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Abstract

Machine learning is revolutionizing the world in many ways, enabling the creation of artificial
systems capable of performing complex tasks. In medicine, machine learning systems are used to
analyze medical data and identify patterns helping doctors diagnose diseases more accurately. In
retail, machine learning systems are widely used to personalize customers’ shopping experience
by recommending products based on their browsing history and behavior. In the transportation
sector, machine learning is at the heart of the development of autonomous cars, vehicles that
would be capable of driving without human intervention, for which a robustness assessment is of
paramount importance.

The problem addressed in this thesis is the robustness evaluation of deep neural networks as
image classifiers using adversarial examples, which are original examples to which a perturba-
tion, imperceptible to the human eye, is added changing the classifiers’ output. More precisely,
we propose a method to compute these adversarial perturbations using a dictionary, a set of im-
ages learned from a classifier, and a dataset. We also question the quality of the metrics used to
compute distances between two images, leading to reliable estimation of a relevant robustness
measure of image classifiers.

In a first contribution, we propose a new way to fool classifiers. While competitive with state-
of-the-art methods, this approach learns a dictionary of images for which a certain linear combi-
nation produces such an adversarial perturbation. This dictionary makes it possible to construct
universal adversarial perturbations, independent of the original examples, and transferable, ef-
fective for fooling other classifiers. The learned dictionary also makes it possible to visualize the
elementary shapes underlying the creation of adversarial perturbations.

In a second contribution, we propose to learn a similarity measure between images by opti-
mizing the cost matrix of the Wasserstein distance between their representations derived from a
neural network. Using image representations enables to compute more relevant and realistic sim-
ilarities than using their pixels. Pixel-based image distances don’t take semantics into account.
Our proposal makes it possible to explore the richness of learned representations, to construct
a relevant Wasserstein distance. Having such a relevant similarity measure between images may
reveal useful when working on life-at-risk computer vision applications.
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Résumé

L’apprentissage automatique révolutionne le monde de nombreuses manières en permettant
la création de systèmes intelligents capables d’effectuer des tâches complexes. En médecine, les
systèmes d’apprentissage automatique sont utilisés pour analyser des données médicales et iden-
tifier des motifs qui peuvent aider les médecins à diagnostiquer les maladies de manière plus
précise. Dans le domaine du commerce, les systèmes d’apprentissage automatique sont large-
ment utilisés pour personnaliser l’expérience d’achat des clients en recommandant des produits
en fonction de leur historique et de leur comportement de navigation. Dans le secteur du trans-
port, l’apprentissage automatique est au cœur du développement des voitures autonomes, des
véhicules qui seraient en capacité de circuler sans intervention humaine pour lesquels une évalu-
ation de la robustesse est primordiale.

Le problème abordé dans cette thèse est celui de l’évaluation de la robustesse des réseaux
de neurones profonds en tant que classifieur d’images à l’aide d’exemples adversaires, c’est-à-dire
des exemples originaux auxquels est ajoutée une perturbation, imperceptible à l’œil nu, changeant
la sortie des classifieurs. Plus précisément, nous proposons une méthode de calcul de ces pertur-
bations adversaires à l’aide d’un dictionnaire, un ensemble d’images apprises à partir d’un classi-
fieur et d’un jeu de données. Nous remettons également en question la qualité des métriques util-
isées pour calculer les distances entre deux images, afin d’estimer de manière fiable une mesure
de robustesse pertinente des classifieurs d’images.

Dans une première contribution, nous proposons une nouvelle manière de tromper les clas-
sifieurs. Tout en étant compétitive avec les méthodes de l’état de l’art, cette approche permet
d’apprendre un dictionnaire d’images dont une certaine combinaison linéaire produit une telle
perturbation adversaire. Ce dictionnaire permet de construire des perturbations adversaires uni-
verselles, indépendantes des exemples originaux, et transférables, efficaces pour tromper d’autres
classifieurs. Le dictionnaire appris, permet aussi de visualiser les formes élémentaires à la base
des perturbations adversaires.

Dans une deuxième contribution, nous proposons d’apprendre une mesure de similarité entre
images en optimisant la matrice de coût de la distance de Wasserstein entre leurs représentations
issues d’un réseau de neurones. Utiliser les représentations des images permet de calculer des
similarités plus pertinentes et réalistes qu’en utilisant leurs pixels. En effet, les distances d’images
basées sur les pixels ne considèrent pas la sémantique. Notre proposition permet d’explorer la
richesse des représentations apprises, afin de construire une distance de Wasserstein pertinente.
Disposer d’une telle mesure de similarité pertinente entre images peut s’avérer utile lorsque l’on
travaille sur des applications de vision par ordinateur pour lesquelles des vies sont en jeu.
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Introduction

Context and motivation

In recent years, the field of artificial intelligence (AI) has experienced unprecedented growth. Prob-
lems once considered out of reach, are now easily solved thanks to deep neural networks1 [146].

In particular, deep networks played a central role in the recent revolution in computer vision.
The massive adoption of deep neural networks dates back to 2012, when the Alexnet network [88]
largely won the ImageNet image classification challenge, setting a new performance standard in
the field.

Since then, numerous neural network based innovations emerged, solving image and video
related tasks. This led to the mass adoption of deep neural networks for everyday tasks such as
virtual assistants [160], facial recognition payment systems, driving assistants 2, and it is highly
likely that in the coming years we will see the advent of fully autonomous driving systems [79].

(a) The radio-operated automobile, American Won-
der in 1925. Source: Wikipedia.com

(b) Waymo’s robo-taxi. Source: Image courtesy of
Waymo.

Figure 1: Autonomous cars in 1925 and 2025, from Chandler (Motor Car Company) to Chandler
(Phoenix Suburb).

Autonomous vehicles

Research into autonomous cars has been going on for several decades, with the first experiments
and prototypes developed in the 1920s. The first attempt at driverless vehicles dates back to 1925
3, as illustrated with the Chandler car shown in Figure 1a, and gained momentum in the 1980s
when researchers succeeded in developing automated highway systems [57, 77]. This led to semi-
autonomous and autonomous vehicles directly connected to the road infrastructure. Improve-
ments in autonomous vehicles were largely achieved in Germany and the USA between 1980 and
2000 [3, 90].

Autonomous vehicles owe much to defense industry research into unmanned equipment, led
by the famous US Defense Advanced Research Projects Agency (DARPA) challenge [138]. The

1https://chat.openai.com
2https://www.tesla.com/autopilot
3https://computerhistory.org/blog/where-to-a-history-of-autonomous-vehicles/?key=where-to-a-history-of-

autonomous-vehicles
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DARPA challenge is a turning point for autonomous vehicles for two reasons. Firstly, it was the
first time a car was able to drive autonomously for more than 200 kilometers at an average speed
of over 30 km/h, demonstrating that it is indeed possible for cars to drive on their own, without
human supervision. Secondly, from a technical point of view, the DARPA challenge is a revolution
because Stanford’s winning car, shown Figure 2, actually won thanks to the use of machine learn-
ing based tools. It was proof that the best way to program an automatic driving system is through
machine learning.

Then, private companies became interested in the field and began to carry out in depth re-
search. Google’s driverless car drew attention to autonomous vehicles and attracted talent from
many disciplines to work on them. Tesla, a competitor of Google’s in the autonomous car field, is
an electric car company that helped spark interest in autonomous vehicles with its Autopilot prod-
uct, a semi-autonomous driving system capable of steering, braking and accelerating the car. Two
years after the launch of Tesla’s Autopilot, Google followed with its Waymo driverless car project,
offering a driverless taxi service in Phoenix, Arizona’s Chandler neighborhood. Figure 1b shows the
inside of such a robo-taxi system. In doing so, it became the first company to offer a commercial
service using fully autonomous vehicles. One of the main concerns of autonomous cars is safety.
Indeed, autonomous cars incorporate deep neural networks to make driving decisions. However,
these models show their limitations in terms of robustness against adversarial examples [22].

Figure 2: DARPA challenge winning car from Stanford, which was the first to integrate machine
learning models to drive. Source: herox.com

Adversarial examples

With the recent success of deep learning, several authors [16, 154] highlighted their vulnerability
to adversarial attacks. Adversarial attacks are functions of the classifier neural network and an
original example producing an adversarial perturbation, i.e. a slight perturbation imperceptible
to the human eye, which when added to the original example leads to a misclassification as illus-
trated in Figure 3. These adversarial perturbations enable neural networks to be attacked by any
hacker wishing to corrupt them anonymously. However, thanks to these adversarial perturbations,
it is also possible to estimate the vulnerability and robustness of a neural network. In order to es-
timate the robustness of neural networks, some authors proposed to compute pseudo-random
adversarial perturbations which, thanks to efficient optimization, enable the precisely draw the
neural network’s limits. These perturbations have been criticized for not representing realistic
image perturbations, observable in real life, thus leading to an irrelevant estimate of the neural
network robustness. In response to these critics, other types of adversarial perturbations have
been proposed, such as common corruptions [72], or adversarial patches [20] aiming to compute
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a more relevant robustness estimation of neural networks.

+ =

Original image Adversarial perturbation Adversarial image
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Figure 3: Example of an adversarial image in the context of objects detection by an autonomous
car.

Contributions

In this thesis, we proposed two contributions.
First, we proposed to model the adversarial noise space using a dictionary of adversarial atoms,

creating an adversarial attack bridging the gap between specific and universal adversarial attacks.
Through multiple submissions and revisions, our proposition evolved into an efficient modeling
of the adversarial noise space, enabling to derive a robust and transferable adversarial attack. In-
deed, the derived attack proves to be competitive with specific state-of-the-art attacks, while be-
ing more robust, i.e. more resistant to adversarial example detection mechanisms. Besides, the
computed adversarial examples are more transferable, they allow fooling other neural networks.
Thanks to the universal model of the adversarial noise space, our experiments show that the com-
puted adversarial perturbations are more universal than state-of-the-art methods, i.e. they can
fool a neural network on several original examples. The learned dictionary also makes it possible
to visualize the elementary shapes underlying the creation of adversarial perturbations. By relying
on a dictionary, our proposition allows us to reveal the global weaknesses and dynamics leading
to neural network misclassification. In addition, our proposition also questions the currently used
adversarial metrics. Generally speaking, our proposition questions the consideration currently
given to pseudo-random adversarial perturbations to effectively assess a relevant robustness esti-
mation of deep neural networks.

In the second contribution, we questioned the currently used similarity measures between
images. More precisely, we propose learning a similarity measure between images by optimizing
the cost matrix of the Wasserstein distance between the images’ representation extracted from a
neural network. The similarity measures derived from our proposition are more interesting than
the distances currently used, as they use image representations rather than pixels, leading to more
relevant and realistic image similarities. Indeed, pixel based image distances do not consider se-
mantics. Our proposition allows to explore the wealth of learned representations, in order to build
a relevant Wasserstein distance. Especially, we tested our proposition in different application con-
texts to make it more robust and efficient, according to the hyper-parameters. Having such a rel-
evant similarity measure between images can be useful when working on life-at-risk computer
vision applications. However, due to lack of time, we were unable to address all the problems
associated with applying our proposition to more complex and large-scale datasets.
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The different contributions have been proposed in the following papers:

1. Jordan Frecon, Lucas Anquetil, Yuan Liu, Gilles Gasso, Stéphane Canu "Adversarial Dictio-
nary Learning", published at Conférence sur l’Apprentissage Automatique (CAp), 2021.

2. Lucas Anquetil, Yuan Liu, Jordan Frecon, Stéphane Canu, Gilles Gasso "LIMANS: Linear
Model of the Adversarial Noise Space", submitted at International Conference on Learning
Representations (ICLR), 2023.

Outline

This thesis is divided into four chapters as follows:

• Chapter 1 introduces the background knowledge of deep neural networks and formalizes
the different adversarial notations, metrics, attacks, and defenses.

• Chapter 2 presents the proposed dictionary-based adversarial attack.

• Chapter 3 details our proposition to learn a more relevant similarity measure between im-
ages.

• Finally, we conclude our work and present future perspectives.
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Introduction

Contexte et motivation

Ces dernières années, le domaine de l’intelligence artificielle (IA) a connu une croissance sans
précédent. Des problèmes autrefois considérés comme insurmontables, peuvent désormais être
résolus facilement grâce aux réseaux de neurones profonds4 [146].

En particulier, les réseaux de neurones profonds ont joué un rôle central dans la récente révo-
lution de la vision par ordinateur. L’adoption massive de ces réseaux de neurones profond re-
monte à 2012 lorsque le réseau Alexnet [88] a largement remporté le défi de classification d’images
à partir d’ImageNet, établissant ainsi un nouveau standard de performances dans le domaine.

Depuis, de nombreuses innovations reposant sur les réseaux de neurones ont émergé, ré-
solvant des tâches liées à l’image et à la vidéo. Cela a conduit à l’adoption massive de réseaux
de neurones profonds pour des tâches quotidiennes telles que les assistants virtuels [160], les sys-
tèmes de paiement par reconnaissance faciale, les assistants de conduite 5, et il est fort probable
que dans les années à venir nous verrons l’avènement de systèmes de conduite complètement
autonomes [79].

(a) L’automobile radiocommandée, American
Wonder, en 1925. Source : Wikipedia.com

(b) Le robo-taxi de Waymo. Source: Image fournie
par Waymo.

Figure 4: Les voitures autonomes en 1925 et cent ans plus tard, de Chandler (Motor Car Company)
à Chandler (banlieue de Phoenix).

Autonomous vehicles

La recherche sur les véhicules autonomes existe depuis plusieurs décennies avec les premières
expérimentations et prototypes développés dans les années 1920. Une des première tentative de
véhicules sans conducteur remonte à l’année 1925 6 avec la voiture Chandler présentée Figure
4a. Ces travaux ont pris de l’ampleur dans les années 1980 lorsque des chercheurs ont réussi à
développer des systèmes autoroutiers automatisés [57, 77]. Cela a conduit à des véhicules semi-
autonomes et autonomes directement connectés à l’infrastructure routière. Les améliorations des

4https://chat.openai.com
5https://www.tesla.com/autopilot
6https://computerhistory.org/blog/where-to-a-history-of-autonomous-vehicles/?key=where-to-a-history-of-

autonomous-vehicles
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véhicules autonomes ont été largement réalisées en Allemagne et aux États-Unis entre 1980 et 2000
[3, 90].

Les véhicules autonomes doivent beaucoup à la recherche menée par le secteur de la défense
sur les équipements sans pilote, dirigée par le célèbre défi de l’Agence pour les projets de recherche
avancée de défense (DARPA) des États-Unis [138]. Le défi DARPA est un tournant pour les véhicules
autonomes pour deux raisons. Tout d’abord, c’est la première fois qu’une voiture a pu conduire
de manière autonome sur plus de 200 kilomètres à une vitesse moyenne supérieure à 30 km/h, ce
qui a démontré qu’il est effectivement possible que les voitures circulent seules, sans supervision
humaine. Deuxièmement, d’un point de vue technique, le défi DARPA est une révolution car la
voiture gagnante de Stanford, présentée Figure 5, a en réalité remporté grâce à l’utilisation d’outils
basés sur l’apprentissage automatique. C’était la preuve que la meilleure manière de programmer
un système de conduite automatique est l’apprentissage automatique.

Ensuite, des entreprises privées se sont intéressées au domaine et ont commencé à mener
des recherches approfondies. La voiture sans conducteur de Google a suscité une attention sur les
véhicules autonomes et a attiré de nombreux talents issus de plusieurs disciplines pour y travailler.
Tesla, un concurrent de Google dans le domaine de la voiture autonome, est une entreprise de
voitures électriques, qui a contribué à susciter l’intérêt pour les véhicules autonomes avec son
produit Autopilot, un système de conduite semi-autonome capable de diriger la voiture, de freiner
et d’accélérer. Deux ans après le lancement de l’Autopilot de Tesla, Google a suivi avec son projet
de voiture sans conducteur Waymo, en proposant un service de taxi sans conducteur à Phoenix,
en Arizona, dans le quartier de Chandler. La figure 4b montre l’intérieur d’un tel système de robo-
taxi. Elle est ainsi devenue la première entreprise à proposer un service commercial utilisant des
véhicules entièrement autonomes. L’une des principales préoccupations des voitures autonomes
est la sécurité. En effet, les véhicules autonomes intègrent des réseaux de neurones profonds pour
prendre des décisions de conduite. Cependant, ces modèles ont montré leurs limites en termes
de robustesse face à des exemples adversaires [22].

Figure 5: La voiture gagnante du défi DARPA de l’Université Stanford, qui a été la première à inté-
grer des modèles d’apprentissage automatique pour la conduite. Source: herox.com

Examples adversaires

Avec le récent succès de l’apprentissage profond, plusieurs auteurs [16, 154] ont souligné leur
vulnérabilité aux attaques adversaires. Les attaques adversaires sont des fonctions du réseau de
neurones classifieur et d’un exemple original, produisant une perturbation adversaire, c’est-à-
dire une légère perturbation, imperceptible l’œil nu, qui lorsqu’elle est ajouté à l’exemple original
conduit à une mauvaise classification, comme illustré Figure 6. Ces perturbations adversaires per-
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mettent d’attaquer les réseaux de neurones, pour quiconque voudrait les pirater anonymement.
Cependant, grâce à ces perturbations adversaires il est aussi possible d’estimer les vulnérabilités
et la robustesse d’un réseau de neurone. Afin d’estimer la robustesse des réseaux de neurones, cer-
tains auteurs ont proposé de calculer des perturbations adversaires pseudo-aléatoires qui, grâce
à des optimisations efficaces, permettent de délimiter de manière précise le domaine de viabilité
des réseaux. Ces perturbations ont été critiquées [140] car elles ne représentent pas des pertur-
bations d’images réalistes, observables dans la vraie vie, menant ainsi à une estimation de la ro-
bustesse des réseaux de neurones trop abstraite. Face à ces critiques, d’autres types de perturba-
tions adversaires ont été proposés comme les perturbations communes (où common corruptions
en anglais)[72], ou bien les patchs adversaires [20] visant à calculer une estimation plus pertinente
de la robustesse des réseaux de neurones.

+ =

Original image Adversarial perturbation Adversarial image

PERSON PERSON
PERSON

BIRD TRUCK
DOG

Figure 6: Exemple d’une image adversaire dans le cas d’une detection d’objets par une voiture
autonome.

Contributions

Dans cette thèse, nous avons proposé deux contributions permettant de mieux caractériser et
retrouver des exemples adversaires.

Dans le deuxième chapitre, nous avons proposé de modéliser l’espace des bruits adversaires
à l’aide d’un dictionnaire d’atomes adversaires, créant ainsi une attaque adversaire faisant le lien
entre les attaques adversaires spécifiques et les attaques adversaires universelles. À travers plu-
sieurs soumissions et remises en question, notre proposition a évolué vers une modélisation ef-
ficace de l’espace des bruits adversaires permettant de dériver une attaque adversaire robuste et
transférable. En effet, l’attaque adversaire construite à partir d’un dictionnaire se révèle compéti-
tive par rapport aux attaques spécifiques de l’état de l’art, tout en étant plus robuste, c’est-à-dire
qu’elle résiste mieux aux mécanismes de détection d’exemples adversaires. De plus, les exem-
ples adversaires ainsi calculés se révèlent plus transférables, ils permettent de tromper d’autres
réseaux de neurones. Du fait d’être calculé à partir d’une modélisation universelle de l’espace des
bruits adversaires, nos expériences montrent que les perturbations adversaires calculées sont plus
universelles que les méthodes de l’état de l’art, c’est-à-dire qu’elles peuvent tromper un réseau de
neurones sur plusieurs exemples originaux. Avoir modélisé l’espace des bruits adversaires par
un dictionnaire, nous permet de visualiser les formes élémentaires à la base des perturbations
calculées. En s’appuyant sur un dictionnaire, notre proposition nous permet de révéler les faib-
lesses globales et la dynamique menant à tromper les réseaux neuronaux. En outre, notre propo-
sition remet également en question les métriques adversaires actuellement utilisées. Da manière
générale, notre proposition remet en question la considération actuellement donnée aux pertur-
bations adversaires pseudo-aléatoires pour évaluer efficacement et de manière pertinente la ro-
bustesse des réseaux de neurones profonds.

Dans la deuxième contribution, nous remettons en question les mesures de similarité entre
images actuellement utilisées. Plus précisément, nous proposons d’apprendre une mesure de
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similarité entre images en optimisant la matrice de coût de la distance de Wasserstein entre leurs
représentations issues d’un réseau de neurones. Les mesures de similarité tirées de notre proposi-
tion sont plus intéressantes que les mesures actuellement utilisées car elles utilisent les représen-
tations des images plutôt que leurs pixels, permettant de calculer des similarités entre images plus
pertinentes et plus réalistes. En effet, les distances d’images basées sur les pixels, ne considèrent
pas la sémantique. Notre proposition permet d’explorer la richesse des représentations apprises,
afin de construire une distance de Wasserstein pertinente. Nous avons notamment testé notre
proposition dans différents contextes d’application afin de le rendre plus robuste et plus efficace
selon le choix des hyperparamètres. Disposer d’une telle mesure de similarité pertinente entre
images peut s’avérer utile pour évaluer la robustesse d’un réseau face à des exemples adversaires,
notamment lorsque l’on travaille sur des applications de vision par ordinateur dans lesquelles des
vies sont en danger. Cependant, par manque de temps, nous n’avons pas pu résoudre tous les
problèmes liés à l’application de notre proposition sur des ensembles de données plus complexes
et à plus grande échelle.

Les différentes contributions ont été présentées dans les articles suivants :

1. Jordan Frecon, Lucas Anquetil, Yuan Liu, Gilles Gasso, Stéphane Canu "Adversarial Dictio-
nary Learning", publié à Conférence sur l’Apprentissage Automatique (CAp), 2021.

2. Lucas Anquetil, Yuan Liu, Jordan Frecon, Stéphane Canu, Gilles Gasso "LIMANS: Linear
Model of the Adversarial Noise Space", soumis à International Conference on Learning Rep-
resentations (ICLR), 2023.

Structure du manuscrit

Cette thèse est divisée en quatre chapitres précédés par cette introduction :

• Le premier chapitre introduit les connaissances de base sur les réseaux neuronaux profonds
et formalise les différentes notations, métriques, attaques et défenses adversaires.

• Le chapitre deux présente l’attaque adversaire basée sur un dictionnaire que nous avons
proposée.

• Le troisème chapitre détaille notre proposition d’apprendre une mesure de similarité entre
images plus pertinente.

• Enfin, nous concluons notre travail et présentons les perspectives futures.

xvi



Chapter 1

Background and preliminaries

This chapter relies on the notations introduced in [62], making the current work self-sufficient.
The work in [62] is considered one of the most comprehensive introductions to deep learning.
Readers are invited to refer to it for further details.

1.1 Deep neural network classifiers

Broadly speaking, there have been three waves of deep learning development: at first, deep learn-
ing was referred to as cybernetics in the 1940s–1960s [107, 156], then deep learning was known
as connectionism in the 1980s–1990s [132], and in 2006 [14, 73, 128] the deep learning and repre-
sentation learning rise, contrasting from shallow learning which was fancy at the time, to be the
current trend we are witnessing today.

The deep learning algorithms we recognize today were first intended to be computational
models of biological learning that is, how learning happens in the brain. As a result, one of the
names that deep learning has gone by is artificial neural networks (ANNs). While neural networks
have sometimes been used to understand brain function [74], they are generally not designed to
be realistic models mimicking brain function.

The recent (third wave) rise of deep learning has been made possible thanks to two elements
combined, the increase of available large-size datasets and the improvement of computer infras-
tructure in hardware and software. The age of "Big Data" has made machine learning much easier
because the key burden of statistical estimation, generalizing well to new data after observing only
a small amount of data, has been considerably lightened [44, 45, 80, 87, 94, 115, 133].

Alongside the data explosion, both the hardware and software enabled a faster training of neu-
ral network models and also to build deeper neural networks, that is to increase the complexity of
the model, allowing to learn much more complicated patterns within the data and thus reaching
a new standard in terms of performances [27, 88, 152].

1.1.1 Neural networks archictures

In this sub-section, we review the different neural network architectures, incrementally according
to their complexity.

Feedforward neural networks

In the simplest form, neural networks f : RP 7→ RC are called feedforward networks, deep feed-
forward neural networks, or multilayer perceptrons (MLPs). Considering a feedforward network
fθ, parameterized by θ parameters, and a dataset D = {(x(i ), y (i ))}N

i=1 of labeled examples with
x(i ) ∈ X ⊂ RP and its corresponding label y ∈ Y = {1, ...,C}, the goal of optimizing f is to find the
best θ parameters, best modeling the conditional relationship of the data examples x(i ) to their
corresponding label y (i ) (for ease of reading, f will implicitly refer to fθ lightening the notation).

1



CHAPTER 1. BACKGROUND AND PRELIMINARIES

A feedforward network defines a mapping from the input space X to the label space Y , and we
define the prediction of the example x(i ) by f with f (x(i )) = ŷ (i ).

Feedforward neural networks are called networks because they define the composition of dif-
ferent functions (called hidden layer) connected only to one after another. These models are pre-
fixed feedforward because at example x= [x1, x2, . . . , xP]T, its information flows through the inter-
mediate computations of f to finally its output ŷ ,

ŷ = f (x) = f (3)( f (2)( f (1)(x))), (1.1)

supposing f has three hidden layers. In reality, f can be composed of any number of hidden
layers, going up to thousands in some currently used network architecture. The overall number
of functions composing f gives the depth of the model. The name deep learning arose from this
terminology. Each hidden layer of the network is typically vector-valued. The dimensionality of
these hidden layers determines the width of the model.

One way to understand feedforward networks is, to begin with linear functions as hidden lay-
ers. Linear functions, such as linear regression, logistic regression, or linear support vector ma-
chine, are appealing because they can efficiently and reliably be optimized, either in closed form
or with convex optimization. Likewise, we can apply the kernel trick with some nonlinear activa-
tion function σ, to obtain a nonlinear learning of the hidden layers producing a nonlinear feed-
forward network. The previous feedforward network f of three hidden layer shown in Figure 1.1
would be defined as,

h(1) = σ(1)(W(1)Tx+b(1)),
h(2) = σ(2)(W(2)Th(1) +b(2)),
h(3) = σ(3)(W(3)Th(2) +b(3)),

ŷ = σ(4)(h(3)),

(1.2)

defining θ= [W(1),b(1),W(2),b(2),W(3),b(3)], whileσ(1),σ(2) andσ(3) are activation functions such as
relu, σ(x) = relu(x) = max(0, x) enabling the hidden layers to be non-linear functions. The activia-
tion functionσ(4) is quite different as it displays the final prediction of f therefore, for classification
σ(4) would likely be the softmax function, that is component-wise σ(x)(4)

i = softmax(x)i = exi∑
j ex j

enabling ŷ to define a probability distribution over the labels.

𝒙 𝒉𝟏 𝒉𝟐 𝒉𝟑 #𝒚

𝝈 𝟏 (𝑾 𝟏 𝑻𝒙
+ 𝒃(𝟏))

𝝈 𝟐 (𝑾 𝟐 𝑻𝒉𝟏
+ 𝒃(𝟐))

𝝈 𝟑 (𝑾 𝟑 𝑻𝒉𝟐
+ 𝒃(𝟑))

𝝈(𝟒)(𝒉𝟑)

Figure 1.1: Schema of an MLP, composed of three hidden layers. Input and output dimension as
well as the dimension of the hidden layers are set arbitrarily for clarity purposes.

Convolutional neural networks

With feedforward neural networks being the simplest case of neural network architecture, the next
more complicated architecture type is convolutional neural networks (CNNs), also called convo-
lutional networks [92].
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CHAPTER 1. BACKGROUND AND PRELIMINARIES

The name “convolutional neural network” indicates the use of a convolution operation. Con-
volutional networks are simply neural networks that use convolution in place of general matrix
multiplication in at least one of their hidden layers. A convolution operation applies a kernel (or
filter) to an input signal to extract features or perform spatial transformations.

The output of the convolution s(x,K) of an input x ∈ RP and a kernel K ∈ Rk ,k ¿ P, called the
feature map, is the sum of the product of each element of K to each element of x within its range.
The output of the convolution s(x,K)i that is component-wise,

s(x,K)i =
k∑

j=1
xi− j K j . (1.3)

𝑲

𝐱

𝒔(𝒙,𝑲)

Kernel of size 3

𝑲𝟏 𝑲𝟐 𝑲𝟑

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔

𝒔(𝒙,𝑲)𝟏 𝒔(𝒙,𝑲)𝟐 𝒔(𝒙,𝑲)𝟑 𝒔(𝒙,𝑲)𝟒 𝒔(𝒙,𝑲)𝟓 𝒔(𝒙,𝑲)𝟔

𝒔 𝒙,𝑲 𝟒 = 𝑲𝟏𝒙𝟑 +𝑲𝟐𝒙𝟒 +𝑲𝟑𝒙𝟓

Figure 1.2: Schema of a 1 dimensional convolution operation. The input size and kernel size are
set for clarity purpose.

Equation 1.3 and Figure 1.2 define and illustrate a convolution operation over a one-dimen-
sional signal, but the operation can be extended to more dimensions as well. It is important to
note that the input of the convolution can be padded with zeros to provide an output feature map
of identical shape, preventing edge effects. Including a convolution operation within a neural
network architecture, implies that the kernel parameters K j , j ∈ {1, . . . ,k}, are now part of the θ
parameters of f to be found during its optimization.

Adding convolutions improves neural networks in two ways, first by lowering the complexity
of the model (size of θ, that is the number of parameters to be found) and second by extracting
only the most discriminative features as a pre-process of the next hidden layers. Besides, from a
more practical viewpoint, convolution provides a way to deal with different sizes of inputs.

Opposite to feedforward networks, CNNs can set the kernel size much smaller than the input
size, resulting in sparse interactions. For example, when working with large-scale data such as
high-resolution images, the input size can be 105 or 106, with convolutions we can detect the small
meaningful features in the images, such as corners or edges in the objects, using kernels of size
102 or 103 only. It means that we need to store fewer parameters, which both reduces the memory
requirements of the model and fastens the prediction ŷ computation by running fewer operations,
improving the runtime complexity. When setting the kernel size to be lower than the input size,
the convolution exploits the local connection patterns in the input. These local connections help
capture spatial or temporal dependencies within the input, which is particularly useful for tasks
such as image and video processing. In practice, convolution is most often used with a pooling
operation [185], a downsampling operation that reduces the spatial dimensions of the input by
aggregating neighboring values, typically taking the maximum or average value.

Overall CNNs have tremendously outperformed feedforward neural networks thanks to the
convolution operation extracting the most discriminative characteristics from the inputs and thus
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CHAPTER 1. BACKGROUND AND PRELIMINARIES

enabling the overall neural network function to precisely locate and discriminate more compli-
cated patterns.

Residual Networks

CNNs [88, 93] have led to a series of breakthroughs for image classification [88, 141, 181]. At the
same time, Simonyan and Zisserman, Szegedy et al. [147, 152] revealed that the network’s depth is
of crucial importance, as a higher depth leads to better results [70, 78, 147, 152] on the challenging
ImageNet dataset [133].

However, up to this point, convolutional neural networks cannot be "too deep" as they become
too difficult to optimize. The depth training problem, also known as the vanishing gradient prob-
lem, refers to the phenomenon where gradients in deep neural networks diminish exponentially as
they backpropagate through multiple hidden layers during the training, making it challenging for
earlier hidden layers’ weights to be efficiently optimized. Residual connections [71] solve the van-
ishing gradient problem. Residual connections are links within the deep neural network between
the early hidden layers and the final hidden layers as Figure 1.3 shows. As well as proposing the
residual connections idea, authors of the original work [71] introduce a series of neural network
architectures including residual connections, termed ResNets.

𝒙 𝒉𝟏

𝒉𝒋 = 𝜎#(𝑊(#)ℎ#&' + 𝑏(#)) + 𝒉𝟏

𝒉𝒏 +𝒚

⋯ ⋯

+	𝒉𝟏

𝒉𝒋

+	𝒉𝒋

𝒉𝒏 = 𝜎)(𝑊())ℎ)&' + 𝑏())) + 𝒉𝒋

Figure 1.3: Schema of a neural network of n hidden layers with two residual connections. The
input size, number of hidden layers, their dimension, and the location of the residual connections
are set for clarity purposes.

Figure 1.3 shows a neural network including two residual connections. Even though the resid-
ual connections here are only set for display purposes, we can see the hidden layer h j ’s parameters
will be updated with a gradient of the same magnitude as those of the last layer hn . By composi-
tion, we understand through the other residual connection, that the first hidden layer h1’s pa-
rameters will be updated with a gradient only an order of magnitude lower than those of the last
layer hn . This way, early hidden layers can receive insightful gradients allowing us to update them
efficiently and therefore solving the vanishing gradient issue.

The neural network architectures used in this thesis involve VGG [147], Inception [153], Google-
Net [152], MobileNet [75], ResNet [71] that are all composed of the presented neural networks
architecture tools as well as little specific tricks making them efficient for their purpose at their
publication date.
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CHAPTER 1. BACKGROUND AND PRELIMINARIES

Recent state-of-the-art neural network architectures, such as NAS [186], CoCa[180], ViTs [51]
involve new kinds of technology such as variants of attention mechanisms [180] [165] or masking
[55] for example. Those technologies are out of the scope of this thesis, however, readers are in-
vited to refer to current benchmark1 as shown in Figure 1.4, reviewing the current state of the art
neural networks models.

Figure 1.4: Comparison of the state-of-the-art neural network classifiers on the ImageNet dataset
as of 2023. Source: paperswithcode.com

1.1.2 Losses

Training a neural network simply means learning (determining) the best values for all the model’s
parameters θ (weights and bias for example) using empirical examples. In supervised learning, a
machine learning algorithm builds a model by examining many labeled examples and attempting
to find its best parameters minimizing a loss function (also known as a cost function). Given a
labeled dataset D = {(x(i ), y (i ))}N

i=1 with x(i ) ∈X ⊂ RP and y (i ) ∈Y = {1, . . . ,C} this process is called
empirical risk minimization,

min
θ

1

N

N∑
i=1

L(ŷ , y), (1.4)

with
ŷ = softmax([ f1(x(i )), f2(x(i )), . . . , fC(x(i ))])T

the predicted label probability vector of x(i ) through f . The predicted label is given by choosing
the label receiving the maximum probability, argmaxk fk (x) = argmaxk ŷk .

In equation 1.4, the loss function is denoted by L represents a real positive value, a penalty of
a bad prediction. The loss is a real value indicating how bad the model’s prediction is on a single
example. If the model’s prediction is perfect then the loss is zero otherwise, the loss is positive.
The goal of training a model is to find the best parameters θ, producing the lowest loss, on average,
across all examples in D.

The choice of the loss function is of the utmost importance when building machine learning
models as it plays a central role in its optimization. Losses are usually associated with the task at
hand. It means that some regression loss might not be suited to train a classifier. Here we will
review some of the most common classification losses, as other task losses are out of scope for this
thesis.

0-1 loss

The simplest classification loss is the 0-1 loss, which simply counts the number of bad predictions,

L(ŷ , y) =
{

1 if argmaxk ŷk = y

0 if argmaxk ŷk 6= y.
(1.5)

1https://paperswithcode.com/sota
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Even though the 0-1 loss is quite simple to understand, this loss is not relevant as it can hardly
be incorporated into an optimization scheme. Indeed, as we will see in section Section 1.1.3 the 0-
1 loss does not allow us to compute gradients with respect to the model’s parameters θ, preventing
us from updating them.

Hinge loss

Very popular in the early 2000s, Support Vector Machines (SVMs) [34] were at the time, the state-
of-the-art classifier models. SVMs are mainly optimized using the hinge loss (also called margin
loss). The core idea of hinge loss is to provide a margin-based measure for training classifiers,
by maximizing the margin between the decision boundary of the classifier and the training data
points. With the hinge loss, the loss is zero if the example is correctly classified, and positive if its
prediction lies within a chosen margin from the decision boundary.

L(ŷ , y) = max(0,ρ− 1 .{y = argmax
k

ŷk }), (1.6)

with ρ as the allowed margin hyper-parameter of the hinge loss.
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2.00 0-1 Loss
Hinge Loss

Figure 1.5: Comparison of the Hinge loss and the 0-1 loss. The vertical axis represents the value of
the Hinge loss (in red) and zero-one loss (in blue) for fixed ρ = 1, while the horizontal axis repre-
sents the value of the prediction y.

Figure 1.5 illustrates the difference between the Hinge and the 0-1 loss. Those two losses are
presented because of the impact and fundamental influence they’ve had in the machine learning
community, however, nowadays neural network classifier optimizations do not use them. Instead,
the most likely loss involved to optimize neural network classifier is the cross-entropy.

Cross-entropy loss

The cross-entropy loss, as its name suggests, takes roots from the entropy dissimilarity measure.
Entropy is a measure of uncertainty or disorder in a probability distribution. The entropy of a
discrete probability distribution S is defined as,

entropy(S) =− ∑
event

p(event)log (p(event)), (1.7)

with p(event) representing the probability of the realization of an event in the distribution and
summing over all possible events.

While entropy measures the disorder in a probability distribution, cross-entropy measures the
difference between two probability distributions. In the context of classification, cross-entropy is
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used to compare the classifier’s probability distribution to the true label distribution represented
by a Dirac when considering single-label classification,

L(ŷ , y) =−
C∑

k=1
ok log (ŷk ), (1.8)

with ŷk representing the predicted probability of the label k for the example x through f , and
o a one-hot vector with 1 at index y representing the true label of x. Cross-entropy is minimized
when the probability distribution ŷ matches the true distribution o perfectly, which is when ŷ puts
a probability of 1 on the true label y and 0 elsewhere. Minimizing the cross-entropy effectively
maximizes the likelihood of the true labels under the probability distribution ŷ .

