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Abstract/Résumé

Modeling of electromechanical interactions in architected media in the framework of

generalized continua

Abstract

The objective of the thesis is to address in a theoretical and numerical way the homogenization of periodic

architected and composite media with multiphysical behavior, in the context of generalized continua. The

manuscript is thus decomposed into two parts that explicitly cover these issues.

The first part of the manuscript deals with the homogenization of periodic and quasi-periodic media

towards a strain gradient effective continuum. A discrete homogenization method is applied for

architected periodic materials, leading to the elaboration of higher order effective properties in the form

of analytical expressions depending on the edge length of the unit cell. The use of a strain gradient

formulation allows the quantification of the edge effects (surface effects in 3D) of architected materials.

Moreover, a quasi-periodic homogenization is developed from a volumetric expression of the energy and

relying on the notion of shape derivative to determine the quasi-periodic effective properties based on the

periodic domain being transformed.

The second part of the manuscript integrates multiphysical aspects in the homogenization approaches

towards generalized continua. The theory of piezoelectric and flexoelectric homogenization is elaborated

in the context of periodic homogenization, employing a variational formulation in combination with

the extended Hill macro-homogeneity condition. This is followed by numerical applications for the

homogenization of piezoelectric composites and architected materials as well as wave propagation

analysis. Moreover, homogenization towards Cosserat (micropolar) effective continuum is addressed for

the magnetoelastic heterogeneous solids.

Keywords: Homogenization, Piezoelectricity, Flexoelectricity, Magnetoelasticity, Strain Gradient

Medium, Effective Cosserat Medium, Quasi-periodicity.



Modélisation des interactions électromécaniques dans les milieux architecturés par la

mécanique des milieux continus généralisés

Résumé

La thèse a pour objectif d’aborder de façon théorique et numérique l’homogénéisation de milieux

architecturés et composites périodiques présentant un comportement multiphysique, dans le contexte des

milieux continus généralisés. Le manuscrit est donc décomposé en deux parties qui couvrent explicitement

ces questions.

La première partie du manuscrit traite l’homogénéisation des milieux périodiques et quasi-périodiques

vers un continuum effectif à gradient de déformation. Une méthode d’homogénéisation discrète est

appliquée pour les matériaux périodiques architecturés, conduisant à l’élaboration des propriétés effectives

d’ordre supérieur sous forme d’expressions analytiques dépendant de la longueur du bord de la cellule

unité. Le recours à une formulation à gradient de déformation permet de quantifier les effets de bord (les

effets de surface en 3D) de matériaux architecturés. En outre, une homogénéisation quasi-périodique est

développée à partir d’une expression volumétrique de l’énergie et en s’appuyant sur la notion de dérivée

de forme pour déterminer les propriétés effectives quasi-périodiques basées sur le domaine périodique

transformé.

La deuxième partie du manuscrit intègre des aspects multiphysiques dans les approches

d’homogénéisation vers les continuums généralisés. La théorie de l’homogénéisation piézoélectrique

et flexoélectrique est élaborée dans le contexte de l’homogénéisation périodique, en employant une

formulation variationnelle en combinaison avec la condition de macro-homogénéité de Hill étendue.

Ceci est suivie par des applications numériques pour l’homogénéisation des composites piézoélectriques

et des matériaux architecturés ainsi que pour l’analyse de la propagation des ondes. En outre,

l’homogénéisation vers le continuum effectif de Cosserat (micropolaire) est abordée pour les solides

hétérogènes magnétoélastiques.

Mots clés: Homogénéisation, Piézoélectricité, Flexoélectricité, Magnétoélasticité, Milieux à gradient de

déformation, Milieu effectif de Cosserat, Quasi-périodicité.
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R.6 Contributions énergétiques en fonction de la position macroscopique. . . . . . . . . . . . . 141

R.7 Fréquence d’onde en fonction du nombre d’ondes dans le milieu flexoélectrique effectif. . . 142

B.1 The periodic displacement boundary conditions of a generic unit cell . . . . . . . . . . . . 170

B.2 The periodic equilibrium boundary conditions of a generic unit cell . . . . . . . . . . . . . 170



E.1 Illustration showing the quasi-periodic macrodomain and an isolated UC with the

macroscopic strain and strain gradient as kinematic loadings acting on it. . . . . . . . . . 177

G.1 Variation of the 1) dielectric coefficient, 2) and 3) piezoelectric coefficients as a function of

the volume fraction. Red corresponds to the results in literature [260], blue corresponds

to the results using the variational approach. . . . . . . . . . . . . . . . . . . . . . . . . . 189

ix



List of tables

2.1 Dependency Relations of the Hexagon UC nodes . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Dependency Relations of the Square UC nodes . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Mechanical properties of the inclusion and matrix materials. . . . . . . . . . . . . . . . . 59

5.1 Mechanical and electrical properties of LiNbO3 inclusion [260]. . . . . . . . . . . . . . . . 86

5.2 Mechanical and electrical properties of PVDF matrix [261]. . . . . . . . . . . . . . . . . . 86

5.3 Homogenized mechanical and electrical properties of composite structures modeled as

flexoelectric media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Comparison between macroscopic and microscopic enthalpies, and contribution of the

fluctuation enthalpy to the total enthalpy (N/mm2). . . . . . . . . . . . . . . . . . . . . 94

5.5 Comparison between macroscopic and microscopic enthalpies, and contribution of the

fluctuation enthalpy to the total enthalpy (N/mm2). . . . . . . . . . . . . . . . . . . . . 95

6.1 Order of the localization operators (tensors) for the displacement (a 1-tensor) and scalar

magnetic potential (a zero-tensor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Order of the localization operators (tensors) for the displacement gradient and magnetic

h-field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Mechanical and magnetic properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C.1 Closed-from expressions of the effective properties of general hexagonal lattices. . . . . . . 172

C.2 Closed-from expressions of the effective properties of general square lattices. . . . . . . . . 174

G.1 Mechanical and electrical properties of the two piezoelectric materials within the unit cell

of the composite material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

x



Chapter 1

General introduction

Multiphysical aspects refer to the interplay of multiple physical phenomena that occur simultaneously in

a system or material. These phenomena can include mechanical, thermal, electrical, magnetic, chemical,

and biological processes. Among different multiphysical phenomena, electromechanical and magneto-

mechanical couplings, that relate respectively the electrical, and magnetic fields with mechanical fields,

have been attracting alot of attention. The next subsections will be dealing with these two aspects.

1.1 Piezoelectricity and flexoelectricity

Electroactive materials have the ability to convert mechanical energy into electric energy and vice versa,

making them widely used in modern technologies (as shown in Fig. 1.1 [1]). Energy harvesting is a primary

application of these materials, which involves generating electrical power from mechanical sources like

vibrations from machines, wind, ocean waves, and movements of the human body, among others [1].

Another application of electroactive materials is to convert the mechanical energy into electric energy

which is used widely in sensors and measuring devices. On the other hand, applying electric fields to these

materials can produce precisely controlled mechanical forces that can be used for actuation in various

fields, such as motors, robotics, biomedical devices, and personal electronics, among others.

Piezoelectricity is a widely recognized and frequently utilized form of electromechanical coupling, where

electric polarization ppp and mechanical strains εεε are coupled linearly as follows:

pl = dlijεij

wherein ddd is the piezoelectric tensor. Piezoelectric ceramics exemplify this phenomenon, where these

materials become polarized when subjected to deformation and deform when an electric field is applied.

Fig. 1.2(a) [2] explains using an ion-model how piezoelectricity arises when subjected to tension or

compression, where the electric dipole moment changes due to a shift between the negative and positive

ion centers of gravity. Piezoelectricity is limited to non-centrosymmetric dielectric crystals.
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Chapter 1. General introduction

Figure 1.1 Energy harvesting sources (left) and applications of sensing and actuating (right) that can be used

for piezoelectric devices [1].

On a smaller scale such as micro and nano-levels, there are other effects that need to be considered.

One of these electromechanical couplings that has received less attention and is a main subject of this

thesis is flexoelectricity [3].

Flexoelectricity involves the coupling between strain gradients and electric polarization [4,5]. The direct

flexoelectric effect refers to the polarization of a material resulting from non-uniform deformation such

as bending or twisting [6]. This effect can be mathematically represented as:

pl = flijk
∂εij

∂xk

with fff being the flexocoupling tensor. As shown in Fig. 1.2(b) [2], when the crystal undergoes bending,

a non-zero dipole is generated even if the structure is centrosymmetric.

(a) (b)

Figure 1.2 Schematic presentation of Piezoelectricity (a), and flexoelectricity (b) in dielectric crystals [2].
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1.1. Piezoelectricity and flexoelectricity

Flexoelectricity appears to be a promising phenomenon for modern technologies due to its advantageous

properties such as reversibility, and two-way coupling. However, and as shown in Fig. 1.3 [3], it has only

recently started gaining attention. This is because the flexoelectric material constants are usually very

small, which requires sufficiently large strain gradients to trigger a significant flexoelectric effect.

Figure 1.3 Evolution of the number of research publications on flexoelectricity[3].

After the theoretical predictions made by Mashkevich and Tolpygo [7], Bursian and Zaikovskii [8] were

the first to observe the flexoelectric effect through experimental means in 1968. Since then, it has been

found in various materials such as biomaterials which include viruses [9], and cellular membranes [10,

11], soft materials including polymers [12–17] and liquid crystals [18, 19], as well as atomically-thin

nanomaterials such as carbon nanotubes [20] or graphene [21].

The flexoelectric effect is widespread in nature. This can be shown in the noteworthy biological examples

such as the mammalian hearing mechanism (see Fig. 1.4 [22]). Hair cells serve as the main sensory

receptors in the auditory system, converting the mechanical vibrations of sound into detectable electric

signals. While there is still some uncertainty about the underlying mechanism, one plausible explanation

is that the stereocilia found in inner hair cells may be responsible for flexoelectricity [10,22–24].

Another interesting application of flexoelectricity in biology was found to be in the human bone self-

healing (see Fig. 1.5 [25]). According to [25], micro-cracks present in bones produce significant strain

gradients, which cause an electric field to develop in the area surrounding the affected region due to the

flexoelectric properties of the bone mineral hydroxyapatite.

This electric stimulus generated by the cracks is strong enough to prompt osteoblasts to become active

in the damaged regions, thereby initiating the process of repairing the micro-cracks.
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Figure 1.4 The flexoelectricity in the hearing mechanism of mammals is described, where hair bundles comprised

of multiple stereocilia connected by thin fibers are organized in rows of decreasing height. Bending the hair bundle

towards the tallest or shortest row causes the cellular inner environment to become more positively or negatively

charged, respectively. This bending process leads to a voltage difference across the thickness of the stereocilia

membrane due to the flexoelectric response of the cellular membrane [22].

Figure 1.5 Flexoelectricity in human bones; significant strain gradients can be observed around micro-cracks

in the bone mineral leading to a gradient-induced electricity (i.e., flexoelectricity) in the vicinity of these defects

which is also significant [25].

1.2 Magnetoelasticity

Besides the studies done on the different electromechanical coupling effects, many were focusing on the

magnetoelastic coupling which refers to the interconnection between the magnetic and elastic fields [26].

The magnetoelastic coupling is apparent in different materials, such as magnetostrictive materials. These

materials belong to the broader category of smart materials that can alter their properties, shape, or

dimensions when exposed to an external field (magnetic field).
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1.2. Magnetoelasticity

One of the applications of magnetostrictive materials that exemplifies the concept of magnetoelasticity

is the acoustomagnetic tags used by shops to prevent shoplifting (see Fig. 1.6 [26] [27]). Typically, they

comprise a thin, amorphous metal strip with magnetostrictive properties that respond to an external

magnetic field through vibrations.

The detectors emit a magnetic signal that matches the resonance frequency of the metal strip in the tag,

inducing a vibration in it that leads to a modification of its magnetization. The detectors react to this

alteration with an AC voltage, which ultimately triggers the alarm.

(a) (b)

Figure 1.6 (a) Acoustomagnetic tag with the its magnetic strips [26], (b) System of detection of the tag[27].

Furthermore, magnetoelasticity is present in magnetoelastic sensors (MES), which are extensively

studied for their wide range of applications, particularly in the biomedical field. MES rely on the inverse

of the magnetoelastic effect whereby exposure to mechanical stress results in a corresponding alteration

in their magnetic permeability [28]. Various applications of this approach have been reported, such as

monitoring bone plate strain as shown in Fig. 1.7(a) [29] , and monitoring force exertion on artificial bone

(Fig. 1.7(b) [30]) [31].

(a) (b)

Figure 1.7 (a) The repair model of sheep tibia, (b) application of the artificial bone [30].
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1.3 Composites and architected materials: the foundation of

different applications

The development of novel material with unique properties has led to significant advancements in

engineering. Composites and architected materials are two such materials that have revolutionized the

field of materials engineering and have become the base materials in many multiphysical applications

because of their ability to offer high mechanical performance (such as strength, energy absorption capacity,

acoustic and thermal insulation properties), while maintaining a low weight.

Over the past 35 years, there has been a growing interest in piezoelectric composites due to their

application in various fields of engineering [32]. This has led to the creation of novel mechanical structures

that are used in advanced technological devices [33,34]. The diverse uses of piezoelectric composites have

accelerated the progress of mathematical, experimental, and computational models that pertain to the

analysis of these materials’ properties [35–37].

The term "architected materials" was first introduced in [38] as a means to connect the methods of

topology optimization [39], which are used to design lightweight, high-performance, and aesthetically

pleasing materials, with the field of structural engineering. By modifying the inner topology of architected

materials, it becomes possible to achieve novel behaviors of the effective medium without even changing

the chemical composition of the base materials.

This technological development has become possible thanks to the fast advancements of additive-

manufacturing techniques. One key property is Poisson’s ratio, which is sometimes used as a metric

for material properties. Materials with a negative Poisson’s ratio, known as auxetic materials, have

exceptional dynamic and static properties, such as high resistance to shock and impact, and the capability

to mitigate sound waves and vibrations. Such materials can also show promising electromechanical

properties in comparison to the bulk material as elaborated in [40–42]. Fig. 1.8 [43] shows a collection of

periodic architected materials with either positive or negative Poisson’s ratios.

Architected materials (and composites) intended for use in engineering applications are typically

characterized by a unit cell, which is considered as the fundamental building block of the material and is

used to construct the entire structure with the concept of periodicity.

Starting from the mechanical behaviour at the level of the unit cell, by incorporating the microstructural

information, one can reach the desired properties at the mesoscopic or macroscopic scales. It is crucial

to create predictive micromechanical models that can help understand how the current microstructure

affects mechanical responses on both the mesoscopic and macroscopic levels. These models will allow the

connection between different scales and establish the relationship between the equivalent properties and

both the structure’s mechanical and geometrical properties.
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Figure 1.8 2D architected materials: (a)Hexagon, (b) star-shaped re-entrant, (c) rectangular,(d) semi-entrant,

(e, f, g) diamond, kagome, triangular-saped, chiral lattices: (h) chiral diamond , (i) tetrachiral , (j) hexachiral

[43].

1.4 Mechanics of generalized continua and enriched continuum

models

Classical continuum mechanics uses only the first gradient of the displacement field to measure a body’s

deformations, disregarding higher-order displacement gradients. However, this approach is inherently

size-independent, whereas materials may display non-local behaviors and exhibit a size dependency

at a small scale due to their discrete nature, according to [44]. The validity of first-order Cauchy-

based theories is limited to situations where there is a clear separation of scales, but they fail when

dealing with small structural sizes, such as in MEMS, where the micro and macro structures become

comparable in size. This failure occurs in scenarios where the wavelength of the loading is comparable

to the size of the microstructure, or when deformation becomes localized within narrow bands due to

strain softening. The width of these bands depends on microstructural length scales such as the size

and distance between internal defects. Classical continuum theories, which lack internal length scales,

are incapable of describing these localization phenomena adequately. Moreover, finite element (FE)

simulations often exhibit a spurious mesh dependency, preventing them from accurately resolving the

width of the localization bands.

Additionally, classical continuum mechanics is limited and cannot fully explain many mechanical and

physical phenomena [45]. In the context of multiphysical phenomena, for instance electromagnetism,

the presence of an electromagnetic source term leads to a non-symmetric stress tensor, thus requiring to

extend the framework of Cauchy mechanics (that relies on a symmetrical stress tensor) to the context

of so-called generalized continua [46]. The occurrence of couple body forces motivates the recourse
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to a micropolar description of the magneto-mechanical response. The displacement of mobile electric

charges within crystals due to e.g. bending leads to a polarization, a phenomenon deserving the name

flexoelectricity. Flexoelectric solids couple the gradient of strain to the electric field and reciprocally

the gradient of the electric field will induce a stress. The occurrence of multiphysical phenomena has

led many authors to develop different generalized continuum models, including Cosserat [47–50], strain

gradient [51] and micromorphic ones [52], an overview of these theories being exposed in [46].

Homogenization towards generalized continua (beyond Cauchy) aims to address the limitations of a

strict scale separation and broaden the range of validity of the continuum approach beyond the restricted

assumption of the scale separation [53, 54]. The definition of a generalized continuum can be extended

through two main approaches, based on the classification into two main categories, namely the higher-

order and higher-gradient continua, as shown in the illustration in the Fig. 1.9 [55].

Higher-order continua introduces further degrees of freedom, such as the Cosserat medium developed

by the Cosserat brothers [56] and the micromorphic medium which is considered the most advanced

generalized continuum theory [53, 54, 57–60]. In Cosserat elasticity, local rotations are included as

additional degrees of freedom [56]. In the micropolar theory, interactions between material points through

a surface element involve a force vector and a moment vector. This theory defines the "force-stress"

tensor and the "couple-stress" tensor, respectively, as force per unit area and moment per unit area. The

momentum balance indicates that the stress tensor in micropolar media is not symmetrical as in classical

theory due to the imbalance of local moments produced by the microstructure. The non-symmetric

stress tensor can be separated into two parts: a symmetrical part that leads to deformation of the macro-

element, and a skew-symmetric part that contributes to the rigid rotation of the microstructure relative

to the material.

On the other hand, higher-gradient continua involve incorporating higher gradients of the primary

kinematic variable (such as strain or displacement) or internal variables (such as plasticity or damage)

as additional variables in the formulation [61–66]. Of the various effective substitution media available

(such as micromorphic, Cosserat strain-gradient, etc.), the strain gradient elastic continuum proposed by

Mindlin [53] and Mindlin and Eshel [67] has several benefits, as highlighted in [68]. This model is capable

of representing emergent properties without the need for the micromorphic medium, which has a greater

number of inherent parameters [69], and can be constructed using asymptotic homogenization [62,70,71].

There has been a significant amount of research on the topic of strain gradient homogenization for over

40 years [55, 66, 71–73]. This research has covered a range of materials, including auxetic architected

materials [74], composites with periodic or random microstructures [75], and random fibrous media [76].

Boutin [62] and Smyshlyaev and Cherednichenko [63], demonstrated the convergence of the asymptotic

expansion of the solution, and then Tran et al. [71] developed a more systematic method for determining

the strain gradient elastic moduli based also on asymptotic expansions of the fields.
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Figure 1.9 Illustration showing the classification of generalized continua into higher order and higher-grade

media [55].

The existence of a couple CCC per unit volume in electromagnetic materials has often been suggested as

a reason to take into account non-symmetric stress tensors [46];

CCC = PPP ×EEE +MMM ×HHH

wherein PPP and MMM are respectively the electric polarization and magnetization per unit volume; EEE and

HHH are the electric and magnetic fields respectively. This idea was the primary motivation behind

the introduction of the generalization of continuum mechanics and the need of enriched continuum

theories [77, 78]. In some cases of electroelastic and magnetoelastic couplings (which are known as the

couplings of energetic origin), the standard balance equations of mechanics are not altered while only

the energy balance equation changes. However, in more drastic consequences, electromagnetic materials

possess an electric or magnetic microstructure that, despite its microscopic nature, affects the mechanical

behavior and results in a non-symmetric stress tensor in the equation of moment of momentum that

acquires additional contributions.

Approaches that tend to model magneto-mechanical interactions, show an analogy with the formulations

of the Cosserat generalized continuum by introducing the concepts of spin and couple stress [46,79]; the

resulting equation is in the canonical form of the balance equation of angular momentum in Cosserat or

micropolar continua but with all terms having a magnetic origin [80].

Besides the need of enriched continuum theories when dealing with multiphysics, these media are needed

in situations to capture the influence of spatially rapid fluctuations at the mesoscopic and macroscopic

levels. Enriched constitutive laws may be necessary in two scenarios. Firstly, when the chosen volume

element is not representative in a statistical sense, such that individual carriers of the microstructure

are excited and averaging cannot be performed. Secondly, when topological effects generate internal

deformation modes that are not captured by a first gradient elastic theory. As we move to smaller

scales, such as the micro or nanoscale, surface effects that were previously neglected in Cauchy elasticity
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become dominant over volumetric ones, leading to the emergence of new behaviors at these scales.

Enriched continuum theories incorporate a relaxation of the local action assumption and introduce spatial

interactions and internal material-dependent length scales to consider the effect of neighboring points

when formulating constitutive equations.

In the early sixties, most generalized continuum models were purely formal and not based on actual

microstructures. Consequently, constitutive laws were developed in a phenomenological manner, without

the need to recourse to micromechanical methods. However, the situation changed significantly in the

early nineties with the development of new classes of materials such as composites, cellular solids (foams),

and architected materials, as well as advancements in computational power and fabrication techniques

like additive manufacturing. This prompted a growing interest in the mechanical and mathematical

communities to understand the relation between emergent enriched behaviors at the level of an effective

continuum and microscopic deformation modes.

1.5 Homogenization approaches in linear elasticity

To obtain the material properties of a structure on the level of the homogenized substitution medium,

multiscale or experimental analyses can be performed. However, conducting fully resolved simulations can

be computationally expensive, particularly when using full-scale finite element models [81]. Additionally,

measuring the mechanical properties of such structures through experimentation can be challenging since

the overall anisotropy must be considered. Furthermore, when there is no clear scale separation, enriched

continuum theories that involve many more constitutive parameters than Cauchy elasticity theory may

be necessary. Therefore, it is more practical to conduct homogenization towards effective models of the

microstructure as a first step which can be used to do computations at the macrostructural level [82].

In recent decades, homogenization theory has been considered an essential tool in analyzing the behavior

of highly heterogeneous materials like composites which consist of multiple constituents that differ

significantly in their properties. Several homogenization techniques depend on identifying a representative

volume element (RVE), which assumes that the RVE’s structure is present almost everywhere throughout

the structure: this means that there is a hidden pseudo-periodicity. The theory of periodic homogenization

has a significant role in explaining the overall homogenized behavior. This assumption allows for precise

mathematical results of the homogenized behavior. Sanchez-Palencia [83] was the initial developer of

these methods, primarily using multi-scale asymptotic approaches. The mathematician J.L. Lions and

his team [84] subsequently advanced these methods from a more mathematical viewpoint. However, in

the context of periodic homogenization, many of the most effective and practical concepts are attributed

to L. Tartar [85] .

For periodic composites, a commonly used method in the literature is to construct equivalent

substitution media for the repetitive unit cell at an intermediate scale. This approach provides a good

balance between accuracy and numerical efficiency for performing structural computations. Therefore, the
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effective properties obtained from appropriate homogenization schemes are influenced by the geometrical

and mechanical microstructural parameters of the composite constituents. However, this classical

homogenization approach depends on a precise scale separation assumption, which is known as the Hill-

Mandel macro-homogeneity condition [86–88].

Homogenization refers to a mathematical theory that deals with partial differential equations with

rapidly varying coefficients at the microscopic scale of individual phases in heterogeneous composites, that

are substituted at the macroscopic level with PDEs that have slowly oscillating coefficients. This allows

to establish a relation between the physical behavior of heterogeneous materials at the macroscopic level

and the behavior that takes place at the microscopic level. During the 1970s, homogenization evolved

into a specialized research field within applied mathematics [84, 89–91], and a variety of approaches

were introduced, including the asymptotic expansion method [83, 84, 92–94], G-convergence [95], H-

convergence [85, 96, 97], Γ-convergence [98], and two-scale convergence [99], with applications in areas

such as composite materials [100, 101] or the determination of the macroscopic limit of microscopic

systems.

Homogenization methods can handle multifield phenomena like coupled electromechanical and

electromagnetic effects, providing a quantitative understanding of the impact of microscale parameters

on the overall multiphysical composite response. Theoretical works devoted to the computation of

the effective behavior of piezoelectric composites started with Grekov et al. [102], followed by many

others [103–105] who utilized multiscale asymptotic expansion. Later on, the method of oscillating

functions was used for computing the homogenized response of stratified piezoelectric material [106].

1.5.1 A reduced modeling technique: the discrete homogenization

One can differentiate between two types of homogenization methods: continuous homogenization that is

traditionally used for composites and discrete homogenization that utilizes reduced, discrete models for

the structural elements that define the unit cell, such as a collection of beams or bars.

Discrete homogenization is a suitable method for modeling low-density lattice materials because their

internal structural elements can be modeled as a collection of beams or rods, at a lower numerical cost

compared to continuous homogenization approaches. They consider indeed a finite number of degrees of

freedom (DOF in short) and can provide closed-form expressions for homogenized moduli [107,108].

Among the discrete homogenization approaches, the so-called continualization methods presented

in [109] have attracted a lot of attention in the literature. Continualization methods of periodic lattices

rely on the idea of replacing discrete equations of motion by continuum differential equations to compute

the static and dynamic effective qualities at a continuous level [110]. These approaches rely on two

fundamental steps: (i) replacing discrete kinematics DOF with field variables that vary continuously in

time and space, and then (ii) expressing the microscopic DOF within nearby UCs through a Taylor series

expansion versus the chosen continuous DOF. The Lagrangian formulation emerged in the literature as
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Chapter 1. General introduction

a strategy about twenty years ago. It can be used as an alternative to the strong form description of

the lattice statics or dynamics [111–113]. By truncating the Taylor series at the first-order, an effective

Cauchy continuum can be obtained, where only the first displacement gradient is significant.

1.6 Limitations in the literature

Despite the notable achievements of generalized continuum models in describing the mechanical behavior

of microstructured solid bodies at a continuum level, they are not yet capable of accurately predicting

their mechanical response.

1.6.1 Edge and size effects of lattice materials

When the macroscopic size of the sample is reduced into a microstructural size (size of a unit cell), new

deformation mechanisms of the microstructure become apparent, expressed as interfacial and surface

effects at the sub-micron scale. Most material classes demonstrate such size effects when the volume

element being considered is too small for averaging towards a continuous medium that is meaningful.

Size reduction may lead to stronger materials, which occurs for monocrystalline materials, ceramics, or

composites. By designing architected materials at the nanoscale, it is possible to separate interdependent

properties such as weight and strength. This allows designers to push the performance limits of existing

materials.

Some experimental results on cellular solids, done on the macroscopic scale, have shown a size effect due

to the relative size of the specimen and the unit cell size [114–116]. Nevertheless, it is widely recognized

that Cauchy effective models are incapable of capturing the effects arising from these microstructural

length scales of materials [114,117–119]. Size effects observed in lattice materials are typically categorized

into two main types. The first type occurs due to the the edge of the macrodomain that is crossed by

a truncated unit cell near the surface of the specimen [114, 116–119]. The second effect, known as

the micropolar effect, arises from the inadequacy of classical continuum theory in describing macroscopic

properties, such as flexural rigidity, when the lattice material’s unit cell size is not small enough compared

to the size of structural sample [120]. These limitations of classical homogenization methods can be

overcome by using enriched effective continua, such as generalized continua including either additional

degrees of freedom, such as rotation or higher gradients of fields such as displacement.

1.6.2 Quasi-periodic homogenization: the absence of strict periodicity

Quasi-periodic composites have a distinct feature that sets them apart from periodic composite materials:

their unit cell does not repeat in an exact periodic pattern throughout the structure. Instead, the

unit cell gradually changes along one or more periodicity directions, known as grading directions. This

characteristic has led to the development of functionally graded materials (FGM), which are characterized
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1.6. Limitations in the literature

by a spatial variation of the geometry (and occasionally the material properties) of the microstructure

within the unit cell. Fig. 1.10 [121] demonstrates this concept, using inclusion-based composite as an

example.

One can use functionally graded materials (FGMs) with specific spatial gradients in thermal or

mechanical properties for various engineering applications, such as thermal barrier coatings or contact

surfaces [122]. When the grading in FGMs is too rapid compared to the size of the heterogeneities in the

structure, classical homogenization methods become no longer applicable, which prohibits the definition

of a statistically homogeneous representative volume element [121].

In such cases, the grading of the geometry cannot be neglected at the microscopic level, and any

representative volume element must also be graded at the micro level. However, if the unit cell

of a heterogeneous structure varies smoothly in space, the grading within adjacent unit cells can

be disregarded, so that a given unit cell does not detect that its neighboring cells have a distinct

microstructure. This feature leads to consider the homogenized behaviour locally without considering

variations in the microgeometry of successive unit cells. Only the macro grading is taken into account to

address the fact that homogenized material properties vary between unit cells in the macro-domain. In

such situations, the initially heterogeneous structure can be modeled as a graded macroscopic material

based on a field of homogenized properties that vary slowly at the macroscale. For example, layered

materials with a graded microstructure can be approximated by an equivalent FGM with continuously

varying properties at the macroscale [122–124]. This involves replacing the unit cell with a homogeneous

Cauchy type material (with behavior remaining purely local in space), but with macroscopically varying

properties (while ignoring the microstructural variation at the microlevel).

Figure 1.10 Illustration showing the quasi-periodic domain obtained from a periodic one with changing (a) the

inclusion size, (b) the inclusion spacing, and (c) the material properties [121].
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1.6.3 Difficulties in determining flexoelectric properties

Determining the flexoelectric tensor experimentally is a difficult task due to several factors. Firstly, the

measurements require high-resolution equipment capable of detecting such small values. Additionally, it

is challenging to isolate the flexoelectric effect from other physical phenomena in experiments. Moreover,

the flexoelectric tensor has a high number of independent components, adding to the complexity of the

experimental quantification [2].

Mathematical and computational models face another challenge due to the non-local nature of

flexoelectricity, which involves strain or polarization gradients. As a result, analytical solutions are

limited to simple 1D or 2D geometries. In such cases, numerical methods can be used as alternative

strategies but they usually have some limitations or inefficiencies [2]. While many approaches aimed to

model flexoelectricity from a phenomenological point of view [7,51,125,126], few contributions deal with

homogenization approaches to determine flexoelectric properties [127,128].

1.7 Addressed scientific issues and methodology

Developing enriched continuum models of solids with a microstructure, especially composites and

architected materials, requires addressing multiple scientific challenges outlined previously in the

mechanical and multiphysical areas. To address these scientific issues, this thesis introduces several

innovative aspects, which are outlined below:

• A new discrete homogenization model of periodic lattice materials is developed to upscale the

microstructural information towards an effective strain gradient continuum at the macroscopic

level;

• The scaling laws of the computed strain gradient moduli versus the absolute edge lengths of periodic

architected materials are derived in a 2D context and are confirmed based on a different method

involving the notion of shape derivative;

• An extended second strain gradient formulation of surface effects is proposed, generalizing Mindlin’s

approach to surface elasticity;

• New homogenization schemes of quasi-periodic microstructures are proposed in the context of strain

gradient theory;

• A novel homogenization method of heterogeneous piezoelectric microstructures is developed relying

on variational principles articulated with Hill lemma to evaluate the piezoelectric effective moduli

in the region of small strains;

• The piezoelectric homogenization is then extended to determine the flexoelectric properties, thereby

accounting for higher-gradient effects;

• A numerical algorithm is proposed and applied for the determination of piezoelectric and

flexoelectric properties of different types of composites, architected materials and wave propagation;
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• A variational based homogenization method for magnetoelastic composite materials is established

using Hill lemma, towards Cosserat effective media, in a small strains framework.
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1.8 Thesis outline

The thesis aims to bring some new developments in the field of homogenization of heterogeneous materials

prone to multiphysical phenomena, focusing on piezoelectricity and magnetoelasticity. Moreover, while

homogenization of periodic media have deserved a lot of contributions in the relevant literature, fewer

works consider micromechanical approaches to upscale the response of quasi-periodic media in the context

of higher gradient theories. The content of the manuscript accordingly reflects these two aspects tackled

into the thesis; it is divided into two parts that cover explicitly the two aforementioned scientific issues.

Part I of the manuscript deals with the homogenization of periodic and quasi-periodic media towards

a strain gradient effective continuum. This is shown, precisely, in chapter 2 where a discrete

homogenization method is applied for periodic architected materials leading to the elaboration of the

higher order effective properties as closed form expressions depending on the edge length of the window

of analysis. Whereas, in chapter 3, the idea of mapping any unit cell of the quasi-periodic domain

to a parent periodic (fixed) unit cell is introduced through a quasi-periodic homogenization. This

homogenization is developed starting from a volumetric expression of the energy and relying on the

notion of shape derivative to determine the effective quasi-periodic properties.

Part II of the manuscript accounts for multiphysical aspects in the homogenization approaches

towards generalized continua. This appears clearly in chapter 4 where the theory of piezoelectric and

flexoelectric homogenization is elaborated and followed by numerical applications for the homogenization

of piezoelectric composites and architected materials as well as wave propagation analysis in chapter 5.

Moreover, homogenization towards Cosserat (micropolar) effective continuum is addressed in chapter 6

for magnetoelastic heterogeneous solids.

Finally, in the general conclusion, we summarize the main findings and novelties of the research and

list the proposals for future developments.
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Part I

Homogenization of periodic and

quasi-periodic media towards strain

gradient effective continua
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Chapter 2

Analysis of surface effects based on

first and second strain gradient

mechanics

Summary
This chapter provides an analysis of surface effects (edge effects in 2D) in the mechanical response of

architected materials modeled in the framework of strain gradient mechanics. The classical and strain

gradient properties are evaluated by relying on a dedicated discrete homogenization method to upscale

the microstructural information towards an effective strain gradient continuum at the macroscopic level.

The formulation of the strain gradient model formulated via Hill extended macrohomogeneity condition

allows a proper surface expression of the effective strain gradient kinematic and static variables. The

scaling law of the strain gradient moduli with the edge contribution is obtained from their closed-form

expressions versus the lattice microstructural parameters, and recoursing to the notion of shape derivative.

The sensitivity of the strain gradient moduli to the surface effects (through edge contribution here) is

evaluated, showing that absolute size effects are well captured by strain gradient moduli. The energetic

formulation of a second strain gradient continuum allows to revisit the notion of anisotropic surface

energy, thereby providing a generalization of Mindlin’s model [129] of surface energy.
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2.1 Introduction

It is well known that absolute size effects cannot be captured by standard elasticity theory based on the

sole displacement gradient as a kinematic descriptor [130] since this theory is devoid of any internal length

scale. The generalized continuum theories developed in the early sixties together with homogenization

methods had the main objective to extend the range of validity of the classical Cauchy theory of elasticity

beyond the strict assumption of scale separation [131]. Higher-order micro-continuum theories have been

developed to account for the microstructure effects within heterogeneous solid bodies by introducing either

additional degrees of freedom - like the Cosserat medium [132] or the micromorphic medium [133] -

or additional higher-order gradients, as for the second gradient continuum [134, 135], both strategies

leading to new material constants in addition to the conventional ones [129, 136–148]. Those theories

introduce additional intrinsic parameters and internal length scales to correlate the microstructure to

kinematic and static variables at the macroscopic level of an enriched continuum [149,150]. Higher-order

continuum theories trace back to the works of the Cosserat brothers [151], followed by Toupin [134] and

Mindlin [129, 148]; they found a proper generalized formulation in subsequent works by Germain [152]

and Sedov [153] using the virtual power method accounting for an enriched set of kinematic variables.

Recent advances in the literature have seen many homogenization approaches either towards second

gradient continuum [154–156] or Cosserat and micromorphic continua such as in [157–159]

Moreover, it is well established that unusual and novel properties of nanomaterials emerge from their

surface/interfacial properties. One well-known consequence of surface properties is the appearance of

size effects, traducing the dependency of the effective mechanical properties on the absolute size of

the considered specimen, as exemplified in [160–164]. The analysis of surface phenomena and the

formulation of models used in the context of surface-related mechanics originates in the pioneering works

of Laplace [165, 166], Young [167], and Poisson [168], who introduced surface tension for fluids and

formulated the corresponding boundary-value problems. Later on, Gibbs generalized the notion of surface

tension for solids [169]. An account of the recent state of the art in the theory of capillarity can be found

in [170,171]. Gurtin and Murdoch [172,173] elaborated a model of surface elasticity for elastic solids prone

to large deformations; an elastic membrane is attached to the surface, with the stress resultant tensor

within the membrane deserving the interpretation of surface stresses. This so-called Gurtin–Murdoch

model predicts the size effects observed for nanosized materials [174–176], for which surface properties

dominate over bulk properties.

The different models that incorporate surface effects involve enhanced constitutive equations including

a description of the surface behavior, introducing a surface stress tensor constitutively related to a

surface strain measure. More general surface models beyond the Gurtin-Murdoch model have been

developed in the literature [177–185], like a Cosserat surface for material interfaces [186]. These extended

models include additional material parameters [187–193], the determination of which is most of the time

challenging.
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Lattice materials are a type of structural and functional material with tunable mechanical and

multiphysical properties that are increasingly being used in engineering applications due to their broad

range of qualities that traditional materials cannot meet. As a type of porous material with reticulated

structures, lattice materials are frequently developed with a periodic microstructure, allowing the

identification of a repeated unit cell (UC in short). This property enables the efficient design of structures

with excellent mechanical properties that can be manufactured using additive manufacturing techniques

on the level of nanoscale [194].

Many works in the literature were devoted to predict the effective properties of lattice materials,

each attempting to upscale the microscopic lattice level behavior to that of an effective continuum with

homogenized properties. When such analyses are performed, two critical issues must be taken into

account: first, the appropriate continuum theory for the substituted homogeneous medium, which is

dependent on the inner lattice architecture and deformation mechanisms; and second, the ability of

evaluating the scaling of classical and higher-order mechanical properties concerning for appropriate

microstructural parameters. Measurements or recoursing to multiscale analyses can both be used to

determine the structural response of an effective substitution medium. Fully resolved simulations, on the

other hand, are almost always computationally too expensive [195]. Multiscale homogenization methods,

on the other hand, can effectively relate calculated effective continuum-based properties of a supposed

effective medium to microstructural lattice-based geometrical and mechanical parameters [196].

When compared to continuous homogenization approaches, discrete homogenization techniques use

reduced, discrete type models for the structural elements of the lattice, characterizing the UC as a

collection of bars or beams. As well, discrete homogenization is suitable for low-density lattice materials

and architected materials because of their inner structural elements that can be naturally described as

rods or beams at a low computational cost. These discrete modeling methods offer a benefit of taking

into account a limited number of degrees of freedom (DOF) at the microscale and may also yield to

analytical formulations for the effective moduli in certain situations [107,108]. Continualization methods

introduced in [109] are a class of the discrete homogenization methods that have gained notable attention

in the literature. The methodology is further detailed in [197], and it will be used in the current work.

In this chapter, we adopt a strain gradient formulation for periodic architected materials with the main

objective to analyze the contribution of surface effects (mainly edge effects that can lead to absolute size

effects) based on strain gradient models of lattice materials constructed from homogenization methods.

The novel aspects investigated in this chapter are the following ones:

• A new discrete homogenization method adequate for architected media endowed with a discrete

topology towards strain gradient effective continua is developed.

• The scaling laws of the computed strain gradient moduli versus the absolute edge lengths of periodic

architected materials are derived in a 2D context.

• The dependency of the strain gradient effective moduli on the absolute edge length is confirmed by

the computation of their shape derivative dependency.
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• An extended second strain gradient formulation of surface effects is proposed, generalizing Mindlin’s

approach to surface elasticity.

The outline of the chapter is as follows: a discrete homogenization method of 2D lattice materials towards

an effective strain gradient continuum is exposed in section 2.2. Thereby, the strain gradient elastic

properties of architectured materials (exemplified by hexagons and square geometries) are evaluated in

closed form versus the unit cell lattice microstructural parameters, focusing on the square and hexagonal

unit cells. Based on this knowledge, the absolute size dependency of strain gradient moduli versus

the edge length is evaluated (section 2.2). The sensitivity of the strain gradient moduli to geometrical

parameters of the unit cell is evaluated in the same section 2.2. The shape derivative of the effective

moduli is evaluated in section 2.3 as an alternative for analyzing absolute size effects caused by an edge

contribution. An anisotropic notion of surface energy is derived in section 2.4 from a second strain

gradient formulation, thereby providing a generalization of Mindlin’s model. Conclusion is provided in

section 2.5.

A few words regarding notations are in order. Vectors and higher-order tensors are denoted with

boldface symbols. The bracket ⟨f(yyy)⟩Y := 1
|Y |
∫
Y

f(yyy)dVy denotes the volume average of any quantity,

here the scalar-valued function f(yyy) over the domain of a reference lattice unit cell Y, with infinitesimal

integration volume dVy. The partial derivative of a scalar function f (x) is denoted alternatively ∂xfor
∂f
∂x . The second order identity tensor is denoted III. The gradient and divergence of a second order tensor

AAA are successively denoted by the quantities AAA⊗ ∇x and AAA.∇x. The transpose of the second order tensor

is denoted with a superscript ‘T’, so for instance AAAT .

2.2 Derivation of the strain gradient mechanics as a function of

the length of lattice unit cell

In this section, we provide a more theoretical basis of the surface effects captured by strain gradient

moduli by first deriving a surface formulation of Hill macrohomogeneity condition [74] to highlight the

dependency of strain gradient moduli on a lattice length parameter. In the second part, the analytical

expressions of the strain gradient moduli are derived through a discrete method of homogenization to

show explicitly their dependency on the unit cell edge length.

2.2.1 Surface formulation of Hill macro-homogeneity condition

At the microscopic scale, the material is assumed to obey linear elasticity, so that the symmetrical Cauchy

satisfies the following BVP posed over the UC with anti-periodic traction conditions (with no body force
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tensor): ∣∣∣∣∣∣∣∣∣∣
σσσ · ∇y = 0= 0= 0 in Y

σσσ.n.n.n = ttt on ∂Y

σσσ = C : εC : εC : ε

(2.1)

With σσσ being the symmetrical Cauchy stress, nnn the unit-length exterior normal vector, ttt the traction

vector, CCC the fourth-order microscopic rigidity tensor, and εεε the second-order strain tensor. We evaluate

the virtual work of internal forces, the scalar-valued integral
∫

Y
σσσ : (ωωω⊗∇y)dV , for a virtual velocity of

the following form ωωω (xxx,ξξξ) = EEE(xxx) ·ξξξ+ 1
2KKK(xxx) · (ξξξ ⊗ ξξξ), characteristic of the homogeneous strain gradient

continuum, with ξξξ := yyy − xxx, EEE , and KKK = EEE ⊗ ∇x defining respectively the relative microposition,

the strain, and strain gradient. Then, by converting volume integrals into surface integrals, a surface

formulation of the Hill-Mandel macro-homogeneity condition is reached in the context of strain gradient

mechanics [198]; this is explained in more technical details in Eq. A.4 of Appendix A:

∫
Y

σσσ : (ωωω⊗∇y)dV = 1
|Y |

∑
i=1,2

((
EEE(xxx) · YYY i

)
⊗NNN i

)
:
∑

j=1,2

(∫
∂Y

(σσσ ·nnn) ds⊗ YYY j

)
+

+
∑

i=1,2

((
KKK(xxx) · YYY i

)
⊗NNN i

)
∴
∑

j=1,2

(
1

2 |Y |

∫
∂Y

(σσσ ·nnn) ds
)

⊗ YYY j ⊗ YYY j

= ⟨σσσ⟩Y : EEE + ⟨ξξξ ⊗ σσσ⟩Y ∴KKK = ΣΣΣ : EEE +SSS ∴KKK

⇒ ΣΣΣ := ⟨yyy ⊗ ttt⟩∂Y = 1
|Y |

∑
j=1,2

(∫
Γj

tttdsy ⊗ Y
−
Y
−
Y
−

j

)

⇒ SSS := 1
2 ⟨yyy ⊗ yyy ⊗ ttt⟩∂Y = 1

|Y |
∑

j=1,2

1
2

(∫
Γj

tttdsy ⊗ Y
−
Y
−
Y
−

j ⊗ Y
−
Y
−
Y
−

j

)
(2.2)

in which NNN i denote the macroscopic unit exterior normal. The upscaling of the microscopic virtual work

leads to the macroscopic virtual work, expressing the duality product ΣΣΣ : EEE +SSS ∴KKK of the macroscopic

stress and hyperstress tensors with the macrostrain and macrostrain gradient tensors. Accordingly, the

macroscopic Cauchy stress and hyperstress tensors express as unit cell volume averages of the microscopic

Cauchy stress tensor weighted by the microposition vector, as expressed in the first set of the last two

equalities in Eq. 2.2. Alternatively and at the macroscale, the classical and higher order stress tensors are

expressed (second set of equalities in the last two relations of Eq. 2.2) as dyadic products of the surface

average of the traction over the UC boundary, viz. the integral term
∫

∂Y

(
σ
∼
σ
∼
σ
∼

·n
−
n
−
n
−

)
dsy with the periodicity

vectors
{
Y
−
Y
−
Y
−

j

}
associated to a given unit cell of a periodic heterogeneous domain shown in Fig. 2.1.

The periodicity vectors
{
Y
−
Y
−
Y
−

j

}
in previous relations relate material points under the periodicity

conditions that hold for the unit cell shown in Fig. 2.1. Material points crossing the outer UC boundary

are associated by pairs (from left to right boundaries and bottom top boundaries successively), with

Γ1,Γ2 denoting the ‘internal’ boundaries, respectively the left vertical and bottom horizontal edges for

the considered 2D rectangular unit cell domain.
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Figure 2.1 Periodic unit cell of a periodic material and definition of the internal boundaries and periodicity

vectors.

While Cauchy stress and strains each involve one periodicity vector, this is not the case for the higher-

order terms, where the presence of the periodicity vectors in the higher-order strain and stress tensors

is unbalanced: Y
−
Y
−
Y
−

j appears indeed twice in the hyperstress (the second term on the right-hand side of

previous relation), but only once in the conjugated higher-order strain tensor. These facts have the

consequence that Cauchy moduli do not depend on any absolute length, in contrast to strain gradient

moduli. As it is well-known, the ratio of strain gradient to Cauchy moduli leads to the elaboration of

internal lengths quantifying the strength of strain gradient interactions, so the intensity of interactions

between neighboring unit cells. Beyond these internal lengths, strain gradient moduli may intrinsically

depend on some absolute size through some geometrical length parameters.

We aim in the present chapter to investigate the dependency of the strain gradient formulation of

architected media on the absolute size and to identify the relevant geometrical parameter of interest. For

this purpose, we will elaborate a discrete homogenization method to derive the effective strain gradient

moduli of periodic lattice materials, from the response of an identified repetitive unit cell.

2.2.2 Discrete homogenization of lattice materials

The effective (in a homogenized sense) properties of a strain gradient effective medium are derived from

the periodic lattice material through a discrete homogenization method. The first step of the discrete

homogenization method lies in the periodic repetition of an elementary unit cell made up of beams

connected at nodes to define an infinite network in the plane or in 3D space. This discrete homogenization

is developed based on a Taylor-series expansion of the kinematic variables [199–201]. To set the stage,

a homogeneous isotropic beam element obeying Bernoulli beam theory is adopted for each of the struts

building the investigated architected materials. The homogenization method is exemplified by the case

of the topology of the hexagon, parameterized with the two lengths L and h, the thickness parameter

t and the angular variable θ, as shown in Fig. 2.2. The second lattice material of interest in this work

is the square lattice of linear length L and thickness t represented in Fig. 2.3. Referring to Fig. 2.2
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Figure 2.2 Hexagon unit cell with periodicity vectors and geometrical parameters (nodes and beam numbering).

