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Chapter 1

Introduction

Mean-field stochastic control problems are stochastic control problems where the state dy-
namic as well as the criteria to optimize depend, in a non trivial way, on the statistical
distribution of the system. They arise from two directions. On the one hand they are a con-
venient extension to the classical theory of stochastic control. They allow for cost criteria
which are non-linear functionals of the probability distribution of the system. On the other
hand, they arise as “mean-field” limit for control problems of large number of interacting
agents. The theory was largely developed in the last ten years, in connection with the sibling
theory of mean-field games. Mean-field games were introduced independently by Lasry and
Lions in [100] 10T} 102] and Huang, Caines, Malhamé in [29] and [30]. It aims at describing
stochastic differential games when the number of players tends to infinity. We refer to the
textbooks [14], 36], 43| [44], as well as the lecture notes [5, 34, 40, 56, 119] and the video
lectures [104] for a full account of the theory.

From a theoretical point of view, the main questions in mean-field control theory fall
into two categories. On the one hand, one wants to solve the mean-field stochastic control
problem. This means finding the optimal value that can be achieved and, if possible, de-
termining an optimal control. On the other hand, one would like to properly understand
the connection between the mean-field problem and control problems for large number of
interacting agents.

The goal of this introduction is threefold. First, we want to introduce the main questions
of the theory and some available results from the literature. We do not aim for exhaustiveness
and this is rather an opportunity to introduce basic concepts that will appear throughout
the manuscript. Secondly, we want to address specifically mean-field control problems with
constraints in law which are the main subject of this dissertation. Finally we present the
contributions of this thesis.

1.1 Mean-field stochastic control

In their simplest version, stochastic mean-field control problems take the following form. The
dynamic of the system is described by a stochastic differential equation of McKean-Vlasov

type
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dX; = b(X,, L(X;), o) dt + \/2dB,. (1.1)

The state of the system X; is a random variable taking values in R?. We denote by £(X;)
the probability distribution of X;, sometimes referred to as its law. In the above equation,
(o )o<t<t 1s the control process, taking values in the control set A. Moreover the stochastic
differential equation is driven by a standard Brownian motion (B;)o<i<r. The goal is to
choose the control in order to minimize over the time interval [0,7] a cost in expectation
form

J(a) = E UT L(X,, )i + LT FL(X,))dt + Q(E(XT))] | (12)

0
In the above expression, L is a running cost which depends on the state of the system and
the control. The running cost F and the terminal cost G are of “mean-field” type. This
means that they are functions of the probability distribution £(X;) of the process X;. They
are defined over P(IR?), the infinite dimensional space of Borel probability measures over R.
This problem exceeds the scope of the standard theory of stochastic control (see [68])
because of this dependence of b, F and G on L(X};). Consequently, knowing the state of the
system X; at time ¢ is not sufficient to act optimally. One needs as well to know the full
probability distribution of X;. This leads to an intrinsically infinite dimensional problem
and requires analysis as well as differential calculus tools over P(R?). For the same reasons,
the dynamic programming approach requires new techniques to be adapted to the mean-field
setting. The resulting Hamilton-Jacobi-Bellman (HJB) equation has to be stated over P(R¢)
and the standard techniques to study HJB equations break-down in infinite dimension.
The study of mean-field control problems is partly motivated because they arise as limit
of control problems for large numbers of interacting agents. The pre-limit problem involves
a huge number of systems and, presumably the “mean-field” limit can be easier to handle.
The N-agent problem can be described as follows. Consider N > 1 agents —or players, or

particles— denoted th’N, e ,XtN N evolving according to the stochastic differential equa-
tions
dXPN = b(XN, A" ap™MYdt + V2dBPY, (1.3)
1
where ﬁN’ = - 2 ) xON is the empirical distribution of the agents. The Brownian motions

are independent and they represent the private noises to which each agent is subject. We
assume that a central planner chooses the controls (OétN>0<t<T for each agent, in order to
minimize the cost

P 1 l % % ~ :1: ~N,x
TV (0™ )ozter)1<ien) = [Jo NZ L(X;N,ap™) dt—i—f F(a®)dt + G(apey | . (1.4)
=1

To understand, at least formally, the connection between the N-agent problem and the
mean-field problem we can look for controls of the form

o = a(t, X)),
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for some function a : [0, 7] x R* x P(R?) — A. This means that we expect that the optimal
strategy for each player is a (common) function of its state X", time ¢ € [0,7] and the
distribution of the population ﬁiv “ at time t. Provided « is regular enough with respect
to its arguments and the agents are initialized from independent and identically distributed
(iid) initial positions, propagation of chaos dictates that the players become increasingly
independent as their number goes to infinity, see [79, 114 126]. Moreover the dynamic of a
typical player is given by

p(t) = £(X) (1
and the (stochastic) empirical distribution fi;* of the players converges to the (deterministic)
measure /(t). This means that a typical player does not interact anymore with the rest of the
population but rather with its own statistical distribution. At the limit, the cost functional
takes the form (1.2]). We have reduced the complexity of the problem, from N to one player.
The price to pay is that the dynamic of the system and the cost to minimize now depend on
L(X}). The rigorous connection between Problem (1.13)) and Problem (1.10)) is unfortunately
not obvious. Indeed it is not clear that passing to the mean-field limit in the system and
optimizing over the controls are commutative operations.

In the rest of this introduction we present the main approaches developed in the literature
in order to study the mean-field problem and its connection with the N-agent problem.

{ dX; = b(Xy, L(Xy), a(t, Xy, u(t))dt + +/2d B,

1.1.1 Optimal control of SDEs of McKean-Vlasov type and the
Pontryagin maximum principle

Depending on the objective to achieve, it is convenient to formulate the mean-field control
problem alternatively as an optimal control problem for stochastic differential equations,
as an optimal control problem for a parabolic equation, the Fokker-Planck equation and
finally, as an optimization problem over a set of probability measures satisfying martingale
constraints.

The first and most natural formulation of the control problem goes as follows. We consider
a filtered probability space (€2, F,F,P) endowed with a d-dimensional Brownian motion
B = (B)o<t<r- An admissible control is a measurable process taking values in a control

T

space A and satisfying the integrability condition E [J ]at\Zdt] < +o0. If we assume that
0

b satisfies suitable Lipschitz continuity conditions, for any initial position Xy € L*(, Fo, P),

and any admissible (oy)o<i<r, there is a unique solution to the McKean-Vlasov stochastic
differential equation

t
X, = Xo + f b(Xy, L(X,), o0)dt + V2B, vt e [0,T]. (1.6)
0

We seek to minimize the cost

T(ox)oerer) = E [ | " L(X, a0t + ) " F(e(x)dt + g<XT>] ,

0
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over all the admissible controls.

This problem can be solved, under specific regularity and convexity assumptions, using
the Pontryagin maximum principle. To this end, we introduce, for each admissible control
(o )o<t<r and associated process (X;)o<i<, an adjoint state (Y3, Z;)o<i<r as the solution of
the backward stochastic differential equation,

{ dn = — [@Cb(Xt, ;C(Xt), Olt)Y;g + @CL(Xt, Ozt) + Dmf(ﬁ(Xt), Xt)] dt + thBt,

Yr = DpnG(L(X7), X7), (1.7)

where “D,,” denotes a suitable derivative with respect to the measure variable. See Sec-
tion [L.3] of this introduction for the exact definition. Under specific regularity and growth
assumptions on the data b, L, F and G which guarantee among other things, for each ad-
missible control (ay)o<i<7 and associated process (X;)o<i<7, the well-posedness of , the
Pontryagin maximum principle can be stated as follows.

Theorem 1.1. Assume that the control set A is convex and
a— b('xnu’a a>y + L(l’, CL)

is convez over A for all (z, 1) € R x P(RY). Then we have the following necessary condition
for optimality: if (cu)o<i<r @S an optimal control and (X;)o<i<r 5 the associated optimally
controlled process, then, for all a € A,

b(Xt, ,C(Xt), Oét).Y;g + L(Xt, Olt) < b(Xt, ,C(Xt), a)Yt + L(Xt, a),

dt ® P-almost surely, where (X;,Yy, Zy)o<i<r 18 Ssolution to the forward-backward system of
stochastic differential equations

dXt = b(Xt, ,C(Xt), Oét)dt + \/ﬁdBt,
d}/;j = — [@xb(Xt, ;C(Xt), Oét)}/t + axL(Xt, Oét) + Dm.F(E(Xt), Xt)] dt + thBt7 (18)
Yy = DnG(L(X1), Xr).

Conversely, let (ay)o<i<r be an admissible control with associated process (Xi)o<i<r and
adjoint process (Y, Zi)o<t<r. We further assume that G is (displacement) convex and that

(2 0) v b, 1, 0)Y; + L) + F)
18, dt ® P almost-everywhere, convez. If
b(Xt, ,C(Xt), O{t)}/; + L(Xt7 O[t) = (llI€l£ {b(Xt7 ‘C(Xt)a a,)}/;j + L(Xt7 CL)} s
dt ® P almost-everywhere, then (oy)o<i<r S an optimal control.

This theorem is an extension of the standard stochastic Pontryagin maximum principle
which can be found in [I35]. It was proved by Carmona and Delarue (in a more general
setting) in [42] where the authors prove as well the well-posedness of the system of forward-
backward stochastic differential equations. We refer to the first book of Carmona and Delarue
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[43] for a detailed presentation of this result, including a discussion about the notion of
convexity required for this theorem to hold.

The Pontryagin maximum principle is, by definition, limited to situations where strong
optimal solutions are expected to exist. In the theory of stochastic control, this is more the
exception than the rule. Therefore we need to introduce weak formulations to the optimal
control problem. This is usually done by introducing measure-valued controls and controlled
martingales.

1.1.2 Compactness methods and the martingale problem

The control problem in its weak formulation is described as follows. We denote by C?¢ :=
C([0,T],R?) the path space and V the control space consisting of measures g over [0, 7] x A

T
with the Lebesgue measure as first marginal and such that f f lal*dq(t, a) < +co. A control
0 Ja

q € V can be identified as a flow (g;)w[o,r7 of probability measures over A by disintegration
with respect to its first marginal.

We let (X, A) be the identity processes over (C? x V). That is (X, A¢)(z,q) = (2(t), @)
for any (x,q) € C¢ x V and all t € [0,T]. We look for probability measures m over C? x V
such that Xy is distributed according to po under m,

o000~ [ [ 2otxems, ayinayis

is a martingale under m for all smooth compactly supported ¢ : R? — R, where we use the
notations Lp(t,x, u,a) = b(x, u,a).Dp(x) + Ap(x) for the generator of the diffusion and
m? = X #m for the push-forward of m by X,. We denote by R the set of such measures
and we look for m € R which minimizes the cost function

I(m) = E™ [ JO ' fRd L(X,, a)dAt(a)dt] + LT F(m®)dt + G(m2).

It is important to notice that a “strong” control (ay)o<t<r defined on some probability space
(Q, F,P,F) with associated controlled process (X})o<i<r solution to the McKean-Vlasov SDE
(1.6) induces a relaxed control (X, dtd,,(da)))#P € P(C? x V). We denote by R, the set of
such strong controls.

Under appropriate assumptions on b to ensure the well-posedness of for constant
controls and appropriate assumptions on L, F,G and pg to ensure the lower semi-continuity
and coercivity of I, Lacker proved -in a more general and difficult setting where the dynamics
have controlled, possibly degenerate volatility- the following result which can be found in
[96].

Theorem 1.2. Optimal relaxed controls exist. Moreover, the infimum over the relaxed con-
trols is the same as the infimum over the strong controls

inf I'(m) = inf T'(m).

meR MmER s



12 CHAPTER 1. INTRODUCTION

Under additional convexity assumptions, one can prove the existence of Markovian con-
trols, that is controls m € R such that m(A; = 6, x,)), for a.e. t € [0,T]) = 1 for some
measurable function « : [0,7] x RY — A. Assume that, for each (x, ) € R? x P(R?) the set

K(z,p) := {(b(z,p,a),2) :ae A,z < L(z,a) + F(p)} c R* x R

is convex. Under this additional assumption, the following result is proved in [96].

Theorem 1.3. For all m € R, there exists a Markovian control m € R satisfying my = mj
for all t € [0,T], as well as T'(m) < I'(m). In particular there exists an optimal Markovian
control.

To prove the existence of optimal solutions, one usually relies on Aldou’s criteria to prove
compactness of solutions to stochastic differential equations with appropriate uniform time
regularity. Uniform time regularity for candidates m € R such that I'(m) < C for some
C > 0 follows from the martingale constraint and energy estimates obtained thanks to the
coercivity of I'. This is achieved, for instance in Proposition 3.5 of [96]. The approximation
of relaxed controls by strong controls is particularly technical when the volatility coefficient
depends on the control, a situation that we do not consider here.

The deep connection between solutions to stochastic differential equations and solutions
to martingale problems is demonstrated in the seminal work of Stroock and Varadhan [125].
It was broadly used in the context of stochastic control, see [94], and notably for applica-
tions in large deviations theory [27, [60, 64, [65]. In the theory of stochastic control, two
milestones are the papers [62] and more recently [96]. In the first one, the authors inves-
tigate the existence of optimal Markovian control under very broad assumptions, using the
martingale problem approach. In [96], Lacker generalizes these results to mean-field systems
and rigorously connects the mean-field problem and problems for large number of interacting
particles. More recently these results were further extended to controlled McKean-Vlasov
SDEs with a common noise in [59].

1.1.3 Optimal control of the Fokker-Planck equation and the mean-
field game system of partial differential equations

Mean-field stochastic control problems are control problems for stochastic processes. How-
ever it is convenient —especially for the type of constraints presented in Section of this
introduction— to directly formulate them as control problems for the law of this processes.
If o has the form oy = a(t, X;) then the law u(t) := L£(X;) of X; solves, by 1t6’s lemma, the
equation

{ Oupt + div(b(z, p(t), a(t, x))p) — Ap =0, in (0,T) x R, (1.9)
u(0) = £(Xo). |
This is a non-linear parabolic partial differential equation (pde) named the Fokker-Planck

equation. We refer to [16] for its general theory, and to [63, 129] for its in connections
with stochastic differential equations. The cost functional (1.2)) can be rewritten solely as a
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function of p and a and we are led to consider the new problem

in L JR L alt,2))dp(t)(2)de + L Flu()dt + G(u(T)), (1.10)

(CHD)

where the minimum is taken over couples (o, ) satisfying the Fokker-Planck equation ((1.9)).
We are now facing a deterministic control problem for a (non-linear) parabolic pde.

In the special case where we control directly the drift of the diffusion, that is b(z, u, ) = «a,
Problem has been widely studied in the literature in the context of potential mean-field
games. We denote by H(z,p) := sup,ga {—p.¢ — L(7,q)} the Hamiltonian of the system and
assume that L is convex and coercive with respect to the control variable.

Theorem 1.4. Under these conditions, optimal solutions (c, ) exist and satisfy
a = —0,H(x, Du),

for some solution (u, p) to the mean-field game system of partial differential equations

—0wu+ H(x, Du) — Au = ?—F(u(t), x) in (0,T) x RY,
m
O — div(DyH (z, Du)p) — Ap = 0 in (0,T) x R4, (1.11)
oG :
M(O) = MO?U(Tv .T) = _(M(T>7'T) in RY.

om

The first equation is a backward Hamilton-Jacobi-Bellman equation satisfied by an ad-
joint state u and from which we derive the optimal control a. The second equation is a
forward Fokker-Planck equation satisfied by the optimal solution. The existence of solutions
and the derivation of the optimality conditions can first be found in the seminal work [102],
see also [24] and Chapters [2] and 3| of this dissertation. Usually the necessary conditions are
obtained through convex duality techniques, using generally the Fenchel-Rockafellar theorem
as in [24, [37] or the Von-Neumann theorem as in [I15]. The form of the optimality condi-
tions as well as the techniques to derive them are reminiscent of the the Benamou-Brenier
formulation of optimal transport, see [12].

This system of partial differential equations is known as the mean-field game system. In
mean-field game theory, u is the value function of an infinitesimal player. The other unknown
1 represents the density of the players at equilibrium.

The mean-field game system was introduced by Lasry and Lions in [I02]. Since then, its
analysis has generated numerous works and we refer to [14, 36, 43, 44, 81, 100, 101, 102]
for existence and uniqueness results in various contexts. System has a particular
form among general mean-field game systems. Indeed, the source term and the terminal
condition for the HJB equation are derivatives of the costs F and G. We refer to these
games as potential mean-field games and they exhibit some particular structural conditions.
They allow for instance for the manipulation of weak solutions to the pde system, as in
[37,139]. They also permit to discuss the stability of solutions as in [24]. The study of their
long time behavior was also pursued in [38, [108]. System (|1.11)) was also analyzed for its
connections with mean-field control problems in the early works [2] 3] [4].
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1.1.4 Connection with control problems for large number of in-
teracting agents.

In this section we explain how Problem (|1.10)) arises as limit problem for large number of in-
teracting agents. To this end, consider N > 1 agents (or players, or particles) (X"~ ..., X)),
evolving according to the stochastic differential equations

X WX 205
AN,z 1.12
N - Z(SXzN ( )

starting from independent initial positions XO’N, ceey Xév N identically distributed according
to g € P(Rd) and driven by independent Brownian motions. A central planner chooses the
controls (o™ )o<i<r for each agent, in order to minimize the cost

T N
E J lZL(X}N o dt+f F(@ydt + G(ap™) (1.13)
o N i=1

where (X} )o<i<r satisfies the dynamic forall1 <i<N.

We distinguish two main approaches to the convergence problem. On the one hand,
we can argue by compactness methods. This is successfully achieved in various contexts in
[277, 59, 65], 96]. One first introduces suitable weak formulations of the control problems. We
already presented the martingale problem formulation of the mean-field problem. For the
N-particle system we proceed similarly. We denote by (X%, A»") the canonical process on
(C4 x V)N and define the empirical measures

R N
/,LN = N;(S(XZ,NJ\'L,N), iv = NZ(S i,N .

We define RN as the set of probability Py € P((C? x V)N) under which (X™)i—1
iid with law gy and

77777

N
wwﬂww@%—foﬁwmeW@W@MT@w
i1 R4

is a martingale under Py, for all smooth, compactly supported ¢ with

ﬁfvgp(xl, e TNy a) i= Dy p(xy, .o xn).b(x, pya) + Ay (2, .., TN),

for all (z1,..., 2N, i, a) € (RN x P(R?) x A. The N-state problem in its weak formulation
is therefore to minimize over Py € RY the cost functional

T N
Py UO (JR %Z LIX{N, a)dA™ (a) + F(ﬁfﬁ) it + g(ﬁg,x)]
i=1

where EP¥ is the expectation under Py. In the setting of Theorem (1.2)), Lacker proved in
[96] the following result, where P(P(R?)) is endowed with a suitable topology.
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Theorem 1.5. For each N = 1, let Py € RN be an ex-optimal control for the N -particle
problem, for some sequence e — 0. Then Py#Y is precompact in P(P(CE x V)) and every
limat point is supported on the set R* of optimal solutions to the mean-field problem.

Conversely, if P € P(P(C%xV)) is supported on R*, then there exists a sequence ey — 0
and a sequence of relaxed ey-optimal controls Py € RY such that Py#iY — P.

There are two key steps to prove the above result. The first one is to prove the com-
pactness of the sequence (Py#7")yen and to identify weak-limit points. This is achieved
thanks to uniform time regularity inherited from the martingale constraint and energy es-
timates derived from the coercivity of I'. Then we can pass to the limit in the martingale
problems. The second step is to show that any relaxed control for the mean-field problem
can be approximated by sequences of relaxed controls for the N-particle problems. This
means that, for any m € R, one can find, for all N € N, Py € R" such that Py#a" — 4§,
in P(P(C? x V)) and EF~ [[(")] — T'(m). This is achieved thanks to coupling techniques
from the theory of propagation of chaos.

The other way to prove the convergence and obtain rates of convergence along the way,
is to rely on the regularity of the value function for the mean-field problem. We discuss
this point in the special case where b(z,u,a) = a and A = R% The value function U :
[0,T] x P(R?) — R is then defined, for all (¢, o) € [0,T] x P(R?) by

Ulto, o) 1= 1nff f (x,a(t,x))du(t) dt—i—f F(u(t)dt + G(u(T))
Rd

where the infimum is taken over the couples (u, ) in C([to, T], P(R?)) x Liguw [to, T x
R? R?) satisfying

(1.14)

{ O+ div(ap) — Ap =0 in (to, T) x R%,
11(to) = po.

If U is smooth enough, we can prove that it satisfies the dynamic programming equation

—oUd + | H(x,D,U m)dm(z) — f div, DU (m, x)dm(x)

“ = F(m) in (0,7) x P(RY), (1.15)

U(T,m) =G(m) in P(RY).

Now, let us define V¥ (to,x") for t € [0,T] and xV = (28, ... 2VN) € (RY)Y as the value
function for the N-agent problem when the players start at t, with XZ'C’)N = 2%V for all
1 <1< N. We are faced with a standard stochastic control problem and we can show under
appropriate regularity assumptions on the data, that VY is a strong solution to the HJB
equation
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N
# N NDux VN (txV)) = >0 A VN (8, xN)

i=1

) = f(Nzcszi,N) in (0,7) x (RHYN, (1.16)

—(’)tVN t X

||M2

N
VN (T, %) = g(% Soun) in (R,
=1

\

For all N > 1 we can project U onto [0,7] x (R?)"N and define the function VY for all
€ [0,7] and xV = (2, .. 2NN e (RY)N by

N
—N N\ 77 1 _
V' (t,x )_U(t,ﬁz{aw).

Using equation ({1.15)) we can prove that PV solves Equation ((1.16)) up to a small error term,
that is

—0 % i H(z"N, NDuw V" (t,xN)) — i Apn V' (t,xN)
1 N
4 = Flyy ; 0pin) + Ex(t,xY)  in (0,T) x (RH)V, (1.17)
VY (T, xY) = G(~ iéw) in (RY)",
\ N =1

with

mm
j=1 i=1

See Section u 3| for the definition of the second order derivative D2, . If D2 U is bounded,
we have that |Ey| < + and by a standard comparison principle for parabohc equations, we
can deduce the estlmate

N
En(t,xV) = —ZTr(D2 Zdﬂw 2N N,

C
Ul(ty, — Zéw— (to, x )|<N

for some C' > 0 independent from N > 1, tg € [0,T] and xV € (R%)V.
Moreover, still assuming that U is a smooth function, it provides us, for each initial
positions (¢, i), with a Lipschitz continuous optimal feedback control

o (t, ) = —0p,H(z, Dpyld(t, p, )
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for the mean-field problem. We can test this control for the population of particles and
deduce proper propagation of chaos results for the optimal trajectories of the N-particle
problem, see [80]. Therefore the difficulty comes down to proving the desired regularity
for the value function U over [0,7] x P(R?). This is not merely a technical challenge or
a by-product of the regularity of the data and this cannot be achieved without structural
conditions which guarantee, at least, the uniqueness of solutions to the control problem for
each initial position. In [36] Chapter 3.7 such regularity is proved (in a compact setting)
under suitable convexity assumptions on the costs F and G, by analyzing the mean-field
game system and suitable linearizations of this system around the initial condition
to- A similar approach is also carried on in [42].

Finally we mention other approaches to the convergence problem. For problems with
finite state space or for problems where all the players face the same noise, one can use
techniques from the theory of viscosity solutions to HJB equations to prove the convergence
of the value functions. This respectively done in [78] and [47]. For the deterministic setting
(namely when problem is considered without diffusion), we refer to [46], [71], [72} [78].

1.2 Mean-field stochastic control with constraints in
law

Chapters , and {4 of this manuscript are dedicated to the optimization problem ({1.10))
when the solution p is constrained to satisfy, either the terminal constraint

((T)) <0, (1.18)
in Chapter 2] or, in Chapters [3] and [4] the state constraint

U (p(t)) <0, vt e [0, 7], (1.19)

where U : Py(R?) — R satisfies similar regularity conditions as F and G.
In this section we give some motivations to study these constrained problems.

Constraint in law. Constraints in law arise naturally in applications in economy and
finance, as a way to control the risk associated with a given strategy. The most striking
examples are the Mean-Variance portfolio selection problem, see [I07], and models with
value at risk constraints as in [92]. Probability constraints are also a convenient way to relax
almost-sure constraints. In the classical super-hedging problem, the controlled process must
match almost surely a given random variable at the terminal time. This might be too hard
to replicate. To tackle this issue, Follmer and Leukert introduced in [70] the method of
quantile hedging which can be seen as a stochastic control problem with constraints in law.

Mean-field constraint. For mean-field control problems, the constraint can also arise
as a limit “mean-field” constraint. We refer for instance to the works of Seguret [121] in
connection with the problem of smart charging of electric vehicles. Mean-field constraint also
arise when the density of a population of agents is constrained to remain below a threshold.
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This problem leads to local constraints (the constraint is a function of the density of the law
of state process) and it was addressed in [39, [57, [109] 110, [120].

Large deviations for interacting diffusion processes. Finally we explain an appli-
cation to large deviations theory. Consider N interacting (non-controlled) particles X
subject to the dynamics

dX;N = b(XPN, pN"Ydt + dBPY for t e [0, T, (1.20)
XN = abN e RY, '
where (B;Y),...,(BN") are N independent Brownian motions, fi. " = % >V, dyin is the
t
empirical distribution of the particles and x(l)’N, o ,xév M are deterministic initial positions

in R such that SV 5w2;),N converges to some fig in P(R?). We introduce the rate function
I:C([0,T],P(RY)) — R defined by

o) einf || Slatt.a)Pdu(ty ) (1.21)

where the infimum is taken over the a € L2, ¢, ([0, T]x R?, R?) such that the time marginals
(1(t))o<t<r of p satisfy the Fokker-Planck equation

{@u+mwwmw@»+amxnm—%Au=0inwﬂvaﬂ (1.22)

1(0) = po.

In their seminal work [55], Dawson and Gértner proved that the family of probability

measures ([iV%)ys satisfies a large deviation principle with rate function I (in [55] the rate

function is not exactly but the two formulations are equivalent, see for instance [13]).
This means that, for suitable subsets K = C([0,T], P(R?)), it holds

1
lim Nlog}P’[ﬁN e K| = — inf I(p).

N—+00 pekl

Therefore, if one is interested in the asymptotic of the probabilities P [\If(ﬁgw) < O] as

N tends to infinity, one is led to minimize over couples (i, ) € C([0,T], P(RY)) x
Lfn(t)®dt([0,T] x R? RY) satisfying in the sense of distributions as well as the ter-
minal constraint W(u(7")) < 0. If one is interested in the asymptotic of the probabilities
P [\Il(ﬁiw) < 0,Vt e |0, T]], one is led to solve the same problem with, this time, the state
constraint W(u(t)) <0, Yt € [0,T].

We refer to the works [26] 27, [64] for the deep connections between mean-field control and

the theory of large deviations for weakly interacting diffusions and how the weak convergence
methods introduced in Section can be used to prove the large deviations principle.

1.3 The space of probability measures

In this section we recall some basic facts about the space of probability measures P(R?),
that will be used throughout the manuscript.
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Metric aspect. In this dissertation, we mostly focus on subsets P,(R?) of P(R?), for
p = 1. The space P,(R?) is the set of Borel probability measures p over R? such that

| aPdnte) < .

It is endowed with the p-th Wasserstein distance d, from optimal transport, defined, for
v € Py(RY) by

D _ — P 1.2
ar) = nt [ | e srdra) (1.23)

~el'(p,v)
where I' is the set of transport plans between p and v, that is the set of Borel probability
measures 7 over R? x R satisfying, for all Borel subset A of R?, v(A x R?) = p(A) and
7(RYx A) = v(A). With this metric, P,(R?) is a complete separable metric space. Moreover,
for a given a sequence () € (P,(R%))N,

[, narrowly converges to i,
nLHJrrlood (pn, 1) = 0 = { (i) has uniformly integrable p-moments. (1.24)

We recall that (u,) narrowly converges to p if

im [ @) = [ f(@)duta),
n—-+0o0 Rd Rd

for every continuous and bounded function f : R? — R. We refer to the books [8] and [I30]

for the problem of optimal transport and the properties of the Wassertein distance.

Differential calculus. We are going to solve optimization problems defined over the space
P,(R?) and, to this end, we need a suitable notion of differentiability with respect to prob-
ability measures. We say that a map F : Po(R?) — R is C* over Py(R?) if there is a jointly

continuous map — : Py(R?) x R? — R satisfying the integrability condition

om

1
sup —m—m—m
per 1+ [2]?

OF

5 < +oo,  for all bounded subset K < Py(RY),
m

—(p, )

and such that, for all u, v € P(R?), one has the following:

J JR W+ hv,z)d(v — p)()dh = F(v) = F(u).

The derivative is defined up to an additive constant and we always assume that, for all
JIRS PQ (Rd),

OF
fRd O a)dn() = 0.
OF

In the terminology of [43] it means that F admits a linear functional derivative. When S
m

is differentiable with respect to the space variable, we define the intrinsic derivative
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OF

D, ) = Dy—
T, ) S

(m, x).

) 52
If, for every x € R?, the map p — oF i, x) is C* we say that F is C? and we denote by ——
) om?2
m m

its derivative, defined, for all 4 € Py(R?) and all x,y € R? by

) = 5 (52 mn)) )

" om
. . . . 0°F . L . :
Finally, if F is C* and if W(u, x,y) is twice differentiable in (z,y), we let
5 F
ngm‘}—(l’b7 xz, y) = Di,yW(Ma L, y)

Equivalently

We refer to the books [43] and [36] for details on the notion(s) of derivative over the Wasser-
stein space. The reader, not familiar with differential calculus in the space of probability
measures, can assume that functionals like F : Py(RY) — R are linear with respect to the
measure variable. This means that there is a measurable function f : R — R with at most
quadratic growth, such that, for all p € Py(R?),

Fp) = | [lx)du(z).
R4
In this case F admits a linear derivative, given for all u € Py(R%), by

g—;(u,x) = f(z) - » fy)du(y).

If f is a differentiable function, then F admits an intrinsic derivative D,,F given, for all
j € Pa(R?) by

1.4 Organization of the manuscript and summary of
the main results

This dissertation contains four chapters, in addition to this introduction. In Chapter [2]
which constitutes the first section, we investigate a stochastic control problem with terminal
constraint in law. We prove the existence of optimal solutions and characterize them with
a second-order mean-field game system of partial differential equations associated with an
exclusion condition.

The second section of this manuscript is dedicated to optimal control problems where the
state is a flow of probability measures constrained to stay, at all time, in some region of the
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Wasserstein space of probability measures. In Chapter [3| we prove the existence of optimal
solutions and exhibit some optimality conditions, once again in the form of a mean-field
game system of pde’s. The state constraint gives rise to delicate questions of time regularity
for the optimal solutions. We address this questions and propose a geometric condition on
the constraint under which optimal controls are Lipschitz continuous in time. Chapter
is an extension of Chapter [3] We show how mean-field control problems with constraints
in law arise as limit of control problems for interacting agents with symmetric, almost-sure
constraints. We also discuss some connections of this result with large deviations principles
for (uncontrolled) weakly interacting particle systems. Although the results of Chapter
rely on the main results of Chapter [3, the former can be read independently.

Finally, in Chapter [5| we investigate the convergence problem in mean-field control with-
out constraint. In this joint work with Pierre Cardaliaguet, Joe Jackson and Panagiotis
Souganidis, we find an algebraic rate of convergence for the convergence of the value func-
tions of the N-particle problems toward the value function of the mean-field problem, in a
setting where uniqueness of optimal controls for the mean-field problem is not expected and
therefore the value function is not expected to be differentiable.

1.4.1 Chapter 2: Stochastic control with terminal constraint in
law

This chapter is devoted to a stochastic control problem with terminal constraint in law.
This problem was originally motivated by applications in economy and finance, where it is
natural to impose terminal constraints on the statistical distribution of the controlled state,
see [70], 83, [84], [92], 107]. From a control theoretic perspective, optimality conditions were
investigated in [75], [I17] for linear constraints and in the paper of Pfeiffer [I16] for a prob-
lem with non-linear terminal constrain’} A dynamic programming principle for stochastic
control problems with linear constraints can also be found in [50]. Our contribution is to
prove the existence of strong optimal Markovian controls for a problem with non-linear costs
and constraint, and characterize these controls through a (second-order, fully non-linear)
mean-field game system of pde’s. Along the way we put forward a qualification assumption
adapted to the infinite dimensional setting, as well as new weak formulation of the problem
as an optimal control problem for the Fokker-Planck equation. We also exhibit some reg-
ularity and growth conditions on the Hamiltonian of the system to ensure simultaneously
the (approximate) controllability of the Fokker-Planck equation and the regularity of the
backward HJB equation which appear in the system of optimality conditions.
The problem takes the following form, where A is an appropriate class of controls,

inf E U (f1(t, Xy, 00) + fQ(t,.c(Xt)))ng(c(XT))]

OétE.A 0

under the constraint W(L(Xr)) < 0 for the diffusion

LA word of caution on the terminology: throughout this dissertation, linearity and convexity are usually

understood with respect to the measure variable. For instance a functional F : m — J f(z)dm(x) is linear
R4
and therefore convex but it does not bear any meaning on the linearity or convexity of f : R — R.



22 CHAPTER 1. INTRODUCTION

dX; = b(t, Xy, op)dt + 20 (t, X, )d By,

with the initial condition given by £(Xy) = mg € P(RY). The constraint ¥ satisfies, among
other regularity assumptions, the qualification condition

1.2
g—qj(m, .) # 0, whenever ¥U(m) = 0. (1.25)
m

We define the Hamiltonian of the system

{ ﬂmf € P(Rd), \I/(mf) < 0,

H(t,x,p, M) := sup{ b(t,x,a).p —Uta(t,x,a).M—fl(t,x,a)}.
aceA

Under specific assumptions on f1, fs, g,b and o which guarantee the regularity and the
controllability of the system we prove, in Theorem (2.2)), that optimal feedback controls
a:[0,T] x R — A exist and satisfy

H(t,x, Dp(t, ), D*¢(t,x)) = — b(t,z,a(t,x)).Do(t,x) — o'o(t,z,a(s, x)).D*¢(t,z) (1.26)
— filt,z, a(t, z))

for some solution (A, ¢, m) of the system of optimality conditions:

f —owu(t,x) + H(t,z, Du(t,x), D*u(t,x)) = %(t,m(t),x) in (0,7) x R4
orm — div(0, H(t x, Du(t, z), D*u(t, ))m)
Z ((OmH(t,z, Du(t, ), D*u(t,z)))iym) =0 in (0,T) x R?

uw(T,z) = )\2_\1/( (T),z) + g—i(m(T),x) in R, m(0) = my

AT (m(T)) = 0, T(m(T)) <0, A= 0,

\

Our strategy consists first in introducing a suitable relaxed problem (RP])) and then
showing that optimal solutions for the relaxed problem yield optimal solutions for the original
problem. The relaxed problem has the following form,

(m,i,rtl/[f;)eK JRp(m,w, W), (127)

where K is the set of triples (m,w, W) € C([0,T], P(R%)) x M([0,T] x R%, R?) x M([0,T] x
R? S4(R)) such that w and W are absolutely continuous with respect to m(t) ® dt,

oym + divw — Z& Wi =0 (1.28)
1,

holds in the sense of distributions, m(0) = my and ¥(m(7T)) < 0. Above S4(R) is the space
of symmetric square matrices of size d and we denoted by M([0,T] x R? RY) (respectively
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by M([0,T] x R? Sy4(R) ) the space of finite R%-valued (respectively S¥(R)-valued) Radon
measures over [0, 7] x R%. The cost Jrp is defined on K by

T (m,w, W) = JO JRdL(t,x, dtéwdm(t,x), dtgzm(t,x)) dm (t)(z)dt
+ L fo(t,m(t))dt + g(m(T)),
with

L(t7$7QaN) = sup {_pq_MN_H(t7I7p7M)}:H*(t’xv_Q7_N)
(p,M)eRIxS,4(R)

By standard compactness methods, using the controllability of the System we prove the
existence of relaxed solutions (m,@ W) in Lemma m In Proposition |2.3| we proceed to
show that solutions (m,®, W) to the relaxed problem are also minimizers of the linearized
functional

Taelm e, W) wa < dt®dm< @), dt®dm<t’x)) dm(t)(x)dt
f JR P )de(l")dHf 29 (5(T), w)dm(T)(z)  (1.29)

among triples (m,w, W) that satisfy the Fokker-Planck equation with m(0) = mg and with
m satisfying the linearized constraint

o

f —(m(T),z)dm(T)(z) < 0. (1.30)
R4 om

By a minmax theorem we prove in Theorem that the infimum of the linearized problem

is equal to

sup | ¢(0,z)mo(dx), (1.31)

where the supremum is taken over the couples (), ¢) € R* x C,%([0, T] x R%) such that

—0,p(t, ) + H(t, 2, Do(t, ), D*¢(t,x)) < 5f2 (t,m(t),z) in [0,T] x RY, 132)

m 1.32
o )

O(T,2) < A ((T),2) + 5;’1 (M(T), z) in R%

To solve the dual problem, we use the controllability of the system to find an a priori upper

bound on A in Lemma and we show that, for any A\ > 0, there is a unique solution

to the HJB equation in C;’Q([O,T] x R?) in Theorem This last step is, by far, the

most technical since H is not Lipschitz continuous with respect to the gradient variable,
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and therefore the standard regularity results on fully non-linear, uniformly parabolic HJB
equations do not apply. Using the weak Bernstein method we prove that viscosity solutions
to the HJB equation are Lipschitz continuous which is, by standard arguments, enough to
conclude. L

Once we have found optimal solutions (A, ¢) for the dual problem, we can express optimal
controls to the relaxed problem in terms of (X, 5) Arguing by verification, we show that
these optimal controls are also optimal for the original problem and deduce the optimality

conditions.

1.4.2 Chapter 3: Optimal control of the Fokker-Planck equation
under state constraint: optimality conditions

This chapter is devoted to an optimal control problem similar to the one of Chapter [2] but,
this time, the constraint is imposed throughout the whole time horizon. For deterministic
control problems in finite dimension, state constraints have been widely studied and we refer
to the survey of Frankowska [74] and the lecture notes of Bonnans [17] for an overview. As
for unconstrained problems, the results usually take two forms. The dynamic programming
principle leads to the characterization of the value function as the unique “constrained”
viscosity solution to the corresponding HJB equation. This result was proved in the seminal
work of Soner [123]. The other strategy is to show optimality conditions, usually thanks
to the Pontryagin maximum principle. The effect of the constraint is then captured by the
presence, in the system, of an additional Lagrange multiplier. This approach is convenient
to address the delicate question of time regularity of the optimal controls in the presence
of state constraints. This is achieved in [77, [85]. First order control problems with state
constraints in the Wasserstein space were investigated in [I8, [19]. First order mean-field
game systems with state constraints were also studied in a series of papers [31, 32] and
the structure of the present paper is closely inspired from [31] (although our techniques
are completely different). Finally let us mention the reference [76] where the authors prove
first and second order optimality conditions for stochastic control problems with linear state
constraints. In this work the authors put forward a stochastic inward pointing condition to
ensure the normality of the optimality conditions. This condition is the finite dimensional
analog of our qualification condition [I.42] introduced below.

In this chapter, we study an optimal control problem for the Fokker-Planck equation
where the state is constrained to stay in some region of the Wasserstein space of probability
measures. We prove the existence of optimal feedback controls and characterize them with
a second order mean-field game system of pdes associated with an exclusion condition. Our
main contributions are to give the system of optimality conditions when the constraint
and the cost are non-linear functionals of the measure variable and to prove the Lipschitz
continuity of optimal controls under an appropriate geometric condition on the constraint.

More precisely the problem takes the following form. We seek to minimize a cost

J(a,m) = L fRd L(z,a(t,z))dm(t)(z)dt + Jo F(m(t))dt + G(m(T))

over pairs (o, m) with m € C([0, T], Py(R?)) and a € L2, o ([0, 7] x R, R?) satistying in
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the sense of distributions the Fokker-Planck equation:
orm + div(am) — Am =0 (1.33)

with the initial condition m(0) = mgy € Py(R?). The flow of probability measures m is
constrained to satisfy the inequality

U(m(t)) <0, Vt e [0,T]

for some function ¥ : Py(RY) — R.
We assume, in addition to specific regularity assumptions, that the constraint ¥ satisfies

{ ¥(mo) <0, (1.34)

U is convex.

This is a stronger requirement than the qualification condition (1.25]) of Chapter[2] Our first
main contribution in this chapter is to derive the system of optimality conditions for the
problem with state constraint. Assuming as well some coercivity and regularity conditions
for
H(x,p) == sup {—p.q — L(z,p)}
qeR4

and some regularity conditions for the mean-field costs F and G, we prove, in Theorem [3.4]
that optimal solutions (a, m) exist and satisfy a« = —0,H (., Du) for some solution (u, m, v, n)
of the system of optimality conditions

([ —Ou(t,x) + H(x, Du(t,x)) — Au(t, )

= VDS (mt),7) + 2 (m(t), ) in (0,T) x R,
$ oym — div(0,H (z, Du (t,x))m) — Am = in (0,7) x R4, (1.35)
uw(T,z) = ng—;l;(m(T),x) - %(m(T), ) in R?,
m(0) = my,

\

associated with the exclusion conditions

U(m(t)) = 0, v-almost-everywhere in [0, T n¥(m(T)) = 0, (1.37)
(1.36)

where v € M™([0,T]) and n € R" are Lagrange multipliers associated to the constraint.
We discuss in details the well-posedness of the backward HJB equation. It is a prior: non
standard since the multiplier v is a measure. As a consequence u and the optimal control «
are discontinuous in time. Yet we show that w is still smooth in the space variable. To prove
this result we need to introduce, for small parameters ¢,6 > 0 solutions to the penalized
problems

inf J.s(a,m) (1.38)

(m,)
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where the infimum runs over all (m, «) satisfying ((1.33)) (but not necessarily the state con-
straint) and J, 5 is defined by

T
Jes(a,m) J f (@, a(t,x))dm(t dt+J F(m(t))dt + - J U (m(t))dt
R4

0

+G(m(T ))+5\If+( m(T)),

where we used the notation U*(m) = max(¥(m),0). By a linearization procedure akin to
what is done in Chapter , we prove, in Theorem that optimal solutions (a, m) exist and
satisfy « = —0,H (., Du) for some solution (u,m, A, 3) of

([ —Ou(t,x) + H(x, Du(t ,:1:’5)\)1] Au(t, x) -
i )5m(m(t) x) + %(m(t),x) in (0,7) x R4,
) oym — div(0,H (z, Du(t,x)) )—Am =0 in (0,7) x R4,
\ u(T, ) = gg—i(m(T),x) %(m(T),x) in RY,  m(0) = my.
(1.39)
where, A € L*([0,7]) and 8 € R* satisfy
=0 if U(m(t)) <0 =0 it U(m(T)) <0
At)< €[0,1] if ¥(m(t) =0  (1.40) B €[0,1] f ¥(m(T)) =0 (1.41)
=1 if ¥(m(t)) >0 =1 if ¥(m(T)) > 0.

