
HAL Id: tel-04468260
https://theses.hal.science/tel-04468260v1

Submitted on 20 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A performance projection approach for design-space
exploration on Arm HPC environment

Clément Gavoille

To cite this version:
Clément Gavoille. A performance projection approach for design-space exploration on Arm HPC
environment. Other [cs.OH]. Université de Bordeaux, 2024. English. �NNT : 2024BORD0004�. �tel-
04468260�

https://theses.hal.science/tel-04468260v1
https://hal.archives-ouvertes.fr

THÈSE
PRÉSENTÉE À

L’UNIVERSITÉ DE BORDEAUX
ÉCOLE DOCTORALE

DE MATHÉMATIQUES ET D’INFORMATIQUE
par Clément Gavoille

POUR OBTENIR LE GRADE DE

DOCTEUR
SPECIALITÉ : INFORMATIQUE

Approche de projection de performance pour
l’exploration de paramètres de conception de

l’environnement Arm en HPC

Dirigée par Brice Goglin
Co-dirigée par Emmanuel Jeannot

Soutenue le : 15 janvier 2024
Devant la commission d’examen composée de :

Pr. Raymond Namyst . . Professeur, Université de Bordeaux . Président du jury
Dr. Brice Goglin Directeur de recherche, INRIA . Directeur de thèse
Dr. Emmanuel Jeannot Directeur de recherche, INRIA, Université de Bordeaux Co-directeur de thèse
Dr. Aleksandar Ilic Assistant professor, Université de Lisbonne Rapporteur
Pr. Olivier Sentieys . . . Professeur, Université de Rennes . Rapporteur
Pr. Estela Suarez Professeure, Université de Bonn . Examinatrice
Dr. Hugo Taboada Ingénieur-chercheur, CEA, DAM, DIF Encadrant/Invité
M. Conrad Hillairet . . Ingénieur, Arm . Invité

Remerciements

En premier lieu, je remercie mes directeurs de thèse, Brice Goglin et Emmanuel
Jeannot, d’avoir accepté de diriger ma thèse mais aussi d’avoir su être présent
malgré une première année sans avoir pu avoir d’échanges directs à cause des
restrictions sanitaires.

Ensuite, je souhaite remercier de tout cœur Hugo Taboada de m’avoir encadré,
accompagné et conseillé tout au long de ma thèse mais aussi sur mon stage de fin
d’études d’ingénieur. Je suis très heureux d’avoir été ton premier doctorant.

Je voudrais aussi remercier Fabrice Dupros, Patrick Carribault et Conrad
Hillairet qui sont de belles rencontres faites au cours de ma thèse et les remer-
cie pour leurs conseils, nos discussions ainsi que leur participation dans mon en-
cadrement.

Je remercie également l’ensemble des membres de mon jury pour avoir accepté,
pour leurs questions et leurs retours sur mon travail.

Je souhaite aussi remercier les stagiaires, doctorants ainsi que l’ensemble des
collègues que j’ai eu la chance de côtoyer à Teratec mais aussi au sein de l’équipe
TADAAM de l’INRIA Bordeaux pour les échanges, pauses cafés, parties de jeux,
...

Sur un plan plus personnel, je voudrais remercier mes amis de Clématie pour
avoir toujours été là pour moi même si je n’ai pas rendu la chose facile.

Ensuite, je veux remercier mes parents pour tout ce qu’ils ont fait pour moi,
pour avoir éveillé mon esprit scientifique et encouragé dans cette voie. Sans eux,
je n’aurais jamais pu être celui que je suis aujourd’hui et je leur dédie donc ce
manuscrit.

Je souhaite aussi remercier mes trois frères: Nicolas, Antoine et Guillaume
pour tout ce qu’on a partagé et ce qu’on partagera dans le futur. Je pense aussi
à mes neveux et nièces: Cassandre, Marc et Constance dont l’arrivée a égayé mes
années d’études.

Enfin, je veux remercier Cassandra qui fut surement la plus belle rencontre que
j’ai pu faire pendant ces années de thèse. Sa présence et son soutien sont, sans
aucun doute, ce qui m’a permis d’accomplir ce travail. J’espère compter sur ton
soutien pour longtemps encore, tout comme tu sais que tu pourras compter sur le

3

mien.
Bien sur, il y a encore beaucoup de personnes que je n’ai pas pu remercier, je

le fait donc ici: Merci à tous d’avoir rendu pas si solitaire cette aventure qu’est le
doctorat.

Remerciements

Titre Approche de projection de performance pour l’exploration de paramètres
de conception de l’environnement Arm en HPC.

Résumé La science d’aujourd’hui utilise de plus en plus la simulation pour mod-
éliser et comprendre le monde qui nous entoure. Pour permettre à celles-ci d’être
plus rapides, précises et modélisant de plus grand phénomènes, les scientifiques
utilisent des supercalculateurs, domaine d’expertise du Calcul Haute-Performance.
Or, à mesure que la demande en puissance de calcul grandit, ces machines se
doivent d’être de plus en plus performantes. Seulement, la réduction de la taille
des transistors prévue par la loi de Moore ne suffit plus à diriger l’évolution des
processeurs, noyau de la puissance des supercalculateurs. Ainsi, pour continuer
à être capable de répondre à cette demande, ces machines deviennent de plus en
plus complexes. Et les performances des applications HPC dépendent des inter-
actions entre les nombreux comportements des applications, les architectures des
processeurs de plus en plus complexes et des choix faits par les différentes piles logi-
cielle. Les efforts à fournir pour l’optimisation des performances des applications
sur les machines sont donc de plus en plus importants.

Une solution pour simplifier ces efforts d’optimisation et obtenir de meilleures
performances des applications est de rassembler l’ensemble des acteurs du HPC
dans un environnement de codesign pour la conception des futures machines.
Ainsi, dans un tel environnement où les choix faits par les concepteurs sont dirigés
par les intérêts des applications, les processeurs et la pile logicielle seront adaptés
aux besoins des futurs utilisateurs. Cela est encore plus important depuis la récente
arrivée de l’environnement Arm en HPC, représentant 10% de la puissance de
calcul totale du Top500 avec seulement 6 machines. En effet, celui-ci offre une plus
grande liberté aux constructeurs dans les choix des caractéristiques des processeurs.
Seulement, dans un tel environnement de codesign, il est nécessaire d’utiliser une
approche de prédiction de performance prenant en compte l’impact des choix faits
par l’ensemble des acteurs pour pouvoir effectuer une exploration viable de l’espace
de conception.

Au cours de cette thèse, nous mettons en place une approche de projection
de performance adaptée à notre définition d’un environnement de codesign re-
groupant les acteurs et les aspects des performances des applications en 3 groupes
: l’application, la pile logicielle et le matériel. Ce modèle se présente en trois
étapes pour effectuer la projection d’un triplet application/pile logicielle/matériel
source, et accessible, vers un futur triplet cible d’intérêt, et inaccessible. Ces étapes
sont : la caractérisation des performances sur nos trois aspects, suivi de l’analyse
des performances sur le triplet source qui va enfin conduire à une projection des
performances vers le triplet cible en fonction des différences entre les paramètres
de celui-ci et du triplet source. Cette approche est ensuite implémentée à l’aide

A performance projection approach for design-space exploration on Arm HPC
environment

i

d’une représentation fondée sur le modèle Roofline dans laquelle on se concentre
sur le maximum de performance atteignable par les triplets et on projette les per-
formances avec une hypothèse de conservation de l’efficacité architecturale. Nous
utilisons ensuite ce modèle pour l’analyse et l’exploration de paramètres matériels
tels que la taille des vecteurs ou le choix du type de mémoire sur différentes archi-
tectures de cœurs Arm. Enfin, nous étendons cette exploration à des architectures
multicœurs en affinant la caractérisation de la bande passante et le travail effectués
par chaque cœur. L’utilisation de cette approche se concentre sur l’exploration de
paramètres applicatifs et de pile logicielle sur une future architecture d’intérêt pour
le HPC : le processeur EPI (pour European Processor Initiative).

Mots-clés Projection de performance, Environnement Arm, Exploration de l’espace
de conception, Codesign

Laboratoires d’accueil CEA,DAM,DIF, F-91297 Arpajon, France
Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille Tour, 33400 Talence

ii C. Gavoille

Remerciements

Title A performance projection approach for design-space exploration on Arm
HPC environment

Abstract Today’s science increasingly uses simulation to model and understand
the world around us. To improve their speed, accuracy, and modeling capabilities,
scientists rely on supercomputers, the domain of expertise of High-Performance
Computing. As the demand for computing power keeps growing, these machines
must become ever more powerful. However, the reduction in transistor size pre-
dicted by Moore’s Law is no longer sufficient to drive the evolution of processors,
the core of supercomputer power. Hence, these machines are becoming increasingly
complex to answer this increasing demand. The performance of HPC applications
depends on interactions between varied application behavior, a complex processor
architecture, and the choices made by the software stack. As a result, optimizing
applications’ performance on these machines is a tedious task.

One solution to simplify optimization efforts and improve applications’ perfor-
mance is to bring together all HPC actors in a codesign environment for designing
future machines. In an environment where the interests of applications drive the
choices made by constructors, the processors and software stack will be adapted
to the needs of future users. It is all the more vital with the recent arrival of
the Arm environment in HPC, already representing 10% total computing power of
the Top500 with just six machines, because this environment offers manufacturers
great freedom in their choice of processor characteristics. However, in such a code-
sign environment, it is mandatory to use a performance prediction approach that
accounts for the impact of the choices made by all players to drive the design-space
exploration.

In this thesis, we implement a performance projection approach adapted to
our definition of a codesign environment that groups the actors and aspects of ap-
plication performance into three groups: the application, the software stack, and
the hardware. This model takes the form of a three-step process for projecting an
accessible application/software stack/source hardware triplet onto a future target
triplet of interest, which is inaccessible. These steps are performance characteri-
zation of our three aspects, followed by performance analysis on the source triplet,
which finally leads to a projection of performance towards the target triplet as a
function of the differences between its parameters and those of the source triplet.
Then, we implement this approach using a Roofline model representation, in which
we focus on the maximum performance attainable by the triplets and project per-
formance with an assumption of architectural efficiency conservation. We then use
this model to analyze and explore hardware parameters such as hardware vector
size and choice of memory type on different Arm core architectures. Finally, we
extend this exploration to multi-core architectures by refining the characterization

A performance projection approach for design-space exploration on Arm HPC
environment

iii

of the bandwidth and the workload of each core. Then, we use this extension
for the exploration of application and software stack parameters on a future HPC
architecture of interest: the EPI (European Processor Initiative) processor.

Keywords Performance projection, Arm environment, Design-space exploration,
Codesign

Hosting Laboratories CEA,DAM,DIF, F-91297 Arpajon, France
Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille Tour, 33400 Talence

iv C. Gavoille

Résumé étendu en français

Dans le but d’apporter des solutions aux grands enjeux contemporains, la science
et l’industrie ont besoin de plus en plus de puissance de calcul. De nombreux do-
maines scientifiques, tels que la climatologie, la biologie ou la physique quantique,
utilisent cette puissance à travers la mise en place de simulation sur des super-
calculateurs. On parle alors de Calcul Haute-Performance (High Performance
Computing, ou HPC, en anglais). Et l’architecture de ces supercalculateurs évolue
pour devenir de plus en plus performants pour nourrir cette demande croissante
en puissance de calcul. Aujourd’hui, on peut les définir comme un ensemble d’un
ou plusieurs processeurs dans des nœuds de calculs interconnectés par un réseau
rapide. Seulement, avec la fin de la Loi de Moore, les processeurs de ces machines
se doivent de devenir de plus en plus complexes pour continuer à être capable de
répondre à la demande croissante en puissance de calcul. La principale métrique
pour mesurer les performances d’une application HPC est le nombre d’opérations
à virgule flottante par seconde ou FLOPS, mais le nombre de FLOPS d’une ap-
plication ne dépend pas seulement de la puissance de calcul pure offerte par la
machine. En effet, elles dépendent de nombreux facteurs touchant des domaines
d’expertise différents tels que les choix faits par la pile logicielle, lors du développe-
ment du code source ou de leur interaction avec l’architecture du processeur. Ainsi,
l’optimisation des applications sur de nouvelles machines est une tâche complexe
nécessitant de long temps de développement et une expertise dans de nombreux
domaines tels que l’ingénierie logicielle, l’architecture des ordinateurs ou la mod-
élisation de problèmes physiques.

Une solution pour simplifier les efforts d’optimisation des applications ou obtenir
de meilleures performances est le développement des futures machines dans un
cadre de codesign. L’objectif d’un tel environnement est de construire une ma-
chine et de développer une pile logicielle adaptées aux applications des futurs
utilisateurs. En outre, avec la récente arrivée de l’environnement Arm dans le
monde du HPC, ce besoin de codesign est encore plus fort du fait de la grande
liberté offerte par celui-ci dans le choix des paramètres matériels. Seulement, cette
liberté dans le choix des paramètres architecturaux se traduit aussi par un besoin
de la possibilité d’étudier l’interaction de la pile logicielle et des applications avec

v

Résumé étendu en français

le matériel. Un tel modèle n’est possible que si l’ensemble des acteurs impliqués
dans la construction et l’utilisation des supercalculateurs Arm de demain peuvent
discuter et avoir des retours sur les choix de conception fait par les autres acteurs.
Ainsi, dans notre cas, le point de discussion choisi est sur la performance des
applications HPC. Il est donc indispensable d’utiliser un modèle de prédiction de
performance pour diriger de telles initiatives de codesign.

Idéalement, une telle approche se doit d’être rapide, précise et générique. Seule-
ment, avec la complexité des machines, des logiciels et des codes de simulation
d’aujourd’hui, aucun modèle ne peut coupler ces trois caractéristiques. On se doit
donc de faire des compromis. Il existe donc de nombreuses approches possibles en
fonction des compromis que les acteurs de l’environnement de codesign peuvent se
permettre d’effectuer ou non. Les trois principales approches sont :

• La Simulation cycle-par-cycle, précise et générique. Elle fait le choix de
simuler le comportement d’une machine exécutant une application sur une
autre machine. En effet, cette précision se fait au détriment de la rapidité
de la prédiction du fait des nombreuses interactions à modéliser ;

• Les Modèles dépendants d’une application qui sacrifie l’aspect générique de
l’approche pour modéliser le comportement d’une application en particulier
et ainsi effectuer des prédictions rapides et précises sur un grand nombre
d’architectures ;

• Les Modèles analytiques font, eux, le choix d’accepter de perdre en pré-
cision des prédictions pour la rapidité et la généricité. Ils se fondent sur
une modélisation mathématique, statistique ou des méthodes d’apprentissage
pour obtenir une estimation de l’évolution de la performance en fonction des
paramètres d’entrée.

Du fait de ces nombreuses approches possibles, effectuer le choix d’une approche
ou d’une autre va dépendre des besoins de l’environnement de codesign.

C’est l’objectif de cette thèse : Mettre en place une approche de prédic-
tion de performance adaptée à l’exploration des paramètres de concep-
tion dans un cadre de codesign.

Ce manuscrit présente les contributions effectuées pendant trois années de thèse
dans le but de mettre en place un environnement de codesign, définir une ap-
proche de projection de performance adaptée et l’implémenter pour l’exploration
de paramètres à différents niveaux. En premier lieu, l’environnement de codesign
est défini en séparant les acteurs et les aspects des performances des applications
HPC en trois groupes distincts: les applications, la pile logicielle et le matériel.
Suite à cette définition, le besoin de pouvoir analyser les impacts des choix fait par
les acteurs de chacun de ces aspects entraîne le choix d’utiliser une approche de

vi C. Gavoille

Résumé étendu en français

projection de performance pour diriger l’exploration des parametres. Ensuite,
nous avons effectué une première implémentation de cette approche avec pour ob-
jectif d’étudier l’impact de paramètres matériels sur les performances mono-cœurs
des applications HPC. Cette implémentation se fonde sur une modélisation de
type Roofline des performances pour l’analyse et la projection de performances.
Les explorations de paramètres accomplies avec cette approche concluent sur dif-
férentes optimisations matérielles adaptées aux choix des applications et de la pile
logicielle. Enfin, cette implémentation est ensuite naturellement étendue pour la
projection des performances multi-cœurs des applications HPC. Cette extension
conserve l’aspect Roofline mais raffine la caractérisation de la bande-passante et
du travail de chaque cœur pour s’adapter aux difficultés apportées par une exécu-
tion en environnement multicœur. Grâce à cette approche, nous avons pu établir
et reproduire une voie d’optimisation logicielle ou applicative possible des per-
formances sur une architecture de processeur d’intérêt pour le futur proche de
l’environnement Arm en HPC.

Définition de l’environnement de codesign et mise
en place de l’approche de projection de performance

Afin de faire le choix d’une approche de prédiction de performance adaptée aux
besoins de notre environnement de codesign, il faut avant tout définir cet environ-
nement et ses besoins. Ainsi, nous avons fait le choix de séparer les acteurs et les
aspects des performances des applications HPC en trois groupes :

• L’application qui comprend le code source, les structures de données utilisées,
les schémas numériques, ... ;

• La pile logicielle comprenant l’impact des compilateurs, des librairies d’exécution,
... ;

• Le matériel qui correspond à l’architecture de la machine, sa hiérarchie mé-
moire, ...

Du fait du besoin de caractériser indépendamment les impacts de chacun de
ces aspects rapidement et de façon générique, nous avons fait le choix d’utiliser un
modèle analytique pour la prédiction de performance. Nous définissons ce modèle
comme une approche de projection de performance.

En effet, celle-ci vise à estimer l’impact des différences entre un triplet applica-
tion/pile logicielle/matériel source, accessible, et un tel triplet cible, inaccessible,
sur les performances finales. Cette méthodologie peut se séparer en trois étapes

A performance projection approach for design-space exploration on Arm HPC
environment

vii

Résumé étendu en français

: la caractérisation des paramètres de chacun des aspects, l’analyse des perfor-
mances du triplet source et la projection des performances vers le triplet cible.
La caractérisation consiste à récupérer des métriques d’intérêt représentatives des
performances sur les trois aspects des deux triplets. Ensuite, ces métriques sont
utilisées pour l’analyse des performances du triplet source afin de conclure quant
à leur impact sur les performances. Enfin, suite à cette estimation de l’impact
de ces métriques, la projection de la performance mesurée sur le triplet source
se fait grâce aux différences entre les métriques des deux triplets. Une fois que
l’environnement et la méthodologie de projection utilisée pour l’exploration des
paramètres de conception, nous l’implémentons ensuite dans un premier environ-
nement simple : l’exécution monocœur d’une application.

Exploration matérielle en environnement monocœur

Même si les applications HPC sont actuellement exécutées sur plusieurs cœurs en
parallèle, l’étude de leur performance monocœur reste capitale. En effet, selon la
loi d’Amdahl, les performances multicœurs d’une application sont limitées par le
temps de calcul qu’elle effectue en monocœur. Ainsi, l’optimisation des perfor-
mances monocœurs permet d’améliorer la capacité d’une application à passer à
l’échelle.

Or, dans le cas d’une exécution séquentielle, les performances dépendent no-
tamment des paramètres matériels et de comment la suite d’instruction inter-
agit avec celui-ci. Ainsi, l’exploration de l’impact de paramètres matériels sur les
performances monocœurs des applications HPC est vitale pour les applications
d’aujourd’hui.

Dans cet objectif, nous implémentons la méthodologie définie précédemment
à l’aide d’une représentation de type Roofline des performances. Cela se traduit
par une modélisation des limites imposées par le matériel sous forme de rooflines,
obtenus à l’aide des benchmarks STREAM et High Performance Linpack. Dans le
cas d’une machine cible inaccessible, nous supposons qu’ils sont, soit fournis par
le constructeurs, soit extrapolés. Ensuite, l’analyse du binaire (représentatif des
aspects application et pile logicielle) permet de pondérer ce roofline pour être plus
représentatif de la limite actuelle du mix d’instructions. Enfin, nous caractérisons
le comportement de l’application à l’aide de son Intensité Opérationnelle (OI) pour
les différents niveaux de mémoire. La projection se fait naturellement avec une
hypothèse de conservation de l’efficacité par rapport à son roofline pondérée. Les
différentes OI et rooflines (pour chaque niveau de mémoire) peuvent conduire à
l’obtention d’un intervalle de performance.

La validation de cette approche entre 3 cœurs d’architecture Arm (Marvell
ThunderX2, Neoverse N1 et Fujitsu A64FX) met en avant la capacité de cette

viii C. Gavoille

Résumé étendu en français

approche à obtenir des prédictions justes dans le cas de machines présentant
une micro-architecture proche. Elle montre aussi la limitation de cette approche
dans le cas d’une projection vers une machine trop éloignée en termes de micro-
architecture, démontrant que l’hypothèse de conservation de l’efficacité est trop
grossière dans ce cas.

Enfin, l’exploration de paramètres matériels est accomplie en utilisant nos trois
cœurs de référence en machine source et en modifiant la taille des vecteurs, le type
de mémoire ou en combinant ces deux modifications. Cette étude est menée sur
trois proxy-applications de référence de la suite CORAL: MiniFE, Quicksilver et
LULESH. Cette exploration montre que le choix de la valeur d’un paramètre va
dépendre de l’application que l’on cible ainsi que de l’architecture de référence
et du choix du compilateur. Par exemple, une application comme Quicksilver ne
bénéficie aucunement de l’augmentation de la taille des vecteurs alors que LULESH
peut observer un gain de performance allant jusque×2 si on part d’une architecture
type ThunderX2.

Exploration applicative et logicielle en environnement
multicœur

Dans ce dernier chapitre, l’objectif est d’étendre l’approche de projection monocœur
à l’aide d’une modélisation Roofline précédente à une situation en exécution multi-
cœur. En effet, au sein d’un nœud de calcul, les applications d’aujourd’hui essayent
d’utiliser au maximum les ressources offertes par l’ensemble des cœurs et de la mé-
moire à l’échelle du nœud. Cette projection correspond donc à un cadre plus
réaliste de l’exécution d’une application sur un processeur d’un supercalculateur.

Cela est accompli en analysant le travail de chaque cœur en concurrence sur
les mêmes ressources de calcul. Cela nécessite aussi d’affiner la caractérisation de
la bande-passante, celle-ci ayant un impact encore plus important sur les perfor-
mances des applications en multicœurs. L’approche consiste donc à une analyse
du travail de chaque cœur, suivis d’une projection sur les cœurs du triplet cible
puis à une sommation de l’ensemble des intervalles de projection obtenus. Une
limitation de cette approche est que le nombre de cœurs entre le triplet source et
le triplet cible doit être égal.

Pour les travaux de validation de cette approche, nous utilisons deux pro-
cesseurs similaires mais séparés d’une génération : les processeurs Graviton 2 et
Graviton 3 d’Amazon Web Services. Ce ne sont pas des processeurs directement
HPC mais l’évolution de ceux-ci est représentative de la future évolution des pro-
cesseurs HPC Arm suivant la roadmap Neoverse. Dans ce cas de figure, la projec-
tion entre ces processeurs admet une erreur d’au plus 20% pour deux kernels de la

A performance projection approach for design-space exploration on Arm HPC
environment

ix

Résumé étendu en français

suite de validation NAS. Cela s’explique notamment par un résultat similaire à la
validation monocœur : une différence de comportement de la micro-architecture
entre les deux générations, ce qui n’est pas considéré dans notre hypothèse de
conservation de l’efficacité. Ces travaux de validations sont donc encourageants
et justifient l’exploration de paramètres logiciels et applicatifs vers un processeur
d’intérêt pour le HPC : l’European Processor Initiative (EPI).

Les caractéristiques précises de celui-ci étant inconnues au moment de l’écriture
de ce manuscrit, nous utilisons les informations disponibles pour représenter l’EPI
à partir d’un Graviton 3 avec une mémoire HBM rapide, obtenue sur un nœud
d’A64FX, et une taille de cache partagé L3 plus importante. Les seules amélio-
rations se situent donc au niveau des caractéristiques mémoires du processeur.
L’objectif est donc d’étudier comment il serait possible d’utiliser des paramètres
applicatifs et logiciels pour utiliser ce gain en mémoire sur deux applications :
LULESH et LAMMPS DIFFUSE. En effet, l’étude de différents compilateurs et
jeux d’instructions sur LULESH montre une piste contre-intuitive : la réduction
artificielle de l’intensité opérationnelle pour mieux utiliser les ressources mémoires.
Nous avons donc choisi de reproduire ce comportement à l’aide d’un code synthé-
tique dans un environnement permettant d’utiliser deux mémoires différentes avec
la même architecture : le processeur Knights Landing d’Intel. Ces travaux ont
montré qu’une telle piste d’optimisation, quoique contre-intuitive, est viable et
montre que l’utilisation de projection de performance pour le codesign peut ouvrir
la voie à de nombreuses possibilités d’optimisation des applications HPC pour les
futures machines Arm.

Conclusion
Le développement de futurs supercalculateurs dans un environnement de code-
sign est une solution pour simplifier l’optimisation des applications HPC sur ces
machines. Dans ce cas-là, il est nécessaire d’utiliser un modèle de prédiction de per-
formance adapté à l’environnement de codesign pour que l’ensemble des acteurs
impliqués puissent discuter sur les meilleurs paramètres de conception à choisir
dans le domaine d’expertise de chacun.