Figure 2.3 Square unit cell with periodicity vectors and its geometrical parameters (nodes and beam numbering).

and Fig. 2.3, there exists a dependency between the nodes of the unit cell according to the periodicity

vectors for each of the two lattices. This dependency is determined according to Eq. B.7 and illustrated

in Table 2.1 and Table 2.2 for the UC building the hexagonal and square lattices respectively.

Table 2.1 Dependency Relations of the Hexagon UC nodes

Independent node Dependent node
−→
YYY 111

−→
YYY 222

1 3 1 0

1 5 0 1

2 4 0 -1

2 6 -1 0

Table 2.2 Dependency Relations of the Square UC nodes

Independent node Dependent node
−→
YYY 111

−→
YYY 222

1 2 1 0

1 3 0 1
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These dependency relations are utilized to generate the transformation matrix, which allows reducing

the set of kinematic variables to the minimum independent ones and the lattice equilibrium to its periodic

form: a dependency between the nodes of the UC takes place according to the following two relations for

the kinematic variables and forces, successively the two relations:

qqqdependent = T= T= T qqqindependent (2.3)

fff independent = TTTTfffdependent = 0 (2.4)

wherein qqqdependent, TTT , qqqindependent are successively the vectors of degrees of freedom (DOF in short) of

the dependent nodes, the transformation matrix, and the vector of the DOF’s of the independent nodes.

The vectors fffdependent and fff independent are the nodal forces of the dependent and independent nodes

respectively.

In the present 2D situation, the vectors or nodal DOFs expand as follows for the hexagonal UC to be

more specific, with the first index referring to the node number (Fig. 2.2 and Fig. 2.3), and the second

index indicating the direction (x or y):

qqqT
dependent

===
[
u1x u1y u2x u2y u3x u3y u4x u4y u5x u5y u6x u6y

]
qqqT

independent
===
[
u1x u1y u2x u2y

]
The detailed computations leading to the expression of the microscopic homogeneous displacement field

in 2D versus the macroscopic strain and strain gradient tensors are to be found in [198]:

uuu (xxx,yyy) =

∣∣∣∣∣∣∣∣
ux = u0x + E11x+ E12y +K111

x2

2 +K112xy −K221
y2

2 + (K122 +K212) y
2

2 ,

uy = u0y + E21x+ E22y −K112
x2

2 + (K121 +K211) x
2

2 +K221xy +K222
y2

2

(2.5)

wherein the vector uuu0 (xxx) = (u0x, u0y) describes a rigid body motion. This expression will be used for the

derivation of the strain gradient effective moduli based on the proposed discrete homogenization method.

The infinitesimal displacement field of a periodic node in any lattice material can be formulated

according to Eq. 2.5, resulting in the following formulation of the UC discrete DOF’s versus the continuous
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kinematic variables of the adopted effective second gradient medium.

u1x

u1y

u2x

u2y

u3x

u3y

u4x

u4y

u5x

u5y

u6x

u6y



=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




u1x

u1y

u2x

u2y



+



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

(x3 − x1) 0 (y3 − y1) (x3−x1)2

2 (x3 − x1) (y3 − y1) − (y3−y1)2

2 0 0 (y3 − y1)2

0 (y3 − y1) (x3 − x1) 0 − (x3−x1)2

2 (x3 − x1) (y3 − y1) (y3−y1)2

2 (x3 − x1)2 0

(x4 − x2) 0 (y4 − y2) (x4−x2)2

2 (x4 − x2) (y4 − y2) − (y4−y2)2

2 0 0 (y4 − y2)2

0 (y4 − y2) (x4 − x2) 0 − (x4−x2)2

2 (x4 − x2) (y4 − y2) (y4−y2)2

2 (x4 − x2)2 0

(x5 − x1) 0 (y5 − y1) (x5−x1)2

2 (x5 − x1) (y5 − y1) − (y5−y1)2

2 0 0 (y5 − y1)2

0 (y5 − y1) (x5 − x1) 0 − (x5−x1)2

2 (x5 − x1) (y5 − y1) (y5−y1)2

2 (x5 − x1)2 0

(x6 − x2) 0 (y6 − y2) (x6−x2)2

2 (x6 − x2) (y6 − y2) − (y6−y2)2

2 0 0 (y6 − y2)2

0 (y6 − y2) (x6 − x2) 0 − (x6−x2)2

2 (x6 − x2) (y6 − y2) (y6−y2)2

2 (x6 − x2)2 0





Exx

Eyy

Exy

Kxxx

Kxxy

Kyyx

Kyyy

Kxyx

Kxyy



(2.6)

The stiffness system of a UC that has b elements connected between j nodes is of the following expression:

KKKsq = fq = fq = f (2.7)

where KKKs ∈ Rj×j is the stiffness matrix of the structure that relates the applied force vector, fff ∈ Rj

to the nodal deformation vector, qqq ∈ Rj (corresponding to qqqdependent in Eqs. 2.3). Eqs. 2.3 and 2.4 are

substituted into the stiffness system of the UC, Eq. 2.7, to derive its periodic reduced form as follows (q̃̃q̃q

and f̃̃f̃f correspond to the independent vectors in Eqs. 2.3 and 2.4)

K̃KKsq̃ = f̃q̃ = f̃q̃ = f̃ (2.8)

where K̃KKs is the reduced stiffness matrix of the UC, expressed versus the original stiffness matrix as

follows:

K̃KKs = TTTTKKKsTTT (2.9)

Substituting Eq. 2.4 and 2.6 in Eq. 2.7 results in the following set of algebraic equations

K̃KKs q̃+q̃+q̃+ TTTTTTKKKsĀε̄ = f̃Āε̄ = f̃Āε̄ = f̃ (2.10)
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Chapter 2. Analysis of surface effects based on first and second strain gradient mechanics

that are solved for the independent microscopic displacement field versus the macro kinematic variables

of the strain gradient continuum. Ā̄ĀA and ε̄̄ε̄ε are respectively the matrix to create continuous nodal

displacement, and the vector of kinematic variables of the continuum model. These expressions are

then substituted along with Eqs. 2.3, 2.4, and 2.6 into the expression of strain energy Eq. 2.11 to get the

continuous expression of the strain gradient strain energy density:

Ws = 1
2q

TKKKsq = 1
2
[
TTT q̃ + Ā̄ĀAε̄̄ε̄ε

]T
KKKs

[
TTT q̃ + Ā̄ĀAε̄̄ε̄ε

]
(2.11)

The nodal forces and deformations formulated in the previous section are used to derive the effective

mechanical properties using Hill-Mandel macro-homogeneity condition, which can be written, according

to [198], as:

WWW s (EEE,K,K,K) === 1
2(ΣΣΣij ::: EEEij +++SSSijk ∴KKKijk) = ⟨wwwµµµ⟩ (2.12)

The stress and hyperstress are formally expressed as the partial derivative of the macroscopic strain

energy density with respect to the conjugated kinematic variables:

ΣΣΣij = ∂WWW s

∂EEEij
, SSSijk = ∂WWW s

∂KKKijk
(2.13)

Then, according to the general constitutive law in Eq. 2.14 (considering a 2D formulation with the

following correspondence of indices: i, j, k, l=x,y)

ΣΣΣij === CCCijkl ::: EEEkl +++BBBijklm ∴KKKklm

SSSijk === BBBijkpq
TTT ::: EEEpq +++AAAijkpqr ∴KKKpqr

(2.14)

the effective strain gradient homogenized properties appear in component form in the effective strain

gradient constitutive law:


Σxx

Σyy

Σxy

 =


C11 C12 0

C12 C22 0

0 0 C33



Exx

Eyy

Exy

+


B11 B12 B13 B14 B15 B16

B21 B22 B23 B24 B25 B26

B31 B32 B33 B34 B35 B36





Kxxx

Kxxy

Kyyx

Kyyy

Kxyx

Kxyy




Sxxx

Sxxy

Syyx

Syyy

Sxyx

Sxyy


=



B11 B21 B31

B12 B22 B32

B13 B23 B33

B14 B24 B34

B15 B25 B35

B16 B26 B36




Exx

Eyy

Exy

+



A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66





Kxxx

Kxxy

Kyyx

Kyyy

Kxyx

Kxyy



(2.15)

wherein [C], [B], and [A] are respectively the homogenized Cauchy, coupling and strain gradient tensors.

The same procedure is to be followed for the square unit cell by applying the periodicity relations according
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2.2. Derivation of the strain gradient mechanics as a function of the length of lattice unit cell

to Table 2.2.

The non-zero effective moduli for the hexagon and square lattices are determined as closed-form

expressions of the microscopic parameters of the UCs shown in Fig. 2.2 and Fig. 2.3. (see Table C.1

and Table C.2 in Appendix C). The coupling matrix [B] is found to be zero for the hexagonal UC as

expected due to its centrosymmetric features.

The predictions of the employed discrete homogenization method are compared to the predictions of an

alternative discrete homogenization method developed in [202] summarized in the Appendix D. A good

agreement is obtained in Fig. 2.4 between the values of effective strain gradient parameters obtained from

both methods as a function of θ of a hexagonal unit cell (with a maximum relative difference around 5%).

Figure 2.4 Homogenized Cauchy and strain gradient tensile moduli obtained computed from the present discrete

homogenization method and the method in literature [202] versus θ for the hexagonal UC .

We subsequently investigate the ability of the identified strain gradient mechanical model to capture

absolute size effects.
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Chapter 2. Analysis of surface effects based on first and second strain gradient mechanics

2.2.3 Absolute size dependency of strain gradient moduli

In order to determine the expected absolute edge length dependency of the effective strain gradient moduli,

a selection of first and strain gradient moduli obtained on previous section (their analytical expressions

are in Appendix C) is plotted versus the edge length of the hexagon and square unit cells. We vary

the unit cell shape in a self-similar manner, such a way that the volume fraction remains constant. The

volume fraction of material can be determined by adjusting the microstructural parameters from the

following relation:

V ∗
f =

(
1 − Vvoid

Vcell

)
(2.16)

The volume fraction of material is set in this section for all UC configurations to be equal to 0.4. The

mechanical properties are selected for aluminum, with E=69000 MPa, ν = 0.3, and b=1mm (outward

plane thickness), with the angular variable set to be θ = 30◦ for the regular hexagon.

As shown in Fig. 2.5 and Fig. 2.6, the Cauchy effective moduli for the hexagon and square unit cells

remain constant when the dimensions of the unit cell vary; this finding is consistent with the fact that

Cauchy elasticity is devoid of any intrinsic length, and they remain unchanged for self-similar UC shapes

sharing the same relative volume fraction of material. In contrast to this, the strain gradient effective

moduli show a quadratic increase with the unit cell edge length for both considered unit cells.

(a) (b)

Figure 2.5 Cauchy (a) and strain gradient moduli (b) as a function of the unit cell edge length for the regular

hexagonal unit cell.
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2.2. Derivation of the strain gradient mechanics as a function of the length of lattice unit cell

(a) (b)

Figure 2.6 Cauchy (a) and strain gradient moduli (b) as function of the unit cell edge length for the square unit

cell.

2.2.4 Sensitivity of the effective strain gradient moduli to lattice geometrical

parameters

In this paragraph, an analysis is performed to study the sensitivity of the effective moduli to the

geometrical parameters of the unit cell. For the hexagonal unit cell, the chosen design variables are

the dimentionless ratio t/L and the angular variable θ with the ranges t/L ∈ [0.04, 0.2] and θ ∈ [−15, 50].

In all subsequent analyses, the out-of-plane thickness is set to be b = 1 mm and the ratio L/h is fixed

at a constant unity value. The mechanical properties (Young modulus and Poisson’s ratio) of the base

material of the unit cell are E = 69000 MPa and ν = 0.3.

Fig. 2.7 shows the contour plots of the strain gradient modulus A11, the Cauchy modulus C11, and the

associated internal length lx =
√

A11
C11

, respectively, as a function of the geometrical variables t/L and θ.

The values of A11 and C11 increase as the angular variable θ decreases. This shows that the re-entrant

hexagon, defining an auxetic configurations (it has a negative Poisson’s ratio) has higher values of the

effective strain gradient moduli compared to the regular hexagon with positive Poisson’s ratio values.

The internal length lx shows the highest values for the hexagonal UC compared to the rectangular and

even the re-entrant UC; for both the extension and shear modes, the internal length values reaches about

70% of the UC linear size for configuration angles around 40°. For auxetic hexagonal configurations, the

internal length in the uniaxial extension mode reaches similar values of 71%, with the internal length in

shear reaching lower values of about 40% of the UC linear size (Fig. 2.8).
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Chapter 2. Analysis of surface effects based on first and second strain gradient mechanics

(a) (b)

(c)

Figure 2.7 Contour plots of effective moduli for the hexagonal lattice (a) A11,(b) C11, and internal length (c) lx

as a function of the geometrical lattice parameters t/L and θ

Fig. 2.8 reflects the shear modes, showing the contour plots of the effective moduli A55, C33 and internal

shear length lxy. The effective strain modulus A55 increases with the ratio t/L for the three considered

lattice materials, but the highest values are attained for the hexagon. However, the Cauchy modulus

C33 shows the highest values for the re-entrant unit cell, while the internal length lxy reaches its highest

values for the hexagon at low values of the slenderness ratio t/L.
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2.3. Shape sensitivity of the strain gradient moduli

(a) (b)

(c)

Figure 2.8 Contour plots of effective moduli of the hexagonal lattice (a) A55 (b) C33, and internal length lxy (c)

as a function of the geometrical parameters t/L and θ

In the next section, we use a different method to analyze the absolute edge length dependency of the

effective strain gradient moduli, relying on the evaluation of the sensitivity of these moduli to a variation

of their shape, to induce a variation of unit cell area (edge length in the considered 2D situation). More

specifically, the variation the unit cell edge length over self-similar unit cell shapes is achieved by imposing

a suitable shape velocity field to the UC internal and external edges defining the UC boundaries.

2.3 Shape sensitivity of the strain gradient moduli

To quantify the sensitivity of the effective strain gradient moduli of the considered architected materials

to the variation of the periodic unit cell boundary, thusly versus the total amount of edge length of the

lattice UC in the considered 2D context, we rely on the notion of shape derivative of the strain energy

for an effective medium of purely strain gradient type. Indeed, for such self-similar shapes, the Cauchy

effective moduli will remain the same. Concerning this objective to quantify the absolute edge length

dependency of the effective strain gradient moduli, the basic underlying physical idea is that surface effects
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Chapter 2. Analysis of surface effects based on first and second strain gradient mechanics

in 3D (or edge effects for 2D geometries) arise as a suitable measure of the resistance of an interface or

surface to change of its shape or size (area in 3D, length in 2D) due to the ‘deformation’ (in the sense of

design variation) of the enclosed domain.

2.3.1 Shape derivative of the energy within the framework of strain gradient

mechanics

Consider initially a domain Y with boundary ∂Y subjected to a perturbation, so that the new domain

occupied by the unit cell becomes : Yτ := {yyyτ = yyy + τVVV S , yyy ∈ Y }, with τ a small scalar parameter used

to parameterize the domain and VVV S := δXXX |∂Y the shape velocity field representing the change of UC

boundary, so it is an input field for modifying the unit cell design [203]. The unit exterior normal vector

to the domain filled with material is denoted NNN here and in the sequel. The shape velocity field vector

VVV S can be decomposed into a normal part VS,NNNN and a tangential contribution VVV S,T , this last part being

known not to contribute to the shape derivative [204]:∣∣∣∣∣∣∣∣∣∣
VVV S = VVV S,T + VS,NNNN

VS,N := VVV S .NNN

VVV S,T .NNN = 0

(2.17)

in which the scalar projection VS,N represents the magnitude of the normal shape velocity.

The shape derivative Ds of the cost function J defined on the set of domains Yτ parameterized with τ

parameter is elaborated as the following limit [204]:

DsJ = lim
τ→0

J (Yτ ) − J (Y )
τ

(2.18)

in which Y := Yτ=0 denotes the initial unperturbed domain. Selecting the total potential energy as the

cost function, its shape derivative is then expressed after some derivations over the homogenized domain

according to [204] as:

DsJ =
∫

∂Y

NNN.ΣΣΣEshelby.δXXXd (∂Y ) (2.19)

wherein J is defined as the difference of the internal energy of the homogeneous continuum Vx and the

work of external forces acting on it:

J (Yτ ) := Win −Wext (2.20)

The second order tensor therein ΣΣΣEshelby := wµIII − εεεT .σσσ is the Eshelby stress acting at the microscopic

level of the lattice unit cell. Thus, we get from Eq. 2.19 and for the more specific choice of a purely

normal shape velocity field the expression of the shape derivative of the total potential energy

DsJ =
∫

∂Y

NNN.ΣΣΣEshelby.NNNVS,Nd (∂Y ) =
∫

∂Y

ΣΣΣNNVS,Nd (∂Y ) (2.21)

Thereby, the normal component of Eshelby stress ΣΣΣNN := NNN.ΣΣΣEshelby.NNN in short can be viewed as the

driving force acting to change the shape of the domain, possibly at the expense of an extra energy cost
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2.3. Shape sensitivity of the strain gradient moduli

associated with the concomitant increase of the domain area (in 3D) or edge (in 2D). Note that the

physical unit of the previous integral is that of energy (in Joules).

The surface integral on the right-hand side of Eq. 2.21 defines a surface density of mechanical energy

acting on the unit cell boundary :∫
∂Y

ΣΣΣNNVS,Nd (∂Y ) =
∫

∂Y

(wµ (εεε) − εεε.σσσ)VS,Nd (∂Y )∣∣∣∣∣∣∣
εεε = AAAK ∴KKK,

σσσ = cccµ : εεε = cccµ : AAAK ∴KKK

⇒
∫

∂Y

ΣΣΣNNVS,Nd (∂Y ) = 1
2

∫
∂Y

(
AAAK ∴KKK : cccµ : AAAK ∴KKK

)
VS,Nd (∂Y ) −

∫
∂Y

NNN.
(
AAAK ∴KKK.cccµ : AAAK ∴KKK

)
.NNNVS,Nd (∂Y )

(2.22)

wherein AAAK is the strain gradient localization operator (fifth-order tensor) relating the microscopic strain

to the macroscopic strain gradient tensor acting over the unit cell. In deriving the set of relations of

Eq. 2.22, we have assumed that the unit cell is subjected to a pure strain gradient kinematic loading (the

macrostrain tensor is chosen to be nil).

In a subsequent step, Clapeyron theorem is used to express the total potential energy, elaborated as

the difference of internal mechanical energy Win and work of external forces Wext expressed over the

homogeneous unit cell Vx, in terms of the strain energy density, which is the quantity of interest for the

shape sensitivity analysis to follow. It follows that the total potential energy can be fully expressed in

terms of the internal mechanical energy, considering that the macroscopic energy density is independent

of the macroscopic spatial position within the homogeneous unit cell:∣∣∣∣∣∣∣∣∣
Win := 1

2

∫
Vx

(
CCChomhomhom : EEE : EEE +AAAhomhomhom ∴KKK ∴KKK

)
dVx

Clapeyron theorem ⇒ J (Yτ ) := −Win

(2.23)

The work of external forces for the strain gradient medium includes (beyond the classical Cauchy type

contributions) double forces, as well as edge and corner contributions [205]; it will however not be written

here, since it does not contribute to the analysis of absolute edge effects to follow.

The previous relation allows evaluating the sensitivity of the strain gradient elastic energy to the area

variation induced by the shape velocity field applied over the unit cell boundaries:

DDDsssJ

DA
= −

DDDsss

(
1
2 |Vx|

〈
CCChomhomhom : EEE : EEE +AAAhomhomhom ∴KKK ∴KKK

〉
Vx

)
DA

=
∫

∂Y
NNN.ΣΣΣEshelby.NNNVS,Nd (∂Y )

s
∂Y

VS,Ndθ
(2.24)

The volume |Vx| (area in 2D) of the unit cell has been introduced in the previous relation as a way to

express the macroscopic energy in terms of a volume integral to subsequently perform integration by part

(considering that the macroscopic energy density does not depend on spatial position), viz.

|Vx|
〈
CCChomhomhom : EEE : EEE +AAAhomhomhom ∴KKK ∴KKK

〉
Vx

=
∫
Vx

(
CCChomhomhom : EEE : EEE +AAAhomhomhom ∴KKK ∴KKK

)
dVx (2.25)
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Due to the normalization of the right-hand side by the shape velocity field, the left-hand side (and the

right-hand side) in Eq. 2.24 becomes independent of it, especially in the more specific case for which a

uniform shape velocity field is applied.

While the previous evaluation of the Eshelby stress relies on the microscopic fields evaluated within

the unit cell (via FE simulations employing periodicity boundary conditions), the macroscopic approach

replacing the heterogeneous UC with an effective strain gradient continuum will next be considered in

order to perform a shape sensitivity analysis of the homogenized strain gradient moduli.

The sensitivity of the effective continuum strain gradient macroscopic energy to a variation of the

unit cell internal and external boundary motion is captured by the shape derivative of the strain energy

density of the effective continuum within the framework of strain gradient mechanics, articulated with

Hill macrohomogeneity condition. Thereby, it extends the evaluation done in [206] for a Cauchy medium

in which only the first displacement gradient is of importance. Using the Clapeyron theorem, the shape

derivative of the effective moduli will be deduced from the shape derivative of the internal macroscopic

energy as in Eq. 2.24, wherein the surface integral is expressed over the entire unit cell boundary.

The connection between the microscopic displacement entering into the Eshelby stress and the

macroscopic kinematic loadings over the unit cell, tensorsEEE,KKK, is formulated by writing the UC boundary

value problem for the displacement fluctuation as follows:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− divy (Cµ : ε (uuuE,K)) = 000

σµ := Cµ : ε (uuuE,K) = 0 on ∂Y

uuuE,K = EEE(xxx).yyy + 1
2K
KK(xxx) : (yyy ⊗ yyy) + ũ̃ũuE,K (yyy)

uuuE,K Y-periodic

(2.26)

in which ũ̃ũuE,K (yyy) denotes the displacement fluctuation induced by the macroscopic kinematic loading

applied over the unit cell, namely the macroscopic strain and strain gradient tensors EEE,KKK respectively.

Thereby, the shape derivative of the classical and strain gradient moduli can be evaluated based on the

expression of the microscopic displacement versus the macroscopic kinematic loadings and its periodic

fluctuation obtained by solving the corresponding unit cell BVP in Eq. 2.26.

Especially, the sensitivity of the strain gradient moduli to a variation of the edge contribution of material

at a fixed volume fraction (obtained in the previous section by generating self-similar shapes of the unit

cell) - thus the Cauchy effective moduli remain unchanged - can be evaluated from the general relation

of Eq. 2.24, selecting a displacement field in which a strain gradient kinematic control is applied over the

unit cell, thus of the form (EEE = 000, KKK ̸= 000):

uuu0,K = 1
2K
KK : (yyy ⊗ yyy) + ũ̃ũu0,K (yyy) (2.27)

We consequently evaluate in this context the shape sensitivity of the effective strain gradient moduli, based

on the relation arising as a direct consequence of Eq. 2.24 and after a few straightforward computations

Ds

(
1
2 |Vx| ⟨KKK ∴ AAA ∴KKK⟩Vx

)
= −

∫
∂Y

NNN.ΣΣΣEshelby.δXXXd (∂Y ) (2.28)
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2.3. Shape sensitivity of the strain gradient moduli

The surface density on the right-hand side of Eq. 2.28 can be interpreted as a kind of surface energy due

to mechanical fields (a driving force).

Applying unit strain gradient tensor fields, viz. KKKijk = eeei ⊗ eeej ⊗ eeek, KKK
lmn = eeel ⊗ eeem ⊗ eeen , allows

computing the shape derivative of the strain gradient moduli from Eq. 2.28. Previous relation Eq. 2.28

will be next exploited to compute the sensitivity of strain gradient moduli to the variation of edge length

for a suitable choice of the shape velocity field, expanding the Eshelby stress from its very definition:

Ds

( 1
2 |Vx| ⟨KKK ∴ AAA ∴KKK⟩Vx

)
DA

= −
∫

∂Y
ΣΣΣNNVS,Nd (∂Y )
s

∂Y
VS,Ndθ

= −

{
1
2
∫

∂Y

(
AAAK ∴KKK : cccµ : AAAK ∴KKK

)
VS,Nd (∂Y ) −

∫
∂Y
NNN.
(
KKK ∴

(
AAAK,T .cccµ : AAAK

)
∴KKK

)
.NNNVS,Nd (∂Y )

}
s

∂Y
VS,Ndθ

(2.29)

wherein the boundary displacement field from Eq. 2.27 has been inserted into the right-hand side, using

the strain gradient localization operator AAAK introduced in Eq. 2.22.

Moreover, by introducing the surface energy γ as an intrinsic surface parameter, one can postulate the

following physical balance law expressing the resistive effects of surface energy to the increase of area

promoted by the strain gradient energy:

DsJ +
∫

∂Y

γ d (∂Y ) = 0 ⇒
∫

∂Y

ΣΣΣNNVS,Nd (∂Y ) +
∫

∂Y

γ d (∂Y ) = 0 (2.30)

To clarify, shape derivative evaluation leads to the identification of the surface driving force (normal

projection of Eshelby stress) accompanying area (edge in 2D) increase; this can be made such that

Cauchy energy will not vary in the process, whereas strain gradient surface energy will, and moreover

it is traduced as a surface energy in the shape derivative expression. This strain gradient energy that

promotes the increase of area is resisted by the (anisotropic) surface energy in Eq. 2.30.

In the next subsection, the shape derivative of the strain gradient macroscopic energy is utilized to

evaluate the scaling of the homogenized strain gradient moduli versus the unit absolute edge length of

the lattice unit cell.

2.3.2 Scaling of effective strain gradient moduli versus the absolute edge

lengths based on the shape derivative

Considering a square unit cell of length L and thickness t (see Fig. 2.3), a shape velocity field is applied,

of the form:

VVV S = (e ttt)NNN (2.31)

wherein e is a small constant to be determined such that a constant volume fraction is maintained between

the initial and modified unit cells, so that Cauchy effective moduli will not experience any sensitivity to

the unit cell shape variation. By considering different configurations, applying the appropriate boundary

conditions for the strain gradient continuum, and selecting e keeping a constant volume fraction, the

shape velocity vector VVV S = VS,NNNN is applied for both the internal and external boundaries of the unit
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Chapter 2. Analysis of surface effects based on first and second strain gradient mechanics

cell.

After determining the shape derivative of the strain gradient moduli for different configurations of the

square unit cell at a constant volume fraction of 40% (the shape derivative represents the slope of the

tangent at each point of the curve), the strain gradient tensile modulus shows a quadratic increase versus

the unit cell edge length in Fig. 2.9, thereby obtaining the same scaling law obtained in section 2.2 based

on the closed-form expressions of the homogenized strain gradient moduli.

In the next section, the notion of surface energy inherent to the strain gradient effective model is further

elaborated.

Figure 2.9 Strain gradient modulus in extension A111111 versus the total edge length L, obtained from self-similar

square unit cells having the same Cauchy moduli based on the shape derivative method.

2.4 Contribution of strain gradient mechanics to surface energy

The homogenized strain gradient model is investigated for its ability to define the notion of an anisotropic

surface energy extending the pioneering Mindlin’s model [129] of surface energy. Note that Mindlin’s

model introduces a third gradient model to account for surface energy, since it appears that first strain

gradient mechanics is not sufficient by itself to account for the notion of surface energy. In line with

Mindlin’s seminal work, we accordingly start writing the macroscopic strain energy density, assumed to

be dependent on the macroscopic strain tensor and its first and second (macroscopic) spatial gradients

together with the associated equilibrium equation Eq. (2.32)2 in the absence of body forces [129]:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

WM

(
EEE ,KKK ,KKK

)
= 1

2

(
ΣΣΣ :EEE +SSS ∴KKK +SSS :: KKK

)
,

τττ · ∇x = 0

τττ = ΣΣΣ −SSS · ∇x +SSS : ∇x ⊗ ∇x

EEE = UUU⊗s∇x

SSS = AAA
hom :: KKK , KKK :=== KKK ⊗ ∇x

(2.32)
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2.4. Contribution of strain gradient mechanics to surface energy

wherein SSS, AAAhom and KKK = KKK ⊗ ∇x are succesively the second hyperstress tensor, the third gradient

moduli tensor (a eighth-order tensor), and the second strain gradient tensor (a fourth-order tensor),

satisfying the constitutive laws written in Eq. (2.32)4. Such a second strain gradient constitutive model

may be obtained from the homogenization of the unit cell microstructure. Such an extension towards

second strain gradient homogenization lies however outside the scope of this contribution.

Eq. (2.32)1 is integrated over the unit cell domain to set the average strain energy of the homogeneous

substitution medium as follows, considering that the macroscopic energy density does not depend on the

spatial position within the homogeneous unit cell domain:

WM = 1
|Vx|

∫
Vx

WM

(
EEE ,KKK ,KKK

)
dVx = 1

2 |Vx|

∫
Vx

(
ΣΣΣ :EEE +SSS ∴KKK +SSS :: KKK

)
dVx (2.33)

Integrating Eq. 2.33 by parts and taking into consideration the equilibrium equation Eq. (2.32)2,3 leads

after lengthy but straightforward computations (accounting for the index symmetries of the involved

tensors) to the following surface integral formulation of the effective strain energy:

|Vx|WM = 1
2


∫

∂Vx

NNN.τττ .UUU dS+
∫

∂Vx

NNN.
(
SSS −SSS · ∇x

)
: (UUU ⊗ ∇x) dS+

∫
∂Vx

NNN.SSS ∴ (UUU ⊗ ∇x ⊗ ∇x) dS


(2.34)

The first term on the right-hand side of Eq. 2.34 is a Cauchy contribution that will not lead to any

surface contributions. In the derivations to follow, we will focus on the terms involving the third gradient

contributions. The second integral term in Eq. 2.34 rewrites in index format:∫
∂Vx

Ni

(
Sijk − Sijkl,l

)
Uj,kdS =

∫
∂Vx

Ni

(
Ahom

ijkpqrKpqr

)
Uj,k︸ ︷︷ ︸

(1)

−Ni

(
AijklmnpqKmnpq,l

)
Uj,k︸ ︷︷ ︸

(2)

dS, (2.35)

The first part of the right-hand side of Eq. 2.35 allows recovering a variant of Mindlin’s surface energy

when selecting identical pairs of indices {j = k and p=q}, leading in turn to the isotropic part of the

strain gradient tensor of moduli Ahom. More specifically, it leads to a kinematic invariant obtained after

integrating by part the first surface integral on the right-hand side of Eq. 2.36:

(1) =
∫

∂Vx

Ni

(
Ahom

ijkpqrEpq,r

)
Uj,kdS=1

2

∫
∂Vx

NiA
hom
ijkpqr (Up,qr + Uq,pr)Uj,kdS

= 1
2

∫
∂Vx

NiA
hom
ikkppr (Up,pr + Up,pr)Uk,kdS

→ 1
2

∫
∂Vx

NiA
hom
ikkppr(U · ∇x),r (U · ∇x) dS= 1

4

∫
∂Vx

NNN ·AAAhom
{(2,3),(4,5)} · (UUU · ∇x)

2
⊗ ∇xdS

(2.36)

wherein we define the following second order tensor by index contractions
(
AAAhom

{(2,3),(4,5)}

)
ij

= AAAhom
ikkppj .

The last surface integral in Eq. 2.36 bears a strong similarity with Mindlin’s isotropic formulation of

surface energy depending on the first invariant of the macroscopic strain tensor; it represents the normal

projection of the gradient of the kinematic invariant (UUU · ∇x)2 representing the square of the local volume

change. The difference however is that the obtained density involves instead the square of the local
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volumetric change as a true kinematic invariant (the trace of the macroscopic strain tensor); in contrast

to this, Mindlin’s original formulation is linear in this last contribution.

The last integral in Eq. 2.34 can be rewritten in index format as follows:∫
∂Vx

NiSijklUm,npdS =
∫

∂Vx

Ni

(
AijklmnpqKmnpq

)
Um,npdS ∼=

∫
∂Vx

Ni

(
AijklmnpqKmnp,q

)
Um,npdS

∼=
1
2

∫
∂Vx

NiAijklmnpq(Kmnp ∴ Kmnp),qdS
(2.37)

Selecting identical indices {j = m, k = n, l = p} in Eq. 2.37 leads to the following higher-order invariant

of the strain gradient tensor, the quadratic term (KKK ∴KKK), involving a reduced form of the third gradient

moduli tensor:
1
2

∫
∂Vx

NNN ·AAAhom
{(2,3,4),(5,6,7)} · [(KKK ∴KKK) ⊗ ∇x]dS (2.38)

wherein we use the notation
(

Ahom
{(2,3,4),(5,6,7)}

)
ij

= Ahom
imnpmnpj to denote the components of a second order

tensor obtained by contracting the enclosed triplets of indices. Thereby, we have derived a higher-order

surface term depending on a higher kinematic invariant, providing a generalization of Mindlin’s original

formulation of surface energy and introducing moreover an additional degree of anisotropy encapsulated

into the contracted Cauchy and strain gradient moduli involved in the two relations of Eq. 2.36 and

Eq. 2.38 respectively. Observe that the two obtained densities in Eq. 2.36 and Eq. 2.38 have the physical

units of energy per unit area in 3D, and energy per unit length in 2D. Note that the surface energy

densities in Eqs. 2.36 and 2.38 can lead to other terms representative of surface energies (especially those

built from kinematic invariants), which will however not be analyzed in this chapter.

2.5 Conclusion

This chapter exposes a discrete homogenization method for periodic architected materials towards a

strain gradient continuum formulation, providing the effective classical and strain gradient moduli as

closed-form expressions of the lattice microstructural parameters. It provides an analysis of edge effects

(surface effects in 3D) in the mechanical response of architected materials modeled in the framework of

strain gradient mechanics. While Cauchy moduli do not capture surface properties, a theoretical and

numerical examination yielded the scaling law of the strain gradient moduli with the edge contribution

of surface material, showing a quadratic variation with the absolute edge length. To reach this objective,

the extended Hill macrohomogeneity condition for strain gradient media has been formulated from purely

surface mechanical fields over the unit cell boundary. The same scaling law has been obtained from a

shape sensitivity analysis of the internal macroscopic energy, whereby strain gradient kinematic tensors

have been applied over self-similar unit cells with varying amount of edge lengths.

In the last part of the chapter, based on a second strain gradient effective continuum model formulation,

the notion of surface energy has been formulated in an anisotropic manner, relying on the identification of
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two surface integral contributions involving kinematic invariants of the macroscopic first strain gradient

and second strain gradient tensors.
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Chapter 3

Higher gradient homogenization

methods of quasi-periodic media

Summary
This chapter introduces quasi-periodic homogenization schemes for quasi-periodic media, those without

periodicity, but that can be mapped to a parent periodic medium. Quasi-periodic homogenization relies

on the conceptual idea of mapping a non-periodic domain to a reference periodic one through a point

mapping of material points within the domain of an identified unit cell. The theoretical background

of quasi-periodic homogenization introduced in the first part of this chapter relies on expressing the

microscopic position of micropoints within a physical unit cell as a sum of the macroscopic position (the

center of area of the unit cell) and the relative position of micropoints with respect to the center of

area. This decomposition parameterized by the small-scale parameter entails a corresponding additive

decomposition of the tangent map defining the geometrical transformation of the periodic UC into the

quasi-periodic one in terms of an additive decomposition into macroscopic and microscopic contributions.

The quasi-periodic homogenized effective moduli are then determined, starting from the average of the

microscopic energy, those being expressed in terms of the periodic moduli and a perturbation term,

both expressed in a volumetric format as surface integrals over the reference unit cell domain in a 2D

context. In the second part of this chapter, a surface formulation of the quasi-periodic moduli is derived,

based on the notion of shape derivative of the total potential energy stored within the unit cell. This

approach relies on introducing a shape velocity field at the boundary of the periodic unit cell to model

the change of its design, driven by the normal projection of Eshelby stress onto both the internal and

external boundaries of the unit cell. This second scheme offers comparatively to the first one a simpler

way to compute the quasi-periodic moduli as it only requires the evaluation of the mechanical fields on the

unit cell boundaries. Application of the proposed homogenization schemes are done for inclusion-based

composites showing a gradient of size.
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3.1 Introduction

Quasi-periodic composites differ from periodic composite materials in that their unit cell does not repeat

exactly in a periodic manner throughout the structure. Instead, the unit cell gradually changes along

one or more periodicity directions, which are known as grading directions. Due to this feature, a class of

materials called functionally graded materials (FGM) has emerged, and it is characterized by a spatial

variation of the geometry, and sometimes even the material properties, of the microstructure within the

unit cell. The spatial variation within FGMs can take place in a single direction, (as is the case with

stratified materials) in a discrete or continuous manner.

When a composite has a unit cell that varies smoothly in space, the grading within neighboring unit

cells can be ignored. This means that a given unit cell does not perceive any differences in microstructure

from neighboring ones. As a consequence, the homogenized behavior can be determined locally without

considering the differences in the microgeometry of successive unit cells. The grading is only considered

at the macro-level to account for the variation of homogenized material properties from one-unit cell to

another in the macrodomain [122–124].

On the contrary, in situations where the grading across unit cells is too fast, the variation of unit cell

geometry must be considered at the microscale. This means that higher order terms are expected to

appear when performing the asymptotic homogenization. Because of this microscopic variation, the

overall effective behavior of the composite may no longer be purely local, and nonlocal mechanical

behaviors may emerge proportional to the rate of grading. According to [121], classical homogenization

methods are not applicable to FGMs because the minimum size of the RVE is larger than the size of

a statistically homogeneous RVE. This requires considering the grading within the RVE, which is also

graded. There has been very little effort devoted to the homogenization of quasi-periodic media in

the literature, especially when considering higher order terms in asymptotic expansion methods. [207]

studied the first-order homogenization of quasi-periodic structures, while [208] developed a second-

order solution by adding correctors computed from the first-order solution, but no corrections accounting

for quasi-periodicity is present in the first order equation. In the field of dynamics, [209] and [210]

developed a non-periodic homogenization of the wave equation for seismic applications, but their higher-

order solution was incomplete. [211] developed a second gradient model for composites with material

property gradation, but without variation in geometry. They used asymptotic expansions up to the second

order combined with a variational approach to derive the higher-order macroscopic energy, assuming that

the properties within the unit cell depend on the position of the cell within the composite. The resulting

energy includes the gradient of a characteristic microstructure parameter and the strain gradient as a

new kinematic variable. As opposite to most homogenization methods for FGMs that account for the

grading only at the macrolevel by replacing the homogeneous effective properties with a field of material

properties varying at the macroscale, [121] accounted for the grading at the micro-level through the

development of a second gradient effective constitutive law.
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There are two ways to derive quasi-periodic properties. The first approach involves a unit cell Y = Y (x)

that varies with the macroscopic position xxx, allowing the expression of the microscopic moduli tensor

in the form CCCε (xxx) = CCC
(
xxx, φ(xxx)

ε

)
, wherein φ (xxx) is a smooth diffeomorphism. This indicates that the

quasi-periodic variable is transformed by the diffeomorphism φ (xxx) into a periodic counterpart and that

CCC is still periodic in the second variable [212]. The mapping of the periodic unit cell by φ−1 (xxx) is also

dependent on the macroposition in this case. The second approach involves the transformation of the

boundary value problem (BVP) formulated on the quasi-periodic domain onto on a periodic domain using

a change of parameterization as demonstrated in [213]. By adopting this approach, a periodic BVP is still

constructed with a modified apparent microscopic moduli tensor, which can be further elaborated versus

the small-scale parameter. In [213], the hypothesis of a quasi-affine geometric transformation enables

the unit cell BVP to be expressed as a periodic one, through the extraction of a term that depends only

on the macroscale variable. This involves disregarding any gradation within the adjacent unit cells and

assuming that any changes in the effective properties are a result of variations solely in the unit cell

geometry at the macroscale. However, in this chapter we will be dealing with a new homogenization

scheme of quasi-periodic media to determine the quasi-periodic moduli relying on the shape derivative of

the total potential energy leading to a surface formulation of the moduli.

This chapter is organized as follow: a general method that relies on a physical viewpoint of micropoints

located within the UC is developed in section 3.2 towards quasi-periodic media to determine a volumetric

formulation of the quasi-periodic moduli. In section 3.3, a shape derivative approach is adopted in

view of a surface formulation of the energy and of the ensuing quasi-periodic moduli. The unit cell

micro grading is potentially the source of an emergent higher gradient behavior, so that we expand

our homogenization scheme towards the incorporation of the second displacement gradient. Thereby,

the quasi-periodic moduli are expanded versus the asymptotic small parameter, so that a ranking of

the different contributions entering these moduli traducing both the second gradient enhancement and

the quasi-periodic perturbation of the reference periodic unit cell is obtained. section 3.4 is devoted to

numerical illustrations of the established quasi-periodic homogenization schemes, considering inclusion-

based composites showing a gradient of their inclusion size. We conclude in section 3.5 by a summary

of the main theoretical developments and results and by few perspectives of developments in the field of

multiphysical behavior of functionally graded materials.

A few notes about the notations in use are in order. Boldface symbols stand in for vectors and tensors.

The transpose of a tensor is written with a superscript notation, for instance BBBTTT . The gradient of a

tensor field A(y)A(y)A(y) with respect to the spatial position yyy for example) is denoted A(y)A(y)A(y) ⊗ ∇y (with ⊗ the

tensor product) and its divergence is obtained as the trace of the gradient, A(y)A(y)A(y)...∇y. The symmetrized

dyadic product is denoted ⊗s. The dot product therein represents the inner product in the space of

Cartesian tensors. The simple, double and triple contractions of tensors are written ., :, ∴ respectively,

so that it holds AAA.BBB = AkBk, CCC:DDD=CijDij , UUU ∴ VVV=UijkVijk, with (AAA,BBB), (CCC,DDD), (UUU,VVV ) pairs of first

order, second order and third order tensors respectively. The symbol ⊠ represents the square tensor
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product defined in index format as
(
AAA−1

M : EEE : AAAM

)
ij

=
(
AAA−1

M

)
ip
EEEpq(AAAM )qj =

(
AAA−1

M

)
ip

(AAAM )T
jqEEEpq =(

AAA−1
M ⊠AAAT

M

)
ijpq

EEEpq =
((
AAA−1

M ⊠AAAT
M

)
: EEE
)

ij
for the purpose of factoring our tensor EEE on the right side.

Alternatively, in order to factor our EEE on the left-hand side, the previous evaluation can be written

in the form
(
AAA−1

M : EEE : AAAM

)
ij

=
(
AAA−1

M

)
ip
EEEpq(AAAM )qj = EEEpq

(
AAA−T

M

)
pi

(AAAM )jq = EEEpq

(
AAA−T

M ⊠AAAM

)
pqij

=(
EEE :

(
AAA−T

M ⊠AAAM

))
ij

3.2 Volumetric formulation of quasi-periodic moduli

This section starts with an overview on mapping a periodic domain to reach a quasi-periodic one. We

then aim to relate the quasi-periodic moduli to the ones in the periodic domain through homogenization

and express them in the form of volume integrals.

3.2.1 From periodic to quasi-periodic domains

Here and in the sequel, variables attached to the periodic domain are denoted with an overhead tilde,

whereas those living in the quasi-periodic domain are written without tilde.

Starting from the periodic parent unit cell Ỹ , one can move into the quasi-periodic unit cell Y such

that the relation between both domains is Y = φ
(
Ỹ
)

⇔ Ỹ = φ−1 (Y ), where φ is the point mapping that

allows the transition between the coordinate systems by mapping the points of the periodic domain to the

quasi-periodic one x̃̃x̃x 7→ xxx = φ(x̃̃x̃x) (Fig. 3.1). Noting that this geometrical transformation of coordinates

will have an impact on both macroscopic and microscopic scales. Different definitions will be introduced

next starting from this mapping.

Moreover, Fig. 3.1 shows the periodic domain Ω̃ (a) with the corresponding unit cell (UC) on the right

side on which we define the microscopic ỹyy and macroscopic x̃̃x̃x position vectors. For the quasi-periodic

domain Ω (b), the microscopic and macroscopic position vectors will be denoted as yyy and xxx respectively

(they are not shown on the figure but they have the same scheme as the one corresponding to the periodic

UC without tilde).

Figure 3.1 Illustration of the transformation introduced which is defined by a mapping φφφ between (a) the

periodic domain Ω̃ and (b) the quasi-periodic domain Ω. The periodic unit cell on the right hand side shows the

microscopic ỹyy and macroscopic x̃̃x̃x position vectors.
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‘Small’ vectors from the periodic domain Ω̃ are mapped to ‘small’ vectors in the quasi-periodic domain

Ω through a tangent mapping of the point mapping defined as AAA(x̃̃x̃x) := φφφ (x̃xx) ⊗ ∇
x̃xx
. Lets call

AAA := φφφ(x̃̃x̃x) ⊗ ∇
x̃xx

= xxx⊗ ∇
x̃xx

⇔ Ai
.j = ∂xi

∂x̃j
= Ai

.j(x̃̃x̃x) (3.1)

The tangent mapping admits an inverse that maps vectors from quasi-periodic to periodic domain written

in components format:
∂x̃p

∂xq
= x̃p

.,q ≡
(
A−1)p

.q
(xxx) (3.2)

The transformation rules of vectors and tensors are next exposed, in the context of the coordinate

transformations arising from the mapping from periodic to quasi-periodic domains. The volume element

transforms as:
dxxx = φφφ(x̃̃x̃x) ⊗ ∇

x̃xx
.dx̃̃x̃x → dVx = det

(
φφφ(x̃̃x̃x) ⊗ ∇

x̃xx

)
dVx̃ = JdVx̃

J := det
(
φφφ(x̃̃x̃x) ⊗ ∇

x̃xx

) (3.3)

The transformation laws of tensors and vectors, considering a general non-affine change of coordinates,

are elaborated as a prerequisite for the quasi-periodic homogenization to be developed later. This will

entail the relation between the microscopic strain and stress tensors and their corresponding macroscale

counterparts, paying attention to their covariant and contravariant character respectively.

In both periodic and quasi-periodic domains, the basis vectors are defined as tangents at each point

to coordinate lines serving as curvilinear coordinates. Let’s denote the tangent basis vectors as g̃̃g̃gk, gggk

on the untransformed and transformed domains, respectively, (see Fig. 3.2). It is essential to figure

Figure 3.2 Figures showing the tangent basis vectors in (left) an initial non-deformed and (right) deformed

configurations; (e1, e2)are the basis vectors of a cartesian coordinate system.

out the variance of tensors because the transformation rule of covariant and contravariant tensors is

different [214]. Covariant tensors transform like the basis vectors by using the transition matrix, while

contravariant tensors are those transforming in an opposite way to the basis vectors, by using the inverse

of the transition matrix. Contravariant tensors (resp. covariant) have their components denoted with

upper indices (resp. lower indices).

The tangent vectors constructing the natural basis transform between the two configurations are as
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follows:
g̃̃g̃gh := ∂yyy

∂ỹh
= ∂yyy

∂yj
.
∂yj

∂ỹh
= ∂yj

∂ỹh
gggj ⇔ gggj = g̃ggk

∂ỹk

∂yj
≡ g̃ggk

(
A−1)k

.j

dvvvi = dvi

dyl
dylgggi ⇒ g̃̃g̃gkdỹ

k = ∂yj

∂ỹk
gggj

∂ỹk

∂yp
dyp ≡ δjpgggjdy

p = gggqdy
q

(3.4)

The rule of summation of repeated indices in a monomial is implicitly adopted here and in the sequel;

in a pair of such repeated indices, one index appears in lower position, and the other index in upper

position.

