
HAL Id: tel-04468772
https://theses.hal.science/tel-04468772

Submitted on 20 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Regulation of photosystem II in the context of climate
change

Lucas Leverne

To cite this version:
Lucas Leverne. Regulation of photosystem II in the context of climate change. Biological Physics
[physics.bio-ph]. Université Paris-Saclay, 2023. English. �NNT : 2023UPASB065�. �tel-04468772�

https://theses.hal.science/tel-04468772
https://hal.archives-ouvertes.fr


F 

 

 

 

Regulation of photosystem II in the context 

of climate change 

Régulation du photosystème II face au changement climatique 

 

 

Thèse de doctorat de l'université Paris-Saclay  

 

École doctorale n° 567, Sciences du végétal : du gène à l'écosystème et SEVE 

Spécialité de doctorat : Sciences végétales 

Graduate School : BioSphERA. Référent : Faculté des sciences d’Orsay 

 

Thèse préparée dans l’unité de recherche Institute for Integrative Biology of the 

Cell (I2BC) (Université Paris-Saclay, CEA, CNRS),  

sous la direction de Anja KRIEGER-LISZKAY directrice de recherche,  

et la co-encadremente Fabienne MAIGNAN, Ingénieur-Chercheur  

 

 

Thèse soutenue à Paris-Saclay, le 15 novembre 2023, par 

 Lucas LEVERNE 

Composition du Jury  
Membres du jury avec voix délibérative  

Michael HODGES  

Directeur de recherche, CNRS, 

Université Paris-Saclay 

 Président  

Jean ALRIC  

Directeur de recherche, CNRS, CEA 

Cadarache  

 Rapporteur & Examinateur  

Gilles CURIEN  

Chargé de recherche, HDR CNRS, 

CEA Grenoble  

 Rapporteur & Examinateur  

Valérie LE DANTEC  

Maître de conférences, Université 

Paul Sabatier - Toulouse III 

  Examinatrice 

 



1 
 

 

 

Titre : Régulation du photosystème II face au changement climatique 

Mots-clés : Photosynthèse, mécanismes de régulation, modélisation, fluorescence de la 

chlorophylle

Résumé : L’absorption du CO2 atmosphérique 

via la photosynthèse joue un rôle majeur pour 

l’atténuation du changement climatique. 

Néanmoins via des épisodes de canicule et de 

sécheresse ces dernier induit d’importants 

stress sur les plantes terrestres. Dans ce 

contexte des incertitudes considérables 

persistent dans la prévision des capacités 

d’absorption du CO2 par les plantes terrestres 

pour les décennies futures. C’est pourquoi 

nous avons étudié la régulation de la 

photosynthèse dans ces conditions de stress, 

depuis l’échelle moléculaire au niveau du 

chloroplaste, jusqu’à l’échelle globale des 

surfaces continentales. Nous avons utilisé 

principalement des mesures de fluorescence 

de la chlorophylle a, permettant de faire le 

lien entre les connaissances de la plus petite 

échelle à la plus grande. Cette thèse nous a 

permis de proposer de nouveaux modèles 

pour la régulation de la photosynthèse à 

plusieurs échelles : un rôle potentiel pour le 

glycolate au niveau du PSII (chapitre 2), une 

voie de signalisation possible entre le 

chloroplaste et les racines (chapitre 3), 

l’impact combiné de l’âge et l’espèce de la 

plante pour les température extrêmes 

(chapitre 4), la modélisation d’un processus 

de régulation moléculaire implémenté dans le 

modèle de surfaces continentales ORCHIDEE 

pour l’ensemble des forêts boréales à aiguilles 

persistantes (chapitre 5), et enfin la 

modélisation d’un processus de régulation 

pour des arbustes en conditions de 

sécheresse et hautes températures (chapitre 

6). Dans l’ensemble, ce travail a permis une 

première connexion entre des chercheurs 

experts de la régulation de la photosynthèse 

aux échelles moléculaires et globales. Cette 

connexion a conduit à améliorer la 

modélisation de l’absorption du CO2 

atmosphérique par les surfaces continentales, 

ce qui permettra de réduire les incertitudes 

associées dans les projections climatiques. 
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Title: Regulation of photosystem II in the context of climate change 

Keywords: Photosynthesis, regulatory mechanism, modelling, chlorophyll fluorescence 

Abstract: The absorption of atmospheric CO2 

through photosynthesis plays a crucial role in 

mitigating climate change. However, climate 

change-induced heatwaves and drought 

impose significant stresses on terrestrial 

plants. Despite ongoing efforts, there remain 

considerable uncertainties in predicting the 

future of the CO2 absorption capacities of 

these plants. Consequently, we conducted a 

study to investigate the regulation of 

photosynthesis under such stresses, spanning 

from the molecular scale at chloroplast level 

to the global scale of continental surfaces. 

Using chlorophyll a fluorescence 

measurements as our primary tool, we 

established connections between knowledge 

at different scales. This thesis has yielded 

novel models for photosynthesis regulation 

across multiple levels: identifying a potential 

role for glycolate at the PSII level (Chapter 2), 

exploring a potential signalling pathway 

between the chloroplast and roots (Chapter 

3), examining the combined effects of plant 

age and species on extreme temperatures 

(Chapter 4), implementing a molecular 

regulation process in the ORCHIDEE model for 

boreal evergreen needleleaf forests (Chapter 

5), and modelling regulation processes for 

poplar trees under drought and high 

temperature conditions (Chapter 6). Overall, 

this research establishes a valuable 

connection between research on 

photosynthesis regulation at molecular and 

global scales. This connection has led to 

improvements in the modelling of 

atmospheric CO2 absorption by continental 

surfaces, which will allow reducing associated 

uncertainties for climate projections. 
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1 Chapter 1: General introduction 

Anthropogenic activities such as those relying on the burning of fossil fuels and land use have led to 

massive emissions of carbon dioxide (CO2), of which the main part has accumulated into the 

atmosphere (Friedlingstein et al., 2022). The increased level of atmospheric CO2, which is a 

greenhouse gas, has caused drastic changes in the global climate (IPCC Sixth Assessment Report, 

2021). Climate change (CC) has led to increased frequency and intensity of droughts and high 

temperatures, which have put significant stresses on plants (Crausbay et al., 2017). These changes 

in weather patterns have made it increasingly difficult for plants to maintain their physiological 

functions, which has led to reduced crop yields (Lobell et al., 2011) and loss of forestry vegetation 

cover (Allen et al., 2010). 

This raises the question of how long plants can still mitigate climate change. Through 

photosynthesis, plants absorb atmospheric CO2 and convert it into sugars, which they use to sustain 

their growth and development. This process is critical not only for plant survival but also for global 

food security. Photosynthesis thus contributes to the regulation of atmospheric CO2 levels, which 

makes plants a key player for mitigation of the impacts of climate change (Field et al., 1998). 

Drought stress is one of the most significant environmental factors that affect plant growth and 

productivity (Chaves et al., 2002). Drought-induced stress can damage the photosynthetic apparatus 

of plants, leading to reduced CO2 uptake and limited plant growth. In drought conditions, plants 

close their stomata to reduce transpiration; this leads to reduced CO2 concentration in leaves, and 

decreases the electron donor consumption during CO2 reduction and increases the potential for 

oxidative stress. Non-photochemical quenching (NPQ) is an ensemble of key regulatory mechanisms 

used by plants as a protection against drought-induced oxidative stress, which allows to dissipate 

excess energy as heat.  

In order to improve the global modelling of plant productivity, it is crucial to comprehend the 

regulation of plant responses to drought at a molecular level, and translate it into conceptual leaf-

level models. Modelling photosynthetic processes at leaf-level, and up-scaling the corresponding 

fluxes at the canopy, ecosystem and global scales is critical for predicting the impact of plant 

responses to climate change. Land surface numerical models represent our understanding of the 

ability of terrestrial plants to absorb CO2. They are used to compute the quantity of CO2 assimilated 

by plants through photosynthesis over all continental surfaces, called gross primary production 

(GPP), and to analyse how this ability to absorb CO2 may alter under various future climatic 

scenarios.  

The main goal of this thesis is to connect the understanding of plant regulation on a molecular 

level with the processes represented in land surface models, as well as with large-scale 

observations, to improve global simulations of plant CO2 uptake. I will study the regulation of 

photosynthesis at multiple scales including: photosystem (PS) II, linear electron flow of 

chloroplast, plant model A. thaliana, model tree poplar, and boreal evergreen needleleaf forests. 

By integrating these different levels of understanding, we can develop more accurate 

representations of how plants respond to climate conditions. This knowledge can help us to 

https://www.ipcc.ch/report/ar6/wg1/
https://www.zotero.org/google-docs/?EJxLrW
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develop better strategies for managing our planet's natural resources and mitigating the impacts 

of climate change. 

1.1  A vegetation increasingly exposed to droughts and elevated temperatures 

Figure 1-1 from Chapter 11 of the Sixth Assessment Report (AR6) (“Weather and Climate Extreme 

Events in a Changing Climate,” 2023)  of Working Group I of the Intergovernmental Panel on Climate 

Change (IPCC) shows the spatial patterns expected in temperature and precipitation under a 

scenario with a 4°C warming. Predicting drought levels will be quite challenging, as significant 

modifications are expected between mean and extreme precipitation for different regions of the 

world. 

 

Figure 1-1: Illustration of the spatial patterns of changes in the warmest three-month season temperature and annual 

mean precipitation, and extreme temperature and precipitation (projections for a 4°C global warming by 2100), source 

Chapter 11 of the IPCC AR6 of Working Group I (“Weather and Climate Extreme Events in a Changing Climate,” 

2023)(“Weather and Climate Extreme Events in a Changing Climate,” 2023). 

Chapter 8 of the IPCC AR6 of Working Group I (“Water Cycle Changes,” 2023) provides a detailed 

description of the impacts of climate change on the global water cycle. The IPCC foresees an increase 

in soil evapotranspiration, air humidity, and a global modification of precipitation patterns, with less 

frequent but more intense rainfalls. An increase in precipitation is expected for the high northern 

latitudes of the globe, and a corresponding increase in drought for many regions. The IPCC 

anticipates a decrease in soil moisture over the Mediterranean, southwestern North America, 

southern Africa, southwestern South America, and southwestern Australia. Aridification is predicted 

to far exceed the magnitude of change observed during the last millennium in the Mediterranean, 

southwestern South America, and western North America. Some tropical regions, such as the 

Amazon basin and Central America, are also expected to experience increased aridity, (Chapter 11 
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of the IPCC AR6 of Working Group I, “Weather and Climate Extreme Events in a Changing Climate,” 

2023). 

There has already been an increase in drought and high temperatures over the past decades, with 

a significant interannual variation (Figure 1-2). 

 

Figure 1-2: Time series of the number of extreme heat and drought disasters per year from the Emergency Events 

Database (EM-DAT). The EM-DAT database is based on a compilation of disaster reports gathered from various 

organizations including United Nations agencies, governments and the International Federation of Red Cross and Red 

Crescent Societies (Lesk et al., 2016).  

These changes have greatly disrupted agricultural yields and food security. By analysing the yield 

losses reported by the Food and Agriculture Organization of the United Nations and the reports of 

extreme hydro-meteorological disasters collected by the Emergency Events Database (EM-DAT) 

between 1964 and 2007, (Lesk et al., 2016) show a significant effect of heatwaves on yields, with a 

global decrease in cereal yields of 9.1%. However, droughts alone have an even greater effect on 

yields, with a decrease of 10.1% (Lesk et al., 2016). Analysing the response of plants to water stress 

can allow us to understand their behaviour in such conditions, bring out processes mitigating stress, 

and maybe find leads to improve crop resistance.  

Forests represent a large proportion of vegetative cover on terrestrial land, and serve as a significant 

carbon sink (Harris et al., 2021). They represent 40 millions of km2 against 16 millions of km2 for 

crops and 32 millions of km2 for grazing (Ritchie and Roser, 2013). However, forests are increasingly 

suffering from climate change too, being windthrow, droughts, and associated increased risks of 

cavitation, fires, pest attacks, leading to mortality (Allen et al., 2010; Forzieri et al., 2022).  

In order to improve both crops and forest modelling, it is necessary to study the fundamental 

behaviour of photosynthesis under conditions of drought or/and high temperatures. The following 

sections will describe the basis of photosynthesis in a plant cell, first the light reactions, and then 

the dark reactions.  

https://www.zotero.org/google-docs/?51aZd8
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1.2 Photosynthetic processes 

1.2.1 The light reactions  

Photosynthesis occurs in the chloroplast, a specific organelle of the plant cell. This process can be 

divided into two main parts called light and dark reactions. The light reactions take place in an 

electron transport chain in the thylakoid membrane of the chloroplast, and produce adenosine 

triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). These are 

subsequently used during the dark reactions, also called the Calvin-Benson cycle and described in 

section 1.2.2, which produces sugar from CO2. The electron transport reactions go through four 

main protein complexes: PSII, cyt b6f, PSI, ATP synthase, which are embedded in the thylakoid 

membrane. I will first describe these four protein complexes, and then how they interact in the 

linear electron flow (source: Krieger-Liszkay & Kirilovsky (2022) in Photosynthesis in Action (eds 

Ruban, Foyer, Murchie, Elsevier)). 

1.2.1.1  Photosystem II (PSII) 

 

Figure 1-3: Photosystem II structure and cofactors and pigments attached to the heterodimer D1/D2. Chl: chlorophyll; 

CAR: β-carotene; Pheo: pheophytin; Qa and Qb: primary and secondary quinone acceptors; OEC: Oxygen Evolving 

Complex, P680 photosystem II primary donor. The electron transport takes place between the cofactors of the D1 

protein, only Qa is located on the D2 protein (source: Krieger-Liszkay & Kirilovsky (2022) in Photosynthesis in Action (eds 

Ruban, Foyer, Murchie, Elsevier)). 

PSII is mostly located in the grana region of the thylakoid membrane. It uses light energy to drive 

two reactions: oxidation of water and reduction of plastoquinone. PSII is a dimer composed of two 

identical complexes that function independently. The photochemical reaction centre of each PSII is 

formed by two homologous proteins, D1 and D2, forming a symmetric heterodimer which binds all 

the cofactors needed for charge separation and stabilization. Only one site of the heterodimer is 
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active in electron transport. An inorganic complex, Mn4CaO5, called Oxygen Evolving Complex (OEC), 

responsible for the oxidation of water and production of oxygen, is attached to the lumenal side of 

D1. When the chlorophylls of the photosystem II primary donor, noted P680, are excited, charge 

separation takes place producing P680+/Pheo-. Then the electron is transferred to Qa and later to Qb 

non-heme iron. The Qb site differs from the Qa one in that it works as a two-electron acceptor, and 

becomes fully reduced after two successive excitations of P680. The double-reduced Qb exchanges 

with an oxidized plastoquinone (PQ) from the PQ pool. On the PSII donor side, the charge separation 

event permits the oxidation of redox active amino acid tyrosine Z by P680+. The tyrosine Z reduces 

P680+. TyrZ+ in turn is reduced by the OEC. The water splitting requires four successive oxidations 

of Mn by tyrosine Z. The four oxidation steps of Mn ions permit water splitting that produces one 

molecule of oxygen and four protons from two molecules of water. 

Figure 1-3 also shows that two β-carotenes are present in PSII. They act as scavengers of 1O2 (see 

presentation of singlet oxygen in section 1.3.1) and the one located at the D2 protein can also be an 

alternative electron donor to P680+. 

 

1.2.1.2  Cytochrome b6f 

Between PSII and PSI, the cytochrome b6f (cyt b6f) complex plays a central role in the linear electron 

flow. It acts as a plastoquinol-plastocyanin oxidoreductase. The cyt b6f complex receives electrons 

from the reduced plastoquinone pool, generated by PSII, and transfers them to PSI through 

plastocyanin. Additionally, this process involves the translocation of protons across the membrane 

from the stroma to the lumen. In most environmental conditions, the rate of the electron transport 

and reoxidation of the PQH2 pool are controlled by cyt b6f. 

    

1.2.1.3 Photosystem I (PSI) 

 

Figure 1-4: Photosystem I structure and cofactors involved in the electron transport. PSI is shown from the side, with 

the luminal side of the membrane at the bottom and the stromal side at the top of the figure. The following subunits 
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are visible in this figure: PsaA (green), PsaB (cyan), PcaC (magenta), chlorophyll dimer P700, primary electron acceptor 

A0, chlorophyll monomer A1 single acceptor donor, cluster 4Fe-4S noted Fx and two other 4Fe-4S clusters FA and FB 

located in PsaC (source: Krieger-Liszkay & Kirilovsky (2022) in Photosynthesis in Action (eds Ruban, Foyer, Murchie, 

Elsevier)). 

In PSI, presented in Figure 1-1, there are two symmetric and active branches participating in electron 

transport from P700 to the Fe-S cluster Fx. When light excites P700, charge separation takes place 

and it gives the electron to the primary electron acceptor, A0, then to A1, creating the more stable 

P+700A-
1A state. Then Fx is reduced, and the electron is transferred to FA or FB Fe-S clusters in PsaC. 

Ferredoxin (Fd) with its very negative reduction potential (-430 mV) is easily reduced by FA or FB 

clusters (-550 mV). The ultimate stage of linear electron transport involves the reduction of NADP+ 

to NADPH through the activity of ferredoxin-NADP reductase (FNR). FNR accepts electrons in a 

sequential manner, one at a time, from ferredoxin (Fd). These electrons are temporarily stored at 

the Flavin adenine dinucleotide (FAD) cofactor, which can exist in three distinct states: fully oxidized, 

semi-reduced, and fully reduced, transitioning from FAD to FADH to FADH2. Subsequently, FNR 

catalyses the two-electron reduction of NADP+ to NADPH. 

1.2.1.4 ATP synthase 

The acid pH in lumen, linked to protons produced during water splitting in the OEC of PSII and 

protons pumping from the stroma to the lumen by cyt b6f, permits ATP synthase activity. The ATP 

synthase catalyses the addition of inorganic phosphate (noted Pi) to ADP, to produce ATP using the 

proton gradient as energy source.  

1.2.1.5 The linear electron flow 

All these complexes (PSII, cyt b6f, PSI, ATP synthase) interact together to produce ATP and NADPH 

in what we call the linear electron flow (Figure 1-5). First, photons excite the chlorophylls in the 

antenna, which transfer the energy to the chlorophyll molecules of the primary donor P680 in PSII. 

On the lumen side of the thylakoid membrane H2O molecules are oxidized by the water splitting 

complex of PSII, which produces oxygen molecules, protons and electrons (step 1). Electrons reduce 

quinones A then B (step 2) of PSII, and a second charge separation occurs and reduces the 

plastoquinone pool, converting PQ into PQH2 (step 3). PQH2 reduces cyt b6f (step 4) and the 

reduction is further transferred to PSI through plastocyanin (step 5). PSI reduces Ferredoxin (Fd). 

Reduced Fd is used by the Ferredoxin-NADP+-Reductase (FNR) to generate reducing power NADPH 

from NADP+ (step 6). Finally, the proton gradient produced during the water splitting by PSII and 

the plastoquinol oxidation by the cyt b6f enable the production of ATP by the ATP synthase (step 7) 

(Nelson & Ben-Shem, 2004). 
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Figure 1-5: Schematic representation of the linear electron transport in the thylakoid membrane of the chloroplast. The 

red dotted line represents the linear electron flow, and the numbers represent each step described in the core text. 

Beside the linear electron transport there exist alternative electron transport pathways that are not 

detailed here. We just briefly mention the cyclic electron flow. Two pathways of cyclic electron flow 

exist: one via the NDH complex and one via a still unidentified ferredoxin/plastoquinone 

oxidoreductase. In both pathways, electrons from the acceptor side of PSI cycle via the PQ pool, cyt 

b6f and plastocyanin back to PSI, generating a proton gradient and thereby allowing the producing 

ATP. The exact pathway is still under debate (Nawrocki et al., 2019).  

 

1.2.2 The dark reactions  

The energy stored in the form of reducing power and ATP produced during the light reactions is 

used to power the Calvin-Benson cycle. This cycle reduces atmospheric CO2 into sugar. First 

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) with ribulose-1,5-bisphosphate 

(RuBP) as substrate reduces CO2 and produces 3-phosphoglycerate (3-PG). The different steps of 

the Calvin-Benson cycle will not be described here. For every reduced CO2, the consumption of 3 

ATP and 2 NADPH is required. RuBisCo can also reduce oxygen instead of CO2. This photorespiratory 

pathway is detailed in section 2.1.  

The localization and activity of RuBisCo varies depending on the type of plant: C3, C4 and CAM. CAM 

plants will not be discussed in this thesis. In C3 plants, the light reactions and the Calvin-Benson 

cycle occur in the mesophyll cells, and the dissolved CO2 reaction with RuBP is directly catalysed by 

the RuBisCo enzyme.  

In contrast, C4 plants (in which the first carbon compound produced contains four carbon atoms) 

are characterized by the kranz anatomy, i.e., specialized cells around the bundle sheath. This special 

anatomy isolates RuBisCo from oxygen. Furthermore, in these chloroplasts no or very little PSII 

activity is present, minimizing photosynthetic O2 production.  Thanks to the prefixation of CO2 by 

phosphoenolpyruvate carboxylase, the CO2 concentration in the bundle sheath cell is higher than in 

the mesophyll cells allowing more efficient carboxylation reaction by RuBisCo. This particular 

morphology gives higher photosynthesis and thereby higher fitness of C4 plants in high temperature 

or aridity conditions by avoiding losses by photorespiration.  
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Figure 1-6: Idealized A/𝐶𝑖 response with its limitations defined by the Farquhar model. The 𝑊𝑐 limitation associated 

with the maximum rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation is in green. The 

𝑊𝑗 limitation associated with the electron transport rate for the regeneration of RuBP is in orange, and the 𝑊𝑠 limitation 

associated with the triose-phosphate utilization is in blue. The black dotted line represents the photosynthetic rate 

derived from these three limitations. Figure inspired from (Long, 2003). 

The internal concentration of CO2, noted 𝐶𝑖 (µmol.mol-1), in plants plays a major role in the rate of 

CO2 assimilation. The rate of CO2 fixation via the Calvin-Benson cycle is limited by three parameters, 

as represented in the Farquhar model (Farquhar et al., 1980), that will be further described here, 

with equations given for the C3 case. These limitations appear successively as 𝐶𝑖 increases under 

conditions of constant temperature and light (Figure 1-6). First, there is 𝑊𝑐, which is the assimilation 

associated with the maximum rate of RuBisCo carboxylation (𝑉𝑐𝑚𝑎𝑥, eq. (1.1)), second, 𝑊𝑗 , which 

represents a limitation in ATP and NADPH produced during the light phase of photosynthesis (eq. 

(1.2)), and third, 𝑊𝑠, which is rarely observed at normal CO2 concentrations and results from triose-

phosphate export limitation (eq. (1-3)). The CO2 assimilation is formulated as the minimum of these 

three limitations:  

𝑊𝑐 =  
𝑉𝑐𝑚𝑎𝑥 (𝐶𝑖 − 𝛤 ∗)

𝐶𝑖 +  𝐾𝑐(1 +
𝑂𝑖
𝐾𝑜)

  eq. (1-1) 

𝑊𝑗 =  
𝐽(𝐶𝑖 − 𝛤 ∗)

4(𝐶𝑖 + 2𝛤 ∗)
 eq. (1-2) 

𝑊𝑠 =  𝑉𝑐𝑚𝑎𝑥/2  eq. (1-3) 

https://www.zotero.org/google-docs/?broken=Yxm6aQ
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𝐶𝑖 is the intercellular CO2 partial pressure (Pa), 𝛤 ∗ is the CO2 compensation point (Pa), 𝑂𝑖 is the 

partial pressure of oxygen and 𝐾𝑐 and 𝐾𝑜 are the Michaelis-Menten coefficients, respectively for 

the carboxylation and oxidation reactions catalysed by Rubisco. 𝐽 (µmol.electron.m-2.s-1) is 

computed following an empirical law, it depends on the maximum electron transport rate, 𝐽𝑚𝑎𝑥, 

(µmol.electron.m-2.s-1) and the number of photons absorbed by a leaf, noted ɸ 

(µmol.photon.m-2.s-1), as the smaller of the two roots of the equation: 

0.7𝐽2  − (𝐽𝑚𝑎𝑥 + 0.385ɸ)𝐽 +  0.385 𝐽𝑚𝑎𝑥ɸ =  0  eq. 1-4) 

𝐾𝑐, 𝐾𝑜, 𝑉𝑐𝑚𝑎𝑥 and 𝐽𝑚𝑎𝑥 are all temperature dependent. 