Cette thèse montre qu’il est avant tout nécessaire de définir un tel environ-
nement pour ensuite choisir une approche de prédiction adaptée. Grâce à dif-
férentes implémentations de la méthodologie de projection de performance définie
dans la première contribution, les travaux effectués ont permis de montrer dif-
férentes possibilités d’optimisation et que cela doit intégrer les choix de l’application,
de la pile logicielle et du matériel pour pouvoir avoir une direction claire quant
aux choix effectués lors de la conception des machines HPC de demain.

x C. Gavoille

Contents

Remerciements 3

Résumé étendu en français v

Introduction 1

I Context 3

1 Context of High Performance Computing 5
1.1 HPC applications . 6

1.1.1 LULESH . 7
1.1.2 Quicksilver . 8
1.1.3 MiniFE . 9
1.1.4 LAMMPS . 10

1.2 HPC supercomputers landscape . 11

2 Hardware architecture impact on performance 15
2.1 Functioning of a core . 15

2.1.1 The Von Neumann architecture 15
2.1.2 The instruction pipeline . 16

2.2 Impact of SIMD and FMA on performance 18
2.2.1 SIMD and FMA description 19
2.2.2 Vector ISA in the Arm HPC environment 19

2.3 Memory organization . 20
2.4 Impact of memory on multi-core performance 22

2.4.1 NUMA effect on performance 23
2.4.2 Shared cache impact on performance 24
2.4.3 Topology impact on bandwidth performance 25

2.5 Conclusion . 26

xi

Contents

3 Software stack and programming environment 27
3.1 Compiler impact on performance 27
3.2 Programming model and runtime optimization 29
3.3 Application performance analysis 32

3.3.1 Profiling tools . 32
3.3.2 The Roofline model as an analysis tool 32

3.4 Conclusion . 34

The problem 35

4 State of the art 37
4.1 Cycle-by-cycle simulators . 38

4.1.1 The gem5 simulation tool 38
4.1.2 Overview of gem5-based simulators 39
4.1.3 Discussion . 40

4.2 Application-dependent models . 40
4.2.1 Hydrodynamics application models 41
4.2.2 Discussion . 41

4.3 Analytical models . 42
4.3.1 Statistical approaches . 42
4.3.2 Learning-based methods . 43
4.3.3 Mechanistic models . 44
4.3.4 Discussion . 44

4.4 Conclusion . 45

II Contributions 47

5 Setup of the performance projection methodology through code-
sign environment definition 49
5.1 Codesign environment definition . 49
5.2 Characteristics of our performance prediction approach 50
5.3 Choice of a performance projection approach 52
5.4 The performance projection workflow 52
5.5 Conclusion . 54

6 Exploration of hardware parameters impact on HPC applications
single-core performance 57
6.1 Single-core projection model . 57

6.1.1 Hardware Characterization 58
6.1.2 Application and software characterization 59

xii C. Gavoille

Contents

6.1.3 Performance Projection . 62
6.1.4 Implementation . 65
6.1.5 Experimental environment 66

6.2 Model validation . 67
6.2.1 Neoverse N1 ←→ Marvell ThunderX2 projection 68
6.2.2 Neoverse N1 and Marvell ThunderX2→ Fujitsu A64FX pro-

jection . 69
6.3 Hardware parameters exploration on single-core performance 72

6.3.1 Exploration on SVE vector sizes 72
6.3.2 Exploration on the introduction of HBM2 on DDR4 machines 74
6.3.3 Comparison of projections from N1 and TX2 with SVE 512

and HBM2 to A64FX . 76
6.3.4 Vector sizes exploration on A64FX with different software

stacks . 78
6.4 Conclusion . 80

7 Exploration of software and application parameters impact on
HPC applications single-node performance 81
7.1 Roofline projection model extension to multicore 81

7.1.1 Hardware Characterization 82
7.1.2 Roofline ponderation . 82
7.1.3 OI characterization . 83
7.1.4 Performance projection . 83
7.1.5 Implementation . 84
7.1.6 Experimental Environment 85

7.2 Model extension validation . 85
7.2.1 Graviton 2 ←→ Graviton 3 projection 86
7.2.2 Comparison with straightforward roofline projection 88

7.3 Application parameters exploration 88
7.4 Software parameters exploration on target node architecture 90

7.4.1 Compilers and ISA exploration 90
7.5 Behavior reproduction with synthetic kernels 92
7.6 Conclusion . 94

Conclusion and Perspectives 97

A performance projection approach for design-space exploration on Arm HPC
environment

xiii

Contents

xiv C. Gavoille

List of Figures

1.1 Evolution of the performance of the Top 500 #1 and #500 super-
computer and the sum of all ranked machines from 1993 to June
2023
Source: [19] . 6

1.2 Simple Sedov Blast wave problem 2d modelization. LULESH rep-
resents this problem on a 3d cartesian mesh
Source: [58] . 8

1.3 Ale3D complex workflow. LULESH only represents a small fraction
of this workflow by modelizing hydrodynamics equations with an
explicit method.
Source: [58] . 9

1.4 The three possible interactions with matter of the randomly posi-
tioned particles modelized by Quicksilver.
Source: [86] . 9

1.5 (Left) Coarse-grained model of a 100 nm virus-like particle budding
through interaction with a cell membrane. Transmembrane proteins
are shown in blue. (Middle) A hollow metal strut (200 nm on a
side) is used to measure the mechanical strength and stiffness of
ultra-lightweight nanoengineered materials. (Right) Coarse-grained
simulation of catastrophic depolymerization of alpha-beta-tubulin.
Source: [94] . 10

1.6 Composition of a Fugaku rack
Source: [17] . 12

2.1 The four components of Von Neumann Architecture - Source : [21] . 16
2.2 CPU frequency scaling over time extracted from Stanford CPU DB

Source : [42] . 17
2.3 Generic 4-stage instruction pipeline without a bubble (left) and with

a bubble(right) - Source : [20] . 18
2.4 Number of FLOPs issued with different type of floating-point in-

structions . 19

xv

List of Figures

2.5 Hierarchy of a four stage memory architecture: 3 cache levels and
the main memory with 2 L1s, one for data and one for instructions. 21

2.6 Maximal computing speed of a core (Rmax/core) and a socket
(Rmax/socket) and number of cores per socket of Top500 systems . 23

2.7 Main memory bandwidth obtained with STREAM iterating over
the number of cores of an AWS Graviton 2 node. 24

2.8 Impact of two different placement policies on the performance of an
application limited by communication running on four cores. Com-
munications between cores in Binding 1 are limited by the Memory
Bus bandwidth between NUMA nodes and can hinder the applica-
tion’s performance. 25

2.9 Impact of two different placement policies on the performance of
an application limited by main memory bandwidth running on four
cores. Bandwidth in Binding 2 is limited by the contention on the
NUMA node 0 memory channels and can hinder the application’s
performance. 26

3.1 The three stages of a compiler from source code (in different lan-
guages) to Machine code (for different architectures) through Inter-
mediate Representation (IR) and Optimized IR (OIR) 28

3.2 Functioning of a Shared Memory programming model (OpenMP)
and a Distributed Memory programming model (MPI). 30

3.3 Combination of MPI and OpenMP to combine the strengths and
cover the weaknesses of each programming models. 31

3.4 Roofline representation with the performance (in GFLOPS) on the
y-axis and the Operational Intensity (OI) on the x-axis. The black
roofline represents the maximum performance attainable at a cer-
tain OI. 33

4.1 Overview of the three different types of approach with the aspect
they choose to focus on . 38

4.2 Architecture of an A64FX processor obtained with lstopo. There
are 4 CMG per processor, with 12 cores and one NUMA node each. 40

4.3 Directions to choose a prediction approach for design-space explo-
ration . 46

5.1 Schema of the triplet of aspects interacting between each other to
deliver a performance on an available machine. Information about
their interaction is available through profiling in this example. . . . 50

xvi C. Gavoille

List of Figures

5.2 Schema of the triplet of aspects interacting between each other to
deliver a performance on a future machine. In this case, information
on the interaction between hardware and the two other aspects is
not easily available, leading to an unknown performance. 51

5.3 Projection approach between an accessible source and a future tar-
get triplet. 53

5.4 Detailed overview of our performance projection workflow. 55

6.1 Overview of the single-core roofline projection workflow. Target
triplet is in dotted yellow. 58

6.2 Hardware characterization through STREAM and HPL benchmark-
ing. Source machine is in plain blue and target machine is in dotted
yellow. 59

6.3 Obtained roofline by running STREAM and HPL benchmark. . . . 60
6.4 Software and application analysis. Source triplet is in plain blue

and target triplet is in dotted yellow. 60
6.5 Projection model in two stages: Roofline analysis and Projection.

Source triplet is in plain blue and target triplet is in dotted yellow. 62
6.6 Illustration of the performance projection approach with the differ-

ent steps of the projection. All the figures present the OI (FLOP/Bytes)
on the x-axis and the Performance (GFLOPS) on the y-axis. 64

6.7 DynamoRIO flow chart. The application code is stored in the two
caches separated from the DynamoRIO code by a context switch.
Source: [33] . 66

6.8 ArmIE flow chart. It is an emulation client based on DynamoRIO
for SVE instructions (in orange). When it is not in emulation mode
(blue instructions), it behaves like a normal DynamoRIO client.
Source:[2] . 66

6.9 LULESH -s 100 TX2 → N1 projection results. 69
6.10 LULESH -s 100 N1 → TX2 projection results. 70
6.11 MiniFE -nx 256 -ny 256 -nz 256 TX2 → N1 projection results. . . . 71
6.12 MiniFE -nx 256 -ny 256 -nz 256 N1 → TX2 projection results. . . . 72
6.13 Quicksilver with CORAL Problem 1 input TX2 → N1 projection

results. 73
6.14 Quicksilver with CORAL Problem 1 input N1 → TX2 projection

results. 74
6.15 Model validation from N1 and TX2 to A64FX on LULESH, MiniFE

and Quicksilver . 75
6.16 Model validation from N1 and TX2 to A64FX on LULESH, MiniFE

and Quicksilver . 76
6.17 Exploration of different SVE vector sizes on LULESH 76

A performance projection approach for design-space exploration on Arm HPC
environment

xvii

List of Figures

6.18 Exploration of different SVE vector sizes on MiniFE 76
6.19 Exploration of different SVE vector sizes on Quicksilver 77
6.20 Exploration of introduction of HBM2 on LULESH 77
6.21 Exploration of introduction of HBM2 on MiniFE 77
6.22 Exploration of introduction of HBM2 on Quicksilver 78
6.23 Exploration of introduction of HBM2 and SVE512 on LULESH . . 79
6.24 Exploration of introduction of HBM2 and SVE512 on MiniFE . . . 79
6.25 Vector sizes exploration with GCC and FCC on A64FX on LULESH 79

7.1 Projection intervals compared to actual performance on a Graviton2
and Graviton3 node. Graviton2 and Graviton3 performances are in
blue and yellow, with projected performance intervals in green and
orange. The number corresponds to the difference between observed
and projected performance. 86

7.2 Projection intervals compared to actual performance on a Graviton3
and Graviton2 node. 87

7.3 Obtained Cache-Aware Roofline model of LULESH on Graviton2
and Graviton3 with the addition of L1 pondered roofline and pro-
jection. Rooflines of L1, L2 and L3 memory levels have been hidden
for clarity purposes . 89

7.4 Projections of two compute methods of LAMMPS DIFFUSE small
benchmark from Graviton 3 to our EPI-like machine 90

7.5 Observed performance, projections, and OIs of LULESH with dif-
ferent compilers and ISA on two node architectures: Graviton3 and
EPI-like. The OIL1 −OIRidge value is represented with blue crosses. 92

7.6 N100 → H100 projection results on UVMBench benchmark suite,
courtesy of L. Van Lanker . 100

xviii C. Gavoille

List of Tables

1.1 Share of CPU architectures of the June 2023 Top 500 machines . . 13

6.1 Single-core characteristics of our 3 source cores architecture. 67

7.1 Characteristics of the Arm architectures used in model validation
and design-space exploration. 85

7.2 Benchmarks values on KNL. 93
7.3 Kernels performance in GFLOPS on KNL running on DRAM and

MCDRAM. 94

xix

List of Tables

xx C. Gavoille

Introduction

To understand our world, scientists use computer simulations to model phenomena
from the infinitely small to the infinitely large. Delivering the computing power
needed for these simulations is the role of High-Performance Computing (HPC)
through the development of supercomputers. As science needs more and more
computing power, HPC supercomputers are becoming more and more complex
to deliver enough performance. Moreover, a faster application execution time
opens the possibility of simulating phenomena more accurately or at a bigger
scale. However, the execution time of an application running on a supercomputer
depends on many complex interactions at different levels. As such, optimizing a
complicated application on a complex supercomputer is a tedious task that requires
deep knowledge in many different expertise fields. As the Arm HPC environment
is recent but already represents a good share (10%) of the top computing power,
optimizing applications in this environment is one of the challenges of today’s
HPC.

One solution to simplify optimization efforts and better performance of appli-
cations is to design future machines according to the specific application needs of
their future users thanks to codesign. However, a codesign environment is only
possible if each actor has feedback on the impact of their and the other’s choices
on the performance of applications. Hence, using a performance prediction model
is mandatory to enable codesign initiatives as a discussion opener between every
actor involved in a codesign initiative. Many prediction approaches are used in
today’s HPC, but, they are not necessarily adapted to a codesign environment.
Proposing such a prediction approach adapted to our needs is the main contribu-
tion of this manuscript.

The first part of this manuscript presents the context of this study. After a
general presentation of the HPC context, applications, and machines in Chapter
1, we describe the hardware and software stack impact on the performance of
HPC application in Chapter 2 and 3. Then, we propose the solution of codesign
from this context presentation and present the possible state-of-the-art prediction
methods for codesign in Chapter 4.

In the second part of this manuscript, we present a performance projection

1

approach that is coherent with our vision of codesign and apply this methodology
to explore the design space around various Arm architectures at different levels.
In our definition of such an environment in Chapter 5, we split the performance
of HPC applications into three aspects: the application, the hardware, and the
software stack. According to these needs, relying on a mechanistic projection ap-
proach between a source application/software stack/hardware triplet and a target
triplet is a viable solution for our problem. Our projection workflow can be divided
into characterization, performance analysis on the source triplet, and projection
on the target triplet.

With such a workflow, we first explore the impact of hardware parameters on
single-core performance with analysis and projection relying on a Roofline rep-
resentation of performance. Chapter 6 sets the Roofline single-core projection
approach and uses our implementation to explore various hardware parameters
such as hardware vector length or the change of memory type on three source Arm
cores architectures: Neoverse N1, Fujitsu A64FX, and Marvell ThunderX2.

Finally, we adapt the roofline projection approach to a multicore environment
thanks to a finer characterization of the bandwidth and the workload of each
thread of the applications. Chapter 7 defines this multicore extension in addition
to a preemptive study on the possible impact of different compilers and numeri-
cal methods when targeting a node supposedly close to the European Processor
Initiative (EPI), unavailable at the time of the writing.

2 C. Gavoille

Part I

Context

3

Chapter 1

Context of High Performance
Computing

Nowadays, science relies more and more on simulation and modelization to have
a better understanding of our environment. One such example is climate science
researchers that use this computing power for climate simulations. Furthermore,
more computing power available translates to faster and more accurate simulations.
But this need for computing power is not limited to climate science as, today, every
science field such as aerospace or quantum physics relies on computing methods
and simulation. And providing this computing power is the objective of High-
Performance Computing (HPC) supercomputers.

The first supercomputers were introduced in the 1960s. But their design has
little similarity to today’s supercomputers. Due to the increasing demand for
computing power, their design has changed a lot to adapt. Figure 1.1 presents the
evolution of the performance (in GFLOPS or billions of floating-point operations
per second) of the sum of all 500 supercomputers of the Top500 ranking between
1993 and June 2023. As such, the available computing power has been growing
exponentially since the first Top500 ranking in 1993.

Looking at the evolution of the top-ranked supercomputer, we can link its
growth to the Empirical Moore’s Law. However, this law is not viable anymore [93]
yet the performance is still increasing and getting over the exaflops barrier (1018
floating-point operations per second) with the American supercomputer Frontier.
Moreover, overcoming performance barrier does not only depend on the computing
speed of supercomputers. They also need to resolver the constraints imposed by the
difference between memory and computing speed [81] and the power consumption
and heat dissipation of CPUs [28]. It is, respectively, the memory wall and the
power wall. Accordingly, to keep attaining higher performance and overcoming the
barriers, the machines are becoming increasingly complex.

However, as supercomputers become increasingly complex, the HPC applica-

5

1.1. HPC applications

Figure 1.1: Evolution of the performance of the Top 500 #1 and #500 supercom-
puter and the sum of all ranked machines from 1993 to June 2023
Source: [19]

tions also need to adapt to these machines to be efficient. Hence, in today’s HPC
context, how are HPC applications optimized for performance on these
supercomputers?

1.1 HPC applications

HPC applications are complex workloads that simulate many interactions between
numerous physics phenomena. These workloads depend on a complex workflow
with several steps before the final simulation results. Making optimization efforts

6 C. Gavoille

1. Context of High Performance Computing

on the entire workflow is a difficult and tedious task because of the complex be-
havior and their long runtime. One such example is the WarpX Particle-In-Cell
code awarded by the 2022 Gordon Bell prize [53]. Optimization efforts on this
application were accomplished over several layers with many techniques such as
load balancing, mesh refining, and parallelization. These optimization efforts on
four supercomputers required an international team of researchers specialized in
various domains.

One solution used to fasten and simplify these optimization efforts is the de-
velopment of mini-apps and proxy apps. These codes aim to reproduce the main
application’s behavior or some parts of this application at a smaller scale. Hence, as
the analysis time is much shorter and the execution flow is less complex, optimiza-
tion of these codes is a faster and easier task than working on the full application.
Then, optimization patterns found in these codes can be translated into the main
application.

One of the main initiatives of this kind is the CORAL Benchmarks suite [18].
This benchmark suite consists of numerous mini-apps and proxy apps representing
the HPC workload of the Lawrence Livermore National Laboratory (LLNL). It
aims to converge the optimization and codesign efforts on these representative
HPC workloads.

This suite is now widely used in HPC research and also in the work presented in
this manuscript. We focus our validation and exploration efforts on some applica-
tions of this benchmark suite: LULESH, Quicksilver, MiniFE, and LAMMPS. All
these applications are open-source through public git repositories [10, 16, 12, 15].

1.1.1 LULESH

LULESH (Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics)[58]
is a widely used proxy application in HPC for performance prediction, analysis,
and benchmarking. It is a simplification of the behavior of shockwave propaga-
tion through solid materials. It requires modeling hydrodynamics with a simple
analytic answer. LULESH approximates the hydrodynamics equations discretely
by partitioning the spatial problem domain into a collection of volumetric ele-
ments defined by a cartesian mesh. Figure 1.2 depicts a 2D visualization of the
phenomenon modelized in 3D by LULESH.

As a proxy application, LULESH represents only a minimal fraction of the
LLNL’s Ale3D [82] workflow described in Figure 1.3

It is a simplified application but a good representation of the numerical al-
gorithms, data motion, and programming style typical in complex multi-material
system deformation scientific simulations. This simplicity enabled LULESH to be
developed using numerous programming models such as OpenMP, MPI, CUDA,
or in several languages like Fortran, C/C++, or Rust. Hence, optimizing perfor-

A performance projection approach for design-space exploration on Arm HPC
environment

7

1.1. HPC applications

Figure 1.2: Simple Sedov Blast wave problem 2d modelization. LULESH repre-
sents this problem on a 3d cartesian mesh
Source: [58]

mance and exploring different programming paradigms on LULESH is easier and
faster than on the whole Ale3D application while still being representative of the
behavior of one of the challenge problems of HPC.

1.1.2 Quicksilver

Quicksilver is a proxy application of the Mercury [29] application that simplifies
a dynamic Monte Carlo particle transport problem. Monte Carlo methods [73]
are also widely used in HPC applications for statistical sampling or integration
approximation. Particle transport is one of its many uses.

Quicksilver modelizes three possible interactions of particles with matter: Ab-
sorption, Scattering, and Fission (See Figure 1.4).

The different possible behavior and the randomness of the Monte Carlo method
generate a very conditional code with complex memory access patterns that is
difficult to optimize and predict. This particular behavior justifies developing a
proxy application with very flexible inputs.

8 C. Gavoille

1. Context of High Performance Computing

Figure 1.3: Ale3D complex workflow. LULESH only represents a small fraction of
this workflow by modelizing hydrodynamics equations with an explicit method.
Source: [58]

Figure 1.4: The three possible interactions with matter of the randomly positioned
particles modelized by Quicksilver.
Source: [86]

1.1.3 MiniFE

MiniFE [11] is a mini-application implementing representative kernels of implicit
finite-element applications part of the Mantevo Project of Sandia National Lab-
oratory [26]. Here, the mini-application does not model real physics problems.
However, many applications rely on an implicit solution of a nonlinear equations
system. And they often use a variation of a conjugate gradient solver to resolve
such systems.

A performance projection approach for design-space exploration on Arm HPC
environment

9

1.1. HPC applications

MiniFE implements the conjugate gradient algorithm in four steps:

• Element-operators computation (source vector, diffusion matrix);

• Assembly (scattering element-operators into sparse matrix and vector);

• Conjugate Gradient solve (sparse matrix-vector product);

• Vector operations with BLAS (Basic Linear Algebra Subprograms).

Hence, finding optimization patterns on the various computing steps of such a
linear system-solving application helps reduce the computing time of a widely used
computing method and impacts the performance of numerous HPC applications.

1.1.4 LAMMPS

LAMMPS [94], for Large-scale Atomic/Molecular Massively Parallel Simulator, is
not a single mini-application in itself. It is a classical molecular dynamics code
with a focus on materials modeling. It can compute many systems such as solid-
state materials (metals, semiconductors), soft matter(polymers, biomolecules), or
coarse-grained systems with a variety of interatomic potentials. Figure 1.5 presents
three model examples simulated with LAMMPS.

Figure 1.5: (Left) Coarse-grained model of a 100 nm virus-like particle budding
through interaction with a cell membrane. Transmembrane proteins are shown in
blue. (Middle) A hollow metal strut (200 nm on a side) is used to measure the
mechanical strength and stiffness of ultra-lightweight nanoengineered materials.
(Right) Coarse-grained simulation of catastrophic depolymerization of alpha-beta-
tubulin.
Source: [94]

The flexibility of this framework allows us to use it to simulate simple phenom-
ena and design many mini-apps. For example, we study a small particle diffusion

10 C. Gavoille

1. Context of High Performance Computing

benchmark DIFFUSE obtained with LAMMPS in our experiments. It allows us
to study the impact of different numerical schemes implemented in LAMMPS to
compute the same solution.

To conclude, we have seen that real HPC applications rely on a complex work-
flow. The optimization of these workflows requires a large amount of effort from
experts in different domains. Hence, using mini-apps and proxy apps simplifies
this work of performance optimization and exploration around different environ-
ments. Now that we have defined a representative panel of the HPC applications
of interest through mini-apps and proxy apps, we present the current situation
of today’s HPC supercomputers that execute the workloads represented by these
applications in the next section.

1.2 HPC supercomputers landscape

Supercomputers have changed a lot through their histories. Nowadays, all the
Top500 supercomputers share a similar structure: a massively parallel architecture
of computing nodes stored in racks linked by a high-performance interconnect.

The following Figure 1.6 presents the composition of a Fugaku supercomputer
rack. It is composed of 432 racks of 384 nodes split into 8 shelves with a 48 cores
Fujitsu A64FX CPU per node. Fugaku consists of 158,976 nodes and 7,630,848
cores. With all these cores, Fugaku attained a performance of 442.01 PFLOPS,
ranking 2nd in the Top500 of June 2023.

Using every node efficiently is primordial to obtain most of the computing
power delivered by these massively parallel machines. Using parallelism in a ma-
chine is translated to many communications between computing nodes for some
applications. However, communication between nodes is slow, and interconnect
network performance can limit these applications’ performance. Moreover, be-
cause the performance of applications is measured in FLOPS, or floating point
operation per second, communication time is not seen as useful for the applica-
tion. Furthermore, if a node is waiting for data because of communication time, it
is also not doing any computation. Hence, optimizing the inter-nodes efficiency by
implementing load balancing algorithm [101] or reducing communications time [47]
of applications leads to significant performance gain on some applications. This is
one of the many optimization patterns that have been found on the WarpX code
by implementing particular parallelization strategies and load balancing adapted
to the different machines that executed the code for the Gordon-Bell submission
[53].

However, applications’s performance is not only limited by inter-node commu-

A performance projection approach for design-space exploration on Arm HPC
environment

11

1.2. HPC supercomputers landscape

Figure 1.6: Composition of a Fugaku rackSource: [17]

nications. The computing nodes’ performance and efficiency can also be a limiting
factor in applications’ performance. Thus, an efficient usage of the node architec-
ture is mandatory for applications to attain the highest performance on a particular
machine.