Note that the variation of the components of a tensor or a vector from the periodic to the quasi-

periodic domain can be equivalently expressed as an active or a passive transformation. In the passive

viewpoint, a vector field remains invariant whereas the observer viewpoint is changing, so that it holds

ṽ̃ṽv = vvv = vjgggj . In the active viewpoint (meaning that the material points within the reference domain are

mapped to a new domain like a deformation), the vector is described as a covariant vector, which means

that its components transform in the same way as the covariant base vectors; therefore, the components

of the vector remain the same in both domains, whereas the tangent vectors defining the natural basis

do change:
gggi = AAA−T .g̃̃g̃gi

vvv = viggg
i = AAA−T .ṽ̃ṽv = ṽjAAA

−T .g̃̃g̃gj = ṽjggg
j ⇒ vj = ṽj

(3.5)

Considering in this chapter the active viewpoint leads to the expression of the displacement field (in

tensor format) in terms of its covariant representation. Thus, the strain is elaborated as a mixed tensor

when considered as a single scale-dependent field from the onset:

ũ̃ũu (ỹ̃ỹy) ⊗ ∇ỹ̃ỹy = ũi
,jg̃̃g̃gi ⊗ g̃̃g̃gj , uuu (yyy) ⊗ ∇yyy = ui

,jgggi ⊗ gggj

gggi.gggj = δi
.j = g̃̃g̃gi.g̃̃g̃gj

(3.6)

Previous relations introduce the primal bases, the set of tangent vectors gggi, g̃̃g̃gi, and the reciprocal (dual)

bases gggi, g̃̃g̃gi in quasi-periodic and periodic domains. The last identity of Eq. 3.6 shows the product relation

of the set of primal basis vectors with the dual bases. The stress σσσ and strain εεε = uuu (yyy) ⊗ ∇yyy tensors are

expressed as mixed variant second order tensors, with the transformations as follows:

σ̃̃σ̃σ = σ̃.q
p g̃̃g̃g

p ⊗ g̃̃g̃gq, σσσ = σ.q
p ggg

p ⊗ gggq∣∣∣∣∣∣∣
uuu (yyy) ⊗ ∇yyy = AAA.ũ̃ũu (ỹ̃ỹy) ⊗ ∇ỹ̃ỹy.AAA

−1,

σσσ (yyy) = AAA−T .σ̃̃σ̃σ.AAAT

(3.7)

As a consequence of the previous transformation equations of quasi-periodic stress and strain, it is shown

from straightforward algebraic evaluations that the microscopic energy density remains invariant between

the periodic and quasi-periodic domains:

wµ (yyy) := 1
2σ
σσ : εεε = 1

2Tr(σ
σσT .εεε) = 1

2σ
.j
i ε

.i
j = 1

2 σ̃
.j
i ε̃

.i
j = 1

2 σ̃̃
σ̃σ : ε̃̃ε̃ε = w̃µ (ỹ̃ỹy) (3.8)

For the development of the quasi-periodic homogenization theory, an approach relying on physical

viewpoint of micropoints located within the UC is introduced in the following subsection.
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3.2. Volumetric formulation of quasi-periodic moduli

3.2.2 Homogenization of quasi-periodic media: volumetric approach

In this section, a homogenization technique is developed with the underlying assumption of the

smoothness of the design change. The main concept of this method is to magnify the unit cell from

the physical domain where it exists to set a problem onto a fixed domain called the zoomed unit cell,

which becomes independent of the small-scale parameter. The small parameter is denoted η = ℓ
L and it

is defined as the ratio of a unit cell size (ℓ) to a characteristic macroscopic dimension of the macrodomain

(L), as pictured in Fig. 3.3. A new spatial variable is introduced, elaborated as the relative position of

micropoints with respect to center of area ξ̃̃ξ̃ξ = ỹ̃ỹy − x̃̃x̃x. The two variables x̃̃x̃x, and ηξ̃̃ξ̃ξ (Fig. 3.3 [212]) are

considered independent because they represent two different and separated scales. Any mechanical field

defined over the η-dependent UC in the physical domain will depend on these two independent variables.

The vectors xxxm, and x̃̃x̃xm in Fig. 3.3 are defined as the generic microscopic positions in the quasi-periodic

and periodic dimensionless domains respectively.

Figure 3.3 Schematic representation of periodic material (left), definition of micropoints within the physical and

zoomed non-dimensional UCs of the periodic (right top row), and quasi-periodic domains (right bottom row).

These position vectors are in turn decomposed additively into the macroscopic position of the center

of the area xxx, x̃̃x̃x and the relative position of micropoints ξ̃̃ξ̃ξ, ξξξ in the physical quasi-periodic and periodic

unit cells, respectively, as follows:

x̃̃x̃xm = x̃̃x̃xM + ξ̃ξξ ⇒

∣∣∣∣∣∣∣
x̃̃x̃x = x̃̃x̃xM ,

ỹ̃ỹy = x̃̃x̃xM + ηξ̃ξξ
,

ỹ̃ỹy = x̃̃x̃x+ ηξ̃ξξ 7→ yyy (x̃xx, ỹyy) = xxx+ ηξξξ

(3.9)

The two last equations in Eq. 3.9 represent the positions in the physical periodic and quasi-periodic UCs.
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Chapter 3. Higher gradient homogenization methods of quasi-periodic media

One then writes the following differential relations of the position vectors between the periodic and

quasi-periodic domains: ∣∣∣∣∣∣∣
dxxx = φφφ

x̃
(x̃xx) ⊗ ∇

x̃xx
.dx̃xx

ηdξξξ = ηξξξ (x̃xx, ỹyy) ⊗ ∇
x̃xx
.dx̃xx+ ξξξ (x̃xx, ỹyy) ⊗ ∇

ξ̃ξξ
.d
(
ηξ̃ξξ
) (3.10)

Eq. 3.10 leads to the following global tangent mapAAA (x̃xx, ỹyy) mapping the vector
(
dxxx ηdξξξ

)
, which includes

the macroscopic and microscopic positions in the quasi-periodic domain, into its counterparts in the

periodic domain, the infinitesimal vector
(
dx̃xx ηdξ̃ξξ

)
 dxxx

ηdξξξ

 =

 φφφ
x̃

(x̃xx) ⊗ ∇
x̃xx

0

ηξξξ (x̃xx, ỹyy) ⊗ ∇
x̃xx

ξξξ (x̃xx, ỹyy) ⊗ ∇
ξ̃ξξ

 .

 dx̃xx

ηdξ̃ξξ

 = AAA (x̃xx, ỹyy) .

 dx̃xx

ηdξ̃ξξ

 (3.11)

The center of coordinates is chosen at the center of area of the RVE (short-cut for representative volume

element), so that the relative position coincides with the microscopic position
(
ξ̃̃ξ̃ξ = ỹ̃ỹy, and ξξξ = yyy

)
.

According to Eq. 3.11 the tangent map AAA (x̃xx, ỹyy) can be decomposed additively versus the small-scale

parameter as:

AAA (x̃̃x̃x, ỹ̃ỹy) = AAAM (x̃̃x̃x) + ηAAAm (x̃̃x̃x, ỹ̃ỹy) (3.12)

where AAAM (x̃xx) =

φφφx̃
(x̃xx) ⊗ ∇

x̃xx
0

0 yyy ⊗ ∇
ỹyy

 and AAAm (x̃xx, ỹyy) =

 0 0

yyy ⊗ ∇
x̃xx

0

 represent successively the

macroscopic and microscopic contributions to the tangent map. The macroscopic tangent mapping

AAAM (x̃xx) acts at the macroscopic scale and it maps tangent vectors at the center of area from the periodic

to the quasi-periodic UCs. On the contrary, the microscopic tangent mapping AAAm (x̃xx, ỹyy) operates on the

tangent vectors of any micropoint in the periodic UC and maps them to their corresponding tangent

vectors at micropoints located within the quasi-periodic UC. More precisely, the tangent map and its

inverse as well as their corresponding determinants can be written as expansion versus the small-scale

parameter as:

AAA (x̃̃x̃x, ỹ̃ỹy) = AAAM (x̃̃x̃x) + ηAAAm (x̃̃x̃x, ỹ̃ỹy) = AAAM (x̃̃x̃x) .
(
III + ηAAAM (x̃̃x̃x)−1

.AAAm (x̃̃x̃x, ỹ̃ỹy)
)
,

⇒ detAAA = det (AAAM )
(
1 + ηTr

(
AAAM

−1.AAAm

))
+ o (η)

⇒ AAA(x̃̃x̃x, ỹ̃ỹy)−1 =
(
III + ηAAA−1

M (x̃̃x̃x) .AAAm (x̃̃x̃x, ỹ̃ỹy)
)−1

.AAA−1
M (x̃̃x̃x)

∼=
(
III − ηAAA−1

M (x̃̃x̃x) .AAAm (x̃̃x̃x, ỹ̃ỹy)
)
.AAA−1

M (x̃̃x̃x) = AAA−1
M (x̃̃x̃x) − ηAAA−1

M (x̃̃x̃x) .AAAm (x̃̃x̃x, ỹ̃ỹy) .AAA−1
M (x̃̃x̃x) + o (η)

det
(
AAA−1) = det

(
AAA−1

M − ηAAA−1
M .AAAm.AAA

−1
M

) ∼= det
(
AAA−1

M

)
(1 − ηTr

(
AAA−1

M .AAAm

)
) + o (η)

(3.13)

Before proceeding with further developments of the relations related to quasi-periodic homogenization,

it is necessary to highlight the smoothness conditions of the point mapping. This means that the mapping

should induce a slow variation of the considered design of the unit cell. Thus, according to Eq. 3.12

which gives a geometrical information about the change of design, the microscopic and macroscopic

mappings AAAm (x̃̃x̃x, ỹ̃ỹy) ,AAAM (x̃̃x̃x) should have a limited magnitude which is to be validated aposteriori from

computational results.

∥AAAM ∥ << 1 ; ∥AAAm∥ << 1
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3.2. Volumetric formulation of quasi-periodic moduli

To check the smoothness of a selected mapping, a geometrical length is defined after considering the

higher gradient decomposition of the tangent mapping (can be also applied to microscopic mapping)

according to a first order Taylor series expansion between two neighboring macropoints, namely centers

of area of two neighboring unit cells:

AAAM (x̃̃x̃x+ ∆x̃̃x̃x) = AAAM (x̃̃x̃x) +AAAM (x̃̃x̃x) ⊗ ∇x̃̃x̃x.LLL
geo + o (∥LLLgeo∥)

⇒ LLLgeo ∼= (AAAM (x̃̃x̃x+ ∆x̃̃x̃x) −AAAM (x̃̃x̃x)) .(AAAM (x̃̃x̃x) ⊗ ∇x̃̃x̃x)−1
(3.14)

The criterion of a smooth design variation can be formulated by comparing the geometrical length to the

size of the unit cell (ℓ) as:
Lgeo

i

ℓ
>> 1 ⇒ Lgeo

i >> ℓ = ηL (3.15)

Therefore, the geometrical characteristic length associated with a smooth geometrical transformation

should be asymptotically larger than the unit cell size such that quasi-periodic moduli can be defined in

relation to the small-scale parameter.

As a first step of homogenization, we write the boundary value problem (BVP in short) of linear

elasticity in periodic media. At the microscopic level of the single UC, the material satisfies the following

equations of first gradient linear elasticity:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ̃σσ · ∇
ỹ

+ b̃bb = 000 in Ỹ

σ̃σσ · ñnn = t̃tt on ∂Ỹ

σ̃σσ = C̃CCµ : ε̃εε,

ε̃εε = ÃAA
E

: ẼEE

(3.16)

wherein σ̃σσ is the symmetrical Cauchy stress, b̃bb is the body force vector, ñnn is the normal vector, t̃tt is the

traction vector, and C̃CCµ is the fourth order microscopic rigidity tensor in the periodic domain. ÃAA
E

is a

fourth-order strain localization operator that relates the periodic micro ε̃εε and macro ẼEE strains.

The transformation of the strain tensor is then expressed using Eq. 3.7 and by substituting therein the

expressions of Eq. 3.13:

εεε (yyy) = AAA.ε̃.AAA−1 = (AAAM (x̃̃x̃x) + ηAAAm (x̃̃x̃x, ỹ̃ỹy)) .ε̃.
(
AAA−1

M (x̃̃x̃x) − ηAAA−1
M (x̃̃x̃x) .AAAm (x̃̃x̃x, ỹ̃ỹy) .AAA−1

M (x̃̃x̃x)
)

(3.17)

Let’s recall the general transformation rule from the quasi-periodic to the periodic domains of the integral

of an arbitrary scalar-valued density, using the definition of the volume average ⟨(.)⟩Ỹ = 1∣∣Ỹ ∣∣ ∫̃
Y

(.) dỸ :

〈
h̃ (ỹ̃ỹy)

〉
Ỹ

:= 1∣∣Ỹ ∣∣
∫
Ỹ

h̃ (ỹ̃ỹy) dṼy = 1∣∣Ỹ ∣∣
∫
Y

h (yyy) det
(
AAA−1) (yyy) dVy = |Y |∣∣Ỹ ∣∣ 1

|Y |

∫
Y

h (yyy) det
(
AAA−1) (yyy) dVy (3.18)

wherein the ratio |Y |
|Ỹ | is the area change under coordinate transformation defined from the macroscopic

tangent map as:

det(AAAM ) (x̃̃x̃x) = |Y |∣∣Ỹ ∣∣ ⇒ det(AAA−1
M ) (x̃̃x̃x) =

∣∣Ỹ ∣∣
|Y |

(3.19)
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Chapter 3. Higher gradient homogenization methods of quasi-periodic media

To proceed with the determination of the quasi-periodic moduli, we formulate the average microscopic

strain energy density in the periodic domain using Eq. 3.18 and Eq. 3.19 :

⟨wµ (εεε)⟩Y = 1
2 ⟨σσσ : εεε⟩Y = 1

2

∣∣Ỹ ∣∣
|Y |

⟨(σ̃σσ : ε̃εε) det (AAA) ⟩
Ỹ

= 1
2 det

(
AAA−1

M

)
⟨(σ̃σσ : ε̃εε) det (AAA) ⟩

Ỹ
(3.20)

The periodic macroscopic strain is elaborated classically as the average of the microscopic strain, which

in turn can be written according to Eq. 3.17 and Eq. 3.18 as:

ẼEE = ⟨ε̃εε⟩
Ỹ

= det (AAAM )
〈
AAA−1.εεε.AAA det

(
AAA−1) 〉

Ỹ
(3.21)

Substituting Eq. 3.13 into Eq. 3.21 then leads to the following expression of the macroscopic periodic

strain elaborated as the volume average of the microscopic strain:

ẼEE = ⟨ε̃εε⟩
Ỹ

= AAA−1
M .⟨εεε⟩Y .AAAM + η

[
AAA−1

M .⟨εεε.AAAm⟩Y −
〈
AAA−1

M .AAAm.AAA
−1
M .εεε.AM

〉
Y

−
〈
AAA−1

M .εεε.AAAM

(
AAA−1

M : AAAT
m

)〉
Y

]
+η2 [−〈AAA−1

M .AAAm.AAA
−1
M .εεε.AAAm

〉
Y

−
〈(
AAA−1

M .εεε.AAAM

) (
AAA−1

M : AAAT
m

)〉
Y

−
〈(
AAA−1

M .AAAm.AAA
−1
M .εεε.AAAm

) (
AAA−1

M : AAAT
m

)〉
Y

]
+η3 [〈(AAA−1

M .AAAm.AAA
−1
M .εεε.AAAm

) (
AAA−1

M : AAAT
m

)〉
Y

]
(3.22)

Defining the quasi-periodic macroscopic strain at the leading order zero of η to be the average of the

quasi-periodic microscopic strain ⟨εεε⟩Y ,(all higher order terms of η in Eq. 3.22 are neglected) leads the

relation between the macroscopic strain in the periodic domain and its counterpart in the quasi-periodic

domain to be approximated at first order by:

ẼEE ≈ AAA−1
M .EEE.AAAM ⇒ EEE ≈ AAAM .ẼEE.AAA−1

M (3.23)

Substituting Eq. 3.13, Eq. 3.23, and Eq. 3.163,4 in Eq. 3.20 then leads the average microscopic strain

energy in the quasi-periodic domain to be expressed as:

⟨wµ (εεε)⟩Y = 1
2 ⟨σσσ : εεε⟩Y = 1

2 det
(
AAA−1

M

) 〈
ẼEE :

(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)

: ẼEE det (AAA)
〉

Ỹ

≈ 1
2 det

(
AAA−1

M

) 〈(
AAA−1

M .EEE.AAAM

)
:
(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)

:
(
AAA−1

M .EEE.AAAM

)
det (AAA)

〉
Ỹ

≈ 1
2 det

(
AAA−1

M

)
EEE :

(
AAA−T

M ⊠AAAM

)
:
〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)

det (AAA)
〉

Ỹ
:
(
AAA−1

M ⊠AAAT
M

)
: EEE

≈ 1
2 det

(
AAA−1

M

)
EEE :

(
AAA−T

M ⊠AAAM

)
:
〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)

det (AAAM )
(
I + ηTr

(
AAA−1

M AAAm

))〉
Ỹ

:
(
AAA−1

M ⊠AAAT
M

)
: EEE

≈ 1
2E
EE :

(
AAA−T

M ⊠AAAM

)
:
〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)〉

Ỹ
:
(
AAA−1

M ⊠AAAT
M

)
: EEE

+ 1
2ηE
EE :

(
AAA−T

M ⊠AAAM

)
:
〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
) (
AAA−1

M : AAAT
m

)〉
Ỹ

:
(
AAA−1

M ⊠AAAT
M

)
: EEE

≡ 1
2E
EE : CCChom

η (xxx) : EEE
(3.24)

The last relation implicitly defines the tensor of quasi-periodic homogenized moduli expressed as an

asymptotic expansion versus the small-scale parameter. The previous Eq. 3.24 then leads to the expression

of the quasi-periodic moduli versus the tensor of the periodic homogenized moduli as the sum of a

macroscopic contribution traducing the macro-grading of the unit cell and a perturbation reflecting the
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3.3. Surface formulation of the quasi-periodic moduli using the shape derivative

higher order micrograding of the same unit cell:

CCChom
η (xxx) = CCChom

0 (xxx) + ηδCCChom where∣∣∣∣∣∣∣
CCChom

0 (xxx) =
(
AAA−T

M ⊠AAAM

)
:
〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)〉

Ỹ
:
(
AAA−1

M ⊠AAAT
M

)
δCCChom =

(
AAA−T

M ⊠AAAM

)
:
〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
) (
AAA−1

M : AAAT
m

)〉
Ỹ

:
(
AAA−1

M ⊠AAAT
M

) (3.25)

The effective quasi-periodic moduli are expressed as volume averages as shown in Eq. 3.25. From a

numerical point of view, they are evaluated by first solving the BVP over the periodic unit cell (Eq. 3.16)

and then mapping the moduli to the quasi-periodic domain. At the (zero) leading order of η , CCChom
0 (xxx)

is calculated based on the sole macroscopic contribution of the tangent map; this means that one ignores

the micrograding of the unit cell and focuses on the macrograding of the geometry.

Opposite to this, at the first order of η, besides AAAM , the microscopic tangent mapping AAAT
m needs to be

defined at each micro-point of the volume as an input; this makes it difficult to implement numerically

this homogenization schemes in situations where the new quasi-periodic shape is prescribed by a motion

of the internal or / and external surfaces or interfaces of the repetitive unit cell, whereas the mapping

of internal micropoints is not defined explicitly from the onset. In order to overcome this difficulty, a

surface formulation of quasi-periodic homogenization is developed in the next section. It relies on the

shape derivative of the average potential energy involving the sole knowledge of the fields on the unit cell

internal and external (outer) boundaries.

3.3 Surface formulation of the quasi-periodic moduli using the

shape derivative

This section uses the notion of shape derivative towards the objective of formulating the surface integral

of the energy in both periodic and quasi-periodic domains. We have initially the periodic domain Ỹ with

boundary ∂ Ỹ that is subjected to a smooth perturbation of its geometry, and the point mapping φ : ỹyy →

ỹyy+ηVVV s with its associated tangent mapAAA , wherein η being a small scalar parameter used to parametrize

the domain and VVV s being the shape velocity field in Ỹ representing the change of periodic UC boundary

(Fig. 3.4). The new perturbed domain occupied by the unit cell becomes: Yη :=
{
yyy = ỹyy + ηVVV s, ỹyy ∈ Ỹ

}
.

Thus, VVV s is considered as an input field for modifying the design of the unit cell [203].

The advantage of this approach is that it allows the determination of the effective moduli in the

perturbed domain by performing the needed computations only on the boundary of the non-perturbed

domain (in its unit cell), as will be exposed in the sequel.

53



Chapter 3. Higher gradient homogenization methods of quasi-periodic media

Figure 3.4 Schematic representation of the change of design of an initial periodic UC when subjected to a shape

velocity field VVV s on the boundaries of the inclusion.

From the volumetric approach developed previously, and for developing the surface formulations we

reexpress with the energy density of Eq. 3.24 expressed as follows:

WM [Yη] := ⟨wµ (εεε)⟩Y = 1
2 ⟨σσσ : εεε⟩Y = 1

2 det
(
AAA−1

M

) 〈
ẼEE :

(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)

: ẼEE det (AAA)
〉

Ỹ

= 1
2 det

(
AAA−1

M

)
ẼEE :

〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)

det (AAAM )
(
I + ηTr

(
AAA−1

M AAAm

))〉
Ỹ

: ẼEE

= 1
2Ẽ
EE :

〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)〉

Ỹ
: ẼEE + 1

2ηẼ
EE :

〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
) (
Tr
(
AAA−1

M AAAm

))〉
Ỹ

: ẼEE

= 1
2Ẽ
EE :

〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)〉

Ỹ
: ẼEE︸ ︷︷ ︸

W̃M

[
Ỹ
] +η 1

2Ẽ
EE :

〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
) (
AAA−1

M : AAAT
m

)〉
Ỹ

: ẼEE︸ ︷︷ ︸
δW̃M

[
Ỹ
]

⇒ WM [Yη] = W̃M

[
Ỹ
]

+ ηδW̃M

[
Ỹ
]

⇒
WM [Yη] − W̃M

[
Ỹ
]

η
= δW̃M

[
Ỹ
]

(3.26)

The last relation in Eq. 3.26, can then be written according to the definition of the derivative [204] when

η → 0, as:
d

dη
WM [Yη] = δW̃M

[
Ỹ
]

(3.27)

The total potential energy, elaborated as the difference of internal mechanical energy and work of external

forces, is selected to be the cost function, viz. J [Yη] := Win − Wext. According to [203], the shape

derivative of the cost function J is expressed, after some derivations over the periodic domain as:

d

dη
J [Yη] =

∫
Ỹ

ΣΣΣEshelby : VVV s ⊗ ∇
ỹ
dỸ (3.28)

with ΣΣΣEshelby := wµIII − εεεT .σσσ the Eshelby stress appearing as the driving force acting at the microscopic

level of the unit cell to change its shape.

Clapeyron theorem is next utilized to express the total potential energy in terms of the strain energy

density as the quantity of concern as shown in Eq. 3.27, viz. J [Yη] := −Win = −WM [Yη], as demonstrated

in [215]. Thus, Eq. 3.28 becomes:

d

dη
WM [Yη] = δW̃M

[
Ỹ
]

= −
∫

Ỹ

ΣΣΣEshelby : VVV s ⊗ ∇
ỹ
dỸ (3.29)
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Since the Eshelby stress has a nil divergence [203], it is straightforward to write Eq. 3.29 as a surface

integral of the form:

δW̃M

[
Ỹ
]

= −
∫

∂Ỹ

ñnn.ΣΣΣEshelby.VVV sd
(
∂Ỹ
)

(3.30)

VVV s becomes the shape velocity field to be applied on the boundaries of the UC when it is smooth enough

in Ỹ [203]. Eq. 3.30 shows that the volumetric quantity in Eq. 3.26 now expresses as a surface integral:

δW̃M

[
Ỹ
]

= 1
2Ẽ
EE :

〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
) (
AAA−1

M : AAAT
m

)〉
Ỹ

: ẼEE = −
∫

∂Ỹ

ñnn.ΣΣΣEshelby.VVV sd
(
∂Ỹ
)

= −
∫

∂Ỹ

ñnn.
(
w̃µIII − ε̃εε

T
.σ̃σσ
)
.VVV sd

(
∂Ỹ
)

= −
∫

∂Ỹ

ñnn.

(
1
2 (σ̃σσ : ε̃εε)III − ε̃εε.σ̃σσ

)
.VVV sd

(
∂Ỹ
)

= 1
2

∫
∂Ỹ

ñnn.
[(
ÃAA

E
: ẼEE
)

: C̃CCµ :
(
ÃAA

E
: ẼEE
)]
.VVV sd

(
∂Ỹ
)

= 1
2

∫
∂Ỹ

ñnn.
[
ẼEE :

(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)

: ẼEE
]
.VVV sd

(
∂Ỹ
)

⇒ 1
2Ẽ
EE :

〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
) (
AAA−1

M : AAAT
m

)〉
Ỹ

: ẼEE = 1
2Ẽ
EE :

{∫
∂Ỹ

ñnn.
[(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)]
.VVV sd

(
∂Ỹ
)}

: ẼEE

⇒ 1
2Ẽ
EE : δCCChomhomhom : ẼEE = 1

2Ẽ
EE :

{∫
∂Ỹ

ñnn.
[(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)]
.VVV sd

(
∂Ỹ
)}

: ẼEE

(3.31)

Thus, the perturbed moduli δCCChomhomhom in the previous approach rewrites as surface integral as:

δCCChomhomhom =
∫

∂Ỹ

ñnn.
[(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)]
.VVV sd

(
∂Ỹ
)

(3.32)

On the other hand, for the energy density W̃M

[
Ỹ
]

= 1
2ẼEE :

〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)〉

Ỹ
: ẼEE in Eq. 3.26,

to be expressed as a surface integral, we introduce a displacement localization operator H̃HH
E

such that

ũuu = H̃HH
E

: ẼEE:

W̃M

[
Ỹ
]

= 1
2Ẽ
EE :

〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)〉

Ỹ
: ẼEE = 1

2 ⟨σ̃σσ : ε̃εε⟩
Ỹ

= 1
2

1∣∣∣Ỹ ∣∣∣
∫

∂Ỹ

(ñnn.σ̃σσ).ũuu d
(
∂Ỹ
)

= 1
2Ẽ
EE :

 1∣∣∣Ỹ ∣∣∣
∫

∂Ỹ

ÃAA
E,T

: C̃CCµ :
(
ñnn⊗ H̃HH

E
)

d
(
∂Ỹ
) : ẼEE = 1

2Ẽ
EE :

〈
ÃAA

E,T
: C̃CCµ :

(
ñnn⊗ H̃HH

E
)〉

∂Ỹ
: ẼEE

(3.33)

Then, previous relation underline that the Cauchy moduli can be consequently derived as a surface

integral as:

CCChom
0 =

〈
ÃAA

E,T
: C̃CCµ :

(
ñnn⊗ H̃HH

E
)〉

∂Ỹ
(3.34)

The next subsection deals with the extension of the previous homogenization into higher order strain

gradient homogenization to account for the micrograding.

3.3.1 Extension towards a strain gradient effective medium

The grading of the design at the micro-level leads expectedly to a strain gradient continuum that

accounts for it (whereas a first gradient formulation is not sufficient), as mentioned in [121]. For

this purpose, we introduce strain gradient localization operators ÃAA
k

and H̃HH
k
, besides the strain and

displacement localization operators (ÃAA
E
, H̃HH

E
), to relate respectively the microscopic strain and the

microscopic displacement to the macroscopic strain gradient third-order tensor K̃KK = ẼEE⊗ ∇
x̃
, so that the
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Chapter 3. Higher gradient homogenization methods of quasi-periodic media

microscopic strain and displacement can be expressed versus the macroscopic kinematic variables as∣∣∣∣∣∣∣
ε̃εε = ÃAA

E
: ẼEE + ÃAA

k
∴ K̃KK

ũuu = H̃HH
E

: ẼEE + H̃HH
k
∴ K̃KK

(3.35)

We will discard in upcoming relations the couplings between first and strain gradient behaviors by

restricting to centrosymmetric designs of the UC.

Now, the strain energy densities in Eq. 3.26 will be extended to account for the strain gradient medium

after inserting the relations of Eq. 3.35:

W̃M

[
Ỹ
]

= 1
2Ẽ
EE :

〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)〉

Ỹ
: ẼEE + 1

2K̃
KK ∴

〈(
ÃAA

k,T
: C̃CCµ : ÃAA

k
)〉

Ỹ
∴ K̃KK

δW̃M

[
Ỹ
]

= 1
2Ẽ
EE :

〈(
ÃAA

E,T
: C̃CCµ : ÃAA

E
) (
AAA−1

M : AAAT
m

)〉
Ỹ

: ẼEE + 1
2K̃
KK ∴

〈(
ÃAA

k,T
: C̃CCµ : ÃAA

k
) (
AAA−1

M : AAAT
m

)〉
Ỹ
∴ K̃KK

(3.36)

Following the same methodology for determining the surface formulation of the Cauchy and the perturbed

Cauchy moduli, the strain gradient AAAhom
0 and its associated perturbation δAAAhomhomhom are derived:

AAAhom
0 =

〈(
ÃAA

k,T
: C̃CCµ : ÃAA

k
)〉

Ỹ
=
〈
ÃAA

k,T
: C̃CCµ :

(
ñnn⊗ H̃HH

k
)〉

∂Ỹ

δAAAhomhomhom =
〈(
ÃAA

k,T
: C̃CCµ : ÃAA

k
) (
AAA−1

M : AAAT
m

)〉
Ỹ

=
∫

∂Ỹ

ñnn.
[(
ÃAA

k,T
: C̃CCµ : ÃAA

k
)]
.VVV sd

(
∂Ỹ
) (3.37)

Considering the active viewpoint, the components of the tensors CCChom
0 , δCCChomhomhom,AAAhom

0 , and δAAAhomhomhom are

identical in the respective bases of the periodic and quasi-periodic domain, i.e. it holds δChom
ijkl

∣∣∣
inY −bases

=

δChom
ijkl

∣∣∣
inỸ −bases

This leads to the components of the periodic effective first (Cauchy) and strain gradient

moduli versus their periodic counterpart plus their corresponding fluctuation:

Chom
ijkl (xxx)

∣∣
inY −bases

=
(
Chom

0
)

ijkl

∣∣∣
inY −bases

+ η δChom
ijkl

∣∣
inY −bases

Ahom
ijklmn (xxx)

∣∣
inY −bases

=
(
Ahom

0
)

ijklmn

∣∣∣
inY −bases

+ η δAhom
ijklmn

∣∣
inY −bases

(3.38)

The following section illustrates the algorithm for the determination of the effective quasi-periodic moduli

starting from the periodic unit cell domain.

3.3.2 Algorithm for determining the effective quasi-periodic moduli

The expressions of the quasi-periodic effective moduli elaborated in the previous subsection make it

possible to study and solve the BVP of quasi-periodic homogenization from a corresponding BVP

expressed within the UC of the reference periodic domain. First, the microscopic displacement in the

periodic physical UC is introduced as a sum of a fluctuating displacement ˜̃ũũu
Ẽ,K̃

(
ηξ̃ξξ
)

and a homogenized

part ũuuhom
(
ηξ̃ξξ, x̃xx

)
. Therein, ũuuhom corresponds to a heterogeneous medium that would behave exactly as a

homogeneous one and its expression is fully derived in [198] for a strain gradient medium (the parameter

η appears because we are working with the physical UC). The fluctuating displacement represents the

deviation of the homogeneous medium from a heterogeneous medium; it is induced by applying the

macroscopic kinematic loading
(
ẼEE,K̃KK

)
over the periodic physical unit cell.

ũuu = ũuu
hom

(
ηξ̃ξξ, x̃xx

)
+ ˜̃ũũu

Ẽ,K̃

(
ηξ̃ξξ
)

= ηẼEE(x̃xx).ξ̃ξξ + 1
2η

2K̃KK(x̃xx) :
(
ξ̃ξξ ⊗ ξ̃ξξ

)
+ ˜̃ũũu

Ẽ,K̃

(
ηξ̃ξξ
)

(3.39)
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We revisit the equilibrium and the constitutive equations of Eq. 3.16, so that the localization problem to

be solved for the displacement fluctuation writes:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ̃σσ.∇
ỹ

=
(
C̃CCµ : ε̃εε

(
ũuu

Ẽ,K̃

))
.∇

ỹ
= 000

σ̃σσ := C̃CCµ : ε̃εε
(
ũuu

Ẽ,K̃

)
ũuu

Ẽ,K̃

= ũuu
hom

(
ηξ̃ξξ, x̃xx

)
+ ˜̃ũũu

Ẽ,K̃

(
ηξ̃ξξ
)

˜̃ũũu
Ẽ,K̃

Ỹ-periodic

(3.40)

Thereby, the shape derivative of the classical and strain gradient moduli can be determined based on the

expression of the microscopic displacement versus the macroscopic kinematic loadings and its periodic

fluctuation obtained by solving the corresponding unit cell BVP in Eq. 3.40. The algorithm for solving

the BVP (using the open source code FreeFem++) and determining the effective quasi-periodic moduli

is explained synthetically in Fig. 3.5.

Figure 3.5 Schematic diagram for the computation of the effective quasi-periodic moduli.

3.3.3 Scale ranking of the effective quasi-periodic moduli versus the small-

scale parameter

Noting that in the previous sections the fluctuating displacement and strain were neglected so the

equations ũuu = ũuu
hom and ε̃εε = ε̃εε

hom hold with the associated localization operators
(
H̃HH

E
, H̃HH

k
)

and
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(
ÃAA

E
, ÃAA

k
)

were considered in the derivations. These localization operators include implicitly the

parameter η from which we can conclude the scaling of the effective moduli. This subsection elaborates

how this scaling appears and how we can get finally an expression of the energy having η explicitly there.

In order to reach a ranking of the effective quasi-periodic moduli versus the small scale parameter, the

homogeneous displacement introduced in Eq. 3.40 is first mapped into the physical unit cell, and it is

elaborated along with its corresponding strain as:

ũhom
i

(
ηξ̃ξξ, x̃xx

)
= Ẽpqηδpiξ̃q + 1

2η
2K̃ijk ξ̃j ξ̃k

ũuu
hom

(
ηξ̃ξξ, x̃xx

)
= H̃HH

E
(ηξ̃ξξ) : ẼEE(x̃xx) + H̃HH

k
(ηξ̃ξξ) ∴ K̃KK(x̃xx)

⇒ ε̃εε
hom

(
ηξ̃ξξ, x̃xx

)
= ũuu

hom⊗s∇
ỹ

≡ ÃAA
E

(ηξ̃ξξ) : ẼEE(x̃xx) + ÃAA
k
(ηξ̃ξξ) ∴ K̃KK(x̃xx)

ÃAA
E

(ηξ̃ξξ) = H̃HH
E

(ηξ̃ξξ) ⊗ ∇
ηξ̃ξξ
, H̃HH

E
(ηξ̃ξξ) = ηδpiξ̃q ⇒ ÃAA

E
(ξ̃ξξ) ∝ η0

ÃAA
k
(ηξ̃ξξ) = H̃HH

k
(ηξ̃ξξ) ⊗ ∇

ηξ̃ξξ
, H̃HH

k
(ηξ̃ξξ) = η2 1

2

{
ξ̃q ξ̃rδip

}
⇒ ÃAA

k
(ηξ̃ξξ) ∝ η1

(3.41)

The effective moduli are then expressed as the following integrals over the unit cell involving the strain

localization operators [198]. The previously obtained ranking of the strain localization operators vs η in

Eq. 3.41 determine the scale ranking of the effective moduli as well as their perturbed moduli as follows:

CCChom
0 =

∫
Ỹ

ÃAA
E

(ξ̃ξξ) : C̃CCµ : ÃAA
E

(ξ̃ξξ)dVy ∝ η0

AAAhom
0 =

∫
Ỹ

ÃAA
k,T

(ξ̃ξξ) : C̃CCµ : ÃAA
k
(ξ̃ξξ)dVy ∝ η2

ηδCCChomhomhom =
∫

∂Ỹ

nnn.
[(
ÃAA

E,T
: C̃CCµ : ÃAA

E
)]
.VVV sd

(
∂Ỹ
)

∝ η1

ηδAAAhomhomhom =
∫

∂Ỹ

nnn.
[(
ÃAA

k,T
: C̃CCµ : ÃAA

k
)]
.VVV sd

(
∂Ỹ
)

∝ η3

(3.42)

It appears from previous relations that the first gradient effective moduliCCChom
0 is independent of η whereas

the strain gradient effective moduli AAAhom
0 is of second order of η. The perturbed moduli for both first

and strain gradient terms are of one η-order higher than the corresponding unperturbed periodic moduli.

Eq. 3.42 can lead to explicitly express the quasi-periodic energy in terms of η as:

WM [Yη] = 1
2Ẽ
EE : CCChom

0 : ẼEE + η
1
2Ẽ
EE : δCCChomhomhom : ẼEE + η2 1

2K̃
KK ∴ AAAhom

0 ∴ K̃KK + η3 1
2K̃
KK ∴ δAAAhomhomhom ∴ K̃KK (3.43)

The following section considers a numerical example to determine the homogenized properties of a quasi-

periodic structure.

58
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3.4 Application of the quasi-periodic homogenization scheme

In this section, we rely on the surface formulation for the evaluation of the quasi-periodic moduli of an

inclusion-based composite with variable radius as shown in Fig. 3.6. The radius of each UC is defined to

change according to the relation R (x̃) = R̃+ tan β x̃ with R̃ being the radius of the initial periodic UC,

tan β being the slope of variation of each radius with respect to the initial one (as shown in Fig. 3.6) and

x̃ is the position of the center of each UC (measured from the origin of coordinates).

Figure 3.6 Illustration of quasi-periodic domain showing the variation of the radius with a slope of angle β.

Starting from R̃ = 0.1 mm (radius of the first UC), tan β is chosen to be 10−3 so that the variation

between the UCs is smooth. The length of each UC is l = 1 mm, The mechanical properties of the

constituents of the composite, carbon inclusion and epoxy matrix are listed in Table 3.1.

Table 3.1 Mechanical properties of the inclusion and matrix materials.

Mechanical properties Inclusion (Carbon) Matrix(epoxy)

E (MPa) 228000 1400

ν 0.26 0.3

The homogenization is done on a domain of quasi-periodic UCs in which each UC gets its homogenized

CauchyCCChom (x̃xx),and strain gradientAAAhom (x̃xx) moduli with the associated perturbations δCCChomand δAAAhom

respectively. The variation of some of these moduli
(
Chom

1111, C
hom
1122, A

hom
111111, A

hom
111221

)
is plotted in Fig. 7 as

a function of the spatial position representing their variation with the design change. Chom
1111 represents

the first moduli in the Cauchy rigidity tensor which relates the macroscopic stress to the macroscopic

strain in extension, and Ahom
111111 represents the first moduli in the strain gradient tensor which relates the

first-term in the higher order stress (hyper-stress) tensor to the first term in the strain gradient tensor,

whereas
(
Chom

1122, A
hom
111221

)
represents the shear moduli in the Cauchy rigidity tensor and strain gradient

tensor respectively. It is observed in Fig. 3.7 that both the Cauchy moduli and strain gradient moduli

increase as the design of unit cells changes along the spatial position x̃. In Fig. 3.8, an internal length

defined as lxx =
√

AAAhom
111111

CCChom
1111

is determined and illustrated versus the spatial macro position. As shown is

Fig. 3.8, lxx increases with the design change in a way that ensures the smoothness of design between

UCs where the percentage increase of lxx is small between the reference UC and the last UC.
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Figure 3.7 Variation of (a),(b) Cauchy moduli, and (c),(d) strain gradient moduli versus the spatial position.
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Figure 3.8 Variation of internal length lxx versus spatial macro position.

To measure the importance of Cauchy and and strain gradient moduli in capturing the micrograding,

the Cauchy and strain gradient energies are calculated and their percentage contributions are illustrated

in Fig. 3.9 versus the spatial macro position. Fig. 3.9, shows that for UCs at position x̃ < 290, Cauchy
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3.4. Application of the quasi-periodic homogenization scheme

contribution is still dominant and it is capable of capturing the micrograding by δCCChom. However, for UCs

at position x̃ > 290, the contribution of strain gradient energy becomes of higher importance compared

to Cauchy contribution. This reveals that at this stage Cauchy perturbation moduli is insufficient in

determining the micrograding. This ensures the importance of considering strain gradient theory in

accounting for microscopic variation of design through δAAAhom.
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Figure 3.9 Energy contributions as a function of the macroscopic position.

The validation of the quasi-periodic homogenization is done based on the comparison of the fully

resolved FE simulations and those based on the effective quasi-periodic moduli. Therefore, we consider a

beam of UCs with homogenized properties and another one with heterogeneous structure that are fixed

at their left boundary and subjected to a uni-axial loading (F=100N) at the right side (see Fig. 3.10).

Fig. 3.11 shows the macroscopic response of both beams where the displacement in x-direction is plotted

vs the force applied. The homogenized quasi-periodic model can predict the load-displacement response

of a heterogeneous quasiperiodic structure with a max error of 8%.

Figure 3.10 Beam with the quasi-periodic microstructure (top) and the homogenized representation (bottom).
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Figure 3.11 Figure showing the macroscopic response of a heterogeneous and homogeneous structure.

A post-processing scheme of the true strain gradient approach is elaborated in Appendix E, which

shows, on one hand, a link between the strain EEE and strain gradient term (EEE ⊗ ∇x) starting from macro-

scale computations, and on the other hand, a dependence of the macrostress on both, strain and strain

gradient. This scheme is adopted when considering the quasi-periodic macrodomain for the full-field

computations. The difference in strain between the boundaries of the UC is captured by the strain

gradient term (EEE ⊗ ∇x) that must be taken into consideration when accounting for the UC boundary

conditions. Consequently, we show in Appendix E that we will reach an enriched Cauchy medium starting

from a quasi-periodic macrodomain.

3.5 Conclusion

In this chapter, we presented quasi-periodic homogenization schemes for quasi-periodic media, which do

not exhibit periodicity but can be transformed into a parent periodic medium. The main results of this

chapter can be summarized as follows:

• A theoretical approach of quasi-periodic homogenization is introduced, for small perturbations of

the unit cell architecture according to the macro-scale, starting from the average of the microscopic

energy and following the established smoothness conditions of the mapping (which means a small

variation of the UC design). This enables the effective quasi-periodic moduli tensors to be linked

with those of the periodic domain and the associated perturbation terms which are expressed in a

volumetric format over the reference unit cell domain in a 2D context.

• A surface formulation of the quasi-periodic moduli is then derived, starting from the volumetric

approach and based on the notion of shape derivative of the total potential energy stored within the

unit cell, via Clapeyron’s theorem allowing to link the potential energy to the internal strain energy.

This approach relies on introducing a shape velocity field at the boundary of the periodic unit cell
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to model the change of its design. This scheme offers comparatively to the first one a simpler way

to compute the quasi-periodic moduli as it only requires the evaluation of the mechanical fields on

the unit cell boundaries.

• Consideration of the strain gradient theory as to account for the design grading at the microscopic

level, in context of small strains, and following the smoothness conditions. The importance of

the strain gradient model appears in the considered application of inclusion-based composites as

the Cauchy energy becomes insufficient to describe the impact of the variation in the internal

architecture of the unit cell. This appears through the increase in the strain gradient energy

contribution by a factor of 5 from the reference UC, compared to the Cauchy one.
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Part II

Homogenization towards generalized

continua accounting for

multiphysical aspects
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Chapter 4

Homogenization of piezoelectric

composites and architected materials

towards piezoelectric and

flexoelectric effective media

Summary
In this chapter, we evaluate the effective piezoelectric properties of heterogeneous materials in the context

of periodic homogenization, whereby a variational formulation is developed, articulated with the extended

Hill macrohomogeneity condition. The entire set of homogenized piezoelectric moduli is obtained as

the volumetric averages of the microscopic properties of the individual constituents weighted by the

displacement and electric potential localization operators. To account for higher gradient effects, that may

be induced by a strong contrast of properties of the composite constituents, this framework is extended to

deliver a flexoelectric homogenization method investigated in the computation of the flexoelectric effective

properties. A numerical algorithm is developed for the determination of the effective piezoelectric and

flexoelectric moduli relying on solving the boundary value problem (BVP) by applying the macroscopic

kinematic variables. The proposed homogenization is general and can be applied to composites and

architected materials endowed with piezoelectric properties at the microscopic scale.
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NomenclatureNomenclatureNomenclature
DDD Macroscopic electric displacement vector

ΣΣΣ Macroscopic stress tensor

EEE Macroscopic strain tensor

EEEelecelecelec
MMM Macroscopic electric field vector

∈ Medium permittivity

σσσ Microscopic stress tensor

uuu Microscopic displacement vector

DDD Microscopic electric displacement vector

EEEelec Microscopic electric field vector

∈0 Permittivity of vacuum

PPP Polarization vector

ϕ Electric scalar potential

ρf
q Density of free mobile charges

Ω Volume

fff Body forces vector

tttd Prescribed surface traction

χχχe Electric susceptibility

nnn Normal unit vector

εεε Microscopic strain tensor

aaa Permittivity tensor

ddd∗ Piezoelectric tensor

CCC First gradient rigidity tensor

SSS Hyperstress tensor

RRR Higher order electric displacement tensor

KKK Strain gradient tensor

GGGp Electric field gradient tensor

I2I2I2, I4I4I4, I6I6I6 Second, fourth, sixth order identity tensors

MMMuE (yyy) ,MMMuP (yyy) ,MMMuK (yyy) ,MMMuGP (yyy) Displacement localization operators

MMMP E (yyy) ,MMMP P (yyy) ,MMMP K (yyy) ,MMMP GP (yyy) Electric potential localization operators

ZZZuEuEuE ,ZZZuPuPuP ,ZZZuKuKuK ,ZZZuGPuGPuGP Strain localization operators

ZZZP EP EP E ,ZZZP PP PP P ,ZZZP KP KP K ,ZZZP GPP GPP GP Electric field localization operators

66



4.1. Introduction

4.1 Introduction

Piezoelectricity is an electromechanical phenomenon that describes a linear coupling between the electrical

polarization and mechanical strain [3, 6, 216, 217]; it was first investigated in the field of mechanics of

materials by the two brothers Pierre and Jacques Curie in 1880 and it was found in various applications

in engineering [218–220]. Works devoted to the computation of the effective response of piezoelectric

composites rely on multiscale methods as in [102], which constitute a powerful tool for the analysis of their

macroscopic behavior. Such methods can handle multifield phenomena like coupled electromechanical

phenomena, providing a quantitative understanding of the impact of microscale parameters on the overall

multiphysical composite response. Different homogenization methods were developed since the early

seventies to determine the effective piezoelectric properties of different materials: this was achieved

for laminated composites [221] and architected cellular piezoelectric metamaterials using asymptotic

homogenization [222]. However, piezoelectricity possesses some limitations driving the search for richer

electromechanical coupling effects.

In the recent decades (since the early sixties), a higher-order electromechanical phenomenon has

received significant attention, deserving the name flexoelectricity [19, 125], which represents the linear

response of electrical polarization to a mechanical strain gradient [3, 6, 216, 217] . Flexoelectricity can

overcome the drawbacks of piezoelectricity. To explain it further, while piezoelectricity gives a constant

electric field, flexoelectricity leads to an electric field, which is a function of position. At the molecular

scale, flexoelectricity may exist in centrosymmetric materials, for example, in isotropic ones, whereas

piezoelectricity requires non-centrosymmetric materials [6, 223]. In addition to that, flexoelectricity is of

high importance at nanoscales where the strain gradients increase in magnitude, while piezoelectricity

vanishes [224]. As the flexoelectric response is more pronounced at small scales, it was taken into account

for modification of theories for nanometer-sized beams and plates, see, e.g., [225–228] and references

therein. In order to improve the piezoelectric response in the literature, various flexoelectric composite

materials have been proposed, see also [229, 230]. Nowadays it is already established that considering

composites made of flexoelectric materials the optimized microstructure can play a crucial role for a

better performance. In particular, the effective piezoelectric response could be achieved for proper

microstructure, as shown by [231] and [232].