To pass to the limit, as € and § go to 0, we first use condition ((1.34) to build, in Lemma ,
admissible candidates which remain uniformly inside the constraint at all times and deduce,
in Lemma some bounds on A and ( of the form

T
J &dt + b < C,
0 € )
for some C' > 0 independent of € and §. By parabolic regularity, we show, in Theorem
that this is enough to bound uniformly u and its space derivatives in ((1.39) and then we can
pass to the limit as € and § go to 0 to obtain the optimality conditions for the constrained
problem.
Our second main contribution in this chapter (although presented first in the manuscript)
is to provide an additional geometric assumption on the constraint under which the Lagrange
multiplier v is in fact a bounded function over [0, 7']. This condition reads as follows

f | D, ¥ (m, x)|*dm(z) # 0, whenever ¥(m) = 0. (1.42)
Rd

Notice that f |D,,¥(m, x)|*dm(z) is nothing but the squared norm of the Wasserstein
d

R
gradient of ¥ in L?(dm) at the point m. To prove this additional regularity, we apply a
method already used in [33] and [3I] for control problems in finite dimension. We look
at the second order derivative of ¢ + W(m®°(t)) when m° is a solution to the penalized

problem. We show, in Proposition [3.5[ that it can be written, whenever ¥(m®(t)) # 0 as
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L ymes@)) = 2 f Do W(m (1), ). D2, H(xr, Du (£, 2)) Dy ¥ (m (£), 2)dm (t) (x)
+o

where O(1) is bounded independently from € and 6 and can be expressed in terms of m*° as

well as u“® and its space derivatives. Using conditions (1.40) and ([1.42)) as well as the convex-
2

d
ity of the Hamiltonian with respect to the momentum variable, we prove that @\If(me"S (1))

cannot be negative when ¢ is small enough. As a consequence, maxima of ¢ — W(m°(t))
must occur when W(m®°(¢)) < 0 which means that optimal solutions to the penalized prob-
lem remain inside the constraint when the penalization is strong enough. As a direct by-
product, solutions to the constrained problem are also solutions to the penalized problem
with a strong enough penalization and therefore enjoy the same regularity. In particular, we
prove, in Theorem that v belongs to L*([0,T]) and that optimal controls are Lipschitz
continuous in time.

1.4.3 Chapter 4: Optimal control of the Fokker-Planck equation
under state constraint: the mean-field limit

In this chapter we apply the results of Chapter [3], in particular the existence of bounded,
Lipschitz continuous optimal controls for the mean-field problem, in order to study the mean-
field limit for problems with constraints. We show that the mean-field problem arises as
limit of control problems for finitely many interacting agents subject to symmetric, almost-
sure constraints. The pre-limit and limit problems are very different in nature. For the
N-particle system, the constraint has to be satisfied almost-surely and therefore optimal
controls blow-up near the boundary to compensate the effect of the non-degenerate noise.
At the limit, the problem is deterministic, the constraint is of mean-field type and optimal
controls are bounded and Lipschitz continuous. The mean-field limit is now rather well
understood with the different approaches introduced in Section however it seems that
our result is the first of his kind for second order problems with constraints. This being
said, making logarithmic transforms reminiscent of [67, [68] in the special case of a purely
quadratic Hamiltonian, we see that our result has well-known counterparts in the theory of
large deviations for weakly interacting (uncontrolled) particles, see |26l 27, 55, [64].

More precisely, the goal of this chapter is to investigate the connection between the
optimization problem:

ianJRd (z, a(t, 2))dp(t) dt+J]—" ))dt + G(u(T)) (mfP)

(a,p)
subject to

He C([Oa T]’ PQ(Rd)) o€ L?lt@,u( )([07 T] X Rd? Rd)>

Op + div(ap) — Ap =0 in (0,7) x R,
1(0) = po € Pa(RY),

W(u(t)) <0 i e [0,7],
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and a control problem for a large number N of interacting particles:

3 T 1 N ) ) T
inf  EEW [J ~ Z LXPN, ap™ydt + L F(AN")dt + G(aY™) (NP)
=1

1, N
(0y M 1<isn 0

subject to

dXN = olNdt + +/2dBPY,
(XN, LX) ~ @Y under P,
U(aN*) <0 for all t € [0, 7] P~ — almost-surely.

In the latter problem, (B*"),<;<x are N independent standard Brownian motions supported
on a probability space (2, F,P). We denoted by

1 N
~N,x 2 : )
H’t = _N i §XZ’N

the empirical measures and finally PV := P [ (") < _'VN] is the conditional probability

with respect to the event {\I/(ﬁévx) < —ny} for some suitable rate vy > 0 such that vy — 0

as N — +o0. The conditioning being necessary to ensure that the particles start from inside
the constraint. If we denote by U(p), the value of Problem (mfP) and by U (i), the value
of Problem (NP)) our main result, Theorem , is to prove the convergence of Un (1) toward
U(pto), when N — +c0.

We proceed in two steps. First we prove that limsupy_, ., Un (o) < U(po) in Theorem
[4.2] To this end, we need to find a way to transform an admissible control for the mean-field
problem into an admissible control for the N-particle problem. The difficulty is that, if
the particles each follow a bounded control, admissible for the mean-field problem, then the
empirical measure of the system will almost-surely leave the constraint. To overcome this
issue, we build explicit feedback controls which allow the particles to stay strictly inside a
little ball of (R?)™ for as long as needed without paying to big a cost. Therefore we can
virtually stop the particle system when the empirical measures get close to the boundary of
the constraint.

In Theorem , we prove that limsupy_, ., U(po) < UN () relying on the compact-
ness methods introduced in Section [I.1.2] This boils down to finding weak limit points of
sequences of nearly optimal weak solutions to the N-particle problem. Once we know that
Un (110) is bounded independently from N, this follows from the line of arguments of [96] for
problems without constraint.

In Section [4.4] we discuss connections of these results with the problem of large deviations
for weakly interacting particle systems.

1.4.4 Chapter 5: A rate of convergence for the optimal control of
McKean-Vlasov dynamics

Chapter |5 is a joint work with Pierre Cardaliaguet, Joe Jackson and Panagiotis Souganidis.
The goal is to investigate quantitatively the validity of the mean-field approximation, in
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situations where uniqueness is not expected for the mean-field problem and, therefore, the
value function is a priori not differentiable with respect to the measure argument. The
motivation is to fill the gap between the two extreme regimes described in Section [1.1.4] of
this introduction. We recall that the convergence of the value functions is well understood
under mild regularity and coercivity assumptions since the works of Lacker [96], without
common noise and Djete, Possamai and Tan [59] for problems with a common noise. On the
other hand, in the special case where the diffusion is non-degenerate and the cost functionals
are convex with respect to the measure variable, we can prove that the value function for the
mean-field problem is a smooth function over the space of probability measures, see [36]. As a
consequence we can prove propagation of chaos for the optimal trajectories and quantitative
rates of convergence for the value functions. Let us mention that several other papers have
studied the question of the mean field limit of optimal control problems, for example [46]
and [71] investigate the problem without noise by I'—convergence techniques. The recent
contribution [78] studies the mean field limit without idiosyncratic but with common noise
using partial differential equations (PDE for short) techniques.

The main contribution of this chapter is to provide an algebraic rate of convergence for
the value functions in a setting where the value function of the limit problem is not expected
to be smooth.

We use the notations of Section [I.1.4] in this section to describe our results. Our
main theorem asserts that there exists § € (0,1] (depending on the dimension only) and
C > 0 (depending on the data of the problem) such that, for all ¢ € [0,7] and all x¥ =
(BN, 2N ) e < (RY)Y it holds

Ulty, — Zéw— (to,x™)| < §1+M1/2 Zéw (1.43)

1 1<
where MQ(NZ(sz,N) = NZ(‘IELN)Z'
] =1

The first sltelp is to prove, in Lemma and Lemma [5.3, uniform in N, L*, Lipschitz
and semi-concavity estimates for V¥. This is possible under suitable regularity assumptions
on the data, since V¥ solves, by dynamic programming, the uniformly parabolic backward
HJB equation

-

N
Z N, NDzi,NVN(t7 XN)) - 2 Ami,NVN (t, XN)

i=1

) = F(N Z §v)  in (0,T) x (RHYN, (1.44)

—@VN t X

HMZ

N
YN(T,xN) = g(% D 0un)  in (RHY
L i=1

Then we proceed, in Proposition to show the inequality

1 N
VN(t(), < to, Z (5sz —l— — 1 + ]\41/2 2 5sz))
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This not too difficult because we can check that the function

17N(t, p) = f(Rd)N V(BN N du®N (2L )

is a smooth subsolution to the dynamic programming equation of the mean-field problem,
up to a small error that we can quantify using the results of [73]. Indeed, it holds that

—aVN (b, ) — f div(Do DY (1, 7)) dp)

]Rd

+ » H(y, Dy VN (t, 1, 2))dpu(x) < FN (1) in (0,T) x P(RY),

VYT, 1) = GV (n) in P(RY),
where

~

1 Y ~ 1 Y
PV = | D ) and §¥m) = [ (Y a)an®V ).

The results of [73] allow us to estimate the differences between VN and VN, between FN
and F and between GV and G thanks to the regularity of V¥, F and G.

The reverse inequality is more intricate. Indeed it is not clear how to transform an
optimal control for V¥, which depends on the position of each particles (two particles which
are very close can go into opposite directions) into an admissible control for the mean-field
problem. To overcome this issue, we break the particles into subgroups, so that, in each
subgroup, the particles have approximately the same drift. This is possible because we
proved a -priori that the controls for each particle are bounded independently from N. Now
we can prove, using a concentration inequality, that the empirical measure of each sub-group
converges toward the solution of a Fokker-Planck equation when the number of particles
gets larger. We can interpolate between these solutions arising from each subgroup, to find a
candidate for the mean-field problem which is quantitatively close, for a small time at least,
to the empirical measure of the whole system of particles. We combine this construction in
the proof of Proposition with our Lipschitz and semi-concavity estimates as well as a
convenient doubling of variables argument inspired by techniques from the theory of viscosity
solutions for Hamilton-Jacobi equations.

Our strategy relies mostly on the regularity of the value function for the N-particle system
and we only use the Lipschitz continuity of the value function and dynamic programming
principle for the mean-field problem. Therefore, we can extend our result to problems with a
common noise, as long as the private noises remain non-degenerate. This is possible thanks
to the recent results of [59, B8, O7] on mean-field control problems in the presence of a
common noise. In this more general setting, we define

. T1g Nz Nz
V¥ (to, %) := inf E“ (5 2o LOXE,af) + F (" )dt + G(fir™) |
t Kk

N
acA ~1
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( 1,N N,N

where A" is an appropriate class of controls, x) = (z,",..., 75" ) is the initial position of

the particles and

t
XF=apN 4+ J afds + V2(Bf — BE) +2a0(BY — BY)  te[t,T].
t

0

The (B*)>o are independent d-dimensional Brownian motions defined on a fixed filtered
probability space and ag = 0 is the intensity of the common noise. We also define the value
function for the mean-field control problem with common noise

T
Ulto. o) 1= B | (L(Xi,0) + FILOGIFD)) + GLCXF )
a to
where the infimum is taken, once again, over an appropriate set of admissible controls, FB’ =
(FP*)o<t<r denotes the filtration generated by B, £(X;|FF’) is the law of X, conditioned
upon FP’, and

t
X; =Xy + J as(X,)ds + V2(By — Byy) + /2a0(BY — BY),

to

with B another Brownian motion, 7150 a random initial condition with law jo and B°, B
and X, mutually independent. Under appropriate assumptions on the data L, F and G we
prove in Section that the estimate (|1.43)) still holds in the presence of a common noise.
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Chapter 2

Stochastic Control With Terminal
Constraint in Law

This chapter was accepted for publication in the Journal of Optimization Theory and Ap-
plications.

Introduction

This paper is devoted to the study of stochastic optimal control problems with constraints
on the law L£(Xr) of the controlled process at the terminal time. Our problem takes the
following form :

inf E [ [ it X0 + sttt + g(ﬁ(XT»]

0

under the constraint W(L(Xr)) < 0 for the diffusion:

dX; = b(t, Xy, op)dt + 20 (t, X, o )d B

with the initial condition given by £(Xj) = my for some mg in Py(RY), the space of proba-
bility measures over R? with finite second order moment. Here, f; : [0,7] x R x A — R and
f2 1 [0,T] x P2(R?) — R are the instantaneous costs, g : Po(R?) — R is the terminal cost,
U : Py(R?) — R is the final constraint, b : [0, T]xR¥xA — R?and o : [0, T]xRIx A — S4(R)
are respectively the drift and the volatility of the controlled process X and a and is the con-
trol process valued in the control space A. We look in particular for optimal Markov policies,
that is control processes (a;) which are optimal among all admissible controls and for which
there exists some measurable function «a : [0,T] x R? — A such that, for all ¢ € [0,7],
ap = at, X3).

We are going to show that optimal Markov policies are related to the solutions of the
following system of partial differential equations, where the unknown (A, ¢, m) belongs to

R* x C%([0,T] x RY) x C([0, T], Po(R)) -

35
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( —owu(t,z) + H(t,x, Du(t,x), D*u(t,r)) = %(t, m(t), ) in [0,7T] x R¢ (2.1a)
oym — div(0,H (t, z, Du(t, x), D*u(t, z))m)

) + 3 6% ((OurH(t,z, Du(t,z), D*ult, x)))i;m) =0 in [0,7] x R? (2.1b)
w(T,x) = )\g—:;(m(T), x) + ;—i(m(T),x) in R?, m(0) = my (2.1c)

LAY (m(T)) =0, ¥(m(T)) <0, A =0, (2.1d)

where H(t,z,p, M) := sup,c4 {—b(t,x,a).p — olo(t,z,a).M — f1(t,x,a)} is the Hamiltonian
of the system. The forward equation, Equation is a Fokker-Planck equation which
describes the evolution of the probability distribution m of the optimally controlled process.
The backward equation, Equation is an Hamilton-Jacobi-Bellman equation satisfied by
the adjoint state u. The nonnegative parameter \ is the Lagrange multiplier associated to
the terminal constraint. The forward and backward equations are coupled through the source
term for the HJB equation, the terminal condition for the HJB equation and the exclusion
condition A\W(m(T")) = 0.

Our main result, Theorem states that, under suitable growth and regularity assump-
tions, optimal Markov policies a € L°([0,T] x R%, A) exist and satisfy :

a(t,z) € argmaxyy {—b(t, z,a).Du(t, z) — o'o(t, x,a).D*u(t, z) — fi(t,z,a)}

for some solution (A, u, m) of the above system of PDEs. Notice that we do not a priori require
U to be a convex function. When W(m) = | h(x)m(dz) for some function h : R? — R and
Rd

for all m € Py(RY), we say that the constraint is linear. When the costs f, and g are linear
as well we recover the problem of stochastic optimal control under expectation constraint
(as in [22], [50], [117]).

Such problems arise in economy and finance when an agent tries to minimize a cost
(maximize a utility function) under constraints on the probability distribution of the final
output. These types of constraints can take into account the risk given by the dispersion of
the cost. There has recently been a surge of interest for this kind of problems. For instance
[84] and [83] use similar formulations to study respectively the problem of calibration of
local-stochastic volatility models and the problem of portfolio allocation with prescribed
terminal wealth distribution. Probability constraints of the form P [h(X7) < 0] < 1 — € also
fall into our analysis since they can be written as functions of the law £(X7) of Xp. In
state constrained problems, the constraint is directly imposed on the process Xt and must
be satisfied almost-surely. Such constraints might be too stringent or even impossible to
satisfy and probability constraints might allow to find controls with a better reward and a
controlled probability of failure/success.

Stochastic control problems with terminal constraints have been extensively studied in the
literature. Optimal control problems under stochastic target constraints have been studied in
Bouchard, Elie and Imbert [2I] using the geometric dynamic programming principle proposed
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in Soner and Touzi [124] . In Follmer and Leukert [70], the authors introduce the notion
of quantile hedging to relax almost-sure constraints into probability constraints. In Yong
and Zhou [I35] Chapter 3, necessary optimality conditions are proved in the form of a
system of forward/backward stochastic differential equations. More recently the problem
with constraints on the law of the process has been studied in Pfeiffer [116] and in Pfeiffer,
Tan and Zhou [I17]. In these works, the authors prove that the problem can be reduced
to a “standard” problem (without terminal constraint) by adding a term involving A\*h —
in the case where the constraint has the form E[h(X7)] < 0— to the final cost for some
optimal Lagrange multiplier A*. A dual problem over the Lagrange multipliers associated
to the constraints is exhibited using abstract duality results. In Pfeiffer, Tan and Zhou
[T17], the authors provide necessary and sufficient optimality conditions for problems with
multiple equality and inequality expectation constraints with much less restrictions on the
data than we do and in a path dependent framework. However [I17] needs to assume some
controllability condition (Assumption 3.1.77) and works with a compact control set. In our
framework, the corresponding controllability condition would be to assume a priori that
there exist some control a such that E(h(X2)) < 0. In our analysis, we are able to prove
such controllability condition when H satisfies suitable assumptions.

The novelty of the present work is to provide a framework in which both controllability
and existence of strong regular solutions for the Stochastic Control problem can be proved.
We also believe that our necessary conditions for optimality can lead to efficient numerical
methods using techniques already developed for similar kind of coupled PDE systems as in
Achdou and Capuzzo Dolcetta [I]. We are also able to handle costs of mean-field type.

Our strategy is to study a relaxed problem which is an optimal control problem for the
Fokker-Planck equation and then rely on the regularity of the data to show that optimal
controls for the relaxed problem yield optimal controls for the original problem. The relaxed
problem is the following :

Lt f | 2t et St dm( @)t + [t m(®)at + g(m(T),
where
L(t,z,q,N) := sup {-p.q— M.N — H(t,z,p, M)} = H*(t,z,—q, —N)

(p,M)eRI xSy (R)

and the infimum is taken over the triples (m,w, W) € C([0, T'], P1(R?)) x M([0, T] x R%, R?) x
M([0,T] x R4, S4(R)) for which w and W are absolutely continuous with respect to m(t)®@dt
and (m,w, W) satisfy in the sense of distribution the Fokker-Planck equation:

dm + divw — Y 05 Wi; =0
i.j
together with the initial condition m(0) = mg and the terminal constraint ¥(m(7")) < 0.
Notice that here and in the following, we denote by S;(R) the space of symmetric matrices
of size d, endowed with the inner product M.N := Tr(MN) and by M([0,T] x R4 R?)
(respectively by M([0,T] x RY,Sy(R))) the space of R-valued (respectively Sy(R)-valued)
Borel measures on [0, T] x R? with finite total variation.
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In order to study the relaxed problem, we rely on duality techniques that originated in
the theory of Optimal Transport (see [L18], [130], [I31] and [12]) and were further developed
in the theory of Mean Field Games. Indeed, when the game has a potential structure — see
for instance Lasry, Lions [102], Cardaliaguet, Graber, Porretta and Tonon [37], Briani and
Cardaliaguet [24] and Orrieri, Porretta and Savaré [I15] — the system of partial differential
equations which describes the distribution of the players and the value function of a typical
infinitesimal player can be obtained as optimality conditions for an optimal control problem
for the Fokker-Planck equation. In this framework, the necessary conditions are obtained
through convex duality techniques, using generally the Fenchel-Rockafellar theorem as in
[37], [24] or the Von-Neumann theorem as in [I15]. We follow this path and — when the
final constraint as well as the costs f; and ¢ are linear — we are able to exhibit a dual
problem, which is an optimal control problem for the HJB equation involving the Lagrange
multiplier A € RT associated to the terminal constraint. It takes the following form :

sup | ¢(0,z)dmo(z),
(@) Jre

where the supremum runs over the couples (), ¢) € R* x ([0, T] x R?) satisfying

—0ip(t,x) + H(t,z, Do(t, x), D?¢(t, z)) < fo(t,x) in [0,T] x R?
{ ¢(T,z) < Ah(z) + ¢'(x) in RY,

and where f} : [0,T] x RY - R and ¢’ : R? — R are such that fo(t,m) = | fo(t,z)dm(x)

Rd

and g(m) = J g (x)dm(z).
Rd

The necessary conditions for optimality then follow from the lack of duality gap between

the relaxed and the dual problems. We can then address more general constraints U :
Py(R?) — R and costs fy : [0,T] x Po(R?) — R, g : Po(R?) by “linearizing” the costs and
the constraint around solutions of the relaxed problem.

Using convex duality techniques to solve optimal control problems for diffusion processes
is of course not new. It can be traced back at least to Fleming and Vermes [69], where
the philosophy is very close to ours. In Tan and Touzi, [127] the authors extend the usual
Monge-Kantorovitch optimal transportation problem to a stochastic framework. The mass
is transported along a continuous semimartingale and the initial and terminal distributions
are prescribed. Studying optimal control problems for the Fokker-Planck equation in order
to understand the stochastic control problem is less common and it seems adapted to prob-
lems where the constraints only act on the law of the process. We refer to the works of
Blaquiere [I5] and more recently, Mikami [I11] and Mikami and Thieullen [112] where sim-
ilar approaches are developed in connection with the so-called Schrodinger problem. This
approach has been followed recently by Guo, Loeper and Wang [84] and Guo, Loeper, Lan-
grené and Ning [83] for problems with various expectation constraints. In both papers, the
authors show that their original problem is in duality with a problem of optimal control of
sub-solutions of an HJB equation. This dual problem is solved numerically. Our relaxation is
in the spirit of classical works in convex analysis (see [61]) but usually probabilists prefer to
study another relaxation of the initial problem through the martingale problem (see Stroock
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and Varadhan [125]), as in El Karoui, Jeanblanc-Picqué and Nguyen [62] or Lacker [95].
These different ways to relax the initial problem are, of course, connected and the corre-
spondences between the diffusion processes, the martingale problem and the Fokker-Planck
equation are now well established starting from the seminal work of [I25] and more recently

Figalli [63] and Trevisan [129)].

Under very general assumptions, as in [69], one is usually able to see that the original
problem is in duality with a problem of optimal control of the HJB equation. However,
existence of solutions for this dual problem is much harder to come by and requires particular
structural conditions. Essentially, the dual problem has a solution if the Hamilton-Jacobi-
Bellman equation admits a regular solution. This is of course rather difficult to obtain.
Regularity results for the Hamilton-Jacobi-Bellman equation where the control appears in
the volatility as in Fleming and Soner [68] Chapter 1V.4, usually rely upon three things : the
regularity of the coefficients of the diffusion and of the costs functionals, the compactness of
the control set and finally the uniform parabolicity of the equation. The last point means
that there must be some A~ > 0 such that the volatility coefficient satisfies (uniformly in
the time/state/control variables) oo = A~ ;.

In studying terminal constraints, compact control sets are not satisfactory since we would
not be able to show, in full generality, that the constraint can indeed be reached with a finite
cost. Part of the challenge of the paper is to find a framework in which the process is
sufficiently “controllable” but the HJB equation is still solvable. For that we need to impose
restrictions on the coefficients.

In particular, we require some growth assumptions on the Hamiltonians and its deriva-
tives. This allows us to use the weak Bernstein method as in Ishii and Lions [88], Barles [10],
Lions and Souganidis [I05] and Armstrong and Cardaliaguet [9] (among others) to prove
that the viscosity solution of the HJB equation is Lipschitz in time and space.

As it is well-known, controllability for such systems is related to the coercivity of the
Hamiltonian H in the momentum variable. As we will show, imposing a strictly super-linear
polynomial growth (in p) for H(t,z,p,0) := sup,c4 —b(t, x,a).p — fi(t,z,a) allows to show
that the agent can take (with a relaxed control) any instantaneous drift without paying too
big a cost.

The rest of the paper is organized as follows : in Section we present our assumptions
and the precise statement of the problem. We also give our main results there. In Section
[2.2] we introduce and study the problem of optimal control of the Fokker-Planck equation.
Our main results, Theorems [2.2] and [2.3] are then proved in Section Finally we give in
Section a detailed study of the Hamilton-Jacobi-Bellman equation which is crucial to our
analysis.

2.1 Main Results

In this section we first present our notations and our standing assumptions. Then we briefly
discuss some properties of the Lagrangian L and finally we state our main results.
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2.1.1 Notations and Functional Spaces

The d-dimensional euclidean space is denoted by R? and the space of real matrices of size d
by M, (R). The space of symmetric matrices of size d x d is denoted by S;(R). The subset of
Sa(R) consisting of positive symmetric matrices is denoted by ST (R) and S7*(R) is the subset
of Sq(R) consisting of definite-positive symmetric matrices. Recall that ST (R) is endowed
with a smooth (analytic) square root : /. : S7*(R) — S;(R) (see for instance [125] Lemma
5.2.1). Sometimes we will use S,(A) to denote the set of eigenvalues of a square matrix A.
The euclidean space R is endowed with its canonical scalar product : z.y := Zle x;y; and
the associated norm |z|? := 3% 22, The space My(R) is endowed with its canonical scalar
product : M.N := Tr(*M N) and the associated norm |M|? := Tr(*M M), where Tr(M) is
the trace of M and ‘M is the transpose of M. Sometimes we will use the operator norm
on My(R) : || M]| := sup,epa M| T “l For two real numbers r; and 73, 71 A 75 is the minimum
of r; and 79 and r{ v 79 is the maximum of r; and ro. If n is a o-finite positive measure
on a measurable space (€2, F), p is a o-finite vector measure on (£, F) and p is absolutely
continuous with respect to n we write Zl—‘; € L'(n) for the Radon-Nikodym derivative of p
with respect to n. If F is a locally compact, complete, separable metric space and [ > 1 is an
integer, Co(E,R!) is the space of Rl-valued continuous functions on X, vanishing at infinity.
It is endowed with the topology of uniform convergence. Its topological dual (CO(E ,]Rl))*
can be identified thanks to Riesz theorem as the space M(E, R!) of Rl-valued Borel measures
with finite total variation on E, normed by total variation. We will often consider the weak-*
topology on M(E,R"). When [ = 1 we simply note Co(E) and M(E). MT(E) « M(E) is
the cone of finite non-negative measures. The set of Borel probability measures over F is
denoted by P(E). If r = 1, P.(E) is the set of Borel probability measures over E with finite
moment of order r. It is endowed with the topology given by the Wasserstein distance d.,
of order r. If X is a random variable taking values into (R¢, B(R?)), its law is denoted by
L(X) e P(RY). We say that U : P;(RY) — R if C* if there is a bounded continuous function
U Pi(RY) x R? — R such that, for any my,ms € Py(RY),

U(my) — U(ma) f J (1 —t)yma + tmy, x)(my — mo)(dx)dt.
Rd

This derivative is defined up to an additive constant and we use the standard normaliza-
. : oU . . o
tion convention : J 5—(m, x)m(dz) = 0. See [43] for details on the notion(s) of derivatives
Rd 0TI

in the space of measures.

We consider a finite, fixed horizon 7' > 0. The set of continuous functions from [0, 7]
to P(RY) and from [0,T] to P,.(R?) for 7 > 1 are respectively denoted by C([0,T], P(R?))
and by C([0,T],P.(R%)). The space of measurable functions defined on [0,7] x R? with
values into the measurable space Y is denoted by L([0, 7] x R, Y). Ifu: [0,T] x R¢ — R is
sufficiently smooth, Du : [0, T] x R? — R? and D?u : [0, T] x R? — S%(R) denote respectively
the differential and the Hessian of u with respect to the space variable x. The space of
continuous functions u on [0, T'] x R? for which d;u, Du and D?u exist and are continuous is
denoted by C1([0, T] x R%) and C,*([0, T] x R?) is the subspace of C2([0, T x RY) consisting
of functions u for which u, 6,u, Du and D?u are bounded. If n € N* and o € (0,1), C;"*(R?)
is the space of bounded continuous real functions on R? for which the first n-derivatives
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are continuous and bounded and the n-th derivative is a-Holder continuous. We say that
ot nta . . . . .
¢:[0,T] xR > R¥isinC, 2’ "0, T] x RY) if ¢ is continuous in both variables together

with all derivatives D] D3¢ with 2r + s < n. Moreover, |¢| nia 1, 18 bounded, where

[$nse i = 2, ID;Didle+ Y, sup [D;Dio(t,)]a

2r+s<n 2r+s=n te[0,

+ >, sw [DiDig(, @) ez,

0<n+a—2r—s<2 TER?

2.1.2 Assumptions

In all the following, A is a closed subset of an euclidean space, T > 0 is a finite horizon
and ro = r; > 1 are two parameters. The conjugate exponents of r; and ry are respectively
denoted by 7} and r3. The data are:

(b,o, f1) : [0,T] x R x A —» R? x §*(R) x R,
f2:10,T] x P1(RY) - R,
g:Pi(RY) - R,
P (RY) — R,
mg € Ppx(RY).
We define the Hamiltonian of the system, for all (¢, z,p, M) € [0,T] x R? x R? x S4(R) :

H(taxapa M) = sup {_b(taxaa)p - 0<tax7a>t0—(taxaa)'M - fl(thaa)}
acA

1. Assumptions on b, 0, fi, fo and g

(a) For all R > 0, b, o and f; as well as the partial derivatives 0,b, d;b, 0%,b, 0,0, ds0,

02 0, 0uf1, Of1, 02, f1, are continuous and bounded on [0, T] x R¢x (A n B(0, R))
: 0.0, 0,0 and 0, f1 are globally bounded.

(b) b has at most a linear growth and o satisfies A~ I; < oo (t,x,a) < AT, for some
At = A~ > 0 uniformly in (¢, z,a).

(¢) fi1 is continuous and coercive with respect to a: there is 6 > 0 and C;,Cy > 0
such that, for all (¢t,2,a), fi(t,z,a) = Ci|a|'t® — Cs.

(d) fo is continuous, bounded and has one linear derivative in m. The first order

)
functional derivative 5—f2 [0, 7] x P1(R?) x R? — R is globally Lipschitz contin-
m

uous, bounded and x — 5—2(t, m, x) belongs to C;**(RY) with bounds uniform in
m
(t,m).

(e) g is continuous, bounded and has one functional derivative in m such that z —

J
—g(m, z) belongs to C;™*(R?) with bounds uniform in m.

om
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2. Assumptions on the Hamiltonian

(a) His C'in (t,x,p, M). The partial derivatives 0,H, d,H and 0y H are Lipschitz
in [0,7] x RY x B(0, R) x B(0, R) for all R > 0.

(b) There is some ay, s > 0 and Oy > 0 such that, for all (¢, z,p) € [0,T] x R¢ x R,

ailp|™ = Cy < H(t,x,p,0) < asp|™ + Cpy.

(c) O:H(t,z,p, M) is bounded over [0,T] x R? x R? x Sy(R).
(d) There is some positive constant Cp, 5 and an exponent v > 1 such that, for all

(t,z,p, M) € [0,T] x R x RY x Sy(R)

’aPH(twrap? M)’ < Cé’pH<1 + ‘p‘l/>

(e) 0.H is uniformly in (¢, z,p) € [0,T] x R? x R? Lipschitz continuous in M.

2 0. H(t ,
(f) i Either f, = 0 and the limit lim Ipl” — 0-H(t, 2, p,0).p

pl—>+oo  H2(t,z,p,0)
n (t,x) e [0,T] x R4
ii. or fy # 0 and there is some Cy_ 5 > 0 such that |0, H (¢, z,p,0)| < Co,u(1 +
Ip]).

= 0 holds uniformly

3. Assumptions on the constraint ¥

(a) W is continuous and admits a functional derivative such that = — 6—(m,x)
m
belongs to C;**(RY) with bounds uniform in m.

(b) There is at least one m € P;(R%) such that ¥(m) < 0.

ow
(c) Forallm e P;(R?) such that ¥(m) = 0 there exists 2o € R? such that 5—(m, xg) <
m
0.

Remark 2.1. Assumption [I}is sufficient to uniquely define the controlled process X for any
control a € A (see below for the definitions). If A were compact with fo = 0, we would be
in the setting of [68] Chapter IV.4 and these assumptions would guarantee the existence of
a smooth value function (in C,([0,T] x R%)).

Remark 2.2. The upper bound in Assumption [2b|is a coercivity assumption on the cost f;
relatively to the drift b. Taking the definition of H, we see that it is equivalent to ask that,
for all (t,z,a) € [0,T] x R? x A, fi(t,z,a) = dh|b(t,z,a)|”* — Cy, for some ofy > 0. Tt will
be a source of compactness throughout the paper. The lower bound in Assumption [2b|is a
“weak”-controllability condition and we will discuss it further in Lemma
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Remark 2.3. Using the Envelope theorem (see for instance [113]) we see that H being C!
—Assumption in the p, M-variables implies that, for any a(¢,z,p, M) € A such that
H(t7 T, P, M) = —b(t, Z, a(t7 L, Ps M))p - O't(7<t, Z, a<t7 T, p, M)) o fl(t> Zz, &<t7 T, P, M)) we get
OpH(t,x,p, M) = —=b(t,x,a(t,x,p, M)) and Oy H(t,z,p, M) = —c'o(t,z,a(t, z,p, M)).

Consequently, drift and volatility must agree on potentially different optimal controls
with common values —0,H (¢, z, p, M) and \/—5MH(t, x,p, M) respectively. Notice that the
growth conditions on the cost f; and the drift b ensure that for any (¢,x,p, M) € [0,T] x
R? x R? x S4(R), there exists at least one such a(t,z,p, M) in A.

Remark 2.4. Using the envelope theorem and the uniform ellipticity condition in Assumption
we see that for all (t,z,p, M), A I; < =0y H(t,z,p, M) < A1, a fact that we will
repeatedly used throughout the paper.

Remark 2.5. We use (the restrictive) Assumptions 2d] €| 2f in order to find Lipschitz
estimates for the solution of the Hamilton-Jacobi-Bellman equation and to deduce that it is
well-posed in C,*([0, T] x RY). Assumptions [2alis then sufficient to show that the solution is

34a 310

actually in C, 2 ™ ([0, T] x R?). When Assumption [2b| hold, Assumption [2(f)ii| is stronger
than Assumption [2(f)i| but we use it to find Lipschitz estimates which are independent from
the time regularity of the source term of the HJB equation.

Remark 2.6. Assumption 3dis a tranversality condition. When ¥ is convex, this assumption
is equivalent to the existence of some probability measure m € P;(R%) such that ¥(m) < 0.

The following observations will be useful in order to translate the properties of the Hamil-

tonian H into properties of the Lagrangian L defined for all (¢,2,q, N) € [0,T] x R x R? x
Sa(R) by

L(t,x,q, M) := sup {-p.q— M.N — H(t,z,p, M)} .
(p,M)eRIxS,4(R)

Taking convex conjugates in [2b| we see that this assumption can be reformulated in terms of
L: for all (t,z,q) € [0,T] x R? x RY,

ahlql® — Cu < L(t, 2,q,0) < of|g|"T + Ch, (2.2)
1 —ri_
where, fori = 1,2, o, =, """ (1, — 1) 7/ and r} =
T
Throughout the article, the following dual representation for L will be useful.
Lemma 2.1. Under Assumption |1 above, for all (t,xz,q,N) € [0,T] x R? x R? x Sy4(R),

L(t,xz,q,N) < 400 if and only if there is qa € P1(A) such that J b(t,x,a)dqa(a) = q and
A

T

ri—1

is the conjugate exponent of

J o'o(t,z,a)dqa(a) = N and in this case
A

L(twra(LN) = mlnf fl(t,:c,a)qu(a),
aa Ja

where the minimum is taken over the qa4 € P1(A) such that J b(t,z,a)dqa(a) = q and
A

f o'o(t,z,a)dqs(a) = N.
A
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Proof. Tt is elementary to show that for all (t,z,p, M) € [0,T] x R? x R? x S4(R),

H(t,a,p, M) = sup {JA(—b(t,x,a).p—ata(t,x,a)—fl(t,x,a))qu(a)}

qa€P1(A)

and therefore L reads as follows for all (t,z,q, N) € [0,T] x R% x R? x S4(R),

L(t,x,q,N)zsup{ inf {—p.q—M.N+J

i(t,,a) + b{t,2,a).p + oo (t, 2. a)M)qu(a)}} .
p,M | da€P1(A) A

The result follows by exchanging the “sup” and the “inf”. To this end we use Von Neumann
Theorem [2.6]in the Appendix. The coercivity of f; as well as results of [8] (Proposition 7.1.5)
about the lower semicontinuity of functions defined on the space of probability measures allow
to ensure that the use of the minmax theorem is licit. O]

From this dual representation we can see that the lower-bound on H(¢,z,p,0) —or equiv-
alently the upper-bound on L(t,x,q,0)— is a “weak”-controllability condition. It ensures
that the agent can take any drift with a relaxed (i.e measure-valued) control without paying
more than the rf-power of the drift :

Lemma 2.2. Fir (t,z) € [0,T] x R%. It holds that H(t,z,p,0) = ay|p|™ — Cy for all p € R?
if and only if, for all ¢ € R? there exists qa € P1(A) such that ¢ = f b(t,z,a)dqa(a) and
A

J fi(t 3, a)daa(a) < ofg T + Cr.
A

For example, the growth condition on H is satisfied if Conv(Im(b(t,z,.)) = R? for all
(t,z) € [0,T] x R? and for all (t,z,a) € [0,T] x R x A, ab|b(t,z,a)|”? — Cy < fi(t,z,a) <
ot |b(t, z,a)|"T + Cy.

2.1.3 Main Results

Throughout the article, we consider a fixed filtered probability space (£, F,F,P) with F =
(Ft)i=0 satisfying the usual conditions and supporting an adapted, standard d-dimensional
Brownian motion (By);s0. We fix a Fyp-measurable random variable Xy, independent of (B;)
and such that X, belongs to LT (P). The control process a = (ay)sso is a progressively
measurable process valued in A with finite L?(Q x [0, T))-norm. We denote by A the set of
control processes. From the Cauchy-Lipschitz theorem, we know that for every a € A, there
exists a unique F-adapted process X satisfying :

dX, = b(t, Xy, o0 )dt +\20(t, X;, o )dB,

with the initial condition X§ = X,. A particular class of controls which is of interest is the
one of Markovian controls (or Markov policies). A control process « is a Markovian control
if there is a measurable function a : [0, T] x RY — such that, for all t € [0, T], a; = a(t, X&).
We now introduce the cost functional Jsp : A — R U {+0}
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Jsp(@) = E UO (fs, X, ) + fals, L(XT))) ds + g(L(X7)) | -

The optimal control problem we are interested in is to minimize Jgp(a) over a € A under
the constraint W(L(X7r)) < 0.
If there exists a continuous function h : R? — R such that, for all m € P;(RY), ¥(m) =

f h(xz)dm(z) then will say that the final constraint is linear. We define the set of admissible
d

R
controls U,y

Upg :={ae A: V(L(XF)) <0 and Jsp(a) < +0}.
The problem in strong formulation is thus :
inf Jgp(a). (SP)
aeUyq

The fact that U,y is not empty is not trivial in itself but in our setting we will show that
there are indeed admissible controls. Our results are the following :

Theorem 2.1 (HJB equation). Take ¢’ € C;™*(R?) and f5 € Cy([0,T],C2T*(R?)) such that
t — fo(t,z) € C([0,T]) for all z € RY with bounds uniform in x. Assume further that

Assumptions cmd hold with in force if f5 =0 and in force if fy # 0. Then

the Hamilton-Jacobi-Bellman equation
_at¢<ta l’) + H(ta T, D¢(t7 x)a D2¢(t7 .%')) = fé(ta l‘) n [Oa T] X Rd
AT,x) = g'(x) in R

3
3ta 3t

admits a unique strong solution ¢ € C; 2 ([0, T] x R?).

Theorem 2.2 (General Constraint). Under Assumptions @ and @ there exist optimal
Markov policies. Moreover, if (a;) € A is an optimal Markov policy, then there exists
(A, ¢,m) € R* x C*([0,T] x RY) x C([0,T], Po(R%) such that, for m(t) ® dt-almost all
(t,z) in [0,T] x R?

H(t,z, Do(t,x), D*¢(t,x)) = — b(t,z,a(t,x)).Do(t,x) — o'o(t,z,as,x)).D*¢(t,x) (2.3)
— filt,z, a(t, x))

and (X, ¢, m) satisfies the system of optimality conditions :

f —0,p(t, ) + H(t,x, Do(t, x), D*¢(t,x)) = %(t,m(t),x) in [0, T] x RY
oym — div(0,H (t, z, Dé(t, ), D*¢(t, x))m)
) +Z 05((uH (t, 2, Do(t, x), D*¢(t, 2)))iym) =0 in [0,T] xR ()
é\if 0g

o(T,x) = Aé—(m(T),x) 5—(m(T),x) in R%, m(0) = mo,

+
AU (m(T)) =0, U(m(T)) < 0. A > 0.
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Furthermore, m(t) is actually the law of the optimally controlled process X and the value
of the problem -denoted by Vsp(Xo)- is given by

aEUgq

Vsp(Xo) := inf Jsp(a) = y ¢(0, z)dmo () +L fo(t,m(t))dt + g(m(T)).

When the constraint and the costs fy and g are convex in the measure variable, we are
able to show that the conditions are also sufficient :

Theorem 2.3 (Convex constraint and convex costs). If W, fo and g are convex in the
measure argument and Assumptions[1, [4 and[3 hold, then the conditions of Theorem[2.9 are
also sufficient conditions: if a € L°([0,T] x RY, A) satisfies [2.9 for some (¢, m, \) satisfying
then the SDE

dXt = b(t7 Xt7 Ol(t, Xt))dt + \/§U(t7 Xt7 Q{(t7 Xt))dBt

starting from Xy has unique strong solution Xy, it holds that m(t) = L(X;) and oy = a(t, X3)
is a Markovian solution to[SD.

Remark 2.7. Using standard parabolic PDE techniques and the regularity of ¢, we can show
that, provided mg admits a density in C;™*(R?), m(t) in Theorem admits a density

2ta ot

m(t, z) with respect to the Lebesgue measure such that m e C, 2 ([0, T] x RY).

Remark 2.8. In Theorems and , the stochastic basis (€2, F,F,P) and the Brownian
motion (B;) introduced at the beginning of this section are a priori fixed. In the terminology
of stochastic control it means that we deal with strong solutions to the stochastic control
problem.

Remark 2.9. In the spirit of the Karush-Kuhn-Tucker theorem, multiple inequality con-

straints W;(m(7T")) < 0 Vi € [1,n] can be considered provided they satisfy some qualification
condition. We would say that the constraint is qualified at m € P;(R?) provided there

o, o :
exists some m € P;(R?) such that J 5 (m,z)dm(xz) < 0 for all i € [1,n] such that
Rd 0T
ov; o .
U,(m) = 0. If n = 2 a sufficient condition would be 5—(m, ) e L*RY) for i = 1,2 and
m

ov ov
J —L (i, 2)=— (M, x)dz > 0. For n > 2 the condition would be satisfied everywhere if
Rd

om om
the constraints ¥; are convex, satisfy Assumption |3 and if there is some m € P;(R?) such
that W,;(m) < 0 for all i € [1,n].