1.3 Regulation of photosynthesis 

1.3.1 The different ROS species and their production sites in the photosynthetic chain  

Under natural conditions, it is typical for plants to receive an excessive amount of photons, leading 

to the saturation of the linear electron transfer chain. As a result, the reduced electron acceptors 

may react with oxygen and generate ROS (reactive oxygen species). These species can react with, 

and cause damage to, proteins, lipids, DNA and RNA (Gill & Tuteja, 2010). At high concentrations, 

ROS can cause irreversible damage and induce cell death. However, there are many different ROS 

scavengers in plants to control this oxidative stress, and ROS are also used as a signal for cells, and 

are thus not just a harmful waste (Waszczak et al., 2018). One distinguishes between reduced forms 

of oxygen (superoxide anion radical, hydrogen peroxide, hydroxyl radicals, etc.) and singlet oxygen 

(1O2). Oxygen is in a triplet state (3O2) in its fundamental state and, therefore, its reactivity is 

kinetically limited. When the spins are reversed and 1O2 is generated from 3O2, it becomes extremely 

reactive. In photosynthetic organisms, 1O2 is produced either by excited chlorophylls in their triplet 

state when the antenna is altered, or in the PSII reaction centre by the recombination of the primary 

charge pair (P680+Phe-). This yields the formation of 3P680 that reacts with 3O2 to 1O2. The 

production site in the reaction centre is the main site of 1O2 production in photosynthesis (Krieger-

Liszkay, 2004). The singlet of oxygen is more reactive and has a shorter life time and can travel less 

in the cell, compared to other ROS like H2O2. Superoxide anion radicals are generated through the 

transfer of an electron to molecular oxygen for example during electron transport in the plant's 

mitochondria. In addition, superoxide anions are also produced during photosynthetic electron 

transport. This process is known as the Mehler reaction, which involves the transfer of electrons 

from an electron donor such as FA
-, FB

-, PQ-, Qb
- to molecular oxygen. FA and FB are the terminal 

electron acceptors in PSI. Superoxide is dismutated to H2O2, either catalyzed by superoxide 

dismutase or spontaneously. 

Hydroxyl radicals are highly reactive ROS that are generated by the Fenton reaction. This reaction 

occurs when iron or copper (Fe(II), Cu(I)) ions and hydrogen peroxide (H2O2) interact, resulting in 

the production of hydroxyl radicals. 

Plants have evolved various defence mechanisms to counter the negative effects of ROS, including 

the production of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate, 

glutathione, and peroxidase. These enzymes catalyse the conversion of ROS into less reactive 
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molecules, thereby minimizing their damaging effects on the plant's cells (Foyer, 2005). In addition, 

carotenoids and tocopherols are important antioxidant substances (Sekher Pannala et al., 1998). 

1.3.2 Mains NPQ mechanisms in plants  

When a plant is exposed to too much light or stressful conditions such as drought or high 

temperatures, it can dissipate excess energy in the form of heat to protect itself against ROS 

production. This process is called non-photochemical quenching (NPQ). It is present in all 

photosynthetic organisms and consists of several mechanisms (Goss and Lepetit, 2015). NPQ 

mechanisms regulate the linear electron flow and the ROS production. There are three different 

types of NPQ: 1. qE, that is pH-dependent (Ruban, 2018), 2.qT, also called state transitions, that 

involve movement of a part of light harvesting complexes II, noted LHCII (Tikkanen and Aro, 2012), 

and 3. qI, photoinhibition, that involves the damage and turnover of the D1 protein (Nath et al., 

2013). These different types of NPQ are classified according to their relaxation time in darkness.  

Regarding qE, the pH of the thylakoid lumen plays a key role in dissipating received light energy as 

heat via carotenoids. The decrease in pH in the lumen induces a chain of regulation that leads to the 

successive and reversible de-epoxidation of violaxanthin to antheraxanthin and then zeaxanthin. 

This mechanism dissipates the received excess energy at the antenna level as heat, see Figure 1-7 

part A. In addition to zeaxanthin, the PSBS protein is also involved in NPQ. Its activity is triggered by 

low pH in the lumen and it quenches energy and dissipates it as heat. The NPQ type qE has the 

shortest relaxation time, on the order of a minute. Regarding qT, state transitions occur when the 

transfer of chlorophyll antennas between PSII and PSI balances their level of excitation, see Figure 

1-7 part B. qT relaxation in darkness takes around 20 minutes. Regarding qI, it is mainly observed 

during exposure to high light intensities, and induces the degradation of the D1 protein in PSII, 

rendering the complex non-functional. The synthesis of D1 protein and subsequent assembly of PSII 

takes several hours. 

 

Figure 1-7: Schematic representation of two NPQ mechanisms. A. qE NPQ type, with triangles representing energy and 

pH gradients, and the transition of violaxanthin to zeaxanthin. B. qT NPQ type, the dotted arrow shows the movement 

of the loosely bound part of LHCII from PSII to PSI. This takes place after phosphorylation and acetylation of LHCII.  

Finally, for gymnosperm needleleaf trees, a specific type of NPQ is observed (e.g., in Pinus sylvestris) 

over the cold season, during which almost all photosynthetic yield is nullified. This one is called 

sustained NPQ because it lasts several months. In this case, a rearrangement of chlorophyll antennas 

and PSII prevents the photosystems from receiving light energy and performing the necessary 

charge separation for photosynthetic activity (Bag et al., 2020). In standard conditions, PSII is 

https://www.zotero.org/google-docs/?nAscTR
https://www.zotero.org/google-docs/?AcT3CI
https://www.zotero.org/google-docs/?ML7kMy
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preferentially localised in grana stacks and PSI in lamellas of chloroplasts. In this type of NPQ, the 

thylakoid membrane is disorganised, and there is a direct energy transfer from PSII to PSI, the so-

called spillover, see Figure 1-8. 

 

Figure 1-8: Different seasonal quenchings: Summer unquenched (a); Winter quenched (b); Summer quenched (c) in 

Scots pine. From (Bag et al., 2020). 

1.4 Chlorophyll fluorescence measurements 

In this part, I present how measurements of chlorophyll a fluorescence can be used to get 

information on photosynthetic activity from the leaf to the global scale.  
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Fluorescence of chlorophyll a is one of the three modes of energy dissipation when a photosynthetic 

organism is illuminated. The organism can also dissipate energy as heat (NPQ) or use it during 

photosynthesis to convert atmospheric carbon into sugar. A small part of chlorophyll relaxation 

generates fluorescence emission, representing at maximum 1-2% of the total energy received. The 

fluorescence emission spectrum from chlorophyll a covers the spectral range from 650 nm to 780 

nm with two peaks centred around 685 nm and 740 nm (Franck et al., 2002.). 

At room temperature, while the fluorescence emission wavelengths of the two photosystems 

overlap, the emission intensity from PSII is stronger compared to PSI, as shown in Figure 1-9. In 

contrast, at 77 K, the emission from the two photosystems can be distinctly separated with PSII 

emitting at 685 and 695 nm and PSI antenna emitting at 730 nm (Krause and Weis, 1991). 

 

Figure 1-9: Left panel: relative maximal fluorescence emission (Fm) of PSII and PSI at room temperature; modified after 

(Franck et al., 2002.). Right panel: fluorescence emission at 77K normalised on PSII signal, personal data. 

Due to the close link between energy dissipation by heat, photosynthesis, and chlorophyll 

fluorescence (Baker, 2008), we can calculate the level of photosynthesis and NPQ by measuring the 

fluorescence of chlorophyll excited with saturating flashes. This method of fluorescence 

measurement is called the active one. Another method is called passive, both are presented below. 

1.4.1  Active measurements  

For active measurements, we use a technique called PAM (pulse amplitude modulation). This 

technique uses a modulated measuring light with a high frequency. The approach relies on the 

saturation of the photosynthetic system, using short high-intensity light flashes. Using a series of 

minimum and maximum fluorescence values obtained in dark-adapted and high-light conditions, as 

detailed in the following section, it becomes possible to calculate the photochemical and non-

photochemical yields of the plant (Baker, 2008). The main limitation of this technique is that it is 

only doable at small spatial scales, from a leaf to a small plant. 

1.4.1.1 Procedure for active measurements and yield calculations  

The principle of fluorescence active measurement is presented in Figure 1-10. The fluorescence level 

measured is denoted by F. First, the sample is kept in the dark for 5 minutes to fully oxidise the Qa 

of PSII. Then, we turn on the measuring light, first at a level, which is too weak to induce 

photosynthetic activity. At this stage, we measure the dark-adapted fluorescence level F0. Next, we 

saturate the photosynthetic system with a high-energy flash, which reduces the plastoquinone pool, 
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Qa and Qb. Because the flash excitation is very fast (300 ms), the full photosynthetic electron chain 

is not operating, resulting in the measurement of the maximal fluorescence level Fm. Then, we turn 

on the actinic light, this one induces photosynthetic activity. Initially, energy is dissipated through 

fluorescence, which explains the rise in fluorescence, as seen in Figure 1-10. Then, the fluorescence 

level decreases due to energy dissipation through both photochemical and non-photochemical 

quenchings. When the fluorescence level becomes stable with the light turned on, we add flashes 

that fully reduce Qa, resulting in a new fluorescence level called Fm'. There is a last fluorescence 

level noted on the graph, called F0'; to reach this particular level after illuminating the sample under 

the previously described conditions, we use a far-red light to specifically excite PSI and pull out the 

electron flow of PSII to completely oxidise the plastoquinone pool and Qa. 

Because the PAM machine I used during this work did not provide far-red light, we used the 

following formula to estimate F0’: F0’ = F0/ (F/Fm + F0/Fm') (Oxborough & Baker, 1997).  

There are various fluorescence parameters that can be computed based on these fluorescence 

levels, among which the effective PSII quantum yield Y(II), the quantum yield of regulated energy 

dissipation Y(NPQ), and the quantum yield of non-regulated energy dissipation Y(NO). The sum of 

the tree previous quantum yields is 1. There are also: the photochemical quenching coefficient, qL, 

which quantifies the proportion of active PSII reaction centres (meaning the PSII fraction where Qa 

is oxidized), and is usually computed based on the "lake model" of PSII antenna organization; qN, 

the non-photochemical quenching coefficient, taking a value of 0 for the dark-adapted state and of 

1 when all variable fluorescence is quenched; and qP, the photochemical quenching, also varying 

between 0 and 1.  

These parameters are calculated as follows: Y(II) = (Fm’-F)/Fm’; Y(NPQ) = 1-Y(II)-

1/(NPQ+1+qL(Fm/F0-1)); Y(NO) = 1/(NPQ+1+qL(Fm/F0-1)); qL = (Fm’-F)/(Fm’-F0’) x F0’/F; qN = (Fm-

Fm’)/(Fm-F0’). 
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Figure 1-10: Fluorescence levels during a classical photosynthetic PAM measurement starting on fully dark-adapted 

photosynthetic systems. The green arrow represents the moment when an actinic light is turned on; the double red 

arrows represent moments of saturating flashes, and the dotted red arrow represents the moment when far-red light 

is activated. F0: minimal fluorescence for a dark-adapted sample; Fm: maximal fluorescence for a dark-adapted sample; 

Fm’: maximal fluorescence for an illuminated sample. The total time of the experience is around 5 to 10 min with 

classically 1 min in between saturating flashes. 

1.4.2 Passive measurements  

The passive measurements of chlorophyll fluorescence usually rely on the sun as the light source, in 

which case they estimate the so-called sun-induced fluorescence (SIF). This method allows to 

estimate the fluorescence at larger scales under sunlight excitation, from an entire canopy at the 

site scale, to the global scale using space-borne satellite instruments. At scales larger than the leaf, 

the estimated SIF depends not only on the physiological state of the plant and on the solar radiation, 

but also on the vegetation structure (Leaf Area Index, Leaf Angle Distribution), and on the 

acquisition geometry (solar zenith angle, view zenith angle, relative azimuth angle), as conceptually 

represented in Figure 1-11. 
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Figure 1-11: Representation of the various drivers impacting the observed SIF. All terms are given at the canopy scale. 

APAR is the absorbed photosynthetically active radiation. ΦF is the physiological SIF emission yield from all leaves in the 

canopy, and fesc is the fraction of emitted SIF that escapes from the canopy in the viewing direction. Both APAR and 

fesc depend on the canopy structure. Figure from (Dechant et al., 2020). 

Satellite SIF has gained increasing attention in the last decade due to its potential to provide a GPP 

proxy, with a spatial coverage much larger than traditional in situ methods (Mohammed et al., 

2019). Traditional methods for estimating GPP typically rely on gas exchange measurements from 

individual leaves or chambers, which can be time-consuming, and they are limited in their spatial 

coverage. In contrast, SIF can be estimated remotely from space, providing information on GPP over 

large areas, with frequent revisit. This makes it possible to monitor GPP at a global scale, providing 

insights into the functioning of the Earth's ecosystems and the role of vegetation in the carbon cycle. 

Several studies have shown that SIF can provide GPP estimates that are consistent with direct 

measurements of GPP from eddy covariance towers, which are considered the gold standard for 

GPP estimation. Eddy covariance flux towers continuously measure gas exchanges between the land 

surface (soil and vegetation) and the atmosphere (e.g., Baldocchi et al. (2001)). AFor example, a 

study by (Li et al., 2017) compared SIF-based GPP estimates with GPP estimates from eddy 

covariance towers across 18 forest sites in the United States, Europe, and China. The study found 

that SIF-based estimates were highly correlated with eddy covariance GPP estimates, with a 

determination coefficient R2 = 0.72. 



21 
 

 

1.5 Modelling and optimisation  

1.5.1 Importance of land surface models 

Terrestrial plants play a key role in the capture of atmospheric CO2 via photosynthesis. They 

represent a major carbon sink, absorbing 33% of the anthropogenic CO2 emissions, with oceans also 

absorbing 29% (Friedlingstein et al., 2022). The remaining emissions accumulate in the atmosphere, 

increasing the greenhouse effect at the origin of climate change.  

As opposed to the oceanic sink, the terrestrial sink presents a large spatial and temporal variability, 

driven both by the gross primary production (GPP), which is the raw uptake of CO2 assimilated by 

the continental vegetation through photosynthesis, and by the total ecosystem respiration. The 

terrestrial sink benefits from the CO2 fertilisation effect associated with its increased atmospheric 

concentration (Walker et al., 2021) . However, photosynthesis is negatively affected by extreme 

events such as droughts and heatwaves (Gampe et al., 2022), whose frequency is increasing (Lesk 

et al., 2016). In (Duffy et al., 2021), the authors investigated the temperature dependency of 

photosynthesis in C3 and C4 plants, as well as the respiration, of the terrestrial biosphere. They 

observed that photosynthesis increases up to a certain temperature threshold, 18°C for C3 plants 

and 28°C for C4 plants, and beyond these temperatures, photosynthesis starts to decrease. In 

contrast, respiration exhibits a linear increase between 10°C and 38°C, and, due to this difference 

in behaviour, respiration surpasses photosynthesis around 32°C. Hence, the land surface sink may 

turn into a land surface source, depending on future climate scenarios (Friedlingstein et al., 2014). 

Land surface models (LSMs) simulate the biogeochemical and physical processes occurring in 

terrestrial ecosystems, which allows computing the exchanges of energy, water, carbon and other 

nutrients at the interface between land surfaces and the atmosphere (Bonan, 2008). They are 

essential tools to study the present and the future response of terrestrial ecosystems to climate 

change (Fisher & Koven, 2020) 

1.5.2 The ORCHIDEE LSM 

The ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) LSM (Boucher et al., 

2020; Krinner et al., 2005) is a state-of-the-art model developed at Institut Pierre Simon Laplace 

(IPSL). The model can be run from the site to the global scale, coupled to an atmospheric model or 

forced by prescribed meteorological fields from local observations, or larger-scale reanalyses 

(offline mode). 

Fast processes related to the energy budget and the water balance (e.g., evaporation, transpiration), 

as well as photosynthesis, are computed at a half-hourly time step, while other carbon-related 

processes (e.g., phenology, allocation, litter and soil decomposition) are computed at a daily time 

step. Heat dissipation and water fluxes are distributed vertically within the soil, and runoff is 

collected in rivers and lakes. Plants are gathered into large Plant Functional Types (PFTs); within a 

PFT, plants share the same photosynthetic pathway, have similar structure and phenology, and live 

under the same climate. Leaf area index (LAI) is a dimensionless quantity that characterizes plant 

canopies; it is defined as the one-sided green leaf area per unit ground surface area (m2.m-2). LAI is 

a prognostic variable of the model. The canopy is discretized, with LAI layers of increasing thickness 

from top to bottom. The photosynthesis is computed at leaf level following (Yin & Struik, 2009), 
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using the classical Farquhar et al. (1980) model for C3 species and the (Collatz et al., 1992) model 

for C4 species. The quantity of absorbed CO2 is then up-scaled at canopy level, summing over LAI 

layers, to compute GPP.  

To be able to use SIF estimates to constrain GPP, the model needs to simulate SIF. Such an 

observation operator was implemented in (Bacour et al., 2019). The authors first developed a 

parametric model for the relative rate constant of NPQ (𝑘𝑁𝑃𝑄), depending on temperature, 

photosynthetic active radiation and the relative light saturation of photosynthesis, as defined in 

(van der Tol et al., 2014). The fluorescence yield is computed at the leaf level, as a function of the 

photosynthetic yield and 𝑘𝑁𝑃𝑄, following the lake model (Kramer et al., 2004). The authors then 

used a parametric representation of the SCOPE (Soil Canopy Observation Photosynthesis Energy) 

model (van der Tol et al., 2009), to upscale at canopy level, and compute the SIF observed at nadir. 

(Bacour et al., 2019) then assimilated OCO-2 (Orbiting Carbon Observatory-2) SIF estimates to 

optimize parameters of the ORCHIDEE LSM related to the photosynthesis, fluorescence and 

phenology processes. They demonstrated that the posterior simulation was improved, when 

evaluated against global GPP reference products. However, the improvement was very variable, 

depending on the considered PFT. In Chapter 5, we will focus on boreal needleleaf evergreen 

forests, revisiting the NPQ model, and applying a new strategy for data assimilation. In Chapter 6, 

we will this time focus on improving the NPQ model in drought-stress conditions.  

1.5.3 Specific NPQ mechanism observed in evergreen needleleaf species 

It is now well established that evergreens of different genera, such as the Norway spruce (Picea 

abies), the Scots pine (Pinus sylvestris), the ponderosa pine (Pinus ponderosa), and the Douglas fir 

(Pseudotsuga menziesii), show seasonal fluctuations in their photosynthetic capacity, as reviewed 

in (Öquist & Huner, 2003) These fluctuations range from high photosynthetic efficiencies during the 

summer to low efficiencies in winter, when freezing temperatures may completely inhibit 

photosynthesis. 

It has been shown in Pinus sylvestris that molecular modifications within the chloroplast induce an 

almost complete inhibition of photosynthesis during winter; these modifications induce the built up 

of a particular NPQ (Bag et al., 2020). Instead of being associated with a quenching process in the 

antenna, PSII and PSI approach each other, allowing a direct energy transfer in between PSII and PSI 

in the thylakoid membrane that induces a high NPQ level during winter. This type of NPQ is called 

sustained NPQ, and it is based on a spillover mechanism (Steffen Grebe, 2004). A model for 

representing sustained NPQ will be presented in Chapter 5.  

1.5.4 ORCHIDAS  

ORCHIDAS (ORCHIDEE Data Assimilation System; https://orchidas.lsce.ipsl.fr/, last access: 3 July 

2023) is a software tool developed to optimize the parameters of the ORCHIDEE LSM through data 

assimilation techniques. ORCHIDAS allows for the assimilation of various data streams, such as 

remote sensing or in situ estimates. Parameters are optimized through the minimization of a cost 

function, and the tool offers several minimization algorithms such as a gradient-descent approach 

or a genetic algorithm (Bastrikov et al., 2018). 

https://www.zotero.org/google-docs/?1AORpV
https://orchidas.lsce.ipsl.fr/
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1.6 The different model species 

During my thesis I focused on C3 plants, using model species from the two major groups of vascular 

seed plants: angiosperms and gymnosperms. For the angiosperms family, I used three plant models: 

A. thaliana, the sunflower and the poplar tree. A. thaliana was chosen because it presents several 

advantages, such as requiring little space and maintenance, having a short life cycle (4 weeks for 

developing large rosettes under a 16-hour illumination), being self-fertilizing, and producing 

numerous seeds. Additionally, A. thaliana is currently a valuable tool as its genome has been fully 

sequenced, and there is at least one mutant for each gene. Sunflower (Helianthus annuus) is used 

because it is a crop plant, unlike A. thaliana, and it is also adapted to higher temperatures. This can 

be interesting when studying the photosynthetic efficiency at high temperatures (see Chapter 4). 

Poplar has been selected as a model tree, because of its rapid growth for a tree, and the specific 

variety of poplar used in this study (Chapter 6) has also been fully sequenced (Tuskan et al., 2023). 

For Gymnosperms, Pinus sylvestris has been used as a model due to its abundant presence in boreal 

evergreen needleleaf forests. This species has been extensively studied, and we have access to one 

year of continuous active fluorescence measurements (Porcar-Castell, 2011). Additionally, a unique 

non-photochemical quenching (NPQ) mechanism has been observed during the winter in Scots pine 

(Bag et al., 2020), which is of interest for modelling in the ORCHIDEE land surface model. 

 

In this introduction we have described the key role of photosynthesis in mitigating climate change. 

However, due to this same climate change, plants are increasingly subjected to stress, particularly 

drought and heatwaves. We then examined the various protein complexes involved in the light 

reactions of photosynthesis, which permit conversion of light energy to chemical energy. Then, 

we discussed the significance of NPQ in protecting plants against oxidative stress and adapting 

photosynthesis levels to environmental conditions. To measure the levels of photosynthesis and 

NPQ, we employ fluorescence measurements. These measurements can be categorized into two 

main groups: active and passive. Passive measurements provide more limited information about 

plant physiology but offer a signal available at global scale. The global SIF estimates enable us to 

constrain the quantity of CO2 absorbed by the continental vegetation, as simulated by the 

ORCHIDEE land surface model.  

In the subsequent chapters, we will study the regulation of PSII and, more generally, 

photosynthesis under environmental stress conditions. We will begin with a molecular-scale 

investigation and gradually progress towards a global understanding.  
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2 Chapter 2: Study of a photoprotective mechanism under moderate 

drought: the effect of glycolate on PSII  

2.1  Introduction of the scientific question: can glycolate play a role in drought conditions 

by slowing down the photosynthetic electron transport in between Qa and Qb? 

Ribulose-1,5-bisphosphate carboxylase/oxidase RuBisCo (RuBisCo) is the key enzyme in the 

reduction of atmospheric CO2 into organic carbon. One particularity of RuBisCo is that it can use 

both CO2 and oxygen (O2) as substrates. Its affinity for CO2 is 40 % higher than that for O2 (Van Lun 

et al., 2014). RuBisCo first evolved in an anoxic environment and did not need to discriminate 

between O2 and CO2. When it uses CO2 as substrate, the reaction is called carboxylation, and in 

photosynthesis solar energy is transformed into chemical energy stored in sugars. In the second 

case when RuBisCo reacts with O2 as substrate, the process is called oxygenation, which leads to the 

production of 2-phosphoglycolate (2PG), the first metabolite of the photorespiratory pathway. 2PG 

is a toxic compound (Flügel et al., 2017) (that is detoxified during photorespiration (PR)). This effect 

is limited in C4 plants, in which CO2 is prefixed by the Phosphoenolpyruvate carboxylase and 

subsequently concentrated in the bundle sheath cell, increasinging RuBisCo’s carboxylation activity. 