In order to improve the performance of composites and lattice materials, homogenization techniques

can be applied. The availability of effective properties and their dependence on microstructure enables

to optimize the microstructure to increase the required response as in [233]. Topology optimization of

flexoelectric structures was discussed in [234]. As flexoelectric materials can be considered as a particular

class of strain gradient materials, the homogenization schemes proposed for such material could also be

useful, as in [202,235]. Unlike piezoelectric composites, see, e.g., [102,221,236,237], up to our knowledge

there exist only up to now few works on the homogenization of flexoelectric composites, see [127] for the

one-dimensional case. So developing a general approach for the determination of effective properties of
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flexoelectric composites is of great interest.

The main objective of this chapter is to set up a homogenization method of heterogeneous piezoelectric

materials towards flexoelectric effective media, which is able to deliver the entire set of piezoelectric,

and flexoelectric effective properties. The proposed method relies on the variational principle (weak

formulation) articulated with Hill lemma [87] extended to flexoelectricity. To the knowledge of the

authors, this is the first time such a general homogenization framework is proposed.

The outline of this chapter is as follows: section 4.2 represents a first gradient homogenization towards

piezoelectric medium starting from piezoelectric heterogeneous medium which is further extended to the

consideration of the gradient of strain and electric fields to derive the effective flexoelectric properties

in section 4.3. The algorithm for determining both piezoelectric and flexoelectric moduli is explained in

section 4.4. Finally, a summary of the main thrust of the work is given in the conclusion in section 4.5.

In the context of periodic homogenization, the microstructure is identified within an irreducible

representative unit cell, which by periodic translation generates the entire composite domain. In the

context of composite materials Fig. 4.1, the reinforcement has higher properties in comparison to its

surrounding matrix. A state of perfect adherence at the interface between both constituents is assumed

in the present work, so that both the displacement and traction are continuous across the interface

between reinforcement and matrix.

Figure 4.1 Two elastic materials with rigidity and piezoelectric coefficients ai, bi (the index i stands for the

constituent within the unit cell)

Here and in the sequel, we distinguish the microscopic scale (at the scale of individual phases) within

the unit cell, denoted by the spatial position yyy, from the macroscopic scale of the homogenized continuum

(thus replacing the initially heterogeneous composite by a homogeneous substitution media with effective

piezoelectric or flexoelectric properties), for which we employ the spatial position vector xxx.

A few words regarding notations are in order. Vectors and higher-order tensors are denoted with

boldface symbols. The bracket ⟨f(yyy)⟩Y := 1
|Y |
∫
Y

f(yyy)dVy denotes the volume average of any quantity,

here the scalar-valued function f(yyy) over the domain of a reference lattice unit cell Y, with infinitesimal

integration volume dVy. The partial derivative of a scalar function f (x) is denoted alternatively ∂xfor
∂f
∂x . The gradient and divergence of a second order tensor AAA are successively denoted by the quantities

AAA ⊗ ∇x and AAA.∇x. The transpose of the second order tensor is denoted with a superscript ‘T’, so for

instance AAAT .
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4.2 First gradient piezoelectric homogenization

In order to set the stage, we recall the strong form of the governing equations at the microlevel of the

composite constituents [238] with a few subsequent simplifications since we primarily aim to focus on the

effects of electric fields – discarding magnetic phenomena in this chapter.

The primal variables are the displacement and polarization vectors uuu(xxx, t), PPP (xxx, t), which enter as

arguments of the electromechanical energy density. Note that polarization or electric displacementDDD(xxx, t)

can alternatively be chosen as DOF’s (shortcut for degrees of freedom) since they are linearly related,

viz. it holds the relation

DDD = ∈0EEE
elec +PPP (4.1)

with ∈0 the permittivity of vacuum, and in which the electric field EEEelec can be expressed via the electric

scalar potential ϕ as follows

EEEelec = −ϕ∇ (4.2)

The last relation automatically guarantees the satisfaction of Maxwell equation

∇ ×EEEelec = 000 (4.3)

The electric displacement in non-deformed media relates to the electric field and polarization as

DDD = ∈0EEE
elec +PPP ≡ ∈0 (I2I2I2 +χχχe) .EEEelec = ∈∈∈ .EEEelec (4.4)

with ∈ the medium permittivity, χχχe is the electric susceptibility and I2I2I2 the second order identity tensor.

The main steps in the methodology used for the first gradient homogenization can be summarized in

Fig. 4.2.

Since we will focus on statics in this chapter, rate derivatives can be neglected, which entails a decoupling

of the electromagnetic problem into pure electrical and pure magnetic problems. We consider only the

coupling between electric fields with mechanics and ignore magnetic fields; in this case, the local set of

piezoelectric balance equations resumes to

σσσ.∇y + fff = 000

εεε := uuu⊗s ∇y

σσσ.nnn = tttd on St

DDD.∇y = ρf
q

EEEelec = −ϕ∇y

DDD.nnn = Dd on SD

(4.5)

wherein σσσ is the Cauchy stress, and DDD is the electric displacement.The microscopic strain εεε is defined as

the symmetrical part of the gradient of micro displacement field. Note that by virtue of the mechanical-

electric analogy, the electric scalar potential ϕ is the analog of the displacement in mechanics, vector uuu
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Figure 4.2 Schematic diagram of the main steps in the piezoelectric homogenization methodology

in (Eq. 4.5)2, ensuring satisfaction of kinematic compatibility condition. The force-like variables (σσσ,DDD)

satisfy natural boundary conditions written there above, with nnn the unit exterior normal to the domain,

and
(
tttd, Dd

)
are input data on the parts St, SD of the domain boundary respectively. The flux like

variables (uuu, ϕ) satisfy natural essential boundary conditions with prescribed values on the complementary

part of the domain boundary; these values are selected to be nil here and, in the sequel, since they do

not contribute to the effective piezoelectric moduli that will be computed. We have considered as a

matter of simplification nil values of the traction and electric displacement in the natural boundary

conditions written in Eq. 4.5. The microscopic variables, namely the displacement and electric potential,

are decomposed additively into a homogeneous part and a periodic fluctuating part:

u(y) =u(y) =u(y) = uuuhomhomhom (y;xy;xy;x)+ũ(y)+ũ(y)+ũ(y)

ϕ (y) =(y) =(y) = ϕhomhomhom (y;xy;xy;x) +++ ϕ̃(y)(y)(y)
(4.6)

wherein the vectors uuuhom (yyy;xxx),ϕhom (yyy;xxx) are the homogeneous parts of the microscopic displacement

and electric potential, respectively, corresponding to a heterogeneous medium that would behave exactly

as a homogeneous medium. Note that these fields depend on the microscopic position and on the

macroscopic position appearing as a parameter (it is indicated with a semicolon in previous expressions),

as their subsequent expressions will reveal. The fluctuations ũ̃ũu(yyy), and ϕ̃(y)(y)(y) ∈ H1
per(Y ) (the Sobolev
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space of Y-periodic functions) in previous decomposition account for the deviation of the postulated

effective homogeneous medium from the initially heterogeneous medium. Homogenization makes an

upscaling of governing equations from the microscale to the macroscale, so that the resulting homogenized

boundary value problem only involves macroscopic variables depending on the sole macroscopic position xxx.

Accordingly, the microscopic strain and electric field tensors can be decomposed into their homogeneous

and fluctuating parts as:
εεε(yyy) = εεεhom(xxx) + ε̃̃ε̃ε(yyy),

εεεhom(xxx) := uuuhom(yyy)⊗s∇y = EEE

EEEelecelecelec(yyy) = −ϕ∇y = EEEelecelecelec,hom(xxx) + Ẽ̃ẼE
elecelecelec(yyy),

EEEelecelecelec,hom(xxx) := EEEelecelecelec
MMM

(4.7)

wherein EEE, and EEEelecelecelec
MMM are the macroscopic strain, and electric field respectively. The homogenization here

doesn’t account for any higher order gradients so the homogeneous parts will be as shown in Eq. 4.7; for

higher order homogenization, the homogeneous parts will be elaborated later in the next section. In the

sequel, the letter ’s’ over ⊗, that indicates the symmetrical gradient of displacement, will be omitted for

simplification.

The constitutive law for piezoelectric materials has the form:∣∣∣∣∣∣∣
σσσ = CCC : εεε−eeeT .EEEelec

DDD = eee : εεε+ aaa.EEEelec
(4.8)

wherein aaa is the tensor of dielectric (permittivity) coefficients, CCC is the tensor of rigidity coefficients, and

eee is the tensor of piezoelectric coefficients at the microscopic level.

Multiplication of the mechanical and electric balance laws, (Eq. 4.5)1 and (Eq. 4.5)4 respectively by

suitable test functions, integration over the domain, integration by part with proper account of the natural

boundary conditions leads to the piezoelectric enthalpy density at the micro-level written in terms of the

strain tensor εεε and electric field EEEelecelecelec defining the microscopic degrees of freedom (DOF in short):

wµ(εεε,EEEelecelecelec) = 1
2
(
σijεij−DkE

elec
k

)
(4.9)

Hill macro-homogeneity condition for piezoelectric media states that the volumetric average of the

microscopic enthalpy (or strain energy) is equal to the macroscopic enthalpy (or strain energy):〈
wµ(εεε,EEEelecelecelec)

〉
Y

= WM

(
EEE,E,E,Eelecelecelec

MMM

)
= 1

2

(
Σ : EΣ : EΣ : E−EEEelecelecelec

MMM ...DDD
)

(4.10)

wherein ΣΣΣ, and DDD are the stress, and electric displacement at the macroscopic scale respectively. The

bracket ⟨•⟩ denotes the volume integration over the unit cell, normalized by the unit cell volume. The

subscript in WM

(
EEE,EEEelecelecelec

MMM

)
means macroscopic.
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An extended minimization principle of the macroscopic energy over all periodic fluctuations holds in

the absence of body forces:

WM

(
EEE,EEEelecelecelec

MMM

)
= Min

ũ̃ũu,ϕ̃∈H1
per(Y )

1
2

∫
Y



CCC (yyy) : (EEE + ũ̃ũu(yyy) ⊗ ∇y) : (EEE + ũ̃ũu(yyy) ⊗ ∇y)

− eeeT(y)(y)(y).
(
EEEelecelecelec

MMM − ϕ̃∇y

)
: (EEE + ũ̃ũu(yyy) ⊗ ∇y)

−eee(y)(y)(y) : (EEE + ũ̃ũu(yyy) ⊗ ∇y) .
(
EEEelecelecelec

MMM − ϕ̃∇y

)
−a(y)a(y)a(y).

(
EEEelecelecelec

MMM − ϕ̃∇y

)
.
(
EEEelecelecelec

MMM − ϕ̃∇y

)


dVy (4.11)

The stationarity condition of the previous functional delivers, as a necessary condition, the following

boundary value problem (BVP in short) satisfied by the optimal fluctuation associated to the real

displacement field and electric potential (in the absence of body forces for mechanical field and free

charges for electric field); it describes the self-equilibrium of the unit cell:∣∣∣∣∣∣∣∣∣∣∣

− divy

{
C (yyy) : (EEE + ũ̃ũu⊗ ∇y) −eeeT (yyy) .

(
EEEelecelecelec

MMM − ϕ̃∇y

)}
= 000

divy

{
aaa (yyy) .

(
EEEelecelecelec

MMM − ϕ̃∇y

)
+ eee (yyy) : (EEE + ũ̃ũu⊗ ∇y)

}
= 000

ũ̃ũu(yyy), ϕ̃ Y-periodic

(4.12)

Since the previous BVP is linear in the loading
(
EEE,EEEelecelecelec

MMM

)
at the macroscale, the fluctuations can be

written as:
ũ̃ũu (yyy) = MMMuEuEuE (yyy) : EEE (xxx) +MMMuPuPuP (yyy) .EEEelecelecelec

MMM (xxx)

ϕ̃ (yyy) === MMMP EP EP E (yyy) : EEE (xxx) +MMMP PP PP P (yyy) .EEEelecelecelec
MMM (xxx)

(4.13)

wherein tensors MMMuE (yyy) ,MMMuP (yyy) are the displacement localization operators, and MMMP E (yyy) ,MMMP P (yyy)

the electric potential localization operators. The localization tensors relate the microscopic DOF’s to

their macroscopic counterpart. They are dependent on the microscopic position variable within the unit

cell Y and are Y-periodic. Inserting these expressions into the previous BVP leads to the unit cell BVP

for the first gradient piezoelectric homogenization. The previous macroscopic energy is a function of

the fluctuations, written in compact form as a Lagrangian functional of the displacement and electric

potential fluctuations as:

L
[
ũ̃ũu, ϕ̃

]
:= 1

2

∫
Y

{
CCC (yyy) : εεε : εεε−eeeT .EEEelecelecelec : εεε−aaa...EEEelecelecelec...EEEelecelecelec−eee : εεε.EEEelecelecelec

}
dVy

= 1
2

∫
Y



(EEE + ũ̃ũu(yyy) ⊗ ∇y) : C (yyy) : (EEE + ũ̃ũu(yyy) ⊗ ∇y)

−aaa...
(
EEEelecelecelec

MMM − ϕ̃∇y

)
.
(
EEEelecelecelec

MMM − ϕ̃∇y

)
−eeeT .

(
EEEelecelecelec

MMM − ϕ̃∇y

)
: (EEE + ũ̃ũu(yyy) ⊗ ∇y)

−eee : (EEE + ũ̃ũu(yyy) ⊗ ∇y) .
(
EEEelecelecelec

MMM − ϕ̃∇y

)
.


dVy

(4.14)
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Introducing the fluctuations as a function of the localization operators Eq. 4.13 into Eq. 4.14 leads to:

L
[
ũ̃ũu, ϕ̃

]
:= 1

2

∫
Y



(
EEE +MMMuE (yyy) ⊗ ∇y : EEE (xxx) +MMMuP (yyy) ⊗ ∇y.EEE

elecelecelec
MMM (xxx)

)
: CCC (yyy)

:
(
EEE +MMMuE (yyy) ⊗ ∇y : EEE (xxx) +MMMuP (yyy) ⊗ ∇y.EEE

elecelecelec
MMM (xxx)

)
−
(
EEEelecelecelec

MMM −MMMP E (yyy) ⊗ ∇y : EEE (xxx) −MMMP P (yyy) ⊗ ∇y.EEE
elecelecelec
MMM (xxx)

)
.aaa

.
(
EEEelecelecelec

MMM −MMMP E (yyy) ⊗ ∇y : EEE (xxx) −MMMP P (yyy) ⊗ ∇y.EEE
elecelecelec
MMM (xxx)

)
−eeeT .

(
EEEelecelecelec

MMM −MMMP E (yyy) ⊗ ∇y : EEE (xxx) −MMMP P (yyy) ⊗ ∇y.EEE
elecelecelec
MMM (xxx)

)
:
(
EEE +MMMuE (yyy) ⊗ ∇y : EEE (xxx) +MMMuP (yyy) ⊗ ∇y.EEE

elecelecelec
MMM (xxx)

)
−eee :

(
EEE +MMMuE (yyy) ⊗ ∇y : EEE (xxx) +MMMuP (yyy) ⊗ ∇y.EEE

elecelecelec
MMM (xxx)

)
.
(
EEEelecelecelec

MMM −MMMP E (yyy) ⊗ ∇y : EEE (xxx) −MMMP P (yyy) ⊗ ∇y.EEE
elecelecelec
MMM (xxx)

)



dVy (4.15)

The effective piezoelectric constitutive law is then obtained by applying partial derivatives with respect

to EEE and EEEelecelecelec
MMM of the macroscopic energy, which is minimized. Since the unit cell is bounded, partial

derivative and integration can be switched, thus it holds using Hill extended macro-homogeneity condition

the following relations:

ΣΣΣ =
∂WM

(
EEE,EEEelecelecelec

MMM

)
∂EEE

≡ ∂

∂EEE

(
Min

ũ̃ũu,ϕ̃∈H1
per(Y )

L
[
ũ̃ũu, ϕ̃

])
≡ Min

ũ̃ũu,ϕ̃∈H1
per(Y )

∂L
[
ũ̃ũu, ϕ̃

]
∂EEE

,

DDD =
∂WM

(
EEE,EEEelecelecelec

MMM

)
∂EEEelecelecelec

MMM

≡ ∂

∂EEEelec
M

(
Min

ũ̃ũu,ϕ̃∈H1
per(Y )

L
[
ũ̃ũu, ϕ̃

])
≡ Min

ũ̃ũu,ϕ̃∈H1
per(Y )

∂L
[
ũ̃ũu, ϕ̃

]
∂EEEelecelecelec

MMM

(4.16)

Inserting the fluctuations as a function of the localization operators (in Eq. 4.13) leads to the expressions

of the effective driving forces for the piezoelectric effect:

ΣΣΣ = 1
2

∫
Y



(
EEE +MMMuE ⊗ ∇y : EEE +MMMuP ⊗ ∇y.EEE

elecelecelec
MMM

)
: CCC :

(
III4 +MMMuE ⊗ ∇y

)
+
(
III4 +MMMuE ⊗ ∇y

)
: CCC :

(
EEE +MMMuE ⊗ ∇y : EEE +MMMuP ⊗ ∇y.EEE

elecelecelec
MMM

)
−
(
EEEelecelecelec

MMM −MMMP E (yyy) ⊗ ∇y : EEE −MMMP P ⊗ ∇y.EEE
elecelecelec
MMM

)
.aaa.
(

−MMMP E (yyy) ⊗ ∇y

)
−
(

−MMMP E (yyy) ⊗ ∇y

)
.aaa.
(
EEEelecelecelec

MMM −MMMP E ⊗ ∇y : EEE −MMMP P ⊗ ∇y.EEE
elecelecelec
MMM

)
−eeeT .

(
EEEelecelecelec

MMM −MMMP E ⊗ ∇y : EEE −MMMP P ⊗ ∇y.EEE
elecelecelec
MMM

)
:
(
III4 +MMMuE ⊗ ∇y

)
−eeeT .

(
−MMMP E ⊗ ∇y

)
:
(
EEE +MMMuE ⊗ ∇y : EEE +MMMuP ⊗ ∇y.EEE

elecelecelec
MMM

)
−eee :

(
EEE +MMMuE ⊗ ∇y : EEE +MMMuP ⊗ ∇y.EEE

elecelecelec
MMM

)
.
(

−MMMP E ⊗ ∇y

)
−eee :

(
III4 +MMMuE ⊗ ∇y

)
.
(
EEEelecelecelec

MMM −MMMP E ⊗ ∇y : EEE −MMMP P ⊗ ∇y.EEE
elecelecelec
MMM

)



dVy (4.17)
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DDD = 1
2

∫
Y



(
MMMuP ⊗ ∇y

)
: CCC :

(
EEE +MMMuE ⊗ ∇y : EEE +MMMuP ⊗ ∇y.EEE

elecelecelec
MMM

)
+
(
EEE +MMMuE ⊗ ∇y : EEE +MMMuP ⊗ ∇y.EEE

elecelecelec
MMM

)
: CCC : (MMMuP ⊗ ∇y)

−
(
III2 −MMMP P ⊗ ∇y

)
.aaa.
(
EEEelecelecelec

MMM −MMMP E ⊗ ∇y : EEE −MMMP P ⊗ ∇y.EEE
elecelecelec
MMM

)
−
(
EEEelecelecelec

MMM −MMMP E ⊗ ∇y : EEE −MMMP P ⊗ ∇y.EEE
elecelecelec
MMM

)
.aaa.
(
III2 −MMMP P ⊗ ∇y

)
−eeeT .

(
EEEelecelecelec

MMM −MMMP E ⊗ ∇y : EEE −MMMP P ⊗ ∇y.EEE
elecelecelec
MMM

)
:
(
MMMuP ⊗ ∇y

)
−eeeT .

(
III2 −MMMP P ⊗ ∇y

)
:
(
EEE +MMMuE ⊗ ∇y : EEE +MMMuP ⊗ ∇y.EEE

elecelecelec
MMM

)
−eee :

(
EEE +MMMuE ⊗ ∇y : EEE +MMMuP ⊗ ∇y.EEE

elecelecelec
MMM

)
.
(
III2 −MMMP P ⊗ ∇y

)
−eee :

(
MMMuP ⊗ ∇y

)
.
(
EEEelecelecelec

MMM −MMMP E ⊗ ∇y : EEE −MMMP P ⊗ ∇y.EEE
elecelecelec
MMM

)



dVy (4.18)

wherein III4 is the fourth order identity tensor. In the above equations Eq. 4.17 and Eq. 4.18, the

factorization of the macroscopic degrees of freedom
(
EEE,EEEelecelecelec

MMM

)
leads to the expressions of stress and

electric field versus
(
EEE,EEEelecelecelec

MMM

)
, as shown in Eq. F.1- Eq. F.2 in Appendix F.

Previous expressions highlight the tensors of effective piezoelectric properties given by:∣∣∣∣∣∣∣
Σ =Σ =Σ = CCChom : E−: E−: E− eeeT,homhomhom.E.E.Eelecelecelec

MMM

DDD === eeehomhomhom : E: E: E +aaahom.EEEelecelecelec
MMM

(4.19)

wherein CCChom, eeehom, and aaahom are the effective rigidity, piezoelectric and permittivity matrices for the

homogenized medium given in Eq. F.3 of Appendix F .

An alternative more compact form of the effective piezoelectric constitutive law can be formulated based

on the strain localization operators
(
ZZZuEuEuE ,ZZZuPuPuP

)
and electric field localization operators

(
ZZZP EP EP E ,ZZZP PP PP P

)
,

elaborated in Appendix F(Eq. F.4).

ZZZuE (yyy) = III4 +MMMuE ⊗ ∇y

ZZZuP (yyy) = MMMuP ⊗ ∇y

ZZZP EP EP E(y) = −MMMP E (yyy) ⊗ ∇y

ZZZP PP PP P(y)(y)(y) = III2 −MMMP P (yyy) ⊗ ∇y

By comparing Eq. F.6, Eq. F.7 in Appendix F and Eq. 4.19,the homogenized tensors CCChom, eeehom, and
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aaahom express as follows:

CCChom = 1
2

∫
Y



(
ZZZuEuEuE

)
: C :: C :: C : ZZZuEuEuE +++

(
ZZZuEuEuE

)TTT

: C :: C :: C : ZZZuEuEuE−
(
ZZZP EP EP E

)
.a.a.a...ZZZP EP EP E

−
(
ZZZP EP EP E

)T

.a.a.a...ZZZP EP EP E−
(
ZZZuEuEuE

)T

: eeeT ...
(
ZZZP EP EP E

)
−eeeT ...

(
ZZZP EP EP E

)
:
(
ZZZuEuEuE

)
−
(
ZZZP EP EP E

)T

.eee :
(
ZZZuEuEuE

)
−eee :

(
ZZZuEuEuE

)
.
(
ZZZP EP EP E

)


dVy

eeehom = 1
2

∫
Y



(
ZZZuEuEuE

)
: C :: C :: C : ZZZuEuEuE +++

(
ZZZuEuEuE

)TTT

: C :: C :: C : ZZZuEuEuE−
(
ZZZP EP EP E

)
.a.a.a...ZZZP EP EP E

−
(
ZZZP EP EP E

)T

.a.a.a...ZZZP EP EP E−
(
ZZZuEuEuE

)T

: eeeT ...
(
ZZZP EP EP E

)
−eeeT ...

(
ZZZP EP EP E

)
:
(
ZZZuEuEuE

)
−
(
ZZZP EP EP E

)T

.eee :
(
ZZZuEuEuE

)
−eee :

(
ZZZuEuEuE

)
.
(
ZZZP EP EP E

)


dVy

aaahom = 1
2

∫
Y



(
ZZZuPuPuP

)
: C (yyy) :

(
ZZZuP

)
+
(
ZZZuPuPuP

)T

: C (yyy) :
(
ZZZuP

)
−
(
ZZZP PP PP P

)
.aaa.
(
ZZZP PP PP P

)
−
(
ZZZP PP PP P

)T

.aaa.
(
ZZZP PP PP P

)
−
(
ZZZuPuPuP

)T

: eeeT .
(
ZZZP PP PP P

)
−eeeT .

(
ZZZP PP PP P

)
:
(
ZZZuPuPuP

)
−
(
ZZZP PP PP P

)T

.eee :
(
ZZZuPuPuP

)
−eee :

(
ZZZuPuPuP

)
.
(
ZZZP PP PP P

)


dVy

(4.20)

In the sequel, we extend the homogenization method to the consideration of higher order effects, and

compute the effective flexoelectric properties.

4.3 Homogenization towards flexoelectric substitution media

In view of the derivation of the effective flexoelectric properties of composites (or lattice materials), we

express the homogeneous part of the microscopic displacement and electric potential as follows:

uuuhom = EEE (xxx) .yyy + 1
2K
KK (xxx) : yyy ⊗ yyy

KKK (xxx) := EEE (xxx) ⊗ ∇x

ϕhomhomhom = EEEelecelecelec
MMM (xxx) .y.y.y + 1

2G
GGp (xxx) : yyy ⊗ yyy

GGGp (xxx) := EEEelecelecelec
MMM (xxx) ⊗ ∇x

(4.21)

The form of the homogenized displacement vector and electric potential in Eq. 4.21 leads respectively to

the expression of the homogeneous part of the microscopic strain and electric field as follows:

εεεhom (uuuhom) = EEE (xxx) +KKK (xxx) .yyy

EEEelec,hom (ϕhom) = EEEelecelecelec
MMM (xxx) +GGGp (xxx) .yyy

(4.22)

wherein third-order tensor KKK is the strain gradient tensor and the second-order tensor GGGp is the electric

field gradient tensor.

Hill extended macro-homogeneity states that the volumetric average microscopic enthalpy density is

equal to the macroscopic enthalpy density in a flexoemectric medium:〈
wµ(εεε,EEEelecelecelec)

〉
Y

= WM

(
EEE,E,E,Eelecelecelec

MMM ,K,K,K,,,GGGp

)
= 1

2

(
ΣΣΣ : EEE−EEEelecelecelec

MMM .DDD +SSS ∴KKK−RRR : GGGp

)
(4.23)

wherein SSS is the third-order hyperstress referring to higher gradient effects, and the second-order tensor

RRR is related to the higher gradient electric displacement (the second gradient electric displacement).
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An extended minimization principle of the macroscopic enthalpy over all periodic fluctuations holds:

WM

(
EEE,EEEelecelecelec

MMM ,KKK,GGGp

)
= Min

ũ̃ũu,ϕ̃∈H1
per(Y )

1
2

∫
Y



(EEE +KKK.yyy + ũ̃ũu(yyy) ⊗ ∇y) : CCC : (EEE +KKK.yyy + ũ̃ũu(yyy) ⊗ ∇y)

−
(
EEEelecelecelec

MMM +GGGp.yyy − ϕ̃∇y

)
.aaa.
(
EEEelecelecelec

MMM +GGGp.yyy − ϕ̃∇y

)
−eeeT .

(
EEEelecelecelec

MMM +GGGp.yyy − ϕ̃∇y

)
: (EEE +KKK.yyy + ũ̃ũu(yyy) ⊗ ∇y)

−eee : (EEE +KKK.yyy + ũ̃ũu(yyy) ⊗ ∇y) .
(
EEEelecelecelec

MMM +GGGp.yyy − ϕ̃∇y

)


dVy

(4.24)

The stationarity condition of the previous functional delivers, as a necessary condition, the second order

BVP to be satisfied by the optimal fluctuations associated to the real displacement field (in the absence

of body forces) and electric potential(in the absence of free electric charges) :∣∣∣∣∣∣∣∣∣∣∣

− divy

{
CCC (yyy) : (EEE +KKK.yyy + ũ̃ũu(yyy) ⊗ ∇y) −eeeT .

(
EEEelecelecelec

MMM +GGGp.yyy − ϕ̃∇y

)}
= 000,

divy

{
aaa.
(
EEEelecelecelec

MMM +GGGp.yyy − ϕ̃⊗ ∇y

)
) + eee : (EEE +KKK.yyy + ũ̃ũu(yyy) ⊗ ∇y)

}
= 000,

ũ̃ũu(yyy), ϕ̃ Y-periodic

(4.25)

The fluctuations ũ̃ũu (yyy) and ϕ̃ (yyy) are expressed linearly versus the effective strain and electric field tensors

and their gradients EEE (xxx) , E,E,Eelecelecelec
MMM (xxx) ,K,K,K (xxx) ,,,GGGp (xxx) which constitute the loading in the BVP Eq. 4.25:

ũ̃ũu (yyy) = MMMuE (yyy) : EEE (xxx) +MMMuP (yyy) .EEEelecelecelec
MMM (xxx) +MMMuK (yyy) ∴ KKK (xxx) +MMMuGp (yyy) : GGGp (xxx)

ϕ̃ (yyy) = MMMP E (yyy) : EEE (xxx) +MMMP P (yyy) .EEEelecelecelec
MMM (xxx) +MMMP K (yyy) ∴KKK (xxx) +MMMP Gp (yyy) : GGGp (xxx)

(4.26)

wherein the fourth- and third-order tensors MMMuK (yyy) and MMMuGp (yyy) are the localization operators that

relate the fluctuating displacement to the strain gradient and electric field gradient. The third-order

tensors MMMP K (yyy) and the second-order tensor MMMP Gp (yyy) are the localization operators relating the

fluctuating electric potential to the strain gradient and electric field gradient.

Introducing the microscopic strain and electric field in terms of the strain and electric field gradients

(KKK,GGGp) gives the following expressions in terms of the macroscopic degrees of freedom:

uuu (yyy) ⊗ ∇y =
(
uuuhom (yyy) + ũ̃ũu (yyy)

)
⊗ ∇y := EEE (xxx) +KKK (xxx) .yyy

+MMMuE (yyy) ⊗ ∇y : EEE (xxx) +MMMuK (yyy) ⊗ ∇y ∴ KKK (xxx)

+MMMuP (yyy) ⊗ ∇y.EEE
elecelecelec
MMM (xxx) +MMMuGp (yyy) ⊗ ∇y : GGGp (xxx)

≡ ZZZuE (yyy) : EEE (xxx) +ZZZuk (yyy) ∴KKK (xxx) +ZZZuP (yyy) .EEEelecelecelec
MMM (xxx) +ZZZuGp (yyy) : GGGp (xxx) ,

− ϕ(y)(y)(y)∇y =: −
(
ϕhomhomhom (yyy) +++ ϕ̃(y)(y)(y)

)
∇y = EEEelecelecelec

MMM +GGGp (xxx) .yyy

−MMMP E (yyy) ⊗ ∇y : EEE (xxx) −MMMP K (yyy) ⊗ ∇y ∴KKK (xxx)

−MMMP P (yyy) ⊗ ∇y.EEE
elecelecelec
MMM (xxx) −MMMP Gp (yyy) ⊗ ∇y : GGGp (xxx)

≡ ZZZP E (yyy) : EEE (xxx) +ZZZP k (yyy) ∴KKK (xxx) +ZZZP PP PP P .EEEelecelecelec
MMM (x)(x)(x) +ZZZP GP (yyy) : GGGp (xxx)

(4.27)

wherein ZZZuk (yyy) ,ZZZuGp (yyy) ,ZZZP k (yyy) ,ZZZP GP (yyy) represent the localization tensors relating the microscopic
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strain and electric field into the macroscopic higher order kinematic variables, viz:

ZZZuk (yyy) =
(
III6.yyy +MMMuK (yyy) ⊗ ∇y

)
ZZZuGp (yyy) = MMMuGp (yyy) ⊗ ∇y

ZZZP k (yyy) = −MMMP K (yyy) ⊗ ∇y

ZZZP GP (yyy) =
(
III4.yyy −MMMP Gp (yyy) ⊗ ∇y

)
Using Eq. 4.27, the macroscopic energy in Eq. 4.24 is then elaborated in terms of the localization operators

to get a Lagrangian functional of the displacement and electric field fluctuations extended into higher

order terms (see Appendix F, Eq. F.8). The flexoelectric constitutive law is then obtained by taking the

partial derivatives of the minimum macroscopic energy with respect to EEE,EEEelecelecelec
MMM ,KKK, and GGGp to determine

the expressions of stress, electric displacement, hyperstress, and higher gradient electric displacement

respectively (see Appendix F Eq. F.9- F.13). As a result of these expressions, the tensors of effective

flexoelectric properties involved in the following homogenized constitutive law are obtained:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Σ =Σ =Σ = CCChom : E−: E−: E− eeeT,homhomhom.E.E.Eelecelecelec
MMM +++BBBhomhomhom ∴KKK−efefef

homhomhom ::: GGGP

DDD === eeehomhomhom : E+: E+: E+ aaahomhomhom.E.E.Eelecelecelec
MMM +++FFFhomhomhom ∴K+K+K+eeeDDD

homhomhom ::: GGGP

S =S =S = BBBT,homhomhom : E: E: E −FFFT,homhomhom.E.E.Eelecelecelec
MMM +++AAAhomhomhom ∴K+K+K+HHHhomhomhom ::: GGGP

R =R =R = efefef
T,homhomhom : E+: E+: E+ eeeDDD

T,homhomhom.E.E.Eelecelecelec
MMM +++HHHT,homhomhom ∴K+K+K+NNNhomhomhom ::: GGGP

(4.28)

All parameters in Eq. 4.28 are defined for the homogenized medium at the macroscale. In details, BBBhomhomhom

is the fifth-order coupling tensor between the stress and strain gradient, efefef
homhomhom the fourth-order coupling

tensor between stress and electric field gradient. FFFhomhomhom is the fourth-order coupling tensor between

electrical displacement and strain gradient. eeeDDD
homhomhom is the third-order coupling tensor between the electric

displacement and the electric field gradient. AAAhomhomhom is the sixth-order second gradient tensor. HHHhomhomhom

is the fifth-order coupling tensor between hyperstress and the electric field gradient, and NNNhomhomhom is the

fourth-order coupling tensor between higher-order electric displacement and the electric field gradient.

As done in section 4.2, a comparison between Eqs. F.10, F.11, F.12, and F.13 allows the determination

of the tensors of homogenized properties CCChom, eeehomhomhom, BBBhomhomhom, efefef
homhomhom, aaahomhomhom, FFFhomhomhom, eeeDDD

homhomhom, AAAhomhomhom, HHHhomhomhom,

NNNhomhomhom as corresponding integrals of microscopic quantities over the unit cell; these tensors receive however

complicated expressions that will not be explicitly written.

4.4 Algorithm for the evaluation of the homogenized

piezoelectric and flexoelectric moduli

Starting from the theoretical framework mentioned in the previous section, we propose a numerical

algorithm to determine the effective tensors of the homogenized constitutive law for the second gradient

flexoelectric medium.
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At the micro-scale, the materials are considered as linear elastic and isotropic (knowing that they

should be transversely isotropic but since the direction of transverse isotropy is orthogonal to our plane

of study, we have isotropy within the 2D section considered in this example). In this context, the elastic

stress at a point is related to the deformation at the same point by the two Lame coefficients (λ, η),

with λ = Eν
(1+ν)(1−2ν) the first Lamé parameter and η = E

2(1+ν) the second Lamé parameter, expressed

versus Young’s modulus E and Poisson’s ratio ν. Taking into consideration Eq. 4.8, and Eq. 4.22, the

microscopic stress and electric displacement can be written in matrix format as:

σ11

σ22

σ12

D1

D2


=



λ+ 2η λ 0 −e11 −e21

λ λ+ 2η 0 −e12 −e22

0 0 η −e13 −e23

e11 e12 e13 a11 0

e21 e22 e23 0 a22





ε̃11 + E11 +K111.y1 +K112.y2

ε̃22 + E22 +K221.y1 +K222.y2

ε̃12 + E12 +K121.y1 +K122.y2

Ẽelec
1 + Eelec

M 1 +GP 11.y1 +GP 12.y2

Ẽelec
2 + Eelec

M 2 +GP 12.y1 +GP 22.y2


(4.29)

where (y1, y2) is the microscopic position vector in 2D situations to which we restrict the analysis here

and in the sequel. The macroscopic deformation EEE, the macroscopic gradient of deformation KKK, the

macroscopic electric field EEEelecelecelec
MMM , and the macroscopic gradient of electric field GGGP are considered as

kinematic controls applied to the unit cell Y.

The objective is to find the total displacement and electric potential of the unit cell BVP satisfying the

following set of governing equations:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σσσ(yyy).∇y = 000 in Y

D(y)D(y)D(y).∇y = 0

σσσ.nnn = tttd on St

DDD.nnn = Dd on SD

σσσ(yyy) = CCC(yyy) : εεε(yyy) + eeeT (yyy).EEEelecelecelec(yyy) in Y

D(y)D(y)D(y) = eee(yyy) : εεε(yyy) + aaa(yyy).EEEelecelecelec(yyy)

εεε(yyy) = EEE +KKK.yyy + ε̃̃ε̃ε(yyy)

ε̃̃ε̃ε(yyy) := ũ̃ũu(yyy)⊗S∇y

EEEelecelecelec = EEEelecelecelec
MMM +++GGGPPP .y.y.y + Ẽ̃ẼE

elecelecelec

(4.30)

A weak formulation of Eq. 4.30 is introduced to get the following formal homogenized problem, considering

the decomposition of the total microscopic deformation and electrical fields,

∀vvv, ψ ∈ H1 (Y ) ,∫
Y

(
C(yyy) : εεε(uuu)−eeeT (yyy).EEEelecelecelec(yyy)

)
: εεε(vvv)dVy −

∫
Y

(
eee(yyy) : εεε(yyy) + aaa(yyy).EEEelecelecelec(yyy)

)
.EEEelec(ψ)dVy = 0

(4.31)
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∀vvv, ψ ∈ H1 (Y ) ,∫
Y

(
C(yyy) : (ε̃εε+EEE +KKK.y.y.y)−eeeT (yyy).

(
EEEelecelecelec

MMM +++GGGPPP .y.y.y + Ẽ̃ẼE
elecelecelec
))

: εεε(vvv)dVy

−
∫
Y

(
aaa(yyy).

(
EEEelecelecelec

MMM +++GGGPPP .y.y.y + Ẽ̃ẼE
elecelecelec
)

+ eee(yyy) : (ε̃εε+EEE +KKK.y.y.y)
)
.EEEelec(ψ)dVy = 0

(4.32)

where vvv and ψ are the test functions. By solving this variational formulation, the periodic fluctuating

displacement and fluctuating electric potential satisfying Eq. 4.31 are obtained. This problem is solved

using FreeFem++ open source finite element software as well as for the subsequent determination of the

first gradient, second gradient, the piezoelectric and the flexoelectric moduli in Eq. 4.28.

4.4.1 Determination of the homogenized first and second gradient moduli

The goal in this section is to determine the first gradient moduli CCChom (rigidity matrix), the second

gradient moduli AAAhom and the coupling moduli BBBhom between first and second gradient terms. The

coupling moduli between the electrical displacement and strain gradient tensor FFF hom will be determined

as well. Applying the macroscopic strain EEE as the sole kinematic boundary condition over the unit cell

leads to CCChom while applying KKK alone as a kinematic boundary condition over the unit cell entails the

evaluation of BBBhom, FFF hom and AAAhom. This procedure is condensed in algorithmic format in Fig. 4.3.

Figure 4.3 Schematic diagram for the computation of the effective moduli CCChom,BBBhom,FFF hom, and AAAhom
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The moduli CCC
hom

, BBBhom, and FFF hom are written in the form:

CCChom : EEE = 1
|Y |

∫
Y

CCC(yyy) : εεε(uuu)dVy (4.33)

BBBhom ∴KKK = 1
|Y |

∫
Y

CCC(yyy) : εεε(uuu)dVy (4.34)

FFF hom ∴KKK = 1
|Y|

∫
Y

DDD dVy (4.35)

wherein |Y | is the volume (the area in 2D) of the unit cell.

The average macroscopic hyperstress is written according to the Hill Lemma, as follows:

Sijk = ∂WM

∂Kijk
= ∂

∂Kijk
⟨wµ (εεε)⟩Y =

〈
∂wµ (εεε)
∂Kijk

〉
Y

=
〈
∂wµ (εεε)
∂εij

∂εij

∂Kijk

〉
Y

=
〈
σij

∂εij

∂Kijk

〉
Y

(4.36)

The microscopic strain field evaluated from the perturbation displacement (determined from the boundary

value problem in Eq. 4.32) and used in Eq. 4.36 is:

ε11 = ε̃11 + E11 +K111y1 +K112y2 ≡ ∂u1 (y1, y2)
∂y1

,

ε22 = ε̃22 + E22 +K221y1 +K222y2 ≡ ∂u2 (y1, y2)
∂y2

,

ε12 = ε̃12 + E21 + 1
2 (K121 +K211) y1 + 1

2 (K122 +K212) y2 ≡ 1
2

(
∂u1 (y1, y2)

∂y2
+ ∂u2 (y1, y2)

∂y1

) (4.37)

Then, the tensor AAAhom can be related to the hyperstress as follows:

AAAhom ∴KKK = 1
|Y |

∫
Y

(
σij

∂εij

∂Kijk

)
dVy (4.38)

4.4.2 Determination of the homogenized piezoelectric and flexoelectric

moduli

In this section, the tensors of effective moduli related to piezoelectricity eeehom, aaahom, and flexoelectricity

HHHhomhomhom, eeeDDD
homhomhom, efefef

homhomhom, and NNNhomhomhom are determined. By selecting EEE = 111 and applying only vector EEEelecelecelec
MMM

as a kinematic boundary condition over the RVE, the piezoelectric matrix eeehom and permittivity matrix

aaahom are obtained, while, by selecting KKK = 111 and applying, only, GGGPPP as a kinematic boundary condition

over the RVE, the matrices efefef
homhomhom, eeeDDD

hom,HHHhom and NNNhomhomhom are determined. This procedure is written in

algorithmic format in Fig. 4.4.

The tensors eeehom, aaahom, eeehom, eeehom
D are obtained from the relations:

eeehom.EEEelecelecelec
MMM = 1

|Y |

∫
Y

CCC(yyy) : εεε(uuu)dVy −CCChom : EEE (4.39)

aaahom.EEEelecelecelec
MMM = 1

|Y|

∫
Y

DDD dVy − eeehom : EEE (4.40)

efefef
hom : GGGPPP = 1

|Y |

∫
Y

CCC(yyy) : εεε(uuu)dVy −BBBhom ∴KKK (4.41)
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Figure 4.4 Schematic diagram for computing the effective moduli eeehom, aaahom, efefef
homhomhom, eeehom

D ,HHHhomand AAAhom

eeeDDD
hom : GGGPPP = 1

|Y|

∫
Y

DDD dVy −FFF hom ∴KKK (4.42)

The macroscopic tensor RRR can be written according to Hill Lemma as follows:

Rij =
〈
Dk

∂Eelec
k

∂Gij

〉
Y

(4.43)

wherein the microscopic electric field is determined from the perturbation electric potential (determined

from solving the B.V.P Eq. 4.32), and can be written according to Eq. 4.307 as:
Eelec

1 = Ẽelec
1 + Eelec

M1 +GP 11y1 +GP 12y2

Eelec
2 = Ẽelec

2 + Eelec
M2 +GP 12y1 +GP 22y2

(4.44)

The tensors Hhom and Nhom are then determined from the relations:

Hhom : GP = 1
|Y |

∫
Y

(
σij

∂εij

∂Kijk

)
dVy − Ahom ∴ K (4.45)

Nhom : GP = 1
|Y |

∫
Y

(
Di
∂Eelec

i

∂Gij

)
dVy − Hhom ∴ K (4.46)
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4.5 Conclusion

In this chapter, the effective linear piezoelectric properties of heterogeneous materials have been evaluated

in the context of periodic homogenization, employing a variational formulation in combination with the

extended Hill macro-homogeneity condition. The microscopic variables – the displacement vector and

electric potential – have been expressed as the sum of a homogeneous part and a fluctuation obeying a

minimum principle of the energy functional. The entire set of homogenized moduli has been obtained,

expressing as volumetric averages of the microscopic properties of the individual constituents weighted

by the displacement and electric potential localization operators.

This framework has then been extended to the computation of the effective flexoelectric properties,

thereby accounting for higher gradient effects that may be induced by a strong contrast of properties of

the constituents within the composite. A numerical algorithm relying on solving the weak formulation

of the BVP when applying different macroscopic kinematic boundary conditions is adopted and can be

applied to both composite and architected materials.

The proposed homogenization method has given rise to a finite element implementation for the efficient

computation of the effective flexoelectric properties of composites in a broad sense. This numerical

platform is convenient to investigate in the next chapter the flexoelectric properties of architected

materials and composite materials.
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Chapter 5

Applications of piezoelectric and

flexoelectric homogenization

Summary
In this chapter, we compute the effective piezoelectric and flexoelectric properties of heterogeneous

piezoelectric materials in the context of the previously developed periodic homogenization, that is based

on a variational formulation and articulated with the extended Hill macro-homogeneity condition. The

obtained homogenized properties are employed for the determination of the wave propagation attributes of

piezoelectric composites. The dynamic equilibrium equations, accounting for higher gradient effects, are

formulated to deal with wave propagation in flexoelectric media, considering the Classical Flexoelectric

Theory (CFE) and the Non-Local Flexoelectric Theory (NLFE). The obtained dispersion relations show

that flexoelectric medium is a dispersive medium and anisotropic when increasing the wavenumber unlike

the piezoelectric medium.

An analysis is performed to study the sensitivity of the effective flexoelectric moduli to the geometrical

variables of the considered unit cells of periodic lattice materials. More specifically, hexagonal, re-

entrant auxetic, and rectangular unit cells are investigated in terms of their relative piezoelectric and

flexoelectric response. Regular hexagonal, re-entrant hexagonal and rectangular lattice unit cells are

mutually compared in terms of their flexoelectric properties. The coupling between mechanical and

electrical fields is attested by the non-uniform distribution of the electric potential within the three

studied architected materials subjected to a uniform strain.
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5.1 Introduction

The capability of certain materials to convert electrical fields into mechanical deformation and vice

versa is essential in numerous engineering applications such as sensors [239], actuators [240], and energy

harvestors [1,241], thanks to the piezoelectric effect. Nowadays there exist various natural and artificial

piezoelectric materials, such as quartz, zirconate titanate (PZT), barium titanate and many others.

However, due to the advantageous properties of flexoelectricity over piezoelectricity, it was highly studied

and demonstrated in a wide range of materials such as liquid crystals [19], crystalline dielectrics [3], and

polymers [242]. This phenomenon can offer a path for designing alternative materials and devices for

electromechanical transduction that exploit gradients, either alone, such as in the micro (MEMS) and

nano-electromechanical systems (NEMS) [243–246], or in combination with piezoelectricity as a way to

enhance the apparent piezoelectricity [247].

Recent works focused on flexoelectricity for lattice materials; this class of materials is defined

as porous materials with reticulated structures, typically constructed with a periodic microstructure

allowing the identification of a repeated unit cell (UC). Among the architected materials that deserved

extensive studies, the hexagonal honeycomb configuration was selected due to its simplicity and easy

manufacturability. Different variants of the hexagonal honeycomb (HC) exist as a result of the orientation

of the ligaments, leading to the realization of an auxetic effect with negative Poisson’s ratio [248].

Many works were devoted to studying the mechanical behavior of these variants constructed from

elastically isotropic materials showing both conventional and auxetic responses [248–250]. Considering

piezoelectricity in such metamaterials allows the analysis of their electromechanical properties [251].

Wave propagation in composite piezoelectric materials has raised a lot of research attention in the last

four decades, starting with Tiersten [252] who derived the analytical solution of wave propagation in an

infinite piezoelectric plate relying on classical piezoelectric theory. [253] obtained the exact solution of

wave equations within an infinite plate including the electromechanical coupling. More recently, the quasi-

electrostatic wave propagation analysis within stratified composites was performed in the framework of

the nonlocal piezoelectric theory in [221, 254] with special focus on two-layer stratified composites made

of LiNbO3 and PVDF layers.

It is worth mentioning in the context of wave propagation the prevalence of two main theories for

piezoelectric phenomena, namely classical piezoelectricity (CPE) and nonlocal piezoelectricity (NLPE).