Triplet loss

So far, the presented losses mainly cover the classification task, but in this thesis, we explored
the metric learning problem too. The metric learning problem involves learning a distance or
similarity metric that captures the relationship or dissimilarity between points. In classification,
it is often essential to have an appropriate distance metric d : RP×RP 7→ R that can effectively
measure the similarity or distance between points. In most research and applications, `p norm
distances are set as standard distances however, `p norm distances may not always be suitable
[143], as it treats all dimensions equally and may not reflect the underlying structure or semantics
of the data.

Metric learning methods typically leverage labels or pairwise constraints to guide the learning
process. A metric learning algorithm optimizes a loss that encourages the desired properties of
the learned metric, such as being low for points of the same label, and high for points of different
labels. To this end, the triplet loss [137] has been proposed. Given a dataset of labeled exam-
ples D = {(x(i ), y (i ))}N

i=1 with x(i ) ∈ RP and y (i ) ∈ Y = {1, . . . ,C}, the triplet loss generates triplets
{(xa ,xp ,xn)(i )} from D, with xa an anchor point, xp a positive point of same label as xa and xn a
negative point of different label. From these triplets, the triplet loss explicitly minimizes the dis-
tance between points of the same label d(xa ,xp ) and maximizes the distance between points of
different label d(xa ,xn) under a margin,

L(d ,D) = ∑
(xa ,xp ,xn )∈D

max(0,ρ−d(xa ,xn)+d(xa ,xp )), (1.9)

with ρ the allowed margin of error.

Optimal transport loss

In recent years, the research community has seen a surge of interest in optimal transport distances
[168]. Optimal transport distances, also known as Wasserstein distances (WD) or Earth Mover’s
distances [131], are mathematical measures that quantify the dissimilarity or distance between
two probability distributions. The basic idea behind optimal transport distances is to consider
the cost of moving each unit of mass from a source point to a destination point. Originally, the
cost function of transporting points is assumed to be known and set as a parameter. In the ma-
chine learning context, the WD quantifies the minimum cost required to transform one probability
distribution into another, taking into account the distances between the individual points in the
distributions.

The WD thus provides a measure of dissimilarity between distributions that considers both
their shapes and the geometric structure of their support. With one dimensional point, the WD
reads WDC : RN×RM 7→ R, and computes the association of N points from one probability distri-
bution a to M points of another probability distribution b, such that the sum of the overall trans-
portation under the cost function C is minimized,
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WDC(a,b) = min
T∈RN×M

N∑
i=1

M∑
j=1

Ti , j Ci , j ,

such that T1 = a and TT1 =b,

(1.10)

with the matrix C ∈ RN×M being the cost-matrix, that quantifies the effort of moving points, with
Ci j the effort of moving points from location ai to location b j . Figure 1.6 shows a valid transport
plan between two points clouds. Its associated WD would be the sum of all the black arrows’ costs,
representing the cost of moving all the points ai to all the points b j .
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Figure 1.6: Schema of the Wasserstein distance between points from a in red, and points from
b in blue. The black arrows represent the association of points from a to points from b, these
associations define the transport plan T.

Even though it is very appealing for the geometric understanding and semantic-based defini-
tion, computing the exact WD can be computationally expensive, especially for high-dimensional,
large-scale problems. To make the problem tractable and computationally efficient, researchers
resort to its relaxed version, the Sinkhorn divergence [38]. The Sinkhorn divergence, is an ap-
proximation of the WD that leverages the Sinkhorn-Knopp algorithm, a matrix scaling algorithm
computing an approximate transport plan efficiently. The Sinkhorn divergence relaxes the strict
constraints of the WD by introducing regularization parameters, which control the trade-off be-
tween computational efficiency and the accuracy of the approximation. The Sinkhorn divergence
WDα

C simply consists of a regularization term added to the original distance WDC,

WDα
C(a,b) = min

T∈RN×M

N∑
i=1

M∑
j=1

Ti , j Ci , j +α
N∑

k=1

M∑
t=1

Ti , j (logTi , j −1),

such that T1 = xs and TT1 = x t ,

(1.11)

with α a regularisation parameter. Usually, the optimization considers instead the dual formula-
tion of the Sinkhorn divergence explicitly including the constraints with the dual variables. Read-
ers are invited to see Section A for details of the dual formulation as well as the Sinkhorn-Knopp
algorithm definition.

The design of an appropriate loss according to the objective, the constraints, and the dataset at
hand, is complex and requires careful attention. Loss conception and definition is still an ongoing
research, see [170] for a survey and more details on the recent improvements in this research field.
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1.1.3 Optimization

Once we defined a neural network architecture’s parameters θ and the appropriate loss function
L, we have the following optimization problem,

min
θ

1

N

N∑
i=1

L( fθ(x(i )), y (i )) =L(ŷ , y). (1.12)

The simplest and the historically most used strategy to update the parameters θ is to proceed
with a stochastic gradient descent (SGD) optimization scheme,

θ← θ−γ∇θL( fθ(x(i )), y (i )), (1.13)

with (x(i ), y (i )) randomly chosen in the dataset, and γ a fixed step size. Quite basic but efficient,
SGD optimization is still used, especially with optimization tricks such as averaged mini-batch
gradient computation, or mini-batch sampling strategy. One of the main improvements that have
been proposed was that rather than choosing a fixed step size γ, dynamically computing a new
step size γ at each gradient update, according to the gradient’s magnitude. The Adam [86] opti-
mization strategy has been proposed to dynamically update the step size according to the gra-
dient’s magnitude, outperforming the original SGD optimization by far. To calculate the step
size, Adam performs an optimization problem on its own by using two moving average variables,
namely the first moment of the gradients, the mean with a first hyper-parameter β1, and the sec-
ond moment, the variance of the gradients with a second hyper-parameter β2. These moving av-
erages are updated at each iteration of the optimization process. Readers are invited to refer to
Algorithm 1 on page 2 of [86] for a more precise definition of the performed computation of γ.

During the past decade, the Adam optimizer has been the most used and effective, but some
variants have been proposed, such as Nadam [53] or Radam [98] for instance. These have been
outperformed by other step size computations such as Sophia [97], which enabled us to reach new
state-of-the-art performances with transformer models. New state-of-the-art performances are
reached using new and better optimizers [31, 110]. Further information and other optimization
procedures are given in the fast-ai2 and Fidle3 courses.

1.1.4 Generative Adversarial Networks

Another way to train neural networks is to resort to the generative adversarial networks (GAN)
frameworks, proposed in [64]. A GAN framework consists of two models competing against each
other. On one side of the framework is a generator g trying to generate synthetic data as similar
as possible to true data, and on the other side is a discriminator d acting as a classifier, trying to
distinguish the true data from the synthetically generated data. More formally a GAN learns to
map the simple latent distribution z ∼ pz to the more complex data distribution, the true data
x ∼ pd at a . By having its generator compete against its discriminator, the GAN’s objective results
in a min/max objective,

min
g

max
d

Ex∼pd at a [logd(x)]+Ez∼pz [log1−d(g (z))]. (1.14)

As Figure 1.7 shows, both d and g are optimized from equation 1.14 by backpropagating their loss
with respect to their respective model.

2https://www.fast.ai/
3https://fidle.cnrs.fr
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Figure 1.7: Diagram of the GAN optimization scheme.

GAN framework received a lot of attention due to its capacity to optimize a generator produc-
ing almost-real synthetic data as Figure 1.8 shows (see [66] for a recent survey on GAN).

Figure 1.8: Example of fake person images generated by GAN models. Source: thispersondoesno-
texist.com

Even though a GAN generator does not create so-called adversarial examples 1.19, the core
objective of the generator is still to generate imperceptible to the human eye, fake data.

1.1.5 Frameworks

During the past decade, machine learning research has been extensively supported by various
companies such as Google, Meta, and Microsoft for example. Fortunately for academic research
these companies released very powerful cutting-edge open-source machine learning frameworks
such as Tensorflow [1], Pytorch [120], Apache MXNet [30] or the new in town JAX [60] for example.
Each optimizer has its own strengths and weaknesses, depending on either research or produc-
tion, one can be more appropriate than the other. Figure 1.9 gives a comparison of the usage for
the last five years. As of today, the Pytorch framework is on the rise.

The work proposed in this thesis heavily relies on the framework Pytorch, which has many ef-
ficient and powerful features enabling us to perform extensive experiments. Pytorch has the main
advantage of including the Autograd [119] computation package, which as the name suggests, au-
tomatically computes reliable gradients of any differentiable loss with respect to its input. In this
thesis, we focused on adversarial examples and resorted to publicly released and peer-reviewed
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validated benchmarks of the adversarial attack, namely Torchattacks [85] and RobustBench [35].
All the implementations of this thesis are made available4 and we thank the Pytorch community
for releasing such crucial tools to us.

Figure 1.9: Comparison of deep learning framework use, from their Google keyword search. On
the x-axis is the time and on the y-axis is displayed a score of the keyword usage in the Google
search engine. Source: trends.google.com

1.1.6 Datasets

During this thesis, our experiments were exclusively performed on image datasets, but to some
extent, can be extended to other data modalities.

We performed experiments on the widely used benchmark dataset MNIST [94] ("Modified Na-
tional Institute of Standards and Technology"). This dataset describes a collection of handwritten
digit images, specifically a training set with 60,000 examples and a test set with 10,000 examples.
Each example in the dataset is a grayscale image of size 28x28 pixels, representing a handwritten
digit from 0 to 9. Quickly becoming a limiting dataset, MNIST derived more complex datasets such
as Fashion-MNIST [176], EMNIST [33], KMNIST [32] or even QMNIST [178].

The CIFAR-10 dataset [87] is another widely used benchmark dataset in the field of computer
vision. CIFAR stands for "Canadian Institute For Advanced Research". The CIFAR-10 dataset in-
cludes labeled RGB images of 10 classes. The CIFAR-10 dataset comprises 60,000 RGB images
divided into a training set with 50,000 images and a test set with 10,000 images. Each image in
the dataset has a size of 32x32 pixels and is labeled with one of ten classes: (airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, or truck). The images in CIFAR-10 exhibit more complexity
compared to the MNIST dataset. They contain color information and represent a broader range of
objects and backgrounds. The dataset is designed to reflect real-world scenarios and challenges
in object recognition and classification tasks.

As a step further real-world scenarios, we performed experiments on the ImageNet dataset
[45]. It is designed for object recognition and classification tasks and has been crucial in ad-
vancing state-of-the-art in computer vision. The ImageNet dataset originally consisted of mil-
lions of labeled images from a vast range of object categories. However, the most widely known
and used subset of ImageNet is the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[133], which focuses on a subset of 1.2 million images across 1000 object classes. Each image in
the ImageNet dataset can vary in size and resolution. The dataset covers a wide variety of objects,
including animals, vehicles, household items, natural scenes, and more. The dataset also includes
a significant number of challenging images, such as those with multiple objects or cluttered back-
grounds.

Most of the datasets currently used are available on the Kaggle5 website. Kaggle is an online
platform hosting machine learning competitions, it provides datasets for practice and offers a col-
laborative environment for machine learning projects. Readers are invited to take a look out of
curiosity.

4https://github.com/lucasanquetil
5https://www.kaggle.com/
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1.1.7 The current trend in deep learning

State-of-the-art performances are reached using neural networks to learn complex representa-
tions of the data making the final predictions very accurate.

The current trend is to blindly increase the number of parameters of the model (the model’s
size), allowing it to learn much more complex representations, and achieve outstanding perfor-
mances. Figure 1.10 shows the rise of the neural network size for different tasks according to their
publication date. As we can see, in spite of their consequences, researchers and private companies
chose to increase, without any limit, the neural network size.

Figure 1.10: Machine learning model’s number of parameters (size) according to their publication
date and their task. Source: Machine Learning Model Sizes and the Parameter Gap [167].

However, training neural networks is expensive and requires a lot of resources. Training deep
neural networks is computationally intensive and requires significant computational resources,
including powerful GPUs or specialized hardware. Large models with millions of parameters can
be challenging to train and deploy in resource-constrained environments, requiring a significant
amount of electrical power and therefore displaying a very poor carbon footprint.

Besides, in this thesis, we empirically show once more, that neural networks are not almighty,
and are sensitive to small changes in the distribution of the input data. We show that neural net-
work performances can easily collapse under very small perturbations of the data, showing real
harm in releasing them on real-world life at-risk applications.

Overall, this thesis aims to temper the growth of neural network size and to bring the esteemed
research institutions, perhaps blinded by the pursuit of gain, back to reason. We believe the focus
should be placed on ensuring the security, thorough understanding, and effective control of a bit
smaller neural networks but still exhibiting excellent performances.

1.2 Adversarial attacks and examples

In some applications, neural networks are reaching human-level performances when evaluated on
an i.i.d. (independent and identically distributed) test set. However, several authors [16, 154] high-
lighted the vulnerability of neural networks to adversarial attacks. Adversarial attacks are func-
tions of the deep classifier and original example producing adversarial example, i.e. a slightly
perturbed original example misleading the classification. With images, an adversarial pertur-
bation refers to an “imperceptible” perturbation of an image, i.e. a slight change in the pixels, so
that this image remains unchanged for the human eye while causing misclassification as shown in
Figure 1.12. These adversarial examples question the trust we put in deep learning models in our
everyday tasks, especially in life-at-risk applications such as autonomous cars.
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In this thesis, we mainly focus on images, even though adversarial examples could be of any
modality (for instance trajectory attack shown in [22]).

Adversarial examples are interesting to anyone who wants to evaluate the robustness of a clas-
sifiers and certify their use [166], or to some ill-intentioned hacker who wants to jeopardize the
system.

The goal of a hacker is to corrupt the system by any means. In [22], the authors studied the ad-
versarial harm of data-driven trajectory prediction systems within autonomous cars. They devise
an adversarial attack framework generating realistic adversarial trajectories. Authors showed their
adversarial attack can lead an autonomous car to drive off-road or collide with other vehicles in
simulation.

Figure 1.11: Example of adversarial trajectory proposed by the adversarial attack of [22]. By driving
along the crafted adversarial history trajectory, the adversarial agent (red car) misleads the predic-
tion of the autonomous car (AV) for both itself and the other agent (yellow car). Consequently,
autonomous car planning based on the wrong prediction results in a collision. Source: AdvDO:
Realistic Adversarial Attacks for Trajectory Prediction [22].

Indeed, in Figure 1.11, by shifting the left yellow car into an adversarial agent that only goes in
the opposite direction, and does not cross the trajectory of the green autonomous car, they make
the trajectory prediction fail to predict a safe path leading to a crash with the right yellow car.
Opposite to what we study in this thesis, the hacker did not have to perturb the system itself but
only its environment, highlighting the fragility of current models used in life-at-risk applications,
and our need to assess and improve their robustness.

Adversarial examples are interesting to anyone attempting to evaluate the robustness of a
model before releasing it into life-at-risk applications Overall researching the origin and the com-
putation of adversarial examples is of the utmost importance and crucial to the integration of the
model into life-at-risk applications.

Evaluating the robustness of a classifier with adversarial examples is tricky because, among
all the adversarial attacks, different families co-exist with very different goals regarding the adver-
sarial examples. There are pseudo-random adversarial attacks, common corruptions, adversarial
patch attacks, and other types that are out of the scope of this thesis. Among these families, we
mainly explored the pseudo-random adversarial attacks, attacks that generate very small pseudo-
random adversarial perturbations, uncorrelated to the semantics of the data.

In this section, we first define the adversarial examples optimization problems, and the dif-
ferent visions of it leading to different goals with adversarial examples. In these definitions, we
highlight the differences between pseudo-random adversarial examples, common corruptions,
and adversarial patches. After defining adversarial examples we formalize their different desired
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properties (universality and transferability). Next, we define adversarial metrics that measure the
quality of an adversarial example generation. Then, as we deeply explored it, we reviewed some of
the most important pseudo-random adversarial attacks (white box, black box, universal attacks,
and other types of pseudo-random attacks). Finally, we present the different families of adversarial
defenses, mechanisms aiming to protect classifiers from adversarial harm.

Original example 𝐱 Adversarial example 𝐱 + 𝝎Adversarial noise 𝝎

𝝎 ! = 0.67 Prediction: Speed limit 70
99% confidence

Prediction: Speed limit 30
99% confidence

+ =

Figure 1.12: Adversarial example produced with an additive pseudo-random adversarial attack.
Source: Matthias Hein presentation Adversarial Robustness: Evaluation and Approaches beyond
Adversarial Training in "A Blessing in Disguise: The Prospects and Perils of Adversarial Machine
Learning" workshop at ICML 2021.

1.2.1 Definitions

Exact adversarial attacks

Adversarial attacks are algorithms generating adversarial examples. They are functions of an
original example x ∈ X of which we want to find its adversarial example x′ and a classifier f
that misclassifies x′.

Originally, the goal of an adversarial example is to find the closest point x′ ∈ X to an original
example x ∈ X that maximizes the misclassification gap (lowering as much as possible the right
classification) of a given neural network classifier f . Given an observed (also called clean) example
x labeled as k ′ = argmaxk fk (x) by f , its adversarial example for f reads,

min
ωx∈Ω

dist(x,x+ωx), (1.15a)

max
ωx∈Ω

(max
k 6=k ′

fk (x+ωx))− fk ′(x+ωx), (1.15b)

with dist a similarity metric between data points (most commonly used distances are `p norms,
but we discuss this choice in Chapter 3). In this definition we assumed that the adversarial exam-
ple x′ ∈ X takes the form x′ = x+ωx ∈ X as shown in Figure 1.12, which makes the adversarial
example generation additive. Rather than being additive, other types of adversarial attacks exist,
with a different form of the adversarial example such as the Adversarial patch, detailed in Section
1.2.1. However the additive type of adversarial attacks remains the most studied and is the one
we focus on in this thesis therefore, unless explicitly rectified, assume x′ = x+ωx. Originally ad-
versarial attacks were proposed for binary SVM classifiers by [16], but the latter were extended to
more class classifiers.

See that (1.15) defines a bi-criteria optimization in which both criteria are opposing. This
makes the problem very difficult to solve thus relaxations have been proposed.

Note that we formalized the adversarial noise space with Ω. This formalism has rarely been
done and in this thesis, we explore different constraints we can impose on this space such that
interesting adversarial noises can be computed. In an unconstrained setting, pseudo-random ad-
versarial attacks consider Ω = RP, while common corruptions [72] define Ω = {

ω = αD with α ∈

14



CHAPTER 1. BACKGROUND AND PRELIMINARIES

R15,D = [ Gaussian Noise, Shot Noise, ..., JPEG ]
}
, we review them more precisely in Section 1.2.4,

and Section 1.2.1 respectively. In equation (1.15), the goal of (1.15b) is to maximize the difference
between any other label prediction and the original label prediction. Such an attack is coined
untargeted adversarial attack, but its targeted version is just a slight modification and reads,

min
ωx∈Ω

dist(x,x+ωx), (1.16a)

max
ωx∈Ω

ft (x+ωx)− fk ′(x+ωx), (1.16b)

with t the targeted label, we want the adversarial example to be classified as.

In practice, the misclassification goal (1.15b) is enforced through the minimization of an ad-
versarial loss function l making the optimization of the adversarial examples easier, more manage-
able, and more efficient. In a way, equation (1.15b) already is an adversarial loss function. Carlini
and Wagner[24] studied multiple adversarial loss functions that we review and detail through the
presentation of the adversarial attacks in Section 1.2.4.

In this thesis, unless highlighted otherwise, we mainly explore untargeted adversarial attacks,
as some of the most used adversarial attacks simply set the targeted label t as the second best label
of the original example t = argmaxk 6=k ′ fk (x),k ′ = argmaxk fk (x). Because solving equation (1.15)
is too complicated for state-of-the-art classifiers and high dimensional data, researchers instead
proposed to solve relaxation versions.

Adversarial attacks focusing on the quality of adversarial example

The first relaxation of equation (1.15) was proposed by [172], which target, for a classifier f and a
given original example x, its best adversarial pair,

min
ωx∈Ω

dist(x,x′) such that argmax
k

fk (x′) 6= argmax
k

fk (x),

and x′ ∈X .
(1.17)

In this definition, the second objective (1.15b) has been replaced with a constraint of misclas-
sification. See that this relaxation eases the original formulation by considering adversarial any
example classified with another label than the one of the original example. The gap between the
original and adversarial predictions is accepted to be neglected as the purpose of the adversarial
examples is to overcome the classifier’s decision boundary, by whatever margin. However, in this
relaxation, the first objective (1.15a) of the original problem remains thus, these attacks mainly
focus on finding the closest adversarial point, that can be seen as the quality of the crafted adver-
sarial examples (the smallest noise possible, overcoming the classifier’s boundaries).

When finding the exact smallest adversarial noise of x overcoming the classifier’s boundaries,
these adversarial attacks find the exact adversarial example of x. Adversarial attacks produc-
ing exact adversarial examples are not that much explored as neural networks are very complex
and highly not convex functions, thus making the problem very difficult to solve and intractable
for high dimensional data. However, some exact adversarial attacks exist for certain types of
neural networks, such as the reluplex [82] relying on satisfiability modulo theories (SMT) solvers
[12, 76, 124] to reach exact adversarial examples. The main flaw of the reluplex is that the attack can
only be performed on neural networks using only the non-linear relu activation function between
the hidden layers. Such restriction of the reluplex attack makes it impractical for state-of-the-art
classifiers, preventing it from becoming a standard adversarial attack.

The other envisioned relaxation of original problem 1.15 considers the performance of adver-
sarial attacks to be over multiple original examples while neglecting the precision on each single
computed adversarial perturbation. The attacker’s objective over multiple original examples is to
fool the classifiers on a maximum number of data points, which is measured by the fooling rate
(1.24).
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Adversarial attacks focusing on the fooling rate

The other proposed relaxation of the original problem is to relax the first objective (1.15a), by al-
lowing all adversarial perturbations to live in a certain `p norm ball of ε radius,

max
ωx∈Ω

(
max
k 6=k ′

fk (x′)− fk ′(x′)
)

such that dist(x,x′) ≤ ε,

and x′ ∈X .
(1.18)

This relaxation emphasizes maximizing the probability of finding any adversarial examplex′ at
maximum εdistance from its original examplex. In some sense, the first constraint of (1.18) can be
seen as settingΩ= {ωx ∈RP,dist(x,x′) ≤ ε}. For ease of reading, because lots of adversarial attacks
rely on this relaxation with an `p norm as dist similarity metric, we set Ωε = {ω ∈ RP, ||ωx||p ≤ ε}
that is equivalent to the first constraint of (1.18).

This relaxation of the original objective considers the efficiency of the adversarial attack as the
maximum number of points for which the adversarial attack found an adversarial example at ε
distance from them.

See that two relaxations (1.17) and (1.18) have a different quality metric, whereas one evaluates
its performance on a single point, the other needs on all of the points to estimate its performance.

The main advantage of the second relaxation compared to the first one, is that all adversar-
ial attacks are given the same ε adversarial budget, and can therefore be fairly compared and
benchmarked for comparison. Even though both relaxation problems are very appealing most
of the state-of-the-art adversarial attacks have their specific optimization strategy and stop the
optimization of ω when all of the following conditions are valid,

argmaxk fk (x′) 6= argmaxk fk (x), (1.19a)

dist(x,x′) ≤ ε, (1.19b)

x′ ∈X , (1.19c)

ω ∈Ω. (1.19d)

All these conditions are necessary regarding the purpose of the adversarial example. The first
condition (1.19a) enforces to overcome the classifier’s decision boundaries, as it is its original main
purpose. The second condition (1.19b) stipulates that the adversarial examples should be close to
the original example, at an ε distance imperceptible to the human eye. Setting an authorized ε

adversarial budget allows us to fairly compare and benchmark all the different adversarial attacks.
Condition (1.19c) is necessary regarding the feasibility of the problem. Indeed, if the device cap-
turing the images displays only positive pixels then negative values in the adversarial examples
are prohibited as they are not to be seen in a real-world scenario and therefore, violate the origi-
nal assumptions. Finally, as a formalism, we define with condition (1.19d) the space Ω in which
adversarial noises ω live so that the different attacks’ optimization are all made clear and distinct.

Figure 1.13 schematizes an adversarial example along with its optimization direction for 2-
dimensional point clouds. The exact adversarial example would lie on the decision boundary in
the direction of the arrow from the point x while an adversarial example x′ computed with the
second relaxation is displayed and could be anywhere behind the decision boundary and inside
the ε ball.

So far, we have seen different optimization problems targeting pseudo-random adversarial
perturbations. Pseudo-random adversarial perturbations have the advantage of exploring in depth
the original input space X such that a higher number of adversarial examples can be found. It al-
lows a more precise evaluation of the robustness of the classifier. Besides, from an ill-intentioned
person, crafting pseudo-random adversarial perturbations is the easiest and therefore, is the most
obvious choice for corrupting the system. Pseudo-random adversarial attacks highlight the attack-
ing vision of adversarial examples.
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Figure 1.13: Schema of an adversarial example x′ in the ball of radius ε centered on the original
example x, with the green arrow pointing in the optimization direction of the adversarial example,
perpendicular to the classifier f decision boundary.

However, these pseudo-random perturbations are especially criticized because they do not
make sense from a real-world viewpoint. Indeed, in real-world scenarios, it is unlikely to find a
pink pixel in a garden picture. What’s the point of evaluating the robustness of classifiers on data
points that will never be seen in real-world applications?

Another kind of adversarial example generation is adversarial patch attacks. These attacks are
not of the additive type. They are looking for the solution of a simple human corruption, the stick
of a harmful patch on real objects making the classifiers fail at recognizing them. We next detail
the patched adversarial examples.

Adversarial patch attacks

To answer the question of a more realistic adversarial example, researchers proposed to compute,
instead of pseudo-random adversarial examples, patched adversarial examples (also known as
Adversarial Patch) [20].

Adversarial patch attacks are algorithms generating, for a target classifier f , a small patch that,
added at a particular position of each image, produces an adversarial example fooling f . Figure
1.14 illustrates such an adversarial patch added to a car image. Once the patch is found and opti-
mized, anyone can print the patch and stick it to any object to make the classifiers fail to recover
the right classification of those objects.

Figure 1.14: Example of optimized adversarial patch aiming to fool the detection of light stops.
Source: Meta Adversarial Training against Universal Patches[108].

Adversarial patch attacks are not of the additive type adversarial attacks but more complicated
optimization algorithms. Instead of considering every pixel of the image, the adversarial patch at-
tack creates adversarial examples by completely replacing a part of the image with a patch, which
can be seen as a mask of the image. The patch is allowed to take any shape and is optimized
using gradient descent over a variety of images, subject to random translation, scaling, and ro-
tation for each image. As quoted in [20], "For a given image x ∈ RP, patch p, patch location l ,
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and patch transformations t (e.g. rotations or scaling) the attack defines a patch application op-
erator A(p,x, l , t ) which first applies the transformations t to the patch p, and then applies the
transformed patch to the image x at location l", illustrated in Figure 1.15.

Figure 1.15: An illustration of the patch application operator. Source: Adversarial Patch[20].

The patch p is optimized using a variant of the Expectation over Transformation (EOT) frame-
work of Athalye, Engstrom, Ilyas and Kwok[7], that is

p = argmax
p

Ex∈D,t∈T,l∈L
[
log fyt (A(p,x, l , t ))],

s.t. ||x−x′|| ≤ ε,
(1.20)

where yt is the target label we want the adversarial example to be classified as, D is a training set
of images, T is a set of path transformations, and L is a set of possible locations in the image.

Notice this definition differs from what we saw before as the adversarial attack is not addi-
tive. Indeed, the adversarial patch attack considers x′ = A(p,x, l , t ) 6=x+ω. This framework allows
much more flexibility in the crafting of the adversarial perturbation but doesn’t permit it to be
fairly benchmarked to other adversarial attacks as its goal is not the same. However, note that this
expectation of equation 1.20 is over the dataset of images, which encourages the trained patch to
work regardless of what is in the background. It makes the adversarial patch somewhat univer-
sal to every image. Universality is a property we define in Section 1.2.2 and we present universal
adversarial attacks in Section 1.2.4. Figure 1.16 shows other types of patched adversarial exam-
ples. In Figure 1.16a, an adversary altered a speed limit sign by adding a little patch, to force an
autonomous vehicle to fail at recovering the right speed limit, while in Figure 1.16b an adversary
added small black and white patches to a stop sign, making autonomous vehicle failing at recog-
nizing it as a stop sign. As we can see these adversarial examples make a lot more sense from our
human eye judgment than pseudo-random adversarial examples, highlighted in Figure 1.12.

While [20] is the first work introducing Adversarial patches, newer and fancier patch attacks
have been proposed, such as the carpet-bombing patch attack, which requires less knowledge
from the targeted model or training data. For newer adversarial patch attacks, readers are in-
vited to refer to [144] for a comprehensive survey on vision-based adversarial patch attacks and
defenses.

Opposite to pseudo-random adversarial perturbations and adversarial patches, are common
corruptions. The common corruptions are not an attack but a set of real-world perturbations of
the data likely to be expected in real-world scenarios. However, as they define a limited number,
fixed in stone, of perturbations, shared to all examples and all classifiers, they are mainly limited
to modeling the adversarial harm. Therefore, common corruptions are closer to real-world appli-
cation harm but are too limited to precisely evaluate the robustness of a classifier.

Common corruptions

Alongside adversarial patches, common corruptions are another class of adversarial perturbations
that aims to be more realistic than pseudo-random adversarial perturbations. Common corrup-
tions presented in [72] are real-world modifications of the input data, shown in Figure 1.17, that
are set in stone and used to measure the robustness of classifiers against real-world perturbations.
In their work [72] benchmarked the robustness of classifiers on the dataset ImageNet-C through a
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(a) Alteration of a speed limit sign, making au-
tonomous vehicles recognize an 85 mph speed limit,
in place of a 35 mph. Source: Macafee.com

(b) Alteration of a stop sign, making autonomous ve-
hicles fail at recognizing it. Source: Robust Physical-
World Attacks on Deep Learning Visual Classifica-
tion [54].

Figure 1.16: Examples of real-world adversarial examples produced by someone altering sign
boards.

brand new instance of the dataset, ImageNet-P composed of the original images perturbed by a set
of a priori chosen perturbations such as adding Gaussian Noise, adding Zoom Blur or modification
of the brightness of original images, detailed in Figure 1.17.

To some extent, common corruptions can be seen as adversarial noise ω ∈Ω, living in a con-
strained spaceΩ. Rather than settingΩ=RP and allowing adversarial noises to be pseudo-random,
common corruptions constraint the adversarial noise space to be defined asΩ= {

ω= αD with α ∈
R15,D = [ Gaussian Noise, Shot Noise, ..., JPEG ]

}
, resulting in more realistic adversarial noises.

Figure 1.17: Originally proposed common corruptions. Source: Benchmarking neural network
robustness to common corruptions and perturbations [72].

As quoted in [109], "Autonomous cars need to be able to cope with wildly varying outdoor con-
ditions such as fog, frost, snow, and night setting, just to name a few (as visualized in Figure 1.18).
One of the major weaknesses of autonomous cars is the inability of their recognition models to
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function well in adverse weather conditions [40]. Getting data for unusual weather conditions is
hard and while many common environmental conditions can (and have been) modeled, including
fog [134], rain [169], snow [169] and daytime to nighttime transitions [40], it is impossible to fore-
see all potential conditions that might occur “in the wild”". Some authors previously proposed a
dataset of road scenes under fog captured by polarimetric cameras to model real-world conditions
of autonomous cars [17]. But later [109] extended this idea, by proposing several datasets con-
taining common corruptions specifically designed for object recognition tasks (autonomous cars
applications included). By setting these object detection common corruptions, Michaelis et al. of
[109] allow benchmarking any type of object detection system within autonomous cars, which can
be composed solely of one deep learning model or a deep pipeline of small unit model in the shal-
low learning spirit. Along with the common corruptions, [109] allows the building of more robust
classifiers by optimizing them over these common corruptions, which is in the way of improving
the classifiers’ robustness by modeling more concrete real-world adversarial perturbations.

Figure 1.18: Examples of varying outdoor images conditions acting as adversarial perturbations
in the case of autonomous cars object recognition. Source: Benchmarking Robustness in Object
Detection: Autonomous Driving when Winter is Coming [109].

In the same spirit [47] proposed to establish a set of 27 common corruptions specifically suited
to 3D object detection for both LiDAR (Light Detection and Ranging) and camera inputs consid-
ering real-world driving scenarios. These common corruptions are illustrated in Figure 1.19.

Figure 1.19: Overview of 27 corruptions for 3D object detection proposed by [47]. See that the
common corruptions are categorized into weather, sensor, motion, object, and alignment and
that some corruptions are effective for one modality, while others are applied to both. Source:
Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driv-
ing [47].

By synthesizing these corruptions on public datasets that are KITTI [61], nuScenes [21], Waymo
[150], authors establish three corruption robustness benchmarks namely KITTI-C, nuScenes-C,
and Waymo-C. Authors of [47] also conducted extensive experiments of state-of-the-art 3D object
recognition. Authors found that camera-only models are more easily affected by common corrup-
tions, demonstrating the indispensability of LiDAR point clouds for reliable 3D detection or the
necessity of developing more robust camera-only models. Overall, the different common corrup-
tions propositions share the same goal, evaluating the robustness of deep models (classifiers and
object detectors) on a more concrete basis.
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These perturbations are interesting for two reasons. First, the classifiers’ robustness is evalu-
ated on a more concrete basis as the common corruptions are perturbations that can happen in a
real-world application therefore, they are much more interesting from an application standpoint
and can be understood by the non-experts.

Secondly, these perturbations are set in stone and are the same as every original example, mak-
ing them example-agnostic like the pseudo-random universal adversarial perturbations (reviewed
in Section 1.2.4). This universality property is desired as it exploits the flaws and weaknesses of
classifiers that are always true for every example including the future unseen ones. Exploiting
these flaws is of the utmost importance as they will likely remain true when releasing the classi-
fier in production on real-world data examples. Universality is detailed in Section 1.2.2. Common
corruptions are a first attempt to compute more realistic adversarial noises ω, by constraining the
space Ω they live in.

Some new work has been proposed trying to learn real-world perturbations [65]. In AdvMix[65],
authors propose to consider as real-world perturbations, the disentangled latent representations
computed by a StyleGAN [81] generator (the GAN framework is detailed in Section 1.1.4). Even
though the presented results seem appealing, the problem with these "optimized real-world" per-
turbations is that they are specific to a s generator, a target classifier, and the dataset used to
optimize these perturbations. Compared to the common corruptions, which are real-world per-
turbations, this proposition is still a step away from computing the real-world robustness of a
classifier. Besides these optimized perturbations are not controlled in magnitude which makes
impossible any comparison with other adversarial attacks. Indeed, authors do not compare their
performances with other adversarial attacks but instead highlight the use of their optimized per-
turbation within an adversarial defense mechanism (more precisely defined in Section 1.2.5).

As we saw, the definition of the searching spaceΩ of the adversarial noises is primordial before
looking for adversarial examples. Depending on the given constraints and goal, the definition of
Ω can be significantly different. In our contributions, we mainly focused on pseudo-random ad-
versarial examples, computed with the second relaxation problem therefore, we used Ωεp , under
which we added some constraints that will be detailed in Chapter 2.

1.2.2 Adversarial properties

So far, we have seen adversarial attacks as functions of a classifier f and an original example x,
but other adversarial example generations exist that either are not restricted to a specific original
example x or to a single classifier f .

Universality

Universal adversarial perturbations are adversarial perturbations ω that respect the conditions of
the adversarial example (1.15) applied to multiple original examples,

argmaxk fk (x(i ) +ω) 6= argmaxk fk (x(i )) ∀i ∈ I , (1.21a)

dist(x(i ),x(i )′) ≤ ε ∀i ∈ I , (1.21b)

x(i )′ ∈X ∀i ∈ I , (1.21c)

ω ∈Ω, (1.21d)

with I an index set.
The more universal the adversarial perturbation is, the more harmful it is. Having a perfectly

universal adversarial perturbation signifies that applied to every example, the classifier f cannot
ever recover the right prediction for all possible original examples. To some extent, such universal
perturbation is the most harmful perturbation possible. Universality is an important property of
adversarial examples, that should be included in the performance evaluation of an adversarial
attack generation.
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However, crafting an adversarial perturbation that is valid for all the original examples is too
complicated therefore, the problem is relaxed by lowering the number of points for which the
adversarial perturbation is valid. Universal adversarial perturbation generation algorithms are
called universal adversarial attacks, we review some of the most important in Section 1.2.4.

Transferability

A transferable adversarial perturbation is an adversarial perturbationω that respects all the adver-
sarial examples conditions applied to every classifier,

argmaxk f (i )
k (x′) 6= argmaxk f (i )

k (x) ∀i ∈ I , (1.22a)

dist(x,x′) ≤ ε, (1.22b)

x′ ∈X , (1.22c)

ω ∈Ω, (1.22d)

with I an index set.
Crafting such transferable adversarial perturbation seems very challenging. In practice, when

evaluating the performances of an adversarial attack, we craft all the possible adversarial pertur-
bations on a given classifier f and empirically see if the perturbations remain adversarial for other
classifiers g , making the adversarial attack more or less transferable.

The transferability property is also not to be neglected when evaluating the performance of
an adversarial attack. If one can craft perfectly transferable adversarial perturbations, all life-at-
risk applications relying on classifiers are put at risk, as the perturbation remains adversarial to
any classifier. Transferability must also be considered when evaluating the performance of an
adversarial attack as it reveals some weaknesses/leaks of the classifier remaining true to every
original example and therefore, should be one of the first things to consider when evaluating its
robustness.

Both the universality and transferability properties of adversarial examples are important to
consider and aim for.

1.2.3 Adversarial metrics

We saw that different optimization problems were proposed to craft adversarial examples, im-
plying different visions and different goals with adversarial examples. Depending on the chosen
adversarial problem and who solves it, the most relevant performance metric differs and may eval-
uate only some aspects of the adversarial perturbations. In this section, we explain in detail where
the different adversarial metrics come from, what they are measuring, and to whom they are rele-
vant.

