300 . . . . .

88 0.952 0.332 0.310 0.310 0.489 0.656 0.496 0.363 0.318 0.318

89 0.967 0.047 0.047 0.047 0.117 0.081 0.710 0.333 0.333 0.333

222



Chapter 3. Measuring Beliefs and Ambiguity Attitudes Towards Discrete Sources of

Uncertainty

Table 3.B.3: Individual estimate: social ambiguity- cg

id α W (P (L)) W (P (R)) W (P (M)) W (P (L ∪R)) η γ P (L) P (R) P (M)

1 1.316 0.440 0.168 0.168 0.643 0.604 0.826 0.579 0.210 0.210

2 0.739 0.465 0.379 0.362 0.654 1.035 0.615 0.429 0.298 0.273

3 0.172 0.845 0.807 0.784 0.908 5.999 0.449 0.446 0.308 0.246

4 0.718 0.831 0.350 0.288 0.885 1.761 0.379 0.938 0.042 0.020

5 0.466 0.617 0.594 0.637 0.759 2.349 0.547 0.334 0.296 0.370

6 1.212 0.158 0.509 0.105 0.653 0.470 0.398 0.091 0.879 0.030

7 0.479 0.605 0.605 0.630 0.605 . . . . .

8 0.857 0.303 0.283 0.283 0.456 0.575 0.497 0.363 0.319 0.319

9 1.084 0.211 0.160 0.250 0.211 0.299 0.033 0.034 0 0.966

10 0.966 0.346 0.332 0.273 0.346 . . . . .

11 0.563 0.438 0.409 0.452 0.540 0.984 0.361 0.344 0.275 0.381

12 0.680 0.438 0.295 0.392 0.686 1.186 0.977 0.395 0.256 0.349

13 0.976 0.434 0.346 0.360 0.434 . . . . .

14 0.808 0.391 0.449 0.431 0.501 0.872 0.237 0.215 0.429 0.356

15 0.732 0.333 0.361 0.379 0.498 0.777 0.479 0.284 0.340 0.376

16 0.932 0.605 0.146 0.397 0.747 1.396 1.147 0.520 0.138 0.342

17 0.910 0.631 0.419 0.338 0.631 . . . . .

18 1.194 0.259 0.208 0.225 0.259 0.318 0.010 1 0 0

19 2.219 0.159 0.139 0.159 0.410 0.363 1.013 0.345 0.309 0.345

20 1.017 0.230 0.164 0.374 0.363 0.584 0.774 0.296 0.196 0.507

21 0.376 0.298 0.298 0.108 0.298 . . . . .

22 0.613 0.526 0.311 0.436 0.610 1.100 0.528 0.505 0.156 0.339

23 0.541 0.860 0.484 0.443 0.912 2.877 0.543 0.801 0.113 0.086

24 0.330 0.563 0.563 0.603 0.731 2.031 0.576 0.312 0.312 0.376

25 0.816 0.360 0.360 0.360 0.549 0.828 0.556 0.333 0.333 0.333

26 3.255 0.089 0.089 0.089 0.189 0.151 0.630 0.333 0.333 0.333

27 0.932 0.451 0.267 0.301 0.498 0.653 0.294 0.685 0.120 0.195

28 0.884 0.361 0.361 0.361 0.670 1.071 0.922 0.333 0.333 0.333

29 0.429 0.522 0.485 0.651 0.608 1.698 0.409 0.253 0.191 0.556

30 1.131 0.374 0.224 0.361 0.565 0.855 0.861 0.397 0.221 0.381

31 0.865 0.451 0.297 0.325 0.534 0.742 0.386 0.566 0.189 0.245

32 1.348 0.150 0.209 0.185 0.520 0.496 1.168 0.292 0.369 0.339

33 2.204 0.015 0.055 0.049 0.055 0.055 0.095 0 0.664 0.336

34 0.875 0.304 0.303 0.321 0.530 0.731 0.704 0.326 0.324 0.350

35 0.922 0.219 0.219 0.219 0.219 0.280 0 0.002 0.104 0.894

36 0.533 0.412 0.361 0.353 0.441 0.656 0.108 0.645 0.202 0.152

37 0.352 0.537 0.512 0.598 0.698 1.855 0.599 0.313 0.278 0.409

38 1.529 0.384 0.184 0.151 0.569 0.483 0.631 0.600 0.231 0.169

Continued on next page
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Table 3.B.4 – continued from previous page

id α W (P (L)) W (P (R)) W (P (M)) W (P (L ∪R)) η γ P (L) P (R) P (M)

39 0.806 0.259 0.214 0.153 0.553 0.472 0.850 0.412 0.344 0.244

40 0.934 0.357 0.277 0.300 0.442 0.582 0.359 0.466 0.236 0.298

41 0.498 0.966 0.244 0.131 0.979 . . . . .

42 0.890 0.488 0.418 0.359 0.488 . . . . .

43 0.790 0.076 0.076 0.076 0.076 . . . . .

44 0.854 0.391 0.372 0.372 0.662 1.078 0.823 0.348 0.326 0.326

45 0.625 0.254 0.254 0.254 0.478 0.559 0.714 0.333 0.333 0.333

46 3.267 0.880 0.880 0.880 0.880 . . . . .

47 0.455 0.713 0.592 0.497 0.713 . . . . .

48 2.863 0.074 0.151 0.126 0.151 0.160 0.053 0 0.884 0.116

49 0.488 0.529 0.439 0.433 0.625 1.128 0.347 0.496 0.258 0.245

50 0.922 0.320 0.170 0.170 0.517 0.468 0.747 0.502 0.249 0.249

51 1.042 0.348 0.348 0.348 0.669 1.038 0.963 0.333 0.333 0.333

52 0.828 0.478 0.311 0.339 0.555 0.799 0.373 0.590 0.177 0.233

53 1.865 0.265 0.265 0.265 0.406 0.496 0.463 0.333 0.333 0.333

54 0.154 0.714 0.714 0.872 0.714 . . . . .

55 0.876 0.364 0.364 0.364 0.660 1.054 0.879 0.333 0.333 0.333

56 166.3 0.002 0 0 0.002 0 0.390 1 0 0

57 0.547 0.259 0.399 0.472 0.558 1.063 0.797 0.198 0.356 0.446

58 1.256 0.555 0.206 0.169 0.578 . . . . .

59 1.023 0.300 0.242 0.268 0.606 0.752 1.023 0.366 0.302 0.332

60 0.828 0.964 0.069 0.069 0.964 . . . . .

61 0.937 0.404 0.157 0.350 0.404 0.605 0.089 0.786 0 0.214

62 0.079 0.094 0.824 0.576 0.940 4.604 2.088 0.140 0.502 0.358

63 0.865 0.382 0.252 0.231 0.396 . . . . .

64 0.496 0.681 0.355 0.318 0.681 . . . . .

65 0.865 0.451 0.297 0.325 0.534 0.742 0.386 0.566 0.189 0.245

66 0.500 0.432 0.432 0.432 0.563 0.988 0.380 0.333 0.333 0.333

67 2.985 0.381 0.316 0.282 0.381 . . . . .

68 0.884 0.361 0.361 0.361 0.670 1.071 0.922 0.333 0.333 0.333

69 0.985 0.240 0.154 0.326 0.299 0.454 0.508 0.328 0.141 0.531

70 1.173 0.450 0.402 0.491 0.597 1.195 0.552 0.334 0.261 0.404

71 1.227 0.212 0.212 0.212 0.449 0.469 0.797 0.333 0.333 0.333

72 0.568 0.392 0.392 0.392 0.664 1.127 0.808 0.333 0.333 0.333

73 0.762 0.428 0.320 0.320 0.428 . . . . .

74 1.006 0.193 0.193 0.233 0.233 0.304 0.217 0.250 0.250 0.500

75 23.08 0.034 0 0 0.425 0.001 3.733 0.709 0.137 0.154

76 0.935 0.508 0.468 0.468 0.673 1.347 0.535 0.378 0.311 0.311
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Table 3.B.4 – continued from previous page

id α W (P (L)) W (P (R)) W (P (M)) W (P (L ∪R)) η γ P (L) P (R) P (M)

77 0.853 0.305 0.295 0.326 0.471 0.657 0.557 0.326 0.307 0.367

78 1.034 0.350 0.305 0.270 0.350 . . . . .

79 0.584 0.352 0.397 0.397 0.550 0.897 0.533 0.281 0.360 0.360

80 1.112 0.204 0.204 0.204 0.653 0.694 1.440 0.333 0.333 0.333

81 0.949 0.463 0.378 0.378 0.652 1.068 0.635 0.417 0.292 0.292

82 1.235 0.433 0.296 0.276 0.572 0.714 0.482 0.535 0.250 0.215

83 0.627 0.110 0.110 0.110 0.163 0.156 0.327 0.333 0.333 0.333

84 0.717 0.399 0.420 0.379 0.457 0.716 0.097 0.309 0.531 0.159

85 1.050 0.286 0.155 0.234 0.305 0.366 0.275 0.584 0.076 0.340

86 0.578 0.322 0.293 0.258 0.452 0.536 0.378 0.422 0.336 0.242

87 0.729 0.421 0.421 0.576 0.421 . . . . .

88 1.027 0.841 0.188 0.188 0.869 1.235 0.315 0.990 0.005 0.005

89 1.038 0.076 0.038 0.038 0.102 0.067 0.341 0.647 0.176 0.176

Table 3.B.5: Individual estimate: strategic uncertainty

id α W (P (L)) W (P (R)) W (P (M)) W (P (L ∪R)) η γ P (L) P (R) P (M)

1 0.929 0.230 0.230 0.230 0.470 0.515 0.784 0.333 0.333 0.333

2 0.842 0.364 0.350 0.350 0.719 1.174 1.094 0.341 0.329 0.329

3 0.452 0.505 0.462 0.462 0.755 1.629 0.839 0.364 0.318 0.318

4 0.512 0.393 0.393 0.393 0.393 0.649 0 0.005 0 0.995

5 0.369 0.696 0.734 0.697 0.734 . . . . .

6 0.886 0.159 0.159 0.541 0.325 0.754 0.970 0.193 0.193 0.613

7 0.849 0.342 0.328 0.214 0.438 . . . . .

8 0.723 0.261 0.261 0.330 0.510 0.715 0.851 0.304 0.304 0.391

9 1.051 0.194 0.194 0.194 0.260 0.291 0.271 0.333 0.333 0.333

10 0.582 0.514 0.539 0.539 0.539 1.168 0.010 0 0.500 0.500

11 0.542 0.407 0.376 0.376 0.407 . . . . .

12 1.331 0.238 0.263 0.213 0.473 0.493 0.661 0.333 0.380 0.287

13 2.634 0.077 0.077 0.066 0.077 . . . . .

14 0.857 0.262 0.283 0.303 0.474 0.627 0.667 0.300 0.334 0.367

15 0.925 0.320 0.317 0.303 0.511 0.674 0.565 0.345 0.340 0.315

16 2.989 0.178 0.178 0.116 0.316 0.246 0.383 0.419 0.419 0.162

17 0.661 0.512 0.565 0.451 0.672 1.298 0.291 0.326 0.502 0.172

18 0.838 0.318 0.338 0.338 0.338 0.510 0.007 0 0.500 0.500

19 1.351 0.404 0.467 0.369 0.513 0.784 0.106 0.199 0.742 0.059

20 1.301 0.229 0.167 0.316 0.574 0.790 1.368 0.328 0.269 0.403

21 1.597 0.063 0.055 0.055 0.063 . . . . .
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Table 3.B.6 – continued from previous page

id α W (P (L)) W (P (R)) W (P (M)) W (P (L ∪R)) η γ P (L) P (R) P (M)

22 0.798 0.284 0.309 0.351 0.470 0.692 0.593 0.280 0.323 0.397

23 0.868 0.624 0.624 0.434 0.866 2.232 0.750 0.403 0.403 0.194

24 2.340 0.046 0.046 0.046 0.146 0.091 0.905 0.333 0.333 0.333

25 1.184 0.249 0.249 0.249 0.481 0.553 0.743 0.333 0.333 0.333

26 1.187 0.331 0.331 0.331 0.530 0.747 0.592 0.333 0.333 0.333

27 0.841 0.309 0.354 0.334 0.475 0.673 0.434 0.280 0.384 0.336

28 0.884 0.361 0.361 0.361 0.670 1.071 0.922 0.333 0.333 0.333

29 0.991 0.171 0.276 0.171 0.572 0.525 1.036 0.289 0.423 0.289

30 1.108 0.269 0.246 0.246 0.640 0.762 1.164 0.349 0.325 0.325

31 1.018 0.273 0.273 0.273 0.465 0.571 0.607 0.333 0.333 0.333

32 0.804 0.303 0.303 0.303 0.549 0.727 0.742 0.333 0.333 0.333

33 0.522 0.380 0.287 0.374 0.380 0.605 0.034 0.590 0 0.410

34 1.279 0.208 0.202 0.202 0.391 0.403 0.651 0.342 0.329 0.329

35 1.541 0.171 0.171 0.206 0.194 0.250 0.151 0.220 0.220 0.561

36 0.462 0.527 0.375 0.596 0.652 1.662 0.686 0.358 0.185 0.457

37 1.041 0.101 0.184 0.223 0.348 0.391 0.972 0.217 0.362 0.421

38 1.091 0.248 0.274 0.292 0.445 0.576 0.627 0.291 0.338 0.371

39 0.985 0.173 0.181 0.113 0.411 0.298 0.705 0.376 0.394 0.230

40 0.725 0.307 0.417 0.382 0.547 0.864 0.554 0.231 0.415 0.354

41 3.864 0.040 0.040 0.040 0.206 0.103 1.322 0.333 0.333 0.333

42 0.760 0.499 0.468 0.468 0.499 . . . . .

43 0.627 0.110 0.110 0.110 0.163 0.156 0.327 0.333 0.333 0.333

44 0.744 0.417 0.417 0.417 0.530 0.899 0.327 0.333 0.333 0.333

45 0.529 0.203 0.203 0.243 0.603 0.698 1.340 0.320 0.320 0.359

46 1.018 0.273 0.273 0.273 0.465 0.571 0.607 0.333 0.333 0.333

47 0.302 0.741 0.526 0.742 0.747 2.917 0.280 0.480 0.031 0.489

48 3.127 0.119 0.059 0.166 0.119 0.164 0.068 0.057 0 0.943

49 0.641 0.277 0.212 0.172 0.583 0.539 0.941 0.410 0.324 0.267

50 0.903 0.197 0.154 0.154 0.500 0.427 1.084 0.374 0.313 0.313

51 1.042 0.348 0.348 0.348 0.669 1.038 0.963 0.333 0.333 0.333

52 1.086 0.342 0.239 0.252 0.356 0.432 0.121 0.820 0.067 0.113

53 0.848 0.420 0.383 0.420 0.538 0.918 0.412 0.360 0.279 0.360

54 2.404 0.208 0.246 0.002 0.764 . . . . .

55 1.625 0.269 0.269 0.260 0.393 0.476 0.394 0.342 0.342 0.315

56 1.042 0.348 0.348 0.348 0.669 1.038 0.963 0.333 0.333 0.333

57 3.447 0.068 0.068 0.068 0.102 0.091 0.319 0.333 0.333 0.333

58 1.056 0.343 0.343 0.343 0.383 0.570 0.125 0.333 0.333 0.333

59 1.035 0.225 0.265 0.331 0.315 0.477 0.323 0.177 0.295 0.528
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Table 3.B.6 – continued from previous page

id α W (P (L)) W (P (R)) W (P (M)) W (P (L ∪R)) η γ P (L) P (R) P (M)

60 1.189 0.224 0.024 0.139 0.415 0.338 1.495 0.474 0.147 0.379

61 1.886 0.044 0.104 0.058 0.421 0.212 1.595 0.277 0.408 0.316

62 1.746 0.151 0.156 0.134 0.742 0.667 1.955 0.337 0.342 0.321

63 0.708 0.336 0.424 0.093 0.779 . . . . .

64 1.178 0.347 0.347 0.374 0.448 0.697 0.332 0.307 0.307 0.386

65 1.018 0.273 0.273 0.273 0.465 0.571 0.607 0.333 0.333 0.333

66 0.580 0.527 0.576 0.576 0.590 1.399 0.118 0.126 0.437 0.437

67 2.412 0.238 0.238 0.211 0.238 . . . . .

68 0.884 0.361 0.361 0.361 0.670 1.071 0.922 0.333 0.333 0.333

69 1.084 0.211 0.211 0.211 0.488 0.506 0.917 0.333 0.333 0.333

70 2.229 0.099 0.158 0.158 0.318 0.296 0.893 0.249 0.376 0.376

71 1.466 0.051 0.078 0.051 0.464 0.217 1.782 0.315 0.370 0.315

72 0.552 0.401 0.401 0.401 0.638 1.086 0.700 0.333 0.333 0.333

73 1.194 0.183 0.221 0.284 0.264 0.377 0.324 0.168 0.292 0.540

74 1.018 0.273 0.273 0.273 0.465 0.571 0.607 0.333 0.333 0.333

75 1.297 0.071 0.135 0.453 0.157 0.393 0.552 0.049 0.157 0.794

76 0.431 0.778 0.719 0.728 0.778 . . . . .

77 0.832 0.589 0.398 0.187 0.725 . . . . .

78 1.218 0.296 0.215 0.215 0.363 0.394 0.293 0.556 0.222 0.222

79 1.041 0.206 0.259 0.232 0.356 0.409 0.431 0.258 0.409 0.332

80 0.922 0.409 0.320 0.320 0.651 0.938 0.798 0.406 0.297 0.297

81 0.952 0.377 0.377 0.377 0.586 0.926 0.613 0.333 0.333 0.333

82 0.842 0.320 0.292 0.184 0.525 0.499 0.440 0.466 0.393 0.141

83 2.218 0.001 0.001 0.001 0.054 0.007 3.119 0.333 0.333 0.333

84 0.980 0.318 0.318 0.318 0.337 0.487 0.061 0.333 0.333 0.333

85 0.988 0.298 0.405 0.239 0.490 0.550 0.178 0.190 0.768 0.041

86 0.625 0.408 0.318 0.185 0.800 0.953 1.142 0.430 0.349 0.221

87 1.094 0.389 0.239 0.239 0.389 . . . . .

88 0.715 0.362 0.403 0.403 0.488 0.802 0.327 0.256 0.372 0.372

89 0.340 0.331 0.331 0.331 0.480 0.676 0.451 0.333 0.333 0.333
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Table 3.B.7: Individual estimate: social ambiguity- tg

id α W (P (L)) W (P (R)) W (P (M)) W (P (L ∪R)) η γ P (L) P (R) P (M)

1 1.757 0.270 0.079 0.018 0.391 . . . . .

2 1.266 0.245 0.203 0.203 0.597 0.615 1.149 0.365 0.318 0.318

3 0.806 0.397 0.302 0.302 0.619 0.838 0.741 0.419 0.291 0.291

4 28.42 0 0 0 0 0 0.506 1 0 0

5 0.745 0.643 0.643 0.701 0.643 . . . . .

6 1.296 0.092 0.092 0.525 0.113 0.375 0.327 0.018 0.018 0.965

7 1.620 0.219 0.203 0.191 0.540 0.527 1.037 0.353 0.331 0.316

8 0.677 0.379 0.379 0.379 0.530 0.831 0.442 0.333 0.333 0.333

9 1.972 0.098 0.052 0.052 0.118 0.085 0.240 0.732 0.134 0.134

10 1.259 0.299 0.386 0.286 0.386 . . . . .

11 0.604 0.367 0.367 0.298 0.367 . . . . .

12 0.909 0.365 0.285 0.332 0.402 0.577 0.226 0.498 0.163 0.339

13 0.394 0.315 0.300 0.300 0.315 . . . . .

14 1.353 0.245 0.263 0.289 0.396 0.516 0.513 0.288 0.327 0.385

15 0.876 0.296 0.321 0.321 0.528 0.726 0.676 0.308 0.346 0.346

16 1.231 0.504 0.212 0.293 0.504 0.649 0.042 1 0 0

17 1.516 0.431 0.247 0.175 0.431 . . . . .

18 0.746 0.376 0.376 0.376 0.376 0.602 0 0.286 0.286 0.428

19 0.986 0.392 0.392 0.384 0.558 0.887 0.474 0.339 0.339 0.323

20 1.832 0.146 0.042 0.378 0.251 0.451 1.211 0.310 0.128 0.561

21 0.644 0.107 0.134 0.107 0.134 . . . . .

22 0.902 0.417 0.239 0.311 0.417 0.569 0.035 0.999 0 0.001

23 0.968 0.661 0.205 0.205 0.810 1.047 0.861 0.673 0.164 0.164

24 0.468 0.541 0.541 0.523 0.670 1.494 0.375 0.347 0.347 0.305

25 1.977 0.108 0.108 0.108 0.333 0.245 1.021 0.333 0.333 0.333

26 1.984 0.179 0.179 0.179 0.367 0.356 0.705 0.333 0.333 0.333

27 0.794 0.328 0.352 0.352 0.454 0.673 0.359 0.289 0.356 0.356

28 0.884 0.361 0.361 0.361 0.670 1.071 0.922 0.333 0.333 0.333

29 0.634 0.491 0.400 0.371 0.734 1.279 0.808 0.414 0.308 0.278

30 1.226 0.717 0.213 0.215 0.902 1.584 1.303 0.589 0.205 0.206

31 0.699 0.420 0.409 0.433 0.478 0.836 0.201 0.331 0.280 0.389

32 0.920 0.308 0.348 0.370 0.557 0.858 0.723 0.287 0.342 0.371

33 0.610 0.380 0.191 0.563 0.409 0.943 0.483 0.291 0.054 0.655

34 1.077 0.239 0.294 0.255 0.406 0.483 0.438 0.272 0.416 0.312

35 1.095 0.660 0.554 0.657 0.660 1.930 0.037 0.548 0 0.452

36 0.800 0.231 0.186 0.186 0.434 0.419 0.736 0.390 0.305 0.305

37 0.954 0.286 0.092 0.209 0.286 0.325 0.083 0.926 0 0.074

38 1.290 0.222 0.139 0.162 0.260 0.260 0.288 0.580 0.158 0.262
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Table 3.B.8 – continued from previous page

id α W (P (L)) W (P (R)) W (P (M)) W (P (L ∪R)) η γ P (L) P (R) P (M)

39 0.464 0.469 0.374 0.374 0.650 1.054 0.619 0.430 0.285 0.285

40 1.005 0.359 0.243 0.337 0.485 0.692 0.592 0.413 0.215 0.372

41 0.828 0.964 0.069 0.069 0.964 . . . . .

42 0.666 0.529 0.523 0.523 0.529 . . . . .

43 0.790 0.076 0.076 0.076 0.076 . . . . .

44 0.884 0.361 0.361 0.361 0.670 1.071 0.922 0.333 0.333 0.333

45 0.946 0.184 0.184 0.184 0.306 0.315 0.487 0.333 0.333 0.333

46 1.340 0.742 0.742 0.944 0.742 . . . . .

47 0.494 0.876 0.442 0.400 0.876 . . . . .

48 1.500 0.186 0.186 0.202 0.321 0.346 0.547 0.320 0.320 0.360

49 0.796 0.224 0.187 0.177 0.472 0.438 0.846 0.380 0.319 0.301

50 0.648 0.417 0.294 0.294 0.454 0.588 0.176 0.754 0.123 0.123

51 1.042 0.348 0.348 0.348 0.669 1.038 0.963 0.333 0.333 0.333

52 0.955 0.432 0.293 0.293 0.494 0.636 0.272 0.659 0.171 0.171

53 1.148 0.258 0.258 0.258 0.463 0.547 0.654 0.333 0.333 0.333

54 0.802 0.074 0.074 0.074 0.965 1.492 4.225 0.333 0.333 0.333

55 0.995 0.349 0.349 0.349 0.680 1.069 0.994 0.333 0.333 0.333

56 44.23 0.194 0 0 0.194 . . . . .

57 0.009 0.506 0.354 0.354 0.506 . . . . .

58 1.163 0.542 0.241 0.267 0.599 0.738 0.359 0.789 0.088 0.123

59 1.027 0.438 0.320 0.280 0.511 0.637 0.209 0.723 0.190 0.087

60 1.042 0.348 0.348 0.348 0.669 1.038 0.963 0.333 0.333 0.333

61 1.174 0.127 0.254 0.457 0.254 0.534 0.077 0 0.003 0.997

62 0.636 0.335 0.174 0.477 0.419 0.811 0.691 0.334 0.124 0.542

63 0.991 0.292 0.140 0.253 0.292 0.374 0.063 0.829 0 0.171

64 1.462 0.709 0.112 0.060 0.738 . . . . .

65 1.163 0.463 0.231 0.231 0.463 . . . . .

66 0.878 0.339 0.377 0.254 0.480 0.560 0.128 0.333 0.648 0.020

67 2.192 0.341 0.341 0.338 0.341 . . . . .

68 0.884 0.361 0.361 0.361 0.670 1.071 0.922 0.333 0.333 0.333

69 0.851 0.214 0.065 0.299 0.305 0.433 0.941 0.378 0.125 0.496

70 1.094 0.247 0.208 0.265 0.398 0.489 0.627 0.347 0.272 0.382

71 1.391 0.212 0.212 0.212 0.409 0.431 0.680 0.333 0.333 0.333

72 0.517 0.421 0.421 0.421 0.588 1.018 0.487 0.333 0.333 0.333

73 1.302 0.381 0.148 0.148 0.381 . . . . .

74 0.531 0.316 0.317 0.300 0.336 0.465 0.028 0.456 0.498 0.046

75 0.828 0.964 0.069 0.069 0.964 . . . . .

76 1.747 0.256 0.181 0.089 0.256 . . . . .
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Table 3.B.8 – continued from previous page

id α W (P (L)) W (P (R)) W (P (M)) W (P (L ∪R)) η γ P (L) P (R) P (M)

77 1.378 0.179 0.159 0.179 0.383 0.368 0.824 0.346 0.308 0.346

78 0.652 0.541 0.478 0.478 0.625 1.236 0.301 0.461 0.269 0.269

79 1.020 0.314 0.296 0.229 0.440 0.483 0.296 0.455 0.383 0.162

80 1.186 0.223 0.148 0.185 0.544 0.520 1.203 0.378 0.287 0.334

81 1.034 0.331 0.265 0.283 0.396 0.509 0.286 0.477 0.230 0.293

82 1.986 0.264 0.072 0.116 0.876 0.962 2.606 0.406 0.276 0.318

83 0.245 0.450 0.091 0.091 0.450 . . . . .

84 0.837 0.348 0.370 0.370 0.389 0.611 0.098 0.203 0.399 0.399

85 1.013 0.232 0.205 0.258 0.303 0.389 0.366 0.332 0.245 0.424

86 0.463 0.581 0.449 0.449 0.805 1.837 0.899 0.423 0.289 0.289

87 1.068 0.341 0.341 0.387 0.341 . . . . .

88 0.767 0.787 0.198 0.244 0.833 1.267 0.547 0.876 0.048 0.076

89 0.852 0.065 0.145 0.065 0.169 0.119 0.230 0.088 0.824 0.088
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Table 3.B.9: Individual estimate: betrayal aversion- tg

id α W (P (L)) W (P (R)) W (P (M)) W (P (L ∪R)) η γ P (L) P (R) P (M)

1 1.284 0.287 0.187 0.187 0.407 0.397 0.488 0.507 0.246 0.246

2 1.025 0.286 0.268 0.277 0.673 0.888 1.214 0.342 0.325 0.333

3 0.906 0.353 0.353 0.353 0.544 0.807 0.562 0.333 0.333 0.333

4 0.660 0.332 0.332 0.812 0.474 1.975 0.704 0.124 0.124 0.753

5 1.006 0.485 0.426 0.437 0.519 0.915 0.154 0.544 0.203 0.253

6 0.835 0.248 0.219 0.415 0.304 0.557 0.382 0.203 0.143 0.654

7 1.417 0.171 0.186 0.163 0.367 0.336 0.679 0.328 0.363 0.309

8 0.770 0.309 0.288 0.288 0.465 0.592 0.500 0.364 0.318 0.318

9 2.036 0.056 0.056 0.025 0.056 . . . . .

10 0.968 0.291 0.329 0.345 0.329 0.508 0.016 0 0.097 0.903

11 0.561 0.494 0.395 0.439 0.516 0.914 0.166 0.600 0.117 0.283

12 0.668 0.369 0.439 0.390 0.683 1.173 0.816 0.299 0.378 0.322

13 1.929 0.207 0.140 0.103 0.222 . . . . .

14 0.962 0.274 0.220 0.247 0.544 0.625 0.931 0.368 0.298 0.334

15 1.056 0.219 0.261 0.300 0.419 0.557 0.664 0.262 0.335 0.403

16 1.522 0.152 0.071 0.310 0.174 0.308 0.524 0.262 0.065 0.673

17 1.295 0.383 0.316 0.277 0.517 0.640 0.396 0.481 0.305 0.214

18 0.939 0.341 0.368 0.368 0.368 0.583 0.010 0 0.500 0.500

19 2.736 0.083 0.083 0.099 0.282 0.208 1.109 0.320 0.320 0.361

20 0.561 0.577 0.337 0.285 0.623 . . . . .

21 0.017 0 0 0.096 0.946 1.361 15.938 0.270 0.270 0.460

22 0.706 0.252 0.335 0.517 0.335 0.734 0.039 0 0 1

23 1.366 0.472 0.501 0.147 0.832 . . . . .

24 0.764 0.409 0.409 0.409 0.547 0.915 0.403 0.333 0.333 0.333

25 0.712 0.719 0.385 0.385 0.719 . . . . .

26 1.493 0.323 0.323 0.323 0.458 0.635 0.413 0.333 0.333 0.333

27 1.017 0.355 0.273 0.313 0.481 0.650 0.503 0.419 0.251 0.330

28 0.884 0.361 0.361 0.361 0.670 1.071 0.922 0.333 0.333 0.333

29 0.752 0.215 0.215 0.382 0.215 . . . . .

30 1.365 0.346 0.189 0.366 0.352 0.560 0.245 0.442 0.028 0.531

31 1.076 0.255 0.255 0.354 0.400 0.604 0.575 0.271 0.271 0.458

32 1.035 0.225 0.251 0.328 0.331 0.492 0.414 0.219 0.285 0.496

33 1.054 0.176 0.284 0.124 0.284 . . . . .