In C3 plants, PR becomes more important under stress conditions. The stomata close upon high 

temperatures or drought to limit transpiration. This leads to a decrease in the CO2 concentration 

inside the mesophyll cells and the chloroplast, and an increased leaf temperature. In these 

conditions, oxygenation is promoted compared to carboxylation (Dusenge et al., 2019; Sage & 

Khoshravesh, 2016). This leads to an increase in 2PG production and PR activity to detoxify 2PG. PR 

is mostly considered as a wasteful process, and identified as a target to be removed or decreased 

in crop improvement. PR uses one ribulose-1,5-bisphosphate (RuBP) and consumes 3.5 ATP and 2 

NADPH per O2 and produces no additional organic carbon. In comparison, carboxylation consumes 

3 ATP and 2 NADPH for one RuBP and produces sugar in hexose (Shi & Bloom, 2021).  

Figure 2-1 from (Hodges et al., 2016) shows the main steps and subcellular localizations of the 

photorespiratory pathway, involving three organelles. Glycolate is produced inside the chloroplast 

and transported to the peroxisome through the plastidic glycolate/glycerate transporter PLGG1. 

This transporter exchanges one glycolate out of the chloroplast for one glycerate in the chloroplast 

(Pick et al., 2013). The glycolate conversion into glyoxylate produces H2O2 in the peroxisome. 

Recycling of carbon nitrogen occurs in the mitochondrion through the glycine decarboxylase (GDC) 

complex, producing CO2 and NH4
+. PR consumes ATP in the last step of glycerate conversion into 3-

phosphoglycerate.  
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Figure 2-1: The photorespiratory cycle and its interaction with the Calvin cycle, ammonium assimilation, and 

C1 metabolism. Abbreviations: CAT2, catalase 2; DiT1, plastidial 2-OG/malate transporter 1; DiT2, plastidial glutamate-

malate transporter 1; Fd-GOGAT1, ferredoxin-dependent glutamate synthase 1; GGT1, glutamate:glyoxylate 

aminotransferase 1; GDC complex, glycine decarboxylase complex (composed of the P, T, L, H proteins); GLYK1, glycerate 

kinase 1; GOX1/2, glycolate oxidase 1/2; GS2, plastidial glutamine synthetase; HPR1/2, hydroxypyruvate reductase 1/2; 

PGLP1, 2-PG phosphatase 1; PLGG1, plastidial glycolate/glycerate transporter 1; RuBisCO, RuBP carboxylase/oxygenase; 

RuBP, ribulose-1,5-bisphosphate; SGAT1, serine:glyoxylate aminotransferase 1; SHMT1, serine hydroxymethyl 

transferase 1; THF, tetrahydrofolate; 2-OG, 2-oxoglutarate; 2-PG, 2-phosphoglycolate; 3-PGA, 3-phosphoglycerate. 

Figure from (Hodges et al., 2016). 

It is known that PR plays a critical role in nitrate assimilation (Rachmilevitch et al., 2004), for sulfate 

metabolism (Abadie & Tcherkez, 2019), and as an electron sink for the photosynthetic electron 

transport chain to reduce oxidative stress in excess of light (Eisenhut et al., 2017) or under drought, 

salinity, low CO2 and chilling (Voss et al., 2013).  

We hypothesized that glycolate can play a more specific role under stress conditions such as 

drought, by regulating the photosynthetic electron transport in between Qa and Qb.  

https://www.zotero.org/google-docs/?Oj3w5y
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Figure 2-2: PSII reaction centre, bicarbonate (HCO3-) localisation and effect on PSII. Part A shows the HCO3- localisation 

on non-heme iron (red ball) in between Qa and Qb. B. Charge recombination pathways and singlet O2 generation in PSII. 

Abbreviations: P, P680; P*, P680 excited; 3P, chlorophyll triplet state; Qa, quinone A. Figure inspired by (Brinkert et al., 

2016). 

Brinkert and coworkers (Brinkert et al., 2016b) previously demonstrated in isolated PSII that 

bicarbonate depletion has the potential to protect PSII through the modulation of the midpoint 

potential of the primary quinone acceptor. This led to the hypothesis that the replacement of 

bicarbonate with other small carboxylic acids, such as glycolate, in a location between quinone A 

and B (Qa, Qb) presented in Figure 2-2A, could also modify the midpoint potential of the redox 

couple Qa/Qa
-, thereby lowering the yield of 1O2 generated by charge recombination reactions 

within PSII and potentially provide a protective effect on PSII, as shown in Figure 2-2B.  

(Messant et al., 2018) have characterized a photorespiratory mutant of Arabidopsis that over-

accumulates glycolate, and they showed a slow down of the electron transfer between Qa and Qb. 

The alteration of the PSII acceptor side allowed the production of less singlet oxygen. These results 

suggest that, during stress, PR is induced and produces glycolate which may replace bicarbonate 

at the non-heme iron at the acceptor side of PSII, thereby limiting the linear electron transfer 

chain and protecting plants from oxidative stress. More broadly, this work supports the hypothesis 

of a protective role of PR through glycolate production and a rise of the glycolate concentration 

inside the chloroplast.  

2.2 First publication: “Moderate drought stress stabilizes the primary quinone acceptor Qa 

and the secondary quinone acceptor Qb in photosystem II” (Leverne and Krieger-

Liszkay, 2020).  

Please refer to appendix in section 13.1 for access to this first publication.  

To investigate if a slow down of the electron transfer can be observed in wild-type plants through 

PR during stress conditions, we used wild-type A. thaliana submitted to moderate drought stress by 

withholding water for 4-6 days. We performed measurements on intact leaves and determined PSII 

activity in drought and control conditions. Electron flow in between Qa and Qb was followed by 

measuring chlorophyll fluorescence induction and decay to determine electron transport to the 

https://www.zotero.org/google-docs/?5XL8UY
https://www.zotero.org/google-docs/?5XL8UY
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plastoquinone pool. In addition, stabilization of Qa/Qa
− or destabilization of Qb/Qb

− upon drought 

stress was observed by thermoluminescence measurements. Immunoblots of proteins involved in 

alternative electron transport pathways were done to show whether drought conditions induced 

proteins that participate in cyclic electron flow. Indeed a higer amount of the NDH complex was 

observed, which isinvolved in one pathway of cyclic electron flow. Taken together, the results of 

these experiences support the hypothesis of an alteration of Qa Qb electron transfer in PSII upon 

drought, and we suspect glycolate to be responsible for this effect. 

2.3 Subsequent work on the effect of glycolate on PSII 

In the article Leverne & Krieger-Liszkay (2020), we highlighted that the electron transfer from Qa to 

Qb in PSII is slowed down in plants in drought conditions. We suspected glycolate to be at the origin 

of this effect. However, we did neither measure photorespiratory activity upon mild drought stress, 

nor studied the effect of glycolate on isolated PSII and potential protective effects of glycolate 

against photoinhibition. The following work addresses the effect of glycolate on PSII in more detail. 

First, I investigated the effect of glycolate on the activity of isolated PSII. In the second part, I 

measured the midpoint potential of Qa in the presence and absence of glycolate. In the third part, I 

studied the protective effect of glycolate against photoinhibition. Finally, I exposed leaves to 

different gas compositions to induce photorespiration and measured changes in the amount of 

photorespiratory metabolites. 

2.3.1 Materials and Methods  

2.3.1.1 PSII enriched membrane fraction  

Spinach leaves were mixed in a solution of 0.4 M sorbitol, 10 mM NaCl, 5 mM MgCl2, 20 mM HEPES, 

pH=7.5, buffer 1, to permit disruption of the cells. The supernatant was filtered through 4 layers of 

cheesecloth and centrifuged at 8000 rpm, 4°C, 10 min for thylakoid isolation. The pellet was 

resuspended using a brush with a 5 mM MgCl2 solution, buffer 2, to stack the thylakoid membranes 

well and centrifuged at 7800 g, 4°C, 10 min. The pellet was further resuspended in a buffer 3, 5 mM 

NaCl, 5 mM MgCl2, 25 mM MES, pH=6.5. Absorption was measured in 80% acetone by 

spectrophotometry and the chlorophyll content was calculated using the following equation (Porra 

& Scheer, 2019): 

[Chls a + b] (μg/ml) = 17.76 ×⋅ A646.6 + 7.34 × ⋅ A663.6 eq. (2-1) 

Then a given volume of buffer (15 mM NaCl, 5 mM MgCl2, 25 mM MES, pH=6.5) was added to reach 

a concentration of 3 mg Chl.mL-1. 33% of buffer 4 (buffer 3 with 100 mg.mL-1 triton X-100, pH=6.5) 

was added to the volume previously determined. The suspension was covered with foil and 

incubated in the dark in ice water for 30 min under very gentle agitation, then centrifuged at 1100 

g for 5 min at 4°C to remove non-solubilised thylakoid membranes and starch. The supernatant was 

kept and centrifuged at 40,500 g for 20 min at 4°C. The pellet was resuspended in buffer 5 (0.3 M 

Sucrose, 10 mM NaCl, 25 mM MES, pH=6.5) and centrifuged at 40,000 g for 20 min at 4°C. This 

centrifugation step was repeated until the supernatant was pale green and chlorophyll 

concentration was measured again. PSII enriched membranes were conserved at -80°C until their 

use. 
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2.3.1.2 Measurement of oxygen evolution  

Oxygen evolution of isolated PSII was measured using a Clark electrode (Hansatech Instruments Ltd, 

Norfolk United Kingdom) at 20°C and saturating light intensity (white light; 2,000 µmol.quanta 

m−2.s−1, using a halogen lamp; Osram XENOPHOT 15V 150W). Two buffers were used: for the first 

one we used 0.4 M sorbitol, 10 mM NaCl 5 mM MgCl2, 20 mM HEPES , and for the second one 0.3 

M sucrose, 10 mM NaCl, 5 mM MgCl2, 20 mM MES. pH were adjusted to 7.5 and 6.5, respectively, 

adding saturated NaOH. PSII activity was measured in 1 ml of solution containing 20 µg.chlorophyll 

and 10 µM DCBQ used as the final electron acceptor. 

In Figure 2-3, oxygen evolution has been normalised on maximum PSII activity measured in control 

conditions before inhibition, with no glycolate and no light incubation. We observed an activity of 

208.64 and 271.36 oxygen µmol.mg.Chl-1.h-1 for the 6.5 and 7.5 pH buffers, respectively. 

2.3.1.3 Titration of the midpoint potential of the redox couple Qa/Qa
- 

Electrochemical redox titrations of Qa in isolated PSII were performed at 15°C in an optically 

transparent quartz thin-layer (013511 SEC-C Thin Layer Quartz Glass Spectroelectrochemical cell Kit 

(Allum Corp)) with a SEC-C Gold (Allum Corp) gauze working electrode, and a SEC-C Pt counter 

electrode. The solutions were maintained under anaerobic conditions with an argon stream, 

cuvettes were closed and electrodes maintained by a teflon cap. The redox state of Qa was 

monitored by measuring chlorophyll a fluorescence. Photosystem II was diluted to a [Chl] = 150 μg 

mL-1 in a buffer containing 50 mM MES-NaOH (pH 6.5), 0.2 M KCl, 0.1 % dodecyl-β-D-maltoside, 1 

M glycine-betaine and 1% taurine.  

A combination of redox mediators was added: 100 μM anthraquinone-2-sulfonate, 100 μM 2-

hydroxy-1,4-naphthoquinone and 200 µM N,N,N',N'-tetramethyl- p-phenylenediamine. The sample 

was kept in the electrochemical cell in complete darkness. The fluorescence measurement was 

carried out with a PAM (pulse amplitude modulation) 101 Chlorophyll Fluorescence Measuring 

System (Heinz WALZ GmbH) using the measuring light at an intensity low enough not to reduce Qa. 

The electrode potential was controlled by a potentiostat (CH Instruments CHI660D Electrochemical 

Workstation).  

2.3.1.4 Metabolites measured in low and high photorespiratory conditions  

To create specific gas compositions to induce or inhibit PR in plants, I increased or decreased each 

gas percentage compared to the control. The control gas composition is: 21 % oxygen and 400 ppm 

CO2, the composition inducing PR is 40% oxygen and 400 ppm CO2, or 21% oxygen and 100 ppm 

CO2, and the composition inhibiting PR is 21% oxygen and 2000 ppm CO2, or 2% oxygen and 400 

ppm CO2. Intact leaves of A. thaliana of the wild-type genotype Columbia 0, Col-0, grown in short 

days (8h light and 16h night) were exposed during 15 min to different gas compositions using a Licor-

6400 gas-exchange system. Then a circular sample, centred on the leaf but not on the vein, with a 

diameter of 1 cm was exposed on the leaf and rapidly frozen in liquid nitrogen prior to the 

measurement of metabolites. 
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2.3.1.5 Plants growth conditions   

Plants were grown in controlled-environment chambers (Percival; 10/14-h day/night cycle, 

20°C/18°C, 120 µmol m-2 s-1 irradiance, 390 µL L-1 CO2) on a 4:1 mixture of soil (Type Mini Tray; 

Einheitserdewerk) and vermiculite and regularly watered with 0.2% Wuxal liquid fertilizer (Aglukon). 

2.3.1.6 Liquid chromatography–mass spectrometry (LC-MS) measurements 

For LC-MS/MS analysis, leaf material was harvested from fully expanded rosette leaves of Col-0, at 

stage 3.90 as defined in (Boyes et al., 2001). Briefly, approximately 50 mg leaf-tissue was ground to 

a fine powder and extracted in 500 mL of ice-cold LC MS/MS buffer [150 mL chloroform, 350 mL 

methanol, 1 mL of MES as internal standard (1 mg/mL)]. Following addition of 400 mL ice-cold water, 

samples were vortexed thoroughly and incubated for at least 2 h at 220°C. After centrifugation (10 

min, 20,000 g, 4°C), the aqueous phase was transferred to a new tube and 400 mL of ice-cold water 

again added to the ex-traction tube. Following stirring and centrifugation (5 min, 20,000 g, 4°C), 

supernatants were combined and lyophilized. Next, the dried extracts were dissolved in 400 mL 

water and filtrated through 0.2 mm filters (Omnifix-F, Braun, Germany). The cleared supernatants 

were analysed using the high performance liquid chromatograph mass spectrometer LCMS-8050 

system (Shimadzu) and the incorporated LC-MS/MS method package for primary metabolites 

(version 2, Shimadzu). In brief, 1 mL of each extract was separated on a pentafluorophenylpropyl 

column (Supelco Discovery HS FS, 3 mm, 150 3 2.1 mm) with a mobile phase containing 0.1% (v/v) 

formic acid. The compounds were eluted at 0.25 mL min-1 using the following gradient: 1 min 0.1% 

(v/v) formic acid, 95% Aqua destillata (A. dest.), 5% acetonitrile, within 15 min linear gradient to 

0.1% (v/v) formic acid, 5% A. dest., 95% acetonitrile, 10 min 0.1% (v/v) formic acid, 5% A. dest., 95% 

acetonitrile. The compounds were identified and quantified using the multiple reaction monitoring 

values given in the LC-MS/MS method package and the LabSolutions software package (Shimadzu). 

Authentic standard substances (Merck) at varying concentrations were used for calibration and peak 

areas normalized to signals of the internal standard. Glyoxylate and glycerate were determined in 

the negative ion mode using selective ion monitoring for m/z 73, and 105 corresponding to the 

deprotonated glyoxylate, and glycerate ions [M-H]-. Retention time acquisition window (2 min) was 

verified with coelution experiments using purchased glyxoylate and glycerate (Sigma Aldrich). 

Varying concentrations of the two metabolites were also used for calibration curves. Data were 

interpreted using the Lab solution software package (Shimadzu). 

2.3.1.7 Fluorescence decay 

Chlorophyll fluorescence was measured on leaves attached to the plants at room temperature using 

a Dual-PAM-100 (Walz). Fluorescence decay was measured after excitation with a saturating single 

turnover flash, with a sampling rate of 2.5 μs. 

In this experiment, we used three A. thaliana genotypes: Col-0 and mutants with Col-0 background 

of genes PGLP (phosphoglycolate phosphatase) (Schwarte & Bauwe, 2007) and GOX (glycolate 

oxidaxe) (Dellero et al., 2016) (mutants respectively noted pglp and gox). We measured the 

fluorescence decay of the three genotypes immediately after removing them from the high CO2 



30 
 

 

growth chamber (1000 ppm CO2). Measurements were also taken after 15 minutes of adaptation to 

normal air. The measurements were repeated on at least four mature leaves per genotype. Then, 

for each condition and genotype, fluorescence decay was analysed by fitting with a second order 

exponential decay. 

2.3.2 Results  

2.3.2.1 Determination of the inhibitory glycolate concentration for PSII oxygen evolution in a buffer 

adapted either to the donor or to the acceptor side 

To distinguish between effects of glycolate on the donor and acceptor sides of PSII, we first 

investigated the inhibitory effect of glycolate on PSII activity, by measuring the activity of isolated 

PSII, through oxygen production, with various glycolate concentrations. 

 

Figure 2-3: Activity of isolated PSII at pH 6.5 and 7.5, measured by oxygen production in the presence of 10 µM 1,5-

DCBQ, normalized on maximum value, for increasing glycolate concentrations. Black squares represent measured values 

and the red curve is a sigmoidal fit described below with parameter values presented on the graph. 

Figure 2-3 shows the inhibitory effect of glycolate on the activity of isolated PSII. We observed 50% 

of inhibition (IC50) around 250 µM glycolate at pH = 6.5, compared to 225 µM at pH = 7.5. Due to 

lack of data, the standard deviation errors of fitting parameters remain high and we cannot conclude 

on the significance of the difference in IC50 between pH 6.5 or 7.5.  

I used a sigmoidal fitting with a Cheng-Prusoff equation to analyse the effect of glycolate 

concentrations as follows: 

Normalized activity =  Fmin +  
Fmax − Fmin

1 +  10(log [Glycolate] 0−[Glycolate])p 
 eq. (2-2) 

An IC 50 value of 168 µM glycolate was first determined, without fitting against eq (2.2). However, 

due to the absence of data between 250 and 500 µM of glycolate concentrations, this previous IC50 

estimation remains within the range authorized by the standard deviation range of the IC50 

determined by the sigmoidal fitting: 225.66 ± 75.06 µM. The concentrations of glycolate used seem 

to be relatively high. However, considering the very small volume of the chloroplast stroma, it is still 

feasible to achieve such concentrations inside the chloroplast. To assess the impact of glycolate on 

the acceptor side, we selected the optimal pH for this side: pH 7.5 (Homann and Homann, 1988). 

https://www.zotero.org/google-docs/?SX6FGF
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2.3.2.2 Redox titration of isolated PSII with glycolate 

In this section, I will explain how to determine the midpoint potential of Qa using chlorophyll 

fluorescence and electrical current.  

 
Figure 2-4: Redox titration setup: A) photography of the actual setup for PSII titration; B) schematic representation of 

the setup, with numbers corresponding to 1: counter electrode, platinum, 2: working electrode, gold, 3: reference 

electrode, silver, 4: buffer containing isolated PSII, 5: teflon cap; C) represents the Qa redox states, as measured by 

fluorescence as a function of the electric potential. 

In most cases in photosynthesis research, light-induced changes of chlorophyll a fluorescence are 

used to follow the reduction of Qa in PSII (Baker, 2008). In case of redox titrations, we reduce Qa not 

by light but chemically. We impose an increasing electric potential to PSII to reduce thereby Qa as it 

was already performed in (Brinkert et al., 2016a). We can determine E0 , the midpoint potential of 

the redox couple Qa/Qa
- according to the Nernst equation:  

E = E0 +
(RT/Far)

n
log

[ox]

[red]
 eq. (2-3) 

with E the redox potential of the ox./red. couple in volts, E0 the standard potential of the ox./red. 

couple, R the constant of perfect gases, T the absolute temperature in kelvin, n the number of 

electrons transferred in the half-reaction, Far the Faraday constant, [ox] and [red] the chemical 

activity of the oxidant and reductant, respectively. We used the following equation for fitting:  

Fraction oxidized (E) = Fmin +
(Fmax − Fmin)

1 + e
−(

Em−E0
KT

)
 eq. (2-4) 
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Figure 2-5: Redox titration of isolated PSII in control conditions (black squares/curve) and with a 168 µM glycolate 

concentration (red squares/curve). The midpoint potential (Em) is measured at pH 7.5. 

Parameters Control  With glycolate 

Em (Qa/Qa
-) (mV) -125.07± 13.36 -94.16± 8.60 

Fmax (a.u) 0.90± 0.08 0.93± 0.06 

Fmin (a.u) 0.12 ± 0.06 0.02 ± 0.05 

Adjusted R2 0.89 0.95 

Table 2-1: Parameter values and standard-deviation, for Em, Fmin, Fmax, and determination coefficient of the Nernst 

fitting for PSII redox titration in control conditions (middle column) and in the presence of glycolate (last column). 

In Figure 2-5 and Table 2-1, we see that the Nernst equation correctly fits our data with high R2 for 

both conditions. Em is more positive with glycolate compared to control, being -94.16 mV 

and -125.07 mV, respectively, which means that Qa
- is more stable in the presence of glycolate. This 

shift to a more positive value of Em in the presence of glycolate is significant. This result supports 

the hypothesis that glycolate alters both the probability of charge recombination via the formation 

of the primary radical pair, thereby triplet chlorophyll and 1O2, and the electron transfer between 

Qa and Qb in PSII. In (Brinkert et al., 2016a), authors find an analogue result by exchanging 

bicarbonate with formate in isolated PSII, inducing a shift of Em values to −95 mV. In (Sedoud et al., 

2011), authors also replaced bicarbonate by formate and observed the formation of the 

Qa
•−Fe2+QbH2 complex inhibiting PSII activity. 
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2.3.2.3 Potential role of glycolate in protection against photoinhibition 

Next, I studied if glycolate plays a protective role on PSII. I measured isolated PSII activity by 

following oxygen production, using a light intensity of 350 µmol.m-2.s-1 and DCBQ as the final 

electron acceptor. 

To mimic stress conditions, I induced ROS production by exposing isolated PSII to a high light of 500 

µmol.m-2.s-1; during the exposition there is no final acceptor of electrons in the solution of extracted 

PSII, and electron transfer induces ROS production. I chose 500 µmol.m-2.s-1 as a light intensity to 

avoid a too strong oxidative stress. To quantify the glycolate effect, I measured the oxygen 

production by PSII with and without glycolate at increasing incubation times in the photoinhibiting 

light, from 0 to 40 min. PSII were incubated with or without 254 µM glycolate (at pH 6.5) during the 

photoinhibition treatment. To compare the data, I normalized all observations to the value of 

oxygen production obtained for the same time of incubation in the dark. 

 

Figure 2-6: Photoinhibition effect on PSII activity without (black) or with the glycolate treatment (red), normalised with 

the oxygen production with no photoinhibition (axis y 100% = oxygen production of 65.2 µmol.mg.Chl.h-1); DCBQ 1 mM 

as final electron acceptor for each condition.  

Figure 2-6 shows a significantly higher activity for PSII with glycolate compared to the control 

experiment without glycolate for durations of the photoinhibition treatment of 20 and 30 min. 

However, the effect was no longer observed after a longer incubation time. For 40 min, the control 

sample shows a higher activity than the glycolate sample. One has to keep in mind that glycolate 

itself inhibits PSII activity (Figure 2-3). At such a long incubation time, the inhibitory effect of 

glycolate on the donor side of PSII seems to overrun its protective effect at the acceptor side. 