From an attacker’s point of view

From an attacker’s point of view, the adversarial metric that matters the most is the number of data
points for which the classifier is fooled, that is maximizing the probability of finding an adversarial
example,

max Pr(x,y)∈D
(
x′ ∈ B(x,ε), argmax

k
f (x′) 6= argmax

k
f (x)

)
(1.23)

with B(x,ε), the `p norm ball of radius ε centered on x. Empirically this probability measure is
estimated with the fooling rate (FR) defined as

FR( f ,D) = 1

N

N∑
i=1

1{argmax
k

fk (x′(i )) 6= argmax
k

fk (x(i ))}, (1.24)

with x′(i ) =x(i ) +ωx,ωx ∈Ωε.
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This metric is mainly suited to the optimization of the second relaxation problem which allows
adversarial perturbations to live in an ε ball ω ∈ Ωε. The FR metric doesn’t evaluate the perfor-
mance of the adversarial attack over a single pointx but over a whole set of pointsD = {x(i ), y (i )}N

i=1
which typically consist of the test dataset, the classifier has not been trained on.

However, this metric doesn’t take into account the performances of f on clean data. Indeed,
if the FR only mattered then a constant classifier would be the most robust to adversarial attacks,
which is in practice a bad classifier.

From a defender’s point of view

While the FR metric evaluates the performances of the adversarial attack, the robustness of a clas-
sifier is measured with another metric. From a defender’s point of view when building a classifier
f , the goal is to keep a high classification accuracy even though being perturbed by adversarial
examples. It leads to a slight modification of the conditions for x′ to be an adversarial example of
x. It must originally be well classified, argmaxk ŷ = y (see [179] and [172] for more details)

argmax
k

fk (x+ωx) 6= argmax
k

fk (x) = y,

ωx ∈Ωε,
x′ ∈X .

(1.25)

This point of view leads to consider the original performance of the classifier, that is SA the Stan-
dard Accuracy

SA( f ,D) = 1

N

N∑
i=1

1{argmax
k

fk (x(i )) = y (i )}, (1.26)

as the empirical counterpart of the expected loss.
Then, the robustness of the classifier (opposite to the efficiency of the adversarial attack) can

be measured as the number of well classified clean examples for which the adversarial attack could
not find an adversarial example in a ε ball around them. This quantity is estimated by the Robust
Accuracy RA as the empirical counterpart of the astuteness as defined in [172],

RA( f ,D) = 1

N

N∑
i=1

1{A{(x(i ),y (i ))} =∅}, (1.27)

with A{(x(i ),y (i ))} = {(x′(i ), y (i ))} the set of adversarial examples associated with (x(i ), y (i )). It is clear
that RA( f ,D) ≤ SA( f ,D), the equality being reached when the adversarial attack is completely
inefficient. Therefore, the lower RA is, the more efficient the adversarial attack is.

Like the FR metric, the RA metric evaluates the classifier’s robustness not on a single point but
over a whole set of points D, typically the test set that has not been used for training the classifier.

A fair evaluation of the adversarial examples generation

Yet, the latter metric is questioned by Lorenz et al. [100], who emphasizes the importance of taking
into account the ability to easily detect the generated adversarial examples. They suggest using an
adversarial example detector g plugged before the classifier f when computing the RA. By doing
so, Lorenz et al. [100] showed that state-of-the-art adversarial attacks produced easily detectable
adversarial examples, making the attacks inefficient when a detector is used. Therefore, they sug-
gest relying on another metric called the Attack Success Rate under Defense (ASRD) (equation 2 of
[100]), we rename Robust Accuracy Under Defense (RAUD) for clarity purposes, which stands as a
natural performance metric from both the attacker’s and defender’s points of view. The RAUD is
defined as,

RAUD( f ,D) = 1

N

N∑
i=1

1{∀x′ ∈A{(x(i ),y (i ))}, g (x′) = 0}, (1.28)

where g :RP 7→ {0,1} is an adversarial example detector with 0 as the clean example label.
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According to the RAUD, an adversarial example is considered when it fools the classifier f
and the detection from d . By doing so, the RAUD evaluates the transferability of the produced
adversarial example. The RAUD not only is fair for both the attacker and the defender but also
evaluates the transferability of the adversarial attack allowing it to more precisely measure the
harm of the adversarial attack.

1.2.4 Pseudo-random adversarial attacks

Other than pseudo-random adversarial perturbations, we previously saw that other families of ad-
versarial perturbations exist such as adversarial patch (reviewed in Section 1.2.1 or common cor-
ruptions (reviewed in Section 1.2.1) however, in our contributions we mainly studied the pseudo-
random adversarial perturbations therefore, here we define them in depth.

Pseudo-random adversarial attacks aim to generate additive adversarial perturbation ω ∈Ω=
RP that targets every pixel of the image without any restriction. Some of the pseudo-random ad-
versarial attacks rely on the second relaxation optimization (see Section 1.2.1) to craft adversarial
examples, thus settingΩε = {ω ∈RP, ||ωx||p ≤ ε}. It makes it easier to fool classifiers and thus evalu-
ates their robustness more precisely, but computes adversarial perturbations that are less realistic
and far from real-world harm.

Table 1.1 summarizes all the attacks we review and highlights their differences.

Table 1.1: Summary of the diverse presented adversarial attacks: The ’`p -norm’ refers to the norm
used in Ωε = {ω ∈RP, ||ωx||p ≤ ε}. Sources of this table include [145], [9], [182] and [2].

Attacks Knowledge Goal `p -norm Optimization

L-BFGS [154] White-box Specific `2 One-shot
FGSM [63] White-box Specific `∞ One-shot
BIM [89] White-box Specific `∞ Iterative

PGD [102] White-box Specific `2,`∞ Iterative
DeepFool [113] White-box Specific `2 Iterative

C & W [24] White-box Specific `0,`2,`∞ Iterative
Autoattack [37] White-box Specific `2,`∞ Iterative

Local Substitute Model Attack [116] Black-box Specific `2,`∞ One-shot
MIM [48] Black-box Specific `∞ Iterative
Zoo [29] Black-box Specific `p Iterative

Boundary Attack [36] Black-box Specific `1,`2,`∞ Iterative
UAP [111] White-box Universal `2,`∞ Iterative

Fast-UAP [41] White-box Universal `2,`∞ Iterative
UAP-PGD [142] White-box Universal `2,`∞ Iterative

CW-UAP [15] White-box Universal `2,`∞ Iterative
NAG Attack [114] Black-box Universal `∞ One-shot

JSMA [117] White-box Specific `2 Iterative
Adversarial Patch [20] White-box Specific `∞ Iterative

The very first work proposing a pseudo-random adversarial attack is [16] which defined the
specification of the adversary, its goal, its knowledge, and its capabilities. Every one of these
specifics will give birth to a sub-family of pseudo-random adversarial attacks.

An adversary’s objective can be a misclassification loss function of one or multiple examples.
In (1.15b) we set the misclassification goal as max

ωx∈Ω
(max

k 6=k ′
fk (x+ωx))− fk ′(x+ωx) because it is the

direct objective of maximizing the FR, but in principle, it could be any loss function enforcing the
misclassification of the adversarial example.

The adversary knowledge can include the training set, or part of it, used to build the classifier,
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the feature representation of each example, the type of the classifier’s learning algorithm and the
form of the classifier’s decision function, the classifier itself, or the classifier’s feedback.

The adversary’s capabilities are limited to modifications only of test data. Adversaries are not
allowed to modify the training data as it would be another problem to let adversaries penetrate the
training of the classifier. Hence, the adversary can only operate modifications to the test examples,
modifications of the test examples’ features, or independent modifications to specific features (the
semantics of the examples may dictate that certain features are interdependent).

Differences in the adversary’s knowledge separate adversarial attacks into two categories: White-
box and Black-box attacks and differences in the adversary’s goal separate adversarial attacks into
two categories: Specific attacks and Universal attacks.

All these differences are highlighted in Table 1.1.

White-box adversarial attacks

A white box adversarial attack is a type of attack on a classifier in which the adversary has complete
knowledge of the classifier’s architecture, parameters, and inputs. In other words, the adversary
has full access to the "white box" of the classifier, hence the name. White-box attacks are predom-
inately gradient-based adversarial attacks since they usually rely on the gradient of the adversary’s
goal with respect to the classifier’s parameters to optimize it. This is the first type of proposed ad-
versarial attack. The very first adversarial attacks date back to a few years ago with [154] who first
discovered the vulnerabilities of classifiers to adversarial perturbations by solving the following
optimization problem

min
ωx∈Ω

∥ωx ∥2 s.t. argmaxk fk (x+ωx) = t , (x+ωx) ∈X , (1.29)

with t a target label. With this problem being tough to solve, authors propose to approximate a
solution using the Limited Memory Broyden Fletcher Goldfarb Shanno (L-BFGS) algorithm [96],
giving the attack its name, the L-BFGS attack. To solve it, authors solve instead a relaxed version,
including Lagrange multiplier c,

min
ωx∈Ω

c ∥ωx ∥2 +L(x+ωx, t ) s.t. (x+ωx) ∈X , (1.30)

with L(·, ·) as the classifier’s loss, and c the dual variable found performing a line-search to get the
minimum c > 0 for which an adversarial example x′ can be found. The authors showed that their
attack transfers well between different classifiers.

The transfer of an adversarial attack refers to the application of an adversarial example ωx

targeted to fool the original classifier f , on another classifier g (see Section 1.2.2 for more details).
This intriguing transfer property of adversarial attacks attracted lots of interest from researchers
in the subsequent years and this work.

Solving (1.30) for a large number of images can often be expensive and computationally dis-
astrous therefore, to lighten the complexity of the problem the Fast Gradient Sign Method (FGSM)
adversarial attack [63] has been proposed to compute adversarial perturbations more efficiently,
as a solution of

ωx = γsign(∇xL(x, y)). (1.31)

The FGSM adversarial attack is a one-step gradient-based method to compute adversarial ex-
amples efficiently. The attack focuses on the "efficiency" of the perturbations rather than achiev-
ing high fooling rates. The FGSM attack is among the most influential attacks in the existing litera-
ture, it inspired many improved/tweaked versions such as FGVM [130], P-FGVM [26], I-FGSM [49],
MI-FGSM [177], DI2-FGSM [49], M-DI2-FGSM [49], and many others. The FGSM attack gave rise
to one of the first adversarial defense mechanisms, a new way to train classifiers more robustly to
adversarial examples, called adversarial training. An overview of adversarial defenses is given in
Section 1.2.5.
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By being a one-shot adversarial attack, the FGSM is limited in the optimization of the adversar-
ial examples. To enhance adversarial example optimization, the Basic Iterative Method (BIM) [89]
has been proposed as an iterative version of FGSM, computing adversarial examples by repeating

ωi+1
x = clipε{ω

i
x+γsign(L(x, y))}, (1.32)

where i denotes the i th iteration, clipε performing clipping at ε. Adversarial performances were
greatly enhanced and very close to BIM, is the Projected Gradient Descent (PGD) attack [102],
which is, as of today, widely considered one of the most powerful attacks in the literature. PGD is
a standard optimization technique that projects gradients to the `p norm ball of radius ε,

ωi+1
x = Projεp {ωi

x+γsign(L(x, y))}, (1.33)

with the `p norm being either the `2 or the `∞ norm. Even though the PGD attack seems very close
to the BIM attack, the proposed Projection operator is a great improvement compared to BIM. It
allows us to select another similarity metric than the `p norm, which can make the adversarial
perturbation very different. We present in Section 1.2.6, that there currently is no consensus on
which `p norm should be used and whether even using an `p norm is a good choice.

Instead of restricting the adversarial perturbations to be in an ε norm ball, the DeepFool at-
tack [113] aims at minimizing the norm of the adversarial perturbation by resorting to the first
presented adversarial example relaxation problem,

min
ωx∈Ω

∥ω ∥2 s.t. argmaxk fk (x+ωx) 6= y. (1.34)

The main motivation behind resorting to this relaxation was to effectively quantify the adver-
sarial robustness of the target classifier f . The proposed adversarial attack is an iterative algorithm
linearizing the class boundaries around the current image to form a convex polyhedron and push
the image toward the closest hyperplane to change the class label. Like the FGSM authors, Deep-
fool authors also proposed a defense mechanism built upon their proposed attack.

Considering the weaknesses of deep classifiers against adversarial attacks [154], researchers
proposed defense mechanisms to protect against such harm. One of the first defense mechanisms
proposed is Defensive distillation [118] (formalized in Section 1.2.5), however Carlini & Wagner
(C&W) [24] proposed a set of adversarial attacks completely breaking the defensive distillation
defense. To compute the adversarial perturbations, the (C&W) attack solves the following optimi-
sation problem,

min
ωx∈Ω

∥ωx ∥p +c.l (x+ωx) s.t. x+ω ∈X , (1.35)

with c an hyper-parameter and l a function satisfying the misclassification argmaxk fk (x′) 6= y .
Multiple l functions were proposed and discussed by the authors. All of the proposed adversar-

ial attacks rely on the second presented relaxation problem therefore, all adversarial perturbations
live in the `p norm ball of radius ε. Even though minimizing the norm of the adversarial pertur-
bation is part of the objective, all of their presented algorithms stop the optimization when all the
adversarial conditions are met (1.19). It makes the attacks very powerful and allows us to compare
all the adversarial attacks as they are given the same ε adversarial budget.

As the work wasn’t innovative enough, authors propose multiple `p norms as magnitude met-
rics of the adversarial perturbations (especially `2 norm associated with ε= 0.5 and `∞ norm asso-
ciated with ε = 8/255), which impose future adversarial attacks to allow using different similarity
metrics to find adversarial examples.

Proposing multiple `p norm constraints is an improvement in the computer vision community
where there was no consensus on which norm should be used to compute distances, highlighted
in Table 1.1.

Even though its computation cost is very high, the C&W attack is still considered one of the
strongest adversarial attacks.
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Finally, as of today, state-of-the-art performances are achieved by [37] who proposed Autoat-
tack an ensemble of diverse parameter-free attacks. An Autoattack instance encapsulates two ver-
sions of improved PGD adversarial attack plus two other attacks previously proposed by the same
authors (FAB [36] and SquareAttack [4]). An adversarial example computed with Autoattack is an
adversarial example computed from one of these four adversarial attack roots, which naturally
dope the performances of the overall Autoattack instance.

White-box adversarial attacks make the assumption the adversary has complete knowledge
about the target classifier, including its architecture, parameters, and training data which makes
the evaluation of the classifier’s robustness very precise. While white-box attacks can be very ef-
fective in fooling the target classifier, they are not without their flaws. First, the assumption that
complete knowledge of the adversary is often not realistic to real-world scenarios. In practice,
adversaries usually have limited access to the target classifier and sometimes may not be able to
query it, making white box attacks irrealistic. White box attacks produce adversarial examples tar-
geting one classifier f but most likely do not transfer well to other classifiers. It is again a step away
from the real-world scenarios. Finally, as white box attacks are designed to exploit specific weak-
nesses of a target classifier, they are susceptible to countermeasures and defensive mechanisms. It
has been shown in [100] that current state-of-the-art white box attacks are made harmless under
tiny defense mechanisms.

Black-box adversarial attacks

In contrast to white-box attacks, black-box attacks do not access the classifier’s internal parame-
ters. The attack algorithm relies on alternative information like query access to the classifier [29],
knowing the training dataset [116], or transferring adversarial examples from one trained classifier
to another [184]. Notice that a black-box attacker represents a more practical adversary [28] and
one that is closer to real-world scenarios [116].

The very first adversarial black-box attacks were proposed in [116], [29] and [19]. Each attack
computes adversarial examples from a different source of information therefore, these three works
gave rise to three main families of black-box attacks: transfer-based, score-based, and decision-
based black-box attacks.
Transfer based attacks

In transfer-based attacks, the adversary is allowed to query the target classifier and/or access
some of the target classifier’s training dataset. The adversary then uses this information to create
a synthetic classifier from which the attacker generates adversarial examples using a white-box
attack. This white-box adversarial example from the synthetic classifier is then transferred to the
target classifier, hoping it remains adversarial (respecting conditions of (1.19)).

One of the first black-box adversarial attacks to be proposed is called the local substitute model
attack [116]. The idea of the local substitute model attack is to create a copy-cat classifier from
which to generate an adversarial example in the hope that it will remain adversarial to the target
classifier. The transfer property of adversarial examples arose from this work. In this paper, au-
thors allowed the attacker to access a percentage of the training dataset D = {(x(i ), y (i ))}k

i=1,k ¿ N,
and to query the target classifier f . They proposed to create a synthetic classifier g optimized to
mimic the prediction of the target classifier f on the given fragment of the original dataset. There-
fore the synthetic classifier g is not optimized to predict the original labels {y (i ))}k

i=1 but to predict

the target classifier’s prediction {argmax
c

fc (x)(i ))}k
i=1. The copy-cat classifier g is optimized using,

min
g

k∑
i=1

L( f (x(i )), g (x(i ))), (1.36)

with L a classification loss (e.g. cross-entropy as seen in Section 1.1.2). Once the synthetic classi-
fier g is optimized, authors proposed to compute adversarial examples targeting g using the FGSM
attack and hope those adversarial examples transfer to the target classifier f . Authors found that
by using only 0.3% of D, an adversary can fool any target classifier. However, this last setting is
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questioned by researchers who proposed the mixed [104] or adaptive black-box attack [103]. While
in the original attack, 0.3% of the training data is used, the adaptive version increases the knowl-
edge of the adversary by using anywhere from 1% to 100% of the original training dataset. Besides,
they used newer and fancier white-box attacks than FGSM having better transferability. Authors
claimed they found the most effective white-box attack to be the Momentum Iterative Method
(MIM) [48] to transfer the adversarial examples to f .

By integrating a momentum term into the iterative process of the adversarial example gener-
ation, the MIM attack stabilizes from each iteration update and escapes from poor local maxima
during the iterations, resulting in more transferable adversarial examples. To further improve the
transfer success rates for black-box attacks, MIM is applied to an ensemble of synthetic classifiers,
maximizing the chances that the computed adversarial examples Indeed, transfer to the target
classifier f . The MIM iterative optimization for the adversarial examples x(i )′ takes the form of,

vt+1 = µvt+ ∇xL(g (x), y)

||∇xL(g (x), y)||1
,

x(i )′
t+1 = x(i )′

t +γsign(vt+1),
(1.37)

with vt acting as a velocity vector of the gradient optimization at iteration t , L a loss function, µ a
decay factor, and γ the learning rate.

The two previous black-box attacks require to model of at least one substitute classifier g how-
ever, a substitute classifier can be difficult to obtain, particularly if a considerable amount of data
labeled by the target classifier is needed.
Score based attacks

Another direction taken by the adversarial black-box community is the score-based attacks.
Score-based adversarial attacks allow the attacker to query the defense with input x and receive
the corresponding pre-softmax logits f1(x), . . . , fC(x) or the post-softmax probability outputs
ŷ1(x), . . . , ŷC(x). One of the first score-based adversarial attacks to be proposed is ZOO (Zeroth Or-
der Optimization) [29] which relies on queries to create adversarial examples. Zeroth order meth-
ods are derivative-free optimization methods, where only the zeroth order oracle (the objective
function value f (x) at any x) is needed during the optimization process. By evaluating the ob-
jective function values at two very close points f (x+αv) and f (x−αv) with a small α, a proper
gradient along the direction of the vector v, can be estimated. For a target classifier f and a tar-
get label t , ZOO finds adversarial examples by optimizing the C&W proposed objective, with the
minimization of the following adversarial loss function l ,

l (x+ωx) = max
{

max
i 6=t

log fi (x+ωx)− log ft (x+ωx),−ρ
}

, (1.38)

with ρ> 0 a margin hyper-parameter.
In order to optimize (1.38), ZOO employs a zeroth order optimization and approximate the

gradient δ f (x+ωx)
ωi
x

by using the symmetric difference quotient [91],

δ f (x+ωx)

ωi
x

≈ f (x+ωx+αei )− f (x+ωx−αei )

2α
, (1.39)

with α a small constant and ei a standard basis vector with only the i -th component as 1. Estimat-
ing the gradient this way requires 2P queries of f which could be inefficient.
Decision based attacks Decision-based adversarial attacks go one step further into the blindness
of the adversary. In such an attack algorithm, the adversary is allowed to query the defense with
input x but receives only the defense’s final predicted label argmaxk ŷk . In contrast to score-based
attacks, the adversary does not receive any probabilistic or logit outputs from the defense, only
the predicted label.

The first prominent decision-based attack is the Boundary Attack [19]. The basic intuition
behind the Boundary Attack is, for an original example x(i ), to randomly initialize its adversarial
example, and then perform a random walk along the classifier’s decision boundary between the
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adversarial label and the non-adversarial labels region such that the adversarial example stays in
the adversarial label region while minimizing the distance from its original counterpart. In other
words, Boundary Attack performs rejection sampling with a suitable distributionP centered on an
adversarial example at each step to find progressively smaller adversarial perturbations according
to a given adversarial distance dist.

Algorithm 1 Boundary Attack

Require: Original example x; classifier’s label prediction F; MAX-STEPS, Adversarial distance
dist(·, ·)

1: k = 0
2: x′

0 =U (0,1) s.t. F(x′
k−1) 6= F(x)

3: for k < MAX-STEPS do
4: draw random perturbation from distribution centered on x′

k−1,µk ∼P(x′
k−1)

5: if dist(x′
k−1 +µk ) 6= F(x) and dist(x′

k−1 +µk ,x) < F(x′
k−1,x) then

6: x′
k =x′

k−1 +µk

7: else
8: x′

k =x′
k+1

9: end if
10: end for
11: return Adversarial example x′

k minimizing dist(x′,x)

In their presented work, authors discuss the definition of P . Being the first of its kind, the
Boundary Attack is a quite simple optimization and much stronger decision-base black-box at-
tacks have been proposed such as the Geometric decision-based attacks (GeoDA) [126]. GeoDA
is a subset of decision-based black-box attacks that can achieve high attack success rates while
requiring a smaller number of queries.

Universal adversarial attacks

So far, every adversarial attack presented consists of finding one adversarial perturbation ωx(i ) as-
sociated with one original example x(i ) producing its paired adversarial example x(i )′ . This goal
makes these attacks specific as they find specific adversarial perturbations to each original exam-
ple. Other adversarial attacks have been proposed, aiming to compute one single adversarial per-
turbation ω capable of producing adversarial examples for a batch of multiple original examples.
Such adversarial perturbation is, therefore, universal (as we saw in Section 1.2.2) to the original
example, also called example-agnostic. Adversarial attacks producing these universal adversarial
perturbations are called universal adversarial attacks.

The existence of universal adversarial perturbations (UAP) to fool deep classifiers for most im-
ages has first been demonstrated in [111]. The authors proposed the first universal attack coined
UAP. Given a set of labeled images D = {(x(i ), y (i ))}N

i=1 with x(i ) ∈ X ⊂ RP, and a classifier f , the
overall UAP objective is to find a single perturbation vector ω ∈Ω=RP, such that the classifier f is
fooled for most encountered images. More formally, UAP seeks a ω such that,

max
ω

N∑
i=1

1 .
{

argmax
k

fk (x(i )) 6= argmax
k

fk (x(i ) +ω)
}

such that x(i ) +ω ∈X ,

and ||ω||p ≤ ε.

(1.40)

Obviously, from this objective, the main focus of universal adversarial perturbations is not
the quality of the adversarial noises, but rather the quantity of examples on which the classifier
is fooled. No universality metric has yet been proposed, therefore, the best adversarial metric
is the fooling rate. We previously saw that the choice of the norm `p constraining the adversarial
perturbation magnitude was not a consensus in the community. UAP set it to `∞ as the adversarial
perturbations show interesting patterns, displayed in Figure 1.20.
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Figure 1.20: Examples of UAP produced universal adversarial perturbations on different neural
network architectures under the `∞ norm constraint. Source: Universal Adversarial Perturbations
[111].

The proposed algorithm computing UAP adversarial perturbations, incrementally accumu-
lates specific DeepFool (1.34) adversarial perturbations over each example separately, hoping that
the projection sum of the perturbations in the ε radius `p norm ball will remain adversarial to each
specific example. Quite simple, this computation of universal adversarial perturbations has since
been improved. Next to the very first universal adversarial attack UAP is, Fast-UAP [41]. This at-
tack follows the UAP procedure but, instead of aggregating all the specific DeepFool perturbations
at each iteration, it only adds the perturbation with the closest orientation to the current iterate.
Among all the specific DeepFool adversarial perturbations ωDF

x(i ) , Fast-UAP adds to the universal
perturbation ω only the one with the maximum cosinus to the universal perturbations,

ωt+1 =ωt + max
i∈[1,N]

cos(ωt ,ω(i )
DF), (1.41)

with t the optimization iteration.
Elaborating on the previous optimizations procedure, UAP-PGD [142] frames the universal

perturbation as the solution of the following optimization problem,

max
ω∈Ω

N∑
i=1

l ( f (x(i ) +ω, y (i )) s.t. ||ω||p ≤ ε, (1.42)

with l an adversarial loss.
Recently, UAP-PGD has been extended to class-wise UAP (CW-UAP) [15] where a single uni-

versal perturbation is built for each class.

max
ωk ,k∈Y

∑
k∈Y

Nk∑
i=1

l ( f (x(i ) +ωk ,k) s.t. ∀k ∈Y , ||ωk ||p ≤ ε. (1.43)
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The solution amounts to learning multiple independent UAP-PGD perturbations, one for each
class. A different algorithm to craft universal adversarial perturbations has been proposed in [83].
Their method is based on the computation of the singular vectors of the Jacobian matrices of the
classifier’s feature maps to obtain universal adversarial perturbations. The proposed approach is
much more data efficient, with universal perturbations reaching fooling rates of more than 60%
on the ImageNet validation set by using only 64 images to optimize the universal adversarial per-
turbation.

The idea of the semantic captured within the universal adversarial perturbations is again shown
by empirical evidence of [83] as Figure 1.21 shows. Indeed, the forms and contours within the per-
turbations indicate that the universal adversarial perturbations crafted on singular vectors of the
hidden layers target the features learned by those layers, such as edges, corners, or rounds. This
figure is interesting as it empirically suggest that universal adversarial perturbations might rely on
the most meaningful features of the object to fool the classifier. The unrealistic issue of perturba-
tions produced by white-box adversarial attacks would thus be addressed.

Figure 1.21: Examples of singular vector UAP produced universal adversarial perturbations con-
structed using various layers of various DNNs on different neural network architectures under the
`∞ norm constraint. Source: Art of Singular Vectors and Universal Adversarial Perturbations [83].

The new performances shown in [83] indicate that, by being universal to the examples a uni-
versal perturbation has been crafted on, there are good chances that this very same universal per-
turbation will remain adversarial to other examples. Therefore, the transferability of universal
perturbations is not to be neglected and becomes another metric that must be measured by uni-
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versal adversarial attacks. The RAUD metric seems to be the most appropriate as it measures both
the capacity to fool a targeted classifier and to transfer to other classifiers. The RAUD measures
the fooling rate of the adversarial attack on originally well-classified examples, but for adversarial
examples also fooling an adversarial example detector, which to some extent measures the trans-
ferability of these adversarial examples (see Section 1.2.2 for more details). Unfortunately, the
RAUD has only been considered very recently.

Inspired by Generative Adversarial Networks (GAN) framework [64] (presented in Section 1.1.4),
Network for Adversary Generation (NAG) was introduced by [114]. NAG aims to model the distri-
bution of universal adversarial perturbations. Therefore, the authors modify the GAN framework
by replacing the discriminator with the (frozen) target classifier and introducing a novel loss to
train the generator. The novel loss function L is composed of an adversarial loss l and a diversity
loss Ld ,

L= l +λLd , with
l = −log (1− fy (x+ω)), and

Ld = −
B∑

j=1
dist( f i (x( j ) +ω( j )), f i (x( j ) +ω(K))),

(1.44)

with λ a hyper-parameter, B the batch size, K ∈ [1,B],K 6= j a random index, ω( j ) and ω(K) two
generated perturbations, x( j ) an original example, i the index of the classifier’s hidden layer, and
dist a distance metric (e.g. the `2 norm). As we previously saw, the adversarial loss l is designed
such that the generated perturbations produce adversarial examples fooling the target classifier
while the diversity objective encourages the diversity of perturbations by increasing the distance
of their feature embeddings predicted by the target classifier.

It is worth noticing that NAG is the first and among the few black-box universal adversarial
attacks. The combination of both properties was made possible thanks to the modeling of the
adversarial noise space by the generator. It indicates that modeling the adversarial noise space is
a good idea as it allows us to explicit some adversarial perturbations constraints, enabling more
realistic adversarial examples. Another variant of universal adversarial noise generation is genera-
tive adversarial perturbations (GAP) using a generator to craft universal adversarial perturbations
[122]. Concurrently, the authors of [69] also explored the idea of generating adversarial perturba-
tions with a generator network. Overall, the objective of the three last attacks is to train a (non-
linear) generative network that transforms a random pattern to an image-dependant perturbation
or universal adversarial perturbation. Unfortunately, all these attacks relied on a non-linear deep
neural network to model the adversarial noise space which complicates the analysis of the model
thus, preventing us from inspecting and visualizing this adversarial noise space. A more global
view of the proposed universal adversarial attacks is given in the survey [182], readers are invited
to refer to it for a wider understanding of what researchers proposed.

Overall, universal adversarial perturbations remain not enough explored. In this thesis, we
bring in a new adversarial attack in the middle of specific and universal adversarial attacks.

Other types of adversarial attacks

Whereas the majority of adversarial attacks focus on perturbing clean images while enforcing
the imperceptibility of the perturbation by restricting their `2 or `∞ norms, the Jacobian-based
Saliency Map Attack (JSMA) [117] and One-pixel attack [149] deviate from this practice by restrict-
ing the perturbations to smaller regions of the image. Opposite to back-propagating the gradient
of the adversarial perturbation through the classifier f , JSMA computes the forward gradient of f
as,

∇ f (x) = δ f j (x)

xi
, (1.45)

with j = 1, . . . ,C the prediction of f for label j , and xi the i -th composant of x.
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Essentially, (1.45) computes the Jacobian of the function learned by the f . The Jacobian matrix
is used as a saliency map to select only a few most influential pixels according to the alteration of
the model prediction. [149] demonstrated that an image classifier can even be fooled by restricting
the perturbation to a single pixel. The authors also studied the performances of the attack when
increasing the number of pixels used for the adversarial example.

1.2.5 Adversarial defenses

Adversarial defenses have been proposed to protect against adversarial attacks harm. There are
three main ways to defend against adversarial examples. The first way is to robustly optimize
classifiers so they are more robustly trained for adversarial example danger. The second way is,
given a classifier, to use an adversarial examples detector protecting the classifier beforehand.
Finally, the third option is to use gradient masking [145] techniques, complicating the adversarial
example creation, or at least complicating its functioning.

Robust optimization

Robust optimization defenses improve the robustness of the classifier by using regularization, cer-
tification bounds, or adversarial examples during the training of the classifier. Robust optimiza-
tion of classifiers is also called adversarial training of classifiers. The adversarial training has been
proposed by [63], as the incorporation of adversarial examples in the training of the classifier.
The loss of the classifier does not change however, training examples now consist of valid original
training examples along with FGSM computed adversarial examples of the training set.

min
f

−
C∑

c=1
oc log( fc (x′)), (1.46)

with x′ ∈ B(x,ε), a valid or adversarial example in the ε ball centered on x.

Overall, the goal of a robust optimization is to expand the decision boundaries of the classi-
fier, to make it more robust, while still maintaining good classification performances. Figure 1.22
highlights such decision boundary expansion, making the classifiers more robust to adversarial
examples, in the way that the computed adversarial examples are further away from the original
examples, while still keeping the same high classification performances.

New adversarial training methods have been proposed with more sophisticated approaches,
see [9] for a survey.

Adversarial examples detection

Another way to defend against adversarial examples is to recognize them before performing clas-
sification. This way if adversarial examples are recognized, they are ignored, preventing possible
misclassification.
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Figure 1.22: Schema of a more robust classifier’s decision boundary. In a dashed line, the classi-
fier’s decision boundary is close the both cloud points, making the computed adversarial exam-
ples very close to the original examples. In a solid line, the shown decision boundary is more
robust as the computed adversarial examples are at a higher distance from the original examples.
Source: Liwei Wang’s talk at "A Blessing in Disguise: The Prospects and Perils of Adversarial Ma-
chine Learning" work ICML 2021.
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Figure 1.23: Schema of the adversarial examples detector adversarial defense.

The efficiency of adversarial examples detector is highlighted in [100] which proposes to use
them not only as a defensive module but as an adversarial attack evaluation metric (see 1.2.3 for
more details).

Gradient masking techniques

The last mainly used defense mechanism is gradient masking. The core idea of gradient masking
is to build classifiers such that the adversarial examples crafting becomes troublesome. It can be
done by using classifiers that are not differentiable, in that case, adversarial example generation via
gradient computation is impossible. Another way to perturb the adversarial example generation
is to add some tricks inside the classifier’s rugs to obfuscate the gradients [6] (e.g. adding noise
between each hidden layer). The noise injected in the classifier’s internal parameters can, always
be injected, or only injected at inference time [121].
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Along with the publication of new, more powerful adversarial attacks, researchers also pro-
posed new, fancier adversarial defenses. As Figure 1.24 shows, new adversarial defenses are more
efficient in building more robust classifiers, but still working to find better ways to build robust
classifiers should be a top priority. Readers are invited to refer to [2] for a survey of adversarial
defenses.

Figure 1.24: Published adversarial defense’s robust accuracy according to the year of publication.
Source: www.robustbench.io

1.2.6 No community consensus

On the one hand, common corruptions are too limited in the modeling of harmful examples to
reliably estimate the robustness of classifiers and on the other hand, adversarial patches are too
practical applications of adversarial examples making too many other adversarial perturbations
out of reach when performing a robustness evaluation. We thus consider these two adversarial
examples visions out of our scope and purposefully ignore them in our research.

As [143] highlights, `p norm-bounded adversarial noises imply that the similarity between ob-
jects, for instance, images, can be efficiently measured by an `p norm. However, two images don’t
need to be close to each other as measured by an `p norm to be perceptually similar. We believe
that `p norm-bounded adversarial examples are neither necessary nor sufficient to measure per-
ceptual similarity, implying realistic adversarial examples, thus a good robustness evaluation.

Within `p norm-bounded adversarial examples, we think universal adversarial examples are
a good trade-off as Figure 1.25 shows. Universal adversarial attacks compute `p norm-bounded
adversarial perturbations therefore, unrealistic perturbations, but are example-agnostic (universal
to most examples). These unrealistic noises still evidence the always-open pitfalls of the classifiers.
Such universal weaknesses of the classifiers remain true for the unrealistic harmful examples, but
also for the realistic ones, that we struggle to compute using common corruptions.

35



CHAPTER 1. BACKGROUND AND PRELIMINARIES

ℓ𝐩 norm bounded 
specific 

perturbations

Common 
corruptions

Universal 
perturbations

Adversarial 
Patchs

Figure 1.25: Schema of the two adversarial examples vision in the community, with the universal
adversarial examples in the middle.

Overall, the universal adversarial perturbations are free to fully explore the ε radius `p norm
ball around each example, which is unrealistic, but has the constraint to be universal to most
of the examples, which is in the way to compute a realistic robustness evaluation. We believe
universal adversarial perturbations act as a good trade-off between both worlds, allowing us to
take advantage of the `p norm-bound computations and to draw conclusions that are useful for
real-world applications.
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Chapter 2

Adversarial attack through dictionary
learning

In this chapter, we present the main contribution of this thesis, which is the modeling of adver-
sarial noise using a dictionary learning framework. First, we present the goal and its motiva-
tions. Then, we formalize the dictionary learning problem of the adversarial noise space. Next, we
present the three relaxation optimizations we proposed, which are an ADiL (Adversarial Dictionary
Learning) proximal gradients solution, an ADiL projected gradient solution, and a LIMANS (Lin-
ear Modeling of the Adversarial Noise Space) stochastic gradient solution. For each, we present the
proposed optimization problem, give algorithmic solutions, and present its empirical results. The
third relaxation offers more results as it is the one we ended up with after reviewing the results of
the two previous ones. Finally, we conclude the overall idea and propose its extensions for future
promising research.

2.1 Motivations

Among the proposed `p norm-bounded adversarial attacks, on the one hand, specific adversarial
attacks are the most efficient but the produced adversarial examples struggle to transfer to other
examples, on the other hand, universal adversarial attacks do produce adversarial noises suited
to multiple examples but they suffer from lower attack success. To reconcile universality and effi-
ciency, we proposed to linearly model the adversarial noise space Ω through as set M adversarial
directions D ∈RM×P, allowing to frame any specific adversarial perturbation as a linear combina-
tion of the M universal adversarial directions. The idea behind an adversarial attack through dic-
tionary learning is to, model the adversarial noise space Ω with a dictionary and then, to look for
specific adversarial noises corresponding to the coding vectors of the dictionary within its mod-
eled space.

By modeling the adversarial noise spaceΩ, we can find adversarial parameters that are example-
agnostic and therefore contain all information needed to fool the classifier on any examples. While
still modeling the overall space, we still have the possibility, for any original examples x, to navi-
gate within that space to craft an efficient adversarial noise ωx suited to this examples, to ensure
good adversarial performances. This proposed framework then bridges the gap between univer-
sal and specific adversarial attacks, hoping to retain the good adversarial performances of specific
attacks, and the transfer property of universal attacks.

2.1.1 Learning the adversarial space

Some studies on the overall structure of deep classifiers tried to clarify and explain the rise and
origin of adversarial attacks. Research in [56] illustrated the decision boundaries of a classifier
are in the vicinity of examples and flat in most the directions. More recently, [95] claimed that
adversarial noise is caused by gradient leakage and the adversarial directions are perpendicular to
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the classifier boundaries. Baluja and Fischer [10] trained feed-forward neural networks to generate
adversarial examples against other targeted networks or sets of networks. The trained models were
termed Adversarial Transformation Networks (ATNs). In the same direction, Hayes and Danezis
[68] also used an attacker neural network to learn adversarial examples for black-box attacks. In
some sense, generating adversarial examples with a neural network can be seen as modeling the
adversarial example space by this neural network.