34 0.940 0.314 0.298 0.338 0.424 0.613 0.402 0.326 0.285 0.389

35 1.319 0.454 0.483 0.483 0.483 0.933 0.010 0 0.500 0.500

36 0.573 0.331 0.223 0.327 0.518 0.723 0.797 0.383 0.239 0.378

37 1.439 0.072 0.100 0.100 0.256 0.196 0.981 0.279 0.360 0.360

38 1.216 0.266 0.240 0.240 0.342 0.406 0.291 0.403 0.298 0.298

Continued on next page
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Table 3.B.10 – continued from previous page

id α W (P (L)) W (P (R)) W (P (M)) W (P (L ∪R)) η γ P (L) P (R) P (M)

39 0.729 0.211 0.211 0.181 0.469 0.442 0.812 0.350 0.350 0.299

40 0.976 0.329 0.286 0.326 0.494 0.688 0.589 0.360 0.285 0.355

41 5.298 0.007 0.007 0.007 0.081 0.025 1.800 0.333 0.333 0.333

42 0.511 0.684 0.679 0.658 0.684 . . . . .

43 0.790 0.076 0.076 0.076 0.076 . . . . .

44 1.094 0.371 0.292 0.292 0.452 0.583 0.309 0.511 0.245 0.245

45 0.307 0.094 0.442 0.389 0.720 1.279 1.639 0.178 0.428 0.395

46 1.103 0.755 0.755 0.953 0.755 . . . . .

47 0.883 0.543 0.645 0.507 0.734 1.682 0.329 0.258 0.559 0.183

48 1.123 0.042 0.347 0.779 0.347 1.366 0.207 0 0.010 0.990

49 0.533 0.448 0.381 0.455 0.577 1.067 0.504 0.368 0.251 0.381

50 0.723 0.201 0.285 0.251 0.488 0.566 0.798 0.266 0.393 0.342

51 0.802 0.074 0.074 0.965 0.074 . . . . .

52 1.371 0.266 0.182 0.218 0.529 0.561 0.978 0.391 0.280 0.329

53 1.665 0.301 0.252 0.252 0.301 . . . . .

54 0.802 0.074 0.074 0.965 0.074 . . . . .

55 0.922 0.347 0.347 0.347 0.724 1.181 1.150 0.333 0.333 0.333

56 1.395 0.244 0.253 0.253 0.545 0.636 0.933 0.326 0.337 0.337

57 1.537 0.477 0.477 0.323 0.477 . . . . .

58 0.799 0.348 0.485 0.453 0.485 0.883 0.040 0 0.835 0.165

59 1.208 0.217 0.217 0.255 0.531 0.623 1.064 0.319 0.319 0.363

60 43.27 0 0 0 0 0 1.002 0.021 0.021 0.958

61 1.317 0.059 0.324 0.368 0.324 0.528 0.157 0 0.350 0.650

62 0.654 0.280 0.259 0.239 0.451 0.508 0.538 0.378 0.332 0.290

63 0.851 0.392 0.288 0.191 0.889 1.376 1.777 0.395 0.334 0.270

64 0.891 0.084 0.084 0.356 0.319 0.509 1.510 0.243 0.243 0.514

65 0.993 0.280 0.280 0.320 0.406 0.568 0.448 0.301 0.301 0.398

66 0.721 0.494 0.485 0.511 0.589 1.222 0.308 0.325 0.301 0.375

67 0.739 0.540 0.540 0.836 0.540 . . . . .

68 1.013 0.298 0.316 0.316 0.636 0.899 0.998 0.320 0.340 0.340

69 0.580 0.204 0.204 0.403 0.484 0.796 1.127 0.268 0.268 0.464

70 1.330 0.213 0.238 0.213 0.395 0.421 0.565 0.315 0.371 0.315

71 1.227 0.212 0.212 0.212 0.449 0.469 0.797 0.333 0.333 0.333

72 0.657 0.345 0.458 0.345 0.526 0.766 0.278 0.207 0.586 0.207

73 0.768 0.459 0.288 0.288 0.459 . . . . .

74 1.669 0.072 0.084 0.118 0.084 0.111 0.017 0 0 1

75 0.075 0.094 0.094 0.945 0.094 . . . . .

76 0.716 0.396 0.361 0.318 0.511 0.699 0.310 0.450 0.336 0.214

Continued on next page
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Table 3.B.10 – continued from previous page

id α W (P (L)) W (P (R)) W (P (M)) W (P (L ∪R)) η γ P (L) P (R) P (M)

77 1.039 0.388 0.242 0.166 0.488 . . . . .

78 1.045 0.288 0.275 0.365 0.346 0.552 0.287 0.252 0.212 0.536

79 0.750 0.296 0.346 0.281 0.434 0.547 0.291 0.288 0.472 0.240

80 2.908 0.195 0.174 0.174 0.375 0.356 0.686 0.364 0.318 0.318

81 0.968 0.286 0.372 0.205 0.430 . . . . .

82 1.297 0.198 0.198 0.235 0.683 0.814 1.613 0.323 0.323 0.354

83 0.790 0.076 0.076 0.076 0.076 . . . . .

84 0.753 0.467 0.497 0.471 0.497 . . . . .

85 1.168 0.227 0.253 0.350 0.271 0.447 0.178 0.087 0.173 0.740

86 0.359 0.507 0.484 0.484 0.507 . . . . .

87 1.037 0.413 0.413 0.462 0.413 . . . . .

88 0.861 0.563 0.282 0.323 0.563 . . . . .

89 0.643 0.328 0.262 0.262 0.382 0.468 0.224 0.549 0.225 0.225

3.C Experimental instructions

In this appendix we present the instructions we show to Players 2 in the

experiment. The order of the presentation of the instructions of each experimental

condition is randomized, accordingly to the randomization of the order of the

conditions in the experiment. These instructions are translated from the original

French instructions.

Beginning instructions

The experiment consists of Ąve (5) parts and will last approximately 45 minutes.

You will receive speciĄc instructions for each part at the beginning of each

of them. At the end of the experiment, only one part out of the Ąve will be

randomly selected to determine your Ąnal payment. Each of these Ąve parts has

the same chance of being randomly selected by the computer. In each part, you

make several decisions. If a part is randomly selected for payment, one of the

decisions in that part will be randomly selected by the computer. Each decision
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has the same chance of being drawn at random. Therefore, only one of your

decisions will affect your Ąnal payment, but it could be any of your decisions.

Thus, it is in your best interest to make each decision as if it were the one that

will be selected for payment.

Payments for your decisions will be expressed in experimental currency units

(ECU). Please note that each ECU is equal to 1 euro. For example, 1 ECU =

e 1 and 15 ECU = e 15.

Social ambiguity - coordination game

You will now read the instructions for Part 1 of the experiment. Part 1 has two

sub-parts. You will receive instructions for each sub-part before you make your

decisions in each of them.

First stage

Instructions for the Ąrst sub-part of Part 1

In this part of the experiment, you are randomly paired with another par-

ticipant, we call this person, Participant 2. You will never be informed of

Participant 2Šs identity, nor will Participant 2 ever be informed of your identity.

Your Ąnal payment will depend on your decision and the decision of Participant

2.

Your decision in this section will be to choose an action between Left, Right

or Middle. Participant 2 will receive 5 euros. Then, Participant 2 will decide

where he/she would prefer to spend these 5 euros between one of the following

options: An Amazon voucher, a Google Play voucher or an Apple Store voucher.

You will not be notiĄed of Participant 2Šs decision until you receive payment for
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this experiment. The values below are numerical examples of how Participant

2Šs decision affects your payment.

• If you choose Left and Participant 2 chooses an Amazon voucher, you

will receive 30 ECU.

• If you choose Left and Participant 2 chooses a Google Play voucher, you

will receive 20 ECU.

• If you choose Left and Participant 2 chooses an Apple Store voucher,

you will receive 16 ECU.

• If you choose Right and Participant 2 chooses an Amazon voucher, you

will receive 16 ECU.

• If you choose Right and Participant 2 chooses a Google Play voucher,

you will receive 30 ECU.

• If you choose Right and Participant 2 chooses an Apple Store voucher,

you receive 20 ECU.

• If you choose Middle and Participant 2 chooses an Amazon voucher,

you will receive 20 ECU.

• If you choose Middle and Participant 2 chooses a Google Play voucher,

you will receive 16 ECU.

• If you choose Middle and Participant 2 chooses an Apple Store voucher,

you will receive 30 ECU.

Your possible payments (in ECU), depending on your decision and the

decision of Participant 2, are summarized in the table below.
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Participant 2

Your
decision

Amazon voucher Google Play voucher Apple Store voucher
Left 30 20 16

Right 16 30 20
Middle 20 16 30

Note that Participant 2 is informed that his or her choice will affect you, but

he or she does not know in what direction. This means that Participant 2 does

not know how your payment changes based on his or her decision.

Example

Suppose you decide to choose the Right action and Participant 2 prefers to

spend his or her 5 euros on a Google Play voucher (remember that you will

not be informed of Participant 2Šs decision until you receive the payment for the

experiment). The table below shows in orange the payment (in ECU) you will

get in this scenario. If this decision is chosen at random for the payment, you

earn 30 ECU.

Participant 2

Your
decision

Amazon voucher Google Play voucher Apple Store voucher
Left 30 20 16

Right 16 30 20
Middle 20 16 30

Second stage

Instructions for the second sub-part of Part 1

In the second and Ąnal subpart of this part of the experiment, you will choose

between several options. The options will be presented in 12 tables (see an
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example of the table below). Each row represents one option. For each option,

you will be asked to indicate whether you prefer Alternative A or Alternative B.

• Alternative A offers you a safe payment.

• Alternative B offers you a variable payment that depends on the decision

made by Participant 2 in the Ąrst sub-part of this part of the experiment.

This means that the payment you can receive varies depending on what

Participant 2 decided between an Amazon voucher, a Google Play

voucher, or an Apple Store voucher. This alternative changes from

table to table, but it is the same for all rows in a given table.

Example of a table with payments (in ECU):

Safe payment of alternative A Alternative A Alternative B Variable payment of alternative B
30 A1 B1 You get 30 ECU if Participant 2

chooses an Amazon voucher in the
first sub-part of this part of the
experiment or 16 ECU if Participant
2 chooses a Google Play voucher or

an Apple Store voucher

28 A2 B2
26 A3 B3
24 A4 B4
22 A5 B5
20 A6 B6
18 A7 B7
16 A8 B8

In each line you will be asked to indicate whether you prefer Alternative A

or Alternative B.

Both alternatives are initially displayed in gray. You must click on one

of the two alternatives to select it. Your selection will be highlighted in blue.

You can change your selection at any time by clicking on the cell of the desired

alternative, before moving on to the next screen. Once you conĄrm your decision,

you cannot go back and change your previous decision.

If you select Alternative A for a given row, the computer will mark Alterna-

tive A for all previous rows (up to the Ąrst). Similarly, if you select Alternative

B for a line, the computer will mark Alternative B for all subsequent lines (up

to the last one).
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Example

Suppose that the following option is randomly selected for payment:

Safe payment of alternative A Alternative A Alternative B Variable payment of alternative B
26 A1 B1 You get 30 ECU if Participant 2

chooses an Amazon voucher in the
first sub-part of this part of the
experiment or 16 ECU if Participant
2 chooses a Google Play voucher or

an Apple Store voucher

• If you select Alternative A for this line, you earn 26 ECU.

• If you select Alternative B for this line, you can earn 30 ECU or 16

ECU. Your payment depends on the decision of Participant 2 that you

were associated with in sub-part 1 of this part of the experiment (the most

recent task you completed). Payment is determined as follows:

– If Participant 2 chooses an Amazon voucher, you earn 30 ECU.

– If Participant 2 chooses either a Google Play voucher or an Apple

Store voucher, you earn 16 ECU.

During this task, you will be able to use the back button to re-view the

decisions that you and Participant 2 were asked to make in the Ąrst sub-part of

this part of the experiment.

Strategic uncertainty - coordination game

You will now read the instructions for Part 2 of the experiment. Part 2 has two

sub-parts. You will receive instructions for each sub-part before you make your

decisions in each of them.
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First stage

Instructions for the Ąrst sub-part of Part 2

In this part of the experiment, you are again randomly paired with another

participant. We call this new person Participant 2. However, this Participant 2

is a different person than the one you were paired with in the previous part

of the experiment. You will never be informed of Participant 2Šs identity, nor

will Participant 2 be informed of your identity. Your Ąnal payment will depend

on your decision and the decision of Participant 2.

You and Participant 2 will each choose one of three actions: Left, Right

and Middle. You will not be informed of Participant 2Šs decision until the end

of the experiment and Participant 2 will not be informed of your decision until

the end of the experiment. A numerical example of the payments (in ECU) for

you and for Participant 2 are presented in the table below. In each cell, the Ąrst

amount is your payment, and the second amount is Participant 2Šs payment.

These payments can be summarized as follows:

• If you choose Left and Participant 2 chooses Left, you receive 7 ECU.

• If you choose Left and Participant 2 chooses Right, you receive 5 ECU.

• If you choose Left and Participant 2 chooses Middle, you receive 4 ECU.

• If you choose Right and Participant 2 chooses Left, you receive 4 ECU.

• If you choose Right and Participant 2 chooses Right, you receive 7 ECU.

• If you choose Right and Participant 2 chooses Middle, you receive 5

ECU.

• If you choose Middle and Participant 2 chooses Left, you receive 5 ECU.
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• If you choose Middle and Participant 2 chooses Right, you receive 4

ECU.

• If you choose Middle and Participant 2 chooses Middle, you receive 7

ECU.

Participant 2

Your
decision

Left Right Middle
Left 7,7 5,9 4,11

Right 4,11 7,7 5,9
Middle 5,9 4,11 7,7

Example

Suppose you decide to choose the Left action and Participant 2 chooses

the Middle action (remember that you will not be informed of Participant 2Šs

decision until the end of the experiment). The table below shows in orange

the payment (in ECU) that you and Participant 2 will have in this scenario.

If this decision is chosen randomly for the payment, you will win 4 ECU and

Participant 2 will win 11 ECU.

Participant 2

Your
decision

Left Right Middle
Left 7,7 5,9 4,11

Right 4,11 7,7 5,9
Middle 5,9 4,11 7,7

Second stage

Instructions for the second sub-part of Part 2

In the second and Ąnal sub-part of this part of the experiment, you will

choose between several options. The options will be presented in 12 tables (see
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an example of the table below). Each row represents one option. For each option,

you will be asked to indicate whether you prefer Alternative A or Alternative B.

• Alternative A offers you a safe payment.

• Alternative B offers you a variable payment that depends on the decision

made by Participant 2 in the Ąrst sub-part of this part of the experiment.

This means that the payment you can receive varies depending on what

Participant 2 decided between the Left, Right or Middle actions. This

alternative changes from table to table, but it is the same for all rows in a

given table.

Example of a table with payments (in ECU):

Safe payment of alternative A Alternative A Alternative B Variable payment of alternative B
7 A1 B1 You get 7 ECU if Participant 2

chooses an Left in the first sub-part of
this part of the experiment or 3.5

ECU if Participant 2 chooses a Right

or Middle

6.5 A2 B2
6 A3 B3

5.5 A4 B4
5 A5 B5

4.5 A6 B6
4 A7 B7

3.5 A8 B8

In each line you will be asked to indicate whether you prefer Alternative A

or Alternative B.

Both alternatives are initially displayed in gray. You must click on one

of the two alternatives to select it. Your selection will be highlighted in blue.

You can change your selection at any time by clicking on the cell of the desired

alternative, before moving on to the next screen. Once you conĄrm your decision,

you cannot go back and change your previous decision.

If you select Alternative A for a given row, the computer will mark Alterna-

tive A for all previous rows (up to the Ąrst). Similarly, if you select Alternative

B for a line, the computer will mark Alternative B for all subsequent lines (up

to the last one).
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Example

Suppose that the following option is randomly selected for payment:

Safe payment of alternative A Alternative A Alternative B Variable payment of alternative B
6 A1 B1 You get 7 ECU if Participant 2

chooses an Left in the first sub-part of
this part of the experiment or 3.5

ECU if Participant 2 chooses a Right

or Middle

• If you select Alternative A for this line, you earn 6 ECU.

• If you select Alternative B for this line, you can win 7 ECU or 3.5

ECU. Your payment depends on the decision done by the Participant 2

which you were associated with in sub-part 1 of this part of the experiment

(the most recent task you completed). Payment would be determined as

follows:

– If Participant 2 chooses Left, you earn 7 ECU.

– If Participant 2 chooses Right or Middle, you earn 3.5 ECU.

During this task, you will be able to use the back button to re-view the

decisions that you and Participant 2 were asked to make in the Ąrst sub-part of

this part of the experiment.

Social ambiguity - trust game

You will now read the instructions for Part 3 of the experiment. Part 3 has two

sub-parts. You will receive instructions for each sub-part before you make your

decisions in each of them.
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First stage

Instructions for the Ąrst sub-part of Part 3

In this part of the experiment, you are again randomly paired with another

participant. We call this new person Participant 2. However, this Participant

2 is a different person than the ones you were paired with in the previous

parts of the experiment. You will never be informed of Participant 2Šs identity,

nor will Participant 2 be informed of your identity. Depending on your decision,

your payment may or may not depend on Participant 2Šs decision.

Your decision in this sub-section will be to choose an action between the

Left or Right possibilities. Participant 2 receives 5 euros. Participant 2 decides

where he or she would prefer to spend the 5 euros between one of the following

options: an Amazon voucher, a Google Play voucher or an Apple Store

voucher. You will not be informed of Participant 2Šs decision until the end

of the experiment. If you chose Left, you will receive a sure payment, and

Participant 2Šs decision does not affect your payment. If you choose Right, your

payment is determined by Participant 2Šs decision. Participant 2 knows that

your payment may or may not depend on their decision. However, Participant 2

does not know how his or her decision is associated with your payment.

A numerical example of possible payments for this part of the experiment

can be summarized as follows:

• If you choose Left, you receive 30 ECU for sure.

• If you choose Right, your payment depends on the decision of Participant

2, as follows:

– If Participant 2 chooses an Amazon voucher, you receive 45 ECU.
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– If Participant 2 chooses a Google Play voucher, you receive 30

ECU.

– If Participant 2 chooses an Apple Store voucher, you will receive

24 ECU.

Example

Suppose you decide to choose the Right action and Participant 2 prefers

to spend his or her 5 euros on an Amazon voucher (remember that you will

not be informed of Participant 2Šs decision until you receive the payment for the

experiment).

Below you can see in orange the payment (in ECU) you will get in this

scenario. If this decision is chosen randomly for the payment, you will earn 45

ECU.

• If you choose Left, you will receive 30 ECU for sure.

• If you choose Right, your payment depends on Participant 2Šs decision,

as follows:

– If Participant 2 chooses an Amazon voucher, you receive 45 ECU.

– If Participant 2 chooses a Google Play voucher, you receive 30

ECU.

– If Participant 2 chooses an Apple Store voucher, you will receive

24 ECU.

Second stage

Instructions for the second sub-part of Part 3
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In the second and Ąnal sub-part of this part of the experiment, you will

choose between several options. The options will be presented in 12 tables (see

an example of the table below). Each row represents one option. For each option,

you will be asked to indicate whether you prefer Alternative A or Alternative B.

• Alternative A offers you a safe payment.

• Alternative B offers you a variable payment that depends on the decision

made by Participant 2 in the Ąrst sub-part of this part of the experiment.

This means that the payment you can receive varies depending on what

Participant 2 decided between an Amazon voucher, a Google Play

voucher, or an Apple Store voucher. Alternative B changes from

table to table, but it is the same for all rows in a given table.

Example of a table with payments (in ECU):

Safe payment of alternative A Alternative A Alternative B Variable payment of alternative B
45 A1 B1 You get 45 ECU if Participant 2

chooses an Amazon voucher in the
first sub-part of this part of the
experiment or 24 ECU if Participant
2 chooses a Google Play or an

Apple Store voucher

42 A2 B2
39 A3 B3
36 A4 B4
33 A5 B5
30 A6 B6
27 A7 B7
24 A8 B8

In each line you will be asked to indicate whether you prefer Alternative A

or Alternative B.

Both alternatives are initially displayed in gray. You must click on one

of the two alternatives to select it. Your selection will be highlighted in blue.

You can change your selection at any time by clicking on the cell of the desired

alternative, before moving on to the next screen. Once you conĄrm your decision,

you cannot go back and change your previous decision.

If you select Alternative A for a given row, the computer will mark Alterna-

tive A for all previous rows (up to the Ąrst). Similarly, if you select Alternative
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B for a line, the computer will mark Alternative B for all subsequent lines (up

to the last one).

Example

Suppose that the following option is randomly selected for payment:

Safe payment of alternative A Alternative A Alternative B Variable payment of alternative B
39 A1 B1 You get 45 ECU if Participant 2

chooses an Amazon voucher in the
first sub-part of this part of the
experiment or 24 ECU if Participant
2 chooses a Google Play or an

Apple Store voucher

• If you select Alternative A for this line, you earn 39 ECU.

• If you select Alternative B for this line, you can earn 45 ECU or 24

ECU. Your payment depends on the decision of the Participant 2 you are

associated with in the sub-part 1 of this part of the experiment (the most

recent task you completed). The payment is determined as follows:

– If Participant 2 chooses an Amazon voucher, you earn 45 ECU.

– If Participant 2 chooses either a Google Play or an Apple Store

voucher, you earn 24 ECU.

During this task, you will be able to use the back button to re-view the

decisions that you and Participant 2 were asked to make in the Ąrst sub-part of

this part of the experiment.
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Betrayal aversion

You will now read the instructions for Part 4 of the experiment. Part 4 has two

sub-parts. You will receive instructions for each sub-part before you make your

decisions in each of them.

First stage

Instructions for the Ąrst sub-part of Part 4

In this part of the experiment, you are again randomly paired with another

participant. We call this new person Participant 2. However, this Participant

2 is a different person than the ones you were paired with in the previous

parts of the experiment. You will never be informed of Participant 2Šs identity,

nor will Participant 2 be informed of your identity. Your decision will affect

Participant 2Šs payment. In addition, depending on your decision, your payment

may or may not depend on Participant 2Šs decision.

Your decision in this section is to choose an action between the Left or

Right options. Participant 2 decides between three options: Left, Right or

Middle. You will not be informed of Participant 2Šs decision until you receive

payment for the experiment. If you choose Left, you and Participant 2 receive

a sure payment, and Participant 2Šs decision does not affect your payment. In

contrast, if you choose Right, the payments for you and Participant 2 are

determined by Participant 2Šs decision.

A numerical example of the possible payments for this part of the experiment

can be summarized as follows:

• If you choose Left, you and Participant 2 receive 20 ECU for sure.
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• If you choose Right, your payment depends on Participant 2Šs decision,

as follows:

– If Participant 2 chooses Left, you receive 25 ECU and Participant 2

receives 25 ECU.

– If Participant 2 chooses Right, you receive 20 ECU and Participant

2 receives 28 ECU.

– If Participant 2 chooses Middle, you receive 18 ECU and Participant

2 receives 32 ECU.

Example

Suppose you decide to choose the action Right and Participant 2 chooses

the action Right (remember that you will not be informed of Participant 2Šs

decision until you receive your payment).

Below you can see in orange the payment (in ECU) you will get in this

scenario. If this decision is chosen at random for the payment, you win 20 ECU.

• If you choose Left, you and Participant 2 each get 20 ECU for sure.

• If you choose Right, your payment depends on Participant 2Šs decision as

follows:

– If Participant 2 chooses Left, you receive 25 ECU and Participant 2

receives 25 ECU.

– If Participant 2 chooses Right, you receive 20 ECU and Participant

2 receives 28 ECU.

– If Participant 2 chooses Middle, you receive 18 ECU and Participant

2 receives 32 ECU.
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Second stage

Instructions for the second sub-part of Part 4

In the second and Ąnal sub-part of this part of the experiment, you choose

between several options. The options are presented in 12 tables (see an example

of the table below). Each row represents an option. For each option, you must

indicate whether you prefer Alternative A or Alternative B.

• Alternative A offers you a safe payment.

• Alternative B offers you a variable payment that depends on the decision

made by Participant 2 in the Ąrst sub-part of this part of the experiment.

This means that the payment you can receive varies depending on what

Participant 2 decided between Left, Right or Middle actions.

Example of a table with payments (in ECU):

Safe payment of alternative A Alternative A Alternative B Variable payment of alternative B
25 A1 B1 You get 25 ECU if Participant 2

chooses Left in the first sub-part of
this part of the experiment or 18

ECU if Participant 2 chooses Right

or Middle

24 A2 B2
23 A3 B3
22 A4 B4
21 A5 B5
20 A6 B6
19 A7 B7
18 A8 B8

In each line you will be asked to indicate whether you prefer Alternative A

or Alternative B.

Both alternatives are initially displayed in gray. You must click on one

of the two alternatives to select it. Your selection will be highlighted in blue.

You can change your selection at any time by clicking on the cell of the desired

alternative, before moving on to the next screen. Once you conĄrm your decision,

you cannot go back and change your previous decision.
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If you select Alternative A for a given row, the computer will mark Alterna-

tive A for all previous rows (up to the Ąrst). Similarly, if you select Alternative

B for a line, the computer will mark Alternative B for all subsequent lines (up

to the last one).

Example

Suppose that the following option is randomly selected for payment:

Safe payment of alternative A Alternative A Alternative B Variable payment of alternative B
23 A1 B1 You get 25 ECU if Participant 2

chooses Left in the first sub-part of
this part of the experiment or 18

ECU if Participant 2 chooses Right

or Middle

• If you select Alternative A for this line, you earn 23 ECU.

• If you select Alternative B for this line, you can earn 25 ECU or 18

ECU. Your payment depends on the decision done by the Participant 2Šs

that you were associated with in sub-part 1 of this part of the experiment

(the most recent task you completed). Payment is determined as follows:

– If Participant 2 chooses Left, you earn 25 ECU.

– If Participant 2 chooses Right or Middle, you earn 18 ECU.

During this task, you will be able to use the back button to re-view the

decisions that you and Participant 2 were asked to make in the Ąrst sub-part of

this part of the experiment.
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Nature

In this part of the experiment, you must choose between several options. The

options are presented in 12 tables (see an example of the table below). Each

row represents an option. For each option, you must indicate whether you prefer

Alternative A or Alternative B.

• Alternative A offers you a safe payment.

• Alternative B offers you a variable payment that depends on a random

selection made by the computer. The computer chooses one of three

options: Left, Right or Middle. Each option has an equal chance of

being drawn. Alternative B changes from table to table, but is the same

for all rows in a given table.

Example of a table with payments (in ECU):

Safe payment of alternative A Alternative A Alternative B Variable payment of alternative B
20 A1 B1 You get 20 ECU if the computer

randomly chooses Left or 13 ECU if
the computer randomly chooses Right

or Middle

19 A2 B2
18 A3 B3
17 A4 B4
16 A5 B5
15 A6 B6
14 A7 B7
13 A8 B8

In each line you will be asked to indicate whether you prefer Alternative A

or Alternative B.

Both alternatives are initially displayed in gray. You must click on one

of the two alternatives to select it. Your selection will be highlighted in blue.

You can change your selection at any time by clicking on the cell of the desired

alternative, before moving on to the next screen. Once you conĄrm your decision,

you cannot go back and change your previous decision.

If you select Alternative A for a given row, the computer will mark Alterna-

tive A for all previous rows (up to the Ąrst). Similarly, if you select Alternative
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B for a line, the computer will mark Alternative B for all subsequent lines (up

to the last one).

Example

Suppose that the following option is randomly selected for payment:

Safe payment of alternative A Alternative A Alternative B Variable payment of alternative B
20 A1 B1 You get 20 ECU if the computer

randomly chooses Left or 13 ECU if
the computer randomly chooses Right

or Middle

• If you select Alternative A for this line, you win 20 ECU.

• If you select Alternative B for this line, you can win 20 ECU or 13

ECU. Your payment depends on which option the computer randomly

selects. Remember that each option has the same chance of being drawn.

The payment is determined as follows:

– If the computer selects Left, you win 20 ECU.

– If the computer selects Right or Middle, you win 13 ECU.

3.D Comparison of multi-stage and one stage

approaches

We propose a multistage method in which the utility function and the probability

weighting function are speciĄed sequentially.13 In this section, we compare

our multi-stage approach with the one-stage approach in which the utility

13In case of continuous valued source of uncertainty, we also allow to specify the distribution
of beliefs only in the third stage (see Appendix 3.A).
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and weighting functions are speciĄed simultaneously. To that end we conduct

parameter recovery and misspeciĄcation exercises (e.g. Gao et al., 2020; Kpegli

et al., 2022; Nilsson et al., 2011).

Simulated data

We consider six speciĄcations resulting from the combination of two utility

functions u(.) and three weighting functions w(.).14

The two utility functions u(.) are P(ower) (Eq. 3.16) and E(xponential) (Eq.

3.17):

U(z) = zα (3.16)

u(z) =
1 − exp(−αz)

α
(3.17)

For the power utility, α < 1 (resp. α > 1) means concavity (resp. convexity)

and α = 1 corresponds to the linear case. For the exponential utility, α > 0

(resp. α < 0) means concavity (resp. convexity) and α −→ 0 corresponds to

the linear case. To have a common measure of the utility curvature to facilitate

comparisons, we adopt the following measure of the utility curvature over the

range of outcomes [0, q] (Kpegli et al., 2022; Abdellaoui et al., 2016)

β =
1

qu(q)

∫ q

0
u(t)dt

with β > 0.5 (resp. β < 0.5) meaning concavity (resp. convexity) and α = 0.5

corresponds to the linear case.

14The vast majority of specifications in ambiguity studies rely on one of these six combination
of utility and weighting functions (e.g. Li et al., 2018; Gutierrez and Kemel, 2021).
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The three weighting functions w(.) are the speciĄcations of GE87 (Eq. 3.18),

P98 (Eq. 3.19) and CEG7 (Eq. 3.20)

W (P (E)) =
ηP (E)γ

ηP (E)γ + (1 − P (E))γ
(3.18)

W (P (E)) = exp

(
− η

(
− ln(P (E))

)γ)
(3.19)

W (P (E)) = γP (E) + η (3.20)

with γ > 0 , η > 0.