The effective properties obtained by mathematical homogenization have been used to compute the wave

propagation features accounting for the influence of an internal length parameter of the so-called NLPE

(nonlocal piezoelectric theory) developed by Eringen [255]. It is well-known that piezoelectricity has

the ability to modify structure of wave propagation characteristics in composites, by modifying the

locality –and thus intensity- of the applied field, [256]. The coupling of the electric and mechanical fields

leads indeed to considerably modified dispersion attributes, a behavior typically observed for highly

anisotropic microstructural designs [257, 258]. Moreover, while CPE theory is local in space (the stress
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at one material point depends on the strain and electric field at the same point), it faces limitations for

size-dependent continua, which incorporate internal length in their very formulation. For such media

with a microstructure giving rise to size-effects, one has to resort to the NLPE continuum theory, which

states that the stress and electric displacement are affected by the strains and electric fields at all points

within an influence region. The size of this region is fixed by a nonlocal scalar parameter, as exposed in

[255,259].

In this chapter we apply the flexoelectric homogenization approach to calculate the effective

electromechanical moduli for different structures including composite materials and lattice structures.

As well, we extend the wave propagation analysis done so far in the literature for piezoelectric waves

in periodic composites by including higher gradients of the strain and electric fields as a novel aspect.

The wave propagation analysis is performed based on the computed effective flexoelectric properties in

situations where gradients are of importance, like in composite materials showing a strong contrast of

mechanical and electrical properties of their constituents. Moreover, we employ the nonlocal flexoelectric

theory by combining the flexoelectric static properties computed by homogenization with the nonlocality

inherent to the NLPE theory.

The outline of this chapter is as follows: The piezoelectric and flexoelectic homogenization theory is

exemplified by numerical computations of the homogenized flexoelectric properties of inclusion-based

composites in section 5.2 followed by a wave propagation analysis performed in section 5.3, adopting

successively the classical flexoelectric theory and the nonlocal flexoelectric theory. Studying of the

electromechanical coupling for architected materials is performed in section 5.4 . A summary of the

main thrust of the work is given in the conclusion in section 5.5.

5.2 Effective flexoelectric strain gradient properties of

composites

We subsequently employ the methodology elaborated in chapter 4 and the algorithm described in

section 4.4 to compute the effective homogenized properties of a piezoelectric composite consisting of

two piezoelectric materials, namely LiNbO3 employed for the inclusion and Polyfluorure of Vinylidene

(PVDF in short) used as the matrix phase. The representative unit cell(UC) is shown in Fig. 5.1 and

the properties of both constituents are listed in Table 5.1 [260] and Table 5.2 [261] . The volumetric

percentage of LiNbO3 within the unit cell is characterized by the parameter νf (here νf = 0.3).
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Figure 5.1 Representative unit cell with circular inclusion and square matrix. The unit cell has a linear unit

length. The volume fraction of inclusion is 0.3.

Table 5.1 Mechanical and electrical properties of LiNbO3 inclusion [260].

LiNbO3

Mechanical properties
E1 = 170000MPa

ν1 = 0.25

Piezoelectric properties (C/m2)

(e15)1 = 3.69

(e22)1 = 2.42

(e31)1 = 0.3

(e33)1 = 1.77

Dielectric properties (10−10F/m)
(a11)1 = 4.04

(a33)1 = 2.32

Table 5.2 Mechanical and electrical properties of PVDF matrix [261].

PVDF

Mechanical properties
E2 = 2450MPa

ν2 = 0.34

Piezoelectric properties (C/m2)

(e15)2 = 0

(e31)2 = 0.024

(e33)2 = −0.027

Dielectric properties (10−10F/m)
(a11)2 = 0.655

(a33)2 = 0.673
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5.2. Effective flexoelectric strain gradient properties of composites

The general effective flexoelectric constitutive law for the homogenized medium can be expressed in

matrix format as follows (the effective homogenized moduli hold the superscript ’hom’ but it is omitted

here in the matrix format for simplicity):

Σ11

Σ22

Σ12

D1

D2

S111

S112

S222

S221

S121

S122

R11

R22

R12



=



C11 C12 C13 −e11 −e12 B11 B12 B13 B14 B15 B16 −ef 11 −ef 12 ef 13

C12 C22 C23 −e21 −e22 B21 B22 B23 B24 B25 B26 −ef 21 −ef 22 ef 23

C13 C23 C33 −e31 −e32 B31 B32 B33 B34 B35 B36 −ef 31 −ef 32 ef 33

e11 e21 e31 a11 0 F11 F12 F13 F14 F15 F16 eD11 eD12 eD13

e12 e22 e32 0 a22 F21 F22 F23 F24 F25 F26 eD21 eD22 eD23

B11 B21 B31 −F 11 −F 21 A11 A12 A13 A14 A15 A16 H11 H12 H13

B12 B22 B32 −F 12 −F 22 A21 A22 A23 A24 A25 A26 H21 H22 H23

B13 B23 B33 −F 13 −F 23 A31 A32 A33 A34 A35 A36 H31 H32 H33

B14 B24 B34 −F 14 −F 24 A41 A42 A43 A44 A45 A46 H41 H42 H43

B15 B25 B35 −F 15 −F 25 A51 A52 A53 A54 A55 A56 H51 H52 H53

B16 B26 B36 −F 16 −F 26 A61 A62 A63 A64 A65 A66 H61 H62 H63

ef 11 ef 21 ef 31 eD11 eD21 H11 H21 H31 H41 H51 H61 N11 N12 N13

ef 12 ef 22 ef 32 eD12 eD22 H12 H22 H32 H42 H52 H62 N21 N22 N23

ef 13 ef 32 ef 33 eD13 eD23 H13 H23 H33 H43 H53 H63 N31 N32 N33





E11

E22

E12

Eelec
M 1

Eelec
M 2

K111

K112

K221

K222

K121

K122

GP 11

GP 22

GP 12


(5.1)

The main homogenized flexoelectric properties determined by the proposed flexoelectric homogenization

are listed in Table 5.3, with the following physical units: Chom
ij is in (MPa), ahom

ij is in (10−10F/m), ehom
fij

is in (10−10C/m), Ahom
ij is in (MPa.mm2), F hom

ij is in (10−10 C/m), and Nhom
ij in (N.mm2/V 2).

Table 5.3 Homogenized mechanical and electrical properties of composite structures modeled as flexoelectric

media.

Chom
11 Chom

12 Chom
22 Chom

33 ahom
11 ahom

22 ehom
f11 ehom

f22 ehom
f33 ehom

f12

5956.46 2617.33 5956.24 1347.76 0.991 0.92 0.176 0.18 0.0076 -0.21

Ahom
11 Ahom

12 Ahom
22 Ahom

33 Ahom
66 Ahom

55 F hom
11 F hom

21 Nhom
11 Nhom

22

1374.78 485.087 1494.28 473.541 473.448 1493.01 1.8 0.69 1.43 1.4

A comparison with the results obtained in [262] shows a good agreement for the piezoelectric and

dielectric coefficients with maximum relative error for the piezoelectric coefficient 3% and for the dielectric

coefficient (permittivity) around 1% (see Appendix G ).
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Chapter 5. Applications of piezoelectric and flexoelectric homogenization

5.2.1 Impact of the inclusion volume fraction and contrast of properties

The first parameter of interest, influencing the homogenized properties, is the volume fraction of inclusion

which is studied by changing the inclusion diameter D (the inclusion domain is the circle, the matrix

domain is the square in Fig. 5.1 and L is the unit cell linear length). The second parameter is the

ratio of inclusion to matrix tensile moduli, Ef/Em. Fig. 5.2 through Fig. 5.4 show the variation of the

homogenized moduli with the inclusion diameter.
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Figure 5.2 Homogenized (a) First gradient rigidity coefficients, (b) Strain gradient rigidity coefficients as function

of D/L.
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Figure 5.3 Homogenized (a) piezoelectric coefficients eeehom, (b) permittivity coefficients aaahom as function of D/L.
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Figure 5.4 Homogenized (a) flexoelectric coefficients efefef
hom, (b) coupling coefficient NNNhom as function of D/L.

The homogenized coefficients of the first gradient rigidity matrix
(
Chom

11 , Chom
12

)
and the strain gradient

rigidity matrix
(
Ahom

11 , Ahom
31
)

shown in Fig. 5.2 increase with the inclusion diameter; the increase is due

to the corresponding increase in the relative amount of the more rigid phase (inclusion). In the graphs of

Fig. 5.3, the absolute value of the coefficient ehom
11 , and the coefficient ehom

21 increase with the inclusion’s

diameter, as well, the permittivity coefficients ahom
11 and ahom

22 increase with the diameter of the inclusion.

This increase is due to the increasing percentage of the inclusion phase (LiNbO3) having the higher values

of permittivity (a11, a22). The flexoelectric coefficients ehom
f11 , ehom

f12 in Fig. 5.4(a) are also increasing with

the diameter of the inclusion. As well,the coupling coefficient Nhom
11 increase as diameter of the inclusion

(ratio D/L) increases in Fig. 5.4(b).

Next, the analysis focuses on how the effective properties of the homogeneous unit cell are impacted

by the contrast in Young’s modulus between the inclusion and the matrix. To this end, the unit cell in

Fig. 5.1 is considered with a radius R = 0.3mm. The mechanical properties of the PVDF matrix are

chosen as in Table 5.2, while those of the inclusion are varied. Fig. 5.5(a) illustrates that when the unit

cell is homogeneous (with Ef/Em = 1), the first gradient moduli matches the mechanical properties of

PVDF, and experiences a sharp increase as the ratio of inclusion to matrix Young’s modulus increases

until it reaches a plateau. Fig. 5.5(b) shows that the strain gradient rigidity coefficients start from a

non-zero value for the homogeneous unit cell and increase rapidly for a ratio close to 10, beyond which

they remain constant. The permittivity coefficient in Fig. 5.6(a) starts from a value that matches the

permittivity of PVDF for the homogenized unit cell and then starts decreasing with the ratio of Young’s

modulus. However, Fig. 5.6(b) shows that the coefficient related to flexoelectricity increases rapidly then

converges to a constant value with the ratio of Young’s modulus.

The internal lengths are defined in full generality as the ratio between second gradient to first gradient

coefficients for the different deformation modes; they quantify the strengths of strain gradient phenomena

relative to first gradient ones. For mechanics, the internal lengths express in terms of the rigidity
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coefficients as (the superscript s refers to the static case).

lsxx =

√
Ahom

11
Chom

11
, lsxy =

√
Ahom

12
Chom

12
(5.2)

These lengths in extension and shear remain nearly constant over the considered range of moduli ratio,

with a value about one-half that of the unit cell size. This indicates that the first and second gradient

effects equally contribute to the internal length in terms of their sensitivity to the mechanical properties

of the individual composite constituents.

The internal lengths for electrical phenomena (described by superscript E) express as the ratio of

flexoelectric and permittivity coefficients as

lExx =

√
Nhom

11
ahom

11
(5.3)

lExx is found to be constant with a value around one-half. This shows that the internal lengths associated

to electrical phenomena are approximately the same as those of mechanical phenomena quantified by the

internal lengths lsxx, lsxy.
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Figure 5.5 Variation of (a) the first gradient rigidity coefficients, and (b) strain gradient rigidity coefficients

versus the ratio of inclusion to matrix Young’s moduli.
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Figure 5.6 Variation of (a) the permittivity coefficient , and (b) the flexoelectric coefficient versus the ratio of

inclusion to matrix Young’s moduli.

The distribution of the fluctuating displacement along a vertical line passing through the center of the

inclusions is represented for one- and four-unit cells (Fig. 5.7) when applying the macroscopic strain EEE

and strain gradientKKK as kinematic loading over the unit cell. The fluctuating vertical displacement ũy2 is

plotted along the vertical line with the microscopic position y2 varying from 0 to 1. To this end, Fig. 5.8

shows the computed values of ũy2 when the unit cell is subjected to the kinematic loading E11 = 1, and

K111 = 1 respectively for the flexoelectric medium. Across the interface of the inclusion and matrix, the

displacement remains continuous. For four unit cells, the fluctuating displacement ũy2 is repeating the

pattern obtained for a single unit cell, and it appears to be nearly constant far away from the interface

(in the inclusion). Strong displacement variations are indicators of the existence of the interface between

inclusion and matrix.

Figure 5.7 Four unit cells with a vertical line passing through the center of inclusions.

In Fig. 5.9 the values of ũy2 for a single unit cell determined when applying the strain component E11 are

approximately twice the values for four unit cells; they will become identical when a normalization by

the number of unit cells is applied (number of vertical cells as shown in Fig. 5.7,N=2 here), repeating the
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pattern obtained for a single unit cell over the neighboring (internal) unit cells. Consequently, the Cauchy

homogenized elastic coefficients remain unchanged for computations done with one or a multiple number

of periods (since the spatial distribution of the fluctuating displacement does not depend on the unit cell

after normalization). Meanwhile, the values of ũy2 for a single unit cell, determined when applying the

strain gradient component K111, are approximately four times the values of for four unit cells.

The constant values of ũy2 in Fig. 5.9 are related to the position of the inclusion; one can thus predict

the diameter of the inclusion from the figures where there is a constant line (for example, from Fig. 5.9,

for 1-unit cell: the diameter value is 0.8-0.2=0.6). As observed in Fig. 5.8, the fluctuating displacement

values in a flexoelectric medium are less than those in pure elastic medium. This can be related to the

piezoelectric nature of materials that can lead to an electric field besides the mechanical deformation.
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Figure 5.8 Distribution of the vertical fluctuating displacement (in mm) on the vertical axis, due to a) E11 = 1,

and b) K111 = 1 along a vertical line through the centers of the inclusions for flexoelectric medium.

(a) (b)

Figure 5.9 Distribution of the vertical fluctuating displacement (in mm) on the vertical axis, due to a) E11 = 1,

and b) K111 = 1 along a vertical line through the centers of the inclusions for the pure elastic medium with no

electric effects.
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5.2.2 Contribution of the fluctuation enthalpy for flexoelectric composite

materials

In order to investigate the accuracy of modeling the composite by a flexoelectric second gradient

continuum, the relative contribution of the fluctuation enthalpy over the total microscopic enthalpy

density for the successive components of the Cauchy strain, electric field, strain gradient, and electric

field gradient kinematic measures are evaluated. Table 5.4 shows the macroscopic, microscopic, and

fluctuation enthalpies for a unit cell with a volume fraction of the LiNbO3 (inclusion) νf = 0.3; these

energetic contributions are successively defined as follows:

WMacro = 1
2

(
ΣΣΣ : EEE−EEEelecelecelec

MMM .DDD +SSS ∴KKK−RRR : GGGp

)
Wmicro = 1

2

(
σ : εσ : εσ : ε−EEEelec.D.D.D

)
Wfluctuation = 1

2(σσσ : ε̃εε−Ẽ̃ẼEelec
.DDD)

(5.4)

As shown in Table 5.4, the values of the microscopic enthalpies, macroscopic and fluctuation enthalpies

satisfy the additive decomposition

Wmicro = WMacro +Wfluctuation (5.5)

Noting that this relation follows from the corresponding decomposition of the microscopic strain and

microscopic electric fields into their macroscopic and fluctuating parts.

Over all, the fluctuation enthalpy represents a small amount (about 3%) of the total enthalpy, which

shows that the effective flexoelectric medium represents a quite good approximation of the initially

heterogeneous piezoelectric composite.

On the other hand, increasing the number of unit cells into four shows that the contribution of

fluctuating enthalpy is decreasing, which reveals a convergence of the strain gradient properties as the

number of unit cells increases, as shown in Table 5.5.
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Table 5.4 Comparison between macroscopic and microscopic enthalpies, and contribution of the fluctuation

enthalpy to the total enthalpy (N/mm2).

Applied

component

Macroscopic

Enthalpy

Total microscopic

Enthalpy

Fluctuation

Enthalpy

Contribution of

the fluctuation

(%)

E11 2978.31 2921.99 -56.3213 1.93

E22 2978.23 2921.88 -56.3507 1.93

Eelec
M 1 2620 2540 -76.8 3

Eelec
M 2 2616.26 2539.84 -77.328 3

K111 745.243 730.984 -14.2582 1.95

K112 884.494 865.708 -18.7859 2.17

K221 884.491 865.448 -19.043 2.2

K222 745.353 731.083 -14.27 1.95

Gp11 5600 5460 -134 2.5

Gp22 5597.179 5462.7 -134.4 2.5

Gp12 5597.179 5462.78 -134.4 2.5
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Table 5.5 Comparison between macroscopic and microscopic enthalpies, and contribution of the fluctuation

enthalpy to the total enthalpy (N/mm2).

Applied component Contribution of Fluctuating

enthalpy for 1 Unit cell

Contribution of Fluctuating

enthalpy for 4 Unit cells

E11 1.93 1.89

E22 1.93 1.89

Eelec
M 1 3 2.9

Eelec
M 2 3 2.9

K111 1.95 1.9

K112 2.17 2

K221 2.2 2

K222 1.95 1.9

Gp11 2.5 2.4

Gp22 2.5 2.4

Gp12 2.5 2.4

The subsequent section of the chapter is devoted to planar wave propagation analysis within flexoelectric

media, based on the effective medium description and properties that have been computed.

5.3 Wave propagation analysis in a flexoelectric medium

In this section, the wave propagation analysis within flexoelectric media will be investigated. In such

media, the second gradient parameters are incorporated to be more precise in describing the dynamic

behavior of the heterogeneous medium based on its effective properties. Using the effective homogenized

properties towards piezoelectric and flexoelectric continua in Table 5.3 of the unit cell in Fig. 5.1, the

wave propagation attributes of the piezoelectric and flexoelectric composites are determined.

5.3.1 Planar wave formulation for nonlocal flexoelectric media

There are two theories describing the piezoelectric phenomenon: the classical piezoelectricity theory

(CPE), and the non-local piezoelectricity theory (NLPE). In the classical piezoelectricity theory (CPE),

the stress and electrical displacement at one point depend solely on the local strain and electric field at the

same point. Whereas in the NLPE, the stress and electric displacement at one point depend on the strain

and electric field of the whole body or within an influence region around each material point [255]. We
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extend in this section the CPE and NLPE theories to consider the strain gradient aspects of the medium;

(CFE): classical flexoelectric theory and the non-local flexoelectric theory (NLFE in short). Referring to

[259], the governing partial differential equations, obtained after a mathematical transformation from the

local stress to the non-local stress can be approximated as follows:

(1 − n2∇2)τττijijij = ΣΣΣijijij

(1 − n2∇2)dddkkk = DDDkkk

(5.6)

wherein τij and dk are the non-local stress and electric displacement components respectively; Σij and

Dk are the local stress and electric displacement components, respectively and n is the internal length,

which represents the size of the influence region of the stress (it has the dimension of length scale).∇2 is

the 2-D Laplace operator given in Cartesian coordinates by: ∇2 = ∂2

∂x12 + ∂2

∂x22 .

Under the quasi-electrostatic assumption, and according to [263], the partial differential equations of

mechanical wave motion for in-plane wave modes are given by:

τττijijij,j,j,j = ρρρü̈üuiii

dddkkk,k,k,k = 0
(5.7)

where ρ is the effective density of the homogenized medium. The substitution of Eq. 5.6 into Eq. 5.7

leads to the following general equations of motion based on the NLPE theory:

ΣΣΣijijij,j,j,j = (1 − n2∇2)ρρρü̈üuiii

DDDkkk,kkk = 0
(5.8)

In the context of the non-local theory, the dynamic equilibrium equations describing the wave motion in

the homogenized flexoelectric medium write more specifically from Eq. 5.8, and using notation in Eq. 5.1

as:
∂Σ11

∂x1
+ ∂Σ12

∂x2
− ∂2S111

∂x2
1

− ∂2S122

∂x2
2

− ∂2S121

∂x1∂x2
= (1 − n2∇2)ρ(∂

2U1

∂t2
)

∂Σ12

∂x1
+ ∂Σ22

∂x2
− ∂2S211

∂x12 − ∂2S222

∂x2
2

− ∂2S221

∂x1∂x2
= (1 − n2∇2)ρ(∂

2U2

∂t2
)

∂D1

∂x1
+ ∂D2

∂x2
− ∂2R11

∂x2
1

− ∂2R22

∂x2
2

− ∂2R12

∂x1∂x2
= 0

(5.9)

We consider the propagation of harmonic planar waves for the mechanical and electrical fields of the

form:
U1(x1, x2, t) = U exp i(ωt− k1x1 − k2x2)

U2(x1, x2, t) = V exp i(ωt− k1x1 − k2x2)

Φ(x1, x2, t) = Φ0 exp i(ωt− k1x1 − k2x2)

(5.10)

wherein (U1, U2) are the components of the displacement field, Φ is the electric potential, all quantities

being expressed in a Cartesian basis. The scalar quantities (U, V,Φ0) are the wave amplitudes, (k1, k2)

is the wave vector, and ω is the frequency of propagating waves.
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5.3. Wave propagation analysis in a flexoelectric medium

By substituting the constitutive law in Eq. 5.1 and the harmonic wave solutions Eq. 5.10 in Eq. 5.9, the

wave motion equation is derived in the synthetic form:

Π(k1, k2, ω, t, ρ, n)


U

V

Φ

 = 0 (5.11)

with the matrix Π therein having its components expressed in the Appendix H. The necessary condition

of a vanishing determinant of matrix Π is needed for Eq. 5.11 to have an infinite number of solutions. For

planar waves without attenuation in the Cartesian coordinate system in 2-D, the propagation constants

along the x1 and x2 directions are respectively k1 = |k| cos(Θ) and k2 = |k| sin(Θ) , where k is the

wavenumber and Θ is the angle of incidence of the propagating wave. Any triad (k1, k2, ω) obtained

by solving the eigenvalue problem in Eq. 5.11 represents the dispersive plane wave propagation at the

frequency ω.

5.3.2 Dispersion relations in flexoelectric media in the framework of the

classical flexoelectric theory

In this section, the analysis of wave propagation is done on the homogenized composite of Fig. 5.1, using

the classical flexoelectric theory (n = 0 ).

Fig. 5.10 shows the dependence of the frequency on the propagating direction for the two given

wavenumbers |k|=1 and |k|=2 in the effective flexoelectric medium. It is observed that as the wavenumber

increases, the frequency increases for both shear and longitudinal waves. The non-linear increase in wave

frequency as a function of wavenumber (Fig. 5.11) indicates that the flexoelectric medium is a dispersive

medium. That is, for each wavenumber, and at a certain incident angle, the wave propagating in the

medium will depend on the frequency of incident waves. The irregular shapes of the shear and longitudinal

wave diagrams (for |kL|=1 and |kL|=2) indicate the non-isotropic behavior of the homogenized medium.

This is justified by the dependency of the wave frequency on the incident angle of wave propagation. As

the wavenumber increases, the irregularity in the shape of the band-diagrams increases for both modes,

causing the behavior of the medium to become more anisotropic.

Fig. 5.12 shows the dependency of the propagating frequency on the incident angle of propagation for

the wave numbers |kL|=1 and |kL|=2 within a piezoelectric medium considering no higher gradient effects

thus taking only the effective properties related to a pure piezoelectric effective behavior. Inspection of

Fig. 5.12 shows that when increasing the wavenumber, an increase in the propagating frequency of the

shear and longitudinal waves occur. Unlike the flexoelectric medium (Fig. 5.10), the irregularity in the

shape of the wave diagrams (Fig. 5.12) remains the same when increasing the wavenumber. This means

that the anisotropic behavior of the piezoelectric medium is similar for increasing wavenumbers.
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Chapter 5. Applications of piezoelectric and flexoelectric homogenization

Figure 5.10 Wave frequency in the effective flexoelectric medium for a wavenumber |kL|=1 (red: shear waves,

blue: longitudinal waves), |kL|=2 (green: shear waves, orange: longitudinal waves) as function of the incident

angle.

Figure 5.11 Wave frequency as a function of wavenumber in the effective flexoelectric medium.

Figure 5.12 Wave frequency in the piezoelectric medium for a wavenumber |kL|=1 (red: shear waves, blue:

longitudinal waves), |kL|=2 (green: shear waves, orange: longitudinal waves) as function of the incident angle.
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5.3. Wave propagation analysis in a flexoelectric medium

5.3.3 Effect of the non-locality of the electric field on wave propagation

analysis

In this section, the influence of the characteristic internal length n in Eq. 5.9 is analyzed: this parameter

affects the non-locality of the electric field.

In Fig. 5.13, we analyze the dependence of the frequency on the wave propagation direction for several

values of the normalized non-local parameter n∗, where n∗ := n
L and L is the unit cell linear length so that

n∗ ∈ [0, 0.01, 0.025, 0.1, 0.4]. It shows that the frequencies of both propagating modes are impacted

by the non-locality parameter n∗ of the piezoelectric field. Upon increasing n∗, the cut-off frequencies

of the band-diagram decrease for both modes. This entails that the maximum frequency value beyond

which no elastic waves can propagate in the composite decreases with the field non-locality to function

as a high frequency isolator [263].

(a) (b)

Figure 5.13 Wave frequency in the flexoelectric medium for a) longitudinal waves, b) shear waves, as a function

of the incident angle, for |kL|=1. Blue: n*=0, green: n*=0.01, orange: n*=0.025, red: n*=0.1, light blue:

n*=0.4.

Fig. 5.14 compares the wave frequencies between a piezoelectric medium and a pure elastic medium

for the parameter value n∗ = 0.01 and |kL|=1. As shown in Fig. 5.14, the frequencies for a piezoelectric

medium are less than those for a pure elastic medium. In the case of a pure piezoelectric medium, the

total incident energy is distributed into a mechanical energy that is significant for wave propagation, and

an electric energy due to the piezoelectric characteristic of the material. Thus, the consideration of the

electric field on a wider region (taking the non-locality effect into consideration) causes the propagating

wave frequency to be lower compared to a material with pure mechanical energy.
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Chapter 5. Applications of piezoelectric and flexoelectric homogenization

(a) (b)

Figure 5.14 Piezoelectric (red) and elastic (blue) frequencies for |kL|=1 and n∗ = 0.01 as a function of the

incident angle for a) longitudinal waves and b) shear waves.

In the next section, the previously described homogenization method towards flexoelectric media is

applied to different architected materials in order to study the mechanical to electrical coupling.

5.4 Coupling between electric and mechanical effects within

lattice structures

The main interest in this section is to study the piezoelectric and flexoelectric response of three different

lattice materials, namely the regular hexagon, the re-entrant auxetic hexagon, and the rectangle shown

in Fig. 5.15. The regular hexagonal and re-entrant unit cells are defined with length parameters L and h,

but with a positive (respectively negative) angular variable θ. For the rectangular unit cell, the defining

geometrical parameters are the two lengths L and h (θ=0)(see Fig. 5.15). The methodology mentioned

in the previous chapter is applied for different unit cells corresponding to the different lattice structures

of Fig. 5.15.

The based materials considered are Lithium Niobate LiNbO3 and Polyvinylidene Fluoride PVDF with

their properties mentioned in Table 5.1 and Table 5.2
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5.4. Coupling between electric and mechanical effects within lattice structures

Figure 5.15 Schematic representation of periodic regular hexagonal (θ>0), rectangular (θ=0) and Re-entrant

(θ<0) lattices; the UC is indicated with a circle for each microarchitecture.

5.4.1 Distribution of electric potential under a mechanical loading

In this section, the three lattice geometries mentioned above are investigated to show the distribution of

the electric field potential ϕ when applying the uniaxial strain component E11 over the unit cell boundary.

A ratio value t/L = 0.2 and an angular variable θ = 30◦ are adopted for the regular hexagon, while a

negative angular variable θ = −15◦ is selected for the re-entrant hexagonal lattice. Fig. 5.16 highlights

the coupling between the electrical and mechanical fields that is visible from the distribution of the electric

potential in the beams building the UC.

5.4.2 Sensitivity analysis of piezoelectric and flexoelectric properties to the

geometrical UC parameters

A sensitivity analysis of the piezoelectric and flexoelectric coefficients to the geometrical UC parameters

is done for the three lattices; the adopted design variables are the dimensionless ratio t/L and the angular

variable θ. In Fig. 5.17, and Fig. 5.18, the considered ratio belongs to the interval t/L ∈ [0.04, 0.184].

In Fig. 5.17 the constituent material of the considered regular hexagon, the rectangle, and the re-entrant

UCs is LiNbO3. The flexoelectric coupling coefficients for these three UCs are obtained in Fig. 5.18.

As shown in Fig. 5.17, for the three considered UCs, the piezoelectric coefficient increases with the

slenderness ratio t/L. The values of ehom
22 shows that the lattice structure may have a different overall

crystal symmetry than that of the constituent material.

However, the flexoelectric coefficient for the hexagonal lattice in Fig. 5.18(a) seems to be decreasing

with the ratio t/L, whereas the flexoelectric coefficient increases for the rectangular and re-entrant lattice

structures as shown in Fig. 5.18(b)(c). Note that adding a polymer (bi-material structure) makes the

structure less rigid under bending thus leading to have higher values of ehom
f11 . The feature of a two

components UC increases the heterogeneity at the microlevel, which entails an increase of the higher

order coefficients (flexoelectric coefficient) at the macrolevel.
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Chapter 5. Applications of piezoelectric and flexoelectric homogenization

Figure 5.16 Distribution of the electric potential ϕ resulting from the application of the strain component E11

for the regular hexagon (first figure), rectangular (second figure) and re-entrant (third figure) UC.

Figure 5.17 Effective piezoelectric coupling coefficient ehom
22 as a function of the ratio t/L for the three UCs

using LiNbO3.
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5.4. Coupling between electric and mechanical effects within lattice structures

(a) (b)

(c)

Figure 5.18 Effective flexoelectric coupling coefficient ehom
f11 as a function of the ratio t/L for a) regular hexagon

UC, b) rectangular UC, and c) re-entrant UC considering LiNbO3.

The effective piezoelectric and flexoelectric coefficients are next evaluated as a function of the angular

variable for two values of t/L . This angular variable is able to control the topology and auxeticity of

the lattice material’s UC. Fig. 5.19 shows that the piezoelectric coefficient ehom
22 reaches the highest value

for the regular hexagon, in comparison to the other UCs, for both slenderness ratio values t/L = 0.04

and t/L = 0.1. In contrast to this behavior, for the flexoelectric coefficient ehom
f11 , Fig. 5.19 shows that,

for both values of t/L, the highest values are obtained for the rectangular lattice (the maximum being

reached for θ = 0◦). The flexoelectric coefficient decreases further for the regular hexagonal UC(θ > 0◦).
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Figure 5.19 Effective piezoelectric coupling coefficient ehom
22 (a) and flexoelectric coupling coefficient ehom

f11 (b) as

a function of the angular variable of the UC.

5.5 Conclusion

In this chapter, the effective piezoelectric and flexoelectric properties of heterogeneous inclusion-based

composites and architected materials have been evaluated numerically as an application of the proposed

general homogenization framework that is based on a variational formulation and extended multiphysical

Hill macro-homogeneity condition. The effect of the volume fraction and relative tensile modulus of

the inclusion versus the one of the matrix phase has been assessed. Energy Computations show that

the effective flexoelectric medium represents a quite good approximation of the initially heterogeneous

piezoelectric composite. Based on the effective flexoelectric properties, wave propagation has been studied

successively in the frameworks of Classical Flexoelectric Theory (CFE) and Non-Local Flexoelectric

Theory (NLFE). The results of wave propagation analysis show that flexoelectric medium is a dispersive

medium. However, the flexoelectric medium shows a higher anisotropic behavior for increasing the

wavenumber, in comparison to the piezoelectric medium. In addition to that, the frequency of wave

propagation is found to decrease with the non-local parameter. The frequencies of wave propagation are

found to be lower in a piezoelectric medium compared with the pure elastic medium.

A sensitivity analysis to the lattice topology has been carried out, focusing on three types of architected

materials having different unit cells: the regular hexagonal UC, the rectangular UC, and the re-entrant

UC. This analysis allows studying the variation of the effective piezoelectric and flexoelectric moduli

induced by a modification of the topology of the considered UCs. Comparing the three geometries

shows that the highest piezoelectric modulus are obtained for the regular hexagonal UC, whereas the

flexoelectric modulus is found to be maximum for the rectangular UC. The coupling between mechanical

and electrical fields can also be observed through the non-uniform distribution of the electric potential

when applying a mechanical strain over the three architected materials.
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Chapter 6

Homogenization of magnetoelastic

heterogeneous solid bodies based on

micropolar magnetoelasticity

Summary
A variational based homogenization method for magnetoelastic composite materials is established in a

small strains framework. The existence of a non-symmetrical stress tensor motivates the elaboration of a

homogenized Cosserat (micropolar) type magnetoelastic effective medium at the macroscale. Generic

expressions of the effective magnetic and elastic properties are derived, showing the existence of

couplings between the elastic and magnetic behaviors at the macrolevel. Application of the developed

homogenization methodology is done for periodic heterogeneous media where the influence of the magnetic

field on the mechanical behaviour of the considered magnetoelastic structure is assessed. The static

boundary condition that is applied causes a strong magnetic field to form inside the structure, while

the magnetic field leads to a very low strain at the macro level because no such coupling exists at the

micro level. The proposed formulation opens new possibilities for an efficient design of multifunctional

metamaterials via computational modelling.

105



Chapter 6. Homogenization of magnetoelastic heterogeneous solid bodies based on micropolar
magnetoelasticity

6.1 Introduction

The design of metamaterials presents promising avenues for the development of fast actuator systems.

The principal bottleneck for their use in applications such as soft biomedical devices, is the need of a

mechanical trigger to activate the structural transition. To overcome such a limitation and allow for

a remote activation of the metamaterial, the use of stimuli-responsive polymers as bulk material for

the metastructure can be considered. In this regard, the emergence of smart materials that respond

to external stimuli has been observed. These responsive materials have revolutionized the design and

conceptualization of the structures that, now, not only provide mechanical support but also specific

functionalities. Some examples of these materials are thermally activated shape memory polymers [264],

photo-activated polymers [265], electro-active polymers [266], and magneto-active polymers (MAPs)

[267–269]. Currently, responsive polymers can be found in soft robotics [270, 271], vibration controllers

or dampers [272] and, especially, in bioengineering applications [273–275].

Specifically, magnetorheological elastomers (MRE) outstand as the preferred solution to activate such

transition response, as they allow for a remote activation with several possibilities. The concept of

MRE represents magneto-sensitive materials that can adapt their shape, elasticity and motion by

external magnetic stimuli [276], undergoing large mechanical deformations. The magneto-mechanical

behavior of MREs is determined by the interaction between magnetic forces and the internal stresses

within the polymeric matrix. These stimuli-responsive materials have been used for the development

of metamaterials with controllable structural changes by application of an external stimulus. In this

regard, Schaeffer and Ruzzene [277] proposed a first approach to responsive metamaterials by embedding

macroscopic permanent magnets into an elastomeric lattice. Thus, they determined that mechanical

instabilities caused by magnetic interactions can be used to trigger changes in the topology and stiffness of

the lattice. These mechanical changes can be used to control mechanical wave propagation characteristics

within the two-dimensional metastructure. A more advanced system for magneto-active metastructures

is due to [278], presenting a new magneto-mechanical metamaterial that allows great tunability through

a novel concept of deformation mode branching. Very recently, reconfigurable mechanical behavior of

auxetic metamaterial structures has been reported by [279], by proposing a high-throughput magnetic

programming strategy based on heating magnetic soft materials above the Curie temperature of the

embedded ferromagnetic particles. Then, magnetic domains are reoriented by applying magnetic

fields during cooling. A reconfigurable mechanical behavior of an auxetic metamaterial structure was

demonstrated using the reprogrammable magnetization capability. Thus, MREs have caught the attention

of both industry and scientists, resulting into timely new applications such as soft robotics, vibration

absorbers, actuators, soft and flexible electronics, or drug delivery systems [270,274,280–283].

To perform the constitutive modelling of these magnetically-hard soft materials, a great amount of

articles has been published in recent years, approaching the problem from different points of view. [268,

284] use continuum theories for the elastic deformation of these materials, while [285] and [286,287] take
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into account their viscoelastic effects. On the other hand, micromechanical and lattice models have also

been investigated by [288–290]. More recent approaches for modelling these materials propose unified

formulations for soft and hard-magnetic particles [287, 291]. A still open question in the modelling of

hard-magnetic MREs is whether the presence of body couples arising from Zeeman effects due to the

residual magnetization of the particles must be modelled following couple stress continuum theories or,

in turn, may be described by micropolar continuum theories.

In this chapter, we explore the latter possibility and the potential of homogenization frameworks

to provide efficient computational models for the future design of multifunctional metamaterials. To

this end, we first develop a unified formulation of the minimum principle of potential energy in

linear magnetoelasticity combined with an extension of Hill-Mandel macrohomogeneity condition for

the determination of the effective moduli of magnetoelastic substitution media in the framework of a

micropolar (Cosserat) magnetoelastic formulation. The existence of a magnetic torque at the microlevel

triggers to go further in the homogenization into Cosserat effective medium where general expressions of

the entire set of magnetoelastic Cosserat moduli are provided from localization operators solution of unit

cell boundary value problems. Finally, an application of the proposed magnetoelastic homogenization

framework is done for a given microstructure showing strain and bending induced by the application of

a magnetic field.

Regarding notations, vectors and tensors are denoted by boldface symbols. The transpose of a tensor

is written with a superscript notation, for instance BBBT . The gradient of a tensor field AAA(yyy) is denoted

with the nabla operator AAA(yyy) ⊗ ∇y, (with ⊗ the tensor product) and its divergence is obtained as the

trace of the gradient, denoted AAA(yyy).∇y, with ∇ythe gradient operator acting on the microscopic position

yyy. The symmetrized dyadic product is denoted with ⊗s. The dot product therein represents the internal

product in the space of Cartesian tensors. The vector product of two vectors UUU,VVV is denoted (UUU × VVV ),

with components (UUU × VVV )i := εijkUjVk. The vector product of a second order tensor and a vector is the

second order tensor defined as (A× v)ij := εjmkAimvk.

6.2 General methodology for the homogenization of

magnetoelastic heterogeneous solid bodies

Two distinct scales for composites with periodic microstructures can be identified: the scale of the

microstructure and the macroscopic structural scale; an intermediate scale called mesoscopic is sometimes

introduced, representing the homogenized microstructure with effective properties that have been

computed from an upscaling of the microscopic behavior of the individual constituents of the initially

heterogeneous pattern of the composite. Here and in the sequel, vectors yyy and xxx denote the microscopic

and macroscopic spatial positions of material points with respect to a fixed Cartesian basis, respectively.

In the present context of periodic homogenization, the microstructure is identified within a representative
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unit cell (Fig. 6.1), which by periodic translation generates the entire composite domain. The unit cell

domain consists of at least two phases or constituents with specific mechanical properties.

Figure 6.1 Composite periodic unit cell Y made of two elastic materials (left) and the homogeneous substitution

medium (right) with domain V (xxx) centered around point xxx.

The center of area of the unit cell, point xxx on Fig. 6.1, is defined implicitly by the integral relation

adopting a fixed Cartesian basis:
1

|Y |

∫
Y

(yyy − xxx)dVy = 000 (6.1)

In Eq. 6.1, the integration is performed over all micro-points labeled with the position vector within the

representative volume element (RVE)(which is the unit cell in this case); relation 6.1 has the significance

that the relative position (yyy − xxx) of the micro-points has zero average over the unit cell. Note that the

definition given in Eq. 6.1 is simplified when the origin of coordinates is selected at the center of area

of the RVE and it further guarantees the objectivity of the virtual power of internal forces [292]. This

will be our choice here and in the sequel so that the relative position vector simply coincides with the

microscopic position. The volume average can be defined therein as ⟨(•)⟩Y = 1
|Y |
∫
Y

(•) dY.

6.2.1 Microscopic magnetoelastic boundary value problem

In this subsection, we write the governing equations of magnetoelasticity in small strains framework and

in a static situation, so that dynamic terms can be ignored. The set of local governing equations include

the stress and magnetic field equilibrium; the constitutive laws are those of an incompressible elastic

medium. The small strain tensor which is the symmetrical part of the gradient of the micro-displacement

field:

εεε := uuu⊗s∇ (6.2)

where uuu is the displacement field vector.
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The magnetic problem includes three main variables, i.e., the magnetic field HHH, the magnetic induction

(also called magnetic flux density vector) BBB, and the magnetization vector MMM . These variables can be

related by the constitutive equation:

BBB = µ0 (HHH +MMM) → BBB = BBBr + µ0HHH (6.3)

where µ0 is the magnetic permeability of vacuum. Note that the work of this chapter considers a magneto-

active material composed of a polymeric matrix filled with hard-magnetic particles. These particles, i.e.,

NdFeB, present high coercivity and a relative magnetic permeability close to one. Therefore, if they are

exposed to a strong magnetic field so that the saturation magnetization is reached, a significant residual

magnetic flux BBBr is present. This residual magnetization remains constant under external magnetic fields

below coercivity. Hereafter, we follow these hypotheses to simplify the magnetic problem as proposed

by [268], and assume no magnetic dissipation in the hard-magnetic particles under the actuation of low

external magnetic fields. For further reading on the effects of considering magnetic dissipation and full

magneto-elastic coupling, the reader is referred to the recent works by Danas and co-authors [286,293]. In

addition, the recent review by [283] can be consulted for current modelling approaches in hard-magnetic

soft materials.

The magneto-elastic problem can be then conceptualized from an energetic formulation based on the

definition of a total energy Ω (εεε,HHH) as:

Ω (εεε,HHH) = Ψ (εεε,HHH) +M∗
0 (HHH)

Ψ (εεε,HHH) = Ψela (εεε) + Ψmag (εεε,HHH)
(6.4)

where M∗
0 (HHH) = − 1

2µ0HHH.HHH is the free space contribution due to vacuum magnetic permeability, and

Ψ (εεε,HHH) is the free energy of the material. The latter is additively decomposed into elastic and magnetic

contributions. From the definition of this energy, making use of the second law of thermodynamics and

with the help of Coleman-Noll argumentation, the following constitutive equations can be obtained:

σσσ := ∂Ω
∂εεε
, BBB = − ∂Ω

∂HHH
(6.5)

For more details on this derivation and fundamental equations of magneto-mechanics, readers are referred

to recent publications [289,294,295] and some classical textbooks such as [296,297].

In the following we define the mechanical potential using linear elasticity theory and the magnetic

contribution for hard-magnetic materials as proposed in [268]. The set of balance laws splits into

mechanical and magnetic balance equations; the balance of linear momentum writes in terms of Cauchy

stress as:
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σσσ.∇y + fff = 0

σσσ = σσσela + σσσmag + σσσMax

σσσela = λTr (ε)III + 2µε

σσσmag = 1
µ0
BBBr ⊗BBB = σσσmag,sym + σσσmag,skew

σσσmag,sym = 1
µ0

(BBBr ⊗BBB +BBB ⊗BBBr) ,σσσmag,skew = −τττ

σσσMax = 1
µ0
BBB ⊗BBB − 1

2µ0
[BBB.BBB]III

(6.6)

The Cauchy microscopic stress, according to the energetic definition of the problem, has been decomposed

additively into elastic, magnetic and Maxwell contributions, tensor σσσela,σσσmagand σσσMax, respectively,

thereby showing the influence of the magnetic field on the mechanical response; λ and ε are the Lamé

coefficients while the vectors fff and τττ denote the body forces and magnetic torque respectively. Hereafter

the Maxwell term associated to vacuum permeability of free space is not considered as it has negligible

effects in the current problem [267]. The magnetic part of the Cauchy stress will be elaborated later on.

The balance of angular momentum shows the non-symmetric nature of Cauchy stress, due to the

existence of a magnetic torque τττ :

ϵ :
(
σσσ − σσσT

2

)
+ τττ = 000 ⇔ σσσskew + τττ = 000 in Y

τττ = 1
µ0
BBBr ×BBB in Y

nnn. [σσσ] = 000 on ∂Y

(6.7)

with ϵ the third order permutation symbol (Levi-Civita symbol), and σσσskew the skew symmetric part of

the microscopic Cauchy stress, here represented as a pseudo-vector.

The magnetostatic Maxwell’s equations are taken for the magnetic balance laws as:

HHH(yyy) = −φ(yyy)∇y ⇒ CurlHHH = 0 in Y

BBB.∇y = 0 in Y

nnn. [BBB] = 0 on ∂Y

nnn× [HHH] = 000 on ∂Y

(6.8)

The magnetic field HHH is defined from a scalar valued potential φ so that the first balance equation is

automatically satisfied. Note that the magnetic potential plays the same role as the displacement, both

determining the magnetic field and strain respectively. Within small strains there is non-reciprocity of

magnetic and mechanical effects, since the magnetic field generates a stress tensor, whereas mechanics does

not influence magnetic phenomena at the microscale (The non-reciprocity is considered as an assumption

in this contribution). We note that further extensions of the proposed formulation to finite deformation

theory would introduce such a reciprocity due to the spatial gradient in the magnetic balance equation

and the transformation of the magnetic fields from reference to current configurations.
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The magnetic balance equation writes accordingly, considering here magnetization as an input datum of

the BVP

(µ0. (−φ(yyy)∇y) +BBBrrr) .∇y = 0 (6.9)

Note that the magnetic field influences the elastic behavior, but the converse does not hold at the

microlevel; however, as it will appear later on in this chapter, the cross-coupling (mutual) effects of

magnetic and elastic field will be reciprocal after homogenization.

6.2.2 Decomposition of the microscopic kinematic variables into

homogeneous and fluctuating contributions

In order to set the stage, the displacement vector is decomposed additively into a homogeneous part

uuuhom(yyy) affine in the macrostrain kinematic variables of the Cosserat continuum and a periodic fluctuation

denoted ũ̃ũu(yyy) ∈ H1
per(Y ), the Sobolev space of Y -periodic displacements, viz it holds

uuu(yyy) = uuuhom(yyy;xxx) + ũ̃ũu(yyy)

ũ̃ũu(yyy) Y -periodic
(6.10)

The same decomposition holds for the magnetic field,

HHH(yyy) = HHHM (xxx) + H̃̃H̃H(yyy)

H̃̃H̃H(yyy) Y -periodic
(6.11)

with HHHM (xxx) the macroscopic magnetic h-field. Since the magnetization is represented as the gradient of

a scalar valued function φ(yyy), it holds the following relations:

φ(yyy) = φhom(yyy;xxx) + φ̃(yyy)

φ̃(yyy) Y-periodic

φhom(yyy;xxx) = −HHHM (xxx).yyy

⇒ HHHhom(xxx) := −φhom(yyy;xxx)∇x = HHHM (xxx)

H̃̃H̃H(yyy) = −φ̃(yyy)∇y

(6.12)

The introduced homogeneous solution
{
uuuhom(yyy;xxx), φhom(yyy;xxx)

}
is a function of both the microscopic and

macroscopic variables. The macroscopic position will intervene due to the presence of the macroscopic

variables that will enter the homogeneous fields as will appear later. Such a solution describes the

response of a (fictive) effective continuum that would behave exactly as the selected homogeneous

substitution medium. Thus, the added fluctuation {φ̃(yyy), ũ̃ũu(yyy)} in Eq. 6.12 corrects the deviation of the

microscopic displacement of the initially heterogeneous medium from that of the postulated homogeneous

Cosserat substitution medium. The homogeneous displacement is comparatively more involved and will

be evaluated later on.
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The determination of the homogeneous displacement, representative of both classical and Cosserat

effects, is the first step of the proposed higher-order homogenization method. We will proceed in a two

steps method as follows: i) evaluation of the microscopic homogeneous displacement - uuuhom(yyy) in Eq. 6.10,

and subsequently ii) computation of the fluctuating displacement, vector ũ̃ũu(yyy) in the same Eq. 6.10, relying

on a variational formulation, before evaluating the effective classical and micropolar moduli.