Tabacof and Valle [155] empirically demonstrated that adversarial examples appear in large
regions of the pixel space, which is in line with the similar claim in [63]. Then, [159] discovered
that the decision boundaries of different classifiers are closed and proposed to establish a trans-
ferable subspace of the space across different classifiers. They proposed a method to estimate the
dimensionality of the space of the adversarial examples. However, the space is inferred based on
the adversarial noise generated by the FGSM method which impacts the precision of the found
space. The hypothesis of the transferability depending only on the dimensionality of this space
limited its performance on CNN classifiers.

Most of the previous work tried to model the space of adversarial examples, which is quite
different than the space of adversarial noises itself.

Moosavi-Dezfooli, Fawzi, Fawzi and Frossard [111] initially argued that universal adversar-
ial perturbations exploit geometric correlations between the decision boundaries induced by the
classifiers. Their existence partly owes to a subspace containing normals to the decision bound-
aries, such that the normals also surround the natural images. In [112], they built further on their
theory and showed the existence of common directions (shared across data points) along which
the decision boundary of a classifier can be highly positively curved.

2.1.2 Manifold hypothesis

The manifold hypothesis suggests that high-dimensional data, such as images or text, often lies on
or near a lower-dimensional manifold embedded within that high-dimensional space. It implies
that data points with similar characteristics or semantic meaning are closer to each other in this
lower-dimensional manifold. Autoencoders [8] can help address the manifold hypothesis problem
by learning an efficient data representation that captures the underlying structure or manifold of
the data. An autoencoder is a type of neural network that is trained to reconstruct its input data.
It consists of two main components: an encoder and a decoder as shown in Figure 2.1. During
training, the autoencoder learns to encode the input data into a compressed representation in the
latent space, while the decoder learns to reconstruct the original input from this representation.
By doing so, the autoencoder is forced to capture the essential features of the data and discard the
noise or irrelevant information. After training, the autoencoder effectively modeled the underlying
structure or manifold of the data.

Figure 2.1: Example of an autoencoder performing compression and the decompression of an
MNIST image. See that the code outputted by the encoder is of lower dimension than the images
but allows for full reconstruction of the image, therefore containing all the information within the
image. Source: Autoencoders [11].

Using an autoencoder for adversarial examples has already been proposed by [106] in 2015.
Although quite compelling, their approach mainly relied on a GAN generator, which is not exactly
the goal we are after.
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Here, we assumed that the manifold hypothesis holds for adversarial noise spaceΩ and can be
modeled with a dictionary. Rather than setting Ω= RP, we assume this space, if well constrained,
can be of lower dimension while maintaining decent adversarial performances. By modeling the
underlying structure or manifold of the adversarial noise space, the adversarial dictionary cap-
tures the essential features and relationships of the adversarial noises, making the produced ad-
versarial noises both specific to each example, and universal to the modeled adversarial noise
space.

As the simplest possible case of modeling, an adversarial dictionary aims to be a linear model
of the adversarial noise space, so that both the problem is tractable and the parameters could be
inspected.

2.2 Adversarial dictionary learning objective

Let a classifier f : RP 7→ RC outputting f (x) ∈ RC, the vector of scores for an example x ∈ X ⊂ RP

to belong to a class of y ∈ Y = {1, · · · ,C}. The predicted class is given by argmaxk fk (x). Recall
that, given an example x, an adversarial attack seeks an adversarial perturbation ω ∈Ω such that
x′ =x+ω, the adversarial example, is a valid example i.e. x′ ∈X , close to x, and induces misclas-
sification argmaxk fk (x) 6= argmaxk fk (x′) (respecting the adversarial example constraints 1.19).

The originality of our proposition is to express the adversarial noise paired to x as ωx = Dv(x)
where D ∈ RP×M is a dictionary composed of M normalized adversarial noise atoms and v(x) ∈
RM a coding vector (further on we write v for readability). While the dictionary D is universal to
every example, the coding vector v is specifically tailored to any given x. By setting M = 1 atom
the learned adversarial perturbation is universal while, by setting M = P (the dimension of the
examples) the adversarial perturbation becomes specific.

In a way, an adversarial dictionary attack’s novelty can be seen as, constraining the adver-
sarial noise space such that ω ∈ Ω = {ωk ,ωk = Dvk ,vk ∈ RM}, with D ∈ RP×M acting as a base
spanning this space.

Given a trained DNN classifier f , the adversarial dictionary attack consists of two stages. First
a training stage where the dictionary D is learned using a labeled set T = {(x(i ), y (i ))}N

i=1. Then an

inference stage where, given D, for any new example x(k) (yet unseen), the corresponding coding
vector v(k) is crafted to make ω= Dv(k) an adversarial perturbation of x(k). Notice that as M ¿ P,
the searching space of the adversarial dictionary attack is a low dimensional space (spanned by
the atoms) which is much lower than the original space X . We frame the learning procedure of
the adversarial dictionary attack as maximizing the fooling rate under the adversarial example
constraints 1.19.

Problem 2.2.1 (adversarial dictionary training objective). Given the classifier f and the training
set T = {(x(i ), y (i ))}N

i=1, find D ∈RP×M and V ∈RM×N solution of

max
D∈RP×M

V∈RM×N

N∑
i=1

1{argmax
k

fk (x(i )′) 6= argmax
k

fk (x(i ))},

s.t .


x(i )′ =x(i ) +Dv(i ) ∈X i = 1, . . . ,N,
||Dv(i )||p ≤ εp i = 1, . . . ,N,
‖D j‖p = 1 j = 1, . . . ,M,

(2.1)

where 1A denotes the indicator function of the set A. This optimization problem optimizes the
dictionary D as well as all the coding vectors of the training set V ∈RM×N, but the latter variable is
not interesting as it is useless for future adversarial crafting, it only allows to optimize D.

Once the optimization of D is completed, the adversarial noise space is now modeled and, for
any new (yet unseen) adversarial example x, we can navigate in the space spanned by D to find
the best specific tox(i ) adversarial noiseω(i ) = Dv(i ). Inference problem only optimizes the coding
vector v(i ) ∈RM,
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Problem 2.2.2 (adversarial dictionary inference objective). Given the classifier f , an optimized
dictionary of adversarial directions D ∈ RP×M and an original labeled example (x, y), find v ∈ RM

solution of
max
v∈RM

1{argmaxk fk (x′) 6= argmaxk fk (x)},

s.t .

{
x′ =x(i ) +Dv ∈X
||Dv||p ≤ εp ,

(2.2)

Both objective 2.1 and 2.2 have the main drawback to be intractable problems. Therefore, they
must be relaxed with a differentiable loss function to ensure good optimization.

During our work, we proposed three different relaxations. Namely, we proposed a first solu-
tion, Adversarial Dictionary Learning (ADiL) solved using proximal gradients, a second solution
Adversarial Dictionary Learning (ADiL) solved using projected gradients, and finally Linear Model
of the Adversarial Noise Space (LIMANS), each presented with some extensions. In the following
sections, we review the different proposed solutions, in the respective order.

2.3 ADiL proximal gradients solution

At first, we tried to optimize problem 2.2.1 under the scope of a dictionary learning framework,
and formulated the optimization as such.

The first ADiL optimization relies on the first relaxation of the adversarial example problem
therefore, the adversarial noises are not constrained within an ε ball, although the minimization
of their norm is at the core of the adversarial example optimization.

Optimization

We proposed a first framework to find a dictionary of shared universal attacks D, named ADiL for
Adversarial Dictionary Learning [59]. We proposed to address the following optimization problem
reminiscent of classical dictionary learning problems (see, e.g., [105, 127]).

minimize
D∈D
V∈VN

N∑
i=1

l ( f (x(i ) +Dv(i )), y (i ))+λ1||v(i )||1 +λ2||Dv(i )||2, (2.3)

where l is an adversarial loss enforcing misclassification, whereas D ⊂ RP×M and V ⊂ RM en-
code some constraints on D and the specific coding vectors v(i ), respectively.

See that in equation (2.3), the adversarial loss l replaces the non-convex and hard to optimize
1 indicator function of equation (2.1). This relaxation shifts the maximization of the number of
adversarial examples to the minimization of an adversarial loss function l , which is a typical pro-
cedure in machine learning and allows smoother and more manageable optimization procedures.
In ADiL we specifically selected the reverse cross-entropy (minus eq. (1.8) as a convenient adver-
sarial loss L [25, see function f in Section VI.A]).

Even though equation (2.1) explicit three distinct constraints, equation (2.3) does not aim at
respecting them. Indeed, at the time, we did not perfectly understood these constraints and thus
incorporated them within our proposition. Instead of these three constraints, equation (2.3) does
enforce to compute adversarial perturbations ω(i ) = Dv(i ) of low magnitude thanks to the second
regularization term. We believed it to be the best option to craft descent and acceptable adver-
sarial perturbations. This optimization problem does not enforce a fixed magnitude budget for
the adversarial noises but instead, relies on regularization with the variables λ2 and λ1 to ensure
respectively, that the magnitude of every adversarial noise stays within the ε budget and a good
sparsity of the coding vectors v(i ), an essential component of dictionary learning problems. The
second regularization term, managed with λ1, enforces sparsity within the coding vector’s entry.
This regularization technique is key to well-defined dictionary learning problems, which is in line
with our first idea, to frame the original problem under the dictionary learning scope. Therefore
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as a good practice, we included these constraints within the optimization problem even though
equation (2.1) does not state any particular sparsity constraints.

Note that equation (2.3) is simply the lagrangian formulation of the original problem (2.1), with
λ1 and λ2 acting as dual variables. Objectively and without context, optimizing the lagrangian for-
mulation of a constrained problem is among the best options. Therefore, before stepping back
from the adversarial example definition and criticizing the state-of-the-art propositions, we con-
sidered this formulation, the best choice.

Algorithmic solution

Minimizing the objective in (2.3) is a challenge due to the nonconvexity inherent to the dictionary
learning formulation and the neural network f . We stress that we are only interested in finding a
good stationary point in a limited time. Although classical dictionary learning problems are non-
convex, they are usually solved by alternating the optimization over D and V since each alternating
problem is convex. However, here this is no longer the case because of the added term promoting
adversarial examples. Hence, we embrace a direct optimization scheme over (D,V) in the spirit of
the nonconvex proximal splitting framework of [148] which has also been applied in the context
of classical dictionary learning in [127]. To that purpose, we begin by recasting equation (2.3) into,

minimize
D∈RP×M

V∈RM×N

F(D,V)+R(D,V), (2.4)

with {
F(D,V) =∑N

i=1λ2‖Dv(i )‖2
2 +L

(
f (x(i ) +Dv(i )), y (i )

)
,

R(D,V) =∑N
i=1λ1‖v (i )‖1,

where F is smooth, provided that f is smooth as well.

Here, we promote the linesearch based proximal-gradient method of [18]. For the ease of read-
ing, in what follows we only focus on the proximal-gradient step. Given some sequence of step-
sizes {γk }k∈N, each step amounts in finding

(D(k+1/2),V(k+1/2)) = argmin
D∈RP×M,V∈RM×N

h(k)(D,V),

where

h(k)(D,V) = R(D,V)−R(D(k),V(k))

+∇DF(D(k),V(k))>(D−D(k))+γ−1
k ‖D−D(k)‖2/2

+∇VF(D(k),V(k))>(V −V(k))+γ−1
k ‖V −V(k)‖2/2.

The overall step can be recast as

(
D(k+1/2)

V(k+1/2)

)
= proxγk R

((
D(k)

V(k)

)
−γk∇F(D(k),V(k))

)

where the gradient is computed jointly over D and V. Note that since R is separable, it yields that

proxγk R(D,V) = ProjD(D),Softγkλ1 (V),

where Softγkλ1 (V) is the soft-thresholding operator [43]. The full scheme is sketched in Algorithm 2.
At inference, for new unseen examples, the same algorithm is used, only the optimization is only
done over the coding vectors v (i ).
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Algorithm 2 ADiL

Require: Parameter δ ∈]0,1[
Set D(0) ∼N (0P×M,1P×M) and V(0) = 0M×N

for k = 0 to K−1 do
Provide rough estimate of γk > 0
Proximal-gradient step
D(k+1/2) = ProjD(D(k) −γk∇DF(D(k),V(k)))
V(k+1/2) = Softγkλ1 (V(k) −γk∇VF(D(k),V(k)))
Compute the difference
d (k)

D = D(k+1/2) −D(k) & d (k)
V = V(k+1/2) −V(k)

Armijo-like backtracking loop
ik = 0 and hk = h(k)(D(k+1/2),V(k+1/2))
repeat

D̃(k) = D(k) +δik d (k)
D & Ṽ(k) = V(k) +δik d (k)

V
ik = ik +1

until L(D̃(k), Ṽ(k)) ≤L(D(k),V(k))+δik hk

D(k+1) = D̃(k) and V(k+1) = Ṽ(k)

end for
return Dictionary D(K), coding vector V(K)

Results

It is worth noting that the adversarial noise constraints are respected through both D and V regu-
larization with the regulation variables λ1 and λ2. Therefore, very different results can be obtained
according to the tuning of each of the two regulation variables. As Figure 2.2 shows, by enforcing
a large λ2 hyper-parameter, the magnitude of the adversarial noises is hugely constrained which
results in a decrease in fooling rate performances. At the same time, when lowering the λ1 hyper-
parameter, coding vectors are allowed to be less sparse and thus more freely explore the space
spanned by D to compute adversarial noises, which increases the performances of the adversarial
attack, but at the cost of producing adversarial noises of higher magnitude.
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Figure 2.2: Comparison with state-of-the-art adversarial attacks of ADiL with different hyper-
parameters λ1 and λ2 on a LeNet classifier on the CIFAR-10 dataset. On the y-axis is displayed
the test fooling rate performances of adversarial attacks, while the rMSE of the produced adver-
sarial noises is displayed on the x-axis.

In the proposed framework, the number of atoms M composing the dictionary acts as a hyper-
parameter controlling to what extent the adversarial noise information is compressed and there-
fore universal. On the one hand, when M = 1 each adversarial noise only differs by the intensity
of the added perturbation through the quantity v(i ). On the other hand, for M = P, the degree of
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freedom is high enough to let adversarial noises be completely specific to each image. In that case,
each atom targets one pixel of the adversarial perturbation, making D a basis of RP. The choice
of M has been investigated and indeed impacts the performance of the attacks. Figure 2.3 reports
ADiL’s test fooling rates for various numbers of M. From Figure 2.3, we observe that ADiL indeed
reaches better test fooling rate performances with a higher M but at the cost of becoming less
universal.
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Figure 2.3: ADiL’s performances with different numbers of atoms M on a LeNet classifier on the
CIFAR-10 dataset. On the y-axis is displayed the test fooling rate performances of adversarial at-
tacks, while on the x-axis is displayed the rMSE of the produced adversarial noises.

Learning ADiL with less data

As a sanity check of the optimization and looking for insights, we tried to optimize problem (2.3)
using fewer training data points N. Indeed, the idea of adversarial perturbation modeling was to
capture the most common patterns of the data fooling the classifier. Therefore by increasing the
number of training points, the inference performances on unseen data points should increase as
D captures more generalized fooling patterns. And we empirically confirm this insight. Indeed, in
Figure 2.4, we see that by increasing the training set size N the performances D increase for various
numbers of atoms M. For M = 5,M = 10, and M = 15 atoms, the test fooling significantly increases
but for only M = 1 atom the performance only marginally increases. This artifact is a result of a
too-small modeling space. Indeed, with only M = 1 atom, D is, to a coefficient factor, universal
to every example, which constrains the problem too much to see that big of improvement when
varying M. However, for higher values of M, the modeling space is large enough to see significant
changes in the test performances according to the training set size N.

Overall and as expected test performances increase according to the number of atoms M, but
because of the tuning of the regularization parameters λ1 and λ2 and the random seed, we see
some discontinuities in the order of performances for the three number of atoms. This variability
in performances is confirmed as the higher the number of atoms, the smoother the performances
increase. Indeed, for M = 15, performances almost increase linearly with the number of train-
ing data points. Whereas for M = 5, test performances are globally growing with the number of
training data points, even though we see some light "abnormal" decrease due to external factors.
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Figure 2.4: ADiL performances with a different number of training data points N for multiple num-
bers of atoms M = 5,10,15. The dictionary D is optimized on a LeNet classifier on the CIFAR-10
dataset. On the y-axis is displayed the test fooling rate performances of ADiL, while on the x-axis
is displayed the number of training data points.

2.4 ADiL projected gradients solution

The main drawback of the first proposed dictionary learning optimization is that it does not re-
spect the fixed adversarial budget, which makes the comparison with state-of-the-art attacks bi-
ased. It is worth noting that plenty of adversarial attacks do not originally respect this constraint
either. In the revisited version of ADiL, we proposed a framework that allows controlling the norm
of every adversarial noise to be within an ε. This second version of ADiL relies on the second ad-
versarial crafting relaxation, such that ||ω(i )||p = ||Dv(i )||p ≤ ε∀i .

Optimization

In order to learn the dictionary of shared attacks, we propose to address the following optimization
problem reminiscent of classical dictionary learning problems (see, e.g., [105, 127]).

min
D∈D,V∈V

N∑
i=1

l
(

f (x+Dv(i )), y (i )),

s.t .
{ ||Dv(i )||p ≤ εp i = 1, . . . ,N,

(2.5)

Compared to the firstly proposed optimization, we used two adversarial loss L, namely the
logit loss and the reverse cross-entropy, both proposed in [25]. In Section 2.4.1, we detail a deeper
analysis of these two losses. Depending on the choice of the constrained sets D and V , one can en-
sure that the adversarial noises are all `p -norm constrained. We integrated this constraint within
the parameters D, V which ends up in the following proposition,

Proposition 2.4.1 (`p -Attacks). Given some budget ε > 0, we have that ‖Dv‖p ≤ ε for every D ∈D
and v ∈V where

D = {D ∈RP×M | (∀m ∈ {1, . . . ,M}), ‖dm‖p ≤ 1, p ∈P}, (2.6)

and
V = {v ∈RM | ‖v‖1 ≤ ε}. (2.7)

Note that, for such a choice, both D and V are convex sets. The proof that by framing ω= Dv,
with D ∈ D,v ∈ V results in ||ω||p ≤ ε is given in Section A.1. The integration of this proposition
within the optimization problem is solved by Algorithm 4.
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2.4.1 Inference optimization

We now consider the definition of the dictionary-based adversarial attack to unseen examples,
coined the ADiL attack.

Provided that the dictionary D ∈D is known, for a new yet unseen original example x of origi-
nal label y , we propose two ways to learn its paired adversarial perturbation x+Dv such that the
dictionary D is considered a parameter, and the optimization is performed only over v,

(unsupervised) v ∼P (2.8)

(supervised) min
v∈V

l ( f (x+Dv, y), (2.9)

Equation 2.8 derives a black-box ADiL adversarial attack. In the meantime, equation 2.9 gives
a white-box ADiL adversarial attack. Equation 2.9 can be solved by resorting to Algorithm 4 and
ignoring the optimization steps over D.

However, in practice, we found the optimized adversarial perturbation norm ||Dv||p might still
be far from the `p norm budget ε. This artifact prevents us from fully exploring the space spanned
by D, leading to sub-optimal results. When all the adversarial attacks are given an ε `p norm bud-
get, every adversarial perturbation will be of norm ε. Therefore by resorting to an algorithm that
disables us from reaching this norm budget, the ADiL adversarial attack is unfairly compared to
other adversarial attacks and could therefore never reach their performances.

To benefit from the proposed framework, while still being competitive with other adversarial
attacks, we proposed to recast the objective of the ADiL white-box adversarial attack (2.9). Given
D ∈ RP×M with M ¿ P and by assuming that D is of full rank, we may write v = D†z with D† =
(D>D)−1D>, therefore, problem (2.9) becomes,

min
z∈RP

l ( f (x+DD†z, y), s.t. ‖z‖p ≤ ε. (2.10)

Equation (2.10) takes advantage of all the possibilities offered by D, navigating in all of the spanned
space, allowed to find a maximum number of adversarial perturbation under the `p norm ε budget
constraint. Finally, to ensure that the adversarial example x+Dv is a valid image, we additionally
perform a projection onto the input manifold X ⊆RP, i.e., x ′ = ProjX (x+Dv). The biggest flaw of
recasting the problem into equation (2.10) is that now the optimization in on z ∈ RP rather than
v ∈V ⊂RM, which includes as many variables zi , i ∈ {1, . . . ,P} as the number of pixels, which is the
problem solved by state-of-the-art adversarial attacks. Indeed, the recast loses the computational
gained offered by the storage of a complete dictionary. Algorithm 4 presents the optimization of
the white-box ADiL adversarial attack, and details the different performed projections.

Algorithmic solution

Herein we propose a procedure for solving Problem (2.5). Note that minimizing the objective
in (2.5) is challenging due to the nonconvexity inherent to the dictionary learning formulation
and the neural network f . We highlight that we are only interested in finding a convenient sta-
tionary point in a limited time. Since classical dictionary learning problems are bi-convex, they
usually are solved by alternating the optimization over D and V since each alternating problem is
convex. However, here this is no longer the case because of the adversarial loss involving a neural
network. Hence, we embrace a direct optimization scheme over (D,V) in the spirit of the noncon-
vex proximal splitting framework of [148] which has also been applied in the context of classical
dictionary learning in [127]. Algorithm 4 performs a simple projected gradient descent over z
by minimizing an adversarial loss l such that the algorithm outputs a valid adversarial example
x′ =x+Dv=x+DD†z,

The projection operator projε,p of Algorithm 4 is a simple yet effective rescaling of the variable
by its norm, that is projε(z) = z ∗ ε/||z||p . Given a pre-process of the original image pixels values,
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Algorithm 3 ADiL using projected gradients

Require: Step-sizes {γk }K−1
k=0

Set D(0) ∼D
Set V(0) = 0M×N

for k = 0 to K−1 do
loss =

∑N
i=1 l ( f (x+Dv(i )), y (i ))

D(k+1) = ProjD(D(k) −γk∇Dloss)
V(k+1) = ProjV (V(k) −γk∇V loss)

end for
return Adversarial dictionary D(K)

Algorithm 4 White-box ADiL adversarial attack

Require: An optimized dictionary D ∈ D, an unseen original example x, norm budget ε, a step-
size γ, a max number of iteration T
z=N (0P,1P)
D† = (D>D)−1D>

for t = 1 to T do
z′ = projε,p (z)

x′ = projX (x+DD†z′)
loss = l ( f (x′), y (i ))
z= z−γ∇zloss
if argmaxk fk (x+DD†z′) 6= argmaxk fk (x) then

return Adversarial perturbation ω= DD†z′

end if
end for

the original manifold is expressed X = [0 : 1]P. We, therefore, set the projection into manifold op-
erator as projX (x) = min(max(x,1),0), which clamps negative and above 1 adversarial examples
pixels values to their bounds. Such projection function is not smooth and could potentially cor-
rupt the optimization, but in practice, we found the `p norm ε budget constraint to be already
too constraining. It organically enforces the pixels of the adversarial examples to be within the
manifold.

ADiL in between specific and universal adversarial attacks

In this section, we further investigate how the revisited ADiL performs in a more challenging large-
scale scenario such as ImageNet.

The revisited ADiL problem allows it to be fairly compared to other state-of-the-art adversarial
attacks given the same ε adversarial budget. We now compare our approach with the baseline
attacks on multiple pre-trained models on ImageNet from the TorchVision repository. Namely, we
consider MobileNetV2, DenseNet121, InceptionV3, ResNet18, GoogleNet and VGG11, achieving
accuracy of 71.88%, 74.43%, 69.54, 69.76%, 69.78% and 69.02%, respectively. Performance in terms
of fooling rate (fr), mean squared error (mse) and time are reported in Table 2.1.

On the one hand, the found results once again shed light on the superiority of specific attacks
(e.g. AutoAttack [37]) managing to achieve up to 100% fooling rate. However, such performance
comes at a price of high computational cost, up to 10 times more than that required to perform
universal attacks. The only two exceptions are FGSM [63] and its variant FFGSM [173], both being
one-shot specific attacks. Still, their efficiency and low complexity come at the expense of the
highest mse of any attacks.

On the other hand, universal attacks perform relatively well in large-scale experiments, mainly
because of the many existing classes allowing them to easily find an adversarial label to target.
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Nonetheless, their fooling rates are still significantly far behind those of specific attacks. Regard-
ing ADiL, it displays competitive results at a much lower computational cost than specific attacks
while also benefiting from low mse. Indeed, it performs at most 5 times faster than iterative spe-
cific attacks and still achieves relatively high fooling rates (e.g., 98.14% for ADiL-ce on MobileNet).
In addition, ADiL always drastically improves upon universal attacks in terms of fooling for at most
twice or three times their execution times and a comparable mse. Finally, it is unclear whether us-
ing the logit loss over the cross-entropy is beneficial since both yield equivalent results on average.

Table 2.1: Performance of `∞ attacks on ImageNet. Comparisons are drawn in terms of fooling
rates (fr), mean squared error (mse), and the average time for evaluating the attack (in ms). Results
are divided between specific (top cell), ADiL with M = 100 atoms (middle cell) and universal attacks
(bottom cell).

VGG DenseNet GoogleNet
Attacks fr mse time fr mse time fr mse time

APGD 99.96 95.41 689 99.99 71.67 526 100 69.57 283
AutoAttack 100 95.45 688 100 71.63 536 100 69.57 291

FGSM 97.84 144.43 21 94.16 144.35 55 91.96 144.38 51
FFGSM 98.76 114.83 21 96.43 114.67 55 94.00 114.71 51

MIFGSM 99.93 94.05 594 99.99 74.46 460 100 73.08 233
PGD 99.96 91.74 593 99.99 73.10 458 100 71.69 234

ADiL-ce 86.08 90.76 140 88.97 88.12 187 84.12 88.82 101
ADiL-logit 84.52 89.02 140 87.86 86.41 183 86.76 86.05 101
UAP-PGD 68.44 121.70 59 68.14 102.75 67 72.72 120.65 56

UAP 60.37 84.62 71 57.52 79.28 67 42.15 74.32 48

Inc.V3 ResNet18 MobileNet
Attacks fr mse time fr mse time fr mse time

APGD 99.99 66.47 910 100 77.23 180 100 69.31 364
AutoAttack 100 66.49 913 100 77.23 180 100 69.31 365

FGSM 83.40 140.50 65 97.89 144.41 45 96.16 144.39 51
FFGSM 85.35 112.93 65 99.08 114.70 45 98.77 114.74 51

MIFGSM 99.99 68.51 899 100 79.03 171 100 73.24 354
PGD 99.99 68.53 899 100 77.38 170 100 71.78 352

ADiL-ce 86.16 75.41 162 92.46 89.38 88 98.14 85.25 86
ADiL-logit 87.75 78.16 139 89.79 87.78 89 96.69 83.43 86
UAP-PGD 52.27 96.10 66 70.85 107.20 50 91.66 106.27 46

UAP 18.33 55.44 61 65.37 89.84 53 85.44 91.02 50

We display in Figure 2.5 a selection of 5 atoms of ADiL-100 learned on ImageNet for fooling ei-
ther a MobileNet or a GoogleNet network. Observe that they all exhibit strong structured patterns
reminiscent of those found in the UAP perturbation [142]. However, contrary to universal attacks
which merge all individual perturbations into a single one, the proposed dictionary framework
allows to split the individual contributions into multiple diverse atoms.

Inspecting the quality of the adversarial space modeling

In practice, when setting the norm constraint to ε, among all the adversarial attack baselines, all
of their computed adversarial perturbations are of norm ε. In other words, to maximize the per-
formances, adversarial attacks exploit all the possible space Ωε to find a maximum of adversarial
perturbations to maximize the FR. Allowing the adversarial perturbations norm to reach the ε ad-
versarial budget is key to being competitive with state-of-the-art adversarial attacks. In ADiL’s
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(a) MobileNet

(b) GoogleNet

Figure 2.5: Illustration of ADiL’s atoms when setting M = 5 on ImageNet dataset for different clas-
sifiers, under the `∞ norm constraint.

case, rewriting the inference problem into equation (2.10) offers an efficient inference problem
for which projected gradients are very well suited. However, it designs adversarial perturbations
within the ε ball, not equal to the ε sphere.
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Figure 2.6: ADiL’s crafted adversarial perturbation mean `2 norm with different ε norm constraint
bound. The dictionary D is optimized on a VGG classifier with M = 50.

We inspected the inferred adversarial noises to better understand the crafted adversarial per-
turbations beneath a simple FR performance. We found that ADiL’s crafted adversarial perturba-
tions are far from the allowed ε norm bound. Figure 2.6 displays ADiL’s crafted adversarial pertur-
bation average `2 norm for various ε norm bounds.

Through Figure 2.6 we understand that the optimization process is flawed as it does not allow
the adversarial perturbations to reach the ε norm budget. This artifact is not a flaw as every ad-
versarial constraint is indeed respected. The adversarial perturbation generation is well designed
according to the rules set for a fair comparison, but in practice, it prohibits ADiL from reaching
state-of-the-art adversarial attack performances. We see that the gap between ADiL’s crafted ad-
versarial perturbation mean `2 norm and ε is not negligible, for ε= 1, the mean `2 norm of ADiL’s
adversarial perturbations is only 0.84 which means that the 16 most promising percentage of the
allowed adversarial perturbations norms are unexploited. Indeed, this range is the most promis-
ing as obviously the higher the norm of the adversarial noises the more harmful the adversarial
perturbation is the the more likely it will fool the classifier while respecting the other adversarial
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constraints.
The `2 norm constraint allowed budget accepted by the community is ε= 0.5. Every adversarial

attack considered this bound as it allowed every adversarial attack to be fairly compared. In ADiL’s
case, when setting ε = 0.5, we empirically observe that the crafted adversarial perturbations are
of magnitude 0.41, which is too far from state-of-the-art adversarial attacks perturbations norm,
always equal to ε = 0.5, to let ADiL be competitive. From this observation we considered two
solutions. First, we could align every adversarial attack to be of the same norm constraint bound
as the one we empirically found with ADiL. Therefore in the latter example, we would set ε= 0.5 for
ADiL, find a mean adversarial norm of 0.41, and then compute the performances of the adversarial
attack baselines with ε = 0.41. This proposition has not been explored as it would be cheating,
unfair to other baselines, and bad scientific behavior.

The other proposition was to compute adversarial attack baseline performances with ε = 0.5
just like it is supposed to be, but in ADiL’s case, as the inference problem is flawed, we allow a
greater ε norm bound, making it reach adversarial perturbations norms of 0.5. In Figure 2.6, we
empirically observe that when setting ε = 0.6 we observe a mean `2 norm of ADiL’s adversarial
perturbation equal to 0.5. Therefore, the original adversarial constraints are respected and ADiL
would be allowed to be competitive and "fairly" compared with other adversarial attack baselines.
In practice, this idea is impossible to consider because it is "cheating" to dig into the inference per-
turbations and re-adjust the original problem to maximize the inference performances. Second,
Figure 2.6 displays the average `2 norm of the ADiL’s adversarial perturbations, meaning that some
norms are higher, and some are lower than ε. However, higher perturbation norms are forbidden
making this idea impossible in practice.

ADiL’s projected gradient solution lacks an efficient inference problem allowing it to be com-
petitive with state-of-the-art adversarial attacks while respecting all the adversarial constraints.

Changing the adversarial loss

In [24], multiple adversarial loss l have been proposed and explored for multiple `p norm bud-
get constraints, but regarding the ADiL optimization framework, we assumed necessary to review
different adversarial losses within (2.5) to see if there are significant changes or if the overall opti-
mization is robust to the choice of the adversarial loss. We selected the two most used and most
effective adversarial losses. We first ran experiments with the reverse cross-entropy adversarial
loss that is, for an original example x with an original prediction f (x) = y ,

l
(

f (x′), y
)=−L(

f (x′), y
)=+

C∑
k=1

ok l og f (x′)k , (2.11)

with f (x′)k representing the predicted probability of the label k for the adversarial example
x′ through f , and o a one-hot vector with 1 at index y representing the true predicted label of x.
The goal of the reverse cross-entropy as the adversarial loss is to decrease as much as possible the
original prediction. While the original objective of adversarial examples is to change the classifier’s
final output, the reverse cross-entropy only intends to lower the prediction of original labels such
that other labels receive confidence, up until another label represents the maximum probability
value over the possible labels, acting as the prediction shift.

While the reverse cross-entropy is an easy-to-use and straightforward adversarial loss, [24]
proposed other losses with interesting properties. The reverse cross-entropy focuses on mini-
mizing the original label prediction but does not intend to maximize any other targeted label pre-
diction. The optimization of the reverse cross-entropy may not be optimal as it does not allow
increasing other labels prediction. Carlini & Wagner however, proposed in [24] an adversarial loss
capable of both minimizing the original label prediction and maximizing another adversarial la-
bel prediction. This loss is called the logit loss and is defined as, for an original example x with an
original prediction f (x) = y ,

l ( f (x′), y) = max( ft (x′)− fy (x),−κ), (2.12)
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with κ a margin hyper-parameter and t = argmaxk 6=y fk (x) the second best label predicted for the
original example, becoming the targeted adversarial label to predict.

The logit loss minimizes the original label prediction of the adversarial example and at the
same time, maximizes the second-best label prediction of the adversarial example. Carlini & Wag-
ner studied multiple adversarial losses including the reverse cross-entropy suggest relying on the
logit loss for `2 norm bounded adversarial attacks. We assumed it was necessary to compare both
adversarial losses, for both the `2 and `∞ norm constraints. Indeed, in our optimization frame-
work, we do not have any insights on which is the best therefore, a comparison of both losses is
needed.

Table 2.1 compares ADiL’s performances to specific and universal adversarial attacks. First,
it is very promising to see that even though ADiL does not reach state-of-the-art specific attack
performances, ADiL is always a much stronger attack than universal baselines. These results place
ADiL where we intended it to be, within both adversarial attack families and acting as a good trade-
off between a transferable universal attack and a very effective and harmful specific attack. We also
studied the two selected adversarial losses, the logit loss, and the reverse cross-entropy (rce) loss.
As Table 2.1 shows, we do not see any differences between both losses. It means that the ADiL
learning framework is robust to the chosen adversarial loss function, and promises to be effective
for other tasks loss such as an object detection loss, or semantic segmentation loss. Such problems
are yet to be studied, but the ADiL framework could easily be applied and promises to be effective
with any other adversarial loss.

Time consumption analysis

Table 2.1 also compares the time consumption of the different adversarial attacks. We draw sim-
ilar conclusions for the position of ADil’s time consumption compared to other baselines. On
the one hand, universal attacks compute adversarial examples very quickly as only one adversar-
ial perturbation is optimized over all the original examples. This optimization averages to a tiny
time consumption per example. On the other hand, specific attacks are very effective at finding
adversarial perturbations for most of the original examples, but these optimizations are not free.
Indeed, we see the best specific attack Autoattack, sometimes more than 10 times longer than uni-
versal attacks to compute all of the adversarial perturbations. It empirically shows a significant gap
in the literature to be filled. As expected, ADiL perfectly fits in the middle of both families, com-
puting adversarial examples always faster than specific attacks but longer than universal attacks.
ADiL fastens the computation of adversarial perturbations by finding a vector v ∈ RM, composed
of only M ¿ P atoms, drastically lowering the number of variables to optimize.

Black-box ADiL attack

Along with the white-box attack derived from the optimization of equation 2.9, we also tried to
derive a black-box attack. Black-box attacks are reviewed and detailed in Section 1.2.4.

Having an ADiL black-box attack is more appealing than an ADiL white-box attack because it
reflects real-world scenarios where an attacker has limited or no knowledge about the classifier in
use. Besides black-box attacks are more challenging for defenders to detect and mitigate, making
the ADiL black-box attack a very desired proposition.

Deriving a black-box attack means that we can optimize D using equation 2.5 in the same
way, but at inference time, for new unseen examples x(i ), the corresponding coding vector v(i ) is
optimized without the access of the internal parameters of the classifier f . Without any possibility
to optimize the coding vectors v by gradient descent, we opted for a rejection sampling strategy, in
which we try T sampling ofv according to a certain probability distribution and stop the trials once
a v produces an acceptable adversarial perturbation ω = Dv. This black-box attack is detailed in
Algorithm 5.

In our experiments, we mainly focused on sampling the coding vector on the `1 norm sphere.
As highlights line 3 and 4 of Algorithm 5, we sampled v from P = {v ∼N (0M,1M), ||v||1 = 1}. The
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Algorithm 5 Black-box ADiL attack

Require: An optimized dictionary D ∈D, an unseen original example x, a max trial number T
for t = 1 to T do
v∼N (0M,1M)
v=v/||v||1
if argmaxk fk (x+Dv) 6= argmaxk fk (x) then

return Adversarial perturbation ω= Dv
end if

end for

choice comes from our choice to respect the adversarial budget constraint of equation (2.5). In-
deed, by modeling D ∈D, any coding vector vector v of a 1 `1 norm produces an adversarial per-
turbation Dv(i ) within the ε ball. Therefore the inference sampling would likely be successful if the
inference coding vectors do share the same shape.

Figure 2.7 illustrates the results of the black-box adversarial attacks derived from the optimiza-
tion of equation (2.5). This figure shows the test performances of the black-box ADiL attack for var-
ious trial number limits. With M = 1 atom, the same conclusion is drawn as in Section 2.3. When
the modeling space is too limited, no real conclusions can be drawn from a possible enhance-
ment of the original version. However, with higher numbers of atoms M = 5,10,15, we see that
the black-box ADiL attack performances increase according to the number of trials, which proves
both the attacks potential and the sampling strategy ability to produce effective v. The left figure
shows a plateau is not far ahead regarding the `2 norm of the adversarial perturbations although,
according to the `∞ norm constraint, the test performance increases almost linearly according to
the number of trials.