For the speciĄcation of CEG7, the pessimism and insensitivity indexes are

given by 1 − η − 2γ and 1 − η, respectively (e.g. Abdellaoui et al., 2011a). For

the speciĄcation of P98, the parameters η and γ are an index of pessimism

and an anti-index of likelihood insensitivity, respectively (Abdellaoui et al.,

2021a). For the speciĄcation of GE87, the parameters η and γ are an anti-

index of pessimism and an anti-index of likelihood insensitivity, respectively (e.g.

Gonzalez and Wu, 1999).15 Insensitivity makes weighting the function Ćatter

in the range of intermediate subjective probability and steeper near the ends.

Hence, the weighting function follows an inverse S-shaped. Pessimism determines

the elevation of the weighting function.

The calibration of lotteries follows the outcomes in Li et al. (2019, 2020) and

the ones from our experiment. We consider 12 lotteries L = (x, y, E,Ec) that

results from the combination of three pairs of outcomes (x, y)= (10, 0), (15, 0),

and (15, 8) and, four events E = E1, E2, E3 and E12.

Simulated data 1: P & GE87. We simulate data for 250 (s = 1, 2, ..., 250)

hypothetical subjects. For each subject s, we draw the parameters of weighting

function η and γ of GE87 from U(0.1, 1.5). We draw the parameter of the power

15For this specification, the crossing point is given by W (p∗) = p∗ = 1

1+η
1

γ−1

and, W (.) is

well defined over all the probability range including the boundary W (0) = 0 and W (1) = 1.

254



Chapter 3. Measuring Beliefs and Ambiguity Attitudes Towards Discrete Sources of

Uncertainty

utility function α from an uniform distribution U(0.1, 2.1) (e.g. Abdellaoui et al.,

2008; Spiliopoulos and Hertwig, 2019). For the beliefs, we draw P (E1) and P (E2)

from U(0, 1) and keep only the cases where P (E1) + P (E2) < 1. We derive

then P (E3) = 1 − P (E1) − P (E2). Then, the simulated α, η, γ, P (E1), P (E2),

and P (E3) are plugged into the RDU formulas to generate noiseless certainty

equivalents of the 12 lotteries. In the last step of the data generation process,

we draw 12 random values from a normal distribution with expected value 0

and standard deviation σ = 0.25, which we add to the previously generated 12

noiseless certainty equivalents to obtain the noisy ones.

Simulated data 2: P & P98. similar as simulated data 1, but in this case

the two-parameter weighting function of P98 is used. We draw η and γ of P98

from U(0.1, 1.5).

Simulated data 3: P & CEG7. Similar as simulated data 2, but in this case

the two-parameter weighting function of CEG7 is used. We draw η and γ of

CEG7 from U(0, 1).

Simulated data 4: E & GE87. Similar as simulated data 1, but in this case

the CARA utility function is used. We draw α from U(−0.15, 0.15).

Simulated data 5: E & P98. Similar as simulated data 2, but in this case

the CARA utility function is used. We draw α from U(−0.15, 0.15).

Simulated data 6: E & CEG7. Similar as simulated data 3, but in this case

the CARA utility function is used. We draw α from U(−0.15, 0.15).

Simulation results

We conduct two types of estimations for each approach by using the six simulated

data. In the Ąrst type of estimation, we estimate by using the correct speciĄcation

of the utility and weighting functions that are behind the simulated data. This

Ąrst type of estimation corresponds to the parameter recovery exercise in which
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the purpose is to assess the ability of the two approaches to identify the targeted

parameters (Murphy and ten Brincke, 2018; Gao et al., 2020; Kpegli et al., 2022).

In the second type of estimation, we make the estimation on each of the

simulated data by assuming the 5 other speciĄcations of utility and weighting

functions that are not behind the simulated data. This second type of estimation

corresponds to the misspeciĄcation exercise in which the purpose is to assess

the extend to which a wrong speciĄcation of utility and weighting functions will

affect the estimation results (Gao et al., 2020; Kpegli et al., 2022).

Table 3.D.1 provides the average of the squared difference between the true

values of the parameters and their estimated values over the 250 hypothetical

subjects. Table 3.D.1 shows evidence of the fact that the two-stage approach

leads to smaller error than the one-stage approach. These results can be explained

by the use of a semi-parametric method in the Ąrst stage of our method. The

Ąrst stage provides a semi-parametric estimates in which the utility function

is speciĄed and no parametric assumption is made on event weights. Previous

simulation results (e.g. Kim et al., 2007; Mahmoud et al., 2016; Kpegli et al.,

2022) have shown that semi-parametric methods are preferable to parametric

methods due to misspeciĄcation issues. Furthermore, the two-stage approach

based on the power utility function in combination with the two-parameter

weighting function of GE87 leads to smaller errors.
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Table 3.D.1: Result of parameter recovery and misspeciĄcation excercises

Specification one-stage two-stage

u() w() u() w() P () pool u() w() P () pool

Parameter recovery

1 E CEG87 0.0010 0.0012 0.0096 0.0039 0.0010 0.0012 0.0096 0.0039

2 E GE87 0.0011 0.0012 0.0022 0.0015 0.0011 0.0012 0.0020 0.0014

3 E PR98 0.0011 0.0012 0.0031 0.0018 0.0011 0.0013 0.0028 0.0017

4 P CEG87 0.0005 0.0007 0.0189 0.0067 0.0005 0.0007 0.0189 0.0067

5 P GE87 0.0004 0.0006 0.0034 0.0015 0.0004 0.0006 0.0026 0.0012

6 P PR98 0.0005 0.0007 0.0037 0.0016 0.0005 0.0007 0.0033 0.0015

7 pool pool 0.0008 0.0009 0.0068 0.0028 0.0008 0.0009 0.0065 0.0027

Misspecification

1 E CEG7 0.0028 0.0069 0.0070 0.0056 0.0029 0.0070 0.0070 0.0056

2 E GE87 0.0023 0.0064 0.0100 0.0062 0.0026 0.0059 0.0083 0.0056

3 E P98 0.0026 0.0070 0.0076 0.0057 0.0028 0.0067 0.0070 0.0055

4 P CEG7 0.0017 0.0018 0.0061 0.0032 0.0017 0.0018 0.0061 0.0032

5 P GE87 0.0018 0.0021 0.0090 0.0043 0.0018 0.0019 0.0076 0.0038

6 P P98 0.0019 0.0020 0.0074 0.0038 0.0019 0.0018 0.0068 0.0035

7 pool pool 0.0022 0.0044 0.0078 0.0048 0.0023 0.0042 0.0071 0.0045

Parameter recovery and Misspecification

1 E CEG7 0.0019 0.0040 0.0083 0.0048 0.0020 0.0041 0.0083 0.0048

2 E GE87 0.0017 0.0038 0.0061 0.0038 0.0018 0.0035 0.0052 0.0035

3 E P98 0.0018 0.0041 0.0053 0.0038 0.0019 0.0040 0.0049 0.0036

4 P CEG7 0.0011 0.0012 0.0125 0.0049 0.0011 0.0012 0.0125 0.0049

5 P GE87 0.0011 0.0014 0.0062 0.0029 0.0011 0.0012 0.0051 0.0025

6 P P98 0.0012 0.0013 0.0056 0.0027 0.0012 0.0012 0.0051 0.0025

7 pool pool 0.0015 0.0026 0.0073 0.0038 0.0015 0.0026 0.0068 0.0036
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Chapter 4

Against the Odds! The Tradeoff

Between Risk and Incentives is

Alive and Well

This chapter is based on a paper co-authored with Brice Corgnet, Roberto

Hernan-Gonzalez and Adam Zylbersztejn



Abstract

The risk-incentives tradeoff (RIT) is a fundamental result of principal-agent

theory. Yet, empirical evidence has been elusive. This could be due to a lack

of robustness of the theory outside of the standard expected utility framework

(EUT) or to confounding factors in the empirical tests. First, we theoretically

study the existence of RIT under alternative theories: Rank-Dependent Utility

(RDU) and Mean-Variance-Skewness (MVS). We show that RIT is remarkably

robust under RDU, but not under MVS. Second, we use a novel experimental

design that eliminates confounding factors and Ąnd evidence for RIT even in the

case of risk-seeking agents, which is a distinct prediction of RDU. Our results

provide support for the risk-incentives tradeoff and suggest that it applies to a

broad range of situations including cases in which agents are risk-seeking (e.g.,

executive compensation).

Keywords: Risk-Incentives Tradeoff, Rank-Dependent Utility, Mean-Variance-

Skewness, Experiments.

JEL codes : C92, D23, D86, M54
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4.1 Introduction

Principal-agent theory has played a key role in understanding human behavior

across disciplines ranging from Ąnance, accounting, strategy and political science

to neuroeconomics (Jensen and Meckling, 1976; Lambert, 2001; Miller, 2005;

Brocas and Carrillo, 2008; Dranove et al., 2017). In economics, the principal-agent

framework is a cornerstone of numerous Ąelds including the theory of incentives.

A central result in this literature is the existence of a tradeoff between providing

incentives to foster the effort of risk-averse agents and protecting them against

risk (Borch, 1962; Mirrlees, 1974; Holmström, 1979; Shavell, 1979; Milgrom and

Roberts, 1992; Laffont and Martimort, 2002; Bolton and Dewatripont, 2005;

Gibbons and Roberts, 2013). The risk-incentives tradeoff (RIT, henceforth)

emerges because providing steeper incentives implies strengthening the link

between output and rewards which, in turn, exposes agents to a greater risk

whenever output is a noisy measure of effort. As a result, the optimal contract

typically incorporates a variable pay that incentivizes the agent to exert effort

and a Ąxed pay that partially hedges the agent against output shocks. These

types of contracts are widespread, and unsurprisingly RIT has been applied

to a wide variety of economic settings ranging from sharecropping to medical

insurance (e.g., Zeckhauser, 1970; Stiglitz, 1974) and compensation setting in

Ąrms (Gibbons and Roberts, 2013).

Although the rationale for RIT is appealing, empirical evidence remains

scarce (Garen, 1994; Prendergast, 2002; Lazear and Oyer, 2013). A glimpse of

hope has recently come from laboratory studies reporting some evidence for

RIT (Corgnet and Hernan-Gonzalez, 2019; Chowdhury and Karakostas, 2020).

These lab studies control for possible confounding factors such as organizational

hierarchies, implicit incentives or tacit knowledge that are notoriously difficult

to control for in the Ąeld. Yet, the size of the effect reported in Corgnet and
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Hernan-Gonzalez (2019) and Chowdhury and Karakostas (2020) remains small.1

Furthermore, recent evidence from laboratory experiments by Dohmen et al.

(2021) is not consistent with RIT since the presence of output risk does not lead

agents to demand weaker incentive schemes, that is lower piece rates.

In this paper, we use theory and experiments to investigate whether the

limited evidence for RIT is due to a lack of robustness of the underlying theory

or to the confounding factors in empirical tests. Principal-agent models are

notorious for their lack of tractability (Grossman and Hart, 1983; Rogerson, 1985)

which has led researchers to focus on particular speciĄcations such as the LEN

(Linear Exponential Normal) model (see Milgrom and Roberts, 1992; Varian,

1992; Laffont and Martimort, 2002; Bolton and Dewatripont, 2005; Gibbons and

Roberts, 2013; Besanko et al., 2017). In this model, the risk-neutral principal

proposes the agent a linear contract composed of a Ąxed pay and a share of

output. The risk-averse agent who maximizes expected utility (assumed to

be exponential) then decides whether to accept the contact or not. In case of

acceptance, the agent chooses a level of effort under the agreed-upon contract.

Even though the principal cannot observe the level of effort, she can observe the

Ąnal output, which is impacted by an additive (normally distributed) shock.

The classical version of RIT is derived assuming Expected Utility Theory

(EUT, henceforth) and the LEN speciĄcation. Although the LEN model has often

been discussed and defended by contract theorists on the basis of tractability and

realism (Holmstrom and Milgrom, 1987; Diamond, 1998; Laffont and Martimort,

2002; Bolton and Dewatripont, 2005; Carroll, 2015; Holmström, 2017), little is

known about the robustness of RIT in non-EUT settings. This led us to study the

robustness of RIT to alternative theories that allow for distortions of probabilities

1Corgnet and Hernan-Gonzalez (2019) report a 8.1% (Cohen’s d = 0.34) decrease in the
piece rate value in their noise treatment as compared to a noise-free baseline. A similar
decrease (12.7%) if also found by Chowdhury and Karakostas (2020), notwithstanding their
EUT-based prediction of a one-third decrease.
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(Rank-Dependent Utility theory, RDU, henceforth, Quiggin, 1982) and an explicit

preference for skewness (Mean-Variance-Skewness, MVS, henceforth, Spiliopoulos

and Hertwig, 2019). Risk attitudes have been traditionally characterized by the

curvature of the utility function. However, non-EUT models characterize risk

attitudes along different dimensions. For example, overall risk attitudes under

RDU stem both from utility risk attitudes (i.e., the curvature of the utility

function) and probability risk attitudes (i.e., probability weighting). Under MVS,

overall risk attitudes depend on agentsŠ preferences for variance and skewness.

We theoretically show that RIT is pervasive under RDU because it occurs

not only when agents are overall risk-averse, but also when they are risk-neutral

or risk-seeking. For example, RIT happens when overall risk-neutral or risk-

seeking agents are moderately risk-seeking in the probability domain (i.e., they

moderately overweight probabilities) and risk-averse in the utility domain (i.e.,

their utility function is concave). This result suggests that RIT might be more

widespread than predicted by EUT. Yet, this observation contrasts with the

limited empirical evidence for RIT.

In line with existing empirical evidence, MVS provides a setup in which RIT

is less pervasive than under EUT. This happens because RIT does not occur

for all risk-averse agents (as in EUT) and disappears for those that exhibit a

preference for positive skewness. Furthermore, the optimal variable pay (Ąxed

pay) can increase (decrease) with risk, which is what we refer to as reversed

RIT. This occurs when the distribution of the shock is positively skewed and

the aversion to variance is less pronounced than the value of skewness for a

risk-averse agent exhibiting MVS preferences.

These theoretical results show that non-EUT models provide reasons for

both hope and despair regarding the robustness of RIT. To test the predictions

of the alternative theories, we develop a novel experimental testbed for RIT that
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eliminates confounding factors. We focus on agentsŠ decisions by eliciting the

minimum Ąxed pay they are willing to accept for different values of the variable

pay. As principals do not make contractual decisions (see, e.g., Dohmen et al.,

2021) we can discard confounding factors related to their risk attitudes. This

design also eliminates any asymmetry of information between the principal and

the agent whose preferences are unknown. We also use monetary effort instead

of a real-effort task (see e.g., Anderhub et al., 2002; Keser and Willinger, 2007;

Gächter and Königstein, 2009) to discard other confounding factors often present

in experimental data such as social motives and reference points (see Corgnet

and Hernan-Gonzalez, 2019), as well as more general ones such as organizational

hierarchies, delegation, implicit incentives, tacit knowledge, uncertainty and

market dynamics (Jensen and Meckling, 1995; Raith, 2008; Adams, 2005; DeVaro

and Kurtulus, 2010; Edmans et al., 2012; He et al., 2014). We do not mean

to underplay the importance of these factors but rather aim at implementing

a testbed for the basic mechanism underlying RIT. It follows that a lack of

evidence supporting RIT in our setup would be a deĄnitive blow for the theory.

To ensure that our design can be effectively used to study RIT, we analyze a

BareBone (BB, henceforth) principal-agent model.

Our experiment shows that RIT is remarkably robust and more pervasive

than predicted by EUT. In line with RDU but in contrast with EUT and MVS,

RIT arises even when agents are risk-seeking. This Ąnding has direct implications

for various applications of the theory in which agents are risk-seeking, as is

the case of executive compensation (Garen, 1994; Edmans and Gabaix, 2011;

Edmans et al., 2012, 2017) and high-pay workers (Ma et al., 2019). Risk-seeking

is likely to be pervasive in these cases because of selection effects (MacCrimmon

and Wehrung, 1990; Brenner, 2015). Furthermore, executive packages are often

positively skewed due to, for example, the use of stock options (Edmans et al.,
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2017). As a result, an agent who appears to be risk-averse when rewarded

according to a linear contract might be risk-seeking when facing a skewed

compensation package.

The remainder of the paper is organized as follows. Section 4.2 presents

the theoretical models for RIT under EUT, RDU and MVS. In Section 4.3,

we describe the experimental design. Section 4.4 presents the results of the

experiment and Section 4.5 concludes.

4.2 Model

4.2.1 Standard setup and predictions

4.2.1.1 Assumptions

A risk-neutral principal offers a contract to an agent to perform a task. If the

agent does not accept the contract, he receives an outside option y0. If he accepts

the contract, then he has to exert effort e to produce output z = z(e), where

z = e+ ϵ̃ and ϵ̃ is a random variable. Thus, there is a noisy relationship between

effort and output. The cost of effort function C(e) is increasing and convex.

The principal observes the level of output, but not the underlying level of effort.

The principal maximizes her revenue θz, where θ > 0 denotes the marginal

product of effort. To ease exposition, we consider a binary shock model (see e.g.,

Milgrom and Roberts, 1992), which is often used in empirical tests of the theory

(see Corgnet and Hernan-Gonzalez, 2019; Dohmen et al., 2021).2 In Appendix

4.C we further show that our predictions qualitatively hold if we consider a

continuous shock. In particular, this includes the special case of the normally

distributed shock used in the LEN model (see e.g., Milgrom and Roberts, 1992;

2Milgrom and Roberts (1992) and Laffont and Martimort (2002) derive fundamental results
in the theory of incentives using a model with binary shocks.
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Bolton and Dewatripont, 2005). Below, we outline our assumptions.

Assumption 0 (A0: Binary shock). The shock ϵ̃ is a binary random variable

deĄned as ϵ̃ = ( − ϵ, 1−p
p
ϵ; 1 − p, p), ϵ ≥ 0 and p ∈ (0, 1] so that E(ϵ̃) = 0 and

V (ϵ̃) = 1−p
p
ϵ2.3

Assumption 1 (A1: Risk-neutral principal). The principal is risk-neutral

and maximizes the expected payoff.

Assumption 2 (A2: Linear contracts). The principal proposes to the agent

a contract (α, β) that is linear in output and pays y = α + βθz, where α ∈ ❘ is

the Ąxed pay and β > 0 the variable pay.4

Assumption 3 (A3: CARA utility). The agentŠs utility function is u(x) =
1−exp(−rx)

r
for r ̸= 0 and u(x) = x for r = 0.

With Assumption 3, we deĄne utility risk attitudes in terms of the shape of the

utility function. By contrast, the overall risk attitudes of the agent depend on

his overall valuation of the contract which is only partly captured by the utility

function. We deĄne utility risk attitudes and overall risk attitudes as follows.

Definition 1 (Utility risk attitudes). Utility risk-aversion [risk-neutrality]

(risk-seeking) corresponds to a concave, r > 0 [linear, r = 0] (convex, r < 0)

utility function.

Definition 2 (Overall risk attitudes). An agent exhibits overall risk-aversion

[risk-neutrality] (risk-seeking) whenever his risk premium for accepting the

contract is positive [null] (negative).

DeĄnition 2 is a general (model-free) deĄnition of risk attitudes due to Pratt

(1971) and Arrow (1964). Under EUT, overall risk attitudes and utility risk

attitudes always coincide. However, this is not the case under RDU or MVS

3We consider continuous random shocks in Appendix 4.C.
4We assume linear contracts because they are theoretical tractable and empirically relevant

(e.g., Holmström, 2017). Also, we do not require β ∈ [0, 1] (e.g., Milgrom and Roberts, 1992;
Laffont and Martimort, 2002). Principal could then set β > 1 and α < 0, especially for
risk-seeking agent.
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where utility risk-aversion (utility risk-seeking) does not necessarily imply overall

risk-aversion (risk-seeking).

In this paper, we consider the standard assumption of a concave utility function

(i.e., Assumption 3Š which is equivalent to Assumption 3 with r > 0), unless

stated otherwise.

Assumption 3’ (A3’: Utility risk-averse agent). The agent is utility

risk-averse in the sense of r > 0.

For the sake of concision, hereafter we use the term risk attitudes (risk-

aversion, risk-seeking or risk-neutrality) to refer to overall risk attitudes.

Assumption 3” (A3”: Relative risk-aversion). The relative risk-aversion

index evaluated at x is less than 1, that is −u′′(x)
u′(x)

x = rx < 1.

Assumption 4 (A4: Public knowledge of the agent’s risk-attitudes).

The principal knows the agentŠs risk attitudes.

Assumption 5 (A5: Quadratic cost). The cost of effort function is:

C(e) = ψe2 with ψ > 0.

Given these assumptions, the compensation associated with the contract,

which is the random wage net of the cost of effort, can be described as a lottery

L:

L :=

(
α+ βθ

(
e+

1 − p

p
ϵ
)

− ψe2, α+ βθ
(
e− ϵ

)
− ψe2; p, 1 − p

)
(4.1)

where the Ąrst three moments (i.e., mean E, variance V and skewness S) are:

E(L) = α+βθe−ψe2, V (L) =
1 − p

p
β2θ2ϵ2 and S(L) =

1 − p

p

1 − 2p
p

β3θ3ϵ3

Note that varying ϵ does not affect the expected value of the lottery (E(L)) but

impacts variance (V (L)) and skewness (S(L)). By contrast, varying the Ąxed
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pay (α) impacts the expected value of the lottery without affecting the other

two moments. Finally, the variable pay (β) impacts all three moments.

4.2.1.2 Model specification under EUT, RDU and MVS

We Ąrst determine how the agent evaluates lottery L based on three different

speciĄcations: EUT, RDU and MVS.

EUT

Under EUT, the agent values the contract by its expected utility:

EU(L) = pu

(
α+βθ

(
e+

1 − p

p
ϵ
)

−ψe2

)
+(1−p)u

(
α+βθ

(
e−ϵ

)
−ψe2

)
(4.2)

In this model, ∂EU(L)
∂ϵ

< 0 as long as the utility function u(.) is concave.5

RDU

Under RDU, the agent distorts probabilities using a probability weighting

function w(p), which is a strictly increasing function from [0, 1] to [0, 1] with

w(0) = 0 and w(1) = 1. Hence, risk attitudes not only stem from utility

curvature (as in EUT), but also from probability weighting. Below, we deĄne

probability risk-aversion, risk-neutrality and risk-seeking.

Definition 3 (Probability risk attitudes). Under RDU, an agent exhibits

probability risk-aversion [risk-neutrality] (risk-seeking) for a speciĄc probability

p if w(p) < p [w(p) = p] (w(p) > p).

5By contrast, (2) increases with (is unaffected by) the shock magnitude if r < 0 (r = 0).
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The agentŠs valuation of the contract then becomes:

RDU(L) =w(p)u

(
α+ βθ

(
e+

1 − p

p
ϵ
)

− ψe2

)
+

(1 − w(p))u

(
α+ βθ

(
e− ϵ

)
− ψe2

) (4.3)

For a probability risk-seeking agent, the valuation of the contract in (4.3) has

an inverted J-shape with respect to ϵ (see Figure 4.2.1). To grasp the intuition,

consider an arbitrarily small shock (ϵ0) making the agent approximately utility

risk-neutral, thus exhibiting a linear utility function. In that case ∂RDU(L)
∂ϵ

=

w(p)βθ 1−p
p

− (1 − w(p))βθ > 0 ⇐⇒ w(p) > p. Hence, for that level of shock

the agent is necessarily risk-seeking because he is both utility risk-neutral and

probability risk-seeking. That is, for small shocks, risk attitudes are driven by

probability weighting rather than by the curvature of the utility function. As

shown in Figure 4.2.1, the valuation of the lottery (RDU(L)) at ϵ0 is above the

utility of the expected value of the lottery (u(E[L])), implying a negative risk

premium and hence a risk-seeking agent.

However, as the shock increases in magnitude, utility risk-aversion increases

up to a point in which utility risk-aversion exactly offsets probability risk-

seeking, making the agent risk-neutral. This level of shock (denoted ϵ1 in Figure

4.2.1) corresponds to a null risk premium associated with the contract lottery

(i.e., RDU(L) = u(E[L])). Between ϵ0 and ϵ1, there is also a level of shock

(denoted ϵ∗ in Figure 4.2.1) for which the negative effect of increasing the shock

magnitude due to utility risk-aversion is exactly equal to the positive effect due

to probability risk-seeking. For shocks greater than ϵ1, a probability risk-seeking

agent is risk-averse (i.e., RDU(L) < u(E[L])).
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Figure 4.2.1: Valuation of the contract by a probability risk-seeking RDU agent
(equation (4.3)) as a function of the shock magnitude.

MVS Under MVS, the agent evaluates a lottery according to its mean,

variance and skewness (Kraus and Litzenberger, 1976; Spiliopoulos and Hertwig,

2019) as follows:

MV S(L) = E(L) + avV (L) + asS(L) (4.4)

where av is a parameter that captures attitudes towards variance and as captures

attitudes towards skewness. In line with the LEN framework and with empirical

evidence (Kraus and Litzenberger, 1976; Spiliopoulos and Hertwig, 2019), we

assume that the agent is averse to variance (i.e., av < 0) and seeks positive

skewness (i.e., as > 0). Furthermore, in contrast to EUT, we explicitly consider

following the literature (e.g., Spiliopoulos and Hertwig, 2019; Mitton and Vorkink,

2007) that av and as are unrelated.6

6Under EUT, av and as are linked via utility function. The third order Taylor approximation
of the certainty equivalent incorporates attitudes towards variance and skewness due to the
second and third derivatives of the utility function.
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An MVS agent exhibits risk-aversion for any negatively-skewed lottery. For

positively-skewed lotteries, he is risk-seeking (risk-averse) [risk-neutral] if −av

as
<

τN(β, ϵ) (−av

as
> τN(β, ϵ)) [−av

as
= τN(β, ϵ)], where τN(β, ϵ) := S(L)

V (L)
= 1−2p

p
βθϵ.

For any p ≥ 1/2, we have τN(β, ϵ) ≤ 0 so that the agent is systematically

risk-averse since −av

as
> 0.

In the presence of aversion to variance (av < 0) and preference for positive

skewness (as > 0), the valuation function (4.4) is J-shaped with respect to ϵ

when p < 1/2 (see Figure 4.2.2). The intuition behind Figure 4.2.2 follows from

the fact that for small (large) levels of the shock, the variance of L is larger

(smaller) than its skewness. Hence, for a small level of shock (say ϵ0), the agent is

necessarily risk-averse since the aversion to variance outbalances the preference

for positive skewness. This gives rise to a positive risk premium: the valuation

of the lottery (MVS(L)) lies below its expected value. For a sufficiently high

level of shock magnitude (∀ϵ > ϵ1 in Figure 4.2.2), the agent necessarily exhibits

risk-seeking since the preference for positive skewness outbalances the aversion

to variance. At some level of the shock (denoted ϵ1 in Figure 4.2.2), the two

effects cancel out so that the agent is risk-neutral with a null risk premium

(MVS(L)=E[L]). Finally, Figure 4.2.2 also features a level of shock ϵ∗ for which

the negative effect of increasing the shock magnitude due to aversion to variance

is exactly equal to the positive effect of increasing the shock magnitude due to

the preference for positive skewness.
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Figure 4.2.2: Valuation of the contract by an averse-to-variance (av < 0) and
preference-for-positive-skewness (as > 0) MVS agent (equation (4.4)) as a

function of the shock magnitude when p < 1/2.

4.2.1.3 RIT predictions

For each theory, we can characterize the optimal contract: the Ąxed pay (α∗)

and the variable pay (β∗) proposed by the principal, as well as the optimal

level of effort e∗ provided by the agent. We provide the corresponding proofs

in Appendix 4.A. Here, we focus on characterizing the conditions of existence

of RIT for the optimal contract. DeĄnition 4 below characterizes RIT and

reversed RIT. RIT occurs when increasing the variable pay generates a trade-off

between desirable and undesirable consequences, thus forcing the principal to

set a compensation contract with an intermediate intensity of incentives (i.e.,

0 < β∗ < 1). On the positive side, increasing the variable pay incentivizes the

agent to exert more effort. On the negative side, it increases the level of risk

faced by the agent because it makes his pay more sensitive to output shocks.

It follows that under RIT an increase in the magnitude of the output shock

requires the principal to set a contract that limits the agentŠs exposure to the

shock. This is achieved by decreasing the variable pay while increasing the Ąxed

272



Chapter 4. Against the Odds! The Tradeoff Between Risk and Incentives is Alive and Well

pay to ensure the agent is willing to accept the contract (see DeĄnition 4i).

Definition 4 (RIT and Reversed RIT)

i) RIT corresponds to the case in which the optimal variable pay (Ąxed pay)

decreases (increases) in the output shock ϵ for a given p.

ii) Reversed RIT corresponds to the case in which the optimal variable pay

(Ąxed pay) increases (decreases) in the output shock ϵ for a given p.

iii) No RIT corresponds to the case in which there is no relationship between

the optimal pay and the output shock ϵ for a given p.

Under EUT, RIT always occurs for risk-averse agents (Assumption 3Š). For

risk-neutral agents, there is no RIT because Ąxed pay and variable pay do

not vary with the shock (see DeĄnition 4iii). For risk-seeking agents, RIT is

reversed because the optimal variable (Ąxed) pay increases (decreases) with the

shock size. These results are standard in the LEN model (see e.g., Milgrom and

Roberts, 1992). We nonetheless provide the details of the proofs in Appendix 4.A

(Proposition A1) for the case of a binary shock and for the case of a general utility

function and a continuous shock (see Propositions B1 to B3 and Proposition C1

in Appendices 4.B and 4.C).