2.2 A relaxed Problem: Optimal Control of the Fokker-
Planck Equation

Definition 2.1. The relaxed problem is

inf JRp(m,w, W), (RP)

(mw,W)eK
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where K is the set of triples (m,w, W) € C([0,T], P1(R?)) x M([0,T] x R, RY) x M([0,T] x
R? S4(R)) such that w and W are absolutely continuous with respect to m(t) ® dt,

oym + divw — Z 0ZWi; =0 (2.4)
irj

holds in the sense of distributions, m(0) = mg and ¥(m(7T)) < 0. The cost Jgp is defined
on K by

Tap(m,w, W) J JRd ( e dm( 2), dt‘gzm(t,x))dm@)(x)dt
f folt, m(t))dt + g(m(T).

Notice that the first term in the objective function Jzp is convex in the variables

(m,w, W) and that the Fokker-Planck equation and the initial condition are linear in (m, w, W).
Therefore the problem is linear/convex when the final constraint as well as the costs f, and
g are convex.
We say that (m,w, W) in C([0,T], P1(R?)) x M([0,T] x RE,RE) x M([0,T] x R4, Sy(R))
satisfies the Fokker-Planck equation (FPE) 2.4 with initital condition m(0) = my if and only
if, for all ¢ € C(R?) with compact support and all ¢ € C12((0,T) x R?) with compact support
we have

L ) JR (Gg(t, w)dm(t)(x)dt + LT fRd Do(t, z).dw(t,z) + J ' D*¢(t,x).dW (t,z) = 0

0 JRd

and the initial condition f o(x)dm(0)(z) = f o(x)dmg(x).
R4 R4
Moreover, if w and W are absolutely continuous with respect to m(t) ®dt the above relations

hold if ¢ and ¢ are respectively taken in Cy(R%) and C,*((0,T) x R?) (see [129] Remark 2.3).
In this case, we have for all ¢ € C,*([0,T] x R%) and for all t,, 5 € [0, T]

» ¢(ta, x)dm(ty)(z) = y ¢(t1, x)dm(ty)(x)

dW
dm ® dt

(t,x) + (t,x).D*¢(t, ) | dm(t)(z)dt.

+f l&tgb(t,x) n Dqﬁ(t,x).dm;dt

Let us recall some known results about the link between solutions of the FPE and solutions
to the SDE.
Proposition 2.1.

1. Suppose that m is a solution to the Fokker-Planck equation

{ oym + le( ( ) ) Zzy i, ((Uta(t’J:))ijm) =0 (2.5)

m(0) = my.
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with coefficients b : [0,T] x R — R o : [0,T] x R? — My(R), Borel functions
satisfying

L J}Rd (’b<ta$)| + !a(t,x)P) dm(t)(z)dt < +.

Then there is a filtered probability space (0, F,F,P), an adapted Brownian motion
(Bi)i=0 and an adapted process (Xi)o<i<r such that

£(X0) = My,
dX, = b(t, X,)dt + \/20(t, X,)dB,.
Moreover, for allt e [0,T], L(X;) = m(t).

2. Conversely, suppose that (X;)s=o s a strong solution of the stochastic differential equa-
tion

{ dX, = b(s, X,)ds + +/20(s, X,)dB,
X0 = Xo

on some filtered probability space (Q, F,F,P) endowed with an adapted Brownian mo-
tion (By) with b : [0,T] x R - R? and o : [0,T] x RY — My(R) Borel-measurable
functions such that

0
and let m(t) := L(X;) = X;#P, then m satisfies the Fokker-Planck equation [2.5]

Proof. The second part follows from Ito’s lemma and is standard. For the first part we
need to combine the argument of [90] and [129]. From [129] Theorem 2.5 we know that this
statement is equivalent to the existence of a solution to the so-called martingale problem
and from [90] Chapter 4, we know that existence of a solution to the martingale problem is
equivalent to the existence of a weak solution to the SDE. O

P UT (s, X.)| + |o(s, X)) ds < +oo} 9

Let Vrp(mg) be the value of the relaxed problem. The link with the usual compact-
ification / convexification (see [62] and [95]) method in stochastic optimal control is the
following :

Proposition 2.2.

Vartoo) = it ([ [ [ ptte.tast ) @an@ + [ pim - gmcry),

qaA,m

where the infimum is taken over the couples (qa, m) € L°([0, T]xR%, P (A))xC([0,T], P1(R%))
that satisfy in the sense of distributions the Fokker-Planck equation

A

ﬁthrdiv(f b(t, 7, a)dqa(t, 7) Z q olo(t, z, a)dqa(t, ¥)(a ))ij m) — 0

together with the initial condition m(0) = mg and the terminal constraint ¥(m(T)) < 0.



2.2. A RELAXED PROBLEM: OPTIMAL CONTROL OF THE FOKKER-PLANCK EQUATION49

Proof. The proof follows from the dual representation of L in Lemma and a measurable

selection argument as in [I125] Theorem 12.1.10. For every competitor (m,w, W) such that
dw aw

L(t,x

(¢ "
dt@dn " Tgdan
R? — P;(A) such that, for every (¢,z) € [0,T] x R? one has

(t,x)) < +0o0 one can find a measurable function q4 : [0,T] x

L(t. 2, dtéﬁ(t,x), %(t,x)) _ L F(t, 2 a)daa(t, 2)(a).
and
(dt é“’dm@,x), dtcg[;m(t,x)) _ (L b(t,x,a)qu(t,:c)(a),L ata(t,x,a)qu(t,x)(a)).

]

2.2.1 Analysis of the Relaxed Problem

We will need the following facts :
Lemma 2.3. There exists (m,w, W) € K such that Jgp(m,w, W) < +0.

Proof. We have to check that we can indeed reach the final constraint with a finite cost.
By continuity of ¥ we can find o, ...,z, € R? such that ¥(: %" §,) < 0. Fix some
d > 0. Let i be in [0,n]. For all ¢ > 0 we can find q° € LO([O T x RY ,P1(A)) such that

f b(t,z,a)dq"(t, z)(a) = ¢(x; — x) and f fi(t, 2, a)dg’(t, z)(a) < ocT |z — 2T + Cy for
all (t,z) € [0,T] x R? (see Lemma 2.2). We define the measurable function .(t,z) :=

3
(J olo(t,z,a)dq" (t,x)(a)) . Notice that A~ I; < 7%5.(t,z) < AT, for all (¢,2) € [0,T] x
A

R?. We can use the result of Krylov in part 2.6 of [93] (existence of weak solutions to
stochastic differential equations with bounded measurable coefficients and uniformly non-
degenerate volatility) and find a filtered probability space (Q', F!, F!, P!) satisfying the usual
conditions, an adapted Brownian motion (B;), a Fj measurable random variable X, with
law my and a solution Y,° of the stochastic differential equation

AV = ceaidt + V25, Y )dB,

ct

starting from Xy with 7.(t,y) = e“d.(t,e y). By Ito’s lemma, X; := e Y} solves the

SDE

AX¢ = c(x; — XO)dt + V/25.(t, X¢)dB,
starting from X, and we have, for all ¢ € [0, T']

t
Xf=x+ (Xo —x)e " + \@e_df Te(s, X$)e“dBs.
0

Using the Burkholder-Davis-Gundy inequality and the upper bound on olc we get
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S
E1(|Xtc * :L,Z|ri") < 2rf—1e—r;"ctE1(|XO o $Z|ri") + 273 L 26_rikCtE1 (| 5. S Xc csdB |7‘1)

< 2T e TR (| X — 2T +

t Pk
TR ( Tr(5'5.(s, XC)e 2Csds)21>

3 _ Pk —2ct __
< 2T (X — il T) + 27T (aAT)? ( 2 1) ,
Cc

where E! is the expectation under P!. In particular, taking ¢t = T we see that, for ¢ sufficiently
large we have d,x (L£(X§), 0,,) < 0. Now, for such a ¢, we let m*(t) = L(X[), w' = c(z;—xz)m’,

Wi = &t5.(t,z)m’ . Since f, and g are bounded functions, and thanks to the upper bound
on f; we have that

T
Jrp(m', W', W") < C (1 + f E'(]Xf — xi\rf)dt) < +o0.
0
1,
Now we do the same for all i € [0,n] and we let (m,w, W) := — E(mz,wz, W*). The triple
n

i=1
(m,w, W) solves the Fokker-Planck equation starting from mg. Now by convexity of

T dw dw
W) — L{tx,———(t —— (¢ dm(t dt
o) = [ [ 2t ), ) ) i)
and using the fact that fy and ¢ are bounded we get that Jrp(m,w, W) < 0. Finally

1 & (), L "

for some non negative constant C'(n). For § small enough we get that Jgp(m,w, W) < +w
and ¥(m(T")) < 0 which concludes the proof.
O

Lemma 2.4. 1. Any point (m,w, W) € K with Jgp(m,w, W) < 40, satisfies the follow-
ing estimate for some constant C,, depending only on ry: for any 0 <s <t <T,

*
T
2 *
2

dm(u)(x)du+Cr, A" (t—s)72 .
(2.6)

d,x (m(s), m(t)E < G, (t—s)E!

(u, )

dt ® dm

R4 Jo

2. There exists some M > 0 such that

sup JRd 2|2 dm(t)(z) + |w|([0,T] x RY) + [W|([0,T] x RY) < M (2.7)

te[0,T7]

whenever Jgp(m,w, W) < inf Jgp + 1.
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Proof. First observe that, since Jpp(m,w, W) < 400, by the dual formula for L of Lemma

, we know that m(t)®dt-almost-everywhere : A™1; < dtc(g‘ilm < A1, Let (Q, F,F,P, (X, B))
be a weak solution to the SDE
dX, = dt;}ﬁ(t,)@/)dt + 2%@,&)6@
with £(X;) = m(¢t) for all ¢t € [0,T]. The existence of such a solution is ensured by the fact
that m solves the FPE with coefficients dw , W (see Proposition . Now, for
dt @ dm’ dt @ dm

all 0 < s <t < T, with M,, and C,, positive constants depending only on r, we have

*

d,s (m(s), m(t)F <E[|X, - X,I*]

r¥_ t dw r¥ r¥ / r¥
t d 3
J v du]

dt ® dm
. 3
+ 22 M,,E U Tr(

<(2(t—s))%'E

(u, Xu)

T

Wy, Xu)du] 7

dt ® dm

*
T
2 *
T2
2

<C(t—s)2 ! dm(u)(z)du + CoyA* (t — 8) %,

(u, )

dt ® dm

R4 Jo

where we used Jensen inequality for the term involving w and Burkholder-Davis-Gundy
inequality for the other one.

For the second part of the lemma, let us take (m,w, W) € K such that Jgp(m,w, W) <
inf Jgp + 1. From the growth assumptions on L, there exists M; > 0 (which does not depend
on the particular (m,w, W)) such that

LI

Using the estimate proven in the first part of the lemma, we see that for all ¢,s € [0,T],
d,z (m(s),m(t)) < Mj for some M; > 0 which, once again, does not depend on the particular

T

*
)

dm(u)(x)du < M.

dt ® dm<u’ 7)

choice of (m,w, W). This yields the uniform estimate on f z|"2 dm(t)(z) < M! for some
d

R
new M, > 0. The uniform estimate on |w| follows by Hélder’s inequality

([0, 7] x R7) < (f fRddm >/<J f

< TV

*
1/r5

/
dm(t)(x)dt)

*
T2

t:z:)
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dW
dt ® dm
W |([0,T] x RY) < v/dA*. The claim follows taking M = M + Tl/TQMll/Tg +VdA*.

Finally, m(t) ® dt-almost everywhere Sp< (t,x)) € [A7,A"] which means that

[]

From this we can conclude with:
Theorem 2.4. Jgp achieves its minimum at some point (M, @, W) in K.

Proof. This follows from the direct method of calculus of variations. Let (m,,w,, W,) be
a minimizing sequence such that, for all n € N, Jgp(my,w,, W,) < inf Jgp + 1. Using the
Estimate 2.7 in Lemma 2.4l we can use Arzela-Ascoli theorem on the one hand and Banach-
Alaoglu theorem on the other hand to extract a subsequence (still denoted (m,,ws,, W,,))
converging to (i, &, W) e C([0,T], Ps (RY)) x M([0, T] x RY, R?) x M([0, T] x R?,S4(R)) in
C([0,T], Ps(R%)) x M([0, T]x R%, RY) x M ([0, T] xR9, S4(R)) for any 6 € (1,73). It remains to
show that (m, @, VIN/) belongs to K and is indeed a minimum. The Fokker-Planck equation and
the initial and final conditions are easily deduced from the weak-* convergence of measures.
To conclude we can use Theorem 2.34 of [7] to show that absolute continuity of w, and

W,, with respect to m,,(t) ® dt is preserved when we take limits and that Jgp(m,®, W) <
liminf Jrp(mp, w,, Wy,). So (m,w, W) is indeed a minimum of Jzp in K. O
n

2.2.2 Necessary Conditions for the Linear Case

In this section we suppose that W is linear: there is a function A : R — R such that,
for all m € P1(RY), ¥(m) = J h(x)m(dz). We also suppose that h belongs to Cp™*(R?)
Rd

for some o € (0,1) and that there exists zr € R? such that h(xy) < 0. Under these
assumptions, ¥ satisfies Assumption [3] We also suppose that f, and g are linear in m with

fa(t,m) = J fo(t,x)dm(x) and g(m) = J ¢ (x)dm(z) with ¢’ € C;T*(R?) and f} satisfying
R4 Rd
the assumptions of Theorem Let us introduce a dual problem for [RP}
Definition 2.2 (Dual Problem). The dual problem is :
sup f (0, z)mg(dx), (DP)
(\d)eR+ x A,peHJ ™ (Ahtg) VR

where A = C,*([0,T] x R?) and, for all (), ¢) € R* x A, ¢ belongs to HI~(\h + ¢) if and
only if :

O(T,z) < Ah(z) + ¢'(z) in RY (2.8)
The main theorem of this part is a duality result between and :
Theorem 2.5.

{ —0(t,x) + H(t,x, Do(t,x), D*¢(t,x)) < f3(t, ) in [0, T] x RY

min  Jrp(m,w, W) = sup f (0, z)mo(dx).
(m.w,W)eK (A d)eR+ x A,pe HJ (Ah+g) VR
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To prove Theorem the idea is to write the relaxed problem as a min/max problem
and use the Von Neumann theorem to conclude. The statement of the Von-Neumann theorem
is given in Appendix [2.5.1]

Proof of Theorem[2.5. Step 1: Further Relaxation

First we need to enlarge the space of test functions A to allow for functions with linear
growth. More precisely, we define A’ as the subset of C12([0, T] x RY) consisting of functions
¢ such that

9] + 9]

— + 2
(00) Lo + 167 + 1D + |07l + | 2

< 400,
0

where (0;¢)” = min(d;¢,0) and ¢+ = max(¢,0).

Owing to the estimates of Lemma [2.4] and using an approximation argument similar to
[129] Remark 2.3 we see that any minimizer of the relaxed problem satisfies the Fokker-
Planck equation against any function ¢ € A’. Now we define B to be the set of tuples
(m,w, W,n) in M*([0,T] x RY) x M([0,T] x R*, RY) x M([0,T] x R4 Sy4(R)) x M*(R?)
such that w and W are absolutely continuous with respect to m. The cost Jyp is defined on
B by

om0, W,n) — LT fR [L (t,x,%(t,x),%(t,x)) +f§(t,x)] dm(t,x)JrfR ¢ (z)dn(z).

d

If (m,w, W) is a solution of the relaxed problem we claim that

JRP<m7(I)7W) = J;%P<m7wvwaﬁl(Ta dSC)) = ( lng[/ )JI/%P(m?w:I/Van)a

where the infimum is taken over the (m,w, W, n) in B satisfying,

T
Voe A J f (Gém+ Déw+ D6 W)+ [ 6(0,2)dmo(x) - [ (T, 2)dn(z) = 0, (2.9)
0 R4 Rd

R4

J h(z)dn(x) < 0. (2.10)

Indeed, since (m, @, W, m(T)) belongs to B and satisfies the Fokker-Planck equation, it is
clear that Jyp(m, @, W, m(T)) = inf (o wn) Jpp(m,w, W,n). Now let us take (m,w, W,n) €
B satisfying for every ¢ € A’ and such that Jjp(m,w, W,n) < +c0.

Testing for constants functions we get that n(R%) = 1 and for any f e C([0,T1]),

t
taking ¢(t) = J f(s)ds as a test function in (2.9)) we get
0

[ [ roamte. = [ sy

This means that the time marginal of m is the Lebesgue measure over [0, T'|. If m = dm;(x)dt
is a disintegration of m with respect to its time marginal, we deduce that
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[ somia= [ s

for all f € C([0,T]) and therefore m;(R?) = 1, for dt-almost-all t € [0, T].

Now we can follow Lemma [2.6] and the discussion in the proof of Theorem [2.4] to deduce
that m admits a continuous representative m’ € C([0, T], P,x(R?)). We then get n = m/(T)
from (2.9)). Therefore (m/,w, W) belongs to K,

Jrp(m,w, W,n) = Jpp(m/,w, W) > Jpp(ir, &, W)

and the claim is proved. Now, observe that, for any point (m,w, W, n) in B

sup lj f (0pm + Do.w + D*¢. W) + ¢(0, x)dmg(x) + J (Ai(z) — (T, z)) dn(z)
(Ad)eR+ x A/ Rd y
B { 0 if (m,w, W, n) satisfies ) and -

| +o otherwise.

Therefore we deduce that

V = i J 5 7W f L )\7 ) ) 7M/a )
rp(mMo) (mg‘ldl;l)eK rp(m,w ) = (mwlrl/%/n)elﬁ% (A¢)Sel]11£xA' (A 9), (m,w n))

where £ : RT x A’ x B — R is defined by:

LN, ), (m, w0, W,n)) J JR (t ey ZZ(t,x)) T ft 2))dm(t, z) +Ld ¢ (z)dn(z)

+ f Od(t, x)dm(t, x) + Do(t, x).dw(t, ) + D*¢(t,x).dW (t, )
0 Jrd
R

0(0.2)dma(a) = | (T )dn(z) + A f h(w)dn(x).

R4

Step 2: Analysis of the Lagrangian
We immediately check that for all (X, ¢) € Rt x A/) (m,w, W,n) — L((\, @), (m,w, W,n))
is convex and for all (m,w, W, n) e B, (A\,¢) — L((A, @), (m,w, W,n)) is concave. Now L can

be rewritten as the sum of four terms, £ = £; + Ly + L3 + J #(0, x)mg(dx) where,
R4

Li((A, ¢),m) := J f &@(t,x) — H(t,x, Dp(t,x), D*¢(t, ) + fé(t,:c)] dm(t, z),
a0 man W)= [ [ 709 (10 820, S 0.0) ) o,

£l )m) 1= | [Wh(a) + 9'(@) = ST )] ),
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with fA9) [0, T] x R? x R? x S4(R) — R defined by,
fOOt 2,9, N) = L(t,2,q,N) + H(t, 2, D(t,x), D*¢(t,x)) + ¢.D(t, x) + N.D*(t, ).

Now suppose that (myg,wk, W, ng)ren weakly-= converges to some point (m,w, W, n) and
satisfies the uniform estimate

maX{LTJRd(lJr|x\)dmk(t,x),J (1 + |2 dny(x J fRd
LT fR Xoa <%(t,@) dmy(t,z)} < M (2.11)

for some M > 0 and for all £ € N. For £; and L3 we can proceed similarly and prove
that £1((\, ¢),m) < llicm inf £1((A, @), my) and L3((A, ¢),n) < llicm inf £3((A, @), ny), for every
—+0 —-+a0

(A, ¢) € R? x A’. Let us detail this point for L3 since the same argument works for £;. If
(A, ¢) belongs to RT x A’ then

d
wkt:c

d t
dmk mk( ?:C)a

liminf L3((A, @), ng) = sup liminf | ¢'(z)dng(z)
e ¢ € CoRY), ¢/ < M+ g —o(T) "7
= sup ¢'(x)dn(z)

¢ € Co(RY), ¢ < A+ g — o(T)"F
- | i) + /(@) = 9T 0)] )
= 53((/\7 ¢)7 n)

where we can argue by approximation, using Lebesgue dominated convergence and to
prove the second inequality.

For £, we need to proceed differently. Being f*) is nonnegative, lower-semicontinuous
and for all (¢,z) € [0,T] x R?, (¢, N) — fO9(t,x,q, N) being convex, we can follow [7]
Theorem 2.34 and Example 2.36 to prove that w and W are absolutely continuous with
respect to m and Ly((A, @), (m,w, W)) < lllcriligf Lo((N, @), (my, wg, Wy)). Finally, we have

that
‘C((Au ¢)7 (ma w, VV7 n)) < lim supﬁ((/\, ¢)7 (mka Wk, Wku nk)) (212)
k—+00

Step 3: Min/Max argument
Now we are going to use the Von Neumann Theorem to show that

inf su L(p,N),(m,w,W,n)) = su inf  L((\,¢),(m,w,W,n)).
(m,w,Won)eB () ¢)e REM’ ((#: ) ) (A,¢)eRExA'(m7w7Wm)€E (29 ( )

To check that the hypothesis of the theorem are satisfied, we define *(t,z) := 4/1 + |z|>(t —
T —1) and ¢*(t,x) := («/1 + |x|? +C’1> (t—T —1)+ Cy, where
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Cir=H (., D¢*(.,.), D*¢*(-,.) = falos Moo + 1
and Cy = —||¢'|| + C1 — 1. Then we let
C*:= sup inf L\ @), (m,w,W,n)) +1
()\,(ﬁ)GR‘F x A/ (m,w,W,n)eB

and we check that

B* := {(m,n,w, W) € B such that L((0,¢"), (m,w, W,n)) < C*}

is not empty and that there exists some M > 0 such that any (m,w,W,n) € B* satisfies
Estimate (2.11). We deduce that B* is (strongly) bounded and using we see that B* is
weakly-* compact. Now we can use and once again to show that for all C' > 0
and all (A, ¢) e R x A,

B* n {(m,n,w, W) € B such that L((\, ¢), (m,w,W,n)) < C}

is (possibly empty and) compact. Therefore we can apply the Von Neumann theorem,
Theorem 2.6] to show that

inf sup  L((p,N), (m,w,W,n)) =  sup inf  L((\, ¢), (m,w, W,n)).

(m,w,W,n)eB (A, @)eRT x A/ (A, @)eRT x A/ (m,w,W,n)eB

Step 4: Computation of the dual problem
Let (X, ¢) € Rt x A’ be fixed and consider the problem

inf  L((\, ), (m,w, W,n)).

(m,w,W,n)eB

Recall the definitions of L1, £, and L3 in Step 2 of the proof and observe first that, for fixed
(m,n),
i _
(cng) £2((>‘7¢)7 (m7w>W)) 0
with the infimum being achieved if and only if,
w=—0,H(t,z, Do(t,x), D*p(t,x))m,
W = -0y H(t,x, Do(t, z), D*¢(t, z))m.

Therefore it holds that
inf = inf inf
(m,wl,%/,n)em £ 9), (myw, W) meM‘*‘l(E),T]x]Rd) £1((A 9),m) + neAf}r(Rd) £a((A 9)m)

+ » (0, x)dmg(x)

but we have

inf Li((N\, ¢),m) =

0 if — &+ H(t,z, Do, D%¢) < fi(t,x) in [0,T] x RY,
meM([0,T]xR%)

—o0  otherwise
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and
0 if o(T,7) < Ah(z) + ¢'(x) in x RY,
—o  otherwise.

it La((\¢),n) = {

neM+(R4)

so we can conclude that

inf sup  L((m,w,W,n),(\,¢)) =  sup inf  L((m,w,W,n),(\,¢
(mw,W,n)eB () ¢)eR+ x A’ ( (%)) (A p)eR+ x A? (myw,Wn)eB ( ) (4, 9))

= sSup ¢(07x)m0(dl’)7
(A d)eR+ x A, geHI ™ (Ahtg) VR?

where ¢ € HJ™(Ah + ¢') for some (A, ¢) € RT x A’ if and only if

—0up(t, ) + H(t,z, Do(t, z), D*¢(t,x)) < f3(t,x) in [0,T] x RY,
{ &(T,x) < Mh(z) + ¢'(z) in R4,

Finally, we get min Jrp(m,w, W) = sup J (0, z)mo(dx). O
(m.w,W)eK (\d)eR+ x A peHI ™ (At g) VR?

Notice that this duality is not surprising and holds under very general conditions (see
for instance [69]). In particular the volatility o can be degenerate. However the existence of
solutions to the dual problem requires stronger assumptions. In particular we need strong
solutions to the HJB equation and that is why we need Theorem [2.1]

~ ~

Lemma 2.5. The dual problem has a finite value which is achieved at some point (A, ¢) €
R* x C%([0,T] x RY) such that :

06+ H(t,x, DY(t, x), D*3(t, 2)) = fu(t,x) in [0,T] x R?
(T, z) = Mhu(z) + ¢'(x) in RL

Proof. The finiteness follows from the fact that

sup J o(0,z)dmo(x) = min  Jgp(m,w, W) < 0.
(A )R+ x A/, geHI ™ (Ah+g) VR? (mw,W)ek

Using the continuity of h and the fact that h(z7) < 0 for some 27 € R%, we can follow Lemma
to build (m,w, W) € K such that Jzp(m,w, W) < +oo and J h(z)dm(T)(x) < 0.
R4

Consider (), ¢) a candidate for the dual problem. Since (7, @, W) satisfies the Fokker-Planck
equation we have, taking ¢ as a test function

| oraam@)e) = [ o0,2)dmota)

dw

+LTfRd [&tgb(t,x)—i— © (t,x).Do(t, ) + dW (t,x).DQQb(t,x)]dm(t)(x)dt'

dm @ dt dm @ dt
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Using the inequations satisfied by ¢ and the definition of L we get after reorganizing the
terms

A (— fR h(a:)dﬁ(T)(x)) < Trp T — | 6(0, 2)dmo(x). (2.13)

R4
Now if we take (¢, A\n)nen @ maximizing sequence, the above inequality shows that (A,)nen
is bounded. Takmg a subsequence we can suppose that ()\n)neN converges to some A > 0. By

comparison, (¢, \) is a solution of the dual problem, where ¢ € Ci2([0, 7] x R?) is solution
to

{ —0(t,x) + H(t,x, Do(t, ), D*¢(t, x)) = fi(t,x) in [0,T] x R? (2.14)

O(T, z) = Mhu(z) + ¢'(z) in RY

The existence of ¢ and the well-posedness of (2.14) in C%([0,T] x R?) is guaranteed by
Theorem 2.1
[

Remark 2.10. In the proof of the previous lemma, we showed as a by product that X is
bounded independently from ¢, m. In particular using 1nequahty - ) for a maximizing
sequence and using the duality result of Theorem [2 . 5| we get that X satisfies

p(m,w, W) — VRP(mO)
f (=)

for any candidate (m,w, W) such that f h(z)dm(T)(x) < 0.

Rd

~

A<

Corollary 2.1. If (m,®, W) and (X, qg) are points where respectively the primal and the dual
problems are achieved, then

& = —0,H(t,z, D, D*¢(t, z))m(t) ® dt,

W = —oyH(t, z, Do, D*d(t, z))m(t) ® dt

and (X, gzNS, m) satisfies the optimality conditions

(—0,0(t,x) + H(t,z, Do(t, x), D*¢(t, ) = filt, z) in [0,T] x RY
oy — div(0,H (t, z, DO(t, x), D*¢(t, z))i)
+ 3 0% ((OnH (t,x, DY(t,x), D*G(t, x)))y) = 0 in [0,T] x R? 2.15)
) ij .

O(T, ) = Mo(z) + ¢'(z) in R, m(0) = mo
X h(@)dm(T)(z) =0, | hz)dm(T)(z) <0, X = 0.

L Rd R4
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Proof of Corollary[2.1 Let (¢,\) € A and (m,w,W) € K points where the primal and

the dual problems are achieved. One has J (0, 2)dmo(x) = Jrp(m,w, W). Given the
Rd
constraint on ¢ and the fact that m is non-negative we get

o0, 2)imole) ~ [ [ (~2u0tt.0) + Hit, Dot 2), D002t

) ] (o g gt o) [ owa
+ | g@am(m))

Yet, (m,w, W) solves the Fokker-Planck equation and ¢(T,z) < M(z) + ¢'(z) for all x € R?
S0

Rd

T T

Do(t, z).dw(t, x) — f D2¢(t, z).dW (t,z)

f JR[ ( dt@wdm< )’dti@%(t’@)iH“’%DW@)’D%(th]dm(t)(cc)dt.

Remember that J h(xz)dm(T)(z) <0 and A > 0 so

R4

M raydm(my@) - |

0 JR4

J JR (t ., dt®dm( ),dt‘é%(t,x)) ©H(t x, Do(t,x), D26(t, 7))
— Do(t, ). ———— D?*¢(t, ). (t,2))]dm(t)(z)dt

_ - aw
dt®d dt @ dm

< /\J h(x)dm(T)(x) < 0.
Rd
But, by definition of L, the integrand is always nonnegative. So, m(t) ® dt-ae we have

aw

(t,x) — D*¢(t, ).

()
d, aw
~ 1t g (), B (0,0) )+ H Dot D0l )

dw
dt ® dm

and since H is differentiable, m(t) ® dt-ae it holds

d
e (tw) = ~3,H (b, Do(t,x), D*(t, )

@ dm (t,2) = =0 H(t,z, Dé(t, ), D*¢(t, 1)).

Finally, since all the inequalities at the beginning of this proof are actually equalities, we get
the necessary conditions for optimality. O
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2.3 Proof of the Main Results

2.3.1 Linearization

Let us fix (m, @, W/) a solution of the relaxed problem. The linearized problem is to minimize

g dw dw
! .
Jpp(m,w, W) .—f JRdL (t,m, dt®dm<t’x>’ dt®dm<t’x)) dm(t)(x)dt

JJ;Rdafz m(t), z)dm(t)(z )dt+f 59(7%( T),z)dm(T)(x)  (2.16)

R4 (5m

among triples (m,w, W) that satisfy the Fokker-Planck equation with m(0) = mg and with
m satisfying the linearized constraint

v
J 0 —(m(T),z)dm(T)(x) < 0. (2.17)
R4 om
Notice that we are in the setting of Section [2.2.2] with fi(¢,z) = %(t,ﬁz(t),x), g (z) =
m
0g , . ov
29, (53(7).2) and h(z) = % (3(1). )

Proposition 2.3. Let (m,&, W) be a fized solution to the relazed problem. If U((T)) = 0
then (m,w, W) is a solution of the linearized problem (2.16)). If W(m(T)) < 0 then (m,o, W)
is a solution of the linearized problem ([2.16|) without the final constraint.

Proof. Suppose that ¥(m(7T)) = 0. By Assumption (3c)) there is some zy, € R? such that
o
3(

—(m(T),z9) < 0 and we can proceed as in Lemma [2.

om 5T
one: W(m) = J

R4 (5m

the constraint being then the linear
—(m(T),z)dm(zx)) and find (m/, ', W’) such that

([ m/(0) = mo

oym’ + div(w Z 82 Wi =

4
Jd g—:;(m(T),x)dm (T)(z) <0

| Jrp(m, W', W) < +00.

Now let (m,w, W) be any candidate for the linearized problem (in particular (m,w, W)
satisfies the linearized constraint (2.17)). Let € € (0,1) and define (m¢,w, W¢) = (1 —
e)(m,w, W) + e(m,w’, W) (we perturb (m,w, W) a little bit so that it satisfies strictly the
linearized constraint). Let A € (0,1) and define

(mS,, ws, W) 1= (1= A) (i, &, W) + A(m€, we, We).

We have that
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U(mS(T)) = U (m(T)) + A fRd g—i(ﬁz(T), 2)dm(T)(z) + o(N), (2.18)
yet it holds
2 ), 2 (@) = (- ) [ 2 ), 2 (1))
+ EJRd g—:;(ﬁl(T), x)dm/(T)(z) <0

and therefore W (mS(7")) < 0 for small enough A. Now, by convexity of

dw

dt @ dm (t,2)

(m, 0, W) — T(m, w, ) L ' fRd 3 (t,x, 0 x)> dm (1) (z)dt

"dt ® dm

~

and optimality of (m,®, W) for the relaxed problem we have

D, &, W) < T(ms, wi, Wy) + JO [fa(t, m5(1)) = fa(t, m(D))] dt + g(m5\(T)) — g(m(T))

< (1= MDA, &, W) + AT (m€, €, W) +L [folt, mS (1)) — folt, m(t))] dt

which gives

T3, T7) < T W) 5 [ faltm (0) = ot A(O)] dt+ 5 Lo (7)) = (T))].

Now we let A go to 0 and use once again the convexity of I" to get
Y[ ofa,,
< T(mSw, W) + f ——=(t,m(t), x)dm (t)(x)dt
Rd

< Jgp(m,w, W) + e (Jpp(m o', W) = Jhp(m,w, W),

where the first equality comes from the normalization condition in the definition of the linear
derivative. We get the result letting € — 0. When W (m(T")) < 0 there is no need to perturb
(m,w, W) since (2.18)) shows that ¥(m{(7")) < 0 for small enough A independently from the

sign of f 5—(ﬁ1(T), x)dm(T)(z) and we can take € = 0 in the rest of the proof. O
Rd 0N
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2.3.2 General Constraint

Proof of Theorem[2.4 Recall that, on the one hand we want to prove the existence of optimal
Markovian controls for (SP|) and on the other hand we want to prove that optimal controls,

if Markovian, satisfy some necessary conditions. Let (m,® W) be a solution of the relaxed
problem. We can apply Proposmon and Corollary [2.1] to find some ()\,gb) in Rt x
C,*([0,T] x R?) such that (7, X 0) satlsﬁes the system of optlmahty conditions with

fo(t,x) = %(t,m(t),x), g (z) = ;—i(ﬁl(T),x) and h(x) = g—i(ﬁz(T),x) Notice that, when

U(M(T)) < 0 we can take A = 0 since (f2,&, W) is a solution of the linearized problem
without constraint in this case. In general, let & be a measurable function such that, for all
(t,z) € [0,T] x R?

H(t,z, Do(t,z), D*d(t, ) = — b(t, z,a(t, x)).Do(t, z) — olo(t, ,d(t, z)).D>¢(t, x)
— filt,z,a(t, ).

We use the assumption that H is continuously differentiable in (p, M). Indeed, in this case
one has, thanks to the Envelope theorem (see [113]),

(2.19)

O, H(t,, Do(t, x), D*(t, x)) = —b(t, z, &(t, x))
OuH(t, x, Do(t, ), D2p(t, x)) = —c'o(t, x,a(t, z)).

Since d,H and 0d)/H are supposed to be locally Lipschitz continuous respectively in p and
M and uniformly in z and since |0y H| is bounded from below by vdA~ > 0, using the

~ 3+a g,
fact (Theorem that ¢ belongs to C, * o ([0, T] x RY) we see that the coefficients of the
functions, (t,z) — 0,H(t,x, Do(t, x), D*¢(t, z)) and (t,z) — Oy H(t, z, DP(t, z), D*¢(t, z))
are Lipschitz in x, uniformly in . Thus there is a unique strong solution of the SDE
dX, = b(t, X, a(t, X,))dt +V20(t, X,,a(t, X,))dB,

starting from X,. Therefore £(X,) = m(t) for all ¢ € [0, T] and, in particular, U(£(X7)) < 0.
This means that &, := &(t, X;) is admissible for the strong problem. Since H is C! we know
that for all (t,z,p, M) € [0,T] x R? x R? x Sy4(R),

H(t,z,p, M) =p.0,H(t,x,p, M)+ M.OyH(t,x,p, M)
—L(t,l’, _apH(th?pv M)J_aMH(t7I7p7 M)) (22())

and therefore, (2.19) implies that

L(t,x,—d,H(t,x, D(t, x), D*(t,x)), —On H(t, x, Dé(t, ), D*(t,x))) = filt,,d(t,x))

and thus Jgp(&@) = Jgpp(m, @, VIN/) = Vsp(Xo) from which it comes that Vzp(mg) = Vsp(Xo).
The reverse inequality being clear, we get Vgp(mg) = Vsp(Xy) and @ is a solution to the
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strong problem. This shows in particular that optimal controls for the strong problem
do exist. Now take a a Markovian solution to the strong problem. If X is the corresponding
process, we take (m,w, W) = (m,b(t,z,a)m,c'c(t,z,a)m). Then, (m,w, W) is admissi-
ble for the relaxed problem and we have Jrp(m,w, W) < Jgp(a) = Vsp(Xp). And thus,
Jrp(m,w, W) = Vgp(mg). Finally, (m,w, W) is optimal for the relaxed problem and we
can apply Proposition and Corollary to conclude. Now if we use 5 in as a
test function for the Fokker-Planck equation, recalling as well as the normalization
convention for the linear functional derivative we get that

, S(0)dmoz)

= L fR L (t,2,~0,H(t, 2, DY(t, v), D*3(t, 2)), =0 H (t, 2, DY(t, x), D (1, x)) ) din(t) (x)dt

and therefore Vgp(Xo) = N B(0)dmo(z) + | folt,m(t))dt + g(m(T)).

R4

2.3.3 Convex Constraint and Convex Costs

Now we show that the conditions are also sufficient when ¥, f; and g are convex functions in
the measure variable. Notice that this case covers in particular the problem with expectation
constraint and costs in expectation form when ¥, f, and ¢ are linear.

Proof of Theorem[2.3. Let (X,%, m) be a solution to the system of optimality conditions
(OC) and let X; be the solution to

d)N(t = b(t, Xt, &(t, ),Zt))dt + \/§O’(t, )’Zh &(t, )’Zt))dBt
Xo = Xo.

for some measurable function & : [0, T] x R? — A such that, for any (¢,z) € [0,T] x R,

H(t,z, Do(t,x), D*d(t, ) = —b(t,z,&(t,z)).Dd(t, ) — o'o(t, z, a(t, z)).D?*o(t, )
— filt,z,a(t, x)).

Since

b<t7 T, &(t> 33)) = _apH(ta xz, D(Z(t, .’B), D25<t’ 1‘)),
o'o(t, x,d(t, 1)) = —OnH(t, x, Do(t, x), D*$(t, x))

+a

and ¢ belongs to C§+a’32 ([0, T] x RY) the SDE admits a unique strong solution.

We are going to show that &, := a(t, )Z't) is a solution to the optimal control problem. The
law of X, is m(t) and we deduce that W(£(Xr)) < 0 and & is admissible. Now we show
that a; is indeed optimal among the admissible strategies. Let a; be an admissible control,
X; the corresponding process and m(t) := L(X};). Let also J;p be defined on U,, as follows
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Jip(ay) :=E (JT (fl(t,Xt, o) + %(t, m(t), Xt)> dt + 5—g(m(t)7XT) + X%(%(T},XT)) .

0 om om

Using a classical verification argument and the fact that gg solves the HJB equation, we get
that Jip(a:) < Jip(ay). Now by convexity of ¥, fy and g we get

E UT Falt, m(t))dt — JT flt, e+ [ 220 ), Xt)dt] <0,
0 0 0 om
E [o((1) - gtm(1) + L G(D), )| <0
and
AE [S_T\I:L(m(T>7XT)] =\ (\I/(m(T)) +E l%(m(T), XT)D < \(m(T)) < 0.
Therefore we get that Jsp(&) < Jgp() and @ is optimal for the strong problem. O

2.4 The HJB Equation

The aim of this section is to show that the HJB equation

—owu(t,z) + H(t,x, Du(t,x), D*u(t,z)) = f3(t,z) in [0,T] x R4 (2.21)
u(T,x) = ¢'(x) in R? '
3ta a
admits a unique strong solution u € C,? ot ([0, 7] x R?) when H satisfies Assumptions

(@, @), ¢ belongs to C;™*(R?) and f4 € Cyp([0,T],C;T*(R?)) is Holder continuous in time,
uniformly in .
We start by observing that it is enough to prove that (2.21) admits a bounded Lipschitz

continuous viscosity solution. Indeed, if u is such a solution, it follows from the following

3ta « . . . . .
line of arguments that u belongs to C, * o ([0,T] x RY). If u is Lipschitz continuous in

space we can use Theorem VIL.3 in [88] to deduce that u is semi-concave with a modulus of
semi-concavity uniform in (¢,z). Now, using the uniform parabolicity of the equation, the
fact that u is Lipschitz and semi-concave we can prove that w is also semi-convex (see [87]
Theorem 4 with the help of [6] ) and therefore Du is continuous and Lipschitz in space. At
this point, using the uniform parabolicity of the equation and the Holder regularity in time
of f}, we can use the results of [I33] and [134] (see also the last section of [23]) to deduce
that u belongs to C,*([0, T] x R?). Finally, by differentiating the equation we can use results
on uniformly parabolic linear PDEs (Theorem IV.5.1 of [98]) to conclude that u belongs to
¢, = ([0, T] x RY).

We first show the existence of bounded, Lipschitz continuous viscosity solutions to
when f] is also globally Lipschitz continuous (and not just Holder continuous in time) and
then we use an approximation argument.
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Lemma 2.6. Suppose that Assumptions and hold. Take g € C3(R?) and suppose
that f5 € Cy([0,T] x R?) is globally Lipschitz continuous in (t,x) and C' in x. Then (2.21)
admits a unique bounded, globally Lischitz continuous viscosity solution.

Proof. We proceed as follows. For K > |Dg|,, we let u be the unique viscosity solution to

{ max{—du + H(t,z, Du, D*u) - fy(t,z),|Du| — 2K} = 0 in [0, T] x R? (2.22)

u(T,x) = ¢'(z) in R?.

The existence of u is guaranteed by Proposition in Appendix 2.5.2] In particular, u is
2K -Lipschitz continuous in x and L-Lipschitz continuous in ¢ for some L > 0 independent
from K. We are going to show that, for K large enough, u is K-Lipschitz continuous in .
As a direct by-product, u will be the unique viscosity solution to and it will satisfy
the Lipschitz regularity given by Proposition [2.4]

Now we proceed to show that u is K-Lipschitz continuous in z. Let K > 2||D¢’| such
that H(t,x,p,0) > L+ | f3] for all (t,z,p) € [0,T] x R? x R such that |p| > K — 1, where
L is an upper bound for the time-Lipschitz constant of u. We are going to show that for all
(t,2,9) € [0,T] x R x R u(t,z) — u(t,y) < K|z —y| when K is large enough. Suppose on
the contrary that 0 := sup(, , ,)e(jo,r)xrexre{U(t; ) —u(t,y) — K|z —y|} is positive. Let 3 be
a small positive parameter and define

B3(t,2,) = ult, 2) — u(t.y) — Kl —y] — Byl — B

The function ¢y reaches its maximum at some point (¢,7,7) € (0, 7] x R? x R? and there is
Bo > 0 such that for 0 < 5 < Sy

_ )
o058, T,7) = 3 (2.23)

Suppose that 3 < By and ¢ = T, then

N S

< 0o(1.7.7) = u(T, )~ u(T.7) ~ K[ 7| - Bfgl* ~ >
< (1Dg'le ~ Kl ~ 7.