In this work, we focus our study on the optimization efforts of homogenous
nodes that rely on one or more general-purpose CPUs for their computing power.
At first glance, with more than 95% of the June 2023 Top500 systems relying on
x86 architecture (see Table 1.1), the architectural landscape of HPC CPUs seems
homogenous hence simplifying optimization efforts on node efficiency.

Although present in only 1.2% of systems, the Arm architecture accounts for
9.8% of total Top500 performance. Its significant performance share is an accom-
plishment of the recent introduction of the Marvell ThunderX2 processors and,
especially, the Fujitsu A64FX CPUs in Fugaku. Moreover, with future projects

12 C. Gavoille

1. Context of High Performance Computing

Architecture Number System Share Performance Share
x86 483 96.4% 82%

Power 7 1.4% 5.9%
Arm 6 1.2% 9.8%

Others 5 1% 2.3%

Table 1.1: Share of CPU architectures of the June 2023 Top 500 machines

relying on this Arm Neoverse roadmap [5] such as the European Processor Initia-
tive (EPI) or NVIDIA Grace, the performance share of Arm in HPC will not be
an accomplishment of a single machine.

Hence, optimization and exploration efforts in this environment are essential
with the future Arm HPC machines in mind. Furthermore, the position of Arm
and its architecture is particular because of the liberty allowed on the architecture
design possibilities. Indeed, because Arm is only selling Intellectual Property and
not a constructed CPU, several design choices depend on the constructor according
to his or future clients’ needs.

Hence, Arm HPC machine constructors aim to direct their design choices with
the HPC users’ workloads in mind. Then, it is vital to understand how a workload
interacts with hardware and its characteristics to make the best choices according
to its performance needs. The next chapter focuses on how a workload seen as an
instruction flow interacts with the hardware architecture and how these interac-
tions impact the intra-node performance of HPC applications.

A performance projection approach for design-space exploration on Arm HPC
environment

13

1.2. HPC supercomputers landscape

14 C. Gavoille

Chapter 2

Hardware architecture impact on
performance

This chapter focuses on the hardware features that affect the node performance
analyzed in the prediction model developed during this thesis. To understand to-
day’s processor performance, we first need to describe the basics of the functioning
of a computer. The processor sees an application as a sequences of instructions to
execute. And the smallest unit of a processor that can execute such instructions
sequentially is the core.

2.1 Functioning of a core
Every action of today’s computers depends on the sequence of instructions they
receive. To process this instruction flow, they rely on the Von Neumann architec-
ture.

2.1.1 The Von Neumann architecture

Following this concept proposed by John Von Neumann in 1945, a computer system
consists of four components summarized in Figure 2.1:

• The Arithmetic and Logic Unit (ALU): it is responsible for executing
instructions and performing computations;

• The Control Unit: it manages the instruction flow, decodes them, and
ensures they are executed in the correct sequence by the ALU. It forms the
Central Processing Unit (CPU) with the ALU;

• The Memory Unit: it is where both data and instructions needed by the
processor are stored;

15

2.1. Functioning of a core

• And the Input/Output (I/O): it enables communications with external
devices such as peripherals or storage such as network or hard disk.

Figure 2.1: The four components of Von Neumann Architecture - Source : [21]

The usage of all these components is vital to take into account for a computer
to reach high performance as one of these components lagging would cause a
performance bottleneck that would reduce the speed of every other component.
During the execution of a HPC application, all these components interact with
each other to execute the many instructions per second. And a high instruction
processing speed translates to a high performance of applications.

One way to increase this speed is to increase the processor frequency. As
presented in Figure 2.2, this is one of the choices made by constructors over time.
But, since 2000, CPU frequency has stagnated around 2 GHz because of power
consumption and efficiency constraints.

2.1.2 The instruction pipeline

However, the processors’ instruction processing speed has not stagnated since 2000.
Hence, it is the introduction of new techniques that caused this increase. One
such technique is the instruction pipeline. An instruction pipeline works similarly
to a montage line in a factory. The processing of an instruction is divided into
several steps with the processor issuing one step of the pipeline per cycle. When
used efficiently, it allows for a faster throughput of instructions than an in-order
execution of the instruction flow.

16 C. Gavoille

2. Hardware architecture impact on performance

Figure 2.2: CPU frequency scaling over time extracted from Stanford CPU DB
Source : [42]

A simple example is the 4-stage pipeline presented on the left of Figure 2.3.
It issues each instruction in four steps: the fetching, the decoding, the execution,
and the write-back. It would need 4× 4 = 16 cycles to complete four instructions
without pipelining. Whereas, with the correct use of the instruction pipeline, it
needs only 9 cycles.

In this example, if each instruction issued is equal to 1 floating-point operation,
the performance of the pipelined flow is 0.44 floating-point operations per cycle,
whereas it is 0.25 floating-point operations per cycle with an in-order execution.
Hence, the use of the pipeline allows to gain performance. But, because of the
dependency between instructions, it can hinder the usage of a pipeline with the
apparition of a "pipeline bubble". On the right side of Figure 2.3, a bubble ap-
pears because the purple instruction execution needs the completion of the green
instruction. This wait causes a "stall" in the pipeline leading to an execution of
the instruction flow in 10 cycles instead of 9.

Then, the instruction flow has to adapt to these dependencies to use the pipeline
to its maximum efficiency. The execution of other independent instruction can
cover this stall caused by instruction dependency. Today, processors are out-of-
order as they do not necessarily execute instructions in the same order they receive

A performance projection approach for design-space exploration on Arm HPC
environment

17

2.2. Impact of SIMD and FMA on performance

Waiting
instructions

Stage 1: Fetch

Stage 2: Decode

Stage 3: Execute

Stage 4: Write-back

Pi
p

e
lin

e

Completed
instructions

0 1 2 3 4 5 6 7 8

Clock cycle

Waiting
Instructions

Stage 1: Fetch

Stage 2: Decode

Stage 3: Execute

Stage 4: Write-back

P
IP

E
LI

N
E

Completed
Instructions

0 1 2 3 4 5 6 7 8

Clock Cycle
9

Figure 2.3: Generic 4-stage instruction pipeline without a bubble (left) and with
a bubble(right) - Source : [20]

the instructions. They let the instructions wait in a Reordering Buffer (ROB)
and issue them in their respective pipeline according to a protocol to resolve their
dependencies or independencies. Moreover, with more than one pipeline in today’s
CPU, they are more proficient in executing many instructions in parallel to cover
stalls thanks to this Instruction-Level Parallelism (ILP). The readers can refer to
[23] for more information on these protocols and the ILP optimization methods as
this is not a focus of this work.

In HPC, the metric for performance application is the FLOPS or floating-point
operations per second. It means that only instructions issuing floating-point oper-
ations such as fmadd or fsub in Aarch64 [6] are considered useful. Hence, with this
focus on floating-point performance, an efficient usage of the pipelines is trans-
lated into more floating-point instructions executed per second. The components
of the core that executes these floating-point instructions are the Floating-Point
Units or FPUs. Then, a core achieves high performance when its FPUs execute
floating-point operations on the most data per second. And Single Instruction
Multiple Data (SIMD) and Fused Multiply Add (FMA) instructions have been
implemented in today’s CPU to increase the computing speed of FPUs.

2.2 Impact of SIMD and FMA on performance

Taking the Arm Neoverse V1 architecture [4] as a reference, its FPU can compute
one floating-point addition or multiplication in 2 cycles. One core has four FPUs

18 C. Gavoille

2. Hardware architecture impact on performance

which means it can issue two floating-point operations per cycle. With a clock
frequency of 2.6 GHz implemented in the AWS Graviton 3 CPU, one of its cores can
attain 2× 2.6 = 5.2 GFLOPS on scalar floating-point addition and multiplication.

We have seen that increasing the processor frequency is not a reliable way
of optimization. Hence, the other possible solution is to increase the number of
floating-point operations per cycle. And this is achieved thanks to the usage of
Fused Multiply-Add (FMA) and Single Instruction Multiple Data (SIMD).

2.2.1 SIMD and FMA description

A FMA is a floating point instruction (fmadd or fmsub for Aarch64) that combines
one multiplication and one addition. Hence, one single FMA instruction counts as
two floating-point operations.

SIMD, in Aarch64, may be summarized as an instruction executed on a vector
register (such as Q0-Q31 registers). A vector register is a fixed-size register that
can contain more than one element. Hence, the number of floating-point operations
of such an instruction depends on the type of floating-point instruction (FMA or
not), the data size, and the hardware vector size. As an example, an addition of
64-bit double-precision floats on a 256-bit vector register counts as 256/64 = 4
FLOPs. Figure 2.4 presents the count of FLOPs of different scalar and vector
instruction.

1 operation

Add/multiply/divide instruction
on a scalar register

FMA

SIMD

2 operations

FMA instruction
on a scalar register

4 operations

FLOPs count of different floating-point instructions on a
machine with vector size of 256 bits on double of 64 bits

Add/multiply/divide instruction
on a vector register

8 operations

FMA instruction
on a scalar register

Figure 2.4: Number of FLOPs issued with different type of floating-point instruc-
tions

2.2.2 Vector ISA in the Arm HPC environment

We focus our study on 2 Arm Instruction Set Architecture (ISA) that implements
SIMD: NEON [3] and Scalable Vector Extension (SVE) [89]. The first technology
uses 128-bit vector registers. Hence, a single instruction can achieve a maximum
number of 4 floating-point operations using double-precision floats (FMA on a
2-element vector). The second technology is a "vector length agnostic" approach

A performance projection approach for design-space exploration on Arm HPC
environment

19

2.3. Memory organization

as this ISA allows for many different vector register sizes. SVE instructions can
process vector registers whose size varies between 128 and 2048 bits (with a step of
128 bits). This particularity opens up design liberties on the hardware vector size
as it is now a choice implemented by the constructor and not dependent on the
architecture. Currently, two machines implement this ISA with 256-bit vectors on
AWS Graviton 3 or 512-bit vectors on Fujitsu A64FX. Moreover, another charac-
teristic of this ISA is the use of predicates to govern active elements involved in
vector operations, acting as a bitmask. It opens the vectorization on loops with
complex control flow. With the possibility to vectorize more loops than NEON,
SVE can have more impact on performance. As explained before, the performance
gain of SIMD can be linked to vector size. Hence, with a vector length agnostic
approach such as SVE, the choice of vector size becomes an important question
for constructors in the Arm HPC environment.

Consequently, if we take the Arm Neoverse V1 core as a reference, it can execute
FMA instructions on two 256-bit vectors in parallel translating to 16 operations on
64-bit double-precision floats per cycle. Then, the use of SIMD and FMA leads to
a maximum core performance of 16×2.6 = 41.6 GFLOPS on vector floating-point
addition and multiplication. However, to achieve this high number of floating-
point operations per second, CPUs first need to load the data processed by these
instructions in these vector registers. Hence, the data movement is critical to
achieve a high FLOPS count with FMA and SIMD.

2.3 Memory organization

As explained before, the performance of HPC applications is counted in FLOPS
and the usage of SIMD and FMA in today’s CPU increases their floating-point
processing speed. But, as the number of floating-point operations executed on
data per second increases, this quantity of data needed per second also increases.
During the execution of a program, the main memory or Random Access Memory
(RAM) stores these data. Consequently, data needs to be read from memory
and loaded in CPU registers before being processed by floating-point instructions.
Hence, because the CPU makes computations on more data per second, this data
also needs to be loaded in registers faster. As a result, the use of SIMD and FMA
often places a heavier burden on the memory bandwidth of the machines.

Because of the Dynamic RAM (DRAM) technology, reading and writing data
in main memory is slow, both in latency and bandwidth, compared to the processor
speed [37, 79]. This is called the memory wall [81]. Therefore, constructors in-
troduced memory optimization techniques to balance out the need for faster main
memory bandwidth and lower latency.

The main one is the introduction of cache memory. It consists of small, high-

20 C. Gavoille

2. Hardware architecture impact on performance

speed memory closer to the core than the main memory. It acts as a buffer between
the CPU and the main memory. When the CPU loads or stores data, it checks
the cache memory from the lowest (L1) to the highest level (Last Level Cache,
LLC). If it finds the data, it is immediately fetched with a lower latency and faster
bandwidth than from the main memory, issuing a cache hit. If the data is not
stored in the cache, it copies the data from the main memory in cache memory
as a cache line (this cache line can be larger than the data needed), issuing a
cache miss. Finally, if a cache level is full, it chooses a line to evict according to
an eviction protocol. Most known protocols are Least Recently Used (LRU) or
Least Frequently Used (LFU). In the following Figure 2.5, we present the memory
hierarchy of a four-stage memory: 3 cache levels and the main memory.

Core

L1D

L2

LLC

Main Memory

L1I

Data

Data

Instructions

Instructions

Instructions & Data

Instructions & Data

Figure 2.5: Hierarchy of a four stage memory architecture: 3 cache levels and the
main memory with 2 L1s, one for data and one for instructions.

Cache memory uses two proprieties, that depend on the program’s behavior,
of the data processed during a program’s execution:

• Its Spatial Locality: The accessed data are contiguous in memory;

• And its Temporal Locality: The accessed data will be reused later in the
execution.

A performance projection approach for design-space exploration on Arm HPC
environment

21

2.4. Impact of memory on multi-core performance

Hence, because of these proprieties, having small but fast data storage leads
to much fewer memory accesses in the main memory. Reducing the number of
slow memory accesses to the main memory leads to faster bandwidth and lower
latency on memory loads and stores to permit faster computation of FPUs. As
an example, if we consider the effective bandwidth (BWeff) of an application on
a one-level cache machine, we obtain:

BWeff = h ∗BWc + (1− h) ∗BWm (2.1)

with h being the hit ratio in cache memory, BWc its bandwidth and BWm the
main memory bandwidth. If we consider BWc to be ten times faster than BWm,
which is realistic, the application has a 5.5 bandwidth speedup with a cache hit
ratio of only 50%.

In today’s processor, because of the memory wall, it is crucial to make efficient
use of the cache memory for performance. But, making efficient use of cache is
not straightforward [50] as it is transparent even for the processor. This problem
of needing high cache efficiency for the performance of today’s applications is even
further exacerbated by the use of multiple cores in parallel.

2.4 Impact of memory on multi-core performance

We have seen that SIMD, FMA, and multiple FPUs on a core lead to a computing
speed gain. Furthermore, with the cores becoming smaller and smaller in size,
another way to multiply the computing power of a processor is to increase its
cores number. As today’s processors are not single-core, we call them multi-core
processors or even manycore as the number of cores per processor has been rapidly
increasing over the recent years. Figure 2.6 presents the evolution of the number
of cores per socket, and its core and sockets computing speed of the ranked #1
machine of the Top500 over time.

In an ideal scenario of linear scaling, the performance of applications is mul-
tiplied by the number of cores used during their execution. However, multiple
factors can hinder the scalability of HPC applications. One of these main factors
lies in the memory constraints imposed by a computing node. The first constraint
is the main memory and shared cache bandwidth limitation.

This bandwidth limitation is caused by the non-linear scaling of the bandwidth
when increasing the number of cores due to a finite number of memory channels
in memory controllers. As an example, in Figure 2.7, we can see that the maxi-
mum of the total main memory bandwidth is attained at 14 cores on a 64 cores
AWS Graviton 2 node. Then, it reaches a plateau until 64 cores. Similarly, the
bandwidth available per core (Total bandwidth

Number of cores) rapidly decreases.

22 C. Gavoille

2. Hardware architecture impact on performance

Figure 2.6: Maximal computing speed of a core (Rmax/core) and a socket (Rmax/-
socket) and number of cores per socket of Top500 systems

As a result, when the workload’s performance is limited by the data movement,
the application’s scalability on a full node can be hindered. Moreover, applications’
performance relies more on main memory bandwidth as the cache levels are less
effective in multicore execution due to phenomena like false sharing or cache con-
tention. Finally, maintaining cache coherency in most architectures adds to the
burden on the cache and main memory bandwidth of HPC applications running
on multiple cores because most of today’s CPUs ensure that every cached copy
of data has the same value. And ensuring this coherency generates more memory
traffic.

In this work, we will study the impact of some mechanisms implemented in mul-
ticore CPUs to alleviate this bandwidth burden and help the scalability of applica-
tions. These mechanisms are Non-Uniform Memory Access (NUMA) techonology
and shared cache.

2.4.1 NUMA effect on performance

The bandwidth per core is limited when increasing the number of cores, and faster
main memory bandwidth is expensive. Hence, one solution is to increase the
number of memory channels by adding more memory units. However, not every

A performance projection approach for design-space exploration on Arm HPC
environment

23

2.4. Impact of memory on multi-core performance

Figure 2.7: Main memory bandwidth obtained with STREAM iterating over the
number of cores of an AWS Graviton 2 node.

core has direct access to these added memory banks. Cores having direct access
to the same memory bank are in the same NUMA node. Hence, when a core
accesses data in the main memory in another memory bank, the access will be
longer than from its memory bank. This is a NUMA effect.

NUMA effects can impact the latency and bandwidth of memory accesses de-
pending on the memory bank the data is stored in. This technology allows for
higher bandwidth at a node level (because of the higher memory channel count)
translated to higher memory bandwidth per core. However, the developer needs to
be careful of where the data he’s working on is stored as accesses between memory
banks are slow. Hence, a bad thread placement policy can cause a lower memory
bandwidth because of the many accesses between NUMA nodes. Hence, the effi-
cient use of NUMA technology and reduction of NUMA effects rely on the thread
placement policy according to the application’s behavior.

2.4.2 Shared cache impact on performance

Shared caches are cache levels shared between multiple cores. This allows for
faster data movement between cores because they do not have to go through the
main memory to exchange data. Hence, some cores exchange data together faster

24 C. Gavoille

2. Hardware architecture impact on performance

than others leading to a reduction of the communication time. This can lead to
performance gain in communication-bound application as it can be seen in the
Binding 2 on Figure 2.8. However, if many cores access differents data in the
shared cache level as in a memory bandwidth-bound application, it can cause
memory contention as the cache size is limited. This can be seen on the Binding 2
on Figure 2.9. Then, the developers need to be aware of such cache sharing in its
thread placement policy to allow for better cache usage and faster communication.

2.4.3 Topology impact on bandwidth performance

Following both of these effects, it is clear that some cores work together better than
others. As an example, two cores sharing a cache level will communicate faster
than two cores sharing only a NUMA node. They also communicate faster than two
cores on two different NUMA nodes. However, load sharing and communication
depend on the application. In this case, an application with lots of exchange
between cores needs to be bound accordingly to make the best usage of the machine
topology (Binding 2 on Figure 2.8).

NUMA
node 0

Shared L3

Communication-bound
application

NUMA
node 1

Shared L3

Binding 1

Slow
communication

Fast
communication

NUMA
node 0

Shared L3

NUMA
node 1

Shared L3

Binding 2

Used core Unused core

Figure 2.8: Impact of two different placement policies on the performance of an
application limited by communication running on four cores. Communications
between cores in Binding 1 are limited by the Memory Bus bandwidth between
NUMA nodes and can hinder the application’s performance.

On the other hand, an application without communication between its running
cores but a lot of data movement between main memory and core registers, such as
STREAM, will make better usage of all the memory channels if the binded cores
are distributed on different NUMA nodes (Binding 1 on Figure 2.9).

Hence, making the best choice on core binding of a parallel application requires
a deep knowledge of the topology of the underlying machine and the application
behavior for the application to scale efficiently.

A performance projection approach for design-space exploration on Arm HPC
environment

25

2.5. Conclusion

NUMA
node 0

Shared L3

Main memory bandwidth-bound
application

NUMA
node 1

Shared L3

Binding 1

NUMA
node 0

Shared L3

NUMA
node 1

Shared L3

Binding 2

Less memory
contention

More memory
contention

Used core Unused core

Figure 2.9: Impact of two different placement policies on the performance of an
application limited by main memory bandwidth running on four cores. Bandwidth
in Binding 2 is limited by the contention on the NUMA node 0 memory channels
and can hinder the application’s performance.

2.5 Conclusion
To conclude this chapter, we have seen that today’s CPUs use lots of mechanisms to
increase their computing power with SIMD, FMA, and more cores. However, these
mechanisms place a burden on memory bandwidth to move the data fast enough
according to the processing speed. Furthermore, this burden is exacerbated by
the multiplication of the number of cores per processor. Hence, cache memory
and NUMA were implemented to help tackle the memory wall and allow HPC
applications to have better scalability with the number of cores. However, making
efficient use of them requires the supercomputer users to be careful about their
applications’ memory and communication behavior. It requires them to have deep
knowledge of the underlying architecture of the hardware and the application’s
behavior but also to adapt their application to the machine’s evolution. However,
these users often do not have a background in computer science, and keeping
the full HPC applications up to date with the machines’ evolution is long and
tedious. Simplifying these optimization efforts and the portability of applications
on machines is the role of the software stack.

26 C. Gavoille

Chapter 3

Software stack and programming
environment

In this work, we define the software stack as the software abstraction layer used
to help application developers to attain the highest performance on a machine in
a minimal optimization time.

We will focus our study on the choices made by different layers of software
stack impacting the applications’ performance at execution. First, we describe
the possible compilers optimizations on the static binary before execution. Then,
during executions, the choices made by runtimes, programming models and dy-
namic libraries also leads to performance differences. Finally, one non-neglectable
aspect of the software stack is the ability to help developers understanding the
performacne of their application thanks to profinling tools . We will also take a
look at on one model used in performance analysis: the Roofline Model.

3.1 Compiler impact on performance

As seen in the previous chapter, the cores of a CPU see the executing application
as sequences of instructions. Hardware optimizations such as cache usage or use
of SIMD and FMA depend on this sequence of instructions. In this case, directly
optimizing the sequence of instructions expressed by the executed binary is a way
to obtain performance. During compilation, the compiler can directly optimize the
instruction flow. Hence, to understand the choices made by a compiler that lead
to differences in performance, we first must understand the role of a compiler.

The compiler’s role is to transform "human-readable" programming language
into "machine-readable" language contained in an executable binary. Modern
compilers split this translation into three stages: front end, middle end, and back
end.

27

3.1. Compiler impact on performance

Figure 3.1 presents these three stages and the representation of the code given
to each stage:

• Front End: This stage is responsible for the initial processing of the source
code. It performs lexical analysis to convert the code into tokens, syntax
analysis to create a parse tree, and semantic analysis to check for correctness
and generate an Intermediate Representation (IR).

• Middle End: In this stage, the compiler applies various optimization phases
on the generated IR. They aim to improve the efficiency and performance of
the resulting machine code without any knowledge of the target architecture.
This results in an Optimized Intermediate Representation (OIR).

• Back End: The final stage of the compiler is the back end, which takes
the OIR and translates it into the target machine code or assembly lan-
guage. This stage involves mapping the IR to specific processor instructions,
performing architecture-dependent optimizations, and generating the final
executable or object file.

IR OIR

Figure 3.1: The three stages of a compiler from source code (in different languages)
to Machine code (for different architectures) through Intermediate Representation
(IR) and Optimized IR (OIR)

Whether it’s a compiler based on the LLVM (Low-Level Virtual Machine) back-
end or GCC (Gnu Compiler Collection), they all follow this organization. However,
the IR and OIR of the code will be different. During every stage, the compiler needs
to ensure the correctness of the code. While keeping this correctness, it can make
optimization transformations depending on its understanding of the application
and machine behavior. In practice, these optimizations are transparent to the
scientific programmers who typically only choose the optimization’s aggressiveness
level, or which transformations to apply, through the -O flag [92].

One example of such optimizations is the auto-vectorization of loops. If the
developer does not order the compiler to vectorize a loop, he will vectorize it ac-
cording to its expected impact on performance and the optimization level. As
seen before, vectorization of a loop can lead to crucial performance gain if the

28 C. Gavoille

3. Software stack and programming environment

bandwidth is fast enough to sustain it. Hence, whether a loop is automatically
vectorized or not ultimately depends on the heuristics of the compiler if he consid-
ers it a performance gain. And, every compiler has its own heuristics, whether it is
Gnu Compiler (GCC), LLVM-based (clang, armclang, ...), or the Fujitsu Compiler
(FCC). Consequently, on the same loop written in C code, one compiler can choose
to vectorize and the others not to according to its heuristics and knowledge of the
underlying architecture.

Auto-vectorization of loops is an example of one of the many choices the com-
piler makes while translating source code. Any of these choices impact the per-
formance and the machine’s usage efficiency of the compiled binary. Hence, if
the programmer has enough knowledge of the underlying architecture, the best
practice is to direct the compiler’s optimizations thanks to intrinsics.

However, the impact of the software stack on performance does not only rely
on the compilers, as the behavior of an application binary at execution is dy-
namic. Today’s HPC applications often use runtimes through dynamic libraries
for communication, offloading, or even optimization of linear algebra operations,
...

3.2 Programming model and runtime optimization

At execution, the instruction flow of an HPC application does not depend only
on the static instruction flow generated by the compiler. It also depends on the
software stack at execution through calls to libraries, Operating System (OS),
... In this section, we will focus on the impact of parallelization runtimes on
intra-node performance through two programming models: shared and distributed
memory. We will also present different linear algebra libraries and their impact on
performance.

Both of these programming models differ in how they handle parallelism.
Shared memory programming, such as Open Multi-Processing (OpenMP), allows
multiple threads to share a common memory space, making it efficient for commu-
nication and synchronization within a single computing node. Communications
between threads are implicit by directly accessing data of another thread.