Under RDU, RIT is even more pervasive than under EUT. As in EUT, it

occurs whenever agents are risk-averse (see Proposition A2 in Appendix 4.A)

given that the valuation function (4.3) is decreasing in the shock magnitude. In

contrast to EUT, it can also occur when agents are risk-neutral or risk-seeking

(see Proposition A3 in Appendix 4.A). In the case of a risk-seeking agent who

overweighs probabilities, the value of the contract in (4.3) increases with Ąxed

pay α (irrespective of risk attitudes) and is inverse J-shaped with respect to

the shock size (see Figure 4.2.1). For a small shock (ϵ0 in Figure 4.2.1), (4.3)

is increasing in the shock magnitude. In that case, the principal can offer the
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agent a lower Ąxed pay while keeping his utility equal to the outside option

(y0). As in EUT, this situation corresponds to reversed RIT. However, for an

intermediate shock (ϵ∗ < ϵ < ϵ1 in Figure 4.2.1), the risk-seeking RDU agentŠs

contract valuation is decreasing in the shock. This implies that the principal

needs to offer the agent a higher Ąxed pay to keep his level of utility constant in

response to a larger shock. Hence, for a risk-seeking RDU agent RIT emerges at

an intermediate shock level. Example 1 provides a numerical illustration of RIT

for a (moderately) risk-seeking RDU agent.

Example 1 (RIT for a risk-seeking agent under RDU). We consider

r = 0.1, (ψ, θ, y0) = (0.5, 1, 4). In the absence of shock (i.e., ϵ = 0), the optimal

variable pay is β∗ = 1 and the optimal Ąxed pay is α∗ = 3.5. In the presence of a

shock (ϵ = 1) and given a RDU agent who overweights probability 0.1 such that

w(p) = 0.15, we obtain β∗ = 0.76 and α∗ = 3.64. Thus, the optimal variable

(Ąxed) pay in the presence of a shock is smaller (larger) than in its absence, which

means RIT holds. Because the expected value of the contract (E(L∗) = 3.93) is

lower than its certainty equivalent (which is equal to the outside option y0 = 4

due to the participation constraint), the agent is risk-seeking for the optimal

contract (α∗, β∗ )=(3.64,0.76). As a result, RIT is observed for a risk-seeking

agent.

Under MVS, we show that RIT may not hold when agents are risk-averse

which stands in stark contrast with EUT predictions. In particular, when the

shock is positively skewed (p < 1/2), RIT may not hold (and may even reverse)

for risk-averse agents who value positive skewness (see Appendix 4.A, Propo-

sitions A4 and A5). This happens because the MVS-based valuation of the

contract in (4.4) increases with Ąxed pay α (irrespective of risk attitudes) and is

J-shaped in the shock magnitude (see Figure 4.2.2). For a small shock (ϵ0 in
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Figure 4.2.2) and a risk-averse agent, the valuation (4.4) is decreasing in the

shock size. In that case, the principal must offer the agent a higher Ąxed pay

to maintain utility equal to the outside option (y0). As in EUT, this situation

corresponds to RIT.

However, for an intermediate shock (see ϵ∗ < ϵ < ϵ1 in Figure 4.2.2) the value

function of the risk-averse MVS agent is increasing in the shock size. This implies

that the principal can offer the agent a lower Ąxed pay while maintaining his level

of utility equal to the outside option. Unlike EUT, this situation corresponds to

reversed RIT for a risk-averse agent. Finally, in line with EUT, a risk-seeking

MVS agent systematically exhibits reversed RIT given that his valuation in

(4.4) is increasing in the shock magnitude. Example 2 provides a numerical

illustration of a situation in which reversed RIT occurs for a risk-averse agent

under MVS.

Example 2 (Reversed RIT for a risk-averse agent under MVS). We

consider (ψ, θ, y0) = (0.5, 1, 20) and av = −0.0229 and as = 0.0037 following the

estimates provided in Spiliopoulos and Hertwig (2019). In the absence of shock

(i.e., ϵ = 0), the optimal variable pay is β∗ = 1 and the optimal Ąxed pay is

α∗ = 19.5. In the presence of a shock (ϵ, p) = (1, 0.32), we obtain β∗ = 1.02 and

α∗ = 9.70. Thus, the optimal variable (Ąxed) pay in the presence of a shock is

larger (smaller) than in the absence of shock implying reversed RIT. Because the

expected value of contract (E[L∗]=20.09) is higher than its certainty equivalent

(20), the agent is risk-averse for the optimal contract (α∗, β∗) = (9.70, 1.02). As

a result, we observe reversed RIT for a risk-averse agent.

We summarize our theoretical RIT predictions for EUT, RDU and MVS in

Table 4.2.1. For each type of agent risk attitudes, we report the three theories
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(EUT, MVS and RDU) for which RIT is present (left column), absent (middle

column), or reversed (right column).

Table 4.2.1: RIT and risk-attitudes

AgentŠs risk attitudes RIT No RIT Reversed RIT

Risk-averse RDU-EUT-MVS MVS MVS

Risk-neutral RDU RDU-EUT-MVS MVS

Risk-seeking RDU RDU RDU-EUT†-MVS

† With Assumption 3’, an agent cannot be risk-seeking under EUT. To consider risk-seeking

agents, we need to consider convex utility giving rise to reversed RIT.

4.2.2 The BareBone model

Our aim is to test RIT in a BareBone (BB) experimental design that is robust

to commonly observed deviations from standard Assumptions 1-5. In practice,

the risk-neutrality of the principal cannot be ensured so that Assumption 1 does

not necessarily hold in the lab. In addition, principals do not know the risk

preferences of agents notwithstanding Assumption 4. To alleviate these issues,

we adopt an empirical approach that directly elicits the minimum Ąxed pay

(αm) agents are ready to accept given a preset value of the variable pay (β).

This approach allows us to focus on agentsŠ decisions abstracting away from

principalsŠ contractual decisions. In our BB approach, RIT can be deĄned as

follows.

Definition 5 (RIT and Reversed RIT in the BB model). RIT (Reversed

RIT) [No RIT] corresponds to the case in which the minimum Ąxed pay accepted

by an agent (αm) increases (decreases) [does not change] in the output shock ϵ

for given values of β and p.

276



Chapter 4. Against the Odds! The Tradeoff Between Risk and Incentives is Alive and Well

Under EUT, we can derive Proposition 1 stating that a risk-averse agent

demands a higher Ąxed pay when the shock magnitude increases, giving rise to

RIT. This behavior boils down to an enhanced demand for insurance when facing

greater risk. Proposition 1ii states that RIT holds under EUT for risk-averse

agents in line with Table 4.2.1. In Appendix 4.C.1, we provide the proof of

Proposition 1 and show its connection with Propositions A1 (Appendix 4.A),

B1 (Appendix 4.B) and C1 (Appendix 4.C). In line with the diagonal entries in

Table 4.2.1, we can also show that RIT is absent (reversed) under EUT when

the agent is risk-neutral (risk-seeking) (see Appendix 4.C.1).

Proposition 2. (RIT with EUT).

i) The minimum Ąxed pay increases in utility risk-aversion.

ii) For risk-averse agents, the minimum Ąxed pay increases in ϵ and β.

Under RDU, we show that RIT holds whenever the agent is probability risk-

averse (see Proposition 2ii). By Assumption 3Š, this implies that the agent is also

overall risk-averse. Furthermore, Proposition 2iii states that RIT also holds for a

probability risk-seeking agent as long as the index of absolute risk aversion (r) is

above a certain threshold (rto(β, ϵ)) such that his level of utility risk-aversion is

sufficiently high. Interestingly, this threshold is lower than the value of the index

of absolute risk aversion (rN(β, ϵ)) for which a probability risk-seeking agent

exhibits risk-neutrality given the contract (αm, β) (see Proposition 2iv). As a

result, for any value of the index of absolute risk aversion r ∈ (rto(β, ϵ), rN (β, ϵ)),

the agent is risk-seeking and exhibits RIT. Finally, Proposition 2v implies that

the agent is more likely to exhibit RIT when the shock magnitude and the

variable pay are large. It also implies that the agent is more likely to exhibit

risk-seeking attitudes for a small shock and a low variable pay. In Appendix

4.C.1, we provide the proof of Proposition 2 and show its connection with
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Propositions A2-A3 (Appendix 4.A), B2-B3 (Appendix 4.B) and C1 (Appendix

4.C).

Proposition 3. (RIT with RDU).

i) The minimum Ąxed pay increases in utility risk-aversion and probability

risk-aversion.

ii) Under probability risk-aversion (w(p) < p), the minimum Ąxed pay increases

in ϵ.

iii) Under probability risk-seeking (w(p) > p), there exists a threshold rto(β, ϵ) >

0 such that the minimum Ąxed pay increases (decreases) in ϵ if and only if

r > rto(β, ϵ).

iv) We have rto(β, ϵ) < rN(β, ϵ), where rN(β, ϵ) is the level of absolute risk

aversion such that a probability risk-seeking agent exhibits risk-neutrality for

the contract (αm, β).

v) The two thresholds rto(β, ϵ) and rN(β, ϵ) decrease in ϵ and β.

Under MVS, we show that RIT holds whenever the shock is negatively

skewed (p ≥ 1/2) in which case the agent is risk-averse (see Proposition 3ii).

Furthermore, Proposition 3iii shows that for a positively skewed shock (p < 1/2),

RIT [reversed RIT] holds as long as the value of the ratio , τ := −av

as
, between

aversion to variance and preference for positive skewness is above [below] a

certain threshold (τto(β, ϵ)), that is as long as the agent has a sufficiently high

[low] aversion to variance relative to his preference for positive skewness. Given

that τto(β, ϵ) is higher than the ratio (τN (β, ϵ)) for which an MVS agent exhibits

risk-neutrality given the contract (αm, β) (see Proposition 3iv), a risk-averse

MVS agent exhibits reversed RIT for any −av

as
∈ (τN(β, ϵ), τto(β, ϵ)).7 Finally,

7From Definition 2 (overall risk attitudes) and equation (4.4) of MVS, the risk premium
in MVS is equal to avV (L) + asS(L). Risk neutrality corresponds to avV (L) + asS(L) = 0

or equivalently to −av

as

= S(L)
V (L) := τN (β, ϵ) and risk-aversion (risk-seeking) corresponds to

avV (L) + asS(L) > 0 (< 0) or equivalently to −av

as

< (>) τN .
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Proposition 3v implies that a MVS agent is more likely to exhibit reversed RIT

when the shock magnitude and the variable pay are large. It also implies that the

agent is more likely to exhibit risk-seeking attitudes for a high shock magnitude

and a high level of variable pay. In Appendix 4.C.1, we provide the proof for

Proposition 3 and show its connection with Propositions A4-A5 (Appendix 4.A).

Proposition 4. (RIT under MVS).

i) The minimum Ąxed pay increases in the aversion to variance av. In addition, if

p < 1/2 (p > 1/2), the minimum Ąxed pay decreases (increases) in the preference

for positive skewness as.

ii) If the shock is negatively skewed (p ≥ 1
2
) then the minimum Ąxed pay increases

in ϵ.

iii) If the shock is positively skewed (p < 1
2
), there exists a threshold τto(β, ϵ) :=

3
2

1−2p
p
βθϵ such that the minimum Ąxed pay increases (decreases) in ϵ if and only

if −av

as
> τto(β, ϵ).

iv) We have τto(β, ϵ) > τN(β, ϵ) := 1−2p
p
βθϵ, where τN(β, ϵ) is the level of −av

as

such that the agent exhibits risk-neutrality for the contract (αm, β).

v) The two thresholds τto(β, ϵ) and τN(β, ϵ) increase in ϵ and β.

Propositions 2, 3 and 4 show that our BB model can be used to study RIT.

Predictions in Table 4.2.1 thus carry on to the BB model. The next section

provides details of the experimental test of the BB model predictions.

4.3 Experimental design

In line with the BB model, we study RIT using the minimum Ąxed pay (αm)

accepted by the agent.
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4.3.1 Elicitation of minimum fixed pay

We elicit the minimum Ąxed pay (αm) an agent is willing to accept given the

incentive contract (β), as well as the magnitude and the probability of occurrence

of the shock (ϵ, p). We thus elicit αm for various combinations of (β, ϵ, p) based

on the following indifference condition:

L(αm♣β, ϵ, p) ∼ y0

where y0 is the riskless outside option and L(.) is the lottery associated with

a given incentive contract (β) and a given shock (ϵ, p) as deĄned in (4.1). We

vary the triplet (β, ϵ, p) while Ąxing the parameters of the cost of effort function

(ψ = 2.5), the marginal product of effort (θ = 100), and the outside option

(y0 = 1, 000). We consider 30 combinations of (β, ϵ, p) ∈ ¶0.3, 0.5, 0.7♢ × ¶3, 4♢ ×
¶0.1, 0.25, 0.33, 0.5, 0.75♢.8 For each combination, we also assume that the agent

implements the optimal level of effort e∗ that maximizes the value of the lottery

so that we elicit αm as follows:

L(αm♣β, ϵ, p; e∗) ∼ y0

Where e∗ = βθ
2ψ

. In the experiment, we automatically implement the optimal

level of effort because it is a trivial decision for the agent. This allows us to focus

on the choice of αm. For each combination (β, ϵ, p), we elicit αm using a multiple

price list à la Holt and Laury (2002) in which we vary the Ąxed pay of a contract

in increments of 50 between 0 and 1,000 for a total of 21 possible values. We set

an upper bound equal to the value of the outside option (1,000).9 Figure 4.3.1

8We do not consider the trivial case of ϵ = 0 for which the task boils down to picking the
highest value in a table of numbers.

9The lower bound of 0 does not appear to be restrictive in our experiment as only 1.1% of
the decisions revealed a minimum fixed pay that is less or equal to 0.
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provides an example of a decision screen for the combination (β, ϵ, p)=(0.7,3,0.5),

where Option A corresponds to the sure payoff associated with the outside

option and Option B represents all the possible payments associated with lottery

L(αi♣0.7, 3, 0.5; e∗). The value of Ąxed pay is such that αi = (i− 1) × 50, where

i is the row number between 1 and 21. For (β, ϵ, p)=(0.7,3,0.5), we have that

e∗ = βθ
2ψ

= 14. Thus, for row i = 1, Option B displays the two possible payments

associated with L(0♣0.7, 3, 0.5; 14): 280 if the shock is negative and 700 otherwise.

The likelihood of a given payment is visually represented by the frequency of cells

in which it appears. Different amounts appear in different colors to facilitate the

reading of the table. In total, participants face 30 tables, each corresponding to

a different combination of (β, ϵ, p). All amounts in tables are in euro cents. To

avoid hedging issues (Charness et al., 2016), one of the 30 tables is selected at

random for payment upon a successful completion of the experiment.

For each table, participants pick a single row corresponding to their switching

point, i.e., the point beyond which they prefer Option B over Option A. Par-

ticipants cannot select multiple switching points. In the example presented in

Figure 4.3.1, the participant picked Option A for the Ąrst 10 rows and switched

to Option B afterwards (see orange cells on the left of the table). This implies

that the minimum Ąxed pay (αm) the participant is willing to accept for this

contract is in the interval (450,500). In that example, we estimate αm to be the

midpoint of the interval, that is 475 (e.g., Abdellaoui et al., 2008a; Gonzalez

and Wu, 1999a).
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task: 0.1, 0.25, 0.33, 0.50, and 0.75. An answer within a 5% range of the actual

frequency is worth 10 cents. Our design simpliĄes previous RIT experiments

in two ways. First, we focus on the agentŠs decision to accept or reject a

contract that is exogenously set by the experimenter (see e.g., Dohmen et al.,

2021). As previously mentioned, this allows us to leave aside issues related to

unknown risk preferences and asymmetric information between the agent and

the principal. Furthermore, it allows us to discard fairness motives that can

affect the principalŠs offer and the agentŠs acceptance decision. As observed in

other principal-agent experiments, an equal split of revenues is often a modal

response (see e.g., Anderhub et al., 2002; Keser and Willinger, 2007; Gächter

and Königstein, 2009; Corgnet and Hernan-Gonzalez, 2019).

In contrast to Corgnet and Hernan-Gonzalez (2019) and Dohmen et al. (2021)

who implement a real-effort task, our design relies on a monetary measure of

effort (as in Chowdhury and Karakostas, 2020). Not using a real-effort task

to elicit effort allows us to specify the cost of effort function and focus on

the agentŠs acceptance decision. In our design, providing effort consists in

making a money transfer at a monetary cost to the agent. The optimal effort

decision turns out to be trivial to calculate and is automatically computed by our

experimental software. The use of monetary effort allows us to present agentŠs

choices in a payoff table (see Figure 4.3.1). We expect this layout contributes to

downplaying the role of reference points so that we can center our analysis of RIT

under non-EUT models on probability distortions (RDU) and attitudes towards

variance and skewness (MVS).10 In RIT setups using a real-effort task, reference

dependence appears to play a role in explaining the impact of output shocks

10Despite experiencing a potential negative shock, agents were typically not shown any
losses. In very few instances, a small loss of 30 appeared in the first row when the shock was
4, the fixed pay was 0, and the variable pay was 0.3. This occurred in less than 0.5% of the
cells presented to participants. Furthermore, these rows involved trivial decisions and were
not critical switching points between Options A and B.
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on effort (Corgnet and Hernan-Gonzalez, 2019; Dohmen et al., 2021).11 The

rationale is that people may exert higher effort in the presence of a shock than in

its absence in order to offset any potential monetary loss. In our monetary effort

design, this simple mechanism does not apply because the agent cannot hedge

against monetary losses by increasing monetary effort. Indeed, monetary effort

implies a monetary cost and thus perceived as a loss by the agent. This argument

also reĆects the fact that the increase in effort due to output shock observed in

real-effort tasks (Sloof and Van Praag, 2010; Corgnet and Hernan-Gonzalez, 2019;

Dohmen et al., 2021) is not observed when monetary effort is used (Chowdhury

and Karakostas, 2020).12

4.3.2 Preliminary survey session

Two days before completing the main experimental task (as discussed in Section

4.3.1), participants completed a series of individual tests and questionnaires.

This preliminary set of tasks includes a numeracy test (Schwartz et al., 1997;

Cokely et al., 2012), a probability weighting elicitation task (Kpegli et al.,

2023) for the relevant set of probabilities (i.e., 0.1, 0.25, 0.33, 0.5 and 0.75),

probability training mimicking the setup used in the main experimental session,

loss aversion measurement (Brink and Rankin, 2013), risk attitude measurement

(Holt and Laury, 2002) and a 7-item modiĄed version of the cognitive reĆection

test (Frederick, 2005; Toplak et al., 2014).

4.3.3 Procedure

The design has been approved by the local ethical committee at the GATE

research institute and pre-registered on the AsPredicted website (#82616). We

11See Appendix 4.D for an analysis of RIT under reference-dependence.
12Extensive data confirming this claim is also available from the authors upon request.
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recruited a total of 237 participants from a pool of more than 2,000 students

at a major experimental economic laboratory in France.13 All sessions were

conducted online using Qualtrics. The average duration was 23 (29) minutes

for the main (survey) sessions. The average earnings for the two sessions were

18.54 euros including a 4 euro Ćat fee paid for completing both sessions. The

complete set of instructions is available in Appendix 4.E.

4.4 Results

4.4.1 Risk attitude parameters and classification of agents

The aim of this section is twofold. First, we test the assumptions about risk

attitude components (utility function, probability weighting function, attitudes

towards variance and skewness) underlying our theoretical predictions. That is,

we aim to empirically check if agents exhibit a concave utility function (r > 0)

under EUT, and overweight small probabilities (w(p) > p) and underweight

intermediate and high probabilities (w(p) < p) under RDU. For MVS, we

also check whether people exhibit an aversion to variance (av < 0) and a

preference for skewness (aS > 0) (MVS). Second, using these three models we

classify participants into types by identifying the speciĄcation that best Ąts their

decisions.

4.4.1.1 Risk attitude parameters

We use agentsŠ switching points in the minimum Ąxed pay elicitation task to de-

termine their certainty equivalents for binary lotteries with various probabilities.

13This is 20% less than the pre-registered target number (300) due to lower response rate
than expected. This can be explained by the sudden increase in COVID cases at that specific
time and location. Only 4 participants dropped out between the main experimental task and
the survey sessions.
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In addition to the 30 certainty equivalents from agentsŠ switching points elicited

in the main sessions, we also use 15 additional certainty equivalents obtained in

the probability weighting elicitation task in the preliminary survey session. With

45 certainty equivalents per subject, we can estimate the probability weighting

function and utility curvature at the individual level under RDU following Kpegli

et al. (2023), as well as utility curvature for EUT and attitudes towards variance

and skewness under MVS. Appendix 4.C.2 provides details of the estimation

procedure.

Tables 4.4.1 to 4.4.3 summarize the results obtained at the individual level.

Under EUT, Table 4.4.1 indicates that 192 participants (81.01%) have concave

utility under EUT (r > 0). Under RDU, Table 4.4.2 indicates that 209 partici-

pants (88.19%) exhibit a concave utility function. In addition, the number of

participants who overweight probabilities 0.1, 0.25, 0.33, 0.5 and 0.75 are 215

(90.72%), 178 (75.11%), 142 (59.92%), 92 (38.82%) and 46 (19.41%), respec-

tively. In total, the number of participants who exhibit both concave utility and

overweighting of small probabilities 0.1, 0.25 and 0.33 are 201 (84.81%), 163

(68.78%) and 133 (56.12%). Finally, the number of participants who exhibit

both concave utility and underweighting of probabilities 0.5 and 0.75 equal 126

(53.16%) and 164 (69.20%). These average results are in line with the typical

concave utility function and inverse S-shaped probability weighting found in the

literature. Under MVS, Table 4.4.3 indicates that 193 (80.59%) and 191 partici-

pants (81.43%) exhibit an aversion to variance and a preference for skewness,

respectively. In total, 187 participants (78.90%) exhibit both characteristics.

Table 4.C.2 in Appendix 4.C.2 summarizes aggregate estimates for the whole

sample. Under EUT, the estimate of the CARA coefficient of absolute risk

aversion r is 0.0038 (p-value < 0.001, t-test). This value indicates concavity of

the utility function, which implies risk aversion under EUT. Under RDU, the
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Table 4.4.1: Utility curvature under EUT

Number Percentage
Concave 192 81.01 %
Convex 45 18.99 %
Total 237 100 %

estimate of r is 0.0023 (p-value < 0.001). This value indicates concave utility

pointing to utility risk-aversion. The estimated probability weighting function

(see Figure 4.4.1) is inverse S-shaped with overweighting for p ≤ 0.33 (probability

risk-seeking) and underweighting for p ≥ 0.5 (probability risk-aversion). Our

estimation results are consistent with the empirical literature on RDU (e.g.,

Tversky and Kahneman, 1992a; Gonzalez and Wu, 1999a; Bleichrodt and Pinto,

2000; Bruhin et al., 2010). Under MVS, the coefficients of attitudes towards

variance and skewness are av = −0.00097 (p-value < 0.001) and as = 4.8 × 10−7

(p-value < 0.001). These estimates indicate an aversion to variance and a

preference for positive skewness and once again stand in line with previous

studies (e.g., Spiliopoulos and Hertwig, 2019).

Overall, the basic assumptions underlying our three models are validated

by our experimental data on certainty equivalents. On average, participants

exhibit a positive CARA coefficient that is below 1 (for both EUT and RDU),

an inverse S-shaped probability weighting function (for RDU), and an aversion

to variance and a preference for skewness (for MVS).
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Table 4.4.2: Utility curvature and probability weighting under RDU

Number (%) Underweighting Overweighting Total
Probability p = 0.1

Concave 8 201 209
(3.38%) (84.81%) (88.19%)

Convex 14 14 28
(5.91%) (5.91%) (11.81%)

Total 22 215 237
(9.28%) (90.72%) (100%)

Probability p = 0.25
Concave 46 163 209

(19.41%) (68.78%) (88.19%)
Convex 13 15 28

(5.49%) (6.33%) (11.81%)
Total 59 178 237

(24.89%) (75.11%) (100%)
Probability p = 0.33

Concave 76 133 209
(32.07%) (56.12%) (88.19%)

Convex 19 9 28
(8.02%) (3.80%) (11.81%)

Total 95 142 237
(40.08%) (59.92%) (100%)

Probability p = 0.50
Concave 126 83 209

(53.16%) (35.02%) (88.19%)
Convex 19 9 28

(8.02%) (3.80%) (11.81%)
Total 145 92 237

(61.18%) (38.82%) (100%)
Probability p = 0.75

Concave 164 45 209
(69.20%) (18.99%) (88.19%)

Convex 27 1 28
(11.39%) (0.42%) (11.81%)

Total 191 46 237
(80.59%) (19.41%) (100%)

Table 4.4.3: Attitudes towards variance and skewness under MVS

Number (%) Aversion to skewness Preference for skewness Total
Preference for variance 40 4 44

(16.88%) (1.69%) (18.57%)
Aversion to variance 6 187 193

(2.53%) (78.90%) (81.43%)
Total 46 191 237

(19.41 %) (80.59 %) (100%)
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Figure 4.4.1: Estimated probability weights under RDU

4.4.1.2 Classification of agent types

Based on the previous estimates of risk attitude parameters, we use Akaike

Information Criterion (AIC) to classify participants as either EUT, RDU or

MVS (see Appendix 4.C.2 for details of the classiĄcation procedure). Doing

so, we Ąnd that the decisions of 66 (27.85 %), 160 (67.51%) and 11 (4.64%)

participants are best explained by EUT, RDU and MVS, respectively. In sum,

the choices of a vast majority of our participants are in line with RDU. Next,

we test the RIT predictions of the various theories, which are formally stated in

Propositions 1 to 3 and summarized in Table 4.2.1.

4.4.2 RIT and risk attitudes

We start by estimating model-free risk attitudes for all participants. To do that,

we compare the Ąxed pay in the absence of shock α0
m = 1000 − β2θ2

4ψ
with the

Ąxed pay α3
m (α4

m) elicited for shock ϵ = 3 (ϵ = 4). This procedure is used

because the minimum value of the Ąxed pay an agent is ready to accept in

the absence of shock is equal to the minimum Ąxed pay a risk-neutral agent
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would require when ϵ ̸= 0. The difference in the elicited minimum Ąxed pay

in the presence of a small shock (α3
m) and α0

m enables us to measure the risk

premium of the agent associated with the contract (α3
m, β). This risk premium

equals the difference between the expected value of the accepted contract (which

is calculated as the average of the expected values of the last accepted and

the Ąrst rejected contracts), and the outside option (y0 = 1, 000) which equals

the certainty equivalent of the contract. Thus, an agent is considered to be

risk-averse (risk-seeking) [risk-neutral] if α0
m < α3

m (α0
m > α3

m) [α0
m = α3

m] given

the contract (α3
m, β). Similarly, the difference in the elicited minimum Ąxed pay

in the presence of a large shock (α4
m) and α0

m measures the risk premium of the

agent associated with the contract (α4
m, β). Thus, an agent is considered to be

risk-averse (risk-seeking) [risk-neutral] if α0
m < α4

m (α0
m > α4

m) [α0
m = α4

m] given

the contract (α4
m, β).

Table 4.4.4 provides aggregate estimates of the underlying risk attitudes

associated with individual choices for the two values of the shock considered

in our experiment. Given (α3
m, β), the percentage of choices in which people

are risk-averse, risk-neutral and risk-seeking are 49.96%, 20.34% and 29.70%,

respectively. Increasing the shock size when considering the contract (α4
m, β)

shifts these preferences towards more risk-aversion.
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Table 4.4.4: Risk attitudes and contracts†

Number (%) ϵ = 3 ϵ = 4

Risk-averse (α0
m < αϵm) 1,776 (49.96 %) 2,052 (57.72 %)

Risk-neutral (α0
m = αϵm) 723 (20.34 %) 598 (16.82 %)

Risk-seeking (α0
m > αϵm) 1,056 (29.70 %) 905 (25.46 %)

Total 3,555 (100 %) 3,555 (100 %)

† Note that αϵm is measured as a midpoint of a range of values that is equal to 50, which is

5% of the outside option value. To account for this imprecision in our measure, we classify a

participant as risk-neutral if ♣αϵm − α0
m♣< 25, risk-averse if αϵm − α0

m ≥ 25 and risk-seeking if

αϵm − α0
m ≤ −25.

We now consider individual-level analyses. An agent exhibits RIT (reversed

RIT) [no RIT] if α3
m < α4

m (α3
m > α4

m) [α3
m = α4

m], that is the agent asks

for a higher (lower) [identical] minimum Ąxed pay for a larger shock.14 Table

4.4.5 provides an overview of our empirical Ąndings on the occurrence of RIT

depending on individual risk attitudes.

Result 1 (RIT and risk attitudes at the individual level): Most risk-averse

(50.96%) and risk-seeking (60.04%) agents make choices that are consistent with

RIT. Most risk-neutral agents (52.42%) make choices that are consistent with

the absence of RIT.

According to the theoretical predictions in Table 4.2.1, the data should be

concentrated on the diagonal of Table 4.4.5 under EUT. However, we observe that

only 41.29% of the choices are on the diagonal, thus rejecting EUT predictions.

The main deviation from EUT resides in the fact that risk-seeking agents also
14RIT could also be defined using the differences α3

m − α0
m and α4

m − α0
m. Instead, we use

the term “risk attitudes” to refer to these differences as they coincide with the existence of a
risk premium for contracts (α3

m, β) and (α4
m, β).
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make choices that are consistent with RIT (ŚRisk-seeking and RITŠ cell) Ű a

pattern predicted by RDU, but not by MVS.

We then split the cells in Table 4.4.5 according to the estimated risk prefer-

ences under EUT, MVS and RDU (see Tables 4.C.4- 4.C.8 in Appendix 4.C.3).

In particular, we focus on the decomposition of the most populated cell in Table

6 (ŚRisk-seeking and RITŠ). Not surprisingly, most choices (63.88%) in this cell

are characterized by a convex utility function under EUT (see Table 4.C.4).

Since agents characterized by a convex utility function should exhibit reversed

RIT, our Ąndings are incompatible with EUT (see Proposition 1).

Under MVS, most choices in the ŚRisk-seeking and RITŠ cell show an aversion

to variance and a preference for positive skewness (61.67%, see Table 4.C.8).

However, agents should not exhibit RIT in this case under MVS (see Proposition

3).

Under RDU, most choices in the ŚRisk-seeking and RITŠ cell are characterized

by a concave utility coupled with overweighting of probabilities (61.20%, see

Table 4.C.6). This pattern is consistent with RDU, which predicts that RIT

is observed for risk-seeking agents when they exhibit utility risk-aversion and

probability risk-seeking (see Propositions 2iii and 4iv, and Example 1). The

alternative pattern of risk-seeking attitudes in which agents exhibit utility risk-

seeking and probability risk-aversion (probability risk-seeking) characterizes only

11.36% (8.04%) of the choices in the ŚRisk-seeking and RITŠ cell.