Overall, deriving a black-box attack from the original proposition is a good idea as it derives a
more realistic adversarial attack from the ADiL modeling.
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Figure 2.7: Black-box ADiL inference performances according to the number of trails for the sam-
pling of v for various `p norm adversarial budget constraints of equation (2.9).

We also tried to rely on the optimized training coding vectors V ∈ V (2.7) of equation (2.5).
Indeed, we tried some preliminary experiments in which we sampled the inference coding vectors
v from a normal distribution of the optimized training coding vectors, but unfortunately, no better
results were found.

ADiL adversarial defense

As the guideline of [158], we proposed, along with the ADiL adversarial attack, an ADiL adversarial
defense. Defenses are mechanisms that make classifiers more robust to adversarial attacks. De-
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fenses are reviewed and explained in Section 1.2.5. For the ADiL defense, we opted for an ADiL ad-
versarial training defense. During the ADiL adversarial training defense, the classifier currently in
training is optimized using original examples as well as ADiL-crafted adversarial examples. Feed-
ing adversarial examples to the optimization of a classifier tends to push its decision boundaries
away from the original data points, making the classifier’s decision more robust to slight pertur-
bations. However, to access ADiL adversarial attack, ADiL’s parameters D need to be optimized as
well. Therefore we chose, as a good trade-off to update ADiL’s parameters every M epoch of the
classifiers’ optimization, making the ADiL adversarial attack always up-to-date with the classifier’s
decision boundaries while building it. ADiL defense is detailed in Algorithm 6.

Algorithm 6 ADiL Defense

Require: A classifier f parameterized by θ, a training set D = {x(i ), y (i )} a classification loss L, a
step-size γ, a maximum number of iteration K, number of epoch when optimizing ADiL’s pa-
rameters M
for k = 1 to K do

Updating D to the current classifier f every M epoch
if mod(k,M) = 0 then

Optimize D from current f and D by solving equation (2.5)
end if
for (x(i ), y (i )) ∈D do

Optimize on original data
loss = L( f (x(i )), y (i ))
θ= θ−γ∇θloss
Optimize on adversarial data
find v(i ) such that x(i )′ =x(i ) +Dv(i ) is adversarial to f
loss = L( f (x(i )′), y (i ))
θ= θ−γ∇θl oss

end for
end for
return Robustly trained classifier f

As Table 2.2 and Figure 2.8 show, training a classifier with the proposed defense including a
dictionary of M atoms, not only makes it more robust to ADiL attacks of M atoms but also ADiL
attacks of any number of atoms. Indeed, the robustness of the classifier is hugely improved against
dictionaries that are composed of fewer or as many atoms as the dictionary used to train the clas-
sifier, but in a lesser manner, the robustness is also improved against dictionary attacks containing
more atoms than the number used to train the classifier. One of the main weaknesses of adversar-
ial training defenses is that when relying on a single adversarial attack to add its produced adver-
sarial examples to the training set of the classifier, the produced classifier is indeed more robust,
but only to the adversarial attack used to create the training adversarial examples. By relying on an
ADiL attack to augment the training dataset, our empirical proofs, Table 2.2 and Figure 2.8 show
that the defense mechanism profits from the modeling of the adversarial noise space, letting users
build classifiers that are more robust to not a single bu any adversarial attacks. Indeed, we see
classifiers more robust to similar or simpler adversarial attacks (ADiL with less or as many atoms),
but also more complex adversarial attacks (ADiL with more atoms).

Optimization configuration

In this new implementation of the adversarial dictionary problem, because we all have the same
ε adversarial budget, we can be fairly compared and benchmarked to other adversarial attacks.
However, almost every adversarial attack includes either hyper-parameters or parameters that
need to be fine-tuned, so that every attack reaches its best performance. In our case, because
ADiL includes the modeling of the adversarial noise space, we need to fine-tune plenty of critical
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Mattacker 2 atoms 5 atoms 10 atoms 15 atoms 20 atoms

Without Defense 25.78% 56.25% 60.15% 46.09% 57.81%
With Defense 15.62% 30.46% 53.90% 44.53% 56.25%

Table 2.2: Study of the proposed defense mechanism for LeNet trained on CIFAR-10. By hinging
on the proposed defense with Mdefense = 10 atoms, we report the fooling rate of ADiL attacks for
various Mattacker atoms.

Figure 2.8: Fooling Rate of ADiL with different number of atoms on a LeNet classifier. The dots
represent the ADiL attack on a standard LeNet classifier, while the diamonds display fooling rates
on a robust LeNet classifier trained with the defense. Fooling rate values are precisely reported in
Table 2.2.

parameters that could jeopardize the performance of the attack if not carefully tuned. As well as
maximizing the performances of ADiL’s attack, finding the best ADiL parameters on a given set of
experiments allows us to bring future users a manual, or at least insights, on the right parameters
according to their applications. In this section, we review the most critical optimization parame-
ters and evaluate their sensitivity to the correctness of ADiL’s modeling and attack performances.

Optimizer
We previously saw in Section 1.1.3 that the optimizer is a critical parameter to the optimization

process. We recall that an optimizer is simply the implementation of the strategy to find the right
optimization step size at each iteration. Recent works [136] showed that a slight change of opti-
mizer could enhance or decrease the performances by far, therefore we conducted an intensive
analysis on which optimizer would be best for the ADiL modeling problem, that is optimizing D
and V over the training set.

Regarding the optimization of ADiL, we were looking for an optimizer that is both efficient and
robust, as many other parameters are free, such as the number of atoms M, the norm used within
the adversarial constraints, the number of training points N and the complexity of the problem
at hand. In the case of ADiL, the robustness of the optimizer is as important as the efficiency
in reaching the best possible solution Therefore we selected three optimizers, Adam [86], Adam
Weighted (AdamW) [101] and SGD [151] that are widely used and enough different to see if ADiL’s
optimization is agnostic to the choice of optimizer or if there is one optimizer that is prominently
better than the others. Because we needed the optimizer to be robust in the task it could handle
well, we selected the three mainly used optimizers and were not interested in some lesser-used
ones as we do not have any long-term trust and reliability over those.

To make ADiL easy to use for future users we were looking for only one optimizer that meets
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our requirements for both the `2 and `∞ norm constraints.

Figure 2.9 displays the evolution of the training loss and the relative norm of the parameters

D and V that is evaluated as norm(Dt−1)−norm(Dt )
norm(Dt−1−Dt ) + norm(Vt−1)−norm(Vt )

norm(Vt−1−Vt ) , at the iteration t . These two
metrics allow us to assess the minimization of the training loss and the convergence towards a
minimum. In Figure 2.9, it is clear that for both `2 and `∞, the SGD optimizer is a bit too basic
compared to other optimizers. Indeed, with the `2 norm, the SGD optimizer does not reach the
best minima and is shown to be too unstable when using the `∞ norm. Between Adam and Adam
Weighted, the choice is open to debate. Indeed, neither exceeds the other in terms of loss mini-
mization or robustness to the initial step size. To achieve a good balance between the optimizer
performances and descent robustness to the choice of the learning rate, we chose to carry out our
experiments with the Adam optimizer.

Now that we selected the Adam optimizer as the right tool to use under both the `2 and `∞
norm, we must select the best initial learning rate, possibly one for each norm. Indeed, Figure
2.9 highlights the need for a different learning rate for each norm. Thus we conducted an initial
learning rate experiment comparison under the Adam optimizer for both the `2 and `∞ norm.

Learning rate

Even though we purposefully select the Adam optimizer as the most efficient and robust op-
timizer, the learning rate remains a sensitive parameter. Therefore we conducted experiments
with the Adam optimizer paired with different learning rates to select the best setup, hopefully,
the same for both the `2 and `∞ norm. Figure 2.10 shows us the evolution of the training loss and
the relative norm of ADiL’s parameters D and V, which is computed the same as in the Optimizer
experiments. We understand through Figure 2.10 that a different learning rate must be used ac-
cording to the `p norm constraint used. This choice is mainly drawn from the Adam-0.1 curve that
could be a decent choice for the `∞ norm constraint, compared to `2 norm constraint for which 0.1
is a really bad choice showcasing an under-fitting. According to the different curves, we selected
using Figure 2.10a the learning rate for `∞ norm constraint to be 0.05 and for `2 norm constraint
with Figure using Figure 2.10b to be 0.001. Indeed, with the two values, the training loss is de-
creasing by far from the starting point and reaches a plateau while displaying a real convergence
regarding the parameter’s relative norm.

Now we crafted an optimization setup that allows us to exploit ADiL’s potential to the fullest for
both the `∞ and `2 norm constraints. The optimization of Algorithm 3 under this setting produces
dictionaries D shown in Figure 2.11.

Figure 2.11 presents the result of the ADiL optimization procedure under the best hyperpa-
rameters. The atoms are visually interesting and allow us to unveil the common patterns involved
in the crafting of adversarial perturbations. Note that absolutely no constraint on the "readability"
of the atoms was included in the optimization process but we still end up with these visual atoms.
Possessing such visual atoms allows us to understand the roots of the adversarial perturbations,
which are to some extent the universal pitfalls of the neural network classifiers, according to which
we can infer new adversarial perturbations. It is worth noting that the atoms differ a lot according
to the `p norm constraint used. Indeed, on the one hand, Figure 2.11a shows a dictionary opti-
mized using the `∞ norm constraint, and we see that the atoms capture the corners and edges
of the objects to allow computing adversarial perturbations based on those. On the other hand,
Figure 2.11b presents atoms optimized under the `2 norm constraint. We see the atoms captured
some random noise allowing us to craft adversarial perturbations that are less "understandable"
but still universally effective at fooling the classifier.

It is desired for these atoms to be visually available for inspection, as for explaining to a non-
expert audience, the origin, and computation of the adversarial perturbations become very clear
and easy to understand. These atoms allow us to investigate deeper into the origin of the ad-
versarial noise so we can incorporate those within a defense mechanism producing more robust
classifiers. The proposed ADiL adversarial defense is detailed in Section 2.4.1.

Figure 2.11 shows the result of the training procedure, but for new unseen original exam-
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ple, the computation of their adversarial perturbations from the learned D needs another hyper-
parameter to tune, that is the inference learning rate.

Inference learning rate
As for the inference problem, we assumed the Adam optimizer to be a decent choice as we

previously sanity-checked its efficiency and robustness for the training procedure. However, we
could not make the same assumption with the learning rate as the number of variables to optimize
drastically changes. Indeed, the inference problem only optimizes the coding vector v ∈ RM such
that ω= Dv is an effective adversarial perturbation, conditioned to the learned D.

The number of variables to optimize crucially influences the choice of the learning rate there-
fore, we deep analyzed its impact.

Figure 2.12 displays the evolution of the inference loss along with the final FR reached at the
end of the inference optimization. Those two metrics are our only key metrics allowing us to assess
a good optimization. The same conclusions can be drawn regarding the inference learning rate,
it largely impacts the optimization process and therefore needs to be carefully tuned to ensure
good inference performances. Through Figure 2.12b and 2.12a we understand that a different
inference learning rate must be used depending the `p norm constraints used. From Figure 2.12b
we selected for the `2 norm constraints, an inference learning rate of 0.01 which reaches the best
FR and visually displays the best optimization behavior, with a plateau for the inference original
example for which no adversarial perturbations could be found. As for the `∞ norm constraints,
we select through Figure 2.12a an inference learning rate of 0.005 because of the same reasons, the
best FR is reached, while displaying a descent loss minimization.

While the latter ADiL projected gradient solution is interesting and led to good results, the full
potential of the idea is not quite reached, as a-posteriori, we observe that the training adversarial
noises norm is quite far from the ε limit, ||ω(i )||p = ||Dv(i )||p ¿ ε (see Section 2.4.1 for more details).
This artifact limits the modeling of the adversarial noise space by D and prevents the overall attack
from reaching its full potential.

Even though it is very promising and theoretically appealing, the empirical results did not
match our expectations, and therefore ADiL has only been a stepping stone in the process leading
to LIMANS.
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(a) Considering the `∞ norm adversarial budget constraint.
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Optimizer and learning rate evaluation

(b) Considering the `2 norm adversarial budget constraint.

Figure 2.9: Evolution of ADiL’s training loss and the relative norm of D and V that is evaluated as
norm(Dt−1)−norm(Dt )

norm(Dt−1−Dt ) + norm(Vt−1)−norm(Vt )
norm(Vt−1−Vt ) , at the iteration t , with M = 100 during the training proce-

dure, according to different optimizers (ADAM, ADAM-W and SGD) for multiple initial step-sizes
and both `2 and `∞ norm constraints.
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(a) Considering the `∞ norm adversarial budget constraint.
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Figure 2.10: Evolution of ADiL’s training loss and the relative norm of D and V that is evaluated

as norm(Dt−1)−norm(Dt )
norm(Dt−1−Dt ) + norm(Vt−1)−norm(Vt )

norm(Vt−1−Vt ) , at the iteration t , with M = 100 during the training pro-
cedure, using the Adam optimizer couple with various learning rates for both `2 and `∞ norm
constraints.
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(b) Considering the `2 norm adversarial budget constraint.

Figure 2.11: Example of D solution with M = 10 found by optimizing Algorithm 3 with the opti-
mization setting proposed in Section Optimizer and Learning rate, for both the `∞ and `2 norm
constraint.
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Figure 2.12: Evolution of ADiL’s inference loss with M = 100, using the Adam optimizer coupled
with various inference learning rates for both `2 and `∞ norm constraints.
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2.5 LIMANS stochastic gradient solution

After a fruitful discussion with prestigious researcher Nicholas Carlini1, there was a two-sides goal
regarding the improvements of ADiL. First, given a budget ε, the adversarial noises must exploit
this freedom to the fullest, meaning the adversarial noises `p norm should be close or equal to ε,
to model the adversarial noise space efficiently. Second, an empirical analysis of the model space
should be emphasized as if well modeled, the transfer property of universal attacks should hold
using the modeling, allowing an adversarial attack to be both efficient to specific adversarial noise
crafting and transferable to fooling other classifiers g than the one through which D has been
optimized. Therefore, the original assumption of problem (2.1), that dictionary learning tools are
relevant to the modelization of the adversarial noise space, is now questioned. Indeed, the sparsity
constraint on the coding vectors is not quite fundamental and should therefore be removed to
lower the bias during the optimization. It led to deeply questioning our initial assumptions with
ADiL and pivoting toward a new lecture on the problem, engaging other optimization solutions
such as stochastic gradients.

To solve the original problem (2.1), we proposed two relaxation optimizations, namely
Regularized-LIMANS, a stochastic gradient descent optimization enforcing the constraints
through regularization, and Simple-LIMANS, a plain loss function incorporating all the constraints
and optimizing both D and V at the same time in a deep learning spirit. A high-level overview of
the proposed LIMANS adversarial attack is given in Figure 2.13.

UNIVERSAL ATTACK SPECIFIC ATTACK
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Figure 2.13: A high-level overview of the proposed LIMANS adversarial attack and its optimization.
It is highlighted the adversarial model D is universal to every adversarial example, while a specific
coding vector v is crafted for each adversarial example.

2.5.1 Regularized-LIMANS solver

In the original problem (2.1), the indicator function 1 being non-smooth and highly non-convex
makes the optimization untractable. Instead of maximizing the fooling rate, it is usual to con-
sider minimizing a surrogate adversarial loss function Lγ( f (x′), f (x)), parameterized by γ, more
amenable to optimization. A typical adversarial loss function of interest is

1https://nicholas.carlini.com/
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lγ( f (x′), f (x)) = max
(−γ, fc (x′)−max

k 6=c
fk (x′)

)
, (2.13)

Still, the problem is hard to solve because of the non-convexity of the constraint ||Dv(i )||p ≤ δp

or the account of the constraint x(i )′ ∈X . Hence, for computational tractability, we propose to rely
instead on the following regularized relaxation problem,

min
D∈D

V∈RM×N

N∑
i=1

lγ( f (x(i ) +Dv(i )), f (x(i )))+λh(δp ,p)(D,v(i )) s.t . D ∈D, (2.14)

with λ ∈R+ a regularisation parameter, D = {D ∈RP×M, ||D j ||p = 1,∀ j ∈ {1, . . . ,M}} and h(δp ,p) rep-
resenting a penalty function. We consider the `p -norm, with p = 2 or p =∞, as penalty function
leading to h(δ2,2)(D,v) = max(||Dv||2 −δ2,0) and h(δ∞,∞)(D,v) =∑

k max(|(Dv)k |−δ∞,0).
Enforcing a constraint through regularization is one of the most common ways, and the most

obvious when considering instead the optimization of a Lagrangian formulation. Therefore, prob-
lem (2.14) made total sense as the most natural regularized optimization of the original problem
(2.1). Note that the constraint x(i )′ ∈ X is not integrated into this formulation and therefore has
to be dealt with post-processing. We proposed to optimize (2.1) with a stochastic gradient de-
scent optimization. Algorithm 7 sketches its optimization as well as the post-processing ensuring
x(i )′ ∈X .

Algorithm 7 Regularized-LIMANS

Require: Classifier f ; Learning rate ρ; Training dataset T ; `p budget δp ; Optimizer Optim; Batch
size B; Regularization parameter λ

1: D =N (0,1M×P); V =N (0,1P×M)
2: for k = 0 to MAXEPOCH do
3: loss = 0
4: for (x(i ), y (i )) ⊂ T do
5: // Compute lossi from Problem (2.14)
6: x(i )′ =x(i )+Dv(i )

7: ŷad v = f (x(i )′); ŷ = f (x(i ))
8: lossi =L0(ŷad v , ŷ)+λh(δp ,p)(D,v(i ))
9: loss = loss+lossi

10: if modulo(i ) = B then
11: D ← Optim(∇Dloss) (Update)
12: V ← Optim(∇V loss) (Update)
13: D = Proj{D | ‖D‖p=1}(D)
14: loss = 0
15: end if
16: end for
17: end for
18: Dv(i ) ← Proj{Dv | ‖Dv‖p≤δ}(Dv(i ))

19: x(i )′ ← ProjX (x(i ) +Dv(i ))
20: return {x(i )′}N

i=1, (D, V)

Here, we get rid of the constraintsx(i )′ ∈X ,∀i and enforce small magnitude of ||Dv(i )||p through
the regularizer h(εp ,p). Empirically this promotes x(i ) +Dv(i ) ∈X to be nearly close to X .

The Regularized-LIMANS optimizes (D,V) in a stochastic fashion, and specifically, D is up-
dated using a projected gradient descent that ensures that the constraints ||D j ||p = 1,∀ j are sat-
isfied. A grid search on λ allows to control of the generalization of the model. In practice, for the
selected value ofλ, the constraint on ‖Dv‖p might slightly be violated. If needed a post-processing
is performed to ensure the respect of the constraint.
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2.5.2 Simple-LIMANS solver

The Regularized-LIMANS requires the cumbersome tuning of the hyper-parameter λ. To alleviate
that, we propose a second relaxation of LIMANS that involves an objective function encompassing
two of the constraints, the last one being taken care of by post-processing. Specifically, the method
termed Simple-LIMANS solves the following problem,

min
D∈RP×M

V∈RM×N

N∑
i=1

l ( f (projX (x(i ) + εp Dv(i ) +b

‖Dv(i ) +b‖p
)), f (x(i ))) (2.15)

where projX denotes the projection operator that maps its input x(i )′ =x(i )+Dv(i )+b onto X and
b an offset variable.

Note that the Simple-LIMANS adds a new variables b to he definition of the adversarial per-
turbation, that is ω(i ) = Dv(i ) +b. This offset is entirely universal to every adversarial perturbation
and, just like in an affine function, it allows to uplift of every adversarial perturbation whatever
the value of v. In a way the variable b can be seen as a rewriting of both D and v as [D,b]T and
[v,1]T. Such relaxation of the variables is commonly used within linear classifiers to allow greater
flexibility in decision boundary optimization. The role and necessity of the offset b is questioned
and analyzed in Section 2.6.7. To ease the reading and facilitate the comparison between Simple-
LIMANS and Regularized-LIMANS we will consider b to be part D as its relaxation and therefore
omit to mention it when unneeded to avoid confusion.

Simple-LIMANS trades off the constraint D ∈D, i.e. the unit norm constraint over the atoms of
D, for the explicit guarantee that the adversarial example x(i )′ is valid (i.e. belongs to X ) and that

the adversarial noise is utmost of magnitude εp by defining x(i )′
i as: x(i )′ = projX (x(i ) + εp Dv(i )

‖Dv(i )‖p
).

Here projX is the projection operator onto X . Simple-LIMANS solves (2.15) by iteratively updating
D and V using a gradient descent procedure as shown in Algorithm 8. It proves computationally
efficient as it does not require hyperparameter tuning. At termination, a post-processing is used
to ensure D ∈D without changing the adversarial examples by rescaling V accordingly.

Due to their nature, both Regularized-LIMANS and Simple-LIMANS’ stochastic optimization
apply to large-scale datasets.

2.5.3 Inference optimization

At inference time, provided that D is known, we seek for an unseen example x(k), its adversarial
counterpart x′(k) = x+Dv(k). For both proposed regularization, the original inference problem
(2.2) is relaxed in the same way, by optimizing (2.14) and (2.15) only over v(k). Therefore at in-
ference time, the complexity of the adversarial example crafting is on M ≤ P which significantly
improves the complexity of the adversarial example problem. Once D is known, for a new unseen
original example x(k), both original relaxation optimization problem boil down to,

min
v(k)∈RM

l ( f (projX (x(k) + εp Dv(k) +b

‖Dv+b‖p
)), f (x(k))), (2.16)

for the Simple-LIMANS algorithm and to,

min
v(k)∈RM

lγ2 ( f (x(k) +Dv(k)), f (x(k)))+λh(δp ,p)(D,v(k)). (2.17)

for the Regularized-LIMANS algorithm. Note that for the Regularized-LIMANS algorithm, there is
still the γ2 hyper-parameter to tune, which is not the same as γ previously used for the optimiza-
tion of both D and V during the training stage.

Similar to the training of both D and V, the above problems (2.16) and (2.17) can both be solved
directly by gradient descent as in Algorithm 8 and Algorithm 7, but here with the D fixed, consid-
ered as a parameter of the optimization.

62



CHAPTER 2. ADVERSARIAL ATTACK THROUGH DICTIONARY LEARNING

Algorithm 8 Simple-LIMANS

Require: Classifier f ; Learning rate ρ; Training dataset T ; `p budget δp ; Optimizer Optim; Batch
size B

1: D =N (0,1M×P); V =N (0,1P×M)
2: for k = 0 to MAXEPOCH do
3: loss = 0
4: for (x(i ), y (i )) ⊂ T do
5: // Compute lossi from Problem (2.15)
6: noise(i ) = Dv(i )

7: x(i )′ = projX (x(i )+
δp noise(i )

‖noise(i )‖p
)

8: ŷad v = f (x(i )′); ŷ = f (x(i ))
9: lossi =L∞(ŷad v , ŷ)

10: loss = loss + lossi

11: if modulo(i ) = B then
12: D ← Optim(∇Dloss) (Update)
13: V ← Optim(∇V loss) (Update)
14: loss = 0
15: end if
16: end for
17: end for
18: V ← [||D• j ||p V j•] ∀ j ∈ {1, . . . ,M}
19: D ← ProjD(D)
20: return {x(i )′}N

i=1, (D, V)

All these properties make both relaxations very appealing as solutions to the original problem
by theoretically breaking the complexity of the adversarial attack problem.
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2.6 LIMANS results

This section presents the experimental evaluations of the adversarial noise space and adversar-
ial perturbations generated with it, providing a comparison with the state-of-the-art attacks on
benchmark datasets.

Our experiments are conducted on the three datasets: MNIST, CIFAR-10, and ImageNet all pre-
sented in Section 1.1.6. As suggested in [182], we perform the experiments only on the validation
set and split it into three parts, the first set for training the model D, the second for the tuning of λ
when using Regularized-LIMANS and the last one for testing.
MNIST Experiments. The number of original examples for training, validation, and testing is re-
spectively 8000, 1000, and 1000. The experiments of the proposed model and the robustness esti-
mation were conducted on the trained LeNet classifier [94] achieving a validation accuracy higher
than 98.8%. These experiments have been implemented in Pytorch on a MacBook Pro with 2,3
GHz Intel Core i9, 8 cores, and a GPU Nvidia RTX 2080.
CIFAR-10 Experiments. The number of original examples for training, validation, and testing is
respectively 8000, 1000, and 1000. The experiments of the proposed model and the robustness
estimation were conducted on the pre-trained VGG11 with batch normalization and the robust
ResNet-18 [139] classifier. The transferability of the proposed model has been evaluated over four
vanilla DNNs, i.e., MobileNet-V2, ResNet50, DenseNet121 and the VGG11 as aforementioned, and
two robust DNNs, robust ResNet-182 and robust WideResNet-34-10 (R-wr-34-10) 2 [139]. These
experiments have been implemented in Pytorch on a MacBook Pro with 2,3 GHz Intel Core i9, 8
cores, and a GPU Nvidia RTX 2080.
ImageNet Experiments. The number of original examples for training, validation, and testing is
respectively 10000, 2000, and 5000. We select here the 4 vanilla classifiers, ResNet-18, MobileNet-
V2, DenseNet121, and VGG11 and two robust classifiers available on RobustBench2, robust ResNet-
18 and robust WideResNet-50 [135] (that we respectively rename as R-r18 and R-wr50 for simplic-
ity). The experiments on a large-scale dataset were performed on a server equipped with 4 GPU
Volta V100-SXM2-32GB.

2.6.1 Bridging the gap between specific and universal attacks

With LIMANS, we had better chances to reach a good modeling of the adversarial noise space,
than the one that resulted from the ADiL projected gradient solution. Indeed, by relying on projec-
tion functions, the adversarial budget is always reached (sometimes overcome with Regularized-
LIMANS), allowing D to capture the most relevant information to fool the classifiers.

To check the good modeling of the adversarial noise space, we solved the original problem
(2.1) with the fast and reliable Simple-LIMANS solver to check that by increasing the size of the
modeling (the number of atoms), its performances increased, sanity checking the overall proposi-
tion. Figure 2.14 displays Simple-LIMANS solutions for various numbers of atoms ranging from 1
to 4000.

The four figures highlight that when setting M = 1, LIMANS always reach a D solution spanning
adversarial noises more effectively than universal attack solutions. This point is essential to sanity-
checking the good modeling of the adversarial noise space. Indeed, by having both the b offset
relaxation and the v(i ) coefficient to the universal D, LIMANS is always supposed to be better than
the universal attacks solution. This necessary condition is indeed met, by a large margin for a
Standard classifier and a smaller margin for a Robust classifier, which is natural because of the
more complicated decision boundaries, making universal adversarial perturbations even harder
to find. When setting the number of atoms to the input dimension M = P, a solution D exists
being the basis of RP, from which all possible adversarial noises can be computed. Therefore, a
second necessary condition of the LIMANS good modeling is that when setting M = P, LIMANS
performances should get very close to state-of-the-art specific adversarial attacks.

2 https://robustbench.github.io/
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(a) `2 norm with standard classifier.

1 10 100 1000
Number of atoms M (log scale)

0

10

20

Tr
ai

ni
ng

 F
oo

lin
g 

ra
te

1 2
5

10
20

50
100

200
500

1k 2k 4k

Robust Classifier

LIMANS
AUTOATTACK
PGD
CW
UAP_PGD
FAST_UAP
CW_UAP

(b) `2 norm with robust classifier.
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(c) `∞ norm with standard classifier.
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(d) `∞ norm with robust classifier.

Figure 2.14: Training fooling rate of adversarial attacks under the `2 and `∞ norm constraint on
CIFAR-10 when fixing several atoms M (x-axis), associated to the classifier (left) VGG11 and (right)
robust ResNet-18, with the Simple-LIMANS solver.

As we can see in Figure 2.14a and 2.14b, when applied on both a Standard and a Robustly
trained deep classifier VGG11, the LIMANS `2 performances do reach the state-of-the-art specific
adversarial attack baselines performances when M = P ≈ 4000. However, for the `∞ norm, things
are a bit more sensitive. Indeed, we see a significant gap with the state-of-the-art specific attacks
even when M = P. This bias comes from our Algorithm 8, which does not look for a solution D as
a basis of RM, thus introducing a bias when the atoms are juxtaposing, preventing to possibility to
reach all possible specific adversarial perturbation from D. Empirically when considering the `∞
norm, all atoms found after training are juxtaposing, confirming the introduced bias and explain-
ing the gap found with state-of-the-art specific attacks, whereas, with the `2 norm, the atoms do
not look alike. These atoms are displayed and analyzed in Section 2.6.2.

From these conclusions, we understand that the optimization problem is well-defined and
empirical modeling results are acceptable. However, training performances do not assess a fair
comparison with the state-of-the-art baselines, test performances only do. Therefore we used
these D solutions found in Figure 2.14 and solved its paired inference problem (2.16) on the test
set to fairly compare LIMANS with the state-of-the-art baselines.

Figure 2.15 tracks the test fooling rate of LIMANS for different numbers of the adversarial
atoms under the `2 and `∞ norm constraint. It shows that the LIMANS attack is always stronger
than universal baselines as even for only a single atom M = 1, LIMANS allows tuning the v co-
efficient factor making it more efficient. We see that from M = 500, LIMANS closes the gap with
state-of-the-art specific adversarial attacks. This result is interesting as it empirically shows that
by tuning the number of atoms M, the proposed LIMANS does bridge the gap between specific
and universal adversarial attacks.

Besides reaching specific attack performances, by setting M = 500, the LIMANS attacks achieve
competitive results by only optimizing for a coding vector v of dimension 500 whereas specific
attacks need to optimize 3072 variables. Furthermore, such a result confirms the manifold hy-
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(a) `2 norm with standard classifier.
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(b) `2 norm with robust classifier.
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(c) `∞ norm with standard classifier.
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(d) `∞ norm with robust classifier.

Figure 2.15: Test fooling rate of adversarial attacks under the `2 and `∞ norm constraint on CIFAR-
10 when fixing several atoms M (x-axis), associated to the classifier (left) VGG11 and (right) robust
ResNet-18, with the Simple-LIMANS solver.

pothesis of the adversarial noise space thus confirming the efficiency of the quick, parameter-free
Simple-LIMANS solver. By relying on a linear LIMANS model, users are offered the to visually in-
spect the adversarial model’s parameters. Figure 2.16 displays the optimized model’s atoms when
M = 5. It shows how the atoms, the roots of LIMANS’s adversarial leaks, are structured. This struc-
ture differs according to the classifier and the considered `p norm. In particular, the dictionary of
LIMANS-`2 on the robust classifier is reminiscent of certain Fourier decompositions.

2.6.2 Visually interpretable atoms

In this section, we inspect the LIMANS parameters (atoms of D) found after the training stage and
empirically observe interesting patterns that we detail. We give an empirical review of the three
mainly used datasets, that is CIFAR-10, ImageNet, and MNIST.

CIFAR-10 dataset

The CIFAR-10 dataset is a good dataset for analyzing the performances of adversarial perturba-
tions as it is a decently complex dataset appropriately representing the real world by offering RGB
images of 10 labels each very different from one another. Therefore the claim that the atoms are
visually interpretable must be at least proven with this dataset.

By modeling the adversarial noise space, we empirically observe that LIMANS’ parameters
capture the most meaningful information fooling the classifier. Figure 2.16 displays the optimized
LIMANS’ atoms when M = 5, and presents interesting results. Figure 2.16a and Figure 2.16b dis-
play LIMANS parameters for a Standard and a Robust classifier under the `2 norm constraint. As
we can see, under the `2 norm constraint, the atoms do not look alike at all and target locally in-
teresting spots within the images, such that specific adversarial perturbations can be computed,
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D1 D2 D3 D4 D5

(a) LIMANS-`2 on Standard classifier.

D1 D2 D3 D4 D5

(b) LIMANS-`2 on Robust classifier.
D1 D2 D3 D4 D5

(c) LIMANS-`∞ on Standard classifier.

D1 D2 D3 D4 D5

(d) LIMANS-`∞ on Robust classifier.

Figure 2.16: Visualization of the learned universal adversarial directions (atoms of the dictionary
D) when M = 5, on CIFAR-10 and corresponding to the classifier (left) VGG11 and (right) robust
ResNet-18. All atoms are rescaled for display.

taking advantage of these "pitfalls" for which the classifier is the weakest. Figure 2.16a and Fig-
ure 2.16d however, consider the `∞ norm constraint. As previously mentioned, all atoms display
the classifier’s vulnerabilities for every pixel value, preventing the overall D from being a basis of
RP and thus limiting the number of possible specific adversarial perturbations that can be com-
puted from. It is interesting, however, to see that even if this modeling of the adversarial noise
space is not optimal, the atoms are nevertheless interesting to inspect. Indeed, we see that for the
Standard classifier, the atoms capture the corners and edges of the objects, which are the most
discriminating features used by the classifier to make its prediction.

In some way, we can read the LIMANS’ atoms as a capture of the semantics of the objects
within the classification space. Figure 2.16 highlights very particular atoms that indeed spotlight
recurring patterns in classification such as edges and corners for the `∞ atoms and local spots in
the images for `2 atoms.

MNIST dataset

For atom visualization only, we also considered experiments on the MNIST dataset. Indeed, the
MNIST dataset offers black-and-white images with pixels in very small manifold values, therefore
making the problem too simple for an adversarial perturbation study with deep classifiers. Very
few works in the adversarial community target the MNIST dataset. In our case, since we only want
to analyze the parameters found after the training, it still is worth looking at the result.

Along with Figure 2.16, we also show that the same conclusions can be reached for simpler
datasets such as MNIST with Figure 2.17,

In addition to these visually interesting universal parameters, this empirical observation is fur-
ther proven when inspecting the LIMANS produced specific adversarial perturbations.

Figure 2.18 displays LIMANS-specific adversarial perturbations on the MNIST dataset (pur-
posely used to ease the observations). LIMANS produces much more interesting adversarial per-
turbations than state-of-the-art specific adversarial perturbations that are random. LIMANS how-
ever, target the most sensitive spots to fool the classifiers, which makes LIMANS adversarial attack
a much more realistic attack than state-of-the-art specific adversarial attacks.

2.6.3 A more robust adversarial attack

In this Section, we observe that LIMANS offers a more robust adversarial attack than state-of-the-
art specific attacks. Table 2.3 and 2.4 present the RAUD of LIMANS and state-of-the-art specific
adversarial attacks on the CIFAR-10 dataset under respectively the `∞ and `2 norm constraint.
More details about the RAUD metric are provided in Section 1.2.3.

Table 2.3 and Table 2.4 shows the performances of the robustness of the proposed `∞ and `2
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D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

(a) LIMANS-`2.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

(b) LIMANS-`∞.

Figure 2.17: Visualization of the learned universal adversarial directions (atoms of the dictionary
D) when M = 10, on MNIST according to both the `2 and `∞ norm targetting a LeNet classifier
achieving more than 98.8% of test accuracy. All atoms have been rescaled for display.

LIMANS Noise Predicted: 0 Predicted: 7

(a) LIMANS adversarial perturbation and example.

PGD Noise Predicted: 7 Predicted: 2

(b) PGD adversarial perturbation and example.

Figure 2.18: Examples of `2 adversarial perturbations produced by LIMANS and PGD on the
MNIST dataset for a LeNet classifier achieving more than 98.8% of test accuracy.

LIMANS attack and its comparison to the specific adversarial attack baselines targetting a Stan-
dard and a Robust classifier. These experiments are conducted with the same settings as in [100].

Lorenz et al. [100] highlights that state-of-the-art specific attacks become nearly or completely
harmless when the classifier is protected by an adversarial examples detector. Under the `∞ norm
constraint, we find similar results and, even the proposed LIMANS attack surpasses specific at-
tacks when M is only 10.

With M ≥ 500, the proposed LIMANS attack can successfully jeopardize the classical classi-
fication system, even equipped with an attack detector. Using a detector before a classification
system is one kind of adversarial defense, presented in Section 1.2.5. The robust classifier shows
its stability facing adversarial attacks while the proposed LIMANS attack can also ignore the attack
detectors and damage the system to some extent. It indicates thus the potential application of the
proposed attacks in evaluating the effectiveness of an adversarial example detector plugged prior
in a classical or robust classifier.

To a lesser extent, we draw similar conclusions for the `2 norm constraint. Indeed, when
the classifier is protected by a specific attack detector (detector trained to recognize a specific
attack’s adversarial examples), LIMANS is almost always a more harmful attack. These conclu-
sions are questioned when the detector is trained to recognize LIMANS’ adversarial examples.
Indeed, when doing so, LIMANS’ performances are never better than state-of-the-art specific at-
tacks. However, Table 2.4 tells us that using a LIMANS detector is a poor defense choice. Indeed,
before considering any defense detector, Figure 2.15 highlights the natural superiority of specific
attacks, which inherently leads to consider a specific attack detector as the most effective defense.
Even when using a LIMANS detector, specific attacks RAUD is lowered empirically showing the
LIMANS framework is relevant either as an adversarial attack or a defense mechanism.

Under the `2 norm constraint, using a LIMANS detector will indeed protect from LIMANS ad-
versarial examples, but also from state-of-the-art specific attacks, which indirectly showcases the

68



CHAPTER 2. ADVERSARIAL ATTACK THROUGH DICTIONARY LEARNING

Table 2.3: Robustness performance of the LIMANS `∞ attack (ε= 8/255) in terms of RAUD on the
CIFAR-10 test data and against the attack detectors plugged in both standard classifier (S.C.) and
robust classifier (R.C.). The shown performances are averaged over 5 random seeds. The smaller
the RAUD, the more robust the adversarial attack is. The best performances are marked in bold.