On the other hand, distributed memory models like Message Passing Interface
(MPI) involve multiple MPI processes, each with its separate memory. The data
exchanges and synchronization between these processes are made through explicit
communications. Another advantage is that processes can be binded on more than
one core instead of OpenMP threads that only runs on a single logical or physical
core.

Both of these models have pros and cons, but they are usually combined with
OpenMP for intra-node parallelization and MPI for inter-node parallelization. Fig-

A performance projection approach for design-space exploration on Arm HPC
environment

29

3.2. Programming model and runtime optimization

ure 3.2 sums up the functioning of MPI and OpenMP and Figure 3.3 presents the
combination of both.

Cores

Threads

Shared
memory

Cores

Processes

Distributed
memory

Direct
Memory Access

Message
Passing

Implicit
communication

Explicit
communication

OpenMP MPI

Figure 3.2: Functioning of a Shared Memory programming model (OpenMP) and
a Distributed Memory programming model (MPI).

Nevertheless, as we have seen before, with the introduction of NUMA nodes,
it can also be interesting to map the MPI processes to each NUMA region to
explicitly express communications between cores of different NUMA regions.

Hence, the communication behavior of the application depends on the pro-
gramming model used but also on the way it is used. Moreover, the positioning
of processes and threads also relies on the choices made by these parallelization
models and by the topology informations gathered by an underlying software such
as hwloc [30]. As explained before, the positioning and the use of the topology
directly impact the effective bandwidth and the applications’ performance [31, 54].
Their impact on the use of hardware topology is one of the many sources of per-
formance changes brought by the software stack at execution.

Another example is the use of optimized linear algebraic libraries. As many
HPC applications rely on linear algebraic libraries for computation through the
Basic Linear Algebra Subprogram (BLAS) interface implemented in libraries such
as OpenBLAS [96] or Arm Performance Libraries (ArmPL) [25]. Each of these
libraries presents the same interface to the applications but with a different im-
plementation. These different implementations lead to changes in the instruction

30 C. Gavoille

3. Software stack and programming environment

MPI + OpenMP

Cores

Threads

Processes

Implicit
communication

Explicit
communication

Figure 3.3: Combination of MPI and OpenMP to combine the strengths and cover
the weaknesses of each programming models.

flow and, consequently, in observed performance [22].

We have seen that numerous factors impact the performance of HPC applica-
tions. Whether it depends on the underlying architecture or the software stack,
the developer needs to have a deep understanding of both of these aspects to iden-
tify performance bottlenecks in the HPC environment and optimize applications.
Hence, the use of a performance analysis tool is mandatory to identify perfor-
mance bottlenecks, solve them, and, thus, reduce the optimization time of HPC
applications in today’s HPC environment.

A performance projection approach for design-space exploration on Arm HPC
environment

31

3.3. Application performance analysis

3.3 Application performance analysis

Understanding the performance bottlenecks of applications is mandatory to help
developers in optimizing HPC applications. However, as we have seen before,
numerous factors can hinder the performance of an application in the HPC envi-
ronment. Hence, they rely on profiling tools to help them identify performance
bottlenecks. However, developing such software also necessitates a deep under-
standing of the environment. Hence, no generic tool is able to identify all the
possible performance bottlenecks of a specific application running on a particular
hardware with a certain software.

3.3.1 Profiling tools

A wide variety of performance analysis tools, such as Intel VTune [8], analyze
the code execution, revealing time-consuming functions and memory usage pat-
terns to give source code optimization advice. There are also trace-based tools like
NVIDIA Nsight Systems [13] or Tau [88] to capture the code execution flow, aiding
in understanding thread interactions, synchronization, and GPU utilization. Per-
formance analysis in HPC also involves tools like Linux Perf [44] and PAPI [41],
which offer low-level hardware performance counters to understand the hardware
behavior. The uniqueness of each tool lies in its focus, whether on application
code details, software insights, or hardware-specific metrics, enabling developers
to pinpoint the performance bottlenecks of their applications.

In this ecosystem, a wide variety of tools implement the Roofline Model as a
performance analysis tool and visualization, thanks to its simplicity and generality.

3.3.2 The Roofline model as an analysis tool

We have seen that, to reach high performance and a high FLOPS count, the
bandwidth needs to be fast enough to sustain the cores of a processor. This
idea is the main philosophy behind the Roofline Model initially described by S.
Williams et al. [97]. This model characterizes the maximum limitations imposed
by the hardware, whether it is the bandwidth or the peak computing speed of the
machine. The limits imposed by the hardware is the "roofline" shape on Figure 3.4.
This is described by the following equation (3.1):

roofline(OI) = min(Peak Bandwidth×OI,Peak computing speed) (3.1)

Then, it characterizes the application’s behavior according to its Operational
Intensity in FLOP/Byte (OI), or the mean number of floating point operations

32 C. Gavoille

3. Software stack and programming environment

per byte moved. This OI is positioned on the x-axis, allowing us to see if the pro-
cessor’s bandwidth (memory-bound) or computing speed (compute-bound) limits
the application’s performance.

Memory-bound
region

Peak computing
speed

Pe
ak

 B
an

dw
id

th

Compute-bound
region

Figure 3.4: Roofline representation with the performance (in GFLOPS) on the y-
axis and the Operational Intensity (OI) on the x-axis. The black roofline represents
the maximum performance attainable at a certain OI.

Finally, once the application performance is measured and placed on the roofline
chart, it allows for visual analysis of the possible performance limitations [59]. This
visual analysis allows to identify different optimizations patterns according to the
application’s behavior (its OI) and the hardware limitations (the Roofline). On
the one hand, if the application is in the memory-bound zone, the focus should
be on memory patterns optimizations to increase the OI (through better cache
efficiency or data structure changes) and reach the compute-bound zone or the
peak performance allowed by the bandwidth. On the other hand, if the OI is in
the compute-bound zone and not reaching the peak, the focus should be on FMA
and SIMD usage but also on the use of the Instruction-Level Parallelism.

A performance projection approach for design-space exploration on Arm HPC
environment

33

3.4. Conclusion

The first iteration of the Roofline Model, developed by Williams et al. [97],
only used the main memory bandwidth in the roofline and only counted the data
exchanged (loaded or stored) in this memory level in the OI. Today, there are
numerous iterations of this roofline model with tweaks on the OI and rooflines
to describe different possible performance bottlenecks. One such example is the
Cache-Aware Roofline Model (CARM) by Ilic et al. [61] that adds rooflines for
every memory level to be able to add every memory level in the analysis of possible
performance bottlenecks. Another well-used iteration of the roofline model is the
Hierarchical roofline model used in Intel Advisor [63] that defines one OI per
memory level but can also characterize the FMA and vector usage in the peak
computing speed of the hardware. Finally, the Roofline model analysis has also
been used to characterize accelerators performance of GPUs [48] or FPGAs [40].

To conclude, the roofline model and its variants are well-used in the perfor-
mance analysis domain thanks to its simplicity and versatility. However, this
simplicity also comes with a cost, as no generic version of the roofline model can
pinpoint every possible performance bottleneck of today’s HPC applications.

3.4 Conclusion
To conclude, a software abstraction layer is mandatory because of the complexity
of the interactions between the application workflow and the underlying machine,
as HPC users cannot directly write applications in machine language. Whether
through compiler optimizations of the binaries before execution, or by adapting the
application to the underlying hardware through optimizations at executions and
the use of linear algebra libraries, this software stack layer often needs to make
many choices transparent to the user that impact application performance and
machine usage. And the best practice for developers is to direct these choices by
understanding and identifying the performance bottlenecks of application running
on a hardware. However, this requires a deep understanding of the underlying
architecture and its interaction with the particular application flow. The software
stack also comes with performance analysis tools to help applications’ develop-
ers identify performance bottlenecks brought by the interaction between all the
components on current machines.

34 C. Gavoille

The problem

In this part, we have seen that HPC applications rely on complicated workflows.
When running on supercomputers, these workflows interact with complex machine
architectures through a varied software stack that needs to make choices. From
all these interactions, we only see one metric: the performance of this application
or the number of floating-point operations per second. However, identifying the
performance bottlenecks that hinder the machine’s efficiency is long and tedious
work that needs a deep understanding of every interaction in the execution of an
HPC application on an HPC machine. Even if profiling tools and models can
alleviate these efforts, it is a heavy task. Additionally, there is a significant gap
in the lifetime of applications and machines, leading to running one version of
an application on several generations of machines with different hardware and
software stacks.

In this case, one solution is to design machines in a codesign environment where
each actor involved in the conception and usage of future HPC machines shares
its needs and choices in their respective domain. Such a conception environment
would lead to higher performance for the user’s applications and reduce the op-
timization time and costs. Furthermore, the Arm HPC environment is attractive
for such codesign initiatives, opening up many design liberties and possibilities.
Even if each actor involved in the conception and usage of HPC machines is not
knowledgeable in the other’s field, they can discuss a standard metric and goal of
optimization: the performance of their applications.

In this context, using a performance prediction model that can give feedback
on the impact of the design choices of each actor is a great way to open up the
discussion in a codesign environment. Hence, the problem that we will try to solve
in this manuscript is the following:

How can we predict the impact on HPC application performance
made by the choices of each actor involved in the design and usage of
future Arm HPC machines ?

As performance prediction is not a recent problem in CPU design and HPC,
many approaches have been designed over time. The next Chapter 4 presents
an overview of performance prediction methodologies, emphasizing their pros and

35

cons. It also gives insight into what questions could direct the choice of an ap-
proach. A need to clarify the codesign environment emerges from this overview,
leading to the definition of our codesign environment and the solution of relying
on a mechanistic model to predict performance.

Chapter 5 aims to present this first contribution: a performance projection
workflow between a source and target application/software stack/hardware triplet
adapted to our needs, arising from the definition of a codesign environment.

Then, we implement this workflow in Chapter 6 using an adaptation of the
Roofline Model for single-core projection in the Arm HPC environment. This im-
plementation aims to explore the design possibilities of various hardware parame-
ters on a panel of HPC proxy applications with a pool of Arm core architectures.

Finally, our final contribution is the natural extension of the single-projection
approach to a multicore environment on a compute node. This extension relies on
a finer bandwidth characterization and a separate analysis and projection of each
thread. The experiments in this Chapter 7 aim to explore optimization patterns
around application and software stacks targeting a node architecture of interest.

36 C. Gavoille

Chapter 4

State of the art

Performance prediction approaches have been used since the early beginning of
HPC to help optimize applications and direct the design of future machines. Ide-
ally, such a prediction workflow must be generic, precise, and fast. However, as
interactions between machines and applications become increasingly complex, they
constantly evolve. Furthermore, nowadays, there is no fast, generic, and accurate
approach.

Hence, these approaches compromise one of these aspects according to their
usage. We have chosen to split these models into three groups according to the
aspect they want to make a compromise on:

• Cycle-accurate simulators: They simulate a CPU’s executing an appli-
cation cycle-by-cycle. It is the most accurate generic approach, but it is also
the slowest to perform. Hardware designers mostly use it as they require
extreme accuracy to fine-tune the design of cores and processors.

• Application-dependent models: These models focus on specific applica-
tions or benchmark suites, leveraging the understanding of the application’s
characteristics and resource usage patterns. Predictions are based on ob-
served behaviors and performance metrics, and are fast and accurate at the
cost of the genericity of the approach.

• Analytical models: It is the most used approach because of its versatility
and the speed of its generic prediction. The accuracy and speed of execution
of these approaches depend on the time and implementation used to compute
the metrics used by mathematical equations to predict performance.

Figure 4.1 presents an overview of these three approaches with their respective
advantages and limitations. They are presented in more detail later in this chapter,
discussing how these advantages and limitations directed our choice to rely on an
analytical model.

37

4.1. Cycle-by-cycle simulators

Fast

Accurate Generic

Analytical
models

Cycle-
accurate
simula-
tors

Application-
dependent
models

Figure 4.1: Overview of the three different types of approach with the aspect they
choose to focus on

4.1 Cycle-by-cycle simulators

The use of software to replicate the functioning of a processor executing an in-
struction flow is called simulation. It allows researchers, developers, and HPC
constructors to gain valuable insights into their applications’ performance on CPUs
without building a prototype. These workflows allow for accurate instruction flow
prediction at the cost of an important overhead computing time.

One example in the Arm HPC environment is the A64FX simulator developed
by RIKEN and Fujitsu [72]. This simulator is based on the gem5 software [27].

4.1.1 The gem5 simulation tool

It has become a staple in the CPU simulation field with many recent simulators
based on the gem5 software, such as the RIKEN A64FX simulator or Elastic-
SimMATE [83]. Hence, we present some cycle-accurate simulators based on this
open-source software. However, other similar approaches not relying on gem5,
such as Sniper [36], are also used by Heirman et al. for design space exploration
[57].

Like other simulators, gem5 functions by emulating the behavior of a computer
system at various levels of abstraction, from individual hardware components like
processors and memory to the overall system organization. It is used to evaluate
and analyze the performance, power consumption, and other characteristics of new
hardware designs or software optimizations without the need for physical hardware.
Its modularity allows users to configure and customize simulated systems, making

38 C. Gavoille

4. State of the art

it a great tool for exploring the design possibilities of future machines. Some of
its possibilities are:

• Many different CPU models: in-order, out-of-order, ...

• Many possible systems: Arm, x86, RISC-V, SPARC, ...

• A flexible memory hierarchy through event-driven or trace-driven simulation
that allows for multicore simulation

Hence, with the possibility to tweak parameters on all these hardware features,
gem5 simulation opens up numerous design exploration possibilities. However,
such a precise and flexible prediction comes with a cost: a high execution time
overhead.

4.1.2 Overview of gem5-based simulators

With these design possibilities, many simulators use gems5 as a back-end, even
in the Arm HPC environment. All these simulators share a common point: the
accuracy of their predictions with an important overhead.

An example of such a simulator is the one designed by the RIKEN to simulate
a Controller Memory Group (CMG) or a group of 12 cores of a Fujitsu A64FX
processor [72]. Figure 4.2 presents the architecture of an A64FX processor ob-
tained with lstopo. One CMG is a group of 12 cores linked by an L2 cache and a
NUMANode.

With their modification of gem5, they achieve around 80% accuracy on single-
core test kernels before full processor availability. They were also able to model the
STREAM Triad Memory and L2 throughput on up to 12 threads with differences
to the test chip due to the lack of implementation of some functions such as
prefetching. But, their simulator has an execution time that is 10000 times slower
than on the actual machine [72]. In this case, simulating a single 300-second
Quicksilver run on a CMG would take around 35 days, which is not exploitable
for fast design-space exploration.

There are ways of reducing the execution time of such simulators by using
trace-driven simulation in which a first execution collects traces replayed through
gem5 with different architectures.

This is the approach chosen by Nocua et al. in ElasticSimMATE [83] to fasten
the simulation time for multicore systems with trace-driven simulation. Thanks
to the combination of Elastic Traces [65] and SimMATE [34], they speed up the
simulation by at least a factor of 3 compared to full-system simulation of up to
128 cores.

A performance projection approach for design-space exploration on Arm HPC
environment

39

4.2. Application-dependent models

Figure 4.2: Architecture of an A64FX processor obtained with lstopo. There are
4 CMG per processor, with 12 cores and one NUMA node each.

4.1.3 Discussion

Using cycle-accurate simulation would be the best choice to make design choices
based on the most accurate predictions. Nevertheless, we want to make these
design choices based on the behavior of HPC applications represented by proxy
apps. And, the overhead of these approaches limits the possibility of studying
many parameters by running many iterations of the simulations on complete proxy
applications. Even with execution time optimization with approaches such as
trace-driven simulation, the overhead is still important. Hence, relying only on
a simulator to fully predict the behavior of proxy applications on a full machine
node would limit the possibility of exploring the design-space.

4.2 Application-dependent models

We can group HPC applications into families with similar behaviors. Hence, with
a deep knowledge of the application behavior, it is possible to use these similarities
to predict their performance and scaling through various architectures. With such
a modelization, it is possible to have a fast performance prediction approach tai-
lored to rapidly explore a vast hardware and software design-space with the target
application.

40 C. Gavoille

4. State of the art

4.2.1 Hydrodynamics application models

Computer simulations of various science and engineering problems require model-
ing hydrodynamics. Many laboratories rely on these types of applications, such as
the Lawrence Livermore National Laboratories (LLNL) with Ale3D [82] and Hy-
dra [75], or the Los Alamos National Laboratory (LANL) with SAGE [70]. Hence,
making design choices for HPC machines according to the needs of this family of
applications is of interest to HPC users.

It is the objective of Davis et al. in their modelization of an Atomic Weapons
Establishment (AWE) hydrodynamic benchmark scaling behavior on large clus-
ters [43]. This benchmark, named Hydra, is a different code from LLNL’s Hydra
but model similar hydrodynamics phenomena. They use their knowledge of the
application to split each iteration of Hydra into 3 phases: local computation, near-
neighbor communication, and collective communication. Then, they use analytical
modelization of the first two steps and a machine-specific modelization of collective
communications through micro-benchmarks to compute the wall execution time
of Hydra with any input size.

Thanks to this approach, they predict the weak scaling of the application with
different mesh sizes up to 2048 cores at an 85% accuracy. They are also able to
project this prediction up to 8192 cores. Finally, they project the execution time
with increased core density (more cores per node) with the source machine core
architecture.

These results show what a Hydra user can expect from the evolution of per-
formance on more nodes and cores without running the application on a high
node count. It also assesses component costs’ impact on performance, including
computation, point-to-point communications, and collectives.

4.2.2 Discussion

Using application-dependent models would lead to precise prediction and allow
the possibility of rapidly exploring the design-space around the modelized applica-
tions. However, there are various families of applications in our pool of applications
of interest presented in Section 1.1 that we include in our studies. For example,
LULESH and Quicksilver both represent very different behavior of applications,
with one representing hydrodynamics-solving applications and the other modeliz-
ing particle transport with a Monte-Carlo simulation. In this case, we need to
develop and validate a model for each family of applications. Furthermore, it
would limit the possibility of exploring parameters around new families of appli-
cations because it would require a new model. Hence, the genericity of our model
is a crucial characteristics of the model we need to enable codesign around the
different HPC applications of interest modelized by the proxy apps presented in

A performance projection approach for design-space exploration on Arm HPC
environment

41

4.3. Analytical models

Section 1.1.

4.3 Analytical models

In this manuscript, we call analytical models the performance prediction ap-
proaches that use generic equations and metrics in order to get a prediction of
the target application performance on a machine. We split these analytical mod-
els into statistical, learning-based, and mechanistic approaches.

• Statistical approaches: They regroup all models using observations runs
on a machine to feed a statistical model used to predict performance;

• Learning-based methods: All the methods using "black-box" learning-
based model such as machine learning or neural network on a wide dataset
of benchmarks and machines;

• Mechanistic models: They regroup all models using the characterization
of the workload, with or without profiling with metrics, to assess performance
on a machine.

4.3.1 Statistical approaches

We consider a prediction model using a statistical approach if they automatically
derive an equation of the application’s performance through a small number of
runs. These approaches use regressions to define algebraic expressions with con-
stants, variables, and operators. More information on the mathematics used in
these models can be found in [56].

Historically, these models were used on single-core processors to evaluate the
effects of pipeline and ILP through linear regression [84, 51]. Even if this approach
has been adapted to superscalar processors by Karkhanis et al. [69] and single-core
performance is still important even in parallel applications, nowadays processors
have multiple cores.

Furthermore, as the behavior of multicore processors is nonlinear (because of
cache effects, bandwidth limitations, ...), using a linear regression approach is not
doable in this case. Moreover, solving these nonlinear systems is a mathematically
complex task. Some of these approaches rely on iterative methods such as stepwise
regressions to [68], whereas others rely on polynomial approximations [76].

The common point in all of these approaches is that they use varying observa-
tions as reference points to derive an equation. This function depends on a fixed
number of design parameters to describe the performance. Furthermore, once this

42 C. Gavoille

4. State of the art

equation is defined and accurate enough for an application, the explorations of the
design-space through parameters impact on performance is fast.

However, they need to rely on simulation or prototypes to obtain these ref-
erence points. Moreover, the number of parameters that impact an application’s
performance increases as the machine becomes more and more complex, leaving
some of these models obsolete for computing applications’ performance. Further-
more, developing a new model that considers these parameters will use even more
complex equations.

Following this trend, the use of methods relying on learning has increased to
speed up and allow the exploration of a more complex design space.

4.3.2 Learning-based methods

As machines become more and more complex, performance prediction using learning-
based approaches has taken over traditional statistical generic approaches to deal
with the non-linear behavior of applications’ performance.

We call learning-based approaches the "black-box" approaches consisting of
training a model on a vast dataset. There are many approaches in learning-based
methods as some rely on Neural Network [64], others on Random Forest [91] or
supervised learning [100, 99].

As with every learning-based method, they consist of two phases: a training and
a test phase. The validity and accuracy of these approaches are highly dependent
on the choice of the training set. A good training set should follow the following
properties:

• It should cover the whole application space of interest;

• Every workload should be representative of the applications of interest;

• It needs to have a large number of instances to avoid overfitting.

In [99], Zheng et al. have chosen 157 programs of the many solutions to
the problems of the ACM-International Collegiate Programming Contest (ACM-
ICPC) [60] to cover many different applications.

After the training phase, the testing phase validates the predictions made by the
trained model. These models show a high accuracy on the testing set on various
architectures (around 90% for [99]) with a much faster speed than a reference
cycle-accurate simulator. These characteristics are ideal for a fast exploration of
the design-space.

However, as we said before, these approaches’ accuracy and exploration possi-
bilities highly depend on the training set. Hence, the most challenging part and
longest part of these methods lies in acquiring this training set on the prototypes
or simulators of the hardware of interest.

A performance projection approach for design-space exploration on Arm HPC
environment

43

4.3. Analytical models

4.3.3 Mechanistic models

Mechanistic models rely on application profiling to compute metrics to represent
its behavior. The accuracy and speed of these models rely on the chosen metrics
and the way to obtain them. With these metrics, it extrapolates the application
performance on a target machine.

A straightforward example of such a model is the following equation (4.1) to
compute the execution time of a program [71]. It sees it as a set of basic blocks of
fixed execution time (TBB) connected by an execution path with a set execution
frequency (FBB) of each basic block. In this case, the total time is equal to :

Tprogram =
i=n∑
i=1

(TBBi
× FBBi

) (4.1)

A single execution and profiling allows one to obtain the frequency and exe-
cution time of each basic block. This model is not accurate anymore as today’s
processors are not in-order, and the execution time of basic blocks can vary due
to pipelining and cache effects.

With today’s complex interactions between machines and applications, it needs
to make simplifications and hypotheses in this performance extrapolation ac-
cording to the application’s metrics. One such simplification is the hardware-
independent representation of the application used by Jongerius et al. in [67, 66].

With this approach, they use an architecture-independent LLVM Intermediate
Representation to represent the application and analyze its behavior with a ma-
chine of fixed parameters. This analysis results in an Instruction Per Cycle (IPC)
metric to estimate performance. As the focus of this model is to help hardware
constructors explore a large design space at the early stage of system design, they
neglect architecture-focused software optimization to simplify the extrapolation.
This choice leads to prediction error up to 50% but with a high enough correlation
with observed performance to enable a first exploration of a large design-space.

Hence, to use such a mechanistic model, the first step is to define its usage and
use environment. Such a model cannot make predictions as accurate as simula-
tions or application-dependent models. However, it can allow for fast and accurate
enough generic prediction if it is used to explore the parameters it has been de-
signed for.

4.3.4 Discussion

If we want to rapidly explore a vast design-space on various applications, relying
on analytical models to predict performance is a good candidate. However, we
have split many possible approaches into three groups: the statistical approaches,

44 C. Gavoille

4. State of the art

the learning-based methods, and the mechanistic models. Statistical and learning-
based approaches are usually easier to implement with fast prediction and good
accuracy, but they require a good amount of data available for their training.
Hence, without access to many data, relying on a mechanistic model is the best
choice. In this case, the first step to choosing an approach is to define the usage of
the prediction approach and the environment it will be used in. These models need
to make assumptions or simplifications because the interaction between today’s
applications and machines is too complex to model mathematically.

4.4 Conclusion
To conclude this chapter, there are many possible approaches to predict the per-
formance of HPC applications in the Arm environment. However, there is no fast,
accurate, and generic approach. Hence, we need to choose one approach accord-
ing to how it will be used for design-space exploration. The following Figure 4.3
sums up what characteristics of the approach would direct the choice of a specific
approach to enable design-space exploration in a codesign environment.

With these directions, as we want to explore a large design-space with a vast
pool of applications, a good solution is to use analytical models. Moreover, because
Arm is a recent actor in the HPC environment, we cannot rely on statistical
or learning-based methods as we cannot gather enough data in the design-space
to train such models. Then, the most appropriate solution would be to use a
mechanistic model to predict performance. To design such a model, we first need
to define its usage and the codesign environment it will be used in to best design
such a model. It is the aim of the first chapter of our contribution.

A performance projection approach for design-space exploration on Arm HPC
environment

45

4.4. Conclusion

Need to explore
a large design-space

Have a large
application pool ?