A direct implication of Propositions 2v and 3v is that RDU and MVS have

opposite predictions regarding the relationship between the shock magnitude, the

variable pay, RIT and risk-attitudes. To test these predictions, we estimate an

ordered logit model (see Table 4.4.6) to assess the effect of the shock magnitude

(ϵ) and the variable pay (β) on risk attitudes (Ąrst three columns) and the
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occurrence of RIT (last three columns).

Result 2 (Shock size, variable pay, individual risk attitudes and RIT)

An increase in the variable pay (β) or the shock size (ϵ) increases the likelihood

of risk-aversion while decreasing the likelihood of risk-neutrality and risk-seeking

attitudes. In addition, an increase in the variable pay increases the probability

of RIT while decreasing the probabilities of No-RIT and Reversed-RIT.

Result 2 corroborates the RDU predictions (Proposition 2v) and contradicts

MVS (Proposition 3v). This result also contradicts EUT which posits that both

RIT and risk attitudes should not be impacted by changes in the variable pay

or the shock.

We now turn to the aggregate analysis of risk attitudes and RIT. Figure

4.4.2 plots the average risk premium associated with a given combination of

parameters (p, β, ϵ). Across the 30 combinations, participants are risk-averse

(i.e., exhibit positive risk premium) in 80% of the cases (24 out of 30 combina-

tions). Yet, participants are risk-seeking (i.e., exhibit a negative risk premium)

for (p, β, ϵ) = (0.1, 0.3, 3), (0.25, 0.3, 3) and (0.33, 0.3, 3), and risk-neutral for

(p, β, ϵ) = (0.1, 0.5, 3), (0.1, 0.3, 4) and (0.25, 0.3, 4). In Figure 4.4.3 we show

that the difference in minimum Ąxed pay across shocks (α4
m − α3

m) is system-

atically positive pointing to RIT at the aggregate level for all 30 combinations

of parameters regardless of risk attitudes. These aggregate results once again

provide support for RDU while contradicting MVS and EUT. We summarize

these aggregate Ąndings below.
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Result 3 (RIT at the aggregate level): RIT holds at the aggregate level for

all combinations of parameters.

Figure 4.4.2: Risk premium: α3
m − α0

m and α4
m − α0

m

Figure 4.4.3: RIT and the variation in Ąxed pay α4
m − α3

m
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Table 4.4.5: RIT and risk attitudes

Risk attitudes

RIT
RIT : α3

m < α4
m No RIT : α3

m = α4
m Reversed RIT : α3

m > α4
m Total

905 474 397 1776

Risk-averse† : α0
m < α3

m

50.96 % 26.69 % 22.35 % 100 %

231 379 113 723

Risk-neutral† : α0
m = α3

m

31.95 % 52.42 % 15.63 % 100 %

634 238 184 1056

Risk-seeking† : α0
m > α3

m

60.04 % 22.54 % 17.42 % 100 %

1770 1091 694 3555

Total

49.79 % 30.69 % 19.52 % 100 %

† To account for the estimation inaccuracy due to the use of midpoint of the range of possible

values of α3
m (see Figure 4.3.1), we classify subject as risk-neutral if ♣α3

m−α0
m♣< 25, risk-averse

if α3
m − α0

m ≥ 25 and risk-seeking if α3
m − α0

m ≤ −25.

Table 4.4.6: Ordered logit (average marginal effects)(a)

Risk attitudes RIT

Aversion Neutral Seeking RIT No-RIT Reversed RIT

β 0.882∗∗∗ -0.163∗∗∗ -0.719∗∗∗ 0.376∗∗∗ -0.137∗∗∗ -0.239∗∗∗

ϵ 0.0675∗∗∗ -0.0126∗∗∗ -0.0549∗∗∗ (b) (b) (b)

p -0.020 0.004 0.016 -0.185∗∗∗ 0.068∗∗∗ 0.118∗∗∗

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 for the significance of coefficient tests.

(a) Control variables include: numeracy test score, cognitive reflection test score, gender, and

age.

(b) We cannot estimate the margina effect ϵ on RIT because we already exploit the data on

both small and large shocks to estimate RIT.
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4.5 Conclusion

This paper studies the tradeoff between risk and incentives (RIT) under alterna-

tives to the standard EUT model: the mean-variance-skewness (MVS) model

and the the rank-dependent utility (RDU) model. At a theoretical level, we

show that RIT is a robust phenomenon under RDU (and notwithstanding EUT

and MVS) because it can be observed even when agents are risk-seeking. By

contrast, we show that RIT is less robust under MVS than under EUT since it

may not hold even for risk-averse agents, thus offering a possible explanation for

the limited empirical support for the tradeoff.

To test the predictions of the three theories, we develop a novel experimental

design that eliminates the potential confounds appearing in the existing literature.

To our surprise, we found extensive evidence for RIT. Most strikingly, RIT

emerges even in situations in which agents are risk-seeking, which is a distinct

prediction of RDU.

Our Ąndings are not only reassuring for the principal-agent theory, but also

suggest RIT predictions can be applied to a broader range of situations than

originally anticipated. These situations include contractual settings in which

agents are likely to exhibit risk-seeking attitudes such as executive compensation

(Garen, 1994; Edmans and Gabaix, 2011; Edmans et al., 2012, 2017; Ma et al.,

2019). It follows that risk-seeking agents might demand a Ąxed monetary

compensation for any additional risk. This novel Ąnding can also have interesting

implications in Ąelds like Ąnance and entrepreneurship. For example, Ąnancial

advisors might need to craft portfolios with a substantial share of safe assets

for clients that are otherwise categorized as risk-tolerant. Furthermore, our

Ąndings suggest that, unlike ŞKnightianŤ theory of entrepreneurship (Knight,

1921; Kihlstrom and Laffont, 1979; Newman, 2007), risk-seeking entrepreneurs

might want to share part of the risk associated with new ventures.

296



Chapter 4. Against the Odds! The Tradeoff Between Risk and Incentives is Alive and Well

4.A Proofs for Section 4.2.1.3

EUT

The main implications of Assumptions A0, A1, A2, A3Š, A3Ť, A4, A5 are cap-

tured in Proposition A1.

Proposition A1 (Risk-incentives tradeoff with EUT): Under A0, A1, A2,

A3Š, A4 and A5 EUT, optimal variable pay β∗(ϵ, r, ψ, θ) decreases with ϵ whereas

optimal Ąxed pay α∗(ϵ, r, ψ, θ) increases with ϵ.

Proof of Proposition A1

Given the linear contract (α, β), the objective function of an expected utility

agent with a cost function C(e) = ψe2 is given by

EU(L) = pu(y+) + (1 − p)u(y−)

with u(y) =
1 − exp(−ry)

r
, y+ = α + βθ(e+ 1−p

p
ϵ) − ψe2 and y− = α + βθ

(
e−

ϵ
)

− ψe2.

The Ąrst-order condition of the agentŠs maximization problem is given by

(βθ − 2ψe)[pu′(y+) + (1 − p)u′(y−)] = 0

Since pu′(y+) + (1 − p)u′(y−) ̸= 0, it turns out that the best response effort

function of the agent is given by

e =
βθ

2ψ
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Hence, the best response effort function is an increasing function of the variable

pay and does not vary with respect to the shock ϵ, the relative risk-aversion

coefficient r and the Ąxed pay α. The proof with p = 1/2 is provided in Appendix

A2 of Corgnet and Hernan-Gonzalez (2019). The optimization problem of the

principal is to maximize the expected value of θz − y by accounting for agentŠs

incentive compatibility constraint (IC) and participation constraint (PC)





max
α,β

θe− (α+ βθe)

s.t. :

e = βθ
2ψ

α+ βθe− ψe2 − 1 − p

2p
rβ2θ2ϵ2 ≃ y0

The participation constraint is an application of the Pratt (1964) approximation

of the risk premium to the agentŠs maximization problem as in Milgrom and

Roberts (1992). The optimal linear contact (α∗, β∗) of the principal is given by

β∗(ϵ, r, ψ, θ) ≃ 1
1 + 2ψrϵ2 1−p

p

(4.5)

α∗(ϵ, r, ψ, θ) ≃ y0 +
1
2

(1 − p

p
rϵ2 − 1

2ψ

)(
θβ∗(ϵ, r, ψ, θ)

)2
(4.6)

Furthermore, the expression of β∗(ϵ, r, ψ, θ), yields

∂β∗(ϵ, r, ψ, θ)
∂ϵ

< 0

∂β∗(ϵ, r, ψ, θ)
∂r

< 0
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For k = 1−p
p
ϵ, Assumption 3Ť yields r[α+ βθk] < 1. Using e > ϵ and e = βθ

2ψ
, we

have
1 − p

p
rϵ2 − 1

2ψ
< 0 (4.7)

Inequalities (4.7) and (4.6) jointly imply

sign
(∂α∗(ϵ, r, ψ, θ)

∂t

)
= −sign

(∂β∗(ϵ, r, ψ, θ)
∂t

)
for t = ϵ, r, ψ, θ

In particular
∂α∗(ϵ, r, ψ, θ)

∂ϵ
> 0

∂α∗(ϵ, r, ψ, θ)
∂r

> 0

Remark: expressions (4.5) and (4.6) also hold for risk-neutral agent (r = 0)

and risk-seeking agent (r < 0) as long as the second-order condition obtained

from the derivative of the Ąrst-order condition A1.2 is negative. Hence, for a

risk-neutral agent the Ąxed pay and performance do not vary with ϵ. For a

risk-seeking agent, we have reversed RIT. Also, note that the agentŠs optimal

level of effort e∗ is given by

e =
θ

2ψ
β∗(ϵ, r, ψ, θ)

It turns out that the partial derivatives
∂e∗(ϵ, r, ψ, θ)

∂ϵ
and

∂e∗(ϵ, r, ψ, θ)
∂r

are

negatives as
∂α∗(ϵ, r, ψ, θ)

∂ϵ
and

∂α∗(ϵ, r, ψ, θ)
∂r

are negative. QED.

RDU

Before showing the proofs, let us Ąrst state and provide some explanations of

Lemma 1 and Propositions A2 and A3. Under RDU, we derive our Ąrst lemma
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below:

Lemma 1 Under RDU, maximizing the objective function of the agent amounts

to maximizing his certainty equivalent CE:

CE =α+ βθe− ψe2 +
(w(p)

p
− 1

)
− β2θ2ϵ2

2

(
1 +

w(p)
p

1 − 2p
p

)
×

Aa
(
α+ βθe− ψe2

)
+ o(ϵ2)

(4.8)

with Aa(z) = −u′′(z)
u′′(z)

being the absolute risk-aversion index evaluated at the

outcome z and o(ϵ2) denoting the approximation error.

Lemma 1 provides an approximation of the certainty equivalent. This approx-

imation allows us to generate a closed-form solution for the optimal contract

(α∗, β∗) by assuming CARA utility function (Milgrom and Roberts, 1992), that

is Aa(z) = r for all z. Similar to EUT, we capture RIT in RDU in Proposition

A2ii below.

Proposition A2 (RIT with RDU).15 Under A0, A1, A2, A3Š, A3Ť, A4, A5

and assuming RDU agent, for any probability p ∈ (0, 1):

i) Optimal variable pay β∗(ϵ, r, w(p), ψ, θ) decreases with r and probability risk-

aversion whereas the Ąxed pay α∗(ϵ, r, w(p), ψ, θ) increases with r and probability

risk-aversion.

ii) If the agent exhibits probability risk-aversion, the optimal variable pay

β∗(ϵ, r, w(p), ψ, θ) decreases with ϵ whereas the optimal Ąxed pay α∗(ϵ, r, w(p), ψ, θ)

increases with ϵ.

iii) If the agent exhibits probability risk-seeking, there is rto(β∗, ϵ) such that for

r < rto(β∗, ϵ) the optimal variable payβ∗(ϵ, r, w(p), ψ, θ) increases with ϵ and the

15In Appendix 4.D, we extend proposition A2 to the case of the prospect theory agent
exhibiting loss aversion and reference-dependence.
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optimal Ąxed pay α∗(ϵ, r, w(p), ψ, θ) decreases with ϵ.

Proposition A2iii points to the absence of RIT under probability risk-seeking.

Furthermore, Proposition A3 provides results on RIT under general risk attitudes

which are a combination of utility curvature and probability risk attitudes.

Proposition A3 (Risk attitudes and absence of tradeoff with RDU):

Assume that the agent exhibits probability risk-seeking for a given probability

p. Let rN(β∗, ϵ) be the absolute risk-aversion index that allows probability

risk-seeking agent to exhibit risk-neutrality for the lottery

L =

(
α∗ + β∗θ

(
e∗ +

1 − p

p
ϵ
)

− ψe∗2, α∗ + β∗θ
(
e∗ − ϵ

)
− ψe∗2; p, 1 − p

)

associated with the optimal linear contract (α∗, β∗). Then, rN (β∗, ϵ) > rto(β∗, ϵ).

Figure 4.A.1 illustrates Proposition A3. It shows that, in line with RIT a

principal facing a risk-averse agent who exhibits probability risk-seeking proposes

an optimal variable pay β∗(ϵ, r, w(p), ψ, θ) that decreases in ϵ. In addition, a

principal facing an agent who exhibits probability risk-seeking with absolute

risk-aversion index r ∈ (rto(β∗, ϵ), rN(β∗, ϵ)) also proposes an optimal variable

pay β∗(ϵ, r, w(p), ψ, θ) that decreases in ϵ. Note that such agent exhibits risk-

seeking behavior since r < rN(β∗, ϵ). Finally, the principal only proposes

an optimal variable pay β∗(ϵ, r, w(p), ψ, θ) that increases in ϵ when facing an

agent that exhibits probability risk-seeking with absolute risk-aversion index

r ∈ (0, rto(β∗, ϵ)). Unlike EUT, RIT under RDU depends on the probability

of the binary shock and becomes more pervasive because it now applies to

risk-seeking agent (on top of risk-averse agent, as in EUT).
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•
rN(β∗, ϵ)Risk seeking Risk aversion

Risk aversion + RITRisk seeking + Reversed-RIT Risk seeking + RIT

•

rto(β∗, ϵ)Reversed-RIT RIT

Figure 4.A.1: Risk attitudes and RIT with RDU (agent exhibits w(p) > p )

Proof of Lemma 1

In the Lemma, we derive an equivalent of the Pratt (1964) approximation

of risk premium for RDU and use it to provide incentive compatibility and

participation constraints as in Milgrom and Roberts (1992). To do so, let us Ąrst

consider a binary random variable x̃ = (x + 1−p
p
σ, x − σ; p, 1 − p) with σ > 0,

p ∈ (0, 1) so that E(x̃) = x and V (x̃) = 1−p
p
σ2. Under RDU theory, the certainty

equivalent (ce) of x̃ satisĄes

u(ce) = w(p)
[
u
(
x+

1 − p

p
σ
)

− u(x− σ)
]

+ u(x− σ) (4.9)

Applying second-order Taylor approximation to the right-hand side (RHS) of

expression (4.9) around the expected value x leads to

RHS = u(x) + σ
(w(p)

p
− 1

)
u′(x) +

σ2

2

(
1 +

w(p)
p

1 − 2p
p

)
u′′(x) + o(σ2) (4.10)

with o(σ2) denoting the approximation error such that lim
σ−→0

o(σ2)
σ2

= 0. We

furthermore impose the following linear form for the certainty equivalent with

an unknown slope a

ce = x+ aσ2 + o(σ2) (4.11)
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Plugging (4.11) into (4.9) and applying Ąrst-order Taylor approximation on the

left-hand side (LHS) of the expression (4.9) around the expected value x yields

LHS = u(x) + aσ2u′(x) + o(σ2) (4.12)

Since LHS=RHS, according to (4.9), we can identify the unknown slope a

a =
1
σ

(w(p)
p

− 1
)

+
1
2

(
1 +

w(p)
p

1 − 2p
p

)u′′(x)
u′(x)

(4.13)

Let Aa(z) = −u′′(z)
u′′(z)

be the absolute risk-aversion index evaluated at x. Plugging

(4.13) in (4.11) gives the Pratt (1964) risk premium π under RDU for the binary

random variable x̃ = (x+ 1−p
p
σ, x− σ; p, 1 − p).

π := x− ce = −
(w(p)

p
− 1

)
σ +

σ2

2

(
1 +

w(p)
p

1 − 2p
p

)
Aa(x) + o(σ2) (4.14)

So that the certainty equivalent is

ce = x+
(w(p)

p
− 1

)
σ − σ2

2

(
1 +

w(p)
p

1 − 2p
p

)
Aa(x) + o(σ2) (4.15)

Note that RDU becomes EUT if w(p) = p. Since V (x̃) = 1−p
p
σ2, (4.14) collapses

to the usual Pratt (1964) formula π = −1
2
u′′(x)
u′(x)

V (x̃) + o(σ2) whenever w(p) = p.

Relation (4.15) allows us to deĄne the incentive compatibility and participation

constraints. In the context of RDU (see Section 4.2), we set x = α + βθe− ψe2

and σ = βθϵ so that the certainty equivalent equation (4.15) becomes:

ce =α+ βθe− ψe2 +
(w(p)

p
− 1

)
βθϵ− β2θ2ϵ2

2

(
1 +

w(p)
p

1 − 2p
p

)
×

Aa
(
α+ βθe− ψe2

)
+ o(ϵ2)

(4.16)
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QED.

Proof of Proposition A2

Given the linear contract (α, β), the objective function of a RDU agent with

cost function C(e) = ψe2 is given by

RDU(L) = w(p)u(y+) + (1 − w(p))u(y−)

with u(x) =
1 − exp(−rx)

r
, y+ = α+ βθ(e+ 1−p

p
ϵ) − ψe2 and y− = α+ βθ(e−

ϵ) − ψe2

The Ąrst-order condition of the agentŠs maximization problem is given by

(βθ − 2ψe)[w(p)u′(y+) + (1 − w(p))u′(y−)] = 0

Since w(p)u′(y+) + (1 − w(p))u′(y−) ̸= 0, it turns out that the optimal effort

function of the agent is given by

e =
βθ

2ψ

Hence, the optimal effort function is increasing in the variable pay and does not

vary with respect to chock ϵ, the relative risk-aversion coefficient r, the Ąxed

pay α and probability risk attitude w(p).

Point i)

The optimization problem of the principal is to maximize the expected value

of θz − y by accounting for the agentŠs incentive compatibility constraint (IC)
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and participation constraint (PC):





max
α,β

π = θe− (α+ βθe)

s.t. :

e = βθ
2ψ

α+ βθe− ψe2 +
(
w(p)
p

− 1
)
βθϵ− β2θ2ϵ2

2

(
1 + w(p)

p
1−2p
p

)
r ≃ y0

Like in Proposition A1 above, the participation constraint is an application of

the Pratt (1964) approximation of the risk premium. The optimal linear contact

(α∗, β∗) of the principal is given by

β∗(ϵ, r, w(p), ψ, θ) ≃
1 + 2ψϵ

θ

(
w(p)
p

− 1
)

1 + 2ψrϵ2
(
1 + w(p)

p
1−2p
p

) (4.17)

α∗(ϵ, r, w(p), ψ, θ) ≃ y0 +
1
2

[
rϵ2
(
1 +

w(p)
p

1 − 2p
p

)
− 1

2ψ

](
θβ∗

)2 − ϵθβ∗ (4.18)

Expression (4.17) implies that

Sign
(∂β∗

∂r

)
= −Sign

(
1 +

w(p)
p

1 − 2p
p

)
× Sign

(
1 +

2ψϵ
θ

(w(p)
p

− 1
))

(4.19)

Note that 1 + w(p)
p

1−2p
p

= w(p)
(

1−p
p

)2
+ 1 − w(p). Since w(p) < 1, it turns out

that

1 +
w(p)
p

1 − 2p
p

> 0 (4.20)

This means that the certainty equivalent ce (4.16) decreases in r (or equivalently,

the risk premium increases in r).16

16See also Theorem 6.1 in Eeckhoudt and Laeven (2015).
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Since β∗(ϵ, r, w(p), ψ, θ) is positive, the relation 4.20 and the expression of

β∗(ϵ, r, w(p), ψ, θ) jointly imply that

1 +
2ψϵ
θ

(w(p)
p

− 1
)
> 0 (4.21)

Plugging (4.20) and (4.21) into the relation (4.19) yields

∂β∗(ϵ, r, w(p), ψ, θ)
∂r

< 0

For k =
(
1 + w(p)

p
1−2p
p

)
ϵ > 0, we have under Assumption 3Ť that r[α+ βθk] < 1.

Then, for e > ϵ and e = βθ
2ψ

, we have that

rϵ2
(
1 +

w(p)
p

1 − 2p
p

)
− 1

2ψ
< 0 (4.22)

Relations (4.22) and (4.18) imply for t = ϵ, r, w(p), ψ, θ that

sign
(∂α∗(ϵ, r, w(p), ψ, θ)

∂t

)
= −sign

(∂β∗(ϵ, r, w(p), ψ, θ)
∂t

)
(4.23)

In particular, we have that

∂α∗(ϵ, r, ψ, θ)
∂r

> 0

From (4.17), we have that

Sign
(∂β∗(ϵ, r, δ, ψ, θ)

∂δ

)
= Sign

(
1 − rθϵ

1 − 2p
p

+ 2ψrϵ2 1 − p

p

)
(4.24)

with δ = w(p). Let us now consider (4.24) under two cases: p ≥ 1
2

and p < 1
2
.

For p ≥ 1
2
, we have 1−2p

p
≤ 0 so that

∂β∗(ϵ, r, δ, ψ, θ)
∂δ

is positive.
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For p < 1
2
, we have 1−2p

p
> 0. Take k = ϵ

β∗(ϵ,r,δ,ψ,θ)
1−2p
p

> 0. It follows from

Assumption 3Ť that 1 − rθβ∗(ϵ, r, w(p), ψ, θ)k = 1 − rθϵ1−2p
p

> 0. Thus, for

p < 1
2

we have
∂β∗(ϵ, r, δ, ψ, θ)

∂δ
also positive. This means that for all p

∂β∗(ϵ, r, δ, ψ, θ)
∂δ

> 0 (4.25)

From (4.23) and (4.25), it also follows that

∂α∗(ϵ, r, δ, ψ, θ)
∂δ

< 0 (4.26)

Note that probability risk-aversion corresponds to a lower level of δ. Hence,

equations (4.25) and (4.26) mean that the optimal variable pay β∗(ϵ, r, δ, ψ, θ) de-

creases as the probability risk-aversion increases while the Ąxed pay α∗(ϵ, r, δ, ψ, θ)

increases as the probability risk-aversion increases.

Point ii)

It follows from the expression (4.17) that

Sign
(∂β∗(ϵ, r, δ, ψ, θ)

∂ϵ

)
= Sign

(
A(ϵ, r, δ, ψ, θ)

)
(4.27)

with

A(ϵ, r, δ, ψ, θ) =θ−1
(w(p)

p
− 1

)[
1 − 2ψrϵ2

(
1 +

w(p)
p

1 − 2p
p

)]

− 2rϵ
(
1 +

w(p)
p

1 − 2p
p

) (4.28)

From 4.20 and 4.22 we have respectively that 1 + w(p)
p

1−2p
p

> 0 and 1 − 2ψrϵ2
(
1 +

w(p)
p

1−2p
p

)
> 0 . If the agent exhibits probability risk-aversion or probability
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risk-neutral for probability p (i.e., w(p) ≤ p), (4.27) and (4.28) jointly imply

∂β∗(ϵ, r, δ, ψ, θ)
∂ϵ

< 0

while (4.23) implies
∂α∗(ϵ, r, δ, ψ, θ)

∂ϵ
> 0

Recall that e∗(ϵ, r, δ, ψ, θ) = θ
2ψ
β∗(ϵ, r, δ, ψ, θ). Hence,

∂e∗(ϵ, r, δ, ψ, θ)
∂ϵ

< 0 as
∂β∗(ϵ, r, δ, ψ, θ)

∂ϵ
< 0

Point iii) Assume that the agent exhibits probability risk-seeking for probability

p (i.e., w(p) > p). Hence, (4.27) and (4.28) jointly imply the following equivalence

r < rto(β∗, ϵ) ⇐⇒ ∂β∗(ϵ, r, ψ, θ)
∂ϵ

> 0

with

rto(β∗, ϵ) ∼= 1
2ϵ

w(p)
p

− 1
(
θ + ϵψ

(
w(p)
p

− 1
))(

1 + w(p)
p

1−2p
p

) (4.29)

From (4.23), it also follows that

r < rto(β∗, ϵ) ⇐⇒ ∂α∗(ϵ, r, δ, ψ, θ)
∂ϵ

< 0

Since e∗(ϵ, r, δ, ψ, θ) = θ
2ψ
β∗(ϵ, r, δ, ψ, θ), we have

r < rto(β∗, ϵ) ⇐⇒ ∂e∗(ϵ, r, ψ, θ)
∂ϵ

> 0
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Also, we have

∂e∗(ϵ, r, δ, ψ, θ)
∂r

< 0 as
∂β∗(ϵ, r, δ, ψ, θ)

∂r
< 0

∂e∗(ϵ, r, δ, ψ, θ)
∂δ

> 0 as
∂β∗(ϵ, r, δ, ψ, θ)

∂δ
> 0

QED.

Proof of Proposition A3

From Lemma 1, the absolute risk-aversion index rN(β∗, ϵ) that makes an

agent with probability risk-seeking behavior to exhibit risk-neutrality (i.e., null

risk premium) for the lottery

L∗ =

(
α∗ + θβ∗

(
e∗ +

1 − p

p
ϵ
)

− ψe∗2, α∗ + θβ∗

(
e∗ − ϵ

)
− ψe∗2; p, 1 − p

)

associated with the optimal linear contract (α∗, β∗) and optimal effort e∗ is given

by

rN(β∗, ϵ) ∼= 2
ϵθβ∗

δ
p

− 1

1 + δ
p

1−2p
p

with δ = w(p).

From Proposition A2, the threshold rto(β∗, ϵ) of the absolute risk-aversion

index of an agent with probability risk-seeking behavior that leads the principal

to propose an optimal variable pay β∗(ϵ, r, δ, ψ, θ) that decreases in ϵ is

rto(β∗, ϵ) ∼= 1
2ϵ

w(p)
p

− 1
(
θ + ϵψ

(
w(p)
p

− 1
))(

1 + w(p)
p

1−2p
p

)
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Computing the difference between the two thresholds leads to

Sign
(
rN(β∗, ϵ) − rto(β∗, ϵ)

)
= Sign

[
N
(
β∗(ϵ, r, δ, ψ, θ)

)]

with

N
(
β∗(ϵ, r, δ, ψ, θ)

)
= 4 − β∗(ϵ, r, δ, ψ, θ) +

4ϵψ
θ

(
w(p)
p

− 1

)

Recall that
∂β∗(ϵ, r, δ, ψ, θ)

∂r
< 0 so that we have

∂N
(
β∗(ϵ, r, δ, ψ, θ)

)

∂r
< 0.

Furthermore, we have lim
r−→0

N(β∗(ϵ, r, δ, ψ, θ)) = 3 +
2ϵψ
θ

(w(p)
p

− 1
)
. Hence, for

all r > 0 we have N
(
β∗(ϵ, r, δ, ψ, θ)

)
> 0 so that rN(β∗, ϵ) > rto(β∗, ϵ).

QED.

MVS

Before providing the proofs, we Ąrst state and provide some explanations for

Propositions A4 and A5.

Proposition A4 (Risk-incentives tradeoff with MVS). Under A0, A1, A2

and A4 and assuming the agent is MVS as speciĄed in (4.4):

i) Optimal variable pay β∗(ϵ, av, as, ψ, θ) decreases with av

ii) Optimal variable pay β∗(ϵ, av, as, ψ, θ) increases (resp. decreases) with as for

p < 1
2

(resp. p > 1
2
).

iii) If p ≥ 1
2
, the optimal variable pay β∗(ϵ, av, as, ψ, θ) decreases with ϵ.

iv) If p < 1
2
, there is g(ϵ, p, av, as, ψ, θ) such that if g(ϵ, p, av, as, ψ, θ) < 9

4
, then

β∗(ϵ, av, as, ψ, θ) increases with ϵ.
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Proposition A4iv shows that the absence of the tradeoff can be expected for

p<1/2, i.e., when the lottery

L∗ =

(
α∗ + θβ∗

(
e∗ +

1 − p

p
ϵ
)

− ψe∗2, α∗ + θβ∗

(
e∗ − ϵ

)
− ψe∗2; p, 1 − p

)

associated with the optimal contract (α∗, β∗) is positively skewed. Since risk

attitudes are driven by both aversions to variance and preference for positive

skewness, it remains unclear if the absence of the tradeoff arises for a risk-seeking

or a risk-averse agent. Proposition B5 provides such information.

Proposition A5 (Risk attitudes and absence of tradeoff with MVS):

Consider p<1/2. Hence, we have the following results:

i) At the optimal contract, agentŠs risk-aversion (risk-seeking) corresponds to

g(ϵ, p, av, as, ψ, θ) > 1 ( g(ϵ, p, av, as, ψ, θ) < 1)

ii) If the agent is a risk-seeker, then the optimal variable pay β∗(ϵ, p, av, as, ψ, θ)

increases with ϵ

iii) For g(ϵ, p, av, as, ψ, θ) ∈
(
1,

9
4

)
, the agent exhibits risk-aversion and the

optimal variable pay β∗ increases with ϵ.

According to Proposition A5, if the agent exhibits risk-seeking behavior at

the optimal contract proposed by the principal, then the optimal variable pay

β∗(ϵ, p, av, as, ψ, θ) increases with ϵ. However, if the agent is risk-averse at the

optimal contract proposed by the principal [i.e., g(ϵ, p, av, as, ψ, θ) > 1], the

optimal variable pay β∗(ϵ, p, av, as, ψ, θ) can either increase or decrease with ϵ

depending on whether g(ϵ, p, av, as, ψ, θ) is greater or smaller than 9
4
.