But this is impossible since K > |Dg’|, and § > 0. Thus for all 3 < By, t # T. From ([2.23)
we deduce that S]7]? < 2||u|, and therefore §]y] — 0 as 8 — 0. We also deduce that

N >

< 2K[z ~ 7|~ Kz~ 7| < K|z -7

which leads to the lower bound
T -9l = (2.24)
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and, in particular, T # 7. Since t # T for 8 < [y, we can apply the maximum principle for
semi-continuous functions from [53]. Let pg(t, z,y) = K|z —y|+ % Computing the various
derivatives for |x — y| > 0 gives

Ovps(t,m,y) = —%%
6x905(t,x,y) = [o—
Oyp(t, z,y) =

D?pg(t, z,y) =

(0 ) e (e e

In particular, if N := (r —y) ® (x —y), then N > 0 (rank one symetric matrice with positive

trace) and thus it is elementary to show that (—]\][V —]\][V ) > (. Therefore, it holds
K Iy, —1
D?p4(t, x )
ot < (K, 50)

Now, from the maximum principle, we get v € R, XY € S4(R) such that

v KL %,X) e P u(l, )
y) e P u(t,7)

V+§,

\f—gl

(X 0 )<3 K <1d _zd)
0 —(v+28L)) SPE-g\cn 1)

Observe that |v| is bounded by Ly the time -Lipschitz constant of u and thus |v| is bounded
independently of K. Now we use the equation satisfied by u to get

and

i (t 7KLY ,X) _BET) <v<H (Z,y,K% —%@Y) — f5(E.7).
xr—y

From now on, we let £ := K é:%' and v := ‘x y| We are going to show that the information
V| < Lr
€| =K
(X 0 - ( I, —1,; (2.25)
0 —(v+281)) S7\-1, 1L
H(t7,6,X) - (7)) <v < H({,7,£-263.Y) - f1(£.7)

is inconsistent whenever K is sufficiently large. Let 7 := &€ — 283y and for any X € [0,1],
=(1-XNT+ Mg and &, := (1 = N)E+ A =€ —2)\0y. From [9], Lemma A.2, there exists
a C! map, A — Z, from [0, 1] — S4(R) such that

%Z)\ = 7_1Z§7
Zyp=X
Ve [07 1]7 X< Z,<Y + 231,
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Let us define [ : [0,1] — R by I(\) = H(f, 25,85, Zx) — f5(t,22), so that 1(0) =
H (1,7,6,X) — f5(1,7) < v and (using Z; <Y + 21, and the boundness of 0y H)

(1) = H(t,y,7m,2Z1) = H(t,5,7,Y +281y) — f5(t,7) = H(t,5,7,Y) - CB— f5(t,7) = v—Cp,

where C' = 2A*+/d. Thus, [ being C', there exists X € [0, 1] such that

- C)\B (2.26)
(A ) (2.27)
From inequality ([2.26) we are going to obtain a lower bound on |Z,| = 4/Tr(Z3) and from

inequality (2.27) we are going to obtain an upper bound on |Z,|. Combining the two bounds
will get a contradiction for K large enough. First we exploit (2.26)). It gives us

ey
i

H(a :Ll)wé')\? 0) - fé(i I)\) —v+ C)‘ﬂ = H(%’ x)”é)\, 0) - H(a :Ll)ué')\) Z)\)
—OnH(t, 15,6, Z)0). 2

< VAAY|Z,),
where we used Cauchy-Schwarz inequality at the last step. Therefore we have

H(Ea x)\ué.)\; O) - fé(%, .ZTJ)\) —V+ OAB
VdAY '

Now we use (2.27)). Computing the derivative of [ gives

|Zx| = (2.28)

U'(N) = 0.H(t, 25,60, Z0). (U — T) — 0o fo(t, 22).(§ — T) — 2B0,H (£, 5,80, Z2) T
+y Lo H(E, 7y, €N, Zy). 25 = —CP

and, since —dyH > A I; and 0, H satisfies Assumption (2¢]), we get

1Z5]? < AL [VCB + 0. H (T, xx, 60, Z2)- (Y — T) — v0u f5(L, 25).(§ — T) — 2690, H (L, x5, &x, Z5)-T]
< AL [VCB + 70 H(E, 2,60, 0).(§ — &) — 70, f3(E, 22).(§ — T) — 2870, H(E, 2, Ex, 2)) 7]

and therefore, for another C' > 0, we find

1 Z3° < C(v0:H(E, 2, 61,0).( = T) = 0. fo(t, 22)-(§ — T) + 7°|T - 7|
+ 7/6 - 267817H(E7 T, f)n Z)\)y)
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On the one hand, being |¢] = K, v = 2£ < % (thanks to (2.24]) ), limg_¢ 5|y| = 0 and

E

recalling Assumption on 0,H we find that

|76| + |2/3’yapH(E7 $A7§)\7Z>\>'y>| < 1

for B (depending on K) small enough. Finally, being 0, f; bounded and v(Z —7) = 3¢ =
3&\ + 6ASy we find that

|Z)\’2 < C<1 + ‘SAP - amH(a x)\af)n 0)5)\) (229)

for some C' > 0, as soon as 3 is small enough. Combining (2.28)) and ([2.29)), we get, for some
new C' > 0 independent from (K, J, 5, \),

H(Ev T, 5)\7 0)2 <C (1 + V2 + |€)\|2 - £A6$H<%7 T, 5)\7 0)) .
We get a contradiction letting 5 — 0 as soon as K is big enough since || = K, H(t,z,p,0) =
ay|p|™ — Cy with r; > 1 for all (¢, z,p) and 0, H satisfies Assumption ([2f) (either (2(f)i) or

(2(f)ii)) is enough to conclude here).
[

To conclude the proof of Theorem we need to show Lipschitz estimates which hold
when f; is merely Holder continuous in time. This requires more space regularity for f;, and

also Assumption (2(f)ii)) instead of Assumption (2(f)i).

Proof of Theorem[2.1. When f} = 0, the previous lemma and the discussion at the be-

ginning of this section are enough to conclude. In the general case, take a smooth kernel

p with support in [—1,1] and define for all n € N* p,(r) := np(nr) and fé(”)(t,x) =
1

f5(s,2)pn(t — s)ds, where we extended fj to [—1,T + 1] x R? by f5(t,z) = f4(0,z) for

-1
t € [-1,0] and fi(t,x) = fo(T,z) for t € [T, T + 1]. We also define u,, to be the viscosity
solution to

—Opun(t, ) + H(t, , Dun(t, 2), D*un(t,z)) = £ (t, ) in [0,T] x RY
uw(T,z) = ¢() in R<.
Thanks to the previous lemma and the discussion at the beginning of this section we know

3
ﬂ,3+04

that w,, actually belongs to C, * ([0,T] x RY). Now we use Bernstein method. We define
Wy, = %e*‘t \Dun|2 for some p > 0 and we get, after differentiating the HJB equation and
taking scalar product with e** Du,,:

— Oyw, (t, ) + O, H (t,m, Duy,(t, z), D*u,(t, z)). Dw,(t, x)
+ OpH (t, 2, Duy(t, x), D*uy,(t, 2)).D*w, (t, )
= Df,(t,2).Du,(t, x)e" — 0, H(t,z, Du,(t, x), D*u,(t, z)).Du,(t, z)e!"

1
+ MOy H (L, x, Duy(t, ), D*u,(t, )).(D*u, (t, z))* — §,ue“t]Dun(t, )2
< DA (4, 3).Dun(, 2)e™ + Co, (1 + |Dun(t, )| + | D?un(t, 2)|) e | Dun(t, z)]

1
— eMAT| Dy (t, x)|* — éue”t|Dun(t,m)|2,
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where we used the growth assumption (2(f)ii) on 0,H, Assumption and the uniform
ellipticity of H. Now we can choose = pu(|Df|wx, Co,m, A=) > 0 such that the right-hand
side of the above expression is bounded by above and, by the maximum principle for parabolic
equations we get that |Du, |, < C for some C' = C(| D¢ |, | D fi]oo, Cpom, A7) > 0.

Now we let v, := dyu,,. By differentiating the HJB equation with respect to time we get
that v,, solves

—0uvn(t, ) + 0,H (t, z, Duy(t, z), D*u,(t,x)).Dv,(t, 7)

oM H(t, x, Dun(t, 2), D*un(t, 2)).D?va(t, 2) = —0,H(t, x, Dun(t, 2), D*un(t, 2)) + o fa™ (¢,

va(T,2) = H(T,x, D¢ (x), D*¢(x)) — f5" (T, ).

Fix (to, z0) € [0, T] x R? and consider a weak solution m,, € C([to, T], P2(R%)) to the adjoint
equation

5tmn div(0,H (t, z, Du,(t, ), D*u,(t,z))m,)

Z (O H(t, 7, Du,(t, ), D*u,(t,x)))iym) =0 in [ty, T] x R
i,7=1
mn<t0) = 5320

Integrating v,, against m,, gives, after integration by part and reorganizing the terms:

nltosa0) = | [H(T. D' (@), D (@) = 1(T.) | don(T) 0
—JPT [ OH (t, x, Duy,(t, 7)), D*uy, (¢, z))dm™(t)(x)dt
+ JPT [ &, £ (¢, ) dm” (t) (z)dt

to JRd

But, again by integration by part, we have

f of" G @)dm" (@)t = | " (Ta)dm(T)(@) = £ (to, o)

to

+ J f O H(t, 2, Duy(t, ), D?uy (t, )).D f3™ (¢, x)dm™ () (z)dt
to JR4

T
+ f OvH (t, z, Duy(t, ), D*u, (t, 2)). D™ (¢, 2)dm™ (t) (z)dt
to JRA

and we can conclude, using the growth assumption on ¢,H, Assumption , and the
boundness of dyyH and 0;H, that |dyu, |, < C for some C' > 0 depending only on | Duy, |,
|30 1D 3l | D fles 1D ooy | D% e but mot on 24 f5™ |oo.

Combining the two above estimates, we can use the stability of viscosity solutions to
show that u, converges locally uniformly to u, the unique viscosity solution to and
that u is therefore a globally Lipschitz function. Following the discussion at the beginning

of this section this is enough to conclude that u belongs to C =B 3+a([0, T] x RY).
O

z)



T0CHAPTER 2. STOCHASTIC CONTROL WITH TERMINAL CONSTRAINT IN LAW

Conclusion In this paper we investigated a stochastic control problem with constraints
on the probability distribution of the output. By reformulating the problem as a control
problem for the PDE satisfied by the time marginals of the process we were able to prove
the existence of solutions and characterize them. The optimal trajectories and associated
controls are given by a coupled system of PDEs associated with an exclusion condition. We
proved the sufficiency of these conditions under suitable convexity assumptions.

2.5 Appendix

2.5.1 Von-Neumann Theorem

Since it appears twice in our article and in particular in the proof of Theorem we recall
the statement of the Von-Neumann theorem we are using. The statement and proof can be
found in the Appendix of [115] and in a slightly different setting, in [122].

Theorem 2.6. (Von Neumann) Let A and B be convex sets of some vector spaces and
suppose that B is endowed with some Hausdorff topology. Let L be a function satisfying :

a — L(a,b) is concave in A for every b e B,
b— L(a,b) is convex in B for every a € A.

Suppose also that there exists a, € A and Cy > sup,c, infrep L(a,b) such that :

B, :={be B, L(a.,b) < Cy} is not empty and compact in B,
b — L(a,b) is lower semicontinuous in B, for every a € A.

Then,

minsup L(a,b) = sup inlg L(a,b).

beB  geh ach b€

Remark 2.11. The fact that the infimum in the “infsup” problem is in fact a minimum is
part of the theorem.

2.5.2 A comparison principle

In this section we prove comparison for viscosity solutions of the following equation

max{—ou + H(t,z, Du, D*u) — f3(t,x),|Du| — K} = 0 in (0,7) x R? (2.30)
where K > 0.

Proposition 2.4. Suppose that Assumptions and hold and suppose that f} € Cp([0, T'] x
R?) is Lipschitz continuous in x € R uniformly in t € [0,T].
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1. (Comparison). Let u be a bounded continuous viscosity sub-solution to (2.30) and v
be a bounded continuous viscosity super-solution to such that, v — u(T, ) is
uniformly continuous and such that, for all x € R? : w(T,z) < v(T,x). Then for all
(t,2) € [0,T] x RY, u(t,z) < v(t, z).

2. (Existence of solutions). Assume further that g belongs to CZ(RY). Then, for all
K > 2|Dg'| there exists a unique bounded, continuous viscosity solution u to ([2.30)
such that u(T,z) = ¢'(x) over R

3. (Regularity). Assume as well that f} is Lipschitz continuous in the time variable. Then,
there is L > 0 (independent from K ) such that

|U(t7l’> - U(S,y)| < L|t - 8| + K|‘T - y|7 f07” all (t,l’), <S7y) i [OaT] X Rd’

Proof. (Comparison) Let € > 0 be a fixed parameter, and define u.(¢,x) = u(t, z) —e(T—1).
We are going to show that u.(t, z) < v(t,z) for all (¢, z) € [0, T]xR%. Suppose on the contrary
that d := sup; ,)ejo.1xra Ue(t, ) —v(t,2) > 0. Let @ > 0 and 8 > 0 be small parameters and

ap(t, 2, y) 1= ue(t,x) — (1+ a®)o(ty) - — Blyl* -

Since v and v are bounded, ¢, achieves its maximum at some point (t ,9) € (0,T] x
R? x R%. Moreover, there exists € € (0,1) such that, for || + |8] < €0, ¢as(t,Z,7) = 3. In
particular, it holds that 8[g]*> < |u]w + [v]w + § =: Ci and therefore 8[y| < /BCh.

First we suppose that there exists €; € (0, €y) such that ¢ # T as soon as |a|+|[]| < ;. We
fix € (0,%) and we let 5 € (0, %). We can apply the maximum principle for semicontinuous
functions from [53] and find that there exist v € R, X,Y € S4(R) such that

2

{(y,g(f_y) )efQJrue(f 7)
v+ 5,2z -7), Y)eP (1 +a?)u(@,g) + Bl7l?)
and

6 X 0 6 (1; —Iy
_ a12d < (0 —Y) < S (—fd I, ) . (2.31)
Yet we have the equivalence

<I/72(T—@),X> efZ’JruE(f,f) = (V—e,z(f—@),X> 652’+u(f,5)
a a

and, letting p := 1 + o2, it holds as well
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Now we use the inequations satisfied by v and v to get

max{—v + e + HEF, 27 —7), X) - fE7), 2[5 -7 — K} <0
rmﬂ—z—fi+H@%—%@—f%ﬂéﬁ-——%3)—’ﬁﬂlz%f—)—Q 7Ky >
1 /itQ ayaalu Yy ﬂy’ﬂ 1 d 200, Y ), L =

(2 32)

Notice in particular that — | | < K. Since u > 1, we get for 3 sufficiently small (depending

-y
on «) that |a%u,(T —7) — 25 y| < K and therefore we deduce from (2.32) the two inequalities

H(t,z,2 (x—) X) - ft,7) <v—e
H (9, 2@ -7 - 285, % - 21L) - fE79) >

Multiplying the second inequality by p and substracting the two inequalities leads to

- ,ufé(t,y) + f2(i’f) (2‘33)

Recalling that = 1 + o we rewrite (2.33)) as follows

< HET - (T-),Y) - HET, (@ -7),X) + HE7) - HET)
- Y _
et (17 2w - 2050 - 2 ) - HEg 2 9. Y)

Recalling the definition of H and the Lipschitz regularity of b and f; with respect to the
space variable we get

(\]

HET, @ —7),Y) — HET - (T - 7). X)

<C <—|x — P+ T - y[) +sup{o'o(l,Z,a).X —o'c(l,7,a).Y}.
acA
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Now we use estimate (2.31) and the Lipschitz regularity of ¢ with respect to the space
variable to deduce that, for all a € A,

t (7 = T (T T
t (T = _ ot (T = _ O-O-<t7x7a) U(t,l’,a) O-(t7y7a) X 0
co(t,T,a).X —co(t,y,a)Y =Tr (UtO'(l_f, 7.0) o(t.7.a) 0T, a) 0 vy
_6 Tr olo(t,z,a) o(t,T,a)lo(t,7y,a) I, -1
T olo(t,y,a) o(t,g,a)ot,T,a)) \—1; Iy
6, - _
< _‘O_(tafa a) - O—(taga a)’2
«
C_ _
< —|CC - y|27
Q
and therefore, for some constant C' > 0, it holds
__ 2 _ - _ 2, _ 2 5 _
H(tay7 a(x - y)’Y) - H(t,l‘, a(m - y)aX) <C a‘x - y‘ + ’:E - y’ : (234>
It remains to estimate
-2 _ 6_Y 208 - _ 2
utt (5 2@ -9 - 2050~ 2) - @5 2w -9).Y)
Qi 1 Q
_ 2 Yy 2
= OZ2H <t)y7 _(f - y) - 25@7 - = _ﬁld>
op H K
2 Y 2 2
v (43 2@ -m - 20n - 20 - Heg 2@ p.y)
HoH M o

On the one hand, using the boundness of dy;H (see Remark ({2.4))) and the growth condition
on H(t,xz,p,0), we get the following, where Cx > 0 depends from now on K > 0 but
not on o and f and may change from line to line,

_ 2 Yy 2 _ 2 Y 2
ap o p ap f noop
2 B . :
where we use the fact that |—(Z — 7) — 2—y| < K which comes from (2.32). To estimate
ap p

6 6
Y| we use (both sides of) the matrix inequality (2.31]) to deduce that ——1; <Y < —I; and
a «

therefore [[Y|| < 2. As a consequence we get

-2 Y 2
o’H <t,y, —(T—-7) — 2%, — = —Bld> < Ck(a® +a). (2.35)
ap o
On the other hand, using again the boundness of dy/H as well as Assumption (2d) on 0,H

we find
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_ 2 Y 2 - _ 2
H (taga Oé_(x _g) - 25g7 - _ﬁjd) - H<t7y7 —(ZL' - y),Y)
7 pwoop a
=H (z7g7 i<f_y) - 25@, X - %Id) - H (zay7 z(f_g)a Z - %[d)
apu o a 7
__ 2 Y 2 __ 2
+H<tay7a(__g)7g_§[d) —H(t,y,a(f—y),}/)
<O (|2@-n-2y-2a-n|+|r - Zu-v|)
aj 7 7
< Ck (alz 7] + Blgl + B + oY)
< Ck (7 =gyl + B[yl + B+ a) (2.36)

Finally, using the boundness and the Lipschitz continuity with respect to x of f; we obtain

from (2.33), ([2-34), ([2.35) and (2.36)

| N e
e<CK(a!x—y\”!x—y!+a2+a+oz\x—y|+ﬁ|y\+ﬁ)-

Recalling that B|y| < +/C1 and that 2|z —y| < K we get a contradiction letting first 5 — 0
and then o — 0.

Remember that we assumed the existence of €; € (0,¢) such that ¢ # T whenever
la| + |B] < 1. Now we suppose that for all ¢; > 0 there exist a, 8 with |a| + |] < €; and
t = T. Then we can construct a sequence (a,, 3,) such that for all n € N*, |a,| + |8, < £

and ¢ = T. Let w be a modulus of continuity for 2 — u(7T,z). We have

< s (T,7.5) < u(TF) ~ (1Lt a)e(T. )
<u(T,9) —o(T,9) + (|7 = 7]) — ayo(T.7)
<w([7 =) — aju(T.7)

and we get a contradiction letting n — +00. Thus we get that, for all € > 0, uc < v on
[0,T] x R Letting € go to 0 gives, for all (t,z) € [0,T] x RY, u(t,x) < v(t, ).

(Existence of viscosity solutions) For the second point of the proposition, we observe
that, being ¢’ in C}(R?), ¢'(z) — Cy(T —t) and ¢'(z) + Cy (T —t) are respectively viscosity
sub-solution and super-solution to with terminal condition u(T,z) = ¢'(z) over RY,
as soon as K > 2|Dg¢'|,. Using Perron’s method we get, for all K > 2||Dg|, the existence
and uniqueness of a bounded, continuous viscosity solution u to

{ max{—d,u + H(t,z, Du, D*u) — fy(t,z),|Du| = K} =0 in (0,T) x R?, (2.37)

w(T,z) = ¢ () in RY

(Regularity) Being u a solution to (2.37), it is straightforward that  is K-Lipschitz con-
tinuous with respect to the space variable. We now prove the time regularity. As previously
observed, for
C(g’ = sup |H(t7 €, Dg/(tv l‘), DQ.g,(t’ ZE)) - fé(t7 l‘)|,
(t,z)
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g (x) = Cy(T — s) and ¢'(z) + Cy(T — s) are respectively viscosity super-solution and sub-
solution to (2.37)). By comparison we have that |u(7 —s,z) — ¢'(z)| < Cys for all s € [0,T].
If we fix s € [0,T] and define for all (t,z) € [s,T] x R%, v(t,xz) = u(t — s,x) it is plain to
check that v*(t,x) := v(t,z) — C'st and v~ (t,x) := v(t,z) + C'st are respectively sub and
super-solutions to over [s,T] x RY, where C" is such that

|H(t - Saﬁap7M) - H(t,ﬁ,p,M” + |fé(t - S,ZL’) - fé(t,l‘)| < C's
for all s € [0,T], all t € [s,T] and all (z,p, M) € R? x R? x S4(R). By comparison we find
that for all s € [0,7], all t € [s,T] and all z € RY,

u(t,z) — vt (t,x) < supu(T,z) — v (T, z)

zeRd

<sup¢'(z) —u(T —s,2) + C'Ts < Cys + C'Ts.

zeRd

Doing the same with v~ we get that |u(t,z) — u(t — s,z)| < (Cy + C'T)s for all s € [0,T],
all t € [s,7] and all z € R%. As a consequence, we find L > 0, independent of K > 0 such
that, for all (¢, ), (s,y) € [0,T] x R? it holds

This concludes the proof of the proposition. O
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Part 11

Optimal control of the Fokker-Planck
equation with state constraints in the
Wasserstein space

7






Chapter 3

Optimality Conditions

Introduction

This paper is devoted to the study of an optimal control problem of the Fokker-Planck
equation under state constraints on the space of probability measures. The formulation of
the problem is the following. We seek to minimize a cost

J(a,m) = L fRd Lz, a(t,z))dm(t)(x)dt + L F(m(t))dt + G(m(T))

over pairs (a, m) with m € C([0,T], Po(R%)) and « € L, it ([0,T] x R%, R?) (the control)
satisfying in the sense of distributions the Fokker-Planck equation:

orm + div(am) — Am =0 (3.1)

with the initial condition m(0) = mg € P2(R?). The flow of probability measures m is also
constrained to satisfy the inequality

U(m(t)) <0, Vt e [0,T]

for some function W : Py(R?) — R satisfying additional conditions. Here Py(IR?) is the set of
probability measures over R? with finite second order moment. The functions L : R? x R¢ —
R and F : Py(R%) — R are the running costs and g : Po(R?) — R is the final cost.

Our main motivation comes from the theory of stochastic control. The corresponding
problem is to minimize:

E UT L(Xy, ap)dt + LT F(L(Xy))dt + G(L(X7))

0

over solutions of the stochastic differential equation

dX, = audt + \/2dB,,

where the controller controls their drift a; starting from a random position X, such that
L(Xg) = mg and under the constraint that W(L£(X;)) < 0 for all ¢t € [0,T]. In this context,

79
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it is well-known that £(X;) solves Equation in the sense of distributions and therefore
the stochastic control problem reduces to a problem of optimal control of the Fokker-Planck
equation (see Chapter |2l and the references therein). Stochastic optimal control problems
with constraints on the probability distribution of the output have raised some interest in the
past few years in connection with quantile hedging in [70], stochastic target problems with
[21],22] and stochastic control problems with expectation constraints -see [50), 82] [84) [116), 117]
- to name a few.

Given the type of constraints we are studying, here it is convenient to state our problem
directly as an optimal control problem in the Wasserstein space. Such problems have been
studied recently but mostly for control problems for the continuity equation (namely without
diffusion term). Different approaches have been considered. In [89, [106] the authors use the
dynamic programming approach and prove that the value function is the viscosity (in a sense
adapted to the infinite dimensional setting) of an HJB equation. Whereas in [18] [19, 20] the
authors prove some adapted forms of the Pontryagin maximum principle. Notice that optimal
control problems for the Fokker-Planck equation were previously considered in [45, [66] but
without constraint. Here we emphasize that the constraint is a smooth function defined on
the Wasserstein space. In particular, our results do not cover the case of local constraints
where the constraint acts on the density (when it exists) of m. This latter problem was
addressed in [39] 57, 109, 110, 120].

Here we follow the path initiated in Chapter [2| of this thesis for a problem with terminal
constraint and prove some optimality conditions in the form of a coupled system of partial
differential equations associated with an exclusion condition. One of the equations is a
Fokker-Planck equation satisfied by the solution of the problem. The other equation is a
Hamilton-Jacobi-Bellman equation which is satisfied by an adjoint state, and from which we
derive an optimal control. Besides these two equations, the exclusion condition reflects the
effect of the constraint on the system. Our strategy is to proceed by penalization. We solve
the penalized problem in a way that is closely related to Mean Field Game theory. Indeed,
when the game has a potential structure - see for instance [24, 37, 102, [115] - the system
of partial differential equations which describes the value function of a typical infinitesimal
player and the distribution of the players can be obtained as optimality conditions for an
optimal control problem for the Fokker-Planck equation. With this optimality conditions at
hand we proceed to show that solutions to the penalized problem — when the penalization
term is large enough— stay inside the constraint at all times and are therefore solutions to
the constrained problem. This second step is inspired by ideas in finite dimensional optimal
control theory (see [74]). In particular we follow a method used in [33] [31]. The idea is
to look at local maximum points of the function ¢ — W(m(t)) for some solution m of the
penalized problem and prove that they cannot satisfy ¥(m(t)) > 0 when the penalization
is strong enough. To this end we compute the second order derivative of ¢t — W(m(t))
thanks to the optimality conditions previously proved. An interplay between the convexity
of the Hamiltonian of the system, a tranversality assumption on the constraint and various
estimates on the solutions of the optimality conditions of the penalized problem allows us to
conclude. As a by-product of this method we can show that the solutions of the constrained
problem enjoy the same regularity as the solutions of the penalized problem. In particular
optimal controls are proved to be Lipschitz continuous. This result might seem surprising
since the presence of state constraints generally leads to optimal controls which behave badly
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in time (see [74] and the references therein). However it is reminiscent of classical results in
finite dimensional optimal control theory in the presence of suitable regularity, growth and
convexity assumptions as in see [77), 85].

The rest of the paper is organized as follows. In Section|3.1|we introduce the notations and
state some useful preliminary results on the Fokker-Planck equation and the HJB equation
on the one hand, and on the differentiability of maps defined on the space of measures on
the other hand. We also state a form of It6’s lemma for flows of probability measures. In
Section |3.2] we state the standing assumptions and our main results. In Section |3.3| we obtain
optimality conditions for the penalized problem. In Section we prove our main theorem.
In section [3.5| we extend our results to a more general setting. Finally, we postpone to
Section [3.6[ some technical results for the Hamilton-Jacobi equation satisfied by the adjoint
state, that we use throughout the paper.

Notations For a map u defined on [0,T] x R? we will frequently use the notation u(t) to
denote the function = +— wu(t,z). Notice that u(t) is therefore a function defined on R?. If a
function u defined on [0, T] x R? is sufficiently smooth, we denote by d,u the partial derivative
with respect to t and by Du, Au := divDu, D?u (if u is a scalar function) or Du, Au = divDu
if u is vector-valued, the derivatives with respect to x. The Wasserstein space of Borel
probability measures over R? with finite moment of order r > 1 is denoted by P,(R%). Tt
is endowed with the r-Wasserstein distance d,.. The space of n-times differentiable bounded
real functions over R¢ with continuous and bounded derivatives is denoted by C*(R?). Given
m € C([0, T, Po(R?)) we denote by L2, o4, ([0, T]x R%, R?) the space of R%-valued, m(t)®dt-
square-integrable functions over [0, 7] x R?. The space of finite Radon measures over [0, T is
denoted by M([0,T7]), the subset of non-negative measures by M*([0,7]) and the set of R%-
valued Borel measures over [0, 7] x R? with finite total variation by M([0, T] x R¢, R%). The
space of symmetric matrices of size d is denoted by Sq(R). We denote by C,*([0, T] x R?) the
space of bounded functions with one bounded continuous derivative in time and two bounded
continuous derivatives in space. Finally we denote by W1®([0,T] x R?) the subspace of
L™ ([0, T] x R?) consisting of functions which have one bounded distributional derivative in
space and one bounded distributional derivative in time. For n > 1 we denote by FE,, the
subspace of C"(R?) consisting of functions u such that

[u(@)]

n
|u], := sup ——" + ¥ sup |D*u(x)| < +oo.
" zerd 1 + |ZL'| ,;xERd ‘ |

Similarly we define E,., for n > 1 and o € (0,1) to be the subset of E, consisting of
functions u satisfying

Dmu(z) — D"
[tllnse = il + sup 2@ = D@l
TAY |$ - y’a

For a € (0,1) we say that u € C([0,T] x R?) belongs to the parabolic Holder space
C+e)/21+e([0, T] x R?) if u is differentiable in  and
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Du(t, x) — Du(t,
|u|1e 11 == sup  |u(t,z)]+  sup  |Du(t,x)| + sup sup |Dult, 2) - (t.y)
2 (t,2)e[0,T] xR (t,2)e[0,T] xR te[0,T] a4y |z =yl
|U(t,l’> —U(S,I)| |DU(t,ZL’) —DU(S,ZE)|

_|_
[t — s TP [t — s[o7

+ sup sup
zeRd t#s

is finite. Finally we will use the heat kernel P, associated to —A defined, when it makes

sense, by X
_le—y)?

PI@) = | e

3.1 Preliminaries

We start by introducing the main protagonists of this paper. The first one is the Fokker-
Planck equation.

The Fokker-Planck equation. Givenm € C([0, T], Py(R?)) and a € L2, oy ([0, 7] x R%,RY),
we say that (m, «) satisfies the Fokker-Planck equation:

oym + div(am) — Am =0 (3.2)
if for all p € C((0,T) x R?) we have

fo fRd [Cep(t,z) + Do(t, x).at,z) + Ap(t,x)] dm(t)(z)dt = 0. (3.3)

Using an approximation argument similar to [129] Remark 2.3, we can extend the class
of test functions to C,*([0,T] x R?) and for all € C;*([0,T] x R?) and all ¢1,t, € [0,T] it
holds

| plnaiam)@) = | et apdm(e)a)

+ L 2 fRd [Owp(t, x) + Dp(t, x).a(t, x) + Ap(t, )] dm(t)(z)dt.

Throughout the paper, we will repeatedly use the following properties of solutions to the
Fokker-Planck equation. The proofs are given in the appendix.

Proposition 3.1. Assume that m € C([0,T],Po(R?)) and a € L2 o4 ([0,T] x R, RY)
satisfy the Fokker-Planck equation (3.2), starting from the initial position mg € Po(R?) then,

sup Ld |z|2dm(t)(z) + sup dy(m(t), m(s)) <C

te[0,T] t#s it — s

for some C = C( fR fePdmo(a), LT fRd la(t, 2)Pdm(t)(x)dt) > 0.
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We also have the following compactness result.

Proposition 3.2. Assume that, for all k = 1, (mg,wy) solve the Fokker-Planck equation
starting from mq and satisfies the uniform energy estimate

[/ [ steoramom<c.

for some C > 0 independent of k. Then, up to taking a sub-sequence, (mg, cymy) converges
in C2° ([0, T], Pa—s(R%)) x M([0,T] x RELRY) for any & € (0,1) toward some (m,w). The
curve m belongs to CY%([0,T], Po(R%)), w is absolutely continuous with respect to m(t) ® dt,
it holds that

L

and, finally, (m

2 2

dw (t,x)| dmy(t)(z)dt

dm(t) ® dt

dwk
(tz) dmy,(t) ® dt

k—+00

T
dm(t)(z)dt < lim ian J
0 Jre

,dtéﬁ) solves the Fokker-Planck equation (3.2)) starting from my.
The HJB equation The second protagonist of this paper is the following Hamilton-
Jacobi-Bellman equation. It involves the Hamiltonian H : R% x R? — R? of the system. For

the following definition to make sense and the next theorem to hold, H is assumed to satisfy
Assumption (AH)), introduced in the next section.

Definition 3.1. Let f € LY([0,T],E,) and g € E,,, for some n > 2. We say that u €
LY([0,T], E,) is a solution to

{ _atu + H(I, Du) — Au = f in [07 T] X Rd’ (34)

w(T,x) =g in RY,
if, for dt-almost all t € [0, T] it holds, for all x € R?

T

u(t,z) = Pr_g(z) + J P, f(s)(x)ds — L P, [H(., Du(s,.))] (x)ds.

t

Let us point out that a solution uw € C([0,T], E,) for n > 3 is differentiable in time
whenever f is continuous and, at these times, the HJB equation is satisfied in the usual
sense.

We introduce this notion to handle solutions which are smooth in = at each time but not
necessarily regular in the time variable.

The following theorem is proved in Section [3.6.1]

Theorem 3.1. Tuke n > 2. Assume that f belongs to L'([0,T], E,), g belongs to E, o and
H satisfies Assumption (AH)) then,

e The HJB equation (3.4) admits a unique solution w in C([0,T], E,) in the sense of
definition [3.1] and it satisfies the estimate

sup Ju(t)]n < C(L [£@)ndtt, liglln)-

te[0,T]
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o Assume that (fm,gm) belongs to L'([0,T], E,) X Enya for all m > 1 and that f,,
converges to f in L*([0,T], E,) and g,, converges to g in E, 4. Let u,, be the solution
to (3.4) with data (fm,gm), then uy, converges to u in L*([0,T], E,,).

Differentiability on the Wasserstein space and It6’s formula for flows of prob-
ability measures. We say that a map U : P,(RY) — R™ is C! if there exists a jointly
oU
continuous map S Py (R?) x R* — R™ such that, for any bounded subset K < Py(R%),
m
oU

r — 5—(m, x) has at most quadratic growth in z uniformly in m € K and such that, for all
m
m,m’ € Py(R?),

U’ f JRd hym + hm!, )d(m’ — m)(z)dh.

oU
The function S is defined up to an additive constant and we adopt the normalization
m

convention

JR U (1, w)dm(z) = 0.

d5m

In the terminology of [43] it means that U admits a linear functional derivative. When the

map  — 5—(m, x) is differentiable we define the intrinsic derivative of U
m

oUu
D =D, — )
mU(m, x) 5 (m, x)

The following form of 1t6’s lemma -formulated in terms of SDEs- is proved (under more
general assumptions) in [43] Theorem 5.99.

Proposition 3.3. Take m € C([0,T], P2(R%)) and o € L%z(t)@dt ([0,7] x R, RY) such that
(m, ) is a solution of the Fokker-Planck equation (3.2)) and suppose that U : Py(RY) xR — R

is Ct with — satisfying
om

oU
d 2 (mod
Vm € Py(RY), x 6m(m,x) e C*(RY),

with (m,x) — D, U(m,z) and (m,z) — D,D,,U(m,x) being bounded on Py(R?) x R? and
jointly continuous. Then, for all t € [0,T], it holds that

U(m(t)) = U(m(0)) + f Dol (m(s), 2).as, z)dm(s) (z)ds
JfRddwxD U(m(s), z)dm(s)(z)ds.

Notice that Proposition 5.48 of [43] ensures that U satisfies the assumptions of Theorem
5.99.
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3.2 Main results and assumptions

First, consider the unconstrained problem
(inf) J(a,m), (uP)

where
T, m) = L fR L, alt,)dm(e)(r)dt + L Flm(t))dt + G(m(T))

is the total cost and the infimum runs over all («, m) such that

m e C([0,T], Po(R%)),

o e L?lt@m(t)([()? T] X Rdde)a

oym + div(am) — Am =0 in (0,7) x R4,
m(0) = my,

(3.5)

where the Fokker-Planck equation is understood in the sense of distributions. Here, the
Lagrangian L is defined by

L(x,q) = Sup {=p.q— H(z,p)}

and the data are the finite horizon T' > 0, the Hamiltonian H : R x R? — R, the mean-field
costs F : Po(R?) — R and G : Po(R?) — R and the initial measure mg € Py(R?). The above
data are supposed to satisfy the following conditions for some fixed integer n > 3.

For U = F,G, the map U : Po(RY) — R? satisfies

U is a bounded from below, C' map
U
and ;5_?/{ belongs to C(Pa2(R?Y), Eyia). (Ureg)
m
For some positive constant Cjy > 0 it holds
for all (z,p) € R¢ x R4
_ ! ' AH2
ol 6y < Hin < Cob +Co (AH2)
H belongs to C"(R% x RY). (AH3)
H and its derivatives are bounded on sets of the form (AHA)
R? x B(0, R) for all R > 0.
For all (z,p) e RY x R, | D, H(x,p)| < Co(1 + [p|). (AH5)

There is some p > 0 such that, for all (x,p) € R? x R¢,

1 AH6
;[d < DppH(z,p) < ply. ( )
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For convenience we put all the assumptions concerning H into

Assume [AH AH N AHA[AHS|[AHE, (AH)

Notice that, taking convex conjugates, we see that L satisfies a coercivity condition
similar to Assumption (AH2): for all (z,q) € R? x RY,

1
4C)
and the first term in the total cost J looks very much like a kinetic energy.

A typical example of functions satisfying the condition (Ureg)) is the class of cylindrical
functions of the form

C
lq|* — Co < L(z,q) < ZOW + Co,

Fim) = £ ([ p@imo),.... [ fean).

where F' and the f;, 1 < ¢ < k are smooth with bounded derivatives. Assumption (Ureg)
also implies that (m,z) — D,,U(m,z) is uniformly bounded in Py(R%) x R? and therefore,
a simple application of Kantorovitch-Rubinstein duality for d; proves that U is Lipschitz
continuous with respect to this distance.

Under the above assumptions on F, G and H it is well-known (see [24] or Chapter [2|of this
thesis), that solutions (m, «) of Problem exist and satisfy a(t,x) = —D,H (z, Du(t, x))
with (m,u) solution to the Mean-Field Game (MFG) system of partial differential equations

OF

—0wu(t,z) + H(x, Du(t,x)) — Au(t,z) = 5—m(m(t), x) in (0,T) x R,
dym — div(D,H (z, Du(t, z))m) — Am =0 in (0,7) x R4, (3.6)
u(T,z) = 5—g(m(T),x) in RY m(0) = my,

om

where the unknown (u,m) belong to C((0,7) x R?).
The purpose of the present work is to investigate the effect of a state constraint

T(m(t)) < 0,Vt e [0,T],

on the problem above. Here U : Py(IR?

) — R satisfies the regularity assumption (Ureg|) and
is convex for the linear structure of Py(R?)

For all my, my € Po(RY) and all X € [0, 1], .
{ ( (APsiConv)

(1 — )\)ml + )\mz) < (1 - )\)\I/(ml) + )\\If(mg)

We also need to assume that the problem is initialized at a point my in the interior of
the constraint that is

U(myg) < 0. (APsilnside)

In addition to the previous assumptions we will ask for second-order differentiability with
respect to the measure variable for W.
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ow 52 520
For all z € RY, m — %(m,x) is C! with (;g,‘li/) — W(m,x,y) = W(m,x)(y)
in C2(R? x RY) for all m € Py(R?) and ﬁ(m, x,7) and its derivatives being
m
jointly continuous and bounded in Py(RY) x RY x R?.

(APsiC2)
Notice that Assumption (APsiC2)) implies in particular (see for instance [43] Remark 5.27)

that the map (m,z) — D,,,¥(m, z) is uniformly Lipschitz continuous over P;(R?) x R?.

Finally we require the following geometric assumption on the constraint.

f | D ¥ (m, z)|* dm(z) # 0 whenever ¥(m) = 0. (APsiTrans)
Rd

The transversality assumption is not necessary to get the optimality condi-
tions however it is the key assumption to obtain the time regularity of optimal controls.

An example of constraint ¥ : Py(R?) — R satisfying Assumptions (Ureg]), |APsiConv| and
[APsiC2] is

U(m) := » Y(z)dm(x)

where 1 is any function in E,. If if holds as well that |Dy(x)| # 0 whenever ¥ (z) > 0
then U satisfies Assumption (APsiTrans|). Indeed if f | D (x)|*dm(z) = 0 then m must
Rd

be concentrated on the set of points in R? where v(x) < 0 and therefore it cannot be that

J;w@Mm@)=0

Example 3.1. A typical example which satisfies Assumptions (Ureg]), (APsiConv), (APsiC2])
and (APsiTrans) that we have in mind is

W(m) — J (Ve — 2P 8 — ) dm(x) ~

with 7o € R%, § > 0 and x > 0. We can compute the derivatives, for all m € Py(R?) and all
x e R%:

ow
%(m, x) =A/|r— x>+ 02— 0 — J (\/ ly — xo|? + 62 — 5) dm(y),

Rd
D,V(m,x) = i :
VT — xo|? + 62
, d |z — x|
div,D,,¥(m,x) = — )
( >fvw—mP+W (lz — @o|? + 02)3/2

52U
—(m,x1,29) = 0.

om?
In particular, it holds that
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|z — 202

| 1Dwwtm ) ama) - | dm(z),

rd |T — 0| + 02
and it is easily seen that W satisfies the tranversality condition [APsi'Trans|

We can finally state the main problem of interest in this paper:

1nff fRd (2, a(t, 2))dm(t dt+f F(m(®))dt + Gm(T)) (P)

where the infimum runs over the pairs (m, «) satisfying (3.5)) and the state constraint
Vt e (0,71, U(m(t)) < 0.

Over the course of the paper we will introduce several auxiliary problems. The main one

is the following. For €,0 > 0 the penalized problem is

(inf) Jes(a,m) (Pes)
where the infimum runs over all (m, «) satisfying (3.5 (but not necessarily the state con-
straint) and J, 5 is defined by

T
Jes(a,m) f f (@, at, x))dm(t dt—l—J F(m(t))dt + - J U (m(t))dt

0

+G(m(T ))+5‘P+( m(T))

T
= J(a,m) + %f U (m(t))dt + %\I/Jr(m(T)).
0

Here and in the following, ¥*(m) = ¥(m) v 0 = max(¥(m),0). Notice that Problem (P, 4|
is very similar to Problem although we have to deal with the non-differentiability at 0
of the map r — max(r,0).

We now state our main results. The first one is not expected without Assumption
(APsiTrans). Roughly speaking, it asserts that optimal solutions to the penalized prob-
lems stay inside the constraint when the penalization is strong enough.