Application-dependent
models

Have access to a
large amount of data ?

Very large ?

Statistical
 methods

Learning-based
methods

Mechanistics
models

Cycle-accurate
simulators

Yes

No

Yes

No

Yes

No

Yes

No

Figure 4.3: Directions to choose a prediction approach for design-space exploration

46 C. Gavoille

Part II

Contributions

47

Chapter 5

Setup of the performance projection
methodology through codesign
environment definition

This work aims to propose a performance prediction approach to enable code-
sign initiatives on future Arm processors. The performance of HPC applications
depends on many factors. With so many factors from different fields interven-
ing in the performance of applications, it is essential to define the aspects where
each actor of a codesign environment can give feedback and make design choices.
Moreover, as a mechanistic approach is a reliable solution to our needs, this further
increases the need to define our environment.

5.1 Codesign environment definition

As the expertise domains of the actors of the HPC environment vary, it is essential
to assess each aspect that can impact performance. Following this need, we have
chosen to define the aspects of different impacts on performance in 3 aspects:

• Application: Source code, Numerical schemes, data structures, ...

• Software stack: Compilers, libraries, runtimes, ...

• Hardware: Memory hierarchy, use of SIMD/FMA, Instruction-Level Par-
allelism (ILP), ...

The interaction of all these aspects defines the performance of an HPC appli-
cation (see Figure 5.1). Moreover, the actors intervening in the design and usage
of HPC supercomputers can all be linked to one of these aspects: researchers

49

5.2. Characteristics of our performance prediction approach

and users develop an application that runs on hardware designed by constructors
thanks to a software stack developed by software engineers. Therefore, each of
these actors has a different background and expertise fields.

Scientists run
applications

on a machine

Software engineer
design the abstraction layer for

performance portability

Hardware constructors
 build the machine

Figure 5.1: Schema of the triplet of aspects interacting between each other to
deliver a performance on an available machine. Information about their interaction
is available through profiling in this example.

In the case of performance optimization on a current machine, working on these
three aspects of performance is often a tedious task that is simplified by profiling
tools. However, in a codesign environment, the hardware characteristics are not
yet defined as the future hardware is not yet accessible (see Figure 5.2). Hence,
the impact of the interactions between the application and software stack with the
hardware on performance is not measurable with profiling tools.

One solution could be to design a prototype for each set of hardware parameters
of interest, as it would be the most accurate solution and allow the use of profiling
tools to understand the interaction that intervenes in the target triplet. However,
there are more time and cost-efficient solutions for the early design stages. Hence,
the possibility of exploring the design-space thanks to performance prediction is a
key component to enable codesign.

5.2 Characteristics of our performance prediction
approach

With the previous definition of our codesign environment splitting the parameters
impact the performance of HPC applications on machines in 3 groups, we need to

50 C. Gavoille

5. Setup of the performance projection methodology through codesign
environment definition

Application

Software
stack

Hardware

Interaction

Interaction ?

Interaction ?

Performance ?

Figure 5.2: Schema of the triplet of aspects interacting between each other to
deliver a performance on a future machine. In this case, information on the inter-
action between hardware and the two other aspects is not easily available, leading
to an unknown performance.

rely on a performance prediction model with the following characteristics to open
up design-space exploration and codesign :

• Fast to rapidly explore the design-space and the different values of the pa-
rameters of interest with representative applications;

• Generic to be able to cover a good margin of the HPC workload through
many different applications;

• Insightful on the impact of design choices of each aspect on performance
and their interaction.

Because of the many parameters to explore in all aspects with many differ-
ent applications, relying on an application-dependent approach or cycle-accurate
simulation does not seem like the most appropriate solution. Furthermore, with
the small pool of Arm HPC or servers CPU available, relying on "black-box" ap-
proaches such as learning-based or statistical methods would be limited. The small
amount of data available would hinder their accuracy and capacity to explore the
design-space. Moreover, in our environment, relying on an approach that allows us
to understand the impact on the performance of the interaction between all three
aspects is essential. In this case, relying on mechanistic performance modeling is
the best approach according to our definition of the codesign environment.

A performance projection approach for design-space exploration on Arm HPC
environment

51

5.3. Choice of a performance projection approach

5.3 Choice of a performance projection approach
In our vision of codesign, we have split the parameters that impact applications’
performance into three groups and chosen to rely on a mechanistic approach for
performance prediction. As such, we need to be able to study and explore the
parameters of all of these aspects independently. Moreover, we need to isolate how
a parameter change impacts the performance.

In this case, relying on a hardware-independent model such as Jongerius et
al. [67, 66] would limit the possibility of studying the impact of software stack
targeting a specific architecture. It is further motivated by the fact that the Arm
HPC environment is still recent, and the software stack choices have an important
impact on the performance of applications. One example is the significant impact
on the performance of the compiler choice when targeting the Fujitsu A64FX pro-
cessor [49]. Furthermore, the prediction approach of Van Den Steen et al. [45, 95]
extending the Interval Model of Eyerman et al. [52] is too focused on hardware
exploration to open the possibility of application and software parameters explo-
ration.

As the complexity of the interaction between machines and applications in-
creases, mathematical performance estimation is becoming more and more difficult
in these models. More and more phenomena need to be estimated to compute an
accurate prediction, such as bandwidth limitations or load balancing.

In order to alleviate this need to model every phenomenon, we have chosen to
rely on a performance projection approach (see Figure 5.3) using a source applica-
tion/software stack/hardware triplet to estimate the behavior of a target triplet.

5.4 The performance projection workflow
The idea of such an approach is to measure performance on a source triplet, ana-
lyze the impact of the different aspects interactions, and project the performance
on a target triplet according to the differences between this source triplet and
the target triplet. Then, the objective is to model how the differences between
source and target triplet characteristics impact the performance. With this idea
of performance projection, we split its workflow into three steps:

• Characterization: Obtain metrics that represent the impact of all three
aspects of performance on both source and target triplet. As the target
machine may be inaccessible, metrics representing its hardware aspect can
be either extrapolated, computed, or given by the constructor. However,
metrics modeling applications and software stack impact can be obtained
through cross-compilation, emulation, or simulation, depending on the pre-
cision needed.

52 C. Gavoille

5. Setup of the performance projection methodology through codesign
environment definition

Software
stack

Hardware

Application

Software
stack

Hardware

Projection

Projection

Figure 5.3: Projection approach between an accessible source and a future target
triplet.

• Source triplet analysis: Use the source triplet metrics and access to the
machine to get performance and analyze the impact of the interactions be-
tween aspect that leads to this performance.

• Target triplet projection: Model the evolution of performance on the
target triplet according to the evolution of the metrics on all aspects and the
measured impact on the source triplet performance.

The detailed workflow is described in Figure 6.1. The Characterization con-
sists of two parts: the source hardware, application, and software stack characteri-
zation and the target hardware, application, and software stack analysis. The goal
of the first part is to measure the impact of the parameters of all three aspects
of the source triplet. We consider the source application and the source software
stack together as we cannot neglect the impact of this software stack in our pro-
jection. This characterization can be done through static or online analysis. We
also characterize how they interact with the source hardware. Then, the hardware
characterization objective is to gather representative metrics through benchmark-
ing or precise characteristics description. Thanks to execution on the accessible

A performance projection approach for design-space exploration on Arm HPC
environment

53

5.5. Conclusion

source machine, we use these gathered metrics in a performance analysis model for
Source triplet performance analysis to measure the impact of the parameters
of each aspect on the application’s performance running on the source machine.

The results of this analysis are then used with the second part, the target
triplet characterization, to project the performance. The objective of the target
triplet characterization is to gather the same metrics as the source triplet char-
acterization. Consequently, the application and software stack characterization
also rely on static or online analysis but would require emulating a non-native set
of instructions. As it is inaccessible, the target hardware characterization relies
on extrapolation or data given by the constructors. Finally, the last step is to
project the performance of the target application with its target software stack on
a hypothetical or inaccessible target hardware thanks to a Projection model.
This model uses the differences between metrics obtained with the source and
target characterization but also their measured impact on the application’s perfor-
mance. In this performance projection workflow, its execution time overhead and
the prediction accuracy depend on the metrics needed in the analysis and projec-
tion model, the way to obtain them, but also on the distance in the design-space
between the source and target triplet.

In our model (in Chapter 6) and its multicore extension (presented in Chapter
7), we look at how the maximum performance boundary changes according to the
differences between source and target triplet and make projections according to this
evolution of the limitations while expecting a similar behavior on non-modelized
interaction. It means that we also project the impact on the performance of the
non-modeled phenomena from the source triplet to the target one. In this case, the
exploration of these parameters should consider this model’s characteristics and
restrict the parameter exploration to the parameters modelized by the projection
approach.

Once the performance projection is defined and accurate enough, the compari-
son between the projected performance of each value of the parameters of interest
leads to a discussion on the choice and feasibility of the most optimal parameters
in the interest of each actor.

5.5 Conclusion

In this chapter, we have defined the codesign environment in which our perfor-
mance prediction approach is used. It showed that relying on a mechanistic for
fast exploration with the possibility to assess the impact of the software stack on
performance seems like a good solution for prediction. We have chosen to use a pro-
jection methodology from a source application/Software stack/Hardware triplet to
a target triplet of interest. Finally, using the approach to compare the evolution of

54 C. Gavoille

5. Setup of the performance projection methodology through codesign
environment definition

Source
application

Execution on
Source triplet

Source
software stack

Source
performance

analysis
model

Source
Application

and
Software stack
characterization

Target
Application

and
Software stack
characterization

Source
Hardware

characterization

Target
Hardware

characterization

Projection
Model

Target
application

Target
projected

performance

Target
software stack

Figure 5.4: Detailed overview of our performance projection workflow.

the predicted performance with the evolution of the targeted hardware, software, or
application parameter is a natural way to assess the most optimal design choices
between parameter values. The next step is to define the performance analysis
method and the projection approach focused on our parameters of interest.

We have chosen to focus our codesign environment and exploration on the per-
formance of applications. This focus has driven our choices and studies presented
in the following chapters. However, this may not be the central question for every
actor involved in HPC, as power consumption of applications is also an important
matter. With the introduction of Green500 [7] in June 2013, there is no denying
that the power consumption of today’s applications and machines is not one of
the main focuses of the HPC today and in the future. Nevertheless, the solutions
to these problems are not orthogonal as an HPC machine designed for its user’s
application workload also translates to better machine usage efficiency and fewer
power losses during application execution. Moreover, optimizing a machine for its
users’ application needs is at the core of our codesign idea.

A performance projection approach for design-space exploration on Arm HPC
environment

55

5.5. Conclusion

56 C. Gavoille

Chapter 6

Exploration of hardware parameters
impact on HPC applications
single-core performance

In the previous chapter, we have defined a codesign environment to use our projec-
tion model. We have also proposed a three-stage workflow adapted to our needs.
This chapter aims to implement this workflow to explore hardware parameters
around single-core performance. This exploration is motivated by the fact that,
even if today’s applications are multicore, the single-core performance of HPC
applications is still vital. We often use Amdahl’s law [24] to describe multicore
scaling limitations of applications by sequential execution time. One way to en-
hance parallel applications’ scalability is to reduce their sequential execution time.
Hence, the single core performance of an application is still vital to help scale it
on a full node. High single-core performance relies on efficient hardware usage as
there is no communication.

To perform this single-core hardware parameters exploration, we first must
define the projection approach between a source and a target application /hard-
ware /software triplet. We have chosen to use a projection approach relying on a
roofline representation of performance.

6.1 Single-core projection model

The projection workflow’s core idea is to analyze the performance of a source
triplet and use it to obtain a projected performance on the target triplet.

In performance analysis, the Roofline model, initially theorized by S. Williams
et al. [97], is a well-known representation of an application’s performance according
to the hardware limitations. There are two crucial parts to such an analysis: the

57

6.1. Single-core projection model

roofline, representing the hardware’s limitations in GFLOPS, and the Operational
Intensity (OI), defining the application’s behavior in FLOP/Byte. We also add a
software characterization that impacts both of these values. Finally, we use this
roofline analysis to perform projection after characterizing the target triplet.

Hence, the first step of our workflow is the characterization of both triplets.
Figure 6.1 presents an overview of the differents step of the single-core roofline
projection workflow. It is the same workflow as we have defined in the previous
chapter. Hence, the first step is the Characterization. And we split this charac-
terization stage into two parts: Hardware Characterization and Application
and Software stack Characterization.

Source code

Source software
stack

Source binary

Target binary

Instruction
and

cache
analysis

Source benchmarks
(STREAM + HPL)

Target benchmarks
 (STREAM + HPL)

Roofline
analysis

Roofline
projection

Projected
performanceTarget software

stack

Projection Model
Application and
Software stack

Characterization

Hardware
Characterization

Figure 6.1: Overview of the single-core roofline projection workflow. Target triplet
is in dotted yellow.

6.1.1 Hardware Characterization

In the roofline model, the roofline represents hardware limitations. Consequently,
this roofline should represent an attainable limit in line with what we want to
study. In our roofline, we have chosen to represent these limitations through
benchmarking with STREAM Triad [80] and High-Performance Linpack [85] (Fig-
ure 6.2). They are well-known HPC benchmarks used to characterize bandwidth
(STREAM) and peak compute performance (HPL) of machines 1.

Hence, the first study is to obtain these hardware limitations imposed by the
peak memory bandwidth for every memory level and the core peak sustainable
performance by running the Stream and HPL benchmarks. In the case of a hypo-
thetical or an inaccessible target machine, we consider these values to be given by
the constructor, as they are generic benchmarks, or we can extrapolate them.

Once we have obtained these values, we obtain, for a memory level, the roofline
described by the following equation (6.1) with BWSTREAM [80] the level data band-

1HPL is the benchmark used to rank the most powerful machines in the Top 500

58 C. Gavoille

6. Exploration of hardware parameters impact on HPC applications single-core
performance

Source code

Source software
stack

Source binary

Target binary

Instruction
and

cache
analysis

Source benchmarks
(STREAM + HPL)

Target benchmarks
 (STREAM + HPL)

Roofline
analysis

Roofline
projection

Projected
performanceTarget software

stack

Projection Model
Application and
Software stack

Characterization

Figure 6.2: Hardware characterization through STREAM and HPL benchmarking.
Source machine is in plain blue and target machine is in dotted yellow.

width measured by Stream Triad and PerfHPL the peak sustainable performance
measured with HPL. Figure 6.3 presents the obtained roofline.

roofline(OI) = min [BWSTREAM ×OI,PerfHPL] (6.1)

However, using only HPL performance as a computing speed limit is unrealistic
as our applications often do not have the floating-point instruction mix to reach
that performance peak regarding SIMD and FMA usage. Consequently, we ponder
the compute part of the roofline in the software impact characterization. We obtain
this ponderation thanks to the metrics obtained during application and software
characterization.

6.1.2 Application and software characterization

There are two parts to the application and software characterization: HPL ponder-
ation and Operational Intensity (OI) description. Figure 6.4 presents the workflow
of this analysis.

Because we want to assess the impact of hardware parameters, the source code
of both source and target application stays the same. Hence, we generate two
binaries (source and target) through their dedicated software stack targeting their
respective hardware. Then, we analyze these generated binaries to obtain three
sets of metrics thanks to instruction and cache analysis:

• The total of Floating-point operations processed and Bytes moved
during the execution to compute the application’s OI;

• The total hit ratio of each memory level to generate different OIs for
each memory level;

A performance projection approach for design-space exploration on Arm HPC
environment

59

6.1. Single-core projection model

HPL peak
performance

ST
RE

AM
 T
ria

d
Ba

nd
w
id

th

Stream + HPL roofline

Figure 6.3: Obtained roofline by running STREAM and HPL benchmark.

Source code

Source software
stack

Source binary

Target binary

Instruction
and

cache
analysis

Source benchmarks
(STREAM + HPL)

Target benchmarks
 (STREAM + HPL)

Roofline
analysis

Roofline
projection

Projected
performanceTarget software

stack

Projection Model

Figure 6.4: Software and application analysis. Source triplet is in plain blue and
target triplet is in dotted yellow.

• The total of floating-point instructions to characterize the SIMD and
FMA usage of the instruction mix.

With the last metric, we have chosen to weigh the HPL peak sustainable perfor-

60 C. Gavoille

6. Exploration of hardware parameters impact on HPC applications single-core
performance

mance of a single core following the equation (6.2). It is similar to the ponderation
used by Marques et al. in their extension of the Cache-Aware Roofline Model [78].

In this equation, we compare the application floating-point operations per in-
struction to the maximum attainable on the machine, represented by FMA instruc-
tions on full vectors. With such a ponderation, the compute part of the roofline
now represents the maximum sustainable performance for our application instruc-
tion mix and not the maximum attainable only by applications with a similar
instruction mix to the HPL.

PerfHPLponderated =
PerfHPL

2× vector size
datasize

× Nfloating point operations

Nfloating point instructions
(6.2)

Now that we have a hardware limitation ponderated by the software and ap-
plication analysis, we need to place the application on the x-axis of the roofline
chart according to its OI. We want to consider the possible impact of every mem-
ory level, as we cannot assert which memory level limits the performance for our
projection purpose. Hence, we have considered many OIs, one for each memory
level. Then, we define the OI of a memory level with the Bytes that come from
this memory level and higher2.

Hence, in a two cache-level machine, we obtain these three OIs using the equa-
tions (6.3) with Bi the total of bytes accessed in the memory level i.

OIL1 =
Nfloating point operations

BL1 +BL2 +BMain Memory
(6.3)

OIL2 =
Nfloating point operations

BL2 +BMain Memory

OIMain Memory =
Nfloating point operations

BMain Memory

As a note, the OI from the L1 memory level is the same OI defined in the
Cache-Aware Roofline Model of Ilic et al. [61], and the OI of the main memory is
the one used in the Original Roofline Model of Williams et al. [97].

Thanks to this characterization, we now have rooflines representing the limits
of both triplets and the position of the application on the x-axis. The last step is to
use the roofline performance analysis on the source triplet to project performance
on the target triplet.

2This is different to the OIs defined in the Hierarchical Roofline Model (HRM) defined in
Intel Advisor [63] as they only consider the Bytes of the studied memory level

A performance projection approach for design-space exploration on Arm HPC
environment

61

6.1. Single-core projection model

6.1.3 Performance Projection

We perform the projection in 2 phases: performance analysis on the source triplet
and projection on the target triplet according to its OIs and rooflines (see Fig-
ure 6.5).

Source code

Source software
stack

Source binary

Target binary

Instruction
and

cache
analysis

Source benchmarks
(STREAM + HPL)

Target benchmarks
 (STREAM + HPL)

Roofline
analysis

Roofline
projection

Projected
performanceTarget software

stack

Figure 6.5: Projection model in two stages: Roofline analysis and Projection.
Source triplet is in plain blue and target triplet is in dotted yellow.

The projection uses the same idea as Kwack et al. for roofline projection [74]:
it considers the ratio between the performance (Perfsource) (obtained with an exe-
cution) and a source machine roofline at the OIsource (rooflinesource(OIsource)), and
projects this ratio on the target machine using the new OI and the new roofline
(rooflinetarget(OItarget)). Equation (6.4) defines this projection. Thus, depending
on the OI value, the memory-level bandwidth or core peak performance limits the
application’s performance.

Perftarget =
Perfsource

rooflinesource(OIsource)
× rooflinetarget(OItarget) (6.4)

Projection Interval

In eq. (6.4), the source and target OIs and rooflines are not specified. However, we
consider several OIs depending on the memory level to cover the whole memory
hierarchy (from the L1 cache to the memory bank of the other socket (OS) for a
NUMA node). Moreover, we project performance according to the roofline of each
memory level impacting the considered OI. For example, in a two-cache machine,
we use OIL2 for two projections: one according to the L2 roofline and another
with the DRAM roofline. Hence, depending on the OI of a memory level and the
considered roofline, the application is limited by either the considered memory-level
bandwidth or the ponderated peak performance. In the former case, this analysis
results in multiple projected performances (one for each OI/roofline), forming a
projection interval (e.g., by applying (6.4) on each OI). In the latter case, the

62 C. Gavoille

6. Exploration of hardware parameters impact on HPC applications single-core
performance

multiple projections result in the same value as the peak performance does not
depend on the data access pattern and is the same for every OI.

As a conclusion, the Figure 6.6 sums up the following steps of our projection
approach between two-cache machines:

• 1: Roofline characterization thanks to STREAM on every memory level and
HPL values

• 2: HPL ponderation with the instruction mix. In this example, even if the
HPL of target machine is higher, the instruction mix of the target binary
does not use SIMD and FMA to ureach this level.

• 3: Source analysis of a single OI/roofline on the source machine with the
measured source OI and performance. We obtain the Ratio source of effi-
ciency from this analysis.

• 4: Projection of the obtained Ratio source on the OI and roofline of the
target triplet.

• 5: We repeat the projection for every rooflines and OI concerned. In this
example, we project six points because the OIL1 is limited by three rooflines
(L1, L2 and DRAM), the OIL2 is limited by two rooflines (L2 and DRAM),
and the OIDRAM is limited by one roofline (DRAM).

• 6: We gather all the points in a projection interval.

A performance projection approach for design-space exploration on Arm HPC
environment

63

6.1. Single-core projection model

1 Roofline characterization 2 HPL ponderation

3 Source analysis 4 Single-point projection

5 All points projection 6 Interval gathering

Source
ratio

Source
ratio

STR
EAM D

RAM S
ou

rc
e

STR
EAM D

RAM Ta
rg

et

STR
EAM L2

 Ta
rg

et

STR
EAM L1

 Ta
rg

et

STR
EAM L2

 S
ou

rc
e

STR
EAM L1

 S
ou

rc
e

HPL Source

HPL Target

Ponderated HPL Target

Ponderated HPL Source

Figure 6.6: Illustration of the performance projection approach with the different
steps of the projection. All the figures present the OI (FLOP/Bytes) on the x-axis
and the Performance (GFLOPS) on the y-axis.

64 C. Gavoille

6. Exploration of hardware parameters impact on HPC applications single-core
performance

6.1.4 Implementation

As seen in the workflow, there are different analysis steps. All of them may be
performed in parallel as they require different runs. Hardware characterization is
obtained by running Stream and HPL on our source machine and extrapolating it
on the target machine if it is not publicly available.

For the software and application analysis of the binaries, we need to gather two
kinds of metrics:

1. Instruction mix: The number of floating-point instructions, the total num-
ber of accessed bytes, and the number of flops. We rely on the dynamic code
instrumentation with DynamoRIO [32] and ArmIE for SVE emulation [1] to
iterate over the SVE vector lengths.

2. Cache analysis: The total hit ratio of every memory level. In this case, we
rely on the hardware counters of the source machine.

DynamoRIO is a dynamic binary instrumentation framework [33]. It is an
open-source tool that allows users to instrument a binary code at execution. Dy-
namoRIO is able to observe and manipulate every application instruction prior
to its execution with the use of code caching, linking, and trace building. The
control flow of this tool is described in Figure 6.7 with a context switch to split
the binary code cache from the DynamoRIO code. The application code is copied
into two caches: one basic-block cache and a trace cache to keep the application
control flow. While in the code cache, the application code is able to be modified
and analyzed thanks to an instrumentation client using DynamoRIO API.

In our workflow, we use DynamoRIO and ArmIE, the Arm SVE Emulation tool
based on DynamRIO, to run SVE instructions on a machine without native SVE
execution (see Figure 6.8) and count the total number of floating-point operations
and Bytes moved by the application at execution by instrumenting every memory
(load and store) and floating-point instructions.

The strong point of this implementation is the possibility to measure metrics
at execution in order to measure according to an actual execution flow of the
application, contrary to a static analysis. It also opens the possibility to analyze
the impact of runtime libraries.

Now that we have a performance projection approach and its implementation
in the Arm HPC environment, we need to choose an experimental environment of
different source core architectures to validate the approach and explore the impact
of some chosen hardware parameters on single-core performance.

A performance projection approach for design-space exploration on Arm HPC
environment

65

6.1. Single-core projection model

Figure 6.7: DynamoRIO flow chart. The application code is stored in the two
caches separated from the DynamoRIO code by a context switch. Source: [33]

Figure 6.8: ArmIE flow chart. It is an emulation client based on DynamoRIO for
SVE instructions (in orange). When it is not in emulation mode (blue instruc-
tions), it behaves like a normal DynamoRIO client. Source:[2]

6.1.5 Experimental environment

Table 6.1 presents all the core architectures used for validation and hardware
exploration in this chapter. The benchmark valeues are obtained by running the
benchmarks alone on a single-core of the CPU.