Looking at time durations of 20 and 30 min, the results may support the hypothesis that glycolate 

can play a protective role against ROS production occurring during stress conditions.  
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2.3.2.4 Measurement of PR metabolites 

Next, I wanted to know if we could measure glycolate accumulation in chloroplasts in 

photorespiratory conditions to support the idea that it is glycolate which directly interacts with PSII 

in chloroplasts. Unfortunately, I did not succeed in extracting chloroplasts in a fast enough way to 

conserve metabolites, and I thus switched to working at leaf level. I measured metabolites of 

photorespiration (PR) and of the Calvin-Benson cycle on total leaf extracts, after 15 minutes 

exposure to different gas conditions that induce or suppress PR. To modify the activity ratio of 

photosynthesis and PR we can play on oxygen or CO2 concentrations as it is explained in the method 

section 2.3.1.4.  

 

Figure 2-7: Glycine content, normalized by chlorophyll content, of total leaf extracts submitted to 15 min of different 

gas conditions that induce or suppress photorespiration; n=8 leaves for each gas condition. 

Figure 2-7 focuses on the change in glycine content between the different gas mixture treatments. 

We used two different gas mixtures for both induction and inhibition of PR. For glycine, a significant 

change occurred only when we changed the oxygen concentration in the gas mixture. The glycine 

content decreased when O2 increased and vice versa. These results support the idea that 

photorespiratory metabolites accumulate in leaves rapidly, in 15 min or less. 

In Figure 2-8, I present the results for the three types of gas composition (control in black, inducing 

PR in blue or inhibiting PR in purple) and for various metabolites (one per sub-plot). Stars identify 

gas composition types that exhibit a significantly different content of a given metabolite as 

compared to control conditions.  
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Figure 2-8: Metabolite quantity normalized by leaf fresh weight measured by mass spectrometry, for A. thaliana mature 

leaves exposed to a gas mixture during 15 min that induces, in blue, or decreases, in purple, photorespiration. Black is 

for the control gas mix. n=8 for control and n=16 leaves for special conditions; distributions are represented through 

boxplots; stars are shown when the mean value is significantly different from the one of the control case (*: p-

value<=0.1, **: p-value<=0.05). Each subplot represents a specific metabolite. 

Among the four metabolites involved in PR, three of them: glycerol-3-phosphate, glycolate and 

serine, have no significant modifications of content in the various specific gas conditions. However, 

the fourth one, glycine, is significantly induced in conditions favouring photorespiration. Glycine 

synthesis in the peroxisome occurs downstream of glycolate during photorespiration (Figure 2-1). 

Hence, variations, be it an increase or decrease, in glycine concentration can potentially indicate a 

corresponding variation in glycolate concentration within the chloroplast. 

When we induce more carboxylation, we observe the rise of various metabolites that can play 

different roles. Asparagine is known for his role in nitrogen assimilation, recycling, transport and 

storage in plants (Sieciechowicz et al., 1989). There are also metabolites involved in abiotic stress 

response: alanine (Parthasarathy et al., 2019), citric acid (Tahjib-Ul-Arif et al., 2021), proline 

(Marsden et al., 2015), pyroglutamic acid (Jiménez-Arias et al., 2019) and sucrose (Shulaev et al., 

2008). The glyceric acid (Khan et al., 2019; Radwanski & Last’, 1995) plays a role in the regulatory 

pathway of plant growth. Tryptophan is also known to be involved in plant growth regulation 

(Radwanski & Last’, 1995) but, contrary to the glyceric acid, it is induced in photorespiratory 

conditions.  

We also observed a significant increase for both gas composition types for isoleucine, leucine, malic 

acid, myo-inositol, ornithine, phenylalanine, rhamnose, threonine, tyrosine and valine. It is difficult 

to determine the role of these metabolites in these conditions due to their non-specific response. 

We also measured metabolites, not presented on this graph, with no significant modifications of 

concentration for both gas composition types: 2oxo-glutaric-acide, aspartic acid, fructose, fumaric 

https://www.zotero.org/google-docs/?hGCkBF
https://www.zotero.org/google-docs/?m7Ey8z
https://www.zotero.org/google-docs/?m7Ey8z
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acid, galactinol, glucose, glutamine, glycerol, glycerol 3 phosphate, glycolic acid, hydroxylamine, 

putrescine, pyruvic acid, raffinose, succinic acid, and urea. 

The results indicate that, under photorespiratory conditions, there is a significant alteration in the 

glycine concentration within the entire leaf. This observation potentially suggests an increase in 

glycolate levels within the chloroplast. However, we still need measurements of the glycolate 

content in isolated chloroplasts, in order to better understand the potential protective role of 

glycolate for PSII in photorespiratory conditions induced by abiotic stress. To confirm this protective 

role of glycolate for PSII in vivo, we measured the PSII activity in a mutated plant line over-

accumulating glycolate, as presented in the following section. 

  

2.3.2.5 Effect of glycolate tested on mutated lines of A. thaliana  

In order to quantify the potential effect of glycolate on electron transfer between Qa, Qb, and the 

plastoquinone pool, we measured fluorescence decay, which allows us to quantify the rate of PQH2 

reoxidation. We used A. thaliana photorespiratory mutants for the glycolate oxidase (GOX) and 

photorespiratory 2-phosphoglycolate phosphatase (PGLP) genes. These mutants over-accumulate 

glycolate (Dellero et al., 2016; Flügel et al., 2017) and require growth in an elevated CO2 chamber 

(1000 ppm CO2) to survive. 

 

Figure 2-9: Normalised signal of fluorescence decay in different PR mutants and air conditions. The top row presents 

fluorescence measurements over four replicates, the bottom row shows means for each genotype. The left column is 

for a 15-minute normal air adaptation, and the right column is for the measurements performed directly when plants 

were extracted from the elevated CO2 growth chamber. The colour code for Col-0, gox and pglp genotypes is black, cyan 

and magenta, respectively.  
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The top row of Figure 2-9 shows results of experiments that we replicated at least four times, plus 

we repeated these measurements on at least four mature leaves per genotype. On the bottom row 

of Figure 2-9, we see the mean for each genotype in the two air conditions. We observed a faster 

decay for the Col-0 genotype in normal air conditions, compared to the mutant plants. In elevated 

CO2 conditions, nearly the same decay is observed for all genotypes, but faster than Col-0 in normal 

air conditions. Then, for each condition and genotype, the fluorescence decay was analysed by 

fitting the measurements with a second order exponential decay, expressed as follows:  

y = A1 × exp
−x
t1 + A2 ×  exp

−x
t2 + y0 eq. (2-5) 

Higher values of t1 and t2 indicate a slower decrease in the y function. 

 

Figure 2-10: Comparison of t1 and t2 fitting parameters for the different air compositions and genotypes. In pink, 

measurements are performed after 15 min under normal air conditions, and in blue, directly when plants are extracted 

from the elevated CO2 growth chamber. 

In Figure 2-10, we present the values of parameters t1 and t2. Although the differences are not 

significant, there is a trend of increasing t1 for the mutants or under high CO2 conditions. 

Under high CO2 concentration conditions, photorespiration is inhibited , but in normal air conditions 

PR mutants, gox and pglp, over-accumulated glycolate. The fluorescence decay measures the re-

oxidation kinetics of PQH2, Qb
-, Qa-. There is no significant difference in between wild-type plants 

and mutants for each condition, but there are some trends. 

For all genotypes, we observed higher t1 and t2 values under normal conditions indicating a slower 

decay compared to high CO2 conditions (Figure 2-10). This reflects a slower re-oxidation of Qa- due 

to a slower electron flow in between Qa, Qb and PQ. This is likely due to the presence of glycolate, 

which is produced during photorespiration under normal air conditions. The effect is even more 

pronounced in the glycolate over-accumulating mutants, pglp and gox. 

These results support the idea that the accumulation of glycolate induced by photorespiration 

leads to a decrease in the electron transport rate between Qa, Qb, and PQ. 



38 
 

 

2.4 Discussion 

A main limitation of the results on the glycolate effect on isolated PSII is that we need to choose one 

value of pH for measurements. In chloroplasts, the PSII is located inside the thylakoid membrane, in 

the presence of a proton gradient between the donor and acceptor sides of PSII. The donor side is 

localized on the lumen side. Here, the water splitting occurs and produces oxygen and protons, 

preferentially at low pH (lower than 7). As has been shown in Homann (1988), the donor side activity 

is controlled by two ions with antagonist effects: the chloride (Cl-) and calcium ions (Ca2+). Both ions 

are obligatory cofactors for the water-splitting activity at the PSII donor side. At low pH, the Cl- is 

favourably binding on PSII while Ca2+ is released; at higher pH (higher than 7), PSII is depleted of Cl-

. Therefore, water-splitting activity is optimal only at a slightly acidic pH and a too low or too alkaline 

pH induces a decline of the activity at the PSII donor side. Despite this complicated pH dependency 

at the PSII donor side, the results obtained on isolated PSII treated with glycolate and incubated 

in high light support the hypothesis of its protective role through inhibition of PSII activity.  

In bicarbonate-depleted PSII, the Em (Qa/Qa
−) was shifted by 75 mV towards a more positive value, 

while in the presence of formate it was shifted only by 50 mV (Brinkert et al., 2016a).  

(Messant et al., 2018) also showed a probable protection of PSII by glycolate, by measuring less 

singlet oxygen in a glycolate over-accumulating mutant of A. thaliana. I also saw the same effect as 

(Messant et al., 2018) on the electron transfer at the PSII acceptor side using glycolate over-

accumulating mutants (Figure 2-9), for which the electron flux in between Qa and Qb of PSII is slower.  

Our results are coherent with these previous findings (Brinkert et al., 2016a; Messant et al., 2018), 

and we suspected a replacement of bicarbonate with glycolate to permit the PSII protection (see 

Figure 2-6). Under photorespiratory conditions, an increase in glycine concentration is observed 

(Figure 2-7), which could be linked to an increase in glycolate concentration in the chloroplast. This 

supports the hypothesis that the protection of PSII under photorespiration conditions is permitted 

through an elevation of glycolate concentration at the chloroplast level. 

More generally, photorespiration is less and less considered as a wasteful process. In this work 

we showed its potential importance to protect PSII in drought conditions. It is also known that PR 

has a role in other abiotic stress conditions, such as salinity, chilling, and low CO2 (Voss et al., 2013).  

PR may have a negative impact on plant growth since we can enhance productivity by short-

circuiting PR as in (Cavanagh et al., 2022; South et al., 2019). In these two papers PR is not totally 

removed but modified. Export of glycolate to peroxisome is downregulated, and a new pathway is 

introduced to directly metabolise glycolate in the chloroplast. It will be interesting to explore the 

glycolate homeostasis of this plant, to determine if the chloroplastic glycolate content changes and 

if it affects the redox potential of Qa and its potential protective effect on PSII in stress conditions. 

PR modification and the productivity gain is impressive, but it needs to be considered in various 

extreme conditions like is expected with climate change. Crop improvement cannot be focused 

only on productivity but needs a fine balance in between yield and stress resistance to ensure 

food security in our actual and future climate conditions. 

In the upcoming chapter, we will examine the response of photosynthesis at a broader scale than 

the regulation of photosystem II. We will study A. thaliana mutant plants disrupted in one specific 

https://www.zotero.org/google-docs/?xcwpNE
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NPQ type (state transition). We will investigate its potential role in the overall plant response to 

water stress. 
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3 Chapter 3: Why are A. thaliana qT mutants less sensitive to drought 

stress? 

3.1 Key points of Leverne et al. (2023), and implications 

In the following study, we observed mutants of A.thaliana, altered in their NPQ regulation, in 

drought stress conditions. We studied different mutants affected in different genes, which led to 

the same phenotype. The stn7 mutant that has been characterized for a long time, and nsi1 and nsi2 

mutants, which were more recently discovered, are characterized by the absence of qT. qT is the 

NPQ mechanism in which some proteins of the chlorophyll antennas (LCHII) migrate between PSII 

and PSI in the linear electron chain. Due to the absence of phosphorylation in stn7 and acetylation 

in nsi, the antennas always remain on PSII. This induces a modification of the redox state of the 

plastoquinone pool. Surprisingly, these mutants exhibited a root development faster than the wild 

type, conferring them a greater tolerance to drought through an easier access to soil moisture, 

whereas they were not altered in genes directly involved in root regulation. We hypothesized that 

the redox state of the plastoquinone pool can play a role in root development thought signalling 

from leaf to root. However, we could not identify the signalling pathway allowing this 

communication, even if we suspected the role of carotenoid products oxidized by ROS, such as 𝛃-

cyclocitral. 

We thus have uncovered a potential new pathway for regulating root development, that could 

render plants more tolerant to drought. This finding could have implications in the context of food 

security, where crop types may be modified to mitigate the effects of climate change.  

3.2  Personal contribution to the study  

In this research article, I discussed the strategy with my supervisors, performed all experiments and 

data analyses (related to the relative water content, the stomata opening, chlorophyll fluorescence 

at room temperature, 77K chlorophyll fluorescence, spin-trapping electron paramagnetic resonance 

(EPR) spectroscopy, and pigment analyses), produced all figures and contributed to the writing of 

the manuscript.  

3.3 Second publication: ”Increased drought resistance in state transition mutants is linked 

to modified plastoquinone pool redox state” (Leverne et al., under review) 

Please refer to appendix in section 13.2 for access to this second publication. 

After studying the effect of drought, we will address another abiotic stress also becoming 

increasingly important with climate change: heat stress. The next chapter will focus on the stress 

induced by high temperatures in two C3 model plants, A. thaliana and the sunflower, Helianthus 

annuus. 
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4 Chapter 4: The effect of high temperatures on photosynthesis in two C3 

plant models 

4.1 Introduction 

In this chapter, we will focus on the effect of high temperatures associated with climate change (CC) 

on photosynthesis. CC comprises a warmer global climate, (Gulev et al., 2021) assessed an increase 

of the mean global surface temperature of 0.85°C from 1880 to 2012, associated with more extreme 

events, including heatwaves (Chapter 2 of the IPCC AR6 of Working Group I, (Intergovernmental 

Panel on Climate Change, 2023). Plants are drastically impacted by these changes, photosynthesis 

being very sensitive to temperature for carboxylation and the quantum efficiency of light, as 

reviewed in (Zhao et al., 2020). Plants also suffer from several inhibitions of physiological responses 

such as transpiration, and membrane thermostability (Zhao et al., 2020).  

In this chapter, we will focus on the impacts of heat stress on the quantum efficiencies of PSI and 

PSII, and discuss which photosystem causes the major limitation. I performed experiments on A. 

thaliana as it is a plant model for angiosperms, and also on sunflower as this is a crop, growing from 

June to August, being particularly subject to heatwaves. I measured the various quantum yields 

(including for photosynthesis and heat dissipation) of PSII and PSI by chlorophyll fluorescence and 

P700 absorbance on both plants. I followed the efficiency of PSII and PSI in parallel for ranges of 

temperature and light from 15 to 40°C and 0 to 1000 μmol.m-2.s-1, respectively. I used sunflowers 

of different ages from 2 to 5 weeks to specifically look at the ageing effect on the plant response, 

and I will mainly focus my analysis on how the high temperature effect varies with the age of 

sunflower.  

4.2 Material and Methods 

4.2.1 Plant material and measurements conditions 

Sunflowers (Helianthus annuus), variety soleil Géante simple jaune VILMORIN, were grown for 

different durations at different periods, as presented in Table 4-1. The plants were situated on the 

roof of a building at the Paris-Saclay CEA centre. None of the plants had yet flowered. The medians 

of air temperature were calculated using measurements from the ICOS Saclay site 

(https://meta.icos-cp.eu/resources/stations/AS_SAC, last access: 3 July 2023) during each growth 

period from 6 AM to 10 PM.  

Table 4-1: Growth period and air temperature, and age of each sunflower culture batch. 

Plant age (days) Growth period (day/month/year) Median of air temperature during 
the day (°C)  

14 01/09/2022 to 14/09/2022 19.02 

21  01/09/2022 to 21/09/2022 17.07 

28  25/06/2021 to 23/07/2022 17.34 

35  15/08/2021 to 20/09/2021 18.28 

https://meta.icos-cp.eu/resources/stations/AS_SAC
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I selected fully mature leaves, using the second one from the top of each plant. During sunflower 

growth, new leaves emerge at the top of the plant, resulting in the upper leaves being younger than 

the lower leaves. To avoid measuring the effects of the ageing of only one leaf, and instead monitor 

the effects of overall plant senescence, we consistently measured leaves at the same level within 

the plant. Additionally, there is heterogeneity in the photosynthetic response of the leaf, which is 

why we always measured at the same position on the leaf. 

For A. thaliana, plants were grown in a chamber at 20°C, in long days (16h of light, 8h of dark) with 

a light intensity of 100 μmol.m-2.s-1 during 4 weeks. Fully mature rosette leaves were selected and 

measured in the middle of the leaf near, but not on, the midrib.  

The same procedure of measurement was used for Col-0 (wild type) A. thaliana and sunflower: 

plants were adapted 3 min in the dark, then illuminated during 3 min at each light intensity before 

measuring quantum efficiencies. The same leaves were used for each temperature used in the given 

experiment. 

4.2.2 Principle of P700 measurements  

 

Figure 4-1: Principle of the Saturation Pulse method for the determination of the efficiency of energy conversion in PSI. 

P700 is measured in the dual-wavelength mode (difference of intensities between 875 nm and 830 nm of the pulse-

modulated measuring light reaching the detector). P700 oxidation is characterized by a positive signal change. Complete 

P700 oxidation is induced by a Saturation Pulse (SP) in the presence of Far-Red (FR) light, with the maximal P700 signal 

denoted by Pm. Complete reduction is induced after the SP and cessation of FR-illumination, with the zero P700 signal 

denoted by Po. In the presence of Actinic Light (AL) a fraction ‘a’ (donor-side limited closed centres P700+A) is oxidized 

by the AL resulting in an intermediate P700 signal denoted by P. In this state the SP-induced signal change corresponds 

to the oxidation of the active fraction ‘b’ (open centres, P700 A), with the maximal P700 signal being denoted by Pm'. 

The fraction ‘c’ (acceptor-side limited closed centres, P700 A-) that cannot be oxidized, corresponds to the difference 

between Pm and Pm'. Inspired by Klughammer & Schreiber PAM Application Notes (2008, source: 

https://www.walz.com/files/downloads/pan/PAN07002.pdf, last access: 11 July 2023).  

The experiment presented in Figure 4-1 allowed us to calculate the photosynthetic yield of PSI: Y(I), 

the quantum yield of non-photochemical energy dissipation due to the donor-side limitation: Y(ND), 

https://www.walz.com/files/downloads/pan/PAN07002.pdf
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or to the acceptor-side limitation: Y(NA). Figure 4-1 shows how we measured the various 

fluorescence levels and determined the fractions a, b, c defined as:  

Y(I) = b/(a+b+c) eq. (4-1) 

Y(ND) = a/(a+b+c) eq. (4-2) 

Y(NA) = c/(a+b+c) eq. (4-3) 

 

Y(I) is the fraction of overall P700 that for a given light is reduced and not limited by the acceptor 

side. Y(ND) corresponds to the fraction of the overall P700 that is oxidized for a given light, and 

Y(NA) corresponds to the fraction of the overall P700 that cannot be oxidized by a saturating flash.  

4.3 Results: Effect of light, heat, and ageing on photosynthetic parameters 

4.3.1 For PSII  

 

Figure 4-2: Quantum efficiencies of PSII (Y(II)), NPQ (Y(NPQ)) and non-regulated energy dissipation (Y(NO)) for 

sunflowers Helianthus annuus of various ages, and for the A. thaliana Columbia-0 ecotype (Col-0). Each coloured curve 

represents a different temperature. 

Figure 4-2 presents the effects of temperature and ageing on yields estimated with chlorophyll 

fluorescence measurements, for sunflower and A. thaliana Col-0. We show here 3 parameters 

classically measured: the yield of photosystem II Y(PSII), the yield of regulated and basal energy 

dissipation through heat, Y(NPQ) and Y(NO), respectively, The details for the calculations are 

provided in 1.4.1.1. 
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4.3.1.1 Sunflowers  

For all measured ages, Y(II) decreases with the increase of the light intensity and of the temperature 

used for the measurement, as seen on Figure 4-2. This decrease is even more significant as the plant 

gets older. The effect of elevated temperature on 35-day old plants is the most pronounced. 

 

Figure 4-3: PSII yield of sunflowers Helianthus annuus, for different temperatures and a light of 240 μmol.m-2.s-1. For 

each temperature, the dot represents the mean over the leaf ages, and the error bar represents the standard deviation, 

n=3. 

In Figure 4-3, our focus is on the measurement of Y(II) using a light intensity equivalent to the one 

used during the growth period, specifically at an intensity of 240 μmol.m-2.s-1. This allows us 

to capture the quantum yield equivalent to that present during the growth period. Furthermore, 

the differences between the temperatures are more pronounced at this specific light intensity level. 

We observe that the Y(II) increases with the increase of the temperature between 15 and 30°C, and 

we measure the maximum of the photosynthetic capacity at 30 °C, which can be considered as the 

optimal temperature for PSII activity for sunflower grown in summer. Then, if we increase the 

temperature above 30°C, the PSII yield decreases. After reaching a temperature of 35°C, we observe 

a high standard deviation due to the increased sensitivity of older plants to high temperatures. 

In Figure 4-2, we observe an abrupt fall of Y(II) at 40°C, even for weak light intensities. Comparing 

Y(II) and Y(NPQ), we see that the two curves are relatively symmetrical, the energy that is not used 

by photosystem II is dissipated as heat. The variations of Y(NO) generally remain weak with the 

temperature increase in comparison with the variations of Y(II) and Y(NPQ), and are difficult to link 

to physiological effects. At 37.5°C and above, we however observe a different behaviour of Y(NO) 

with a brutal increase. It is interesting to note that this increase of Y(NO) is mainly observed for the 

28 and 35-day old sunflowers. In summary, the optimal temperature for sunflower photosynthesis 

is around 30°C. Temperature variations have an even stronger effect on older leaves, especially 

above 37.5°C, where we observed a drastic increase of Y(NO) and decrease of Y(II). 
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4.3.1.2 A. thaliana  

 

Figure 4-4: PSII yield of A. thaliana Col-0, 28-day old, for a light of 260 μmol .m-2.s-1  

We observe a lower optimum temperature at 25°C in Figure 4-4, as compared to sunflowers.  

4.3.2 Sunflower PSI yields 

 

Figure 4-5: Quantum efficiencies for PSI, donor side limitation (Y(ND)) and acceptor side limitation (Y(NA)) of sunflower, 

Helianthus annuus, for a range of temperatures, at a light intensity of 245 μmol.m-2.s-1.  

Figure 4-5 shows the quantum yields at a light of 245 μmol.m-2.s-1, each normalised by its maximum 

value, to illustrate the temperature response over the 25°C to 40°C range. For both Y(I) and Y(NA), 

important modifications occur above 32.5°C, whereas Y(ND) is more than tripled between 25°C and 

30°C. The Y(ND) parameter reflects a limitation upstream of PSI, likely on the PSII side, while Y(NA) 

reflects a limitation downstream of PSI towards ferredoxin NADP+ reduction. The results clearly 

show that it is first Y(ND) that is affected by temperature changes, probably due to a decrease of 
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Y(II). Then, Y(I) and Y(NA) are affected at higher temperatures, signalling downstream limitations of 

the linear electron flow.  

4.4  Discussion 

4.4.1 Combined effects of elevated temperature and leaf age on photosynthesis 

4.4.1.1 Effects on PSII 

The objective of this study was to highlight photosynthetic behaviour in elevated temperature 

conditions. The Y(II) parameter is related to Vcmax and Jmax, which are known to follow a peaked 

function in response to temperature (Medlyn et al., 2002). Our experiments showed that PSII 

reaches its optimal state at 25°C in A. thaliana (Figure 4-4) and 30°C in sunflowers (Figure 4-3). Table 

4-1 indicates that the median growth temperature of sunflowers is similar to A. thaliana. We can 

thus attribute this difference in optimal temperature to different temperature-dependencies 

between the species, as it was previously documented, e.g., in (Medlyn et al., 2002).  

