
HAL Id: tel-04468580
https://theses.hal.science/tel-04468580v1

Submitted on 20 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Connecting graphs to machine learning
Gaëlle Candel

To cite this version:
Gaëlle Candel. Connecting graphs to machine learning. Machine Learning [cs.LG]. Université Paris
sciences et lettres, 2022. English. �NNT : 2022UPSLE018�. �tel-04468580�

https://theses.hal.science/tel-04468580v1
https://hal.archives-ouvertes.fr

Préparée à École Normale Supérieure

Connecting Graphs to Machine Learning

Soutenue par

Gaëlle Candel
Le 10 mars 2022

École doctorale no386

Sciences Mathématiques
de Paris Centre

Spécialité

Informatique

Composition du jury :

Matthieu Latapy
Directeur de recherche, CNRS, LIP6 Président, Rappor-

teur
Marc Lelarge
Directeur de recherche, INRIA Examinateur

Pr. Amaury Habrard
Université Jean Monnet, Saint-Etienne Examinateur

Pr. Stefan Bruckner
Université de Bergen, Norvège Rapporteur

Pr. Luca Maria Aiello
Université de Copenhague, Danemark Examinateur

Pr. Anastasia Bezerianos
LRI-Université Paris-Saclay Examinatrice

Pr. David Naccache
École Normale Supérieure Directeur de thèse

Remerciements

La thèse a été pour moi un travail singulier, me permettant de faire maturer mes idées. Bien
que ce soit un travail individuel, cette thèse n’aurait pas pu aboutir sans le soutient direct
et indirect de grand nombre de personnes pour me permettre de surmonter les différents
obstacles.

En premier lieu, je pense à Xavier Rival de l’équipe ANTIQUE du département d’informatique
de l’ENS, pour sa bienveillance et sa patience, les discussions au quotidien en tout genre,
et son support sur les points administratifs. Bien évidemment, je pense aussi aux autres
membres permanents de l’équipe, Jérôme et Cezara, ainsi qu’à mes differents (ex)-co-thésards,
en particulier à Marc Chevalier.

En second lieu, il y a les personnes de l’INRIA et de l’ENS qui se sont mobilisées pour m’aider
à changer d’encadrement de thèse. Ici, je remercie Pierre Gaillard pour m’avoir encadré de
façon temporaire, me permettant de me reconnecter aux abstractions.

Après un redémarrage à mi-parcours, la thèse recommence à Ingenico où l’environnement
fut propice pour l’aboutissement de cette thèse. J’y remercie mon directeur de thèse David
Naccache, pour son encadrement tout au long de cette deuxième partie de thèse, et pour les
discussions scientifiques sur des sujets techniques divers et variés.

Il ne faut pas oublier les amis et la famille, qui permettent de se construire en dehors du milieu
professionnel, malgré les sacrifices temporels exigés par la thèse. Au hacker-space familial, il
y a Ludovic Noury et ses cours de FPGA et Peregrine et son Amiga qui ont été présents tout
au long de ces différentes années. Et bien évidemment à mon conjoint Emmanuel Malige,
pour son amour, son soutient, et me challenger au quotidien.

1

0

2

Table of Contents

1 Introduction 1
1.1 Graphs are everywhere . 1
1.2 Graph and Tabular Data . 2
1.3 Thesis Organization . 3

I Identifying Research Communities 7

2 Improving Coupling Metrics with Deep Neighborhood for Local Map of
Science 9
2.1 Background . 10
2.2 References Selection and its Impact on Coupling Strength 14
2.3 Measuring Coupling at a Deeper Level . 16
2.4 Experimental Setup . 17
2.5 Results . 20
2.6 Discussion . 27
2.7 Conclusion . 28

3 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Co-
herent Embeddings. 29
3.1 Introduction . 30
3.2 t-SNE Formulation . 34
3.3 Indexed t-SNE . 37
3.4 Experimental Setup . 39
3.5 Experimental Results . 43
3.6 Discussion . 52

3

TABLE OF CONTENTS 0

3.7 Conclusion . 54

II Clustering Sparse Bipartite Graphs 57

4 Tagged Documents Co-Clustering 59
4.1 Introduction . 60
4.2 Enlarging Document Context . 61
4.3 Clustering Maximizing Information . 64
4.4 Experimental Setup . 69
4.5 Experimental Results . 72
4.6 Discussions . 77
4.7 Conclusion . 79

5 Co-Embedding Bipartite Graphs 81
5.1 Introduction . 82
5.2 Co-Embedding . 84
5.3 Evaluation Methods . 88
5.4 Results . 92
5.5 Discussion . 99
5.6 Conclusion . 101

III Computation under Noisy Condition 105

6 Noise-Resilient Ensemble Learning using Evidence Accumulation 107
6.1 Introduction . 108
6.2 Related Works . 109
6.3 Label Refinement with Implicit Boundary Learning 110
6.4 Experimental Setup . 113
6.5 Results . 115
6.6 Boundary Size Influence . 119
6.7 Discussion . 120
6.8 Conclusion . 122
6.9 Contributions . 123

References 127

4

CHAPTER 1

Introduction

1.1 Graphs are everywhere

1.1.1 Real-World Graphs

Graphs are everywhere. They help us to find the shortest path matching our constrains using
transportation networks. They allow us to send a message to the correct recipient without
testing all the million other addresses in a communication network like the Internet. They
benefit to supply chain networks by optimizing the process from end-to-end to reduce stocks
without shortage. They permit the identification of a bottleneck in power-network to prevent
blackout in the event of inclement weather. They support decentralization with collaborative
databases, as in Peer-to-Peer file sharing systems or Blockchains. They help to model
disease propagation under different network topologies and update rules in epidemiological
networks. They allow studying virality of information over social networks. They organize
peers into a swarm acting without central entities by deciding collectively locally such as in
autonomous vehicles. They allow controlling a large set of machines with a single computer,
simplifying companies’ server management while allowing to build and control Botnets to
overwhelm some services making them unavailable. They are tools to find “items you may
like” without information about your taste or identity by exploiting users with a similar
history in recommender systems. They support the discovery of new pathways to synthesize
a new molecule and identify by-products using chemical networks. All these problems are
represented by a graph, a set of nodes or entities connected to each other by edges or links
representing the entities’ relationships.

1

1.2. GRAPH AND TABULAR DATA 1

1.1.2 Graph Categories

All these graphs differ by the entities they represent. However the main diversity driver is
the edges’ type. Edges can be symmetric or directed indicating a form of subordination
between the parent and child nodes. A weight can be associated with an edge representing a
similarity, probability, edge strength, capacity, distance, or any other real value depending
on the use-case. Weighs can evolve over time, encoding time and duration of interactions
between entities. Finally, edges can be labeled, precisely characterizing the relationships and
adding types to the graph.

Nodes can also be used to refine the graph classification. In the simplest type of graph, nodes
have all the same type, but are distinguished by their attributes. In k-mode networks, k

different types of entities coexist as in a knowledge graph where places, people, dates, and
events occur in the same graph.

The different types of graphs make the richness of this field, leading to a variety of algorithms
adapted to the graph particularities.

1.2 Graph and Tabular Data

1.2.1 Dissimilar Structures, Similar Strategies

Graph and tabular data are two types of structured data. Machine Learning (ML) algorithms
are specific to one or the other class and cannot be transposed directly to the other category.
Out of the difference between data structure, a main differentiating point is how an item is
considered. When training an algorithm on tabular data, items can be selected at random
to form a subset of smaller size, reducing the training complexity. Items are replaceable
and exchangeable. Sampling does not affect algorithms’ outcome as long as the subset has
a distribution relatively close to the whole set. On a graph, random sampling cannot be
done. Some nodes are central and are essential to the graph structure while others are weakly
connected and unimportant. The connected structure would be denatured by deleting these
central items and the removal of too many edges.

Despite the dissimilarity between graphs and tabular data, the types of problems solved by
ML algorithms are similar for both. There exist supervised algorithms that try to excel on a
particular task with the help of feedback data, and unsupervised algorithms where the goal
is to identify regularities in the data. There is a philosophical difference where the former
focuses on a defined task while the other explores data usability for new applications. In the
unsupervised category, there is the problem of group identification, which applies to tabular
data under the name of clustering, and graphs under the name of community detection. This
task is of main interest as it helps discover natural segmentation that is not straight evidence
to humans.

2

1 1.3. THESIS ORGANIZATION

1.2.2 Exploiting Graphs under a Matrix Representation

A graph can be converted into an adjacency matrix to apply tabular algorithms on it. For a
graph with n items, the adjacency matrix A has a size of n×n, and the entry Ai,j is non-zero
if i is connected to j, the value corresponding to the weight of the edge or 1 in the case of an
unweighted graph. This representation is practical for using tabular algorithms, but can only
be used on small graphs as the required size grows quadratically with the number of nodes.

The distribution of tabular data is commonly studied by plotting one variable against another,
allowing one to visualize the distribution density on a 2D map. Unfortunately, graphs cannot
be projected easily on a 2D space without having crossing edges and distorting edges’ lengths.
Under the adjacency form, spectral decomposition algorithms such as SVD can be employed
to extract the main graph components and identify groups. The quality of the results obtained
with this method is impacted by the sparsity of the graph. Despite many nodes, a node is
often connected on average to very few nodes, leading to an adjacency matrix mostly made
of zeros. With a larger sparsity, the signals are weaker, decreasing the ability of spectral
algorithms to identify them.

The main obstacles of tabular data are missing values that prevent the use of an algorithm on
them, and outliers, which disturb the data distribution. A pre-processing step is often done
to remove items with missing values or fill blanks with data imputation methods. During the
pre-processing steps, outliers are often isolated and discarded. Then, data are normalized to
give an equal contribution to all features. The missing information also exists in graphs, where
some edges might be missing but their absence does not impact the graph processing. The
main concerns in real-world graphs are completely different and related to data distribution.
Tabular data distribution is often assumed to follow a Gaussian law, while the distribution of
nodes’ degree follows a power-law. A few nodes are highly connected in this situation while
most are weakly connected to the overall structure. While tabular algorithms rarely deal
with extreme values, this is the norm in graphs.

In fine, tabular algorithms can hardly be used directly on real-world graphs because of the
structural differences. Moreover, graphs do not verify the distribution hypothesis that tabular
algorithms assume; therefore, there is no guarantee of the algorithms’ outcomes.

1.3 Thesis Organization

This thesis is decomposed into three parts, each dedicated to a particular type of graph.
Part I: Identifying Research Communities is specific to citation graphs, which belong to the
directed acyclic graph category. Part II: Clustering Sparse Bipartite Graphs addresses the
co-clustering of bipartite graphs to identify thematic groups. Last, part III: Computation
under Noisy Condition exploits k-nearest neighbors graphs to improve classification accuracy
of an ensemble. The problem of each part is detailed in the following paragraphs.

3

1.3. THESIS ORGANIZATION 1

1.3.1 Helping Scientific Watch by Automated Bibliography Analysis

In the life of a researcher, one of the most time-consuming tasks is making the bibliography.
A researcher must read many papers to understand the different concepts and challenges of a
field. Unfortunately, the amount of literature is too large to be read and understood within
human life. Therefore, the researcher has only time to read a few papers selected using a
heuristic, exploiting the popularity or citation count, to consider the best known.

Over time, the researcher needs to keep himself up to date about the research topics’ evolution
and the progress made by the community. Good and great papers are hardly identifiable
in their young years as newly published papers have very few citations at the start. The
researcher cannot rely on its peers to highlight the most promising papers with citations.
Therefore, the researcher must spend some time reading them, making the discovery of
emerging trends within its field time-consuming.

The monitoring of recent works is essential for an author. First, before submitting an idea, it
must check if its idea is new by looking at other works proposing a similar approach that
does not already exist. Next, the bibliography is necessary to set up the scope and support
the paper’s argumentation. Finally, the inclusion of recent works is essential to demonstrate
the current interest of the community for the problem addressed.

A researcher and its research topic focus on a small part of the research landscape. At an
institution or company level, there is the problem of scientific and technical watch. Managerial
teams need the big picture of what is going on to create new teams that will work on new or
yet uncovered topics, and allocate more resources on growing trends.

The evolution of the scientific literature can be studied by looking at the underlying citation
graph, where nodes represent papers and edges citation relationships. The monitoring of
trends starts with their identification and delineation using community detection algorithms.
Then, each trend can be characterized and tracked over time, to identify hot-topics, notorious
papers, and people working on the subject for future collaboration.

Chapter 2 (Improving Coupling Metrics with Deep Neighborhood for Local Map of Science)
presents a method projecting the citation graph into a 2D map, allowing the identification
of research communities using usual clustering algorithms. Next, chapter 3 (Index t-SNE:
Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings) extends the
t-SNE algorithm, used to project the citation graph in chapter 2, to the temporal domain,
granting the monitoring of research communities’ growth over time.

1.3.2 Clustering Sparse Bipartite Graph

A bipartite graph is a special type of 2-mode graph where only nodes of opposite types can
connect. This type of graph is very common in everyday life, where people interact in an
individualized way with items, such as in a physical (or digital) library with books, an e-
commerce platform with goods, a music player with song and podcasts, or a streaming platform

4

1 1.3. THESIS ORGANIZATION

with videos. All the interactions can be represented by pairs (user, item), where the item

can be any object. The same representation can describe resources (textual document, video,
image, music, etc.) with keywords where the association is represented by pairs (resource,

keyword). Collaborative filtering recommender systems take advantage of these bipartite
graphs to recommend items to a user without knowing anything about the user nor the item.
Clustering these bipartite graphs allow identifying typical user profiles, words occurring in a
similar context, related products with the same utility and resources with similar content.

We propose in part II clustering algorithms for bipartite graphs addressing sparsity in two
different manners. First, in chapter 4 (Tagged Documents Co-Clustering), we propose a
hierarchical co-clustering algorithm where the end-user is free to select the final number of
clusters. This approach focuses on building groups with homogeneous content and similar
size to avoid an imbalanced clustering. Second, chapter 5 (Co-Embedding Bipartite Graphs)
also presents a co-clustering algorithm; nonetheless the number of clusters is automatically
inferred. This approach exploits graph projections to measure node relatedness, tackling the
problem of sparsity.

1.3.3 Collaboration under Noisy Conditions

The last part of this thesis (part III) addresses collaboration over classification and clustering
tasks. Traditional ensemble learning methods try to correct labels by using multiple diverse
classifiers. The gain of accuracy obtained with these methods depends on the number of peers
and their quality. On peer-to-peer network, the presence of malicious peers would disturb
the ensemble quality by sending corrupted results. Error-correction algorithms are necessary
when the identification of malicious peers is impossible.

Errors are corrected by following general assumptions made by classification algorithms. A
classifier assumes that items’ classes can be delineated with particular boundaries. The shape
and the way to search for the boundaries depend on the algorithm used. These algorithms are
capable of very good performances, and are often accurate in very dense areas. However, they
are more likely to make errors near a class’s boundary. Chapter 6 (Noise-Resilient Ensemble
Learning using Evidence Accumulation) proposes an ensemble learning method exploiting
the k-nearest neighbors graph to correct labels close to a boundary.

5

1.3. THESIS ORGANIZATION 1

6

Part I

Identifying Research Communities

7

CHAPTER 2

Improving Coupling Metrics with Deep Neighborhood for Local Map of
Science

Bibliographic and co-citation coupling are two analytical methods widely used to measure
the degree of similarity between scientific papers. These approaches are intuitive, easy to
put into practice, and computationally cheap. Moreover, they have been used to generate a
map of science, allowing visualizing research field interactions. Nonetheless, these methods
do not work unless two papers share a standard reference, limiting the two papers’ usability
with no direct connection. In this work, we propose to extend bibliographic coupling to the
deep neighborhood, by using graph diffusion methods. This method allows defining similarity
between any two papers, making it possible to generate a local map of science, highlighting
field organization.

9

2.1. BACKGROUND 2

2.1 Background

2.1.1 History and Usage of Coupling Metrics

Historiographic mapping has been introduced by Garfield [1], retracing the connections
between the different discoveries around DNA. This mapping of historical events was made
possible thanks to Bibliographic Coupling (BC), introduced by [2], and Co-citation Coupling
(CC), introduced by [3]. Both methods use the same approach: two documents are similar if
they share at least one cited or citing a paper in common. The similarity score is a function of
the overlap between the sets of references or referees. These coupling methods have been used
extensively for many purposes: to create a map of science, to study relationships between
universities [4], to analyze co-authorship networks [5], or to retrace phylogeny of science [6].

2.1.2 Formal Representation of Citation Graphs

Directed Acyclic Graph: A citation graph can be represented as a directed acyclic graph
(DAG) G = (V, E), with E ⊆ V × V , where vertices V represent published papers and edges
E the citation relationships, produced from the most recent paper to the oldest one. The
formed graph corresponds to a DAG, as it is not possible to find a path from a node to itself,
as the edges are directed toward the past.

References and Citations The reference set is denoted R(a) = {b| (a, b) ∈ E} for a
document a and its citation set is denoted similarly as C(a) = {b|(b, a) ∈ E}. This set
corresponds to all reachable items at a distance 1 from the currently studied paper a and
can be denoted R1(a) = R(a). The reference set can be recursively extended to indirectly
referenced items reachable within k steps from a as Rk(a) = ⋃

b∈R1(a) Rk−1(b) ∪R1(a). The
citation set can be extended the same way as Ck(a) = ⋃

b∈C1(a) Ck−1(b) ∪ C1(a).

Couplings Two papers are coupled if they share some of their neighbors. For BC, the set
of papers coupled with a is denoted BC(a) = ⋃

b∈R(a) C(b), while CC(a) = ⋃
b∈C(a) R(a) for

co-citation. The coupling can be extended by including indirect neighbors up to distance k

as BCk(a) = ⋃
b∈Rk(a) Ck(b) and CCk(a) = ⋃

b∈Ck(a) Rk(a).

Scoring Relationships The main similarity measures used by BC and CC are the cosine
and Jaccard similarity measures. Both measure the relative overlap between two sets A and
B but distinguish by the normalization. The cosine similarity is defined as:

SC(A, B) = |A ∩B|√
|A|.|B|

(2.1)

and the Jaccard similarity as:

10

2 2.1. BACKGROUND

SJ(A, B) = |A ∩B|
|A ∪B|

(2.2)

Their behavior is relatively the same. They are both equal to 1 for perfect overlap (A = B)
and equal to 0 for disjoint set (A ∩ B = ∅). They only differ in the numerical value
for the intermediate cases. For two BC coupled items a and b considering their indirect
references up to distance k, the similarity score using the cosine similarity is measured as
Sk

BC-C(a, b) = SC

(
Rk(a), Rk(b)

)
.

2.1.3 Bibliographic Coupling vs Co-Citation Coupling

BC and CC are relatively similar from a graph perspective. BC looks at the references
(outgoing edges) while CC looks at the citations (incoming edges). The approaches are
precisely the same with the difference that the direction of the edges is reversed for CC.
Several works have been done to compare the two approaches [7,8]. In the next paragraphs,
we will present some of the differences.

2.1.3.1 Article Decomposition

An article starts with a bibliographic overview, with an introduction setting the scope of
the field and introducing the problem. Then, background, related works or state-of-the-art
sections referencing related methods solving the current problem or a similar one, spot missing
points or possible transposition to the current problem that the paper will address. The
following part corresponds to the authors’ contributions, exposing a novel method supported
by an experimental protocol, results, and analysis. The first part presents authors’ arguments
supported by bibliographic evidence, while the second part presents authors’ ideas supported
by numerical evidence.

Most of the time, the article format is imposed on the authors. Therefore, there is a trade-off
between the two parts as space is limited. An extensive bibliographic section supports the
article with strong argumentation, to the detriment of the main work. On the other hand, a
problem introduction that is too short limits the understanding of the working context, the
problem and the potential impact. In general, the second part is relatively more extensive
than the first, expect for “reviews of” where the aim is to compare the existing literature
widely.

2.1.3.2 Evolution over Time

A citation graph is a dynamic structure where new nodes are added over time. The reference
count of an article will not change over time (unless the database is consolidated with old
documents). However, the number of citations received by an article starts at 0 and will
increase over time. This difference between the evolution of |R(a)| and |C(a)| impacts the
usage of BC and CC.

11

2.1. BACKGROUND 2

An article is bibliographically coupled with other articles at the publication date, unless it
has no reference or the quoted papers have never been cited before. Over time, the number
of coupled articles will increase as other nodes will refer to its references. The database may
not cover very old articles or documents with different types (like patents, blogs, and others).
For the nodes referring to these unregistered items, their effective reference set might be
incomplete.

In contrast, an article is not co-citation coupled with any other article at the publication
date, as no paper could mention this work yet. The citation count will increase over time,
increasing the number of coupled items. The coupling strength between two items will vary
over time as their respective citation set will evolve. The strength increases if they are
mentioned together or decreases if cited separately.

BC is not adapted for very old papers, while CC is not for very recent ones. For not-too-old
and not-too-recent papers, they can both be used. BC has the advantage to be usable for
freshly published work and even for unpublished works. Therefore, BC is useful to study
research fronts or analyze a work under review by looking at its references.

2.1.3.3 Degree asymmetry

The nodes’ degree distribution differentiates the evolution of |BC(a)| from |CC(a)|. The
number of references per article has a low variance, while the variance is much higher for
citations. Citations are distributed according to a power-law, where a few works receive
many citations and the large majority almost none [9,10]. One theory that could explain this
phenomena is the Matthew effect, which could be summarized as “the rich get richer and the
poor get poorer” [11]. The works that already have many citations will get more than works
that have already fewer citations.

The Matthew effect tends to model the long-term evolution of |C(a)| as a function of citations’
actual number. At the publishing date, all papers are equivalent as they have no citation
yet. Different factors impact the initial citation rates of newly published papers. There are
notoriety factors, such as the publication context (prestigious journals and conferences), the
author’s affiliation and the author’s reputation [11], and visibility factors, where the authors
could present their work in university, publish a vulgarized version for broader dissemination
[12], or write new papers exploiting their work, and open-access [13].

This phenomenon impacts more co-citation analysis than bibliographic coupling as the number
of coupled items with BC depends on the references’ fame. In contrast, it depends on the
paper’s citation count for CC coupling which represents a bottleneck.

2.1.3.4 Conceptual Differences between BC and CC

While the approaches are relatively similar, they differ in their interpretation.

Referencing a paper is an active action. The authors take their time to look at the literature,

12

2 2.1. BACKGROUND

review several articles to select some of them to support their argumentation. The number of
references is indirectly limited by the paper format, where an extensive reference list would
limit the space available to present the main paper’s contribution. Therefore, references must
be selected carefully to support the argument concisely.

To be cited is a passive process. As a first step, authors can actively contribute to disseminating
of their work, by presenting it to their peers, during workshops and other seminars. This would
increase the visibility of their work, increasing the likelihood of receiving citations. However,
the quantification of all formal and informal interactions the authors had is intractable with
the available tools.

Out of the presentation of their work to a targeted audience, the authors have no direct
control over who will cite their work. It could be people from the same field, proposing an
extension of the current work with new ideas, or people from another field transposing the
proposed idea to their problem. Thus, the citation process can be seen as crowdsourcing, as
an article will be referenced based on its usefulness and not necessarily on the context to
which it refers. Therefore, co-citation analysis will give larger scores to items with a similar
impact independently of their initial field.

In theory, BC and CC are equivalent for a paper far from the graph boundaries. The number
of coupled items can be considered equivalent for both BC and CC if there is a sufficient
number of citations and references. It is unlikely that BC(a) and CC(a) broadly overlap
because of the graph sparsity and the large number of possible citation choices. Nonetheless,
it is a reasonable assumption that they gather items belonging to the same research domain.
This might be true most of the time, but a few exceptions exist. One example illustrating the
possible asymmetry is “TensorFlow: a system for large-scale machine learning” [14]. This
paper discusses distributed computation systems in its core text and references, which could
be used for Deep Learning. However, most citations come from Deep Learning papers rather
than from distributed systems. This asymmetry could be explained by the largest impact of
the technology on Deep Learning than on the distributed system.

The use of co-citation analysis is more adapted to study the impact of papers, for historio-
graphic purposes. However, this method is not adapted for non-top papers or recent papers
as the citation count impacts the coupling highly. In contrast, the bibliographic coupling can
deal with high to low quality papers as long as they mention relevant literature, allowing to
study scientific communities in their globality and active research fronts. Therefore, we will
focus on the BC analysis for the rest of the paper.

13

2.2. REFERENCES SELECTION AND ITS IMPACT ON COUPLING STRENGTH 2

2.2 References Selection and its Impact on Coupling Strength

In this section, we will discuss the impact of a reference over the coupling between two
papers. First, we will underline the problems using first-order references R1(a) and high-
order references Rk(a). Then, we propose an intermediate solution that considers references’
contribution discrediting irrelevant papers to the profit of relevant ones.

2.2.1 Cited and Un-cited Works

Authors have to select a limited set of meaningful references to support their work. We detail
in the following some of the reasons governing the choice of a reference rather than another.

Awareness: The first source of omission is the absence of awareness about previous related
works. The recentness of a related work limits its propagation through the scientific community.
Another reason concerns the vocabulary disparity between two fields. The vocabulary between
two field is not necessarily the same; therefore an idea can be described differently. This
prevents textual search engines from gathering the two related ideas. The same limitation
occurs when papers are published in different languages.

Confidence: The second source of omission is the lack of confidence. ARelevant work may
exist, but the authors may not have a sufficient background to understand all the details.
The author can also be doubtful about the methods or the obtained results and may prefer
not to mention this work.

Notoriety: A factor impacting citation selection is notoriety, which contributes to the
Matthew effect. Out of the fact that top-research or top-journal works are more visible,
researchers give them more credit [15]. The best conferences and journals filter papers by
expert review in the field only to select best papers. This stamping allows non-expert people
to trust the quality of the work by delegating the analysis to a third party.

Knowledge Establishment Major works are cited religiously, like Kerckhoffs [16] for
cryptography, or PCA [17] for Mathematics. However, over time, the knowledge is admitted
by the field, and there is no need to refer to it, as they tend to become axioms known
by everybody. Therefore, the number of citations they would receive per year will vanish
over time. The same vanishing process also happens to the theories that are invalidated
or outdated by new research. Because those papers are too commonly cited, they are not
discriminative enough and increase the computational cost for identifying strongly coupled
articles. Therefore, those papers add more processing difficulties with limited benefit.

Independent Discoveries Multiple independent discoveries [18] are similar discoveries
that occur on a limited time interval, in different places, without interaction between the two
(groups of) researchers. The theory behind these events is that these discoveries are the logical

14

2 2.2. REFERENCES SELECTION AND ITS IMPACT ON COUPLING STRENGTH

continuum of previous evolution. The findings happened because the current technological
advancement made them possible to emerge naturally. As discovery takes time to diffuse and
to be accepted, the second group of researchers might not be aware of a previous existence.
When two similar works are published, papers following them need to select one or another
or both. Whatever the next papers’ referencing choice, the two candidates would share the
same basis or axioms. At some point, the literature supporting the two works will converge
to the same set of concepts and references. Therefore, choosing one or the other does not
modify the supporting evidence.

2.2.2 Issues with First-Order References

Bibliographic coupling and co-citation analysis are straightforward conceptual and practical.
However, these methods suffer from several drawbacks, which limits their usability. These
two approaches explore the first-order references and citations, representing 10 ∼ 30 related
works depending on the field, epoch and database.

The main issue concerns the coupling’s strength. In the case of bibliographic coupling, coupled
items have at least one reference in common. Nonetheless, the probability of two coupled
papers sharing more than one reference is extremely low because of the sparsity. Thus,
coupled strength is more impacted by the total number of references rather than by the
number of shared references. Additionally, the similarity between two items sharing 2 or 3
references over 20, i.e. 10 ∼ 15% (which is a common value in a scientific citation graph),
does not have a great significance.

BC and CC cannot be used to compare randomly selected items as the probability that their
reference sets overlap is almost zero due to the graph sparsity. Therefore, it is not possible to
identify fields proximity directly with BC.

Different approaches have been put into practice to re-mediate this issue. Some prune papers
that are not cited enough [19,20]. These approaches drastically reduce the number of papers,
especially recently published papers that did not receive attention yet. Therefore, they are
not suitable for the technical watch to study the research fronts [21,22]. Other aggregate
papers within a journal [23] or an institution [24,25] level to increase the number of references
per entity. The aggregation also decreases of the number of items to analyze, reducing the
overall complexity while getting a coarser view.

2.2.3 References’ Relevance

A solution to measure papers similarity without merging them in a larger group is to move
from first-order neighbors to higher-order neighbors, which must be done carefully.

Assuming a paper makes on average E [|R(a)|] = d references, the reference set size when
exploring up to distance t can be estimated as E

[
|Rt(a)|

]
= dt, without counting possible

overlap. The relationship can be rewritten differently as E[|Rt(a)|] = d×E[|Rt−1(a)|], i.e. the

15

2.3. MEASURING COUPLING AT A DEEPER LEVEL 2

exploration one step ahead contribute to a multiplication by d of what was here previously.
This would lead to a set with mostly old papers, which many other papers would share.
Therefore, extending to infinity the exploration distance t will inverse the problem of set
overlap to a too large overlap, preventing the identification of meaningful pairs. Additionally, a
paper cited as an example coming from another field comes with all its literature independently
of its relevance. This mass of irrelevant documents can counterbalance the papers coming
from the main field. The last issue is the computational cost, which grows with the set size.
To avoid the different issues, the exploration distance t can be selected carefully to limit the
set size. However, with a change from dt to dt × d, the error can be large making the correct
selection of t difficult.

Items in the reference set can be weighted to limit the contribution of irrelevant papers rather
than trying to stop graph reference exploration to the correct value t. This weighting must
reflect papers’ relevance relatively to the initial paper. Relevance can be defined as a function
of age where the oldest the document is the less relevant it is. Another way to estimate
relevance is to exploit items’ reachability from the initial paper. Among the indirectly cited
articles are axiomatic papers to which many references are made. Even if the initial paper
does not reference them, these papers contributed more significantly to the development
of the field of knowledge. In contrast, items that are referenced only once are unlikely to
support the paper’s ideas strongly. Thus, the weighting would highlight the axioms while
naturally ghosting papers with low relevance to the current subject.

The Random Walk with Restarts (RWR) is used to weight node contribution for this purpose.
This model explores all the different possible paths from papers to referenced papers, putting a
larger weight on papers that could be accessed through multiple paths. Therefore, more credit
is given to references that are multiple times referred within the reference set, representing
a literature consensus. On the other hand, this weighting model discredits papers that are
not substantial, like the papers used to illustrate examples but do not contribute to the
argumentation, or belong to another field uncommonly cited. Of course, a different weighting
model can be proposed as an alternative (considering papers’ popularity for instance). Still,
the Random Walk is one of the simplest ways to discern interesting from irrelevant articles
[26].

2.3 Measuring Coupling at a Deeper Level

This section presents the different equations allowing us to measure the similarity between
two items using the Random Walk with Restarts.