Theorem 3.2. Take n = 3. Assume that (AH) holds for H, holds for F and G.
Assume further that U satisfies Assumptions (Ureg)), (APsiConv)), (APsilnside]), (APsiC2)
and . Then there exist €, g > 0 depending on mq only through the value W(my)
such that, for all (¢,d) in (0,€) x (0,d9) Problems and (P)) have the same solutions.

As a consequence we find the following optimality conditions for the optimal control
problem with constraint.

Theorem 3.3. Under the same assumptions as Theorem Problem admits at least
one solution and, for any solution (a,m) there exist u € C([0,T], E,), v € L*([0,T]) and
n € R such that

a=—D,H(x,Du) (3.7)
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and

([ —dwu(t,z) + H(x, Du(t,z)) — Au(t, x)
= y(t)g—i(m(t),m) + g'—n};(m(t),m) in (0,T) x R4,

$ Oym —div(D,H(z, Du(t,z))m) — Am =0 in (0,T) x R4, (3.8)
u(T,2) = wg (m(T), ) + 3 (m(T), 2 in Y,
m(0) = my,

\
where the Fokker-Planck equation is understood in the sense of distributions and u solves the
HJB equation in the sense of Definition |3. 1.

The Lagrange multipliers v and n satisfy

0 if U(m(t)) <0 _
v(t) = R iU (m(t)) — _Jo if W(m(T)) <0
{ v(t) e RT if W(m(t)) 0,(3 ) U { neR* i U(m(M) =0 10

If we also assume that F and G are coinvex in the measure variable, then the above
conditions are sufficient conditions: if (m,«) satisfies W(m(t)) < 0 for all t € [0,T] and if
there exists (u,v,n) such that (3.7)), (3.8), (3.9) and (3.10) hold then (o, m) is a solution to
(P).

The strength of the above result relies on the regularity of the Lagrange multiplier v asso-
ciated to the constraint that for all ¢ € [0, T], U(m(t)) < 0. Indeed we would a priori expect
v to be a finite Radon measure over [0, 7] but here we find that v belongs to L*([0,T]).
As a consequence — and as explained in Remark below— optimal controls are Lipschitz
continuous in time.

We complete this section with a few comments.

Remark 3.1. Arguing as in [31], in the proof of Theorem 3.1, we can use the expression of
jﬂ\p( (t)) given by Proposition to express v(t) as a (non-local) feedback function of
Du(t), D*u(t) and m(t).

Remark 3.2. Computing the cost of an optimal control we see that the value of the problem
denoted by U(my) is given by

L{(mo):fRd (0, 2)dmo (x J]—" ))dt + G(m(T))

for any solution (m, —D,H(z, Du)) of (P).
Remark 3.3. Differentiating the HJB equation with respect to x shows that Du actually

belongs to W1 ([0, T'] x R¢, R?) and since Du is also continuous and D, H is locally Lipschitz
we get that « is Lipschitz continuous. In particular the Stochastic Differential Equation

t
X, = Xo + f a(s, X,)ds + V2B,
0
where Xy ~ myg, admits a unique strong solution and we can proceed as in Chapter [2in the
proof of Theorem to find strong solutions to the stochastic analog of Problem (as
stated in the introduction).
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Remark 3.4. Ideally we would like to consider constraints of the form W(m) = f |z|2dm(z)—

R
x (which does not satisfy the growth conditions of Assumptions (Ureg)) and (APsiC2)) for

some k > 0. However this would significantly increase the technicality of the paper and
we leave this case for future research. Among other difficulties we would have to solve the
backward HJB equation in (3.8) when the source term has a quadratic growth in the space
variable.

Remark 3.5. Our results could be naturally extended to multiple (possibly time dependent)
equality or inequality constraints under suitable qualification conditions but we focus on this
case of just one inequality constraint for the sake of clarity in an already technical paper.

Optimality conditions without Assumptions (APsiC2) and (APsiTrans).  When
Assumptions (APsiC2)) and (APsiTrans|) are not satisfied we do not expect the conclusions

of Theorem to hold. However, we can pass to the limit as €, go to 0 in the Penalized
problem (P, 5) and find the optimality conditions for the constrained problem.

Theorem 3.4. Assume that [AH holds for H, holds for F and G. Assume further
that U satisfies Assumptions (Ureg), (APsiConv) and (APsilnside). Then the conclusions
of Theorem hold true with v € M*([0,T]), and u € L*([0,T], E,). The exclusion
condition for v now reads ¥(m(t)) = 0, for v-almost all t € [0,T]. Finally the optimal
control a belongs to BVio.([0,T] x R RY) () L*([0, T],C; (R, RY)).

In this (slightly more) general case, we lose the time regularity of the optimal controls.
This is due to the shocks that can occur when the optimal curve t — m(t) touches the
constraint. Indeed, the set of times where the optimal control is not continuous, is contained
into the support of the singular part of the Lagrange multiplier ». However, the space regu-
larity of the backward component u of the system and of the optimal control —D,H (x, Du)
remains.

The proof of Theorem is the aim of section (3.5 where we discuss in particular the
well-posedness of the HJB equation when the Lagrange multiplier v belongs to M*([0,T7).

3.3 The penalized problem

In this section we analyze the penalized problem (P.s). The main result is the following.

Theorem 3.5. Problem (P.s|) admits at least one solution and, for any solution (o, m) of
(P.s|) there exist uw e C([0,T], E,), A€ L*([0,T]) and /3 € [0, 1] such that

a=—D,H(x,Du)

and
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—0wu(t,z) + H(x, Du(t,x)) — Au(t, z)
_ @g_‘l’(m(t),x) ; %(m(t),x) in (0,T) x RY,
) oym — div(D,H (x, Du(t,z))m) — Am =0 in (0,T) x R4,
\ w(T,z) = ?g—i(m(T),x) %(m(T),x) in R, m(0) = mg
(3.11)
Moreover, X and 3 satisfy
=0 if U(m(t)) <0 =0 if U(m(T)) <0
At)< €[0,1] if ¥(m(t)) =0 (3.12)  p< €[0,1] if ¥(m(T)) =0 (3.13)
—1  ifU(m(t) >0, —1  ifU(m(T)) > 0.

The proof of Theorem [3.5] will be divided into three steps. First we are going to prove the
existence of (relaxed) solutions to the problem. This is Lemma . In the second step, we
will show that these relaxed solutions are actually solutions of a suitable linearized problem.
This is Lemma 3.2l Finally, we will conclude the proof of Theorem by computing the
optimality conditions for this linearized problem. The three steps above are very similar to
what is done in [24] Lemma 3.1 and in Chapter [ Section of this thesis. Here, however
we have to deal with the lack of differentiability at 0 of the function r — max(0,r). We also
proceed differently at the end of the proof of Theorem [3.5, where we argue by verification
to avoid the unnecessary use of a min/max argument.

We start with the existence of relaxed solutions. A relaxed candidate is a pair (m,w)
such that

m e C([0,T], Po(R%)),

we M([0,T] x R R?),

dm + div(w) — Am =0 in (0,7) x R,
m(0) = mo,

(3.14)

where the Fokker-Planck equation is once again understood in the sense of distributions.
A relaxed solution is a minimizer over all the relaxed candidates of the following functional
still denoted (with a slight abuse of notations) by J. s

Jes(m,w) = J fRd dt@dm()(’ x))d dt+f F(m dt+ejo Ut (m(t))dt
+G(m(T ))+5\If+( m(T)),

where we set J. 5(m,w) = +0 if w is not absolutely continuous with respect to dt ® m(t).
Lemma 3.1. Problem admits at least one relaxed solution.

The existence of relaxed solutions is standard (see [24] or Chapter [2 Section but we
give the proof in Appendix for the sake of completeness and because we will use the
same line of arguments at different points in our analysis.
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Notice that it would not be more difficult to obtain weak solutions directly for the con-
strained problem. However, for the constrained problem, we don’t know how to directly
compute the optimality conditions and more importantly they would not give us the regu-
larity of the Lagrange multipliers that we get thanks to our penalization procedure.

Now we fix a solution (m,®) of the penalized problem and we proceed to show that
(m, @) is solution to a suitable linearized problem for which it will be easier to compute the
optimality conditions. In the proof of the following lemma we will use a smooth distance-
like function. To this end we consider a family (¢;)in of functions in CZ(R9) such that for
mi, my € Pa(RY) we have

m; =ms < VieN f wi(x)d(my —ms)(x) =0,
Rd

and we define g : Po(R?) x Py(R?) — R by

2

+00

J %’d(m1 - m2)
Rd

q(mq,mg) = . :
;) 2¢(1 + |lgslZ, + | Dgil%)

Notice that ¢ satisfies

{ qg(my,ms) =0 Vmy, my € Po(RY) (3.15)

q(my, mo) = 0 if and only if m; = mo.

It is straightforward to verify that ¢ is C! with respect to both of its arguments and that

+

5q ©w 2 Ld wid(my — my)
—(my,mo)(x) = . () — sdmy).
Sy M) = L e T D) ) fRﬁ" 2

(]

In particular we have

)
f 5_q<m1’ ma)(y)dma(y) = 0 Vmi, mg € Pao(RY),
R (3.16)
5—(m1,m1)(x) =0 Vm; € Po(RY) and Vo € R%
my

Lemma 3.2. Let (m,®) be a fized solution to Problem (P.s|). Then there exist A € L*([0,T])
and B € RT satisfying

0 if U(m(t)) <0, _ (R
A(t) = i\(t) € [0,1] Z}”igifzgt;; = 87 8l e [% 1] ;igmgig i 8’ (3.18)
if W(m(t)) > 0, 7 Y ’
(317) = if W(m(T)) > 0,

such that (m,®) minimizes
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T dw

0 fRdL(x’ fr@dm(@ "
+ JT fRd l__ (m(t),z) + gi(m(t) )] dm(t)(z)dt

€ om

+ [ 5o, + 3 (.o, | nm)o

JLs(w,m) = x))dm(t)(x)dt

over the pairs (m,w) satisfying (3.14). Once again, we set Jelﬁ(m,w) = +o0 if w is not
absolutely continuous with respect to dt ® m(t).

Proof. To avoid uniqueness issues we modify the cost function J. s so that the new problem
reads

inf [Je,g(m, W) + J " gm(), m(t))dt] | (3.19)

0

If ( ’,&") is a solution of the above problem, then m’ = m. This is a direct consequence of
and the fact that (m, @) is a solution of the penalized problem. We use this function
q (and not the Wasserstein distance for instance) because it is smooth and therefore we

can differentiate it to get optimality conditions and also because —q(ﬁl,ﬁz, x) = 0 for all

om

x € R? (see (3.16))): therefore ¢ will not appear in the optimality conditions for (m,&). Now,
we introduce a suitable regularization of the function r — max(0,r). For all h > 0, let
vn : R — R* be functions satisfying

Yn € CQ( ) 0,
Y(r) = max(O r) in R\[—h, hl,
iglgm( r)| <1,

sup |y, (r) — max(0,7)| — 0 as h — 0.
reR

We consider the regularized, penalized cost functionals

Jsn(m,w) J JRd dt®d (t)( ,:c))dm(t)(a:)dtJrJO .F(m(t))dtJr%fo U (m(t))dt

+G(m(T)) + g‘lfh(m(T))

where U, is defined for all m € Py(R%) by Wy, (m) = 7,(¥(m)). Now we argue as in the proof
of Lemma |3.1] (see Appendix [3.7.1)) and find for all A € (0,1) a solution (my,wy) of

0

inf [J6,5,h(m, W) + f ' g(m(t), m(t))dt] . (3.20)

Taking for granted that we can find a candidate (m,w) such that J(m,w) < 400 and
U(m(t)) < 0 for all ¢ € [0,T] (we explicitly construct such a candidate in Lemma in
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Section below) we find that J. 55 (mp, wy) is bounded from above by J (7, @) indepen-
dently of €,0 and h. By coercivity of L we deduce that
dwh

| Lo

for some C' > 0 independent of €,0 and h. Following the proof of Lemma [3.1] in Ap-
pendix , we deduce that (m, wh) converges, up to a sub-sequence, in C([0, 7], 77 (RY)) x
M([0, T] x R4, R?) for some r € (1,2) to an element (m/,w’) of C([0, T], P2(R%)) x M ([0, T] x
R? R?) satisfying with w’ absolutely continuous with respect to m’. Let us prove that
(m/,w’) is a minimizer of and therefore, by uniqueness —that is why we added the
g-term in the cost functional-, m’ = m. We just need to show that

2

(t,x)| dmp(t)(z)dt < C

T
Jes(m' ') + J q(m/(t),m(t))dt < J.s(m, ).
0

However, for any h € (0,1), using the minimality of (my,w;) for Problem (3.20]) it holds,

T

Jos(m ) + L o(m! (1), F())dt — J.5 (50, &)

_Emmmm+Lqmmmm@w—Lm%w>

T T

ol (0, (0t~ | am(e), o))t

+ Jes(m', ') — Jesn(mp, wp) + J
0

0
+ Je,(g’h(ﬁ”b, (TJ) — Je,g(ffl,(b)

T T

qmwwmmw—qummm@wt

< Jos(m' ) — Josn (s on) + f
0

0
+ Je,(;’h(m,a/}) — J€75(T~n,(b).

T T
Since J q(m’(t), m(t))dt — J q(mp(t), m(t))dt and J.sp(m, @) — J.s5(m, @) converge to 0
0 0

as h converges to 0, it is sufficient to prove that J.s(m’,w’) < lmlnf Jesn(mp,wy). For all

h > 0 we can rewrite

T

Jesn(mn, wn) = Je,a(mhawh)Jr%J [ U5 (ma (1) — O (ma(t))] dH% [ O (mn(T)) = F (ma(T))]

0

but
1 (T

i [ [0 (ma()) — O G (0))] it + &

h—0 € J, 5 [‘yh(mh(T)) - ‘I’+(mh(T))] =0

and therefore liminf, .o Jespn(mp, wn) = liminf, o Je s(mp,wp). Finally we can conclude
by lower semi-continuity of J.s that liminf, o Je s(mp,wp) < Jes(m',w’). The lower semi-
continuity of J. s can be proved following Theorem 2.34 of [7].

Now we argue as in Chapter Section to show that, for all h > 0, (my,wy) is
actually an infimum of the linearized problem
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inf J! 5, (m, w) J fRd (5m1 m(t), z)dm(t)(x)dt (3.21)

where the infimum is still taken over relaxed candidates (m,w) satisfying (3.14]) with the
linearized cost functional J! ;, defined by

T g m) f [RE ﬁ@mm)mxmmwxwﬁ

with, once again J! 5, (w,m) = +o0 if w is not absolutely continuous with respect to m(t)®dt.
Indeed, take a candidate (m,w) with finite cost, take [ € (0,1) and define (m;,w;) :=
(1 = 0)(mp,ws) + l(m,w). By minimality of (my,wy) we have, for all [ € (0,1)

T T

1
7 lJe,(S,h(mhywh) + J

0

q(mh(t), TNTI,(t))dt — J€75,h(ml, wl) — J

0

q(my(t), ﬁz(t))dt] < 0.

The statement is proved letting [ — 0 in the expression above and using, on the one hand,

d
the convexity of (m,w) — L fRd L(x, W:m(t)(t’ x))dm(t)(z) and, on the other hand, the

differentiability of the mean-field costs.

Now we are going to pass to the limit in the linearized problems when h — 0.

On the one hand, being the family of functions ¢ — ~; (¥ (my(t)) bounded in L*([0,T1]),
it converges —up to a sub-sequence- for the weak-* topology o(L®,L') of L*([0,T]) to
a function A in L*([0,77]). It is easily seen that X satisfies (3.17). On the other hand the

functions t — | —(my(t), z)dm(t)(x) converge uniformly tot — | —(m(t), x)dm(t)(zx)
R4 om R4 om

as h goes to 0. Therefore we can conclude that, up to a sub-sequence,
S T S
[ ] o wmo0ﬁ=fnﬂwmﬁ»[5<mx>wmmww
Rd Ra 0N

—>J A(t) fRd x)dm(t)(x)dt

1 o
as h goes to 0. A similar statement holds for gf Tnil(mh(T),x)dm(T)(:v) and we can
Rd

conclude that, up to a sub-sequence, J csn(m,w) converges to Jl s(m,w) for any relaxed

candidate (m, w) Where J! s 1s defined in the statement of the lemma for some A , B satisfying
the conditions and - We deduce that (m,w’) is an infimum of Ji Notice that

) )
the term mvolving —— 1 (3. 1sappeared since ——(m(t), m(t),x) = 0 tor all x € R"
h involvi 5q' 321) di d si 6q~ 7 0 for all z € R
mq my
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To conclude that (m,@) is a solution to the linearized problem, it suffices to notice that,
(m,@) being a solution to the penalized problem it must hold that

f JRd dt@d ()<’ z))di f J dt®dm<>(,x))d77l(t)(x)dt

(all the other terms in the J 5 only involve /) and therefore J! 5(,&) < J!5(m,w’). This
concludes the proof of the lemma.

Before we can prove Theorem we need the following duality formula.

Lemma 3.3. Assume that (m,a) € C([0,T], Pa(R?)) x LZg ) ([0, TT x R, RY) solves the
Fokker-Planck equation in the sense of distributions. Assume that u € C([0,T], E,,)
1s a solution to the HJB equation in the sense of Definition with inputs (f,g) €
LY[0,T], E,) x Epyo. Then, for all ty,ty € [0,T] it holds

fRd u(te, x)dm(ts)(x) = J u(ty, x)dm(ta)( J N Ft, z)dm(t)(z)dt

R4

—i—f:fRd [H(z, Du(t,z)) + a(t, ). Du(t, z)] dm(t)(x)dt. (3.22)

Proof. We take a sequence of functions f,, € C([0,T], E,,) converging to f in L'([0,T], E,)
and we let u,, be the corresponding solutions to the HJB equation with data (f,,,g). Be-
ing f,, in C([0,T], E,), it is straightforward from the definition of solution that w, is
differentiable in time, d,u,, belongs to L*([0,T], E,,—) and the HJB equation is satisfied
in the strong sense. The curve m(t) being bounded in P,(R?), an approximation argument
similar to [129] Remark 2.3 shows that the integration by part formula holds for w,,
and therefore, we get

[ mttsyim(e)w) = [ e a)imie)o)
= LQ J}Rd [Ovtim (t, ) + a(t, ). Dupy,(t, ) + Auy,(t, )] dm(t)(x)dt
— J: J}Rd [a(t, z).Duy,(t, ) + H(x, Duy,(t,x)) — fm(t, )] dm(t)(x)dt

where we used the equation satisfied by u,, at the last line. Now we can use the stability
result of Theorem to pass to the limit as m — +00 and conclude the proof of the
proposition. ]

Finally we can conclude the proof of Theorem
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Proof of Theorem[3.5. We consider @ € C([0,T], E,,) solution to

5W=7;5#ﬁgao+%#mww> in (0.7) < RY, (399
AT, z) = gﬁ(ﬁ@( ),@) + 2 - (R(T), 2) in RY,

—the existence of such a solution is guaranteed by Theorem [3.1}— and we proceed by veri-
fication. We use Lemma [3.3] to get

~

fR (0, x)dmo(z) = — LT JRd lH(x, Dii(t,x)) + — éwdm(t,x).l)ﬁ(t,x)] din(t)dt.

Here we used the equation satisfied by % and the convention J —(m, z)dm(z) = 0 for all
Rd 0N
m € Po(R?) and all C* map U. But the inequality
dw dw
—H(x, Di(t, 7)) — ————(t,2).Du(t,r) < L(z, —(t,
(0, D)) = b (). D 0) < Lo, ()
holds, with equality if and only if
dw ~
@ dn (t,x) = —D,H(z, Du(t, x)).

Therefore,
f u(0, x)dmg(z) < Jé(;(ﬁz,&)
R4

~

with equality if and only if (t,z) = —D,H(z, Du(t, x)), dt®@m(t)-almost everywhere.

dw
N dt ® dm
Now if we consider m' solution to

oym’ — div(D,H (x, Du(t,z))m') + Am’ =0
with m’(0) = mg, a similar computation shows that

J %0, 2)dmo(x) = J'5(—D,H (x, Dit(t, 2))i, i)
Rd

which means that the cost f u(0, z)dmo(x) can indeed be reached and, by minamility of
Rd
(W, m) we get

J (0, 2)dmg(x) = inf J'; (3.24)
Rd (wm) 7

and
W= —D,H(z, Du(t,z))m(t) ® dt.
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Combining the Fokker-Planck equation in (3.14)) where @ is replaced by —D, H (z, Du(t, x))m(t)®
dt with the HIB equation ({3.23) and recalling that A and ( satisfy the conditions of Lemma
concludes the proof of the theorem. O

3.4 From the penalized problems to the constrained
one

The first goal of this section is to find estimates on the system of optimality conditions
which are independent from e and ¢. This is Section [3.4.1] Next we prove the regularity and
find suitable expressions for the first two derivatives of the map ¢ — W(m(t)) when (m, «)
is a solution to the penalized problem. This is Section [3.4.2] Finally we prove Theorems [3.2
and B.3in Section [3.4.3

3.4.1 Uniform (in epsilon, delta) estimates

First we construct a candidate (72, @) which stays uniformly inside the constraint at all time
with a finite cost.

Lemma 3.4. Provided V(mg) < 0, we can build a trajectory (m, @) in C([0,T], Po(R?)) x
Lfl@m(t)([O,T] x R R?Y) such that J(a,m) < +o0 and W(m(t)) < —0 for all t in [0,T], for
some 6 > 0.

Proof. First we introduce a filtered probability space (2, F,F, P) satisfying the usual condi-
tions and supporting a standard, adapted Brownian motion (B;). Take ¢ > 0 and consider
a solution to the SDE

dX, = —c(X, — Xo)dt + \/2dB,

where X is Fp-measurable, with law mg and independent from the Brownian motion. A
simple application of [to’s lemma proves that X; can be rewritten as

t
X, = Xo+V2 f e~ t=9)4B, (3.25)
0
and therefore )
1
E [‘Xt _ X()’Q] _ QJ e 2c(t=5) g = _(1 _ €f2ct).
0 c

Now let m(t) be the law of X;. The above computation shows that

Q=

dy(m(t), mo) <

for all ¢ € [0, T]. With an abstract mimicking argument as in [25] we can find a measurable
drift @ : [0, T] x R? — R? such that

0, + div(@m) — Am = 0
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and . ,
J f |a(t, x)\2dm(t) (x)dt < E [f & | Xy — XO\2 dt] <cT.
0 Jrd 0

However a direct computation, using Jensen’s inequality, shows that it is enough to take, for
all (t,x) € (0,T] x RY,

a(t,x) =

) J}Rd (x —y)mY(t, z)dmo(y)

where mY(t) is the solution to

oymY — cdiv((x — y)m¥) — AmY = 0
mY(0) = J,.

Notice that X, being independent from the Brownian motion, we easily deduce from (|3.25))
that m(t,z) > 0 for all (¢,z) € (0,T] x R
Being ¥ Lipschitz continuous and W(my) < 0 we can choose ¢ large enough so that
U(m(t)) < @ for all ¢ € [0, T] and this concludes the proof of the lemma.
O

Using this particular candidate and the convexity of the constraint we can obtain the
following estimate which is crucial to find compactness in the problem.

Although the notations do not make it clear, from now on (m,u, A, 5) will generally
denote a solution to the optimality conditions for the penalized problem and

therefore depend upon a particular (e, ).

Lemma 3.5. There is a constant M = M (¥ (mg)) > 0 such that, for all €,0 > 0 and for all
tuple (u,m, \, B) satisfying the conditions of Theorem it holds

1 (T
—f Moyt + 2 < .
e Jo o

Proof. By Lemma we can build a solution of the Fokker-Planck equation (@,m) such
that J(a,m) < 400 and, for all t € [0,T], U(m(t)) < —0 for some 6 > 0 independent of ¢.
Using the fact that (7, @) solves the Fokker-Planck equation, we can apply Lemma to
get

J, ). [a“’ 2).Dult,a) + Hir. Dult, ) = 30 m(t) ) - g—i(mu),x)] dm(t)(a)dr

e om
- [§§—§<mm, 7) + %mm,x)] am(T) (@) = | al0,2)dmo(a).

Now, reorganizing the terms and using the fact that, by definition of L, we have for all (¢, z)
in [0,7] x R?
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a(t,x).Du(t,z) + H(x, Du(t,z)) = —L(z,a(t, x)),

we get

[ 2O ity [ 20 i) pamry o)
J fRd [ z,a(t,x)) + ?—F( (t),:r:)] dm(t)(z)dt
fRd om —(m(T), x)dm(T)(z) —J u(0, x)dmg(x). (3.26)

Rd
On the one hand -using in the proof of Theorem and the notations therein-

we have that | (0, z)dmg(x ) J€6(m w). But the linearized costs cancel when applied
d

to (m,d) and therefore J° (i, &) = J(i, ). And since L, F and G are bounded from
below we get a lower bound on | u(0,z)dmg(z) independent of € and . The other terms
d

R
in the right-hand side of (3.26]) are also bounded from above since J(@,m) < 40 and since
OF

T — 5—(m, z) and x — (m, x) are bounded in E,, with bounds uniform in m and m(t)
m m

belongs to Py(RY) for all t € [0,7] . On the other hand, by convexity of ¥ we get for all
e [0, 7],

Ld %(m(“’ r)dm(t)(x) < W(m(t)) — U (m(t))
—0 — ¥(m(t))

and by definition of A and # we have A\(¢)¥(m(t)) = 0 for all t € [0,T"] and S¥(m(T)) = 0
and thus, if C' > 0 is an upper bound for the right-hand side of (3.26)) we get

AL, B _C
Ledtfse’

which concludes the proof of the Lemma.
]

Remark 3.6. Notice that this estimate, together with the construction of Lemma (3.4]) are
the only steps which require the convexity of ¥, Assumption as well as the
condition that W¥(mg) must be strictly negative, Assumption .

We can combine this Lemma with Theorem to find uniform in €, ¢ estimates for the

system of Optimality Conditions (3.11]).

Proposition 3.4. There is some C > 0 such that, for any €,6 > 0 and any solution
(m,u, \,B) of B-11) satisfying (B12) and (B13) it holds

sup |u(t)|, < C.
te[0,T]
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At this stage, the above estimates would be sufficient to pass to the limit when e and
0 go to zero in the penalized problem . We would find, at the limit, solutions of the
constrained problem and passing to the limit in the optimality conditions we would find

A
that the solutions to the constrained problem satisfy similar conditions with — replaced by a
€

non-negative Radon measure v € M™*([0,T]). This would lead to a priori discontinuous (in
time) optimal controls. However, we refrain from following such approach for now. Instead
we are going to exhibit a special behavior of the optimal solutions of the penalized problem.
Indeed we are going to show in the next section that solutions of the penalized problem stay
inside the constraint when the penalization is strong enough. Consequently it is sufficient to
take € and 0 small to get solutions to the constrained problem and optimal controls for the
constrained problem are still continuous.

3.4.2 Second order analysis

The special behavior (described just above) of the solutions will be a simple consequence of
the fact that we cannot have simultaneously ¥(m(t)) > 0 and j—;\lf(m(t)) < 0 (here m is a
solution to (P, 4)) when the penalization is strong enough. The purpose of this section is to
prove the regularity and a suitable expansion of the map t — W(m(t)).

Recall that S4(R) is the space of symmetric matrices of size d.
Proposition 3.5. Suppose that (m,u, \, B) is a solution of (3.11)) for some €,§ > 0. Then
the map t — V(m(t)) is C' in [0,T] and C* in [0, T]({t : ¥(m(t)) # 0} with derivatives
given by

%\I/(m(t)) = - y D, ¥(m(t), z).D,H(z, Du(t, xz))dm(t)(z)
+ JRd div,D,, ¥ (m(t), x)dm(t)(x)
and
%\P(m(t)) = M) » Dm\If(m(t),x).D;pH(x,Du(t,x))Dm\I/(m(t),x)dm(t)(m)

€
+ F(Du(t), D*u(t), DAu(t), m(t))

for some functional F : Cy(R4, RY) x Cp(RE, SYR)) x Cp(RE, RY) x Py(R?) — R independent

of € and & and bounded in sets of the form A x Py(R?) for bounded subsets A of Cp(R?, R?) x

Cp(R% S4R)) x Cp(RE, RY).

Proof. Since W is supposed to satisfy Assumption (Ureg|), we can use Proposition and,

for all t € [0,T] we get

U(m(t)) = W(mg) — L D, V(m(s),z).D,H (x, Du(s,x))dm(s)(z)ds

+ Lt fRd divxDmR\If(m(S), z)dm(s)(z)ds.
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Being u in C([0,T], E,) and m in C([0, T], P2(R%)) we get that t — ¥(m(t)) is C' with

dt\If( m(t)) = — Ny D, VU (m(t),z).D,H (x, Du(t,x))dm(t)(z)

+ J div, D, ¥ (m(t), z)dm(t)(z).
Ra
Now we assume that U(m(t)) # 0. We denote by I(t,z) the integrand

l(t,z) := =D, ¥ (m(t),x).DyH (z, Du(t, z)) + div, D,V (m(t), )

The parameter A is constant (equal to 0 or 1) in a neighborhood (1, ts) of ¢ because of the
exclusion condition ((3.12)) and u solves the HJB equation according to Definition SO we
have that u belongs to C1?((t1,t2) x R%). Moreover,
A(t) oW OF
owu(t,z) = H(x, Du(t,z)) — Au(t, z) — Q%(m(t),x) — %(m(t),:c)

€

and u belongs to C([0,T], E,,) with n > 3. This means that d;u is differentiable with respect
to x with

—0;Du(t, ) + D H(x, Du(t,z)) + D*u(t, ) D,H(z, Du(t,z)) — DAu(t, )
= @Dm\ll(m(t),x) + D, F(m(t), x).

But m solves the Fokker-Planck equation, ¥ satisfies Assumptions (Ureg) and (APsiC2)
SO we can apply Proposition 3.3/ to D,,¥(m(t),z) and div,D,,,¥(m(t),z) and deduce that

belongs to Cp?((t1,t2) x RY) and therefore t — LW (m(t)) is differentiable at ¢ with
d2
— v
dt? (

Computing 0,/ leads to

m(t)) = fRd [0:l(t,x) — DpH (x, Du(t,z)).DIl(t, ) + Al(t, z)] dm(t)(z).

Ol(t,x) = —%Dm\ll m(t),z).D,H (x, Du(t, z)) + jleQ’D U(m(t),x)

(
— DU (m(t), x). D H (x, Du(t, )0, Duf(t, x)
d (

= ——D,,¥(m(t),x).D,H(x, Du(t,x)) + jde U (m(t),x)

H(ZB Du(t, z))D*u(t,z) D, H (v, Du(t, r))
’ o H (2, Du(t, 2)) D H (2, Du(t, )
o (2, Du(t, 2)) DAu(t, x)

dt

+ == D,V (m(t),z) D2 H(x, Du(t, x)).Dy ¥ (m(t), z)
+ DU (m(t), z).D2 H (x, Du(t, x)) Dy F(mit), ),
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and therefore

U(m(t)) = Al) » Dm\If(m(t),x).DipH(m,Du(t,x))Dm\Il(m(t),m)dm(t)(w)

dt? €
+ F(Du(t), D*u(t), DAu(t), m(t))

with

F(Du(t),D*u(t), DAu(t), m(t)) = JRd [—D,H (x, Du(t,z)).DIl(t,x) + Al(t,x)] dm(t)(z)

[ d
.)Rd%
r

d ..
+ | gpdiveDn W (o), 2)dm(1)(z)

- Dy (m(t), ).D2 H(x, Du(t, ©)) D*u(t, x) D, H (z, Du(t, z) )dm(t)(z)

-, Dy, V(m(t),z).D2 H (x, Du(t, z)) D H (x, Du(t, z))dm(t)(z)

+ ). D,V (m(t), z).D2 H (x, Du(t, x)) DAu(t, z)dm(t)(x)

D,V (m(t),z).D,H(x, Du(t,x))dm(t)(z)

+ [ Dy (m(t), x).D2 H(x, Du(t, ©)) Dy F(m(t), z)dm(t) (z).

JRA

Remark 3.7. An explicit formula for DI, Al or F' is not necessary for our purpose however
a tedious but straightforward computation leads to
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th\I/(m(t)) _ A0 fR Dy ¥(m(t),2).D2,H(z, Dult, 2)) Dy ¥(m(t), 2)dm (1) ()

€

+ fRd A,div, D, U(x, m(t))dm(t)(x)
+ fRd JRd div,div, D2, W (m(t), z,y)dm(t)(x)dm(t)(y)
—92 JRd J}Rd div, D2 W(m(t),z,y).D,H(z, Du(t,z))dm(t)(z)dm(t)(y)

9 JR DU n(t), ). Dy H(x, Du(t,))dm(1) ()

+ J:Rd DV (m(t), x).D2 H(x, Du(t, ) Dy F (m(t), z)dm(t)(z)
+ J;ad » D2 Y (m(t),z,y)D,H (z, Du(t,z).D,H(y, Du(t,y))dm(t)(x)dm(t)(y)
+ J:Rd DD,V (m(t),x)D,H (x, Du(t, x)).D,H (x, Du(t, z))dm(t)(z)

) J D, D, ¥(m(t),x).D?ult, ©) D2, H(z, Du(t, z))dm(t)(z)

_2 f ) D?ult, ). Du(t, ) D20, H(x, Dult, z))dm(t)(x)
- Dm\II(m(t),x).AxDpH(x,Du(t,x))dm(t)(x)

—2 | DyDn¥(m(t), x)D3,H(z, Du(t, z))dm(t)(z)

R4

— | Dn¥Y(m(t),z).D2 H(zx, Du(t,z)) Dy H(x, Du(t, z))dm(t)(x)

R4

+| D? LH (2, Du(t, ) Dy, W (m(t), x). Dy H (z, Du(t, v))dm(t)(x)

Rd

-2 2 y 8mi§—i(m(t), x)D2,0p, H (z, Du(t, z)).D*u(t, z)dm(t)(z).

The formula above shows in particular that the terms in DAuwu cancel out and thus F' depends
only on the derivatives of v up to order two.

3.4.3 Proof of the main theorems

Proposition 3.6. There is some €y,00 > 0 such that any solution (m,«) of Problem (P.s))
for some (€,9) € (0, 0] x (0,00] stays inside the constraint at all time:

Ve [0,T], U(m(t)) < 0.
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Proof. The proof follows closely the methodology of [31] Lemma 3.7. Toward a contradiction
we suppose that there exist a sequence (ex, 0x)ren € ((0,1) x (0, 1))N converging to (0, 0), cor-
responding solutions (my, —D,H (z, Duy(t, x)))ken satisfying the conditions of Theorem
with corresponding multipliers (g, 5x) and times (tx)ken € (0, 7] which are local maximum
points of t — W(myg(t)) and such that W(my(tx)) > 0. The couples (my,wy) are uniformly
bounded in CY2([0, T], P2(R%)) x M([0,T] x R?, R?) and we can assume that they converge
in CY279([0,T], Po—s(R%)) x M([0,T] x R* R?), for some 6 € (0,1), toward some solution
(m, W) to the constrained problem. In particular, U(m(t)) < 0 for all t € [0,T7].

We first notice that, thanks to Proposition [3.4] for large enough k, ;< 1 and therefore
\I/(mk(T)) < 0 and tk # T

Using Proposition [3.5| yields that ¢ — W(my(t)) is C? in a neighborhood of t; and,

%\If(mk(t))\t_tk _ é fRd Do W(mi(ty), ). D2, H(xr, Dug (. 2)) Do ¥ (im (1), 2)dim (1) ()
+ F(Duk(tk), DQUk(tk), DAuk(tk), mk(tk))
> | 1D (i), ) Fdmi (1) )

+ F(Duk (tk), Dzuk (tk), DAUk(tk), mi. (tk)),

where we used the convexity assumption on the Hamiltonian H. On the one hand,
using the estimates of Proposition we have that F(Duy(t), D?ug(t), DAug(t), mg(t))
is bounded independently from k. On the other hand, using the regularity assumption
and up to taking a subsequence we can assume that

i [ DUty o) Pdm(t) (z) = f 1D, U (W0, )2 @) (x)

k—+00 Rd

for some t € [0,T] such that W(/m(t)) = 0. This is where Assumption (APsiTrans) comes
into play. Since ¥(m(t)) = 0, we have that

|, 1D 0 i.2) (@) a) >0,

d2
and we deduce that, ﬁﬁl(mk(t))h:t,@ > 0 for k large enough. This leads to a contradiction

since tj is assumed to be a local maximum point of ¢ — W(my(t)). O
Theorem is a direct consequence of the above proposition.

Proof of Theorem[3.3. Denote by U, s the value of Problem (P.4) and by U the value of the
constrained problem (P)). We assume that (e, d) belongs to (0,€) x (0,d0) with (e, d) the
parameters from Proposition |3.6]

We have that 367(5 = U and the minimizers for problems and coincide.

Indeed, it is straightforward that U.s < U. Now if (my,aq) is a solution to Problem
, by Proposition , (mq, ) is admissible for Problem . This means that UQ(; =
Jes(my, 1) = J(my,oq) = U and, therefore 5675 = U and (my, ) is a solution to (P).
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Conversely, if (mag, as) is a solution to then J,s5(ma, ) = J(my,a0) = U = U5 and
(ma, ap) is a solution to (P, 4.

Looking carefully at the proof of Proposition , using Theorem with the estimates
given by Proposition and Lemma we see that the threshold (eg,dp) depends on myg
only through the value W(my).

O

Now we are finally able to conclude the proof of Theorem [3.3]

Proof of Theorem[3.3. We use Theorem and the optimality conditions for the penalized
problem: If (m,«) is any solution to Problem (P]), we can find (¢,0) € (0,€) % (0,0dp),
Ae L*([0,T]), B =0, u e C([0,T],C}(RY)) such that a(t,z) = —D,H(z, Du(t,z)) for all
(t,z) € [0, T] xR? and (m, u, \, B) satisfies the conditions of Theorem . Taking v(t) := @
and 7 := § concludes the proof of the first part of the theorem.

Now, if we suppose that F and G are convex in the measure variable we can proceed as

in Chapter [2| Section [2.3.3| and easily show that the conditions are sufficient. m

3.5 The general case

The goal of this section is to prove Theorem . We first need to extend the results of
Theorem to HJB equations with right hand-side of the form v, + ¢, where v belongs
to M™([0,T]) and v, ¢ belong to C([0,T1], E,).

3.5.1 The HJB equation

Definition 3.2. Suppose that n > 3. Let 11, ¢1 be in C([0,T], E,) and ¢, be in E,,,. Let
also v be in M*([0,T]). We say that u € L'([0,T], E,) is a solution to

{ —0u+ H(z,Du) — Au = vipy + ¢y, in [0,T] x R?

u(T,x) = 1o, in R, (3.27)

if, for almost all ¢ € [0, T], for all z € R?,

T

u(t,z) = Pr_ybo() + f L, Pe—st)r (s)(x)dv(s) + ft P,_yp1(s)(z)ds

0

_ ﬁ Po, [H(., Du(s, )] (x)ds.

Theorem 3.6. Suppose that n = 3. Let 1y, ¢y be in C([0,T], E,) and 1y be in E,,. Let also
v be in M*([0,T]). Under these conditions, there is a unique solution u € L*([0,T], E,) to

(3.27)) in the sense of Definition . Moreover it satisfies

essupero 7y [[u(t)[n < C(|v], sup [¢1(8)]n, sup [o1(t)]n, [¢2]n),
te[0,7] t[0,T]

where |v| is the total variation norm of v.
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In the following proposition, we abuse notations and we let u : [0,T] x R? — R? be the
unique element in its equivalence class of L*([0,T], E,) satisfying, for all (t,z) € [0,T] x R?

T

u(t,x) = Pr_yho(z) + f Lt (s)Po—etpr (s)(x)dv(s) + ft P,_11(s)(x)ds

0

- £ P, [H(.,Du(s,.))] (x)ds.

We have the following stability result.

Proposition 3.7. Assume that (Vp)m=1 € L*([0,T]) converges in M*([0,T]) toward v. Let
um € C([0,T], E,,) be the solution to the HJB equation (3.27) with data (Vp,, 1, ¢1,12) with
1,1 € C([0,T], E,) and s € Eyo. Then, for all (t,z) € [0,T] x R? such that v({t}) = 0,
it holds:

lm  w,(t,z) = u(t, x),
m—+00

lim Du,,(t,xz) = Du(t, x).

m—+00

Once again, these technical results are postponed to Section |3.6.2]

3.5.2 Optimality conditions in the general case

We first prove a lemma similar to Lemma |3.2]

Lemma 3.6. Let (m,@) be a solution to the constrained Problem (P)). Then there exist
ve M*([0,T]) and n e R satisfying

U(m(t)) =0,v — ae (3.28) n¥(m(T)) =0, (3.29)
0

and such that (m, o) minimizes

ff dt®dm()< 2))dm(#)(x)

o[ B, aame@an + [ j )dm(t)(z)di

+ JR [ N (M(T), ) + g_g( (1), x)] dm(T)(x), (3.30)

over the pairs (m,w) satisfying (3.14]) and where we set, J'(m,w) = 4+ if w is not absolutely
continuous with respect to dt ® m(t).

Proof. We take €, > 0 and (m®?, w*?) solutions to the penalized problems . Ase 6 — 0,
(m°,w*%) converges in C([0, T], Po_s(R?)) x M([0,T] x R, xR9) for 6 € (0,1) to a solution
to the constrained problem that we can assume, without loss of generality, to be (m,©). Now
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(m*?, w*%) is also a solutions to the linearized problems of Lemma for some A%, 30 €
L*([0,T]) x R* satisfying the exclusion conditions

_ : 6 =0 if U(m(T)) <0
oo 0w me(t) < 0 g5 ) e [0,1] if W(meS(T)) = 0
A1) €[0,1] if ¥(m°(t)) =0 e s
Using the controllability lemma and arguing as in Lemma we can infer that ’\ST(;
is bounded in L'([0,T]) independently from (e, (5) > 0 and £2 is also bounded in R*. Let

us take v € M*([0,T]) to be a limit point of 2> and 7 a hmlt point of Z= as €,6 — 0. It
is plain to check that ¥(m(t)) = 0 for v- almost all ¢ e [0, 7] and n¥(m(T")) = 0. Now we
can argue as in the proof of Lemma passing to the limit in the linearized problems to
conclude that (m,®) is indeed a minimum of (3.30). O

We now take u e L*([0,T], E,) to be the solution to

—0wu + H(x, Du) — Au = l/g—qj(ﬁl(t) ) + g%;(fh(t) x) in [0,T] x R, (3.31)
u(T,z) = n?—i(ﬁl(T), T) + %(ﬁl(T), ) in R%.

We also assume that u is defined for all (¢,z) € [0,7] x R? (and not just dt-almost
everywhere) by

D)) + Pro S (T @) + | Lan(s)Peoi (M) (@)l

0

u(t,x) = nPr_y

+ ﬁ Ps_tg—;(ﬁm(s))(x)ds— J P, [H(., Du(s, )] (x)ds. (3.32)

t

Using an approximation argument and Proposition [3.7, we have the following duality
relation:

Proposition 3.8. Let u € L*([0,T], E,) be a solution to satisfying (3.32) for all
(t,z) € [0,T] x R, Let also (m,a) € C([0,T],P2(RY)) x L?I@dm()([O,T] x RYRY) be a
solution in the sense of distributions to

om + div(am) — Am =0, in (0,7) x RY,

m(0) = mo.