Figure 4-2 shows that Y(II) is dependent on leaf age, and older leaves are more sensitive to hotter 

temperatures. Fluorescence measurements alone cannot explain the physiological causes of this 

age effect. (Zhou et al., 2015) also found a lower temperature optimum and a lower electron 

transport rate in older plants; their study was performed on another C3 plant, the Quercus 

aquifolioides, a typical evergreen alpine oak species. In Figure 4-2 we observe an important increase 

of Y(NO) at 40°C in plants of 28 days, and 37.5°C in plants of 35 days. It was previously shown in 

(Chen et al., 2014) that some heat tolerant Festuca arundinacea Schreb varieties can dissipate more 

energy through Y(NO) in heat stress conditions compared to accessions sensitive to heat stress. The 

induction of an important Y(NO) thus seems to be associated with heat stress, but we need more 

measurements to build a comprehensive view of the response of Y(NO) to heat stress. (Agüera et 

al., 2010) showed that, in sunflowers, antioxidant activity, as measured by catalase and ascorbate 

peroxidase, increased after 28 days but subsequently decreased, leading to the accumulation of 

reactive oxygen species (ROS) and damage to the photosynthetic apparatus. A reduction in 

antioxidant enzyme levels may increase temperature stress sensitivity in 35-day old plants, which 

could explain the more significant differences in yields observed between temperatures in this case. 

This increased temperature sensitivity associated to ageing needs further research to be elucidated.  

4.4.1.2 Effects on PSI 

It is already well established that RuBisCo is more sensitive to heat compared to light reactions 

(Weis, 1982). Then, in between the two photosystems, it has been shown that PSII is firstly affected 

by heat stress compared to PSI, with an inhibition of the donor-side of PSII (Yan et al., 2013). In the 

review by (Ivanov et al., 2017a)), the authors propose that heat stress induces a modification of the 

organization of the thylakoid membrane: LHCII detaches from PSII to associate with PSI. 

Measurements over a temperature gradient (Figure 4-5) show first an increase in Y(ND) followed by 

an increase in Y(NA). It is consistent with the model proposed in (Ivanov et al., 2017b) and the 

relocation of LCHII from PSII to PSI, but may also indicate a higher activity of cyclic electron flow 

around PSI. (Rath et al., 2022) performed analogous measurements in Pisum sativum at different 

temperatures, and they found similar results: first, inhibition of the donor side, and then inhibition 

of the acceptor side during the temperature increase. The authors also observed modifications in 
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the organization of the thylakoid membrane, as proposed in the (Ivanov et al., 2017b) review. This 

review point outs that the regulation of different electron flows, including linear electron flow, and 

cyclic electron flow, and of PTOX activity remain however ambiguous, due to the complexity of each 

pathway and their interaction. In (Krieger‐Liszkay et al., 2019) authors also proposed that, with leaf 

ageing, alternative electron pathways become increasingly important. That is coherent with our 

observations of Y(II) depending of leaf age (Figure 4-2), leading to a loss of the capacity of linear 

electron transport. 

4.4.2 General conclusion on the effect of high temperatures on C3 species 

(Yamori et al., 2014) showed that the optimum of photosynthetic activity depends on the type of 

C3 or C4 plant, and that the ability to adapt to higher temperatures is greater in C3 plants. The 

limiting factors of photosynthesis at moderately high temperatures are still debated. The authors 

put forward two important limiting factors of the Rubisco carboxylation activity: i) the stability of 

Rubisco activase, which decreases with increasing temperatures, and ii) the decrease in PSII activity, 

which decreases the ratio ATP/ADP, leading to a decrease in the activity of Rubisco controlled by 

the redox state of the chloroplast.  

Regarding our experiments, we can imagine that the temperature increase induces a decrease of 

the linear electron flow, leading to the modification of the ATP/ADP ratio, decreasing the activity of 

the Rubisco. This would explain the progressive decrease of the Y(II) observed between 25°C and 

35°C. However, once a certain temperature limit is reached, the Rubisco activase is significantly 

destabilized, resulting in a sudden change in photosynthetic activity, which was observed at 40°C in 

our measurements. 

More generally, these results show that the effects of high temperatures on photosynthesis depend 

on species, and leaf age. In this chapter, we induced abrupt temperature stress. We cannot observe 

the effects of acclimation to temperature that would occur over longer time scales.  Acclimation to 

temperature was previously shown for various plant species (Kattge & Knorr, 2007); Vcmax and Jmax 

can shift under higher temperatures, expressing an adaptation to the changing climate conditions, 

allowing the plant to reach higher optimum temperatures for photosynthesis. However, this 

acclimation varies with species and is not infinite (Sánchez et al., 2014). As it was concluded in 

(Sánchez et al., 2014) , lethal temperatures are similar in the three major crops: wheat, rice (C3 

plants), and maize (C4 plant) and range from 43 °C to 48 °C. This is a major problem regarding food 

security. In the 2019 IPCC special report on climate change and land, the authors assert in the 

executive summary of Chapter 5: “Food Security”, that: “Food security will be increasingly affected 

by projected future climate (high confidence)”. To conclude, we can say that heatwaves with their 

effect on photosynthesis will endanger carbon fixation capacity, and thus food security. 

In the next chapter, I will switch to a first large scale study, using active fluorescence measurements 

to constrain a NPQ model specific to boreal evergreen needleleaf forests, and passive fluorescence 

measurements to constrain the NPQ, SIF and GPP simulated by a land surface model. 
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5 Chapter 5: Simulating NPQ, SIF and GPP over boreal evergreen 

needleleaf forests with a land surface model 

5.1 Gross primary production (GPP) 

It is a challenge to accurately represent the highly variable dynamics of GPP (Anav et al., 2015; Seiler 

et al., 2022). The associated uncertainty is thus large, which is one of the primary causes of the large 

spread in predicting the future land sink/source based on coupled carbon-climate projections 

(Friedlingstein et al., 2014). The temporal variability of GPP is mainly driven by the weather, 

including sunlight, precipitation, and temperature, at diurnal to seasonal scales, and by the 

increasing trend of atmospheric CO2 concentrations at a longer time scale (CO2 fertilisation effect). 

The spatial variability is driven by the species distribution, the soil types, and the climate (Li & Xiao, 

2020).  

Unfortunately, GPP cannot be measured at scales larger than the leaf. It can be estimated at the 

ecosystem scale using eddy-covariance flux measurements. The eddy covariance technique is a 

crucial method for measuring and calculating vertical turbulent fluxes in atmospheric boundary 

layers. This statistical approach utilizes high-frequency data series of wind and scalar atmospheric 

variables, such as gas, energy, and momentum, to determine the flux values of these properties. It 

quantifies gas emission rates from land and water areas, and is commonly used for estimating fluxes 

of momentum, heat, water vapor, carbon dioxide, and methane. 

At larger scales, we can use proxies derived from space-borne satellite measurements. The most 

promising one, that has emerged in the 2010’s, is the sun-induced fluorescence (Frankenberg et al., 

2011; Mohammed et al., 2019; Parazoo et al., 2019; Porcar-Castell et al., 2014). 

5.2 Boreal evergreen needleleaf forests  

Boreal forests account for around 20% of the global forest sink (Harris et al., 2021; Hayes et al., 

2022). In this study, we focused on boreal evergreen needleleaf forests. This forest type is a major 

ecosystem covering a total area of nearly 7 Mkm2 

(https://orchidas.lsce.ipsl.fr/dev/lccci/orchidee_pfts.php, last access: 3 July 2023). From the 

photosynthetic point of view, they present the unique interest of keeping needles during the cold 

winter times, posing quite a challenge for photoprotection mechanisms. Species developed a 

sustained NPQ, as presented in (Bag et al., 2020). Active fluorescence measurements are available 

for Pinus sylvestris, at the forest site of Hyytiälä in Finland, allowing for the computation of NPQ 

parameters (Porcar-Castell, 2011). Satellite and in situ SIF measurements have also been used to 

study the seasonal cycle of the photosynthetic activity in boreal evergreen needleleaf forests 

(Pierrat et al., 2021, 2022; Walther et al., 2016). 

 

https://orchidas.lsce.ipsl.fr/dev/lccci/orchidee_pfts.php
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5.3 Summary of data, tools and methodology 

5.3.1 Satellite SIF estimates  

There are several space-borne platforms and instruments capable of estimating SIF, with various 

resolutions (spatial, temporal, and spectral). The spatial resolution refers to the minimum Earth 

surface that can be sampled by the instrument. An instrument with a high spatial resolution can 

capture more detailed information, and is useful to study homogeneous patches of a specific biome. 

The temporal resolution refers to the shortest time between measurements of the same target. An 

instrument with a high temporal resolution can provide more frequent SIF measurements, cloud-

cover permitting, which is particularly useful for studying short-term variations in vegetation 

productivity and physiology. The revisit time is the period between two consecutive observations in 

the exact same geometry. Finally, the spectral resolution plays a key role in the choice of the 

associated retrieval SIF method. Table 5-1 provides these features for the main sensors for which 

SIF estimates are available (Guanter et al., 2021; Parazoo et al., 2019). 

Table 5-1: Resolutions of main instruments for which a SIF product is available.  

Satellite name Resolution 

 spectral (nm) spatial (km2) revisit time (day) 

SCIAMACHY 0.5 30 × 120 6 

GOME-2 0.5 40 × 40 3 

GOSAT 0.025 10 in diameter 3 

OCO‐2  0.05 1.3 x 2.25 16 

TROPOMI 0.38 3.5 x 5.5 1 

In this work, we used the ESA TROPOSIF product, derived from the TROPOMI instrument on-board 

the Copernicus Sentinel-5P platform (Guanter et al., 2021). The TROPOMI SIF estimates were chosen 

for data assimilation into the ORCHIDEE model because they provide a daily global coverage, at a 

moderate spatial resolution, still suitable for land surface models, which usually run at global scale 

using a 0.5° spatial resolution (~50km at the equator). The methodologies developed for the SIF 

retrieval usually rely on the in-filling of a strongly absorbing band, O2 bands in the terrestrial 

atmosphere or Fraunhofer lines in the solar atmosphere. These latter are specific wavelengths of 

the solar radiation where the signal is absorbed by the heliosphere, so that all the luminance 

received by the Earth observing satellite is being emitted by the Earth only (Mohamed et al., 2020). 

Using the method with oxygen absorption bands requires some knowledge of the state of the 

terrestrial atmosphere; this is not the case for data-driven methods using Fraunhofer lines. This 

latest method was used for TROPOMI. The retrieved SIF is highly uncertain (Guanter et al., 2021), 

however, by aggregating a large amount of data, the random uncertainty can be significantly 

reduced. The SIF potential to improve the GPP simulated by the ORCHIDEE land surface model was 

already demonstrated, using data assimilation of GOME-2 (MacBean et al., 2018) and OCO-2 SIF 

estimates (Bacour et al., 2019). However, as several PFTs showed a GPP degradation (Bacour et al., 

2019), we explored in the study the benefits of co-assimilating satellite SIF estimates and in situ GPP 

estimates.   
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5.3.2 In situ GPP estimates 

The FLUXNET network is composed of 206 flux towers around the world, mainly in the northern 

hemisphere, with complete seasonal cycles spanning 20 years for the oldest sites. The FLUXNET 

network produces a peer-reviewed dataset containing meteorological data such as temperature, 

radiation, precipitation, relative humidity, as well as estimates of carbon, water and energy fluxes 

(Pastorello et al., 2020). A tower footprint is roughly on the order of 1 km2. 

5.3.3 Data assimilation  

5.3.3.1 Sensitivity analysis  

First, we had to select a restricted number of parameters to limit the computational time and to 

avoid overfitting. Overfitting may occur when we optimize too many parameters; it makes the 

model very accurate, but only for the dataset on which it was trained, and it does not allow to derive 

parameters that are generic enough to also get good performances on the independent evaluation 

dataset. For this selection, we performed a sensitivity analysis using the Morris method (Morris, 

1991). The Morris method is a global sensitivity analysis technique used to identify the most 

influential parameters in a model by quantifying their impact on the considered model output. This 

method involves varying one parameter at a time while keeping all other parameters fixed and 

computing the change in the model output in response to the parameter change.  

We defined a prior value and a range of variation for each parameter. We tested 126 parameters 

and used ten random values for each one, leading to a total of 1270 simulations. In the end, we 

selected the 9 most important parameters for GPP and the 9 most important for SIF. Among these 

parameters, 5 were common, resulting in a total of 13 parameters to optimize during the 

simultaneous assimilation of SIF and GPP data. 

5.3.3.2 Optimization with a genetic algorithm  

To optimize these parameters, we minimized a cost function within a Bayesian framework 

(Tarantola, 1987). The cost function is typically formulated as the negative log-likelihood of the 

observed data given the model parameters. In this work we used a genetic algorithm method to 

minimize the cost function; this method is able to find the global minimum, as opposed to gradient-

descent techniques that can be trapped in local minima (Bastrikov et al., 2018). 

The genetic algorithm is a stochastic approach that is inspired by natural selection and uses concepts 

of cross-over, mutation, and selection. This algorithm is efficient in exploring the parameter space 

but may change insensitive parameters. During the optimization using the genetic algorithm, we 

took the same prior, minimum and maximum values for each parameter as used in the sensitivity 

analysis. During optimization, the parameter values are first randomly chosen within the authorized 

range, and then further modified based on the cost function and the genetic algorithm criteria. The 

model converges after numerous iterations (approximately 800) to deliver a set of optimized 

parameters.  

5.3.4 Methodology  

We first updated the modelling of the NPQ relative rate constant by splitting it into a reversible and 

a sustained component. Sustained NPQ is mostly active during winter, and it is modelled based on 
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a moving average of the air temperature (Makela et al., 2004). Reversible NPQ is mostly active 

during the growing season, it is very sensitive to the photosynthesis yield and, as such, exhibits a 

strong diurnal cycle. We derived prior values of the parameters for the NPQ reversible and sustained 

components, by fitting their respective model using one year of active measurements performed 

on Pinus sylvestris at the Hyytiälä (Finland) site (Porcar-Castell, 2011). 

We then used TROPOMI SIF estimates and in situ FLUXNET GPP estimates to optimize various 

parameters of the ORCHIDEE model. We took data from 9 boreal forest evergreen needleleaf forest 

sites. Three years of in situ GPP estimates and two years of co-located SIF satellite estimates were 

used to optimize parameters, and one other year to evaluate the posterior SIF and GPP. Significant 

improvements in the accuracy were observed following data assimilation. The optimized 

parameters obtained were then applied to perform regional simulations over the boreal evergreen 

needleleaf forests. At this larger scale, there was also an enhancement in the simulation of SIF and 

GPP after optimization, as shown when comparing with large-scale reference products. 

5.4 Third publication: “Improving the SIF constraint on GPP for boreal evergreen 

needleleaf forests in a land surface model using a physiologically-based representation 

of non-photochemical quenching and data assimilation”  (Leverne et al., submitted) 

Please refer to appendix in section 13.3 for access to this third publication. 

The objective of this thesis was to reinforce connections between two relatively distant scientific 

communities, building a bridge between the molecular understanding of photosynthesis and large-

scale modelling, to improve the latter. The modelling work developed in this chapter is a first step 

towards this objective. 

In this article, we modified the NPQ model for boreal evergreen needleleaf forests through two 

successive strategies. Firstly, we modelled a new type of NPQ, based on molecular observations of 

evergreen plants in this specific biome. We referred to this NPQ as "sustained NPQ", which is 

induced and remains during the cold winter of boreal latitudes. Next, we constrained the 

parameters of this model, as well as others related to the photosynthesis and fluorescence models, 

through the coupled assimilation of satellite-derived SIF estimates and in situ GPP estimates at the 

canopy scale. This allowed us to improve the GPP and SIF simulated by the ORCHIDEE model for this 

biome. This methodology could now be extended to all plant functional types.  

In this research article, I discussed the strategy with my supervisors, performed all simulations, data 

assimilation experiments and data analyses. I produced most figures and contributed to the writing 

of the manuscript.  

 

Now, we would like to have in this same LSM a better modelling of plant behaviour specifically under 

stress conditions induced by climate change. In the following chapter, we will use fluorescence 

active measurements performed at the leaf level on poplar, under drought conditions. Our objective 

is to develop a NPQ model that enables to improve the plant's response to drought stress, and will 

be further implemented within the ORCHIDEE LSM.   
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6 Chapter 6: Modelling the drought response of NPQ  

6.1 Introduction 

(Wohlfahrt et al., 2018) reported a decoupling between SIF and GPP using canopy-scale 

measurements in a Mediterranean pine forest. Other studies documented the same behaviour, 

using additional PAM monitoring, e.g., in (Helm et al., 2020)  for poplars, in (Marrs et al., 2020)) for 

oaks and tulip poplars, in (Martini et al., 2022)  for a Mediterranean open woodland. This allowed 

them to simultaneously look at the NPQ at leaf-level, and see that: “The highly nonlinear [GPP-SIF] 

relationship was strongly shaped by non-photochemical quenching (NPQ)”, as stated in (Martini et 

al., 2022) .  

This stresses the need of having a NPQ model valid in drought conditions, to correctly exploit the 

SIF signal in land surface models. In this chapter, I will study the impact of the recent heatwave 

conditions during summer in France on poplar, our selected model tree. I will first present the 

experiment during which I acquired the data, and then I will develop a model for the relative rate 

constant of Non-Photochemical Quenching (kNPQ), depending on environmental variables and valid 

in drought conditions.  

6.2 Material and methods 

6.2.1 Environmental conditions  

This study was made possible thanks to the IPSL BIOTECA (Biogéochimie terrestre, écosystème et 

agriculture) working group (https://www.ipsl.fr/recherche/les-thematiques-

scientifiques/biogeochimie-terrestre-ecosysteme-et-agriculture/, last access: 3 July 2023). It was 

performed at the CEREEP-Ecotron Ile-de-France (https://www.cereep.bio.ens.psl.eu/, last access: 3 

July 2023). We used two Ecolab systems (https://www.cereep.bio.ens.psl.eu/spip.php?article9, last 

access: 3 July 2023), labelled as "control" and "stress". In these chambers, temperature, light, and 

relative humidity were controlled and measured. The poplar trees (Populus trichocarpa) were grown 

in a greenhouse with 16 hours of illumination (at 110 µmol.m-2.s-1) at 20°C for five months before 

starting the experiment. Then, three plants were planted in soil columns within PVC tubes 

measuring 60 cm with a 20 cm diameter, in both chambers. First, we put plants for two weeks at 

20°C, with a 50% air relative humidity (RH), and 12 hours of light at 300 µmol.m-2.s-1, to acclimate 

to the measurement conditions. Then, we started the experiment, on day noted 0 in the next 

figures. The stress chamber simulated the weather conditions from June 7th to 28th, averaging over 

seven years from 2016 to 2022, while the control chamber simulated the average weather of the 

previous 20 years during the same period. 

6.2.2 Measured variables  

To monitor fluorescence, we used a MICRO-PAM Walz device 

(https://www.walz.com/products/chl_p700/micro-pam/introduction.html, last access: 3 July 

2023), placed on one leaf from the upper part of the plant in each chamber. This device emitted 

saturating light pulses (4,000 μmol.m-2.s-1, with a pulse duration of 0.8 s) every 10 minutes; the 

https://www.ipsl.fr/recherche/les-thematiques-scientifiques/biogeochimie-terrestre-ecosysteme-et-agriculture/
https://www.ipsl.fr/recherche/les-thematiques-scientifiques/biogeochimie-terrestre-ecosysteme-et-agriculture/
https://www.cereep.bio.ens.psl.eu/
https://www.cereep.bio.ens.psl.eu/spip.php?article9
https://www.walz.com/products/chl_p700/micro-pam/introduction.html
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fluorescence measurements allowed to calculate yields and rate constants for the processes of 

interest (photosynthesis, NPQ, fluorescence), in particular the NPQ relative rate constant (Baker, 

2008; Porcar-Castell, 2011):  

kNPQ =  (
Fm

Fm′
− 1) eq. (6-1) 

Additionally, we measured the chlorophyll content in five leaves for each of the three poplar trees 

in each chamber on a weekly basis. Soil water content and conductivity were continuously measured 

using METER TEROS 12 probes.  

Thus, we directly measured or derived the following parameters: air temperature (AT, °C), air 

relative humidity (RH), leaf temperature (LT, °C), vapour pressure deficit (VPD, kPa), soil 

temperature (ST, °C), soil water content (SWC, m3 m-3), soil electro-conductivity (SEC, mS.cm-1), 

photosynthetic active radiation (PAR, µmol.m2.s-1), chlorophyll content (Chl_content, mg.m-2), 

kNPQ, the photosynthetic yield (phi_P) and the degree of photosynthetic saturation, x, as defined 

in (Tol et al., 2014) . 

6.2.3 Modelling approaches 

6.2.3.1 Evaluating potential relations between VPD and NPQ  

The increase in VPD is accelerating under climate change, with adverse effects on the vegetation, 

going from stomatal closure and reduced photosynthesis and transpiration, till possibly hydraulic 

failure and cavitation (Lesk et al., 2016). VPD strongly correlates with NPQ, especially in stress 

conditions (Martini et al., 2022). In a first approach, we will use test a simple model expressing kNPQ 

in drought conditions as a linear function of VPD.  

6.2.3.2 Ranking the importance of potential factors using a Random Forest model  

A random forest (RF) model is a machine learning method, whose output is based on an ensemble 

of many decision trees (Breiman, 2001). We used it here as a regression algorithm to compute kNPQ, 

based on environmental and physiological factors.  

I coded the RF computations with the Python 3 language and the scikit-learn library. I used 75% of 

the samples for the training dataset, and 25% for the evaluation dataset. 

I tested RF models with all possible combinations of a selected set of input factors (n=255) in order 

to determine how many factors were needed to predict kNPQ with an accuracy larger than 90%, 

and to identify the best combinations. Accuracy is calculated as the median absolute error 

percentage minus 100.  
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6.2.3.3 Fitting model parameters to link environmental and physiological factors to NPQ  

We tested several empirical parametric models to compute kNPQ from environmental ad 

physiological conditions, in drought stress conditions. These fitting experiments were performed 

with the Model function from the lmfit library (Newville et al., 2016) . 

6.2.3.4 Calculation of scores for fitting performance  

To rank and choose among tested empirical equations, we used different scores evaluating their 

performance. The Root Mean Square Deviation (RMSD) quantifies the average difference between 

the predicted values of a model and the corresponding observed values. To calculate RMSD, we first 

compute the squared differences between each predicted value and its corresponding observed 

value. These squared differences are then averaged, and the square root of the average is taken to 

obtain the RMSD. For a model that perfectly fits the observed data, the RMSD value would be equal 

to 0. The Akaike Information Criterion (AIC) quantifies the balance between the fit quality and the 

complexity of a model. It penalizes models that employ a larger number of parameters to fit the 

data. The AIC is calculated as the sum of the negative logarithm of the likelihood of the model and 

twice the number of parameters utilized. Models with lower AIC values are considered more 

favourable, as they achieve a superior equilibrium between precision and simplicity. The reduced 

chi2 score, noted RedChi2, provides a normalized measure of the discrepancy between the model 

predictions and the observed data, taking into account the complexity of the model, by dividing the 

discrepancy by the degree of freedom defined as the number of data points minus the number of 

parameters. It allows for fair comparison between models with different numbers of parameters. 

For a model that perfectly fits the observed data, the RedChi2 value would be equal to 1. 
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6.3 Results  

6.3.1 Monitoring of environmental and physiological conditions 

6.3.1.1 Daily means  

 
Figure 6-1: Evolution of the daily mean of weather and physiological variables: air relative humidity (RH), air temperature 

(AT, °C), soil water content (SWC, m3.m-3), leaf temperature (LT, °C), vapour pressure deficit (VPD, kPa) and the degree 

of photosynthetic saturation (x, a.u). Day 0 is defined as the beginning of the experiment, the days before represent 

chamber acclimation. The black symbols and lines represent the control chamber, and the red ones represent the stress 

chamber. 