2.3.1 Weighted Similarity Measures

The cosine similarity can be easily extended to weighted elements. Assuming that W =
{Wc}c∈A are weights associated with the elements in A and W′ to the elements in B, the
cosine similarity can be extended to the weighted domain:

16

2 2.4. EXPERIMENTAL SETUP

Sw(A, B, W, W′) =
∑

c∈A∩B(Wc.W
′
c)√∑

c∈A(Wc)2∑
c∈B(W ′

c)2
(2.3)

This measure evaluates how well scores attributed in A are similar to scores attributed in B.
These similarity measures are equal to 1 if the sets and associated weights perfectly match
and 0 if A ∩ B = ∅. This last measure (Eq. (2.3)) will be used to measure the similarity
between two papers’ backgrounds.

2.3.2 Random Walk with Restarts

For a paper a and a paper b ∈ Rt(a), the RWR measures the reachability of b starting from
a and is denoted W a

b . The algorithm works by exploring the nodes in Rt(a) starting from
a by jumping from one node to another using existing outgoing edges. Explored edges are
selected with equiprobability. The exploration “restarts” in a when a path is long enough
(here t). The value can be computed recursively starting with W a

a = 1 and 0 otherwise by:

W a
b =

∑
c∈C(b)

W a
c

|R(c)| (2.4)

Then two papers a and b with respective weights Wa = {W a
c }c∈Rt(a) and Wb can be compared

by measuring their weighted overlap defined as:

St
wBC(a, b) = Sw(Rt(a), Rt(b), Wa, Wb) (2.5)

This coupling is non-zero if a and b share some of their background elements. The strength
considers the set overlap and the attributed weights, which can notably change the coupling
strength.

2.4 Experimental Setup

2.4.1 Dataset Description

We used for the experiments the DBLP dataset [27] version 12, published in April 2020. It is
a research citation graph, composed of 4,894,081 scientific papers with 45,564,149 referencing
links. The papers from this database belong to the computer science domain, a small part of
the research landscape. An initial processing is done to keep the largest connected component
and remove cycles. Cycles exist due to some papers’ updates, allowing them to quote papers
published after them. For each paper, the database provides information such as title,
summary, references, authors, and affiliation, plus around ten descriptive keywords about the
domain, field, or methods used.

17

2.4. EXPERIMENTAL SETUP 2

2.4.2 Node Sampling

We propose to construct a map of science exploiting the items’ similarity. The computation
of a similarity matrix with n elements induces a computational cost of O(n2) limiting the
usability over very large samples. Random sampling allows to reduce the sampling size easily,
and would allow building a global map of science. Alternatively, targeted sampling exploiting
the metadata available in the dataset allows the construction of a local map of science. The
keywords associated with papers in the database could be assimilated to a field of study.
Therefore, we select one keyword of interest occurring in a sufficient number of papers. All
papers associated with the keyword are gathered and then sampled at random to obtain the
desired sample size.

2.4.3 Data Visualization

To create a local map of science, we used the t-SNE embedding algorithm [28]. This
embedding algorithm tries to preserve the neighborhood, i.e., similar items are kept close in
the embedding, while distant neighbors are kept away. This algorithm groups similar items,
without trying to preserve distances between input and output space. A distance matrix D is
given to the t-SNE algorithm, which transforms it into a 2-dimensional representation Y .

The similarity obtained for bibliographic coupling SBC and SwBC have the opposite behavior
of a distance, as S = 1 ⇐⇒ D = 0 and S = 0 ⇐⇒ limD→∞ D. It is commonly accepted to
transform S into D by D = 1−S. However, the range of possible distance values is restricted
to [0, 1], limiting expressiveness. Instead, we propose to transform S into D by inversion:

D = 1
ϵ + S

− 1
ϵ + 1 (2.6)

where ϵ is a small constant, set to ϵ = 10−5, which avoids the division by zero cases. ϵ could
be considered as the null hypothesis, “what would be the similarity if neighborhoods overlap
at random.” The pipeline can be summarized as:

V
sampling−−−−−→ V ′ similarity−−−−−−→ S

inversion−−−−−→ D
t-SNE−−−−→ Y

2.4.4 Keywords Extraction

The evaluation of embedding Y is non-trivial as visual appreciation is a subjective evaluation.
As the proposed methodology is entirely unsupervised and not rely on optimizing a specific
criterion, there is no objective value to monitor. Despite this lack of objectivity, we propose
to study clusters. The goal is to check if clusters of papers correspond to thematic clusters,
described with a particular set of keywords.

Extraction based on Relative Frequency: A possibility to study keywords is to select
the most frequent. The keyword used for sampling will be first followed by other keywords

18

2 2.4. EXPERIMENTAL SETUP

with large predominance. Among those frequent keywords, some are frequent in a general
context, and some are frequent only in a specific context. We propose to distinguish between
generally frequent keywords from keywords specifically more frequent in the selected domain.
To this purpose, we look at the ratio between local and global frequencies, estimated over V ′

and V . The ratio is defined as:

R(kw, V, V ′) = r(kw, V ′)
r(kw, V) (2.7)

where r(kw, V) represent the frequency of kw within V . A value close to 1 indicates that the
keyword is no more frequent in V ′ than in V , while a larger value indicates that the keyword
is specific to this context.

Extraction based on Mean-Shift: The keyword selection process described in 2.4.4 is
only possible if the selected sample is relatively singular compared to the whole database.
Otherwise, no keyword would be more relevant than another one. Rather than looking at
the predominance of a keyword within the subset, its distribution in the embedding can be
analyzed to see if the keyword occurs in localized areas or not to evaluate its specificity.

To this aim, the resulting embedding is clustered using the Mean-Shift algorithm [29],
configured with a Gaussian kernel with bandwidth σ. Then, the embedded items Y are
partitioned into k non-overlapping hard clusters C = {Ci}i=1:k, where k is automatically
found.

Salient keywords are identified for each cluster using TF-IDF. The frequency of a keyword is
obtained by measuring the proportion between its number of occurrences against all other
keywords within the documents belonging to the cluster.

19

2.5. RESULTS 2

2.5 Results

2.5.1 t-SNE Embedding: Fields Auto-Organization

A 2D paper visualization is obtained by transforming a similarity matrix using the t-SNE
embedding algorithm. For our experiments, we selected 4000 papers associated with the
Payment keyword. Similar experiments have been run using other keywords, and led to
similar results and combination of keywords.

(a) Bibliographic Coupling (BC) (b) Weighted Bibliographic Coupling (WBC)

Figure 2.1: Local Map of Science for “Payment” papers.

Initially, embedding results seem quite similar if we don’t consider clusters’ location. On
both figures, clusters are located on the embedding boundary, while the central areas are less
dense with points spaced from each other. Nonetheless, there are main notable differences.

The main one concerns the number of unclustered items, which is larger in the BC figure
than in the WBC one. These items are easily identifiable as they are located in the middle
and are more distant from their nearest neighbors than items in peripheral clusters. In the
case of BC, artefacts are observable forming a symmetrical pattern with a group of items
regularly spaced between few dark dots. These dark dots correspond to overlapping papers
coupled with the same reference and linked to no other reference. Items at equi-distance
from their neighbors are papers coupled with no other document and can be isolated using
graph algorithms searching for weakly connected components.

The second major difference concerns cluster delineation. For BC, the cluster density does
not vary a lot with the location making difficult the identification of clusters’ boundary. For
WBC, some boundaries are also difficult to identify. Nevertheless, more clusters show a dense
central area and a less dense peripheral area making easier cluster delineation.

These two differences are linked to the high-order neighborhood and the weighting of relevant

20

2 2.5. RESULTS

references. As a result, the number of isolated items is reduced by the larger number
of references, increasing the overall connectivity. In addition, the weighting impacts the
formation of dense clusters by having more accurate coupling values leading to a better
positioning.

2.5.2 From Keywords to Clusters

2.5.2.1 Relevant Keywords Identification

We compared in these paragraphs keywords ranked by raw frequency and ranked by relative
frequency. For each ranking, we list the 20 first top keywords. Using the raw frequency
ranking, we have:

Payment, Computer science, Computer security, Computer network, Mathematical
optimization, Economics, Internet privacy, Incentive, Microeconomics, Mathe-
matics, Distributed computing, Marketing, The Internet, Database transaction,
Mobile payment

and using the relative frequency ratio R(kw, V, V ′) obtained with Eq. (2.7), keeping only
keywords with at least 100 occurrences, we have:

Microeconomics, Incentive, Database transaction, Mobile payment, Payment
service provider, Payment system, Mechanism design, Credit card, Actuarial
science, Revenue, E-commerce, Smart card, Cash, Electronic money, Anonymity,
Commerce, Common value auction, Cryptocurrency, Electronic cash, Blockchain

When looking at the former list, we can identify some words related to payment, like
Economics, Microeconomics, Marketing and Mobile payment. All others are indirectly related
to payment, as they correspond to concepts used for the development of different technologies,
like Computer science or Mathematics which are very general concepts and reused in other
domains. In contrast, there are much more words related to payment in the second list, with
only a few words where the direct connection is unclear like Incentive or Actuarial science.
Thus, the proposed ranking allows an uneven extraction of several pertinent keywords without
efforts.

2.5.2.2 Keywords Visualization

The keywords in this second list will be studied by highlighting the papers’ location where
they occurs in the embedding. The goal is to see if groups of papers sharing the same
references also share the same keywords.

This measurement cannot be done using only the similarity values. Two coupled papers are
unlikely to share more keywords than non-coupled keywords because of the graph sparsity
and the low number of keywords per document.

The keywords in the DBLP dataset are organized hierarchically. A document is associated

21

2.5. RESULTS 2

with general keywords and less general ones. On average, all documents will share the general
keywords with their neighbors. When looking at the similarity between two documents’
keywords, the contribution of infrequent keywords would be imperceptible.

As the number of keywords per document is limited (on average 10), not all valid keywords
are associated with a document. For instance, a Bitcoin paper can include Cryptocurrency or
Blockchain keywords. However, its neighbors may be associated with one or none because they
are almost equivalent and infrequent. Therefore, the probability that coupled papers would
share a specific keyword is very low for infrequent keywords. This difference of predominance
makes the direct evaluation of document similarity using keywords problematic.

Among direct neighbors, only a few would share the same specific keywords. Over a larger
group, we can expect to gather more papers associated with a particular keyword. The use
of an embedding allows considering indirect neighbors, increasing the probability to find
neighbors with a particular keyword in common.

In Fig. 2.2, we show keywords location by highlighting papers associated with the current
keyword. As a general result, keywords tend to group into clustersis especially true for low-
frequency keywords, like Blockchain or Electronic cash. For keywords with larger frequency,
like Database transaction, Payment service provider, or Microeconomics, they occur in multiple
clusters, possibly disjoint. Finally, some keywords do not aggregate into dense clusters, such
as Commerce, E-commerce or Revenue which form diffused areas, partly due to their low
frequency compared to other keywords. Low-frequency keywords correspond to very specific
topics, with a narrowed literature. The ability to group and form a dense cluster is more
likely for specific topics than for more general topics. A broad topic can be sub-divided into
subtopics. A paper within a subtopic may have general references relative to the broad topic
but others related to the subtopic. Papers from different subtopics are likely to be weakly
coupled, leading to the decomposition of a large topic into multiple clusters.

This map can also be used to study keywords relatedness by looking at their covered areas.
We can identify several groups of related keywords, like Blockchain with Cryptocurrency;
Electronic money with Electronic cash, Cash and Anonimity; Common value auction with
Mechanism design; Credit card with Smart card, etc. Some keywords share exactly the same
areas like Blockchain and Cryptocurrency, while others partially overlap, like Anonymity
overlapping with Blockchain in the one side and Electronic cash and related keywords for the
other side. The partial overlap shows that concepts are not hierarchically organized, as none
dominate the other. Nevertheless, a research area can be charaterized by a specific mixture
of topics.

22

2 2.5. RESULTS

Figure 2.2: Local Map of Science for “Payment” papers with papers associated with a relevant keyword highlighted.
Keywords are arranged based on their co-location similarity.

23

2.5. RESULTS 2

2.5.3 From Clusters to Keywords

In this experiment, we start from the papers’ clusters to study keywords’ groups instead of
starting from keywords’ clusters to identify papers’ groups.

2.5.3.1 Mean-Shift Partitioning

The WBC embedding is clustered using the Mean-Shift algorithm, where σ = 2.8, correspond-
ing to the average distance to the 30 first nearest neighbors. The partitioning results are
presented in Fig. 2.3, where each color is associated with a cluster. The clustering led to the
identification of 38 clusters, of which 34 have at least 30 documents.

Figure 2.3: Mean-Shift clustering of the Payment resulting embedding.

The partitioning obtained led to the identification of clusters of various size and shape.
Compared to a k-Mean, the Mean-Shift algorithm has the advantage of not requiring as input
the number of clusters and separating clusters by non-straight boundaries. However, some
potential “errors” exist, like the two clusters on the right (a yellow and a purple) would be
better merged. In the middle of the embedding, different clusters are identified. As these
documents correspond to weakly coupled items, their relevance and usability are unclear.

2.5.3.2 Group Analysis

Keywords are analyzed by ranking all keywords within a cluster using TF-IDF. We assigned
a keyword to a cluster based on its largest TF-IDF score to avoid multiple occurrences. Some
groups are presented in table 2.1, where keywords within a group are listed by decreasing
score and keeping only those with several occurrences within the subset equal or greater than

24

2 2.5. RESULTS

20. We kept the top-most relevant keywords as a matter of space. Among the 34 cluster
candidates, we selected 28 of them, the clusters containing the previously identified keywords
and others with a sufficient number of relevant keywords for comparison.

Among the 20 keywords in the second list, only Mechanism design is not listed because of its
poor TF-IDF score. Only a minority of the keywords in the first list is listed, as their large
number of occurrences leads to a very low IDF score.

The topic covered by each cluster is easy to identify. Often, one of the keywords within the
group is a good representative. For example, for group 1, Cryptocurrency represents the main
idea. For group 11, the Biometry topic includes all the other sub-topics. Group 16 with
Mathematical economics. For other groups, the idea can be summarized by using an external
keyword. For instance, group 3 corresponds to payment technologies, including protocols and
devices. For group 20, the idea can be summarized by user-related security.

There are some groups where the concept is unknown, such as group 6 or group 27, which is
partially due to the clustering and the single assignment of a keyword. In addition, there are
some keywords where the links to the group idea are unclear, such as Fuzzy logic in group 25,
or Digital goods in group 2.

Words may have multiple meanings or cover different issues. Within a group, the correct
meaning becomes evidence. For instance, Database transaction refers to many things. It could
be the algorithms, ensuring ACID principles (Atomicity, consistency, isolation and durability),
or refers to the recorded data. Within the Cryptocurrency cluster, the meaning becomes
very clear, as one of the main blockchain issues is how to record the maximal number of
transactions in a decentralized system without sacrificing security and correctness. Associated
with another cluster, the interpretation would have been different. We assign each keyword
to a cluster only once to avoid very long keywords lists; therefore we don’t have another
contextual example. Nevertheless, for a more in-depth analysis, all relevant keywords must
be considered.

This experiment allows identifying clusters’ topics based on the main keywords. Another
experiment would be to study topics relationships by looking at the nearest clusters mixture.
Nonetheless, this approach is not recommended over a t-SNE embedding. This embedding
method tries to preserve the local neighborhood, and distant neighbors are not organized
specifically. Therefore, conclusions concerning clusters’ relationships might be inexact.

25

2.5. RESULTS 2

Table 2.1: Table gathering keywords grouped by clusters and sorted by TF-IDF.

Group 1 Group 2 Group 3 Group 4
Cryptocurrency Electronic cash Mobile payment Micropayment

Blockchain Anonymity Payment service provider Electronic money
Ledger Blind signature Payment gateway Cryptographic protocol

Smart contract Trusted third party Mobile commerce Hash chain
Communication channel Computer security Credit card E-commerce

Scalability Money laundering Payment protocol Hash function
Throughput Digital goods Card security code 3-D Secure

Currency Digital signature Payment order
Database transaction

Group 5 Group 6 Group 7 Group 8
Near field communication Multimedia Virtual machine Demand response

Smart card Digital currency Provisioning Electricity
Access control Welfare Cloud computing Smart grid

Contactless smart card Cash Resource management Control engineering
ATM card Social media Cost accounting Environmental economics

Financial management Resource allocation Energy consumption
Group 9 Group 10 Group 11 Group 12

Ubiquitous computing Network packet Biometrics Technical debt
Mobile device Wireless ad hoc network Fingerprint Systems engineering

Mobile computing Wireless network Authentication Software
Embedded system Relay Password Process management
Payment system Mobile telephony Usability Risk analysis
World Wide Web Security token Management science

Commerce Incentive Empirical research
Group 13 Group 14 Group 15 Group 16
Dividend Operation management Online advertising Mathematical economics

Econometrics Supply chain Common value auction Vickrey-Clarke-Groves auction
Optimization problem Microeconomics Advertising Combinatorial auction

Actuarial science Economics Bidding Redistribution
Interest rate Information asymetry Valuation Optimal mechanism

Transaction cost Profit Revenue Social Welfare
Mathematics Industrial organization Budget constraint

Group 17 Group 18 Group 19 Group 20
Net neutrality Cognitive radio Ransomware Android

Bargaining problem Price of anarchy Malware Internet privacy
Quality of service Cellular network Encryption Security analysis

Internet access Stackelberg competition Monetization Information sensitivity
Game theory Operator Payment processor Implementation

Profitability index Wireless Vulnerability
Nash equilibrium Telecommunications network Information security

Group 21 Group 22 Group 23 Group 24
Welfare economics Knowledge management Crowdsourcing Decision tree

Linear programming Medicine Data science Transaction data
Schedule Information technology Transparency Artificial neural networks

Public transport Outsourcing Remuneration Machine learning
Heuristics Decision support Artificial intelligence
Exploit Big data

Group 25 Group 26 Group 27 Group 28
Trade credit Technology acceptance model Crowdsensing Peer-to-peer

Economic order quantity Risk perception Rationality Upload
Inventory control Marketing Reverse auction Game theoretic

Inventory shortage Psychology Computation Broadcasting
Inflation Perception Popularity

Mathematical optimization Developing country Collusion
Vendor Authorization

Fuzzy logic

26

2 2.6. DISCUSSION

2.6 Discussion

2.6.1 Would Bibliographic Coupling be Sufficient ?

The main issue with BC is the lack of connectivity between papers, leading mechanically to
low similarity scores, and few coupling relationships. Our experiment presented a subset of
a paper belonging to the Payment domain, a small world with many connections between
sub-topics. In the broader area, such as Machine Learning, Computer security, Information
retrieval, there can be more than 100,000 documents. When randomly sampling papers
from these domains, the probability of papers sharin references is low leading to many more
artefacts than a narrowed field.

2.6.2 Calibration of Random-Walk Path Length

The WBC exploits weights computed using the random walk with restart assigned to Rt(a)
items. The setup with t = 1 corresponds to BC as only the first neighbors are explored with
equal probability. The value of t is adjusted with the sparsity of the subset. A very dense
group of items requires a low value of t, around 2 or 3, while a very sparse structure needs a
larger value of 4 ∼ 5 However, a larger t impacts the computational cost; therefore using the
lowest possible value is preferable. We set t = 3 for the experiments as it allowed us to test
over sparse and less sparse subsets.

2.6.3 Node Sampling

We proposed a methodology for representing papers without prior knowledge. The papers
described here belong to the same subset. Still, they are selected at random, without looking
at age, number of received citations, number of references, language, conference or journal
ranking. The only bias was on the thematic, which narrows the scope and gives understandable
relationships. Other selection approaches can be proposed, such as looking at all papers
published at a large conference or journal, for automatic field categorization. Another would
be to look at a university’s papers, to study synergies between different research groups.

2.6.4 Bottleneck Effect

The proposed approach takes advantage of the random walk, where the influence of a node
diffuse over the graph. At the start, a weight of 1 is dispatched between all first neighbors.
With a larger exploration distance, the amount dispatched is still 1, or lower if some terminal
nodes are reached. Therefore, the system is almost conservative. The amount gathered by a
node depends on the distance. For a low exploration distance, the weights gathered vanished
because they are dispatched over many nodes. After more exploration steps, the number
of beneficiaries decreases because the set of papers in the past is smaller than in the recent
years. Therefore, old papers tend to concentrate the amount of diffused weights surpassing
the amount collected by recent works. The bottleneck effect can be avoided by slightly

27

2.7. CONCLUSION 2

modifying the random walk by adding a decay factor α, to consider the loss or transformation
of information over time.

2.6.5 Future versus Past

As discussed earlier, an asymmetry exists between citation and referencing process. Nonethe-
less, the proposed approach can be used over citations rather than references, or a mix of
the two. The referencing approach focuses on “who share the same basis,” while with the
citation approach, the focus would be “who are co-inspired.” The conceptual difference might
be relatively small, but more artefacts are likely to be present because of the power-law
distribution of citations, as many papers received very few citations. However, this way might
be a useful exploration path for papers impact evaluation.

2.7 Conclusion

In this paper, we proposed a methodology to extend bibliographic coupling to the more
in-depth neighborhood. The presented approach considers the indirect neighborhood of
a specific paper, where their contribution is weighted using the Random Walk algorithm.
This approach allows to weight neighborhood nodes based on their relative distance and
accessibility from the parent paper, which corresponds to a form of relevance. These weights
are used to compute the similarity between two papers, using a weighted Cosine similarity.

The advantage against bibliographic coupling is the connectivity: much more similarity pairs
are non-zero, which create a single connected component. Following an embedding step with
the t-SNE algorithm contains much fewer artefacts than bibliographic coupling, which leads
to a better analysis of the sub-field relationships. Because of the connectivity advantage, any
papers could be represented on our map, without restriction on the number of citations. This
enlarges the possible candidate papers which can be used to build local maps of science.

28

CHAPTER 3

Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with
Coherent Embeddings.

t-SNE is an embedding method that the data science community has widely used. Two
interesting characteristics of t-SNE are the structure preservation property and the answer to
the crowding problem, where all neighbors in high dimensional space cannot be represented
correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar
items are nicely spaced by adjusting to the local density. These two characteristics produce a
meaningful representation, where the cluster area is proportional to its size in number, and
relationships between clusters are materialized by closeness on the embedding.

This algorithm is non-parametric, therefore two initializations of the algorithm would lead to
two different embedding. In a forensic approach, analysts would like to compare two or more
datasets using their embedding. An approach would be to learn a parametric model over an
embedding built with a subset of data. While this approach is highly scalable, points could be
mapped at the same exact position, making them indistinguishable. This type of model would
be unable to adapt to new outliers nor concept drift.

This paper presents a methodology to reuse an embedding to create a new one, where cluster
positions are preserved. The optimization process minimizes two costs, one relative to the
embedding shape and the second relative to the support embedding’ match. The proposed
algorithm has the same complexity than the original t-SNE to embed new items, and a lower
one when considering the embedding of a dataset sliced into sub-pieces. The method showed
promising results on a real-world dataset, allowing to observe the birth, evolution and death of
clusters. The proposed approach facilitates identifying significant trends and changes, which
empowers the monitoring high dimensional datasets’ dynamics.

29

3.1. INTRODUCTION 3

3.1 Introduction

High dimensional datasets are very rich sources of information. Because of their wideness,
they are difficult to investigate, process, and represent in a simple manner.

An appropriate reduction of width would benefit from:

• Storage cost reduction;

• Computational cost reduction;

• Denoising / Information compression;

• Synthetic data visualization.

For a dataset X ∈ Rn×d0 , with n elements and d0 dimensions, a reduction into Y ∈ Rn×d1

offers a reduction of the memory footprint of 100(1− d1
d0

) %, which is non-negligible for large
datasets. For linear algorithms, the computational cost is reduced by the same factor.

The core information in those wide datasets is hard to identify because of the large number of
features and correlation, and redundancy. The use of methods that condense the information
enables to obtain a synthetic view of the dataset, which would benefit post-processing
algorithms or data analysts’ work. The synthetic view can also be used to display results by
coloring items according to their predicted value.

A dimension reduction can be performed following different approaches:

• Automatic feature selection;

• Human engineered feature;

• Automatic feature extraction;

Automatic feature selection selects some features among all available according to some
characteristics. The feature importance can be evaluated using Shapley values [30] or
removing redundant features [31]. These approaches are relatively straightforward to put
into practice. Nonetheless, some information may be lost if the signal is too weak, or if the
number of selected features is too small.

Feature engineering allows shaping human knowledge into an algorithmic form. This approach
is practical when a minimal amount of data is available, preventing the use of automatic
algorithms. It is necessary in specific cases to transform human data into processable
information. Dates are a good example: a computer cannot understand directly that
x = [28, 2] and y = [1, 3] represent dates and that ∥x− y∥ = 1 or 2} days, depending on this
is a leap year or not. Apart from this example with an exact answer, there is no guarantee if
the transformation would help or prevent later algorithms from performing good predictions.
As these features are not learned from data, they are likely to be stable, ie not tricked by
outliers which could perturb the learning. They offer some form of explainability, as the
engineer can describe the meaning of the transformation in the human language. In the

30

3 3.1. INTRODUCTION

absence of previous knowledge, their development is costly in operating time, and on a large
dataset, an expert may miss some essential features.

Automatic feature extraction replaces handcrafted features with algorithm-learned features.
This is a broad research area, with statistical compression methods such as Principal Com-
ponent Analysis [17], or methods based on deep neural networks, like autoencoders [32],
[33].

Automatic feature extraction can be decomposed into two categories, based on reusability on
new data:

• Parametric methods;

• Non-parametric methods.

Parametric methods, such as PCA [17], Self-Organizing Maps [34], learn a mapping function
f : X → Y , which minimize a quantity of the form argf min Cost(X, f(X)). When learned,
the function f can be reused on any new input X ′. The inference time of most of these methods
is linear, such as f(X) = [f(x1), f(x2), ..., f(xn)]. For a large input X, the computation can
be distributed on several machines, which enhance scalability to large datasets.

In contrast, non-parametric methods minimize a specific quantity minY Cost(X, Y) directly
by optimizing Y ’s values. No function is learned, which prevents the reusability of a previous
computation for new data. This is the case of ISOMAP [35], UMAP [36] or t-SNE [28].
Despite the non-reusability, the two most recent methods, t-SNE and UMAP, have been
extensively used by the machine learning community. Those methods have been successful at
representing high dimensional datasets, by adapting to disparate scaling and non-homogeneous
densities while letting appear clustering structures.

The strength of t-SNE comes from its ability to deal with heterogeneous scaling and the
crowding problem. In high dimensional space, an item may have many neighbors around, all
distant from each other. By reducing the number of dimensions, it is impossible to preserve
the distance between an item and its neighbors and between the neighbors. If distance to
the item is preserved, neighbours’ distance will decrease, making them closer than in high
dimensional space. This corresponds to the crowding problem.

Instead of preserving all the distances, t-SNE preserves it locally. The algorithm adapts for
each item to the local density, taking into account a small group of neighbors. This local
adaptation makes the power of t-SNE, as the points in a very dense cluster are separated
from each other. Consequently, the number of items in a cluster is proportional to its visual
area on the embedding, which helps an analyst look at the dataset composition. The other
impact of the local adaptation is on the ability to deal with heterogeneous data scaling. All
items fit together on the same visual space regardless their initial distance to the dataset’s
mean. These characteristics lead to embeddings with excellent visual qualities.

Despite the high quality of the obtained embeddings, t-SNE is a non-parametric method,

31

3.1. INTRODUCTION 3

where no function is learned. The outcome of running t-SNE twice with the same input X

leads to two different embeddings Y (0) and Y (1), with no equivalence between the positions.
This is due to the initialization, which starts with randomly generated vectors.

The initialisation process can be controlled to improve determinism. Many works such
as [37] proposed to initialize the embedding with PCA coefficients. Starting with these
positions improves the repeatability, but does not ensure the regeneration of large scale
structures for different datasets, as t-SNE preserves local neighborhood only. The work
of [37] proposes a method to create large scale structures using two t-SNE steps, which
enables to obtain embeddings with large and low scale similarities. The algorithm starts
with the PCA coefficients as initial item positions, followed by a t-SNE step adjusted to
take into account far-range neighborhood. These positions are reused by another t-SNE
step, taking into account small-range neighborhood, letting appear a finer structure. This
work was successful for visual analytics, allowing the preservation of relative cluster positions
over multiple datasets. The embeddings are visually similar, but the preservation of cluster
positions is not exact, preventing the use of the same algorithm on all embeddings.

A naive approach to compare two datasets using their embedding is to compute the joint
embedding over the consolidated dataset X ′′ = [X, X ′]. There are two limitations to this
approach. The first one concerns the computational cost, as the complexity of t-SNE is
in O(n2) for the worst case. The work of [38] proposes an approximation of the different
forces, claiming a linear complexity. Nonetheless, the second limitation concerns the data
availability. If the two datasets are available now, but a third would arrive later, the embedding
corresponding to [X(0), X(1)] would not share spatial correspondences with the embedding
obtained with [X(1), X(2)].

To obtain consistency in the item positioning, several works [39,40] proposed the use of deep
neural networks to mimic the behavior of t-SNE. As with any trained algorithm with no
memory nor update mechanism, the inference results is purely deterministic. The algorithm
would be able to map correctly a dataset with a distribution similar to the training dataset
However, for a dataset with a different distribution, the model would not adapt to the new
density, leading to overcrowded and/or depleted areas. The neural network would not be
able to adapt to concept drift, nor as new outliers as these models’ generalizability is limited
to their training set.

Instead of learning how to make an embedding, LION t-SNE [41] proposed an answer to
where new points should be put, taking into account the points already present and the empty
areas left. New points are positioned nearby their nearest neighbors without moving existing
items from their location. Items that do not have relevant neighbors in the input space are
positioned on an empty area of the embedding, filled later with more relevant neighbors. This
approach allows adding a few points on the previous embedding, keeping the possible visual
quality of the embedding. While this work deals correctly with item’s addition, normal or
outlier, it does not deal with update nor deletion. Last point concerns the scalability. The

32

3 3.1. INTRODUCTION

addition of a few points is likely to preserve the general aspect of the embedding. However,
the shape of the resulting embedding after a massive addition of items is unknown.

Last work to mention is Dynamic t-SNE [42] which updates the embedding Y (t) into Y (t+1)

after a change from X(t) into X(t+1). It assumes that there is a one-to-one correspondence
between items of X(t) and X(t+1). This setup corresponds to a monitoring situation, where
the data coming from a fixed number of sensors arrives at each time step. To compute Y (t+1),
dt-SNE starts with the previous embedding positions Y (t), and tries to minimize the cost
defined by t-SNE relatively to X(t+1). A penalty is added on the displacement of Y (t+1)

from the initial position, which enables to keep the embedding coherent over multiple time
steps. While this work addresses the updatability, as no items can be added nor deleted, the
usability is restricted to particular use-cases, such as multidimensional time series.

In this paper, we abord the problem of the reusability of a t-SNE embedding. The proposed
approach is inspired by dt-SNE, concerning the idea of using the previous embedding as a
support to the new embedding. The support embedding is not used to initialize the new item
positions but to guide them towards neighbors location. Compared to dt-SNE, the scope is
broadened because there is no constraint on the integrated elements, nor on their number or
distribution. By enlarging to the addition, updating and deleting items, our method can be
used in many more real-world monitoring situations, such as when some sensors are added to
the system or removed due to failure. The approach is not limited to the temporal dataset,
but to any index variable, a discrete or continuous variable, such as temperature or speed.
Dataset can be sorted according to this variable, and successive embeddings can be issued to
track the impact of the index variable over the data distribution. In other words, it allows to
obtain embedding conditional to the index variable of interest. The method is called index
t-SNE, abbreviated it-SNE, for this reason.