Then the following duality formula holds for any t; € [0,T] such that v({t1}) =

v oG

~—(m(T), z)dm(T)(z) +

JRd u(ty, x)dm(ty)(x) = n ~—(m(T), x)dm(T)(x)

R4 6m R4 6m

- L JR [H(w, Du(t, ) + alt,z). Dult, )] dm(t)(z)dt

+£T Ldg—i(ﬁl(t),x)d f JRd x)dm/(t)(z)dt.

(3.33)
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We can conclude with the proof of Theorem [3.4]

Proof of Theorem[3.]} We proceed similarly to the proof of Theorem [3.5| Take (m,d) a
relaxed solution to the constrained problem [P Let also w € L*([0,T], E,) be the solution to

(3.31)) satisfying (3.32)) with v and 7 satisfying respectively (13.28)) and (3.29)).

Recall that the linearized cost J! is defined in Lemma . On the one hand, by definition
of L, it holds that

T (70, 3) J JR dt®dm( )( L)) dim(t) (x)dt
JJR [dt®dm (’f’x)'D““’x)+H(%DU(t,w>>] dim(t)(x)dt

with equality if and only if

#:m(t) = —D,H(x, Du),dt ® dm(t) — ae. (3.34)
Being W(myg) < 0, it holds that v({0}) = 0 because of the exclusion condition and we
can use the duality relation (3.33) with £, = 0 and a = #jﬁl(t) to conclude that
JHm, &) = JRd u(0, x)dmg(x).

On the other hand, we can apply relation (3.33)) to the candidate (m', —D,H (z, Du(t, x))m’)
where m/ is solution to

{ oym' — div(D,H (z, Du(t,z))m’) — Am/ =0, in (0,T) x R?

m'(0) = my.

We get J'(m',—D,H(z, Du(t,z))m’) = Jdu(o,x)dmo(x) and we can conclude that the
R

infimum of the linearized problem is indeed | (0, z)dmo(x), it is achieved at (m,@) and
Ra

(3.34) holds true. Collecting the equations satisfied by u and m, relation (3.34]) as well as
the exclusion conditions of Lemma [3.6] we get the optimality conditions for the constrained

problem.
O

3.6 Technical Results about the HJB equation

We start with a (slightly unusual) version of Gronwall lemma.

Lemma 3.7. Assume that | : [0,T] — R" is a bounded measurable map which satisfies, for
some C1,Cy > 0 and almost all t € [0,T],

l(t) < Cl + sz ds. (335)

: Vs—1t
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Then, for almost all t € [0,T],

1(t) < Ci(1 + Co/aVT — 1)),

Proof. Arguing by induction, using (3.35) we find that, for all ¢ € [0,7] and all n € N*| it
holds

<oy [ 1+ N CrL(t +C”“J J J W) . dt,
( ) 1 ( ];1 2 k( )) \/tli \/T +1
<0 (1 ) C§Ik(t)) o O T (1), (3.36)
k=1

where I : [0,7] — R is defined for all k£ € N* by

f‘[ ! dty ..t
tkl\/tl—t \/tk—tk_l 1...0k.

Ik 1(t1)dty for all k = 2 and that [1(t) = 24/T — ¢, we find

Noticing that I (t f
ft, —

by induction that, for all n > 2,
I,(t) = 2By ... B, (T —t)"?
k

where the By are given, for all £ > 1 by,

1
By = J (1 — )y 2du
0

= B(1/2,k/2 + 1)
L(1/2)C(k/2 +1)
['(k/2 +3/2)

where 5 and I are Euler’s functions. As a consequence, we get, for all k£ > 1 and all ¢ € [0, T],

mh/? k/2
N

In particular, lim,, , o C5 ™ 1,11(t) = 0 for all ¢ in [0,7]. Now we can compute

Ii(t) =

= k/2 « 2k " k « 2k+1 w12 k+1/2
Tt =N ¥~ (Tt 2kt T — t)k+
Z k;/2 O ES IR ,; 2 T 1) >+Z : Thririy LY
« 2k T " 2k+1 7 ht1/2 k+1/2
kZl(JQ (T =1 +ZC — (T 1)

< Gm(T—) _ 1+Cg\/7?\/T teCam(T—1)
< (14 Co/mVT — 1)e3mT=0 1.
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Finally, we deduce from ({3.36)) that, for all ¢ € [0, T7,

1(t) < Ci(1 + Co/aVT — 1)),

3.6.1 Proof of Theorem [3.1]

Lemma 3.8. Assume that u € C([0,T], E,) is a solution to the HJB equation (3.4)) with
feC([0,T],E,) and g € E,,. Then

T
sup [ Dult,z)| < cxj; 1@t lgl).

(t,z)€[0,T] xR

Proof. We use the classical Bernstein method. Let p > 0 and w(t,z) := e |Du(t, ).
Being f in C([0,T], E,), u is smooth in space and satisfies the HJB equation in the strong
sense. Differentiating the equation with respect to x and taking the scalar product with
e’ Du(t, x) gives

— dw(t,x) + Dw(t,x).D,H(x, Du(t,x)) — Aw(t, x)
= —pw(t,z) — D,H(x, Du(t,x)).e" Du(t,x) + Df(t, z).e" Du(t, ) — e"|D*u(t, x)|?.

Now, by assumption on H, |D,H (x, Du(t,z))| < Co(1 + |Du(t,z)|) and therefore, for p =
2007

—dww(t,z) + Dw(t,x).D,H (z, Du(t,z)) — Aw(t, z) < Coe™|Du(t, z)| + Df(t,z).e" Du(t, z)
<V2eT(Co | fB])  sup (s, ).

(s,9)e[0,T] xR

By comparison between w and the obvious super-solution

1 T
(t2) = 3TNl 4 VEET  sup  ulsn) [ (G )
t

(s,9)€[0,T]xR4
we deduce that, for all (¢,2) € [0,T] x R,

w(t,z) <C(1+  sup w(s,y))
(s,9)€[0,T] x R4

T
for some C' = C’(J If(®)[1dt, |g]1) > 0. And therefore, sup(, ,)cjoryxra |[Dw(t, z)| < C for
0

T
another constant C' = C’(J |f(®)].dt, |gl1) > 0.
0
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Lemma 3.9. Assume that u € C([0,T], E,) is a solution to the HJB equation with data
fe LY[0,T),E,) and g € E,, and assume that u satisfies the estimate of the previous lemma
then

sup Jult)], < C ff|mgn

te[0,T
Proof. For all (t,x) € [0,T] x RY, it holds that

|@ﬂ||ﬁw9|+f|ﬂuf |w+f|at (.. Dufs, )] ()|ds

< 2VTglo(1 + |2]) + Q\FTft [£(s)o(1 + [z)ds + C(1 +  sup  [Dus,z)])

(t,z)e[0,T]x R4

for some C' = C(sup(; ,)e(o,r)xre) [ Du(t, )|) > 0. Above With use the fact that SUp,epd | Prg(z)| <

SUp,cra |g(z)| for a bounded function g and sup,ga ‘Ptg L < 2V T sup,cpa I for a function
e Li

1+| |
g with linear growth. Since u is assumed to satisfy t pschitz estimate of the previous
lemma [3.8] it holds that

wpm@m<cdwﬂwmammg

te[0,T]

Now we proceed with higher order derivatives and we argue by induction. Take k£ > 2 and
assume that we have shown that

sup Ju(t)]ker < C fuf iodt, lg(®)]r)-

t€[0,7]

Using the inequality sup,cpa |DPig(z)| < \Q/ SUP,erd |g(7)] We get

|DFu(t, x)| < |Pr_yD¥g(x)| + L |Py_,DF f(s)(z)|ds + L |DP,_,D*"'[H(., Du(s,.))] (z)|ds

T T 4 Dk—l D
<Mk+ﬁ\ﬂQMw+C£SWwR| fﬁ% u(s,2))] |

But we can find a constant C' = C(supygjo 7 |w(t)[x-1) such that

ds.

sup |[D* ' H(z, Du(s,z))| < C(1 + sup |D*u(s, z)|)

zeRd xeR4

and therefore, by Gronwall’s lemma

T
sup | D uft, )| <C(g||k,f | f(®)]lkdt, sup [u(t)]k-1)
0 te[0,T]

(t,2)€[0,T] xRd

and we conclude by induction.
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Following similar computations we can prove the following stability result.

Lemma 3.10. Assume that fi, fo € L1([0,T], E,) and g1, 92 € E,. Suppose that, uy,us €
C([0,T], E,) are the respective solutions the HJB equation with data (f1,g1),(f2,92) and
satisfy the estimate of Lemmal[3.9. Then

sup [ur(t) — ws()] < C f 110 = Fo®)ladt + gn — gal)-
te[0,T]

T T
for some € = O f 12 (0)]dt, f L) ndt, 191 [g2]l) > O
0 0

Proof. For all (s,x) € [0,T] x R? we can write

H(z, Duy(s,z)) — H(x, Duy(s, z))

= (Duy(s,z) — DuQ(s,x)).L D,H(z,7Duy(s,z) + (1 — r)Dus(s, x))dr

and deduce that, for all £ > 1

sup |D¥ ' [H (2, Duy (s, x)) — H(z, Dus(s, z))] | < Clluy(s) — ua(s)|e

xeR4

for some C' = C(|ui(s)||, [[uz(s)]|x) > 0. The proof of the lemma follows from this observation
and the same computations as the proof of Lemma O

Lemma 3.11. Assume that u € L*([0,T], E,) solves the HIB equation with data (f,g) €
C([0,T], E,) x E,q then u belongs to C([0,T], E,,).

Proof. Let us take k € [1,n]. We fix h > 0. For t € [0, — h] it holds

D*u(t + h,x) — D*u(t,x) = Pr_,_,D*g(x) — Pr_ D*g(z)
T

v L ' Ps_t_thf(s)@)ds—f Py D" f(s)(x)ds

+h t
T T
+ f DP, , ,D**H(., Du(s,.))(z)ds — f DP, D*'H(., Du(s,.))(z)ds
t
= A+ Ay + A

We estimate the three differences as follows:

|A| = [Pro-yD*g(z) — Pr—D"g(2)| < |D*g(x) — PuD"g(x)] < h*?[|glk+a-



114 CHAPTER 3. OPTIMALITY CONDITIONS

Now for the term involving f:

T

T
Dol = | [ PnD*f(s)(@)ds f Py D*f(s)(a)ds|
t+h t
T

_ Jt P DFf(s + h)(x)ds — Jt P, D f(s)(x)ds]

P (D f(s + h) — D*f(s))(x)ds — f Py D*f(s)()ds

T—h

:| T—h
<f A+ B~ F($)eds + OV sup [F(0)]ir.

0 te[0,T]

Finally for the term involving the Hamiltonian

1A;| = | » DP,_, wD*'H(., Du(s,.))(z)ds — L DP,_D*'H(., Du(s, .))(x)ds]
T—h
= | t DP,_,D*"'[H(.,Du(s + h,.) — H(., Du(s, .))] (x)ds

— DP,_,D*"'[H(., Du(s,.))] (z)ds]|
T—h
" sup,epa | DFu(s + h,x) — D*u(s,x

T—h )|
< C(essup,e u(t f ds
(essupyejo.ry |u(t) ) t —
+ C(essupyepo Hu(t)Hk)\/ﬁ

< Clessupozg [ult) o) (VA + f
t

T=h (s + h) —
Vs —1
Using again Gronwall Lemma [3.7], we get, for all ¢ € [0, 7],

u(s)le g

T—h
ult +h) = u(t)]n < Clessupiego g [u(t) ) (R gllnsa + L [f(s +h) = f(s)|nds

+ Vi sup [ f(t)]a1).

te[0,T]

Being f in C([0,T], E,,), the right-hand side converges to 0 when h goes to 0 and therefore

lim sup |u(t+h)—u(t)],=0
h—0 ¢e[0,7—n]

which concludes that u belongs to C([0,T], E,,).

As a consequence, we get the existence of solutions from the classical case.

Proposition 3.9. Take f € L'([0,T], E,) and g € E, . Then there exists a unique solution
inu € C([0,T],E,) to the HIB equation with data (f,q) and it salisfies the estimate of
Lemmal3.9.
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Proof of Theorem [3.1. We take a sequence of smooth functions f,, : [0,7] x R — R and
gm : RY — R converging respectively to f in L'([0,7T], E,) and to ¢ in E, .. For each m,
the existence of a strong solution u,, € C([0,T], E,) follows from Schauder theory and our
a priori Lipschitz estimate. Thanks to the previous lemma, we know that wu,, is a Cauchy
sequence in L*([0,T], E,) and therefore it converges in this space to some u. The subspace
C([0,T1], E,) being closed in L*([0,T], E,) we have that u belongs to C([0,T], E,,). We can
also pass to the limit in the equation

Um(t, ) = Pr_ygm(x) + L Py fm(s)(x)ds — L P,_s[H(., Dun(s,.))] (x)ds

to conclude that u is a solution.
The uniqueness of solutions is a straightforward consequence of the stability estimate of
the previous lemma. O

3.6.2 Proof of Theorem 3.6l

Proof. Proof of Theorem We can remark that w is a solution (3.27)) if and only if v := u—=z
is a solution to

—0w + H(x,Dv+ Dz) — Av =0 in [0,T] x R4,
v(T,z) =0 in R?.

where
T

z(t,x) := Pr_ybs(x) + ft Py (s,x)dv(s) + L P,_ip1(s)(z)ds.

Proceeding exactly as in the proof of Theorem [3.1], we find that there exists a unique solution
ve L*([0,T], E,) and it satisfies

T
essupepo,ry [0(t)|n < C (L [2(@)llndt).

We can also proceed directly (without relying on the existence of solutions for smooth z)
and follow Chapter 4.3.3. in [36]. We recall the main steps here. Up to finding Lipschitz a
priori estimates on the solutions using Bernstein method, as in Lemma [3.8|, we can pretend
that H is Lipschitz continuous.

Take v’ € L*([0,T], E,) and define u = ®(u’) by

T

u(t,z) = Pr_ybo(z) + J Ps_yby(s)(z)dv(s) + L Ps_1o1(s)(z)ds

t

- L Po [H(. Du(s, )] ()ds.

Following the same computations as in Lemma [3.9 we can prove that, for all 1 < k£ < n, it

holds
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" w'(s)

essu DFu(s,z)| < C 1+f —des
P(s,z)e[t,T]x R4 | ( >| ( , \/m )

for some C" = C(|[v]l, supsejo,ry [91(8) [n, subrefory 91 () s [¥1[n; essupeqo ry [0/ (#) 1) > 0.
We use this to construct by induction (Ag, (A1, A1),..., (A, Ax)) depending only on the

datas (1], supyego 7y [91(8) s SUPyego g [01(6) s |21, such that

Ju(t, z)]

— )
1+ |z 0

€SSUD (¢ 2)e[0,T] x R4

ESSUD (5,2)e[t,T] xRY ‘Dku(S,x)\ < A0

for all 1 < k < n, whenever v’ satisfies the same estimates. We let B be the subset of
functions in L*([0, T, E,,) satisfying these estimates. By construction B is stable under the
action of ®. Now if we take two functions u/, u} in B and if we define u; = ®(u}), ug = ®(uj),
w = u; —up and w’ = uj — uh we find, following yet again the same computations, that

' (s)]n

essupger 7y [w(t)n < CJ; Tt ds (3.37)
for some C' > 0 depending only on the constants defining B. Thanks to estimate
we find that ® is a contraction in L., ([0,T], E,) for u large enough. Finally we take
any u; € B and we build by induction ;.3 = ®(u,). We know that w,, converges in
L., ([0,T], E,) to some u. However we can use inequality once again to prove that
U, actually converges in L*([0,T], E,). The set B being closed in L*([0,T], E,) we can
conclude that the limit u belongs to B and is a solution to the HJB equation.

The uniqueness of solutions is proved as in the proof of Theorem O

We let u : [0, T]xR? — R? be the unique element in its equivalence class of L*([0, T, E,,)
satisfying, for all (t,z) € [0,T] x R?

T T

L1 (s) Po—stpr () (2)dv(s) + J P_1o1(s)(z)ds

t

u(t,z) = Pr_yo() + f

0

_ L Py, [H(., Du(s, )] (x)ds.

We also define, for all (¢,z) € [0,T] x R?

T T

Lt (s) Po—tthr (s, x)dv(s) + J P,_11(s)(x)ds (3.38)

t

z(t,x) == Pr_ya(z) + J

0

and

v(t, ) = —Jt P, [H(.,Du(s,.))] (x)ds. (3.39)
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Lemma 3.12. The function v belongs to L*([0,T], E,)(C =" +*([0,T] x RY) for any
€ (0,1) and satisfies the following estimate

eSSUD (¢ zyefo,7]xre |V(E; T)| + essupyepo 7y [v(2)]ln

[o() = v(s)[n—2 [o@) = v(s)[ln-s

+
s €SSUP;_. |t — S|

+ essup, ., <,

for some C' = C(|], [1a]ln, supreory [91.(8) [ns Supsefo,ry |1 () |n) > 0

Proof. The estimate on essup;cpo 77 [v(¢)] follows from the fact that v = u—2 and the analog
estimate for u. The L* estimate is also straightforward since

T
ot 2)| < f sup |H(z, Du(s, z)|ds < C( sup [u(t)],).
t

xeRd te[0,T]

Notice that, on the contrary to u, the function v is bounded on [0, 7] x R¢.
We turn our attention to the time regularity. We take k > 0 and ¢y, ts € [0, 7] such that
ty = t1. We can write

D*u(ty, ) — D*v(ty, x J D [P,_y, [H(., Du(s,.))] ()] ds
+ L D*[P,_,, [H(., Du(s,.))] (z) — Ps_y, [H(., Du(s,.))] (z)] ds. (3.40)

On the one hand, for all (s, ) € [t1, 1] x RY,

| DF [Py, [H(., Du(s, )] (2)] | < Clessupieio ry [ut) [i+1)-
On the other hand, for all s € [t5, T,

Peca [H( Du(s, )} &) = Pacsy [H(, Duls )} (2) = = [ G Pe[H( Duls, )] )

t1

AP (. Du(s, )] (x)dt — J P A[H(, Du(s,)] (x)dt.

t1

and therefore,

DM Py—y, [H(., Dus, )] (z) = Py, [H(., Du(s,.))] (z)]

from which it follows that,

sup |DkJ [Ps—tl [H(’ DU(87 ))] (ZE) - PS—tQ [H<’ Du<87 ))] (I)d8]|

zeR4 to

T pto 1
<C dtds < 2C(T — ty)\/ty — tq,
LJl e — 1 S ( 2) 2 1

o Jt
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for some C' = C(supyejo 7 [w(t)[£+2) > 0. We conclude from (3.40)) that

eSSt [ DF0(t1, ) — DFo(ty, )| < Clessupegory [ult) 1) (82 — 1)
+ Clessupyego py [u(®)s2)vE —
< C\/ t2 — tl

with C' = C(essupsejo 7 [u(t)|k+2) > 0. If we don’t do the integration by parts in step (3.41)
we find that

lo(t1) —v(t2)|x < C(t2 — t1)

for some C' = C(essupyep ) |u(?)|r+3) > 0. Being n > 3 we get that v is bounded in
CUFe)/21+a ([0, T] x RY) for all a € (0,1). This concludes the proof of the lemma. O

Proof. Proof of Proposition [3.7 We take a sequence of non-negative functions v, : [0, 7] —
R in L*([0,T7]) such that v, converges to v is M*([0,T]). We also let u,, be the solution to
the associated HJB equation and define z,, and v,, according to and respectively
with u replaced by u,,. Being v, in L*([0,T]), 2m, vm and u, are continuous in time and
space. Clearly it is enough to prove the convergence of z,, toward z, Dz, toward Dz and
Uy, toward v. Assume that v({t}) = 0. In this case, we have, for all z € R?

zm(t,x) — 2(t,x),

Dz, (t,x) — Dz(t, z),

as m — +00.

Using the previous lemma, we also have that the sequence (v,,) is uniformly bounded
in ¢ ([0, 7] x RY) for any « € (0,1). Up to a sub-sequence it converges (locally) to
some ¥ in €3 1+8 (0, T] x RY) for some 3 € (0, ). Using Lebesgue dominated convergence
theorem we can pass to the limit as m — 400 in the equality

U (t, ) = —L P, [H(., Dvpn(s,.) + Dzy(s,.))] (z)ds,
we conclude that, for all (t,z) € [0,T] x R¢
¥, z) — —L Py [H(., Di(s, ) + D=(s, )] (x)ds.

If we let u := ¥ + z, we have that @ solves the HJB equation and, by uniqueness, 4 = u in
L*([0,T], E,). Therefore v(t,z) = ¥(t,x) for all (t,z) € [0,7] x R? and we conclude that
U, converges locally uniformly to v in C#’HB([O, T]| x R9).

0
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3.7 Appendix

3.7.1 Existence of relaxed solutions

Proof of Proposition[3.1. Consider a weak solution of

{ dXt = Oé(t, Xt)dt + \/idBt,
Xi—o = Xo ~mp
such that £(X;) = m(t), Vt € [0, T]. The existence of such a solution is guaranteed by the

fact that (a,m) solves the Fokker-Planck equation (see [I129] and also Proposition in
Chapter [2). Using Jensen inequality, we get for ¢, s € [0,T] with s < ¢

f alu, X,)du

S

2
E(|X, — X, < QE[ ]+4E[|Bt—Bsz]

Qdu

2(t—32EU lo(u, X,,) ]+4(t—s)

t—sf J alt, z)Pdm(t)(x)dt + 4(t — s)
Rd
and therefore

T

da(m(s),m(t)) < Cvt—s
for some C' = C(J

) fRd lau(t, z)|Pdm(t)(x)dt) > 0 since dy(m(s),m(t)) < E(|X, — X,|?)2.

Taking s = 0 in the above computation also shows that

| laPdmie) < 280 - X2+ 2| fafdmo(o) < €

for another C' = C( J

R

d |x|2dm0(x),f0 fRd la(t, ) Pdm(t) (z)dt) > 0.
]

Proof of Proposition[3.4. We set w™ = a"m™. By Cauchy-Schwarz inequality we find that
the total variation |w"| of w™ is uniformly bounded. Indeed we have

w"| = fo fRd #ﬂzn(ﬂ(t,m) dm" (t)(z)dt
T . 9 1/2
VT (L JRd ﬁmn(w(t,x) dm”(t)(x)dt) .

This estimate together with Proposition allow us to use Banach-Alaoglu theorem on the
one hand and Ascoli theorem on the other hand and deduce that for all r € (1,2), up to a
subsequence, (m™, w™),ey converges in C([0, T'], P"(RY)) x M([0, T] x R?, R?) to some element
(m, @) of C([0,T], P"(RY)) x M([0,T] x R% RY). Tt is straightforward that m(0) = mg and
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the fact that (m,®) satisfies the Fokker-Planck equation is a consequence of the weak-=
convergence of measures. Using Theorem 2.34 of [7] (see also Exemple 2.36) in [7]) we find
that w is absolutely continuous with respect to m(t) ® dt and

I L.

By Proposition [3.1| again, this shows that m belongs to C*/2([0, T, Po(R%)).

dw 2

dt @ dm(t)

(t,z)

dm (1) (z) hmmff JR (1, ) 2dm™ (1) () dt.

n—+ao0

Now we give the proof of Lemma [3.1]

Proof of Lemma[3.1. This is precisely Theorem [2.4]in Chapter [2] and the result follows from
Proposition and Proposition . We consider a minimizing sequence (m™,w™) satisfying
(3.14) and such that, for all n € N, J.5(m",w") < inf J s(m™, w™) + 1. By coercivity of H
and therefore -by taking convex conjugates- of L we find that there is C; > 0 such that, for
all n e N;

R4

Using that (m™, w") satisfies the Fokker-Planck equation and mg belongs to Py (R?) we deduce
from Proposition that, for all » € (1,2), up to a subsequence, (m", w"),en converges
in C([0,T],P"(R%)) x M([0,T] x R% R%) to some element (m,w) of C([0,T], P*(R?)) x
M([0,T] x R% R?) which satisfies the Fokker-Planck equation with initial position m(0) =
mg. To conclude we use Theorem 2.34 of [7] to prove that

Jes (1, &) < liminf Jes (mn, wp)-

Therefore (M, @) is indeed a minimum of J. ;.



Chapter 4

Mean-field limit

Introduction

The goal of this chapter is to investigate the connection between the optimization problem:

(inff J (z, at, z))du(t) dt—l—f}" ))dt + G(u(T)) (mfP)
ocu Rd
subject to

e C([0,T), Pa(RY), € L, ([0,T] x RERY)

Oept + div(ap) — Ap =0 in (0,7) x R4

1(0) = po € Po(RY)

W(u(t)) <0 vt € [0, 7]

and a control problem for a large number N of interacting particles:
inf  EF UTii LX;™, o™ dt+f F(fi)dt + G(fip™) (NP)
(ep™M)1<ien o NV -
subject to
dXPN = abNdt + V2 dBlN

(XN, L XN ~ @Y under P,
(") <0 for all t € [0,T] P~ — almost-surely.

In the latter problem, (B*"),<;<x are N independent standard Brownian motions supported
on a probability space (2, F,P). We denoted by

/\N

AN$>

the empirical measures and finally PV := P [ W ( —’yN] is the conditional probability

with respect to the event {\If(ﬁévx) < —VN} for some suitable rate vy > 0 such that vy — 0

121
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as N — +o0. The conditioning being necessary to ensure that the particles start from inside
the constraint.

The former problem was thoroughly analyzed in Chapter [3]where we showed, in particular
the existence of bounded, Lipschitz continuous optimal controls, for any initial position
o € P2(RY) such that ¥(uy) < 0. The latter problem is, however very different in
nature. Indeed, the state is a process (th’N, .. .Xt]V’N>0<t<T valued in (RY)Y, the empirical
measures ﬁivm are, by definition, random and the constraint has to be satisfied almost-
surely. This type of constraint leads to new difficulties. Indeed, to dominate the effect of
the diffusion, the controls cannot remain bounded and the value function associated to this
problem is expected to blow-up near the boundary.

Without constraint, the connection between Problem and Problems is by
now well understood. Under more general structure conditions, Lacker proved in [96] that
the law of the empirical measures of weak solutions to the N-particle system converge to
probability measures supported on the set of optimal solutions to the mean-field problem
and therefore convergence of the value functions hold. Taking advantage of the regularizing
effect of the diffusion and uniform in N Lipschitz and semi-concavity estimates for the value
functions of the N-particles system, it was shown in [35] that convergence actually holds
with a rate (see Chapter . In the same setting, Cardaliaguet and Souganidis later proved
in [41] a propagation of chaos around “stable” solutions of the mean-field problem. Finally
we mention that, under convexity assumptions on the mean-field costs F and G it is shown
in [36] that the value function associated to the mean-field control problem is a smooth
(enough) function in the Wasserstein space. In this setting it is not difficult to prove that
the convergence of the value functions holds with an optimal rate and we have quantitative
propagation estimates for the optimal trajectories to the N-particles system toward the
solution to the mean-field control problem.

We also mention that recent progresses were made in order to characterize the value
function for the mean-field problem, in the general situation where it is not expected to be
smooth. Similarly to the finite dimensional case, we expect the value function to be the
unique viscosity solution (in some sense) to the dynamic programming equation. Different
approaches have been taken in [28 48| 51], [52]. The most general result, so far, being [52],
where the authors rely on the approximation of the mean-field control problem by control
problems for finite numbers of interacting particles.

Stochastic control problems with state constraint and non-degenerate diffusions were
addressed in the seminal work [99] of Lasry and Lions. They showed that the blow-up
behavior of the value function is directly related to the growth of the Hamiltonian and
provided rates of divergence. This problem was later revisited by Leonori and Porretta in
[T03] where the authors also prove the rate of divergence of the gradient of the value function.

In this chapter we prove the convergence of the value functions for the problems with
almost-sure constraints toward the value function for the mean-field problem. Let us denote
by U(u), the value of Problem and Uy (110), the value of Problem which are
rigorously defined in Sections and respectively. Similarly to [35] we proceed in two
steps. On the one hand we prove that

U(po) < Lim inf ¢y (410).

This boils down to finding weak limit points of sequences of nearly optimal weak solutions
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to the N-particle problem. Once we know that Uy (po) is bounded independently from N,
this follows from the line of arguments of [96] for problems without constraint. On the other
hand, proving that

lim sup Un (110) < U(pio)

N—+00
requires more care. Indeed an admissible control for the mean-field problem is, in general,
not admissible for the particle system because of the almost-sure constraint. We also mention
that, in contrast with [35], the value function Uy (1) is certainly not smooth as a function
of uo (at least because we introduced conditional expectations and because of the almost-
sure constraint) and therefore we cannot see it as a smooth sub-solution to the dynamic
programming equation satisfied by . Our strategy can be described as follows. Given an
admissible control « for the mean-field control problem, we consider the particle system

starting from an initial position (X, ..., XA4™) ~F u®N,
) ) tATN ] t ) )
Xﬁvzxyv+f a(s, XEN)dt + BNt + V2B
0 tATN

where 7y := inf{t > 0, ¥(a;") > —2%} and BN is a feedback control designed so that,

P~ -almost-surely
1 ¢ N N | 2
NZ‘X; —X;;V) <r% V=T,
i=1

where ry is a small radius depending on «y which guarantees that, P7V-almost-surely,

(") <0, vt € [0,T].

If « is bounded, Lipschitz continuous and taken so that the corresponding solution u to

{ Oep + div(ap) — Ap =0 in (0,T) x R,

1(0) = 1o (4.1)

satisfies W(u(t)) < =4, for all ¢t € [0,T], for some 6 > 0, we expect a strong convergence of
A" toward pu(t) for t € [0, 7y] and therefore 7y A T must converge to 7. The key step is to
build (5Z’N)1<i< ~ so that its contribution to the cost for the N-particle problem, vanishes as
N — +00. This can be done only if ¥(py) < 0 and vy does not converge too fast to 0. We
also need to prove that it is enough to approximate admissible candidates («, i) such that
« is bounded, Lipschitz continuous with respect to the space variable and W (u(t)) < —4 for
all t € [0,T], for some ¢ > 0. Overall, our main result is the following.

Theorem 4.1. Let Assumption (introduced below) hold. Assume further that py €

Py (RY) satisfies W (o) < 0 andf 2| " dpug(x) < +o0. Then
R4

lim Uy (po) = U(po),

N—+o0

whenever y(N) = N~ with 6 < <.
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The rate vy is certainly not optimal but it is sufficient to ensure the convergence of
Uy (o) toward U(pg). Let us also notice that IP’({\IJ(ﬁévx) < _’YN}) — 1l as N - 4+ as

soon as vy — 0 since ¥(uo) < 0 and (Xé’N7 o ,XéV’N) is distributed according to u®" under

P.

Connection with large deviations for non-interacting diffusions. Our results are
closely related to the large deviations principle for (non-interacting) diffusions. Indeed if we
consider the probability

1 N
?)N(t,xN) = P(Vs e [0,t], ¥ (N (SxivN—H/iBZ"N) < 0)

=1

where xV = (28 ... ™) and (Btl’N7 e BtN’N) are N independent d-dimensional stan-
dard Brownian motions supported on some probability space (€2, F,P). Then v" satisfies
the heat equation

o — AvN =0 in (0,T) x Qu,

vV =0 in (0,7) x 0Qy,
vV =1 in {0} x Qu,
where Qy 1= {(wl’N, eV e RV T(L SN ) < 0}. If we make a logarithmic trans-

formation and let

2
u™ (t,xN) = == log v™(T —t,xV),
N
we obtain that u”V solves

—ou™ + ZIDuN P — AuN =0, in (0,T) x Qy,
ul = +oo, in (0,7) x 0Q,
uN =0 in {T} x Qu,

which is the dynamic programming equation for Problem when F = G = 0 and
L(z,q) = 3|g|* for all (z,q) € R? x R In section we discuss this rigorously. No-
tice that this method to obtain estimates on the probability vV by making a logarithmic
transformation and studying the stochastic control problem corresponding to the resulting
Hamilton-Jacobi-Bellman equation is reminiscent of [67].

The rest of the chapter is organized as follows. First we introduce, in Section the
N-particle problem and explain what boundary behavior can be expected. Then we briefly
recall the main features of the mean-field problem and provide a stability result with respect
to the constraint in Section We then prove the convergence results in Section [4.3] We
start with Theorem Which gives the more difficult limsupy_, ., Un (o) < U(po) and
finish with the reverse U (o) < liminfy_, ;o Un (o) in Theorem {4.3] Finally in Section
we discuss an application of our result to large deviations theory.
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4.1 The system of particles with almost-sure constraints

4.1.1 Assumptions

We first give the assumptions satisfied by L, F, G and ¥. For U = F,G, ¥, the map
U : Py(RY) — RY satisfies

U is a bounded from below, C' map and ((55_1/{ belongs to C(Pa(R?), Es. ), (4.2)
m

where F3., is the subset of C3(R?) consisting of functions u such that

D3 _ D3
sup @)l + sup |Du(x)| + sup |D*u(x)| + sup |Du(z) u(y) < 0.
zeRd I+ |.T| zeRd zeRd r#yeRd |$ - y|a

The Lagrangian L verifies L(x,q) = sup,ga {—p.¢ — H(z,p)} for all (z,q) € R? x R?
where H satisfies the following conditions for some Cy > 0.

e For all (z,p) e RY x R4, Ct|p|* — Co < H(w,p) < Colp|* + Co.
e H belongs to C3(R? x R?).
e H and its derivatives are bounded on sets of the form R¢ x B(0, R) for all R > 0.

e For all (x,p) e R x RY, |D,H(x,p)| < Co(1 + |p|).

1
For all (z,p) € R? x RY, a)ld < DypH(z,p) < Coly.

For the constraint, we also assume that W is convex, that it satisfies the regularity
condition

o 52U
For all x € RY, m %(m,x) is C! with (z,y) — W(m,x,y)

5 (4.3)

in C2(R? x RY) for all m € Py(R?) and ﬁ(m, z,y) and its derivatives being
m

jointly continuous and bounded in Py(R?) x R? x RY.
and the transversality condition
J |D,, ¥ (m, x)|*dm(z) # 0, whenever ¥(m) = 0 (TransCondPsi)
R4

We also assume that there is at least one p € Pa(R?) such that () < 0.
For convenience we put all of the above assumptions into

Assume the above assumptions. (A)
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4.1.2 Statement of the problem

Throughout this section we fix some py € Po(R?) such that U(ug) < 0. In its strong formula-
tion, the N-state control problem is described as follows. We fix a filtered probability space
(Q, F,TF, P) satisfying the usual conditions and endowed with N independent adapted Brow-
nian motions (BZ’N) ~n. We also assume that there are N independent Fy-measurable
~ distributed according to oy and independent from the Brown-

initial positions (X N)
ian motions.
For some rate yy > 0 which goes to 0 as N — 400 we denote P"™ the conditional

.....

probability with respect to the event {\I/(ﬂév ") < _'VN}'

The controller’s problem is to minimize over controls (ai’N)Z-:l ~ adapted to the filtra-

tion generated by the Brownian motions and the initial positions

.....

TV((0N )1<ien) = BFY U ( ZL (XN, o ™) + Fiy x)) dt + g<““>]

under the dynamics

t
XN = xgN + f aiNds + V2B

0

N
where ﬁiv v = N Z ) XN and the particles are constrained to satisfy P"V-almost surely the
i=1

inequality
(a") <0, for all ¢ e [0, T7.

We denote by Uy (pg) the value of the above problem. Notice that the initial positions
are i.i.d under P but not under P'~.
We also define

N
QNZZ {(1}1,... RdN %Z 2z <O}

The condition (TransCondPsi)) on the Wasserstein gradient of ¥ at the boundary ensures

that the closure Qy of Qy in (R?)N
5 i) < 0}.

Similarly we define Qy := {p € P2(R?), ¥(u) < 0} and we have that

ub/_]z

Oy = {(:pl,...,xN)e (RHN \I/(%

Qo 1= {p e Pa(RY), U(p) < 0}.

Remark 4.1. Notice that it could very well happen that Qy = @ for small values of N.
However we neglect this detail since we always assume that there is some g € P(R?) such
that U(po) < 0. Approximating po by atomic measures, we find that 2y is not empty for
N large enough.
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N,N)
N,N)

Heuristic concerning the boundary behavior. If we denote by u™ (¢, 2"V, ... |z
the value of the same problem but this time initialized at a deterministic position (z%V, ... x
Qn at time t € [0, T], we expect uY to satisfy

€

1S, 1<
—oul + N;H(IZ’N,NDxi,NuN) — Au® = f(N;(SIi,N) in [0,T) x Qu,
uV =+ in [0,7) x 0Qy,

uN (T, 25N M) :g(%Zij\;l(sxi,N> in Qy,
Well-posedness of the above equation with such a boundary condition as well as its rigorous
connection with the control problem is a challenging question.

In [99], Lasry and Lions studied explosive solutions to

v+ %|Dv|p —Av=f inQ,
v = +00 in 0€),

where Q is the interior of a compact domain of R? with a smooth boundary and p > 1. In
case f is smooth and bounded, they proved that W*"(2),Vr > 1 explosive solutions exist if
and only if p < 2. They also proved that, in this case, there is a unique explosive solution
and that it behaves near the boundary like d(x)i%? if p < 2 and like |log(d(z))| if p = 2,
where d(z) is the distance to the boundary. When p < 2 they proved moreover that this
solution is indeed the value function for the related control problem

+00 +00
inf U e (p— 1)p™ " V]ay|Pdt + f f (Xt>dt]
at 0 0

under the dynamic
dXt = Oétdt + dBt,
XO =xe€fl

and the constraint
X, el Vt=0, P — almost-surely.

Leonori and Porretta further proved, in [103], refinements of these results together with the
blow-up behavior of the gradient of the solution. In particular, for the quadratic case which
is of interest to us, they proved that v — log(d(z)) is bounded and Lipschitz over Q. If we
translate these results to our setting, keeping track of the dimension and using ¥ to measure
the distance to the boundary, this suggests (at least in the infinite horizon case) that

1 1 _
NV (BN eV + 7 los(=¥(5 Z; Oyin)) € WH(Qy).

Even in the infinite horizon setting we don’t try to replicate the aforementioned results
because the connection between the solution to the HJB equation and the value function in
the quadratic case is not clear. However they give us a good idea of the expected behavior
of the system near the boundary.
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4.2 The mean-field problem

For some jig € Po(R?) such that ¥(ug) < 0, the problem is to minimize

Howw:= || Laatto)du®e)n+ [ Fuo)a + 6

over couples (i, ) € C([0,T], Po(R%)) x L?i@#(t)([(),T] x RY, R?) satisfying in the sense of
distributions the Fokker-Planck equation
{ Op + div(ap) — Ap =0 in (0,7) x R4
M(O) = Mo,

under the constraint that W(u(t)) < 0 for all ¢ € [0, T7.
In Chapter [3] we showed that optimal controls for this problems exist and are bounded
and Lipschitz continuous provided ¥(uy) < 0. We complete the analysis with a stability

result with respect to the constraint. To this end we introduce, for all § > 0 small, Ué(,uo)
the value of the same problem associated to the constraint W(u(t)) < —9 for all t € [0,T].

Proposition 4.1. Assume Assumption and assume as well that V(ug) < 0. Then it
holds

Proof. Using the controllability result of Lemma , in Chapter |3 we know that H(S(uo) is

uniformly bounded for ¢ € [0, —@] By standard estimates, using the coercivity of L and

the fact that uo belongs to Py(RY) we find some R > 0 such that, for all § € [0, —%], for
all t € [0,T],

J P (8)dt < B2
Rd

whenever (p’(t))o<i<r is optimal for Ué(,uo). Now we use Assumption (ITransCondPsi|) as

well as the continuity of p — ¥(u) and p — J | D, W (1) |2dp(z) with respect to dy, to
R4

conclude that there exists some 1z > 0 such that f | D ¥ (p, ) |*dp(z) = ngr, whenever
Rd

4

U(p)| < nr and fRd lz|2du(z) < 2R*. If we define §° := 2 it is plain to check that

f 1Dy ¥ (1, z)|*dp(z) = nr whenever 6 € [0,6%], [¥(p) + 6| < 22 and J
Ré R

As a consequence, we can apply Theorem in Chapter|3|to Ué(,uo) and conclude that there
is some €y > 0 such that, for all § € [0, 6°]

lz|2du(z) < 2R%.
d
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_ mff fRd (2, at, z))dp(t) dt+f F(p(t))dt + G(u(T))
+—UO (W(ult) + 6) )t + (D((T)) + 5) ] (1.5)

€0

where the infimum is taken over the couples (a, ) in C([0,T], P2(R9)) x L2

dt@u(t) ([0,77 x
R? R?) satisfying

{ O+ div(ap) — Ap =0 in (0,7) x RY,
/’L(O) = Mo,

but not necessarily the state constraint. Now consider (i, &) an optimal solution for U ().
On the one hand it is obvious that

— -5
Ulpo) <U (o)
for any 6 = 0. On the other hand, for § € [0,4°], using (§i,&) as a candidate in (4.5)), it

comes

2 (10) — Ulpio) < [ [ cwen +5y%)ae + oy + 5>+]

€0 0
(T'+ 1)

€0

~

As a consequence, we have the limit

. b —
g%u (1o) = U(po),

which concludes the proof of the proposition.

4.3 Mean field limit

The main result of this section is to prove Theorem (4.1), that is the convergence of UN (o)
to U(po) as N — +c0.

4.3.1 From mean-field to almost-sure constraint

In this section we prove the first inequality in Theorem (4.1).
Theorem 4.2. Let Assumption hold. Assume further that ug satisfies W(ug) < 0 and
f |2|" P dpg(z) < +o0. Then it holds that
Rd
lim sup U™ (o) < U(po),
N—+00

whenever vy = N=% with 6 < m
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Proof. To prove Theorem (4.2) we proceed as follows. First we fix § > 0 and we take

a: [0,T] x R? — R? to be an optimal control for Zjlé(po). Using Theorem in Chapter
BB, we know that « is bounded and Lipschitz continuous in the space variable uniformly in
time. We let p be the corresponding trajectory, solution to

{ O + div(ap) — Ap =0 in (0,T) x R,
1(0) = puo.

In particular, W(u(t)) < —6 for all t € [0,T]. We let (X", ..., X"™)o<i<r be the solution
to

. . t/\’TN . t . .
XpY = XN+ f als, XN)dt + peNdt + V2B
0 tATN
where 7y := inf{t > 0, (") > —2}, with the convention inf{@} = +o0, and BN is the
feedback control, defined for all t > 7y A T by

i, N i, N
"N 4(X - XTN/\T) d i,N i,N
t - N N —2— (X XT /\T)
S XN = XN PN T "
with ry = 4C and C'y a Lipschitz constant for ¥ with respect to ds.
Lemma 4.1. PV -almost-surely, it holds that,
i, N i,N 2 2
_Z‘X =X ST VizTty AT.