Remark [RDU vs. MVS]: Proposition A5 echoes Proposition A3 for RDU

once we consider, in line with literature (e.g., Gonzalez and Wu, 1999a; Tversky

and Wakker, 1995; Gonzalez-Jimenez, 2019; Kpegli et al., 2023), that overweight-
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ing occurs for p < 1
2
. Then, both MVS and RDU predict the possibility of the

absence of tradeoff only for p < 1
2
. However, the MVS and RDU provide different

rationale for the absence of tredeoff. The RDU rules out the possibility of the

absence of the tradeoff for a risk-averse agent. In contrast, MVS points to the

absence of tradeoff for certain risk-averse agent and all risk-seeking agents.

Proof of Proposition A4: Given the linear contract (α, β), the objective

function of an MVS agent with a cost function C(e) = ψe2 is given by

MV S(L) = α+ βθe− ψe2 + av
1 − p

p
β2θ2ϵ2 + as

1 − p

p

1 − 2p
p

β3θ3ϵ3

The Ąrst-order condition of the agentŠs maximization problem leads to the

optimal effort function e(β) that increases in the variable pay:

e =
βθ

2ψ

The principalŠs optimization problem is to maximizes the expected value of

θz − y by accounting for the agentŠs incentive compatibility constraint (IC) and

participation constraint (PC).





max
α,β

θe− (α+ βθe)

s.t. :

e = βθ
2ψ

α+ βθe− ψe2 + av
1−p
p
β2θ2ϵ2 + as

1−p
p

1−2p
p
β3θ3ϵ3 = y0

which is equivalent to

max
β

θ2

[
β

2ψ
+ av

1 − p

p
β2ϵ2 + as

1 − 2p
p

1 − p

p
β3θϵ3 − β2

4ψ

]
− y0
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The Ąrst-order condition is given by

1
2ψ

+ 2avβ
1 − p

p
ϵ2 + 3as

1 − 2p
p

1 − p

p
β2θϵ3 − β

2ψ
= 0 (4.30)

The second-order condition is given by

2av
1 − p

p
ϵ2 + 6as

1 − 2p
p

1 − p

p
βθϵ3 − 1

2ψ
< 0 (4.31)

Equation (4.30) implicitly deĄnes the optimal variable pay β∗(ϵ, av, as, ψ, θ). In

particular, it follows that the optimal variable pay in the absence of shock (ϵ = 0)

is given by β∗(0, av, as, ψ, θ) = 1. Moreover, for as −→ 0 we have

lim
as−→0

β∗(ϵ, av, as, ψ, θ) =
1

1 − 4av
1−p
p
ψϵ2

< 1 = β∗(0, av, as, ψ, θ)

Also, for p = 1
2
, we have β∗(ϵ, av, 0, ψ, θ) =

1
1 − 4av

1−p
p

. For ϵ > 0 and p ̸= 1
2
,

the two possible solutions of (4.30) are given by

β∗
1(ϵ, av, as, ψ, θ) =

1
2ψ

− 2av
1−p
p
ϵ2 −

√(
2av

1−p
p
ϵ2 − 1

2ψ

)2 − 6as
1−2p
p

1−p
p

θϵ3

ψ

6as
1−2p
p

1−p
p
θϵ3

β∗
2(ϵ, av, as, ψ, θ) =

1
2ψ

− 2av
1−p
p
ϵ2 +

√(
2av

1−p
p
ϵ2 − 1

2ψ

)2 − 6as
1−2p
p

1−p
p

θϵ3

ψ

6as
1−2p
p

1−p
p
θϵ3

When ϵ > 0, the right solution needs to satisfy the continuity condition

lim
ϵ−→0

β∗
i (ϵ, av, as, ψ, θ) = 1, i = 1, 2. Using this continuity condition, and applying
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lŠHôpitalŠs rule, it follows that the solution is given by β∗
1(ϵ, av, as, ψ, θ): 17

β∗(ϵ, av, as, ψ, θ) =

1
2ψ − 2av

1−p
p ϵ2 −

√(
2av

1−p
p ϵ2 − 1

2ψ

)2
− 6as

1−2p
p

1−p
p

θϵ3

ψ

6as
1−2p
p

1−p
p θϵ3

(4.32)

Point i and ii)

Implicit function theorem on (4.30) leads to

∂β∗(ϵ, av, as, ψ, θ)
∂av

> 0

Since e∗(ϵ, av, as, ψ, θ) = θ
2ψ
β∗(ϵ, av, as, ψ, θ), it also follows

∂e∗

∂av
> 0. Note that

the aversion to variance corresponds to av < 0. Hence,
∂β∗

∂av
> 0 and

∂e∗

∂av
> 0

mean that the optimal variable pay and optimal effort both decrease as the

aversion to variance increases.

Also, from (4.30) we have that

∂β∗

∂as
> 0 if p <

1
2

(positive skewness)

∂β∗

∂as
< 0 if p >

1
2

(negative skewness)

The optimal variable pay increases as the preference for positive skewness

increases if p < 1
2

(i.e., positive skewness) and decreases as the preference for

positive skewness increases if p > 1
2

(i.e., negative skewness). Also, because

e∗(ϵ, av, as, ψ, θ) =
θ

2ψ
β∗(ϵ, av, as, ψ, θ), it also follows

∂e∗

∂as
> 0 if p <

1
2

(positive skewness)

∂e∗

∂as
< 0 if p >

1
2

(negative skewness)

17Another way to find the right solution is to plug the two possible solutions into the
second-order condition (4.31) to see that it is solely satisfied by (4.32).
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Point iii)

From (4.30), the implicit function theorem implies that

Sign

[
∂β∗

∂ϵ

]
= Sign

[
4av + 9as

1 − 2p
p

θϵβ∗(ϵ, av, as, ψ, θ)

]
(4.33)

with β∗(ϵ, av, as, ψ, θ) given in (4.32) Since av < 0, as > 0 and β∗(ϵ, av, as, ψ, θ) >

0 it turns out that for p ≥ 1
2

we have
∂β∗

∂ϵ
< 0.

Since e∗(ϵ, av, as, ψ, θ) =
θ

2ψ
β∗(ϵ, av, as, ψ, θ), it also follows that

∂e∗

∂ϵ
< 0 for

p ≥ 1
2
.

Point iv)

For p < 1
2
, either ∂β∗

∂ϵ
< 0 and ∂β∗

∂ϵ
> 0 are possible according to (4.33) and

(4.32). Replacing (4.32) in (4.33), it turns out that

∂β∗

∂ϵ
> 0 ⇐⇒ g(ϵ, av, as, ψ, θ) <

9
4

(4.34)

with

g(ϵ, av, as, ψ, θ) := −
6av

1−p
p ϵ2

1
2ψ − 2av

1−p
p ϵ2 −

√(
2av

1−p
p ϵ2 − 1

2ψ

)2
− 6as

1−2p
p

1−p
p

θϵ3

ψ

(4.35)

Since e∗(ϵ, av, as, ψ, θ) =
θ

2ψ
β∗(ϵ, av, as, ψ, θ), it also follows that when p < 1

2
we

have ∂e∗

∂ϵ
> 0 if and only if g(ϵ, av, as, ψ, θ) < 9

4
.

For example, Spiliopoulos and Hertwig (2019) estimate av = −0.0229

and as = 0.0037. Using these estimated values and setting (ϵ, p, ψ, θ) =

(0.7, 0.1, 0.5, 1), the condition (4.34) holds. This yields β∗(ϵ, av, as, ψ, θ) = 1.12
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which is greater than the variable pay of 1 corresponding to the absence of noise.

QED.

Proof of Proposition A5:

Point i)

At the optimal contract, the agent is risk-averse if av+as
1 − 2p
p

θϵβ∗(ϵ, av, as, ψ, ϕ) <

0 and risk-seeking if av + as
1−2p
p
θϵβ∗(ϵ, av, as, ψ, θ) > 0. Using the expression

(4.32) of β∗(ϵ, av, as, ψ, θ) it follows that the agent is risk-averse at the optimal

contract if g(ϵ, av, as, ψ, θ) > 1 and risk-seeking if g(ϵ, av, as, ψ, θ) < 1.

Point ii)

First, note that for any p < 1
2

and variable pay β > 0 we have

av +
9
4
as

1 − 2p
p

βθϵ > av + as
1 − 2p
p

βθϵ (4.36)

Second, for any p < 1
2

and a given triplet (α, β, e), the MVS decision maker

exhibits risk-seeking for the positively skewed lottery L =

(
α+ θβ

(
e+ 1−p

p
ϵ
)

−

ψe2, α+ θβ
(
e− ϵ

)
− ψe2; p, 1 − p

)
if

av + as
1 − 2p
p

βθϵ > 0 (4.37)

Hence, if the agent exhibits risk-seeking for the optimal triplet (α∗, β∗, e∗), then

we should have

av + as
1 − 2p
p

β∗θϵ > 0 (4.38)

316



Chapter 4. Against the Odds! The Tradeoff Between Risk and Incentives is Alive and Well

Given the expression (4.32) of the optimal variable pay β∗(ϵ, av, as, ψ, θ), the

condition (4.38) holds iff

g(ϵ, av, as, ψ, θ) < 1 (4.39)

with g(ϵ, av, as, ψ, θ) given in (4.35).

It follows that when the condition (4.38) holds, the agent exhibits risk-seeking

for the positively skewed lottery L∗ =

(
α∗+θβ∗

(
e∗+ 1−p

p
ϵ
)

−ψe∗2, α∗+θβ∗

(
e∗−

ϵ
)

−ψe∗2; p, 1 − p

)
. Being risk-seeking means that (4.39) holds, and hence from

(4.36) we have that the optimal variable pay satisĄes av + as
1 − 2p
p

β∗θϵ > 0.

Hence, we have
∂β∗

∂ϵ
> 0 and in particular β∗(ϵ, av, as, ψ, θ) > 1 for ϵ > 0.

Point iii)

For any p < 1
2

and an agent who exhibits risk-aversion at the optimal triplet

(α∗, β∗, e∗) with an optimal variable pay β∗ that increases with ϵ, we have

av + as
1 − 2p
p

β∗θϵ < 0 < av +
9
4
as

1 − 2p
p

β∗θϵ (4.40)

Given the expression (4.32) for the optimal variable pay β∗(ϵ, av, as, ψ, θ), the

condition that ensures (4.40) is given by

g(ϵ, av, as, ψ, θ) ∈
(

1,
9
4

)
(4.41)

with g(ϵ, av, as, ψ, θ) given in (4.35).

It follows that when the condition (4.41) holds, the agent exhibits risk-

aversion at the optimal triplet (α∗, β∗, e∗) such that variable payβ∗ increases

with ϵ.
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QED.

4.B Extension to general utility function

In section 4.2, we employ the LEN model with CARA utility function. This

approach provides a closed-form solution to the principal-agent problem through

the Arrow-Pratt approximation of the risk premium. We investigate the robust-

ness of the results under general utility speciĄcation for EUT and RDU. Denote

by Aa(z) = −u′′(x)
u′(x)

the absolute risk-aversion index evaluated at x.

We provide the followings results and their proofs.

Proposition B1 (Consistency of results under EUT): the optimal

variable pay is a decreasing function of ϵ.

Proposition B1 shows that the tradeoff between risk and incentives in EUT

framework does not depend on the utility function speciĄcations and is not

driven by approximation errors in the Arrow-Pratt risk premium.

Example 3 (An illustration of Proposition B1 using expo-power utility

function):

To illustrate this point, we consider the expo-power utility function (Saha,

1993) u(z) = 1−exp(−rzγ)
r

of which CARA (CRRA) is a special case when r = 1

(r −→ 0). The alternative level of utility is given by y0 = 1−exp(−ryγ
0 )

r
with y0

being the alternative (outside) outcome. We set (r, γ) = (0.029, 0.731) as found

by Holt and Laury (2002) and (ψ, θ, y0) = (0.5, 1, 4). In the absence of shock

(ϵ = 0), the optimal variable pay is β∗ = 1 and the optimal Ąxed pay is α∗ = 3.5.

In the presence of shock (ϵ, p) = (1, 0.5), the optimal variable pay is β∗ = 0.89

and the optimal Ąxed pay is α∗ = 3.65. Hence, the optimal variable pay in

absence of shock is indeed greater than the variable pay in the presence of the
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shock.18

Proposition B2 (Consistency of results under RDU):

i) If the agentŠs absolute risk-aversion index does not sufficiently decrease with

the outcome, then the optimal variable pay decreases with the probability risk-

aversion.

ii) If the agent exhibits probability risk-aversion or probability risk-neutrality,

then the optimal variable pay decreases with ϵ.

iii) Assume the agent exhibits probability risk-seeking and that for any couple

(α, β) the ratio between the average slope of the probability weighting function

on the interval (0, p) and the average slope of the probability weighting on the

interval (p, 1) are greater than the ratio between the slope of the utility function

at the lowest possible value of the reward (net of cost) and the slope of the

utility function at the highest possible value (net of cost). Then, the optimal

variable pay is greater in the presence of shock than in its absence.

iv) There exist Atoa (β) such that if the agent exhibits probability risk-seeking

and Aa
(
α + β2θ2

4ψ

)
< Atoa (β, ϵ) for any couple (α, β), then the optimal variable

pay is greater in the presence of the shock than in its absence.

Proposition B3 (Risk attitudes and absence of tradeoff with RDU):

Assume that the agent exhibits probability risk-seeking for a given probability

p. Denote by ANa
(
α∗ + β∗2θ2

4ψ

)
the absolute risk-aversion index that allows a

probability risk-seeking agent to exhibit risk-neutrality for the lottery L∗ =(
α∗ + θβ∗

(
e∗ + 1−p

p
ϵ
)

−ψe∗2, α∗ + θβ∗

(
e∗ − ϵ

)
−ψe∗2; p, 1 − p

)
associated with

the optimal linear contract (α∗, β∗). Then, ANa
(
α∗ + β∗2θ2

4ψ

)
> Atoa (β∗, ϵ).

18Note that the problem does not have an explicit analytic solution. Our solution is
numerical.
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Propositions B2 and B3 are generalizations of Propositions A2 and A3. They

show that the results on the comparisons of the variable pay in the absence of

shock and in its presence shown under CARA utility function speciĄcation also

hold under a general setting where the utility function is just required to be

increasing and concave.

Example 4 (An illustration of Proposition B3: presence of tradeoff with

risk-seeking agent using expo-power utility function): Consider again

the expo-power utility function u(z) = 1−exp(−rzγ)
r

with (r, γ) = (0.029, 0.731) as

found by Holt and Laury (2002). We set (ψ, θ, y0) = (0.5, 1, 4), with y0 being

the alternative (outside) outcome. In the absence of shock (ϵ = 0), the optimal

variable pay is β∗ = 1 and the optimal Ąxed pay is α∗ = 3.5. In the presence of

shock, we set (ϵ, p, w(p)) = (1, 0.1, 0.15). The optimal variable pay is β∗ = 0.95

and the optimal Ąxed pay is α∗ = 3.37. The optimal variable pay in the absence

of shock is greater than the variable pay in the presence of shock. We have the

expected value E[L∗] = 3.83 and the certainty equivalent of L∗ is 4. Hence, the

agent exhibits risk-seeking at the optimal contract (α∗, β∗) = (3.37, 0.95) where

the tradeoff between risk and incentives is observed.

Example 5 (An illustration of Proposition 12: absence of tradeoff

with risk-seeking agent using expo-power utility function): Consider the

parameter calibration from example 4 with the only change being w(0.1) = 0.2.

In the absence of a shock (ϵ = 0), the optimal variable pay is β∗ = 1 and the

optimal Ąxed pay is α∗ = 3.5. In the presence of a shock, the optimal variable

pay is β∗ = 1.17 and the optimal Ąxed pay is α∗ = 2.73. The optimal variable

pay in the absence of a shock is less than the variable pay in presence of a shock.

We have that the expected value is E[L∗] = 3.41 and the certainty equivalent of
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L∗ is 4. Hence, the agent exhibits risk-seeking behavior at the optimal contract

(α∗, β∗) = (2.73, 1.17) where the tradeoff between risk and incentives is not

observed.

Proof of Proposition B1:

Given the linear contract (α, β), the objective function of a EUT agent with

cost function C(e) = ψe2 is given by

EU(L) = pu(y+) + (1 − p)u(y−)

with u(x) =
1 − exp(−rx)

r
, y+ = α+ βθ(e+ 1−p

p
ϵ) − ψe2 and y− = α+ βθ(e−

ϵ) − ψe2

The Ąrst-order condition of the agentŠs maximization problem is given by

(βθ − 2ψe)[pu′(y+) + (1 − p)u′(y−)] = 0

Since pu′(y+) + (1 − p)u′(y−) ̸= 0, it turns out that the agentŠs optimal effort

function is given by

e =
βθ

2ψ

Hence, the optimal effort function is an increasing function of the variable pay

and does not vary with respect to ϵ, the utility function or the Ąxed pay α.

The optimization problem of the principal is to maximize the expected value

of θz − y by accounting for the agentŠs incentive compatibility constraint (IC)

and participation constraint (PC):
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max
α,β

θe− (α+ βθe)

s.t. :

e = βθ
2ψ

pu

(
α+ βθ

(
e+ 1−p

p
ϵ
)

− ψe2

)
+ (1 − p)u

(
α+ βθ(e− ϵ) − ψe2

)
= u(y0)

which is equivalent to





max
α,β

θ2

2ψ

(
β − β2) − α

s.t. :

pu

(
α+ β2θ2

4ψ
+ 1−p

p
βθϵ

)
+ (1 − p)u

(
α+ β2θ2

4ψ
− ϵ

)
= y0

The corresponding Lagrangian function is given by

L(α, β, µ) =
θ2

2ψ

(
β−β2)−α+µ

[
pu

(
α+

β2θ2

4ψ
+

1 − p

p
βθϵ

)
+(1−p)u

(
α+

β2θ2

4ψ
−ϵ
)
−y0

]

Denote by

y′
+ = θ

(1 − p

p
ϵ+

βθ

2ψ

)
> 0

y′
− = θ

(
− ϵ+

βθ

2ψ

)
> 0

Then, the Ąrst-order conditions are given by

∂L
∂β

=
θ2

2ψ

(
1 − 2β) + µ

[
pu′(y+)y′

+ + (1 − p)u′(y−)y′
− − y0

]
= 0 (4.42)

∂L
∂α

= −1 + µ

[
pu′(y+) + (1 − p)u′(y−)

]
= 0 (4.43)
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∂L
∂µ

= pu(y+) + (1 − p)u(y−) − y0 = 0 (4.44)

with y− = α+ β2θ2

4ψ
− βθϵ and y+ = α+ β2θ2

4ψ
+ 1−p

p
βθϵ.

Note that from (4.42) and (4.43), it turns out that the optimal variable pay

β satisĄes

β = 1 + (1 − p)
2ψϵ
θ

u′(y+) − u′(y−)
pu′(y+) + (1 − p)u′(y−)

≤ 1 (4.45)

This shows that the optimal variable pay in the absence of shock (ϵ = 0) is

1. Since u′(y+) < u′(y−), it also follows that the optimal variable pay in the

absence of shock is greater than the optimal variable pay in the presence of

shock (ϵ > 0). Let us now derive an even stronger result according to which the

optimal variable pay is a decreasing function of ϵ.

Totally differentiating the Ąrst-order conditions (4.42)-(4.44) with respect to

β, α, µ and ϵ leads to

Hess(α, β, µ) ×




dβ

dϵ
dα

dϵ
dµ

dϵ




= −




∂2β

∂β∂ϵ
∂2β

∂α∂ϵ
∂2β

∂µ∂ϵ




(4.46)

with Hess(α, β, µ) being the Hessian matrix deĄned as follows

Hess(α, β, µ) =




∂2L
∂β2

∂2L
∂α∂β

∂2L
∂µ∂β

∂2L
∂α∂β

∂2L
∂α2

∂2L
∂α∂µ

∂2L
∂µ∂β

∂2L
∂α∂µ

∂2L
∂µ2
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Assuming that there exists at least a local maximum so that the determinant of

the Hessian matrix is positive, it follows from (4.46) that

Sign

(
dβ

dϵ

)
= Sign(E) (4.47)

with

E =
∂2L
∂α∂µ

(
∂2L
∂β∂ϵ

∂2L
∂α∂µ

− ∂2L
∂α∂ϵ

∂2L
∂β∂µ

)
− ∂2L
∂µ∂ϵ

(
∂2L
∂α∂β

∂2L
∂α∂µ

− ∂2L
∂α2

∂2L
∂β∂µ

)

µ =
1

pu′(y+) + (1 − p)u′(y−)
(4.48)

∂2L
∂β∂ϵ

= µθ(1 − p)
[
u′(y+) − u′(y−) + β

(
u′′(y+)y′

+ − u′′(y−)y′
−

)]

∂2L
∂µ∂α

= pu′(y+) + (1 − p)u′(y−) > 0

∂2L
∂α∂ϵ

= µβθ(1 − p)
(
u′′(y+) − u′′(y−)

)
> 0

∂2L
∂µ∂β

= py′
+u

′(y+) + (1 − p)y′
−u

′(y−) > 0

∂2L
∂µ∂ϵ

= βθ(1 − p)
(
u′(y+) − u′(y−)

)
< 0

∂2L
∂α∂β

= µ

[
py′

+u
′′(y+) + (1 − p)y′

−u
′′(y−)

]
≤ 0

∂2L
∂α2

= µ

[
pu′′(y+) + (1 − p)u′′(y−)

]
≤ 0

Using all the previous derivatives, we have

∂2L
∂β∂ϵ

∂2L
∂α∂µ

− ∂2L
∂α∂ϵ

∂2L
∂β∂µ

=θ(1 − p)
(
u′(y+) − u′(y−)

)
− µ

θ2βϵ

p
(1 − p)×

u′(y+)u′(y−)
(
(1 − p)Aa(y+) + pAa(y−)

)
≤ 0

(4.49)
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∂2L
∂α∂β

∂2L
∂α∂µ

− ∂2L
∂α2

∂2L
∂β∂µ

= µθϵ(1 − p)u′(y+)u′(y−)
(
Aa(y−) − Aa(y+)

)
≥ 0

E = θ(1−p)
[(
u′(y+)−u′(y−)

) 1
µ

−µβθϵu′(y+)u′(y−)
(
u′(y+)Aa(y−)+

1 − p

p
u′(y−)Aa(y+)

)]

Since the utility function is concave, we have u′(y+) < u′(y−), Aa(y−) > 0 and

Aa(y+) > 0 so that E < 0. It turns out that

dβ

dϵ
< 0

To illustrate this, consider again the expo-power utility function (Saha, 1993).

The alternative level of utility is given by y0 =
1 − exp(−ryγ0 )

r
with y0 the

alternative (outside) outcome. Hence, the Ąrst-order conditions are given by

∂L

∂β
=
θ2

2ψ
(1−2β)+µγθ


p


1 − p

p
ϵ+

βθ

2ψ


exp


−r

(
α+βθ

1 − p

p
ϵ+
β2θ2

4ψ

)γ


(
α+βθ

1 − p

p
ϵ+
β2θ2

4ψ

)γ−1

+(1 − p)


− ϵ+

βθ

2ψ


exp


− r

(
α− βθϵ+

β2θ2

4ψ

)γ


(
α− βθϵ+

β2θ2

4ψ

)γ−1


 = 0

∂L

∂α
= −1 + µγ


pexp


− r

(
α+ βθ

1 − p

p
ϵ+

β2θ2

4ψ

)γ


(
α+ βθ

1 − p

p
ϵ+

β2θ2

4ψ

)γ−1
+

(1 − p)exp


− r

(
α− βθϵ+

β2θ2

4ψ

)γ


(
α− βθϵ+

β2θ2

4ψ

)γ−1


 = 0

∂L

∂µ
= p

1 − exp


− r

(
α+ βθ 1−p

p ϵ+ β2θ2

4ψ

)γ



r
+(1−p)

1 − exp


− r

(
α− βθϵ+ β2θ2

4ψ

)γ



r
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−1 − exp(−ryγ0 )

r
= 0

We set (r, γ) = (0.029, 0.731) as in by Holt and Laury (2002) and (ψ, θ, y0) =

(0.5, 1, 4). In the absence of a shock (ϵ = 0), the optimal variable pay is β∗ = 1

and the optimal Ąxed pay is α∗ = 3.5. In the presence of a shock, we set

(ϵ, p) = (1, 0.5). The optimal variable pay is β∗ = 0.92 and the optimal Ąxed pay

is α∗ = 3.61. The optimal variable pay in the absence of shock is thus greater

than the variable pay in the presence of a shock.

QED.

Proof of Proposition B2

Given the linear contract (α, β), the objective function of an expected utility

agent with cost function C(e) = ψe2 is given by

RDU(L) = w(p)u(y+) + (1 − w(p))u(y−)

with u(x) =
1 − exp(−rx)

r
, y+ = α+ βθ(e+ 1−p

p
ϵ) − ψe2 and y− = α+ βθ(e−

ϵ) − ψe2

The Ąrst-order condition of the agentŠs maximization problem is given by

(βθ − 2ψe)[w(p)u′(y+) + (1 − w(p))u′(y−)] = 0

Since w(p)u′(y+) + (1 −w(p))u′(y−) ̸= 0, it turns out that the optimal effort

function is given by

e =
βθ

2ψ
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Hence, the optimal effort function is an increasing function of the variable

pay and does not vary with respect to ϵ, the utility curvature, the Ąxed pay α

or the probability risk attitude captured by w(p).

Point i)

The optimization problem of the principal is to maximize the expected value

of θz − y by accounting for the agentŠs incentive compatibility constraint (IC)

and participation constraint (PC):





max
α,β

θe− (α+ βθe)

s.t. :

e = βθ
2ψ

w(p)u

(
α+ βθ

(
e+ 1−p

p
ϵ
)

− ψe2

)
+ (1 − w(p))u

(
α+ βθ(e− ϵ) − ψe2

)
= y0

which is equivalent to





max
α,β

θ2

2ψ

(
β − β2) − α

s.t. :

w(p)u

(
α+ β2θ2

4ψ
+ 1−p

p
βθϵ

)
+ (1 − w(p))u

(
α+ β2θ2

4ψ
− ϵ

)
= y0

The corresponding Lagrangian function is given by
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L(α, β, µ) =
θ2

2ψ

(
β−β2)−α+µ

[
w(p)u

(
α+

β2θ2

4ψ
+

1 − p

p
βθϵ

)
+(1−w(p))u

(
α+

β2θ2

4ψ
−ϵ
)
−y0

]

Denote by

y′
+ = θ

(1 − p

p
ϵ+

βθ

2ψ

)
> 0

y′
− = θ

(
− ϵ+

βθ

2ψ

)
> 0

Then, the Ąrst-order conditions are given by

∂L
∂β

=
θ2

2ψ

(
1 − 2β) + µ

[
w(p)u′(y+)y′

+ + (1 − w(p))u′(y−)y′
−

]
= 0 (4.50)

∂L
∂α

= −1 + µ

[
w(p)u′(y+) + (1 − w(p))u′(y−)

]
= 0 (4.51)

∂L
∂µ

= w(p)u(y+) + (1 − w(p))u(y−) − y0 = 0 (4.52)

with y− = α+ β2θ2

4ψ
− βθϵ and y+ = α+ β2θ2

4ψ
+ 1−p

p
βθϵ.

Denote by δ := w(p). Then, totally differentiating the Ąrst-order conditions

(4.50)-(4.52) with respect to β, α, µ and δ leads to

Hess(α, β, µ) ×




dβ

dδ
dα

dδ
dµ

dδ




= −




∂2β

∂β∂δ
∂2β

∂α∂δ
∂2β

∂µ∂δ




(4.53)
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with Hess(α, β, µ) being the Hessian matrix deĄned as follows

Hess(α, β, µ) =




∂2L
∂β2

∂2L
∂α∂β

∂2L
∂µ∂β

∂2L
∂α∂β

∂2L
∂α2

∂2L
∂α∂µ

∂2L
∂µ∂β

∂2L
∂α∂µ

∂2L
∂µ2




Assuming that there exists at least a local maximum so that the determinant

of the Hessian matrix is positive, it follows from (4.53) that

Sing

(
dβ

dδ

)
= Sign(∆) (4.54)

with

∆ =
∂2L
∂α∂µ

(
∂2L
∂β∂δ

∂2L
∂α∂µ

− ∂2L
∂α∂δ

∂2L
∂β∂µ

)
− ∂2L
∂µ∂δ

(
∂2L
∂α∂β

∂2L
∂α∂µ

− ∂2L
∂α2

∂2L
∂β∂µ

)

µ =
1

pu′(y+) + (1 − p)u′(y−)
(4.55)

∂2L
∂β∂δ

= µ
[
u′(y+)y′

+ − u′(y−)y′
−)
]

∂2L
∂µ∂α

= w(p)u′(y+) + (1 − w(p))u′(y−) > 0

∂2L
∂α∂δ

= µ
(
u′(y+) − u′(y−)

)
> 0

∂2L
∂µ∂β

= w(p)y′
+u

′(y+) + (1 − w(p))y′
−u

′(y−) > 0
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∂2L
∂µ∂δ

= u(y+) − u(y−) > 0

∂2L
∂α∂β

= µ

[
w(p)y′

+u
′′(y+) + (1 − w(p))y′

−u
′′(y−)

]
≤ 0

∂2L
∂α2

= µ

[
w(p)u′′(y+) + (1 − w(p))u′′(y−)

]
≤ 0

Using all the previous derivatives, we have

∂2L
∂β∂δ

∂2L
∂α∂µ

− ∂2L
∂α∂δ

∂2L
∂β∂µ

= µ
θϵ

p
u′(y+)u′(y−) > 0

∂2L
∂α∂β

∂2L
∂α∂µ

−∂2L
∂α2

∂2L
∂β∂µ

= µ
θϵ

p
u′(y+)u′(y−)w(p)(1−w(p))

(
Aa(y−)−Aa(y+)

)
≥ 0

Hence

∆ =µ
θϵ

p
u′(y+)u′(y−)

[
w(p)u′(y+) + (1 − w(p))u′(y−)

− w(p)(1 − w(p))
(
u(y+) − u(y−)

)(
Aa(y−) − Aa(y+)

)] (4.56)

Clearly ∆ > 0 (i.e.,
dβ

dδ
> 0 ) under CARA utility assumption, indicat-

ing that the approximation errors in Arrow-Pratt risk premium does not alter

the results established in previous propositions. For utility function such that

Aa(y−) − Aa(y+) −→ 0, we have ∆ > 0 (i.e.,
dβ

dδ
> 0).