In the first section, the main equations governing t-SNE optimization process are introduced.
This section is followed by the description of it-SNE, reusing part of the initial t-SNE scheme.
Then, the methods section describe the different datasets and evaluation metrics, followed by
the experimental results. Last, this article finishes with a discussion followed by its conclusion.

33

3.2. T -SNE FORMULATION 3

3.2 t-SNE Formulation

t-SNE [28] is a structure-preserving embedding algorithm trying to preserve the local neigh-
borhood of items in a low dimensional space. Given a dataset X ∈ R(n×d), of n items lying
in a d dimensional space, the goal is to generate its corresponding embedding Y ∈ R(n×de):

Y ← t-SNE(X; de, perp)

where de is the number of embedding dimensions, often set to 2, and perp is the perplexity
parameter. Two items i and j neighbors in X must be neighbors in Y . The definition of
neighbors depends of two things: the local density around an item, and the user-defined
perplexity parameter which represents the average number of neighbors to consider. Rather
than reasoning in terms of distances, the algorithm uses probabilities, computed from pairwise
distances, to optimize Y .

3.2.1 Interaction Probability

t-SNE tries to adapt the embedding vector Y to X using their respective probability matrices
P and Q, both of dimension n× n. These probabilities represent the degree of relatedness
of two items in their respective space. A large probability correspond to a high proximity,
while a smaller to a large distance. The input and output probability matrices are computed
differently to create a small asymmetry.

3.2.1.1 Input Probability Matrix

The conditional probability of item j with respect to i is defined as:

pj|i = 1
Zi

exp
(
−∥xi − xj∥2

2σ2
i

)
(3.1)

By convention, pi|i = 0 as an item does not interact with itself, and Zi = ∑
j ̸=i exp

(
−∥xi−xj∥2

2σ2
i

)
is the normalization constant of item i, such as ∑j pj|i = 1.

The standard deviation parameter σi adapts the kernel range to the local density around
item i. The optimal value of σi is obtained by binary search to match the perplexity. The
perplexity is a user-defined parameter that represents the average number of neighbors of an
item, defined formally as:

Perp(Pi) = 2H(Pi) (3.2)

where H(Pi) is the Shannon entropy calculated as:

34

3 3.2. T -SNE FORMULATION

H(Pi) = −
∑
j ̸=i

pj|i log2(pj|i) (3.3)

The joint probability between i and j is defined as pi,j = pi|j+pj|i
2n . These equations enable

the computation of the symmetric probability matrix P given a particular dataset X and a
perplexity target.

3.2.1.2 Output Probability Matrix

The output probability matrix Q is obtained in a similar manner using the embedding
vector Y . As the goal is to obtain homogeneous distances between neighbors, there is no
adaptation to local neighborhood. Another difference concerns the kernel choice. Instead
of an exponential kernel, a t-student kernel with one degree of freedom is used. This kernel
asymmetry allows modifying the long-range interactions, which leads to repulsive forces
between non-neighbors items.

The joint probability between item i and j is calculated as:

qi,j = 1
V

(1 + ∥yi − yj∥2)−1 (3.4)

with qi,i = 0 and V = ∑
k ̸=ℓ(1 + ∥yk − yℓ∥2)−1 the global normalization constant, which lead

to ∑i,j qi,j = 1.

3.2.2 Cost Minimization

The dissimilarity between the two probability matrices P and Q is measured using the
Kullback-Leibler divergence:

KL(P∥Q) =
∑

i

Ci =
∑

i

∑
j ̸=i

pi,j log pi,j

qi,j
(3.5)

where Ci the cost associated to item i.

By deriving equation (3.5), a simple form of the gradient is obtained:

∂Ci

∂yi
= 4

∑
j

(pi,j − qi,j) yi − yj

1 + ∥yi − yj∥2
(3.6)

The algorithm uses the gradient descent approach to minimize the cost by updating the
initial Y (0) solution:

Y (t) = Y (t− 1)− α(t)∂C
∂Y (t)

+η(t) (Y (t− 1)− Y (t− 2))
(3.7)

35

3.2. T -SNE FORMULATION 3

with α(t) the learning rate, adjusted over time, and η(t) the momentum rate. The matrix Q

is recomputed at each update step according to the newly obtained Y (t), while the matrix P

is not as the input vector is left unchanged. The computation of Q at each step is the most
costly operation, which leads to a complexity in O(n2) without optimization.

In the original paper [28], many optimization tricks are used. For instance, early exaggeration
replaces temporary (pi,j−qi,j) by (kpi,j−qi,j), where k > 1. This trick amplifies the attraction
forces between nearest neighbors, which fasten the formation of separated clusters. After
some steps, the factor is set back to k = 1 which lets nearest neighbors to separate from each
others.

Another trick is to add gaussian noise of small amplitude to the gradient to get out of local
minima at start.

The last point to be made is the α(t) learning rate. This rate is updated at each step to
boost it in the right directions and slow it down in uncertain situations.

36

3 3.3. INDEXED T -SNE

3.3 Indexed t-SNE

The initial formulation of t-SNE leads to a different embedding for each new initialization.
Instead of learning a new embedding from scratch, it-SNE takes advantage of prior embedding
to optimize the new embedding.

Given a support dataset X(0) ∈ Rn0×d of n0 items and its corresponding embedding Y (0) ∈
Rn0×de , the goal is to generate an embedding Y (1) ∈ Rn1×de corresponding to X(1) ∈ Rn1×d

of n1 items.

Y (1) ← it-SNE(X(1), X(0), Y (0); perp) (3.8)

Two items i and j neighbors in the input space must be neighbors in the embedding space,
regardeless of their origin dataset.

3.3.1 Cost

To achieve this goal, it-SNE minimizes two independent costs:

• the intra cost, C(1), defined as in t-SNE using (X(1), Y (1));

• the inter cost, C(0,1), corresponding to joint interactions between (X(0), Y (0)) and
(X(1), Y (1)).

The total cost to minimize is:

C
(1)
tot = C(1) + C(0,1) (3.9)

The formulation of C(1) is unchanged from the initial algorithm formulation.

3.3.2 Interaction Probability

Similarly to t-SNE, the probability matrices are defined to represent items relationships.
P (0,1) denotes the probability matrix between input data X(0) and X(1), and Q(0,1) for their
respective embeddings Y (0) and Y (1).

3.3.2.1 Input Interaction

For two items xi ∈ X(0) and xj ∈ X(1), the input probability is defined as:

p
(0,1)
i|j = 1

Z ′
j

exp
(
− ∥xi − xj∥2

2σ2
j

)
(3.10)

where σj corresponds to the optimal parameter for j obtained with t-SNE on X(1), and
Z ′

j = ∑
i exp

(
− ∥xi−xj∥2

2σ2
j

)
is the normalization constant to obtain ∑i p

(0,1)
i|j = 1.

37

3.3. INDEXED T -SNE 3

The joint probability between i and j is defined as:

p
(0,1)
i,j = p

(1,0)
j,i = 1

2

p
(0,1)
i|j
n1

+
p

(1,0)
j|i
n0

 (3.11)

The symmetrization allows taking into account the density of the two datasets on a given
location. Additionaly, the normalization allows to equalize the dataset influence. If one
dataset is larger than the other, it would contribute more are the total forces from each of its
items would be larger than for the smaller dataset. The normalization by dataset size allow
to obtain equivalent contribution.

3.3.2.2 Output Interaction Probabilities

The goal of it-SNE is not to place new items Y (1) on existing holes of Y (0), but to have Y (1)

on a parallel layer of Y (0). To relax forces, and to take into account embedding separation, a
penalty factor ϵ is introduced to artificialy separate points belonging to different embeddings.
It could be seen as new embedding dimension de + 1, such as y(0)

i = [y(0)
i,1 , y

(0)
i,2 , ..., y

(0)
i,de

, 0]
and y(1)

j = [y(1)
j,1 , y

(1)
j,2 , ..., y

(1)
j,de

, ϵ]. The distance between two items is then ∥y(0)
i − y(1)

j ∥ =
∥yi − yj∥+ ϵ2.

The kernel used for the definition of output probabilities is kept unchanged, up to the addition
of ϵ:

q
(0,1)
i,j = 1

V ′

(
1 + ∥yi − yj∥2 + ϵ2

)−1
(3.12)

where V ′ = ∑
i,j

(
1 + ∥yi − yj∥2 + ϵ2)−1 is the normalization constant, which ensures∑

i,j q
(0,1)
i,j = 1.

3.3.2.3 Cost Minimization

The modification of t-SNE algorithm has a limited impact on the cost derivative formulation.
The only change impacts the strength of the gradient by the addition of the term ϵ2:

∂C(0,1)

∂y(1)
i

= 4
∑

j

(p(0,1)
i,j − q

(0,1)
i,j) yj − yi

1 + ∥yi − yj∥2 + ϵ2 (3.13)

The initial solution Y (1)(0) is optimized following equation (3.7), replacing ∂C
∂Y by ∂C(1)

∂Y (1) +
∂C(0,1)

∂Y (1) .

38

3 3.4. EXPERIMENTAL SETUP

3.4 Experimental Setup

3.4.1 Algorithm Parametrization

For all experiments, the target perplexity is set to 30. The initial vector of Y , used to start
the optimization process is drawn from a gaussian distribution N (0, σ2) with σ = 10−4. At
each iteration step, a gaussian noise of standard deviation σ = 10−4 is added to the gradient.

The initial learning rate α(0) = 10 is adapted at each timestep for each item i and dimension
k according to the similarity between the gradient and the previous displacement direction
δi,k(t) = − ∂C

∂yi,k
(t).(yi,k(t− 1)− yi,k(t− 2)):

αi,k(t) =
{

αi,k(t− 1) + 0.2 if δi,k(t) > 0
αi,k(t− 1)× 0.8 else.

The momentum rate η(t) is adapted over learning, such as η(t) = 0.5 if t < 250 else 0.8.

For t-SNE, the early exaggeration trick is used for the 100 first steps, with an exaggeration
factor of 2. For it-SNE, the early exaggeration was disabled.

The number of training steps for a t-SNE embedding and it-SNE is fixed to 300 and 200
respectively. Unless specified, ϵ = 1.

t-SNE and it-SNE were implemented in Python, using NumPy library [43].

3.4.2 Datasets

We propose to illustrate the results it-SNE over two types of datasets:

• A synthetic dataset, where all parameters can be controlled at ease;

• A real-world dataset to look at its capabilities on unknown distributions.

3.4.2.1 High Dimensional Gaussians

High dimensional Gaussians are good study candidates, as all dimension are equivalent,
preventing the use of renormalization methods. The dataset was constructed inspired from
the protocol described in [42].

A dataset of 100 dimensions is created by generating gaussian clusters. 10 gaussian center
positions {µµµg}g=1:10 are generated uniformly at random in µµµg ∈ [−0.5, 0.5]100. For each
gaussian g, 100 items are sampled from the multivariate normal distribution of mean µµµg and
standard deviation σ. This process leads to a dataset of 1000 items.

In the paper Dynamic t-SNE [42], the authors proposed to build a temporal dataset made of
shrinking Gaussians. For each item x associated with the Gaussian g, the distance between the
item and the center is reduced by 10 % at each time-step, such as ∥x(t)−µµµg∥ = 0.9t∥x(0)−µµµg∥.
Mechanically, σ(t) is reduced in the same proportion, such as σ(t) = 0.9tσ(0). For this

39

3.4. EXPERIMENTAL SETUP 3

experiment, σ(0) = 1.0. The shrinking process is followed for 9 steps, which leads to
σ(10) ≈ 0.4.

By changing the time direction, a similar experiment with growing Gaussians is generated,
starting with σ(0) = 0.4, and growing at the rate of σ(t) = 0.9−tσ(0).

While these two introductive experiments keep the total number of point stable and homoge-
neous density for each Gaussian, we propose to build a temporal dataset where heterogeneity
appears over time. For each Gaussian g, an expansion rate is sampled uniformly at random
from rg ∈ [0.5, 1.5], where 1. leads to an invariance of the element number. In contrast,
0.5 leads to a 50 % step reduction in the number of elements. Each Gaussian starts with
ng(0) = 100 points. The number of points for Gaussian g at step t is ng(t) = ⌊n(0)rt

g⌉, but
the standard deviation is kept stable with σ = 0.4. A temporal dataset is generated for 4
successive update steps.

3.4.2.2 Citation Graphs

A citation graph G = (V, E) is a directed acyclic graph (DAG). V represents the a set of
documents, like scientific papers, patents, law articles, blog posts, which are supposedly
immutable. E is the set of directed edges, with e = (a, b) ∈ E meaning that the document a

is referring to document b, implicitly but assuming that a is newer than b.

Graphs are data structure that are difficult to represent in 2D, because they of their sparsity
and the distribution in power-law of their node degree, which leads to a small number of
strongly connected nodes, and a large number of weakly connected nodes. Nonetheless,
citation graphs, as well as other real-world graphs, organise into local communities which are
interesting to study.

We propose to study the evolution of research communities over time by embedding the
documents published each year. The embedding obtained for year t is reused for year t + 1,
which would be used in turn to build the following embedding. The DBLP dataset version 12
[27] was used for this purpose. This dataset corresponds to the citation graph of scientific
papers around the topic of computer science. It contains 4.894.081 papers and 45.564.149
citing relationships. Metadata are available for the majority of the documents, providing
information such as title, publication date, abstract, authors information, conference or
journal reference, reference links, and keywords. Keywords also called field of study, are
automatically extracted according to the method described in [44].

3.4.2.2.1 Graph preprocessing A preprocessing removes all existing cycles, as some pa-
pers are updated after the official publication date, adding a few citations. This phenomenom
concerns a minority of papers, but creates undesirable loops. The cycles are removed using a
DFS approach, removing any edges accessed twice by a DFS branch. The main connected
component is then kept, removing all papers with no bibliography or belonging to an isolated
community.

40

3 3.4. EXPERIMENTAL SETUP

3.4.2.2.2 Node Sampling The citation graph considered is too large to be processed
at once. We took advantage of the keywords to select a subset of papers related to a
particular topic. We selected all documents related to cryptography and related topics,
which corresponded to around 100.000 documents published between 1953 and 2020. The
documents with less than one reference and less than one citation were removed, which left
70.000 documents published between 1953 and 2020, with the majority published between
2005 and later.

3.4.2.2.3 Extracting Distance Matrix from a Citation Graph A graph cannot be
converted to tabular data used by t-SNE. Nonetheless, t-SNE and it-SNE use the distance
between items and do not focus on particular features. Even if it is not possible to measure
the euclidian distance between nodes on a graph, a distance matrix can be obtained.

The distance between nodes is not a great distance measure. The possible integer values
are coarse measures, and the distance is not correctly defined for all pairs in a DAG. Plus,
a document may quote unrelated documents from another discipline for illustrating its
argumentation with other scientific views. The node could be at distance 2 of many papers
on a completely unrelated field, just because of a single example.

A way to measure the document similarity is through bibliographic coupling [45]. Two
documents sharing some of their references are coupled, even if there is no direct path from
one to the other in the DAG. The strength of the coupling depends on the overlap size. As
the graph is sparse, we extend the bibliographic coupling to undirect reference until distance
3. This strategy reduces the sparsity and improves the sensibility of the coupling.

The coupling strength is measured using the Jaccard similarity measure. For two documents,
a and b, with respective reference sets A and B, the similarity between these two documents
is defined as:

Sim(a, b) = |A ∩B|
|A ∪B|

(3.14)

A similarity is a value s ∈ [0, 1], while a distance is a value d ∈ R+. A distance close to 0
is equivalent to a similarity of 1, while a large disance to a similarity close to 0. Because
the similarity behavior is the opposite of the one of a distance, a form of distance can be
obtained by transforming the similarity:

D(a, b) = 1
Sim(a, b) + ξ

− 1
1 + ξ

(3.15)

where ξ = 10−5 is a small constant, which avoids division by zero and limit the maximal
distance to 105. Using equations (3.14) and (3.15), the citation graph can be appropriately
transformed for the embedding algorithms.

41

3.4. EXPERIMENTAL SETUP 3

3.4.3 Metrics

In this subsection, we define some of the metrics which would be used to evaluate the different
parameter configurations.

3.4.3.1 Cost

The configuration of the embedding is evaluated in terms of cost, which is the quantity
minimized by t-SNE:

∑
i ̸=j

pi,j log pi,j

qi,j
(3.16)

where P and Q correspond to the intra-probability matrices without considering the interaction
with the previous embedding.

By comparing the cost of the embedding obtained with it-SNE to the reference one obtained
with unmodified t-SNE, the comparison enables to study whereas the addition of a second
cost term affect the optimization process.

3.4.3.2 Distortion

For an experiment where the items in X(0) ≈ X(1), a way to measure how well it-SNE places
the point is to measure the distance between the inital and new position Y (0) and Y (1) and
new position Y (1) .

Err(Y (0), Y (1)) =
∑

i

|y(0)
i − y(1)

i | (3.17)

42

3 3.5. EXPERIMENTAL RESULTS

3.5 Experimental Results

3.5.1 Evolution of Gaussians

Shrinking Gaussians This introductive experiment reproduces the protocol proposed
in [42], were points are progressively attracted toward their Gaussian center of reference.
The initial embedding Y (0) corresponding to X(0) is obtained with t-SNE, while all following
embedding Y (t) for t ≥ 1 are obtained with it-SNE using as a support the pair (X(t−1), Y (t−1)).

Figure 3.1: Shrinking gaussians. From left to right, steps 1, 3, 5, 7 and 9 are represented. Points are colored
according to their gaussian center of reference. ϵ = 1.0

Fig. 3.1 shows the result with it-SNE, which transforms undistinguishable groups into
well-defined groups. Our approach works as well as dt-SNE, but while dt-SNE uses the
Y (t−1) position to initialize Y (t), it-SNE restarts from random vectors. This difference frees
our model from restrictions on the size and content of the dataset. This experiment was
performed on freshly generated points sampled at each time step, leading to the same results
as those presented in Fig. 3.1.

Growing Gaussians By reversing time direction, we get another set of experiments. The
dataset starts with 10 Gaussians with σ(0) = 0.4, progressively increased to σ(9) ≈ 1.0

Figure 3.2: Growing Gaussians. From left to right, steps 1, 3, 5, 7 and 9 are represented. Points are colored
according to their Gaussian center of reference. The penalty factor is set to ϵ = 1.0

The results are represented on Fig. 3.2. This task is easier than the previous, as the first
embedding starts with well-separated clusters. The next embedding support is of higher
quality than in the previous experiment where the variance was larger. Even after moving to
a noisier dataset (the last plot of growing gaussians has almost the same variance as the first
plot of shrinking gaussians), the separation between items of different clusters is preserved
even if clusters are not spaced from each other. A support embedding of good quality helps
to guide items belonging to a noisy dataset, building a better embedding.

43

3.5. EXPERIMENTAL RESULTS 3

Change in Density The last visual result to present with gaussians focuses on density
changes with a fixed σ. The number of samples per Gaussian changes at each step. For
gaussian g at step t, the number of items generated around µµµg is calculated as ng(t) = ⌊n0rt

g⌉.

Figure 3.3: Evolving gaussians. 10 gaussians of various size with σ = 0.4. From left to right, time steps 0 to 4
are displayed. The penalty parameter is set to ϵ = 1.0. Points are colored according to their Gaussian center of
reference.

Fig. 3.3 illustrates the result of this process. At the start, all clusters have the same size and
density and are spaced equally from each other. As time passes, some of the Gaussians grow
in size, while others shrink. The area used by shrinking Gaussians decreases while growing
Gaussians expand over the space available. The cluster positions are preserved despite the
change of density unless too few items are present to allow the cluster aggregation.

3.5.2 Influence of ϵ

In this subsection, we discuss the impact of ϵ on the applied forces. For simplicity of the
notation, the elements pi,j and qi,j correspond to p

(0,1)
i,j and q

(0,1)
i,j , with i an element of the

support dataset (0) while j an element of the dataset to embed (1). The same simplication is
applied to y

(0)
i and y

(1)
j .

3.5.2.1 Forces

The factor ϵ has an impact on Q and the gradient. The strength of the gradient is reduced, as
ϵ plays in

(
1 + ∥yi − yj∥+ ϵ2)−1. As ϵ grows, the forces coming from the support embedding

vanish.

The ϵ factor has an impact on the influence of items by changing the numerator and
denominator of Q. When ϵ increases, the numerator

(
1 + ∥yi − yj∥+ ϵ2)−1 decreases for all

item pairs. This value decays faster for items i and j that are close to each other than those
which are not. The denominator of Q in (3.12), V ′ = ∑

i,j

(
1 + ∥yi − yj∥+ ϵ2)−1 decreases

when ϵ increases. As both numerator and denominator of Q decrease, the effective variation
depends on the item proximity. Q increases for a pair of distant items and decreases for items
that are close. The growth of ϵ reduces the variance, converging to limϵ→∞ V(Q) = 0, and
homogenize the value of qi,j to limϵ→∞ qi,j = 1

n0n1
.

Fig. 3.4 illustrates the evolution of Q values with ϵ, using the dataset with 10 gaussians. For
the low value of ϵ, only items belonging to the same gaussian interact together (ie, 10% of
the points). As ϵ grows, the weights of the nearest neighbors decrease to the profit of more

44

3 3.5. EXPERIMENTAL RESULTS

Figure 3.4: Percentile values of the qi,j for different values of ϵ. Colors are linear with the value of Q: dark colors
correspond to value close to 0 while bright color to high value. The color saturates in yellow at 3n−2.

distant neighbors.

Because of the kernel asymmetry between P and Q, the reduction of variance and the
convergence to the mean of Q leads to two different behaviors, depending on the closeness
of two items. The items are divided into two classes based on the value of pj,i. The closer
neighbors with pj,i > 1

n0n1
are considered as the nearest neighbors while the other distant

neighbors. For nearest neighbors, the artificial distancing created by ϵ lowers the output
probability q > qϵ, for qϵ = q(ϵ > 0) and q = q(ϵ = 0). P and Q’s difference is p−qϵ > p−q is
then larger, which leads to larger attractive forces from the close neighborhood. The opposite
effect happens for distant neighbors where q < qϵ, which leads to p− q > p− qϵ, generating
repulsive forces.

To summarize, on the one hand, the forces are globally lowered as ϵ impacts the gradient,
and on the other hand, the discrimination between nearest and distant neighbors grows as ϵ

amplifies the asymmetry.

3.5.2.2 Displacement from Origin

A way to study the two contributions can be done by looking at the ability of it-SNE to
recover the exact embedding positions.

For a dataset X(0), first is computed Y (0) with:

Y (0) ← t-SNE(X(0))

followed by:

Y (1) ← it-SNE(X(0), X(0), Y (0))

.

Fig. 3.5 shows the cluster conformation for two different ϵ. The clusters are correctly matched,
both in classes and in positions for ϵ = 1, as Y (1) masks Y (0). However, for ϵ = 25, while the
cluster classes are corectly matched, they are distant from the original position.

45

3.5. EXPERIMENTAL RESULTS 3

Figure 3.5: Mapping of gaussians with standard deviation σ = 0.4. The embedding Y (0) is colored in light blue on
each plot, while items of Y (1) are colored according to their cluster of reference. Left: ϵ = 1, right: ϵ = 25.

To study the transition between the two conformations, we look at the distortion
Err(Y (0), Y (1)), which measures the distance between the initial and final position.

Fig. 3.6 shows the impact of an increase of ϵ over the item locations. For low ϵ, the error is
almost 0. The average distance error for ϵ = 0 is 0.204, while the average distance to the first
nearest neighbor is 0.218, for an embedding of diameter 32.1. With increasing values of ϵ, the
distances between initial and final positions grow. The right part of Fig. 3.5 illustrates the
situation. The repulsive forces between distant neighbors are stronger than the attraction of
the nearest neighbors. This pushes the clusters even furthen away from each other, increasing
the distance from the initial position. The maximal distortion is reached around ϵ = 25, a
value of the order of the embedding diameter.

After this maxima, the distortion error decreases to stabilize at a value of 2.6. Compared to
the diameter of one cluster presented in 3.5, the value is relatively similar, around 2.88. The
clusters overlap, but the forces are not strong enough to accurately bring them to their exact
location.

3.5.2.3 Cost

it-SNE tries to minimize two costs at the same time. They might not be compatible, with
opposite gradient directions. The intra cost allows assessing the embedding quality to see if
the embedding could reach a correct minima, or if the inter forces constrained the embedding
to a non-optimal state.

Fig. 3.7 presents the results for the same conformations as in Fig. 3.6. The cost is slightly
higher to start with, but it decreases as ϵ increases to arrive at a local cost minima. This
local minima corresponds to the distortion maxima of Fig. 3.6. The conformation ϵ = 25 is a

46

3 3.5. EXPERIMENTAL RESULTS

Figure 3.6: Evolution of the embedding error Err(Y (0), Y (1)) with ϵ using 10 gaussians with standard deviation
σ = 0.4.

Figure 3.7: Evolution of Kullback Leibler cost with increasing ϵ. Gaussians with standard deviation σ = 0.4. The
dashed line corresponds to the cost of embedding Y (0) obtained with the regular t-SNE

47

3.5. EXPERIMENTAL RESULTS 3

Figure 3.8: Evolution of the Kullback Leibler cost over training time, with 10 gaussians of standard deviation
σ = 0.4. The yellow to dark lines correspond to it-SNE for several value of ϵ The blue dashed line corresponds to
the cost evolution for t-SNE. The dotted line corresponds to baseline with t-SNE, speeded by a factor 2.

more stable configuration than the initial one. For larger values, the forces’ strength decrease,
but stay below the baseline cost, corresponding to the support configuration. It is to note
that the cost difference between the lowest and highest cost value in Fig. 3.7 is relatively
small. All conformations are relatively good, some a little bit more than others.

3.5.2.4 Convergence Speed

In our protocol, the number of training step was fixed to control the computational time. For
a support embedding of n0 items and a new dataset to embed of n1 items, the t-SNE cost is
proportional to n2

1, while the cost for it-SNE is proportional to n2
1 + n0n1. In our experiments

n0 = n1 = 1000 which means that the number of operations performed by it-SNE is twice
the number of t-SNE.

Fig. 3.8 shows the cost evolution for several values of ϵ. All curves start with a plateau,
which corresponds to when the learning rate is not boosted enough to lead to significative
changes per steps. The lower ϵ is, the shorter the time spent on the plateau is. A decay part
follows the plateau, which smoothly slowed down until convergence.

The dotted orange line allows comparing t-SNE with it-SNE on the number of computational
operations. t-SNE is faster than it-SNE, but the difference between the two is not very large.

3.5.3 Citation Graph Embedding

Gaussian clusters are easy to study as the parameters are fully controlled. Citation graphs
are selected to illustrate a real-world example of it-SNE capabilities.

Because a scientific article refers to relevant papers in its field, this type of dataset presents

48

3 3.5. EXPERIMENTAL RESULTS

local community structures. The evolution of the number of researchers is leading to an
expansion of knowledge in many fields, and the creation of new ones. Other fields tend to
disappear, because of a lack of support from the scientific community or an absence of new
discoveries. The study of these phenomenom allows to retrace history and reconstruct the
science phylogeny [46].

Figure 3.9: Citation graph of cryptographic papers in 2010, with some highlighted clusters. A: Hashing, B: Network
Code, C and C′: Biometry, D: Watermarking/Data Hiding, E: Passwords. The item size is proportional to the
number of citations.

Fig. 3.9 represents the papers published in the cryptography/security field in 2010. Papers
groups together to form connected clusters with various shapes, sizes and densities. To the
default of a clustering algorithm, some groups have been highlighted and labelled by hand
with the help of documents’ title and keywords.

Cluster A, with Hashing’s general topic, is compact with items well connected to each others.
Cluster D about Watermark is more diffuse than A, but items are still grouped together.

49

3.5. EXPERIMENTAL RESULTS 3

Figure 3.10: Citation graph of cryptographic papers, published between 2010 to 2017. Clusters are highlighted
according to the previous figure coloring scheme. Size of points is proportional to the logarithmic number of
citations. Dark areas correspond to highly grouped papers. The fusion between Biometry and Password clusters in
2013 is shaded in grey.

The Biometry cluster C is composed of several sub-units of various density. Cluster B and
E about Network Code and Password respectively are much more compact than the other
presented.

The papers in each cluster are mostly in phase with the general cluster topic, showing local
unity. Nonetheless, the reverse is not valid: a cluster about a particular topic does not
englobe all documents related to it. A keywords may correspond to two different ideas, or two
distinct communities may work on different aspects of the problem. For instance, this is the
Biometry field case, which occurs twice in various embedding locations. There is one large
cluster on the right and a smaller one on the left (denoted C and C ′ respectively). While
the large cluster C is about general biometric recognition methods, the C ′ is focussed on
authentication scheme, mixing Biometry, Password and Authentication topics together.

Scientific communities are dynamic and adapt to new trends. Fields emerge, grow, interact,
split, and disappear. it-SNE allows reusing these initial cluster positions for the next
subsequent embedding, which allows tracking such dynamics.

Fig. 3.10 presents the evolution of the embedding 3.9 from 2010 to 2017, with the same color
highlighting. The general shape of the embedding is stable over time, with clusters’ positions
preserved. A small drift of the clusters occurs, which is noticeable after a few embedding
steps. The growth and shrink of some clusters is visible, such as for the second biometry
cluster on the left which expands over the years. Merges are also visible, such as for the
Biometry and Password clusters, which first merge in 2013.

To have a better view of the evolution, Fig. 3.11 shows an enlarged view of the top right

50

3 3.5. EXPERIMENTAL RESULTS

Figure 3.11: Citation graph of cryptographic papers, published between 2010 to 2017. Clusters are highlighted
according to the previous figure coloring scheme. The size of points is proportional to the logarithmic number of
citations. Dark areas correspond to highly grouped papers. The fusion between Biometry and Password clusters in
2013 is shaded in grey.

area of the embedding, where Biometry and Password field of study clusters are. In this area,
different types of phenomena occur. There are stable clusters present, such as the Hashing,
Biometry, and Watermark, with constant size and density. Password cluster growths in size,
while Network Coding disappeared in 2015. The Biometry and Password groups have been
interacting with each other and began merging in 2017.

As the clusters have been human extracted, no metric measure has been tested. Tables listing
the most cited paper for each year for the different clusters are presented in the appendix
(Tables 3.1, 3.2, 3.3, 3.4, 3.5, 3.6). The articles presented in these tables are very consistent
with the theme of the cluster from which they originate.

51

3.6. DISCUSSION 3

3.6 Discussion

3.6.1 Complexity

The normal complexity of t-SNE is in O(n2), where n is the number of items. While some
optimization exists when the dataset is tabular, like the Barnes-Hut optimization [47] which
reduces the cost to O(n log n), for data like graphs from which a distance matrix can be
obtained, this quadratic cost is prohibitive.

If the dataset is cut into k equivalent pieces of m = n
k pieces, the algorithm would run in

O(2km2) = O(2
k n2), where the 2× stands for the two gradient parts. This reduces by a factor

k
2 the complexity. The complexity here measures the average number of operations for one
run of an iteration step. However, as the algorithm uses gradient descent, a convergence
criterion governs the total number of steps. Intuitively, the number of steps required to
converge for a large dataset seems larger than for a smaller dataset. The decomposition of
the dataset into pieces would reduce the effective computational time.