Moreover, the followmg estimate holds
T

1

EF™ f —

[ o N

We continue with the ongoing proof. We have taken ry and Sy is such a way that
IPWN—almost—surely

16d [P ¥ -
‘dt] TJQVN [eTT N]—FngN[T—T/\TN].

(") < _TW vt e [0,7T).

Indeed, by definition of 7, P?¥-almost-surely,

T(aNT) < —%N for all t < T,

and, P™-almost-surely, by definition of 7y and Lemma [4.1] it holds, whenever t > 7y
C\I’d2(AN 557 ﬁf_VNIE>

N 1/2
C\IJ Z|X1N XiN|2
< — N X
VN A& N

=1
N
4

W) = ()| <

C\IIXTN
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and, as a consequence, being \Il(pgf) —7—N, it holds that W (aN™) < — 2%, Therefore, we

have an admissible control for UN (u10).
Now, by standard propagation of chaos estimates (see [80]) it holds that

E| sup  d(ut),i")| < ON~7s.

te[0,T ATN]

As a consequence, we get

3 < T w(i) > =N
‘ _ 3
<P |3t < 7y, U(ENT) > ZN]

<P | s BENa0) >
te[0,T AT | N

where we use the facts that U(u(t)) < =46, for all ¢t € [0,7T] as well as
(") = U(u(t)| < Coda(fiy ™, u(t))-
Using Markov’s inequality we conclude that,

~N,x
CREF™ |Supsefo rrry B 1(1))]

IPWN[TN<T]< (5_3771\])2
CIE [SUPte[o,TMN] d%(ﬂivxy M(t))]

<
(6 — 2P | W(iig™) < — |
< CON @3,

for some C' > 0 independent of N. We deduce immediately that
EFY [T — T A mv] < TP™ [ry < T] < CN~ s,

Using Lemma (4.1]), we get
C EP’YN[T—T/\TN]

T 1 N N
e I Y
TNATN; ¢ r3 N 3
_2
<CN 2d+8
TN

2
N a8
But we have chosen vy so that lim 5 C 0. Therefore it holds that
N—+o Yy
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. PN -
N1—1>r-r&-looE [J;N/\T Z|ﬂ ]

We easily deduce that,

lim E™ [SUp dg(u(t),ﬁfv’x)] =0.

N—+a t€[0,T]

As a consequence, « being bounded and F and G Lipschitz continuous with respect to dy,

TATN 1 N ) ] TATN
B [ S S L e X e+ [ F @
0 i=1 0
N
ce | [ 2 EOY, A e+ [ F@a
T/\TNN — TArTN

+ET g AN%’}J fRd (2, a(t, 2))dp(t) dt+J]—" ))dt + G(u(T)) + o(1)

as N — +o0. Finally, being v optimal for Ué(,uo) we have that

: 0
limsupU™ (o) < U (po)-

N—+w0
Yet, we have proved, in Proposition (4.1) that lims_,o Ha(uo) = U(j1p) and therefore,

lim sup U (1) < U(po),
N—+00

which concludes the proof of the theorem.

Proof of Lemma (4.1) . For n = 0 small, we introduce the stopping time
=inf{t =7nv AT, — Z|XZN X" ATIQ v — 1,
=1

with the convention that inf {@} = +oc0.
Forn > 0and 7" > T, we write B, = (B}, ..., BY") and Y, = (X;", ..., X}"") and
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apply 1to’s lemma to get

AT’ YT A ’_YT A 2 AT Y _Y‘r A 2
—e 7' log(r3; — ALY wn7| ) = —e ™ og(rd) +J e 'log(r — Yi wn 7| )dt
N TN AT N

. fT et[ AY = Youur)  2Yi=Yoor) 2 2]Y, Yo qf ] ”
AT Y=Y o2 =13 N Nrd — Y — Youurl2 3 Nr% — Y — Yo ar)?
TTAT! 2

2dN 4Y, — Yo n

+f e_t[ 5 -+ 2‘ : xo7! 22]dz&

N AT Nry = Yo =Yoo (N1} = Yo = Yo arf?)

T AT
Z(Yt _Y’T /\T)
+4/2 ( N dB
Josar No2 =Y = Yonr
AT Y, - Y. .r? TIAT 4d Y, =Y. 7|2 —dN

< -4 et —
S Lo (Y= Yoa2 =13 N)? r Nvir = 1Y = Yo arf?

TN AT’
2(Yt _Y’T /\T)
vz N .dB
TN AT NT]2V - |Yt _YTN/\T|2 '

TN/\T

(&

However, an elementary analysis reveals that

4d Y= Yo aP—dN _2d

2 2 2 Y 2
5 Nryy — Yy — Yo Y

whenever 0 < |[Y; — Y, .7|? < Nr%. Therefore, we get, multiplying by e T and taking
expectations,

_ / Y TAT! — Y /\T|2
—E[PWN TN AT —=T"TAT 1 2 | T ™~
. on(r% ool
+ 4EP"’N JTWAT e™ AT—t |Yt — Y7'N/\T|2 dt| < 2_d
_ 2 _ 2 2 =2
N AT (IYe = Yoyar|* = 7% N) 'n

Letting T" — +00, using the definition of 7" and Lebesgue dominated convergence theorem
leads to

n
T Y, -Y ? 2d
—1 EIPWN TnAT—T”H T +4EIP’“’N f TN AT—t | t TN AT dt| < ==,
og(mE"™ [e (rn <0y ont (e = Yo arl? = rd N)? N
(4.6)
Notice that both terms in the left-hand side of |4.6| are non-negative for n < 1. Letting n — 0,

we get, on the one hand that 70 = 400, P"¥-almost surely and, on the other hand, we obtain

4EIPWN |:J‘+OO eTN/\T—t ‘Yt B YTN/\TP dt:| < =
™~ AT (|Yt 7YTN/\T|2 7T]2VN)2 TJ2\7

It follows that,
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T 2
, 1] 4Y,-Y.,) d
EFY J — ™ —2— (Y, —Y,,)| dt
[ TN/\TN'|Yt_YTN|2_T]2\/'N r12V< ' N> ]
T o 2 T 2
< 2EF f S ‘ Y ;Y”f) dt | + 2EF™ f e 2%(Yt — Y, )| dt
TN AT N |Yt - TN’ — TN TN A TN
_ 164 8d? r
EIF"YN T—TATN _EIFWN J Y i th
TNN [ :|+ T;l\f TN/\TN‘ - N|
16d% ., 8d?
< T]QVNEP Mt + EIEH“’”N [T —T A 1n],

where we used, for the last inequality, the fact that, P"V-almost-surely, for all t > 7y,

Y, - Y. |° < Nrd.

|

This concludes the proof of the lemma.

4.3.2 From almost-sure constraint to mean-field constraint

To prove the second inequality we rely on compactness methods developed, in the context
of Large Deviations by Budhiraja, Dupuis and Fischer [27] and, in the context of mean-field
control, by Lacker [96] and Djete, Possamai and Tan [59]. To this end we need to introduce
suitable weak formulations of the control problems.

Let us first introduce some notations. We denote by C? := C([0, 7], R?) the path space.
The control space V is defined as the set of non-negative measures ¢ over [0,T] x R? with
the Lebesgue measure as time marginal and such that

J[o _ la*dq(t,a) < +oo.

We denote by (XY, A%N) the canonical process on (C? x V)V and define the empirical
measures

=1

1 ¥ 1 ¥
AN . /\Nx .
. NZ: O ). " NZ: Oxin.
Y,

We define RY as the set of probabilities Py € Py ((C? x
are iid with law pg and

.....

Nt
PO ) = 3 [N X A (@) ds
i=1 R4
is a martingale under Py, for all smooth, compactly supported ¢ with

LYo(x1,...,zn,a) = Dyp(w1,... 2x5).a + Ay, o(T1, ..., 7N).
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The control rule Py is also assumed to satisfy

PN (U()Y,) <0,Vt=0) = 1.

t,x

where we wrote, for simplicity Py := Py [\\If(ﬁév ") < —ny] . The N-state problem in its

weak formulation is therefore to minimize over Py € RY

T N
P [ L < JRd 5 LGN a)dAY a) + f(ﬁii)) dt+§ (/7%]
i=1

where EFV is the expectation under Py~.

Similarly, for the mean-field problem we introduce the controlled martingale formulation.
The control problem is described as follows. We let (X, A) be the identity processes over
(C? x V) and we look for probabilities m over C? x V such that X is distributed according
to po under m,

o000~ [ [ £oCxapin s

is a martingale under m for all smooth compactly supported ¢ : R — R, with Lo(z,a) =
Dy(z).a + Ap(x). The measure m is also assumed to satisfy the constraint

U (X, #m) <0Vt = 0.

We denote by R the set of such measures and we look for m € R which minimizes the cost
function

T(m) = E™ [ L ' JR d L(Xt,a)dAt(a)dt] + L " R (Xt + G(Xrdtm).

Before going on with the main result of this section, we make two remarks. The first one
is that the value of the relaxed problem is no greater than Uy(uo). Indeed any “strong”
control induces a weak control with a lower cost. On the other hand, it is easier to show
that the value of the relaxed mean-field problem is equal to U (j1). This follows for instance
from the fact that U(uo) is the value of an optimal control problem without constraint but
with a strong enough penalization. And for problems without constraint, the equivalence
between the different formulations is well known, see [96].
We are ready to prove the desired inequality:

Theorem 4.3. Take Py a sequence of en-optimal solutions to the relaxzed N -particles prob-
lem, for some sequence ey — 0. Then the sequence u™#PYN is relatively compact in
P,(P,(C? x V)) for every p € (1,2). Every limit point is supported on the set of solutions to
the relaxed mean-field problem and it holds that

Ulpo) < Timinf U™ (o).
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Proof. We will closely follow the steps of [06] and therefore we only highlight the differences
due to the constraint. In light of [95] Corollary B. 2 to prove the pre-compactness of u™N # P,

it suffices to prove that the mean measures — Z (XN ABY) J# PN are tight and to prove

that N
w1
sup B LS| sup PV + J f (al2dAN (a)dt | < +oo. (47)
N N & e

The tightness of the mean measures actually follows from (4.7) thanks to the compactness
result of Proposition 3.5 in [96] noticing that a martingale under Py remains a martingale
under Py". By standard estimates, it is enough to prove

N
P’YN ]_ i,N2
sup E'~ [N;p(o | ] < 4o

N

as well as
w | (f1 N
sup EF~ f — f aldA" (a)dt | < 40
Np [ . N ; Rd| | ¢ (a)
in order to get (4.7)). The former follows from

PW[ Z| N ] EP [1x5 2] .
Xy <2J x| dpo(x)
Pylu@Eye) < —w] e

which holds for N large enough since Py [\D(ﬁévx) < —'yN] — 1 as N — +o0. The latter
follows from the coercivity of L, the boundness of F, G and the fact that we took the Py
as e-optimal solutions for the N-particle problem whose values are bounded independently
from N (as proved in Theorem (#.2)). Now we take a limit point P € P,(P,(C? x V))

and prove that P is supported on the set of solutions to the mean field relaxed problem.
First we have that fig “# P3N — 6, in P,(P,(R%)). This follows from Glivenko-Cantelli law

1 O v [ i
of large numbers since N ZEP N [|X8’N|2] is bounded independently from N and, for all
i=1
[ € Cy(P,(R?)), as N — +0
| - B (£ || < 21f1e (1 = Py [9() < —w]) 0.

Following [96] Proposition 5.2 we have that P is supported on the set of measures solution to
the martingale problem. It remains to show that the constraint is satisfied P-almost surely
at the limit. By continuity of W, for all ¢ € [0, 7] it holds that

P ({mePy(C?x V), ¥(X,#m) <0)}) = limsup PRV (¥(, ") <0) = 1.
N—+00

Since P-almost surely m satisfies the martingale problem, we have that P-almost surely
t — X #m is continuous and therefore we have that

P({meP,(C'xV), W(X#m)<0 Vie[0,T])}) =1
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The fact that P is supported on the set of optimal solutions of the mean-field relaxed problem
follows from the lower semi-continuity of the cost functional as proved in [96] Lemma 4.1
and Theorem (4.2). Indeed it holds that

f T (u)dP(p) < liminf B [D(3M)]
Pp(CExV)

N—+o00

< limsup Uy (p0) < U(po)
N—+00

and we already pointed out, before stating Theorem (4.3)), that U (1) = inf,er I'(m). Finally
we have that
U(po) < liminf EPY" [D(AN)] < liminf U (110)
N—+00

N—+00

which concludes the proof of the theorem. O

4.4 Application to Large Deviations

Throughout this section we take F = G = 0 and L(z,q) = 1[q|* for all (z,q) € R? x R%. In
this setting, U (1) reads

- me | slatto)bdute)@a (45)

where the infimum is taken over the couples (v, i) satisfying

peC([0,T],Pa(RY)), o € L2

dt@u(t )([Oa T] x R%, R?)

Opp + div(ap) — Ap =0 in (0,7) x R4,
#(0) = po € Po(RY),
T(u(t)) < 0 vt e [0, 7.
For all N > 1, we fix a filtered probability space (2, F,F,P) supporting N d-dimensional
independent standard Brownian motions (B}"™,..., BN™Y). For xV = ("N, .. 2™N) in

QN we define v (0, x") as follows

uN(0,xV) = 1nf f 2dt
( ) at 1<i<N ; |

where the infimum is taken over controls (a*"),_; .y adapted to the filtration generated by

the Brownian motions, such that the dynamics

,,,,,

t
XZ’N =N 4 J Oéi’NdS + \/§BZ’N,
0

satisfy, P-almost surely the inequality

(a") <0, for all t € [0, T,
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N
~ €T ]-
where ,uiv’ 1= NZéXZ-,N.
i=1

We assume that

there is some xy € R? such that W(d,,) < 0. (4.9)

As a special case of Theorem (4.1]) we have the following result.

Proposition 4.2. For all N > 1, take =) = (zq,...,70) such that ¥(d,,) < 0. Then it
holds that

li N0, ) = U(8,,).
N—1>r-Ii-loou (07 0) Z/{( :Bo)

Notice that, the initial position being deterministic and strictly inside the constraint,
there is no need for conditioning as we did in the previous sections. Equivalently, P"V = P
for N large enough.

In the rest of this section we assume, for simplicity, that

The constraint {¥ < 0} is contained inside the ball

{m e P5(R?), di(m,mg) < R} for some R > 0. (4.10)
As a consequence, the constraints Qy := {(:z:l, cay) € R U(L SV 0,) < O} are bounded
for all N > 1. We also assume that
52
Sz has a linear derivative,
m
with bounded and jointly continuous first order derivatives in the euclidean variables.
(4.11)

Under Assumption as well as these additional assumptions, for all N > 1, the constraint
Qy is open, bounded and 0y is a manifold of class C3.
For (t,x™ = (zbV,...,2™¥N)) € [0,T] x (RY)Y we introduce the probability

1 N

where (B} N, BY ’N) are N independent d-dimensional standard Brownian motions sup-
ported on some probability space (€2, F,P).

We are precisely in the framework of [68] section VI.6 and we can conclude that vV is
CH%in (0,T] x Qy and satisfies

oY — AvN =0, in (0,7) x Qy
vV =0, in (0,7) x 0Qn
oV =1 in {0} x Q.

Moreover, v™ (t,x) > 0 for all (¢t,x") e (0,T] x Q.
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Proposition 4.3. For all " € Qy it holds

2
u™ (0, 2") = —Nlong(T, zV),
where u” is the value function defined in (4.8)).

Proof. For all (t,x") € [0,T) x Qy we define w™ (t,x") := —2logv™(T — t,x"). We are
going to proceed by verification to show that w™(0,x") = v (0,x") in Qn. For xV =

(N, 2NN e Qp, we define the following particle system
tAT tAT
XN =xN — f NDw™ (t, XN)dt + \/éf dBY
0 0
tAT DUN(T—If XN) tAT
N ) N
=xV + 2 dt + \/§J dBY,
J;) UN(T — t, Xiv) 0 t
where BY .=t (B, ..., BM") and 7 is the first exit time from Qy:

7= inf{t = 0, X} ¢ Qn}.

For n > 0 small, we introduce the stopping time

= inf{t > 0,0V(T -, X}¥) < n}.

Notice that, by definition of vV, it holds that 7° = 7. Applying It6’s formula to log v™¥ (T —
t, XY yields, for n > 0,

log v™M(T — 77 A T, X5, 1) = log o™ (T, x™)
TIAT L o DoV AN
+ 2 + —~
0

oV oV

+JTWAT2DUN<T_tJXiV) N
0 oN(T —t, XNy 771

TTAT N N

Do™(T —t,X}")

= log v (T, xV +J —

R N I TS o
+f“T DoM(T -, X)) o
0 ’UN(T—t,XiV) ‘ b

DN 2

N

(T —t,XN)dt

2
dt

Taking expectations and recalling the definition of 7" we get

log(mP(r" < T) +P(r" > T) = log v™ (T, xV).
As a consequence,

ImP(r7<T) =0

n—0
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and the control — N Dw" (T —t, X¥) is admissible. Let us show that it is optimal. Recalling
the equation satisfied by vV, it holds that

—ow™ + | DwN P — AwN =0, in (0,T) x Qy
w =+, in (0,7) x 0Qn
wh =0 in {T} x Q.

Let us take another admissible control o with the associated solution YV to the SDE:

t t
YV = XN-l-J asds+\/§J dBY.
0 0

Being o admissible, it holds that Yiv belongs to Qy for all ¢ € [0, T] almost surely. We can
apply Ito’s lemma to w” and get

-
0=E[w™(T, Y))] =w"(0,x")+E|| 0wt Y)+a.Dw"(t,Y))+ AwN(t,ng)] dt
| JO
s v
=w™(0,x") + E (at.DwN(t,Yiv) - E\DwN(t,YiV)|2> dt]
[ JO
= w0 | [ L jogPat
Zw , X ), 2V Ol

with equality if and only if oy = — NDw™ (¢, Y ). This means that the control —N Dw™ (t, YY)
is optimal and the optimal value is given by w!(0,x") which concludes the proof of the
proposition. ]

Finally we obtain the following convergence.

Corollary 4.1. Let Assumption (A)) as well as Assumptions (4.9)), (4.10) and (4.11)) hold.
Assume that ¥(d,,) < 0 and write ) = (xq,...,x0). Then it holds

R T _
Jim = logv™(T, 25) = ~U(0,).

This is a very special case of the general result of Dawson of Gértner, [55]. However the
optimality conditions of Chapter [3| give a new way to compute the limit —/(d,,).
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Chapter 5

A rate of convergence for the
mean-field limit

This chapter is based on a joint work with Pierre Cardaliaguet, Joe Jackson and Panagiotis
Souganidis.
5.1 Introduction

We consider an optimal control problem with a large number of particles. The value function
for this optimization problem reads

| T1g
VN (to, xo) = alerfN E Ut (N ];1 L(X}, o)) + F(my,))dt + G(m¥,) | , (5.1)
where T > 0 is a finite horizon, t, € [0,7] is the initial time, and xq = (z},...,2)) €

(RY)Y is the initial position of the N particles. The infimum is taken over the set AN of
progressively measurable (R?)N-valued processes a = (o), in L2([0,T] x Q; (R%)") and
X = (X, ...,X") solves, for each k € {1,..., N},

XF=ak+ f ofds +V2BF +\2a0B?  te[t, T (5.2)
to

The (B*)i=o are independent d-dimensional Brownian motions defined on the fixed filtered
probability space (Q, F,F, P) satisfying the usual conditions, and L([0,T] x Q; (R)N) de-
notes the set of square-integrable and progressively measurable processes taking values in

(RY)N. Here 6, is the Dirac mass at x, and the empirical measure m¥ is given by

my, = — Z Oxk- (5.3)

The cost function L : R? x R — R is supposed to be convex in the second variable and
smooth while the maps F,G : P;(RY) — R are assumed to be smooth and bounded over
the space P;(R?) of Borel measures on R? with a finite first moment (precise assumptions
will be given in Section . The constant ag > 0 is the level of the common noise, and the
(B¥)g>1 are viewed as independent or idiosyncratic noises.

143
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5.1.1 Our results

To describe our result we need to introduce the map U : [0, 7] x Py(RY) — R, where Py(R?)
is the space of Borel measures on R? with a finite second moment, given, for (to,mo) €

[0, T] x Py(R?), by

Ut mo) = i B | (L(Xs00) + FIECKIFED) + GLOGIFEN) (.)

to

where the infimum is taken over an appropriate set of admissible controls (this will be made
precise later), FB" = (FP*)o<i<r denotes the filtration generated by B, L£(X,|FP") is the
law of X; conditioned upon .EBO, and

t

X, =X, + J 0y (X.)ds + V2B, — By) + vZag(B° — BY), (5.5)

to

with B another Brownian motion, Yto a random initial condition with law my and B°, B
and X, mutually independent.

Although it is known (more about this later in the introduction) that, as N tends to
infinity, VYV converges to U, the existing convergence results come without any rate. Our
main result is the following algebraic convergence rate: there exists 8 € (0,1] (depending
on dimension only) and C' > 0 (depending on the data of the problem) such that, for any
(t,x) € [0,T] x (RN one has:

(VN (8, m) —Ut,mY)| < ONTP(1+ My*(ml)), (5.6)

where My(m) = N=' 2N | |2%|? is the second-order moment of the measure mY. Although
the exact value of 8 could be traced back through the computation, it is clearly not optimal.
In particular, it is very far from the one obtained in the standard particle system. In the
same way, even if some dependence with respect to a moment of the measure is expected,
the dependence given here is probably far from sharp.

5.1.2 Background and related literature

The convergence of VY to U was shown by Lacker [96] in a very general framework and
for suitable initial data but without common noise, that is ap = 0 in (5.2). Very recently,
the results of [96] have been extended in Djete, Possamal and Tan [59] to problems with
a common noise and interaction through the controls. Beside [59, [96] several other papers
have studied the question of the mean field limit of optimal control problems, for example
Cavagnari, Lisini, Orrieri and Savaré [46] and Fornasier, Lisini, Orrieri and Savaré [71]
investigate the problem without noise by I'—convergence techniques. The recent contribution
of Gangbo, Mayorga and Swiech [78] studies the mean field limit without idiosyncratic but
with common noise using partial differential equations (PDE for short) techniques. This is
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possible thanks to the fact that WV solves the Hamilton-Jacobi equation

1Y :
N N N N
—o V7 (t,x) ZAWV (t,x —aol]Z]ltr (D} VN (t,x)) + N;H(xJ,NDIjV (t,x))
_]:( x) (07T) (Rd)N
VT, x)=G(mY)  in(RHY
(5.7)
H(x,p) = Sug[—p ~a— Lz, a)],
aeR

while U is expected to solve (in some sense) the infinite dimensional Hamilton-Jacobi equa-
tion

[ _ouu(t,m) — (1 + ao) fR divy (Dl (t,m,9))mi(dy)

< ~ao | | DUtz m. ol m(dy)m(a) 55
+ JRd H(y, D,,U(t,m,y))m(dy) = F(m) in (0,7) x Pg(Rd)

L U(T,m) = G(m) in PQ(Rd)

For the definition of the derivatives D, and D? U we refer to books of Cardaliaguet,
Delarue, Lasry and Lions [36] and Carmona and Delarue [43].

One of the reasons for introducing the value functions is that they provide optimal feed-
backs for the optimization problems. For the particle system, this optimal feedback is given
(rigorously) by

ok (t,x) = —D,H(x;, ND,, V¥ (t,x)),

while for the limit system it takes the form (at least formally)
aj(x,m) = —D,H(z, D,,U(t,m,x)).

The difficulty in the PDE analysis of [78] is that, in the absence of the idiosyncratic noise,
the value functions V¥ are not smooth in general. Thus in [78] the equation has
to be interpreted in the viscosity sense. A suitable notion of viscosity solution for the
infinite dimensional Hamilton-Jacobi equation without idiosyncratic noise is introduced
n [78] , and then is proven that VY converges to this viscosity solution. In the presence of
idiosyncratic noise the notion of viscosity solution to is not understood yet and we will
not try to use this approach.

5.1.3 Our results continued

While the existing results mentioned above demonstrate the convergence of VV to U under
many different technical hypotheses and using a variety of techniques, none provides a rate
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of convergence. Our main result fills this gap in the literature, by providing a rate of con-
vergence of V¥ to U in the presence of both idiosyncratic and common noise.

The primary challenge we face is related to the (lack of) regularity of ¢. Indeed, if U is
a smooth solution solution to (5.8)), then the projections U : [0,T] x (R*)Y — R given by
UN(t,x) = U(t,mY) are smooth solutions of the Hamilton-Jacobi equation

1 N
N 2 \IN N
—oUN( ZAIJZ/{ (t,x) —aomzltrD VN (t,x)) NZ (27, ND U™ (t,x))
= F(mY) + Ex(t,x)  in(0,T) x (")
UN(T,x) =G(my)  in (R)Y,
(5.9)
with
1 N
En(t :_FZ (D (£, MY | 4, 27)).

If D, is bounded, then we see immediately that |E,| = O(1/N). Thus U solves the same
equation as V¥, up to a term of order O(1/N). By a comparison argument, we conclude
that [ — V| = O(1/N), that is, there exists a constant C' such that, for all ¢ € [0,T] and
x € (RY)Y,

WV (t,x) —U(t,my)| < ¢
N

See also [80] for more on what convergence results can be obtained once has a suffi-
ciently smooth solution. This argument is similar to the approach taken in [36] [44] to study
the convergence problem in the context of mean field games (see Lasry and Lions [102]) in
situations where a classical solution to the so-called master equation is known to exist (see
Bayraktar and Cohen [II] and Cecchin and Pelino [49] for related results). In this setting,
convergence is related to the propagation of chaos for the optimal trajectories of the game.

Of course, the simple argument outlined above works only when the value function U is
smooth. For instance this would be is the case if the maps F and G were convex and suffi-
ciently smooth (see the discussion in Chap. 3.7 of [36]). However, we will not assume such
a convexity property and the map U is expected to present discontinuities in its first order
derivative; for instance, an example can be found in Briani and Cardaliaguet [24]. Because
of this, the techniques in [36] [43], 44] break down.

When the value function is not smooth, the convergence rate has been studied primarily
in the case of finite state space (see Kolokoltsov [91] and Cechin [47]). In this finite state
space setting, the convergence rate is of order 1/v/N. Indeed, as explained in [47], the par-
ticle system is then a kind of discretization of the continuous McKean-Vlasov equation.
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The situation is different and much more difficult in the continuous state space. This
might come as a surprise since the convergence rate for particle systems is very well un-
derstood; see, for instance, Fournier and Guillin, [73]). The main difficulty we face is that,
even though the optimal feedback in the particle system remains bounded independently of
N (see Lemma , it cannot be expected to be uniformly continuous as a function of the
empirical measure. Indeed this uniform continuity would imply the C! regularity of the limit
U, which does not hold in general. So we have to find a way to show that, despite the fact
that the controls played by each particle might be very different, a kind of concentration of
measure takes place.

5.1.4 Strategy of the proof

A few words on the method of proof are now in order. Let us first point out that we do not rely
on a propagation of chaos, which we cannot prove at this stage. Indeed, as for a given initial
condition there might be several optimal trajectories for the limit problem, a propagation of
chaos is not expected to hold without additional assumptions on the initial data. The main
ingredients for the proof are, uniform in N, Lipschitz and semiconcavity estimates for V¥,
and a concentration inequality. To bound from above VN by U is relatively easy, because
VN can be transformed into an approximate subsolution for the Hamilton-Jacobi equation
(5-8). The opposite inequality is much trickier, because it seems impossible to transform an
optimal control for the V¥ (in which the control depend on each particle) into a feedback for
U. We overcome this difficulty by dividing the particles into subgroups in such a way that
the optimal controls for the particles in each subgroup are close and show a propagation of
chaos, based on a concentration inequality, for each subgroup. The proof being technical, we
first show the result when there is no common noise (ay = 0) and, in a second step, extend
the result to problems with a common noise.

5.1.5 Organization of the paper

The paper is organized as follows. In the rest of the introduction we fix notation. We state
the assumptions and the main result in section As the proof of the convergence rate is
technical, we start in section with the problem without common noise. Indeed this case
contains the main ideas without the extra technicalities due to the common noise. We first
give some estimates on VY and U (subsection , then show a first and relatively easy
bound from above for VV in subsection m The main part of the proof, that is, the bound
from below, which is the aim of subsection requires a concentration inequality proved
in subsection [5.3.4] We finally explain the adaptation of the proof to the case with common
noise in section [5.4]

5.1.6 Notation

For x = (z1,...,2") € (RY)N, mY € P(RY) denotes the empirical measure of x, that is,
mb = %Zf\; 4. We write I; for the identity matrix in RY, and Bg for the ball in R?
centered at the origin with radius R. If ¢ : [0, T] x R — R? is smooth enough, we denote by

Dy, Ap and D?p the derivatives with respect to space and by d,¢ and 0y the derivatives



148 CHAPTER 5. A RATE OF CONVERGENCE FOR THE MEAN-FIELD LIMIT

with respect to time. Similarly, for V = V(¢,2',...,2") : [0, T] x (R9)" — R, we define the
derivatives DV, AV, ;V. We denote by P(R?) the set of Borel probability measures on
R? and note that, if m € P(R?) has a density, for simplicity of notation, m is also be used to
denote the density Given m € P(R?) and p > 1, we denote by M,(m) the p'™ moment of m,
that is, M,(m) = §z. |z[Pdm, and by P,(R?) the set of m € P(]Rd) such that M,(RY) < co.
We endow 77 (Rd) with the Wasserstein metric d,,, defined by

db(m,m’) := ﬂeni(n?iml) JRd |z — y|Pdr(z,y),
where TI(m,m’) is the set of all 7 € P(R? x R?) with marginals m and m’. We recall the
duality formula

dl (m> m/) = Sup ¢d<m - m/)7
¢eL JR4
where L is the set of all 1-Lipschitz functions from R? to R. We write Lg for the set of all
1-Lipschitz functions ¢ : B = R? — [~ R, R]. For any ¢ € L, we denote by ¢ the extension

¢ : R — [—R, R] (note that ¢ is also 1-Lipschitz) given by

X o(x) 2] < R,
o(z) = § Fo(fr) R <|z| < 2R,
0 |z| = 2R.

Finally, for & : P;(R?) — R is smooth enough, g—U : P1(RY) x R — R denotes the linear
m

functional derivative, which satisfies, for all m,m’ € P;(R¢) and all h € (0,1),

Uu(m' f J h)m + hm', x)(m' — m)(dz)dh.
Rd
. oU J ou
We use the standard convention 5—(m,x)m(dx) = 0 for all m € Pi(R%). If 5
Ra 0N m
is differentiable with respect to the space variable, we define the L-derivative of U by
oU

D, U(m,z) = Dxé—(m, x). Higher order derivatives are defined similarly. We refer to
m
[36], 43] for the properties of the L-derivatives.

5.2 Assumptions and main result

5.2.1 Assumptions

We now state our standing assumptions on the maps H, F' and G, which constitute the data
of our problem. We keep in mind that L : R¢ x R? — R is a Legendre transform of H with
respect to the last variable:

L(z,a) = sup[~a-p — H(z,p)].

peR4
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We assume that

{There exist constants ¢, C' > 0 such that (5.10)
—C+cpl> < H(z,p) <C+ pf* forall (z,p)eR?xRY
H:R%x R? - R is of class C?, (5.11)
H is locally strictly convex with respect to the last variable,
that is, for any R > 0, there exists cg > 0 such that (5.12)
D2 H(z,p) = cply forall (z,p)eR?x By,
{there exists a constant C' > 0 such that (5.13)
|D,H(x,p)| < C(lp| +1) for all (x,p) e R? x R,
{for any R > 0, there exists Cz > 0 such that B (5.14)
|D2,H(x,p)| + |D2,H(x,p)] < Cr forall (z,p)eR?x Bp,

F :P1(RY) — R is of class C? with F, D,,F, D2 F and D2, F uniformly bounded,

(5.15)
and, finally,
G : P1(R?) — R is of class C* with all derivatives up to order 4 uniformly bounded.
For simplicity, in what follows we put together all the assumptions above in 210
assume that (5.10)), (5.11)), (5.12)), (5.13)), (5.14)), (5.15) and hold, (5.17)

Remark 5.1. We make the following comments regarding .

(i) The strict convexity of H with respect to the gradient variable is standard in optimal
control. In particular, it implies that L has the same regularity as H.

(ii) Although (5.13), which is used to obtain, independent of N, Lipschitz estimates on
the value function V¥ (see Lemma , is more restrictive, but we do not know it is possible
to avoid it. It is satisfied, for instance, by a Hamiltonian of the form H(z,p) = [p|*+V (z)-p
for some smooth and globally Lipschitz continuous vector field V : RY — R¢.

(iii) The fact that the “full” Hamiltonian (x, p, m) — H(z,p)— F(m) has a separate form
is not completely necessary. Some (small) extensions are possible, but we have decided to
keep it in a separate form in order to avoid unnecessary technicalities.

(iv) The uniform bounds on D,,F and D,,G imply that both maps are Lipschitz continu-
ous in P; (R?). The additional smoothness is used to obtain, independent of N, semiconcavity
estimates on the value function V¥ (see Lemma .

(v) As L is the Legendre transform of H, Assumptions and imply that

for any R > 0, there exists C'r > 0 such that
(5.18)

|DyL(z,a)] < Cr for all (z,a)eR?x Bp
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Indeed, let |a] < R, z € R and p = D,L(z,a). Then, by (5.11)), we have L(z,a) =
—a-p— H(z,p). By (5.10), we have
L(z,a) = —Rlp| - C + (1/c)|p|*
while
R2
L(z,a) <sup{—a-p' + C —cp'|*} < C + e
v ¢

which implies (/5.18]).

5.2.2 Formulation of the problem

For concreteness, we fix throughout the paper a filtered probability space (Q, F,F = (F)=0, P)
satisfying the usual conditions and hosting independent d-dimensional Brownian motions B
and (B*)pen.

Definition of VV

The definition of V¥ and the relevant quantities/functions were given and explained in the

introduction—see (5.1)), (5.2)) and (5.3).

As explained in the introduction, it is well known that under (5.17), V¥ is the unique
classical solution to the Hamilton-Jacobi equation ([5.7)) and that the infimum in (5.1)) is
achieved (in feedback form) by the function o = (o), : [0,T] x (RY)Y — R given by

ag(t,x) = =D, H (2", ND VN (t,%)). (5.19)

The definition of I/ without common noise

Suppose now that ag = 0. To define i/, we find it more intuitive to work with closed-loop
controls, and to view the problem in terms of deterministic control of the associated Fokker-
Planck equation. For fixed (t,mg) € [to, T] x P2(RY), let A(to,mo) to be the set of pairs
(m, @) with m = (me)wegror] = (M(t,*))tetor) € CO[t0, T]; P2(RY), « : [to, T] x R — R?
measurable and such that

1. m solves (in the sense of distributions) the Fokker-Planck equation

oym = Am — div(ma) in (to, T] x R? and my, = mo,
2. SZ) Spa la(t, ) Pm(t, dx)dt < .

Then we define U : [0,T] x P2(R%) — R by

U(to, mo) = (mmiﬁiﬂ,mo){ﬁ ( JRdL(m,a(t,:v))m(t,d:v) +f(mt))dt+g(m;p)} (5.20)

0

One advantage to using this deterministic formulation of the McKean-Vlasov control problem
is that, at least in the absence of common noise, the dynamic programming principle is
straightforward. In particular, we can assert the following dynamic programming principle,
which will be useful in what follows.
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Proposition 5.1. Assume (5.17). Then, for any 0 < t, <t; < T,

Uttom) = int { J " ( JR Lz, alt,2))me(dx) + F(mo)dt +U(h, mtl)}.

to

The definition of I/ with common noise

To define U when ag > 0, we once again use a form of closed-loop formulation, but this time
the relevant Fokker-Planck equation becomes stochastic and we work with a notion of weak
solution.

For fixed (tg,mq) € [0,T] x P2(RY), we define a control rule R € A(ty, mg) to be a tuple
R =(QFFP,W m,a),
where

1. (Q,F,F = (F)o<t<r, P) is a filtered probability space supporting the d-dimensional
Brownian motion W,

2. a = (ay)s,<i<r is a F-progressively measurable taking values in L*(R% R?) and such

that « is uniformly bounded, in the sense that

< 0. (5.21)
L2(9Q)

sup HatHLw(Rd;Rd)
te[to,T)

3. m satisfies the stochastic McKean-Vlasov equation

my, = mg in RY

{dmt(x) = [(1 + ap)Amy(z) — div(myay(z))] dt + /2agDmy(z) - dW; in (to, T] x R?

(5.22)

The last condition means that, P—a.s., for any smooth test function ¢ € C*([0,7] x R?)
with a compact support and for any ¢ € [to, 7] one has,

y o(x)my(de) = Ny ¢o(x)mo(dz) + L fRd(8t¢s(x) + as(z) - Dog(x) + (1 4 ag)Ads(x))mg(dx)ds
+ Jt V240 , Dog(x)mg(dz) - dWs.
Now we define

Ulto,mo) =  inf )Eu»[f (LdL(x,at(x))mt(dw) +]—"(mt))dt+g(mT)]. (5.23)

ReA(tg,mo o

The connection to the informal description ([5.4]) of U is that, if « is a bounded L (R%; R%)-
valued process defined on some filtered probability space probability space (2, F,F = (F;)o<t<7, P)
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supporting independent Brownian motions B and W, « is a adapted to the filtration of W
and X is a strong solution to the McKean-Vlasov equation

t
X, =Xy, + J as(X,)ds + V2(BY — BY) + v/2ag(W) — W), (5.24)

to

then (Q, F,FW W, m,a) € A(ty, mo), where m; = L(X;|W), that is, m is the conditional
law of X given the filtration of the Brownian motion W.

As in the case ag = 0, we have the following dynamic programming principle.

Proposition 5.2. Assume (5.17). Then, for any 0 <ty <t < T, for U defined by (5.23)),
we have

Ulty,mo) —  inf EPlLl(fRdL(x,at(m))mt(da:)+}"(mt))dt+1/{(t1,mtl)

(m,a)eA(to,mo) o

Unlike in the case without common noise, where the control problem is deterministic and
thus the dynamic programming principle is straightforward, in the common noise case we
will need to use some machinery from Djete, Possamal and Tan [59] and Lacker, Shkolnikov
and Zhang [97] to verify that the dynamic programming principle holds in this setting. To
streamline the presentation, we present the proof of Proposition 5.2 as well as of some other
technical results from [58, 59, 97] in the Appendix.

Remark 5.2. We could have defined U using when ay = 0 as well, and, in the end,
it would be possible (thanks in part to Lemma below) to prove that this is equivalent
to the definition (5.20). We chose to define things separately with and without common
noise mostly to avoid some unnecessary technicalities and to simplify the presentation for
the reader interested in the case without common noise. The only mathematical reason for
splitting up the definitions is that for technical reasons it is convenient to work with L®
feedback controls in the case of common noise, whereas without common noise we have no
difficulty working with square-integrable controls.

5.2.3 The main result
With V¥ defined by (5.1)), U defined by ((5.20)), if ag = 0, or (5.23)), if ag > 0, we have the

following result.

Theorem 5.1. Suppose that Assumption (5.17)) holds. Then there exists B € (0,1], which
depends only on d and C' > 0 depending on the data such that, for any (t,x) € [0, T] x (RN,

VN (t,x) = U(t,md)| < CNT2(1 + My(mY)).

For the convenience of the reader we repeat here the strategy of the proof. We detail
in section [5.3] the proof of Theorem [5.1] the adaptation to the case ay > 0 being the aim
of section 5.4 The proof of Theorem requires several steps: We first provide uniform

regularity estimates on V¥ (Lipschitz and semiconcavity estimates, see Lemma and .
Then we show how to bound from above V¥ by U plus an error term (Proposition 5.3)). This



5.3. THE PROOF OF THEOREM 5.1 WITHOUT COMMON NOISE 153

estimate is relatively easy and boils down to transforming the map V¥ into a subsolution of
the HJ equation (5.8). The converse estimate is more involve and is the aim of Proposition
. The technical reason is that we found no way to embed U into the equation for V¥ as a
subsolution. Actually, since U is semiconcave, it is naturally a supersolution of that equation
and the remaining term is a priori large. We overcome this issue by using locally optimal
feedback of the N—problem for the continuous one, the main difficulty being to compare the
empirical measure in the N—problem to the solution of the Fokker-Planck equation. This
step is by no means trivial and relies on a key concentration result (Lemma .

5.3 The proof of Theorem without common noise

Throughout this section we assume that ag = 0.

5.3.1 Some regularity estimates

Throughout the proof we use systematically the fact that VV is the unique solution of the
uniformly parabolic backward PDE (5.7) and, therefore, is smooth. We first start with
regularity estimates for VV.

Lemma 5.1. Assume (5.17)). There exists a constant C' > 0 such that, for any N > 1,

V¥ + Nsup [Dpi V¥ |0 + [0V o < C
J

Remark 5.3. The estimate on D,; VY implies that the optimal feedback of the problem, given
by o*(t,r) = —D,H (2, ND,; V" (t,x)) remains uniformly bounded.

Proof. The bound on V¥ is obvious. We note that w! = D, V" satisfies

1 .
Agew'(t,x) + =D, H(z", Nw'(t,x))

—8t’w t X N

HMZ

) 1 )
) +ZDPH(:Ek,ND,:kVN(t,x))-Dl,kw’(t,x) = S DnF(mf,a") i (0,7) x (R
k=1

w(T%) = - DuG(my o) in (R

(5.25)
It follows from the maximum principle that N|D,; V™| is bounded uniformly in N and j.
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In the same way, w' = ¢,V" satisfies

-

—ow'(t,x) Z Agrw'(t,x)+
k=1
N
+ Y. D,H(z" NDVV(t,x)) - Dpw'(t,x) = 0 in (0,T) x (RY)",
{ k=1 (5.26)
1 & 1
W) = Do [D? GmYa*) + L[D2,G(mY.o* 2
1 .
N; at Dmg ) — F(mb) in (RHN,
and the uniform bound on ||0;V" ], follows again from the maximum principle. O

Lemma 5.2. Assume (5.17). There is a constant C' such that U satisfies
|L{(t0, mo) — u(So,m0)| < C(|t0 — 80|1/2 + dl(m,m)), \ tg, So € [O,T], mg, My € PQ(Rd)

Moreover, there exists a constant C' > 0 such that, if (to,mg) € [0,T] x P1(R?) and (m, a)
is optimal in the definition of U(to, mo) in (5.4), then |af, < C.