Detectors d dPGD dAutoattack dLIMANS10

Classifiers f S.C. R.C S.C. R.C S.C. R.C
SA 91.1 85.1 91.1 85.1 91.1 85.1
FGSM 91.1 ± 0.0 85.1 ± 0.0 91.1 ± 0 85.1 ± 0.0 89.3 ± 0.0 79.5 ± 0.0
PGD 91.0 ± 0.0 84.9 ± 0.1 91.0 ± 0.0 85.0 ± 0.0 80.7 ± 0.5 73.3 ± 0.3
Autoattack 91.0 ± 0.0 85.0 ± 0.0 91.1 ± 0.0 85.0 ± 0.0 78.2 ± 0.3 71.5 ± 0.3
LIMANS10 78.3 ± 2.4 79.6 ± 0.0 81.7 ± 2.0 8.0 ± 0.0 86.4 ± 1.6 79.5 ± 0.1
LIMANS500 26.3 ± 0.3 71.3 ± 0.1 32.1 ± 0.4 73.2 ± 0.2 36.5 ± 3.1 69.4 ± 0.2
LIMANS1000 24.7 ± 0.9 70.4 ± 0.2 31.6 ± 1.1 72.4 ± 0.1 36.9 ± 4.6 68.5 ± 0.2
LIMANS4000 23.7 ± 0.5 69.8 ± 0.0 30.8 ± 0.9 72.9 ± 0.3 35.6 ± 2.2 68.2 ± 0.1

robustness of the LIMANS framework.

Table 2.4: Robustness performance of the LIMANS `2 attack (ε = 0.5) in terms of RAUD on the
CIFAR-10 test data and against the attack detectors plugged in both standard classifier (S.C.) and
robust classifier (R.C.). The shown performances are averaged over 5 random seeds. The smaller
the RAUD, the more robust the adversarial attack is. The best performance is marked in bold
font.

Detectors d dPGD dAutoattack dLIMANS10

Classifiers f S.C. R.C S.C. R.C S.C. R.C
SA 91.1 85.1 91.1 85.1 91.1 85.1
PGD 64.0 ± 1.2 82.4 ± 0.0 65.3 ± 0.6 81.8 ± 0.1 42.9 ± 0.6 80.1 ± 0.0
Autoattack 63.1 ± 1.1 82.19 ± 0.1 65.8 ± 0.6 81.1 ± 0.2 42.1 ± 0.3 79.4 ± 0.0
LIMANS10 83.5 ± 0.5 87.4 ± 0.1 82.9 ± 0.4 88.1 ± 0.0 86.9 ± 0.9 87.6 ± 0.1
LIMANS500 62.9 ± 0.2 84.0 ± 0.4 64.7 ± 1.0 83.8 ± 0.3 51.7 ± 1.3 81.7 ± 0.1
LIMANS1000 63.7 ± 0.6 82.7 ± 0.3 63.6 ± 0.9 82.6 ± 0.2 46.8 ± 0.7 80.1 ± 0.1
LIMANS4000 62.6 ± 1.2 82.16 ± 0.2 62.2 ± 0.6 82.6 ± 0.3 46.9 ± 0.2 80.0 ± 0.2

Details about the RAUD detector d

Regarding the design of a descent adversarial examples detector, we followed the guidelines pro-
posed by [99] and [67]. In these two works, authors propose to use a random forest binary classifier
with at least 100 trees, in the Fourier domain either of the input images or of the Fourier Features
of Feature-Maps from the images. Authors showed that by using either one of the inputs, the ran-
dom forest binary classifier can discriminate with high precision adversarial examples computed
from state-of-the-art specific adversarial attacks on several complex datasets such as CIFAR10, CI-
FAR100, ImageNet, or Celeba. To lower as much as possible the bias introduced by the detector,
we chose to use a random forest binary classifier with 300 trees in the Fourier domain of the input
images. Our choice has been confirmed by extensive experiments and is highlighted in Table 2.5.
Indeed, Table 2.5 displays the confusion matrix of the detectors involved in the results presented
in Table 2.3.

The detectors have been trained on the same training dataset as the one used in the training of
LIMANS and, the displayed values computed over the validation dataset. Finally, the RAUD metric
of the different adversarial attacks using the detector is performed on the test dataset which none
has previously seen before, making everything fair.

We empirically observe highly effective detectors discriminating almost perfectly real images
rather than adversarial images, without mistaking one or the other by producing low False-Positive
and False-Negative values. These performances gave us confidence in the use of these detectors as
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Table 2.5: Confusion matrices of the detectors used to compute the RAUD of Table 2.3. All de-
tectors have been trained on the same training dataset as the one used in the training of LIMANS
and the displayed values of computed over the validation dataset, such that fair performances are
considered. TN: True Negative, FP: False Positive, FN: False Negative, TP: True Positive.

Detectors d dFGSM dPGD dAutoattack dLIMANS10

Confusion Matrix
TN FP
FN TP

863 57
0 920

814 106
0 920

790 130
0 920

846 74
95 825

a tool of the RAUD metric, evaluating both the harmfulness and the transferability of adversarial
attacks, which are essential to be measured when assessing the quality of an adversarial attack.

2.6.4 Transfer performances

The results in this part were generated using the algorithm Regularized-LIMANS.
We present a comparison with the specific `∞ adversarial attacks AutoAttack and three state-

of-the-art transferable `∞ attacks that are, VNI-FGSM [171], NAA [183], and RAP [125]. Besides,
we consider also Translation-Invariant Attack (TI-FGSM) [50], VMI-FGSM [171], and universal `∞
attacks UAP and UAPPGD. However, the well-known DI-FGSM, MI-FGSM, or NI-FGSM are not
selected to compare, as all these processes are already integrated into the RAP attack. The LIMANS
`2 attack is compared with the `2 version of AutoAttack, UAP, UAPPGD, and RAP, as well as the CW
adversarial attack.

By adjusting the hyper-parameter λ of the Regularized-LIMANS solver, we managed to find an
optimized M = 150 for CIFAR-10, which achieves almost comparable performance with AutoAt-
tack and to analyze the transferability of the learned space without loss of precision as shown in
Table 2.6. With the ImageNet dataset (Table 2.8), considering the large size of an image and the
memory limitation, this dimension becomes M = 100. It is far from the dimensionality of the full
adversarial noise space, and hence, does not lead to comparable performance with specific attacks
such as AutoAttack. However, it still offers evidence for the transferability of the learned space on
ImageNet. Moreover, for robust classifiers, the decision boundaries are more complicated, lead-
ing to failure in closing the performance gap between the LIMANS attack and AutoAttack when
only 100 adversarial directions are learned. Nevertheless, it always shows good performance in
transferring.

Tramèr et al. [159] claimed that the distance between the decision boundaries of two classifiers
trained on the same dataset is small. It means that the LIMANS model of the adversarial noise
space is likely to be transferable between classifiers. The results reported in the Table 2.6 confirm
this intuition. The LIMANS model builds upon a ResNet50 and a VGG showing better transfer
performance over state-of-the-art attacks across other classifiers.

Besides, note that the transferable property also holds between vanilla and robust classifiers.
The LIMANS model learned on a vanilla classifier used to fool a robust classifier (and vice versa)
produces slightly worse results than the one learned on a classifier of the same category. It might
be due to the differences in the dataset split used to train the classifiers, resulting in a larger dis-
tance between the decision boundaries of the two classifier types. Yet the performance is still re-
markable, e.g., on ImageNet, FR(R-wr50→ResNet-18) = 78% FR(VGG→ResNet-18) and FR(ResNet-18→R-r18) =
35% FR(R-r18→R-r18) (with R-r18 standing for Robust ResNet-18 and R-wr50 for Robust WideResNet-
50).

Furthermore, it is worth noting that the performance of LIMANS attack on a target classifier
does not depend on its performance on the source classifier, but on the nature of this target clas-
sifier. In Table 2.6, the fooling rate of the LIMANS attack on ResNet is 91.3%. However, when the
learned LIMANS model generates adversarial perturbation to fool MobileNet, its performance is
even better, reaching 96.0%. This is because MobileNet is a simpler and easier classifier to attack.
Finally, through comparison and analysis, we conclude that a LIMANS model trained on a robust
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classifier is more easily transferable to other classifiers. Generally, the model that is harder to be
fooled, shows ascendancy performances in transferring to other models.

2.6.5 Time consumption analysis

By relying on a model of the adversarial noise space D ∈RP×M with M ¿ P, the LIMANS adversar-
ial attack problem optimizes a vector v ∈RM rather than an adversarial perturbation ω ∈RP. Intu-
itively, by optimizing a lower number of variables, the LIMANS attack breaks the time complexity
of the adversarial example problem therefore, should take much less time to compute adversarial
examples.

In Figure 2.19, we conducted an experiment comparison of the time consumption of LIMANS
and state-of-the-art specific adversarial attacks to confirm or not this intuition.
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Figure 2.19: Pareto front of the Robust Accuracy achieved by a standard VGG11 classifier and the
time consumption taken by the state-of-the-art specific adversarial attacks and the LIMANS with
a different number of atoms M attacks under the `2 and the `∞ norm constraint on the CIFAR-10
dataset. On the y-axis is displayed the Robust Accuracy of the classifier, the lower Robust Accu-
racy is, the more efficient the adversarial attack is. On the x-axis is the time taken (in seconds) to
compute adversarial examples over all the test sets of CIFAR-10, the lower the time is, the more
efficient the adversarial attack is.

As shown in Figure 2.19, LIMANS does not improve the time consumption of the adversarial
example crafting problem. Indeed, LIMANS is always dominated in time consumption by almost
every specific attack. The only exception is Autoattack with the `2 norm constraint, which takes
much more time to reach the best Robust Accuracy. We explain this empirical counter-intuitive
observation by highlighting that specific adversarial attacks rely on enhanced and efficient opti-
mization procedures to findω ∈RP, whereas LIMANS optimizes problem (2.17) in a very basic way
by relying on an SGD optimization that is not very efficient in time.

Figure 2.19 leads us to consider improving the inference optimization problem, as an impor-
tant perspective for future work. Indeed, improving the time consumption of LIMANS would likely
place it as a strong, more robust, and more transferable attack compared to state-of-the-art spe-
cific attacks. Section 2.8 details the envisioned LIMANS perspectives.

2.6.6 Insights on the choice of M

Figure 2.15 tells us that the choice of M is crucial regarding the performances of the derived LI-
MANS attack.

From our CIFAR-10 experiments, we found it interesting to choose M = 500 as, in terms of
RAUD the LIMANS500 attack already overcomes state-of-the-art specific adversarial attacks. By
setting M = 500, the adversarial examples creation problem boils down to optimizing 500 vari-
ables, representing only 16.27% of the original image size. As for ImageNet which is a much more
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complex and bigger dataset, our experiments suggest that setting M = 150 is a good trade-off be-
tween the LIMANS performances and the space complexity to store such an adversarial noise
model in GPU memory.

2.6.7 Optimizations hyper-parameters

This section presents the different implementation choices made for the Regularized-LIMANS and
Simple-LIMANS experiments. We conducted several sanity-check experiments to enhance the
LIMANS optimization. The following subsections detail each sanity-check experiment.

Regularized-LIMANS hyper-parameters and settings

Figure 2.20 illustrates the impact of the hyper-parameter λ and the number of atoms M on the
attack performances. With appropriately increasing M, the performance will be improved, which
confirms the conclusions drawn from Figure 2.15 and Figure 2.19. Considering the trade-off be-
tween the attack performances and the memory limit of storing the atoms, we choose to use
M = 150 for CIFAR-10 and M = 100 for ImageNet when relying on the Regularized-LIMANS solver
to estimate the best λ hyper-parameter. From Figure 2.20 we understand that when considering
the `∞ norm constraint, setting λ= 1 provides the best performance, while λ= 0.1 is the suitable
setting when dealing with the `2 norm constraint. This conclusion is valid when extending to other
classifiers, as shown in Table 2.9.

Figure 2.20: Performance of LIMANS (left) `∞-attacks and (right) `2-attacks on CIFAR-10 when at-
tacking VGG, under different settings of hyper-parameter in Regularized LIMANS λ, and different
number of atoms M.

Table 2.9: Fooling rate performances of the Regularized-LIMANS solver with M = 150 on CIFAR-10,
when varying the λ hyper-parameter. The best results are marked in bold style.

`∞ norm `2 norm
λ VGG MobileNet R-R18 VGG MobileNet R-R18

0.1 73.2 85.3 15.8 71.7 95.4 17.6
1.0 91.0 97.3 25.3 45.4 49.6 12.8
10 46.1 91.7 19.9 13.6 24.4 10.3

Simple-LIMANS hyper-parameters and settings

The main idea behind Simple-LIMANS is to optimize the LIMANS parameters in the simplest way
possible, with the least hyperparameter tuning and optimization details possible. However, few
remain. We detail here their impact and how we selected those.
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Simple-LIMANS ablation study of the offset b
As of good practice, and to see that Simple-LIMANS was indeed capturing the right amount

of information without promoting too much the offset b, we performed an ablation study of the
LIMANS performances with and without the offset b,
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Figure 2.21: Performances of the Simple-LIMANS algorithm under the `2 norm constraint, with
and without the offset b.

Figure 2.21 compares the training performances of a Simple-LIMANS produced solution and
the same solution without the offset b. We can see that LIMANS’ performances grow accordingly
without any unseen artifacts captured byb. Besides, through this figure, we understand its relative
importance alongside the atoms of D that constitute the specific adversarial noise of each original
example using its corresponding coding vector. The weight of b relative to the atoms is reason-
able, and the balance between both in the implication of the fooling performances is respected.
Using an offset b improves the performances of the LIMANS attack, but is not necessary for the
well-being of both the modeling of the adversarial noise space and the crafting of new adversarial
perturbations. The offset relaxation of D exactly does what it is intended to do and, sanity checks
the optimization procedure.

Learning rate
No regularization parameter tuning is needed and the learning rate is automatically taken care

of, by using the scheduler ReduceLROnPlateau. The ReduceLROnPlateau scheduler is a tool pro-
posed by the PyTorch framework, which aims at reducing the learning rate when the loss plateaus.
The optimization needs to start with a pretty high learning rate which will avoid bad random ini-
tialization local minima, and then will decrease as the optimization proceeds, allowing the pa-
rameters to reach a better minimum. The parameters of the used ReduceLROnPlateau are pa-
tience=40, factor=0.1, and threshold=1e-1.

Optimizer
All the Simple-LIMANS optimizations were performed with the Adam optimizer. We found the

Adam optimizer to be the best among several ones, as shown in Figure 2.22a. Indeed, similar per-
formances can be reached with a different optimizer such as the RMSProp optimizer, but overall
the Adam optimizer or one of its variants seems to be a relevant optimizer choice.

Batch size
As Figure 2.22b shows, when using the Simple-LIMANS solver, the batch size B is not a sensitive

hyper-parameter. We found that different batch sizes could end up with similar performances.
The only difference resides in the time consumption, higher batch sizes yield faster computations.
During our experiments, the batch size B was set to B = 256 during training and B = 64 during
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inference.

0 50 100 150 200
Minibatch optimizations

2000

3000

4000

5000

6000

7000

Tr
ai

ni
ng

 lo
ss

ADAM
RMSPROP
ADAGRAD
ADAMAX
NADAM

(a) Optimizer comparison with the Simple-LIMANS
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Figure 2.22: Evolution of LIMANS10 training loss according to (left) different optimizers and (right)
different batch sizes B using the Simple-LIMANS solver on a standard VGG classifier under the `∞
norm.

2.6.8 Multi-LIMANS

The most obvious extension of LIMANS we thought of, was to make it an ensemble attack coined
Multi-LIMANS. In the search for the optimal adversarial noise space model we proposed to learn a
shared D on multiple classifiers fk , each possessing their specific training coding vectors {v (i

k }N
i=1,

and see if, at inference, the specific adversarial noises would be more efficient or more transfer-
able.
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(a) Multi-LIMANS applied on a Standard classifier.
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(b) Multi-LIMANS applied on a Robust classifier.

Figure 2.23: Test performances of the Simple-LIMANS algorithm under the `∞ norm constraint,
for both the standard classifier (VGG) and the robust classifier (Robust ResNet) with the Multi-
LIMANS training on the VGG, DenseNet and robust ResNet classifiers.

Figure 2.23 displays test fooling rate performances between a Multi-LIMANS trained D and, a
Simple-LIMANS trained D. We empirically saw that learning D on multiple classifiers rather than
only one did not improve the universal adversarial direction but introduced more bias, preventing
it from reaching the inference-specific adversarial noise which was originally at hand.

Another envisioned improvement that Multi-LIMANS could bring in, was to improve the trans-
ferability. We knew that by learning on multiple classifiers, the dictionary was not better at in-
ference for those classifiers, but did it generalize more and therefore performed better on other
classifiers it has not yet been applied to,

Unfortunately, the bias introduced by learning D on multiple classifiers does not balance with
the multi-classifiers’ learned property. As Figure 2.24 shows, inference performances are never
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Figure 2.24: Transfer test performances of the Simple-LIMANS algorithm under the `∞ norm con-
straint, for both the standard classifier (VGG) and the robust classifier (Robust ResNet) with the
Multi-LIMANS training on the VGG, DenseNet, and robust ResNet classifiers, but not trained on
the model used during inference.

improved when training the same D to fool multiple classifiers, which means it only adds bias,
and, training a D specific to a classifier already captures a generalized misclassification power,
that we previously outlined to be transferable to other classifiers.
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Table 2.6: Transferability performance of the LIMANS `∞ attacks on CIFAR-10 (ε= 8/255), in terms
of fooling rates (FR). The best transferable results are marked in bold font.

Source model \Target model MobileNet Inception ResNet50 DenseNet VGG R-r18 R-wr-34-10

AutoAttack 100 87.1 37.2 32.8 22.4 1.7 1.5
UAP 47.3 36.1 9.3 8.3 8.7 1.3 0.8

UAPPGD 86.2 56.1 20.5 19 21.3 1.6 1.5
TI-FGSM 87.2 25.2 25.9 29.1 16.1 2.1 2.0

VMI-FGSM 100 87.3 53.1 49.8 38.9 2.2 2.5
MobileNet VNI-FGSM 100 88.1 54.8 53.1 40.7 2.4 2.9

NAA 72.2 25.3 6.8 5.9 6.4 1.3 1.0
RAP 86.7 60.3 38.5 35.7 25.8 3.0 1.6

LIMANS 97.3 92.2 73.6 66.4 67.7 10.2 10.7
AutoAttack 54.7 100 14.7 12.9 12.0 1.2 1.1

UAP 39.2 32.9 9.3 9.7 9.4 1.5 1.1
UAPPGD 73.9 75.5 26.3 23.8 27.3 2.2 1.5
TI-FGSM 19.7 60.2 19.8 21 11.4 2.2 1.5

VMI-FGSM 69.8 86.1 40.8 38.3 31.3 2.6 1.6
Inception VNI-FGSM 75.5 89.5 44.4 42.4 36.3 3.2 2.3

NAA 38.7 70.5 8.4 8.1 9.2 1.1 1.5
RAP 61.9 90.2 42.0 41.7 30.3 2.3 2.7

LIMANS 98 95.1 79.6 73.9 75.8 10.7 10.8
AutoAttack 63.3 52.6 100 54.6 25.1 1.2 2.4

UAP 31.4 23.6 12.1 12.5 11.2 1.3 1.7
UAPPGD 63.3 49.4 39.4 35.1 26.1 1.1 2.3
TI-FGSM 18.4 17.1 74.0 38.5 20.4 2.2 3.0

VMI-FGSM 74.9 75.3 96.0 78.1 53.5 2.1 3.2
ResNet50 VNI-FGSM 78.3 76.9 95.9 80.3 57.2 2.7 2.1

NAA 50.7 38.6 64.7 22.9 18.4 1.4 2.1
RAP 49.0 45.7 75.1 52.5 35.4 1.6 2.8

LIMANS 96.0 92.9 91.3 81.8 82.1 11.7 13.2
AutoAttack 56.9 51.6 48.8 100 21.8 2.1 2.0

UAP 27.6 20.6 10.6 12.8 11.4 1.6 1.4
UAPPGD 61.1 49.9 29.3 47.4 27.3 2.7 2.1
TI-FGSM 17.4 15.8 26.3 65.2 17 2.9 2.3

VMI-FGSM 73.7 71.8 77.2 93.1 47.9 3.3 3.7
DenseNet VNI-FGSM 78.1 76.2 79.5 94.0 53.3 3.5 4.2

NAA 37.2 31.1 23.7 74.9 12.5 1.2 1.5
RAP 47.8 43.5 48.7 75.9 35.6 3.2 3.5

LIMANS 96.7 93.5 88.4 85.5 82.7 12.3 13.4
AutoAttack 62.5 58.0 43.0 44.0 100 2.7 2.7

UAP 22.0 18.4 10.2 10.2 10.0 1.1 1.3
UAPPGD 63.6 55.9 27.6 29.4 41.9 3.1 2.1
TI-FGSM 19.7 16.7 25.6 27.6 74.4 3.7 2.2

VMI-FGSM 66.2 64.2 57.5 56.9 96.5 3.0 2.6
VGG VNI-FGSM 69.3 68 62.6 61.4 96.5 3.0 2.6

NAA 42.3 38.3 14.5 1.8 71.6 1.6 1.2
RAP 46.5 44.5 39.5 40.9 73.8. 3.3 3.4

LIMANS 97.4 95.1 87.5 81.5 91.0 11.5 12.6
AutoAttack 17.5 15.7 17.2 15.6 17.5 44.3 23.4

UAP 14.5 9.5 7.1 6.4 7.6 1.9 2.6
UAPPGD 18.6 13.3 9.7 8.6 10.5 3.1 3.5
TI-FGSM 8.4 5.5 8.2 7.8 8.6 26.2 13.1

VMI-FGSM 24 22.9 24.2 21.9 24.8 38 22.7
R-r18 VNI-FGSM 27.1 23.1 25.4 23.8 25.6 38.1 22.9

NAA 16.2 11.5 11.2 10.4 10.4 18.7 7.2
RAP 10.9 8.4 7.9 8.9 9.7 23.8 12.2

LIMANS 81.3 73.2 71.7 68.3 61.7 25.3 21.6
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Table 2.7: Transferability performance of the LIMANS `2-attacks on CIFAR-10 (ε= 0.5), in terms of
fooling rates (FR). The best transferable results are marked in bold font.

Source model \Target model MobileNet Inception ResNet50 DenseNet VGG R-r18 R-wr-34-10

AutoAttack 100 50.20 14.20 13.30 8.20 0.90 0.50
UAP 7.50 5.20 3.00 2.50 2.40 0.30 0.40

UAPPGD 37.90 15.20 2.00 1.10 0.90 0.30 0.20
CW 97.50 11.00 4.20 3.20 2.40 0.30 0.00

MobileNet RAP 67.30 11.20 4.20 3.90 2.60 0.50 0.10
LIMANS 95.40 91.50 61.70 59.30 51.50 4.60 5.00

AutoAttack 32.80 100 6.60 7.90 5.50 0.50 0.50
UAP 9.80 7.50 2.50 3.50 2.90 0.20 0.10

UAPPGD 26.90 16.70 1.30 2.30 2.00 0.30 0.10
CW 16.30 82.80 5.00 5.20 3.70 0.30 0.00

Inception RAP 13.60 43.50 3.50 3.60 2.70 0.40 0.30
LIMANS 94.60 94.10 64.30 63.90 57.20 5.10 5.20

AutoAttack 31.00 23.40 99.70 26.10 10.00 1.20 0.70
UAP 5.10 3.80 2.40 1.90 2.80 0.50 0.30

UAPPGD 4.10 3.20 2.20 2.30 2.20 0.40 0.20
CW 13.50 9.80 82.40 13.10 6.10 0.50 0.40

ResNet50 RAP 10.20 8.60 33.00 8.60 4.90 0.40 0.30
LIMANS 92.60 87.50 78.10 71.70 61.70 7.90 7.50

AutoAttack 32.60 25.20 27.30 99.50 10.20 0.50 0.50
UAP 4.90 3.70 2.60 3.30 1.90 0.20 0.20

UAPPGD 5.00 4.50 3.20 3.70 2.10 0.20 0.20
CW 14.60 13.70 14.80 80.00 6.40 0.40 0.30

DenseNet RAP 8.00 7.30 7.70 29.00 4.50 0.30 0.30
LIMANS 91.10 87.60 74.00 74.10 62.70 8.40 7.70

AutoAttack 32.00 28.20 19.50 21.10 98.90 0.80 0.60
UAP 4.70 3.80 2.20 2.70 2.00 0.50 0.40

UAPPGD 4.80 5.60 2.00 2.70 2.80 0.40 0.40
CW 10.00 8.20 5.70 7.40 79.10 0.60 0.30

VGG RAP 8.80 7.10 5.20 6.50 32.10 0.30 0.50
LIMANS 94.20 89.00 74.80 71.00 71.70 8.00 7.10

AutoAttack 6.70 8.30 8.00 8.50 9.60 24.60 11.00
UAP 3.40 3.10 2.50 2.30 1.80 0.50 0.40

UAPPGD 2.70 2.10 2.00 1.70 2.60 0.30 0.10
CW 9.50 11.60 10.60 10.00 11.60 22.90 3.90

R-r18 RAP 8.70 7.70 7.60 8.10 9.60 10.70 4.50
LIMANS 58.70 53.80 50.30 50.70 41.80 17.60 14.60

AutoAttack 7.70 7.80 8.20 7.80 8.90 15.20 22.50
UAP 3.00 3.10 2.40 2.90 2.60 0.90 0.40

UAPPGD 2.90 2.80 2.20 1.00 1.60 0.70 0.60
CW 10.30 9.10 13.00 10.60 10.40 8.80 21.20

R-wr-34-10 RAP 8.10 7.30 8.10 7.60 7.70 7.10 9.90
LIMANS 59.10 54.80 51.80 50.00 42.50 17.00 14.70
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Table 2.8: Transferability performance of the LIMANS `∞ attack on ImageNet (ε= 4/255), in terms
of fooling rates. The best transferable results are marked in bold font.

Source model \Target model MobileNet ResNet18 DenseNet VGG R-r18 R-wr50

AutoAttack 100 26.38 20.44 26.94 1.64 1.24
UAP 48.48 11.5 10.46 17.28 1.8 0.84

UAPPGD 69.94 18.04 14.34 22.34 2.72 1.56
TI-FGSM 99.74 36.98 31.66 31.24 3.2 2.56

VMI-FGSM 100 44.84 37.92 42.92 2.92 2.04
MobileNet VNI-FGSM 99.98 44.64 36.54 43.62 2.88 2.00

NAA 84.56 15.1 11.72 16.88 2.1 1.2
RAP 96.52 54.58 47.24 49.16 3.72 3.16

LIMANS 75.24 50.06 46.94 44.34 10.02 5.62
AutoAttack 40.3 100 35.76 34.9 1.8 1.34

UAP 13.34 11.3 9.00 11.72 1.36 0.86
UAPPGD 25.3 47.22 18.44 23.26 2.5 1.44
TI-FGSM 32.06 99.84 31.38 31.66 2.98 2.8

VMI-FGSM 56.5 100 51.78 50.2 2.9 2.04
ResNet18 VNI-FGSM 56.74 99.98 51.4 51.42 2.84 2.04

NAA 22.54 97.94 14.84 19.3 2.12 1.2
RAP 53.36 96.74 51.30 50.60 3.80 3.14

LIMANS 59.16 59.16 53.14 48.28 10.48 6.62
AutoAttack 37.72 40.4 100 30.22 1.8 1.3

UAP 12.76 9.94 9.8 11.42 1.24 0.92
UAPPGD 22.72 20.7 40.04 20.18 2.48 1.28
TI-FGSM 30.1 35.56 99.66 27 3.12 2.32

VMI-FGSM 52.22 55.44 99.98 44.82 2.9 2.06
DenseNet VNI-FGSM 53.88 56.9 99.98 46.16 2.64 2.1

NAA 24.22 25.68 98.34 21.38 1.34 1.42
RAP 48.16 54.12 96.76 42.00 3.12 3.30

LIMANS 58.86 56.9 57.26 47.74 11.3 7.32
AutoAttack 47.94 40.06 32.62 100 2.34 1.42

UAP 13.34 9.8 8.82 13.6 1.34 0.78
UAPPGD 24.42 23.16 18.12 46.26 2.54 1.6
TI-FGSM 33.2 38.26 29.3 99.4 2.96 2.28

VMI-FGSM 57.52 53.46 43.76 99.86 2.9 2.2
VGG VNI-FGSM 57.98 53.96 42.88 99.84 2.76 2.24

NAA 19.62 14.92 12.18 79.96 2.18 1.4
RAP 53.14 53.12 42.68 95.68 3.48 2.84

LIMANS 57.68 54.14 50.04 51.62 10.68 6.24
AutoAttack 13.7 15.8 10.82 14.6 71.74 10.78

UAP 11.52 9.32 8.46 10.90 1.44 1.16
UAPPGD 14.00 12.34 11.20 13.56 3.14 1.66
TI-FGSM 11.88 13.42 10.08 11.02 54.46 10.14

VMI-FGSM 17.00 17.80 12.12 16.08 64.98 11.94
R-r18 VNI-FGSM 16.14 17.66 12.48 16.08 63.22 11.74

NAA 11.46 10.86 9.34 11.42 21.48 4.9
RAP 11.32 10.80 8.16 10.32 45.80 7.94

LIMANS 37.14 33.2 33.76 29.90 29.84 12.94
AutoAttack 20.14 22.76 17.36 19.44 15.42 59.02

UAP 9.88 7.60 6.96 8.62 1.84 1.24
UAPPGD 14.54 12.56 10.92 14.36 2.16 1.38
TI-FGSM 14.16 16.34 12.68 13.68 17.16 43.66

VMI-FGSM 24.22 26.66 20.12 23.86 17.82 54.56
R-wr50 VNI-FGSM 23.88 26.22 19.68 23.28 18.00 52.28

NAA 14.08 13.12 10.20 14.04 9.82 12.58
RAP 13.82 14.06 10.52 13.5 15.54 34.1

LIMANS 42.18 42.5 42.46 34.22 23.7 18.02
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2.7 Conceptual questions raised by our work

In this section, we detail the conceptual questions raised by LIMANS, the originality of the pro-
posed method, and the vision implied behind it. Which gap does it aim to fill and which path does
it pave the way to.

2.7.1 Common corruptions or `p norm bounded adversarial examples?

To evaluate the robustness of classifiers, relying on perturbation to assess its empirical limits is the
most straightforward choice. However, defining such perturbation remains hard to do. On the one
hand, most research adopted the use of `p norm bounded perturbation specific to each example to
assess the almost exact limit of the classifier’s decision boundaries, giving us a precise definition
of its robustness (detailed in Section 1.2.4). On the other hand, some research groups criticized
this choice by stating that such `p norm bounded perturbation specific to each example, is not
realistic and therefore produces useless and incomplete evaluations of the classifier’s robustness.
They proposed a set of common corruptions, allowing us to assess a more precise and realistic
robustness evaluation of the classifier (detailed in Section 1.2.1). Even though such common cor-
ruptions seem appealing, they don’t allow to reach the classifier’s decision boundaries making the
robustness evaluation more realistic but unfortunately more limited than optimized adversarial
attacks.

With LIMANS, we propose to use the rely on `p norm bounded perturbation specific to each
example to reach the classifier’s decision boundaries, making the robustness evaluation precise,
although to compute specific `p norm bounded perturbations on a more concrete basis than ran-
domly drawn among each feature of the examples. This more concrete basis is modeled by the
universal atoms that we reach at the end of the LIMANS training procedure (detailed in Section
2.5), and they reveal interesting universal patterns always involved in the reach of the classifier’s
decision boundary. In a way, the LIMANS training procedure consists of the capture of the se-
mantics of the objects within the examples and using these extracted features to overcome the
classifier’s decision boundaries. By relying on the optimized semantic of the object, LIMANS al-
lows computing more realistic adversarial perturbations (see in Section 2.6.2), thus performing a
more precise robustness evaluation of classifiers, in a way that the decision boundaries are more
precisely reached than with common corruptions, and realistic, in a way that the computed spe-
cific `p norm bounded perturbations are much more object-related and therefore more realistic
than other specific `p norm bounded perturbation.

We strongly believe that neither the specific `p norm bounded perturbations nor the common
corruptions are necessary nor sufficient to efficiently asses a precise and credible robustness eval-
uation of the classifiers.

LIMANS is just a humble proposition aiming to bridge the gap between these two paradigms,
welcoming a reassessment of what has already been proposed, an honest discussion on the use-
fulness of unrealistic robustness evaluation, and a criticism of the effectiveness of common cor-
ruptions to estimate the classifiers’ robustness.

2.7.2 Specific or universal adversarial perturbations?

Among the `p norm-bounded perturbations research community, previous criticisms have al-
ready been made. Essentially people denied the specific `p norm bounded perturbations because
they are totally specific to each example, allowing them to reach almost exactly the classifier’s
decision boundary, but on this very example alone. Evaluating the classifier’s robustness on an
empirical dataset using specific `p norm bounded perturbations will only give a robustness mea-
sure for this dataset alone and nothing more. This limitation makes the robustness evaluation
using specific `p norm-bounded perturbations, impractical and useless in real-life applications.
The original goal is to estimate the overall robustness of the classifiers on every example, even the
one we do not have access to, yet.
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To resolve this limitation of specific `p norm-bounded perturbations, several authors pro-
posed to use instead universal `p norm-bounded perturbations (detailed in Section 1.2.4). These
universal `p norm-bounded perturbations are example-agnostic, making them most likely effec-
tive even on future examples we do not know of yet. Universal `p norm-bounded perturbations
are very interesting as they target universal weaknesses and pitfalls of classifiers, to which they are
completely broken and are always fooled.

Therefore, universal perturbations must always be included within the robustness evaluation
of classifiers as they are, by definition, always included in the set of perturbations we want to
model. However, universal perturbations alone are not sufficient to entirely assess the classifiers’
robustness. Indeed, by being fully universal, these perturbations do not allow us to get close to the
exact classifier’s decision boundaries. They are too limited, and don’t explore the example space
to the fullest allowing to exactly assess the robustness of classifiers.

With LIMANS, we propose to take advantage of both the specific and universal paradigms. In-
deed, LIMANS is one of the first propositions bridging the gap between specific and universal `p

norm-bounded perturbations by computing specific perturbations upon a universal perturbation
basis. LIMANS almost always capture the universal perturbations necessary to assess the most
general robustness of classifiers but also allow us to explore the example space to reach more pre-
cisely the classifier’s decision boundaries.

LIMANS framework allows drawing robustness evaluations that are more generalized than
specific `p norm bounded perturbations alone, and more efficient than universal `p norm bounded
perturbations alone.

We humbly believe the current interest in universal perturbation is too limited, and that a
correction of their value is essential to the sanity of robustness evaluation research. Rather than
blindly running after the improvement of some performance metric, a deep questioning of the
current work and its importance should be made, engaging in more honest, fair, and unbiased
research.

2.7.3 Maximizing the fooling rate or maximizing the perturbation quality?

We previously saw that defining the perturbations involved in the robustness evaluation of clas-
sifiers is hard. However, once a definition is chosen, which metric should be considered to de-
fine the robustness of the classifier? The choice of the quality metric is crucial to the robustness
evaluation. Section 1.2.3 details different quality metrics and explains what vision and goal each
envisions. With different considered goals and metrics, a conflict of interest may arise in the ro-
bustness evaluation according to who is performing it.

We believe that a framework and constraints (just like the ε adversarial budget constraint)
should be imposed, allowing the different propositions to be fairly compared and benchmarked.
However, such a framework alone is not sufficient. Indeed, the final metric assessing the robust-
ness of the classifier should also but carefully considered, preventing a possible conflict of interest.

To produce the least biased possible robustness evaluation, we believe that future work should
explicitly state the used quality metric and to whom it is profitable, informing new readers of the
possible limits and advantages of each metric.

We currently are not aware of the best robustness metric. However, we think the perfect ro-
bustness metric should integrate every intent of the robustness, whether it is its protection from
possible harm or performance under possible hardware bugs.

As the deep community would suggest, one idea could be to parameterize such robustness
metric with a neural network framework. The framework would take in the classifier, the origi-
nal examples, and the perturbed examples outputting a robustness score. Even though it is very
straightforward and almost simplistic, this approach would be fair to everyone as the same frame-
work metric would be used, under different classifiers with the same adversarial attack producing
the perturbed dataset, or the same classifier under different perturbed datasets or different classi-
fiers. Hence, every new proposed perturbation generation would get a fair robustness score, and
every new proposed classifier would receive a fair robustness score.
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We believe that fairness and avoiding possible bias should be the center of future research
engaging in honest and transparent discussion about new propositions.

2.8 Perspectives

In itself, LIMANS is already a complete proposition on which we spent several months to con-
verge, but it still offers very appealing perspectives that we, unfortunately, did not have enough
time to complete. LIMANS framework is one of its kind in the robustness evaluation community,
discussing several points that are widely accepted and currently considered sufficient. LIMANS’
perspective includes reproducing the ADiL experiments that we did not have enough time to do,
such as the training stage with fewer original examples. Do the LIMANS performances and gen-
eralization grow according to the number of training examples, or by its linear definition is it im-
mune to the training dataset size?

One original and very interesting ADiL idea was to derive a black-box adversarial attack. We
believe that LIMANS could easily be subject to the same extension. A LIMANS black-box attack
would step further the realism of the attacker’s behavior, estimating the classifier’s robustness in
an even more realistic way.

Obviously, after proposing the LIMANS adversarial attack, we must propose the LIMANS ad-
versarial defense to contribute to research under the two scopes of attacker and defender.

We also target to impose more constraints on the LIMANS atoms. Indeed, we believe the ad-
versarial patch attacks are very interesting and appealing to estimate a realistic classifier’s robust-
ness. We think that, after a careful design of the constraints, we could make LIMANS parameters
a dictionary of atoms producing adversarial patches, which could be a real improvement and in-
novation brought to the research community, going further into the design of realistic yet efficient
perturbations.