Concerning the memory requirements, the normal t-SNE requires a storage space of 2n2,
necessary for the matrix P and Q. Using it-SNE with a dataset split into k pieces, 4 matrix
of size m2, (P (t), Q(t), P (t−1,t), Q(t−1,t)) are needed to compute the embedding. The total
amount of memory required is then 4m2 = 4

(
n
k

)2, which is more interesting, as k2

2 reduces
its cost. The computational time can be extended on a machine, but not its memory. Our
proposed method can be helpful as way to map large datasets by cutting them into smaller
pieces.

3.6.2 Selecting ϵ

Speedup The parameter ϵ controls the applied forces and the gradient strength. A low
value of ϵ creates strong forces which leads to fast convergence. Nonetheless, forces prevent
items to move to other locations. An increase of ϵ would relax the system and help an item
to arrive on a low energy state. As for the early exaggeration trick, it would be beneficial to
start with a small value of ϵ and then finish with a larger value.

ϵ and Perplexity The perplexity governs the number of neighbors taken into account.
The numerator of P in equations (3.1) and (3.10) grows with a perplexity increase for all
items. The denominator grows too, and leads to a decrease of P for the nearest neighbors. It
repercutes on Q which needs to decrease. The distances between Y ’s increase with larger
perplexity.

If the support embedding has a different perplexity than the target perplexity, a large ϵ

may help to adapt to the new perplexity, by relaxing forces strength. The clusters would be
attracted to nearby position, and the intra-forces would arrange the local shape.

52

3 3.6. DISCUSSION

3.6.3 Adaptation to Large Changes of Density

Our experiments have been done with temporal datasets with constant or slowly evolving size.
The use of a support dataset of highly different size may constrain the system optimization.
For a fixed perplexity, the diameter of an embedding grows with the size of the dataset in
(n)

1
de . Two datasets of different size would have a radius of r(0) and r(1). The items located

in the middle of the embedding can be correctly matched with the support items. However,
for peripheral items, there would be a gap of |r0 − r1|. it-SNE would create a distortion,
constraining items of (1) to expand if r0 > r1, which would increase the interdistances between
items in Y (1). For r0 < r1, a shrinking would occur leading to the same distortion. As intra
forces of (0) do not play any role, a trick to free from this constraint would be to scale Y (0)

into Y (0∗), using the scaling ratio s =
(

n1
n0

) 1
de , such as Y (0∗) = sY (0). This would help for

datasets of similar densities. For different densities, local distortions would still occur.

3.6.4 Using more than one Support Embedding

The method proposed to use one embedding to support the generation of a new one. A
natural question arises about the possiblity of using the support of two or more embeddings.
This case may happen if two embeddings for t0 < t2 have been obtained but not for t1 yet,
with t0 < t1 < t2. Intuitively, the constrains engendered by the two embeddings might be
equivalent to a single one. If more embeddings were to be taken into account, all grouped
embedding cost must not prevent the intra forces from playing their role.

For a dataset X(k) taking support of datasets X = {X(i)}i=1:k−1 with respective embeddings
Y = {Y (i)}i=1:k−1, the cost could be rewrited as:

C
(k)
tot = C(k) + 1

k − 1

k−1∑
i=1

C(i,k) (3.18)

This adaptation allows generating embedding in between two existing embeddings. Another
use of this adaptation is the multivariate case, like for geolocation coordinates, where
the new embedding might take the support using multiple non-equivalent datasets. For
X = {X(i)}i=1:k−1 with relative importance W = {wi|wi > 0}i=1:k−1, the weighted cost
would have the form:

C
(k)
tot = C(k) + 1∑k−1

i=1 wi

k−1∑
i=1

wiC
(i,k) (3.19)

Note that the use of multiple support embeddings increases the cost linearly with the total
number of items. Nonetheless, if the nearest datasets are too small to serve as a support, the
use of more than one embedding may helps to preserve embedding knowledge and enhance
long term coherency.

53

3.7. CONCLUSION 3

3.6.5 Binary Computation

To create several coherent embeddings for a succession of datasets, the process can be
speeded-up by distributing the embedding tasks. If there are k datasets to embed, instead of
computing the embeddings in a sequential way, using the support of t− 1 to compute t, the
use of another more distant support would help. The closer the support, the better it would
be, as the distribution difference between two neighbor datasets is expected to be lower than
for distant datasets.

The computation starts with an initial embedding for ⌊k
2⌉. Then, the left and right intervals

are divided in their middle. An embedding is issued for ⌊k
4⌉ and ⌊3k

4 ⌉. Then, the embedding
for subset ⌊1

8k⌉ can be computed using the support of ⌊k
4⌉, and ⌊7k

8 ⌉ using the support of
⌊3k

4 ⌉. For the middle parts ⌊3
8k⌉ and ⌊5

8k⌉, their respective embedding is computed using two
support embeddings, respectively using (⌊k

4⌉, ⌊
k
2⌉) and (⌊k

2⌉, ⌊
3k
4 ⌉). The procedure is repeated

recursively until all embeddings have been obtained.

This decomposition allows to speedup the process from O(k) to O(log2(k)).

3.7 Conclusion

This paper presents a method adapting t-SNE algorithm to reuse a previous embedding to
generate a new one. Compared to the base method t-SNE, an additional cost term is added.
This cost links the new items to embed to the support embedding, creating attractive forces.
These forces enable the similar items from the support and current datasets to be located on
the same embedding area. Clusters are coherent in the location from one embedding to the
other, enabling the reuse of a classification algorithm on both.

it-SNE was tested on two datasets. The first used synthetic gaussians forming dense clusters,
evolving in density and size over time. The second was the scientific citation graph restricted
to cryptography related papers, with small, sparse communities. The algorithm was successful
at preserving the cluster locations in both experiments, while preserving t-SNE embedding
aspect.

Compared to t-SNE, the computational complexity and the memory requirement of it-SNE
are doubled. Nonetheless, the use of a support embedding speedups the convergence process
of it-SNE. The total number of operations of it-SNE is, in practice, equivalent to t-SNE.

We proposed two extensions: the first to the multivariate case and the second to distribute
the embedding computation. One unsolved problem yet is the adaptation to highly different
densities, as t-SNE mechanism tries to keep average distance between neighbors constant,
which leads to an expansion of the embedding with increasing dataset size.

it-SNE can be used for many purposes, such as monitoring, anomaly detection, network
analysis, allowing to track the evolution of clusters in a low dimensional space. The method
is not restricted to temporal datasets and could be used to study the impact one variable’s

54

3 3.7. CONCLUSION

impact on the dataset distribution.

Appendix: Most cited papers

The following tables list the most cited document per year per topic of the different clusters
highlighted in Fig. 3.9. Some titles have been truncated.

Table 3.1: Hashing

Year Title
2010 Semi-supervised Hashing for Scalable Image Retrieval
2011 Minimal Loss Hashing for Compact Binary Codes
2012 Image Signature: Highlighting Sparse Salient Regions
2013 Inter-media Hashing for Large Scale Retrieval
2014 Supervised Hashing for Image Retrieval
2015 Supervised Discrete Hashing
2016 Deep Supervised Hashing for Fast Image Retrieval
2017 Learning Discriminative Binary Codes

Table 3.2: Network Coding

Year Title
2010 Secure network coding over the integers
2011 Secure Network Coding on a Wiretap Network
2012 Cooperative Defence Against Pollution Attacks
2013 An Efficient Homomorphic MAC with Small key Size
2014 A Lightweight Encryption Scheme for Network-Coded Mobile

Table 3.3: Biometry

Year Title
2010 Unobtrusive User-Auth on Mobile Phone
2011 A survey on Biometric Cryptosystems and cancelable biometrics
2012 Touch me once and I Know it’s you
2013 Touchalytics: On the Applicability of Touchscreen Input
2014 Image quality Assessment for Fake Biometric Detection
2015 Deep Representation for Iris, Face and Fingerprint
2016 Continuous User Authentication on Mobile Devices
2017 MagNet: A Two-Pronged Defense against Adversarial Examples

55

3.7. CONCLUSION 3

Table 3.4: Biometry and Authentication Schemes

Year Title
2010 An Efficient Biometrics-based Remote User Authentication Scheme
2011 Cryptanalysis and Improvement of a Biometrics-based Remote
2012 A secure Authentication Scheme for Telecare Medecine
2013 A Temporal-Credential-Based Mutual Authentication
2014 A Novel User Authentication and Key Agreement Scheme
2015 Robust Biometrics-Based Authentication Scheme
2016 An efficient User Authentication and Key Agreement Scheme
2017 Anonymous Authentication for Wireless Body Area Networks

Table 3.5: Watermark

Year Title
2010 Review: Digital Image Steganography
2011 Reversible Data Hiding in Encrypted Image
2012 Separable Reversible Data Hiding in Encrypted Image
2013 Digital Image Forgery Detection using Passive Techniques
2014 Reversibility improved data Hiding in Encrypted images
2015 RAISE: a Raw Images Dataset for Digital Image Forensics
2016 Reversible Data Hiding: Advances in the Past Two Decades
2017 Fragile Image Watermarking with Pixel-wise Recovery

Table 3.6: Password

Year Title
2010 Encountering Stronger Password Requirements
2011 Of Passwords and People: Measuring the Effect of Passwords
2012 The Quest to Replace Passwords
2013 Patterns in the Wild: a Field Study of the Usability of Pattern
2014 It’s a Hard Lock Life: A Field Study of Smartphone Unlock
2015 "... No one Can Hack My Mind": Comparing Expert
2016 Who are you? A Statistical Approach to Measuring User Auth.
2017 Zipf’s Law in Passwords

56

Part II

Clustering Sparse Bipartite Graphs

57

CHAPTER 4

Tagged Documents Co-Clustering

Tags are short sequences associated with a resource, such as as music, image, book, video,
patent, shoping item, and many others. For non-textual resources, they can be used to describe
the content of a document. These tags are useful for machine information retrieval systems to
access quickly a document or use recommender systems to suggest similar items. This short
description allows it to guess if a resource would be relevant for a user. However, due to the
limited number of tags per document, the match between a user query and the document’s
tags is often low. In this paper, we propose a methodology to cluster tags into conceptual
groups, which could be used to refine a query. As keywords follow Zipf’s law distribution, data
are preprocessed to remove power-law effects and enhance the context of low-frequency words.
Then, a hierarchical agglomerative co-clustering algorithm is proposed to group together the
most related tags into clusters. The capabilities were evaluated on a sparse synthetic dataset
and a real-world tag collection associated with scientific papers. The task being unsupervised,
we propose some ending criterion for an optimal partitioning.

59

4.1. INTRODUCTION 4

4.1 Introduction

Tags are words or short sequences associated with a resource or a document. Depending on
the context, the role of a tag differs. They could be used to describe feeling, category, source,
content, ownership and others [48].

The tags associated with a document form a bag of words, where the order does not matter.
Tags can be weighted or ranked by relevance, helping the machine or user to know which are
the most accurate or specific to the document.

Tags can be obtained with two different approaches: they can be machine extracted, where
an algorithm process the resources and extract some of their characteristics [27,49]; or they
can be handcrafted by experts or non-experts. In the expert case, the vocabulary is controlled,
and the results would be comparable to machine extracted tags. In contrast, folksonomy
corresponds to non-expert tags, leading to a large corpus with redundant or mispelt tags.

The corpus is often represented using the vector space model, where a document is represented
by a sparse binary vector, where a 1 encode the presence of a tag within the document.
The document’s tags cannot be rank by importance because a document is described by
a binary vector. Tags can only be ranked within the corpus, and often shows power-law
distribution [50], making their analysis difficult because of the scarcity of frequent keywords
and an abundance of unfrequent tags. Additionally, their number per document is relatively
smaller than for usual textual documents, as the goal of tags is to provide a synthetic view of
the document. This reduces the precision of an analysis when a tag is missing, as there is not
enough tag redundancy to compensate for the absence of this tag.

A way to improve the tag vector representation is to rely on an external database [51] like
WordNet [52] or Wikipedia [53] to add additional related tags to enrich the initial tag vector
description. Another possibility is to rely on a probabilistic model [54], modeling keywords
distribution based on available data.

Tags can be use for information retrieval and recommendation. For a machine, it allows
proposing related documents using tag co-occurrences. For a human, tags can be used to
create tag clouds [55] to help a user to refine its query by suggesting related keywords. A
tag cloud displays the best co-occurring tags, adjusting the size, color, opacity of the tags
to the context. Nonetheless, the tag cloud utility is limited due to the amount of irrelevant
unorganized information [56,57]. Rather than ranking tags against an initial query, another
option is to cluster tags [58], grouping them by context.

Many algorithms, trying to cluster keywords alone, without clustering documents [57,59,60]
exist. These approaches do not take advantage of the duality between samples and features.
For our particular setup where documents are succinctly described, it seems more relevant to
use an algorithm clustering samples and features at the same time to improve the clustering
quality.

60

4 4.2. ENLARGING DOCUMENT CONTEXT

Co-clustering approaches cluster both on rows and columns together. Many approaches focus
on the bipartite graph representation [61–63] of keywords and documents. [63] proposed
to use the spectral decomposition to cluster samples and features using their eigenvector
representation. The work [64] proposed using information theory methods, which given an
initial partitioning alternates between row clusters refinement and column clusters refinement.

There are two main problems in clustering: defining the target number of clusters, and defining
the rules for cluster assignment. Concerning the cluster count, we propose a hierarchical
agglomerative algorithm that stores the merging operation history. It free us from setting a
priori a specific number of clusters. Nonetheless, we suggest a stopping criterion to select
an optimal partitioning. We follow the probabilistic and information theory approaches to
cluster tags with limited information available. We follow a co-clustering approach to take
advantage of the synergies between documents and keywords clustering.

In this paper, we describe in the first part, a procedure to enhance keywords and documents
context without the use of an external database. Next, the algorithm and its cost function
are detailed. The details about datasets and metrics used are presented in the experimental
setup section, followed by the experimental results. Then, the article ends with a discussion
and a conclusion.

4.2 Enlarging Document Context

4.2.1 Documents Keywords Matrix

Be X = {xi}i=1:n the set of n documents and Y = {yj}j=1:m the set of m keywords, which
occur in the set of documents. Using the vector space model, a document is represented under
the form of a binary vector xi = [xi,1, ..., xi,m] where a 1 encodes the keyword’s presence while
a 0 its absence in document i. The same representation applies to keywords, represented as
yj = [yj,1, ..., yj,n], where a 1 encodes the occurrence of keyword j in a document.

The collection of document vectors is often represented in a matrix form. The documents-
keywords matrix is M ∈ {0, 1}n ×m, with Mi,j = xi,j = yj,i, where rows represent documents
and columns the keywords.

4.2.2 Similarity Matrix

In practice, the documents-keywords matrix is very sparse as a document is assumed to be
tagged with only a few relevant keywords. For a keyword, the sparsity leads to very few
keyword co-occurrence pairs with very low weight.

In our particular case, we assume that keywords are exact and relevant, accurately extracted
by the algorithms or experts, and none due to mistakes. This assumption simplifies the
task of enhancing the keywords-documents matrix. Rather than searching for incorrect
pairs first for data cleaning, all the keywords pairs are taken into account to improve the

61

4.2. ENLARGING DOCUMENT CONTEXT 4

keywords-document matrix.

To improve the matrix, we take advantage of the co-occurrence matrices, one measuring the
document’s similarity, the other measuring the keyword’s similarity.

A cosine-like similarity is used to compute the similarity between pairs of documents and
keywords, S(X) and S(Y) respectively, taking values in [0, 1]. Instead of running the cosine
similarity on binary vector, the values are adjusted by the relative frequency. For document
i, each keyword is weighted by its frequency c−1

k where ck = ∑
i Mi,k, to ensure that frequent

keywords count less than infrequent ones. The same normalization is performed on keyword
vectors, normalized by the number of keywords within each document rk = ∑m

j=1 Mk,j .
The document normalization has almost no effect, as the number of tags per documents is
relatively homogeneous, but affect a lot keyword normalization, as they follow a power-law
distribution.

The document similarity is defined as:

S
(X)
i,j =

∑m
k=1

Mi,kMj,k

ck√(∑m
k

Mi,k

ck

) (∑m
k

Mj,k

ck

) (4.1)

The equation (4.1) is adapted to compute S(Y) by making the sum over the rows rather than
the columns (i.e., ∑n

k=1
Mk,i

rk
), and normalized by the number of keywords describing the

document rk. The normalization is equivalent to the inverse document frequency used in
TF-IDF to score keywords by relevance, enabling to focus on singular keywords rather than
frequent one.

4.2.3 Transition Matrix

The similarity matrix represents on a scale from 0 to 1 how well two elements are related. The
closeness is characterized by a value close to 1 while unrelatedness by 0. Similar keywords
can be either synonymous or occurring in the same context. In some way, the similarity
matrix represents the co-occurrence laws.

To exploit these relationships, we suggest transforming the similarity matrices into the form
of Markov transition probability matrices, where Ti,j = Pr(j → i) is the probability to move
to state j starting from i. Using the product between T and M , we would obtain a vector
with weights representing the probability of obtaining a given keyword given the initial tags.

A simple normalization of S is not enough to obtain T . The normalization of S ensures
that the mass-distributed by an item to its neighbors is preserved after transformation, ie
|Tu†| = |u|. However, it does not ensure that the mass is fairly attributed. Highly frequent
keywords are more receptive than infrequent ones, as ∑j Pr(j → i) is larger for frequent
items.

62

4 4.2. ENLARGING DOCUMENT CONTEXT

To rebalance the mass attribution, the matrix T is obtained by bi-stochastization, leading
to T = T †, ie Pr(i → j) = Pr(j → i). We use the Sinkhorn-Knopp algorithm [65], which
alternates between searching the best column normalization vector c and the best row
normalization vector r, repeating until convergence c = (Sr)−1 and r = (S†c)−1. The
transition matrix is obtained by:

T = D(r)SD(c) (4.2)

where D(z) is the diagonal matrix with element Di,i = zi.

4.2.4 Matrix Smoothing with Mass Preservation

The two transition matrices are used to smooth the initial documents-keywords matrix using:

M∗ = T (X)MT (Y) (4.3)

The detail of a term of M∗ obtained following (4.3) is:

M∗
i,j =

n∑
k=1

m∑
ℓ=1

Pr(xi|xk)Pr(yj |yℓ)Mk,ℓ <!−− (4.4)

The term M∗
i,j of (4.4) corresponds to all possible transitions to a document i and keywords

j from all possible document-keyword pairs Mkℓ.

The application of T (Y) preserves the mass on the rows while T (X) preserves it on columns.
After application of both, only the global mass is preserved ∑i,j M∗

i,j = ∑
i,j Mi,j .

This transformation redistributes the weights for documents and keywords without changing
the global mass of the system. The matrix M∗ will be used for the co-clustering instead of
the binary matrix M .

63

4.3. CLUSTERING MAXIMIZING INFORMATION 4

4.3 Clustering Maximizing Information

4.3.1 Agglomerative Clustering

An agglomerative clustering algorithm iteratively aggregates items from X into groups,
leading to a hard partitioning. The algorithm starts with an initial partitioning where each
item of X is alone in its own cluster, i.e. C(X) = {ci = {xi}}xi∈X . The clusters to merge
are selected according to a cost function D : C × C → R+ which scores cluster pairs. The
pair (ci, cj) with the lowest cost are merged together to form a new cluster ck = ci ∪ cj . The
agglomeration process take n− 1 steps for the rows, where n = |X|.

The cost function affects the algorithm outcome [66,67]. The selection of a specific cost
function depends on the assumption over the cluster shape. For instance, single linkage
focusses on merging clusters with the smallest gap C(ci, cj) = ∑minxk∈ci,xℓ∈cj d(xk, xℓ),
without taking into account the cluster mass, while complete linkage focusses on merging
clusters with the lowest maximal distance C(ci, cj) = ∑maxxk∈ci,xℓ∈cj d(xk, xℓ). It results
in two different behaviors: single linkage is sensitive to noise, as it would create artificial
bridges between clusters, while complete linkage is sensitive to outliers, preventing the merge
of clusters containing some of them.

On the vector space model, the use of distance measures is not satisfactory [68], as the
information per documents is too short to get an accurate representation. Instead of distance,
the dissimilarity between clusters is measured using the divergence between their probability
distribution.

A partitioning with one large cluster and many singleton clusters made of outliers is similar
to a filtering algorithm. A clustering with such an outcome is not desirable as no true group
exists. A partition must be composed of clusters with equivalent size, without high disparity.
Some algorithms naturally take into account the cluster size. For example, in the case of
complete linkage, where the larger a cluster becomes, the harder it is to merge as the maximal
distance to other clusters tends to grow. When using a cluster probability distribution, all
items within the clusters are represented by a single prototype independent of the cluster
size.

To remediate to the fact that cluster prototypes do not include the knowledge of their size,
we define our agglomerative algorithm cost as the product between the cluster prototype
divergence and the cost relative to their size:

D∗(ci, cj) = D(ci, cj)×Merge(ci, cj ; C) (4.5)

where D(.) is the divergence part, while Merge(.) corresponds to the size part; this ensures
that quality and quantity are similar across clusters. These two parts will be defined in the
following.

64

4 4.3. CLUSTERING MAXIMIZING INFORMATION

For simplicity, the features are relatively defined to the samples considered. When looking
at rows, the features represented by columns, while when looking at columns, the relative
features correspond to the rows.

4.3.2 Partitioning Entropy

4.3.2.1 Shannon Entropy

The Shannon entropy is a way to measure the number of bits required on average to code an
information. The more bits are needed, the more information would transit.

For a random variable with discrete values X = {xi} and associated probabilities Pr(X =
xi) = pi, the Shannon entropy is defined as:

H(X) = −
∑

xi∈X

pi log pi (4.6)

with the log corresponding to the base 2 logarithm log2.

4.3.2.2 Informative Clustering

We state that a partitioning C is informative if items are distributed into clusters of equivalent
size, maximizing the entropy H(C). Here, the probabilities associated to each cluster is
not related to the item frequency, ie Pr(C = ci) ̸=

∑
x∈ci

Pr(X = x). Otherwise, the goal
would be to isolate highly frequent keywords into individual clusters and gather infrequent
keywords on a large cluster, which is by no means more interesting than clustering infrequent
keywords alone. Therefore, the cluster contribution is proportional to the number of items |ci|,
Pr(C = ci) = pi = |ci|∑

cj ∈C |cj | . To make the distinction with entropy using item distribution,

we refer to the entropy using item count as the partition entropy.

For a partitioning into k clusters, H(C) is maximal for Pr(C = ci) = 1
k∀i with a maximal

value of log k. The partitioning with the largest entropy is the one with a single item in each
cluster. To compare fairly two partitions at different stages of the agglomerative process
regardless the number of clusters, the partition entropy is normalized by its theoretical
maximum:

Hrel(C) = H(C)
log |C| (4.7)

which is defined for any partitioning with at least 2 clusters. The relative entropy takes values
in [0, 1], which allows convenient state comparison regardless the number of partitions.

65

4.3. CLUSTERING MAXIMIZING INFORMATION 4

4.3.2.3 Partitioning Entropy Variation

At the start, each item forms its own cluster, leading to a Hrel(C) = 1. The agglomerative
process leads to clusters of various sizes which affects the entropy’s quality. To keep this
value maximal, we study the entropy variation following a merge. For two clusters ci and
cj merged together, with probability pi and pj , the new entropy can be expressed using the
previous term:

Hrel(Ck−1) = Hrel(Ck) log k
log(k−1)

+pi log pi+pj log pj

log k − (pi+pj) log(pi+pj)
log(k−1)

= Hrel(Ck) log k
log(k−1) + ∆(pi, pj ; k)

(4.8)

where Ck−1 corresponds to the new partition with k− 1 clusters and Ck the previous partition
with ci and cj unmerged. The total entropy is improved by a factor log k

log(k−1) regardless of which
clusters are merged. Concerning the merged clusters contribution ∆(pi, pj ; k), the behavior
can be estimated for large k, as the approximation log k ≈ log(k−1) holds. The merge impact
is equivalent to ∆(pi, pj ; k) ≈ 1

log k (f(pi) + f(pj)− f(pi + pj)) where f(x) = x log x. f is
negative, concave and monotonically decreasing over the interval [0, e−1], with e−1 = exp(−1)
corresponding to the limit of what could be considered as small clusters, which is respected
for many partitions as 3e−1 > 1. As a consequence, f(pi) + f(pj) < f(pi + pj) which leads to
an entropy decrease, compensated to some extend by Hrel(Ck) log k

log(k−1) .

4.3.2.4 Cluster Size Influence

For large k, ∆(pi, pj) < 0. To study the size influence, two merges are compared: the merge
of ci and cj with respective probabilities pi and j , and the merge of c′

i with c′
j with respective

probabilities αpi and αpj , where α ∈ R+. It can be shown that ∆(p′
i, p′

j) = α∆(pi, pj). The
cost increases with the size of clusters merged. To maximize the relative partitioning entropy
cost over the agglomerative process, small clusters must be preferentially merged to limit the
loss, which can be compensated by the former term Hrel(Ck) log k

log(k−1) in eq. (4.8).

4.3.2.5 Minimization Criterion

For any pair of clusters (ci, cj), the term Hrel(C) log k
log(k−1) in (4.8) is the same regardless of

which clusters are merged. Two different merges are distinguished by the value of ∆(pi, pj ; k).
As this term is negative, the goal is to minimize:

Merge(ci, cj ; C) = −∆(pi, pj ; k) (4.9)

4.3.3 Content Similarity

We discussed about cluster size in the previous paragraphs. The following describes the
evaluation of clusters’ content similarity.

66

4 4.3. CLUSTERING MAXIMIZING INFORMATION

4.3.3.1 Cluster Conditional Probability

Given a cluster c(X) ∈ C(X) and a partitioning C(Y), the distribution of cluster c(X) over C(Y)

is:

Pr(c(Y)|C(X) = c(X)) =
∑

xi∈c(X)
∑

yj∈c(Y) M∗
i,j∑

xi∈c(X)
∑

yj∈Y M∗
i,j

(4.10)

and for the distribution of cluster c(Y) over C(X):

Pr(c(X)|C(Y) = c(Y)) =
∑

xi∈c(X)
∑

yj∈c(Y) M∗
i,j∑

xi∈X

∑
yj∈c(Y) M∗

i,j

(4.11)

4.3.3.2 Cluster Dissimilarity

For two clusters ca, cb ∈ C(X), the probability distribution over C(Y) is noted A and B

respectively to limit notation symbols, such as ai = Pr(c(Y)
i |c

(X)
a) and bi = Pr(c(Y)

i |c
(X)
b).

The Kullback-Leibler (KL) divergence is a way to measure the distance between probability
distributions A and B:

KL(A∥B) =
∑

i

ai log ai

bi
(4.12)

The same equation is obtained for ca, cb ∈ C(Y), with ai = Pr(c(X)
i |c(Y)

a) in this case. The
intuition of the KL divergence is that mass of distribution B must be present where A is. If
not, the penalty grows. The KL divergence can be rewritten as KL(A∥B) = H∗(A, B)−H(A)
where H∗(A, B) is the cross-entropy, and H(A) the regular entropy. In other words, KL
represent the extra-cost of coding A using B’s code.

4.3.3.3 Symmetry

There is no order when merging two clusters, as ci∪cj = cj∪ci. However, the Kullback-Leibler
divergence is not symmetric. Instead, we use the J-symmetrized KL divergence, which is
defined as:

KLJ
α(A∥B) = (1− α)KL(A∥B) + αKL(B∥A) (4.13)

with the balance factor α = 1
2 . The symmetrization ensures that both A and B share the

same support probability, which leads to a more discriminative function as both ai and bi

needs to be non-zero for the same feature i.

67

4.3. CLUSTERING MAXIMIZING INFORMATION 4

4.3.3.4 Minimization Criterion

The cost term takes into account the clusters similarity in eq. (4.5) is D(ca, cb) = KLJ(A∥B).
It measures the divergence between prototypes’ distribution according to the clustered features.
The KLJ takes values in R+, where a low value represents a high content similarity between
considered clusters.

4.3.4 Agglomeration Procedure

Given the initial smoothed documents-keywords matrix M∗, the algorithm starts by computing
KLJ for all possible pairs of clusters in C(X) and pairs in C(Y). This lead to two initial
divergence matrices KLJ(C(X)) and KLJ(C(Y)). This operation is computationally expensive,
as it requires O(nm(m + n)) operations.

The merge cost is recomputed at each round, and the total cost is computed for each pair.
The pair of clusters from C(X) or C(Y) with the lowest cost is selected and merged. The two
divergence matrices are updated after the merge operation. If two clusters ci, cj ∈ C(X) are
merged together, all the pairs involving ci and cj in KLJ(C(X)) must be recomputed with
the new cluster characteristics ci ∪ cj , leading to a matrix with one dimension less. This first
update requires O(n(t)m(t)) operations, where n(t) = |C(X)| and m(t) = |C(Y)| is the number
of row and column clusters left after t merge operations.

Concerning KLJ(C(Y)), all the items are affected. Nonetheless, the matrix can easily be
updated, by looking at the difference between merged and unmerged state. For two column
clusters ca and cb ∈ C(Y) with distribution over rows A and B respectively, the cost variation
is:

∆(i,j)KL(A∥B) = (ai + aj) log ai+aj

bi+bj

−
(
ai log ai

bi
+ aj log aj

bj

) (4.14)

where ∆(i,j)KL(A∥B) corresponds to the non-symmetric KL cost. The new cost for merging
ca with cb is replaced by KLJ(ca, cb) + ∆(i,j)KL(A∥B) + ∆(i,j)KL(A∥B)†. This updating
step requires m(t)2 operations to update all the feature pairs. In total, a step requires
O(n(t)2 + m(t)2) operations to select the best pair, and O(n(t)m(t) + m(t)2) operations to
update the cost pairs KLJ when merging two row clusters. The same reasoning applies when
merging two-column clusters by exchanging n(t) with m(t) in the formula.

68

4 4.4. EXPERIMENTAL SETUP

4.4 Experimental Setup

4.4.1 Datasets

4.4.1.1 Scientific Paper Tags

The main motivation for tag co-clustering arose from scientific papers literature. The DBLP
dataset [27] is a citation graph gathering computer science papers, with meta-data such as
title, publication year, references, authors, conference/journal, field of study, available for a
large number of papers. We used the most recent version (v12) for our experiments.

The field of study is a list of descriptive keywords about the field (e.g. Cryptography, Biology),
the method (Matrix factorization), or other related concepts (Bullwhip effect) discussed in
a paper. Each paper has, on average 10 descriptive tags. Hopefully, tags are already well
pre-processed, and no steaming nor stop-words removal need to be done.

The algorithm complexity is more than quadratic, which prevents the scaling to a large
database. Documents are sampled to make the clustering possible on a regular machine. A
particular tag is selected, and all papers with the tag included are gathered. Then, 5000
documents are selected at random from this pre-selection. All keywords with less than 5
occurrences are discarded, which leads to around 1000 keywords left and a filling rate of 2%
of the binary documents-keywords matrix.