We have chosen to use three different Arm cores to experiment with our ap-

66 C. Gavoille

6. Exploration of hardware parameters impact on HPC applications single-core
performance

Core TX2 N1 A64FX
Performance 17.53 18.22 56.71
(GFLOPS)

MM bandwidth 25.43 21.14 65.52
(GB/s)

L1 bandwidth 36.17 60.86 178.2
(GB/s)

L2 bandwidth 29.62 45.14 85.49
(GB/s)

ISA NEON NEON SVE
Vector size 128 bits 128 bits 512 bits

Memory Type DDR4 DDR4 HBM2
g++ 10.3.0

Compiler g++ 10.3.0 g++ 10.3.0 FCC 4.6.3
(clang mode)

Flags -O3 -ffast-math -O3 -ffast-math -O3 -ffast-math
-mcpu=thunderx2t99 -mcpu=neoverse-n1 mcpu=a64fx

Table 6.1: Single-core characteristics of our 3 source cores architecture.

proach: a single-core of Marvell ThunderX2 (TX2), Arm Neoverse N1 (N1), and
Fujitsu A64FX (A64FX). Table 6.1 summarizes their characteristics and the re-
sults of HPL and STREAM single-core benchmarks running alone on a full node
we obtained. These three architectures cover different parts of the Arm HPC en-
vironment, from the server market (N1 and TX2 processors) to the HPC focus
(Fujitsu A64FX). With HBM2 and longer SIMD vectors than N1 and TX2, the
performance of an A64FX core is much higher when running STREAM and HPL
benchmarks.

6.2 Model validation

The following experiments aim to validate the model on three applications (LULESH,
Quicksilver, and MiniFE) using three architectures (N1, TX2, and A64FX) by en-
suring that the target performance is in the predicted interval obtained by our
workflow when using the same software stack (Gnu Compiler Suite 10.3). We
analyze each application after initialization and before finalization.

A performance projection approach for design-space exploration on Arm HPC
environment

67

6.2. Model validation

6.2.1 Neoverse N1 ←→ Marvell ThunderX2 projection

In this experiment, we project performance between a single core of our clos-
est architectures: Marvell ThunderX2 and Neoverse N1. Then, we compare the
projected performance interval with the performance obtained when running the
application on the target machine. Results on all three applications are presented
in a Roofline chart in Figures 6.9 to 6.14.

LULESH

Figures 6.9 and 6.10 present the projection of LULESH from one machine to
the other. The maximum sustainable performance weighted by the floating-point
instruction mix (corresponding to the dotted rooflines) is higher on TX2 than N1
despite having a lower maximum performance on HPL. The OIs of the L1 memory
level are similar on both machines. Situated in the TX2 memory-bound region,
the differences between the bandwidth and the projections in this region create an
interval not modified by the projections from the OIs of L2 and main memory. This
interval is higher when projecting from TX2 because of the difference in L1 and
L2 cache bandwidth. Because performances on both machines are nearly equal,
we are closer to the TX2 roofline. Hence, we obtain a better ratio, which is then
translated into a higher prediction interval. The interval we predict in both figures
includes the actual performance measured on the target machine, validating our
approach in this application.

MiniFE

Contrary to Lulesh, MiniFE exploits vectorization more efficiently on the two
architectures. Its better vectorization rate leads to a higher maximum performance
of its instruction mix (see Figures 6.11 and 6.12). Moreover, the OI of L1 is in the
memory-bound region of all rooflines on both machines. Once again, the interval
we predict, only affected by the OI of L1, does not change whether we project
from N1 or TX2. However, the N1 performance is higher (1.87 GFLOPS) than
the TX2 performance (1.04 GFLOPS). Despite this difference in performance, our
interval includes the measured performance. Because we are in the memory-bound
region of the L1 and L2 cache levels, we can suppose that the better performance
of MiniFE on N1 may result from the higher bandwidth of these levels.

Quicksilver

Quicksilver is our application with the lowest OI and measured performance on
both machines (Figures 6.13 and 6.14). This low performance results from this

68 C. Gavoille

6. Exploration of hardware parameters impact on HPC applications single-core
performance

Figure 6.9: LULESH -s 100 TX2 → N1 projection results.

application’s poor vectorization rate and FMA usage. It is visible in the maxi-
mum performance attainable by the instruction mix of both binaries. All the OI
deducted from the L1 are in the memory-bound region of all rooflines, while the
OIs derived from other memory levels are in the compute-bound regions. The
prediction interval is obtained because of the OI from L1, which includes the mea-
sured performances. We observe higher performance on N1 (0.5 GFLOPS) than
TX2 (0.4 GFLOPS). This difference in performance may be due to the difference
in cache bandwidth, giving an advantage to the N1 core.

Hence, the measured performance between a core of Neoverse N1 architecture
and a core of ThunderX2 hit the projected interval for all three applications with
different behaviors. As referenced in Table 6.1, these are the cores with the closest
Stream and HPL values as they both use DDR4 and NEON SIMD. However, it is
also interesting to look at the projection between these cores and the A64FX core
as they differ in the benchmarks’ values.

6.2.2 Neoverse N1 and Marvell ThunderX2→ Fujitsu A64FX
projection

Figure 6.15 presents the projection results from N1 and TX2 cores to an A64FX
core with the same input and software stack as the previous validation experiments.

A performance projection approach for design-space exploration on Arm HPC
environment

69

6.2. Model validation

Figure 6.10: LULESH -s 100 N1 → TX2 projection results.

In this case, we over-predict the performance of all applications. The architectural
efficiency of N1 and TX2 does not translate to the one observed on A64FX. As it
is lower on A64FX, this explains the over-prediction.

One explanation of this low architectural efficiency is that we rely on GCC
10.3 and only on the -mcpu flag for architecture-specific optimization. In the case
of A64FX, because of its limited Out-Of-Order resources and the long latency of
floating-point instructions, more compiler optimizations such as software pipelining
and loop fissioning are required for the performance of applications not to be
limited by its micro-architecture [87]. This impact of the differences in Out-Of-
Order resources between our cores is not considered in our projection. Hence, as
we wanted to keep a similar software stack optimization between all cores, these
differences in the need for software optimizations to attain a similar architectural
efficiency led to this over-prediction.

In a mirrored behavior, the projection from A64FX (see Figure 6.16) to N1
and TX2 cores under-predict the performance of all applications.

To conclude these validation efforts, when we apply our model on the most sim-
ilar machine in our machine pool, the prediction interval we obtain always includes
the measured performance of our application. Nevertheless, when projecting per-
formance from N1 and TX2 cores to an A64FX core, we severely over-predict the

70 C. Gavoille

6. Exploration of hardware parameters impact on HPC applications single-core
performance

Figure 6.11: MiniFE -nx 256 -ny 256 -nz 256 TX2 → N1 projection results.

performance as the projection of architectural efficiency is too optimistic on all
three applications. Hence, in the case of significant micro-architecture differences,
such as differences in Out-Of-Order resources, the isoefficiency hypothesis of the
projection is too coarse and misses out on micro-architecture’s substantial impact
on performance. However, as there are no significant micro-architectural changes
between source and target machines in the following exploration experiments, the
results obtained by the projection are valid enough to open discussion.

A performance projection approach for design-space exploration on Arm HPC
environment

71

6.3. Hardware parameters exploration on single-core performance

Figure 6.12: MiniFE -nx 256 -ny 256 -nz 256 N1 → TX2 projection results.

6.3 Hardware parameters exploration on single-core
performance

In these exploration experiments, we use our approach to explore different hard-
ware parameters, but we also study the impact of a software choice on hardware
exploration. We have chosen to explore some of the different vector sizes SVE
allows on all three machines. Hence, we compare the performance projection from
a NEON machine (N1, TX2) to a hypothetical one with SVE with a vector size
of 128, 256, 512, 1024, and 2048 bits. Another parameter we explore is the intro-
duction of HBM2 for both DDR4 machines. Then, we combine these parameters
to compare hypothetical SVE512 + HBM2 machines with A64FX. Finally, we ob-
serve the differences compiler change creates in exploring different vector sizes on
A64FX.

6.3.1 Exploration on SVE vector sizes

One of the challenges in designing future Arm cores is the size imposed by the
hardware on SVE vectors and the impact this choice has on the performance of
the applications. We translate the impact of this parameter in two aspects of

72 C. Gavoille

6. Exploration of hardware parameters impact on HPC applications single-core
performance

Figure 6.13: Quicksilver with CORAL Problem 1 input TX2 → N1 projection
results.

our triplet: the Hardware and the Software Stack. We characterize the hardware
impact with our model by extrapolating how such a change impacts the HPL
performance imposed by hardware and the software stack. We have chosen a simple
linear extrapolation between native and projected HPL values. Furthermore, we
also look into the impact of the vector size change on the software stack aspect
by compiling with an SVE vector-length agnostic flag and changing vector size at
execution with emulation through ArmIE.

Figure 6.17 shows that the impact of the vector size on LULESH depends on
the source machine. When targeting A64FX and TX2 architecture, the binary’s
predicted performance benefits more from the increase in vector size than when
targeting N1. This is because GCC does not vectorize LULESH as much when
targeting N1. Despite having a similar source performance on native N1 and
TX2, this difference in vectorization predicts lower performance on N1 than TX2
with longer SVE vectors. It is also important to note that SVE512 is the native
performance on A64FX, which is not a projection. In the case of LULESH, we
do not observe a performance interval on this machine, as the higher bandwidth
from the HBM2 allows for every OI of each vector size to be in the compute-bound
region.

When doing this exercise on MiniFE (Figure 6.18), we observe a similar behav-

A performance projection approach for design-space exploration on Arm HPC
environment

73

6.3. Hardware parameters exploration on single-core performance

Figure 6.14: Quicksilver with CORAL Problem 1 input N1 → TX2 projection
results.

ior on all machines. A change in vector size impacts all the predicted performances
of our architectures. However, this impact is different for all our architectures.
When comparing TX2 and N1, the predicted interval upper bound of TX2 gains
more performance at each step to reach a maximum of 10.2 GFLOPS.

The behavior of MiniFE when exploring vector size is opposed to Quicksilver
(Figure 6.19). This application does not benefit from the change of vector size
on any architectures. On all architectures, GCC cannot vectorize the application,
meaning they do not benefit from this change in vector size. Hence, there are
better solutions than increasing the vector size if we want to gain performance on
Monte-Carlo applications represented by this proxy app.

6.3.2 Exploration on the introduction of HBM2 on DDR4
machines

Another characterization we make with our approach is to analyze the introduction
of the HBM2 memory of A64FX on N1 and TX2, creating a hypothetical machine
with the same characteristics as our source machine but only the main memory
bandwidth (Hardware aspect) change in our model.

74 C. Gavoille

6. Exploration of hardware parameters impact on HPC applications single-core
performance

Figure 6.15: Model validation from N1 and TX2 to A64FX on LULESH, MiniFE
and Quicksilver

At first glance at Figure 6.22, the memory bandwidth increase does lead to an
increase in projected performance on Quicksilver in opposition to the impact of the
SVE vector length study. Moreover, looking at Figures 6.20 to 6.22, the N1 core
is the one that benefits the most from this change of main memory bandwidth on
all applications. It leads to a higher predicted upper bound on all applications on
N1 despite LULESH having less performance with DDR4 on this machine. This
is likely due to the N1 core having higher cache bandwidth and lower memory
bandwidth than TX2. The memory bandwidth gain is higher for the N1 core,
leading to more performance gain for these applications. We also see that the lower
bound of our predicted interval does not change on both applications compared to
DDR4. It is due to the cache bandwidth of our hypothetical machine needing to
be adapted to this main memory bandwidth increase.

The conclusion of this study on the introduction of HBM2 on the DDR4 cores
is that it would lead to a performance gain for every application, contrary to the
SVE vector length increase. However, a limitation of this study is that our model
cannot characterize the latency aspect of our applications, which may be an issue
with the introduction of HBM2 because of its latency access being higher than
DRAM [98].

A performance projection approach for design-space exploration on Arm HPC
environment

75

6.3. Hardware parameters exploration on single-core performance

Figure 6.16: Model validation from N1 and TX2 to A64FX on LULESH, MiniFE
and Quicksilver

Figure 6.17: Exploration of different
SVE vector sizes on LULESH

Figure 6.18: Exploration of different
SVE vector sizes on MiniFE

6.3.3 Comparison of projections from N1 and TX2 with
SVE 512 and HBM2 to A64FX

In the previous studies, we have been looking at the impact of a change in com-
puting speed (SVE vector size) and a change in memory bandwidth (HBM2 intro-

76 C. Gavoille

6. Exploration of hardware parameters impact on HPC applications single-core
performance

Figure 6.19: Exploration of different SVE vector
sizes on Quicksilver

Figure 6.20: Exploration of introduction
of HBM2 on LULESH

Figure 6.21: Exploration of introduction
of HBM2 on MiniFE

duction). Combining and comparing them with a core that uses SVE 512 vectors
coupled with HBM2 bandwidth would be interesting: the Fujitsu A64FX. We
choose to use GCC 10.3 on all three machines for this comparison presented in
Figures 6.23 and 6.24. We can observe the change introduced by HBM2 to the
interval predicted only with SVE512.

Similarly, using HBM2 impacts the N1 core the most on LULESH, even with
512-bit SVE vectors. Even if both machines can gain more performance, this
leads to similar predicted performance between N1 and TX2 despite LULESH not
benefitting from vectorization on N1. On MiniFE, the predicted performance is

A performance projection approach for design-space exploration on Arm HPC
environment

77

6.3. Hardware parameters exploration on single-core performance

Figure 6.22: Exploration of introduction of
HBM2 on Quicksilver

not as impacted on both applications. We only observe the predicted upper bound
being higher by 0.6 GFLOPS on N1 and no change on TX2. This analysis shows
it can be more impactful on performance to increase vector size than increasing
the main memory bandwidth for MiniFE.

When we compare the projection on both applications to the performance
on the A64FX machine, we predict performance to be higher on N1 and TX2
architecture. The introduction of HBM2 and SVE512 on these machines changed
their single-core roofline to be on par with A64FX, and GCC is more efficient when
targeting N1 and TX2 architecture than A64FX, causing this higher predicted
performance [87].

6.3.4 Vector sizes exploration on A64FX with different soft-
ware stacks

We have seen that GCC is not recommended to obtain performance on a single
core of A64FX, and we want to compare it with the use of the Fujitsu Compiler
(FCC). Figure 6.25 presents this comparison when changing the vector sizes on
LULESH with GCC and FCC compilers. We do not have an interval with both
software stacks, meaning the OIs of both binaries are in the compute-bound region
of A64FX. However, we observe a different evolution of the predicted value when
increasing the SVE vector size. GCC binary gains more performance when in-
creasing vector size when compared to the FCC binary because it has more vector
usage. Despite this difference in vectorization, we observe higher performance on

78 C. Gavoille

6. Exploration of hardware parameters impact on HPC applications single-core
performance

Figure 6.23: Exploration of introduction
of HBM2 and SVE512 on LULESH

Figure 6.24: Exploration of introduction
of HBM2 and SVE512 on MiniFE

FCC with SVE vectors from 128 bits to 512 bits, with the last being the native
vector size. FCC is more careful than GCC when vectorizing the application be-
cause of its insight into the micro-architecture impact of the A64FX. In contrast,
GCC vectorizes a loop without considering it as much. Thus, we have better usage
of an A64FX when compiling with the Fujitsu Compiler than with GCC.

Figure 6.25: Vector sizes exploration with GCC and FCC on A64FX on LULESH

A performance projection approach for design-space exploration on Arm HPC
environment

79

6.4. Conclusion

6.4 Conclusion
To conclude this chapter, we needed to define a performance projection approach
to enable exploring hardware parameters’ impact on single-core performance with
our workflow. For this objective, we implemented a projection using a single-
core roofline representation of performance. This approach also uses application
and software characterization to ponder the compute part of the roofline used in
projection.

With a pool of 3 Arm cores architectures and three applications, we have
concluded that this projection approach allows for accurate performance projection
in case of close micro-architectural projection but is too coarse for projection with
a significant impact of the micro-architecture differences on performance (such as
between Neoverse N1 and Fujitsu A64FX).

Following these validation efforts, we have used this approach to explore vari-
ous performance parameters such as SVE vector length, HBM2 introduction, the
combination of both changes and the impact of the compiler on SVE vector size
exploration on three applications with different behaviors. These experiments un-
derline the complexity of interaction between application, hardware, and software
stacks, leading to many different optimization patterns adapted to each situation.
Even if the single-core performance of applications is vital, nowadays, applications
run on a full computing node. This execution on a full node adds complexity and
changes the execution behavior of applications. Hence, it would be interesting
to extend the projection model to study applications’ performance up to a full
node and have a better representation of the actual application’s execution. This
extension is the object of the following chapter.

In the case of single-core performance, the projection made by our model is too
coarse to account for the impact of the differences in micro-architecture, especially
the instruction pipeline and reordering buffer, on the source and target triplet
performance. In the case of constructors, the core design is directed with the
use of cycle-accurate simulators [72] as the functioning of the micro-architecture
is often too complex to be accurately extracted from a single instruction mix
analysis. However, we cannot rely on a full cycle-accurate simulator in our case as
the overhead is too important to enable fast design-space exploration.

One way to model the impact of these differences would be to use a representa-
tive metric of the application and software interaction with the micro-architecture
and ponder the roofline with this metric. This work of Cabezas et al. [35] with
a DAG-based (Directly Acyclic Graph) performance analysis and ponderation of
rooflines could be implemented to ponder the projection roofline thanks to micro-
architectural constraints. However, their work is not thread-compliant and would
need further research to be extended to multicore analysis.

80 C. Gavoille

Chapter 7

Exploration of software and
application parameters impact on
HPC applications single-node
performance

Following the results of the single-core projection approach, the need to extend the
approach to multicore application is natural, as it better represents the execution
of today’s HPC applications. This chapter aims to extend the previous single-
core roofline projection approach to multithreaded applications up to a full node.
Then, this approach is used, after validation between Graviton2 and Graviton3,
to explore parameters around applications and software stack aspects targeting
an architecture supposedly close to the European Processor Initiative (EPI). The
precise characteristics of this processor are private at the time of the writing.

7.1 Roofline projection model extension to multi-
core

As the previous projection approach is only single-core, the core idea of its exten-
sion to multicore is to perform this single-core projection for each application’s
thread running concurrently on a full computing node. The effects threads have
on the performance of each other through cache performance and bandwidth lim-
itation are modelized thanks to a more refined bandwidth analysis of each thread.
The analysis workflow is the same as the single core iteration with the addition of
a last step where we aggregate each thread’s projected performance to determine
the multithreaded application’s total performance. Consequently, the first step

81

7.1. Roofline projection model extension to multicore

is the characterization stage, with the characterization of the hardware and its
ponderation through application and software stack analysis.

7.1.1 Hardware Characterization

First, we define the hardware roofline for each thread running concurrently on
a fixed number of cores of the computing node. The roofline for a single core
(rooflinecore

ref) is not obtained in the same environment as a single core execution.
It is obtained by running these benchmarks using the studied number of cores and
dividing it by this number of cores (Ncore). It usually leads to a lower HPL value
than a single core execution, as HPL does not have a linear scaling on our reference
nodes. This is presented in eq. (7.1).

rooflinecore
ref (OI) = min

[
BWnode

STREAM

Ncore
×OI,

Perfnode
HPL

Ncore

]
(7.1)

However, this equation does not accurately represent the differences brought
by the applications and software stack through instruction mix and cache usage.
Hence, we have chosen to ponder the roofline’s compute and memory part, contrary
to the single-core approach that only ponders the compute roofline.

7.1.2 Roofline ponderation

In the multicore approach, we compute the maximum peak performance of the
instruction mix but also the effective bandwidth through cache hits.

Contrary to the single-core approach where we only ponder the peak HPL per-
formance with eq. (6.2), we ponder the memory part of the roofline. We need to
refine the bandwidth characterization as the performance of multithreaded appli-
cations is even more sensitive to this bandwidth. Moreover, this characterization
allows us to reduce the projection interval size as we now only make one projection
per memory level.

This bandwidth ponderation is done thanks to cache analysis using the hit
ratio of this level and higher levels. Furthermore, as in the Latency-Aware Roofline
Model of Denoyelle et al. [46], we consider different sockets in a NUMA topology
as another memory level. It is translated to different bandwidths when a core
accesses data in the main memory: one when accessing data on its Current Socket
(CS) and another when accessing data on the Other Sockets (OS).

Consequently, the memory part of the roofline of this memory level is obtained
by averaging its bandwidth and that of higher levels, weighted by their hit ratio.
Hence, in eq. (7.2), we show the ponderation of the bandwidth of a core where
BWreference and α are the reference bandwidth obtained with STREAM and the
total hit ratio of that memory level.

82 C. Gavoille

7. Exploration of software and application parameters impact on HPC
applications single-node performance

BWcore
L1 =

∑i=OS
i=L1 αi

αL1
BWreference

L1
+ ... + αCS

BWreference
CS

+ αOS
BWreference

OS

(7.2)

With these ponderations, we obtain a ponderated roofline for each memory
level. It represents the hardware limitations and the limitations caused by the
interactions between software, applications, and hardware. The memory pondera-
tion allows for a more representative description of the bandwidth resulting from
the complex interactions between threads and memory topology through memory
levels hit ratio.

7.1.3 OI characterization

Now that we have defined more refined limits for each thread, we define its OIs.
Similarly to the single-core approach, we define one OI per memory level of a two-
level cache machine with eq. (7.3) with Bytes moved in L1 (BL1) and L2 (BL2)
in addition to the splitting of the bytes coming from the main memory in Current
Socket (BCS) and Other Socket (BOS). If the machine does not have different
NUMA nodes, we do not differentiate between bytes in the Current Socket and
the one moved in the Other Socket.

OIL1 =
Nfloating point operations

BL1 +BL2 +BCS +BOS
(7.3)

OIL2 =
Nfloating point operations

BL2 +BCS +BOS

OICS =
Nfloating point operations

BCS +BOS

OIOS =
Nfloating point operations

BOS

Furthermore, this per-thread OI analysis allows us to characterize the difference
in the workload of each thread. Hence, this allows us to deal with the differences
in load balancing as each workload is analyzed separately. Moreover, we also
characterize the impact they can have on each other through bandwidth alteration.
However, one limitation of this analysis is that the number of threads between
source and target triplets has to be equal.

7.1.4 Performance projection

We have defined OIs and rooflines for each thread. The last step is to analyze the
performance of the source triplet and make the projection on the target triplet. It
has two stages: a thread projection and the multicore summation.

A performance projection approach for design-space exploration on Arm HPC
environment

83

7.1. Roofline projection model extension to multicore

Per-thread projection

The per-thread projection is the same as the single-core approach. We use the
architectural efficiency observed for each thread of the source triplet and project
it on the target triplet for each OI/roofline couple representing a memory level.
The projection for a memory level is defined in eq. (7.4).

Perfproj
target =

Perfsource × rooflinetarget(OItarget)

rooflinesource(OIsource)
(7.4)

The multiple OIs defined in eq. (7.3) can result in a projection interval for each
thread similar to the single core projection.

Multicore summation

Next, we sum all these performance intervals (Perfproj
thread) to obtain the application’s

performance for all threads running concurrently on the same node (Perfproj
node).

It is important to note that the performance gain from increasing the thread
count is non-linear and a critical aspect of our approach is its consideration of
the effects (such as cache behavior, bandwidth, and load balancing) that induce
non-linear scaling. This justification supports the validity of eq. (7.5) as a reliable
approximation.

Perfproj
node =

[∑
i∈threads

min(Perfproj
threadi

);
∑

i∈threads

max(Perfproj
threadi

)

]
(7.5)

Hence, we have extended the single-core approach to multicore analysis by
multiplicating the core analysis to each application thread running on a core. Be-
cause of the effect of multicore execution on bandwidth with shared caches and
main memory bandwidth limitation, the effective bandwidth characterization of
the roofline needed to be refined. After having obtained a projection of the perfor-
mance of each thread, we sum all the intervals obtained into a single performance
interval representing the application performance projection.

7.1.5 Implementation

As the needed metrics are the same as before, our implementation did not change.
We use online analysis through DynamoRIO and ArmIE for instruction mix anal-
ysis, Stream and HPL for hardware characterization, and hardware counters (if
available) or simulation for cache metrics analysis.

84 C. Gavoille

7. Exploration of software and application parameters impact on HPC
applications single-node performance

Machine Graviton 2 Graviton 3 EPI-like
Performance
(GFLOPS) 970 1380 1380

Micro-
architecture

Neoverse
N1

Neoverse
V1

Neoverse
V1

Vector ISA NEON SVE 256 SVE 256
Memory DDR4 DDR5 HBM2

Bandwidth 180 GB/s 313 GB/s 850 GB/s
L3 size 32 MiB 32 MiB 128 MiB

Table 7.1: Characteristics of the Arm architectures used in model validation and
design-space exploration.

7.1.6 Experimental Environment

The previous single-core approach has difficulties with projection between ma-
chines with distant micro-architectures. As we expected this extension to have
similar issues, we have restricted the pool of machines to the Arm Neoverse micro-
architecture roadmap [5] for validation and exploration.

This choice of focusing on this series is motivated by future HPC hardware
using this roadmap with future processors such as the European Processor Ini-
tiative (EPI) represented by Sipearl’s Rhea 1 (based on Neoverse V1) [90] or the
future NVIDIA Grace (based on Neoverse V2) [14]. At the time of the writing,
the two generations of AWS Graviton processors are representative of the micro-
architecture evolution and the interaction between current applications and the
Neoverse series.