During our experiments, we mainly focused on images but by definition, LIMANS could be
applied to any kind of data modalities as long as we can back-propagate gradients and we do have
a similarity metric between the objects allowing us to respect the adversarial budget constraint.
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Chapter 3

A meaningful similarity metric

3.1 Observation

Usually, colored images are mathematically encoded as arrays of dimension the number of pixels
in which each pixel color is represented by triplets of RGB values. Thus for a colored 24×24 image,
its mathematical representation will be defined as x ∈ R24×24×3 = R1728. Therefore, to estimate
the similarity of two images, mathematical tools like `p norms are well suited. Indeed, `p norms
define distances d :RP×RP 7→R+, thus respecting the three following axioms,

Symmetry: ∀x(1),x(2) ∈RP, d(x(1),x(2)) = d(x(2),x(1))
Equality: ∀x(1),x(2) ∈RP, d(x(1),x(2)) = 0 ⇔x(1) =x(2)

Triangular inequality: ∀x(1),x(2),x(3) ∈RP, d(x(1),x(3)) ≤ d(x(1),x(2))+d(x(2),x(3))
(3.1)

Having a distance is interesting as it offers a certain flexibility in its use, and produces unbiased
results. Besides, `p norm distances scale very well in dimension, which is critical when comput-
ing the similarity of two images. The image dimension can quickly increase, easily making the
complexity of the problem troublesome, therefore, an appropriate metric is required.

Even though `p norms are very convenient tools, considered as relevant image distances, they
hardly compute the appropriate distances between the images. Indeed, in Figure 3.1, we see two
cat images, then the distance between these two images should be low as the same object is dis-
played, only the cat’s color and background change, but in principle, they both represent the same
idea. Figure 3.1 displays a third image containing a plane with a vaguely similar background color
to the second cat but represents a different idea. Figure 3.1 highlights the meaningless property of
`p norms to compute image distances as the plane is closer to both cats than the cats together.

Even though they are efficient mathematical tools, `p norms hardly capture the meaning of
the images and therefore represent a poor distance function choice.

Up until now, the majority of state-of-the-art pseudo-random adversarial attacks considered
an `p norm to be a relevant distance between images [143]. It led to generating incomprehensible
and unrealistic adversarial perturbations still considered state-of-the-art. Opposite to pseudo-
random attacks, more realistic attacks were proposed, struggling to efficiently compute meaning-
ful distances between images and therefore, generate realistic and meaningful adversarial pertur-
bations.
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Figure 3.1: Examples of the `2 norm considered as a distance between images. All of the three
images come from the CIFAR-10 dataset.

3.2 Proposition

The goal of this second, more exploratory, project of this thesis is, to come up with a meaningful
distance between images leading to generating more realistic adversarial perturbations computed
from the very efficient state-of-the-art pseudo-random adversarial attacks. When possessing such
a meaningful distance, the original goal, to generate realistic and efficient adversarial perturba-
tions, could be reached, letting us evaluate more precisely and on a realistic basis, the robustness
of classifiers.

We mainly relied on [143] to outline the cases for which `p norms can be used and when they
should not be. Readers are invited to refer to it for a more comprehensive and detailed explanation
of why `p norms are neither sufficient nor necessary when used as a similarity metric of images
for adversarial perturbation generation.

To ease the problem, our objective is to approximate a meaningful similarity metric, that is not
a distance and thus allows us to violate the three axioms 3.1 defining a distance. Given a dataset
D = {(x(i ), y (i ))}N

i=1 of labeled examples with x(i ) ∈ X ⊂ RP and its corresponding label y ∈ Y =
{1, ...,C}, we want to approximate a distance d : RP×RP 7→ R+ such that the points of same labels
receive low distances (high similarity), while points of different labels receive high distances (low
similarity),

min
dC

∑
x(i )∈Yk

x( j )∈Yk

dC(x(i ),x( j ))− ∑
x(i )∈Yk

x( j )∈D\Yk

dC(x(i ),x( j )),∀Yk (3.2)

with Yk = {x(i )}N
i=1, y (i ) = k the of all examples only of label k and C the parameters of the distance

d .
The most obvious choice for such a parameterized distance is the Mahalanobis distance,

dC(x(1),x(2)) =
√

(x(1) −x(2))TC(x(1) −x(2)), (3.3)

with C ∈RP×P a positive semi-definite matrix, in which the diagonal values Ci i serves as a weights
of the difference values [x(1) −x(2)]i i .

A Mahalanobis distance defines a weighted version of the `p norm. Even though it would still
be interesting to explore, such a Manhattan distance only considers the identical relationships
between the input entries. Only the diagonal values of the matrix C are considered to compute
d(x(1),x(2)), resulting in a restrained distance and allowing little flexibility in the approximation.
Similar to our proposed adversarial dictionary attack proposition, modeling comprehensible and
understandable C parameters of the distance is a desired property. Therefore, the distance would
allow us to understand why two images are close (a low distance value representing high similarity)
or why they are considered different (a high distance representing low similarity).
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To extend the Mahalanobis distance proposition, and offer more flexibility we resorted to op-
timal transport distances.

3.3 Wasserstein Distance as a meaningful distance between images

Optimal transport distances, mostly known through the Wasserstein Distance (WD), are a set of
probability distribution distances, that provides a way to compare how different two distributions
are, based on the cost of "moving" mass from one distribution to the other according to a cost
matrix C.

Given two probability distributions represented by empirical measures a ∈RN and b ∈RN, the
WD aims to find the most efficient way to transform the first distribution a into the second b,
where efficiency is defined by a cost function C ∈ RN×N that represents the "distance" or "effort"
needed to move mass from one point to another,

WDC(a,b) = min
T∈RN×M

N∑
i=1

M∑
j=1

Ti , j Ci , j ,

such that T1 = a and TT1 =b.

(3.4)

In itself, computing the WDC solves the optimization problem of finding the best transport
plan T, conditioned to the cost matrix C. Figure 1.6 illustrates a valid transport plan between two
points clouds.

The cost matrix plays a crucial role in understanding the transportation of mass between two
distributions and has several interesting aspects regarding the modeling of a meaningful distance.
First, rather than using only the diagonal values like a Mahalanobis distance, all entries of the cost
matrix are necessary. Each entry in the matrix Ci j represents the cost of transporting a unit of
mass from one point ai to another b j . It allows more flexibility and richer modeling possibilities,
as well as, an intuitive interpretation of the distance value between the distributions in terms of the
transportation required and the associated costs. The WDC offers a more precise distance value,
as well as, an interpretation of its computation. In some cases, the cost matrix can be designed
to incorporate application-specific information about the relationships between data points. This
allows for a more meaningful measurement of distance that aligns with the problem’s context.
All these intriguing and favorable properties make the WDC a strong candidate as a meaningful
similarity metric between images.

Even though relying on the WDC to estimate the similarity between images has already been
done, it always was in a limited or flawed context. In [175], Wong et al. proposed the Wasserstein
Attack, minimizing the WDC between image pixels to compute adversarial perturbations. The
authors proposed an idea similar to ours, and showed meaningful on-manifold adversarial per-
turbation results. However, their computed WDC was revealed to be flawed. Indeed, in [140], au-
thors demonstrate the irrelevancy of any image measure based on their pixels. Distances studied
by [140] include the WD, preventing the former Wasserstein Attack from becoming a long-lasting
relevant solution to compute meaningful adversarial perturbations of images. However, the dis-
played empirical results are promising and encourage our pursuit in this direction.

The WDC between images has especially mainly been considered to estimate the quality of
image generations. Indeed, the GAN (defined in Section 1.1.4) community which received lots of
attention in the last years, hugely adopted the Fréchet Inception Distance (FID) as the most effec-
tive tool to track the quality of the artificially generated images. The FID calculates the distance
between two distributions of images fX and fY, most often one is a minibatch of original examples
drawn from the dataset, while the second distribution is a minibatch of GAN (or any other image
generator) generated examples. Typically, the two distributions of images are represented by sum-
mary statistics (mean & covariance matrix) computed over the outputted values of the third pool
layer of an inception neural network for all images, acting as a feature extractor. The FID between
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the two distributions is defined as,

FID( fX, fY) = ||µX −µY||22 +Tr (ΣX +ΣY −2(ΣXΣY)1/2). (3.5)

Specialized variants of FID have been suggested as evaluation metrics for music enhancement
algorithms as Fréchet Audio Distance (FAD) [84], for generative models of video as Fréchet Video
Distance (FVD) [163], and for AI-generated molecules as Fréchet ChemNet Distance (FCD) [123].

Even though the FID (3.5) may seem a bit different than the WDC (3.4), they are defining the
same thing, only when the cost matrix C is computed using the `2 norm and under the assumption
that both distributions can be represented by their mean and covariance matrix. For the curiosity
of readers, the proof is given in Section A.3.

Opposite to the FID, in our case, we want to compute the WDC not between two minibatch of
images but between two images alone. However, as [140] outlines, the WDC defines a probability
distribution similarity metric making it irrelevant to apply it directly over the images’ pixels like
[175] already did. It led to consider instead, extracting features from the images to represent them.
Thus when using extracted features, we operate the WDC in the meaningful framework making it
an appropriate and promising tool applied in the best settings. The extracted features, by defini-
tion, contain the most meaningful information about the images, offering us more chances to end
up with the definition of a meaningful distance between images. By using extracted features, we
now control the complexity of the problem such that, even for high-resolution images, the size of
the extracted features is controlled and tuned making it a scalable distance.

In this scenario, however, we are two times conditioned. First, the optimization of the image
distance is conditioned to the efficiency of the feature extraction gθ. Indeed, if an inefficient fea-
ture extractor is used, therefore no relevant distance can be derived from it. Secondly and most
troublesome, when a meaningful distance is finally modeled, then for the adversarial perturbation
generation, we need to get back from the feature space to the original image space using an inverse
function of the feature extractor g−1

θ
. If one sees the feature extractor as an encoder projecting the

images in a feature space of lower dimension, such that labels are well separated, in which we
can easily approximate a distance, then its paired decoder g−1

θ
is needed to retrieve images from

the feature vectors. Figure 3.2 presents a high-level overview of our proposition. Both gθ and its
inverse function g−1

θ
are crucial to the efficiency of the proposition.

Original example 𝐱 
Adversarial example

𝐱! = 𝑔"#$ 𝒂!

Feature 
Extractor

𝑔"

𝐚 𝐚′

Decoder
𝑔"#$

Adversarial generation: a’
s.t.

d(𝐚, 𝐚!) ≤ 𝝐
argmax%𝑓% 𝐱

≠
argmax%𝑓%(𝑔"#$ 𝒂! )

Figure 3.2: High-level overview of our meaningful adversarial attack proposition. The car image is
from the CIFAR-10 dataset.

Even though the second limit of representing the images by their extracted features by using
a g−1

θ
function, is probably the most troublesome, it still is a bit far ahead and most importantly

considers a meaningful distance d already optimized, but one step at a time. First, we ignore the
g−1
θ

decoder issue and focus only on approximating a meaningful distance d between images from
their features.

86



CHAPTER 3. A MEANINGFUL SIMILARITY METRIC

3.4 Optimization

In this section, we detail the similarity metric framework we designed and derive an overall opti-
mization problem

3.4.1 Turning the similarity metric into a distance

In order to represent the images x(i ) ∈ RP we consider their features a(i ) ∈ Rf with f ¿ P extracted
from an external model gθ. For ease of reading we will refer to the extracted features a(i ) as an
image even though its associated image is x(i ). As previously outlined, we select the Wasserstein
distance (WDC) as the most appropriate function leading to a meaningful similarity metric be-
tween images. The Wasserstein distance (WDC) between two images a(s) and a(t ) reads,

WDC(a(s),a(t )) = min
T∈Rf× f

f∑
i=1

f∑
j=1

Ti , j Ci , j ,

such that T1 = a(s) and TT1 = a(t ),

(3.6)

with the matrix C ∈Rf× f being the cost matrix containing the cost of pairing each feature entry
of a(s) to each feature entry of a(t ).

Recently, a lot of attention has been put to the regularised version of the Wasserstein Distance,
called the Sinkhorn divergence. While the unregularized WDC and the Sinkhorn divergence are
theoretically equivalent candidates, the Sinkhorn divergence is more suited to similarity metric
optimization. Indeed, the Wasserstein distance involves solving a linear programming problem,
which can be computationally expensive and challenging to solve, especially for high-dimensional
data. In contrast, the Sinkhorn divergence utilizes the Sinkhorn-Knopp algorithm, a more efficient
iterative method for approximating the optimal transport plan between distributions. For the
readers’ curiosity, the development from the original regularized WDC expression to the Sinkhorn-
Knopp solver is given in Section A.2. Besides, the Sinkhorn divergence includes a regularization
parameter helping to stabilize the optimization. This regularization encourages the transport plan
to be smoother, improving convergence. By tuning the regularization parameter, Sinkhorn diver-
gence allows for better control over the trade-off between the accuracy of the solution and the
stability of the convergence. Overall the Sinkhorn divergence is a good choice as it is better suited
to gradient-based optimization techniques commonly used in deep learning, and most likely used
here. The Sinkhorn divergence between two images a(s) and a(t ) reads,

WDκ
C(a(s),a(t )) = min

T∈Rf× f

f∑
i=1

f∑
j=1

Ti , j Ci , j +κ
f∑

i=1

f∑
j=1

Ti , j (logTi , j −1),

such that T1 = a(s) and TT1 = a(t ),

(3.7)

with κ the regularization parameter. Rather than optimizing (3.7), usually, people rely on the dual
formulation of the problem,

min
T∈Rf× f

max
α∈Rf,β∈Rf

L(a(s),a(t ),α,β), such that α≥ 0f,β≥ 0f with (3.8)

L(a(s),a(t ),α,β) = min
T∈Rf× f

f∑
i=1

f∑
j=1

Ti , j Ci , j +κ
f∑

i=1

f∑
j=1

Ti , j (logTi , j −1)

+αT(T1f −a(s))+βT(TT1f −a(t )),

with α ∈ Rf and β ∈ Rf the dual variables. This dual problem is efficiently solved using the
gradient descent iterations of the Sinkhorn-Knopp solver, detailed in Section A.2.

Up until now, we supposed the cost matrix C between the image features known, however, we
don’t know such a suitable distance between the features living in Rf it is precisely the cost matrix
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that contains the "meaningful" information defining the meaningful distance. The cost matrix
optimization defines our similarity metric optimization.

To make the similarity metric a distance, it must respect the axioms of a distance (3.1). There-
fore, the cost matrix is assumed to belong to the cone of distance matrices defined as

C =
{

C ∈Rf× f : ∀1 < i , j ,k ≤ d ,Ci i = 0,Ci j = C j i ,Ci j ≤ Ci k +Ck j

}
. (3.9)

3.4.2 Turning the distance into a Linear Program (LP) problem

To ease the reading of the distance optimization problem, we rewrite the Sinkhorn divergence
incorporating the cost matrix constraints (3.9) defining the Sinkhorn divergence as a distance, as
a linear program (LP) problem that is,

WDκ
C(a(s),a(t )) =


min
c,t(i )

c>t(i ) +κt(i )>(logt(i ) −1)

such that At(i ) =b(i ),
Ci i = 0,Ci j = C j i ,
Ci j ≤ Ci k +Ck j ,∀1 < i , j ,k ≤ p ,

(3.10)

with t = flatten(T) the vectorized version of the Optimal Transport Plan T between a(s) and a(t ),
c= flatten(C) the vectorized version of the cost matrix C, b ∈R2f the concatenation of both feature
vectors b = (a(s)T

,a(t )T
)T and A ∈ R2f× f2

a fixed binary matrix encoding the right pairing between
the transport plan and the feature’s entry in b to respect the original constraints.

Now that the canvas is formally set and we clarified that the optimization of the meaningful
distance between images boils down to optimizing C ∈ C we turn its optimization problem into a
metric learning problem.

3.4.3 Leveraging a Quadratically Constrained Quadratic Program (QCQP) metric learn-
ing problem

Since the images are labeled we could use these labels to solve a metric learning problem from
a pseudo-truth distance w(·, ·) : Rf×Rf 7→ R between images based on their labels. According to
such pseudo-truth distance, we then look for a cost matrix C such that its conditioned WDC closer
images from the same class while pushing away images from different classes. For example, in
[39], Cuturi explored the Wasserstein Distance from a similar metric learning angle but proposed
to hand-craft this pseudo-truth distance w (i ) = w(a(s),a(t )) between two images a(s) and a(t ) such
that w (i ) = 1/Nk if both images belong to the same label or w (i ) =−1/Nk if they belong to different
label, with k being a chosen number of neighbors to consider. Given such pseudo-truth distance
w (i ) between pairs of images, we can look for the cost matrix encoding the Wasserstein Distance
to match these distances,

Given the matrix A, for one couple of pointsb(i ) = [a(s)T
,a(t )T

]T and their pseudo-truth distance
w (i ), our ultimate goal is to find C and the T(i ) solution of the following LP problem

J (a(s),a(t )) =



min
c,t(i )

c>t(i )
(= Tr(C>T(i ))

)
such that At(i ) =b(i )

c>t(i ) = w (i )

Ci i = κ,Ci j = C j i ,
Ci j ≤ Ci k +Ck j ,∀1 < i , j ,k ≤ p .

(3.11)

The red term highlights our real implicit goal that is, we are looking for a WDC that matches the
pseudo-truth distance for these two images.

Now we leverage J (a(s),a(t )) to the whole dataset of images’ features D = {a(i ), y (i )}N
i=1. We are

interested in the following JD Quadratically Constrained Quadratic Program (QCQP) problem,
given the binary encoding matrix A ∈ R2f× f2

matrix, B ∈ R2f×N a matrix whose columns are the
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vectors b(i ), w a vector in RN a concatenation of all the w (i ) and τ ∈Rf2 ×N a matrix whose columns
are all the optimal transport plans t(i ).

JD =



min
c,τ

1>τ>c
(=∑N

i=1c
>t(i )

)
such that Aτ= B

τ>c=w
Ci i = κ,Ci j = C j i ,
Ci j ≤ Ci k +Ck j ,∀1 < i , j ,k ≤ p .

(3.12)

The red term highlights our real implicit goal that is, we are looking for a WDC that matches
the pseudo-truth distance for all pairs of images.

JD defines a bi-level optimization in which every transportation plan t included in τ are in-
trinsically defined by the WDC and thus conditioned to the cost matrix c. However, the cost ma-
trix objective c is to make the overall WDC distance closer to the pseudo-truth distances w(·, ·)
included in w therefore, c is only conditioned to the quality of the extracted features and the mod-
eling of the pseudo-truth distance w from the labels.

3.4.4 Algorithm

In this section, we present the proposed relaxation solving the original problem (3.12), and the
algorithm solving it.

The original objection JD (3.12) is hard to solve because of the non-convex 1 indicator func-
tion and the strict τ>c = w constraint that hard to respect in practice due to the two variables
optimized. Therefore we replace them with a more manageable loss function,

min
c,τ

1
m

∑m
i=1 ||c>t(i ) −w (i )||22

such that Aτ= B
Ci i = κ,Ci j = C j i ,
Ci j ≤ Ci k +Ck j , ∀1 < i , j ,k ≤ p .

(3.13)

Equation (3.13) optimizes the transport plan t(i ) such that they are valid with respect to the
WDC condition, and optimizes the cost matrix c to lower the distance of the very WDC to the
pseudo-truth distance w (i ) by minimizing their `2 norm. Equation (3.13) is optimized in two steps,
one for each variable. We first will rely on the Linear Solvers available in the library POT (Python for
Optimal Transport) [58] to resolve all the transport plans t(i ) forming τ. Then we fix these variables
as parameters to optimize the problem over the cost matrix c by using a sequence of cost matrix
solutions to converge towards the optimal one. Finally, a rescaling of c is performed to ensure the
constraint of C and thus produces a well-defined WDC distance.

At every n optimization, the plans are found using POT’s solvers, then frozen to improve the
cost matrix c using mini-batch stochastic gradient descent with gradients from

Hc(n) = min
c(n)

1

m

m∑
i=1

||WDκ
c(n) (a

(s)i
,a(t )i

)−w (i )||22, (3.14)

With m being the mini-batch size. We use problemHc(n) to improve c by creating the sequence
of solutions

c(n+1) = c(n) −γ∇cH(c(n)), (3.15)

withγ the learning rate. This sequence of solutions aims at converging toward the optimal solution
C∗ parameterizing a meaningful Wasserstein distance WDC∗ for images by using their extracted
features.

The full optimization scheme is sketched in Algorithm 9.
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Algorithm 9 Meaningful Wasserstein distance between images optimization.

Require: Labeled dataset of image extracted features D = {a(i ), y (i )}N
i=1; pseudo-truth distance

w(·, ·); step-size γ, Optimizer Optim; Batch size B; a number of max iteration M
1: a(i ) = softmax(a(i )) Rebalance every feature vector a(i ) to make it a probability distribution
2: C = 1f× f Initialize the cost matrix C
3: for k = 0 to M do
4: loss = 0
5: for m = 0 to B do
6: a(i ) ∼D;a( j ) ∼D Get pair of feature (a(i ),a( j )) from D
7: d = WDC(a(i ),a( j )) Solve (3.13) w.r.t t using POT
8: loss = loss + ||d −w(a(i ),a( j ))||22
9: end for

10: C ← Optim(∇Closs) Update c from (3.13)
11: Rescaling C to ensure C ∈ C Making the updated WDC a distance
12: end for
13: return C parameter of WDC the optimized meaningful distance between image

3.5 Experiments

Before tackling more practical applications in our experiments, we first need to study the mecha-
nisms and behavior of cost matrix optimization on a toy problem.

3.5.1 Toy problem

For this purpose, we artificially generate an actual ground-truth cost matrix C∗ to recover, and a
sample of N pairs of pointsD = {(a(1)i

,a(2)i
)}N

i=1, wherea(1),a(2) ∈Rf. By relying on the ground-truth

cost matrix C∗, we know the corresponding true distance WDC∗(a(1)i
,a(2)i

) = w (i ). These distances
are crucial and allow us to recover C∗ by optimizing the problem (3.13). In this toy problem, we
indeed bypass the construction of pseudo-distance through Metric Learning. Nevertheless, this
provides us with an initial reference point and an overview of our proposed distance optimization
framework.

In reality, we may not always access feature vectors a that are defining probability distribution.
Therefore we ignored line 1 of algorithm 9 and we studied the Toy problem under balanced and
unbalanced pair of points (a(1)i

,a(2)i
)that is,

Balanced Data: a(1)i
,a(2)i ∈RK with a(1)i T

1= a(2)i T
1, ∀i ∈ {1, . . . ,N},

Unbalanced Data: a(1)i
,a(2)i ∈RK with a(1)i T

1 6= a(2)i T
1, ∀i ∈ {1, . . . ,N}.

(3.16)

To stop the optimization at the point of convergence, we have chosen to use the relative norm
of the cost matrix,

If
||Cn−1 −Cn ||2

||Cn−1||2
≤ α Then: STOP. (3.17)

In this notation, and given that we only consider symmetric matrices, by Cn−1 we refer to the upper
triangular part of the cost matrix at the n −1st update of the same parameters, and by Cn we refer
to the upper triangular part of the cost matrix at the nth update of the same parameters.

This criterion is the least biased and most robust measure we have to detect the convergence of
the parameter to be optimized, the cost matrix C (in reality, our parameters correspond only to the
n × (n −1)/2 values of the upper triangular part of the cost matrix due to the symmetry condition
of C).
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Relaxations

For computational reasons, we have simply omitted the inequality constraint on C, the third con-
straint defining a distance. Furthermore, in [13], Bellet et al. informs us a strict respect of these
constraints is still under debate, in the pursuit of constructing a distance metric closer to human
perception. Indeed, according to cognitive science research [5], [129], [161], [162], the enforce-
ment of symmetry and the triangle inequality appears to be too rigid for our human perception of
similarity between objects. It seems that humans are more flexible in our judgment of similarity
than a mathematically perfectly defined distance would suggest.

Is POT a relevant Wasserstein distance solver?

To verify the efficiency of the POT toolbox, we handcrafted a custom mini-batched version of the
Sinkhorn-knopp solver to see, which of the two is the most efficient.

Table 3.1: Time Consumption (in seconds) for the optimization of equation (3.13) with the POT
solver and our custom Sinkhorn solver under different learning rate with f = 4.

(a) Balanced data.

LR POT Custom

1e-3 73.66 152.16
5e-3 24.26 155.78
1e-2 10.91 140.62
5e-2 10.79 171.27
1e-1 11.44 360.43
5e-1 14.94 138.69

1 64.71 350.12

(b) Unbalanced data.

LR POT Custom

1e-3 96.01 220.23
5e-3 34.79 445.73
1e-2 17.17 454.97
5e-2 18.04 812.61
1e-1 14.67 616.96
5e-1 25.66 395.7

1 25.98 444.54

According to Table 3.1 presenting the results of our optimization on this toy problem for the
two solvers under different learning rates, we can completely discard our custom Sinkhorn solver
and completely trust the POT toolbox. Even for a small dimension, our custom Sinkhorn solver
requires way too much time to achieve an acceptable level of quality, to consider it a relevant
solver.

Is the optimization fast enough with small dimensions?

If the optimization framework were to be successful, it would at least converge to a solution very
fast(10 seconds max) under the simplest settings (such as a small size of features f). Table 3.1
gives us a first insight into the time required to find the optimal solution with a small f = 4 using
the POT solver, but the performances can be greatly enhanced by more finely tuning the hyper-
parameters. Table 3.2 displays the performances of the cost matrix optimization when using the
best (POT) solver of the WDC problem under different learning rates. Under a small dimension
(f = 4) for both balanced and unbalanced data, the optimization converges pretty quickly. Indeed,
for balanced data, when tuning γ = 0.01 the optimization converges to the exact solution in 8
seconds, and for unbalanced data, when tuning γ = 0.05 the best solution is approximated in 14
seconds.

Note that all these experiments were performed on a MacBook Pro with 2,3 GHz Intel Core i9, 8
cores however, transitioning to GPU computation would drastically enhance our performance as it
usually is a great optimization tool when relying on SGD. These first results confirm the minimum
acceptable threshold.
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Table 3.2: Optimization of the cost matrix with a small dimension (f = 4), using the POT Linear
Programming solver for both balanced and unbalanced data, under different learning rates. The
optimization error is estimated using the `2 norm between the found solution and the true cost
matrix.

(a) Balanced data.

LR Error Time

1e-4 0.061 59.69
5e-4 0.056 53.54
1e-3 0.019 52.8
5e-3 0 18.53
1e-2 0 8.75
5e-2 0 9.73
0.1 0 10.81
0.5 0 13.36
1 0.004 52.12
5 0.1 58.65

10 0.127 55.52
50 0.171 53.09

(b) Unbalanced data.

LR Error Time

1e-4 0.048 78.8
5e-4 0.018 115.3
1e-3 0.045 82.6
5e-3 0.014 82.3
1e-2 0.001 19.5
5e-2 0 14.0
0.1 0 15.8
0.5 0.0517 15.9
1 0.397 16.7
5 9.082 15.9

10 22.046 7.6
50 111.41 7.7

Is there a trade-off between the quality of the found solution and the time required to find it?

Thanks to Table 3.2 we know that the optimization can reach the exact solution very quickly in
small dimensions with either balanced or unbalanced data. However, when the feature size in-
creases, things are a bit different.

Table 3.3: Optimization of the cost matrix with a medium dimension (f = 16), using the POT Linear
Programming solver for both balanced and unbalanced data, under different learning rates. The
optimization error is estimated using the `2 norm between the found solution and the true cost
matrix.

(a) Balanced data.

LR Error Time

1e-4 0.03 0.13
5e-4 0.021 44.18
1e-3 0.015 44.27
5e-3 0.001 44.49
1e-2 0.001 41.47
5e-2 0 13.77
0.1 0.015 43.94
0.5 0.054 44.01
1 0.091 44.62
5 0.273 44.69

10 0.397 44.15
50 1.309 44.74

(b) Unbalanced data.

LR Error Time

1e-4 0.023 44.98
5e-4 0.023 99.97
1e-3 0.012 99.64
5e-3 0.003 95.52
1e-2 0.003 95.63
5e-2 0.008 96.25
0.1 0.018 99.82
0.5 0.156 99.8
1 0.099 100.25
5 2.348 9.17

10 4.978 9.05
50 24.83 8.79

With balanced data, the optimization process is smoother, and from Table 3.3a and Table 3.4a,
we don’t see a trade-off between the time required for optimization and the quality of the solution.
However, we observe that the learning rate is an extremely sensitive parameter.

However, with unbalanced data, things are more interesting as the optimization becomes more
complex. From Table 3.3b, we can observe a trade-off between the time required for optimization
and the quality of the solution. Indeed, with medium-sized features, when selecting γ= 0.005 the
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best solution is reached in 95 seconds although, when setting γ= 5, a descent solution is reached
in under 10 seconds. We draw the same conclusion for high-sized features using Table 3.4b. When
setting γ= 0.005, the best solution requires 113 seconds to be found, while an acceptable solution
is retrieved at γ= 5 in only 12 seconds.

Table 3.4: Optimization of the cost matrix with a medium dimension (f = 64), using the POT Linear
Programming solver for both balanced and unbalanced data, under different learning rates. The
optimization error is estimated using the `2 norm between the found solution and the true cost
matrix.

(a) Balanced data.

LR Error Time

1e-4 0.006 0.13
5e-4 0.007 53.65
1e-3 0.0007 53.72
5e-3 0.006 53.5
1e-2 0.006 53.5
5e-2 0.007 53.67
0.1 0.013 53.69
0.5 0.059 56.75
1 0.111 56.85
5 0.574 57.22

10 1.034 57.1
50 4.584 62.69

(b) Unbalanced data.

LR Error Time

1e-4 0.007 9.15
5e-4 0.006 110.24
1e-3 0.005 110.1
5e-3 0.003 113.33
1e-2 0.003 115.26
5e-2 0.004 115.33
0.1 0.008 239.51
0.5 0.032 144.19
1 0.018 139.82
5 0.571 12.87

10 1.211 12.56
50 6.168 11.76

We understand through Table 3.3 and Table 3.4 that a trade-off between the quality of the
found solution and the time required to find it only with unbalanced data.

Is the optimization framework robust to both balanced and unbalanced data?

We see from Table 3.2, 3.3 and 3.4 that a decent solution can be reached either with balanced or
unbalanced data. As the problem is more complex with unbalanced data, the quality of the found
solution is lowered, and the time required to find it is increased, but overall the optimal solution
can be decently approximated in a reasonable amount of time.

Overall the optimization framework is robust to both balanced and unbalanced data, which
is a desirable property when considering more realistic applications in which we are not likely to
have balanced image feature vectors.

Is the learning rate a sensitive parameter?

It is very clear from Table 3.2, 3.3 and 3.4 that the learning rate is a very critical parameter. Even
for unbalanced data, as a trade-off is observed, it is the learning rate parameter that allows us to
navigate within the trade-off between the computational time and the solution quality.

We draw the same conclusion with balanced data. If the learning rate γ is not correctly cho-
sen, then the best solution cannot be retrieved. This conclusion is especially illustrated with the
medium-sized features under balanced data presented in Table 3.3a. When setting γ = 0.05, the
best solution is reached in 13 seconds, while with γ= 0.1, the optimization requires 43 seconds to
reach a worse solution.

According to the many conducted optimizations, we observed that the proposed optimiza-
tion framework is sensitive to the learning rate γ parameter. When it is applied to more realistic
applications, a significant time must be allocated to find the most appropriate learning rate γ.
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Is the mini-batch size a sensitive parameter?

In stochastic gradient decent optimizations the mini-batch can sometimes be a sensitive param-
eter. Indeed, when not high enough, the gradients may not always point in the best direction to
reach the optimal solution, leading only to a local solution.

Table 3.5: Optimization of the cost matrix for a small dimension (f = 4), medium dimension (f =
16), and high dimension (f = 64), using the POT Linear Programming solver for both balanced and
unbalanced data, under different minibatch sizes B. The optimization error is estimated using the
`2 norm between the found solution and the true cost matrix.

(a) f = 4.

B Error Time

4 0 0.72
16 0 1.27
32 0 2.15
64 0 3.97

128 0 6.8
256 0 14.9
512 0 29.96

1024 0 42.59

(b) f = 16.

B Error Time

4 0.016 73.15
16 0.01 52.55
32 0.01 47.09
64 0 16.75

128 0 26.6
256 0 43.83
512 0 43.46

1024 0 44.3

(c) f = 64.

B Error Time

4 0.014 158.29
16 0.011 105.67
32 0.009 60.57
64 0.008 57.06

128 0.007 57.11
256 0.006 56.23
512 0.006 54.91

1024 0.006 55.18

In Table 3.5a we perform the proposed optimization for various sizes of mini-batch. The mini-
batch size has absolutely no influence on the quality of the solution found, except for the time
consumption. We recall that the displayed results show performances on CPU-performed opti-
mizations, while the mini-batch strategy is especially suited to GPU computations, we do not think
it is worth considering the mini-batch size as a time consumption sensitive hyper-parameter.

On the other hand, from Table 3.5c and 3.5b, we can observe that in medium and large dimen-
sions, the mini-batch size becomes a critical parameter. Indeed, it is only when using a relatively
large mini-batch size (f = 128) that we achieve rapid convergence. Beyond this required minimum
size, increasing the mini-batch size doesn’t further improve optimization results.

Therefore, we now know that a sufficiently large mini-batch size is required to ensure the
reaching of the optimal solution for realistic feature sizes. However, it won’t ultimately produce
better results according to its increase.

Does the magnitude of the ground truth cost matrix to recover have any impact on the opti-
mization?

The magnitude of the values within the ground truth cost matrix to recover may severely affect
the optimization, as it could easily lead to finding a descent local solution but prevent finding the
optimal solution C∗. Thus we performed the same optimization with the cost matrix multiplied
by a magnitude coefficient factor which increases the distance between the points values and the
cost matrix’ entries to recover.

At first, Table 3.6 tells us that the magnitude of the cost matrix to be retrieved has a significant
impact on the quality of our optimization.

However, by increasing the learning rate, Table 3.7 demonstrates that it adjusts the optimiza-
tion to the magnitude of the optimal cost matrix to be found.

Even if in small and medium dimensions, increasing the learning rate led to enhancing the
optimization, by increasing the learning rate too much, Table 3.8 reveals that optimization can be
damaged in the case of a large dimension.

Once again, the learning rate is a critical factor for successful optimization. We will need
to choose it very carefully since it adjusts the optimization for both changes in dimension and
changes in the magnitude of the matrix to be retrieved.
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Table 3.6: Optimization of the cost matrix for both a small (f = 4) and a medium (f = 16) dimen-
sion, using the POT Linear Programming solver for balanced data with different magnitudes of the
original cost matrix, employing a small learning rate (γ= 0.05).

(a) Small dimension (f = 4).

Magnitude Error Time

1 0 11.45
2 0 7.13
5 0.002 11.13

10 0.006 18.36
50 3.022 43.81

(b) Medium dimension (f = 16).

Magnitude Error Time

1 0 13.77
2 0.001 38.98
5 0.012 47.73

10 0.068 49.75
50 1.126 47.76

Table 3.7: Optimization of the cost matrix for both a small (f = 4) and a medium (f = 16) dimen-
sion, using the POT Linear Programming solver for balanced data with different magnitudes of the
original cost matrix, employing a medium learning rate (γ= 0.5).

(a) Small dimension (f = 4).

Magnitude Error Time

1 0 11.19
2 0 9.56
5 0 8.4

10 0.002 7.32
50 0.025 12.78

(b) Medium dimension (f = 16).

Magnitude Error Time

1 0.049 51.28
2 0.08 44.9
5 0.001 19.71

10 0.002 23.38
50 0.147 50.67

Should we ignore too close neighbors points to ensure a good optimization?

To have a somewhat realistic toy problem, the question of excluding generated points that are
too close has been addressed. Would we achieve better optimization of the cost matrix if we only
consider points that are sufficiently distant according to the optimal WDC∗ using the true cost
matrix?

Judging from Table 3.9 displaying experiments results in both small and large dimensions, the
optimization does not seem to be impacted at all by the rejection of points that are too close ac-
cording to the true distance to be retrieved. Therefore, we can consider this parameter as insignif-
icant for our upcoming more realistic applications.

From which dimension can we no longer guarantee a fast and reliable optimization?

It is worth noting that for larger feature dimensions, as we saw, a more detailed study of the learn-
ing rate would be more appropriate. However, these initial figures provide us with a preliminary
understanding of the limit of the proposed distance optimization.

Even though for a dimension of f = 128, the computational time to reach convergence remains
quite reasonable, Table 3.10a and Table 3.10b indicates that starting from a dimension of f = 256,
optimizing the cost matrix becomes more challenging. It is important to note that for these larger
dimensions, a more detailed study of various optimization parameters (mini-batch size, magni-
tude, learning rate, or even a learning rate annealing strategy) would be appropriate to achieve the
most efficient optimization. Nevertheless, these figures remain illustrative and provide us with
practical insights into the optimization process.

After addressing all these questions, we gained insights into the specificity of cost matrix op-
timization. We understand that the optimization works relatively well for both balanced and un-
balanced data, but it takes, on average, 1.5 times longer to converge with unbalanced data. We
know that using the POT solver is necessary. We’ve determined that rejecting points that are too
close has no influence. The size of the mini-batch B is a relatively critical parameter to ensure op-
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Table 3.8: Optimization of the cost matrix for a large dimension (f = 64), using the POT Linear Pro-
gramming solver for balanced data with varying magnitudes of the original cost matrix, employing
both a small (γ= 0.5) and a large (γ= 5) learning rate.

(a) γ= 0.5.

Magnitude Error Time

1 0.058 61.58
2 0.049 66.62
5 0.041 59.88

10 0.045 57.43
50 0.313 56.05

(b) γ= 5.

Magnitude Error Time

1 0.527 62.4
2 0.531 62.48
5 0.537 61.06

10 0.501 61.55
50 0.365 59.74

Table 3.9: Optimization of the cost matrix for both small and large dimensions, using the POT
Linear Programming solver for balanced data with varying minimum distance width ρ thresholds
accepted between points.