4.4.1.2 Synthetic checkerboard

The real-world dataset does not contain any label, which prevents the evaluation with objective
metrics. We propose to generate a sparse synthetic dataset with clustering structures to test
the performance of our model.

A synthetic sparse matrix M of size nX × nY partitioned over X and Y dimensions is
constructed the following way. Rows are split into kX clusters of equal size ⌊nX

kX
⌋+ {0, 1}.

The same regular partitioning is performed on Y with kY clusters.

The matrix M is filled with 0 and 1 according to the partitioning. The tile T (a, b) =
{M∗

i,j} xi∈c
(X)
a ,yj∈c

(Y)
b

is the intersection between the row and column clusters c
(X)
a and c

(Y)
b .

Some of the tiles selected with probability α ∈ [0, 1] are filled, leaving (1 − α) of the tiles
empty, where α is the global filling rate. For a tile T (a, b) to fill, the filling rate βa,b is selected
at random in [0, β] with β ∈ [0, 1] the local filling rate. For each item (i, j) in tile (a, b) to be
filled, its value is 1 with probability βa,b else 0. The result is a matrix filled with rate αβ

2 .

In our case, the global and local filling rate are set to α = β = 0.2 leading to a total filling rate
similar to our real-world dataset of 2% . For all experiments, nX = nY = 1000 and kX = kY

would be adjusted over the experiments. The resulting matrix looks like a regular grid and
would be called, for this reason, the checkerboard dataset (see Fig. 4.1). The experiments are
done for the same nX and nY , and identical kX and kY . This choice is made to aggregate

69

4.4. EXPERIMENTAL SETUP 4

results over X and Y together, but the performances are not affected by asymmetric choices.

4.4.2 Monitoring metrics

To evaluate our algorithm, we selected some supervised and unsupervised metrics to evaluate
the quality of the partition recovery and estimate cluster quality in the absence of labels.

4.4.2.1 V-measure

The V -measure is a supervised metric comparing the real clusters to the estimated ones using
entropy measures. It is analogous to accuracy on classification problems. Two sub-measures
are first computed: the homogeneity, which corresponds to the fact that a good cluster
contains a single class, and the completeness, which measures how well elements from a given
class are grouped. The homogeneity is defined as:

h = 1− H(L|K)
H(L) (4.15)

with L the real cluster labels and K the hypothetic labels obtained using a clustering. The
completeness is defined similarly as:

c = 1− H(K|L)
H(K) (4.16)

The V -measure is then defined as:

V = (1 + β)× hc

βh + c
(4.17)

where the parameter β ∈ R+ balances the contribution of each term. For β = 0, it corresponds
to the h, while limβ→∞ = c. The values obtained lie within [0, 1], where 1 is attributed to
the best clustering, while 0 to the worse case. The V -measure can also be used to compare
two partitioning obtained with different parameters or algorithms, measuring the similarity
degree.

Random Guess Suppose C is a partitioning of items into k clusters of equal size, with
Pr(c) = 1

k . The associated partitioning entropy is H(C) = log k. Be C′ a randomly guessed
partitioning with k clusters of equal size too, but filled with items selected at random. The
overlap probability between c ∈ C and c′ ∈ C′ is 1

k2 for all clusters’ pairs. Consequently,
the joint entropy is H(C, C′) = log k2 = 2 log k, leading to H(C|C′) = H(C′| C) = log k.
Completeness and homogeneity are both equal to 0, leading to an undefined V -measure.
However, when looking at the limit, the value converges to zero. Compared to accuracy
measure, where a random guess’s accuracy is 1

k , the V -measure is more discriminative.

70

4 4.4. EXPERIMENTAL SETUP

4.4.2.2 Limited Partitioning Entropy

At the start, the partitioning entropy defined in eq. (4.7) is maximal. However, the clustering
is non-informative as only singleton clusters exist. Instead, knowing that final clusters would
have a critical size with more than r elements, smaller clusters’ contribution can be discarded,
considering them as outliers. The restricted relative partitioning entropy is then defined as:

H∗
rel(C; r) =

−
∑

c∈C∧|c|>r p(c) log p(c)
log |C| (4.18)

At initialization, the value is 0 as no cluster of sufficient size exists for r > 1. This value is
still bounded between [0, 1] and enables to track clusters creation. This measure allows to
evaluate the partitioning distribution without considering cluster content.

4.4.2.3 Mutual Information

When monitoring the cluster’s content, the information variations are monitored. In this
case, the entropy is computed using the sample probabilities, defined in equations (4.10) and
(4.11). The mutual information corresponds to the information shared between X and Y .
This measure is defined as:

I(X, Y) = H(X) + H(Y)−H(X, Y) (4.19)

It corresponds to the gain of coding X with Y , i.e. the amount of redundancy between the
two variables. This value is bounded by 0 (independent variables) and min(H(X), H(Y))
(correlated variables). We would monitor the mutual information between partitioning
I(C(X), C(Y)). As the number of clusters decrease over time, this value would decrease due to
information loss during the compression.

4.4.3 Comparative Algorithms

We proposed to compare our algorithm to the co-clustering algorithm presented in [63],
which relies on spectral decomposition. First, two diagonal matrices D1 and D2 are obtained
from M , where D1:i,i = ∑m

j=1 Mi,j and D2:j,j = ∑n
i=1 Mi,j . Then, the normalized matrix

Mn = D
−1/2
1 MD

−1/2
2 is decomposed using singular value decomposition such as Mn = USV T .

The vectors D
−1/2
1 U and D

−1/2
2 V are concatenated to form the matrix Z. The algorithm

finishes by performing a k-means clustering on the ℓ = ⌈log2 k⌉ main dimensions, omitting
the first main dimension.

71

4.5. EXPERIMENTAL RESULTS 4

4.5 Experimental Results

4.5.1 Smoothing Effect

The smoothing proposed enables to switch from binary values to real values by redistributing
the weights. A visual example is presented in Fig 4.1. The filled tiles are identifiable on the
binary matrix. For the tiles with low βa,b, the boundaries are hard to identify.

Figure 4.1: Matrix smoothing for nX = nY = 1000 and kX = kY = 15, ie around 67 points per cluster. The global
filling ratio is α = 0.2 and the local filling ratio is β = 0.2. Left: binary matrix, right: smoothed matrix.

On the smoothed matrix, the weights are completely redistributed leading to the visual
identification of tiles, even the ones that were not filled at all. All items belonging to the
same clusters tend to have a more similar feature vector. The information is of lower intensity
locally but is better distributed across the different features, even on tiles that were not filled.

4.5.2 Size Dependent Cost

This experiment compares the composite cost defined in eq. (4.5) to the version where
only content similarity obtained using KLJ cost is taken into account. For this purpose,
we compared for several numbers of cluster k the maximal V -measure averaged over 5
independent trials for each k. We gathered the number of clusters left k̂ for the maximal
value of V .

We did the same by extracting the maximal restricted relative entropy, removing clusters of
size smaller or equal to 1, and extracting the corresponding k̂.

The results are presented in Fig. 4.2, with the composite cost denoted KL×H(C) and the
simple cost KL.

As a general remark, for all setups, it is easier to cluster many clusters with sufficient size.
For very few clusters, the accuracy quickly decreases. As the global filling rate is α = 0.2, on

72

4 4.5. EXPERIMENTAL RESULTS

Figure 4.2: Best v-measure and average absolute error for corresponding k. Blue rounds correspond to the normal
setup with co-clustering and weighting according to KLJ cost and cluster distribution entropy H(C). Orange
triangles correspond to the co-clustering setup without taking into account cluster distribution. Red squares
correspond to the double weighting approach but rows and columns are clustered independently. Each point
corresponds to the average for 5 independent trials.

average 2 tiles are filled over 10. Due to randomness, a single one or none could be filled,
leading to less information for clustering. For a large number of partition, a cluster is well
defined in the sense that enough tile are filled. The problem of insufficient information occurs
at the sample level. For a row sample of size n and k feature partitioning, there are n

k slot
for a given feature cluster. As the local filling rate is βa,b ≤ 0.2, the probability that none of
the slot are filled grows with k. This effect is nonetheless less disturbing than the former as
redundancy exists.

The V -measure of the composite cost is always higher than for the simple cost setup. The
accuracy of KL quickly drops for large k with smaller cluster sizes. The absolute k deviation
E(|k − k̂|) of the composite cost is relatively close from the optimal, with a consistent error
unless for very small cluster size, while the error for the simple cost is too large to fit in the
figure.

Figure 4.3: Left: Best H(C) with cluster of size lower or equal to 1 removed. Right: average absolute error of the
corresponding k̂. Same color code and setup as 4.2. Blue rounds and red circles overlap on the left sub-figure.

Looking at the maximal relative partitioning entropy in Fig. 4.3, the composite cost leads
to very good cluster distributions for any k, while the simple cost is 0.2 points lower for
small number of clusters and very low for larger values. On the right side of Fig. 4.3, the k̂

73

4.5. EXPERIMENTAL RESULTS 4

obtained with the composite cost is close to the exact value even for large k. This means
that the number of clusters obtained when stopping the agglomeration procedure with the
partitioning entropy criterion is close from the true initial cluster numbers for all cluster sizes.
When using the simple cost, clusters number is far from the true number of cluster. In both
case, the entropy stopping criterion leads to a smaller error over the number of estimated
clusters.

4.5.3 Co-Clustering vs Independent Clustering

One of the initial hypothesis concerns the synergy between joint reduction. We compare
the co-clustering setup to the independent setup, where the partitioning C(X) is obtained
using the uncompressed features Y , as well as the partitioning C(Y) is obtained using the
unaggregated rows X. This setup is denoted Indep in Fig. 4.2 and 4.3.

The results obtained with the independent clustering are similar to the co-clustering but
with a lower v-measure for a large number of clusters k. The obtained k̂ from the v-measure
are close to the co-clustering ones. As far as shape is concerned, independent clustering
performs as well as the co-clustering, and the k̂ obtained are relatively similar. The co-
clustering advantage is limited for large clusters / small k and becomes more interesting when
uncertainty grows with smaller size clusters for large k.

4.5.4 Comparison to Alternative Algorithms

Figure 4.4: Comparative results between Spectral co-clustering and Agglomerative clustering. On the right, maximal
V -measure obtained for

We compare our algorithm to spectral co-clustering presented in [63]. The algorithm needs
as input the target number of clusters to search for. When comparing the agglomerative
algorithm with the spectral algorithm, the spectral algorithm is run with the exact k provided,
compared to the partitioning obtained with the agglomerative algorithm with k remaining
clusters. The V -measure and the relative cluster partitioning entropy H∗

rel(C; 1) are extracted
from these two partitioning. The results are presented in Fig. 4.4.

The spectral algorithm results are lower than the one obtained for the agglomerative approach.
However, the shape of the clusters obtained are equivalent. The spectral approach is quite

74

4 4.5. EXPERIMENTAL RESULTS

robust in general, but the sparsity level affects the results. With a higher filling rate (α = 0.4),
the spectral results get closer to the agglomerative one.

We also tested with DBSCAN, which has been used in some papers. As it is impossible
to select the wished number of clusters, and because the results were lower than spectral
decomposition, the results are not presented. Nonetheless, the smoothed matrix’s use
improved the partitioning, allowing the algorithm to discover more clusters than with the
regular binary matrix.

75

4.5. EXPERIMENTAL RESULTS 4

4.5.5 Textual Results

The initial goal was to cluster tags associated with scientific papers to identify topics. In the
dataset used, there is no high-level classification or paper grouping to evaluate our clustering.
Despite the lack of objectivity, we present the results on two subsets of papers, obtained for
the Payment field of study, and the second for Biometry.

We take advantage of the hierarchical form to present the results using a dendrogram. Around
15 clusters are left unmerged, and the three most frequent keywords are displayed for analysis.
For the two, the relative partitioning entropy was around H(C) = 0.95 for keywords.

Payment Fig. 4.5 corresponds to the clustering of keywords co-occurring with the Payment
tag. Three high level clusters are identified. The one on the left corresponds to things related
to economics. The right one corresponds to what could be considered as the core of the
payment field, oriented toward users, with the new payment methods (Cryptocurrency, Mobile
payment) and intricated topics (Computer security, Marketing and Advertising). The bottom
cluster corresponds to the medium or technology used in the payment but is not specific. For
instance, Artificial intelligence is used in payment systems for fraud detection or biometric
authentication, but it is not specific to payment.

Figure 4.5: Dendrogram for Payment field of study.

Surprisingly, the keyword Payment is located on the bottom cluster, near Cash and Crowd-
sourcing, which seems conceptually incorrect. This is due partially to our sampling method,
where all documents with keywords Payment were selected. As it co-occurs with all keywords,
there is no way to identify true relationships. Payment is located on a cluster were the other
keywords are related to Crowds, with additional keywords such as Reputation, Social network,
Audit and Crowdsensing.

76

4 4.6. DISCUSSIONS

This artefact is not limited to the selected keywords but to the most frequent keywords. A
second example is Computer science on the right, in a cluster related to the Internet, with
additional keywords like the World Wide Web, Mobile device, Service provider and Mobile
computing.

Biometry The second partitioning uses the Biometrics tag as a reference. The resulting
dendrogram is presented in Fig. 4.6. Two large clusters are identified. The main on the left
gathered keywords about biometric methods and algorithms to extract a digital identity. It
is subdivided into two subgroups.

The top one gathered keywords related to computer-vision, with Image processing, gait
and face analysis. The bottom one corresponds to the other methods, with fingerprint,
Speaker recognition/verification. The cluster with Biometrics, Computer science and Speech
recognition corresponds to an artefact gathering highly frequent keywords together. The right
cluster corresponds to the security part, with Cryptography, Password, Authentication and
others.

Figure 4.6: Dendrogram for Biometrics field of study.

4.6 Discussions

4.6.1 Ending Criterion

The checkerboard experiments were evaluated, knowing the number of clusters. In an
unsupervised setup, this knowledge is often unavailable. To select the cluster number, one
has to look at a specific criterion indicating if the partitioning is satisfying. For instance, the
algorithm X-means [69] is a divisive algorithm based on k-means which successively splits the

77

4.6. DISCUSSIONS 4

existing clusters. The splitting decision is based on the split’s likelihood, assuming the data
corresponds to a Gaussian mixture. For more general clustering algorithm, the silhouette
coefficient, measuring the distance to the nearest cluster versus the radius of the cluster.

On our type of data, the silhouette is not suitable as cluster are not well separated. The
goodness criterion of the algorithm must be in accordance to the goal achieved by the algorithm.
Reminding our cost definition in (4.5), it is the product between cluster size and content
related costs.

The first part of the answer to this problem is to look at the restricted relative partitioning
entropy defined in (4.18), with small clusters of size 1 or less removed. In Fig. 4.3, Hrel(C; 2)
is already a good indicator of when clusters are sufficiently aggregated. However, this is a
particular case where all clusters have the same size, leading to a particular configuration
where Hrel is maximal. In a more general configuration, there is no particular reason for
clusters of exactly the same size.

The second cost part takes into account content. On the information theory-based work
of [64], a good clustering is defined as minimizing the quantity I(X, Y)− I(C(X), C(Y)) for
a given number of row and column clusters. The agglomeration of clusters is a form of
compression which mechanically reduces the information available.

The restricted relative entropy is maximal towards the end of the agglomeration process, while
the information is maximal at the beginning and minimal at the end. A good compromise
between the two is to look for the value for which the product of I(C(X), C(Y)) and H(C(X))
or H(C(Y)) is maximal:

k∗
X = argkX=|C| max Hrel(C(X); r)× I(CX , CY) (4.20)

X’s best partitioning is not necessarily simultaneous with that of Y because the actual
number of clusters may be different. The co-clustering only exploit synergies to find clusters
more accurately. In general, the partitioning with the lowest number of dimensions would
be merged more frequently until reaching a size comparable to its feature size. As a rough
guide, for k features, the maximum entropy is log k. The cost of KLJ is not limited by an
upper bound, but the higher the number of features, the higher the cost will be because the
probability of ai = 0 ̸= bi is higher in such a configuration. With a higher cost, the clustering
will preferably select the cluster pairs with the smallest number of features.

This criterion was tested on the checkerboard dataset. The estimated k̂ were very close to
the expected one, with an average absolute deviation close to 1. This criterion was used to
build the dendrogram, where the estimated cluster number was between 15 ∼ 20 clusters
depending on the main selected keyword.

78

4 4.7. CONCLUSION

4.6.2 Model Limitations

The checkerboard model differs from a documents-keywords matrix obtained from tag on two
majors points.

The first difference concerns distribution. Tags follow a Zipf’s law, which is not modeled here,
as all columns have on average the same strength. Nonetheless, the unbalanced distribution
is corrected by the matrix smoothing protocol, which decreases the weight of these frequent
keywords to less frequent one.

The second difference is the hierarchical division of keywords. The associated tags range from
very broad domains (Chemistry, Mathematics), to fields (Inorganic chemistry, Databases), to
specialities and other lower levels. The checkerboard model is made of independent clusters
which are not hierarchicaly organized. Nonetheless, due to the scaling limitation of the
proposed algorithm, the restriction to around 5000 documents and 1000 keywords limit the
visibility of such organizations.

4.7 Conclusion

In this paper, we addressed the problem of tag clustering, where the tag amount per document
is limited. To this purpose, using the correlation between tags and keywords, a method to
enhance context without the use of an external database or model was proposed. With the
assumption that a clustering is informative if the partition entropy is large, we proposed an
agglomerative co-clustering algorithm taking into account the content as well as the cluster
size. The algorithm showed good recovery performance on synthetic datasets with the same
sparsity level. It showed conceptually correct clustering results on scientific paper tags,
up to highly frequent keywords where no discriminative relationship could be found. The
algorithm’s complexity is polynomial but more than quadratic, which restricts its usage on a
small dataset. Some improvement can be made by splitting the dataset into independent
parts or finding cost approximations. Nonetheless, the idea of building groups of equivalent
size could be mixed with other agglomerative measures to include distant items to their
closest cluster.

79

4.7. CONCLUSION 4

80

CHAPTER 5

Co-Embedding Bipartite Graphs

Many datasets take the form of a bipartite graph where two types of nodes are connected
by relationships, like the movies watched by a user or the tags associated with a file. The
partitioning of the bipartite graph could be used to fasten recommender systems, or reduce
the information retrieval system’s index size, by identifying groups of items with similar
properties.

This type of graph is often processed by algorithms using the Vector Space Model represen-
tation, where a binary vector represents an item with 0 and 1. The main problem with this
representation is the dimension relatedness, like words’ synonymity, which is not considered.

This article proposes a co-clustering algorithm using items projection, allowing the measure-
ment of features similarity. We evaluated our algorithm on a cluster retrieval task. Over
various datasets, our algorithm produced well balanced clusters with coherent items in, leading
to high retrieval scores on this task.

81

5.1. INTRODUCTION 5

5.1 Introduction

Many datasets can be represented as a bipartite graph (BPG), making the links between two
different types of items. This could be the movies a user watched, the purchases he made,
the music he listened at. Outside of user interaction, it could be tags associated with a file,
such as the keywords of an article, or the genes with which a molecule interacts.

Community discovery or graph partitioning helps improving scalability in different contexts.
Collaborative Filtering Recommender Systems (CF RecSys) work by suggesting new items to
a user based on the similarity of its history to the other users’ history. Without optimization,
a user is compared to all the other users to find those most similar to him. Clustering reduces
costs by looking at similar users within the same partition rather than looking at them in the
entire dataset [70]. Clustering is not limited to users and has similar benefits when clustering
items [71], or both together [72]. These approaches are based on the clustering hypothesis [73]
supposing that similar documents would answer the same information needs. Cluster-based
retrieval systems are based on this same hypothesis [74,75]. A very large database that cannot
be stored in a single server could be split into multiple servers, hosting a particular thematic
cluster. A query would be compared to an index with clusters’ summary and routed to the
most relevant server, reducing the overall number of operations.

There are different approaches to cluster a bipartite graph. The algorithms can be classified
into two distinct categories: one-way and two-way partitioning algorithms, with the latter
grouping both sides of the graph simultaneously. In the one-way approach, the set of nodes
belonging to the same type are clustered, without considering the clusters that would be
obtained when clustering the nodes from the other type. The nodes to cluster are often
represented into a matrix using the Vector Space Model (VSM) [76], where the nodes of
the second type are considered as their features [77] or used to construct the features [78].
The resulting matrix can be exploited to cluster items with usual algorithms such as k-
means, measure the items’ proximity using cosine similarity measure, or project items using
dimensionality reduction algorithms [78].

Another possibility is to convert the 2-mode graph into a 1-mode graph by collapsing the
graph. The conversion to a unipartite graph is convenient as many classical community
detection algorithms can be used [79]. The nodes from a single type are preserved and new
weighted edges are inferred from the bipartite graph. There are multiple approaches to
convert the bipartite graph into a unipartite graph [80,81]. However, the main problem is the
growing number of edges and the loss of information due to the collapse [79,80].

In contrast, two-way clustering algorithms – also called co-clustering or simultaneous clustering
[82] – exploit the raw structure to cluster both types of nodes simultaneously. Two-way
approaches lead to better results, even if the goal is to partition only one side of the BPG
[64,82] by exploiting synergies between the obtained clusters.

Among co-clustering approaches, the majority of the literature focuses on bi-clustering

82

5 5.1. INTRODUCTION

approaches, where a bicluster is characterized by a particular set of rows and columns when
the BPG is represented under the matrix form. Therefore, a bicluster gathers items of
heterogeneous type. There exist sub-categories characterized by the possibility to overlap
clusters and to assign an item to multiple clusters [83]. The majority of the algorithms creates
biclusters with exclusive rows and columns [79,84,85]. In this situation, the models assume
a one-to-one match between sample and feature clusters and strong connectivity, forming
blocks when visualizing the matrix with items grouped by clusters. This clustering type is –
to some extent – equivalent to finding sub-graphs forming dense structures [79] that could
exist without the other groups.

In contrast, the literature covering the case where a cluster gathers items of the same type is
limited. While this case seems to correspond to the one-way partitioning, it highly differs
from it as a row (column) cluster is expressed as a mixture of column (row) clusters. In
contrast, the one-way approach considers features individually. Among this group, we can
mention non-negative matrix factorization (NMF) approaches [86,87]. This approach offers a
more flexible framework than the latent block model leading to a checkerboard representation
when re-ordering rows and columns by groups. Nonetheless, this approach assumes that there
are latent variables connecting rows to columns; therefore we obtain the same number of row
and column clusters.

In this work, we particularly focus on the case where the number of row and column clusters
are not necessarily equal. These approaches are more flexible as the number of clusters is not
constrained by the reciprocal type of items and increase the number of possible configurations.
In this group, we can mention [63] combining a spectral decomposition to a k-means, and [64]
based on information theory minimizing the loss of mutual information between clustered
and unclustered items. These models require as input the number of clusters to find, limiting
their usability without prior knowledge. The work of [88] extends the latent block model to
cluster heterogeneous data types (ordinal, continuous, count). Samples are clustered into
groups without specific constraints, while features are clustered with features of the same
type. The number of feature clusters is automatically inferred and independent from the
number of sample clusters, leading to a flexible automatic co-clustering approach.

Most of these approaches are designed for very general cases and do not assume the underlying
nature of BPG. More specifically, they do not consider dimension relatedness. If animals are
features like [tiger, lion, frog], the distance between their respective binary vectors [1, 0, 0],
[0, 1, 0] and [0, 0, 1] is 2 for all possible pairs despite the similarity between tiger and lion.
The different features are considered as orthogonal, while it is far from the reality where some
characteristics are often correlated, even weakly.

Dimension relatedness has been addressed mainly for textual applications. The works of
[89,90] propose using an external database (WordNet and Wikipedia resp.) to measure
dimension relatedness. Over a very large corpus, the dimension correlation could be learned,
as proposed in the work of [91]. However, an external database is not always available,

83

5.2. CO-EMBEDDING 5

depending on the language used, and the type of objects considered. The work of [92] suggest
learning the similarities between features by directly measuring their textual similarity.
Feature similarity is derived from the Levenshtein distance between the feature names.

These different textual approaches learn the distances between features, but none between
samples. One would like to apply the same treatment to samples and features in a co-clustering
approach exploiting the sample-feature duality.

In this article, we propose a co-clustering algorithm that addresses the problem of dimension
relatedness. The proposed approach follows a co-embedding process, where each side of the
bipartite graph is projected in a low dimensional space. This projection enables to measure
items relatedness based on their features’ location. The process alternates between projecting
each side of the graph, until invariance compared to the previous embedding.

The rest of this article is organized as follows. First, the algorithm is detailed in the following
section, then the datasets and evaluation methods are presented. Visual, numerical, and
textual results are then presented in the experimental section, followed by possible extensions
in the discussion and a conclusion.

5.2 Co-Embedding

Notations: A bipartite graph G = (V I , V II , E) is a graph composed of two types of nodes
V I = {vI

i }i=1:|V I | and V II = {vII
i }i=1:|V II |. The edges E connecting nodes only exist between

nodes of different types E ⊆ V I × V II . The existence of a link between two nodes vI ∈ V I

and vII ∈ V II is denoted as δ(vI , vII) = 1 if (vI , vII) ∈ E else 0. The representation of G
under the VSM model is M = [δ(vI , vII)]vI∈V I ,vII∈V II The number of occurrences of vI ∈ V I

is denoted |vI | = ∑
vII

i ∈V II δ(vI , vII
i) and defined similarly for a node of V II .

Sample-Feature Duality: A feature is relative to the sample’s type considered. Nodes of
V I are features of V II and V II of V I . Therefore, the equations would be written in terms of
samples S and features F instead of V I and V II , as our process inverses the roles periodically.
As most of the datasets used correspond to (tag, resources) pairs, we would refer to tags T
and resources R when a difference needs to be underlined.

Proposed Approach: We address the problem of dimension relatedness for co-clustering a
bipartite graph by projecting the items into a low dimensional space. The samples relatedness
is measured by comparing their features’ location on the embedding space. Based on their
similarity, samples are next embedded into another low dimensional space using the t-SNE
algorithm [28] which is a key point in the process. Next, samples and features exchange their
role to start a new iteration. The process is repeated several times until the neighborhood
around each item is stable. The last step of our method is an automated clustering using the
Mean-Shift algorithm [29] over the two last co-embedding.

84

5 5.2. CO-EMBEDDING

The details of each step will be detailed in this section. First, we start with the t-SNE
algorithm to provide an understanding of the embedding properties. Next, we detail how
features’ relatedness is measured and used to measure samples similarity. Last, we explain
the procedure for Mean-Shift clustering concluding the co-clustering process.

5.2.1 t-SNE Embedding

These paragraphs describe the general ideas behind the t-SNE algorithm [28]. For a set of
n items X, this non-parametric embedding algorithm transforms it into a low dimensional
representation Y ∈ Rn×d, with d often set to 2 for visualization purposes:

Y ← t-SNE(D(X); d, perp) (5.1)

The perplexity parameter (perp) controls the number of nearest neighbors in X to preserve in
Y . This prevents highly connected items of the graph from having too many neighbors and
improves the neighborhood of weakly connected items. The algorithm works by minimizing
the Kullback-Leibler divergence between the image matrices of X and Y , obtained respectively
using a Gaussian kernel and a t-Student kernel. This kernel asymmetry creates repulsive
long-range forces leading to well-separated groups. Another characteristic is the homogeneous
scaling over an embedding, allowing to measure similarity the same way independently of the
location and the crowdedness.

The perplexity governs the embedding shape, where a large value focuses on large scale
structures, while a lower one on details. The understanding of large is relative to the number
of items, and could be adapted to tags and resources with perpR and perpT as they do not
necessarily have the same size.

As this algorithm tries to preserve local neighborhood relationships, nothing can be said
on long-range distances. However, the proximity between items in the embedding can be
exploited as an alternative to distances in the high dimensional space.

5.2.2 Representing Samples using their Features Embedding

The binary vector of a sample s is transformed into a vector of probabilities. The feature
embedding Y F = {yi}i=1:|F| is used to create this vector by taking into account three
factors: the feature’s location, the feature’s popularity, and the related features. The vector
representing s is p(s) = [p(f |s)]f∈F , where the term concerning a feature f is defined as:

p(f |s) = 1
c(s)

∑
fi∈F

δ(s, fi)
|fi|

K(y, yi) (5.2)

where δ(s,fi)
|fi| represents the contribution of feature fi contained in s. The normalization

constant c(s) ensures that ∑f∈F p(f |s) = 1. For a feature fi of s with image yi, the kernel
redistributes the feature’s mass on the neighborhood feature f with image y based on their

85

5.2. CO-EMBEDDING 5

kernelized distance K(y, yj). Therefore, the weight p(f |s) can be non-zero even if f is not a
feature of s. Mass redistribution assumes that all existing edges are true edges and some edges
are missing, i.e. there are no misconnected items, but the information available is incomplete.
The kernel allows us to consider the unlinked items with some degree of confidence based on
their proximity.

Kernel Choice The t-SNE embedding uses a t-Student kernel to map items. While it
seems a natural kernel choice, this distribution has a long tail, allowing distant items to
contribute. In the t-SNE algorithm, this kernel was chosen to create long-range forces for
better clusters’ separation. As the goal is to identify closely related items, the use of a
Gaussian kernel is more adapted, defined as K(yi, yj ; σ) = exp

(
−∥yi−yj∥2

2σ2

)
with bandwidth

parameter σ. This kernel has the advantage to be more localized and adaptable using σ.

σ’s Choice: The perplexity impacts the distances between items within an embedding.
Consequently, σ is adapted by looking at the effective distances by:

σ̂(Y, k) = Median [∥y− yk-NN∥] (5.3)

where yk-NN is the k-est nearest neighbors of point y, with k = ⌊perp⌉ and ∥y∥ =
√∑d

i=1 y2
i is

the Euclidian norm. Using the median rather than the mean limits the outliers’ contribution
which would enlarge σ.

5.2.3 Building the Samples Embedding

The t-SNE algorithm requires as input a distance matrix. Therefore, the distances between
samples are obtained by measuring the divergence between the samples’ probability vector
obtained using Eq. (5.2). We use the Jeffrey-Kullback-Leibler divergence to measure items
proximity, with the formulation:

KLJ (p(sa)∥p(sb)) = 1
2 (KL(p(sa)∥p(sb)) + KL(p(sb)∥p(sa))) (5.4)

with p(sa) and p(sb) the vectors of sample sa and sb respectively. We use this diver-
gence instead of the traditional KL because of the symmetry of KLJ . The matrix DS =
[KLJ (p(sa)∥p(sb))]sa,sb∈S allows to obtain a new sample embedding Y S ← t-SNE(DS) used
in the next iteration inverting samples and features’ role.