6.2.3 Elaboration of the balance laws of the effective Cosserat magnetoelastic

continuum

The integration of the balance of linear momentum for the stress tensor, Eq. 6.6 over the unit cell domain

Y (using the bracket notation) and using Gauss divergence theorem as well as considering the Whitaker

averaging theorem for continuous interfaces, namely the relation < σσσ ⊗ ∇y>y =< σσσ>y⊗∇x [298, 299]

leads to the macroscopic equilibrium equation as follows:

⟨σσσ⟩Y · ∇x + ⟨fff⟩Y = 0 (6.13)

The second microbalance relation is a result of taking the vector product of Cauchy stress equilibrium in

the balance Eq. 6.6 by the microscopic position vector ‘yyy’, giving the relation:

ϵijkyjσkl,l + ϵijkyjfk = 0 (6.14)

The couple stress tensor is defined as the second-order tensor µij := ϵilkylσkj and the internal body

couple forces as ci := ϵijkyjfk. Recoursing to the divergence theorem, Eq. 6.14 is integrated over the unit

cell domain leading to an integral format of the balance law as follows:∫
Y

(
∂µij

∂yj
+ ci

)
dV = 0 (6.15)

Applying the Gauss divergence theorem and averaging Eq. 6.15 over the Y domain, we obtain the second

macroscopic equilibrium equation. The equation is adjusted with Whitaker’s averaging theorem in cases

of coherent and continuous interfaces (where the displacement and traction vectors are uninterrupted

across the boundary between different materials), namely < µµµ⊗ ∇y>y =< µµµ>y⊗∇x [298,299]:

⟨µµµ⟩Y · ∇x + ⟨ccc⟩Y = 0 (6.16)

From a physical perspective, the previous equation implies that the average microscopic couple stress

tensor within a unit cell, created from Cauchy stress, is balanced to the body couple produced by the

body couple density. ccc := yyy × fff .

The balance law for the scalar magnetic potential writes similarly based on Eq. 6.9 and on the repeated

application of Whitaker theorem in integral format as:

⟨(−µ0φ (yyy) ∇y +BBBrrr (yyy)) .∇y⟩Y = 0 ⇒ ⟨−µ0φ (yyy) ∇y +BBBrrr (yyy)⟩Y .∇x = 0

⇒ µ0⟨φ (yyy) ∇y⟩Y .∇x = ⟨BBBrrr (yyy)⟩Y .∇x ⇒ µ0∆x⟨φ (yyy)⟩Y = ⟨BBBrrr (yyy)⟩Y .∇x

⟨(µ0HHH +BBBrrr) .∇y⟩Y = 0 ⇒ ⟨µ0HHH +BBBrrr⟩Y .∇x = 0 ⇒ BBBM := ⟨µ0HHH +BBBrrr⟩Y

(6.17)
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in which ∆x denotes the macroscopic Laplacian. The last set of relations in Eq. 6.17 is an alternative

writing of the same micro and macro magnetic balance equations resulting in the definition of the macro

magnetic b-field as the volume average BBBM := ⟨µ0HHH +BBBrrr⟩Y . Eqs. 6.13, 6.16, 6.17, are multiplied

respectively by the fields (vvv, ϕ, ψ) that represent virtual variations of the micro deformation field, micro

rotational field and micro scalar magnetic potential successively. Then, these equations are integrated

over the macroscopic homogeneous volume V (x) depicted in Fig. 6.1, leading to the total virtual power

of internal forces. After some straightforward steps, the following three balance equations are derived :

−
∫

V (x)
⟨σσσ⟩Y : vvv ⊗ ∇x dV +

∫
V (x)

⟨fff⟩Y · vvv dV +
∫

∂V (x)
⟨σσσ⟩Y · vvv dS = 0 (6.18)

−
∫

V (x)
⟨µµµ⟩Y : ϕ∇x dV +

∫
V (x)

⟨ccc⟩Y · ϕ dV +
∫

∂V (x)
⟨µµµ⟩Y · ϕ dS = 0 (6.19)∫

V (x)
−µ0⟨φ (yyy)⟩y∇x. ψ (xxx) ∇x dV + µ0

∫
∂V (x)

⟨φ (yyy)⟩y∇xψ dS −
∫

V (x)

⟨BBBr (yyy)⟩y.∇x ψ (xxx) dV = 0 (6.20)

The additive decomposition of the microscopic stress into an elastic and magnetic contribution entails a

similar decomposition of the macroscopic stress and bending moment (MMM):

ΣΣΣM := ⟨σσσ⟩Y = ⟨σσσsym⟩Y +
〈
σσσskew

〉
Y

= ΣΣΣela
M + ΣΣΣmag

M

ΣΣΣela
M :=

〈
σσσela

〉
Y
, ΣΣΣmag

M :=
〈
σσσskew

〉
Y

= −⟨τττ⟩Y

MMM := ⟨µµµ⟩Y = MMM
ela +MMM

mag

MMM
ela :=

〈
µµµela

〉
Y
, MMM

mag := ⟨µµµmag⟩Y

(6.21)

The superscripts ‘sym’ and ‘skew’ respectively denote the symmetrical and skew-symmetrical parts of a

second order tensor, with the decomposition of the macro fields into symmetrical and skew-symmetrical

parts following the corresponding split done at the microlevel in Eq. 6.6. The subscript ‘M’ is used

here and in the sequel to denote quantities evaluated at the macrolevel, to distinguish them from their

microscopic counterpart.

Eqs. 6.18, 6.19, 6.20 can then lead to six contributions, P e
c ,P e

mag,P e
m, P i

c ,P i
mag,P i

m,with the indices

e, i, c,m,mag representing respectively the external, internal, Cauchy, magnetic and micropolar powers

(the mechanical powers themselves decomposing into elastic and magnetic contributions):

P i
c = −

∫
V (x)

⟨σσσ⟩Y : vvv ⊗ ∇xdV = −
∫

V (x)

⟨σσσsym⟩Y : vvv ⊗ ∇xdV −
∫

V (x)

〈
σσσskew

〉
Y

: (vvv ⊗ ∇x)skew
dV = P i

c,ela + P i
c,mag

P i
m = −

∫
V (x)

⟨µµµ⟩Y : ϕ⊗ ∇xdV = P i
m,mag

P i
mag = −µ0

∫
V (x)

⟨φ (yyy)⟩Y ∇x. ψ∇xdV +
∫

V (x)

⟨BBBr (yyy)⟩Y . ψ∇xdV

(6.22)
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P e
c =

∫
V (x)

⟨fff⟩Y · vvvdV +
∫

∂V (x)

⟨σσσ⟩Y · vvvds = P e
c,ela + P e

c,mag

P e
m =

∫
V (x)

⟨ccc⟩Y · ϕdV +
∫

∂V (x)

⟨µµµ⟩Y · ϕds = P e
m,ela + P e

m,mag

P e
mag = µ0

∫
∂V (x)

⟨φ (yyy)⟩Y ∇x.ψdS −
∫

∂V (x)

(BBBr (xxx)) . ψdV

(6.23)

In Eq. 6.22, we have introduced the additive decomposition of the stress into a symmetrical part reflecting

mechanical effects and a skew-symmetrical one associated to the magnetic torque, see Eq. 6.7. The

conjugated kinematic variables are respectively the small strain tensor and the skew-symmetrical part of

the micro displacement gradient, represented by its axial vector (when similarly, the magnetic stress

is represented as a pseudo-vector). Relations 6.22 for the inner virtual powers completed by the

definition introduced in Eq. 6.21 include part of the effective macro variables, the full elaboration of

which articulated in Hill macrohomogeneity condition will deserve the developments of next section.

6.3 Hill-Mandel macrohomogeneity condition and

magnetoelastic homogenization

The postulated Hill macrohomogeneity condition for the magnetoelastic formulation states that the

average of the microscopic virtual power is identical to the macroscopic virtual power of the effective

Cosserat magnetic continuum. It holds the following identity in a situation of scale separation, i.e. when

the microstructure typical size is much smaller than the macroscopic characteristic length:

ΩM (EEEM ,KKKM ,HHHM ) = 1
2
(
ΣΣΣM : EEEM +MMM : KKKM −BBBM .HHHM

)
= 1

2 ⟨σσσ : εεε−BBB.HHH⟩Y (6.24)

Previous relation entails the following macroscopic constitutive law given from the macroscopic potential

ΩM (EEEM ,KKKM ,HHHM ):

ΣΣΣM = ∂ΩM (EEEM ,KKKM ,HHHM )
∂EEEM

, MMM = ∂ΩM (EEEM ,KKKM ,HHHM )
∂KKKM

, BBBM = −∂ΩM (EEEM ,KKKM ,HHHM )
∂HHHM

(6.25)

The strain energy contribution can further be decomposed into a symmetrical and skew-symmetrical part

reflecting the fact that the stress is not symmetrical due to the existence of a magnetic torque responsible

for a non-symmetric microscopic stress tensor:

1
2(ΣΣΣM : EEEM +MMM : KKKM −BBBM .HHHM ) = 1

2(ΣΣΣsym
M : EEEsym

M + ΣΣΣskew
M .EEEskew

M +MMM : KKKM −BBBM .HHHM ) =

= 1
2 ⟨σσσ : εεε−BBB.HHH⟩Y

(6.26)

wherein the last relation traduces the same Hill macrohomogeneity condition written in Eq. 6.24, but

here explicitly distinguishing the symmetrical and skew-symmetrical contributions.

The virtual power of the effective continuum at the macroscopic level can be expressed as the sum of

the Cauchy internal power, the power of magnetic fields, and the internal power of micropolar medium,
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using Hill-Mandel macrohomogeneity condition for the last relation:

δWM = −(P i
ela + P i

m + P i
mag) = 1

|V (x)|

{∫
V (x)

⟨σσσ⟩Y : vvv ⊗ ∇xdV +
∫

V (x)
⟨µµµ⟩Y : ϕ∇xdV −

∫
V (x)

⟨BBB⟩Y .ψ∇xdV

}

≡ δ

 1
|Y |

∫
Y

1
2 (σσσ : εεε−BBB.HHH) dVy

 = ΣΣΣM : δEEEM +MMM : δKKKM −BBBM .δHHHM

(6.27)

The last relation in Eq. 6.27 is the extended Hill macrohomogeneity condition representing the equivalence

between the macroscopic energy and the volume-averaged microscopic energy density, expressed here in

the form of virtual power.

The macroscopic kinematic variables, EEEM (xxx), KKKM (xxx) , HHHM are then defined, representing the

second-order micropolar strain tensor, the macroscopic curvature tensor and the macro magnetic field,

respectively:

EEEM (xxx) := UUU ⊗ ∇x − ϵ · ΦΦΦ(xxx) (6.28)

KKKM (xxx) := ΦΦΦ(xxx) ⊗ ∇x (6.29)

HHHM (xxx):=-⟨φ(yyy)⟩Y ∇x (6.30)

whereinUUU is the macro displacement and ΦΦΦ(xxx) is the macro rotation tensor. The definition of the averaged

kinematic tensors is presented by the set of following relations:

UUU(xxx) := 1
|Y |

∫
Y

uuu(yyy)dVy

EEEsym
M (xxx) := 1

2

(
EEEM (xxx) +EEEM

T (xxx)
)

= 1
|Y |

∫
Y

εεε(yyy)dVy =

 1
|Y |

∫
Y

uuu(yyy) ⊗ ∇ydVy

sym

ΦΦΦ(xxx) := 1
|Y |

∫
Y

ϕ(yyy)dVy → ϵijkΦk(xxx) := 6
l2 |Y |

∫
Y

uuu(yyy) × (yyy − xxx) dVy

EEET skew
M (xxx) = skew(UUU ⊗ ∇x)skew − ϵ · ΦΦΦ(xxx) = 1

|Y |

∫
Y

(
(uuu(yyy) ⊗ ∇y)skew + 6

l2
uuu(yyy) × (yyy − xxx)

)
dVy

→ EEEM = EEEsym
M +EEET skew

M

KKKM (xxx) := ΦΦΦ(xxx) ⊗ ∇x

(6.31)

with EEET skew
M the second-order skew-symmetric strain tensor, and the scalar l the side length of the unit

cell. The skew-symmetric part of the macroscopic strain can be elaborated as:

ωωω = 1
2

(
(UUU ⊗ ∇x) − (UUU ⊗ ∇x)T

)
ϖ = ϵ : ωωω

EEEskew
M = ϖ − 2ΦΦΦ

(6.32)

with EEEskew
M being the pseudo-vector dual to the antisymmetric tensor EEET skew

M (likewise, the vector ϖ is

dual to the skew-symmetric tensor ωωω). As mentioned in [300], the macroscopic kinematic tensors can

be derived by minimizing the quadratic difference between the microscopic displacement field and its
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quadratic homogeneous approximation. The subsequent computations use the vector form of EEEskew
M .

The consideration of the expressions Eq. 6.28 through Eq. 6.31 leads to the macroscopic micropolar energy

density, function ΩM

(
EEEsym

M ,EEEskew
M ,KKKKKKKKKM ,HHHM

)
in a variational form as:

δWM = ΣΣΣM : (δEEEM + ϵ · δΦΦΦ) +MMM : δKKKKKKKKKM −BBBM .δHHHM

→ δWM = ΣΣΣsym
M : δEEEsym

M + ΣΣΣskew
M · δEEEskew

M +MMM : δKKKKKKKKKM −BBBM .δHHHM

(6.33)

with the macroscopic stress and the couple stress tensors expressed as follows:

1
2
(
ΣΣΣM (xxx) + ΣΣΣT

M (xxx)
)

= ΣΣΣsym
M (xxx) := 1

|Y |

∫
Y

σσσsym(yyy)dVy

ΣΣΣskew
M (xxx).NNN (xxx) :=

∫
∂Y

nnn · (yyy × σσσ(yyy)) ds =
∫

∂Y

nnn · ϵ · yyy ⊗ σσσ(yyy)ds =

∫
Y

(yyy × σσσ(yyy)) .∇ydv ≡ ⟨yyy × σσσ(yyy)⟩ .∇x ⇒ ΣΣΣskew
M :=

∫
Y

(ϵ · yyy ⊗ σσσ(yyy)) .∇y dv ≡
∫
Y

σσσskew(yyy)dv

ΣΣΣT skew
M = −ϵ · ΣΣΣskew

M

→ΣΣΣM = ΣΣΣsym
M + ΣΣΣT skew

M

µµµ(yyy) := yyy × σσσ(yyy) ⇔ µij := εimkσjmyk → MMM(xxx) := 1
|Y |

∫
Y

µµµ(yyy)dVy

(6.34)

Here, ΣΣΣskew
M represents the pseudo-vector, dual to the second-order skew-symmetric stress tensor ΣΣΣT skew

M ;

we have considered as a matter of simplification the case of nil body forces. The stress measures further

decompose into elastic and magnetic contributions, based on Eq. 6.25:

ΣΣΣsym
M = ∂ΩM

∂EEEEEEEEEsym
M

= ΣΣΣsym,ela
M + ΣΣΣsym,mag

M ,

ΣΣΣskew
M = ∂ΩM

∂EEEEEEEEEskew
M

= ΣΣΣskew,ela
M + ΣΣΣskew,mag

M ,

MMM = ∂ΩM

∂KKKKKKKKK
= MMM

ela +MMM
mag

(6.35)

The reader is referred to [301] for more details of the homogenization method for pure Cosserat

homogenization (without magnetic effects).

6.4 Determination of the homogenized micropolar

magnetoelastic properties

To find the effective moduli of the Cosserat magnetoelastic substitution medium, a two-step process is

followed. The first step involves determining the homogeneous part of the microscopic displacement

and magnetic potential, as shown in Eq. 6.10 and Eq. 6.12. The second step involves using a

variational principle to obtain the fluctuating part, which corrects for any deviation in the response

of the heterogeneous medium from the homogenized substitution medium. The successive situations

of magnetoelastic homogenization in the Cauchy and micropolar contexts are successively handled.

The first situation corresponds to a nil or negligible magnetic torque, which entails a symmetrical
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microscopic Cauchy stress. In order to set the stage in the homogenization methodology, the homogeneous

contribution to the microscopic displacement is evaluated versus the macroscopic flux type variables.

6.4.1 Elaboration of the microscopic homogeneous part of the displacement

By examining the static variables defined in Eq. 6.34, we can relate the homogeneous component of

the displacement defined in Eq. 6.10 to the macroscopic kinematic variables, grouped together in a set{
EEEsym

M (xxx) ,EEEskew
M (xxx) ,KKK (xxx)

}
, and can be determined by adding up the following contributions. The first

contribution comes from Eq. 6.341, which relates the stress and strain energy densities at the micro level,

σij = ∂wµ(εij)
∂εij

, and provides a set of relations that are valid for any stress component:

ΣM
sym
ij

=
〈
σsym

ij

〉
Y

=
〈
σsym

kl

∂εkl

∂EM
sym
ij

〉
Y

→
∫

Y

σsym
kl

(
∂εkl

∂EM
sym
ij

− Iijkl

)
dVy = 0, ∀σsym

kl (6.36)

where Iijkl is defined as the fourth-order identity tensor. Note that the magnetic torque arising in Eq. 6.7

does only influence the skew-symmetrical part of the stress. Considering the arbitrary stress tensor in

Eq. 6.36 leads to the expression of the microscopic strain versus the macroscopic strain

∂εkl

∂EM
sym
ij

− Iijkl = 0 → εkl = IijklEM
sym
ij → εkl = EM

sym
kl = εlk (6.37)

The definition of Cauchy strain versus displacement is substituted in Eq. 6.37 resulting in the first part

of the micro displacement field up to a macroscopic rigid body translation, that is not written here:

∂uhom
k

∂yl
= EM

sym
kl → uhom

k (yyy) = ylEM
sym
kl (6.38)

To calculate the second part of the micropolar displacement field, a boundary value problem is formulated

using Eq. 6.34. The relation between the microscopic displacement and the antisymmetric strain vector

EEEskew
M (xxx) is obtained starting from:

ΣM
skew
i

=
〈
ϵikjσ

skew,mag
jk

〉
Y

+ ⟨ϵijkyjσkl,l⟩Y =
〈
σkl

∂εkl

∂EM
skew
i

〉
Y

(6.39)

In Eq. 6.34, the magnetic skew-symmetrical stress, the pseudo vector with components σskew
i :=

ϵijkσ
skew,mag
kj = −τi has been introduced, arising from the balance of angular momentum, Eq. 6.7,

with the magnetic torque on the right hand side of the last relation.

Eq. 6.39 is reformulated as∫
Y

(
−ϵijkyjσkl,l − ϵijkσ

skew
kj + σkl

∂εkl

∂EM
skew
i

)
= 0 (6.40)

The integration by parts of Eq. 6.40 leads to:∫
Y

(
ϵijkyjσkl,l + σkl,l

∂uk

∂EM
skew
i

+ ϵijkσ
skew
kj

)
dVy −

∫
∂Y

nlσkl
∂uk

∂EM
skew
i

dsy = 0 (6.41)
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The volume integral in the boundary value problem of Eq. 6.41 is isolated, which results in the condition

(up to boundary terms denoted ‘B.T.’ that do however not interfere with the derivations therein):∫
Y

(
ϵijkδjlσkl − σkl

∂

∂yl

(
∂uk

∂EM
skew
i

)
+ϵijkσ

skew
kj

)
dVy +B.T. = 0 ⇒ 2ϵilkσkl − σkl

∂

∂yl

(
∂uk

∂EM
skew
i

)
= 0, ∀σkl

⇒ 2σskew
3 − σ12

∂

∂y2

(
∂u1

∂EM
skew
3

)
− σ21

∂

∂y1

(
∂u2

∂EM
skew
3

)
= 0, σskew

3 = −τ3

Taking the skew part of previous relation delivers:

σskew
12 = −σskew

21 , ε321σ
skew
12 + ε312σ

skew
12 =: σskew

3 → 2σskew
12 = σskew

3 = −τ3

⇒ − ∂

∂y2

(
∂u1

∂EM
skew
3

)
+ ∂

∂y1

(
∂u2

∂EM
skew
3

)
= 2

⇒ ∂u1

∂EM
skew
3

= −y2,
∂u2

∂EM
skew
3

= y1 ⇒ u1 (yyy) = EM
skew
3 y1, u2 (yyy) = −EM

skew
3 y2 ⇒ uuuhom (yyy) = −ϵ : EEEskew

M .yyy

(6.42)

We have used in Eq. 6.42 the fact that the skew-symmetrical stress field in 2D only has one independent

component. Using the definition of the internal bending moment and applying the same steps as described

earlier, the third contribution of the displacement field is computed:

M ij = ⟨ϵinmynσmj⟩Y =
〈
σkl

∂εkl

∂KM ij

〉
Y

→
∫

Y

σkl

(
∂εkl

∂KM ij

− ϵinmynImjkl

)
dVy = 0, ∀σkl (6.43)

this results in a relationship between the microscopic deformation and the micropolar gradient as:

∂εkl

∂KM ij

− ϵinmynImjkl = 0 → εkl = ϵinmynImjklKM ij → εkl = ϵinkynKM il (6.44)

The definition of Cauchy strain is substituted in Eq. 6.44, which results in:

∂uhom
k

∂yl
= ϵinkynKM il (6.45)

Summing up the three previous contributions Eq. 6.38, Eq. 6.42, and Eq. 6.45, one can conclude that

the homogeneous part of the displacement can be expressed as a quadratic function of the microscopic

position as follows:

uuuhom
i (yyy,xxx) = UUU0 (xxx) +EEEsym

M (xxx) · yyy − ϵ ·EEEskew
M (xxx) · yyy + ϵ ·KKKM : (yyy ⊗ yyy) (6.46)

wherein UUU0 (xxx) is a rigid body motion. If non-homogeneous body forces are present in the (RVE), the

microscopic displacement will exhibit further associations with both the skew-symmetrical macroscopic

strain components and the body force components.

6.4.2 Variational based homogenization and evaluation of the Cosserat

magnetic moduli

The determination of the effective moduli of the micropolar magnetoelastic continuum is based on the

quadratic displacement and the homogeneous part of the magnetic h-field described in Eq. 6.46 and

Eq. 6.12, respectively. By applying the Hill extended macrohomogeneity condition and the principle of

118



6.4. Determination of the homogenized micropolar magnetoelastic properties

minimum potential energy in the absence of body forces, one can express the generalized minimization

principle applied to all periodic fluctuations of the displacement and magnetic h-field:

ΩM

(
EEEsym

M ,EEEskew
M ,KKKM ,HHHM

)
=

Min
ũ
−
ũ
−
ũ
−

,H̃̃H̃H∈H1
per(Y )


∫
Y

1
2
(
uuuhom ⊗ ∇y + ũ̃ũu(yyy) ⊗ ∇y

)
: CCC (yyy) :

(
uuuhom ⊗ ∇y + ũ̃ũu(yyy) ⊗ ∇y

)
+

(
µ0

(
HHHhom(xxx) − φ̃ (yyy) ∇y

)
+BBBrrr

)
.
(
HHHhom(xxx) − φ̃ (yyy) ∇y

)
dVy


(6.47)

where CCC (yyy) is the microscopic rigidity matrix.

The stationarity condition of the functional on the right-hand side of Eq. 6.47 provides as a necessary

condition, a BVP to be satisfied by the optimal fluctuation associated to the real displacement field (in

the absence of body forces) and magnetic field:∣∣∣∣∣∣∣∣∣∣
−
{
CCC (yyy) :

(
EEEsym

M (xxx) − ϵ ·EEEskew
M (x) + ϵ · yyy ·KKKM (x) + ũ̃ũu (yyy) ⊗ ∇y

)}
.∇y = 0

[µ0 (HHHM (xxx) − φ̃ (yyy) ∇y) +BBBrrr (y)] .∇y = 0

ũ̃ũu (y) , φ̃ (y) Y-periodic

(6.48)

The linearity of the solution of BVP of Eq.(48) versus the prescribed kinematic macroscopic

loading, tensors EEEsym
M (xxx) , EEEskew

M (xxx) , KKKM (xxx) , and HHHM (xxx), guarantees the existence of localizators

for the strain, rotation, curvature and magnetic h-field loadings, successively the tensors

LLLuEsym

(yyy),LLLuEskew

(yyy),LLLuK(yyy),LLLuHM (yyy),LLLφEsym

(yyy),LLLφEskew

(yyy),LLLφK(yyy),LLLφHM (yyy), so that the

displacement and magnetic potential fluctuations are written as:

ũ̃ũu(yyy) = LLLuEsym

(yyy) : EEEsym
M (xxx) + LLLuEskew

(yyy) ·EEEskew
M (xxx) +LLLuK(yyy) : KKKM (xxx) + LLLuHM (yyy) ·HHHM (x)

φ̃ (yyy) = LLLφEsym

(yyy) : EEEsym
M (xxx) + LLLφEskew

(yyy) ·EEEskew
M (xxx) +LLLφK(yyy) : KKKM (xxx) + LLLφHM (yyy) ·HHHM (x)

(6.49)

The order of the localization operators (tensors) is indicated in Table 6.1.

The expression of the fluctuation, Eq. 6.49, results in the full microscopic displacement and scalar

magnetic h-field given by

uuu(yyy,xxx) =
(

(III4 · yyy) +LLLuEsym

(yyy)
)

: EEEsym
M (xxx) +

(
−ϵ · yyy +LLLuEskew

(yyy)
)

·EEEskew
M (xxx)

+
(

1
2 (ϵ · (yyy ⊗ yyy)) +LLLuK(yyy)

)
: KKKM (xxx) +LLLuHM (yyy).HHHM (x),

φ (yyy) = LLLφEsym

(yyy) : EEEsym
M (xxx) +LLLφEskew

(yyy) ·EEEskew
M (xxx) +LLLφK(yyy) : KKKM (xxx) − yyy.HHHM (x) +LLLφHM (yyy).HHHM (x)

(6.50)

We further conveniently define the microstrain and micro h-field, as the symmetrical part of the micro

displacement gradient and magnetic potential gradient respectively, resulting in the localization relations

uuu⊗ ∇y ≡ AAAuEsym

(yyy) : EEEsym
M (xxx) +AAAuEskew

(yyy).EEEskew
M (xxx) +AAAuK(yyy) : KKKM (xxx) +AAAuHM (yyy).HHHM (x)

HHH (yyy) = −φ (yyy) ⊗ ∇y = AAAφEsym

(yyy) : EEEsym
M (xxx) +AAAφEskew

(yyy).EEEskew
M (xxx) +AAAφK(yyy) : KKKM (xxx) +AAAφHM (yyy).HHHM (x)

(6.51)

with AAAuEsym

(yyy),AAAuEskew

(yyy),AAAuK(yyy),AAAuHM (yyy),AAAφEsym

(yyy),AAAφEskew

(yyy),AAAφK(yyy),AAAφHM (yyy) representing

the localization tensors relating the microstrain tensor and microscopic magnetic h-field vector to their
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Table 6.1 Order of the localization operators (tensors) for the displacement (a 1-tensor) and scalar magnetic

potential (a zero-tensor)

Localization operators Order of the tensor

LLLuEsym

(yyy)

LLLuEskew

(yyy)

LLLuK(yyy)

LLLuHM (yyy)

LLLφEsym

(yyy)

LLLφEskew

(yyy)

LLLφK(yyy)

LLLφHM (yyy)

3

2

3

2

2

1

2

1

macroscopic kinematic variables, with their expression given by

AAAuEsym

(yyy) = III4 +LLLuEsym

(yyy) ⊗ ∇y, AAA
uEskew

(yyy) = −ϵ.yyy +LLLuEskew

(yyy) ⊗ ∇y, AAA
uK(yyy) = ϵ · yyy ⊗ III2 +LLLuK(yyy) ⊗ ∇y

AAAuHM (yyy) = LLLuHM (yyy) ⊗ ∇y

AAAφEsym

(yyy) = −LLLφEsym

(yyy) ⊗ ∇y, AAA
φEskew

(yyy) = −LLLφEskew

(yyy) ⊗ ∇y, AAA
φK(yyy) = LLLφK(yyy) ⊗ ∇y

AAAφHM (yyy) = −III2 −LLLφHM (yyy) ⊗ ∇y

(6.52)

The tensor order of the localization operators is indicated in the following Table 6.2.

Table 6.2 Order of the localization operators (tensors) for the displacement gradient and magnetic h-field.

Localization operators Order of the tensor

AAAuEsym

(yyy)

AAAuEskew

(yyy)

AAAuK(yyy)

AAAuHM (yyy)

AAAφEsym

(yyy)

AAAφEskew

(yyy)

AAAφK(yyy)

AAAφHM (yyy)

4

3

4

3

3

2

3

2

Eq. 6.52 is then inserted into the BVP of Eq. 6.48 which leads to a new BVP for the localization operator
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6.4. Determination of the homogenized micropolar magnetoelastic properties

tensors, which will be solved in a sequential manner:∣∣∣∣∣∣ −
{
CCC (yyy) :

[
AAAuEsym

(y) : EEEsym
M (xxx) +AAAuEskew

(yyy) .EEEskew
M (xxx) +AAAuK (yyy) : KKKM (xxx) +AAAuHM (yyy) .HHHM (xxx)

]}
.∇y = 0[

µ0

(
AAAφEsym

(yyy) : Esym
M (xxx) +AAAφEskew

(yyy) .Eskew
M (xxx) +AAAφK (yyy) : KKKM (xxx) +AAAφHM (yyy) .HHHM (xxx)

)
+BBBrrr (yyy)

]
.∇y = 0

(6.53)

6.4.3 General form of the homogenized constitutive properties

Anticipating the evaluation of the homogenized tensors, the macroscopic homogenized constitutive law

writes formally as follows:

ΣΣΣsym
M := ⟨σσσsym⟩Y = CCChom : EEEsym

M +BBBhom.EEEskew
M +DDDhom : KKKM + dddhom ..HHHM

ΣΣΣskew
M :=

〈
σσσskew

〉
Y

= BBBhom,T .EEEsym
M +RRRhom : EEEskew

M +FFF hom : KKKM + ggghom.HHHM

MMM := ⟨µµµ⟩Y = eeehom : EEEsym
M +FFF hom,T .EEEskew

M +GGGhom : KKKM +NNNhom ..HHHM

BBBM := ⟨BBB⟩Y = ddd
hom : EEEsym

M + ggghom,T .EEEskew
M +NNN

hom : KKKM + aaahom.HHHM

(6.54)

wherein CCChom is the first gradient modulus (rigidity matrix), GGGhom is Cosserat modulus and DDDhom is the

coupling tensor between first and gradient terms. BBBhom, and FFF hom are coupling tensors and dddhom is the

coupling magneto-elastic tensor. aaahom represents the magnetic permittivity tensor, ggghom , NNNhom, and NNN

represent coupling tensors with the magnetic field.

The set of constitutive relations Eq. 6.54 entail that the elastic and magnetic contributions of the

macroscopic stress, moment and magnetic field formally express as

ΣΣΣsym,ela
M := CCChom : EEEsym

M +BBBhom.EEEskew
M +DDDhom : KKKM , ΣΣΣsym,mag

M := dddhom ..HHHM

ΣΣΣskew,ela
M = BBBhom,T : EEEsym

M +RRRhom.EEEskew
M +FFF hom : KKKM , ΣΣΣskew,mag

M = ggghom.HHHM

MMM
ela := eeehom : EEEsym

M +FFF hom,T .EEEskew
M +GGGhom : KKKM , MMM

mag := NNNhom ..HHHM

BBBela
M := ddd

hom : EEEsym
M + ggghom,T .EEEskew

M +NNN
hom : KKKM , BBBmag

M := aaahom ..HHHM

(6.55)

An extended minimization principle of the macroscopic magnetoelastic energy over all periodic

fluctuations holds, so that inserting relations Eq. 6.51 into the functional in Eq. 6.47 delivers:

ΩM

(
EEEsym

M ,EEEskew
M ,KKKM ,HHHM

)
=

∫
Y

1
2

(
AAAuEsym

(yyy) : EEEsym
M (xxx) +AAAuEskew

(yyy).EEEskew
M (xxx) +AAAuK(yyy) : KKKM (xxx) +AAAuHM (yyy).HHHM (xxx)

)
: CCC (yyy) :

(
AAAuEsym

(yyy) : EEEsym
M (xxx) +AAAuEskew

(yyy).EEEskew
M (xxx) +AAAuK(yyy) : KKKM (xxx) +AAAuHM (yyy).HHHM (x)

)
+(

µ0

(
AAAφEsym

(yyy) : EEEsym
M (xxx) +AAAφEskew

(yyy).EEEskew
M (xxx) +AAAφK(yyy) : KKKM (xxx) +AAAφHM (yyy).HHHM (xxx)

)
+BBBrrr (yyy)

)
.(

AAAφEsym

(yyy) : EEEsym
M (xxx) +AAAφEskew

(yyy).EEEskew
M (xxx) +AAAφK(yyy) : KKKM (xxx) +AAAφHM (yyy).HHHM (xxx)

)
dVy


(6.56)
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Since ΩM

(
EEEsym

M ,EEEskew
M ,KKKM ,HHHM

)
defines a macroscopic potential, the homogenized constitutive law

follows considering Eq. 6.35 and the fact that partial derivative with respect to the macro parameters(
EEEsym

M ,EEEskew
M ,KKKM ,HHHM

)
and integration over the unit cell can be switched:

ΣΣΣsym
M = ∂ΩM

∂EEEsym
M

=
∫
Y

(
AAAuEsym

: EEEsym
M +AAAuEskew

.EEEskew
M +AAAuK : KKKM +AAAuHM .HHHM

)
: CCC : AAAuEsym

+

(
µ0

(
AAAφEsym

: EEEsym
M +AAAφEskew

.EEEskew
M +AAAφK : KKKM +AAAφHM .HHHM

)
+BBBrrr (yyy)

)
.AAAφEsym

dVy =
∫
Y

(
AAAuEsym

)T

: CCC : AAAuEsym

dVy

 : EEEsym
M +


∫
Y

(
AAAuEskew

)T

: CCC : AAAuEsym

dVy

 .EEEskew
M +


∫
Y

(
AAAuK

)T

: CCC : AAAuEsym

dVy

 : KKKM +


∫
Y

(
AAAuHM

)T

: CCC : AAAuEsym

dVy

 .HHHM +


∫
Y

µ0

(
AAAφEsym

)T

.AAAφEsym

dVy

 : EEEsym
M +


∫
Y

µ0

(
AAAφEskew

)T

.AAAφEsym

dVy

 .EEEskew
M +


∫
Y

µ0

(
AAAφK

)T

.AAAφEsym

dVy

 : KKKM +


∫
Y

µ0

(
AAAφHM

)T

.AAAφEsym

dVy

 .HHHM +


∫
Y

BBBrrr (yyy) .AAAφEsym

dVy


(6.57)

ΣΣΣskew
M = ∂ΩM

∂EEEskew
M

=
∫
Y

(
AAAuEsym

: EEEsym
M +AAAuEskew

.EEEskew
M +AAAuK : KKKM +AAAuHM .HHHM

)
: CCC : AAAuEskew

+

(
µ0

(
AAAφEsym

: EEEsym
M +AAAφEskew

.EEEskew
M +AAAφK : KKKM +AAAφHM .HHHM

)
+BBBrrr (yyy)

)
.AAAφEskew

dVy=
∫
Y

(
AAAuEsym

)T

: CCC : AAAuEskew

dVy

 : EEEsym
M +


∫
Y

(
AAAuEskew

)T

: CCC : AAAuEskew

dVy

 .EEEskew
M +


∫
Y

(
AAAuK

)T

: CCC : AAAuEskew

dVy

 : KKKM +


∫
Y

(
AAAuHM

)T

: CCC : AAAuEskew

dVy

 .HHHM +


∫
Y

µ0

(
AAAφEsym

)T

.AAAφEskew

dVy

 : EEEsym
M +


∫
Y

µ0

(
AAAφEskew

)T

.AAAφEskew

dVy

 .EEEskew
M +


∫
Y

µ0

(
AAAφK

)T

.AAAφEskew

dVy

 : KKKM +


∫
Y

µ0

(
AAAφHM

)T

.AAAφEskew

dVy

 .HHHM +


∫
Y

BBBrrr (yyy) .AAAφEskew

dVy


(6.58)

MMM = ∂ΩM

∂KKKM
=


∫
Y

(
AAAuEsym

)T

: CCC (yyy) : AAAuKdVy

 : EEEsym
M +


∫
Y

(
AAAuEskew

)T

: CCC (yyy) : AAAuKdVy

 .EEEskew
M +


∫
Y

(
AAAuK

)T

: CCC (yyy) : AAAuKdVy

 : KKKM +


∫
Y

(
AAAuHM

)T

: CCC (yyy) : AAAuKdVy

 .HHHM +

∫
Y

µ0

{(
AAAφEsym

)T

.AAAφKdVy

}
: EEEsym

M +


∫
Y

µ0

(
AAAφEskew

)T

.AAAφKdVy

 .EEEskew
M +


∫
Y

µ0

(
AAAφK

)
.AAAφKdVy

 : KKKM +


∫
Y

µ0

(
AAAϕHM

)T

.AAAφKdVy

 .HHHM +


∫
Y

BBBrrr (yyy) .AAAφKdVy


(6.59)
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BBBM = ∂ΩM

∂HHHM
=


∫
Y

(
AAAuEsym

)T

: CCC (yyy) : AAAuHMdVy

 : EEEsym
M +


∫
Y

(
AAAuEskew

)T

: CCC (yyy) : AAAuHMdVy

 .EEEskew
M +


∫
Y

(
AAAuK

)T

: CCC (yyy) : AAAuHMdVy

 : KKKM +


∫
Y

(
AAAuHM

)T

: CCC (yyy) : AAAuHMdV y

 .HHHM +


∫
Y

µ0

(
AAAφEsym

)T

.AAAφHMdVy

 : EEEsym
M +


∫
Y

µ0

(
AAAφEskew

)T

.AAAφHMdVy

 .EEEskew
M +


∫
Y

µ0

(
AAAφK

)T

.AAAφHMdVy

 : KKKM +


∫
Y

µ0

(
AAAφHM

)T

.AAAφHMdVy

 .HHHM +


∫
Y

BBBrrr (yyy) .AAAφHMdVy


(6.60)

Previous expressions lead by comparison with the general form of the macroscopic constitutive law in

Eq. 6.54 to the expression of the homogenized moduli, with the localization operators therein defined in

Eqs. 6.52:
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CCChom =


∫
Y

(
AAAuEsym

)T

: CCC : AAAuEsym

dVy +
∫
Y

µ0

(
AAAφEsym

)T

.AAAφEsym

dVy


BBBhom =


∫
Y

(
AAAuEskew

)T

: CCC : AAAuEsym

dVy +
∫
Y

µ0

(
AAAφEskew

)T

.AAAφEsym

dVy


DDDhom =


∫
Y

(
AAAuK

)T

: CCC : AAAuEsym

dVy +
∫
Y

µ0

(
AAAφK

)T

.AAAφEsym

dVy


dddhom . =


∫
Y

(
AAAuHM

)T

: CCC : AAAuEsym

dVy +
∫
Y

µ0

(
AAAφHM

)T

.AAAφEsym

dVy


RRRhom =


∫
Y

(
AAAuEskew

)T

: CCC : AAAuEskew

dVy +
∫
Y

µ0

(
AAAφEskew

)T

.AAAφEskew

dVy


FFF hom =


∫
Y

(
AAAuK

)T

: CCC : AAAuEskew

dVy +
∫
Y

µ0

(
AAAϕK

)T

.AAAφEskew

dVy


ggghom =


∫
Y

(
AAAuHM

)T

: CCC : AAAuEskew

dVy +
∫
Y

µ0

(
AAAφHM

)T

.AAAφEskew

dVy


GGGhom =


∫
Y

(
AAAuK

)T

: CCC (yyy) : AAAuKdVy +
∫
Y

µ0

(
AAAφK

)
.AAAφKdVy


NNNhom =


∫
Y

(
AAAuHM

)T

: CCC (yyy) : AAAuKdVy +
∫
Y

µ0

(
AAAφHM

)T

.AAAφKdVy


aaahom =


∫
Y

(
AAAuHM

)T

: CCC (yyy) : AAAuHMdVy +
∫
Y

µ0

(
AAAφHM

)T

.AAAφHMdVy


ddd

hom =


∫
Y

(
AAAuEsym

)T

: CCC (yyy) : AAAuHMdVy +
∫
Y

µ0

(
AAAφEsym

)T

.AAAφHMdVy


NNN

hom =


∫
Y

(
AAAuK

)T

: CCC (yyy) : AAAuHMdVy +
∫
Y

µ0

(
AAAφK

)T

.AAAφHMdVy


eeehom =


∫
Y

(
AAAuEsym

)T

: CCC (yyy) : AAAuKdVy +
∫
Y

µ0

{(
AAAφEsym

)T

.AAAφKdVy

}
y



(6.61)

In the next section, the homogenized magnetoelastic micropolar moduli will be computed for composites

in a planar situation and coupling effects between the elastic and magnetic fields will be investigated.

6.5 Algorithm for the evaluation of the homogenized

magnetoelastic medium and numerical results

Based on the theoretical framework discussed earlier, we suggest a computational method for calculating

the effective tensors of the homogenized constitutive law for the magneto-elastic effective medium. It is
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based on solving the weak formulation of the BVP for the total displacement and magnetic potential.

Starting from the constitutive equations at the microscopic level for the stress and magnetic induction:

σσσ (yyy) = CCC (yyy) : εεε (yyy) + ddd (yyy) (−φ (yyy) ∇y)

BBB (yyy) = µ0. (−φ (yyy) ∇y) +BBBrrr (yyy)
(6.62)

wherein ddd(yyy) is the microscopic coupling matrix between the elastic and magnetic fields, and εεε(yyy) is the

microscopic deformation, the variational formulation to be solved is expressed as :

∀vvv ∈ H1 (Y ) ,∫
Y

(CCC (yyy) : εεε (uuu) + ddd (yyy) (−φ (yyy) ∇y)) : εεεa (vvv) dVy −
∫
Y

[µ0. (−φ (yyy) ∇y) +BBBrrr (yyy)] .EEEmag
a (ψ) dVy = 0

(6.63)

This problem is solved using FreeFem++ open source finite element software as well as for the subsequent

determination of the first gradient, Cosserat, and the magnetic moduli in Eq. 6.54. An example of the

procedure followed for the determination of the homogenized moduli is condensed in algorithmic format

in Fig. 6.2.

Figure 6.2 Schematic algorithm for the computation of some effective moduli.

The next subsection deals with a numerical example for the determination of the effective moduli of a

magneto elastic structure.

6.5.1 Couplings between magnetic effects and mechanics at the macrolevel

The methodology mentioned in section 6.5 is applied for the unit cell geometry pictured in Fig. 6.3.

Different colors are used to identify regions sharing the same mechanical properties (all regions have
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the same E and mu in Table 6.3) but endowed with different magnetic properties. The blue regions

correspond to the non-magnetic material, and black and red regions correspond to magnetic materials of

opposite directions of the residual magnetization (M r = µ0Br) vector direction. Table 6.3 includes the

mechanical and magnetic properties used in this example.

Table 6.3 Mechanical and magnetic properties.

E (kPa) ν µ0
(
NA−2) Mr (kA/m)

500 0.4 4π 10−7 500

Figure 6.3 Unit cell with regions having different magnetic properties.

The effective macroscopic tensors are computed (with their physical units indicated under brackets) from

the previous homogenization method over the unit cell of Fig. 6.3 with periodic boundary conditions:

Chom =


16963.8 −16229.6 330.348 330.348

−16406.9 16752 124.324 124.324

19411.2 19411.2 376554 19411.2

19686.8 19686.8 19686.8 376830

 [Pa]

Dhom =


260.037 216.472

312.66 −87.3952

−1614.5 −1519.81

−1338.88 −1244.19

 [Pa.m]

dhom =


320.705 320.705

401.249 401.24

−1567.3 −1567.34

−1291.69 −1291.69

 [T ]
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6.5. Algorithm for the evaluation of the homogenized magnetoelastic medium and numerical results

ehom =

−67.899 −371.47 125.318 125.318

945.664 −453.649 243.569 243.569

 [Pa.m]

Ghom =

170001 3863.86

6532.02 180030

 [Pa.m2]

Nhom =

 170.564 170.56

−365.729 −365.73

 [NA−1]

d
hom =

−0.0257 −0.0257 −0.025 −0.0257

0.0266 0.0266 0.0265 0.0266

 [T ]

N
hom =

−0.0257 −0.0257

0.02661 0.0266

 [NA−1]

ahom =

0.02571 0

0 0.0266

 [NA−2]

From the values of the effective properties within these matrices, one can underline the following main

results:

1. The microstructure has an auxetic and chiral behavior, especially a high coupling effect between

the shear stress and the normal deformation (evidenced by the mechanical effective properties in

Chom ), and further evidenced in the plot of Fig. 6.4(b).

2. A non-centrosymmetric behavior emerges for the magneto-mechanical coupling, due to the lack

of coupling between the magnetic field and the micro-deformation at microscopic level, thus the

absence of reciprocity at the microlevel is transferred to the macrolevel. This effect appears from

the comparison of the coefficients within the submatrices dhom and d
hom.

3. There is a lower coupling effect of couple stress with deformation compared to the Cauchy first

gradient response, as one can see from the comparison between Dhom and ehom.

4. The resulting homogenized medium is a shear-stiff material, since the ratio between the normal to

shear coefficient is lower than 1, and since within matrix Chom, the homogenized shear modulus is

higher than the homogenized Young’s modulus.

5. The bending effect induced by the application of a magnetic field is important, accounted for by

the corresponding coupling tensor Nhom in Eq. 6.54.

6. The magnetic field induced by an applied shear stress is higher in dhom than the one induced from

a normal stress (-1291,69 T compared to 320,705 T).

7. As mentioned in the theory above, the imposed static boundary condition induces high magnetic

field within the structure, while the magnetic field leads to a very low strain at the macro level

because no such coupling exists at the micro level. This lack of reciprocity appears in the computed

macroscopic submatrices ahom, Nhom and d
hom.
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Figures (Fig. 6.4(a)-(e)) show the deformed modes of the unit cell caused by the application over its

boundary of the independent components of strain, the gradient of rotation, and magnetic field. The

visually apparent small interpenetration between different parts of the domain is an artefact due to the

magnification of the deformed shape.

(a) (b)

(c) (d)

(e)

Figure 6.4 Deformation modes of the unit cell induced by (a) EM11,(b) EM12, (c) KM31, (d) KM32, (e) HM1
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6.6. Conclusion

The unit cell structure undergoes the deformation modes shown in Fig. 6.4(a) and Fig. 6.4(b) due to

application of the mechanical strains and respectively. The deformed modes in Fig. 6.4(c) and Fig. 6.4(d)

are due to the gradients of rotation and respectively. Fig. 6.4(e) shows the deformation of the unit cell

under a magnetic field applied as a boundary condition; the structure undergoes bending due to the

applied magnetic field, revealing the coupling between the mechanical and magnetic fields. This coupling

can also be seen from the distribution of the magnetic potential when the mechanical strain component

is applied over the unit cell boundary Fig. 6.5.

Figure 6.5 Distribution of the magnetic potential φ resulting from the application of the strain componentEM 11

6.6 Conclusion

In this chapter we established a variational-based homogenization method for magnetoelastic composite

materials in a small strains framework. The existence of a non-symmetrical stress tensor prompts the

development of a homogenized magnetoelastic Cosserat effective medium at the macroscale. Generic

expressions of the effective magnetic and elastic properties are derived, showing the existence of couplings

between the elastic and magnetic behaviors at the macrolevel, despite that the behavior is non-reciprocal

at the microscale. The considered microstructure has an auxetic and chiral behavior, especially a high

coupling effect between the shear stress and the normal deformation. A non-centrosymmetric behavior

emerges for the magneto-mechanical coupling, due to the lack of coupling between the magnetic field and

the micro-deformation at microscopic level, thus the absence of reciprocity at the microlevel is transferred

to the macrolevel. It entails the existence of a coupling between tension and bending. Furthermore, the

application of a magnetic field also leads to bending. The imposed static boundary condition induces

high magnetic field within the structure, while the magnetic field leads to a very low strain at the macro
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level because no such coupling exists at the micro level. The bending effect induced by the application of

a magnetic field is important. In comparison to the classical Cauchy response, the importance of couple

stress effects are weaker.

The proposed magnetoelastic homogenization framework defines a base of simulation tools for the

computation of the effective magnetoelastic properties of a wide variety of architected materials.
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General conclusion and perspectives

Multiphysical couplings, such as piezoelectricity, flexoelectricity, and magnetoelasticity, are exhibited

by composites and architected materials in many engineering applications (such as sensors, actuators..)

because of their capability to offer high mechanical performance (such as strength, energy absorption

capacity, acoustic and thermal insulation properties) while maintaining a low weight. While

piezoelectricity shows a coupling between the electric polarization and the mechanical strain,

flexoelectricity is a higher-order phenomenon that involves the coupling between electric polarization

and strain gradient. Furthermore, magnetoelasticity refers to the interaction between the magnetic and

elastic fields.