Point ii)
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From (4.50) and (4.51), it turns out that the optimal variable pay β∗ satisĄes

the following equation

β = 1 +
2ψϵ
θ

w(p)
1 − p

p
u′(y+) − (1 − w(p))u′(y−)

w(p)u′(y+) + (1 − w(p))u′(y−)
≤ 1 (4.57)

Thus, the optimal variable pay in the absence of shock (ϵ = 0) is 1. Since

u′(y+) < u′(y−), it also follows under the assumption of probability risk-

aversion/neutrality (i.e., w(p) ≤ p) that the optimal variable pay in the absence

of shock is greater than the optimal variable pay in the presence of shock (ϵ > 0).

Now, we show a stronger result according to which the optimal variable

pay is indeed a decreasing function of ϵ under the assumption of probability

risk-aversion/neutrality.

Totally differentiating the Ąrst-order conditions (4.50)-(4.52) with respect to

β, α, µ and ϵ leads to

Hess(α, β, µ) ×




dβ

dϵ
dα

dϵ
dµ

dϵ




= −




∂2β

∂β∂ϵ
∂2β

∂α∂ϵ
∂2β

∂µ∂ϵ




(4.58)

with Hess(α, β, µ) being the Hessian matrix deĄned as follows

Hess(α, β, µ) =




∂2L
∂β2

∂2L
∂α∂β

∂2L
∂µ∂β

∂2L
∂α∂β

∂2L
∂α2

∂2L
∂α∂µ

∂2L
∂µ∂β

∂2L
∂α∂µ

∂2L
∂µ2
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Assuming there exists at least a local maximum so that the determinant of

the Hessian matrix is positive, it follows from (4.58) that

Sing

(
dβ

dϵ

)
= Sign(R) (4.59)

with

E =
∂2L
∂α∂µ

(
∂2L
∂β∂ϵ

∂2L
∂α∂µ

− ∂2L
∂α∂ϵ

∂2L
∂β∂µ

)
− ∂2L
∂µ∂ϵ

(
∂2L
∂α∂β

∂2L
∂α∂µ

− ∂2L
∂α2

∂2L
∂β∂µ

)

µ =
1

pu′(y+) + (1 − p)u′(y−)
(4.60)

∂2L
∂β∂ϵ

= µθ
[
w(p)

1 − p

p
u′(y+)−(1−w(p))u′(y−)+β

(
w(p)

1 − p

p
u′′(y+)y′

+−(1−w(p))u′′(y−)y′
−

)]

∂2L
∂µ∂α

= w(p)u′(y+) + (1 − w(p))u′(y−) > 0

∂2L
∂α∂ϵ

= µβθ
(
w(p)

1 − p

p
u′′(y+) − (1 − w(p))u′′(y−)

)

∂2L
∂µ∂β

= w(p)y′
+u

′(y+) + (1 − w(p))y′
−u

′(y−) > 0

∂2L
∂µ∂ϵ

= βθ
(
w(p)

1 − p

p
u′(y+) − (1 − w(p))u′(y−)

)
< 0

∂2L
∂α∂β

= µ

[
w(p)y′

+u
′′(y+) + (1 − w(p))y′

−u
′′(y−)

]
≤ 0
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∂2L
∂α2

= µ

[
w(p)u′′(y+) + (1 − w(p))u′′(y−)

]
≤ 0

Using all the previous derivatives, we have

∂2L
∂β∂ϵ

∂2L
∂α∂µ

− ∂2L
∂α∂ϵ

∂2L
∂β∂µ

=θ
(
w(p)

1 − p

p
u′(y+) − (1 − w(p))u′(y−)

)

− µ
θ2βϵ

p
w(p)(1 − w(p))u′(y+)u′(y−)×

(1 − p

p
Aa(y+) + Aa(y−)

)
≤ 0

(4.61)

∂2L
∂α∂β

∂2L
∂α∂µ

−∂2L
∂α2

∂2L
∂β∂µ

= µ
θϵ

p
w(p)(1−w(p))u′(y+)u′(y−)

(
Aa(y−)−Aa(y+)

)
≥ 0

Hence

R = R1 −R2

with

R1 = θ
(
w(p)u′(y+) + (1 − w(p))u′(y−)

)(
w(p)

1 − p

p
u′(y+) − (1 − w(p))u′(y−)

)

R2 =
βθ2ϵu′(y+)u′(y−)

w(p)
p

(1 − w(p))

(
w(p)
p

u′(y+)Aa(y−) +
1 − w(p)

p
u′(y−)Aa(y+)

)

w(p)u′(y+) + (1 − w(p))u′(y−)

Since the utility function is increasing and concave, we have 0 < u′(y+) <

u′(y−), Aa(y−) > 0 and Aa(y+) > 0 so that R2 > 0.
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Also note that the agentŠs probability risk-aversion/risk-neutrality (i.e.,

w(p) ≤ p) implies R1 < 0. It follows that in the presence of probability

risk-aversion/risk-neutrality we have R < 0 and hence

dβ

dϵ
< 0

Point iii)

Recall that the equation (4.57) satisĄes by the optimal variable pay

β = 1 +
2ψϵ
θ

w(p)
1 − p

p
u′(y+) − (1 − w(p))u′(y−)

w(p)u′(y+) + (1 − w(p))u′(y−)
≤ 1 (4.62)

It follows directly that

β > 1 ⇐⇒
w(p)
p

1−w(p)
1−p

>
u′(y−)
u′(y+)

> 1

Point iv)

From (4.62), it follows directly

β > 1 ⇐⇒ w(p)
1 − p

p
u′
(
α+βθ

1 − p

p
ϵ+
β2θ2

4ψ

)
−(1−w(p))u′

(
α+

β2θ2

4ψ
−βθϵ

)

Denote by

H(ϵ) = w(p)
1 − p

p
u′
(
α+βθ

1 − p

p
ϵ+

β2θ2

4ψ

)
−(1−w(p))u′

(
α+

β2θ2

4ψ
−βθϵ

)
+o(ϵ)

Then, the Ąrst-order Taylor approximation of H(ϵ) around ϵ = 0 gives
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H(ϵ)

u′
(
α+

β2θ2

4ψ

) =
w(p)
p

− 1 −
(

1 +
w(p)
p

1 − 2p
p

)
βθϵAa

(
α+

β2θ2

4ψ

)
(4.63)

with o(ϵ) the approximation error which is such that lim
ϵ−→0

=
o(ϵ)
ϵ

= 0. It

turns out that H(ϵ) > 0 if the following condition holds

Aa
(
α+

β2θ2

4ψ

)
<

1
βθϵ

w(p)
p

− 1

1 +
w(p)
p

1 − 2p
p

:= Atoa (β, ϵ) (4.64)

QED.

Proof of Proposition B3:

From Lemma 1, the absolute risk-aversion index ANa
(
α∗ +

β∗2θ2

4ψ

)
that makes

an agent with probability risk-seeking behavior to exhibit risk-neutrality (i.e.,

risk premium equals 0) for the lottery L =

(
α∗ + β∗θ

(
e∗ + 1−p

p
ϵ
)

− ψe∗2, α∗ +

β∗θ
(
e∗ − ϵ

)
−ψe∗2; p, 1 − p

)
associated with the optimal linear contract (α∗, β∗)

and optimal effort e∗ is given by

ANa
(
α∗ +

β∗2θ2

4ψ

)
:=

2
θϵβ∗

δ

p
− 1

1 +
δ

p

1 − 2p
p

(4.65)

with δ = w(p)

From Proposition B2, the threshold Atoa (β∗, ϵ) of the absolute risk-aversion

index of an agent with probability risk-seeking behavior that leads the principal

to propose an optimal variable pay that is greater in presence of the shock than

in its absence is given by
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Atoa (β∗, ϵ) ∼= 1
βθϵ

w(p)
p

− 1

1 +
w(p)
p

1 − 2p
p

(4.66)

Since ANa
(
α∗ +

β∗2θ2

4ψ

)
≃ 2Atoa

(
β∗, ϵ

)
, then ANa

(
α∗ +

β∗2θ2

4ψ

)
> 2Atoa

(
β∗, ϵ

)

As an example, consider the expo-power utility function (Saha, 1993). The

alternative level of utility is given by y0 =
1 − exp(−ryγ0 )

r
with y0 being the

alternative (outside) outcome. Hence, the Ąrst-order conditions are given by

∂L

∂β
=
θ2

2ψ
(1−2β)+µγθ


w(p)


1 − p

p
ϵ+

βθ

2ψ


exp


−r

(
α+βθ

1 − p

p
ϵ+
β2θ2

4ψ

)γ


(
α+βθ

1 − p

p
ϵ+
β2θ2

4ψ

)γ−1

+(1 − w(p))


− ϵ+

βθ

2ψ


exp


− r

(
α− βθϵ+

β2θ2

4ψ

)γ


(
α− βθϵ+

β2θ2

4ψ

)γ−1


 = 0

∂L

∂α
= −1 + µγ


w(p)exp


− r

(
α+ βθ

1 − p

p
ϵ+

β2θ2

4ψ

)γ


(
α+ βθ

1 − p

p
ϵ+

β2θ2

4ψ

)γ−1
+

(1 − w(p))exp


− r

(
α− βθϵ+

β2θ2

4ψ

)γ


(
α− βθϵ+

β2θ2

4ψ

)γ−1


 = 0

∂L

∂µ
= w(p)

1 − exp


− r

(
α+ βθ 1−p

p ϵ+ β2θ2

4ψ

)γ



r
+(1−w(p))

1 − exp


− r

(
α− βθϵ+ β2θ2

4ψ

)γ



r

−1 − exp(−ryγ0 )

r
= 0

• We set (r, γ) = (0.029, 0.731) as found by Holt and Laury (2002) and

(ψ, θ, y0) = (0.5, 1, 4). In the absence of shock (ϵ = 0), the optimal variable
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pay is β∗ = 1 and the optimal Ąxed pay is α∗ = 3.5. In the presence of

a shock (ϵ, p, w(p)) = (1, 0.1, 0.15), the optimal variable pay is β∗ = 0.95

and the optimal Ąxed pay is α∗ = 3.37. The optimal variable pay in

the absence of a shock is greater than the variable pay in presence of a

shock. The expected value is E[L] = 3.83 and the certainty equivalent

of L is 4. Hence, the agent exhibits risk-seeking at the optimal contract

(α∗, β∗) = (3.37, 0.95) where the tradeoff between risk and incentive is

observed.

• Consider the calibration from the previous example with one change:

w(0.1) = 0.2. In the absence of a shock (i.e., ϵ = 0), the optimal variable

pay is β∗ = 1 and the optimal Ąxed pay is α∗ = 3.5. In the presence of

a shock (ϵ, p) = (1, 0.1), the optimal variable pay is β∗ = 1.17 and the

optimal Ąxed pay is α∗ = 2.73. The optimal variable pay in the absence of

shock is less than the variable pay in the presence of shock. The expected

value is E[L] = 3.41 and the certainty equivalent of L is 4. Hence, the

agent exhibits risk-seeking at the optimal contract (α∗, β∗) = (2.73, 1.17)

where the tradeoff between risk and incentive is not observed.

QED.

4.C - Extension to continuous random shocks

In Section 2, we focus on binary shocks. Herein, we extend this framework to

the case of continuous random shocks. We denote by f(.)(F (.)) the probability

density (cumulative distribution) function of a continuous random shock ϵ̃ such

that E(ϵ̃) = 0 and V (ϵ̃). We further assume that the distribution is symmetric

around 0, that is f(ϵ) = f(−ϵ) for all ϵ > 0.
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Proposition C1 (Consistency of results under RDU):19

i) Assume that the agent exhibits probability risk-aversion or probability risk-

neutrality (i.e., w′(.) ≥ 0). Hence, the optimal variable pay is greater in the

absence of shock than in its presence.

ii) Assume that the agent exhibits probability risk-seeking (i.e., w′(.) < 0) or

inverse-s-shaped probability weighting (i.e.,∃ a ∈ (0, 1) such that w′′(p) < 0 for

p ∈ (0, a) and w′′(p) > 0 for p ∈ (a, 1) ). Hence the optimal performance can be

greater in the presence of shock than in its absence.

Proof of Proposition C1:

Given the linear contract (α, β), the objective function of an expected utility

agent with cost function C(e) = ψe2 is given by

RDU(L) =
∫ +∞

−∞
u
(
α+ βθ(e+ ϵ) − ψe2

)
d[1 − w(1 − F (ϵ))] (4.67)

Noting that d[1 − w(1 − F (ϵ))] = w′(1 − F (ϵ))f(ϵ)dϵ, the derivative of (4.67)

with respect to e is given by

(βθ − 2ψe)
∫ +∞

−∞
u′
(
α+ βθ(e+ ϵ) − ψe2

)
w′(1 − F (ϵ))f(ϵ)dϵ = 0

Since both u(.) and w(.) are strictly increasing functions, it turns out that the

optimal effort function of the agent is given by

e =
βθ

2ψ

19We focus here on symmetric distributions for which MVS boils down to mean-variance
preference. The mean-variance preference corresponds to the RDU with quadratic utility
function and probabilistic risk-neutrality (i.e., linear weighting function). In this context, the
tradeoff between risk and incentive holds.
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Hence, the optimal effort function is an increasing function of the variable pay

and does not vary with respect to ϵ, the utility curvature r, the Ąxed pay α or

the probability risk attitude captured by w(p).

Point i)

The principalŠs optimization problem is to maximize the expected value of

θz − y by accounting for the agentŠs incentive compatibility constraint (IC) and

participation constraint (PC):





max
α,β

θe− (α+ βθe)

s.t. :

e = βθ
2ψ

∫ +∞

−∞
u
(
α+ βθ(e+ ϵ) − ψe2

)
w′(1 − F (ϵ))f(ϵ)dϵ = y0

which is equivalent to





max
α,β

θ2

2ψ

(
β − β2) − α

s.t. :
∫ +∞

−∞
u
(
α+

β2θ2

4ψ
+ βθϵ

)
w′(1 − F (ϵ))f(ϵ)dϵ = y0

The corresponding Lagrangian function is given by

L(α, β, µ) =
θ2

2ψ

(
β−β2

)
−α+µ

[ ∫ +∞

−∞
u
(
α+

β2θ2

4ψ
+βθϵ

)
w′(1−F (ϵ))f(ϵ)dϵ−y0

]
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The Ąrst-order conditions are given by

∂L
∂β

=
θ2

2ψ

(
1−2β

)
+µθ

∫ +∞

−∞

(βθ
2ψ

+ ϵ
)
u′
(
α+

β2θ2

4ψ
+βθϵ

)
w′(1−F (ϵ))f(ϵ)dϵ = 0

(4.68)
∂L
∂α

= −1 + µ
∫ +∞

−∞
u′
(
α+

β2θ2

4ψ
+ βθϵ

)
w′(1 − F (ϵ))f(ϵ)dϵ = 0 (4.69)

∂L
∂µ

=
∫ +∞

−∞
u
(
α+

β2θ2

4ψ
+ βθϵ

)
w′(1 − F (ϵ))f(ϵ)dϵ− y0 = 0 (4.70)

From (4.68) and (4.69), it follows that the optimal variable pay β∗ satisĄes the

following equation

β = 1 +
2ψ
θ

∫ +∞

−∞
ϵu
(
α+

β2θ2

4ψ
+ βθϵ

)
w′(1 − F (ϵ))f(ϵ)dϵ

∫ +∞

−∞
u
(
α+

β2θ2

4ψ
+ βθϵ

)
w′(1 − F (ϵ))f(ϵ)dϵ

(4.71)

It follows directly from (4.71) that if w′(.) ≥ 0, then
∫+∞

−∞ ϵu
(
α+ β2θ2

4ψ
+βθϵ

)
w′(1−

F (ϵ))f(ϵ)dϵ < 0 so that β < 1.

Point ii) From (4.71), it follows directly

β > 1 ⇐⇒ G(α, β) :=
∫ +∞

−∞
ϵu
(
α+

β2θ2

4ψ
+βθϵ

)
w′(1−F (ϵ))f(ϵ)dϵ > 0

(4.72)

Example:

Consider that the relationship between output and effort is affected by a

shock that follows a logistic distribution with mean 0 and variance π2

3
. The

probability density function and cumulative distribution functions are given by

f(ϵ) =
exp(−ϵ)

(1 + exp(−ϵ))2
and F (ϵ)

1
1 + exp(−ϵ)
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Assume that the weighting function is the following linear combination of

logarithmic and quadratic functions

w(p) = a
ln(δp+ 1)
ln(1 + δ)

+ (1 − a− b)p2 + bp

with δ, a and b being parameters of the weighting function. The derivative of

w(p) is given by

w′(p) = a
δa

(δp+ 1)ln(1 + δ)
+ 2(1 − a− b)p+ b

We set (δ, a, b) = (19, 1.25,−2). Figure 4.C.1 plots the density and probability

weighting functions. Note that (i) the weighting function is differentiable on

[0, 1], (ii) the derivative function w′(p) is U-shaped and (iii) the derivatives of

small probabilities are greater than the derivatives of high probabilities (see

Figure 4.C.2).

Furthermore, assume a quadratic utility function u(x) = x − rx2 that is

concave (i.e., r > 0).

• Case 1 (presence of tradeoff with risk-seeking agent): we set

(r, ψ, θ, y0) = (0.02, 0.5, 0.5, 4), with y0 being the alternative (outside)

outcome. Let E = α +
βθ

4ψ
, S1 =

∫ +∞

−∞
ϵw′(1 − F (ϵ))f(ϵ)dϵ and S2 =

∫ +∞

−∞
ϵ2w′(1 − F (ϵ))f(ϵ)dϵ, then the optimal contract is given by the

following system of two equations

∂L
∂µ

= E(1 − rE) + βθ(1 − 2rE)S1 − rβ2θ2S2 − y0 + ry2
0 = 0

β = 1 +
2ψ
θ

(1 − 2rE)S1 − 2rβθS2

1 − 2rE − 2rβθS1
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The optimal variable pay is β∗ = 0.93 and the optimal Ąxed pay is α∗ = 3.87.

Recall that in the absence of a shock, the optimal variable pay is β∗ = 1

and the optimal Ąxed pay is α∗ = 3.5. Hence, the optimal variable pay

in the absence of a shock is greater than the variable pay in presence of

the shock. The expected value is E[L] = 3.97 and the certainty equivalent

of L is 4. Hence, the agent exhibits risk-seeking at the optimal contract

(α∗, β∗) = (3.87, 0.93) where the tradeoff between risk and incentive is

observed.

• Case 2 (absence of tradeoff with risk-seeking agent): Consider the

calibration of parameters as before with the only change that r = 0.01. The

optimal variable pay is β∗ = 1.08 and the optimal Ąxed pay is α∗ = 3.81.

The optimal variable pay in the absence of shock is less than the variable

pay in the presence of shock. We have the expected value E[L] = 3.95 and

the certainty equivalent of L is 4. Hence, the agent exhibits risk-seeking

at the optimal contract (α∗, β∗) = (3.95, 1.08) where the tradeoff between

risk and incentive is not observed.

QED.
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Figure 4.C.1: Density function and probability weighting function

Figure 4.C.2: Derivative of probability weighting function

4.C.1 Proofs of propositions in the BB model

Proof of Proposition 1

The minimum Ąxed pay accepted by an agent to work increases with the shock
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ϵ. The expected utility associated with the contract is given by

EU(L) = pu

(
α+ βθ

(
e+

1 − p

p
ϵ
)

− ψe2

)
+ (1 − p)u

(
α+ βθ

(
e− ϵ

)
− ψe2

)

For any given contract (α, β), the agentŠs optimal level of effort is given by

e =
βθ

2ψ

Note that this level of effort does not depend on α. The agent accepts to provide

the level of effort if

pu

(
α+

β2θ2

4ψ
+

1 − p

p
βθϵ

)
+ (1 − p)u

(
α+

β2θ2

4ψ
− βθϵ

)
≥ u(y0)

Note that the left-hand side of the above inequality is strictly increasing in α.

Hence, there exists a minimum level of Ąxed pay αm such that the participation

constraint is binding, that is

F (αm, ϵ) := pu(e) + (1 − p)u

(
αm +

β2θ2

4ψ
− βθϵ

)
− u(y0) = 0 (4.73)

Denote by y∗
− = α+ β2θ2

4ψ
− βθϵ and y∗

+ = α+ β2θ2

4ψ
+ 1−p

p
βθϵ, then y∗

− < y∗
+.

Point i) The minimum Ąxed pay increases with the utility (outcome)-risk

aversion

Assuming CARA utility function, equation (4.73) becomes

F (αm, ϵ) :=pexp

(
− r

(
αm +

β2θ2

4ψ
+

1 − p

p
βθϵ

))
+

(1 − p)exp

(
− r

(
αm +

β2θ2

4ψ
− βθϵ

))
− exp(−ry0) = 0

(4.74)
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sign
(dαm
dr

)
= sign

(
− py∗

+exp(−ry∗
+) − (1 − p)y∗

−exp(−ry∗
−) + y0exp(−ry0)

)

Denote by v(x) = xexp(−rx) a utility function over [0,∞) with rx < 1 (Assump-

tion A3Ť). The certainty equivalent y∗
0 of the lottery (y∗

+, y
∗
−; p, 1 − p) according

to the utility function v(.) is implicitly deĄned by

y∗
0exp(−ry∗

0) = py∗
+exp(−ry∗

+) + (1 − p)y∗
−exp(−ry∗

−)

Take the absolute risk aversion index of v(.),

−v′′(x)
v′(x)

= r
2 − rx

1 − rx
> r

Hence the utility function v(.) is associated to higher risk-aversion index than

u(.). By the Pratt (1964) approximation, we have y∗
0 < y0. Hence,

y∗
0exp(−ry∗

0) = py∗
+exp(−ry∗

+) + (1 − p)y∗
−exp(−ry∗

−) < y0exp(−ry0)

This yields
dαm
dr

> 0.

Point ii) The implicit function theorem yields

dαm
dϵ

= βθ(1 − p)
u′(y∗

−) − u′(y∗
+)

pu′(y∗
+) + (1 − p)u′(y∗

−)
> 0

Under Assumption A3Š, the minimum α increases with the shock size. Note that

if the utility function is instead convex and the second-order condition resulting

from the second derivative of EU(L) with respect to the effort is negative, then
dαm
dϵ

< 0.
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QED.

Proof of Proposition 2

The rank dependent utility associated with the contract is given by

RDU(L) = w(p)u

(
α+βθ

(
e+

1 − p

p
ϵ
)

−ψe2

)
+(1−w(p))u

(
α+βθ

(
e−ϵ

)
−ψe2

)

For any given contract (α, β), agentŠs optimal level of effort under the accepted

contract is

e =
βθ

2ψ

Note that this level of effort does not depend on α. The agent accepts to provide

a given level of effort if

w(p)u

(
α+

β2θ2

4ψ
+

1 − p

p
βθϵ

)
+ (1 − w(p))u

(
α+

β2θ2

4ψ
− βθϵ

)
≥ u(y0)

Note that the left-hand side of the above inequality is strictly increasing in α.

Hence, there exists a minimum level of Ąxed pay αm such that the previous

participation constraint is binding, that is

F (αm, ϵ) :=w(p)u

(
α+

β2θ2

4ψ
+

1 − p

p
βθϵ

)
+ (1 − w(p))u

(
α+

β2θ2

4ψ
− βθϵ

)
− u(y0) = 0

(4.75)

Point i) The minimum Ąxed pay increases with the utility risk-aversion and

probability risk-aversion
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Assuming CARA utility function, the equation (4.75) becomes

F (αm, ϵ) := − exp(−ry0) + w(p)exp

(
− r

(
αm +

β2θ2

4ψ
+

1 − p

p
βθϵ

))

+ (1 − w(p))exp

(
− r

(
αm +

β2θ2

4ψ
− βθϵ

))
= 0

(4.76)

sign
(dαm
dr

)
= sign

(
−w(p)y∗

+exp(−ry∗
+)−(1−w(p))y∗

−exp(−ry∗
−)+y0exp(−ry0)

)

Denote by v(x) = xexp(−rx) a utility function over [0,∞) with rx < 1. The

certainty equivalent y∗
0 of the lottery (y∗

+, y
∗
−; p, 1 − p) according to the utility

function v(.) is implicitly deĄned by

y∗
0exp(−ry∗

0) = w(p)y∗
+exp(−ry∗

+) + (1 − w(p))y∗
−exp(−ry∗

−)

Take the absolute risk-aversion index of v(.),

−v′′(x)
v′(x)

= r
2 − rx

1 − rx
> r

Hence the utility function v(.) is associated with a higher risk-aversion index

than u(.). By Lemma 1 (Appendix 4.A) that provides the equivalent of Pratt

(1964) approximation in our setting, we have y∗
0 < y0. Hence,

y∗
0exp(−ry∗

0) = w(p)y∗
+exp(−ry∗

+) + (1 − w(p))y∗
−exp(−ry∗

−) < y0exp(−ry0)

This yields
dαm
dr

> 0.

Also, for a given probability p = p with δ := w(p), the minimum Ąxed pay

decreases with degree of probability overweighting.
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The implicit function theorem applied to (4.75) directly leads to

dαm
dδ

= − u(y∗
+) − u(y∗

−)
w(p)u′(y∗

+) + (1 − w(p))u′(y∗
−)

< 0

Hence, Ąxed pay increases with probability risk-aversion.

Point ii) Implicit function theorem leads to

dαm
dϵ

= βθ
(1 − w(p))u′(y∗

−) − w(p)
p
u′(y∗

+)

w(p)u′(y∗
+) + (1 − w(p))u′(y∗

−)

It follows that for w(p) ≤ p (underweighting), we have directly dαm

dϵ
> 0.

Similarly, we Ąnd that dαm

dβ
> 0 under the assumption that e =

βθ

2ψ
> ϵ.

Point iii) In contrast, assuming w(p) > p (overweighting), we have

dαm
dϵ

< 0 ⇐⇒
w(p)
p

1−w(p)
1−p

>
u′
(
αm + β2θ2

4ψ
− βθϵ

)

u′
(
αm + β2θ2

4ψ
+ 1−p

p
βθϵ

)

For CARA utility function this implies that

dαm
dϵ

< 0 ⇐⇒ r < rto(β, ϵ)

with the threshold deĄned as

rto(β, ϵ) :=
p

βθϵ

[
ln
(w(p)

p

)
− ln

(1 − w(p)
1 − p

)]
> 0

Hence, under rank dependent utility theory, the minimum accepted α decreases

with the shock size if we have substantial overweighting and moderate utility

curvature.
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Point iv)

The certainty equivalent ce = y0 of a lottery L =
(
αm + βθ(e+ 1−p

p
ϵ), αm +

βθ(e− ϵ); p, 1 − p
)

with e = βθ
2ψ

is given by

u(ce) = δ

1 − exp

(
− r

(
αm + β2θ2

4ψ
+ 1−p

p
βθϵ

))

r
+(1−δ)

1 − exp

(
− r

(
αm + β2θ2

4ψ
− βθϵ

))

r

The utility of the expected value E[L] = αm +βθe−ψe2 = αm + β2θ2

4ψ
is given by

u(E[L]) =
1 − exp

(
− r

(
αm + β2θ2

4ψ

))

r

DeĄne by g(.) the following differential function over [0,∞)

g(r) = δexp
[

− rβθ
1 − p

p
ϵ
]

+ (1 − δ)exp[rβθϵ]

The absolute risk-aversion rN(β) for which the equality u(ce) = u(E[L]) holds

for a risk-neutral agent is implicitly deĄned by

g(rN(β, ϵ)) = 1

Note that g(.) has the following three characteristics: (i) g(.) is convex on [0,∞);

(ii) g(0) = 1 and lim
r−→+∞

g(r) = +∞; (iii) g(.) attains its minimum exactly at

the thresholds of the tradeoff rto(β, ϵ)

rto(β, ϵ) =
p

βθϵ

[
ln
(w(p)

p

)
− ln

(1 − w(p)
1 − p

)]

These three characteristics yield two solutions for rN(β, ϵ) : r1 = 0 < rto(β, ϵ)

and r2 > rto(β, ϵ).
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It is clear that we should rule out the case r1 = 0 < rto(β, ϵ). Indeed, for

r1 = 0 we have a linear utility function. Then, to have risk-neutral agent under

linear utility function, we should have also δ = w(p) = p. This contradicts our

initial assumption δ > p.

Ruling out the case r1 = 0, it follows that the value of rN (β, ϵ) that allows the

equality u(ce) = u(E[L]) for a risk-neutral agent (that compensates probability

risk-seeking with utility risk aversion) is such that rN(β, ϵ) > rto(β, ϵ).

Finally, note that this result holds for general utility function (see our Propo-

sition B3).

Point v) A simple derivative of the expression of rto(β, ϵ) shows that this

threshold decreases with β and ϵ.

The CARA coefficient for risk-neutrality is implicitly determined by

F (rN , β) := δexp
[

− rβθ
1 − p

p
ϵ
]

+ (1 − δ)exp[rβθϵ] − 1 = 0

The implicit function theorem yields

rN
β

drN(β, ϵ)
dβ

= −1 < 0

Hence, the agent becomes risk-seeking for a sufficiently small value of variable

pay β. In particular, if the agent is risk-neutral or risk-seeking for a contract

involving β1; then the agent is risk-seeking for contract involving β0 < β1.

Similarly,
rN
ϵ

drN(β, ϵ)
dϵ

= −1 < 0

QED.
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Proof of Proposition 3:

The mean-variance-skewness preference associated with the contract is given

by

MV S(L) = α+ βθe− ψe2 + av
1 − p

p
β2θ2ϵ2 + as

1 − p

p

1 − 2p
p

β3θ3ϵ3

For any accepted contract (α, β), the agantŠs optimal level of effort is given by

e =
βθ

2ψ

Note that this level of effort does not depend on α. The agent agrees to provide

the level of effort if

α+ βθe− ψe2 + av
1 − p

p
β2θ2ϵ2 + as

1 − p

p

1 − 2p
p

β3θ3ϵ3 ≥ y0

Note that the left hand side of the above inequality is strictly increasing in

α. Hence, there is a minimum level of Ąxed pay αm such that the previous

participation constraint is binding, that is

F (αm, ϵ) := αm +βθe−ψe2 + av
1 − p

p
β2θ2ϵ2 + as

1 − p

p

1 − 2p

p
β3θ3ϵ3 − y0 = 0 (4.77)

Point i) The minimum Ąxed pay increases with the aversion to variance

From (4.77), we have
dαm
dav

= −1 − p

p
β2θ2ϵ2 < 0

Hence, when av decreases (i.e., high aversion to variance), then the minimum

Ąxed pay increases. Moreover

dαm
das

= −1 − p

p

1 − 2p
p

β3θ3ϵ3
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Hence, dαm

das
< 0 if p < 1

2
and dαm

das
< 0 if p > 1

2
.