86

5 5.2. CO-EMBEDDING

5.2.4 Embedding Procedure Summary & Parameter Choices

Algorithm 1: Co-Embedding procedure
Input: (perpR, perpT): Perplexities; k: Number of iterations.
Data: M = {δ(r, t)}r∈R,t∈T : the resources-tags matrix.
Output: Y R, Y T : Resources and tags respective embedding(
Y R, Y T

)
← Init(M) // Initialization

(S,F)← (R, T) // Resources start with the samples’ role

for t = 1 to 2k do
σF ← f(Y F , perpF) // Using Eq. (5.3)
P S = {p(s)}s=1:|S| ← g(M, Y F , σF) // Using Eq. (5.2)
DS ← [KLJ(pa∥pb)]pa,pb∈P S // Using Eq. (5.4)
Y S ← t-SNE(DS ; perpS)
/* Exchange roles */

(S,F)← (F ,S)
M ←MT

(Y R, Y T)← (Y S , Y F)

Initialization: At the start, no initial embedding exists yet, which prevents measuring
density. We initialize the first embedding with the d first eigen-vectors of M obtained by
SVD. Compared to a random initialization, it fastens the convergence process by starting
from an organized state. In pseudocode (1), resources start the role of samples. This is an
arbitrary choice and has almost no impact on the final result.

Iteration At each step, the samples’ probability density is estimated over the feature’s
space. Then, samples’ divergence matrix is obtained using these probabilities. The embedding
step finish by embedding using the t-SNE algorithm to obtain a new sample embedding
Y S(t + 1) using the divergence matrix as input. After building the embedding, features and
samples exchange their respective roles.

Ending Criterion: The pseudocode (1) iterates k times on each type of item, an arbitrary
value around a dozen steps, as the algorithm does not minimize a particular criterion.
Nonetheless, the process can be monitored in terms of neighborhood stability, looking at if the
neighborhood around a point is unchanged over successive embedding. By denoting Nn(Y, i)
the set of the n nearest neighbors of i in Y , we compare its neighborhood in Y (t) and Y (t + 1)
using the Jaccard similarity by |Nn(Y (t),i)∩Nn(Y (t+1),i)|

|Nn(Y (t),i)∪Nn(Y (t+1),i)| .

Algorithm Complexity: For n samples and m features, the probability estimation requires
O(nm2) operations. The divergence measurement requires O(n2m) operation to compute
n2 pairs with vectors of size m. Then, the t-SNE embedding complexity is in O(kn2) for k

update steps, typically between 100 and 1000, depending on the dataset size and convergence
speed. In total, a step described in pseudocode 1 requires O

(
nm(n + m) + kn2) operations.

87

5.3. EVALUATION METHODS 5

5.2.5 Clustering Embeddings

The proposed algorithm leads to clusters’ apparition when community structures exist in a
dataset. Groups are extracted using the Mean-Shift (MS) clustering algorithm [29]. This
algorithm follows an iterative process, moving items towards their mode’s location, which
are positions with maximal probability density. The image ȳ of point y is moved toward its
mode following the equation:

ȳ←
∑n

j=1 K(ȳ, yj)yj∑n
j=1 K(ȳ, yj) (5.5)

starting with ȳ = y and using the Gaussian kernel K(.) defined previously, using the
bandwidth parameter σ estimated using Eq. (5.3). After several iteration steps, all items
may have converged in some specific locations. A cluster is obtained by gathering all items
within a radius ϵ. Using MS, tags clusters CT and resources clusters CR are extracted from
their respective last embedding Y T and Y R.

Two-Ways Clustering: Mean-Shift is a one-way clustering algorithm as samples and
features are clustered independently. Nevertheless, we consider the full process as a two-way
co-clustering algorithm as the embeddings are linked together,. The MS algorithm has the
advantage of being parameter-free, as the kernel bandwidth σ is adapted to the embedding.
The two main advantages of MS are its ability to automatically discover the number of
clusters and the uniqueness of the partitioning obtained.

Co-Clusters Relationships: A sample is represented by a mixture of features using Eq.
(5.2). Two samples sa and sb are embedded close to each other area if they have a similar
mixture. The features of a sample are not necessarily all located in the same area. Assuming
the features of sa are located in k distinct areas, sb is similar to sa only if its features are
also located in these k areas. Therefore, we would obtain a co-cluster connected to k features
clusters. If sb has no feature in one location or has a feature in another location out of these
k areas, its mixture will be very dissimilar. KL divergence highly penalizes couples of items
where one has a mass where the other has none. If sb has its features located in all these k

locations with many features in some of them, an asymmetry can appear due to the excess
and deficit of mass in the different areas. Depending on the strength of the asymmetry, sa

and sb can be located either in the same cluster or in two distinct clusters. A cluster can be
characterized by the features clusters it is connected to and the connection’s strength.

5.3 Evaluation Methods

5.3.1 Datasets

We propose to evaluate our co-embedding approach over various datasets corresponding to
tags associated with resources, as tags allow us to evaluate a group content subjectively. We
tried to select for each resource type two datasets to visualize the impact of different data

88

5 5.3. EVALUATION METHODS

collection processes. Some of the datasets are folksonomies, tagged by non-expert people with
uncontrolled vocabulary, while the others are tagged by experts using a specific vocabulary.

Table 6.1 summarizes the different datasets’ characteristics, such as the number of unique re-
sources |R| and tags |T |, the average number of tags per resources E(|r|) and the corresponding
standard deviation σ(|r|), and if the dataset is a folksonomy (Folks ?).

Table 5.1: Summary of the (unprocessed) datasets’ characteristics

Dataset |R| |T | E(|r|) σ(|r|) Folks ? Media
BibTex 813,548 255,496 3.3 4.2 yes bibliography
DBLP 4,894,081 132,337 10.2 1.7 no bibliography
Corel5K 5,000 347 3.5 0.6 no image
Flickr 946,113 345,897 11.5 9.6 yes image
MovieLens 10,381 1,127 44.3 27.7 no movie
IMDB 120,919 1,001 19.4 12.0 yes movie
Delicious 16,105 501 18.3 39.5 yes URL
BibUrl 618,245 156,497 3.4 2.7 yes URL
Last.fm 445,821 138,402 3.5 3.5 yes music
NG20 19,300 1,007 32.1 32.4 no netnews
OHSUMED 13.929 1,002 39.7 17.1 no abstract

For bibliographic tags, the BibTex part of Bibsonomy [93] and its non-folksonomy counterpart
DBLP [27] were selected. For images, we used the Flickr folksonomy dataset (MIRFLICKR
25) and the Corel5K [94]. The IMDB [95] and the MovieLens20M tag genome [96] were
used for movies. IMDB is classified as a folksonomy as words are extracted from movies’
reviews, while MovieLens’s tags come from a controlled list. While |T | is similar for both, the
vocabulary used are different. Url datasets Delicious [98] and the URL part of the Bibsonomy
database [93] (denoted BibUrl) were selected. We used the Million Song Dataset from Last.fm
[49] for music songs but did not find another equivalent dataset. We used textual datasets for
comparison. The NewsGroup20 [99] (NG20) corresponds to news articles covering 20 different
topics, and the OHSUMED [100] to abstracts from MedLine papers. The Corel5k, Delicious,
IMDB, NewsGroup20 and OHSUMED datasets were gathered on https://cometa.com.

The detailed pre-processing steps are detailed in 5.6. The largest datasets are sampled and
filtered before use as they do not fit in memory. The sampling and filtering steps are also
detailed in the local appendix.

5.3.2 Cluster Retrieval Tasks

We propose to evaluate the co-clusters obtained using our method over a cluster-retrieval
task, where the goal is to find the cluster where the item’s location is. Additionally, we
evaluate the ability of the features clusters to serve as a unit of description. The sample’s
binary vector is replaced by the proportion of features it has in each cluster, providing a

89

https://cometa.com

5.3. EVALUATION METHODS 5

compact representation. For a sample s, its description vector is:

q(s) =
[∑

f∈CF δ(s, f)∑
f∈F δ(s, f)

]
CF ∈CF

(5.6)

as well as for a cluster C ∈ CS by:

q(C) =
[∑

s∈C,f∈CF δ(s, f)∑
s∈C,f∈F δ(s, f)

]
CF ∈CF

(5.7)

The compressed vectors are denoted by q to avoid confusion with the vectors p defined in Eq.
(5.2). We use the binary features and not the diffused ones here as the goal is to evaluate
the partitioning obtained, and not the embedding quality. Clusters C ∈ CS are sorted by
increasing KL divergence D(s, C) = KL(q(s)∥q(C)). The retrieval accuracy of this task is
measured using the Mean Retrieval Rank (MRR), which quickly drops with miss-prediction.

The retrieval task allows us to evaluate the partitioning relevance. This is assessed by the
capabilities of sample clusters to gather items with similar connections, and by the ability
of feature clusters to serve as a description unit. Cluster partitioning can help to speed up
the retrieval process. A user query is often short and inaccurate, which makes impossible
an exact search. The query must be compared to all n items of the database to select the
most relevant item. By partitioning into k clusters, the search requires k operations to find
the best cluster (assuming the correct cluster is well identified), and n

k others to find the
correct element within the cluster. Therefore, the partitioning can help to reduce the search
complexity from O(n) to O(k + n

k), which could be beneficial for very large or distributed
databases.

5.3.3 Comparative Algorithm

We compare our algorithm to the spectral co-clustering algorithm presented in [63]. The
algorithm uses the VSM representation that SVD next decomposes. Then, the singular
vectors are clustered using k-Means. The algorithm is adapted by grouping the two types
of nodes separately. As this algorithm has to enter the number of clusters to be searched,
we use the number of clusters found using our approach. k-Means is a non-deterministic
algorithm leading to different results depending on the initialization seed. The algorithm is
run 10 times, and the best result is kept for fairness. We choose this algorithm as it has a
strong theoretical basis but does not consider dimension relatedness.

5.3.4 Evaluation Metrics

5.3.4.1 Cluster Quality

Not all partitioning with k clusters are equivalent. The proposed task is very easy if a single
cluster gathers all the items, and the other clusters are made of very small groups. In contrast,
the retrieval task using partitioning with clusters of equivalent size is much harder, as a

90

5 5.3. EVALUATION METHODS

random choice based on the mass would lead to very poor scores. We define the partitioning
entropy as the entropy relative to the clusters’ size:

H(C) = −
∑
C∈C

Pr(C) log2 (Pr(C)) (5.8)

where Pr(C) = |C|∑
Ci∈C |Ci|

, with values in [0, log2 |C|].

The value in terms of entropy is non-comparable to the number of clusters as it represents
the number of bits necessary to encode the information. The value is put to the power of 2 to
transform it into a meaningful value. The effective number of cluster k(C) = 2H(P) ∈ [1, |C|],
where a value of 1 is synonymous with a large cluster, while a value close to |C| indicates
that the clusters have a similar size. This value better measures the retrieval difficulty, as
clusters’ size is considered.

5.3.4.2 Items Representativeness

The items in the identified clusters can be ranked by relevance or representativeness. A
sample is relevant if its distribution on the feature space is close to the mean distribution of
the cluster to which it belongs to.

We propose to score items based on their KL-divergence from their respective cluster. The
KL-divergence could be expressed as KL(A∥B) = H∗(A, B) − H(A), where H∗(.) is the
cross-entropy that represents the extra cost of coding A with the optimal code of B. For a
cluster C ∈ CS , we define the representativeness of sample s ∈ C relatively to C as:

repr(s, C) = max
(

0, 1− KL(q(s)∥q(C))
H(q(s))

)
(5.9)

A score repr(s, C) ∈ [0, 1] is obtained, where 1 represents the maximal relevance.

This normalization enables us to consider samples’ frequency. A low divergence between the
item and the cluster is synonymous with high similarity. However, underfrequent items are
likely to have a lower divergence than frequent items. By normalizing the divergence with
the entropy, items are fairly compared to the cluster average.

91

5.4. RESULTS 5

5.4 Results

5.4.1 Evolution over Time

(a) t=0 (b) t=2 (c) t=4 (d) t=6

(e) t=8 (f) t=10 (g) t=12 (h) t=14

Figure 5.1: Evolution of the keywords co-embedding for the Flickr dataset.

Fig. 5.1 and Fig. 5.2 represent the embedding chronology for keywords and resources
respectively, for randomly selected items of the Flickr dataset. The subset is described in
Table 5.2 and the resulting co-embedding is reused in the next experiments.

t-SNE is initialized with the previous items’ location, allowing to visualize items displacement
over time better. Therefore, clusters’ positions are approximately preserved over the successive
steps. The first keyword embedding (t = 0) is obtained by exploiting the document eigen-
vectors obtained by SVD decomposition, while the first document embedding (t = 1) is
obtained exploiting this first keyword embedding.

Major structures emerge from the initial mass of items during the first steps (until t = 6 ∼ 7).
During the last steps, clusters’ shapes are refined. The keyword clusters’ locations are stable
over time, but clusters tend to densify from step t = 6 to step t = 14, leading to well-separated
clusters. Keyword clusters’ move from their previous location and some split into several
pieces between t = 7 and t = 15. At the end of the process, both embeddings show clusterable
structure but differ in their spatial organization. The difference will be detailed in the next
paragraphs.

92

5 5.4. RESULTS

(a) t=1 (b) t=3 (c) t=5 (d) t=7

(e) t=9 (f) t=11 (g) t=13 (h) t=15

Figure 5.2: Evolution of the documents co-embedding for the Flickr dataset.

5.4.2 Visual Results

Fig. 5.3 shows different co-embedding results for the different datasets, where samples’
characteristics are presented in Table 5.2. The majority presents disjoint clusters for both
tags and resources. The tag embeddings differ from the resource embeddings as they all show
a large central cluster. These clusters correspond to unspecific vocabulary, which occurs in
all resources’ clusters. There is no such a central cluster for resources’ clusters, unless for the
unfiltered DBLP subset and Delicious.

Datasets are filtered to fit in memory by discarding rare items as they are the less accurate
and would lead to a normalization bias (5.5.2). We illustrate the difference between the
unfiltered (u) and filtered (f) over a DBLP subset related to the payment. The filtering leads
to removing many infrequent tags, drastically reducing |T | and |CT |. |R| is unaffected by the
filtering, but |CR| is reduced by 1/7, leading to denser clusters. The reduction of |CR| results
from removing these infrequent tags that isolated some resources into small clusters.

Some datasets have a different clusters’ shape and spatial organization. At the same time,
most tag clusters are dense; the Corel5K has very thin clusters. This could be explained
by the very low E(|r|), and the small tag collection, leading to very weak connectivity. The
Bibsonomy datasets have some of their tag clusters connected to each other. These clusters
gather similar vocabulary but with different formatting. By applying text processing methods
(steaming and case normalization), these clusters would merge in one.

93

5.4. RESULTS 5

(a) Corel5K (b) Flickr (c) IMDB (d) MovieLens

(e) NG20 (f) OHSUMED (g) DBLP (u) (h) DBLP (f)

(i) Delicious (j) BibUrl (k) BibTex (l) Last.fm

Figure 5.3: Co-embedding results. The blue items on the top correspond to tag embeddings while the red ones to
resource embeddings. Opacity depends on area crowdedness and items’ frequency (light color for rare items).

94

5 5.4. RESULTS

5.4.3 Cluster Balance

The characteristics of the selected subsets used to build the co-embedding presented in Fig.
5.3 are detailed in Table 5.2. The subsets dimensions |R| and |R| are limited to thousands of
items to fit in memory. The table gathers the number of clusters (|CR| an |CT |) obtained by
clustering the co-embeddings (CE) with Mean-Shift, and the effective number of clusters
k(CCE) measured with Eq. (5.8). The MS clustering results are compared to the raw binary
matrix’s spectral clustering (SC), searching for the same number of clusters |C|.

Table 5.2: Sample size, number of clusters, and effective number of clusters using our co-embedding approach
(CE) and spectral clustering (SC).

Dataset |R| |T | |CR| k
(
CCE

R

)
k
(
CSC

R

)
|CT | k

(
CCE

T

)
k
(
CSC

T

)
BibTex 7,643 4,335 54 35.4 20.7 45 35.9 15.9
DBLP (u) 5,028 5,624 114 71.8 48.1 102 76.9 41.95
DBLP (f) 4,948 1,443 81 40.2 61.4 16 13.2 13.5
Corel5K 5,000 364 88 62.5 60.9 14 12.3 7.1
Flickr 7,185 2,427 70 34.2 26.7 16 13.0 1.9
MovieLens 10,159 1,127 21 9.5 18.9 10 7.8 7.8
IMDB 16,000 1,001 125 65.3 90.1 8 6.4 5.7
Delicious 16,105 501 118 76.2 41.1 9 8.4 4.2
BibUrl 7,886 3,648 45 25.3 9.8 38 27.6 9.0
Last.fm 9,897 2,516 66 32.9 15.5 32 29.5 5.8
NG20 13,125 1,007 59 27.8 48.5 9 6.8 4.2
OHSUMED 13,929 1,002 34 26.7 31.9 7 5.1 6.4

As a general remark, tag clusters are less numerous than resource clusters as observed in the
previous figure. This could be explained by the fact that |R| > |T | for all subsets. However,
there is no explicit relationship between sample size and clusters number, as DBLP has more
resources clusters than most other datasets while having the smallest |R|. Thus, the number
of clusters found is likely to depend on the sample intrinsic characteristics.

k (CT) is almost always larger for CE than for SC, while half of the time for k (CR). k(CCE)
and k(CSC) have the same order of magnitude, unless for a few examples like Flickr and
Last.fm with a very low k(CSC

T) compared to |CT |, and BibUrl where both k(CSC
R) and k(CSC

T)
are much lower than for CE.

One reason that might explain the difficulty to identify balanced clusters using the raw binary
matrix with SC is the power-law distribution of items. This distribution leads to a very
sparse matrix where groups are difficult to identify. Resource occurrences follow a power-law
if some resources are more popular therefore more tagged than others, but the phenomenon
is more frequent for tags because of the language organization. This might explain why SC

gives lower results than CE more frequently over tags than over resources.

95

5.4. RESULTS 5

5.4.4 Representative Keywords

Table 5.3: Top tags for the largest cluster (denoted Main group) and four other clusters for each dataset. Acronyms:
CS: Computer Science, CVA: Common Value Auction, HCI: Human Computer Interaction, NN: Neural Networks,
Mech.: Mechanism

Dataset Main group Group 2 Group 3 Group 4 Group 5
BibTex Middle Recording Cell Inflation Joint

of Videotape Protein Geld Hip
Humans Video Models Kapitalmarkt Dislocation
Cerebral Equilibrium Membrane EU-staaten Ostonomy

DBLP (f) CS CVA Use case 3-D Secure Multimedia
Payment Revenue USable Credential Analytics

DB transaction Op. research Web service MULTOS HCI
The Internet Mech. design Web app. OpenPGP card Artif. NN

Corel5K water canal tundra train deer
sky sailboats polar plane elk
tree lake bear railroad white-tailed
hills dock storm locomotive antlers

Flickr light pontrouge mare meiji spiegelung
blue pontneuf nuvole era landskap
nikon collette tramonto period flickrolf
city impressionniste acque prints reise

MovieLens talky splatter scifi us history crime
cinematography gory space war thriller

criterion horror sci-fi wartime mystery
melancholic demons sci fi ethnic conflict murder

IMDB life films american father game
year director film finds team
time video movie wife star
day documentary war friends battle

BibUrl web Post-abortion assistive stanford kittens
blog Pro-life impaired ml cats

reference Lebensrecht visually bioinformatics memetics
blogs Human Rights cane model cute

Delicious throat das breath apache him
knees ein loud article looked

leaning den mouth rails told
rodney der neck ruby couldn

Last.fm pop Hamburger Schule sixties tech-house country pop
indie The Killers 1960s seep techno switzeland
rock lofi 1960’s melodic trance discover

alternative elliott smith 70’s dream trance daytrotter
NG20 time work religious windows law

don problem jewish software country
make mail religion file government
article system god ms rights

OHSUMED patients compared artery antibody surgery
disease greater left antigen surgical
findings 4 cardiac immune complication
clinical group anterior antibody procedure

96

5 5.4. RESULTS

The top 4 words of each cluster were extracted using Eq. 5.9 from the clusters identified
previously using CE. As a result, the keywords of the largest clusters (denoted Main group)
and four other selected clusters are listed in Table 5.3.

Main Group Description The main cluster of each subset is mostly made of general
words occurring in many different contexts that the dataset cover. In some datasets, it
allows to define the global scope (music genres are identified for Last.fm, medical topics for
OHSUMED, or web components for BibUrl), but for the majority the media type (music,
images, etc.) or the topics covered are difficult to identify.

Cluster Identity Each cluster has a particular identity. For example, for OHSUMED, one
group gathers the vocabulary used in studies (where cohorts are compared), and the others
concern different disciplines (related to heart, infectiology, and surgery). For Corel5K, each
group corresponds to a particular picture (seaside, tundra, locomotion engines, and animals).

A folksonomy includes vocabulary from users that do not necessarily share the same language.
Flickr is the most representative dataset, with French, Italian, English and German words
each gathered in a specific cluster. This particularity is visible on the other folksonomies
BibTex, BibUrl and Delicious with English and German clusters.

In a given dataset, words groups can be of various kinds, out of language consideration. For
example, the Last.fm dataset has five clusters with distinct words types and ideas. The main
group is about general music type while the 4th gathers sub-music types related to electronic
dance music, the 2nd gathers band names, the 3rd epochs, and the last road-trip related ideas.

Data Collection Specificity While several datasets have in common the type of tagged
resources; the clusters obtained differ in the ideas expressed. This could be explained in a
first place by the small overlap between the dataset’s vocabulary, but the ideas expressed
differ from one dataset to another.

Corel5K gathers timeless tags each representing a specific object or place, while Flickr gathers
tags related to art requiring culture to be understood. The difference can be explained by the
different goals expected, where Corel5K is designed for Object Recognition, while information
retrieval for Flickr.

The largest difference concerns IMDB and MovieLens that both correspond to movies’
descriptions with approximately the same number of tags. Movie styles are easily identified
on the MovieLens dataset (horror, science-fiction, historical and police movies), while IMDB’
clusters group elements that occur in the same context together. Each dataset has a narrowed
list of terms, corresponding to the most relevant term for IMDB, and general movies attribute
[96] for the MovieLens tag genome, explaining the difference of expressed ideas between the
two datasets.

97

5.4. RESULTS 5

5.4.5 Cluster Retrieval

We tested the cluster retrieval tasks using the clusters obtained previously. In addition, we
tried the task in both directions: searching the resource’s cluster, and searching the tag’s
cluster. Table 5.4 summarizes the retrieval scores for this task.

Table 5.4: Mean Retrieval Rank for resources clusters CR and tag clusters CT using our approach (CE) and the
comparative algorithm (SC).

Dataset MRR(CCE
R) MRR(CSC

R) MRR(CCE
T) MRR(CSC

T)
Bibtex 94.1 % 89.1 % 92.5 % 89.6 %
DBLP (u) 86.7 % 70.3 % 97.8 % 73.6 %
DBLP (f) 91.5 % 66.2 % 99.6 % 88.7 %
Corel5K 69.2 % 48.5 % 99.3 % 90.46 %
Flickr 78.5 % 20.9 % 96.2 % 86.74 %
IMDB 96.4 % 34.7 % 100.0 % 92.9 %
MovieLens 62.8 % 79.2 % 86.9 % 93.6 %
BibUrl 87.1 % 89.0 % 90.4 % 91.7 %
Delicious 74.9 % 53.7 % 98.1 % 97.5 %
Last.fm 83.8 % 70.0 % 97.9 % 85.2 %
NG20 88.7 % 49.9 % 98.2 % 96.1 %
OHSUMED 91.4 % 50.6 % 97.9 % 91.5 %

Tags clusters have higher retrieval scores than resources clusters with both approaches, ours
leading to better MRRs in most cases. The good MRRs are explained by the low number of
tag clusters, making the task easier with a smaller choice. The other point explaining these
MRRs is many resource clusters, allowing a more detailed description vector, leading to a
more accurate retrieval. The argumentation is reversed for resource cluster retrieval, leading
to lower MRR scores. The Flickr dataset mentioned for its low k(CSC

T) (1.9) illustrates
this argument with the lowest retrieval score MRR(CSC

R) = 20.9%. A low number of tags
clusters inevitably leads to a low retrieval rate of the resource clusters. Still, a large number
doesn’t guarantee the opposite outcome, illustrated by the DBLP dataset, with an acceptable
retrieval score using our approach while having the largest number of tag clusters.

The gap between approaches for resource retrieval is larger, with our approach having MRR
around 80 ∼ 90%, the spectral clustering has MRR around 50 ∼ 70%. These results make
our approach preferable for this particular task, with the additional advantage of providing
an intermediate visualization result.

98

5 5.5. DISCUSSION

5.5 Discussion

5.5.1 Parameters Choice

Perplexity As said previously, the perplexity governs the embedding shape by controlling
the number of items t-SNE would look at for embedding data. The values we used must
be relatively small because we are interested in local structures to learn similarities. These
values are adjusted as a function of the sample size n the following way:

perp =

15 if n < 1, 000
30 if 1, 000 ≤ n ≤ 8, 000
60 else

This decision rule is very simple and allows a simple parameter selection. Nevertheless, the
verification of the produced output is suggested. A too large value would connect the different
clusters together, while a smaller value would lead to more clusters, penalizing the other
embedding.

Relationships between σ and perp: The estimation of σ using Eq. (5.3) can be explained
with two remarks. First, a larger perplexity leads to smaller distances between nearest
neighbors (NN), making the choice of σ non-trivial. The direct adaptation to the embedding
allows adapting to the perplexity and the dataset characteristics. Second, the perplexity
governs the number of NN that t-SNE considers around each item. If k < perp, the kernel
would underexploit the items’ positioning, as only a small fraction of the NN would be
considered. On the opposite case where k > perp, the kernel would be too large, and would
put weights on items that were not considered by t-SNE. Additionally, a larger σ would lead
to a flatter kernel, underexploiting items well positioned. Therefore, the best option is to
select k = ⌊perp⌉, simplifying σ’s choice by adapting it indirectly to the current perplexity.

5.5.2 Normalization

Normalization Bias: In Eq. (5.2), the contribution of an item is normalized by its
frequency, limiting the contribution of highly popular items. In contrast, items with very few
links and low frequency have their contribution enhanced. Their weight is very large for very
low-frequency items, leading to group artefacts, where the infrequent item is strong enough
to gather co-occurring items in a single cluster. To overcome this issue, using a different
normalization scheme or filtering the dataset could mitigate the apparition of artefacts.

Weighted Case: Our approach exclusively considers the case where the frequency infor-
mation is unavailable. Nonetheless, Eq. (5.2) can be adapted to consider items’ frequency,
by replacing ∑fi∈F

δ(s,fi)
|fi| by ∑fi∈F

T F (s,fi)∑
sj ∈S T F (sj ,fi)

where TF (sj , fi) = C(sj ,fi)∑
f ′∈F C(sj ,f ′) is the

frequency of feature fi in sample sj and C(sj , fi) the number of occurrences. If we have
words and documents, the normalization of the word count within a document is intuitive,

99

5.5. DISCUSSION 5

allowing to obtain a document vector summing to 1. However, describing a word using the
documents that contain it to obtain a word vector is non-trivial as different possibilities
exist. One can normalize the word frequency of each document T F (w,r)∑

r′∈R T F (w,r′) , or one can

normalize the word count per document over all the corpus C(w,r)∑
r′∈R C(w,r′) . The first option

is more balanced, as it gives credit to all documents. Nevertheless, documents with very
few words would penalize the final result because it is considered inaccurate information. In
that case, the second option is more suitable, as it favors the contribution of documents of
sufficient size.

5.5.3 Scalability to Large Datasets

Each step of our algorithm runs in O
(
nm(n + m) + kn2), unaffordable for very large datasets.

Nevertheless, the scalability problem can be bypassed by identifying clusters over a subset
of items. Of course, this assumes that sampling would only affect clusters’ size, but would
not affect clusters’ number. After the cluster identification phase, the unselected items are
assigned to the most relevant cluster, classifying them.

Then, the embedding process could be repeated over the items of a consolidated cluster,
leading to a new segmentation level. Some features were previously discarded because of
their low frequency within the initial subset because of the filtering process. The addition of
these new items allows some of these features to reach the critical frequency, therefore to
consider them. Even if the items are very similar, the second co-embedding process will likely
to lead to new clusters because of the new features that increase diversity.

5.5.4 Adaptation to Temporal Datasets

A dataset is a snapshot of a database at a given moment. A real-world graph is often dynamic,
with new nodes and new edges. Rather than looking at the entire network since origin, the
focus can be put over a given period to compare with another one.

The proposed approach can be adapted to temporal datasets using a moving window. The
first slice is used to construct a primer co-embedding. Next, the embedding of the new
window is obtained using the embeddings of the previous slice to learn items’ density. This
step is possible only if the previous and current windows share some of their elements and
new items have already seen features. Otherwise, it would not be possible to evaluate the
density. Following this process would reduce the number of co-embedding iterations as an
already stable embedding allows estimating items’ density. A minor difficulty concerns cluster
tracking over the different windows, as new clusters can emerge, disappear, split or fuse
together, adding some complexity.

100

5 5.6. CONCLUSION

5.6 Conclusion

In this article, we proposed a co-clustering algorithm for bipartite graphs. The algorithm
addresses dimension relatedness by projecting features into a low dimensional space, comparing
samples based on their mixture of features. The embedding process leads to natural cluster
formation for a dataset where community structures exist, clustered using the Mean-Shift
algorithm. The algorithm is easy to configure with very few parameters to adjust. We
tested our algorithm over a cluster retrieval problem. A better retrieval accuracy with more
balanced clusters in a large number of cases was shown than when using a spectral co-
clustering algorithm that did not consider the relationship between the dimensions. However,
the weakest point of our algorithm is scalability. Nevertheless, clusters could be identified
over a subset, and unused items assigned to the closer cluster. The approach could be used
to optimize recommender systems and retrieval engines by working at the cluster-level rather
than the item-level.

As future works, there are multiple directions to explore. As underlined in the discussion,
the main limiting factor is the scalability. The first direction to explore is how to sample the
dataset to identify the main groups. The co-clustering process can be repeated at the cluster
level by assigning unselected items to the closest clusters, creating a hierarchical structure.
This recursive idea must be tested to see whereas obtained clusters are meaningful as it would
lead to a computationally cheap divisive hierarchical algorithm. Another direction is the
usefulness for recommender systems (RecSys). In this article, we tested the retrievability
of an item given a query. A second major aspect to consider in a RecSys is the suggestion
capability of unseen items to a user. Further works need to be done on this direction to
measure the usability of such a clustering to this domain.

Appendix

Sampling & Filtering

Because of the complexity of our proposed method, not all the datasets could be processed
as they couldn’t fit in the memory (Bibtex, DBLP, Flickr, IMDB, and Last.fm). Therefore,
a first sampling is performed over the documents, trying to keep around 10.000 documents.
Then, some documents having too few keywords (less than 5) are removed from the subset.
The same filtering is applied to keywords with less than 5 occurrences. The filtering process
is repeated until all documents have 5 valid tags and reciprocally.

Dataset Pre-Processing

BibTex & BibUrl The Bibsonomy dataset [93] is composed of two sub-dataset: the former
(BibUrl) correspond to tagged URLs, while the second (BibText)to tagged scientific articles.
We use the scientific part, denoted BibTex. This dataset is a folksonomy, where users are free
to add any keywords to any URL / article. We construct the bipartite graph by preserving

101

5.6. CONCLUSION 5

the (document, tag) part, forgetting the user part. Because of the folksonomy origin, the
keywords are power-law distributed. We couldn’t perform an initial document selection
looking at a particular keyword, because the resulting subset after filtering would be too
small. Therefore, documents were sampled at random from the whole corpus.