To prepare for the arrival of the EPI, we have chosen to model the future
hardware machine (EPI-like) with some of the characteristics publicly available of
this V1-based processor: the use of both DDR5 and HBM2e and a large System-
Level Cache [90]. Because we do not have access to an EPI CPU, the STREAM
value for our "EPI-like" source machine is a projection of the HBM2 bandwidth
obtained on the only other available Arm HBM node: the Fujitsu A64FX node.
Table 7.1 gathers the characteristics and the results of the Arm architectures used
in validation and exploration.

7.2 Model extension validation

The objective of this validation effort is to see if the results of our approach between
two similar computing nodes of the Neoverse roadmap are accurate enough to open
for discussion. In this case, we use two Neoverse machines: an AWS Graviton 2

A performance projection approach for design-space exploration on Arm HPC
environment

85

7.2. Model extension validation

and an AWS Graviton 3 node. We conduct these experiments using GCC 11.2
with -O3 -ffast-math flags and the correct -march flag to generate NEON for
both micro-architectures as we do not make projections with changes of ISA in
experiments. These experiments use two applications: LAMMPS DIFFUSE and
LULESH and the OpenMP version of NAS Parallel benchmark suite [77].

7.2.1 Graviton 2 ←→ Graviton 3 projection

Figures 7.1 and 7.2 presents the obtained interval (in orange, the lower bound of the
interval, and green on the upper bound) and compare it with the performance of
the source machine (in blue) and target machine (in yellow) for every application.

LUL-
ESH

+3%

+8%

-21%

-18%

-6%

[-2,+14]%

[+6,+38]%

[-6,+18]%

[+5,+29]%

Figure 7.1: Projection intervals compared to actual performance on a Graviton2
and Graviton3 node. Graviton2 and Graviton3 performances are in blue and
yellow, with projected performance intervals in green and orange. The number
corresponds to the difference between observed and projected performance.

In Figure 7.1, we observe a performance gain on every benchmark when project-
ing from Graviton2 to Graviton3. Qualitatively, our projection workflow captures
the performance gain in all cases.

Quantitatively, on Graviton3, the target performance of MG and BT falls
within the projected interval of our method. However, the lower intervals for

86 C. Gavoille

7. Exploration of software and application parameters impact on HPC
applications single-node performance

[-15,+7]%

-3%

[-12,+2]%

[-27,-6]%

+26%

+22%

+7%

-7%

[-23,-5]%

Figure 7.2: Projection intervals compared to actual performance on a Graviton3
and Graviton2 node.

CG and LAMMPS are over-predicted by 6% and 5%, respectively. All other pro-
jections do not yield an interval, as there is no difference between the projections
of their OI: all kernels are compute-bound on both the source and target machines.
Still, the results for the projections closely align with the observed performance of
EP (+3%), LU (-6%), and LULESH (+8%).

For FT and SP NAS benchmarks, while our projection correctly predicts a
performance gain, we find that the actual performance is underestimated by around
20%. To investigate this discrepancy, we conducted an analysis using Linux perf
on both machines and observed more stalls due to the front-end on Graviton 2
compared to Graviton 3 (e.g., 14% against less than 1% of total cycles for FT)
for both of these benchmarks. Here, the impact of the CPU pipeline and the
micro-architecture efficiency of the source machine is projected onto the target
machine. Consequently, when the impact of these mechanisms on the application’s
performance is more significant on one architecture than the other, it may not
be fully captured by the model, leading to some observed inaccuracies in the
projection.

For the projection from Graviton 3 to Graviton 2 (Figure 7.2), we observe
that our workflow correctly predicts the performance loss for every application.
Quantitatively, we notice a mirrored behavior: when transitioning from Graviton2

A performance projection approach for design-space exploration on Arm HPC
environment

87

7.3. Application parameters exploration

to Graviton3, we over-predict the performance, as seen in the cases of EP kernel
(+3%) or LULESH (+8%). When transitioning from Graviton 3 to Graviton 2,
we under-predict by similar values (respectively -3% and -7%), as expected. This
mirrored behavior is observed for every application tested. Hence, the applications
with the highest errors are still FT and SP (for the same reason as above).

7.2.2 Comparison with straightforward roofline projection

In Figure 7.3, we compare our approach with the straightforward projection of [74]
for the LULESH case. In this figure, we depict the obtained roofline used by both
methods: without ponderation (only the raw STREAM and HPL values) in plain
line and with our ponderation in dotted line. Our ponderated roofline used in
conjunction with the OIL1 has a bandwidtth close to the measured STREAM
L1 bandwidth because LULESH has a high hit ratio at this level (95%). In this
case, we are in the compute-bound zone for the ponderated roofline. Moreover,
we observe no difference between OIs, and according to a CARM analysis, the
DRAM Bandwidth limits the performance as it is the closest to the observed
performance. With the "straightforward" projection based on the bandwidth gain
between Graviton2 and Graviton3, we obtain a projected performance of 24.82
GFLOPS, which is 17.5% higher than the actual observed performance of 21.13
GFLOPS. However, when we use the pondered roofline approach, the projected
performance is 22.81 GLOPS, which is only 8.8% higher than the actual observed
performance. Consequently, the roofline ponderation of our method is twice as
much more accurate than a "straightforward" projection.

To conclude these validation efforts, the projection between two close machines
of the Neoverse roadmap is accurate enough to open for discussion. However, as
expected, our roofline projection approach accuracy is limited by the differences
of the impact of the Out-Of-Order ressources between source and target machines.
In the following experiments of Sections 7.3 and 7.4.1, as both the source and
target triplet of interest rely on a Neoverse V1 architecture, the differences in
micro-architecture behavior is minimal and should not impact the accuracy of the
projection.

7.3 Application parameters exploration

The objective of this experiment is to observe how a change in the source code
would impact the performance of our EPI-like machine. We have used the LAMMPS
DIFFUSE benchmark to accomplish this experiment, available in this GitHub
repository [15]. This benchmark allows the use of different numerical schemes
to compute the same particle diffusion problem. There are two inputs avail-

88 C. Gavoille

7. Exploration of software and application parameters impact on HPC
applications single-node performance

Figure 7.3: Obtained Cache-Aware Roofline model of LULESH on Graviton2 and
Graviton3 with the addition of L1 pondered roofline and projection. Rooflines of
L1, L2 and L3 memory levels have been hidden for clarity purposes

able: velocity-auto-correlation function (VACF) and mean-squared displacement
(MSD).

The results of these two projections can be seen in the following Figure 7.4.
A first observation is that the VACF method attains a lower performance (9.63
GFLOPS) than MSD (11.43 GFLOPS) on the source machine, which translates
to the projected performance on the EPI-like node.

Moreover, there is no performance gain in the projection from Graviton 3 to-
wards the EPI-like node. In this study, the behavior change between both methods
stays in the compute-bound region for both machines. Hence, as the differences be-
tween our source and target hardware only impact the memory, we do not project
any performance change. In order to gain performance on an application rep-
resented by both methods of this benchmark, the focus should be on the peak
compute performance of the application.

Another aspect that can impact the performance we want to test on another

A performance projection approach for design-space exploration on Arm HPC
environment

89

7.4. Software parameters exploration on target node architecture

VACF MSD
Compute method

Graviton 3 -> EPI-like projection on LAMMPS
DIFFUSE with VACF and MSD compute methods

Graviton3 performance
EPI-like projection

Figure 7.4: Projections of two compute methods of LAMMPS DIFFUSE small
benchmark from Graviton 3 to our EPI-like machine

application is the optimizations made by the compiler when generating different
ISAs, such as SVE and NEON.

7.4 Software parameters exploration on target node
architecture

With an ISA as recent as SVE, looking into the impact of the compiler’s choice
when generating SVE is interesting for applications and software stacks to prepare
for a future architecture like the European Processor Initiative (EPI).

7.4.1 Compilers and ISA exploration

This experiment aims to look into which ISA and compilers could have the best
usage of the faster memory bandwidth and bigger L3 cache of the EPI compared
to a Graviton 3 node. Hence, in this experiment, we compare two compilers of the
Arm environment, g++ (11.3) and armclang (22.1). Each compiler generates two
binaries: one using NEON and one using SVE.

90 C. Gavoille

7. Exploration of software and application parameters impact on HPC
applications single-node performance

Results of the comparison between projected performance on the EPI-like ma-
chine and source performance of a Graviton 3 node are visible in Figure 7.5 with the
difference between the measured OIL1 and its corresponding roofline’s OIRidge,
representing the inflexion point between compute-bound and memory-bound re-
gion. At first glance, despite having higher performance on a Graviton3 node,
there would be no performance gain with any ISA using armclang as a compiler
as their performance is already similar on the source machine. In this case, the
differences between NEON and SVE vectorization are minimal as the vectorization
rate and use of vector units are similar. Moreover, using 256-bit vectors instead
of 128 bits does not also lead to a better performance on the source triplet. The
projected performance is the same because the lowest OI observed in our model
(the OI of the L1 level) is already in the compute-bound region for a Graviton 3
node (OIL1 > OIRidge). In this case, an increase in memory bandwidth would not
lead to a performance gain because the source bandwidth is already fast enough to
sustain the FPUs with the instruction mix of LULESH obtained with armclang.

On the contrary, the generation of SVE with GCC does bring a behavior change
to our source triplet. The performance of the SVE binary compiled with g++ is
lower on Graviton 3 than with NEON (20.07 GFLOPS for NEON VS 19.56 for
SVE). When generating SVE, the GNU compiler makes optimization choices that
result in an observed OIL1 divided by 2 (0.15 against 0.07 FLOP/Bytes). This
much lower OI may explain the lower performance of SVE on our source machine.

However, this phenomenon is also the cause of the performance gain when
projecting performance toward the EPI-like node. As we see, the observed OI of
the L1 memory level is under the OI of the ridge point of its roofline (the limit
between the Compute and memory bound zones) on the source machine. Hence,
the performance of this binary is the only one affected by this memory bandwidth
increase brought by HBM2, explaining the maximum performance gain of 50%.

To conclude this experiment, even if armclang is the compiler that brings the
most performance on a Graviton 3 node with either SVE or NEON ISA, the
behavior change brought by the Gnu compiler when introducing SVE causes the
performance of the binary to be the only one affected by the change between
Graviton3 and our EPI-like machine.

If the performance of this binary on the source machine would be much lower
because of the OI change, it would not necessarily be a total performance gain on
the EPI-like. However, in our case, this OI reduction with performance conserva-
tion on the source machine allows for the GCC SVE binary to possibly attain the
highest performance on an EPI-like machine.

As this behavior is not intuitive, we want to reproduce this on an architecture
that would mimic this possible bandwidth increase. This reproduction is presented
in the next Section.

A performance projection approach for design-space exploration on Arm HPC
environment

91

7.5. Behavior reproduction with synthetic kernels

Figure 7.5: Observed performance, projections, and OIs of LULESH with different
compilers and ISA on two node architectures: Graviton3 and EPI-like. The OIL1−
OIRidge value is represented with blue crosses.

7.5 Behavior reproduction with synthetic kernels

Graviton3 and EPI-like architectures exhibit minor micro-architecture differences,
mainly in main-memory bandwidth and L3 cache size. To emulate this difference,
we use the Intel Knights Landing (KNL) architecture with Quadrant Flat config-
uration, allowing us to choose data allocation on either DRAM (bigger but slower
memory) or MCDRAM (smaller but faster memory). This particularity enables
us to reproduce the bandwidth change while maintaining the same values for other
architecture parameters. The benchmark values obtained on KNL are presented
in Table 7.2.

We designed two synthetic kernels, detailed in Listing 7.1, to replicate the
behavior of LULESH with GCC SVE/NEON. This design allowed us to control
the experiment finely. Both kernels perform the same number of floating-point
operations on a private array and a reduction on a shared array. Kernel_1 uses a

92 C. Gavoille

7. Exploration of software and application parameters impact on HPC
applications single-node performance

HPL 1300 GFLOPS
DRAM STREAM 83 GB/s

DRAM Ridge 15.66 FLOP/Bytes
MCDRAM STREAM 463 GB/s

MCDRAM Ridge 2.80 FLOP/Bytes

Table 7.2: Benchmarks values on KNL.

single private array per thread, while kernel_2 employs two private arrays, with
half of the computations per array. As a result, the OI of kernel_2 is lower
than that of kernel_1. All the OI and performance metrics are obtained using
Intel Advisor Suite. Intel Advisor also allowed us to verify that both kernels are
vectorized and can make efficient use of the faster MCDRAM bandwidth.
void kernel_1(int N,int cursor ,double *a) {
#pragma omp parallel
{
seed = omp_get_thread_num ();
double *a_private = malloc(N * sizeof(double));
a_private = lots_of_computation(N,seed ,cursor ,a_private);
#pragma omp critical
for (i=0 ; i<N ;i++)
a[i] += a_private[i];

}
}
void kernel_2(int N,int cursor ,double *a) {
#pragma omp parallel
{
seed = omp_get_thread_num ();
double *a_private = malloc(N * sizeof(double));
double *b_private = malloc(N * sizeof(double));
a_private = half_of_computation(N,seed ,cursor ,a_private);
b_private = other_half_of_computation(N,seed ,cursor ,b_private);
#pragma omp critical
for (i=0 ; i<N ;i++)
a[i] += a_private[i] + b_private[i];

}
}

Listing 7.1: Source code of the two kernels of the synthetic benchmark used to
reproduce the behavior observed with GCC on LULESH. kernel_1 has a higher
operational intensity than kernel_2.

By changing the total number of computations, we have different versions of
both kernels: one is compute-bound according to DRAM and MCDRAM ridge
points (Kernel_CB), the other is in between these ridge points with an OI of 4
FLOP/Bytes for kernel_1 and 2 FLOP/Bytes for kernel_2 (Kernel_MB).

A performance projection approach for design-space exploration on Arm HPC
environment

93

7.6. Conclusion

Kernel DRAM MCDRAM
Kernel_CB_1 2.20 2.20
Kernel_CB_2 2.47 2.47
Kernel_MB_1 1.91 2.05
Kernel_MB_2 1.90 2.19

Table 7.3: Kernels performance in GFLOPS on KNL running on DRAM and
MCDRAM.

Table 7.3 presents the results obtained with these kernels when allocating mem-
ory on DRAM and MCDRAM. As expected from the compute-bound kernels, in-
creasing the bandwidth leads to no performance gain. However, we observe higher
performance for kernel_CB_2 compared to kernel_CB_1.

When examining the memory-bound kernels, we observe that they exhibit sim-
ilar performance on DRAM despite kernel_MB_2 being more memory-bound
with an OI of 2 FLOP/Bytes, compared to kernel_MB_1. However, the perfor-
mance gain on MCDRAM is significantly higher for kernel_MB_2 than for ker-
nel_MB_1. This discrepancy arises because kernel_MB_2 can use the bandwidth
increase more efficiently than kernel_MB_1. Indeed, despite having a lower OI,
kernel_MB_2 achieves similar or even better performance than kernel_MB_1.
The reason lies in splitting the computation into two private arrays, resulting in
better machine usage efficiency. Therefore, as the bandwidth is fast enough to sus-
tain this decrease in OI, selecting the second implementation of this kernel leads
to improved performance.

In this scenario, the behavior change is introduced by altering the data struc-
tures in the source code, while in the compiler and ISA exploration of previous
Section, g++ causes this change. It underscores the software stack’s significant
impact in efficiently utilizing crucial architecture features of future hardware while
highlighting how our performance projection model can aid in assessing his poten-
tial improvement.

7.6 Conclusion

As a conclusion of this chapter, the extension of the previous single-core projection
to multicore relies on an analysis of the performance of each thread with bandwidth
ponderation according to the impact they have on each other with the memory
hierarchy. This insight into the actual effective bandwidth of the application run-
ning on a compute node is needed as the multicore scaling of the application is
easily hindered by bandwidth scaling.

After validating the projected performance obtained with this approach be-

94 C. Gavoille

7. Exploration of software and application parameters impact on HPC
applications single-node performance

tween a Graviton2 and a Graviton3 node on various applications such as NAS
benchmarks, LULESH, or a small LAMMPS benchmark, we have chosen to focus
the study around application and software aspect of performance on a hypothet-
ical machine that is a Graviton 3 with boosted memory bandwidth and L3 size.
The characteristics of this machine are supposedly close to an EPI node with the
public information available at the time of the writing. This study aims to look
into ways to make more efficient use of the memory gain between a Graviton3 and
the EPI-like node, thanks to application and software changes.

When testing two different computing methods of the same problem with
LAMMPS DIFFUSE, there was no projected performance gain as both methods
are already compute-bound on a source machine. However, when exploring the
impact of SVE and NEON generation with GCC and armclang compilers, we ob-
served a counterintuitive behavior that involved a decrease in OI while conserving
performance in LULESH, leading to a projected performance gain on the target
machine. Using a synthetic benchmark, we verified and replicated this behavior
in a similar environment offered by the KNL processor. These studies showed
the possibilities of using this approach to explore and optimize the performance
of applications on future machines thanks to application and software stack opti-
mization.

In our experiments, we have explored two ways of adapting application and
software to get performance from a fixed target architecture. However, there are
many other possibilities offered by these aspects that could be explored. On the
one hand, for application exploration, one interesting study would be to explore the
possibilities offered by a HPC development framework like Arcane [55]. It would
open more possibilities to explore around the different behavior when relying on
various numerical schemes to compute the same problem. On the other hand,
for software focused exploration, the possibilities offered by looking around differ-
ent linear algebria libraries would also be an interesting study. Finally, looking
around the use of the hardware topology by different MPI and OpenMP imple-
mentations or environment is also an important factor of intra-node performance.
However, as of now, our implementation relying on drcachesim for cache metrics
and ArmIE for SVE metrics analysis in not MPI-compliant and this would require
more development.

A performance projection approach for design-space exploration on Arm HPC
environment

95

7.6. Conclusion

96 C. Gavoille

Conclusion and Perspectives

HPC supercomputer architecture is becoming more and more complex, hindering
the applications’ capabilities to attain performance. It also increases the need to
update HPC applications according to the machine’s evolution. The possibility
of designing future machines adapted to the applications’ needs through codesign
initiatives appears as a solution to facilitate optimization efforts and attain higher
performance. Furthermore, the recent Arm HPC environment is attractive for such
codesign initiatives, opening up many design liberties and possibilities. However,
a performance prediction model is mandatory to drive codesign initiatives.

Summary of contributions

This manuscript proposes a performance projection workflow adapted to our defini-
tion of codesign in the Arm HPC environment. Then, we implement this workflow
with a Roofline representation to explore around hardware parameters impact
on single-core performance of applications. Finally, we extend this workflow to
multi-core execution of applications and study the possible optimizations patterns
around software stack and application aspects of performance.

Performance projection workflow setup

We designed this three-stage workflow (Characterization, Analysis, and Projec-
tion) to rapidly explore the design-space around a source application/software
stack/hardware triplet by characterizing the impact of each of these aspects on
an HPC applications’ performance. The last stage is a projection on a target
triplet according to the differences between the parameters of each aspect. This
presentation of the workflow aims to be generic as the metrics needed, the bench-
mark models and the analysis model used in projection can be adapted to the
specific parameters of interest to explore. The two following contributions present
the implementation of this workflow with the use of a Roofline representation for
performance analysis and projection.

97

Single-core implementation for hardware exploration

Hence, with a single-core projection relying on a Roofline representation of perfor-
mance ponderated by application and software characterization, we implemented
this workflow that can leads to a projected performance interval. Then, we apply
it on a pool of three Arm core architectures: Marvell ThunderX2, Fujitsu A64FX,
and Neoverse N1. We conduct a first validation study between our source core ar-
chitectures, leading to valid results between close architectures (Neoverse N1 and
Marvell ThunderX2). However, in the case of projection with the A64FX core,
the projection leads to inaccurate results as the differences in the Out-Of-Order
ressources is not accounted in our projection and the performance on the A64FX
are highly impacted by this particularity. Finally, our last single-core contribution
is a study on a panel of 3 proxy applications (LULESH, MiniFE, and Quicksilver)
around many hardware parameters of interest in the Arm HPC environment like
the SVE vector length, the memory type, or their combination. The results of this
study underline the complexity of interaction between applications, hardware, and
software stack, leading to many different optimization patterns adapted to each
situation.

Multi-core extension for software stack and application ex-
ploration

Finally, the last contribution is a natural extension of the single-core projection
approach to a multicore environment. This extension uses a finer bandwidth char-
acterization of the workload of each core executing the application concurrently
on a compute node. The validation study of this extension is conducted between
two processor separated by one generation: the AWS Graviton 2 and Graviton 3.
With the widest gap between measured and projected performance of 20% for two
NAS kernels, the model’s prediction opens the study around optimization patterns
around software stack and applications aspects toward a node supposedly close to
the European Processor Initiative (EPI). During this study, one optimization pat-
tern, brought by the compiler targeting SVE, is a reduction of the Operational
Intensity with a conservation performance on the source machine. Hence, it is
the only binary that benefits from the memory boost of the hypothetical EPI-like
machine. As we did not have access to this machine at the time, we reproduced
and observed this behavior in similar environment offered by the Intel KNL.

98 C. Gavoille

Conclusion and Perspectives

Perspectives

The conclusion of the experiments and the contributions of this thesis further un-
derlines the need to take feedback on the choice of every actor involved in the
usage and conception of HPC application, software stack, and hardware. This
discussion, allowed by performance prediction, should drive the conception of fu-
ture machines at every scale. Following this work, I will conduct a first use of
our model during a 3-month internship for the Feasibility Study of the Fugaku
Next program of the Riken Center of Computational Science (R-CCS). This is the
occasion to use the workflow conceptualized during this thesis in an actual HPC
codesign environment.

Get over the fixed core number limitation

One short term perspective would be to extend this implementation to achieve pro-
jection between hardware with a different number of cores. The efficiency ratio,
projected between our source and target triplet in our multicore model, could be
extrapolated thanks to scaling studies and regression on the source triplet. Such a
scaling study would also need to consider the impact of topology and thread place-
ment on the scalability of applications. And, in our bandwidth characterization,
we consider the NUMA interaction on bandwidth with the splitting of Bytes com-
ing from the Current Socket and the one moved in the Other Sockets. However, as
we carried out our multicore experiments on monolithic or non-NUMA CPUs, this
characterization was not used in our experiments. Hence, the only metric needed
for accurate projection between machines with a different core number and topol-
ogy would be the scaling study of the ratio on a source machine and its projection
towards a machine with a different topology that could impact this ratio.

Extension to heterogenous nodes

Other long term perspectives is the characterization of heterogenous nodes and
multi-nodes execution of applications. The first is an implementation of our work-
flow to explore the design-space around heterogeneous nodes relying on accelera-
tors such as GPU or FPGA. A CEA internship conducted by Van Lanker L. and
supervised by Taboada H. and Brunet E. has already implemented and adapted
our roofline projection workflow to GPUs with the first encouraging results. The
following Figure 7.6 presents a comparison between the projection results and the
measured performance obtained on the projection between an NVIDIA V100 to an
NVIDIA H100 GPU on the Single-GPU UVMBench suite. This implementation
is currently limited to single-GPU kernels but the objective of a future PhD thesis
is to extend this model to multi-GPU and CPU-GPU kernels.

A performance projection approach for design-space exploration on Arm HPC
environment

99

Figure 7.6: N100 → H100 projection results on UVMBench benchmark suite,
courtesy of L. Van Lanker

Extension to multi-node execution

Then, the next step would be to extend the roofline projection presented in this
work to multiple nodes. This could be achieved in two ways. The first way con-
sider the network between them as an additional memory level. However, the
impact of communications and synchronization would also need to be considered
as an intra-node performance change would also lead to a change in the appli-
cations’ synchronization timings. This is also valid in multithreaded applications
but it does not impact the performance of the OpenMP applications we studied.
One solution could be to trace communications and synchronizations, project the
performance on each section of the application delimited by these actions, and
generate a DAG of the execution of this application with the sections as nodes and
synchronizations as edges. The study of the critical path of this DAG with the ob-
tained projected performance of each section would allow us to conclude the global
application’s performance. However, it would require further development efforts
for our DynamoRIO implementation to automatically trace synchronizations and

100 C. Gavoille

Conclusion and Perspectives

define the execution sections.
The second way of introducing multi-core analysis in codesign exploration

would be to use our model to extend the CPU performance analysis of network
simulators such as Simgrid [38] or Kronos [9]. As of today, these network simula-
tion tools do not model the computing time when simulating a new machine. They
either rely on the performance of the Host machine, for Simgrid, or a fixed number
of cycles for Kronos. Introducing our model into their workflow would lead to more
accurate computing time estimation but also on the synchronization’s timings.

Focus on power consumption

Another issue in today’s HPC is the power consumption of an application’s exe-
cution on a machine. Our work did not consider this parameter in the exploration
and it is not our main focus. However, the objective is to have a machine tailored
to the applications and software stack needs. In this case, better machine usage
efficiency means more performance but also less power losses due to inefficiencies.
Hence, the problems of performance and power consumption are not orthogonal.

Nevertheless, adapting our general methodology to power consumption is straight-
forward as we only need to shift the focus from performance to power consumption.
Implementation-wise, the Roofline Model we used for analysis and projection does
not consider power consumption. However, there are roofline representations that
focus on the power consumption of application [62, 39]. Hence, relying on a roofline
representation focused on power consumption could be a solution to shift the focus
of codesign studies toward power consumption.