It can be observed that the humidity and temperature were more variable in the stress chamber, 

reflecting the mean 2016-2022 conditions, compared to the control chamber, representing a mean 

climatology over 20 years. The soil water decreases more rapidly in the stress chamber.  

Under low SWC conditions, plants tend to close their stomata to limit water loss through excessive 

transpiration, thereby reducing their assimilation. The SWC in both the stress and control chambers 

are comparable at the beginning of the experiment, but in the last week the difference of SWC has 

increased up to around 0.03 m3.m-3.  
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Figure 6-2: Evolution of the daily mean of the difference between leaf (TL) and air temperatures (TA) (°C), in the control 

(black) and stress (red) chambers.  

In addition to the larger decrease in SWC, we observed that the difference between leaf and air 

temperatures was more pronounced in stressed plants compared to the control group, especially 

after day 9 when the difference becomes larger (Figure 6-2). The plant under stress conditions has 

more difficulty regulating its leaf temperature, likely due to stomatal closure and reduced 

transpiration. 

 

Figure 6-3: Evolution of the leaf chlorophyll content (mg.m-2), mean of weekly measured were used input factors in 

models, in the control (black) and stress (red) chambers. 

In Figure 6-3, we observed important variations of the leaf chlorophyll contents in between week, 

with an important decrease between the last two weeks of experiment in stress conditions. 
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6.3.1.2 Diurnal cycles  

 

Figure 6-4: Mean diurnal cycles computed over the last 5 days of the experiment for air relative humidity (RH), air 

temperature (AT, °C), soil water content (SWC, m3.m-3), leaf temperature (LT, °C), vapour pressure deficit (VPD, kPa), 

and the degree of photosynthetic saturation (x, a.u) for the control (black) and stress (red) chambers. Shaded areas 

represent the corresponding standard deviations. 

Figure 6-4 represents the mean diurnal cycles computed at an hourly frequency over the last 5 days 

of the experiment for the previously studied parameters. We observed the same trend as for the 

daily means, with lower air and soil humidity in stress conditions. A highest leaf temperature is also 

observed in stress conditions starting mid-morning, indicating that the stressed plants have more 

difficulties regulating their temperature through transpiration. 

Thanks to these continuous measurements performed over three weeks at a high temporal 

resolution under contrasting conditions, we were able to attempt to model the behaviour of NPQ 

under high temperature and drought conditions. 

6.3.2 Modelling 

The objective here is to define a parametric model for NPQ in drought stress conditions, which will 

be implemented within the ORCHIDEE land surface model. Such a NPQ model should relate to plant 

physiology, and allows ORCHIDEE to represent the decoupling observed between SIF and GPP in 

drought conditions (Wohlfahrt et al., 2018; Martini et al., 2022). We will select the most economical 

expression in terms of variables and parameters, in order to ensure its generality for a large-scale 

use through ORCHIDEE. 
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6.3.2.1  Linear relationship between of NPQ and VPD 

We started with the idea of first linking NPQ to VPD. 

 

Figure 6-5: Scatter plot of NPQ against VPD using all measured data points, for the control (black) and stress (red) 

chambers. 

Figure 6-5 shows the relationship between VPD and NPQ measured in the two chambers. There 

appears to be a linear relationship between VPD and NPQ, with a correlation of 0.66. The 

relationship seems to be consistent between the two chambers, with a correlation of 0.59 and 0.73 

in the control chamber and in the stress chamber, respectively. The correlation between VPD and 

NPQ is more pronounced in the stress chamber, probably because VPD modulates the NPQ response 

even more in stress conditions. Based on these initial results, we examined the capacity of the 

current kNPQ model implemented in ORCHIDEE to represent the kNPQ estimated using the active 

fluorescence measurements performed in the two chambers. We used eq. (7) of Chapter 5 

representing the reversible component to express kNPQ, because we are measuring fluorescence 

on poplar trees in summer weather, and no sustained NPQ is activated in these conditions.  
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Figure 6-6: Scatter plots of simulated versus observations-derived kNPQ; A) using the current ORCHIDEE model; B) using 

the updated kNPQ model developed in this study. 

Eq. (6-2) used for panel A in Figure 6-6 is currently used in ORCHIDEE. We added a simple linear 

dependency on VPD in eq. (6-3), used for panel B.  

kNPQ =  A1 × x + A2 × x3 eq. (6-2) 

kNPQ =  A1 × x + A2 × x3 + (A3 × VPD + A4) eq. (6-3) 

with x the degree of light (van der Tol et al., 2014). A1, A2, A3 and A4 are parameters adjustable 

during fitting.  

If the model was perfect, points should be aligned on the 1:1 line and the coefficient of correlation 

(R) should be equal to one. The lower AIC score observed in Figure 6-6 B, as well as the larger 

coefficient of determination (R2), support the use of VPD as a proxy of drought intensity in NPQ 

modelling. 
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Figure 6-7: Correlation matrices for all pairs of the measured or derived variables. Colour and value indicate the 

correlation coefficients (darkest blue=1, darkest red=-1).  

The correlation matrices represented in Figure 6-7 enable the identification of relationships 

between variables. Regarding kNPQ in both chambers, the absolute value of the correlation 

coefficient is larger than 0.5 for VPD, x, phi_P, LT, and PAR, meaning that kNPQ is positively or 

negatively correlated with these variables. We observe higher correlations between kNPQ and 

variables that are mainly driven by light conditions, such as x and phi_P for the control chamber. On 

the contrary, the correlation with VPD is larger in the stress chamber. 

However, it is still challenging to determine which combinations of variables best represent the 

variability of kNPQ. To identify these combinations, we used a machine learning model, the Random 

Forest. I first needed to select input variables based on their paired correlations. Indeed, when 

variables are strongly correlated, they provide redundant information to the RF model. This 

redundancy can lead to incorrect importance scores being assigned to these correlated variables, 

making it difficult to evaluate their individual contribution to the prediction. I also privileged 

variables available in the ORCHIDEE model, for a further implementation. For the RF models, I thus 

considered combinations of the eight input factors: AT, RH, VPD, ST, SWC, PAR, Chl_content, and x. 
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6.3.2.2 Random Forest models 

 

Figure 6-8: Accuracy of random forest models depending of the number of input factors. Each point represents the 

accuracy of a RF model for a possible combination of the corresponding number of input factors read on the x-axis, 

yielding a total number of 255 RF models. 

In Figure 6-8, I observed that the maximum accuracy of RF models increases rapidly when using one 

to three factors, then it reaches a plateau with more input factors. With one to three factors, we 

note a large variation in accuracy among the combinations, these small numbers of factors do not 

sufficiently explain the variability of NPQ, evidencing the presence of primary factors. 

Table 6-1: Best combination and related accuracy and determination coefficient (R2) for combinations of one to five 

input factors. 

Numbers of 
parameters 

Combination Result for the best combination 

Accuracy (%) R2 

1 PAR 73.9 0.61 

2 PAR, SWC 89.1 0.84 

3 x, SWC, Chl_content 93.8 0.93 

4 x, SWC, ST, Chl_content 94.6 0.95 

5 x, SWC, ST, Chl_content, VPD 95.1 0.96 
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In Table 6-1, we see that we can achieve accuracies around 90% with two to three parameters, using 

the combinations (PAR, SWC), or (x, SWC, Chl_content), respectively.  

6.3.2.3 Empirical expressions of NPQ in drought conditions 

RF models are powerful for prediction, but their results are typically based on statistical 

relationships and do not provide explicit equations that can be easily implemented into ORCHIDEE. 

We prefer to avoid this kind of “black box”, and build instead an empirical model, based on the main 

factors previously identified, thanks to the RF models. 

I have fitted the parameters of the 19 empirical models listed in Table 6-2 against my dataset, 

relating kNPQ to the main factors. Models 1 to 9 and 10 to 19, respectively, use the best 

combinations of two or three input factors identified during the RF analysis. To evaluate the models 

we used AIC, RedChi2 and RMSD scores, their calculation and meaning were explained 6.2.3.4.  

Table 6-2: Expression and performance of the 19 empirical equations tested for kNPQ. ‘ *’ stands for the multiplication 

operation, ‘**’ stands for the power operation, and ‘exp’ stands for the exponential function. A1, A2, A3 and A4 are 

parameters adjustable through the fitting. The reduced Chi2 score is noted RedChi2, the Akaike Information Criterion is 

noted AIC, the root mean square difference is noted RMSD. Scores are noted ‘high’ when the model performs too poorly 

and the related scores are too high to be computed. 

Model number Model RedChi2 AIC RMSD 

1  kNPQ = (A1*PAR*SWC) 3.55 3430.27 1.88 

2  kNPQ = (PAR*A1)+(SWC*A2) 2.67 2660.4 1.63 

3  kNPQ = (PAR*A1)*(SWC*A2) 3.55 3432.27 1.88 

4  kNPQ = (PAR*A1)+(A2*exp(SWC*A3)) 2.43 2411.89 1.56 

5  kNPQ = (PAR*A1)*((A2*exp(SWC*A3))) 2.59 2579.62 1.61 

6  kNPQ = ((A2*exp(PAR*A1))+SWC*A3) high high 16.92 

7  kNPQ = ((A2*exp((PAR*A1)))*SWC*A3) high high 16.92 

8  kNPQ = exp(PAR*A1*SWC) 4.08 3810.88 2.02 

9  kNPQ = exp((PAR*A1)+(A2*SWC)) high high 16.92 

10  kNPQ = (Chl_content*X*A1)+(SWC*A2) 3.68 3527.03 1.92 

11  kNPQ = (Chl_content*X*A1)*(SWC*A2) 4.01 3766.02 2 

12  kNPQ = (Chl_content*X*A1)+(A2*exp(SWC*A3)) 3.67 3527.13 1.92 

13  kNPQ = (Chl_content*X*A1)*(A2*exp(SWC*A3)) 3.67 3525.55 1.92 

14  kNPQ = (Chl_content*A1)+(SWC*A2) 5.42 4580.67 2.33 

15  kNPQ = (Chl_content*A1)+(A2*exp(SWC*A3)) 4.55 4104.85 2.13 

16  kNPQ = (Chl_content*A1**2)+(A2*SWC+A3)+X*A4 2.3 2261.43 1.52 

17  kNPQ = (A1*exp(Chl_content))+(A2*SWC+A3)+X*A4 2.17 2097.46 1.47 

18  kNPQ = (A1*exp(Chl_content))*(A2*SWC+A3)*X*A4 2.37 2340.08 1.54 

19  kNPQ = (A1*Chl_content)+(A2*exp(SWC)+A3)+X*A4 2.3 2261.25 1.52 

The best model using two input factors is Model 4, with the following fitted parameter values: 

A1 = 0.004 +/- 7.18 x 105, A2=12.98 +/- 2.69 A3=-27.04 +/- 2.50 

The best model using three input factors is Model 17, with the following fitted parameter values: 
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A1 = 14.02+/- 1.08 , A2 = 14.57+/- 1.44, A3 = -11.33 +/- 0.84, A4 = -18.02 +/- 2.05  

Even though Model 17 has more explanatory factors and is more complex, its lower AIC score 

compared to all others justifies its use. 

 

Figure 6-9: Modelled versus observations-based kNPQ for the RF model (magenta) and Model 17 (green). The black 1:1 

line represents a perfect fitting.  

As shown in Figure 6-9, the RF model outperforms the empirical model, as expected. As a 

perspective, we could consider using another machine learning approach, the Shapley values. 

Shapley values are used to assess the importance of input features in making predictions, when 

using RF or XGBoost models. They provide insights into how each feature contributes to the 

statistical model, allowing for a better understanding of the model's behaviour and the relative 

importance of input factors. It could provide a better insight on the relations between kNPQ and 

the considered factors, as shown for example for GPP (Wang et al., 2022). 

6.4 Discussion  

In (Wang et al., 2018)  the authors showed, in apple tree leaves, that the relationship between leaf 

water potential and assimilation is not linear. The authors identified two phases. In the first phase, 

the decline in photosynthetic CO2 assimilation is linked to stomatal closure, which induce a decline 

in Jmax and NADPH production. In the second phase, the reduction of CO2 assimilation is due to 

non-stomatal limitation. This is caused by an over-reduction of the electron transport chain, leading 
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to increased production of ROS. The accumulation of ROS inhibits the turnover of the D1 protein of 

PSII, which limits electron transport from Qa to Qb. Additionally, NADP+ declines, further limiting 

ATP synthesis and the regeneration of RuBP.  

In this study, our best empirical model for kNPQ expresses the sum of three reactions. These three 

reactions evolve at different rates, x, which depends on photosynthetic efficiency and stomatal 

conductance, is fast. The SWC changes more slowly over time, and the chlorophyll content varies at 

an even slower pace. Additionally, their relationship to NPQ, as represented in Model 17, is also 

different. x and SWC are linearly related to NPQ, while NPQ shows an exponential relationship with 

Chl_content. 
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7 Chapter 7: Conclusions and outlooks 

The main objective of this thesis was to establish connections between the understanding of plant 

regulation at the molecular level and the processes represented in land surface models, in order to 

improve global simulations of plant CO2 uptake under stress conditions. Throughout the thesis, we 

were able to explore multiple scales of comprehension. In Chapter 1, we investigated how PR 

metabolites could potentially play a role in isolated PSII regulation. In Chapter 2, we examined how 

the electron linear flux and the redox state of PQ pool could contribute to the communication 

between the chloroplast and the rest of the plant in drought stress conditions. In Chapter 3, we 

focused on the response of the linear electron transfer chain and its rapid reaction to temperature 

variations, with a particular emphasis on the sensitivity of PSII and PSI to high temperatures. In 

Chapter 4, we updated the NPQ model implemented in the ORCHIDEE land surface model in the 

case of boreal evergreen needleleaf forests, favouring a process-based representation of the 

sustained mechanism resulting from modifications in the organization of the antenna systems at 

the chloroplast level. Additionally, we highlighted the importance of co-assimilating SIF and GPP to 

avoid overfitting and simulate both variables in a consistent way. Finally, in the last chapter, we 

studied poplar as a model tree species in drought conditions, and developed a stress-extended NPQ 

model, that could be further implemented in the ORCHIDEE LSM, to improve the drought-stress 

response of the simulated GPP and SIF. 

For each chapter, we can propose perspectives for improvement. In Chapter 2, it would be necessary 

to quantify glycolate in vivo at the chloroplast level to validate its potential role in PSII protection 

under stress conditions. In Chapter 3, quantifying apocarotenoids in roots and leaves separately 

would be crucial to validate the significance of beta-cyclocitral or other apocarotenoids in the 

chloroplast to root communication system. Conducting grafting experiments could confirm the 

existence of communication between chloroplasts and roots. Additionally, studying the response of 

root systems by manipulating the redox state of the PQ pool for wild-type plants by other means 

such as modifying the light quality could provide valuable insights. Chapter 4 would benefit from 

more comprehensive measurements encompassing a wider range of temperatures and plant ages 

to thoroughly examine the combined effect of leaf senescence and temperature sensitivity on 

photosynthesis. Chapters 5 and 6 advocate the need for a better representation of NPQ in LSMs, 

which is required for a correct interpretation and use of SIF estimates. The improvements concern 

both potential PFT specificities, and stress conditions. On top of the molecular-level studies, LSMs 

would also benefit from a global FLUXNET-like network of standardized high-frequency active and 

passive fluorescence measurements, to validate and constrain the next-generation NPQ models. 

The seminal publications inserted in this thesis formed the basis for an ANR proposal entitled FACET 

(“Multiscale use of fluorescence for an enhanced understanding of the vegetation carbon uptake 

during drought”) that just got accepted (https://anr.fr/fileadmin/aap/2023/selection/aapg-2023-

selection-vague-3.pdf, last access: 10 July 2023), opening the way for even deeper collaborations. 
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Figure 7-1: Summary diagram, regulation of photosynthesis from PSII to global scale. Each box summarises a chapter 

along the axis indicating the scale at which photosynthesis is studied.   
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8 Abbreviations 

ADP: Adenosine diphosphate 

AIC : Akaike Information Criterion  

APAR: absorbed photosynthetically active radiation 

ATP: Adenosine triphosphate 

CAM: crassulacean acid metabolism 

CC: climate change 

Cyt b6f: Cytochrome b6f complex 

DCBQ:  2,6-dichloro-1,4-benzo-quinone  

DNA: Deoxyribonucleic acid 

EPR: Electron paramagnetic resonance 

ESA: European spatial agency  

FAD: Flavin adenine dinucleotide 

FADH: semiquinone flavin adenine dinucleotide 

Fd:  Ferredoxin  

FNR: ferredoxin-NADP+ reductase 

GOX: glycolate oxidase 

GPP: gross primary production 

H2O: water 

HEPES:(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  

IC50 value: concentration at which 50% of the inhibitory effect is observed. 

IPCC: Intergovernmental Panel on Climate Change 

IPSL: Institut Pierre-Simon Laplace 

LAI: leaf area index 

LC: Liquid chromatography 

LCHII: Light-harvesting complex II 

LHCII: light harvesting complex 

LSM: land surface model 

LT: leaf temperature  

MES: 2-(N-Morpholino)ethanesulfonic acid 

MS: mass spectrometry 

NADH: Nicotinamide adenine dinucleotide 

NADP: Nicotinamide adenine dinucleotide phosphate 

NPQ: non photochemical quenching  

OEC: oxygen evolving complex 

ORCHIDAS: ORCHIDEE Data Assimilation System 

ORCHIDEE: Organising Carbon and Hydrology In Dynamic Ecosystems 

PAM: pulse amplitude modulation 

PAR: photosynthetic active radiation  

PC: plastocyanin 

PFT: plant functional type 
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PGA: phosphoglycerate 

PGLP: 2-phosphoglycolate phosphatase 

PQ: plastoquinone 

PQH2: reduced plastoquinone 

PR: photorespiration  

PSI: photosystem I 

PSII: photosystem II 

PTOX: plastid terminal oxidase 

Qa: quinone A 

Qb: quinone B 

RF: random forest 

RH: relative humidity 

RMSD: root mean square deviation.  

RNA: ribonucleic acid 

ROS: reactive oxygen species  

SEC: soil electroconductivity  

SIF: sun-induced fluorescence  

ST: soil temperature  

SWC: soil water content  

TA: air temperature 

TL: leaf temperature 

TROPOMI: tropospheric monitoring instrument 

VPD: vapor pressure deficit 
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12 Résumé détaillé 

L'absorption du CO2 atmosphérique par la biosphère via la photosynthèse joue un rôle essentiel 

dans l’atténuation du changement climatique. La photosynthèse permet de transformer le carbone 

inorganique présent dans l'atmosphère (CO2) en carbone organique contenu dans des sucres 

produits. Les émissions massives de CO2 dans l'atmosphère, causées par les activités humaines telles 

que la combustion d'énergies fossiles et les changements d'utilisation des sols, ont entraîné le 

changement climatique que nous connaissons. Les plantes terrestres, par le biais de la 

photosynthèse, peuvent contribuer à atténuer les émissions de gaz à effet de serre en capturant le 

CO2 produit. 

Cependant, le changement climatique induit des contraintes importantes sur les plantes terrestres, 

telles que les températures élevées et la sécheresse. Ces conditions tendent à limiter la croissance 

et la survie des plantes, réduisant ainsi la captation du CO2. Les modèles climatiques actuels 

présentent d'importantes incertitudes quant à la capacité des plantes terrestres à absorber le CO2 

dans les décennies à venir. 

Dans cette thèse, nous étudions la régulation de la photosynthèse dans des conditions de stress 

induites par le changement climatique, en allant de l'échelle moléculaire au niveau des chloroplastes 

jusqu'à l'échelle globale des surfaces continentales. Nous utilisons prinicpalement des mesures de 

la fluorescence de la chlorophylle a, qui nous informent sur le processus photosynthétique. 

Lorsqu'un organisme photosynthétique reçoit de la lumière, il dissipe cette énergie sous trois 

formes : une partie de l'énergie est utilisée dans le processus photosynthétique pour produire des 

sucres, une partie est dissipée sous forme de chaleur (via des mécanismes appelés NPQ, de l’anglais 

Non-Photochemical Quenching), et enfin une partie est rayonnée sous forme de fluorescence. Ainsi, 

nous pouvons suivre le niveau de photosynthèse d'une plante grâce à la fluorescence de la 

chlorophylle. Ces mesures nous permettent de faire le lien entre les connaissances à petite et 

grande échelle. 

J'ai étudié la régulation de la photosynthèse à cinq échelles différentes, allant des chloroplastes aux 

forêts boréales à aiguilles persistantes. Chaque chapitre, du 2 au 6, étudie la photosynthèse à une 

échelle différente. Le chapitre 1 propose une introduction générale à la photosynthèse, présente 

les concepts utilisés pour la mesurer et la modéliser. 

Dans le chapitre 2, nous examinons les métabolites de la photorespiration, en particulier le 

glycolate, qui peut protéger le photosystème II contre le stress oxydatif. Le chapitre 3 tend à 

montrer que l'état redox du pool de plastoquinones peut jouer un rôle dans la régulation du 

développement racinaire et conférer une résistance au stress hydrique. Le chapitre 4 aborde 

l'impact de l'âge et de l'espèce des plantes sur l'inhibition de la photosynthèse due aux 
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températures élevées. De plus, nous observons que le photosystème II semble être plus affecté par 

les hautes températures que le photosystème I. 

Dans le chapitre 5, nous nous concentrons sur les forêts boréales à aiguilles persistantes. Nous 

modifions le modèle de NPQ dans le modèle de surfaces continentales ORCHIDEE en tenant compte 

des observations faites sur ce type de plante pendant l'hiver. Nous définissons un NPQ spécifique à 

l'hiver qui se met en place pendant plusieurs jours et interrompt pratiquement la photosynthèse 

pendant cette période, ainsi qu'un NPQ qui régule dynamiquement la photosynthèse à l'échelle de 

la demi-heure pendant la saison de croissance. Ensuite, nous assimilons des données satellitaires de 

fluorescence induite par le soleil (SIF) et des estimations in situ de la production primaire brute 

(GPP), afin d'améliorer la modélisation de la GPP pour les forêts boréales à aiguilles persistantes. 

Enfin, dans le chapitre 6, nous étudions la réponse des peupliers à trois semaines de fortes 

températures et de sécheresse afin de formuler un modèle de NPQ adapté à ces conditions. Nous 

proposons un modèle empirique du NPQ en conditions de stress en utilisant trois variables 

environnementales et physiologiques. 