Corel5K The Corel5K dataset [94] contains 5 thousand images associated with tags. The
dataset has been obtained on the Cometa website (https://cometa.ujaen.es/datasets/). Each
image is associated with a set of tags, where no frequency is available. Due to the limited
size of this dataset, no sampling nor filtering have been done.

DBLP We used the DBLP v. 12 (2020-04-09) citation dataset [27]. The dataset corresponds
to scientific articles with information such as title, date, abstract, authors, references, around
10 keywords and other fields. The bipartite graph was build using the associated keywords.
Because of the dataset size, a subset of article was extracted. A general keyword was selected
(in the experiment: Payment), and all documents associated with this keyword gathered.
Then, the sampling is performed followed by the filtering step.

Flickr We used the Flickr dataset [101] (MIRFLICKR-1M) that contains 1 million of
images and the corresponding tags. We removed from the described corpus all images with
no associated tags. Then, we applied the sampling and filtering steps.

IMDB The IMDB dataset [95] has been gathered on the Cometa website. Each movie is
associated with a set of tags as well as a set of classes, representing the movie types. The
bipartite graph is constructed using the tags and movies exclusively, and does not use the
movie types. For the experiments, the dataset was sampled and filtered.

Last.fm The Million Song Dataset [49] corresponds to music titles associated with rated
attributes in [0, 100]. The dataset is organized into three part: train, test and subset. We
worked only on the train part because of the large number of music songs available. As for
the MovieLens dataset, we preserved all the attributes with relevance ≥ 80, and discarded
the songs with no items. This dataset has been sampled and filtered for the experiments.

MovieLens From the MovieLens project [96], we selected the ml-20m dataset and studied
the genome part. The genome is a set of about 1.000 keywords for which the relevance to
each movie (∈ [0, 1] has been evaluated. For each document, we preserved all the keywords
with relevance equal or greater than 0.5. The subset size has been sampled and filtered for
the experiments.

NewsGroup20 The NewsGroup20 dataset [99] has been obtained on the Cometa website.
For scalability, we only removed the documents with the lowest number of tags. We did not
apply the filtering process as the number of tags per document is large, as well as the number
of documents including a specific tag. Therefore, the filtering would have no consequence.

102

https://cometa.ujaen.es/datasets/

5 5.6. CONCLUSION

OHSUMED The OHSUMED dataset [100] corresponds to medical article abstracts. It
has been obtained on the Cometa website without processing.

103

5.6. CONCLUSION 5

104

Part III

Computation under Noisy
Condition

105

CHAPTER 6

Noise-Resilient Ensemble Learning using Evidence Accumulation

Ensemble Learning (EL) methods combine multiple algorithms performing the same task
to build a group with superior quality. These systems are well adapted to the distributed
setup, where each peer or machine of the network hosts one algorithm and communicate
its results to its peers. EL are naturally resilient to the absence of several peers thanks to
the ensemble redundancy. However, the network can be corrupted, altering the prediction
accuracy of a peer, which has a deleterious effect on the ensemble quality. In this paper, we
propose a noise-resilient ensemble classification method, which helps to improve accuracy
and correct random errors. The approach is inspired by Evidence Accumulation Clustering
(EAC), adapted to classification ensembles. We compared it to the naive voter model over four
multi-class datasets. Our model showed a greater resilience, allowing us to recover prediction
under a very high noise level. In addition as the method is based on the EAC, our method is
highly flexible as it can combines classifiers with different label definitions.

107

6.1. INTRODUCTION 6

6.1 Introduction

Ensemble Learning [102] (EL) methods combine several algorithms performing the same task
to obtain a better-quality group. EL methods play on diverse group aspects: the number of
algorithms [103,104], their weighting based on their contribution [105–107], and their selection
based on their diversity [108].

EL methods are well adapted to the distributed setup, where several machines host each
a single algorithm and send their results to a central node aggregating the results [109–
111]. They can be adapted to decentralized Peer-to-Peer (P2P) networks [110], where a
dynamic group collaborate to improve its accuracy by electing a leader or by aggregating the
group’s results. Distributed systems and P2P networks are prone to network failures, where
communications are broken between some nodes, or corrupted with noise [112]. In addition,
no direct control can be made on P2P nodes, where malicious peers can join at any time,
and peers change temporary behavior.

EL methods are resilient to the absence of one or more weak learners thanks to group
redundancy [108,113]. However, the corruption of a learner’s predictions is equivalent to
a negative change of accuracy, which has a deleterious effect on the group quality. Thus,
there are two ways to deal with corrupted computers: detecting inaccurate peers to avoid
data pollution or resilience to error. The detection can be done using network monitoring
methods, or exploiting trust to weigh peers based on their past contributions. However, this
approach is not adapted to a dynamic environment such as a P2P network where a peer
lifetime is very short and may change temporary behavior. In contrast, being resilient to
error is more suitable as all inputs are accepted but more challenging to design as it requires
smart correction algorithms.

In this article, we propose a noise-resilient ensemble classification method, correcting errors
while improving accuracy. The method uses the Evidence Accumulation Clustering (EAC)
approach to rectify class boundaries and correct corrupted labels by performing a local
weighted vote. The approach was tested under several noise condition over four datasets and
tolerated high noise levels without accuracy degradation.

This paper is structured as follows. The first section presents the related works regarding
EL methods and resilience to error. The second section details the proposed ensemble
classification method. The datasets and the classifiers’ setup are detailed in the experimental
section, followed by the results. Finally, the paper ends with a discussion and a conclusion.

108

6 6.2. RELATED WORKS

6.2 Related Works

Ensemble classification (EClass) methods adopt different strategies to increase accuracy. The
simplest one is bagging [103] – for bootstrap aggregating, learners are trained over randomly
sampled subsets. A related approach exploits random projections [104], which creates a
different view of the data, making it less dependent on the pre-processing step. Rather than
sampling items at random, selection can be made on features [114], reducing the computational
complexity of each classifier while allowing the ensemble to classify incomplete items with
missing features. A classifier often makes very few errors in very dense areas where a single
class is represented, because there is no ambiguity. Near a boundary, the classifier is less exact
because this area is less dense; therefore difficult to learn correctly. EL methods help mostly
to correct these areas. A good example is decision trees with rough decision boundaries, while
a Random Forest [115] has smooth boundaries with various shapes. The bagging approaches
exploit the fact that random initialization would lead to diverse classifiers, compensating
errors within the group. However, it requires a large number of classifiers and fails to improve
when classifiers are correlated.

Boosting [105] solves the correlation problem by weighting classifiers based on the improvement
they can lead to. On the other hand, ensemble pruning [108] removes correlated classifiers
that lead to no improvement, decreasing the overall complexity while preserving the accuracy.
The ensemble size is smaller for these methods but is still resilient to the absence of several
classifiers during the inference stage [113]. Boosting and ensemble pruning target the problem
of how to construct a full ensemble using very few classifiers. As they require a setup phase
to evaluate the classifiers, these approaches are not adapted to dynamic environments, such
as P2P networks, as peers can join and leave at any time.

Most EClass methods assume that no issue can occur within the ensemble, i.e. all predictions
are transmitted without errors. The centralizing node is always available, but some classifi-
cation peers can be down. In the case of Internet-of-Things networks, like Wireless Sensor
Network (WSN) or Vehicular Ah Hoc Network (VANET), the devices are prone to fault,
failures and attacks [112,116,117]. Several techniques exist to detect deceptive nodes, but it
requires some time and often needs centralized monitoring capabilities. To our knowledge, no
work assumed transmission of corrupted predictions to the aggregator node, nor solution in
case of unavailability. It is equivalent to a completely decentralized P2P network where there
is no leader and corrupted peers can participate to the classification task.

The other branch of EL is ensemble clustering (EClus) [118] that combines clustering
algorithms. There is no way to know if a partitioning is good because there is no ground truth.
Therefore, ECLus algorithms must simultaneously deal with the good and bad clustering
without any other help. Therefore, this class of algorithms will be helpful to deal with
corrupted predictions. While clustering is analogous to classification as it assigns labels to
items, the approaches shared by EClass and EClus are limited to bagging and weighting
[106,107], where weights are assigned at inference time allowing to handle corrupted output

109

6.3. LABEL REFINEMENT WITH IMPLICIT BOUNDARY LEARNING 6

more carefully.

Evidence Accumulation Clustering (EAC) [106,107,119–121] is one of the main EClus methods,
which has the advantage of not requiring to match labels between the different clustering. The
approach starts by gathering the co-clustering frequencies of all possible pairs of items into a
co-association (CA) matrix of size n× n for n items. The similarity matrix obtained is then
re-clustered to obtain the final partitioning. A hierarchical algorithm is often used [119,120] as
it allows the final user to decide on the clustering granularity. The major drawback of EAC is
the complexity and the memory footprint because of the n× n matrix. Using Single-Linkage
(SL) hierarchical clustering [120], the authors proposed to limit the CA matrix to the k = 20
nearest neighbors, as SL does not consider distant neighbors. Depending on the dataset, the
approach led to better results than other clustering methods exploiting the full matrix while
reducing the overall computational complexity.

We inspired ourselves from the EAC methods and the nearest-neighbors trick to deal with
noise and improve accuracy. Nonetheless, our approach differs significantly from it as the CA
weights are exploited to refine labels rather than clustered to obtain the final classification.
The approach will be detailed in the following section.

6.3 Label Refinement with Implicit Boundary Learning

In this section, we will detail our proposed EClass method exploiting the EAC method. The
task is to classify an unlabeled dataset X = {x1, x2, ..., xn} with n = |X| elements. The
ensemble is a group A =

{
A(1), A(2), ..., A(kp)

}
of kp classifiers, called sometimes peers. The

way they are obtained impacts the ensemble accuracy – as in any other EClass methods
– but does not impact the overall process. The prediction made by the peer p is denoted
Ŷ (p) = A(p)(X) ∈

(
L(p)

)n
, where L(p) is the set of classes that p can distinguish, possibly

different from the other classifiers. We will discuss later about this particularity.

The goal of the proposed approach is to rectify the label of an item based on its neighborhood.
In general, a classifier makes errors on items close to a class boundary. A peer will collect
the peers’ opinion to know if two items are on the same side of the class boundary. These
weights will be used to rectify uncorrect labels using a weighted voter model. The following
paragraphs describe the process and explain the motivation of the different choices.

6.3.1 Gathering Co-Association Matrices

The initial prediction Ŷ (p) of the peer p is transformed into the local CA matrix M (p), where
M (p)(x, x′) = 1 if A(p)(x) = A(p)(x′) else 0. Only the pairs M(x, x′) concerning the k-nearest
neighbors (k-NN) of x ∈ X (denoted Nk(x), with x /∈ Nk(x)) are computed. As mentioned in
[120], this trick reduces the memory footprint and computational cost from O(n2) to O(kn).

After prediction, peers exchange their results, allowing them to compute locally the average

110

6 6.3. LABEL REFINEMENT WITH IMPLICIT BOUNDARY LEARNING

CA matrix M:

M(x, x′) = 1
kp

kp∑
p=1

M (p)(x, x′) (6.1)

Peers may get different results of M as a perfect communication model is not assumed here.
Some peers may not receive the results from all of their peers, or may get truncated messages
depending on the network stability. They replace in that case 1

kp
by the number of message

received for a particular pair (x, x′). Unless very few messages are received by a peer, this
would not impact the outcome of the process.

6.3.1.0.1 Nearest Pairs: The computation of M for the closest pairs only is motivated
by the idea that NN are likely to belong to the same class unless near a class boundary. In a
multi-class classification problem, negative information – indicating that two items belong to
different classes – is less informative than positive information. For example, for d classes
and two items, there are d× (d− 1) assignment possibilities for negative evidence while only
d for positive ones. With that many possibilities, it is unlikely to find the correct classes by
chance using negative information. Additionally, for an item in a class representing 100× α%
of the dataset, 100× (1− α)% of the pairs would be 0, leading to many unnecessary data as
α shrinks with the number of classes and the class imbalance.

6.3.1.0.2 Class Matches: The use of pairs of co-association makes it possible to dispense
with the definition of peer classes L(p). M gather the number of times two items are
classified together, regardless of the possible labeling errors or granularity level. The EAC
approach allows combining classification to clustering algorithms as they both produce
labeling, one following a ground-truth definition, the other defined from scratch. Nevertheless,
the combination of algorithms with different labels definitions assumes that most of the
boundaries are common to the different classes/clusters

As an example, suppose we have three classifiers with different goals, one classifier focusing
on animals [dog, wolf, cat, lion, frog], another on sizes [small, medium, large], and the last
on colors [white, gray, black, green]. The animal and size classifiers are compatible as one
size corresponds to a unique set of animals (small = {frog}, medium = {dog, cat}, large =
{wolf, lion}). Therefore, all the size boundaries are preserved by the animal classifiers, with
some additional. However, the animal and color classifiers share only the boundary between
frog and the other animals which corresponds to the boundary between green and the other
colors. Therefore, these two classifiers are weakly compatible.

To obtain compatible classifiers, classes must be derived from a primary set of classes, as in
Error Correcting Output Code (ECOC) [122] where classes are grouped into two groups to
train a binary classifier on it. Another option is available if classes organized into a hierarchical
ontology. In this case, high and low-level classes could be combined as several low-level
classes derived from a single high-level class. Therefore, the high-level class boundary is
preserved within the low-level classes. However, the combination of algorithms with different

111

6.3. LABEL REFINEMENT WITH IMPLICIT BOUNDARY LEARNING 6

class definitions impacts the strength of M as the ensemble boundaries are less pronounced.
This would have almost no impact on the high-level classifiers as low-level ones share their
boundaries. Still, low-level classifiers would be as not all their boundaries are not matched
by higher-level classifiers.

6.3.1.0.3 Exchanging Pairs: Depending on the network quality and the data privacy
preferences, a peer may prefer to exchange its CA matrix or its raw predictions.

The raw predicitions require 8 × n bits per message if a label is encoded over an octet in
terms of bandwidth requirements. When sending the binary CA matrix, it requires k × n bits
per message. In both cases, we assume that all peers have the same set of items with the
same indexing; therefore the features and index do not need to be exchanged. The value of k

in our setups is relatively small (≈ 10); therefore one or the other option is equivalent in size.

In an insecure environment, peers may prefer not to exchange their raw prediction as an
eavesdropper would get roughly labeled data for free. With a CA matrix, the eavesdropper
can only recover a partial clustering, limiting the amount of information leakage. In addition,
the encryption scheme [123] can be used in binary form, allowing everyone to get the total
number of votes for each item without knowing what peers are voting for.

6.3.2 Label Refinement Phase

The refinement phase exploits M to adjust the initial predictions {Ŷ (p)}p=1:kp . This step is
done locally where each peer will refine its own prediction Ŷ (p), without any communication.
The initial classification y

(p)
0 (x) = A(p)(x) is updated using the following equation:

y
(p)
t+1(x) = arg max

ℓ∈L(p)

∑
x′∈Nk(x)

M(x, x′)δ
(
y

(p)
t (x′), ℓ

)
(6.2)

In other words, y(p)(x) is updated with a weighted voter model, using M to adjust the
neighbors’ label contribution. The update process is repeated several times until labels do
not change significantly from their previous estimation.

The process can be seen as a horizontal voter model, where instead of looking at all superposed
predictions {A(p)(x)}p=1:kp , item’s nearest neighbors’ label {A(p)(x′)}x′∈N (x) are taken into
account. By re-using its prediction, the peer prevents itself from label contamination from
noisy or malicious peers as only the weights can be altered but not the labels.

The weights in M reflect the probability of two items of being in the same class, which
indirectly encodes the ensemble’s boundary location as it concerns the nearest neighbors.
Near a boundary, items on the same side have high weights, whereas items from the other
side have low weights. Therefore, only the most relevant items on the same boundary side
would contribute positively.

If a boundary in M does not pre-exist in M (p), nothing would change p’s prediction near the

112

6 6.4. EXPERIMENTAL SETUP

boundary as an item is surrounded by items with the same label. This case occurs when a
classifier has a label definition different from the group, which explains why we can combine
classifiers with different objectives without issue.

The results of this weighting scheme differ from the k-NN outcome, where all items contribute
equally or differently as in the wk-NN version. When density is not homogeneous, one class
may contribute more than another because items are easier to find in the neighborhood.
Therefore, items would be misclassified, whereas in our approach, relevant items are identified,
allowing to rectify labels independently of the density.

6.3.3 Algorithm Complexity

The complexity of the proposed approach is decomposed as follow. The prediction step is at
least in O(n) per peer. Next, the matrices {M (p)}p=1:kp are each obtained in O(kn log n) to
search for the k-NN and issue the n× k matrix. The averaging of the matrices {M (p)}p=1:kp

intoM is made in O(knkp). Last, the refinement step costs O(knT) for T iterations. In total,
each peer has a complexity of O((log n + kp + T)kn), which is larger than other ensemble
methods (like boosting with O(kpn)), but the cost is close to be linear in n. The total cost is
quadratic with the number of peers as they each need to average kp matrices into M. This
cost can be significantly reduced using Gossip approaches by performing local averaging.

6.4 Experimental Setup

6.4.1 Datasets

We selected four multi-class datasets from the UCI machine learning repository [124] with a
sufficient number of instances (∼ 1.000 per class).

A large number of instances allows us to train many classifiers on disjoint item sets while
preserving a large part for testing. Some of these datasets were already split into the training
and testing part. We did not keep this split and merged the two sets to obtain a larger
experiment testing set.

We tested our approach over multi-class datasets because binary problems are easier to solve
than multi-class problems. Multi-class problems have a lower accuracy baseline, therefore a
larger margin for improvement. In our proposed approach, we used only positive evidences.
In a binary problem, negative evidence is equivalently informative as there are only two class
possibilities. For this particular case, M could be used differently to improve accuracy.

Table 6.1 summarizes the characteristics of the different datasets. The table gathers the
number of samples n, the number of classes |L|, and the proportion of the less and most
represented classes MinClass and MaxClass respectively. The datasets are correctly balanced,
with enough samples in the lowest class, so we do not need to care about class unbalance. We
pre-processed all datasets the same way, using z-normalization to give an equal contribution

113

6.4. EXPERIMENTAL SETUP 6

Table 6.1: Datasets description.

Dataset n |L| MinClass MaxClass
DryBean 13.611 7 3.83% 26.05%
PenDigit 10.992 10 9.59% 10.40%
Statlog 6.435 6 9.73% 23.82%
USPS 9.298 10 7.61% 16.70%

to each feature.

114

6 6.5. RESULTS

6.4.2 Weak Learner Setup

In our experiments, we will test the influence of the number of classification peers in the
system. We want to train them on a disjoint subset of data to ensure they all are different.
As the datasets are limited in size, we selected the k-NN neighbors classifier for simplicity
and the low training data requirements. To avoid class imbalance, each classifier’s training
was composed of d items from each class. d was set to 3 leading to 30 items per classifiers for
a dataset with 10 classes like USPS and PenDigit.

The USPS has the lowest ratio n
|L| . In an ensemble with 20 classifiers, it uses 600 items for

training, representing less than 7% of the total dataset size. For the DryBean dataset with
the largest ratio, 3 % of the dataset would be used in the largest training condition. This
places the experiment under weakly supervised learning conditions, letting more space for
accuracy improvement.

6.5 Results

In this section, we present the results of the experiments comparing our ensemble method –
denoted LR for Label Refinement – to the simple voter model – denoted V M – using the
same ensemble of classifiers. As the LR method is performed locally, not all the different
peers obtain the same results. The different predictions can be centralized and aggregated
using a voter model. This third possibility is denoted LR + V M in the experiments.

6.5.1 Accuracy Improvement under Stable Conditions

The first experiment explores the impact of the ensemble’s size on accuracy. In this setup,
the peers are assumed to be trustful and communication perfect, such as the matrices M (p)

are exchanged without errors. Fig. 6.1 displays the results of the three different setups and
the baseline corresponding to a classifier alone.

As expected, all ensemble methods are more accurate than the average classifier. The accuracy
gain of each method varies from one dataset to another, regardless of the number of classes,
number of test samples or the base accuracy.

For all approaches, there is a point for 1 and 2 peers. In the case of the voter model, the results
correspond to the average learner accuracy as the scheme cannot help in this configuration.
For LR and LR + V M , the first point corresponds to the mean accuracy of a learner p

refining its prediction with a binary matrix M (p′) from another peer p′ without combining it
with its own. For 2 peers, the internal matrix M (p) is combined with an external one M (p′).
The LR approach led to accuracy gain for all datasets in this configuration.

Compared to the voter model, the label refinement approach is quickly beatten over the
Drybean and StatLog datasets. However, it is more competitive over the PenDigit and USPS
datasets where the voter model can only reach the same accuracy after gathering 15 learners

115

6.5. RESULTS 6

(a) DryBean (b) PenDigit

(c) StatLog (d) USPS

Figure 6.1: Accuracy evolution varying with the number of peers. Dashed line: average accuracy of a classifier;
orange: LR; green line: LR + V M ; blue line: V M . Shaded areas correspond to the standard deviation of the
mean accuracy over 50 trials.

in the ensemble. The accuracy gain obtained with LR is quite stable after gathering just a
few peers. 5 peers are enough to reach the maximal accuracy gain with LR. In comparison,
the accuracy of an ensemble using 20 peers can still improve by adding peers under the voter
model.

When applying a voter model after the label refinement step, an additional gain of accuracy
is observed. The gain is non-negligible and allows better accuracy with LR + V M over three
of the four datasets with a large margin. While the LR accuracy is stable after gathering 5
peers, the combination of LR to V M is beneficial as LR + V M can still improve accuracy by
adding more peers. Nonetheless, it requires another communication phase to collect all the
refined predictions.

6.5.2 Resilience to Output Corruption

This second experiment simulates an environment where output labels are corrupted at
random. The corruption could happen in the peer memory or during transmission. In the
real world, it could be materialized by a truncation of the results (one part is unreadable
or non-received), or by the addition of noise (some labels are flipped). A noise level α

corresponds to the replacement of α% of the labels by a random label from L. A deletion of
α% of the input could be considered the same way, as missing data are inputted with random
labels, to the difference that the position of the incorrect label is known.

In this configuration, we compare the model’s ability to recover the true labels Y using

116

6 6.5. RESULTS

only the corrupted labels {Ŷ (p)
c }p=1:kp . The {M (p)

c }p=1:kp matrices are also derived from the
corrupted labels and the refinement step starts with the peer’s corrupted labels Ŷ

(p)
c . The

results of the three different methods over the four datasets are displayed in Fig. 6.2.

The line corresponding to an ensemble of size 1 corresponds – as in the first experiment – to the
average accuracy of corrupted peers in the case of the V M , and the accuracy of a peer refining
its corrupted output Ŷ(p)

c with a received binary matrix M
(p′)
c . When increasing the noise level,

the V M accuracy decreases linearly. It is almost equal to acc(α) = (acc0−|L|−1).(1−α)+|L|−1,
where acc0 is the accuracy without noise, and |L|−1 the probability to select a correct label
at random. The dashed line corresponds to this equation to allow an easier comparison of
the different methods.

The methods do not have the same response to an increase in noise. V M requires much
more peers to obtain a resilience equivalent to LR. A change from 1 to 5 learners offers
limited improvement for V M , while in the case of LR, an ensemble with 5 learners is almost
as stable as an ensemble of 20 learners. The accuracy of LR using one external matrix Mc

for refinement does not offer resilience, as depending on the dataset and the noise level the
accuracy is a little bit greater or lower than the baseline accuracy. However, moving to the
use of 2 matrices Mc, the resilience of LR surpasses the voter model. LR + V M is even more
resilient than the two other methods with very flat horizontal curves

When looking at the red curves corresponding to ensembles of size 20, there are two observable
domains: resilience and fragility. In the resilience domain, an increase of noise leads to a
small decrease of accuracy, while in the fragility domain this increase leads to an important
change of accuracy. The transition between the two domains depends on the method used
and the ensemble size. The transition occurs around 65% of noise for V M , nearby 80% for
LR, and 90% for LR + V M . Therefore, the label refinement approach and its variant lead to
more resilience than the voter model with the same ensemble.

117

6.5. RESULTS 6

(a) DryBean

(b) PenDigit

(c) StatLog

(d) USPS

Figure 6.2: Resilience to output corruption under increasing level of noise, with boundary parameter k = 10. For
each dataset, the ensemble models are ordered as follow: left: V M , middle: LR, right: LR + V M . Each curve
corresponds to a particular ensemble size; the number of peers is indicated in the first figure’s legend. The dashed
line corresponds to the average corrupted learner accuracy. For V M , the curves corresponding to the ensemble
of sizes 1 and 2 overlap with the dashed line. The noise is increased by step of 2%, from 0% to 100%. Each
experiment has been repeated 25 times.

118

6 6.6. BOUNDARY SIZE INFLUENCE

6.6 Boundary Size Influence

In the previous experiments, the boundary parameter k controlling the number of nearest
neighbors was set to k = 10. This parameter is important as it controls the number of items
that can induce a label change. Therefore, the third experiment studies the impact of k over
the resilience behavior for a fixed number of peers kp = 10. The results are displayed in Fig.
6.3, and similar results are obtained for the other datasets.

Under the absence of noise, the increase of k has a positive effect on the accuracy of the LR

method but is limited in amplitude. In the presence of noise, a larger value of k prevents a
premature loss of accuracy.

The configuration with k = 1 does not seem to have any impact on the accuracy. In this setup,
the only possibility for an item is to inherit from its neighbor’s label unless they already have
the same label. If x and x′ are reciprocal neighbors, they will exchange their labels forever.
If they are not (i.e., x ∈ N (x′) but x′ /∈ N (x)), then x would take x′’s label. The number of
possible changes in this setup is limited, which might explain the small difference from the
average classifier accuracy.

The accuracy under noisy condition increase is better recovered with a larger k. The switch
from resilience to fragility also changes from 40 ∼ 50% for k = 3 to 80 ∼ 90 for k = 20. The
resilience behavior is easily obtained, with k = 10 providing almost the same resilience to
noise as k = 20. Compared to the curves presented in Fig. 6.2, an increase of the boundary
k in LR leads to greater resilience in accuracy than the addition of more peers in the V M .
A sufficient k needs to be combined to a sufficient kp to benefit from the ensemble size and
items’ neighborhood stability.

The greater resilience to noise with a larger k can be simply explained. In a dense area
where all items belong to the same class (before corruption), all nearest items would receive
the same weight. Therefore the weighted vote will be equivalent to a normal vote. As k

increases, more intact labels would be included in the vote, making the decision more stable.
Consequently, items in this area will easily recover their initial labels. The items near the
boundary benefit from the same effect because they are surrounded by boundary items that
are possibly misclassified. Therefore, k needs to be larger for these area to recover.

When k is small, the density is almost invariant; therefore, all classes might be represented
in equal proportion. However, the density can vary from one location to another within
the radius when extending the radius. If located in a very dense area, a class will be more
numerically represented. The vote in (6.2) is biased by the weights, but also by the number
of items that contribute. As an example, if there is one item x′ in the neighborhood of x
belonging to the correct class ℓ with weight M(x, x′) = 1, but 10 other items of the same
incorrect class ℓw with weight M(x, x′) = 0.11, then ℓw would win the vote. Therefore, the
parameter boundary k must be chosen appropriately to avoid this type of issue. In addition,
the process becomes computationally expensive.

119

6.7. DISCUSSION 6

(a) DryBean (b) PenDigit

(c) StatLog (d) USPS

Figure 6.3: Resilience to noise for different boundary parameters k, using LR with 10 classifiers in the ensemble.

6.7 Discussion

6.7.1 Instance vs Batch Classification

One major difference between our ensemble method and classical ensemble methods is
the input size. Traditionally, the ensemble process one sample at a time, allowing us to
predict labels of any sample size without constraint. Our approach is inspired by Evidence
Accumulation Clustering, where samples are processed by batch. Therefore, it limits the
usability of use-cases that do not require real-time answers. Nonetheless, for applications
with no real-time constraint, data can be stored into a buffer and classified when the collected
data is sufficient.

In the different experiments, we classified all the items left in the test set together. When
reducing the test size, the system can become unstable if too few samples are available. In
a batch, items can be classified into core items that are easily classified by all peers, with
most of their nearest neighbors belonging to the same class, and boundary items where
errors are more frequent. Misclassified core items are easily rectified thanks to their strong
neighborhood. However, boundary items rely on core items to get good reference labels,

120

6 6.7. DISCUSSION

as other boundary items may not be reliable enough. If the batch size is too small, core
areas would be restricted to very few points, and would not be large enough to offer stable
references to other items.

We tested over the DryBean dataset to reduce the batch size. Before reaching the system
instability for k = 10 and its 7 classes, the critical size limit was 150 items. Under this size,
the mean accuracy decreased while the variance increased.

One way to work on smaller batches is to adapt the boundary parameter k. Decreasing its
value may help to keep core areas stable over small batch sizes, while a too large k might
destroy core areas due to misclassified boundary items. Another strategy to work on small
batches is to classify the batch X together with X ′ obtain from a database.

The full process is performed on X0 ∪X1, which would not suffer from possible instabilities.

6.7.2 Combining Clustering with Classification

The use of co-association matrices {M (p)}p=1:kp rather than raw predictions {Ŷ (p)}p=1:kp

gives the possibility to adapt our approach to clustering or mix clustering with classification
results. The combination of the two types of algorithms may help to improve classification
accuracy. However, the clustering’s benefits might be more limited.

One of the main clustering problems is the selection of the number of clusters. Unfortunately,
EClus algorithms often cluster M using a hierarchical algorithm that circumvents the cluster
number problem. The label refinement scheme will help adjust the boundary but will neither
help find the best number of clusters.

A direction to explore is how to fuse (or split) clusters using ensemble information. A
possibility would be to search for clusters boundaries looking at the local CA matrix M (p)

that does not exist in the ensemble matrix M. By detecting weak cluster boundaries, the
clusters separated by these boundary could be merged. The same reasoning could be applied
for splitting clusters by searching for a strong boundary in M that does not exist in M (p).
This direction can be explored and compared to a more direct clustering of M.

6.7.3 Ensemble of n-ary Classifiers

Mutli-class classifiers can be built by combining binary classifiers, as in the ECOC [122].
Each classifier is trained over 2 classes obtained by splitting the d0 initial classes at random.
This class grouping exploits class synergies as two similar classes are easier to distinguish
from the other classes when grouped than each alone. The original multi-class would be
identified by looking at the ensemble classification binary code obtained.

More generally, d0 classes can be fused into d1 classes. However, the transformation of the
multi-class prediction to fewer classes can obfuscate the results for privacy reasons. Another
motivation is the reduction of the transmitted bit when exchanging the raw predictions.

121

6.8. CONCLUSION 6

If d0 ≫ d1, the amount of preserved boundaries is 1− 1
d1

(the boundary between two classes
merged into the same group is no more identifiable, but still observable for two classes in a
distinct group). It is at worse 50% for a binary grouping, impacting M in these proportion.

Looking at particular class boundaries, a proportion α of the classifiers still see this boundary
and would vote something different for each pair of items. On the other hand, a proportion
(1 − α) do not see it and would vote 1 for any pairs. Therefore, we could rewrite M as
M(x, x′) = αm(x, x′) + (1 − α) where m(x, x′) is the average co-association score of the
classifiers seeing the boundary. When performing the vote using Eq. (6.2), the part (1− α)
contributes equally for all neighbors leading to a very limited effect on the vote outcome.