To fully realize the potential of these materials, it is crucial to understand and predict their mechanical

behavior at the unit cell level, incorporating the microstructural information available. In this context,

developing predictive micromechanical schemes that account for the impact of the existing microstructure

on the mechanical response at both mesoscopic and macroscopic levels is necessary for bridging the scales

and relating equivalent properties to the structural geometry and mechanical parameters.

To predict the overall mechanical response of microstructured materials such as architected and

composite materials, it is not feasible to conduct direct numerical simulations that fully resolve all

microstructural details using a fine mesh resolution. Such simulations are usually computationally

expensive, making them impractical for typical engineering problems. Additionally, determining the

mechanical properties of these structures experimentally is challenging since the overall anisotropy needs

to be considered. Furthermore, there may not be a clear scale separation, which may necessitate using

enriched continuum theories that involve more constitutive parameters than Cauchy elasticity theory.

Therefore, it is relevant to perform homogenization to derive effective models, which can be used to

conduct macrostructural level computations conveniently in a subsequent step.

Outcome of the research

The thesis aims to bring some new developments in the field of homogenization of heterogeneous materials

prone to multiphysical phenomena, focusing on piezoelectricity and magnetoelasticity in the context

of generalized continua. All developments are limited to linearized elasticity. As well, this thesis

revisits higher gradient homogenization schemes towards higher-gradient continuum of periodic and quasi-
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periodic microstructures. Besides the continuous homogenization schemes for periodic media, a discrete

homogenization method is proposed in this thesis, which can be adopted for architected materials that

are made up of slender structural elements such as beam elements. Part I exposes the homogenization

of periodic and quasi-periodic media towards a strain gradient effective continuum, whereas Part II

accounts for multiphysical aspects in the homogenization approaches towards generalized continua.

In the spirit of micromechanics, we construct a strain gradient model of periodic architected media

employing a discrete homogenization method towards a strain gradient effective substitution medium

and using Hill extended macrohomogeneity condition. This approach involves using a reduced number

of degrees of freedom at the level of the unit cell, combined with a continuous set of kinematic variables

representative of a strain gradient continuum at the macro level. The resulting classical and strain

gradient moduli can be expressed as closed-form analytical expressions of the microstructural parameters

of the square and hexagonal lattices. Although Cauchy moduli cannot describe surface properties, the

theoretical and numerical analysis demonstrate that the strain gradient moduli scale with the edge

contribution of the surface material, indicating a quadratic relationship with the absolute edge length.

A similar scaling law is derived through a shape sensitivity analysis of the internal macroscopic energy

where kinematic strain gradient tensors are employed as kinematic edge conditions on self-similar unit cells

with varying edge lengths, while Cauchy moduli remain constant. Moreover, the energetic formulation

of a second strain gradient continuum allows to revisit the notion of anisotropic surface energy, thereby

providing a generalization of Mindlin’s model of surface energy.

Secondly, the theoretical background beyond quasi-periodic homogenization for quasi-periodic media is

presented in chapter 3. The main idea behind this homogenization is to map any unit cell of the quasi-

periodic domain to the parent periodic (fixed) unit cell. In this context, the first scheme developed relies

on the average of the microscopic energy and obeys the established smoothness conditions of the mapping.

This allows determining the effective quasi-periodic moduli tensors versus those of the periodic domain

and the associated perturbation terms which are expressed in a volumetric format over the reference unit

cell domain in a 2D context. Following this approach, a surface formulation of the quasi-periodic moduli

is then derived, based on the notion of shape derivative of the total potential energy stored within the unit

cell, and via Clapeyron’s theorem which allows to link the potential energy to the internal strain energy.

This scheme offers comparative to the first one a simpler way to compute the quasi-periodic moduli as

it only requires the evaluation of the mechanical fields on the unit cell boundaries. The strain gradient

theory is then considered to account for the design grading at the microscopic level. From the considered

numerical application of inclusion-based composites, the importance of the strain gradient model arises

where the contribution of strain gradient energy dominates and Cauchy energy becomes insufficient to

describe the effect of the design variation of the unit cell.

In Part II of the thesis, some multiphysical aspects are incorporated in the periodic homogenization

methods adopted. The basic concept behind these suggested homogenization approaches involves dividing

the microscopic displacement and the electric (magnetic) potential into two parts: a homogeneous
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part that reflects the kinematics of the effective continuum, and a fluctuating part that is determined

through a variational principle and is defined by the unit cell boundary value problem. Within this

framework, and using Hill macro-homogeneity condition, the evaluation of effective linear piezoelectric

properties of heterogeneous materials is addressed in chapter 4. The entire set of homogenized moduli

has been obtained, expressing as volumetric averages of the microscopic properties of the individual

constituents weighted by the displacement and electric potential localization operators. This framework

is then extended to the computation of the effective flexoelectric properties, thereby accounting for

higher gradient effects. To exemplify these theories, numerical applications are done for composites and

architected materials. The computational scheme involves solving the boundary value problem expressed

in its weak formulation when applying different macroscopic kinematic boundary conditions to determine

the effective piezoelectric and flexoelectric properties (chapter 5). Energy computations show that

the effective flexoelectric medium represents a quite good approximation of the initially heterogeneous

piezoelectric composite.

Based on the effective flexoelectric properties, a wave propagation analysis has been addressed

successively in the frameworks of Classical Flexoelectric Theory (CFE) and Non-Local Flexoelectric

Theory (NLFE) (chapter 5). The results show that flexoelectric medium is a dispersive medium and of

higher anisotropic behaviour when increasing the wavenumber, compared to the piezoelectric medium.

Numerical application are subsequently done to architected materials, selecting the following three

different unit cells;the regular hexagonal UC, the rectangular UC, and the re-entrant hexagonal UC. The

non-uniform distribution of the electric potential resulting from the application of mechanical strain over

the three architected materials serves as an evidence of the coupling between the mechanical and the

electric fields. The sensitivity analysis to geometrical parameters of these architected materials shows

that the regular hexagonal UC yields the highest piezoelectric modulus, while the re-entrant UC exhibits

the highest flexoelectric modulus.

In chapter 6, a homogenization towards Cosserat (micropolar) effective continuum is addressed for

magnetoelastic heterogeneous solids, in a small strains framework. The existence of a non-symmetrical

stress tensor prompts the development of a homogenized magnetoelastic Cosserat effective medium at the

macroscale. A numerical application made for a unit cell microstructure with magnetoelastic properties

shows a coupling between the elastic and magnetic behaviors at the macrolevel.

Perspectives

Based on the developed theoretical and numerical contributions we are entitled to propose some

perspectives regarding different aspects as exposed in the sequel.

• The choice of the most appropriate generalized continuum for a given class of architected materials

remains a significant matter that requires attention in future advancements.

• Although the concept of modifying the topology of architected materials to improve their
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electromechanical properties is important, it is relevant to develop a systematic approach for

identifying architectures that result in the emergence of enhanced behaviors; topology optimization

methods regarding piezoelectricity and flexoelectricity can offer such a strategy.

• In the generalization of Mindlin’s model of surface energy, there are more terms representative

of surface energies that have not been investigated; yet these terms can be analyzed in future

contributions.

• In order to validate the homogenization schemes and constitutive models formulated for periodic

magnetoelastic media and quasi-periodic media, numerical simulations have be to incorporated

with experimental investigations. It would be interesting to link these homogenization schemes

with atomistic simulations.

• Since the developed finite element models are limited to 2D, an extension of these models into

3D is planned to determine the homogenized mechanical, piezoelectric, flexoelectric, and magnetic

properties of architected materials.

• It would be interesting to incorporate multiphysics with dynamics by developing dynamic

homogenization schemes for high frequencies.

• Amongst the perspectives of this thesis, investigating the response of lattice materials to large

strains within the framework of generalized continua is of high interest (architected materials are

made of slender elements and they are porous materials that can develop large strains for soft base

materials. One example of applications can be artificial skin).

• Finally, it’s worth mentioning interesting scientific prospects and applications of the proposed

flexoelectric homogenization method in the field of bone bio-mechanics, specifically in bone

remodeling despite the added complexity of incorporating microstructure changes during

remodeling. Furthermore, the quasi-periodic homogenization scheme can be further applied to

conformal architected materials undergoing a conformal transformation of their design.
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Résumé de la thèse en français

Introduction

Les aspects multiphysiques font référence à l’interaction de plusieurs phénomènes physiques qui se

produisent simultanément dans un système ou un matériau. Ces phénomènes peuvent inclure des

processus mécaniques, thermiques, électriques, magnétiques, chimiques et biologiques. Parmi les

différents phénomènes multiphysiques, les couplages électromécaniques et magnéto-mécaniques, qui

relient respectivement les champs électriques et magnétiques aux champs mécaniques, ont attiré beaucoup

d’attention. La piézoélectricité est une forme de couplage électromécanique largement reconnue et

fréquemment utilisée, où la polarisation électrique et les contraintes mécaniques sont linéairement

couplées(Fig. R.1 [2]). L’un de ces couplages électromécaniques qui a reçu moins d’attention et qui

est le sujet principal de cette thèse est la flexoélectricité [3]. La flexoélectricité implique le couplage

entre les gradients de déformation et la polarisation électrique (ou entre un gradient de polarisation et la

déformation) [4,5]. L’effet flexoélectrique directe se réfère à la polarisation d’un matériau résultant d’une

déformation non uniforme telle que la flexion ou la torsion [6]. Outre les études réalisées sur les différents

(a) (b)

Figure R.1 Présentation schématique de la piézoélectricité (a) et de la flexoélectricité (b) dans les cristaux

diélectriques.

effets de couplage électromécanique, beaucoup se sont concentrées sur le couplage magnéto-élastique qui

fait référence à l’interconnexion entre les champs magnétiques et élastiques.
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Les couplages multiphysiques, tels que la piézoélectricité, la flexoélectricité, et la magnétoélasticité,

sont présentés par composites et matériaux architecturés (Fig. R.2 [43]) dans de nombreuses applications

d’ingénierie (telles que les capteurs, les actionneurs...) en raison de leur capacité à offrir des performances

mécaniques élevées (telles que la résistance, la capacité d’absorption d’énergie, les propriétés d’isolation

acoustique et thermique) tout en conservant un faible poids.

Figure R.2 Matériaux architecturés en 2D : (a)Hexagone, (b) étoile rentrante, (c) rectangulaire,(d) semi-entrant,

(e, f, g) diamant, kagome, forme triangulaire, réseaux chiraux : (h) diamant chiral, (i) tétrachiral, (j)hexachiral.

Pour exploiter pleinement le potentiel de ces matériaux, il est essentiel de comprendre et de

prédire leur comportement mécanique au niveau de la cellule unitaire, en incorporant les informations

microstructurelles disponibles. Dans ce contexte, le développement de schémas micromécaniques

prédictifs qui tiennent compte de l’impact de la microstructure existante sur la réponse mécanique aux

niveaux mésoscopique et macroscopique est nécessaire pour faire le lien entre les échelles et relier les

propriétés équivalentes à la géométrie structurelle et aux paramètres mécaniques.

Pour prédire la réponse mécanique globale des matériaux microstructurés tels que les matériaux

architecturés et composites, il n’est pas possible d’effectuer des simulations numériques directes qui

résolvent entièrement tous les détails microstructuraux à l’aide d’une résolution de maillage fine. Ces

simulations sont généralement coûteuses en termes de calcul, ce qui les rend peu pratiques pour les

problèmes d’ingénierie typiques. En outre, la détermination expérimentale des propriétés mécaniques de

ces structures est un défi car l’anisotropie globale doit être prise en compte. En outre, il se peut qu’il

n’y ait pas de séparation d’échelle claire, ce qui peut nécessiter l’utilisation de théories du continuum

enrichies qui impliquent plus de paramètres constitutifs que la théorie de l’élasticité de Cauchy. Il est

donc utile de procéder à une homogénéisation pour dériver des modèles efficaces, qui peuvent être utilisés

pour effectuer des calculs au niveau macrostructurel de manière pratique dans une étape ultérieure.
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L’homogénéisation vers des continuums généralisés (au-delà de Cauchy) vise à répondre aux limites

d’une séparation d’échelle stricte et à élargir le domaine de validité de l’approche du continuum au-delà

de l’hypothèse restreinte de la séparation d’échelle [53, 54]. La définition d’un continuum généralisé

peut être étendue grâce à deux approches principales, basées sur la classification en deux catégories

principales, à savoir les continuums d’ordre supérieur et les continuums à gradient supérieur, comme le

montre l’illustration de la Fig. R.3 [55].

L’existence d’un couple par unité de volume dans les matériaux électromagnétiques a souvent été

suggérée comme une raison de prendre en compte des tenseurs de contrainte non symétriques [46]; cette

idée a été la motivation première pour l’introduction de la généralisation de la mécanique du continuum

et de la nécessité de théories du continuum enrichies [77,78].

Outre le besoin de théories du continuum enrichies lorsqu’il s’agit de multiphysique, ces milieux sont

nécessaires dans des situations pour capturer l’influence des fluctuations spatialement rapides aux niveaux

mésoscopique et macroscopique.

Figure R.3 Illustration montrant la classification des continuums généralisés en milieux d’ordre supérieur et de

qualité supérieure.

Depuis le début des années soixante, la plupart des modèles de continuum généralisés étaient purement

formels et ne reposaient pas sur des microstructures réelles. Par conséquent, les lois constitutives ont

été développées de manière phénoménologique, sans qu’il soit nécessaire de recourir à des méthodes

micromécaniques. Cependant, la situation a changé de manière significative au début des années 90 avec le

développement de nouvelles classes de matériaux telles que les composites, les solides cellulaires (mousses)

et les matériaux architecturés, ainsi qu’avec les progrès de la puissance de calcul et des techniques de

fabrication telles que la fabrication additive. Cela a suscité un intérêt croissant dans les communautés

mécaniques et mathématiques pour comprendre la relation entre les comportements émergents enrichis

au niveau d’un continuum effectif et les modes de déformation microscopiques.
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Travail de thèse

La thèse a pour objectif d’aborder de façon théorique et numérique l’homogénéisation de milieux

architecturés et composites périodiques présentant un comportement multiphysique, dans le contexte des

milieux continus généralisés. Le manuscrit est donc décomposé en deux parties qui couvrent explicitement

ces questions.

La première partie du manuscrit traite l’homogénéisation des milieux périodiques et quasi-périodiques

vers un continuum effectif à gradient de déformation. Une méthode d’homogénéisation discrète est

appliquée pour les matériaux périodiques architecturés, conduisant à l’élaboration des propriétés effectives

d’ordre supérieur sous forme d’expressions analytiques dépendant de la longueur du bord de la cellule

unité. Dans un autre chapitre, une homogénéisation quasi-périodique est développée à partir d’une

expression volumétrique de l’énergie et en s’appuyant sur la notion de dérivée de forme pour déterminer

les propriétés effectives quasi-périodiques basées sur le domaine périodique transformé.

La deuxième partie du manuscrit intègre des aspects multiphysiques dans les approches

d’homogénéisation vers les continuums généralisés. La théorie de l’homogénéisation piézoélectrique et

flexoélectrique est élaborée et suivie d’applications numériques pour l’homogénéisation des composites

piézoélectriques et des matériaux architecturés ainsi que pour l’analyse de la propagation des ondes. En

outre, l’homogénéisation vers le continuum effectif de Cosserat (micropolaire) est abordée pour les solides

hétérogènes magnétoélastiques.

L’objectif général de la thèse est de développer de nouvelles méthodes d’homogénéisation pour les

milieux hétérogènes vers des milieux continus à gradient d’ordre supérieur, en prenant en compte différents

aspects multiphysiques tels que la piézoélectricité, la flexoélectricité et la magnétoélasticité.

Dans cette thèse, nous exposons une méthode d’homogénéisation discrète pour les matériaux

architecturés périodiques vers une formulation de milieux continus à gradient de déformation, fournissant

le module classique effectif et le module de gradient de déformation selon des expressions analytiques

des paramètres microstructuraux du réseau. Le recours à une formulation à gradient de déformation

permet de quantifier les effets de surface (les effets de bord en 2D) de matériaux architecturés. Alors que

les modules de Cauchy ne capturent pas les propriétés de surface, un examen théorique et numérique a

donné la loi d’échelle des modules de gradient de déformation avec la contribution du bord du matériau de

surface, montrant une variation quadratique avec la longueur absolue du bord (Fig. R.4). Pour atteindre

cet objectif, la condition de macrohomogénéité de Hill étendue pour les milieux à gradient de déformation

a été formulée à partir de champs mécaniques purement surfaciques, ayant pour support le bord (interne

ou externe) de la cellule unitaire.
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(a) (b)

Figure R.4 Modules de Cauchy (a) et de gradient de déformation (b) en fonction de la longueur du bord de la

cellule unitaire pour la cellule unitaire hexagonale régulière.

La même loi d’échelle a été obtenue à partir d’une analyse de sensibilité à la forme de l’énergie

macroscopique interne, dans laquelle des tenseurs cinématiques de gradient de déformation ont été

appliqués comme conditions de bord cinématiques sur des cellules unitaires autosimilaires avec des

longueurs de bord variables (les modules de Cauchy sont inchangés). En outre, sur la base d’un modèle

de continuum effectif à gradient de déformation, nous formulons la notion d’énergie de surface de manière

anisotrope, en nous appuyant sur l’identification de deux contributions intégrales de surface impliquant

des invariants cinématiques des tenseurs macroscopiques des premier et second gradients de déformation

(Eq. 6.64, Eq. 6.65). Ceci fournit une généralisation du modèle de Mindlin [129] de l’énergie de surface.

1
4

∫
∂Vx

NNN ·AAAhom
{(2,3),(4,5)} · (UUU · ∇x)

2
⊗ ∇xdS (6.64)

1
2

∫
∂Vx

NNN ·AAAhom
{(2,3,4),(5,6,7)} · (KKK ∴KKK) ⊗ ∇xdS (6.65)

En outre, nous présentons des schémas d’homogénéisation quasi-périodique pour les milieux quasi-

périodiques, qui ne présentent pas de périodicité mais qui peuvent être transformés en un milieu périodique

parent (Fig. R.5).
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Figure R.5 Illustration de la transformation introduite qui est définie par une correspondance φφφ entre (a) le

domaine périodique Ω̃ et (b) le domaine quasi-périodique Ω. La cellule unitaire périodique à droite montre les

vecteurs de position microscopiques ỹyy et macroscopiques x̃̃x̃x.

Dans ce contexte, nous développons d’abord une approche théorique de l’homogénéisation quasi-

périodique, pour de petites perturbations de l’architecture de la cellule unitaire selon la macroéchelle,

en partant de la moyenne de l’énergie microscopique et en suivant les conditions de lissage établies

de la cartographie (ce qui signifie une petite variation de la conception de la CU). Cela permet de

relier les tenseurs de modules effectifs quasi-périodiques à ceux du domaine périodique et aux termes de

perturbation associés qui sont exprimés dans un format volumétrique sur le domaine de la cellule unitaire

de référence dans un contexte 2D.

Suivant cette approche, une formulation de surface des modules quasi-périodiques est ensuite dérivée,

basée sur la notion de dérivée de forme de l’énergie potentielle totale stockée dans la cellule unitaire,

via le théorème de Clapeyron permettant de relier l’énergie potentielle à l’energie de déformation. Cette

approche repose sur l’introduction d’un champ de vitesse de forme à la frontière de la cellule unitaire

périodique pour modéliser le changement de sa conception. Ce schéma offre, par rapport au premier,

un moyen plus simple de calculer les modules quasi-périodiques, car il ne nécessite que l’évaluation des

champs mécaniques aux frontières de la cellule unitaire.

La théorie du gradient de déformation est ensuite envisagée pour rendre compte de la gradation de

topologie au niveau microscopique. les milieux à gradient de propriétés sont très utilisés dans diverses

applications en ingénierie ainsi que pour la réalisation de biosubstituts en biomécanique. L’importance du

modèle à gradient de déformation apparaît dans l’application considérée des composites à base d’inclusion

car l’énergie de Cauchy devient insuffisante pour décrire l’impact de la variation de l’architecture interne

de la cellule unitaire. Cela se traduit par une augmentation de la contribution de l’énergie du gradient de

déformation d’un facteur 5 à partir de la CU de référence, par rapport à l’énergie de Cauchy (Fig. R.6).
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Figure R.6 Contributions énergétiques en fonction de la position macroscopique.

D’autre part, nous abordons dans cette thèse le calcul des propriétés piézoélectriques linéaires effectives

de matériaux hétérogènes dans le contexte de l’homogénéisation périodique, en employant une formulation

variationnelle en combinaison avec la condition de macro-homogénéité de Hill étendue. Les variables

microscopiques - le vecteur de déplacement et le potentiel électrique - ont été exprimées comme la somme

d’une partie homogène et d’une fluctuation obéissant à un principe de minimum de la fonctionnelle

d’énergie. L’ensemble des modules homogénéisés a été obtenu, en exprimant les moyennes volumétriques

des propriétés microscopiques des constituants individuels pondérées par les opérateurs de localisation

du déplacement et du potentiel électrique.

Nous étendons ensuite ce cadre au calcul des propriétés flexoélectriques effectives, prenant ainsi en

compte les effets de gradient plus élevés qui peuvent être induits par un fort contraste de propriétés

des constituants au sein du composite. Nous adoptons un algorithme numérique reposant sur la

résolution de la formulation faible du problème aux limites lors de l’application de différentes conditions

limites cinématiques macroscopiques. Cette approche peut être appliquée aux matériaux composites et

architecturés.

En application du cadre général d’homogénéisation proposé, nous évaluons numériquement les

propriétés piézoélectriques et flexoélectriques effectives de composites à base d’inclusions hétérogènes

et des matériaux architecturés. Sur la base de ces propriétés homogénéisées, nous évaluons l’effet de

la fraction volumique et du module de traction relatif de l’inclusion par rapport à celui de la phase de

la matrice. Les calculs énergétiques montrent que le milieu flexoélectrique effectif représente une assez

bonne approximation du composite piézoélectrique initialement hétérogène.

Sur la base des propriétés flexoélectriques effectives, la propagation des ondes a été étudiée

successivement dans le cadre de la théorie flexoélectrique classique (CFE) et de la théorie flexoélectrique

non locale (NLFE). Les résultats montrent que le milieu flexoélectrique est dispersif (Fig. R.7).
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Cependant, le milieu flexoélectrique présente un comportement anisotrope plus important lorsque le

nombre d’onde augmente, par rapport au milieu piézoélectrique. En outre, la fréquence de propagation

des ondes diminue avec le paramètre non local. Les fréquences de propagation des ondes sont plus basses

dans un milieu piézoélectrique que dans un milieu élastique pur.

Figure R.7 Fréquence d’onde en fonction du nombre d’ondes dans le milieu flexoélectrique effectif.

En outre, nous effectuons une analyse de sensibilité à la topologie du réseau, en nous concentrant

sur trois types de matériaux architecturés de cellules unitaires différentes : la CU hexagonale régulière,

la CU rectangulaire et la CU ré-entrante. Cette analyse permet d’étudier la variation des modules

piézoélectriques et flexoélectriques effectifs induite par une modification de la topologie des CU

considérées. La comparaison des trois géométries montre que les modules piézoélectriques les plus élevés

sont obtenus pour la CU hexagonal régulier, tandis que le module flexoélectrique est maximal pour la CU

ré-entrante. Le couplage entre les champs mécaniques et électriques peut également être observé à travers

la distribution non uniforme du potentiel électrique lors de l’application d’une contrainte mécanique sur

les trois matériaux architecturés.

Les tendances obtenues s’avéreront utiles pour concevoir des matériaux composites et des matériaux

architecturés présentant des propriétés piézoélectriques et flexoélectriques obéissant à un cahier des

charges donné par le concepteur.

Un autre aspect intéressant abordé dans la thèse est la magnétoélasticité qui relie le champ magnétique

et le champ élastique. Dans ce contexte, nous établissons une méthode d’homogénéisation variationnelle

pour les matériaux composites magnétoélastiques dans un cadre de petites déformations. L’existence d’un

tenseur de contrainte non symétrique incite à développer un milieu effectif de Cosserat magnétoélastique

homogénéisé à l’échelle macroscopique. Nous dérivons des expressions génériques des propriétés

magnétiques et élastiques effectives, montrant l’existence de couplages entre les comportements élastiques

et magnétiques à l’échelle macroscopique, bien que le comportement soit non réciproque à l’échelle

microscopique.
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La microstructure considérée a un comportement auxétique et chiral, en particulier un effet de

couplage élevé entre la contrainte de cisaillement et la déformation normale. Un comportement non

centrosymétrique émerge pour le couplage magnéto-mécanique, en raison de l’absence de couplage entre le

champ magnétique et la micro-déformation au niveau microscopique, de sorte que l’absence de réciprocité

au niveau micro est transférée au niveau macroscopique. Cela implique l’existence d’un couplage entre

la tension et la flexion.

En outre, l’application d’un champ magnétique entraîne également une flexion. La condition limite

statique imposée induit un champ magnétique élevé à l’intérieur de la structure, alors que le champ

magnétique entraîne une très faible déformation au niveau macroscopique car il n’y a pas de couplage de

ce type au niveau microscopique. L’effet de flexion induit par l’application d’un champ magnétique est

important. Par rapport à la réponse classique de Cauchy, l’importance des effets de contrainte de couple

est plus faible.

Le cadre d’homogénéisation magnétoélastique proposé définit un socle d’outils de simulations pour la

calcul des propriétés magnétoélastiques effectives d’une grande variété de matériaux architecturés.

Perspectives de la thèse

Sur la base des contributions théoriques et numériques développées, nous sommes en droit de proposer

quelques perspectives concernant les différents aspects exposés dans la suite.

• Le choix du continuum généralisé le plus approprié pour une classe donnée de matériaux

architecturés reste une question importante qui nécessite une attention particulière dans les progrès

futurs.

• Bien que le concept de modification de la topologie des matériaux architecturés pour améliorer

leurs propriétés électromécaniques soit important, il est pertinent de développer une approche

systématique pour identifier les architectures qui aboutissent à l’émergence de comportements

améliorés ; les méthodes d’optimisation de la topologie concernant la piézoélectricité et la

flexoélectricité peuvent offrir une telle stratégie.

• Dans la généralisation du modèle d’énergie de surface de Mindlin, il existe d’autres termes

représentatifs des énergies de surface qui n’ont pas été étudiés ; cependant, ces termes peuvent

être analysés dans de futures contributions.

• Afin de valider les schémas d’homogénéisation et les modèles constitutifs formulés pour les

milieux magnétoélastiques périodiques et quasi-périodiques, des simulations numériques doivent

être incorporées aux études expérimentales.

• Les modèles d’éléments finis développés étant limités à la 2D, une extension de ces modèles à

la 3D est prévue pour déterminer les propriétés mécaniques, piézoélectriques, flexoélectriques et

magnétiques homogénéisées des matériaux architecturés.

143



• Il serait intéressant d’intégrer la multiphysique à la dynamique en développant des schémas

d’homogénéisation dynamique pour les hautes fréquences.

• Parmi les perspectives de cette thèse, l’étude de la réponse des matériaux en treillis aux grandes

déformations dans le cadre des continuums généralisés est d’un grand intérêt (les matériaux

architecturés sont constitués d’éléments minces et ce sont des matériaux poreux qui peuvent

développer de grandes déformations pour des matériaux de base souples. Un exemple d’application

peut être la peau artificielle).

• Enfin, il convient de mentionner les perspectives scientifiques et les applications intéressantes

de la méthode d’homogénéisation flexoélectrique proposée dans le domaine de la biomécanique

osseuse, en particulier dans le remodelage osseux, malgré la complexité supplémentaire de

l’incorporation des changements de microstructure au cours du remodelage. En outre, le schéma

d’homogénéisation quasi-périodique peut être appliqué aux matériaux à architecture conforme

subissant une transformation conforme de leur conception.
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Appendix A

Derivation of Hill-Mandel lemma in

surface integral format

The surface integral formulation for the kinematic and static variables entering Hill-Mandel

macrohomogeneity condition for the effective strain gradient formulation is derived. These stress and

hyperstress tensors will be expressed as surface integrals over part of the boundary of the unit cell where

the macroscopic kinematic loading is applied (wherever material is present) as follows:

ΣΣΣ = ⟨σσσ⟩Y := 1
|Y |

∫
Y

σσσdVy = 1
|Y |

∫
∂Y

yyy ⊗ σσσ.nnndSy = 1
|Y |

∫
∂Y

yyy ⊗ tttdSy ≡ ⟨yyy ⊗ ttt⟩∂Y ,

SSS = ⟨yyy ⊗ σσσ⟩Y := 1
|Y |

∫
Y

yyy ⊗ σσσdVy = 1
2 |Y |

∫
∂Y

yyy ⊗ yyy ⊗ σσσ.nnndSy = 1
2 |Y |

∫
∂Y

yyy ⊗ yyy ⊗ tttdSy ≡ 1
2 ⟨yyy ⊗ yyy ⊗ ttt⟩∂Y

(A.1)

The last equality in Eq. A.1 results from the choice of the strain gradient as the higher order kinematic

variable and the fact that the hyperstress has the same index symmetry as the conjugated stress variable.

Similar surface integral expressions hold for the strain measures and use of Whitaker theorem, stating

that the average of the microscopic gradient is equal to the macroscopic gradient of the average for

continuous interfaces:

EEE : = ⟨εεε⟩ = 1
|Y |

∫
Y

εεε dVy = 1
|Y |

∫
∂Y

(uuu⊗nnn)S
dSy =

〈
(uuu⊗nnn)S

〉
∂Y

KKK : = ⟨εεε (yyy)⟩Y ⊗ ∇x =
W hita ker

⟨εεε (yyy) ⊗ ∇y⟩Y =
W hita ker

⟨εεε (yyy)⟩Y ⊗ ∇x = ⟨εεε (yyy) ⊗nnn⟩∂Y

=

 1
|Y |

∫
∂Y

(uuu⊗nnn)S
dS

⊗ ∇x ≡
〈

(uuu⊗nnn)S
〉

∂Y
⊗ ∇x = 1

|Vx|

∫
Vx

(〈
(uuu⊗nnn)S

〉
∂Y

⊗ ∇x

)
dVx

= 1
|Vx|

∫
∂Vx

EEE(xxx) ⊗NNN(xxx)dSx = 1
|Vx|

[[
⟨EEE(xxx)⟩∂Vx

]]
(A.2)

in which the bracket [[(.)]] denotes the relative variation of the enclosed quantity between the two opposite

faces or edges of the unit cell. The last equality in the third line results from the homogeneity of the

macroscopic quantities. The last relation results from the periodicity of the unit cell (the homogeneous
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domain called Vx), with the macroscopic normal vector therein NNN(xxx) taking opposite values on opposite

faces (in 3D) or edges (in 2D).

Thus, the strain gradient tensor can be elaborated from the macroscopic normalized variation of the

macrostrain over the macroscale. The macroscopic energy (up to a factor 2) of the effective strain

gradient continuum can be purely expressed with surface fields; it holds indeed the following relations in

the absence of body forces:

WM (EEE,KKK) = ΣΣΣ : EEE +SSS ∴KKK = EEE : CCChom : EEE +KKK ∴ AAAhom : KKK + 2EEE :
(
BBBhom +BBBhom,T

)
: KKK

= ⟨yyy ⊗ ttt⟩∂Y :
〈

(uuu⊗nnn)S
〉

∂Y
+ 1

2 ⟨yyy ⊗ yyy ⊗ ttt⟩∂Y ∴
〈

(uuu⊗nnn)S
〉

∂Y
⊗ ∇x

→ ΣΣΣ := ⟨yyy ⊗ ttt⟩∂Y average Cauchy stress over the unit cell

→ SSS := 1
2 ⟨yyy ⊗ yyy ⊗ ttt⟩∂Y average hyperstress over the unit cell

(A.3)

wherein CCChom,AAAhom, BBBhom are the effective homogenized first gradient moduli (Cauchy effective moduli),

second gradient effective moduli and coupling moduli, respectively.

Thereby, the mesoscopic work of internal forces has been fully expressed from the surface displacements

and tractions. The last two relations in Eq. A.3 highlight the surface elaboration of the stress and

hyperstress tensors over the unit cell area or edges in the adopted 2D geometrical context.

This parallels the fact that the hyperstress involves a higher order dyadic product of the surface

microscopic position, viz. SSS := 1
2 ⟨yyy ⊗ yyy ⊗ ttt⟩∂Y , in comparison to Cauchy stress tensor formulated as

a surface integral and involving a single dyadic product, viz. ΣΣΣ := ⟨yyy ⊗ ttt⟩∂Y , as evidenced in Eq. A.3.

The comparison of Eqs. A.3 with the surface formulation of Hill-Mandel macro-homogeneity condition of

Eq. A.4:∫
Y

σσσ : (ωωω⊗∇y)dV = 1
|Y |

∑
i=1,2

((
EEE(xxx) · YYY i

)
⊗NNN i

)
:
∑

j=1,2

(∫
∂Y

(σσσ ·nnn) ds⊗ YYY j

)

+
∑

i=1,2

((
KKK(xxx) · YYY i

)
⊗NNN i

)
∴
∑

j=1,2

(
1

2 |Y |

∫
∂Y

(σσσ ·nnn) ds
)

⊗ YYY j ⊗ YYY j

= ⟨σσσ⟩Y : EEE + ⟨ξξξ ⊗ σσσ⟩Y ∴KKK = ΣΣΣ : EEE +SSS ∴KKK

(A.4)

leads to the following alternative formulation of the stress and hyperstress tensors:

ΣΣΣ := ⟨yyy ⊗ ttt⟩∂Y = 1
|Y |

∑
j=1,2

(∫
Γj

tttdsy ⊗ Y
−
Y
−
Y
−

j

)

SSS := 1
2 ⟨yyy ⊗ yyy ⊗ ttt⟩∂Y = 1

|Y |
∑

j=1,2

1
2

(∫
Γj

tttdsy ⊗ Y
−
Y
−
Y
−

j ⊗ Y
−
Y
−
Y
−

j

) (A.5)

Recall that the last two expressions of the stress and hyperstress in Eq. A.3 result from the fact that the

traction vector is antiperiodic. The presence of the microscopic position on the boundary where material

is present reflects the importance of surface effects.
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The surface expression of the strain and strain gradient tensors in Eq. A.2 is dual to that of the stress

and hyperstress tensors respectively. It includes the density of strain as a flux reflected by the presence

of the normal vector therein, that ‘compensates’ for the surface effects accounted for by the microscopic

position yyy present in the stress tensors, so that the product of stress with strain still has the (as for the

first strain gradient effective continuum) unit of an energy per unit volume. This fact is clear since the

strain gradient tensor has the unit of the inverse of a length.

We observe from previous relations that both the average stress and average strain are expressed as surface

integrals with a linear integrand in the microscopic position, which entails that the tensor of homogenized

Cauchy moduli relating them mutually does not depend on surface (or edge in 2D) properties. In contrast

to Cauchy effective medium, due to the scaling of the hyperstress and strain gradient tensors, the strain

gradient moduli includes a dependency upon the square of a length parameter.
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Appendix B

Discrete homogenization method for

repetitive periodic lattices

The discrete homogenization method aims to replace the vector of discrete microscopic displacements

uuuiii =
(
uix

, uiy

)
by a vector of continuous macroscopic components uuu = (ux(x, y), uy(x, y)): this

continualization process is achieved by expanding the discrete displacement as a Taylor series expansion

[201].

uuui = uuu(xi, yi) =
N∑

m=0

N∑
n=0

(xi)m

m!
(yi)n

n!
∂m+nuuu (x0, y0)

∂xm∂yn
(B.1)

wherein uuu (x0, y0) = (ux (x0, y0) , uy (x0, y0)) is the vector of macroscopic continuous generalized

displacements. Also, xi and yi are the coordinates of the node number i.

For instance, the truncation of the Taylor series expansion in Eq. B.1 leads to the construction of the

macroscopic continuum as follows:

uxi = ux0 + xi
∂ux0

∂x
+ yi

∂ux0

∂y
+ x2

i

2
∂2ux0

∂x2 + y2
i

2
∂2ux0

∂y2 + xiyi
∂2ux0

∂x∂y
(B.2)

uyi
= uy0 + xi

∂uy0

∂x
+ yi

∂uy0

∂y
+ x2

i

2
∂2uy0

∂x2 + y2
i

2
∂2uy0

∂y2 + xiyi
∂2uy0

∂x∂y
(B.3)

Periodic boundary conditions must be applied to a periodic structure before the calculation of the effective

mechanical properties. For this purpose, a set of definitions are required, and they are presented in the

following subsections.

B.1 Direct Translational Bases

a⃗k denotes the translational symmetric primitive bases of the lattice and it refers to as the direct

translational bases. The UC, that fills the space under translational symmetry, is tessellated using

these translational bases. The direct translational bases are feature of the UC envelope, that reveals the

axes along which the UC is tessellated to fill the space.
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B.1.1 Direct Translational Vector

The reference UC is translated to any other cell in the lattice space using a direct translational vector,

which is represented as a linear combination of the direct translational bases. This appears as a basic

(primitive) lattice vector that covers a set of cells in lattice space and is expressed as:

R⃗ =
n∑
k

mka⃗k (B.4)

wherein n is the dimensional space of the lattice (n = 2 in 2D and n =3 in 3D) and mk is any set of

integers.

B.1.2 Position Vector

The position vector of nodes throughout the entire lattice can be described as a function of the node

bases, defined with respect to the UC envelope along with the direct translational vector as:

pl = jl + R⃗ = jl +
n∑
k

mka⃗k ∀l ∈ {1, ..., J} (B.5)

where pl is defined as the node position vector, and J is the number of independent nodes within the

reference UC.

B.1.3 Direct Lattice

The direct lattice is the collection of independent node bases, across the reference UC envelope, spanned

over the infinite periodic lattice by their position vectors. To determine this independent set of node

vectors over the reference UC, we check whether a vector jl−1 relies on a vector jl across one UC period

through the relation:

jl−1 = jl +
n∑
k

x̂ka⃗k (B.6)

This dependency information is employed later on to adjust the strain energy over the reference UC to

obtain the periodic strain energy throughout the entire lattice material.

B.1.4 Periodic Transformation matrices

Periodic displacement boundary conditions are applied over the generic UC of Fig. B.1 which results in

the following conditions:

qR = qL; qT = qB ; qRB = qLB ; qLT = qLB ; qRT = qLB ; (B.7)

wherein R, L, B, and T are respectively the right, left, bottom, and top edges, and q is a generic nodal
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Figure B.1 The periodic displacement boundary conditions of a generic unit cell

or element function, such as deformation and force. Eq. B.7 is rewritten in matrix format as:

qI

qB

qT

qL

qR

qLB

qRB

qLT

qRT



=



1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1





qI

qB

qL

qLB


, or q = TTT q̃ (B.8)

where T denotes the transformation matrix from the degrees of freedom of the primitive cell , ‘q’ to

degrees of freedom of the reduced cell , ‘q̃’.

Using the same methodology that was used to construct the kinematic transformation matrix, the

equilibrium transformation matrix is generated, in which it takes into account the anti-periodic constraints

required for the static equilibrium of the lattice. For the four generic UCs of Fig. B.2, the static equilibrium

Figure B.2 The periodic equilibrium boundary conditions of a generic unit cell
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relations can be expressed as follows:

fR + fL = 0; fT + fB = 0; fRT + fLT + fRB + fLB = 0; (B.9)

Rearranging Eq. B.9 in matrix format leads to:



fI

fB

fL

fLB


=


1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1





fI

fB

fT

fL

fR

fLB

fRB

fLT

fRT



, or f̃ = TTTT f = 0 (B.10)

with TTTTTT being the transpose of the transformation matrix TTT .
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Appendix C

Closed-Form expressions of the

effective strain gradient moduli

Applying the homogenization method described in section 2.2.2, the effective Cauchy and strain gradient

moduli are obtained as closed-form expressions for the hexagonal and square unit cells as shown in tables

Table C.1 and Table C.2 respectively (relying on Eq. 2.6 for the hexagonal UC and the same can be

applied for the square UC).

Table C.1 Closed-from expressions of the effective properties of general hexagonal lattices.

Effective Moduli Closed form expression

C11
AE cos(θ)[cos2(θ)+α(sin2(θ)+2βeff )]

bLeff γ1(β+sin(θ))

C22
AE(β+sin(θ))[sin2(θ)+αcos2(θ)]

bLeff γ1 cos(θ)

C12
AE sin(2θ)(1−α)

2bLeff γ1

C33
3EIL2

[
sin2(θ)+β2+2β sin(θ)+4β2β3

eff

(
sin2(θ)+ cos2(θ)

α

)
+γ2+γ3

]
bh3

eff
cos(θ)(β+sin(θ))

[
1
2 +β3

eff

(
sin2(θ)+ cos2(θ)

α

)]

A11
6EIL2cos3(θ)

[
1
4 +β3

eff

(
sin2(θ)+ cos2(θ)

α

)]
bh3

eff
(β+sin(θ))

A22
3EIL2 cos(θ)[10 sin(θ)+10β(β+10 sin(θ))+β3

eff γ4]
bh3

eff
(β+sin(θ))

A33
AEL2(β+sin(θ))[α1γ5+cos2(θ)γ6]

2bheff cos(θ)

A44
AEL2(β+sin(θ))3[sin2(θ)+αcos2(θ)]

4bLeff cos(θ)
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A55
AEL2cos3(θ)[sin2(θ)+αcos2(θ)]

bLeff (β+sin(θ))

A66
48EIL2(β+sin(θ))4

[
1
4 +β3

eff

(
sin2(θ)+ cos2(θ)

α

)]
bh3

eff
(sin(2θ)+2β cos(θ))

A12
3EIL2cos2(θ)

[
1+2β3

eff

(
sin2(θ)+ cos2(θ)

α

)]
bh3

eff

A13 − 6EIL2 cos(θ)[ 1
4 (β+sin(θ))+γ7]

bh3
eff

A16
12EIL2 cos(θ)

[
1
4 +β3

eff

(
sin2(θ)+ cos2(θ)

α

)]
bh3

eff

A23 −
6EIL2(β+sin(θ))2

[
1
2 +β3

eff

(
sin2(θ)+ cos2(θ)

α

)]
bh3

eff

A24
AEL2 cos(θ)γ8

16bLeff

A25
AEL2cos3(θ)[sin(θ)(1−α)(2β+3 sin(θ))+α]

2bLeff (β+sin(θ))

A26
12EIL2(β+sin(θ))2

[
1
2 +β3

eff

(
sin2(θ)+ cos2(θ)

α

)]
bh3

eff

A36 − 12EIL2(β+sin(θ))2[ 1
4 (β+sin(θ))+γ6]

bh3
eff

cos(θ)

A45
AEL2(β+sin(θ))[sin2(θ)+αcos2(θ)]

2bLeff

In this Table, b is the out-of-plane thickness of the unit cell, A = bt is the cross-

sectional area of the elements, and I = 1
12bt

3 is the second moment of area of the

elements. The intermediate parameters found in Table C.1 have the following expressions:
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α = 12I
AL2

eff

; α1 = 3I
Ah2

eff

βeff = heff

Leff
; β = h

L
; heff = h− t(1 − sin θ)

cos θ ; Leff = L− t

2 cos θ

γ1 =
(
1 + 2βeff sin2 (θ)

)
+ 2αβeff cos2 (θ)

γ2 = 2ββ3
eff sin (θ)

(
β3

eff + 4
)

+ β2β6
eff

(
sin4 (θ) + cos2 (θ)

α2 + 2sin2 (θ) cos2 (θ)
)

γ3 = β6
eff

(
4
α

cos2 (θ) + sin2 (θ)
)

+ 2β3
eff

(
1 − 3sin2 (θ) + 4sin2 (θ)

(
sin2 (θ) + cos2 (θ)

α

))
γ4 = β3

eff

(
cos2 (θ)
α

(
20β + 13sin2 (θ) + 8β2)+ 4β sin (θ)

(
5sin2 (θ) + 2β sin (θ)

)
+ 1 + 13sin4 (θ) − 6sin2 (θ)

)
γ5 =

(
sin2 (θ) + 2β3

eff

(
10sin4 (θ) − 12sin2 (θ) + 4 − 4β sin (θ) cos (2θ)

)
+ β

(
2 sin (θ) + β

(
1 + β3

eff sin2 (θ)
)))

γ6 = cos2 (θ)
(
4 + β2βeff + 4ββeff sin (θ) + 5βeff sin2 (θ)

)
γ7 = ββ3

eff

(
sin2 (θ) + cos2 (θ)

α

)
+ β3

eff sin (θ)
(

cos (2θ) + 2cos2 (θ)
α

)
γ8 = 4 sin θ

(
(α− 1)

(
2β2 + 3sin2 (θ)

)
− α

)
− 20βsin2 (θ) + 15α

(
1 − 4cos2 (θ)

)
+ αβ

Table C.2 Closed-from expressions of the effective properties of general square lattices.

Effective Moduli C11 = C22 C33 A11 = A44 A22 = A33 A55 = A66

Closed form expression AE
bLeff

24EI
bL3

eff

AEL2

4Leff b
3EIL2

L3
eff

b
12EIL2

L3
eff

b
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Appendix D

Comparison of the discrete

homogenization method with

another method

A comparison between the results obtained in the present discrete homogenization method and the one

in literature by [202] was made. A summary of the method is exposed as follows:

1. The normal force N, the transverse force T and the moment M exerted on the beam extremities

are expressed in the following expressions:

Nεb
E = kb

l

(
eb. (Dε

E − Dε
o)
)

Nεb
o = −Nεb

E

T εb
E = kb

f

(
eb⊥. (Dε

E − Dε
o) − lεb

2 (ϕε
E + ϕε

o)
)

T εb
O = −T εb

E

(D.1)

Mεb
E =

kb
f l

ε
b

6
(
3.eb⊥. (Dε

E − Dε
o) + lεb (2ϕε

E + ϕε
o)
)
.e3

Mεb
O =

kb
f l

ε
b

6
(
−3.eb⊥. (Dε

E − Dε
o) + lεb (ϕε

E + 2ϕε
o)
)
.e3

(D.2)

wherein the subscripts E and O refer to the extremity and the origin nodes of the beam respectively

and the superscript b refers to the beam. ϕ and D are the nodal microrotation and the displacement

respectively and lεb = εlb is the length of the beam. eb and eb⊥ are the unit director and the normal

unit vector respectively. kb
l = EbAεb

lε
b

and kb
f = 12EbIεb

(lε
b)3 are respectively the beam tensile and flexural

rigidities, with Iεb being the quadratic moment of the beam and Aεb the cross-sectional area

2. The asymptotic expansion of the geometric and kinematic variables of each beam is written in

curvilinear coordinates, and next into Cartesian coordinates [205].
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3. The equilibrium expressions of the beam forces and moments are expressed in virtual power form:∑
νi∈Z2

∑
b∈BR

(
T b

•
V +N

•
U
)

= 0

∑
νi∈Z2

∑
b∈BR

(
M b

O · wb
O +M b

E · wb
E

)
= 0

(D.3)

With
•
U , and

•
V , virtual velocity field components and being the virtual rotation velocity.

4. The virtual power of internal forces over the elementary cell boundary nodes is written as :

∑
b∈BR

(
TE

( •
V E −

•
V O

)
+NE

( •
U E −

•
U O

))
= 0 (D.4)

After developing the expressions of
( •
V E −

•
V O

)
and

( •
U E −

•
U O

)
using Taylor series expansion,

the continuous formulation of the virtual power is found to be:

lim
ε→0

P = lim
ε→0

ε2
∑

b

Pe =
∫
Ω

Pe (D.5)

Eq. D.5 will include three integrals of zero-order, first and second-order of ε, leading to Cauchy

stress, coupling terms and second-order hyperstress tensors, respectively.