This means that for p < 1
2

(resp. p > 1
2
) , the minimum Ąxed pay decreases

(resp. increases) with the preference for positively skewed lotteries.

Point ii)

The implicit function theorem applied to (4.77) leads to

dαm
dϵ

= −1 − p

p
β2θ2ϵ

(
2av + 3as

1 − 2p
p

βθϵ
)

It follows that for p > 1
2

(negative skewness), we have dαm

dϵ
> 0.

Point iii)

In contrast, for p < 1
2

(positive skewness), we have

dαm
dϵ

> 0 ⇐⇒ −av
as

> τto(β, ϵ)

with τto(β, ϵ) =
3
2

1 − 2p
p

βθϵ.

Point iv) Denote by τN(β, ϵ) =
S(L)
V (L)

=
1 − 2p
p

βθϵ. Hence, the agent

exhibits risk-aversion if −av
as

> τN(β, ϵ), is risk-neutral if −av
as

= τN(β, ϵ) and

risk-seeking if −av
as

< τN(β, ϵ).

Clearly, τN(β, ϵ) =
S(L)
V (L)

=
1 − 2p
p

βθϵ <
3
2

1 − 2p
p

βθϵ = τto(β, ϵ).

Hence, for any couple (av, aS) such that −av
as

∈ (τN (β, ϵ), τto(β, ϵ)) the agent

is risk-averse and the minimum Ąxed pay accepted α decreases with shock.

Point v)

Clearly, τto(β, ϵ) and τN(β, ϵ) increase with the shock ϵ and β.

QED.
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4.C.2 Elicitation of risk preferences

We consider binary lotteries denoted by L = (x, y; p, 1 − p), with x being the

outcome that occurs with probability p, and y being the outcome that occurs

with probability 1 − p. We use 15 lotteries presented in the Table 4.C.1. They

are a combination of 5 probabilities (p1, p2, p3, p4, p5) = (0.1, 0.25, 0.33, 0.50, 0.75)

and three couples of outcomes ¶(100, 0), (100, 50), (50, 0)♢. The elicit certainty

equivalents for each lotteries using the switching outcomes technique (e.g., Tver-

sky and Kahneman, 1992a; Gonzalez and Wu, 1999a; Abdellaoui et al., 2008a).

In addition, we utilize the 30 values of the minimum Ąxed pay elicited in

the main experiment to obtain further certainty equivalent data. The insight

is that the outside option of 1000 is the certainty equivalent of the lottery

L = (x, y; p, 1 − p) in which

x = αm +
β2θ2

4ψ
+

1 − p

p
βθϵ and y = αm +

β2θ2

4ψ
− βθϵ

We then have in total 45 certainty equivalent data points per individual such

that each of the 5 probabilities is presented in 9 binary lotteries. We use this

dataset to estimate the parameters of EUT, RDU and MVS at the individual

level.

RDU and EUT

For RDU, we follow the procedure developed in Kpegli et al. (2023) to estimate

probability weights. Denote by ce,x and y respectively the values of certainty

equivalent, the high outcome x and the small outcome y. Also, denote by Ik

the dummy variable for the probability pk, that is a variable that takes value 1

if probability is equal to pk and 0 otherwise. We assume CARA utility function

353



Chapter 4. Against the Odds! The Tradeoff Between Risk and Incentives is Alive and Well

so that we have the following empirical equation for certainty equivalent:

cel = −1
r
ln

[(
exp( − rxl) − exp( − ryl)

) K∑

k=1

δkI
k
l + exp( − ryl)

]
+ el (4.78)

where e is the error term, l is the lth line in ce,x,y and e; r the CARA

coefficient and w(pk) = δk for k = 1, 2, ..., 5. We assume that the error term is

normally distributed with mean 0 and heteroscedastic variance σl = σ♣xl − yl♣.
We then estimate r, δk and σ by maximum likelihood method.

For the special case of EUT, we assume δk = pk and estimate only r and σ.

MVS

Under MVS, certainty equivalents satisfy the following empirical equation

cel = El + avVl + avSl + el

with ce,E,V and S denoting respectively values of certainty equivalent, mean,

variance and skewness associated with each of the 45 lotteries.

We assume that the error term is normally distributed with mean 0 and

heteroscedastic variance σl = σ♣xl − yl♣. We then estimate av, as and σ by

maximum likelihood method.
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Table 4.C.1: Lotteries in the experiment

N◦ Lottery x y p

1 100 0 0.1

2 100 50 0.1

3 50 0 0.1

4 100 0 0.25

5 100 50 0.25

6 50 0 0.25

7 100 0 0.33

8 100 50 0.33

9 50 0 0.33

10 100 0 0.50

11 100 50 0.50

12 50 0 0.50

13 100 0 0.75

14 100 50 0.75

15 50 0 0.75

Table 4.C.2: Mean of individual estimates†,‡

EU MVS RDU

Coef. 95% CI Coef. 95% CI Coef. 95% CI(b)

r 0.0038 [0.0022,0.0055] - - 0.0023 [0.0015,0.0031]

av - - -0.00097 [-0.0011, -0.0008] - -

as - - 4.8 × 10−7 [4.0 × 10−7, 5.6 × 10−7] - -

w(0.10) - - - - 0.2231 [0.2034,0.2429]

w(0.25) - - - - 0.3278 [0.3105,0.3450]

w(0.33) - - - - 0.3729 [0.3553,0.3904]

w(0.50) - - - - 0.4856 [0.4685,0.5026]

w(0.75) - - - - 0.6409 [0.6208,0.6610]

† The parameters are computed from regression models controlling for individual heteroscedas-

ticity due to observable individual characteristics (i.e., numeracy test score, cognitive reflection

test score, gender and age).

‡ Standard errors clustered at the individual level when computing 95% CI due to multiple

probability weights per subject.
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Table 4.C.3: Mean of minimum Ąxed pay across treatments†

p β e‡ αm
3 α4

m αm
4 − αm

3 α0
m α3

m − α0
m α4

m − α0
m

0.1 0.30 3.00 881.3∗∗∗ 901.4∗∗∗ 20.05∗∗∗ 910.00 -28.69∗∗∗ -8.64

0.1 0.50 5.00 750.0∗∗∗ 792.9∗∗∗ 42.95∗∗∗ 750.00 -0.01 42.95∗∗∗

0.1 0.70 7.00 579.9∗∗∗ 628.3∗∗∗ 48.49∗∗∗ 510.00 69.86∗∗∗ 118.3∗∗∗

0.25 0.30 3.00 898.1∗∗∗ 917.6∗∗∗ 19.44∗∗∗ 910.00 -11.87∗∗∗ 7.57

0.25 0.50 5.00 761.7∗∗∗ 803.5∗∗∗ 41.82∗∗∗ 750.00 11.67** 53.49∗∗∗

0.25 0.70 7.00 582.2∗∗∗ 626.8∗∗∗ 44.57∗∗∗ 510.00 72.22∗∗∗ 116.8∗∗∗

0.33 0.30 3.00 900.5∗∗∗ 926.1∗∗∗ 25.65∗∗∗ 910.00 -9.505∗∗∗ 16.14∗∗∗

0.33 0.50 5.00 780.6∗∗∗ 795.1∗∗∗ 14.56∗∗∗ 750.00 30.55∗∗∗ 45.11∗∗∗

0.33 0.70 7.00 590.7∗∗∗ 620.2∗∗∗ 29.44∗∗∗ 510.00 80.72∗∗∗ 110.2∗∗∗

0.5 0.30 3.00 919.6∗∗∗ 926.2∗∗∗ 6.597** 910.00 9.642∗∗∗ 16.24∗∗∗

0.5 0.50 5.00 773.6∗∗∗ 786.4∗∗∗ 12.82∗∗∗ 750.00 23.63∗∗∗ 36.45∗∗∗

0.5 0.70 7.00 582.5∗∗∗ 615.4∗∗∗ 32.86∗∗∗ 510.00 72.53∗∗∗ 105.4∗∗∗

0.75 0.30 3.00 916.7∗∗∗ 937.6∗∗∗ 20.94∗∗∗ 910.00 6.685∗∗∗ 27.63∗∗∗

0.75 0.50 5.00 778.4∗∗∗ 789.5∗∗∗ 11.02** 750.00 28.45∗∗∗ 39.47∗∗∗

0.75 0.70 7.00 571.5∗∗∗ 607.3∗∗∗ 35.87∗∗∗ 510.00 61.45∗∗∗ 97.32∗∗∗

Standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 for the significance of coefficient tests.

† Mean of fixed pay are computed from regression analyses by allowing heteroscedasticity due

to observable individual characteristics (i.e., numeracy skills, cognitive skills, gender and age).

‡ According to the calibration (ψ, θ) = (2.5, 100), the effort is computed as e = βθ
2ψ .
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4.C.3 - Decomposition of the cells in Table 4.4.5 accord-

ing to the estimated risk attitudes

Table 4.C.4: RIT, risk-attitudes, and curvature of utility under EUT

Number Percentage

RIT and Risk-averse

Concave 14 1.55 %

Convex 891 98.45%

Total 905 100%

RIT and Risk-neutral

Number Percentage

Concave 23 9.96%

Convex 208 90.04%

Total 231 100%

RIT and Risk-seeking

Number Percentage

Concave 229 36.12%

Convex 405 63.88%

Total 634 100%

No-RIT and Risk-averse

Number Percentage

Concave 24 5.06%

Convex 450 94.94%

Total 474 100%

No-RIT and Risk-neutral

Number Percentage

Concave 40 10.55%

Convex 339 89.45%

Total 379 100%

No-RIT and Risk-seeking

Number Percentage

Concave 112 47.06%

Convex 126 52.94%

Total 238 100%

Reversed RIT and Risk-averse

Continued on next page
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Table 4.C.5 – continued from previous page

Number Percentage

Number Percentage

Concave 77 19.40%

Convex 320 80.60%

Total 397 100%

Reversed RIT and Risk-neutral

Number Percentage

Concave 32 28.32%

Convex 81 71.68%

Total 113 100%

Reversed RIT and Risk-seeking

Number Percentage

Concave 124 67.39%

Convex 60 32.61%

Total 184 100%

Table 4.C.6: RIT, risk attitudes, utility curvature and probability weighting
under RDU

Number (%) Underweighting Overweighting Total

RIT and Risk-averse

Convex 18 0 18

(1.99 %) (0.00 %) (1.99%)

Concave 404 484 887

(44.64%) (53.37%) (98.01%)

Total 422 483 905

(46.63%) (53.37%) (100%)

RIT and Risk-neutral

Convex 8 2 10

(19.41%) (68.78%) (4.33%)

Concave 105 116 221

(45.45%) (50.22%) (95.67%)

Total 113 118 231

(48.92%) (51.08%) (100%)

Continued on next page
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Table 4.C.7 – continued from previous page

Number (%) Underweighting Overweighting Total

RIT and Risk-seeking

Convex 72 51 123

(11.36%) (8.04%) (19.40%)

Concave 123 388 511

(19.40%) (61.20%) (80.60%)

Total 195 439 634

(40.08%) (69.24%) (100%)

No RIT and Risk-averse

Convex 48 2 50

(10.13%) (0.42%) (10.55%)

Concave 206 218 424

(43.46%) (45.99%) (89.45%)

Total 254 220 474

(53.59%) (46.41%) (100%)

No RIT and Risk-neutral

Convex 46 8 54

(12.14%) (2.11%) (14.25%)

Concave 180 145 325

(47.49%) (38.26%) (85.75%)

Total 226 153 379

(59.63%) (40.37%) (100%)

No RIT and Risk-seeking

Convex 28 31 59

(11.76%) (13.03%) (24.79%)

Concave 31 148 179

(13.03%) (62.18%) (75.21%)

Total 59 179 238

(24.79%) (75.21%) (100%)

Reversed RIT and Risk-aversion

Convex 30 9 39

(7.56%) (2.27%) (9.82%)

Concave 168 190 358

(42.32%) (47.86%) (90.18%)

Total 198 199 397

(49.87%) (50.13%) (100%)

Reversed RIT and Risk-neutral

Convex 10 6 16

Continued on next page
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Table 4.C.7 – continued from previous page

Number (%) Underweighting Overweighting Total

(8.85%) (5.31 %) (14.16%)

Concave 29 68 97

(25.66%) (60.18%) (85.84%)

Total 39 74 113

(34.51%) (65.49%) (100%)

Reversed RIT and Risk-seeking

Convex 16 35 51

(8.7%) (19.02%) (27.72%)

Concave 14 119 133

(7.61%) (64.67%) (72.28%)

Total 30 154 184

(16.3%) (83.7%) (100%)

Table 4.C.8: RIT, risk-attitudes, and preference/aversion for skewness and
variance under MVS

Number (%) Aversion for skewness Preference for skewness Total

RIT and Risk-averse

Preference for variance 13 1 14

(1.44%) (0.11%) (1.55%)

Aversion to variance 20 871 891

(2.21%) (96.24 %) (98.45%)

Total 33 872 905

(3.65%) (96.35 %) (100.00 %)

RIT and Risk-neutral

Preference for variance 19 1 20

(8.23%) (0.43%) (8.66%)

Aversion to variance 3 208 211

(1.30%) (90.04%) (91.34%)

Total 22 209 231

(9.52%) (90.48%) (100.00%)

RIT and Risk-seeking

Preference for variance 213 13 226

Continued on next page
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Table 4.C.9 – continued from previous page

Number (%) Aversion for skewness Preference for skewness Total

(33.60%) (2.05%) (35.65%)

Aversion for variance 17 391 408

(2.68%) (61.67%) (64.35%)

Total 230 404 634

(36.28%) (63.72%) (100.00%)

No RIT and Risk-averse

Preference for variance 21 4 25

(4.43%) (0.84%) (5.27%)

Aversion for variance 10 439 449

(2.11%) (92.62%) (94.73%)

Total 31 443 474

(6.54%) (93.46%) (100.00%)

No RIT and Risk-neutral

Preference for variance 27 11 38

(7.12%) (2.90%) (10.03%)

Aversion for variance 9 332 341

(2.37%) (87.60%) (89.97%)

Total 36 343 379

(9.50%) (90.50%) (100.00%)

No RIT and Risk-seeking

Preference for variance 100 11 111

(42.02%) (4.62%) (46.64%)

Aversion for variance 10 117 127

(4.20%) (49.16%) (53.36%)

Total 110 128 238

(46.22%) (53.78%) (100.00%)

Reversed RIT and Risk-aversion

Preference for variance 66 6 72

(16.62%) (1.51%) (18.14%)

Aversion for variance 12 313 325

(3.02%) (78.84%) (81.86%)

Total 78 319 397

(19.65%) (80.35%) (100.00%)

Reversed RIT and Risk-neutral

Preference for variance 29 2 31

(25.66%) (1.77%) (27.43%)

Aversion for variance 4 78 82

Continued on next page
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Table 4.C.9 – continued from previous page

Number (%) Aversion for skewness Preference for skewness Total

(3.54%) (69.03%) (72.57%)

Total 33 80 113

(29.20%) (70.80%) (100.00%)

Reversed RIT and Risk-seeking

Preference for variance 112 11 123

(60.87%) (5.98%) (66.85%)

Aversion for variance 5 56 61

(2.72%) (30.43%) (33.15%)

Total 117 67 184

(63.59%) (36.41%) (100.00%)

4.D Prospect theory (PT) analysis

In this section, we assume the agent is endowed with a reference-dependence

utility function of the following form:

uR(x,R) = x+ v(x−R) (4.79)

where x is the absolute outcome, R the reference point and v(.) is a value

function à la Tversky and Kahneman (1992a), that is assumed to be continuous

and strictly increasing with v(0)=0. Following Tversky and Kahneman (1992a)

and Abdellaoui et al. (2008a), we specify the value function as follows:

v(x−R) =





u(x−R) if x ≥ R

λu(x−R) if x < R

(4.80)
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where λ > 0 is the loss-aversion index and u(.) is the basic utility function.

Following the LEN model, we assume the following exponential utility function:

v(x−R) =





1 − exp( − r+(x−R))
r+

if x ≥ R

−λexp(r
−(x−R)) − 1

r−
if x < R

(4.81)

with r+ and r− representing the index of absolute risk-aversion in the gain and

loss domains respectively.

We denote the probability weighting function in the gain (x ≥ R) and loss

(x < R) domains by w+(.) and w−(.). We refer to probability risk-aversion

[risk-seeking] as the case in which w+(p) ≤ p and w−(1 − p) ≥ 1 − p [w+(p) > p

and w−(1 − p) < 1 − p]

We consider the mixed lottery L = (x1, x2; p, 1 − p) with x1 ≥ R ≥ x2, which

is valued as follows:

V (L) = w+(p)uR(x1, R) + w−(1 − p)uR(x2, R) (4.82)

In our principal-agent setup (see Section 2.1), the agent is facing a lottery with

x1 = α+βθ
(
e+ 1−p

p
ϵ
)

−ψe2 and x2 = α+βθ
(
e− ϵ

)
−ψe2. We further assume

that the agentŠs reference point is given by the expected value of the lottery:

R = α+ βθe− ψe2 (4.83)

The risk-free reference point ensures that the agent is systematically in the gain

domain when the random shock yields a positive outcome (i.e., 1−p
p
ϵ) and in the

loss domain otherwise (i.e., −ϵ).
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Based on the previous assumptions, the following proposition summarizes

the results regarding the optimal behavior of the agent and the principal.

Proposition E1 (Risk-incentives tradeoff with PT). Under A0, A1, A2,

A3Š, A3Ť, A4, A5 and assuming a PT agent as speciĄed in (4.82):

i) For a given contract (α, β), the optimal level of effort increases with θ, de-

creases with ψ and does not depend on the Ąxed pay α, the utility curvature in

loss domain r−, the utility curvature in gain domain r+, the loss aversion index

λ and the shock.

ii) β∗(ϵ, r, ψ, θ) and e∗(ϵ, r, ψ, θ) decrease with λ, r+ (the utility risk-aversion in

the gain domain), probability risk-aversion (i.e., overweighting in loss domain

and underweighting in gain domain), while increases with r− (the utility risk-

aversion in the loss domain).

iii) β∗(ϵ, r, ψ, θ) and e∗(ϵ, r, ψ, θ) are higher in the presence of shock than in its

absence if the agent exhibits sufficient probability risk-seeking, moderate utility

curvature and loss-aversion.

Proof of Proposition E1:

Given the linear contract (α, β), the objective function of agent with a cost

functionC(e) = ψe2 is given by

PT (L) = w+(p)

[
x1+

1 − exp
(

− r+βθ 1p

p
ϵ
)

r+

]
+w−(1−p)

[
x2+λ

exp
(

− r−βθϵ
)

− 1

r−

]

(4.84)

with

x1 = α+ βθ
(
e+ 1−p

p
ϵ
)

− ψe2 and x2 = α+ βθ
(
e− ϵ

)
− ψe2.
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The Ąrst-order condition of the agentŠs maximization problem is given by

(βθ − 2ψe)[w+(p) + w−(1 − p)] = 0

Since w+(p) + w−(1 − p) ̸= 0, it follows that the optimal effort function is given

by

e =
βθ

2ψ

Point i)

The optimization problem of the principal is to maximize the expected value

of θz − y by accounting for the agentŠs incentive compatibility constraint (IC)

and participation constraint (PC):





max
α,β

π = θe− (α+ βθe)

s.t. :

e = βθ
2ψ

w+(p)

[
x1 +

1 − exp
(

− r+βθ 1p

p
ϵ
)

r+

]
+ w−(1 − p)

[
x2 + λ

exp
(

− r−βθϵ
)

− 1

r−

]
= y0

which is equivalent to

max
β

θ2

2ψ

(
β − 0.5β2) +

[
w+(p)

1 − exp
(

− r+βθ 1−p
p
ϵ
)

r+
+ λw−(1 − p)×

exp
(

− r−βθϵ
)

− 1

r−
+ βθϵ

(
w+(p)

1 − p

p
− w−(1 − p)

)
− y0

]
×

1
w+(p) + w−(1 − p)

(4.85)

The Ąrst-order conditions are given by
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θ2

2ψ
(1 − β) +

θϵ

w+(p) + w−(1 − p)

[
w+(p)

1 − p

p
exp

(
− r+βθ

1 − p

p
ϵ
)
−

λw−(1 − p)exp
(

− r−βθϵ
)

+ w+(p)
1 − p

p
− w−(1 − p)

]
= 0

(4.86)

Equation (4.86) deĄnes the optimal variable pay β∗ (α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ).

The optimal variable pay in the absence of shock (ϵ = 0) is given by lim
ϵ−→0

β∗(.) = 1.

The implicit function theorem applied to (4.86) leads to

∂β∗

∂λ
< 0 (4.87)

∂β∗

∂r+
< 0 (4.88)

∂β∗

∂r−
> 0 (4.89)

Since e∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ) = θ
2ψ
β∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ), it

also follows that
∂e∗

∂λ
< 0 ,

∂e∗

∂r+
< 0 ,

∂e∗

∂r−
> 0.

For given probability p = p, denote by δ+ = w+(p) and δ− = w+(1 − p); then

implicit function theorem applied to (4.86) leads to

∂β∗

∂δ+
> 0

∂β∗

∂δ−
< 0

Since e∗(α, ϵ, r+, r−, λ, w+, w−, ψ, θ) = θ
2ψ
β∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ), it

also follows that
∂e∗

∂δ+
> 0 ,

∂e∗

∂δ−
< 0.

Point iii)
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From (4.86) we have

w+(p)
p

w−(1−p)
1−p

>
1 + λexp(−r−β∗θϵ)

1 + exp
(

− r+β∗θ 1−p
p
ϵ
) ⇐⇒ β∗ > 1 = lim

ϵ−→0
β∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ)

Since e∗(α, ϵ, r+, r−, λ, w+, w−, ψ, θ) = θ
2ψ
β∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ), it

also follows that

w+(p)
p

w−(1−p)
1−p

>
1 + λexp(−r−β∗θϵ)

1 + exp
(

− r+β∗θ 1−p
p
ϵ
) ⇐⇒ e∗ >

θ

2ψ
= lim

ϵ−→0
e∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ)

Hence, β∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ) and e∗(α, β, ϵ, r+, r−, λ, w+, w−, ψ, θ) are

higher in the presence of shock than in its absence if the agent exhibits sufficient

probability risk-seeking, moderate utility curvature and loss-aversion.

QED.

4.E H-Experimental instructions
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General conclusion

This thesis contributes to the behavioral and experimental economics literature

on risk, beliefs, ambiguity, and incentives. In particular, this thesis (i) proposes

new methods to measure utility function, weighting function, loss aversion, and

beliefs and (ii) derives new theoretical insights in the realm of incentive setting

along with the development of a new experimental paradigm.

Chapter 1 establishes a comprehensive semi-parametric method that satisĄes

the four desirable properties of parametric methods: tractable, data-efficient,

error-robust, and easy. Chapter 2 provides a nonparametric version of the

semi-parametric method in Chapter 1 with a smoothing spline approximation

of the utility function. Applications of both chapters 1 and 2 on existing data

involving risk conĄrm deviations from expected utility theory through evidence

of probability weighting function and loss aversion.

Chapter 3 extends the semi-parametric method in Chapter 1 to measure

beliefs and ambiguity attitudes towards discrete sources of uncertainty. Subjects

make decisions under these types of uncertain situations in a daily life basis. In

various applications, the method successfully passes validity tests and provides

insightful results in the case of trust and coordination games. This chapter Ąnds

deviations from subjective expected utility theory through evidence of ambiguity

attitudes. The chapter highlights that people are more insensitive to likelihood

in the presence of asymmetric events than symmetric events, suggesting that
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General conclusion

belief formation is cognitively demanding. For equal sources of uncertainty,

people exhibit payoff dependence aversion and variety of payoffs seeking. Payoff

dependence aversion means that people dislike that their own payoffs depend on

the preferences of others. This behavior is captured by a more concave utility

function. Variety of payoffs seeking means that subjects prefer a greater number

of possible payoffs when such possible payoffs depend on the preferences of others.

This behavior is captured by more optimism.

Chapter 4 studies the existence of the Risk-incentives tradeoff (RIT) under

Rank Dependent Utility (RDU) and Mean-Variance-Skewness (MVS). Theoreti-

cal analyses show that RIT is remarkably robust under RDU but not under MVS.

With data based on a novel experimental design that eliminates confounding

factors, Chapter 4 provides evidence for RIT even in the case of risk-seeking

agents, which is a distinct prediction of RDU. The results provide support for

the RIT and suggest that it applies to a broad range of situations, including

cases in which agents are risk-seeking (e.g., executive compensation).

Naturally, the thesis has both limitations and potential extensions for future

research. The following are some of the limitations and possible extensions.

The methods in Chapters 1 and 2 can be extended in several directions.

Even though these methods do not readily apply to the context envisioned by

Kőszegi and Rabin (2007), one can speculate on a possible procedure combining

Köszegi and RabinŠs approach and these methods. This procedure could start

by introducing probability weighting functions in Kőszegi and Rabin (2007)

following the work of Baillon et al. (2020). Also, these methods can be used to

extend the popular elicitation technique of Holt and Laury (2002) to the case

in which probabilities are distorted, following the approach of Abdellaoui et al.

(2011).
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Following Li et al. (2020), Chapter 3 conducted two-stage experiments. In the

Ąrst stage, people played trust games. In the second stage, the Ąrst movers in the

Ąrst stage made decisions in which the sources of uncertainty were the unknown

decisions of the second movers in the Ąrst stage. Two important identiĄcation

assumptions are behind the experimental results of Li et al. (2020) as well as

the ones in Chapter 3. The Ąrst is that social preferences collapse in the second

stage. This is quite reasonable because in the second stage, the decisions of the

Ąrst movers will have no impact on the Ąrst-stage payoffs of the Ąrst movers.

The second assumption is that betrayal attitudes continue to play a role in the

second stage. But, this second assumption is less trivial. Indeed, it is possible

that betrayal attitudes collapse in the second stage as it is the case of social

preferences. This could explain why these two papers do not Ąnd evidence in

favor of betrayal aversion. A future avenue of research is to quantify the role of

betrayal aversion in trust decisions under the more reasonable assumption that

betrayal aversion collapses in the second stage of the experimental design.
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Methods and Applications
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Abstract

The thesis is at the intersection of behavioral economics, experimental economics, and decision
theory. Chapters 1, 2, and 3 develop methods to estimate different components of decision
models under risk and uncertainty: utility function, weighting function, loss aversion, and beliefs.
Applications conĄrm deviations from standard theories (Expected Utility and Subjective Expected
Utility) through evidence of weighting function, loss aversion, and ambiguity attitudes. People
are more insensitive to likelihood in the presence of asymmetric events than symmetric events,
suggesting that belief formation is cognitively demanding. For equal sources of uncertainty,
people exhibit payoff dependence aversion and variety of payoffs seeking. Payoff dependence
aversion means that people dislike that their own payoffs depend on the preferences of others.
This behavior is captured by a more concave utility function. Variety of payoffs seeking means
that subjects prefer a greater number of possible payoffs when such possible payoffs depend
on the preferences of others. This behavior is captured by more optimism. Chapter 4 studies
the existence of the Risk-incentives tradeoff (RIT) under Rank Dependent Utility (RDU) and
Mean-Variance-Skewness (MVS). Theoretical analyses show that RIT is remarkably robust under
RDU but not under MVS. With data based on a novel experimental design that eliminates
confounding factors, chapter 4 provides evidence for RIT even in the case of risk-seeking agents,
which is a distinct prediction of RDU. The results provide support for the RIT and suggest that
it applies to a broad range of situations, including cases in which agents are risk-seeking (e.g.,
executive compensation).

Keywords: Risk, uncertainty, beliefs, ambiguity attitudes, experiment.

Résumé

La thèse se situe à lŠintersection de lŠéconomie comportementale, de lŠéconomie expérimentale
et de la théorie de la décision. Les chapitres 1, 2 et 3 développent des méthodes pour estimer
les différentes composantes des modèles de décision en situation de risque et dŠincertitude :
fonction dŠutilité, fonction de pondération, aversion aux pertes et croyances. Les applications
conĄrment des déviations par rapport aux théories standard (utilité espérée et utilité espérée
subjective) à travers la fonction de pondération, lŠaversion aux pertes et les attitudes dŠambiguïté.
Les gens sont plus insensibles à la probabilité en présence dŠévénements asymétriques quŠen
présence dŠévénements symétriques, ce qui suggère que la formation des croyances demande des
efforts cognitifs. Pour une même source dŠincertitude, les individus font preuve dŠaversion à la
dépendance des gains et de préférence pour la variété des gains. LŠaversion à la dépendance des
gains signiĄe que les individus nŠaiment pas que leurs gains dépendent des préférences des autres.
Ce comportement se traduit par une fonction dŠutilité concave. La préférence pour la variété des
gains signiĄe que les individus préfèrent un plus grand nombre de possibilité de gains lorsque
les gains dépendent des préférences des autres. Ce comportement se traduit par lŠoptimisme.
Le chapitre 4 étudie lŠexistence de lŠarbitrage entre risque et incitations (RIT) dans le cadre de
lŠutilité dépendante du rang (RDU) et de la moyenne-variance-skewness (MVS). Les analyses
théoriques montrent que le RIT est remarquablement robuste sous RDU mais pas sous MVS. Avec
des données basées sur un nouveau modèle expérimental qui élimine les facteurs de confusion, le
chapitre 4 fournit des preuves de lŠexistence du RIT même dans le cas où les individus ont des
préférences pour le risque, ce qui est une prédiction distincte du RDU. Les résultats conĄrment
lŠexistence du RIT et suggèrent quŠil sŠapplique à un large éventail de situations, y compris les cas
où les individus ont des préférences pour le risque (par exemple, la rémunération des dirigeants).

Mots Clés : Risque, incertitude, croyances, attitudes face à lŠambiguïté, expérience.
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