Proof. The result is standard so we only sketch the argument and refer to [24] for more
details. Fix (to,mg) € [0, T] x P(RY). It follows from that there exists at least a pair
(m, «) optimal in the definition of U(ty, 7). Moreover, for such optimal pair (m, «), there
exists a map u : [to,T] x R? - R with ay(z) = —D,H(x, Du(t,z)) and such that (u,m)
solves the system

—0wu(t, x) — Au(t,z) + H(z, Du(t,z)) = g—;(mt, z) in (ty,T) x R?

Ormy(z) — Amy(x) — div(D,H (z, Du(t, z))my(s)) =0 in (t5,T) x R?,
8G
om

my, = mo, u(T,z) = —(mp,z) in R

Arguing as for the Lipschitz estimate in Lemmal5.1] one can check that there exists a constant
C > 0 such that |Duls, < C, and, since « = —D,H(x, Du), |a], < C. By the standard
parabolic regularity this implies that |Dalle, = |D[DyH (-, Du(-,-))]|e < C.

Fix m; € P;(R?) and let ;1 be the solution to
Ot — Ap + div(pa) =0 in (¢, T) x R with pu(te) = 7y
It is easy to check that there exists C' depending on |Da| and on T" such that

sup dy(u(t), m(t)) < Cdy(my, mo).

te[to,T)
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Thus, for some constant C' depending on 7', on the regularity of L, F and G and on || Da||s,

Ulto, ) < j ( f Lz, (), dr) + F(u(t)))dt + G(u(T))

to R4

< J (J L(z,oq(x))m(t, dx) + F(m(t)))dt + G(m(T)) + C sup dy(u(t), m(t))

to JRA te(to, T
< U(tog, mo) + Cdy (Mg, o).

This establishes the estimate
|Z/{(t0, mo) - U(tg,m0)| < Cdl(mg,mo). (527)

Finally, we fix sy < to, and we choose (m,«) optimal in the definition of U(sy, mg). By

dynamic programming (Proposition , we have

to

U(so, mo) :J

S0

( fRd L, at,2))my(de) + F(m,) )t + U(to, m,).
and so

to
(o, mo) Uty mo)| <1 | (| Lo a2 meld) + Famo) )] + W4t ) it mo)
Rd
C(to — 50) + Cdl(mto, mo) C(to - $0> + C(to — 80)1/2 < C(t — 80)1/2,

where we have used ([5.27)) and the boundedness of «, together with the fact that Assumption
5.10[ implies a similar inequality for L. This completes the proof. O

The key estimate on V¥ is given in the following Lemma.

Lemma 5.3. Assume (5.17). There exists an independent of N constant C,such that, for
any N =1 and any & = (€') € (RN and £° e R,

(2 C -
ZDWVNtxf 8+2ZDZ%VN<t x) - £1€° + DRV (1 x)(€°)? N; €+ C(e

i,7=1 =1

(5.28)

Remark 5.4. Inequality ([5.28] plays a crumal role in the proof of Lemma E 9 below. Since
1% converges to U, it follows that ([5.28]) implies the semi-concavity of the extension e
[0,T] x L2((Q, F,P): RY) — R deﬁned, for X e L2(,RY), by

Ut, X) = U(t, L(X)),

~

where (Q,}— , Iﬁ) is a fixed atomless probability space and £(X) is the law of the random
variable X.
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Proof. For 1 <i,j,k < N, let

2igd VNSZ ’ §j7 w? = at)}NéHOa wh = w0 = atDa:iVN ’ 6051

wisziVN‘fi7 wh = D2,
~ N i j N J
w0 = 9, VN(E0)?, &= Dijoow™ and oy =357 Dorw'.

A straightforward computation gives
N N
— 0@ — Y Al + Y Dl DpH (2" ND VY (8, x))
k=1 k=1

N N
=~ N )Y D2 H(z* NDuVN(t,x))oy - 0 — 2 Y. D2 H (2%, ND VN (t,x))Ek o,
k=1

2 H(x', nDy VN (t,x))E.€

| —
M= T
T

=1

+—ZD ml, 2, 29)¢ §J+—ZDD F(mY a)g€

1,7=1 =1

Denote by ~ the right-hand-side of the equality above. Recalling that H is strongly
convex in the p variable and that Nd,x V" is bounded, we have, for all 1 < k < N,

— ND2 Hoy - o), — 2D2 HE .oy < |§’f|2
We can use again the Lipschitz bounds on V¥ and (5.14)) to deduce that
N
Z €z|2.

Next, fix (t9,%o) and consider the weak solution m® to

\

ZIQ

N
oym™( EAka t,x) 2 v(DpH(z*, ND VN (t,x))mY) = 0 in (to, T) x (RY)Y,
k=1 k=1
mN(to,-)zéxO in (RHY,

Integrating the equation satisfied by & against m”» we deduce that, for all (to,xo) € [0, 7] x
(RN,

©(to, xo) < sup [&(T'x) a0 + Z [€F 2.

In order to bound the right-hand side of the inequality above, we first note that, by the
equation satisfied by V'V, we have

8,5VN T X

HMZ

N
AuGV(x) + - ) Hlah NDuGN (x)) — FN(x),
k=1
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where FV(x) := F(mY) and GV (x) := G(mY), and, similarly,

VN (T, %) = Z A& VN (T, %) + Z D,H (2%, ND iGN (x)) - D&V (T, x).
k=1

Recalling the expressions of the derivatives of 7V and GV in function of the derivatives of F
and G in Proposition 5.35 of [43], we obtain, after a tedious but straightforward computation
that, under our standing assumptions on F and G, the quantity sup, ||&0(7, %) is bounded

by &30, €17 + C(€°)*.
O
5.3.2 The easy estimate

The second step in the proof of Theorem is an upper bound of V¥ in terms of &. Our
strategy will be to first compare U to V'V, where

N
VN(t,m) = J Nt x nm (dz?). (5.29)
(RN 7=1

We start with a Lemma, whose proof is a straightforward computation which is essentially
the same as the one carried out in the proof of Proposition 3.1 in Cardaliaguet and Masoero
[38]. Hence, we omit the details.

Lemma 5.4. Let VY be giwen by (5.29). Then VN s smooth and satisfies the inequality

—o, VN (t,m) — JRd div(Dp VN (t, m, y))m(dy)

A~

+ RdH(y,D WYVt m,y))m(dy) < FN¥(m) in (0,T) x Py (RY),

VN(T m) = QN( ) in Pi(RY),

where

ﬁN(m) = J(Rd)N F(m2) Hm(da:j) and Q\N(m) = J Hm (dz?).

Next we prove the easier inequality in Theorem (/5.1)).

Proposition 5.3. There exist constants C' (depending on the data) and  (depending only
on d) such that for any (t,%o) € [0,T] x (RN,

VY (mY) <uU(t,md) + C(1+ My (mY ) N7, (5.30)

Proof. Theorem 1 in [73] gives constants C' and / depending only on d such that, for any
m € Po(R?) and for all N € N,
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Fix (to,mg) € [0,T) x P2(RY) and let a* be optimal in the definition of U (tq, mg). Using
Lemma (j5.4)) together with a standard verification argument, for example, using It6’s formula
in [43], we see that

A~

VN (tg,mg) < inf { JtT (JRd Lz, a(t, z))m(dz) + ]?N(mt)>dt + gAN(mT)]}

aEA(to,mo) o

and, hence,

L(z,a*(t,x)) + .}A"N(mt)>dt +GN(my). (5.31)

VN (to, mo) < JT (J

to R4

Since, in view of Lemma [5.2] o* is uniformly bounded by a constant independent of N, an
easy computation shows that the corresponding state process satisfies

sup f |z|*m(t,dz) < (1 + C’T)J |z|*mo(dx) + CT.
1 Jra R4

telto, T

It then follows from the Lipschitz continuity of F with respect to d; that

di(md,m(t)) | [m(t, dz’) < F(m(t))+C(1+My"* (mg)) N~

j=1

FN(m(t)) < Flm(t)+C f

RN
and, in the same way,
GN(m(T)) < G(m(t)) + C(1 + My (mg))N~°.

So, by the optimality of a*, we can use (5.31]) together with the estimates of FN and G to
obtain
T

17N(t0,m0) < E[J

to

(L(Xe,07) + FIL(X0) ) dt + GL(Xr))] + O+ My (o)) N

< Ul(to, mo) + C(1 + My (mo))N°.

Fix now x¢ € (R?)". Then the Lipschitz estimate on V¥ and the same argument as above
yield
< C(1+ My (mY )N~*.

X0

‘VN(to,xo) — DV (1o, m )

Putting together the last two estimates gives ([5.30)). O

5.3.3 The main estimate
The main step of the proof is to show the opposite inequality.

Proposition 5.4. There ezists a constant 5 € (0,1], which depends only on the dimension,
and a constant C' > 0, which depends on the data, such that, for any N = 1 and any
(t,x) € [0,T] x (RHN,

18
Ut,md) — VN (t,x) <CN (1 + ~ D). (5.32)
i=1
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Proof. Following a viscosity solutions-type argument, we double the variables and, for 6, A €
(0,1), we set

N
L s N 2 1|2
M = max e*(U(s, my, M VN (t,x)) 20N E 2t —y'|* - 29! s—t)*— i§:1’y| :

(t.%),(s,y)€[0,T]x (RN

We denote by ((to,Xo), (S0, ¥0)) @ maximum point in the expression above and we continue
estimating in the next lemma the error related to the penalization

Lemma 5.5. There exists a constant C' such that, for any i€ {1,..., N},

N

1 o

NZ |25 — yol* + |so — to]* < CO* and —Z ol” <
=1

We postpone the proof of the lemma and continue with the ongoing proof.

As pointed out in the introduction, the main difficulty is that it does not seem possible, at
least to us, how to transform an optimal control for the V¥ (in which the control depend on
each particle) into a feedback for &. We overcome this difficulty by dividing the players into
subgroups in such a way that the optimal controls for the agents in each subgroup are close
and showing a propagation of chaos-type result for each subgroup using a a concentration
inequality.

We begin explaining how to create the subgroups based on an appropriate partition of
{1,...,N}. Since we will use it again in the next section, state and prove the following
lemma.

Lemma 5.6. For each 6 > 0 there exist a constant C depending only on the data, and a
partition (C9)jeqr, .5y of {1,...,N} and @/ € R? for j = 1,...,J such that J < C6~* and,
for all ke OV,

|H (2§, NDw VN (to,%0)) + @ - (NDx VN (o, %0)) + L(zf, )| < C6. (5.33)

Proof. Let a*(t,x) = —D,H(x*, ND_V"(t,x))be the optimal feedback for particle k, and
recall (see Remark [5.3)),that there exists R depending only on the data such that |a(t, x)| <
R.

Given § > 0, we can find a d-covering of Br = R? consisting of J < C'6~¢ balls of radius
§ entered at (@) en

.....

Then, we choose the partition (C7);c; s such that, for each k € CY, |a*(t,x) —a’| < 6.
It follows that, for each k e C7,

|H (2, ND V¥ (to,%0)) + @ - (NDg VN (to,%0)) + Lk, @)
= |(Oéj - a’€<Z€07X0)) ’ (NDkaN<t07XO)) + L(xlgaaj) - L(x07 <t07XO>>’
< (ND:ckVN(tOJX(])) + HDGLHLOO(RdeR) )|ak<t07X0> - Oé]| =

where we have used (.18 0
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Fix je{l,...,J}, set o =a7 if k e C7 and let

Xt'f)ﬂ — a2f + 7a* + V2B* and Y;'ZH =y + ra* + V2BF,

= — dyk and m’ = Z Ok
Y€0+T Z 90 T Xf +7 n] Xt0+7'
keCﬂ keCi

consider the solution m? to

{ om? — Am? + @ - Dm? =0 in (s, T) x RY,

m’(so,) = mf, in R¢,

1 o
and, finally, set m(s) = sz&] nJm?(s).
We state next the concentration inequality we need for the proof.

Lemma 5.7. There ezist positive constants [ € (0,1/2). which depending on d, and C,
which depends only on sup; |&?|, d and T, such that, for all h =0,

B [dun oo + ., )] < €O MY 50) N
1M’ (So ,mYSO+h x o M (So (nj)ﬂ’ .
and
) , , hB
E [du(m? (5o + ), ke, )] < 3%l — ol + €0+ Az ) s VR0
keCJ
and, as a consequence,
N dp P
E[dl(m(50+h),myso+h)] <O P+ A7)

and

1 hP
E [dl( (so + h), m¥, +h)] <CO+Co %1+ )\—§)W.

We postpone the proof of Lemma to subsection [5.3.4] except for the one of the third
inequality, since it contains an argument is needed for the ongoing proof.

Proof of the third inequality in Lemma[5.7. Using the first two inequalities of Lemma as
well as the Cauchy-Schwarz inequality, the concavity of the maps n — n'=? and n — n'=25,
the fact that };;n/ = N, and the assumption that 3 € (0,1/2), and recalling that |J| = cod
and the estimate of Ms(m(sp)) in Lemma [5.5| we obtain the following string of inequalities
which prove the claim.
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E [dl(m(so + h), m{o+h)] < Z %]E [dl(m](so +h), mYs +h)]

jed
nj 1/2 h’B
<C); 7 (L M, (m (s0)) (nj)ﬂ
jeJ
B (nj)l B 1/2 ”—j 1/2
< Ch Z O Z M2 (m (s0)))* (D N(m’)w)
jeJ ]EJ jeJ
1-8
<0h5“” Z + C My (m( hfﬁ/"] Z )1-281/2
JjeJ ‘J‘ jeJ “]‘

< CJIPN"PR® + C My (m(s0))| J|PN PR

We proceed with the ongoing proof.
The Lipschitz regularity of ¢ in Lemma [5.2] and the definition of X; and Y, give

M > E[eso+h(u(so +hom, )= V(t+ b, Xigen)

< Z| so+h 0+h|2 (tO _30 ) 2| so+h| ]

hB
> E[eso+h(u(so +hym(so + h)) — VN (to + h, XW))] C5~ (1 + A"3)—

NB
N

A
< 2| —x0|2 0—t0)2> 2N (|?Jo|+0hl/2)

To proceed we need a dynamlc programming-type argument, Wthh is stated next. Its proof
is postponed for later in the paper.

Lemma 5.8. With the notation above, we have
U(so + h,m(sg+ h)) = U(so, myév)

— JSOJF (Z JRd %njL(x,aj)mj(s, z)dx + F(m(s)))ds.

50 j=1

Using It6’s formula for YV we find

Yo

so+h
M g i)~ [ Z N LA @ (s )+ F ()
Rd

to+h N
_eSO”‘E[VN(to,xOHJ @V (1, Xs) + Z Ap VY (tX0) + b - DV (t, X)) )t

to k=1

h? Py
—Co P (1+ A )Nﬁ ( E s — 21> + (5o — to) ) N;_l lyo| + Ch
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Since the @’ are uniformly bounded, the map L(,a”) is uniformly Lipschitz independently
of j. Hence, using Lemma [5.7] and Lemma [5.5] we find

sot+h J 1 ) ) )

f Z —n! L(x, &’ )m’ (s, x)dxds

S0 JR4 j=1 N
[ o J 1 o » 1 . .

<E Z( 2 NL(XtostJrs, a’) + C’Nnjdl(mj(s), m%ctofsoﬂ))ds
| Y50 j=1 keCi
[ (o 1 | L1 %

k _k j 2.

<E [ ;N (X* oF)ds +C€h+CZNn](1+M2 (mgg))W
| = i 7j=1
[ [-to-‘rh N 1 P T a8 L hﬁ

<E ZL(XF, aMVds | + COn + C5 (1 4 A5~
I I;N(sa)er + (1+ )Nﬁ

Note that the last inequality we used exactly the same argument as for the proof given above
of the third inequality of Lemma [5.7]

Hence, recalling the optimality of (xg,yo) and using the equation for V¥, we get

h o1\
N5 — CAREN > Iyl — Con

i=1

0= (e — &) (U(se,mY ) — VN (tg,%0)) — C5 (1 + A~ 2)

Yo

—em | [ o) - Fn, s

0

1

to+h N
— e thE [NJ D UL(XE, %) + oF - (NDV(s,X,)) + H(XE, ND V(s Xs)))ds] :
o k=1

Using the Lipschitz regularity of F and Lemma [5.7] to deal with the difference of the F
and Lemma [5.5 to deal with the term in }}; [y], we find

. hB
0= e®h(U(so,mY ) — VN (to,x0)) — CO (1 + /\‘2)% — CA\2p1% — Coh — Ch?

Yo
1 to+h N
— TR NJ D UL(XE o) + oF - (NDuV(s, X,)) + H(XE, ND,V(s, X,))ds)ds | .
o k=1

The regularity of L and H and the uniform boundedness of the o* and of N D+ VY allow to
infer that

\ P
0= e®h(U(so,my,) — V¥ (to,x0)) — Co~ (1 + A7) CAY2RY2 — Coh — Ch?

— COh*2.

1 to+h N
— e thE [N f D (L(af, af)ds + of - (NDwV(s, X)) + H(xf, NDuV(s, X,)))ds
to
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and, in view of ([5.33)),
0> esOh(U(SO,mN) — VN (tg, %)) — Co~(1 + )\“) — CA\Y2RhY2 — COh — Ch3/?

—CE[ O SN IND VN (8, X,)) = ND WV (s,xo))yds] — Ch.

(5.35)
The semiconcavity of V¥ and the penalization by the term in 6 give the next lemma. The
proof is postponed to end of the section.

Lemma 5.9. For any (t,x) € [0,T] x (R,

N
DDV (t,x) = DV (t, %o

N C N 1/2
Z o —g| + (N—Z (Jo* — a5 + 2" — g 2)) el/glt—t o2,

ZIQ

We continue with the ongoing proof. Inserting the estimate of Lemma in (5.35)), we
obtain

A
0= e®h(U(so, mY ) — VN (to,%0)) — CO (1 + Az)% — CN2pY2 — (0 + §)h — Ch*?
1/2 ]
(1 XF — 2| + | XF —2f 2)) + |5 — to]"/?)ds

N
= €Soh(Z/{(So, mi,\;) — VN(to,Xo)) - C57d5(1 + >\7§)W

— C(0 4 6)h — CAV2RM2 — CO~Y2R(R2 + h)Y2,
Dividing by h we find, for each choice of ;A\, > 0 and 0 < h < (T — sg) A (T — t5), the
estimate
hP—1

™ (U(s0,myy ) — VN (tg, %)) < C gl + AV 4 C(0 +0) + CAVPR=Y2 4 CRMAe—12,

We take 6 = h*t, § = (%)O‘?, A= N7 and h = N~*. By fixing appropriate choices
of ay, as, a3 and finally oy we deduce that the estimate

e (U(so, mY) — VN (tg, %)) < CN 7 (5.36)

holds for some f = E(ﬁ) € (0,1/2) and for all values of N such that h = N~ < (T — sg) A
(T'—to). For those values of N such that h = N~ > (T —so) A (T — 1), we have by Lemma
that (1" — s9) v (I'— s¢) < h 4+ C8, and so using Lemmas |5.1| and we have

U (50, gy ) — V™ (to, %0)| < [U(s0,my,) — Gmgy)| + G (myy) — G(mgg )| + |G (myy) — V™ (to, %0))|
<Ch+60)"?+Co+C(h+60) <CN*
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where in the last line we choose E even smaller if necessary. With this choice of 5 , we have

now established that (5.36)) holds for all values of N.
Finally, we conclude that, for all (¢,x) € [0,T] x (R%)¥,

e (U(t,my) —VN(t,x)) < e*(U(so, myy ) — VN (to, %o)) Z |z

Yo

< CN-min(Bas)(] 4 —Z 7 [?).

=1

O

Before proving the various lemmas used in the proof of Proposition [5.4] we complete the
proof of the main result.

Proof of Theorem[5.1. Combining Proposition and Proposition we know that there
exist 3 € (0, 1] (depending on dimension) and C' > 0 such that, for any (¢,x) € [0, 7] x (RY)V,

U (t,mY) — VN (t,x)| < CNP(1 + My (md) + Ma(mY)) < ONP(1 + My(md)).

We continue with the proofs of the several auxiliary results sated earlier.

Proof of Lemmal[5.5 The proof of the first statement is an immediate consequence of the
uniform bound on ¢/ and V¥ and of the Lipschitz estimate for V. n

Proof of Lemmal5.8, For K € N and any nonnegative integrable functions mg,...,m& on

R? such that >}, m& € P(R?), let

Uty b= i J JRd f Z))m'f(t,m)d:c + f(l;1 mh (#)))dt

(m1,81),..., (m¥ ,BK)
+ Q(Z m*(T))
k=1
where the infimum is taken over the tuple of measures (m”, %) (the 3% being a vector
measure) with 3% << m* such that (m*, 8%) solve in the sense of distributions
oym® — Am"® + div(8*) =0 in (t,, T] x RY and m"(t;) = mf in R<

We establish next that

Z/{K(t()vm(l)v SR 7m[f)<> = u<t0amé + Tt m?)?

and the result will then follow from Proposition

Since obviously UK (tg,m{, ..., mE) < U(to, my + -+ + mi’), next we concentrate on the

reverse inequality.



5.3. THE PROOF OF THEOREM [5.1 WITHOUT COMMON NOISE 165

Fix ¢ > 0, let (m!, 8%, ..., m%, BX) be e—optimal for UK (tg,m},...,mE), and set 8 =
Z]kvzl BE and m(t) = Zg;l mF(t). Then (m, 3) solves

om — Am +div(B8) =0 in (to,T] x R and m(ty) = me in R%

and we have

e+ UR(tg,m], . .. ,mé{)
(1,2) \m (1, ) S S
t,x)dxr + F( ))dt + G T
f f o) i g 0 e+ FQ I (X mHm)
k
t
> J (f L(z, M)m(t,m)dm + F(m(t)))dt + G(m(T))
to Rd (t :C)
= U(to, mg),
where the second inequality follows from the convexity of the map (5, m) — mL(z, é) and
m
the third one by the definition of U. O

Proof of Lemmal[5.9. Set p* = D, xV(tg,%x0) and p' = d;V(ty,%o). Then, in view of Lemma
5.3, we have, for any (¢,x), (to, %o) € [0,T] x (RN,

ZIQ

VN (t,x) — VN (to, %) — (2% — 2f) — p'(t —ty) <

N
Z 2% — b2 + C(t — to)>

||M2

The optimality of (¢, X0, S0, Yo) also gives, for any (¢,x),

1
26NZ| g+ o5 (t=s0)* VN (1, %) = QGNZ\ —4ol*+ 55 (to=s0)*+ V" (t0, %0). (5.37)

From (j5.37)), we conclude that

2
1 1 X 1 )
= w20 10 1 gy 1 =)+ (=) ¢ M\to — sof? = It = to) + (to = s0)f
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and, after some elementary manipulations,

1 1
N k. k2 2
YV (t,x) — VN (tg, x0) — ZJ (2% — k) p(t—t0)>—29—NkZ=:1|x -z %(t—to) :
Assuming that 0 < (2C) 7!, tt follows that
N
w(t,x) = VN (to, x0) — VN (t,%) +2p o —af) + pl(t —to) + Z — |+ C(t —t)?
k=1 =1
is convex and satisfies
0<w < Z|x —2h? + 1(t—t0).
ON 0

Thus, for any (¢,x) and any (s,y), we have

D Dpew(t,x) - (4 — o) + duw(t,x)(s — 1) < w(t,x) + > Dyew(t,x) - (4 — %) + daw(t, x) (s — 1)
k=1

w(s,y) < WZ@—%F 25— to)?

Letting y* = xf + 19Nkaw(t x) and s = tg + Hé’tw(t x) in the inequality above, we obtain

ON
o Z |Drw(t, x))? Z Dyew(t,x) - (z* — zF) + dyw(t, ) (t — L), (5.38)
k=1
and, after using the Cauchy-Schwarz inequality,
N N 1/2
DD w(t,x)| < N2 <Z nykw@,x)y?) (5.39)
k=1 k=1

1/2
< N (S kDt 0]+ (e, ) to
< Ne 2 0 - y N@ t ) 0 .

Recalling the definition of w and that |Dx V™| < C/N and |6,VV| < C, we find

2C
|Drw(t,x)] = | — kaN(t X) +p* + W(mk —:UO)| CN~ '+ —|x —x0|
and
|G (t, )| = | — &,V (tg,%0) + 2C(t — to)| < C.

Returning to ([5.39), we have

1/2
2C C & C
2 D VY (t, x)4+pF +W( —2b)| < (NQZ |lzh — 2| + — NG : |x'§—xk|2+g|t—t0\) ,

=

from which we deduce the result by the definition of p*. O
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5.3.4 Proof of the concentration inequality

To complete the proof of Proposition [5.4] we are need to show Lemma [5.7 For this, it is
convenient to introduce a few more facts.

Let L(e, R) be the e-covering number of Ly with respect to the L*-distance, that is,
L(e, R) = inf{k € N : there exist ¢1, ..., ¢, € Lg such that for all ¢ € Lg, |¢ — ¢;]|,;.. < € for some j}.
It is known (see, for example, [128]) that
L(e,1) < exp{Ce™?}, (5.40)

and, after a rescaling argument,
£(e. R) < exp{C( ). (5.41)
€
Indeed, if {¢y, ..., pn} € L is ¢/R-dense in L, then {¢1, ..., ¢} is e-dense in Ly, where ¢;(z) =
Ré(%). Thus (5.41)) follows from ([5.40).

We need two preliminary estimates and note that, without loss of generality, we can take
to = 0 in what follows. Finally, we recall the notation after Lemma [5.5]

Lemma 5.10. There exists a constant C' > 0 such that, for any ¢ € L and any j € {1, ..., J},
we have

mi(h) —m? | <ex _nij}'
B ot (h) ) = o] < oxp { ="

Proof. Let u the solution of
—du—Au—al-Du=0 in (0,h) x R
u(h) = ¢ in R

note that, since |D¢| < 1, [Dul, < 1.

Using It6’s formula and the equation for m/, we get

om0 ) = 2L 3 [ Duts. v am!

keci V0
The random variables h~'/2 Sg Du(s,Y¥)dB* are independent and sub-Gaussian, uniformly
in k. Indeed, viewing h™"/2§ Du(-,Y*)dB" as a time-changed Brownian motion, we have

that h=1/2 Sg Du(t,Y;¥)dBF @ B, where B is a standard Brownian motion and 7 < 1 is a
stopping time (we use here that |Dul, < 1). In particular,

h
IP’[J Du(s,Y®)dB* > z] < P[sup |By| > h'/?x],
0 o<t<1
from which the claim follows easily.

We may now apply Hoeffding’s inequality (see, for example, Proposition 2.5 in [132]) to
complete the proof. O
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Lemma 5.11. There exists a constant C' such that, for any j € {1,....,,J} and R > 0,

E[sup | &(m? (k) —mi,)] < C(1+ R2)(n) T2 he.

¢eLr JRA

Proof. We fix e > 0 and use the estimate on L(e, R) to choose K < exp{C’(%)d} and ¢1, ..., i
in Lg such that, for each ¢ € Lg, there exists k € {1,..., K} such that [¢ — @[ w0, <€

and hence HQS gka < e

L*(R)
Then, using Lemma and the upper bound on K, for any x > €, we have
Plsup | @(mi(h) —mi ) > 2] <P[3k such that | n(mi(h) —mi) >z — ]
¢eLp Jrd " Rd "
K .
) R J(r — )2
Z gzﬁk (m?(h) —mi, ) >z — €] <exp {C’(—)d—n(g—he)}. (5.42)

€

We fix a small positive parameter v, and note that, if
€ — ,yféRhl/dxde(nj)fl/d’
then

R.a niz? iz nl(z —e)

Rexp{C’(:) - Ch}zRexp{C’vnhx e 2}. (5.43)

Further computations reveal that there is a constant C' such that x > 2¢ as soon as

d 1
Rz ha+2
_— 5.44
Y@+ (nd) a2 ( )

By choosing v even smaller, and deduce, in view of ((5.42)) and ([5.43)), that, for some constant
C and all R, x as in (5.44)),

P[sup | &(m’(h) — mjyh) > ] < exp {_n;f } .

¢eLp JRd

It follows that

Finally, we give the proof of the concentration inequality.
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Proof of Lemma[5.7. Throughout this argument, C' denotes a positive constant which, al-
though changing from line to line, depends only on d, T', and sup, |a?].

Next, we prove ([5.34)) in the case t; = 0. We fix R > 0, and note that, any ¢ € L
normalized with ¢(0) = 0, can be written as ¢ = ¢ + ¢, with ¢ € Ly and [¢| < |z[15e,.

Thus, for any h € (0, 1], we get

E[dy(m (h),m3. )] = E[ZEE N d(m? (h) —mi, )]

<Blsup | Smi(h) = miy)) + [ laltgm () + BL[_loltugm},]

¢€LR R4 R
J J
<Blsup [ md(h) —mi,)) + 220D B,
¢eLp JRd

<E[sup [ mi(h) —mi )+ LT My (m(0)))

¢eLp JRA

(5.45)

Using Lemma [5.11], we find that

(1 + My(m’(0)))
R .

(1 + My (m?(0)))
- .

E[dy (m? (h),m}: )] < C(1 + RT)(nf) &2 hz + C

<C(1+ R)(w)@2his 4+ C

Optimizing in R, that is, taking R = (nj)ﬁhfﬁ\/l + Ms(m7(0)), gives the result with

1
B =5 O

5.4 The proof of Theorem with a common noise

We now show that the method developed above can be adapted to problems with a common
noise, that is, when aq is positive. Recall that V¥ and U are defined by (5.1) and ([5.23)
respectively.

Proof of Theorem when ag > 0. Since the proof follows closely the one in the case a® = 0,
here we emphasize and explain the main differences.

We first note that the estimates of Lemmal5.1]and [5.3|remain valid (with the same proof),
that is, there exists C' > 0 such that

V¥ + N sup | DoV oo + [0V o0 < C,
j
and, for any (t,x) € [0,T] x (RHYN, (£);=1. .~ € (R)Y and € € R,

; C <
ZDxxJVNtxf £J+22D21tVN(t x)E€0 + D2VN (t,x)(€°)? N; €2 + O(€°

3,j=1 i=1
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We note for later use that this implies that the conclusion of Lemma [5.9|still holds, because
it relies only on the above estimates.

However, the proof of Lemma does not adapt to the case ag > 0. Hence, we need a
new argument which relies on some results of [59].

In particular, we have the following analogue of Lemma [5.2

Lemma 5.12. Assume (5.17). There exists a constant C' > 0 depending only on the data
such that, for all s,t € [0,T] and all m,m’ € P,(R?)

U(s,m) — Ut,m')| < C’(dl(m,m’) bt S|).

Moreover, there exists a constant C' > 0 such that, for any ¢ > 0 and any (tg,mgy) €
[0,T] x Po(R?), there exists an e-optimal control rule R = (Q, F,F,W,m,a) € A(to, mo)
for U(ty, mo) such that

lafe < C.

Proof. Fix R > 0 and let VV% and U® denote the values of the problems defining V¥ and
U when controls are restricted to the ball By < R

More precisely, define AN to be the set of a = (a¥)_, such that |o*| < R for each R,
and A% (tg, mg) to be the set of (Q, F,F,P,m, ) € A(tg, mg) such that |a] < R. Then define
YNE exactly as in but with AN replacing A and define U exactly as in but
with A% (ty, mo) replacing A~

Then Proposition [5.5{ and Theorem 3.6 of [59] give

lim VYAt xN) = ufi(t,m)

N—o0

where xV = (21, ...,2V), m € P4(RY) and 2!, 22, ... ¢ R? are such that
N

1 . 1
sxpﬁglaﬂ“ < o0 and N;(Szi — m e Py(RY).

It follows from Lemmal5.1] and Lemma [5.13] that there is Ry > 0 such that V¥-Fo = PN and
U = U, and so we infer that, for all x; and m as above,

lim VY (¢, x") = U(t,m).

N—o0

Hence, the uniform regularity on V¥ established in (5.2)), which, as noted above, holds
equally well when ag > 0, is enough to conclude that, for some C' > 0,

lU(t,m) —U(t,m)| < Cdy(m,m’) for all m,m’ € Py(R?).

Finally, for any € > 0 and any (g, mg), we can choose an e-optimal pair (m, ) for U and
that this control is also e-optimal for /. This completes the proof. O
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Let VN be defined in Lemma . Then it is easily checked that V¥ is smooth and
satisfies, with 7 and GV as in Lemma ,

[ VN (tm) — (1 + ) JR div, (D DY () m(dy)
| o] o0, g mdnmy)

# | H DDV (tmg)m(dy) < Fm) in (0.7)  P(R)
L V(T m) = G(m) in Pi(RY),

Then, as in the proof of Lemma [5.3] it is possible to use It6’s formula for conditional measures
(see, for example, [44]) to infer that, for any solution (m,a) to (5.22)),

VY (ty, m) < E UTJ L(w, ay(x)ymy(w)dz + FN(my)dt + G (my) | .

Using the same argument as in the proof of Lemma [5.3| with Lemma [5.12| replacing Lemma
.7, we arrive at

VN (to,mY) < Ulto,mY ) + C(1+ My (m¥ ) )N~7.
We now turn to the opposite inequality. As before, for 6, A € (0, 1),

s 1 i % 1 )\ o 4
M= ma U m) =V (%) - e S =y P s 1P - s Dy
A =1

(t.%),(s,y)€[0,T]x (RN

and denote by ((tg,Xo), (S0, ¥0)) @ maximum point in the expression above.

As in Lemma [5.5] we have

N , 1 &

D leh— vl + [t —sof? < CO* DIyl < Ox7
=1

i=1

1
N

.....

in Lemma [5.6l
We set of = @’ if ke C7, and let

Xf ., =af+7a"+ V2B 4+ v2a0B?, Vi =y +71dk + V2BF + v/2a°B?,
; 1
J ——
and my = y V(SYs'BM’
keCJ

and m’ be the solution to

dmi = [(1+ a®)Am! — @ - Dm{] +v2aDml -dBY in (ty, T] xR? and m{o =m? in R%

Yo

Finally, we set my = N~' 3., n/mJ, and claim that, for all h > 0 and j € {1,..., J},

hB

R (5.46)

E|di(mlom, )| < OO+ 257 0md,))



172 CHAPTER 5. A RATE OF CONVERGENCE FOR THE MEAN-FIELD LIMIT

and
hP
NB°

E|di(myenmd, )| < CO+CoB(1+27%) (5.47)

The proof follows from Lemma Indeed, to establish , we first note that the
process (1my)se[s—o,r] solves in the sense of distribution (with B° replacing W) if and
only if the process iy = (Id — v/2a9(B? — By,))t#m; solves P—a.s. in the (classical) sense of
distributions, with &(z) = (v + v2a%(BY — BY), the equation

dmt(l') = [Aﬁlt(x) — dlv(ﬁbt&t(a:))] dt in [to,T] X Rd ﬁ?,to = MMy in Rd, (548)

Next, we consider
7%{04_7- - ([d B QGOBE)ﬂmgo-i-T and ?fo-ﬂ' = on-i—T - mB&

and notice that M7 and Y* solve the same equations as in Lemma , and, hence, (5.46))

. ~ ] . J J ] J
holds with m;_,, replacing m; ,, and m?tﬁh replacing MY, oy

Since

J — 3
Migar = Mg yr * /3005, 5

and

. 1 1 .
j § : E : 7
= — ~ — _ &~ * —
M igrr = 1 5on L+ HV2a°B2 <nj 5Y§O +T> 0\/2a 0 My e ™ 0\/2a5B0
keCJ keCi

we can conclude that

~

E|di(mlombe, )| =B |di0md o gy mbe, ., * usaony) | = B[ di(dom], )],

Yso+h

and so ([5.46|) holds. The proof for (5.47) is similar.

We proceed with the proof by noticing that the Dynamic Programming in Lemma 5.§|still
holds but with an expectation, since now the measures are random, and with Proposition
[.2| replacing Proposition 5.1

Moreover, since the conclusion of Lemma [5.9also holds as already pointed out, we can ar-
gue as in the proof of Proposition (the time-regularity provided by Lemma replacing
that in Lemma that

N N 1 1 - 7|2
U(t,my) = V(%) < Oz (1+ 5 1o P).

=1

The conclusion then follows as in the proof of Theorem [5.1] O
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5.5 Appendix

The purpose of this appendix is to adapt some technical results from [58] and [59] to our
setting. Most importantly, we need to infer the dynamic programming principle (Proposition
in our setting from the dynamic programming principle which is stated in Theorem 3.1
of [59]. Most of the arguments here are straightforward adaptations of the superposition and
mimicking results achieved in [97], and so the proofs are only sketched.

Following Definition 2.1 in [58] and Definition 2.3 [59] we define, for each (to,mg) €
[0, T] x Po(R?), the set of weak controls A, (ty, mo) to be the set of tuples

R = (Qa *Fa Pa F= (ft)Ogthv G = (g)OStSTa X7 Ba W7 m, Oé)
such that

1. (2, F,P) is a probability space equipped with filtrations G, F such that, for all 0 <
t<T,G < F and F v FE L GrlG:.

2. X = (X;)o<i<r is a continuous, F-adapted R? valued process.
3. a = (a¢)t,<t<r is a bounded, F-predictable process taking values in R<.

(
4. (B,W) is a R? x Re-valued standard F Brownian motion, W is G-adapted, and F; v
o

) L Gr.
5. m = (my),<i<r is a G-predictable process taking values in Py(RY) and such that
my = L(X¢|G;) for dP ® ds-a.e. (s,w) € [t,T] x €.

6. the state equation

t
Xt = Xto + J Oést + \@(Bt - Bto) + v 2a0(Wt - Wto)a E(Xto) = myg

to
holds for all to <t < T.

We also define

Uy (to,mo) = inf )EP[L (L(Xy, 00) + F(ma)dt + Glmr)]

ReAw (to ,mo 0

In our context, a superposition principle is a result asserting the following: given a
control rule R = (Q, F,F,P, W, m,a) € A € R(ty, mp), we can find an extension (KNZ, F, G) of
(Q, F,F) hosting another Brownian motion B independent of F and a process X such that
dX, = au(X;)dt + \/2dB; + +/2a9dW, such that m, = L(X,;|F,). We refer to [97] for details.
The superposition results of [97] are useful to us because we need to apply some technical
results from [58, (59], and the superposition results allow us to check that our formulation is
equivalent to the one used in [58, 59).

In what follows, for technical reasons, that is, to have the coercivity condition on the
cost appearing in Assumption 2.1 of [59], we will work with a truncated version of the weak



174 CHAPTER 5. A RATE OF CONVERGENCE FOR THE MEAN-FIELD LIMIT

formulation defined here. Namely, we define A%, (19, mq) just as A, (tg, mg), but with the
controls a required to take values in Br = R?. Then, we use

UR(ty,mo) = inf )EP[I (L(Xy, 00) + F(mo)dt + Glme)]

RE.A{E (t() ,Mo to

We also truncate the original form of the problem, by defining U just like U/, but with
controls a required to take values in B < R,

The following can be obtained using the superposition and following results of [97], as in
the proof of Theorem 8.3 of [97].

Proposition 5.5. For each R, UR = U".

It is also useful to note that our regularity result Lemma which holds also in the case
ap > 0, can be used to infer that U = U for all R > R,.

Lemma 5.13. There exists Ry depending on the data such that, for each R > Ry, UF =U.

Proof. Theorems 3.1 and 3.6 in [59] together with Proposition allow to conclude that,
for each R > 0, we have the following form of convergence of VV-¥ to U%.

For all t € [0,T], 1 € P4(R?) and z; € R? such that

1 & 1<
s%pN;]xi|4<oo and N; o, m in  Py(RY)

N = (xla "'>$N) € (Rd)Na

lim VBV (¢, xN) = UR(t, m). (5.49)

N—o

we have, for x

Next, notice that, by (5.1] . (see Remark , there is Ry depending only on the data such
that, for all R > Ry, VNV = VN, Thus 9) actually gives, for all R > R,

lim VN (¢, xV) = U (t,m)

N—oo

It follows that
U =uto.

Indeed, clearly U < U,

For the other inequality, for any (to,mg), we can choose R = (2, F,F,P,W,m,«) to
be e-optimal in the definition of U(ty, mg). Since a is bounded by hypothesis, there exist
R > Ry such that R € A%(ty, my), and, hence,

Z/{Ro(to,mo) =Z/{ (to,mo) U(to,mo) + €.
Letting € — 0 gives U(ty, mq) = U (tg, mp). O

Now, we turn to the dynamic programming principle, that is, Proposition [5.2]
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Proof of Proposition [5.3. We combine Theorem 3.1 of [58] with Proposition to conclude
that, for all 0 <ty <t; < T and any R > Ry,

U(to, mo) = U (Lo, mo) = U (to, me) = inf Ep[fl(L(Xt, ay) + F(mq))dt + U (tr, may )]

RE.A&’, (to,m0) to
t1

_ i gﬁq(ﬂ&m@+fWMﬁ+UW@mﬁ]

REA}‘}, (to,mo 0

— inf I[E]P[f1 (L(Xt, o) + F(my))dt + U(tr, my,)].

REA‘I/?'V (to,m0) to

Since R can be arbitrarily large, it is easy to see that the above imply

Ulto,mo) — it F%F@@MM+?W»&+WEmQ]

ReAw (to ,MQ o

To get from here to

U(to, mo) = Rej(rtlof,mo) EP[fl (Ld L(z, oy (x))my(dz) + F(my))dt —I—Ll(tl,mtl)],

0

we again use the superposition and adapt arguments results from [97]. O]
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RESUME

On étudie des problemes de controle stochastique de type champ-moyen avec des contraintes
sur la loi du processus. Le but est de caractériser les stratégies optimales grace a un systeme
couplé d'équations aux dérivées partielles qui est celui de la théorie des jeux a champ-moyen. On
étudie tout d'abord un probléme avec contrainte terminale puis un probléme avec contrainte a
chaque instant. Pour ce second probleéme on étudie la régularité en temps des contréles optimaux
sous des conditions géomeétriques sur la contrainte. On montre également comment ce probléme
apparait comme limite de problémes de contréle ou un grand nombre d'agents sont soumis a des
contraintes symétriques et presque-sdres. Dans une derniére partie, on étudie quantitativement,
en obtenant un taux de convergence, la limite champ-moyen pour des problémes de contrble
stochastique sans contrainte.

MOTS CLES

Controle Stochastique; Théorie des Jeux a Champ Moyen; Optimisation sous
Contraintes; Limite de Champ Moyen

ABSTRACT

We analyse mean-field stochastic control problems under constraints in law. The goal is to
characterize optimal solutions thanks to a mean-field game system of partial differential
equations. We start with a problem with terminal constraint and go on with a problem with
constraint at all time. For this second problem we prove the time regularity of optimal controls
under suitable geometric assumptions on the constraint. We also explain how this problem arises
as limit of control problems for a large number of interacting agents with symmetric, almost-sure
constraints. Finally we investigate quantitatively the mean-field limit for stochastic control
problems without constraint and prove that this convergence holds with a rate.

KEYWORDS

Stochastic Control; Mean-Field Control; Mean-Field Games; Mean-Field Limit;
Constrained Optimization
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