6.8 Conclusion

In this article, we proposed a noise-resilient ensemble classification method exploiting the
co-classification of nearest items. The system works in two steps: an exchange phase where
peers communicate their prediction, and a local label refinement phase where labels are
adjusted using a weighted voter model.

This ensemble approach was tested on four different datasets, where it led to accuracy
improvement. Moreover, under the noisy condition, the proposed ensemble method was
highly resilient to noise. It allowed it to preserve accuracy with much fewer peers than an
ensemble combining its prediction using a voter model. The approach is flexible, as clustering
peers can participate in helping classification peers. Additionally, classifiers with different
objectives can be combined if some of their class share the same boundaries.

In future works, we will analyze the data factors impacting the accuracy to quantify the
possible gain, and investigate how to estimate the boundary parameter k to better adapt to
the dataset to classify.

122

Conclusion and Futur Works

6.9 Contributions

In this thesis, we explored different approaches for finding communities in graphs. We
developed several approaches to identify community by paying attention to the two main
problems in real-world graphs: sparsity and power-law distribution of nodes’ degree. The
sparsity problem was addressed by considering the node’s neighborhood. The several proposed
approaches are presented in the different chapters:

• In chapter 2, sparsity is reduced by exploring indirect neighbors. The node’s neighbor-
hood was weighted based on its accessibility from the current node to avoid the problem
of very large similarity between two nodes’ neighborhood. The similarity between two
items was defined as a function of the overlap and the mass distribution over the nodes’
neighborhood;

• In chapter 4, the sparsity was reduced by exploiting co-occurrence matrices obtained from
both sides of the bipartite graphs, transforming the sparse vector model representation
to a dense matrix;

• In chapter 5, nodes were projected on a low dimensional space to circumvent the
sparsity problem. In addition, the “distance” between two nodes was measurable on
this low dimensional space, permitting to infer relationships’ strength between items
independently of their initial connectivity.

These methods indirectly transform the initial graph into an equivalent weighted graph with
more edges. With a larger number of neighbors whose contribution vary, comparing a node
by looking at its neighborhood is more robust due to more accurate information. The second
problem concerning power-law distribution was partially addressed, and continues to be a
concern in some of the proposed approaches:

• In chapter 2, the directed acyclic graph is asymmetric, where in-degree follows a power-

123

6.9. CONTRIBUTIONS 6

law while out-degree does not. Therefore, we choose to explore the neighborhood by
looking at out-going edges to circumvent the issue;

• In chapter 4, the co-occurrence matrices were normalized to ensure that all nodes
exchange the same amount of information with their neighbors independently of their
initial predominance. This approach allowed to enrich items’ description using their
neighborhood without getting overwhelmed by highly connected items;

• In chapter 5, the projection in the low dimensional space limited the number of neighbors
and rebalanced neighborhood contribution both for over-frequent and infrequent items
mechanically. Nevertheless, too infrequent items tended to create their own cluster.
A filtering step prevented their apparition but eliminated a large part of the nodes in
some datasets.

By addressing sparsity and power-law issues, each node could be represented with a dense
vector allowing comparison with methods designed for traditional tabular data. We explored
the usability of these representations by searching natural grouping. Therefore, two co-
clustering approaches with different strategies were presented:

• In chapter 4, we proposed a hierarchical co-clustering algorithm, where clusters are forced
to grow at the same speed, preventing the apparition of clusters with disproportionate
sizes;

• In chapter 5, we proposed a co-embedding process for a bipartite graph, where the
representation of one type of node is used to create the embedding for the other nodes.
As a result, the items naturally segregate into groups in the low dimensional space that
are easily recovered using simple clustering algorithms.

The obtained clustering seemed to group items into coherent thematic clusters, at least for
items corresponding to words. Finally, we evaluated the usability of such partitioning for
cluster retrieval in chapter 5. The results were conclusive and better than with a clustering
obtained using the spectral decomposition method.

Graph visualization is an important topic. Graphs are difficult to project in a 2D space,
as configurations with non-crossing edges or keeping edges of equal length rarely exist. A
distorted vision of the graph highlighting one of its particularities is often represented instead.
We exploited the t-SNE algorithm to represent the graph using different approaches to
measure nodes’ relatedness:

• In chapter 2, we measured the distance between nodes by looking at their neighborhood’s
overlap. Compared to the path length which is non-symmetric in a DAG, the proposed
distance is symmetric and allows to satisfy better constraints as distances are more
nuanced. The embedding let emerged communities of articles referring to the same
background knowledge;

• In chapter 3, we developed an extension of the t-SNE algorithm to obtain successive
embeddings with clusters sharing the same location. A prior embedding is used to guide
items’ positioning in a second embedding by applying an additional displacement force.

124

6 6.9. CONTRIBUTIONS

This update permits to embed a larger graph sliced into several pieces while keeping
coherency within the successive frame;

• In chapter 5, the initial objective was to evaluate the usability of a t-SNE embedding
to calculate new properties using a low dimensional representation. The final result of
the co-embedding process allows visualizing items with similar connectivity, located in
the same cluster.

In the last chapter (6), we turned tabular data into a graph by constructing a k-nearest
neighbors (k-NN) graph. All classification algorithms in machine learning assume that nearest
items belong to the same class unless a boundary separates them. We proposed an ensemble
method combining classification results by weighting each edge in the k-NN graph, a weight
corresponding to the probability that the two connected items belong to the same class. This
method indirectly performed a double voter model and improved accuracy with very few
classification results, and tolerated a high level of random noise.

6.9.1 Future Works

In this thesis, we proposed various approaches adapted mainly to directed acyclic graphs and
bipartite graphs. There are several topics to explore next.

The proposed algorithms have a complexity often larger than quadratic, restricting their
usability to medium-sized graphs. Therefore, the first direction is to study the optimization
possibilities. For example, optimization can be done to reduce computations by approximating
some values, or using tricks to avoid calculation between unrelated items. Another possibility
to reduce the overall computational cost is to work on sampling approaches to obtain a
clustering solution over a restricted subset and then assign leftover items to these clusters.

Another orthogonal direction to explore concerns the representation of a DAG. In this
particular structure, there is a strong node ordering as there exists no cycle. A node could be
represented by a vector based on its reachability from a particular set of nodes. Given the
vectors representing the different nodes, clustering algorithms and other algorithms could
be applied without considering the local connectivity structure. Nevertheless, using a new
representation would require the design of specific algorithms able to measure distance or
similarity differently.

The third branch aims to explore the processing of payment graphs. This type of graph
combines at the same time a DAG and a 2-mode graph where the monetary flux is exchanged.
Each day, there are millions of transactions appended to the existing payment graphs. These
large graphs are way too large to be processed with the developed methods, requiring further
research on the two first directions. Out of the algorithmic complexity, there is a need to
develop appropriate methods to considers this particular structure. The processing and
understanding of payment graphs are important because of the rise of dematerialized payment
using z credit card, bank transfer, or blockchain. However, malicious activities can happen
in all of them; therefore detecting fraud schemes and other activities would be beneficial to

125

6.9. CONTRIBUTIONS 6

prevent unnecessary harm to many people. Furthermore, out of detecting misbehaving nodes,
the high-level understanding of these graphs could help study economic transfers and system
redistribution.

Last is to study research fronts for scientific and technical watch. This would be an extension
of the 1st and 2nd chapters, where the communities’ evolution would be tracked over time to
identify trendy topics. Another possibility is to design new clustering algorithms that do not
need to project the graph to scale to large graphs. The investment in this direction would
help save time on the other research topics by fastening the understanding of the ecosystem
and the identification of the most relevant papers.

126

References

[1] Garfield E 2004 Historiographic mapping of knowledge domains literature Journal of
Information Science 30 119–45

[2] Kessler M M 1963 Bibliographic coupling between scientific papers American Docu-
mentation 14 10–25

[3] Small H 1973 Co-citation in the scientific literature: A new measure of the relationship
between two documents J. Am. Soc. Inf. Sci. 24 265–9

[4] Grauwin S and Jensen P 2011 Mapping scientific institutions Scientometrics 89 943–54

[5] Ding Y 2011 Scientific collaboration and endorsement: Network analysis of coauthor-
ship and citation networks Journal of informetrics 5 1 187–203

[6] Boyack K W, Klavans R and Börner K 2005 Mapping the backbone of science
Scientometrics 64 351–74

[7] Boyack K and Klavans R 2010 Co-citation analysis, bibliographic coupling, and direct
citation: Which citation approach represents the research front most accurately? J.
Assoc. Inf. Sci. Technol. 61 2389–404

[8] Klavans R and Boyack K 2017 Which type of citation analysis generates the most
accurate taxonomy of scientific and technical knowledge? Journal of the Association
for Information Science and Technology 68

[9] Redner S 1998 How popular is your paper? An empirical study of the citation
distribution The European Physical Journal B - Condensed Matter and Complex
Systems 4 131–4

[10] Price D 1976 A general theory of bibliometric and other cumulative advantage processes
J. Am. Soc. Inf. Sci. 27 292–306

127

6

[11] Merton R 1968 The matthew effect in science Science 159 56–63

[12] Allen H, Stanton T, Pietro F D and Moseley G 2013 Social media release increases
dissemination of original articles in the clinical pain sciences PLoS ONE 8

[13] Gargouri Y, Hajjem C, Larivière V, Gingras Y, Carr L, Brody T and Harnad S 2010
Self-selected or mandated, open access increases citation impact for higher quality
research PLoS ONE 5

[14] Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving
G, Isard M and others 2016 TensorFlow: A system for large-scale machine learning.
OSDI vol 16 pp 265–83

[15] Tahamtan I and Bornmann L 2019 What do citation counts measure? An updated
review of studies on citations in scientific documents published between 2006 and 2018
Scientometrics 121 1635–84

[16] Kerckhoffs A 1883 La cryptographie militaire Journal des sciences militaires IX 161–91

[17] Jolliffe I 2005 Principal component analysis (John Wiley & Sons, Ltd)

[18] Garfield E and Zuckerman H 1980 Multiple independent discovery and creativity in
science Essays of an Information Scientist 4 1979–80

[19] Jarneving B 2007 Bibliographic coupling and its application to research-front and
other core documents J. Informetrics 1 287–307

[20] Leydesdorff L and Ràfols I 2009 A global map of science based on the ISI subject
categories J. Assoc. Inf. Sci. Technol. 60 348–62

[21] Huang M-H and Chang C-P 2013 Detecting research fronts in OLED field using
bibliographic coupling with sliding window Scientometrics 98 1721–44

[22] Fujita K, Kajikawa Y, Mori J and Sakata I 2012 Detecting research fronts using different
types of weighted citation networks 2012 Proceedings of PICMET ’12: Technology
Management for Emerging Technologies 267–75

[23] Colavizza G, Boyack K, Eck N J van and Waltman L 2018 The closer the better:
Similarity of publication pairs at different cocitation levels Journal of the Association
for Information Science and Technology 69

[24] Huang M-H, Chiang L and Chen D-Z 2004 Constructing a patent citation map using
bibliographic coupling: A study of taiwan’s high-tech companies Scientometrics 58
489–506

128

6

[25] Yan E and Ding Y 2012 Scholarly network similarities: How bibliographic coupling
networks, citation networks, cocitation networks, topical networks, coauthorship
networks, and coword networks relate to each other J. Assoc. Inf. Sci. Technol. 63
1313–26

[26] Page L, Brin S, Motwani R and Winograd T 1999 The PageRank citation ranking :
Bringing order to the web WWW 1999

[27] Tang J, Zhang J, Yao L, Li J, Zhang L and Su Z 2008 ArnetMiner: Extraction and
mining of academic social networks KDD’08 pp 990–8

[28] Maaten L van der and Hinton G 2008 Visualizing data using t-SNE Journal of Machine
Learning Research 9 2579–605

[29] Cheng Y 1995 Mean shift, mode seeking, and clustering IEEE Trans. Pattern Anal.
Mach. Intell. 17 790–9

[30] Cohen S, Ruppin E and Dror G 2005 Feature selection based on the shapley value. pp
665–70

[31] Hall M A 1999 Correlation-based feature selection for machine learning PhD thesis

[32] Masci J, Meier U, Ciresan D and Schmidhuber J 2011 Stacked convolutional auto-
encoders for hierarchical feature extraction pp 52–9

[33] Maggipinto M, Masiero C, Beghi A and Susto G A 2018 A convolutional autoencoder
approach for feature extraction in virtual metrology Procedia Manufacturing 17 126–33

[34] Kohonen T 2001 Self-organizing maps (Berlin: Paperback; Springer)

[35] Tenenbaum J B, Silva V de and Langford J C 2000 A global geometric framework for
nonlinear dimensionality reduction Science 290 2319

[36] McInnes L, Healy J and Melville J 2018 UMAP: Uniform manifold approximation and
projection for dimension reduction

[37] Kobak D and Berens P 2019 The art of using t-SNE for single-cell transcriptomics
bioRxiv

[38] Pezzotti N, Mordvintsev A, Höllt T, Lelieveldt B P F, Eisemann E and Vilanova A
2018 Linear tSNE optimization for the web CoRR abs/1805.10817

129

6

[39] Maaten L van der 2009 Learning a parametric embedding by preserving local structure
Proceedings of the twelth international conference on artificial intelligence and statistics
Proceedings of machine learning research vol 5, ed D van Dyk and M Welling (Hilton
Clearwater Beach Resort, Clearwater Beach, Florida USA: PMLR) pp 384–91

[40] Min M R, Guo H and Shen D 2017 Parametric t-distributed stochastic exemplar-
centered embedding CoRR abs/1710.05128

[41] Boytsov A, Fouquet F, Hartmann T and Traon Y L 2017 Visualizing and exploring
dynamic high-dimensional datasets with LION-tSNE CoRR abs/1708.04983

[42] Rauber P E, Falcão A X and Telea A C 2016 Visualizing time-dependent data
using dynamic t-SNE Proceedings of the eurographics / IEEE VGTC conference on
visualization: Short papers EuroVis ’16 (Goslar, DEU: Eurographics Association) pp
73–7

[43] Harris C R, Millman K J, Walt S J van der, Gommers R, Virtanen P, Cournapeau D,
Wieser E, Taylor J, Berg S, Smith N J, Kern R, Picus M, Hoyer S, Kerkwijk M H
van, Brett M, Haldane A, R’ıo J F del, Wiebe M, Peterson P, G’erard-Marchant P,
Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C and Oliphant T E 2020
Array programming with NumPy Nature 585 357–62

[44] Wang K, Shen Z, Huang C, Wu C-H, Eide D, Dong Y, Qian J, Kanakia A, Chen A
and Rogahn R 2019 A review of microsoft academic services for science of science
studies Frontiers in Big Data 2 45

[45] Weinberg B H 1974 Bibliographic coupling: A review Information Storage and Retrieval
10 189–96

[46] Chavalarias D and Cointet J-P 2009 The reconstruction of science phylogeny

[47] Maaten L van der 2013 Barnes-hut-SNE ICLR ed Y Bengio and Y LeCun

[48] Gupta M, Li R, Yin Z and Han J 2010 Survey on social tagging techniques SIGKDD
Explorations 12 58–72

[49] Bertin-Mahieux T, Ellis D P W, Whitman B and Lamere P 2011 The million song
dataset. ISMIR ed A Klapuri and C Leider (University of Miami) pp 591–6

[50] Peters I and Stock W 2010 “Power tags ” in information retrieval Library Hi Tech 28
81–93

[51] Banerjee S, Ramanathan K and Gupta A 2007 Clustering short texts using wikipedia
pp 787–8

130

6

[52] Fellbaum C 1998 WordNet: An electronic lexical database (Bradford Books)

[53] Wikipedia 2021 Wikipedia, the free encyclopedia

[54] Patil A 2015 Clustering on uncertain data using kullback leibler divergence measure-
ment based on probability distribution

[55] Hassan-Montero Y and Herrero-Solana V 2006 Improving tag-clouds as visual infor-
mation retrieval interfaces InScit2006: International conference on multidisciplinary
information sciences and technologies

[56] Hearst M A and Rosner D K 2008 Tag clouds: Data analysis tool or social signaller?
HICSS (IEEE Computer Society) p 160

[57] Begelman G, Keller P and Smadja F 2006 Automated tag clustering: Improving search
and exploration in the tag space Proceedings of the collaborative web tagging workshop
at the WWW 2006 (Edinburgh, Scotland)

[58] Knautz K, Soubusta S and Stock W 2010 Tag clusters as information retrieval interfaces
Proceedings of the Annual Hawaii International Conference on System Sciences pp 1–0

[59] Wartena C and Brussee R 2008 Topic detection by clustering keywords pp 54–8

[60] Zhao Q, Rezaei M and Chen H 2012 Keyword clustering for automatic categorization
Proceedings - International Conference on Pattern Recognition pp 2845–8

[61] Carrasco J J, Fain D, Lang K and Zhukov L 2003 Clustering of bipartite advertiser-
keyword graph

[62] Koh S and Chia L-T 2006 Web image clustering with reduced keywords and weighted
bipartite spectral graph partitioning vol 4261 pp 880–9

[63] Dhillon I S 2001 Co-clustering documents and words using bipartite spectral graph
partitioning pp 269–74

[64] Dhillon I S, Mallela S and Modha D S 2003 Information-theoretic co-clustering KDD
’03: Proceedings of the ninth ACM SIGKDD international conference on knowledge
discovery and data mining (New York, NY, USA: ACM) pp 89–98

[65] Knight P A 2008 The sinkhorn-knopp algorithm: Convergence and applications SIAM
J. Matrix Anal. Appl. 30 261–75

131

6

[66] Saad F, Mohamed O and Al-Qutaish R 2013 Comparison of hierarchical agglomera-
tive algorithms for clustering medical documents International Journal of Software
Engineering and Applications 3 1–5

[67] El-Hamdouchi A and Willett P 1989 Comparison of Hierarchic Agglomerative Cluster-
ing Methods for Document Retrieval The Computer Journal 32 220–7

[68] Li F, Yin Y, Shi J, Mao X and Shi R 2019 Method of feature reduction in short text
classification based on feature clustering Applied Sciences 9

[69] Pelleg D and Moore A 2000 X-means: Extending k-means with efficient estimation
of the number of clusters In proceedings of the 17th international conf. On machine
learning (Morgan Kaufmann) pp 727–34

[70] Sarwar B, Karypis G, Konstan J and Riedl J 2002 Recommender systems for large-scale
e-commerce : Scalable neighborhood formation using clustering

[71] Conner J H 1999 Clustering items for collaborative filtering

[72] George T and Merugu S 2005 A scalable collaborative filtering framework based on
co-clustering ICDM’05 4 pp

[73] Vdorhees E M 1985 The cluster hypothesis revisited SIGIR Forum 51 35–43

[74] Chen Y, Wang J Z and Krovetz R 2005 CLUE: Cluster-based retrieval of images by
unsupervised learning IEEE Transactions on Image Processing 14 1187–201

[75] Liu X and Croft W 2004 Cluster-based retrieval using language models SIGIR ’04

[76] Salton G, Wong A and Yang C 1975 A vector space model for automatic indexing
Commun. ACM 18 613–20

[77] Ravindran M and Thanamani A 2015 K-means document clustering using vector space
model Bonfring International Journal of Data Mining 5 10–4

[78] Lei L, Qi J and Zheng K 2019 Patent analytics based on feature vector space model:
A case of IoT IEEE Access 7 45705–15

[79] Sarıyüce A E and Pinar A 2018 Peeling bipartite networks for dense subgraph discovery
Proceedings of the eleventh ACM international conference on web search and data
mining WSDM ’18 (New York, NY, USA: Association for Computing Machinery) pp
504–12

132

6

[80] Latapy M, Magnien C and Vecchio N D 2008 Basic notions for the analysis of large
two-mode networks Soc. Networks 30 31–48

[81] Arroyo J, Priebe C and Lyzinski V 2020 Graph matching between bipartite and
unipartite networks: To collapse, or not to collapse, that is the question ArXiv
abs/2002.01648

[82] Charrad M and Ben Ahmed M 2011 Simultaneous clustering: A survey Pattern
recognition and machine intelligence ed S O Kuznetsov, D P Mandal, M K Kundu
and S K Pal (Berlin, Heidelberg: Springer Berlin Heidelberg) pp 370–5

[83] Kaiser S 2011 Biclustering: Methods, software and application

[84] Zha H, He X, Ding C, Gu M and Simon H 2001 Bipartite graph partitioning and data
clustering CIKM ’01

[85] Nie F, Wang X, Deng C and Huang H 2017 Learning a structured optimal bipartite
graph for co-clustering Advances in neural information processing systems vol 30, ed I
Guyon, U V Luxburg, S Bengio, H Wallach, R Fergus, S Vishwanathan and R Garnett
(Curran Associates, Inc.)

[86] Chen Y, Wang L and Dong M 2010 Non-negative matrix factorization for semisuper-
vised heterogeneous data coclustering IEEE Transactions on Knowledge and Data
Engineering 22 1459–74

[87] Du R, Kuang D, Drake B L and Park H 2017 DC-NMF: Nonnegative matrix factor-
ization based on divide-and-conquer for fast clustering and topic modeling Journal of
Global Optimization 68 777–98

[88] Selosse M, Jacques J and Biernacki C 2020 Model-based co-clustering for mixed type
data Computational Statistics & Data Analysis 144 106866

[89] Gabrilovich E and Markovitch S 2007 Computing semantic relatedness using wikipedia-
based explicit semantic analysis IJCAI

[90] Tsatsaronis G and Panagiotopoulou V 2009 A generalized vector space model for text
retrieval based on semantic relatedness EACL

[91] Abbasi R and Staab S 2009 RichVSM: enRiched vector space models for folksonomies
HT ’09

[92] Sidorov G, Gelbukh A, Gómez-Adorno H and Pinto D 2014 Soft similarity and soft
cosine measure: Similarity of features in vector space model Computación y Sistemas
18

133

6

[93] Benz D, Hotho A, Jäschke R, Krause B, Mitzlaff F, Schmitz C and Stumme G 2010
The social bookmark and publication management system BibSonomy The VLDB
Journal 19 849–75

[94] Duygulu P, Barnard K, Freitas J F G de and Forsyth D A 2002 Object recognition
as machine translation: Learning a lexicon for a fixed image vocabulary Computer
vision, ECCV 2002 LNCS vol 2353 pp 97–112

[95] Read J, Pfahringer B, Holmes G and Frank E 2011 Classifier chains for multi-label
classification Machine Learning 85 333–59

[96] Harper F M and Konstan J A 2015 The MovieLens datasets: History and context
ACM Trans. Interact. Intell. Syst. 5

[98] Tsoumakas G, Katakis I and Vlahavas I 2008 Effective and efficient multilabel clas-
sification in domains with large number of labels Proc. ECML/PKDD workshop on
mining multidimensional data, antwerp, belgium, MMD08 pp 30–44

[98] Tsoumakas G, Katakis I and Vlahavas I 2008 Effective and efficient multilabel clas-
sification in domains with large number of labels Proc. ECML/PKDD workshop on
mining multidimensional data, antwerp, belgium, MMD08 pp 30–44

[99] Lang K 1995 Newsweeder: Learning to filter netnews Proc. 12th international confer-
ence on machine learning pp 331–9

[100] Joachims T 1998 Text categorization with support vector machines: Learning with
many relevant features ECML

[101] Huiskes M J and Lew M S 2008 The MIR flickr retrieval evaluation MIR ’08: Proceed-
ings of the 2008 ACM international conference on multimedia information retrieval
(New York, NY, USA: ACM)

[102] Zhou Z 2012 Ensemble methods: Foundations and algorithms

[103] Breiman L 2004 Bagging predictors Machine Learning 24 123–40

[104] Khan Z, Gul A, Perperoglou A, Miftahuddin M, Mahmoud O, Adler W and Lausen
B 2020 Ensemble of optimal trees, random forest and random projection ensemble
classification Advances in Data Analysis and Classification 14 97–116

[105] Schapire R and Freund Y 2012 Boosting: Foundations and algorithms

[106] Li T and Ding C 2008 Weighted consensus clustering SDM

134

6

[107] Ren Y-Z, Domeniconi C, Zhang G and Yu G-X 2013 Weighted-object ensemble
clustering IEEE 13th International Conference on Data Mining 627–36

[108] Margineantu D and Dietterich T G 1997 Pruning adaptive boosting ICML

[109] Fan W, Stolfo S and Zhang J 1999 The application of AdaBoost for distributed,
scalable and on-line learning KDD ’99

[110] Ormándi R, Hegedüs I and Jelasity M 2013 Gossip learning with linear models on
fully distributed data Concurrency and Computation: Practice and Experience 25

[111] Abualkibash M, ElSayed A and Mahmood A 2013 Highly scalable, parallel and
distributed AdaBoost algorithm using light weight threads and web services on a
network of multi-core machines ArXiv abs/1306.1467

[112] Ratasich D, Khalid F, Geissler F, Grosu R, Shafique M and Bartocci E 2019 A
roadmap toward the resilient internet of things for cyber-physical systems IEEE Access
7 13260–83

[113] Probst P and Boulesteix A 2017 To tune or not to tune the number of trees in random
forest? J. Mach. Learn. Res. 18 181:1–8

[114] Pes B 2019 Ensemble feature selection for high-dimensional data: A stability analysis
across multiple domains Neural Computing and Applications 32 5951–73

[115] Breiman L 2001 Random forests Machine Learning 45 5–32

[116] Sen J 2009 A survey on wireless sensor network security ArXiv abs/1011.1529

[117] Sheikh M S and Liang J 2019 A comprehensive survey on VANET security services in
traffic management system Wirel. Commun. Mob. Comput. 2019 2423915:1–23

[118] Strehl A and Ghosh J 2002 Cluster ensembles — a knowledge reuse framework for
combining multiple partitions J. Mach. Learn. Res. 3 583–617

[119] Galdi P, Napolitano F and Tagliaferri R 2014 Consensus clustering in gene expression
CIBB

[120] Fred A and Jain A K 2005 Combining multiple clusterings using evidence accumulation
IEEE Transactions on Pattern Analysis and Machine Intelligence 27 835–50

[121] Monti S, Tamayo P, Mesirov J and Golub T 2004 Consensus clustering: A resampling-
based method for class discovery and visualization of gene expression microarray data
Machine Learning 52 91–118

135

6

[122] Dietterich T G and Bakiri G 1995 Solving multiclass learning problems via error-
correcting output codes ArXiv cs.AI/9501101

[123] Hao F, Ryan P and Zielinski P 2010 Anonymous voting by two-round public discussion
IET Inf. Secur. 4 62–7

[124] Dua D and Graff C 2017 UCI machine learning repository

136

MOTS CLÉS

Graphes, Réseaux, Citation, Bipartite, Partitionnement, Partitionnement join, Détection de communautés,

Projection, Visualisation, Apprentissage automatique

RÉSUMÉ

L’objet de cette thèse est de proposer des approches nouvelles permettant l’utilisation d’algorithmes d’apprentissage

automatique travaillant usuellement des données tabulaires aux graphes. Un graphe est une structure de donnée com-

posée de nœuds reliés entre eux par des liens. Cette structure peut être représentée sous la forme d’une matrice, où

chaque connexion entre de noeuds est représentée par une valeur non nulle, permettant une manipulation des données

plus facile. Néanmoins, par leurs différences structurelles, la transposition d’un algorithme exploitant des données tab-

ulaire aux graphes ne donne pas les résultats escomptés. Deux caractéristiques rendent cette adaptation difficile: la

faible connectivité des noeuds ainsi que la distribution en loi de puissance du degré des nœuds. Ces caractéristiques

conduisent toutes les deux à des matrices creuses pauvre en information tout en nécessitant beaucoup de mémoire de

stockage. Dans ces travaux, nous proposons plusieurs manières de prendre en compte ces différences pour deux types

de graphes particuliers. Dans la première partie, nous nous intéressons aux graphes de citations et à leur représen-

tation dans l’optique de la veille technologique, tandis que la seconde partie s’adresse aux graphes bipartites utilisés

principalement par les systèmes de recommandation. Ces adaptations permettent la réalisation de taches usuelles

en apprentissage automatique, telle que le partitionnement et la visualisation des données. Pour le cas des graphes

bipartites, des algorithmes spécifiques de co-partitionnement sont proposés pour la segmentation conjointe des deux

parties. La troisième partie prend un revers différent. La méthode développée exploite le graphe des k plus proche

voisins construit à partir des données tabulaires afin de corriger des erreurs de classifications. Les différentes méthodes

développées utilisent diverses approches pour emmagasiner plus d’information dans un vecteur par rapport à l’encodage

binaire habituel, permettant de travailler les graphes avec des algorithmes usuel d’apprentissage automatique.

ABSTRACT

This thesis proposes new approaches to process graph using machine learning algorithms designed for tabular data. A

graph is a data structure made of nodes linked to each others by edges. This structure can be represented under a matrix

form where the connection between two nodes is represented by a non-zero value, simplifying the manipulation of the

data. Nonetheless, the transposition of an algorithm adapted to tabular data to graphs would not give the expected results

because of the structural differences. Two characteristics make the transposition difficult: the low nodes’ connectivity and

the power-law distribution of nodes’ degree. These two characteristics both lead to sparse matrices with low information

content while requiring a large memory. In this work, we propose several methods that considers these two graph’s

specificities. In the first part, we focus on citation graphs which belong to the directed acyclic graph category and can be

exploited for technical watch, while the second part is dedicated to bipartite graphs mainly use by recommender systems.

These adaptation permit the achievement of usual machine learning tasks, such as clustering and data visualization.

Specific co-clustering algorithms were designed to segment jointly each side of a bipartite graph and identify groups of

similar nodes. The third part approaches graphs from a different perspective. The developed approach exploits the k

nearest neighbors graph built from the tabular data to help correcting classification errors. These different methods use

diverse methods to embed more information in a vector compared to the usual binary encoding, allowing to process

graphs with usual machine learning algorithm.

KEYWORDS

Graphs, Networks, Citation, Bipartite, Clustering, Co-clustering, Community detection, Embedding, Visual-

ization, Machine Learning

	Introduction
	Graphs are everywhere
	Graph and Tabular Data
	Thesis Organization

	I Identifying Research Communities
	Improving Coupling Metrics with Deep Neighborhood for Local Map of Science
	Background
	References Selection and its Impact on Coupling Strength
	Measuring Coupling at a Deeper Level
	Experimental Setup
	Results
	Discussion
	Conclusion

	Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings.
	Introduction
	t-SNE Formulation
	Indexed t-SNE
	Experimental Setup
	Experimental Results
	Discussion
	Conclusion

	II Clustering Sparse Bipartite Graphs
	Tagged Documents Co-Clustering
	Introduction
	Enlarging Document Context
	Clustering Maximizing Information
	Experimental Setup
	Experimental Results
	Discussions
	Conclusion

	Co-Embedding Bipartite Graphs
	Introduction
	Co-Embedding
	Evaluation Methods
	Results
	Discussion
	Conclusion

	III Computation under Noisy Condition
	Noise-Resilient Ensemble Learning using Evidence Accumulation
	Introduction
	Related Works
	Label Refinement with Implicit Boundary Learning
	Experimental Setup
	Results
	Boundary Size Influence
	Discussion
	Conclusion
	Contributions

	References