Final word

The conception of tomorrow’s machines in a codesign environment is one solution
to simplify the optimization efforts of HPC applications on these more and more
complex architectures. It is also a way to attain higher performance thanks to
machines tailored for their future workloads. However, because application de-
velopers, software engineers, and hardware constructors have different domains of
expertise, this discussion between them is complicated but mandatory to enable
codesign initiatives.

We hope our developed methodology and approach will encourage these ini-
tiatives and drive them to design future machines and software stacks adapted to
the HPC applications’ needs. As our current implementation only focuses on CPU
node exploration, we have seen in these perspectives that the workflow could be
adapted to many architectures and fo cus of exploration. It can also open the way

A performance projection approach for design-space exploration on Arm HPC
environment

101

to codesign not only in the HPC world but also in many other domains such as
cloud computing, or data servers!

102 C. Gavoille

Bibliography

[1] Arm, ARM Instruction Emulator. https://developer.
arm.com/tools-and-software/server-and-hpc/compile/
arm-instruction-emulator.

[2] Arm, Emulating SVE on existing Armv8-A hardware us-
ing DynamoRIO and ArmIE. https://community.arm.com/
arm-community-blogs/b/high-performance-computing-blog/posts/
emulating-sve-on-armv8-using-dynamorio-and-armie.

[3] Arm, Introducing NEON. https://developer.arm.com/documentation/
dht0002/a/Introducing-NEON.

[4] Arm Neoverse V1 micro-architecture reference manual. https://
developer.arm.com/documentation/101427/latest/.

[5] Arm, Redefining the global computing infrastructure with next-generation
Arm Neoverse platforms. https://www.arm.com/company/news/2022/09/
redefining-the-global-computing-infrastructure-with-next-generation-arm-neoverse-platforms.

[6] Arm, the Aarch64 ISA documentation. https://developer.arm.com/
documentation/ddi0596/2021-12.

[7] Green 500. https://www.top500.org/lists/green500/.

[8] Intel VTune. https://www.intel.com/content/www/us/en/developer/
tools/oneapi/vtune-profiler.html.

[9] Kronos: Hybrid Discrete Event Simulations. https://www.anl.gov/mcs/
kronos-hybrid-discrete-event-simulations.

[10] LULESH GitHub repository. https://github.com/LLNL/LULESH.

[11] Mantevo Project, MiniFE summary v2.0. https://asc.llnl.gov/sites/
asc/files/2020-06/MiniFE_Summary_v2.0.pdf.

103

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
https://community.arm.com/arm-community-blogs/b/high-performance-computing-blog/posts/emulating-sve-on-armv8-using-dynamorio-and-armie
https://community.arm.com/arm-community-blogs/b/high-performance-computing-blog/posts/emulating-sve-on-armv8-using-dynamorio-and-armie
https://community.arm.com/arm-community-blogs/b/high-performance-computing-blog/posts/emulating-sve-on-armv8-using-dynamorio-and-armie
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON
https://developer.arm.com/documentation/101427/latest/
https://developer.arm.com/documentation/101427/latest/
https://www.arm.com/company/news/2022/09/redefining-the-global-computing-infrastructure-with-next-generation-arm-neoverse-platforms
https://www.arm.com/company/news/2022/09/redefining-the-global-computing-infrastructure-with-next-generation-arm-neoverse-platforms
https://developer.arm.com/documentation/ddi0596/2021-12
https://developer.arm.com/documentation/ddi0596/2021-12
https://www.top500.org/lists/green500/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.anl.gov/mcs/kronos-hybrid-discrete-event-simulations
https://www.anl.gov/mcs/kronos-hybrid-discrete-event-simulations
https://github.com/LLNL/LULESH
https://asc.llnl.gov/sites/asc/files/2020-06/MiniFE_Summary_v2.0.pdf
https://asc.llnl.gov/sites/asc/files/2020-06/MiniFE_Summary_v2.0.pdf

Bibliography

[12] MiniFE GitHub repository. https://github.com/Mantevo/miniFE.

[13] NVIDIA NSight. https://developer.nvidia.com/nsight-systems.

[14] NVIDIA, NVIDIA Unveils Next-Generation GH200 Grace Hop-
per Superchip Platform for Era of Accelerated Computing
and Generative AI. https://nvidianews.nvidia.com/news/
gh200-grace-hopper-superchip-with-hbm3e-memory.

[15] Online lammps repository hosted on github.com,
https://github.com/lammps/lammps. https://github.com/lammps/
lammps.

[16] Quicksilver GitHub repository. https://github.com/LLNL/Quicksilver.

[17] R-CCS, About Fugaku. https://www.r-ccs.riken.jp/en/fugaku/
about/.

[18] The CORAL Benchmark suite. https://asc.llnl.gov/
coral-2-benchmarks.

[19] Top500, Statistics, Performance Development. https://www.top500.org/
statistics/perfdevel/.

[20] Wikipedia, Instruction pipelining. https://en.wikipedia.org/wiki/
Instruction_pipelining.

[21] Wikipedia, Von Neumann architecture. https://en.wikipedia.org/wiki/
Von_Neumann_architecture.

[22] The design and performance of batched blas on modern high-performance
computing systems. Procedia Computer Science, 108:495–504, 2017. Interna-
tional Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland.

[23] Alexander Aiken, Utpal Banerjee, Arun Kejariwal, and Alexandru Nicolau.
Instruction level parallelism. In Springer US, 2016.

[24] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference, AFIPS ’67 (Spring), page 483–485, New
York, NY, USA, 1967. Association for Computing Machinery.

[25] Arm. Arm, Arm Performance Libraries. https://developer.arm.com/
documentation/ddi0596/2021-12.

104 C. Gavoille

https://github.com/Mantevo/miniFE
https://developer.nvidia.com/nsight-systems
https://nvidianews.nvidia.com/news/gh200-grace-hopper-superchip-with-hbm3e-memory
https://nvidianews.nvidia.com/news/gh200-grace-hopper-superchip-with-hbm3e-memory
https://github.com/lammps/lammps
https://github.com/lammps/lammps
https://github.com/LLNL/Quicksilver
https://www.r-ccs.riken.jp/en/fugaku/about/
https://www.r-ccs.riken.jp/en/fugaku/about/
https://asc.llnl.gov/coral-2-benchmarks
https://asc.llnl.gov/coral-2-benchmarks
https://www.top500.org/statistics/perfdevel/
https://www.top500.org/statistics/perfdevel/
https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://developer.arm.com/documentation/ddi0596/2021-12
https://developer.arm.com/documentation/ddi0596/2021-12

Bibliography

[26] Richard Frederick Barrett and Michael Allen Heroux. The mantevo
projectmini-applications: Vehicles for co-design. 2013.

[27] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,
Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay
Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1–7, aug 2011.

[28] Pradip Bose. Power Wall, pages 1593–1608. Springer US, Boston, MA, 2011.

[29] Patrick Brantley, Shawn Dawson, Scott McKinley, Matt O’Brien, Doug Pe-
ters, Mike Pozulp, Greg Becker, Kathryn Mohror, and Adam Moody. Llnl
mercury project trinity open science final report. 4 2016.

[30] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Fur-
mento, Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond
Namyst. hwloc: a Generic Framework for Managing Hardware Affinities in
HPC Applications. In IEEE, editor, PDP 2010 - The 18th Euromicro Inter-
national Conference on Parallel, Distributed and Network-Based Computing,
Pisa, Italy, February 2010.

[31] François Broquedis, Nathalie Furmento, Brice Goglin, Pierre-André Wacre-
nier, and Raymond Namyst. ForestGOMP: an efficient OpenMP environ-
ment for NUMA architectures. International Journal of Parallel Program-
ming, 2010.

[32] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastruc-
ture for adaptive dynamic optimization. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed and
Runtime Optimization, CGO ’03, 2003.

[33] Derek L. Bruening. Efficient, transparent, and comprehensive runtime code
manipulation. 01 2004.

[34] Anastasiia Butko, Rafael Garibotti, Luciano Ost, Vianney Lapotre, Ab-
doulaye Gamatie, Gilles Sassatelli, and Chris Adeniyi-Jones. A trace-driven
approach for fast and accurate simulation of manycore architectures. In The
20th Asia and South Pacific Design Automation Conference, pages 707–712,
2015.

[35] Victoria Caparrós Cabezas and Markus Püschel. Extending the roofline
model: Bottleneck analysis with microarchitectural constraints. In 2014

A performance projection approach for design-space exploration on Arm HPC
environment

105

Bibliography

IEEE International Symposium on Workload Characterization (IISWC),
pages 222–231, 2014.

[36] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core simula-
tions. In International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC), pages 52:1–52:12, November 2011.

[37] Carlos Carvalho. The gap between processor and memory speeds. 01 2002.

[38] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and
Frédéric Suter. Versatile, scalable, and accurate simulation of distributed
applications and platforms. Journal of Parallel and Distributed Computing,
74(10):2899–2917, June 2014.

[39] Jee Whan Choi, Daniel Bedard, Robert Fowler, and Richard Vuduc. A
roofline model of energy. In 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing, pages 661–672. IEEE, 2013.

[40] Bruno da Silva, An Braeken, Erik H. D’Hollander, and Abdellah Touhafi.
Performance modeling for fpgas: Extending the roofline model with high-
level synthesis tools. Int. J. Reconfig. Comput., 2013, jan 2013.

[41] Anthony Danalis and Heike Jagode. Performance Application Programming
Interface. Sun, Baruah and Kaeli, 2022-12 2022.

[42] Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and Mark
Horowitz. Cpu db: Recording microprocessor history. 2012.

[43] J. Davis, Gihan Mudalige, S. Hammond, Andy Herdman, I. Miller, and
Stephen Jarvis. Predictive analysis of a hydrodynamics application on large-
scale cmp clusters. Computer Science - Research and Development, 26, 2011.

[44] Arnaldo Carvalho de Melo and Red Hat. The new linux perf tools. 2010.

[45] Sander De Pestel, Sam Van den Steen, Shoaib Akram, and Lieven Eeck-
hout. Rppm: Rapid performance prediction of multithreaded applications
on multicore hardware. IEEE Computer Architecture Letters, 17(2):183–186,
2018.

[46] Nicolas Denoyelle, Brice Goglin, Aleksandar Ilic, Leonel Sousa, and Em-
manuel Jeannot. Modeling large compute nodes with heterogeneous memo-
ries with cache-aware roofline model. 01 2017.

106 C. Gavoille

Bibliography

[47] Kiril Dichev and Alexey Lastovetsky. Optimization of collective communi-
cation for heterogeneous hpc platforms. High-Performance Computing on
Complex Environments, pages 95–114, 2014.

[48] Nan Ding and Samuel Williams. An instruction roofline model for gpus. In
2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS), pages 7–18, 2019.

[49] Jens Domke. A64fx – your compiler you must decide!, 2021.

[50] Ulrich Drepper. What every programmer should know about memory. 2007.

[51] Emma and Davidson. Characterization of branch and data dependencies
in programs for evaluating pipeline performance. IEEE Transactions on
Computers, C-36(7):859–875, 1987.

[52] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith.
A mechanistic performance model for superscalar out-of-order processors.
ACM Trans. Comput. Syst., 27(2), may 2009.

[53] L. Fedeli, A. Huebl, F. Boillod-Cerneux, T. Clark, K. Gott, C. Hillairet,
S. Jaure, A. Leblanc, R. Lehe, A. Myers, C. Piechurski, M. Sato, N. Zaim,
W. Zhang, J. Vay, and H. Vincenti. Pushing the frontier in the design of laser-
based electron accelerators with groundbreaking mesh-refined particle-in-cell
simulations on exascale-class supercomputers. In SC22: International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
pages 1–12, Los Alamitos, CA, USA, nov 2022. IEEE Computer Society.

[54] Brice Goglin and Stéphanie Moreaud. Dodging Non-Uniform I/O Access in
Hierarchical Collective Operations for Multicore Clusters. In IEEE, editor,
CASS 2011: The 1st Workshop on Communication Architecture for Scalable
Systems, held in conjunction with IPDPS 2011, page 7p, Anchorage, United
States, May 2011.

[55] Gilles Grospellier and Benoit Lelandais. The arcane development framework.
In Proceedings of the 8th Workshop on Parallel/High-Performance Object-
Oriented Scientific Computing, POOSC ’09, New York, NY, USA, 2009.
Association for Computing Machinery.

[56] J.L. Hein. Discrete Mathematics. Discrete Mathematics and Logic Series.
Jones and Bartlett Publishers, 2003.

A performance projection approach for design-space exploration on Arm HPC
environment

107

Bibliography

[57] Wim Heirman, Souradip Sarkar, Trevor E. Carlson, Ibrahim Hur, and Lieven
Eeckhout. Power-aware multi-core simulation for early design stage hard-
ware/software co-optimization. In International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), September 2012.

[58] R. D. Hornung, J. A. Keasler, and M. B. Gokhale. Hydrodynamics challenge
problem. 6 2011.

[59] Khaled Ibrahim, Samuel Williams, and Leonid Oliker. Roofline scaling tra-
jectories: A method for parallel application and architectural performance
analysis. pages 350–358, 07 2018.

[60] ICPC. ACM International Collegiate Programming Contest. https://icpc.
global/.

[61] Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. Cache-aware roofline
model: Upgrading the loft. IEEE Computer Architecture Letters, 2014.

[62] Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. Beyond the roofline:
Cache-aware power and energy-efficiency modeling for multi-cores. IEEE
Transactions on Computers, 66(1):52–58, 2017.

[63] Intel. Integrated roofline model with intel advisor.

[64] Engin Ipek, Bronis R. de Supinski, Martin Schulz, and Sally A. McKee. An
approach to performance prediction for parallel applications. 2005.

[65] Radhika Jagtap, Stephan Diestelhorst, Andreas Hansson, Matthias Jung,
and Norbert When. Exploring system performance using elastic traces: Fast,
accurate and portable. In 2016 International Conference on Embedded Com-
puter Systems: Architectures, Modeling and Simulation (SAMOS), pages 96–
105, 2016.

[66] Rik Jongerius, Andreea Anghel, Gero Dittmann, Giovanni Mariani, Erik
Vermij, and Henk Corporaal. Analytic multi-core processor model for fast
design-space exploration. IEEE Transactions on Computers, 2018.

[67] Rik Jongerius, Giovanni Mariani, Andreea Anghel, Gero Dittmann, Erik
Vermij, and Henk Corporaal. Analytic processor model for fast design-space
exploration. In 2015 33rd IEEE International Conference on Computer De-
sign (ICCD), 2015.

[68] P.J. Joseph, Kapil Vaswani, and M.J. Thazhuthaveetil. Construction and
use of linear regression models for processor performance analysis. In The

108 C. Gavoille

https://icpc.global/
https://icpc.global/

Bibliography

Twelfth International Symposium on High-Performance Computer Architec-
ture, 2006., pages 99–108, 2006.

[69] T.S. Karkhanis and J.E. Smith. A first-order superscalar processor model.
In Proceedings. 31st Annual International Symposium on Computer Archi-
tecture, 2004., pages 338–349, 2004.

[70] Darren Kerbyson, Henry Alme, Adolfy Hoisie, Fabrizio Petrini, Harvey
Wasserman, and Michael Gittings. Predictive performance and scalability
modeling of a large-scale application. page 37, 11 2001.

[71] Donald E. Knuth and Francis R. Stevenson. Optimal measurement points
for program frequency counts. BIT, 13(3):313–322, sep 1973.

[72] Yuetsu Kodama, Tetsuya Odajima, Akira Asato, and Mitsuhisa Sato. Eval-
uation of the riken post-k processor simulator. 04 2019.

[73] Dirk P. Kroese, Tim Brereton, Thomas Taimre, and Zdravko I. Botev. Why
the monte carlo method is so important today. WIREs Computational Statis-
tics, 6(6):386–392, 2014.

[74] Jae Hyuk Kwack, Galen Arnold, Celso Mendes, and Gregory Bauer. Roofline
analysis with cray performance analysis tools (craypat) and roofline-based
performance projections for a future architecture. Concurrency and Compu-
tation: Practice and Experience, 2018.

[75] Steven H. Langer, Ian Karlin, and Michael M. Marinak. Performance char-
acteristics of hydra – a multi-physics simulation code from llnl. In Michel
Daydé, Osni Marques, and Kengo Nakajima, editors, High Performance
Computing for Computational Science – VECPAR 2014, pages 173–181,
Cham, 2015. Springer International Publishing.

[76] Benjamin C. Lee and David M. Brooks. Accurate and efficient regression
modeling for microarchitectural performance and power prediction. In Pro-
ceedings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, page 185–194, New York,
NY, USA, 2006. Association for Computing Machinery.

[77] Júnior Löff, Dalvan Griebler, Gabriele Mencagli, Gabriell Araujo, Massimo
Torquati, Marco Danelutto, and Luiz Gustavo Fernandes. The nas parallel
benchmarks for evaluating c++ parallel programming frameworks on shared-
memory architectures. Future Generation Computer Systems, 125:743–757,
2021.

A performance projection approach for design-space exploration on Arm HPC
environment

109

Bibliography

[78] Diogo Marques, Aleksandar Ilic, Zakhar A. Matveev, and Leonel Sousa.
Application-driven cache-aware roofline model. Future Generation Computer
Systems, 2020.

[79] John McCalpin. Memory bandwidth and machine balance in high perfor-
mance computers. IEEE Technical Committee on Computer Architecture
Newsletter, pages 19–25, 12 1995.

[80] John McCalpin. Memory bandwidth and machine balance in high perfor-
mance computers. IEEE Technical Committee on Computer Architecture
Newsletter, 1995.

[81] Sally McKee. Reflections on the memory wall. 04 2004.

[82] Charles R. Noble, Andrew T. Anderson, Nathan R. Barton, Jamie A.
Bramwell, Arlie Capps, Michael H. Chang, Jin J. Chou, David M. Daw-
son, Emily R. Diana, Timothy A. Dunn, Douglas R. Faux, Aaron C. Fisher,
Patrick T. Greene, Ines Heinz, Yuliya Kanarska, Saad A. Khairallah, Ben-
jamin T. Liu, Jon D. Margraf, Albert L. Nichols, Robert N. Nourgaliev,
Michael A. Puso, James F. Reus, Peter B. Robinson, Alek I. Shestakov,
Jerome M. Solberg, Daniel Taller, Paul H. Tsuji, Christopher A. White, and
Jeremy L. White. Ale3d: An arbitrary lagrangian-eulerian multi-physics
code. 5 2017.

[83] Alejandro Nocua, Florent Bruguier, Gilles Sassatelli, and Abdoulaye
Gamatie. Elasticsimmate: A fast and accurate gem5 trace-driven simula-
tor for multicore systems. In 2017 12th International Symposium on Recon-
figurable Communication-centric Systems-on-Chip (ReCoSoC), pages 1–8,
2017.

[84] D.B. Noonburg and J.P. Shen. Theoretical modeling of superscalar processor
performance. In Proceedings of MICRO-27. The 27th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 52–62, 1994.

[85] Antoine Petitet, R. Whaley, Jack Dongarra, and A. Cleary. Hpl – a portable
implementation of the high-performance linpack benchmark for distributed-
memory computers. 2008.

[86] David Richards, Patrick Brantley, Shawn Dawson, Scott Mckenley, and
Matthew O’Brien. Quicksilver, version 00.

[87] Mitsuhisa Sato, Yutaka Ishikawa, Hirofumi Tomita, Yuetsu Kodama, Tet-
suya Odajima, Miwako Tsuji, Hisashi Yashiro, Masaki Aoki, Naoyuki Shida,
Ikuo Miyoshi, Kouichi Hirai, Atsushi Furuya, Akira Asato, Kuniki Morita,

110 C. Gavoille

Bibliography

and Toshiyuki Shimizu. Co-design for a64fx manycore processor and ”fu-
gaku”. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–15, 2020.

[88] Sameer Shende and Allen Malony. The tau parallel performance system.
IJHPCA, 20:287–311, 01 2006.

[89] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole,
Giacomo Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Martinez,
Nathanael Premillieu, Alastair Reid, Alejandro Rico, and Paul Walker. The
arm scalable vector extension. IEEE Micro, 37, 2017.

[90] Estela Suarez. The european processor initiative: overview and status up-
date.

[91] Jingwei Sun, Guangzhong Sun, Shiyan Zhan, Jiepeng Zhang, and Yong
Chen. Automated performance modeling of hpc applications using machine
learning. IEEE Transactions on Computers, 69(5):749–763, 2020.

[92] Jialiang Tan, Shuyin Jiao, Milind Chabbi, and Xu Liu. What every scientific
programmer should know about compiler optimizations? In Proceedings of
the 34th ACM International Conference on Supercomputing, ICS ’20, New
York, NY, USA, 2020. Association for Computing Machinery.

[93] Thomas N. Theis and H.-S. Philip Wong. The end of moore’s law: A new be-
ginning for information technology. Computing in Science and Engineering,
19(2):41–50, 2017.

[94] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D.
Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton.
LAMMPS - a flexible simulation tool for particle-based materials modeling at
the atomic, meso, and continuum scales. Comp. Phys. Comm., 271:108171,
2022.

[95] Sam Van den Steen, Stijn Eyerman, Sander De Pestel, Moncef Mechri,
Trevor E. Carlson, David Black-Schaffer, Erik Hagersten, and Lieven Eeck-
hout. Analytical processor performance and power modeling using micro-
architecture independent characteristics. IEEE Transactions on Computers,
65(12):3537–3551, 2016.

[96] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. Augem: Automat-
ically generate high performance dense linear algebra kernels on x86 cpus. In

A performance projection approach for design-space exploration on Arm HPC
environment

111

Bibliography

SC ’13: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages 1–12, 2013.

[97] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An
insightful visual performance model for multicore architectures. Commun.
ACM, 2009.

[98] Han Zhao, Quan Chen, Yuxian Qiu, Ming Wu, Yao Shen, Jingwen Leng,
Chao Li, and Minyi Guo. Bandwidth and locality aware task-stealing for
manycore architectures with bandwidth-asymmetric memory. ACM Trans-
actions on Architecture and Code Optimization, 15:1–26, 12 2018.

[99] Xinnian Zheng, Lizy John, and Andreas Gerstlauer. Lacross: Learning-based
analytical cross-platform performance and power prediction. International
Journal of Parallel Programming, 45, 12 2017.

[100] Xinnian Zheng, Haris Vikalo, Shuang Song, Lizy K. John, and Andreas Ger-
stlauer. Sampling-based binary-level cross-platform performance estimation.
In Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017, 2017.

[101] Thorsten Zirwes, Feichi Zhang, Peter Habisreuther, Anthony Jordan, Denev,
Henning Bockhorn, and Dimosthenis Trimis. Optimizing load balancing of
reacting flow solvers in openfoam for high performance computing. 2018.

112 C. Gavoille

	Remerciements
	Résumé étendu en français
	Introduction
	I Context
	Context of High Performance Computing
	HPC applications
	LULESH
	Quicksilver
	MiniFE
	LAMMPS

	HPC supercomputers landscape

	Hardware architecture impact on performance
	Functioning of a core
	The Von Neumann architecture
	The instruction pipeline

	Impact of SIMD and FMA on performance
	SIMD and FMA description
	Vector ISA in the Arm HPC environment

	Memory organization
	Impact of memory on multi-core performance
	NUMA effect on performance
	Shared cache impact on performance
	Topology impact on bandwidth performance

	Conclusion

	Software stack and programming environment
	Compiler impact on performance
	Programming model and runtime optimization
	Application performance analysis
	Profiling tools
	The Roofline model as an analysis tool

	Conclusion

	The problem
	State of the art
	Cycle-by-cycle simulators
	The gem5 simulation tool
	Overview of gem5-based simulators
	Discussion

	Application-dependent models
	Hydrodynamics application models
	Discussion

	Analytical models
	Statistical approaches
	Learning-based methods
	Mechanistic models
	Discussion

	Conclusion

	II Contributions
	Setup of the performance projection methodology through codesign environment definition
	Codesign environment definition
	Characteristics of our performance prediction approach
	Choice of a performance projection approach
	The performance projection workflow
	Conclusion

	Exploration of hardware parameters impact on HPC applications single-core performance
	Single-core projection model
	Hardware Characterization
	Application and software characterization
	Performance Projection
	Implementation
	Experimental environment

	Model validation
	Neoverse N1 Marvell ThunderX2 projection
	Neoverse N1 and Marvell ThunderX2 Fujitsu A64FX projection

	Hardware parameters exploration on single-core performance
	Exploration on SVE vector sizes
	Exploration on the introduction of HBM2 on DDR4 machines
	Comparison of projections from N1 and TX2 with SVE 512 and HBM2 to A64FX
	Vector sizes exploration on A64FX with different software stacks

	Conclusion

	Exploration of software and application parameters impact on HPC applications single-node performance
	Roofline projection model extension to multicore
	Hardware Characterization
	Roofline ponderation
	OI characterization
	Performance projection
	Implementation
	Experimental Environment

	Model extension validation
	Graviton 2 Graviton 3 projection
	Comparison with straightforward roofline projection

	Application parameters exploration
	Software parameters exploration on target node architecture
	Compilers and ISA exploration

	Behavior reproduction with synthetic kernels
	Conclusion

	Conclusion and Perspectives