Dans l'ensemble, ce travail a permis de faire dialoguer des recherches sur des mécanismes 

moléculaires de la régulation de la photosynthèse avec des applications à l’échelle du globe, ce qui 

contribue à améliorer la modélisation de l'absorption du CO2 atmosphérique par les surfaces 

continentales, et in fine à réduire les incertitudes liées au cycle du carbone continental dans les 

projections climatiques. 
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13 Appendix 

13.1 “Moderate drought stress stabilizes the primary quinone acceptor Qa and the 

secondary quinone acceptor Qb in photosystem II” (Leverne and Krieger-Liszkay, 2020).  
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13.2 “Increased drought resistance in state transition mutants is linked to modified 

plastoquinone pool redox state” (Leverne et al., 2023) 
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13.3 “Improving the SIF constraint on GPP for boreal evergreen needleleaf forests in a land 

surface model using a physiologically-based representation of non-photochemical 

quenching and data assimilation” (Leverne et al.,  submitted) 
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Abstract 

Boreal forests play an important role in the mitigation of climate change by capturing atmospheric CO2 

through photosynthesis. Their gross primary production (GPP) can be simulated using land surface 

models (LSMs). The associated uncertainty remains however quite large, mainly due to missing or 

incorrectly represented processes, as well as uncertain parameter values. Space-borne observations 

of solar-induced fluorescence (SIF) observations have previously been used in to improve LSMs’ GPP 

simulations. However, accurately accounting for the third energy pathway that competes with 

fluorescence and photochemistry, that is to say non-photochemical quenching (NPQ), remains both a 

challenge and an imperative for reducing the prediction uncertainty. Here, we focused on improving 

the GPP simulated by the ORCHIDEE LSM over boreal evergreen needleleaf forests (BorENF), using a 
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specific and more physiologically-based representation of NPQ mechanisms, plus a data assimilation 

approach with solar-induced fluorescence (SIF) data. First, we separated the modelling of the NPQ 

sustained part specific to this evergreen biome which does not photosynthesize under the cold winter 

temperatures, from the modelling of the NPQ reversible part common to all biomes, and we used 

active fluorescence measurements to calibrate the NPQ sustained and reversible models. Second, we 

assimilated recent SIF retrievals from the European Space Agency satellite TROPOspheric Monitoring 

Instrument (TROPOMI), as well as in situ GPP estimates from FLUXNET towers to optimise the GPP 

simulated by the ORCHIDEE LSM over BorENF. Compared to the prior simulations, the posterior ones 

show improved mean seasonal cycles for both GPP and SIF, in closer agreement to data-driven 

reference products FLUXSAT and FLUXCOM over the period 2001-2015 for GPP, and to the TROPOMI 

SIF retrievals for SIF. Steps towards improvement are identified in terms of both modelling and data 

assimilation. 

 

Keywords 

solar-induced fluorescence 

gross primary production 

land surface model 

data assimilation 

boreal evergreen needleleaf forests 

non-photochemical quenching 

 

1 Introduction 

Land surfaces absorb about 30% of the CO2 anthropogenic emissions, thus playing a key role in 

mitigating climate change (Friedlingstein et al., 2022). This contribution estimated using Land Surface 
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Models (LSMs) suffers however from remaining large uncertainties on the space-time distribution of 

both the gross fluxes simulated by LSMs, the Gross Primary Production (GPP), which is the quantity of 

carbon retrieved from the atmosphere through photosynthesis, as well as the total ecosystem 

respiration (Seiler et al., 2022). Regarding GPP, LSMs differ widely in their prediction and do not always 

compare well with data-driven GPP estimates (e.g., Anav et al., 2015; Slevin et al., 2017; Stocker et al., 

2020; Seiler et al., 2022). Incorrect parameterizations, including missing processes and uncertain 

parameter values, mostly explain these large uncertainties in GPP simulations from regional to global 

scales. 

It is even more challenging to improve GPP parameterisation of LSMs at large spatio-temporal scales 

because the corresponding key process, photosynthesis, can only be measured directly at the leaf 

scale. The growing networks of eddy-covariance (EC) flux towers provide ecosystem GPP estimates and 

have already led to large improvements of GPP modelling (Richardson et al., 2010; Groenendijk et al., 

2011; Raoult et al., 2016). Nevertheless, the largest network (FLUXNET; Pastorello et al., 2020) does 

not sample the Earth vegetated surfaces in a representative manner. For example, large regions in 

Africa, South America and Boreal latitudes are not monitored (https://fluxnet.org/custom-

map/cartographer.html, last access: 14 June 2023). The GPP products that are spatially extrapolated 

from this network are the reference values at the global scale (Jung et al., 2020; Joiner et al., 2018; 

Zeng et al., 2020b), but they still suffer from this sparsity of in situ observations. Land surface modellers 

are thus looking for large-scale proxies to better constrain the modelled GPP. 

Over the last decade, Solar-Induced chlorophyll Fluorescence (SIF) has asserted its position as a 

prominent proxy for GPP. The first studies using satellite-derived fluorescence products evidenced a 

good correlation between SIF and GPP at large spatial and temporal scales (Frankenberg et al., 2011; 

Joiner et al., 2011). Following studies also showed a good correlation between SIF satellite 

observations and in situ GPP estimates (Joiner et al., 2014; Walther et al., 2016). Finally, the need for 

a better understanding of the underlying processes, at higher spatial and temporal resolutions, has 

https://fluxnet.org/custom-map/cartographer.html
https://fluxnet.org/custom-map/cartographer.html


4 
 
 
 

pushed for the development of theoretical frameworks (Yang et al., 2020; Zeng et al., 2020a), and have 

encouraged the expansion of in situ measurements of fluorescence (e.g., Damm et al., 2015; Porcar-

Castell et al., 2015; Parazoo et al., 2019). Several LSMs have implemented process-based 

representations of SIF, and used data assimilation techniques with some of the available SIF products 

to improve their simulated GPP (Norton et al., 2019; Bacour et al., 2019; Wang et al., 2021). 

Furthermore, the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-

5 Precursor platform has provided global scale retrievals of SIF since May 2018, with a pixel size of 3.5 

km by 7.5 km before August 2019 and 3.5 km by 5.5 km since, and a daily coverage, thus offering a 

much larger number of observations than the former missions (Guanter et al., 2021; Köhler et al., 

2018).  

From a process perspective, SIF is radiation emitted by plants in the visible to near-infrared range, and 

triggered by incoming solar radiation. When light is absorbed by chlorophyll molecules of the 

photosystems (PS), the corresponding energy is primarily used for photochemistry. The excess of 

energy (compared to the capacity of carbon fixation in the Calvin cycle) is either dissipated as heat 

through different mechanisms of photoprotection grouped under the name of non-photochemical 

quenching (NPQ), or re-emitted as fluorescence (Baker, 2008). SIF is therefore a by-product of 

photosynthesis. However, several remaining challenges limit the interpretation and exploitation of SIF 

data, as recently listed in Porcar-Castell et al. (2021), in particular to constrain GPP in LSMs. Among 

those limitations, they identified a poor understanding of the energy partitioning in photosystem II 

(PSII) (between photochemistry, fluorescence, and NPQ processes), and of NPQ processes. Indeed, a 

correct attribution of SIF variations in terms of changes in GPP requires accurate representation of this 

third energy dissipation pathway. The three pathways using the energy of photons absorbed by 

chlorophyll pigments can be characterised by reaction rate constants (Kramer et al., 2004). These rate 

constants can be quantified based on active fluorescence measurements, using Pulse Amplitude 

Modulation (PAM) technology with a Light-Emitting Diode (LED) light. NPQ processes can be further 
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split into a reversible component that is relaxed fast, and a sustainable one that is persistent over a 

longer period (Porcar-Castell, 2011). The reversible NPQ is mainly regulated by rapid changes in the 

thylakoid lumen pH as a response to light intensity fluctuations, enhancing conversions of xanthophyll 

cycle pigments (Jahns et al., 2009). The sustained NPQ results from an acclimation of evergreen 

needleleaf species to cold winter temperatures, and relies on a strong downregulation of PSII kinetics 

with a direct energy transfer from PSII to photosystem I, following reorganisation in the thylakoid 

membrane (Bag et al., 2020). A model for the total NPQ constant rate was formerly developed in 

Bacour et al. (2019) for the ORCHIDEE LSM, using in situ PAM measurements made on two boreal Scots 

pine (Pinus sylvestris) trees at the Hyytiälä forest in Finland (Porcar-Castell, 2011) and on 

Mediterranean species (Flexas et al., 2002). Raczka et al. (2019) used the same in situ PAM 

measurements performed at Hyytiälä to derive a model for the sustainable and reversible NPQ 

constant rates, implemented in the Community Land Model (CLM) version 4.5 LSM, and evaluated at 

Niwot Ridge (USA), another boreal evergreen needleleaf forest site. 

Boreal forests represent a large carbon sink for the Northern Hemisphere, accounting for around 20% 

of the global forest sink, but the impacts of climate change on this biome and its feedback are highly 

uncertain (Luyssaert et al., 2007; Gauthier et al., 2015; Harris et al., 2021; Hayes et al., 2022). The low 

albedo of boreal forests enhances climate warming, while a rise in temperature could lead to an 

increase in net primary production (NPP) representing negative feedback on warming (Bonan et al., 

2008). For boreal evergreen species, previous studies have evidenced a higher performance of SIF to 

monitor GPP seasonal variations compared to vegetation indices (VIs) (Joiner et al., 2014; Magney et 

al., 2019; Walther et al., 2016; Zuromski et al., 2018). Indeed, VIs track variations in vegetation 

greenness, meaning that VIs capture the potential photosynthetic rate but not the actual 

photosynthesis (Garbulsky et al., 2011). This limits the relevance of using VIs for cold-climate evergreen 

species that retain their foliage but for which photosynthesis is downregulated during winter. 

Therefore, sustainable NPQ is particularly important for boreal evergreen forests in winter when the 
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absorbed energy is not used for photochemistry but needs to be dissipated as heat to avoid damage 

(Verhoeven, 2014; Bag et al., 2020). Since NPQ is the dominant pathway for energy usage in winter, a 

precise understanding and representation of NPQ dynamics is needed to investigate the link between 

SIF and GPP for such biomes. 

In this study, our goal was to better represent the covariations of NPQ, SIF and GPP, simulated by the 

ORCHIDEE LSM over boreal evergreen needleleaf forests, taking advantage of the combination of the 

unique in situ PAM series at Hyytiälä, and of the dense spatial coverage of the TROPOMI SIF estimates. 

The study encompassed the following steps: 

1. We implemented a more process-oriented model of the NPQ mechanisms, splitting between 

sustainable and reversible components, calibrated with the in situ PAM measurements at 

Hyytiälä. 

2. We assimilated simultaneously SIF TROPOMI data and in situ GPP estimates from EC flux 

towers over an ensemble of sites in the boreal evergreen needleleaf forest (BorENF) 

vegetation type, to optimize the main photosynthesis, fluorescence and NPQ-related  

parameters of the ORCHIDEE LSM. 

3. We evaluated the impact of the modifications over the entire BorENF vegetation type, with 

respect to SIF TROPOMI data and to independent data-driven GPP products.  

 

2 Model, methodology, data 

2.1 The ORCHIDEE model 

2.1.1 Model description 

ORCHIDEE is an LSM developed at the Institut Pierre Simon Laplace (IPSL). It is the land component of 

the IPSL Earth System Model (Boucher et al., 2020; Chéruy et al., 2020). ORCHIDEE computes the 

energy, carbon, and water exchanges at the interface between the land surfaces and the atmosphere 
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(Krinner et al., 2005). Fast processes such as the hydrological ones and photosynthesis are computed 

at a half-hourly time step, while other carbon-related processes such as allocation or turnover are 

computed at a daily time step. The sub-grid variability of vegetation properties and functioning is 

represented through fractions of Plant Functional Types (PFTs), where plants with the same 

photosynthetic pathway, and similar morphology, phenology, and climatic environment, are grouped 

together. PFT maps are derived from the European Space Agency (ESA) Climate Change Initiative (CCI) 

Land Cover (LC) products based on a cross-walking approach (Poulter et al., 2015). For hydrology, the 

soil texture is derived from the Zobler map (Zobler, 1986) and reduced to three types corresponding 

to the United States Department of Agriculture (USDA) classes of Sandy Loam, Medium Loam and Clay 

Loam (d’Orgeval et al., 2008). The CO2 atmospheric concentration is considered as spatially constant, 

with a yearly varying global value provided by the TRENDY model intercomparison project 

(https://blogs.exeter.ac.uk/trendy/, last access: 14 June 2023; Sitch et al., 2015).  

The Leaf Area Index (LAI) is calculated at a daily time step and is therefore a prognostic variable. The 

canopy is discretized from top to bottom over LAI layers of increasing thickness (from 0.1 to 1.8), with 

the last slab cut at the actual LAI value. The net assimilation of CO2 through photosynthesis (𝐴) is 

computed at leaf level following the scheme developed in Yin and Struik (2009), based on the Farquhar 

et al. (1980) model for C3 species and on the Collatz et al. (1992) model for C4 species. Important 

variables are the maximum carboxylation rate limited by Rubisco activity (𝑉𝑐𝑚𝑎𝑥), and the maximum 

rate of electron transport (𝐽𝑚𝑎𝑥), with the associated reference parameters at 25°C 𝑉𝑐𝑚𝑎𝑥25 and 

𝐽𝑚𝑎𝑥25, respectively. 𝑉𝑐𝑚𝑎𝑥 varies with leaf age following Ishida et al. (1999), older leaves being 

photosynthetically less efficient, and the leaf life span is characterised by the 𝐿𝑎𝑔𝑒𝑐𝑟𝑖𝑡 parameter. 

Carbon assimilation 𝐴 is computed only when the growth temperature (moving average of the air 

temperature at 2 metres over 20 days) is larger than -4 °C (𝑇𝑚𝑖𝑛 parameter), otherwise it is simply set 

to 0. It is then upscaled at canopy level, by summing over all LAI layers. The temperature-dependency 

https://blogs.exeter.ac.uk/trendy/
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of the photosynthesis model variables is set following Medlyn et al. (2002), and Kattge and Knorr 

(2007) for the acclimation.  

For the dedicated ORCHIDEE-SIF version used in this study, we adopted the updated light transmission 

model developed in Zhang et al. (2020), with a two-stream scheme describing direct and diffuse 

photosynthetically active radiation (PAR), and partitioning leaves between sunlit and shaded. Zhang et 

al. (2020) showed that the simulated GPP was improved when evaluated over 159 eddy covariance 

sites, as it could now reproduce the positive difference observed between cloudy and sunny conditions 

(for a given incident solar radiation level).  

Based on this new scheme, we made additional modifications to improve both GPP and SIF modelling, 

which are briefly summarised here. The coefficients used to compute the light extinction through the 

canopy now depend on a clumping index (Nilson, 1999) and a leaf average angle (ALA; Campbell, 1990), 

both parameters being PFT-dependent. The leaf chlorophyll content is linearly related to 𝑉𝑐𝑚𝑎𝑥 

following Croft et al. (2017). The leaf-level photosynthetic yield of PSII is computed based on the 

assimilation and the absorption cross section for photosystem II, which is now set as a parameter, 

𝑎𝑃𝑆𝐼𝐼, rather than a fixed constant, following Equation (4) in Bacour et al. (2019). The computation of 

the fluorescence yield for PSII is based on a lake model (Kramer et al., 2004), following Equation (3) in 

Bacour et al. (2019), and depends on the PSII photosynthetic yield and three rate constants: 𝑘𝐹 for 

fluorescence, 𝑘𝐷 for basal thermal energy dissipation, and 𝑘𝑁𝑃𝑄 for NPQ processes. We used the 

formalism developed for the FluorMODleaf model in Pedrós et al. (2010) to compute the leaf-level SIF 

emission. To upscale to the canopy level, we dropped the former parametric representation of the 

SCOPE model (Soil Canopy Observation, Photochemistry and Energy fluxes; van der Tol et al., 2009) 

adopted in Bacour et al. (2019), and summed the SIF fluxes escaping in the nadir direction over all LAI 

layers.  

Regarding the NPQ rate constant, 𝑘𝑁𝑃𝑄, Bacour et al. (2019) previously determined a generic 

parametric model that was calibrated against PAM data from both boreal species using the 𝑘𝑁𝑃𝑄 
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estimated in Porcar-Castell (2011), and Mediterranean species using the estimates from Flexas et al. 

(2002). This 𝑘𝑁𝑃𝑄 model depends on air temperature, PAR, and the degree of photosynthetic 

saturation (χ) that varies linearly with the photosynthetic yield from 0 (maximum yield) to 1 (zero 

yield). The first objective here was to implement a more process-based model adapted to boreal 

evergreen species, which is presented in Section 3.1. 

2.1.2 Model set-up and simulations  

For the site and regional studies, we first performed a spin-up simulation to bring ecosystems to a 

hypothetical equilibrium state where all carbon stocks and fluxes are stable. To do so, we used a 

disturbance-free configuration, with a constant CO2 atmospheric concentration (being the one of the 

first year of the considered forcing file), a fixed vegetation distribution and cycled over a few years of 

the forcing file. To accelerate this phase, we took advantage of the built-in pseudo-analytical spin-up 

procedure that iteratively converges towards the target carbon stocks, following Lardy et al. (2011).  

Following the spin-up phase, we performed the site simulations using local micrometeorological fields 

over the available FLUXNET years (see Section 2.2.1). As the local forcing files usually stopped in 2014 

(ending date of the FLUXNET2015 dataset) or earlier, and in order to allow simulation over the 

TROPOMI period (see Section 2.2.2), we extracted the corresponding meteorological fields from 

ECMWF fifth generation of atmospheric reanalysis (ERA5; Hersbach et al., 2020) encompassing the site 

location, as they are available at a 25 km spatial resolution and an hourly time step. Output variables 

were produced at a daily time step. We imposed a BorENF vegetation fraction of 1 for simulations that 

were intended to be used in a data assimilation experiment with FLUXNET GPP estimates, and the 

vegetation fractions extracted from the 0.1° PFT maps for simulations intended to be used in a data 

assimilation experiment with TROPOSIF estimates (see Section 2.2 and Table 1). 

For evaluation purposes, we performed regional scale simulations over the 35°N-85°N latitudinal band 

using CRU (University of East Anglia Climate Research Unit; Harris et al., 2020) - JRA (Japanese 

Reanalysis; Kobayashi et al., 2015) forcing data, available at a 0.5° spatial resolution and a 6-hourly 
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time step. Following the spin-up phase, we performed transient simulations from 1900 onwards, 

varying climate, yearly CO2 atmospheric concentration and PFT map. Simulated SIF and GPP variables 

were generated at a monthly resolution over the recent period (2002-2021). For the analysis, we 

considered only grid cells with a BorENF PFT fraction greater than 50%; this corresponds to a surface 

of 1.9 million km2, being 30% of the total surface covered by this PFT; the PFT fractions are shown in 

Figure S1. 

2.2 Data 

2.2.1 GPP 

One of the main piece of information used for the model calibration are the GPP estimates from 

FLUXNET (La Thuile (Baldocchi et al., 2001) and FLUXNET2015 (Pastorello et al., 2020)) which are 

derived from the night-time method to partition net ecosystem exchange (NEE) measurements 

between respiration and GPP components (Reichstein et al., 2005). The FLUXNET data are available at 

a half-hourly timestep (https://fluxnet.org/data/, last access: 14 June 2023). A typical order of error 

for daily estimates is 0.5 gC·m-2·d-1 (Raj et al., 2016). We selected BorENF that are also homogeneous 

at the scale of TROPOMI footprint (about 20 km²) in view of a SIF-GPP co-assimilation experiment (see 

Sections 2.2.2 and 2.3). To do so, we extracted the mean vegetation fractions (derived from the ESA 

CCI LC products, see Section 2.1.1) over 2001-2018 from the 0.1° grid cells encompassing the FLUXNET 

sites, keeping only those for which the BorENF PFT was dominant, with a fraction larger than 0.5 

(except for Zotino to have at least one Eastern site, see Table 1 and Figure S1). Plus, we computed the 

RMSD (see Section 2.3.4) between the modelled GPP using a priori parameters and the observed 

FLUXNET GPP at a daily resolution, and further restricted the sites to those for which the normalised 

RMSD (the RMSD divided by the mean of the FLUXNET estimates) was higher than 25%. This threshold 

was used as a larger difference may indicate a missing or an incorrect process representation in this 

ORCHIDEE-SIF version (e.g., fires, clear-cuts, regrowth processes are not modelled), a problem which 

cannot be resolved with data assimilation. Finally, we only kept sites with at least three years of GPP 

https://fluxnet.org/data/
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estimates to get some interannual variability (three years being used for assimilation and an 

independent year for evaluation, as presented in Table 1). This process resulted in the selection of nine 

sites, listed in Table 1. All sites have a soil texture classified as Sandy Loam except for the northernmost 

site (Sodankylä, Finland) which has a Loam texture. The location of the sites is shown in Figure S1.      

Table 1: Characteristics of the sites selected for data assimilation and evaluation. The BorENF PFT fraction at a 

0.1° spatial resolution is provided, since these fractions and resolution are used when assimilating TROPOMI SIF 

estimates (over 2019-2020), and evaluating the simulated SIF (over 2021). The BorENF PFT fraction for GPP 

simulations is assumed to be 1 at the FLUXNET footprint. Data from FLUXNET2015 are indicated with F and the 

ones from la Thuile are indicated using LT. 

Site name and Reference Short 

name 

Coordinates 

(latitude, 

longitude, °) 

GPP 

Assimilation 

years 

GPP 

Evaluation 

year  

BorENF PFT 

fraction at 0.1° for 

SIF simulations 

Manitoba (Canada; Dunn et al., 

2007) 

CA-

ManF 

55.8796,  

-98.4808 

1998-2000 2001 0.61 

Saskachewan (Canada; Amiro et 

al., 2006) 

CA-

ObsLT 

53.6289,  

-106.1978 

2001-2003 2004 0.65 

Saskachewan (Canada; Amiro et 

al., 2006) 

CA-

OjpLT 

53.9163, 

-104.692  

2001-2003 2004 0.61 

Québec (Canada; Bergeron et 

al., 2007) 

CA-

QfoF 

49.6925,  

-74.3421 

2004-2006 2007 0.56 

Hyytiälä (Finland; Suni et al., 

2003) 

FI-

HyyF 

61.8474, 

24.2948 

1997-1999 2000 0.69 

Sodankylä (Finland; Thum et al., 

2007) 

FI-

SodF 

67.3624, 

26.6386 

2002-2004 2005 0.50 

Zotino (Russia; Schulze et al., 

1999) 

RU-

ZotLT 

60.8008, 

89.3507 

2002-2004 none 0.46 
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Flakaliden (Sweden; Lindroth et 

al., 2008) 

SE-

FlaLT 

64.1125, 

19.45883  

1997-1998, 

2001 

2002 0.69 

Niwot Ridge Forest (United 

States; Knowles et al., 2015) 

US-

NR1F 

40.0329,  

-105.5464 

2000-2002 2003 0.66 

 

To evaluate the ORCHIDEE simulations at the regional scale, over the whole BorENF vegetation type, 

we used the FLUXCOM (Jung et al., 2020; http://fluxcom.org, last access: 14 June 2023) and FLUXSAT 

version 2.0 (Joiner et al., 2018; https://avdc.gsfc.nasa.gov, last access: 14 June 2023) GPP products. 

These products are obtained from machine learning methods using remote sensing data to upscale 

local GPP estimates from FLUXNET eddy covariance measurements. We used monthly GPP data at a 

0.5° spatial resolution, over the period 2001-2015. 

2.2.2 Fluorescence 

Two different types of fluorescence data are considered in this study, each associated with a specific 

objective. 

To improve the NPQ model, we used the active fluorescence measurements at the leaf scale 

performed at Hyytiälä (61.85°N, 24.29°W) using a Pulse Amplitude Modulation instrument positioned 

on the upper layer of the canopy, from 15 August 2008 to 15 August 2009, at a sub-hourly time step 

(Porcar-Castell, 2011). The fluorescence measurements allow estimating the rate constants and yields 

of NPQ and photochemistry (see Section 3.1).  

For the data assimilation experiments and the regional scale assessment of the ORCHIDEE-SIF model, 

we used the ESA TROPOSIF products (Guanter et al., 2021). The SIF in the near infrared is retrieved 

over the 743-758 nm spectral fitting window. The associated retrieval error is typically 0.5 

W·m-2·sr-1·m-2·m-1, raising a relative uncertainty on the order of 30%. We used the daily average 

estimates, based on a daily correction factor following Frankenberg et al. (2011). We aggregated the 

daily estimates at a spatial resolution of 0.1° for the data assimilation study at site level (using 2019-

http://fluxcom.org/
https://avdc.gsfc.nasa.gov/
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2020 for assimilation and 2021 for evaluation), and used monthly means at a 0.5° spatial resolution for 

evaluation at the regional scale. We screened out retrievals associated to view zenith angles (VZAs) 

larger than 50° and to cloud fraction larger than 0.4 in order to limit the impact of both directional 

effects and cloud contamination, while keeping a sufficient number of available observations. 