5. Comparing with the postulated second-order continuum then leads to the expression of the virtual

power of internal forces:

P i =
∫
Ω

((σ − S · ∇) · ∇) ·
•
D dV =

∫
Ω

(
F q ·

(
∂

•
D

∂xq

)
−Hpq ·

(
∂2 •
D

∂xp∂xq

))
dV (D.6)

The Cauchy stress σ and the hyperstress S can be calculated using Eq. D.6 as

σ = (σijei) ⊗ eq = F q ⊗ eq

S = (Skqpek) ⊗ eq ⊗ ep = Hpq ⊗ eq ⊗ ep

(D.7)

in which the detailed expression of F q and Hpq as well as the whole method can be found in [302].

Using the following constitutive law for a second-order continuum in Eq. D.8 the effective moduli

are then determined.
Σij=Cijkl:Ekl+Bijklm ∴ Kklm

Sijk=Bijkpq
T:Epq+Aijkpqr ∴ Kpqr

(D.8)
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Appendix E

Quasi-periodic enriched Cauchy

stress

This subsection introduces another post-processing scheme (top-bottom scheme) of the true strain

gradient approach, which shows a link between the strain EEE and strain gradient term (EEE ⊗ ∇x) from

macro-scale computations. As well, it shows that the stress will depend on both, strain and strain

gradient. Considering the quasi-periodic macrodomain as a first step for the full-field computations,

allows the determination of the strain EEE across the boundaries of the UC of the quasi-periodic domain

which differs from one UC to another. This difference is captured by the strain gradient term (EEE ⊗ ∇x)

that must be taken into consideration when accounting for the UC boundary conditions. Consequently,

we show in subsequent developments that we will reach an enriched Cauchy medium starting from a

quasi-periodic macrodomain Ωη.

Figure E.1 Illustration showing the quasi-periodic macrodomain and an isolated UC with the macroscopic strain

and strain gradient as kinematic loadings acting on it.

In order to set the stage, we evaluate the volume integral of the microscopic energy density in a
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macroscopic quasi-periodic domain Ωη:∫
Ωη

wµ (εεε) dΩη = 1
2

∫
Ωη

σσσ : εεε dΩη (E.1)

At the macroscopic level, the strain is not constant throughout the domain, and there exists a strain

gradient between two neighboring unit cells that accounts for this variation. Therefore, (EEE, and EEE ⊗ ∇x)

are considered to be the quasi-periodic kinematic boundary conditions applied on a UC extracted from the

quasi-periodic domain. The microscopic strain is then assumed to be equal to the homogenized strain,

which is an additive decomposition of the macrostrain and strain gradient (neglecting the fluctuating

strain), εεε = EEE + (EEE ⊗ ∇x) .yyy. Using Eq. 3.18 and inserting previous microstrain to macrostrain relation

leads to the formulation of Eq. E.1 over the periodic macrodomain Ω̃η as follows:∫
Ωη

wµ (ε) dΩη = 1
2

∫
Ω̃η

(σ : E + (σ ⊗ y) ∴ E ⊗ ∇x) det (A) dΩ̃η (E.2)

Before proceeding, a recall of the theorem mentioned in [303] will be useful in developing Eq. E.2; it

states that for any Ỹ -periodic function Ψ, when η → 0, the following integral relation holds:∫
Ω̃η

Ψ dΩ̃η = 1∣∣∣Ỹ ∣∣∣
∫
Ω̃

∫
Ỹ

Ψ dỸ dΩ̃ (E.3)

Using Eq. 3.7, the quasi-periodic stress in Eq. E.2 can be expressed in terms of its periodic counterpart.

Thus, we get a periodic function in the integral of Eq. E.2 which allows us to write, when η → 0, according

to [303] the following:∫
Ωη

wµ (εεε) dΩη = 1
2

∫
Ω̃η

((
AAA−T .σ̃̃σ̃σ.AAAT

)
:
(
AAAM ⊠AAA−T

M

)
: ẼEE +

((
AAA−T .σ̃̃σ̃σ.AAAT

)
⊗ yyy
)

:
((
AAAM ⊠AAA−T

M

)
: ẼEE
)

⊗ ∇x

)
det (AAA) dΩ̃η

1
2

∫
Ω̃η

((
AAA−T .σ̃̃σ̃σ.AAAT

)
:
(
AAAM ⊠AAA−T

M

)
: ẼEE +

((
AAA−T .σ̃̃σ̃σ.AAAT

)
⊗ yyy
)

:
((
AAAM ⊠AAA−T

M

)
: ẼEE ⊗ ∇x

))
det (AAA) dΩ̃η

η→0= 1
2

∫
Ω̃

〈
det (AAA)

(
AAA−T .σ̃̃σ̃σ.AAAT

)〉
Ỹ

:
(
AAAM ⊠AAA−T

M

)
: ẼEE +

〈
det (AAA)

((
AAA−T .σ̃̃σ̃σ.AAAT

)
⊗ yyy
)〉

Ỹ
:
(
AAAM ⊠AAA−T

M

)
: ẼEE ⊗ ∇x dΩ̃

η→0= 1
2

∫
Ω̃

(
AAAM ⊠AAA−T

M

)
:
(〈

det (AAA)
(
AAA−T .σ̃̃σ̃σ.AAAT

)〉
Ỹ

−
〈

det (AAA)
((
AAA−T .σ̃̃σ̃σ.AAAT

)
⊗ yyy
)〉

Ỹ
...∇x

)
: ẼEE dΩ̃

η→0= 1
2

∫
Ω̃

Σ̃ΣΣenrich : ẼEE dΩ̃

(E.4)

This leads to the formulation of an enriched Cauchy stress in the periodic domain Σ̃ΣΣenrich, when factoring

out the macrostrain alone after integration by part:

Σ̃ΣΣenrich =
(
AAAM ⊠AAA−T

M

)
:
(〈

det (AAA)
(
AAA−T .σ̃̃σ̃σ.AAAT

)〉
Ỹ

−
〈

det (AAA)
((
AAA−T .σ̃̃σ̃σ.AAAT

)
⊗ yyy
)〉

Ỹ
...∇x

)
(E.5)

From Eq. E.4, and when η → 0, one can move back to the macroscopic quasi-periodic domain Ω by
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making a change of the macro unit cell averaging using the multiplicative factor det
(
AAA−1

M

)
.

Eq. (E.4) η→0= 1
2

∫
Ω

det
(
AAA−1

M

)
Σ̃ΣΣenrich : ẼEE dΩ

η→0= 1
2

∫
Ω

det
(
AAA−1

M

)
Σ̃ΣΣenrich :

(
AAA−1

M ⊠AAAT
M

)
: EEE dΩ

η→0= 1
2

∫
Ω

ΣΣΣenrich : EEE dΩ

(E.6)

Eq. E.6 leads to the formulation of quasi-periodic enriched Cauchy stress ΣΣΣenrich in terms of Σ̃ΣΣenrich:

ΣΣΣenrich = det
(
AAA−1

M

)
Σ̃ΣΣenrich :

(
AAA−1

M ⊠AAAT
M

)
(E.7)

This scheme is considered as a variant of strain gradient approach in which the macro strain and macro

strain gradients are linked and not treated as independent kinematic variables. This is a result of

macroscopic computations in which the strain between one UC and another is accumulated from the

generated strain gradient due to the microstructure grading.
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Appendix F

Derivation of the expressions of

piezoelectric static variables and

moduli

To proceed in the determination of the piezoelectric moduli versus the macroscopic kinematic variables,

the macroscopic stress and electric displacement are recalled from Eq. 4.17 and Eq. 4.18 and factorized

for the macroscopic degrees of freedom
(
EEE,EEEelecelecelec

MMM

)
which leads to the following expressions :

ΣΣΣ = 1
2

∫
Y



(
EEE +MMMuE ⊗ ∇y : EEE +MMMuP ⊗ ∇y.EEE

elecelecelec
MMM

)
: CCC :

(
III4 +MMMuE ⊗ ∇y

)
+
(
III4 +MMMuE ⊗ ∇y

)
: CCC :

(
EEE +MMMuE ⊗ ∇y : EEE +MMMuP ⊗ ∇y.EEE

elecelecelec
MMM

)
−
(
EEEelecelecelec

MMM −MMMP E (yyy) ⊗ ∇y : EEE −MMMP P ⊗ ∇y.EEE
elecelecelec
MMM

)
.aaa.
(

−MMMP E (yyy) ⊗ ∇y

)
−
(

−MMMP E (yyy) ⊗ ∇y

)
.aaa.
(
EEEelecelecelec

MMM −MMMP E ⊗ ∇y : EEE −MMMP P ⊗ ∇y.EEE
elecelecelec
MMM

)
−eeeT .

(
EEEelecelecelec

MMM −MMMP E ⊗ ∇y : EEE −MMMP P ⊗ ∇y.EEE
elecelecelec
MMM

)
:
(
III4 +MMMuE ⊗ ∇y

)
−eeeT .

(
−MMMP E ⊗ ∇y

)
:
(
EEE +MMMuE ⊗ ∇y : EEE +MMMuP ⊗ ∇y.EEE

elecelecelec
MMM

)
−eee :

(
EEE +MMMuE ⊗ ∇y : EEE +MMMuP ⊗ ∇y.EEE

elecelecelec
MMM

)
.
(

−MMMP E ⊗ ∇y

)
−eee :

(
III4 +MMMuE ⊗ ∇y

)
.
(
EEEelecelecelec

MMM −MMMP E ⊗ ∇y : EEE −MMMP P ⊗ ∇y.EEE
elecelecelec
MMM

)



dVy
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ΣΣΣ = 1
2

∫
Y



(
III4 +MMMuE ⊗ ∇y

)T

: CCC :
(
III4 +MMMuE ⊗ ∇y

)
+
(
III4 +MMMuE ⊗ ∇y

)
: CCC :

(
III4 +MMMuE ⊗ ∇y

)
−
(
MMMP E (yyy) ⊗ ∇y

)T

.aaa.
(
MMMP E (yyy) ⊗ ∇y

)
−
(
MMMP E (yyy) ⊗ ∇y

)
.aaa.
(
MMMP E (yyy) ⊗ ∇y

)
−
(
III4 +MMMuE ⊗ ∇y

)T

: eeeT .
(

−MMMP E ⊗ ∇y

)
−eeeT .

(
−MMMP E ⊗ ∇y

)
:
(
III4 +MMMuE ⊗ ∇y

)
−
(

−MMMP E ⊗ ∇y

)T

.eee :
(
III4 +MMMuE ⊗ ∇y

)
−eee :

(
III4 +MMMuE ⊗ ∇y

)
.
(

−MMMP E ⊗ ∇y

)



: EEE dVy

+ 1
2

∫
Y



(
MMMuP ⊗ ∇y

)T

: CCC :
(
III4 +MMMuE ⊗ ∇y

)
+
(
III4 +MMMuE ⊗ ∇y

)
: CCC :

(
MMMuP ⊗ ∇y

)
−
(
III2 −MMMP P ⊗ ∇y

)T

.aaa.
(

−MMMP E (yyy) ⊗ ∇y

)
−
(

−MMMP E (yyy) ⊗ ∇y

)
.aaa.
(
III2 −MMMP P ⊗ ∇y

)
−
(
III4 +MMMuE ⊗ ∇y

)T

: eeeT .
(
III2 −MMMP P ⊗ ∇y

)
−eeeT .

(
−MMMP E ⊗ ∇y

)
:
(
MMMuP ⊗ ∇y

)
−
(

−MMMP E ⊗ ∇y

)T

.eee :
(
MMMuP ⊗ ∇y

)
−eee :

(
III4 +MMMuE ⊗ ∇y

)
.
(
III2 −MMMP P ⊗ ∇y

)



.EEEelecelecelec
MMM dVy

(F.1)

DDD = 1
2

∫
Y



(
MMMuP ⊗ ∇y

)
: CCC :

(
EEE +MMMuE ⊗ ∇y : EEE +MMMuP ⊗ ∇y.EEE

elecelecelec
MMM

)
+
(
EEE +MMMuE ⊗ ∇y : EEE +MMMuP ⊗ ∇y.EEE

elecelecelec
MMM

)
: CCC : (MMMuP ⊗ ∇y)

−
(
III2 −MMMP P ⊗ ∇y

)
.aaa.
(
EEEelecelecelec

MMM −MMMP E ⊗ ∇y : EEE −MMMP P ⊗ ∇y.EEE
elecelecelec
MMM

)
−
(
EEEelecelecelec

MMM −MMMP E ⊗ ∇y : EEE −MMMP P ⊗ ∇y.EEE
elecelecelec
MMM

)
.aaa.
(
III2 −MMMP P ⊗ ∇y

)
−eeeT .

(
EEEelecelecelec

MMM −MMMP E ⊗ ∇y : EEE −MMMP P ⊗ ∇y.EEE
elecelecelec
MMM

)
:
(
MMMuP ⊗ ∇y

)
−eeeT .

(
III2 −MMMP P ⊗ ∇y

)
:
(
EEE +MMMuE ⊗ ∇y : EEE +MMMuP ⊗ ∇y.EEE

elecelecelec
MMM

)
−eee :

(
EEE +MMMuE ⊗ ∇y : EEE +MMMuP ⊗ ∇y.EEE

elecelecelec
MMM

)
.
(
III2 −MMMP P ⊗ ∇y

)
−eee :

(
MMMuP ⊗ ∇y

)
.
(
EEEelecelecelec

MMM −MMMP E ⊗ ∇y : EEE −MMMP P ⊗ ∇y.EEE
elecelecelec
MMM

)



dVy
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DDD = 1
2

∫
Y



(
MMMuP ⊗ ∇y

)
: CCC (yyy) : (III4 +MMMuE ⊗ ∇y) + (III4 +MMMuE ⊗ ∇y)T : CCC :

(
MMMuP ⊗ ∇y

)
−
(
III2 −MMMP P ⊗ ∇y

)
.aaa.
(

−MMMP E ⊗ ∇y

)
−
(

−MMMP E ⊗ ∇y

)T

.aaa.
(
III2 −MMMP P ⊗ ∇y

)
− +

(
MMMuP ⊗ ∇y

)T

: eeeT .
(

−MMMP E ⊗ ∇y

)
−eeeT .

(
III2 −MMMP P ⊗ ∇y

)
:
(
III4 +MMMuE ⊗ ∇y

)
−
(
III2 −MMMP P ⊗ ∇y

)T

.eee :
(
III4 +MMMuE ⊗ ∇y

)
−eee
(
MMMuP ⊗ ∇y

)
.
(

−MMMP E ⊗ ∇y

)



: EEE dVy

+ 1
2

∫
Y



(
MMMuP ⊗ ∇y

)
CCC :

(
MMMuP ⊗ ∇y

)
+
(
MMMuP ⊗ ∇y

)T

: CCC :
(
MMMuP ⊗ ∇y

)
−
(
III2 −MMMP P ⊗ ∇y

)
.aaa.
(
III2 −MMMP P ⊗ ∇y

)
−
(
III2 −MMMP P ⊗ ∇y

)T

.aaa.
(
III2 −MMMP P ⊗ ∇y

)
−
(
MMMuP ⊗ ∇y

)T

: eeeT .
(
III2 −MMMP P ⊗ ∇y

)
−eeeT .

(
III2 −MMMP P ⊗ ∇y

)
:
(
MMMuP ⊗ ∇y

)
−
(
III2 −MMMP P ⊗ ∇y

)T

.eee :
(
MMMuP ⊗ ∇y

)
−eee :

(
MMMuP ⊗ ∇y

)
.
(
III2 −MMMP P ⊗ ∇y

)



.EEEelecelecelec
MMM dVy

(F.2)

By comparing Eq. F.1 and Eq. F.2 with the macroscopic constitutive law (Eq. 4.19), we obtain the

expressions of CCChom , ddd∗,hom, and aaahom as follows:

CCChom := 1
2

∫
Y



(
III4 +MMMuE ⊗ ∇y

)T

: CCC :
(
III4 +MMMuE ⊗ ∇y

)
+
(
III4 +MMMuE ⊗ ∇y

)
: CCC :

(
III4 +MMMuE ⊗ ∇y

)
−
(
MMMP E (yyy) ⊗ ∇y

)T

.aaa.
(
MMMP E (yyy) ⊗ ∇y

)
−
(
MMMP E (yyy) ⊗ ∇y

)
.aaa.
(
MMMP E (yyy) ⊗ ∇y

)
−
(
III4 +MMMuE ⊗ ∇y

)T

: eeeT .
(

−MMMP E ⊗ ∇y

)
−eeeT .

(
−MMMP E ⊗ ∇y

)
:
(
III4 +MMMuE ⊗ ∇y

)
−
(

−MMMP E ⊗ ∇y

)T

.eee :
(
III4 +MMMuE ⊗ ∇y

)
−eee :

(
III4 +MMMuE ⊗ ∇y

)
.
(

−MMMP E ⊗ ∇y

)


dVy

eeehom = 1
2

∫
Y



(
MMMuP ⊗ ∇y

)
: CCC (yyy) : (III4 +MMMuE ⊗ ∇y) + (III4 +MMMuE ⊗ ∇y)T : CCC :

(
MMMuP ⊗ ∇y

)
−
(
III2 −MMMP P ⊗ ∇y

)
.aaa.
(

−MMMP E ⊗ ∇y

)
−
(

−MMMP E ⊗ ∇y

)T

.aaa.
(
III2 −MMMP P ⊗ ∇y

)
−
(
MMMuP ⊗ ∇y

)T

: eeeT .
(

−MMMP E ⊗ ∇y

)
−eeeT .

(
III2 −MMMP P ⊗ ∇y

)
:
(
III4 +MMMuE ⊗ ∇y

)
−
(
III2 −MMMP P ⊗ ∇y

)T

.eee :
(
III4 +MMMuE ⊗ ∇y

)
−eee :

(
MMMuP ⊗ ∇y

)
.
(

−MMMP E ⊗ ∇y

)



dVy

aaahom := 1
2

∫
Y



(
MMMuP ⊗ ∇y

)
CCC :

(
MMMuP ⊗ ∇y

)
+
(
MMMuP ⊗ ∇y

)T

: CCC :
(
MMMuP ⊗ ∇y

)
−
(
III2 −MMMP P ⊗ ∇y

)
.aaa.
(
III2 −MMMP P ⊗ ∇y

)
−
(
III2 −MMMP P ⊗ ∇y

)T

.aaa.
(
III2 −MMMP P ⊗ ∇y

)
−
(
MMMuP ⊗ ∇y

)T

: eeeT .
(
III2 −MMMP P ⊗ ∇y

)
−eeeT .

(
III2 −MMMP P ⊗ ∇y

)
:
(
MMMuP ⊗ ∇y

)
−
(
III2 −MMMP P ⊗ ∇y

)T

.eee :
(
MMMuP ⊗ ∇y

)
−eee :

(
MMMuP ⊗ ∇y

)
.
(
III2 −MMMP P ⊗ ∇y

)


dVy

(F.3)
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On the other hand these homogenized tensors can be written in terms of more compact localization

operators (the strain localization operators
(
ZZZuEuEuE ,ZZZuPuPuP

)
and electric field localization operators(

ZZZP EP EP E ,ZZZP PP PP P
)

where :∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

uuu (yyy) ⊗ ∇y =
(
uuuhom (yyy) + ũ̃ũu (yyy)

)
⊗ ∇y := EEE (xxx) +++MMMuE (yyy) ⊗ ∇y : E: E: E (xxx) +MMMuP (yyy) ⊗ ∇y.EEE

elecelecelec
MMM (xxx)

≡ ZZZuE (yyy) : EEE (xxx) +ZZZuP (yyy) .EEEelecelecelec
MMM (xxx)

ZZZuE (yyy) = III4 +MMMuE ⊗ ∇y

ZZZuP (yyy) = MMMuP ⊗ ∇y

EEEelec = EEEelecelecelec
MMM + Ẽ̃ẼE

elec (yyy) = EEEelecelecelec
MMM −MMMP E (yyy) ⊗ ∇y : EEE (xxx) −MMMP P (yyy) ⊗ ∇y.EEE

elecelecelec
MMM (xxx)

≡ ZZZP EP EP E (y) : E(x)+(y) : E(x)+(y) : E(x)+ZZZP PP PP P(y)(y)(y).EEEelecelecelec
MMM (x)(x)(x)

ZZZP EP EP E(y) = −MMMP E (yyy) ⊗ ∇y

ZZZP PP PP P(y)(y)(y) = III2 −MMMP P (yyy) ⊗ ∇y

(F.4)

These expressions lead to the functional to be minimized, having the form of the following Lagrangian

function:

→ L
[
ũ̃ũu, ϕ̃

]
:= 1

2

∫
Y



(
ZZZuEuEuE : E+: E+: E+ZZZuPuPuP .E.E.Eelecelecelec

MMM

)
: CCC :

(
ZZZuE : EEE +ZZZuP .EEEelecelecelec

MMM

)
−
(
ZZZP EP EP E : E+: E+: E+ZZZP PP PP P .EEEelecelecelec

MMM

)
.aaa.
(
ZZZP EP EP E : E+: E+: E+ZZZP PP PP P .EEEelecelecelec

MMM

)
−eeeT .

(
ZZZP EP EP E : E+: E+: E+ZZZP PP PP P .EEEelecelecelec

MMM

)
:
(
ZZZuEuEuE : E+: E+: E+ZZZuPuPuP .E.E.Eelecelecelec

MMM

)
−eee :

(
ZZZuEuEuE : E+: E+: E+ZZZuPuPuP .E.E.Eelecelecelec

MMM

)
.
(
ZZZP EP EP E : E+: E+: E+ZZZP PP PP P .EEEelecelecelec

MMM

)


dVy (F.5)

which in turn leads to the formulation of stress and electric displacement versus the strain and electric
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field localization operators as follows:

ΣΣΣ = Min
ũ̃ũu,ϕ̃∈H1

per(Y )

∂L
[
ũ̃ũu, ϕ̃

]
∂E

= 1
2

∫
Y



(
ZZZuEuEuE

)
: C :: C :: C :

(
ZZZuEuEuE : E+: E+: E+ZZZuPuPuP .E.E.Eelecelecelec

MMM

)
+
(
ZZZuEuEuE : E+: E+: E+ZZZuPuPuP .E.E.Eelecelecelec

MMM

)
: C: C: C:

(
ZZZuEuEuE

)
−
(
ZZZP EP EP E

)
.a.a.a...
(
ZZZP EP EP E : E+: E+: E+ZZZP PP PP P .EEEelecelecelec

MMM

)
−
(
ZZZP EP EP E : E+: E+: E+ZZZP PP PP P .EEEelecelecelec

MMM

)
.a.a.a...
(
ZZZP EP EP E

)
−eeeT ...

(
ZZZP EP EP E : E+: E+: E+ZZZP PP PP P .EEEelecelecelec

MMM

)
:
(
ZZZuEuEuE

)
−eeeT ...

(
ZZZP EP EP E

)
:
(
ZZZuEuEuE : E+: E+: E+ZZZuPuPuP .E.E.Eelecelecelec

MMM

)
−eee :

(
ZZZuEuEuE : E+: E+: E+ZZZuPuPuP .E.E.Eelecelecelec

MMM

)
.
(
ZZZP EP EP E

)
−eee :

(
ZZZuEuEuE

)
.
(
ZZZP EP EP E : E+: E+: E+ZZZP PP PP P .EEEelecelecelec

MMM

)


dVy

= 1
2


∫
Y



(
ZZZuEuEuE

)
: C :: C :: C : ZZZuEuEuE +++

(
ZZZuEuEuE

)TTT

: C :: C :: C : ZZZuEuEuE

−
(
ZZZP EP EP E

)
.a.a.a...ZZZP EP EP E−

(
ZZZP EP EP E

)T

.a.a.a...ZZZP EP EP E

−
(
ZZZuEuEuE

)T

: eeeT ...
(
ZZZP EP EP E

)
−eeeT ...

(
ZZZP EP EP E

)
:
(
ZZZuEuEuE

)
−
(
ZZZP EP EP E

)T

.eee :
(
ZZZuEuEuE

)
−eee :

(
ZZZuEuEuE

)
.
(
ZZZP EP EP E

)


dVy


: EEE

+ 1
2


∫
Y



(
ZZZuEuEuE

)
: C :: C :: C :

(
ZZZuPuPuP

)
+
(
ZZZuPuPuP

)T

: C: C: C:
(
ZZZuEuEuE

)
−
(
ZZZP EP EP E

)
.a.a.a...
(
ZZZP PP PP P

)
−
(
ZZZP PP PP P

)T

.a.a.a...
(
ZZZP EP EP E

)
−
(
ZZZuEuEuE

)T

: eeeT ...
(
ZZZP PP PP P

)
−eeeT ...

(
ZZZP EP EP E

)
:
(
ZZZuPuPuP

)
−
(
ZZZP EP EP E

)T

.eee :
(
ZZZuPuPuP

)
−eee :

(
ZZZuEuEuE

)
.
(
ZZZP PP PP P

)


dVy


.EEEelecelecelec

MMM

(F.6)

DDD = Min
ũ̃ũu,ϕ̃∈H1

per(Y )

∂L
[
ũ̃ũu, ϕ̃

]
∂EEEelecelecelec

MMM

= 1
2

∫
Y



(
ZZZuPuPuP

)
: CCC :

(
ZZZuE : EEE +ZZZuP .EEEelecelecelec

MMM

)
+
(
ZZZuEuEuE : E+: E+: E+ZZZuPuPuP .E.E.Eelecelecelec

MMM

)
: C (yyy) :

(
ZZZuP

)
−
(
ZZZP PP PP P

)
.aaa.
(
ZZZP EP EP E : E+: E+: E+ZZZP PP PP P .EEEelecelecelec

MMM

)
−
(
ZZZP EP EP E : E+: E+: E+ZZZP PP PP P .EEEelecelecelec

MMM

)
.aaa.
(
ZZZP PP PP P

)
−eeeT .

(
ZZZP EP EP E : E+: E+: E+ZZZP PP PP P .EEEelecelecelec

MMM

)
:
(
ZZZuPuPuP

)
−eeeT .

(
ZZZP PP PP P

)
:
(
ZZZuEuEuE : E+: E+: E+ZZZuPuPuP .E.E.Eelecelecelec

MMM

)
−eee :

(
ZZZuEuEuE : E+: E+: E+ZZZuPuPuP .E.E.Eelecelecelec

MMM

)
.
(
ZZZP PP PP P

)
−eee :

(
ZZZuPuPuP

)
.
(
ZZZP EP EP E : E+: E+: E+ZZZP PP PP P .EEEelecelecelec

MMM

)


dVy

= 1
2


∫
Y



(
ZZZuPuPuP

)
: C (yyy) :

(
ZZZuE

)
+
(
ZZZuEuEuE

)T

: C (yyy) :
(
ZZZuP

)
−
(
ZZZP PP PP P

)
.aaa.
(
ZZZP EP EP E

)
−
(
ZZZP EP EP E

)T

.aaa.
(
ZZZP PP PP P

)
−
(
ZZZuPuPuP

)T

: eeeT .
(
ZZZP EP EP E

)
−eeeT .

(
ZZZP PP PP P

)
:
(
ZZZuEuEuE

)
−
(
ZZZP PP PP P

)T

.eee :
(
ZZZuEuEuE

)
−eee :

(
ZZZuPuPuP

)
.
(
ZZZP EP EP E

)


dVy


: EEE

+ 1
2


∫
Y



(
ZZZuPuPuP

)
: C (yyy) :

(
ZZZuP

)
+
(
ZZZuPuPuP

)T

: C (yyy) :
(
ZZZuP

)
−
(
ZZZP PP PP P

)
.aaa.
(
ZZZP PP PP P

)
−
(
ZZZP PP PP P

)T

.aaa.
(
ZZZP PP PP P

)
−
(
ZZZuPuPuP

)T

: eeeT .
(
ZZZP PP PP P

)
−eeeT .

(
ZZZP PP PP P

)
:
(
ZZZuPuPuP

)
−
(
ZZZP PP PP P

)T

.eee :
(
ZZZuPuPuP

)
−eee :

(
ZZZuPuPuP

)
.
(
ZZZP PP PP P

)


dVy


.EEEelecelecelec

MMM

(F.7)
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F.1 Derivation of the expressions of flexoelectric moduli

When extending toward a flexoelectric media, the Lagrangian functional of the displacement

and electric potential fluctuations after substituting the compact localization operators

(ZZZuE (yyy) ,ZZZuk (yyy) ,ZZZuP (yyy) ,ZZZuGp (yyy) ,ZZZP k (yyy) ,ZZZP GP (yyy) ,ZZZP E (yyy) ,ZZZP P (yyy)) is as follows:

L
[
ũ̃ũu, ϕ̃

]
:= 1

2

∫
Y

{
εεε : CCC : εεε−EEEelecelecelec

MMM .aaa.EEEelecelecelec
MMM −eeeT .EEEelecelecelec

MMM : εεε−eee : εεε.EEEelecelecelec
MMM

}
dVy

= 1
2

∫
Y



(
ZZZuEuEuE (yyy) : E: E: E (xxx) +ZZZukukuk (yyy) ∴KKK (xxx) +ZZZuPuPuP (yyy) .EEEelecelecelec

MMM (xxx) +ZZZuuuGGGP (yyy) : GGGp (xxx)
)

: CCC (yyy)

:
(
ZZZuEuEuE (yyy) : EEE (xxx) +ZZZukukuk (yyy) ∴KKK (xxx) +ZZZuPuPuP (yyy) .EEEelecelecelec

MMM (xxx) +ZZZuuuGGGP (yyy) : GGGp (xxx)
)

−
(
ZZZP PP PP P (yyy) .EEEelecelecelec

MMM (xxx) +ZZZP EP EP E (yyy) : EEE (xxx) +ZZZP KP KP K (yyy) ∴KKK (xxx) +ZZZPPPGGGP (yyy) : GGGp (xxx)
)
.aaa

.
(
ZZZP PP PP P (yyy) .EEEelecelecelec

MMM (xxx) +ZZZP EP EP E (yyy) : EEE (xxx) +ZZZP KP KP K (yyy) ∴KKK (xxx) +ZZZPPPGGGP (yyy) : GGGp (xxx)
)

−eeeT .
(
ZZZP PP PP P (yyy) .EEEelecelecelec

MMM (xxx) +ZZZP EP EP E (yyy) : EEE (xxx) +ZZZP KP KP K (yyy) ∴KKK (xxx) +ZZZPPPGGGP (yyy) : GGGp (xxx)
)

:
(
ZZZuEuEuE (yyy) : EEE (xxx) +ZZZukukuk (yyy) ∴KKK (xxx) +ZZZuPuPuP (yyy) .EEEelecelecelec

MMM (xxx) +ZZZuuuGGGP (yyy) : GGGp (xxx)
)

−eee :
(
ZZZuEuEuE (yyy) : EEE (xxx) +ZZZukukuk (yyy) ∴KKK (xxx) +ZZZuPuPuP (yyy) .EEEelecelecelec

MMM (xxx) +ZZZuuuGGGP (yyy) : GGGp (xxx)
)

.
(
ZZZP PP PP P (yyy) .EEEelecelecelec

MMM (xxx) +ZZZP EP EP E (yyy) : EEE (xxx) +ZZZP KP KP K (yyy) ∴KKK (xxx) +ZZZPPPGGGP (yyy) : GGGp (xxx)
)



dVy

(F.8)

The flexoelectric constitutive law is obtained by taking the partial derivatives of the minimum macroscopic

energy with respect to EEE,EEEelecelecelec
MMM ,KKK,GGGP to determine the stress, electric displacement, hyperstress, and

higher gradient electric displacement respectively as follows:

ΣΣΣ = ∂

∂EEE

(
Min

ũ̃ũu,ϕ̃∈H1
per(Y )

L
[
ũ̃ũu, ϕ̃

])

≡ Min
ũ̃ũu,ϕ̃∈H1

per(Y )

∂L
[
ũ̃ũu, ϕ̃

]
∂EEE

= 1
2

∫
Y



2
(
ZZZuEuEuE : EEE +ZZZukukuk ∴KKK +ZZZuPuPuP .EEEelecelecelec

MMM +ZZZuuuGGGPPP : GGGp

)
: CCC : ZZZuEuEuE

−
(
ZZZP EP EP E

)
.aaa.
(
ZZZP PP PP P .EEEelecelecelec

MMM +ZZZP EP EP E : EEE +ZZZP KP KP K ∴KKK +ZZZP GpP GpP Gp : GGGp

)
−
(
ZZZP PP PP P .EEEelecelecelec

MMM +ZZZP EP EP E .EEE +ZZZP KP KP K ∴KKK +ZZZP GpP GpP Gp : GGGp

)
.aaa.
(
ZZZP EP EP E

)
−eeeT .

(
ZZZP PP PP P .EEEelecelecelec

MMM +ZZZP EP EP E : EEE +ZZZP KP KP K ∴KKK +ZZZPPPGGGP : GGGp

)
:
(
ZZZuEuEuE

)
−eeeT .

(
ZZZP EP EP E

)
:
(
ZZZuEuEuE : EEE +ZZZukukuk ∴KKK +ZZZuPuPuP .EEEelecelecelec

MMM +ZZZuuuGGGP : GGGp

)
−eee :

(
ZZZuEuEuE : EEE +ZZZukukuk ∴KKK +ZZZuPuPuP .EEEelecelecelec

MMM +ZZZuuuGGGP : GGGp

)
.
(
ZZZP EP EP E

)
−eee :

(
ZZZuEuEuE

)
.
(
ZZZP PP PP P .EEEelecelecelec

MMM +ZZZP EP EP E : EEE +ZZZP KP KP K ∴KKK +ZZZPPPGGGP : GGGp

)



dVy

(F.9)
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By the factorization of Eq. F.9, the stress tensor expresses versus the kinematic variables as:

ΣΣΣ =

1
2

∫
Y


2
(
ZZZuEEE

)T

: CCC : ZZZuEuEuE−
(
ZZZP EP EP E

)
.aaa.ZZZP EP EP E−

(
ZZZP EP EP E

)T

.a.
(
ZZZP EP EP E

)
−
(
ZZZuEuEuE

)TTT

: eeeT ...
(
ZZZP EP EP E

)
−eeeT ...

(
ZZZP EP EP E

)
: ZZZuEuEuE−

(
ZZZP EP EP E

)T

.eee :
(
ZZZuEEE

)
−eee :

(
ZZZuEuEuE

)
.ZZZP EP EP E

dVy

 : E: E: E

+ 1
2

∫
Y

dV


2
(
ZZZukukuk

)TTT

: CCC : ZZZuEuEuE−
(
ZZZP EP EP E

)
.aaa.ZZZP KP KP K−

(
ZZZP KP KP K

)T

.aaa.ZZZP E

−
(
ZZZuEuEuE

)TTT

: eeeT ...
(
ZZZPPP K

)
−eeeT ...

(
ZZZPPP E

)
: ZZZuuuK−

(
ZZZP EP EP E

)T

.eee :
(
ZZZuK

)
−eee :

(
ZZZuuuE

)
.ZZZPPP K

dVy

 ∴KKK

+ 1
2

∫
Y


2
(
ZZZuPuPuP

)T

: CCC : ZZZuEuEuE−
(
ZZZP EP EP E

)
.aaa.ZZZP PP PP P −

(
ZZZP PP PP P

)T

.aaa.ZZZP EP EP E

−
(
ZZZuEuEuE

)TTT

: eeeT ...
(
ZZZP P

)
−eeeT ...

(
ZZZPPP E

)
: ZZZuuuP −

(
ZZZP EP EP E

)T

.eee :
(
ZZZuP

)
−eee :

(
ZZZuuuE

)
.ZZZPPP P

dVy

 .EEEelecelecelec
MMM

+ 1
2

∫
Y


2
(
ZZZuGuGuG

)T

: CCC : ZZZuEuEuE−
(
ZZZP EP EP E

)
.aaa.
(
ZZZP GpP GpP Gp

)
−
(
ZZZP GpP GpP Gp

)T

.aaa.ZZZP EP EP E

−
(
ZZZuEuEuETTT

)
: eeeT ...

(
ZZZP Gp

)
−eeeT ...

(
ZZZPPP E

)
: ZZZuuuGGGp−

(
ZZZP EP EP E

)T

.eee :
(
ZZZuuuGGGp

)
−eee :

(
ZZZuuuE

)
.ZZZPPPGGGp

dVy

 : GGGp

(F.10)

Similarly, the electric displacement is written as follows:

DDD = ∂

∂EEEelecelecelec
MMM

(
Min

ũ̃ũu,ϕ̃∈H1
per(Y )

L
[
ũ̃ũu, ϕ̃

])
≡ Min

ũ̃ũu,ϕ̃∈H1
per(Y )

∂L
[
ũ̃ũu, ϕ̃

]
∂EEEelecelecelec

MMM

= 1
2

∫
Y

dVy


(
ZZZuPuPuP

)
: CCC :

(
ZZZuEuEuE

)
+
(
ZZZuEuEuE

)T

: CCC :
(
ZZZuPuPuP

)
−
(
ZZZP PP PP P

)
.aaa.
(
ZZZP EP EP E

)
−
(
ZZZP EP EP E

)T

.aaa.
(
ZZZP PP PP P

)
−eeeT .

(
ZZZP PP PP P

)
:
(
ZZZuEuEuE

)
−
(
ZZZuPuPuP

)T

: eeeT .
(
ZZZP EP EP E

)
−eee :

(
ZZZuPuPuP

)
.
(
ZZZP EP EP E

)
−
(
ZZZP PP PP P

)T

.eee :
(
ZZZuEuEuE

)
 : EEE

+ 1
2

∫
Y

dVy


(
ZZZuPuPuP

)
: CCC : ZZZukukuk +

(
ZZZukukuk

)T

: CCC :
(
ZZZuPuPuP

)
−
(
ZZZP PP PP P

)
.aaa.ZZZP KP KP K−

(
ZZZP KP KP K

)T

.aaa.ZZZP PP PP P

−eeeT .
(
ZZZP PP PP P

)
:
(
ZZZuuuK

)
−
(
ZZZuPuPuP

)T

: eeeT .
(
ZZZPPP K

)
−eee :

(
ZZZuPuPuP

)
.
(
ZZZPPP K

)
−
(
ZZZP PP PP P

)T

.eee :
(
ZZZuuuK

)
 ∴KKK

+ 1
2

∫
Y

dVy



(
ZZZuPuPuP

)
: CCC : ZZZuPuPuP +

(
ZZZuPuPuP

)T

: CCC : ZZZuPuPuP −ZZZP PP PP P .aaa.ZZZP PP PP P

−
(
ZZZP PP PP P

)T

.aaa.ZZZP PP PP P −eeeT .
(
ZZZP PP PP P

)
:
(
ZZZuuuP

)
−
(
ZZZuPuPuP

)T

: eeeT .
(
ZZZPPP P

)
−eee :

(
ZZZuPuPuP

)
.
(
ZZZPPP P

)
−
(
ZZZP PP PP P

)T

.eee :
(
ZZZuuuP

)


.EEEelecelecelec

MMM

+ 1
2

∫
Y

dVy



(
ZZZuPuPuP

)
: CCC : ZZZuuuGGGP +

(
ZZZuuuGGGP

)T

: CCC (yyy) : ZZZuPuPuP −ZZZP PP PP P .aaa.ZZZPPPGGGP

−
(
ZZZPPPGGGP

)T

.aaa.ZZZP PP PP P −eeeT .
(
ZZZP PP PP P

)
:
(
ZZZuuuGGGP

)
−
(
ZZZuPuPuP

)T

: eeeT .
(
ZZZPPPGGGP

)
−eee :

(
ZZZuPuPuP

)
.
(
ZZZPPPGGGP

)
−
(
ZZZP PP PP P

)T

.eee :
(
ZZZuuuGGGP

)


: GGGp

(F.11)
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As to higher gradient effects, the hyperstress is derived as follows:

SSS := ∂

∂KKK

(
Min

ũ̃ũu,ϕ̃∈H1
per(Y )

L
[
ũ̃ũu, ϕ̃

])
≡ Min

ũ̃ũu,ϕ̃∈H1
per(Y )

∂L
[
ũ̃ũu, ϕ̃

]
∂KKK

= 1
2

∫
Y

dVy



(
ZZZukukuk

)
: CCC : ZZZuEuEuE +

(
ZZZuEuEuE

)T

: CCC : ZZZukukuk−ZZZP KP KP K .aaa.ZZZP EP EP E−
(
ZZZP EP EP E

)T

.aaa.ZZZP KP KP K

−eeeT .
(
ZZZPPP K

)
:
(
ZZZuEuEuE

)
−
(
ZZZuuuK

)T

: eeeT .
(
ZZZP EP EP E

)
−eee :

(
ZZZuuuK

)
.
(
ZZZP EP EP E

)
−
(
ZZZPPP K

)T

.eee :
(
ZZZuEuEuE

)


: EEE

1
2

∫
Y

dVy



(
ZZZukukuk

)
: CCC : ZZZukukuk +

(
ZZZukukuk

)T

: CCC : ZZZukukuk−ZZZP KP KP K .aaa.ZZZP KP KP K−
(
ZZZP KP KP K

)T

.aaa.ZZZP KP KP K

−eeeT .
(
ZZZPPP K

)
:
(
ZZZuuuK

)
−
(
ZZZuuuK

)T

: eeeT .
(
ZZZPPP K

)
−eee :

(
ZZZuuuK

)
.
(
ZZZPPP K

)
−
(
ZZZPPP K

)T

.eee :
(
ZZZuuuK

)


∴KKK

1
2

∫
Y

dVy



(
ZZZukukuk

)
: CCC : ZZZuPuPuP +

(
ZZZuPuPuP

)T

: CCC : ZZZukukuk−ZZZP KP KP K .aaa.ZZZP PP PP P −
(
ZZZP PP PP P

)T

.aaa.ZZZP KP KP K

−eeeT .
(
ZZZPPP K

)
:
(
ZZZuuuP

)
−
(
ZZZuuuK

)T

: eeeT .
(
ZZZPPP P

)
−eee :

(
ZZZuuuK

)
.
(
ZZZPPP P

)
−
(
ZZZPPP K

)T

.eee :
(
ZZZuuuP

)


.EEEelecelecelec

MMM

1
2

∫
Y

dVy



(
ZZZukukuk

)
: CCC : ZZZuGuGuG +

(
ZZZuGuGuG

)T

: CCC : ZZZukukuk−ZZZP KP KP K .aaa.ZZZP GpP GpP Gp−
(
ZZZP GpP GpP Gp

)T

.aaa.ZZZP KP KP K

−eeeT .
(
ZZZPPP K

)
:
(
ZZZuuuGGGP

)
−
(
ZZZuuuK

)T

: eeeT .
(
ZZZPPPGGGP

)
−eee :

(
ZZZuuuK

)
.
(
ZZZPPPGGGP

)
−
(
ZZZPPP K

)T

.eee :
(
ZZZuuuGGGP

)


: GGGp

(F.12)

Also, the higher gradient electric displacement second order tensor can be obtained as follows:

RRR := ∂

∂GGGp

(
Min

ũ̃ũu,ϕ̃∈H1
per(Y )

L
[
ũ̃ũu, ϕ̃

])
≡ Min

ũ̃ũu,ϕ̃∈H1
per(Y )

∂L
[
ũ̃ũu, ϕ̃

]
∂GGGp

= 1
2

∫
Y

dVy



(
ZZZuuuGGGPPP

)
: CCC : ZZZuEuEuE +

(
ZZZuEuEuE

)T

: CCC : ZZZuuuGGGp−ZZZPPPGGGp .aaa.ZZZP EP EP E−
(
ZZZP EP EP E

)T

.aaa.ZZZPPPGGGp

−eeeT .
(
ZZZPPPGGGPPP

)
:
(
ZZZuEuEuE

)
−
(
ZZZuuuGGGPPP

)T

: eeeT .
(
ZZZP EP EP E

)
−eee :

(
ZZZuuuGGGPPP

)
.
(
ZZZP EP EP E

)
−
(
ZZZPPPGGGPPP

)T

.eee :
(
ZZZuEuEuE

)


: EEE

+ 1
2

∫
Y

dVy


ZZZuuuGGGp : CCC : ZZZukukuk +

(
ZZZukukuk

)T

: CCC : ZZZuuuGGGp−ZZZPPPGGGp .aaa.ZZZP KP KP K−
(
ZZZP KP KP K

)T

.aaa.ZZZPPPGGGp

−eeeT .
(
ZZZPPPGGGp

)
:
(
ZZZuuuK

)
−
(
ZZZuuuGGGp

)T

: eeeT .
(
ZZZPPP K

)
−eee :

(
ZZZuuuGGGp

)
.
(
ZZZPPP K

)
−
(
ZZZPPPGGGp

)T

.eee :
(
ZZZuuuK

)


∴KKK

+ 1
2

∫
Y

dVy


ZZZuuuGGGp : CCC : ZZZuPuPuP +

(
ZZZuPuPuP

)T

: CCC : ZZZuuuGGGp−ZZZPPPGGGp .aaa.ZZZP PP PP P −
(
ZZZP PP PP P

)T

.aaa.ZZZPPPGGGp

−eeeT .
(
ZZZPPPGGGp

)
:
(
ZZZuuuP

)
−
(
ZZZuuuGGGp

)T

: eeeT .
(
ZZZPPP P

)
−eee :

(
ZZZuuuGGGp

)
.
(
ZZZPPP P

)
−
(
ZZZPPPGGGp

)T

.eee :
(
ZZZuuuP

)


.EEEelecelecelec

MMM

+ 1
2

∫
Y

dVy


ZZZuuuGGGp : CCC : ZZZuuuGGGp +

(
ZZZuuuGGGp

)T

: CCC : ZZZuuuGGGp−ZZZPPPGGGp .aaa.ZZZPPPGGGp−
(
ZZZPPPGGGp

)T

.aaa.ZZZPPPGGGp

−eeeT .
(
ZZZPPPGGGp

)
:
(
ZZZuuuGGGP

)
−
(
ZZZuuuGGGp

)T

: eeeT .
(
ZZZPPPGGGP

)
−eee :

(
ZZZuuuGGGp

)
.
(
ZZZPPPGGGP

)
−
(
ZZZPPPGGGp

)T

.eee :
(
ZZZuuuGGGP

)


: GGGp
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Appendix G

Comparison of the proposed

homogenization approach with the

literature

A comparison between the results obtained in our variational approach and the analytical model in [262]

was made. The materials used were BaTiO3 for the fiber and PZT-5H for the matrix with their properties

presented in Table G.1.

Table G.1 Mechanical and electrical properties of the two piezoelectric materials within the unit cell of the

composite material

C11(GPa) C33(GPa) C12(GPa) C13(GPa) d∗
31(C/m2) d∗

33(C/m2) a11(nF/m) a33(nF/m)

BaTiO3 166 162 77 78 -4.4 18.6 11.2 12.6

PZT-5H 126 117 55 53 -6.5 23.3 15.1 13

Fig. G.1 shows the variation of different homogenized piezoelectric and dielectric moduli as a function of

volume fraction of the inclusion. The blue curves corresponds to the results obtained using the variational

approach and the red ones correspond to the results obtained in the literature [262] .Fig. G.1 shows a

good agreement between the results obtained using the variational approach and the results in [262] for

the dielectric and piezoelectric coefficients with a maximum relative error for the piezoelectric coefficients

(d∗hom
31 and d∗hom

33 ) of around 3%, and for the dielectric coefficient (permittivity) around 1%.
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Figure G.1 Variation of the 1) dielectric coefficient, 2) and 3) piezoelectric coefficients as a function of the volume

fraction. Red corresponds to the results in literature [260], blue corresponds to the results using the variational

approach.
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Appendix H

Components of the Π matrix in the

wave propagation analysis

The components of the wave motion matrix Π with homogenized flexoelectric parameters are as follows:

Π11 = −C11k
2

x −A11k
4

x − 1
2C33k

2
y − 1

2A66k
4

y + w2(ρ+ n2(k2
x + k2

y))

− 1
2(A56 +A65)kxk

3
y − 1

2A55k
2

xk
2

y −A12k
3

xky + iB12k
2

xky

Π12 = −(A13 + 1
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