(a) f = 4.

ρ Error Time

0 0 49.2
0.001 0 44.6
0.005 0 41.3
0.01 0 40.5

(b) f = 64.

ρ Error Time

0 0.007 42.3
0.001 0.007 40.8
0.005 0.007 40.5
0.01 0.007 40.1

timization convergence, along with the magnitude of the solution to be found. However, we can
manage these two parameters by choosing an appropriate learning rate, which seems to be the
most critical hyperparameter of this optimization framework.

The outcome of this toy problem is positive; it demonstrates that within a certain working
framework and under specific conditions (controlled dimension of the features f), we can converge
towards the solution C∗ in an acceptable time frame. These findings are promising and allow us
to tackle a slightly more realistic problem, such as experimenting with image features from the
MNIST dataset as a next step.

3.5.2 MNIST images application

Now we gained a preliminary understanding of the optimization problem from the toy problem we
can tackle a slightly more concrete application using images from the MNIST dataset [46]. Being
one of the easiest image datasets, we considered the MNIST as the first more practical applica-
tion of our distance optimization framework, which would then allow us to go further into more
complex and realistic image datasets.

To reduce the dimensionality of the images and utilize only the most relevant information, we
choose to employ discriminative features (referred to as features) extracted from the penultimate
layer of a classifier neural network trained on these images. By doing so, we construct a fairly
accurate classifier (achieving a minimum of 99% classification accuracy) to ensure that we retain
the most relevant features of the images (those responsible for achieving the desired classification
accuracy).

Let f :RP 7→RC be a classifier that takes input images of P pixels and assigns them a probability
vector over the C possible classes. Since f is a neural network, we can redefine it as f (x) = g (h(x)),
where h : Ri nputDi mensi on 7→ Rf is a non-linear feature extraction function, and g : Rf 7→ RC is the
final linear layer of f responsible for the final classification.

This feature extraction process also enables us to increase or lower the feature size f. More
precisely, we consider the features from the penultimate layer after its activation function, which
is the ReLU (Rectified Linear Unit, r elu(x) = max(x,0)). This activation function has a promising
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Table 3.10: Optimization of the cost matrix for various dimensions f, using the POT Linear Pro-
gramming solver for balanced data with both a small learning rate γ = 0.01 and a high learning
rate γ= 10.

(a) γ= 0.01.

f Error Time

4 0 15.61
16 0.02 53.52
64 0.006 61.33

128 0.003 95.3
256 0.002 220.39

(b) γ= 10.

f Error Time

4 0.117 64.05
16 0.427 54.75
64 0.924 68.51

128 0.48 107.09
256 0.213 241.18

effect for our purposes, as during the classifier training, it essentially nullifies unused nodes in
the penultimate layer to achieve better classification performance. As a result, h(x) ∈ Rf will be a
very sparse vector. This sparsity is advantageous for us, as it achieves meaningful dimensionality
reduction of the features (selecting them based on their relevance to the classification task). It
further reduces the complexity of the WDC inner optimization (the transport plan objective).

3.5.3 Analysis of the MNIST extracted features

As good scientific behavior, data analysis of the features must be performed. Even though we don’t
have any tools to perform such analysis, we empirically look at the features’ entries activation to
see if we have some modes emerging according to the labels, which would mean relevant features.

In practice, we observe that for a layer of size f = 16, we end up with non-zero features with an
average size of 5. For a layer of size f = 32, we ultimately have non-zero features with an average
size of 10. Figure 3.3 displays the distribution of these features when setting f = 16.
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Figure 3.3: Distribution of the features when setting f = 16 according to the 10 possible labels.

From Figure 3.3, we see that only a few components of the features are non-zero. Therefore,
we understand that the classifier’s training, to effectively separate the classes, has been successful.
Indeed, we observe that for each class, only a few dimensions dominate the distribution of fea-
tures, and we never observe complete overlap between two sets of dominant dimensions among
the classes. Along with the label’s feature dimensions activation, we considered the mean feature
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of each class to assess and confirm the possible modes of each label. Figure 3.4 displays the mean
feature vector of each label.
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Figure 3.4: Distribution of the features when setting f = 16 according to the 10 possible labels.

The conclusion drawn from Figure 3.3 is strengthened by Figure 3.4. Indeed, there is no mean
feature vectors are the same.

Overall, both figures confirm that each class, in the feature space Rf, occupies an isolated lo-
cal region of the feature space, involving only a few dimensions, and is situated far enough from
one another to be accurately distinguished. These features render an almost linear problem and
consequently allow us to efficiently optimize our cost matrix.

Before tackling our proposed optimization framework, we attempted to eliminate the step of
constructing the pseudo-ground truth distance w : Rf ×Rf 7→ R. Instead, we aimed to treat our
Wasserstein Distance WDC directly as the distance to optimize within a metric learning optimiza-
tion framework.

3.5.4 Optimizing the Wasserstein distance with a metric learning objective

Rather than relying on a pseudo-truth distance w :Rf×Rf 7→R that we don’t possess for the MNIST
features, we consider our optimization framework of WDC as a metric learning problem in itself.

Thus at each iteration, the cost matrix is optimized according to the triplet loss objective [164],

min
C

relu(WDC(a(i ),p(i ))−WDC(a(i ),n(i ))+ρ) ∀(a(i ),p(i ),n(i )) ∈ Triplets(D), (3.18)

with ρ an arbitrary margin, and we considered the feature triplets (a(i ),p(i ),n(i )), composed of a
first feature ba(i ) belonging to class y (i ), a second feature p(i ) also belonging to class y (i ), and fi-
nally a third feature n(i ), not belonging to class y (i ). The proposed triplet loss replaces the previous
cost matrix update (line 8 from algorithm 9).

The goal behind minimizing the triplet loss is to reduce the distance between points belonging
to the same class while simultaneously increasing the distance between points belonging to dif-
ferent classes. This objective is widely accepted and used within the Metric Learning community,
given the multitude of possible triplets possible from a single dataset. The initial results are both
interesting and promising.

3.5.5 Results

In this section we review the results found during our experiments with the MNIST dataset, and
why they reveal an ill-defined optimization problem.
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An efficient optimization

During our MNIST experiments, to ensure adherence to a maximum number of distance axioms,
we enforce certain conditions on our cost matrix. Specifically, we constrain the matrix to be posi-
tive, and symmetric and contain small values on the diagonal (0.5 instead of 0, as 0 is too dominant
and inhibits the optimization of other variables). This approach helps achieve symmetry, identity,
and positivity for our Wasserstein distance.

Figure 3.5 shows the result of the cost-matrix triplet loss optimization.
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Figure 3.5: Triplet loss optimization results.

In addition to achieving outstanding performance, we empirically observe from Figure 3.5b
small WDC distance within classes and large WDC distance between different classes, we obtain
an interesting and explainable cost matrix.

From Figure 3.5a, we see that the cost matrix contains values that can easily be interpreted
in conjunction with the feature distribution. If a point Ci j in the cost matrix is small, the cost
between feature i and feature j is small, indicating a high correlation between these two features.
This observation perfectly aligns with our findings from Figure 3.4 and Figure 3.4.

Comparison with the baseline

To some extent, the classifier’s probabilities define a somewhat distance between images. Indeed,
if two images are considered the same label then according to the classifier, they are somehow
similar. Therefore, the optimized WDC must at least recover the classifier’s performance to show
any kind of improvement.

Table 3.11 compares the original classifier’s performances to a 1-nearest neighbors WDC clas-
sification.

System Précision Test

Classifier 99.01%
WDC 98.90%

Table 3.11: Classification performances comparison between the original classifier and a
1−nearest neighbors according to the WDC.

Unfortunately, from Table 3.11, we see that the WDC does not catch up with the classifier’s
performances. It means that even though the cost matrix optimization is efficient and allows a
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retrieval of a decent solution, it does not reach the baseline performances and therefore does not
reflect in any kind of improvement.

3.5.6 Intuition on the failure

The bad performances displayed in Table 3.11 might indicate that in reality, we are missing out on
some important information contained in the features when optimizing the cost-matrix C.

From Figure 3.4, displaying the mean features, we observe that even though some dimensions
of the features are activated (non-zero values), their values are so small that they are insignificant.
This raises questions about the relevance of their activation, which could lead to some bias intro-
duced with an overweight of them.

But more importantly, Figure 3.4 tells us that the features seem to already be linearly separable.
And we confirm this hypothesis when increasing the feature size f with Figure 3.6.
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Figure 3.6: Distribution of the features when setting f = 32 according to the 10 possible labels.

Indeed, the average features of each class appear to have very little overlap with others, sug-
gesting a potential existing linear separation.

To explore and confirm or not this intuition, we fixed the cost matrix C with the simplest matrix
that doesn’t encode any correlations,

C0 =
0.1 1 . . . 1

1 0.1 . . . 1
1 1 . . . 0.1

 (3.19)

This matrix is indeed symmetric, positive, and has an almost zero diagonal, which enforces sym-
metry, identity, and triangularity of its parametrized Wasserstein Distance.

When using the Wasserstein distance parameterized with the simplest cost matrix, WDC0 ,
we observed that this matrix yielded the best results. Thus, by initializing the cost matrix in
this manner, the optimization didn’t manage to improve the test performance even by updating it
through triplet loss optimization.

To verify this dual observation of an existing linear separation of features, we performed the
same 1-nearest neighbor (1-NN) search using the `2 norm as the distance from the mean feature
of the Train dataset for each class, to the test dataset features. We observed that 99.08% of the test
features are closest to the mean training feature of the same class.
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3.5.7 MNIST images conclusion

This conclusion indicates that by extracting features from MNIST images using h(x), a function
trained jointly with f (x) = g (h(x)), where g is a linear function, for a classification task achiev-
ing 99% accuracy on the Test dataset as Figure 3.7 highlights, an `2 norm is sufficient to properly
separate the features from each other.

INPUT

OUTPUT

DEEP REPRESENTATION

LINEAR MODEL

Figure 3.7: Dichotomy of a deep network’s architecture. The first layers’ job is to discriminate the
data points, while the latter are designed to make the prediction. Source: Leveraging sparse linear
layers for debuggable deep networks [174].

When building deep neural network classifiers, the first layers’ job is to discriminate the data
points, while the latter layers are designed to make the prediction. If its training is correctly man-
aged thus, by definition of the linear final layer, the inputs are already well separated before the
final layer. Even though we thought we correctly formalized the problem and checked the rele-
vance of all our hypotheses, it revealed that one was not completely accurate leading to a failed
intuition.

It leads us to consider other types of features from images and, to apply our framework on
more concrete and complex datasets, for which a simple training of a classifier does not reach 99%
accuracy, meaning that the features before prediction are not completely linearly separated. In
such cases, our optimization framework might be revealed as a relevant tool.

3.6 Conclusion & perspectives

Initially, we aimed to model a meaningful adversarial attack on images, that is, an attack taking
into consideration the semantic nature of images. For this purpose, we used extracted features
instead of the image pixels. To efficiently distinguish the images in the feature space, we proposed
learning a Wasserstein distance.

During this process, we sanity-checked the overall proposed optimization framework on a toy
problem and found it very efficient and successful.

However, when applied to a slightly more concrete scenario, we discovered that features de-
rived from before the last layer of a neural network classifier are almost linearly separable, and
therefore, an `2 norm is sufficient to accurately distinguish the features according to their label.

Therefore, we can proceed with the development of a meaningful adversarial attack on images,
using an `2 norm as the distance metric between the features.

During our work on the development of a meaningful adversarial attack, we completely ig-
nored the feature decoder that would map the adversarial features back to the image space as
displayed in Figure 3.2. Instead, a relevant choice would suggest considering an autoencoder ar-
chitecture type to extract the most discriminative features from the images and map them back to
the image space.
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It would also be worth exploring our optimization framework on more complex datasets, one
for which no deep classifier training could linearly separate the images according to their label.
In such cases, the modelization of a meaningful image distance with our proposed optimization
would be relevant and seem very promising.

The idea we explored is at the core of the current machine learning Large Language Models
(LLM) revolution. Indeed, the idea to embed the object in a space where multiple tasks can be
performed seems to be a relevant choice and shows outstanding recent results [157] [42]. This
current trend confirms the relevance of our idea, and even though we did not reach perfect results,
our findings confirm that working to create more meaningful adversarial attacks is the right path
for computing more realistic and relevant adversarial perturbations.

102



Chapter 4

Conclusion & perspectives

Throughout our works, we delved deep into assessing the robustness of image classifiers to certify
their suitability for practical use through additive adversarial attacks. We highlighted that prop-
erties like transferability and universality are regrettably under-emphasized in current research,
although they are fundamental to crafting meaningful adversarial examples leading to a mean-
ingful robustness evaluation. We also took a step back and underscored the significance of the
performance evaluation metric in achieving an unbiased and fair assessment of the adversarial
example generation.

In the first work, we proposed to model the adversarial noise space using a dictionary such
that an attack can be derived, maximizing the desirable properties of adversarial examples, trans-
ferability, and universality. Indeed, the derived LIMANS dictionary-based adversarial attack shows
to be more robust and more transferable than current state-of-the-art methods. Moreover, our
approach allows for visual inspection of the roots of adversarial perturbations, making it easier
to communicate with non-expert audiences and gain a better understanding of classifier vulner-
abilities. Empirical evidence supports the idea that, according to our approach, the generated
adversarial perturbations are more relevant as they exhibit more structure related to objects than
pseudo-random adversarial perturbations.

One of the first perspectives on this work is to evaluate the modeling of the adversarial noise
space with fewer training examples to see if the LIMANS attack improves in generalization if more
training examples are considered. LIMANS’ primary goal is to allow for a more relevant robustness
evaluation of classifiers using adversarial examples. Therefore, constructing a LIMANS black-box
attack would step further the realism of the attacker’s behavior, estimating the classifier’s robust-
ness in an even more realistic way. The construction of such LIMANS black-box attack is one of
the most promising perspectives.

Also, as advocated for instance by Carlini et al. [23], research on adversarial learning should
be engaged in developing tools for resistance against these potential attacks. After working and
proposing the LIMANS attack, we must design the LIMANS adversarial defense to contribute un-
der the two scopes of attacker and defender, making the work an unbiased contribution. Another
interesting perspective is to impose more constraints on the LIMANS atoms. Indeed, the adversar-
ial patch attacks are interesting and appealing to estimate a more realistic classifier’s robustness.
We believe that, under carefully designed constraints, we could make LIMANS parameters, a dic-
tionary of adversarial patches. It could lead to a real improvement and innovation brought to the
research community, going further into crafting more realistic and efficient adversarial perturba-
tions.

During our experiments, we mainly focused on images however, LIMANS could be applied to
any data modalities as long as we can back-propagate gradients and have a similarity metric be-
tween points allowing us to respect an adversarial budget constraint. The LIMANS attack could be
envisioned on any other data modalities, as long as the two previous conditions are met. Overall,
this work aims to be a humble first step toward modeling and understanding the origin and nature
of adversarial perturbations. This work also steps away from state-of-the-art methods to question
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the relevance of the robustness assessment using adversarial examples.
In a second work, we explored the modeling of a meaningful similarity metric between im-

ages. While creating adversarial perturbations, we often deal with a biased and irrelevant image
distance, which inevitably hampers the creation of relevant adversarial examples, leading to an
overly considered robustness estimation.

Despite numerous challenges, we demonstrated that our approach to modeling a relevant sim-
ilarity metric between images is feasible and promising even though some issues need to be ad-
dressed. During our work on the development of a meaningful adversarial attack, we ignored the
feature decoder that would map the adversarial features back to the image space.

Instead of considering the image representations of a neural network, an appropriate choice
would be to consider an autoencoder architecture type to extract the most discriminative repre-
sentations of the images while allowing to map them back to the image space.

It would also be worth exploring our optimization framework on more complex datasets, one
for which no deep classifier training could linearly separate the images according to their label. In
such cases, the proposed modeling of a meaningful image distance would be relevant and promis-
ing.

This second work aligns with the first, in the way that it promotes a more meaningful robust-
ness evaluation using adversarial examples. We believe that the considered similarity metric or
distance is one of the most critical choices to perform a robustness evaluation of classifiers. There-
fore, before performing any meaningful robustness evaluation using adversarial examples, the dis-
tance modeling should in itself be an optimization problem to resolve.

To sum up, our work contributes to estimating the image classifier robustness using adver-
sarial examples in a more meaningful way. We have shown that to conduct a fair and realistic
robustness evaluation from an application standpoint, adversarial examples must have a certain
form and, most importantly, be relevant to the context.
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Appendix A

Annexes

A.1 ADiL projected gradient, norm constraint

Proposition A.1.1 (`p -Attacks). Given some budget ε > 0, we have that ‖Dv‖p ≤ ε for every D ∈D
and v ∈V where

D = {D ∈RP×M | (∀m ∈ [M]), ‖dm‖p ≤ 1}, (A.1)

and
V = {v ∈RM | ‖v‖1 ≤ ε}. (A.2)

Proof. Assuming that D ∈D, then we have that

‖Dv‖p = ‖
M∑

m=1
vmdm‖p ≤

M∑
m=1

‖vmdm‖p ,

=
M∑

m=1
|vm |‖dm‖p ≤

M∑
m=1

|vm | = ‖v‖1.

Hence ‖v‖1 ≤ ε implies ‖Dv‖p ≤ ε.

A.2 From a regularised Wasserstein Distance to a Sinkhorn divergence

We will demonstrate how the regularised Wasserstein Distance A.3 boils down to the Sinkhorn
divergence which allows to solve it efficiently [39]. The demonstration will be performed in 4 steps:

1. We first write down the Lagrangian formulation of the original problem

2. We find the optimal solution of the plan from this Lagrangian formulation

3. We use a rewriting of the dual variable to rewrite the Lagrangian problem

4. We finish by highlighting the solver to efficiently solve the problem

A.2.1 We first write down the Lagrangian formulation of the original problem

WD(ai , a j ) = min
π∈Rf× f

f∑
k=1

f∑
t=1

πk,t Ck,t +ε
f∑

k=1

f∑
t=1

πk,t (log(πk,t )−1) ,

such thatπ1 = ai andπT1 = a j .

(A.3)

The Lagrangian formulation including the constraints with, α,β ∈Rf,αi ≥ 0,β j ≥ 0 ∀i , j , reads

L(π,α,β) =
f∑

k=1

f∑
t=1

πk,t Ck,t +ε
f∑

k=1

f∑
t=1

πk,t (log(πk,t )−1)−αT(π1−ai )−βT(πT1−a j ) .
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A.2.2 We find the optimal solution of the plan from this Lagrangian formulation

δL(π,α,β)

δπkt
= 0 ⇔ Ckt +ε(log(πk,t ))−αk −βt = 0 ,

δL(π,α,β)

δπkt
= 0 ⇔ log(πk,t ) = −Ckt +αk +βt

ε
,

δL(π,α,β)

δπkt
= 0 ⇔π∗

k,t = exp(
αk

ε
)exp(

−Ckt

ε
)exp(

βt

ε
) .

A.2.3 We use a rewriting of the dual variable to rewrite the Lagrangian problem

Let u = exp(αε ), v = exp(βε ) and M = exp(−C
ε ), then we have

δL(π∗,α,β)

δπkt
= 0 ⇔π∗

k,t = diag(u)Mdiag(v) .

L(π∗,u, v) =
f∑

k=1

f∑
t=1

π∗
k,t Ck,t +ε

f∑
k=1

f∑
t=1

π∗
k,t (log(π∗

k,t )−1)−αT(π∗1−ai )−βT(π∗T1−a j ) ,

L(π∗,u, v) =
f∑

k=1

f∑
t=1

π∗
k,t [Ck,t +ε log(π∗

kt )−αk −βt ]−ε
f∑

k=1

f∑
t=1

π∗
kt +αTai +βa j ,

L(π∗,u, v) =−ε
f∑

k=1

f∑
t=1

π∗
kt +αTai +βa j ,

L(π∗,u, v) =−εuTMv +αTai +βa j ,

L(π∗,u, v) =−εuTMv +αTε log(u)+βTε log(v) .

A.2.4 We finish by highlighting the solver to efficiently solve the problem{
∇uL(u, v) = 0

∇vL(u, v) = 0
⇔

{
−Mv + α

u = 0

−MTu + β
v = 0

⇔
{

u∗ = α
Mv

v∗ = β

MTu .

The optimization strategy falls back to gradient descent optimization on u and v simultane-
ously, once convergence is attained for these two variable we compute the optimal plan using
π∗

k,t = diag(u)Mdiag(v). We fall back on the same result previously found in the solver proposed
in [39].
�

A.3 From the Wasserstein Distance to the Frechet Inception Distance

Let X and Y two multivariate random variables on RN following distribution fX resp. fY both be-
longing to a family of distributions which is closed with respect to changes of location and scale.
µX, µY and ΣX, ΣY are the respective means and standard deviations of fX and fY. If WD( fX, fY)
denotes the Wasserstein distance between the fX and fY, we have

WD( fX, fY) = ||µX −µY||22 +Tr (ΣX +ΣY −2(ΣXΣY)1/2).

According to [52] who is the original author of the proof, the proof of such result follows these
three steps:

1. We show that WD( fX, fY) = min
fW∈Γ( fX , fY)

E||X −Y||22 where Γ( fX, fY) denotes the collection of all

measures on N×N with marginals fX and fY on the first and second factors respectively.
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2. We show when µx =µy = 0, WD( fX, fY) = Tr(ΣX +ΣY −2(ΣXΣY)1/2).

(a) Reformulation of the problem with W = (
X
Y

)
. Eq. 11

(b) Expliciting the constraints, ΣW < 0. Eq. 14

(c) Formulation of the dual problem. Eq. 16

(d) Solving the dual problem. Eq. 20

(e) Coming back to the primal problem. Eq. 22

(f) Reformulation using SVD. Eq. 25

(g) Concluding. Eq. 28

3. Coming back to the general case where µX and µY are not longer assumed to be zero.

A.3.1 We show WD( fX, fY) = min
fW∈Γ( fX , fY)

E||X−Y||22.

The original formulation of the WD between fX and fY is

WD( fX, fY) =
(

min
fW∈Γ( fX , fY)

∫
N

∫
N

C(x, y)2 fW(x, y)d xd y
)1/2

, (A.4)

WD( fX, fY) =
(

min
fW∈Γ( fX , fY)

∫
N×N

C(x, y)2d fW(x, y)
)1/2

, (A.5)

Where C denotes a cost function between the random variables X and Y and Γ( fX, fY) denotes the
collection of all measures on the random multivariate variable W = (X,Y) with marginals are fX(x)
and fY(y) on the first and second factors respectively.

Since we focus on the l2 norm as cost function C, we have

WD( fX, fY) =
(

min
fW∈Γ( fX , fY)

∫
N×N

||x − y ||22 d fW(x, y)
)1/2

, (A.6)

From the very definition of fW being a measure on W = (X,Y), the problem simplifies to

WD( fX, fY) = min
fW (X,Y)

E(||X−Y||22). (A.7)

A.3.2 We show when µx =µy = 0,WD( fX, fY) = Tr(ΣX +ΣY −2(ΣXΣY)1/2)

Let µX =µY = 0 ∈RN and W a random multivariate variable on R2N such that W = (
X
Y

)
, then E(W) =(

E(X)
E(Y)

)
= (µX

µY

) = (
0
0

) ∈ R2N. W has a covariance matrix ΣW =
[
ΣX ΣXY

ΣT
XY ΣY

]
, ΣW ∈ R2N×2N. We rewrite the

problem according to the variable W

WD( fX, fY) = min
ΣXY

E(||X−Y||22),

WD( fX, fY) = min
ΣXY

E(Tr ((X−Y)(X−Y)T)),

WD( fX, fY) = min
ΣXY

Tr (E((X−Y)(X−Y)T)),

WD( fX, fY) = min
ΣXY

Tr (E(XXT +YYT −YXT −XYT)),

WD( fX, fY) = min
ΣXY

Tr (ΣX +ΣY −ΣXY −ΣT
XY).

(A.8)

There is an implicit assumption, ΣW being positive semi definite ΣW < 0. A matrix P ∈ R2N

is only positive semi definite if and only if ∃B ∈ R2N×2N such that BTB = P. One can prove that
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by doing, given a matrix P ∈ R2N, if ∀w ∈ R2N we have wTPw ≥ 0, which is true when wTPw =
wTQTQw = ||Qw ||2 ≥ 0, then P is positive semi definite. We exhibit such property for ΣW :

∀w ∈R2N, wTΣW w = (
X
Y

)T
[
ΣX ΣXY

ΣT
XY ΣY

](
X
Y

)= (
X
Y

)T
(
ΣXX+ΣXYY
ΣT

XYX+ΣYY

)
(

X
Y

)T
(
ΣXX+ΣXYY
ΣT

XYX+ΣYY

)
= XTΣXX+YTΣT

XYX+XTΣXYY+YTΣYY,

∃B ∈R2NwTΣW w = wTBTBw = (Bw)T(Bw) = ||Bw ||2 =
2N∑
i=1

(BT
i w)2 =

2N∑
i=1

(BT
i

(
X
Y

)
)2

2N∑
i=1

(BT
i

(
X
Y

)
)2 =

2N∑
i=1

(BT
i w)2 =

2N∑
i=1

(BT
i

(
X
Y

)
)2 =

2N∑
i=1

(aT
i X+bT

i Y)2.

(A.9)

We decompose the matrix B, the square root matrix of ΣW , into internal components ai ∈
RN,bi ∈ RN,∀i = 1, . . . ,2N, then B = (a1,..,a2N

b1,..,b2N

) ∈ R2N×2N. The two red term should match, which
will give us a redifinition of ΣX,ΣY and ΣXY. We develop these terms to see how to redefine the
variables (colors are used to highlight equality)

2N∑
i=1

(aT
i X+bT

i Y)2 =
2N∑
i=1

(aT
i X)2 + (bT

i Y)2 +2((aT
i X)(bT

i Y)).

Developing each term in the sum:

2N∑
i=1

(aT
i X)2 =

2N∑
m=1

( N∑
j=1

am j x j
)( N∑

i=1
ami xi

)= 2N∑
m=1

N∑
j=1

N∑
i=1

am j x j ami xi =
N∑

j=1

N∑
i=1

2N∑
m=1

am j ami xi x j ,

But we know that XTΣXi j X =
N∑

i=1
xi

( N∑
j=1

ΣXi j x j
)= N∑

i=1

N∑
j=1

ΣX j xi x j thusΣX =
2N∑

m=1
am aT

m ,

2N∑
i=1

(bT
i Y)2 =

2N∑
m=1

( N∑
j=1

am j y j
)( N∑

i=1
bmi yi

)= 2N∑
m=1

N∑
j=1

N∑
i=1

bm j y j bmi yi =
N∑

j=1

N∑
i=1

2N∑
m=1

bm j bmi yi y j ,

But we know that YTΣYY =
N∑

i=1
yi

( N∑
j=1

ΣYi j y j
)= N∑

i=1

N∑
j=1

ΣYi j yi y j thusΣY =
2N∑

m=1
bmbT

m ,

2N∑
i=1

2((aT
i X)(bT

i Y)) = 2
2N∑

m=1

( N∑
i=1

ami xi
)( N∑

j=1
bm j y j

)= 2
2N∑

m=1

N∑
i=1

N∑
j=1

ami xi bm j y j = 2
N∑

i=1

N∑
j=1

2N∑
m=1

ami bm j xi y j ,

But we know that YTΣT
XYX+XTΣXYY =

N∑
j

y j

N∑
i
ΣXYi j xi +

N∑
i

xi

N∑
j
ΣXYi j y j ,

=
N∑
i

N∑
j

xiΣXYi j y j +
N∑
i

N∑
j

xiΣXYi j y j ,

= 2
N∑
i

N∑
i
ΣXYi j xi y j thusΣXY =

2N∑
m=1

ambT
m .

(A.10)

We now rewrite ΣX,ΣY and ΣXY (the red elements) in terms of ai ∈RN,bi ∈RN∀i = 1, . . . ,2N, the
components of the ΣW ’s square root matrix and rewrite Eq. A.8 as well

WD( fX, fY) = min
ΣXY

Tr (ΣX +ΣY −ΣXY −ΣT
XY),

WD( fX, fY) = min
a,b

Tr (
2N∑

m=1
am aT

m +
2N∑

m=1
bmbT

m −
2N∑

m=1
ambT

m −
2N∑

m=1
bm aT

m),

such thatΣX =
2N∑

m=1
am aT

m andΣY =
2N∑

m=1
bmbT

m .

(A.11)
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We integrate the constraints with Lagrangian variables Ω ∈ RN×N and M ∈ RN×N into the La-
grangian formulation of the problem

L(a,b,Ω,M) = max
Ω,M

Tr (
2N∑

m=1
am aT

m +
2N∑

m=1
bmbT

m −
2N∑

m=1
ambT

m −
2N∑

m=1
bm aT

m)

+Tr ((ΣX −
2N∑

m=1
am aT

m)Ω))+Tr ((ΣY −
2N∑

m=1
bmbT

m)M)),

⇔L(a,b,Ω,M) = min
Ω,M

Tr (−
2N∑

m=1
am aT

m −
2N∑

m=1
bmbT

m +
2N∑

m=1
ambT

m +bm aT
m)

−Tr (ΣXΩ)+Tr ((
2N∑

m=1
am aT

m)Ω)−Tr (ΣYM)+Tr ((
2N∑

m=1
bmbT

m)M).

(A.12)

The red terms don’t interest us since they are either already defined or not related to the dual
variables and therefore become constraints. Thus we have the new problem in terms of dual vari-
ables

min
Ω,M

Tr (
2N∑

m=1
ambT

m +bm aT
m)+Tr ((

2N∑
m=1

am aT
m))Ω+Tr ((

2N∑
m=1

bmbT
m))M. (A.13)

The KKT conditions state that :

∇S

∇ai
= 0 ⇔ ∇Tr (ai bT

i +bi aT
i )

∇ai
+ ∇Tr (ai aT

i )Ω

∇ai
= 0 ⇔ 2bT

i +2aT
i Ω

T = 0 ⇔ bT
i = aT

i Ω
T.

∇S

∇bi
= 0 ⇔ ∇Tr (ai bT

i +bi aT
i )

∇bi
+ ∇Tr (bi bT

i )M

∇bi
= 0 ⇔ 2aT

i +2bT
i MT = 0 ⇔ aT

i = bT
i MT.

(A.14)

Optimally we have:

a∗
i = Mbi , ∀i = 1, . . . ,2N,

b∗
i =Ωai , ∀i = 1, . . . ,2N.

(A.15)

From these two definitions and knowing that ΣX = ∑2N
m=1 a∗

m a∗T

m and ΣY = ∑2N
m=1 b∗

mb∗T

m we de-
rive a definition of ΣXY

ΣY =
2N∑
i=1

b∗
i b∗T

i =
2N∑
i=1

a∗
i Ω(Ωa∗

i )T =Ω
2N∑
i=1

a∗
i a∗T

i Ω=ΩΣXΩ=ΣY,

ΣXY =
2N∑
i=1

a∗
i b∗T

i =
2N∑
i=1

a∗
i (Ωa∗

i )T =
2N∑
i=1

a∗
i a∗T

i Ω=ΣXΩ=ΣXY,

(A.16)

By combining both we end up with a definition of ΣXYΣXY =Σ2
XY

ΣXYΣXY =ΣXΩΣXΩ=ΣXΣY,

Σ2
XY =ΣXΣY.

(A.17)

We defined Σ2
XY but for our original problem A.8 we are actually more interested in ΣXY.

Assuming ΣX is non-singular, meaning Σ−1
X is defined, we can establish a definition of Ω,

Ω=Σ−1/2
X RΣ−1/2

X . (A.18)

From the definition of ΣY we have a definition of R,

ΣY =ΩΣXΩ⇔ΣY =Σ−1/2
X RΣ−1/2

X ΣXΣ
−1/2
X RΣ−1/2

X ⇔ΣY =Σ−1/2
X RRΣ−1/2

X ⇔ R2 =Σ1/2
X ΣYΣ

1/2
X . (A.19)

Let the eigenvalues and eigenvectors of R2 be (λ1, . . . ,λ2N) resp. (v1, . . . , v2N). The Singular-
Value Decomposition of R2 gives

R2 = VDV−1, (A.20)
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With V ∈ R2N×2N a matrix made of the eigenvectors as columns and D ∈ R2N×2N a diagonal matrix
which entries Di i are the eigenvalues. From this form we infer the forms of R

R = VD1/2V−1 =
2N∑
i=1

εiλ
1/2
i vi vT

i , (A.21)

D1/2 being a diagonal matrix which entries Di i are the square root of R2’s eigenvalues λi∀i =
1, . . . ,2N. However each λi has two possible square root (−λ1/2

i ,+λ1/2
i ) which confirm 2N possible

D1/2 matrices. Thus we encode all of them by timing each eigenvalue’ square root with εi ∈ {−1,1}.
With the definition of R we derive a definition of ΣXY

ΣXY =ΣXΩ andΩ=Σ−1/2
X RΣ−1/2

X ,

ΣXY =ΣXΣ
−1/2
X RΣ−1/2

X ,

ΣXY =Σ1/2
X RΣ−1/2

X .

(A.22)

ΣXY has the same eigenvalues as R so the maximum and minimum value of Tr (ΣXY) =∑2N
i=1λi

are reached when either εi = 1 or εi =−1,∀i = 1, . . . ,2N, which we simplify by respectively writing
±. We rewrite ΣXY with this new notation

ΣXY =±Σ1/2
X (R2)1/2Σ−1/2

X =±Σ1/2
X (Σ1/2

X ΣYΣ
1/2
X )1/2Σ−1/2

X . (A.23)

We already saw that Σ2
XY =ΣXΣY but we confirm that ΣXY = (ΣXΣY)1/2. Multiply ΣXY by itself so see

it is indeed a square root of (ΣXΣY)

ΣXYΣXY =Σ1/2
X (Σ1/2

X ΣYΣ
1/2
X )1/2Σ−1/2

X Σ1/2
X (Σ1/2

X ΣYΣ
1/2
X )1/2Σ−1/2

X ,

ΣXYΣXY =Σ1/2
X (Σ1/2

X ΣYΣ
1/2
X )Σ−1/2

X ,

ΣXYΣXY =ΣXΣY.

(A.24)

Hence ΣXY = (ΣXΣY)1/2 . Which conclude the proof by giving that Tr (ΣXY +ΣT
XY) is maximised or

minimised by taking
ΣXY =±(ΣXΣY)1/2. (A.25)

A.3.3 Coming back to the general case where µX and µY are not longer assumed to be
zero

If µX and µY are no longer assumed to be zero, we enforce such property by adding the term ||µX −
µY||2 to the problem and re-utilise the previous definition we derived. The problem effectively
reads

WD( fX, fY) = min
fW∈Γ( fX , fY)

E(||X−Y||22),

= min
fW∈Γ( fX , fY)

E(||(X−µX)− (Y−µY)+µX −µY||22),

= min
fW∈Γ( fX , fY)

E(||(X−µX)− (Y−µY)||22)+E(||µX −µY||22),

= ||µX −µY||2 +Tr (ΣX +ΣY −2(ΣXΣY)1/2).

(A.26)

�
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Notations

This section provides a concise reference describing the notation used throughout this work.

Numbers and Arrays

a A scalar (integral or real)

a A vector

A A matrix

In Identity matrix with n rows and n columns

e(i ) Standard basis vector [0, . . . ,0,1,0, . . . ,0] with 1 at position i

diag(a) A square, diagonal matrix with diagonal entries given by a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable

Sets

A A set

N The set of natural integers

R The set of real numbers

{0,1} The set containing 0 and 1

{0,1, . . . ,n} the set of all integers between 0 and n

[a,b] The real interval including a and b

(a,b] The real interval excluding a but including b

A\B Set subtraction, i.e., the set containing the elements of A that
are not in B
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Indexing

ai Element i of vector a with indexing starting at 1

a−i All elements of vector a except for elements i

Ai , j Element i , j of matrix A

Ai ,: Row i of matrix A

A:,i Column i of matrix A

Linear Algebra Operations

a⊗b Outer product of vectors a and b

AT Transpose of matrix A

det(A) Determinant of A

Calculus
d f
d x Derivative with respect to x of f :R 7→R
∂ f
∂x Partial derivative with respect to x of f :R 7→R

∇x f Gradient of f :Rn 7→Rm with respect to x∫
f (x)dx Definite integral over the entire domain of x

Probability and Information Theory

a⊥b The random variables a and b are independent

P(a) A probability distribution over a discrete variable

p(a) A density probability function over a continuous variable,

a∼ P Random variable a has distribution P

Ex∼P[ f (x)] or E f (x) Expectation of f (x) with respect to P(x)

Var( f (x)) Variance of f (x)

Cov( f (x), g (x)) Covariance of f (x) and g (x)

H(x) Shannon entropy of the random variable x

DKL(P ∥ Q) Kullback-Leibler divergence of P and Q

N (x;µ,Σ) Gaussian distribution over x with mean µ and covariance Σ
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Functions

f :A 7→B The function f with domain A and range B

f ◦ g Composition of the function f and g

f (x,θ) A function of x parametrized by θ. (Sometimes we write f (x)
instead and neglect θ to lighten notation)

fi (x) Element i of f (x) when f ranges in the vector space

log x Natural logarithm of x

ex Natural exponential of x

∥x ∥p Lp norm of x

∥x ∥ L2 norm of x

x+ Positive part of x, i.e., max(0, x)

Datasets and Distributions

pd at a The data generating distribution

D A dataset of examples

x(i ) The i -th example (input) from a dataset

y (i ) or y(i ) The label associated with x(i )

X The m ×n matrix with input example x(i ) in row Xi ,:

Adversarial

∆ An adversarial attack,

∆(x) =x′ =x+ωx An adversarial example paired to the original example x

ωx An adversarial noise paired to the original example x

Ω The space in which the adversarial noise ωx lives
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