2.3 Assimilation methodology 

We relied on data assimilation (DA) to use information from observations in order to optimise a vector 

of selected ORCHIDEE parameters (the corresponding data and parameters are described in Section 

2.2 and Section 3.2, respectively).  

2.3.1 Data assimilation framework 

The approach we used is formulated within a Bayesian framework, which states that, assuming that 

errors in the model, observations and parameters have Gaussian probability density functions, the 

optimal vector minimises the cost function defined as (Tarantola, 1987): 

𝐽(𝒙) =
1

2
[(𝐻(𝒙) − 𝒚)𝑇R−1(𝐻(𝒙) − 𝒚) + (𝒙 − 𝒙𝒃)𝑇B−1(𝒙 − 𝒙𝒃)] (1) 

with 𝒙 the vector of parameters to be optimised, 𝐻(𝒙) the model output, 𝑦 the observations, R the 

matrix of model and observations errors, 𝒙𝒃 the vector of prior values of the parameters and B the 

matrix of a priori parameters errors. The minimization of this cost function implies a reduction of the 

first term, which quantifies the deviation of the model from the observations, while ensuring at the 

same time that the vector of optimised parameters cannot depart too much from their prior values 

(which contain our initial knowledge), thanks to the second term. Given the larger number of data 

assimilated compared to the number of the parameters to be optimised, the reduction of the first term 

is preponderant. We consider, as a simplification, that uncertainties are uncorrelated and hence the R 

and B matrices are diagonal (Kuppel et al., 2012). As in previous studies, the model-data errors in R 

are defined as the mean squared difference between the observations and the prior simulation (Kuppel 

et al., 2012; Bacour et al., 2015), and the prior uncertainty in B is set to 15% of the parameter range of 
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variation following Bacour et al. (2023). To perform the DA, we used the ORCHIDAS tool, specifically 

developed around the ORCHIDEE LSM (https://orchidas.lsce.ipsl.fr/, last access: 14 June 2023; see a 

recent review of related scientific studies in MacBean et al., 2022). Among the available minimization 

methods, we selected the Genetic Algorithm (GA; Goldberg, 1989; Haupt and Haupt, 2004), which has 

increased performances in finding the global minimum of 𝐽(𝒙), unlike gradient-descent approaches 

that can become stuck in local minima (Santaren et al., 2014; Bastrikov et al., 2018). We ran the 

algorithm for 25 iterations to ensure the convergence of the optimization algorithm (other settings 

related to the GA such as population size, mutation and crossover rates are detailed in Bastrikov et al., 

2018).  

2.3.2 Sensitivity analysis-based selection of the parameters to be optimised 

One important first step for data assimilation is the choice of the parameters to be optimised. The list 

cannot be too long because data assimilation is computationally expensive and more parameters 

means a longer optimization phase. Plus, we want to avoid overfitting as much as possible, and we 

don’t want to change parameters with little to no sensitivity which may degrade other parts of the 

model. An objective way to select the most influential parameters for a given variable is to perform a 

sensitivity analysis (SA). We selected here the Morris (1991) approach, which simply provides a ranking 

of the considered parameters, but is less costly than more quantitative alternative methods (Iooss and 

Lemaître, 2015; Dantec-Nédélec et al., 2017). For a list of p parameters, each associated with a 

variation range, within which n random values are sampled, the Morris SA performs n(p+1) simulations 

to establish the parameter ranking. In this study, we used a pool of p=126 parameters related to 

fluorescence, photosynthesis, vegetation structure, respiration, turnover, and hydrology processes, 

and a number of random samples n=10. Regarding the variation range, we generally used ± 25% of the 

prior value set in the model (e.g., for 𝑉𝑐𝑚𝑎𝑥,25, 𝑎𝑃𝑆𝐼𝐼 and 𝐿𝑎𝑔𝑒𝑐𝑟𝑖𝑡), except for a few parameters for 

which we lacked observations to correctly constrain them, such as for the parameters of the new NPQ 

https://orchidas.lsce.ipsl.fr/
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model where we took a larger range (see Section 3.1). The same ranges were applied for the selected 

most influential parameters during the data assimilation phase (see Table 3 in the Results section). 

2.3.3 Data assimilation experiments 

Bacour et al. (2019) assimilated SIF data from OCO-2 observations, and demonstrated a general 

improvement of the simulated SIF and GPP at regional and global scales, in spite of a degradation of 

the modelled GPP for a few PFTs. We decided to perform here three DA experiments: one assimilating 

only SIF data, one only GPP data and one assimilating both SIF and GPP data, in order to assess the 

impact of each assimilated data-stream on the model parameter values and modelled predictions. 

Multi-sites DA experiments were performed in order to obtain generic parameter values over the 

whole BorENF PFT, as was done in Kuppel et al. (2012). For GPP, we used in situ estimates from EC flux 

towers, and, for SIF, as there is not yet an equivalent network of standardised in situ measurements, 

we used co-located TROPOMI SIF data (Guanter et al., 2021) albeit at a coarser space-time resolution. 

For GPP, we systematically used three years for data assimilation, and another year, if available, for an 

independent evaluation (see Table 1). For SIF, we used two years (2019-2020) for data assimilation, 

and one year (2021) for the evaluation. Given the respective data uncertainties, we assimilated daily 

means of GPP and weekly means of SIF. Negative means were considered outliers (as negative 

quantities cannot be represented by the model) and therefore discarded. When assimilating 

simultaneously both datasets, we applied coefficients in the cost function to equilibrate the respective 

weights of GPP and SIF observations, the former being 10 times more numerous.  

2.3.4 Evaluation metrics 

To quantify the fit between modelled or observed variables 𝐲𝟏 and 𝐲𝟐 over 𝑁 samples, we mainly used 

the Root Mean Square Difference: 

𝑅𝑀𝑆𝐷 =
√∑ (𝐲𝟏

(𝑛) − 𝐲𝟐
(𝑛))

2
𝑁
𝑛=1

𝑁
 

(2) 
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To specifically compare the scores of various parametric models in Section 3.1, we used the Akaike 

Information Criterion (AIC; Ding et al., 2018). The AIC provides a quantitative measure of the trade-off 

between goodness of fit and model complexity, penalising models incorporating more parameters to 

fit the data. It is computed as the sum of the negative log-likelihood of the model and twice the number 

of parameters used. Models with lower AIC values are considered preferable as they strike a better 

balance between accuracy and parsimony. In the case of least squares model fitting, AIC expresses as 

(Burnham and Anderson, 2002): 

𝐴𝐼𝐶 = 𝑛 log(𝜎̂2) + 2𝐾 (3) 

with 𝑛 the number of observations, 𝜎̂2the mean of the estimated squared residuals, and 𝐾 the number 

of estimated regression parameters. 

To evaluate how well each parameter is constrained after optimization, we computed the reduction in 

posterior parameter uncertainty. The posterior parameter error covariance matrix, 𝐁′, can be 

approximated using the Jacobian matrix of the model (which is computed using a finite difference 

approach) at the minimum of the cost function 𝐽, 𝐇, following Tarantola (1987): 

𝐁′ = [𝐇
T𝐑−1𝐇 + 𝐁−1]−1 (4) 

The error reduction on model parameters is computed as 1 − 𝜎𝑝𝑜𝑠𝑡 𝜎𝑝𝑟𝑖𝑜𝑟⁄ , with 𝜎𝑝𝑜𝑠𝑡  and 𝜎𝑝𝑜𝑠𝑡 the 

error standard deviation derived from the posterior (𝐁′) and prior (B) covariance matrices, 

respectively. 

3  Results 

3.1 NPQ modelling 

In the initial model version described in Bacour et al. (2019), the calculation of the rate constants 

(𝑘𝑃, 𝑘𝑁𝑃𝑄), yields (for photosynthesis, NPQ and fluorescence) and SIF were generic over all model PFTs, 

and were computed alongside GPP. Thus, they were not estimated under too cold conditions, when 

the growth temperature is lower than 𝑇𝑚𝑖𝑛 (-4°C). In order to improve the representation of SIF 
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temporal dynamics, in particular for boreal ecosystems, we then extended the computation of these 

variables to all temperature conditions. In conditions too cold for photosynthesis to occur, the 

photosynthetic yield is now set to the minimum value observed in the Hyytiälä PAM measurements, 

namely 0.049, obtained at a temperature of -11.2°C in January 2009.  

Bacour et al. (2019) previously determined a single parametric model for the total NPQ rate constant, 

𝑘𝑁𝑃𝑄. Raczka et al. (2019) proposed a modelling of 𝑘𝑁𝑃𝑄 in two sub-models, one dealing with the 

seasonal and long-lasting variations of NPQ (related to the cold temperatures experienced by the 

BorENF vegetation type), and the other one dealing with the diurnal and reversible variations of the 

NPQ (related to solar radiation). The active fluorescence measurements made at Hyytiälä allow for a 

separate computation of the sustained (𝑘𝑆) and reversible (𝑘𝑅) parts of the 𝑘𝑁𝑃𝑄 rate constant. Note 

that we used here unitless relative rate constants (i.e., absolute rate constants (in s-1) normalised by 

the sum of the absolute rate constants for fluorescence and for basal thermal energy dissipation), 

which are more commonly used (Porcar-Castell, 2011). We thus also modelled the two components 

separately, and calibrated their parameters using the Python Model from the lmfit library (Newville et 

al., 2016). 

We modelled the 𝑘𝑆 component according to Raczka et al. (2019): 

𝑘𝑁𝑃𝑄 = 𝑘𝑆 + 𝑘𝑅 (5) 

𝑘𝑆 =
𝑘𝑆,𝑚𝑎𝑥

1 + 𝑒𝑏(𝑆−𝑇𝑆)
 

(6) 

 

where 𝑘𝑆,𝑚𝑎𝑥 (unitless) represents the maximum sustained NPQ rate constant, and 𝑆 represents the 

temperature acclimation (°C) and is defined as a moving average of the air temperature at 2m 𝑇 (°C) 

over a period 𝜏 (day) following Mäkelä et al. (2004): 

𝑑𝑆

𝑑𝑇
=

𝑇 − 𝑆

𝜏
 

(7) 
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We calibrated the parameters 𝑘𝑆,𝑚𝑎𝑥, 𝑏, 𝑇𝑆, and 𝜏 at a daily time step, using the 𝑘𝑆 estimates derived 

in by Porcar-Castell (2011) (Table 2, Figure S2), resulting in a RMSD of 0.69 and a R2 of 0.97, comparable 

to the scores obtained by Raczka et al. (2019) with their model (RMSD=0.62, R2=0.93). 

𝑘𝑅 is usually empirically modelled as a function of the degree of photosynthetic saturation, χ, using 

either two (Lee et al., 2015) or three parameters (van der Tol et al., 2014; Raczka et al., 2019). To select 

the best model, we calibrated these functions, as well as a few new others (see Table S1 for the whole 

list), at a half-hourly time step using the Hyytiälä PAM dataset, and filtering for 𝑘𝑆 < 1 and PAR > 1 

μmol·m-2·s-1 to exclude wintertime with a dominating sustained NPQ and night-time observations. All 

tested models leading to the same RMSD (0.28), we kept the one giving the best (lowest) Akaike 

Information Criterion, with a new formulation:  

𝑘𝑅 =  𝑝1𝑁𝑃𝑄𝑟 ∙ χ +  𝑝2𝑁𝑃𝑄𝑟 ∙ χ3 (8) 

The optimised parameter values are provided in Table 2, and Figure S3 shows the dependency of 𝑘𝑅 

on 𝑥, for the data and the selected 𝑘𝑅 model. These parameters may be further selected during the 

sensitivity analysis, and optimised again against GPP and SIF estimates. 

Table 2: Parameters of the 𝑘𝑁𝑃𝑄  model optimised from active fluorescence measurements at the Hyytiälä site.  

Parameter 𝑘𝑆,   𝑚𝑎𝑥  𝑏 𝑇𝑆 𝜏 𝑝1𝑁𝑃𝑄𝑟 𝑝2𝑁𝑃𝑄𝑟 

Unit 1 °C-1 °C day 1 1 

Calibrated 

value 

7.919  0.390 -0.214 19 0.94 5.15 

 

3.2 Sensitivity analysis and parameter selection 

We performed Morris’ sensitivity analyses for the SIF and GPP variables over the nine selected sites. 

We selected for each variable separately the most influential parameters, with a limited number (nine) 
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to avoid overfitting, over the nine sites (Figure S4) based on a rank product approach (Koziol, 2010). 

These parameters were kept for the subsequent SIF and GPP DA experiments, and are presented in 

Table 3. 
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Table 3: Parameters selected for the DA experiments (exp.) following sensitivity analyses. A dash (-) in the last three columns listing the posterior parameter values indicates 

that the parameter was not selected for the corresponding DA experiment. Parameters are grouped per broad categories. 

Parameter symbol or 

code name 

Description Unit Prior value Range SIF-only exp. GPP-only exp. SIF-GPP exp. 

SIF and GPP models 

ALA Average leaf angle (Campbell, 1990)  ° 75 [56, 90] 80 - 79 

𝑘𝐹 Fluorescence relative rate constant 1 0.05 [0.04, 0.11] 0.07 - 0.07 

𝑎𝑃𝑆𝐼𝐼 Absorption cross section for 

photosystem II 

1 0.5 [0.375, 0.625] 0.380 0.416 0.376 

𝑘𝑅 model 

𝑝1𝑁𝑃𝑄𝑟 First parameter of the reversible NPQ 

model (Eq. (8)) 

1 0.94 [0.71, 1.18] 1.08 - 1.08 

𝑝2𝑁𝑃𝑄𝑟 Second parameter of the reversible 

NPQ model (Eq. (8)) 

1 5.15 [3.87, 6.44] 6.16 - 6.14 

Carboxylation 

𝑉𝑐𝑚𝑎𝑥,25 Maximum carboxylation rate limited by 

Rubisco activity at 25°C 

μmol·m-

2·s-1 

45 

 

[34, 56] 37 36 47 
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𝐿𝑎𝑔𝑒𝑐𝑟𝑖𝑡 Critical leaf age, used for computing 

the age-dependence of the maximum 

carboxylation rate limited by Rubisco 

activity, and for leaf turnover (Krinner 

et al., 2005)  

day 910 [683, 1138] 698 1108 762 

KMC25 Michaelis–Menten constant of Rubisco 

for CO2 at 25°C (Medlyn et al., 2002) 

μmol·mol-1 404.9 [204.9, 604.9] - 470.2 435.1 

Temperature-related 

𝑎𝑆,𝐽 Offset of the linear temperature 

acclimation relationship for the entropy 

parameter of the 𝐽𝑚𝑎𝑥  temperature-

dependence function, following Kattge 

and Knorr (2007)  

J·K-1·mol-1 660 [495, 825] - 704 785 

𝑎𝑆,𝑉 Offset of the linear temperature 

acclimation relationship for the entropy 

parameter of the 𝑉𝑐𝑚𝑎𝑥 temperature-

J·K-1·mol-1 668 [501, 835] 740 517 564 
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dependence function, following Kattge 

and Knorr (2007) 

𝑎𝑅,𝐽𝑉 Offset of the linear temperature 

acclimation relationship for the ratio 

𝐽𝑚𝑎𝑥/𝑉𝑐𝑚𝑎𝑥, following Kattge and 

Knorr (2007) 

μmol e-·m-

2·s-1 / μmol 

CO2·m-2·s-1 

2.59 [1.55, 3.63] - 2.08 1.74 

𝑇𝑚𝑖𝑛 Minimum growth temperature to 

compute photosynthesis 

°C -4 [-6, -2] - -2.7 -4.0 

Biomass 

SLA Specific leaf area m2·gC-1 0.00926  [0.00695, 

0.01158] 

0.007039 0.007611 0.007160 
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For SIF, we note the major importance of the average leaf angle (ALA) parameter, characterising the 

leaf angle distribution (LAD) in ORCHIDEE. This structural parameter has already been identified as one 

of the most important factors, along with leaf chlorophyll content and LAI, for Top of Canopy (TOC) SIF 

in the sensitivity analysis led with the SCOPE model in Verrelst et al. (2015). Boreal forests have been 

reported to have an erectophile LAD adapted to the low solar zenith angles (Huemmerich et al., 2013). 

Zhu et al. (2018) estimated LAD for coniferous trees in Germany based on laser measurements, and 

showed they were erectophile with most ALA between the normal and the zenith in the [50°-80°] 

range. Using DART (Discrete Anisotropic Radiative Transfer)-FLUSPECT simulations, Liu et al. (2019) 

showed a 60% decrease of the TOC SIF between planophile and erectophile LAD. The fluorescence rate 

constant (𝑘𝐹), as well as the absorption cross section for PSII (𝑎𝑃𝑆𝐼𝐼), also have predominant roles. The 

modelled fluorescence flux of PSII is indeed directly proportional to these two parameters. The prior 

value of 𝑘𝐹 is fixed at 0.05 in accordance with van der Tol et al. (2014), albeit a value of 0.1 is used in 

Porcar-Castell et al. (2014). 𝑎𝑃𝑆𝐼𝐼 is also selected for GPP, it represents the fraction of the radiation 

that is absorbed by PSII, complementary to the fraction absorbed by PSI. For SIF, the  

𝑝1𝑁𝑃𝑄𝑟 and 𝑝2𝑁𝑃𝑄𝑟 parameters of the NPQ reversible model are selected, while no parameters from 

the sustained model were retained, having a moderate importance for SIF, which shows low values in 

the wintertime.  

As expected, 𝑉𝑐𝑚𝑎𝑥,25 is identified as a crucial parameter for both GPP and SIF, as it directly impacts 

the photosynthetic yield and thus the fluorescence yield. It is complemented by the critical leaf age 

(𝐿𝑎𝑔𝑒𝑐𝑟𝑖𝑡) parameter, as leaf age modulates the photosynthetic efficiency (Ishida et al., 1999). For GPP, 

the Michaelis–Menten constant of Rubisco for CO2 at 25°C (KMC25) is also selected, whose value varies 

among plants (Galmés et al., 2016).  

Several ranked parameters stress the importance of the temperature for this cold biome: both SIF and 

GPP are sensitive to the offset of the linear temperature acclimation relationship for the entropy term 

of the 𝑉𝑐𝑚𝑎𝑥 temperature-dependence function (Kattge and Knorr, 2007), 𝑎𝑆,𝑉. Additionally, the offsets 
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𝑎𝑆,𝐽 and  𝑎𝑅,𝐽𝑉 of the linear temperature acclimation relationships for the entropy term of 𝐽𝑚𝑎𝑥 and 

for the ratio 𝐽𝑐𝑚𝑎𝑥/𝑉𝑐𝑚𝑎𝑥, following (Kattge and Knorr, 2007), have a strong impact on GPP, while the 

temperature threshold below which we consider there is no GPP (𝑇𝑚𝑖𝑛 parameter) shows a less 

important one.  

Finally, the specific leaf area parameter (SLA), linking the leaf biomass to LAI, is identified as a 

parameter of medium importance for both SIF and GPP. 

3.3 Data Assimilation  

After implementing the new NPQ models relative to 𝑘𝑅 and 𝑘𝑆 in ORCHIDEE-SIF, we performed three 

DA experiments: one in which only SIF data are assimilated with nine parameters to be optimised, one 

GPP-only assimilation also with nine parameters, and one in which GPP and SIF are assimilated 

simultaneously (with weighted terms in the cost function, see Section 2.3.3) accounting for a total of 

thirteen parameters (five common to the two variables, plus eight specific ones,  see Table 3). We 

further compared this last optimization experiment with a similar optimization assimilating both GPP 

and SIF data, but using the former formulation of total NPQ from Bacour et al. (2019) to evaluate the 

impact of distinguishing between reversible and sustained NPQ in ORCHIDEE-SIF. 
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Figure 1: Boxplots of Root Mean Square Difference (RMSD) between simulated and observed values for SIF (left) 

and GPP (right) of the selected sites, for the prior simulations (top row), the posterior simulations obtained for 

the SIF-only DA experiment (second row), the GPP-only DA experiment (third row), the joint assimilation of GPP 

and SIF (fourth row), and the joint assimilation of GPP and SIF using the initial total NPQ model described in 

Bacour et al. (2019) (last row). The evaluation against observed data is done for periods not considered in the DA 

experiments (year 2021 for SIF (see Section 2.2.2), and the year following the 3 years used in the DA experiments 

for GPP (see Table 1)). The left and right sides of each box represent the first (Q1) and third (Q3) quartiles, the 

intermediate segment is the mean value, and the whiskers evidence the range of observed values between Q1 

minus 1.5 times the interquartile range (IQ=Q3-Q1) and Q3 plus 1.5 times IQ. Outlier values outside of the 

whiskers range are represented with diamond markers. 

Figure 1 shows the distribution of the RMSD over the evaluation sites (8 sites for GPP  – all sites but 

Zotino – and 9 sites for SIF, see section 2.2.2 and Table 1) for the prior and posterior simulations, using 

independent evaluation data corresponding to one year that was not included in the DA experiments. 

The RMSD mean values and the RMSD reductions (in %) of posterior simulations as compared to the 

prior ones are given in Table 4. All DA experiments improve the model-data agreement, as quantified 

by the RMSD reduction, even when the variable (SIF or GPP) is not included in the assimilation, thus 

demonstrating the close connection between the SIF and GPP models within ORCHIDEE, consistent 

with the observations. Regarding SIF, the SIF-only and joint SIF-GPP DA experiments yield the same 

posterior RMSD score (0.104 W·m-2·m-1·sr-1), corresponding to a RMSD reduction of 19%, performing 

better than the GPP-only assimilation with a 15% RMSD reduction, as expected. Regarding GPP, all DA 

experiments show very large RMSD reductions, from 55% for the SIF-only DA experiment, to 62% for 

the joint SIF-GPP DA experiment. These large reductions could also be linked to the fact that the prior 

parameter values are issued from the ORCHIDEE CMIP6 version, and have up until now not been 

calibrated with the new two-stream radiative transfer scheme. Note also that the larger RMSD 

reduction obtained with the joint assimilation experiment for both SIF and GPP is partly explained by 

the larger number of optimised parameters. 
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When co-assimilating SIF and GPP data, the new representation of NPQ with a distinction between its 

reversible and sustained components yields a performance similar to that of the optimization 

experiment based on the formulation of total NPQ from Bacour et al. (2019). Note that it however 

benefits from the optimization of the two parameters of the 𝑘𝑅 model, whereas the parameters of the 

𝑘𝑁𝑃𝑄 model of Bacour et al. (2019) were not optimised. Given the two NPQ models perform similarly 

for the same number of parameters (6), we prefer to stick to the one developed in this study in the 

next sections, favouring its more processed-based justification.  

Table 4: Mean RMSD for SIF and GPP related to the prior and posterior simulations, for the selected sites over 

the evaluation years. RMSD reductions are computed for the posterior simulations as compared to the prior 

simulations of the ORCHIDEE-SIF version. 

 Prior Posterior  

SIF-only 

Posterior  

GPP-only 

Posterior  

GPP and SIF 

Posterior  

Bacour GPP and SIF 

RMSD SIF (W·m-2·m-1·sr-1) 0.119 0.104 0.109 0.104 0.104 

RMSD SIF reduction (%) - 19 15 19 19 

RMSD GPP (gC ·m-2·d-1) 2.54 1.15 0.98 0.96 0.97 

RMSD GPP reduction (%) - 55 61 62 62 

 

Figure S5 (S6 respectively) compares the seasonal cycles of SIF (GPP respectively) weekly averages of 

the observations with the prior and posterior simulations, computed over the year chosen for 

evaluation (year 2021 for SIF (see section 2.2.2), and the year following the three years used in the DA 

experiments for GPP (see Table 1)), at the selected sites.  
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Figure 2: Prior (down-pointing triangles) and posterior (blue left-pointing triangles for the SIF-only DA 

experiment, green right-pointing triangles for the GPP-only DA experiment, and pink up-pointing triangles for 

the SIF-GPP DA experiment) values of the 13 parameters, normalized with respect to their authorised variation 

range.  

Table 3 gives the optimised posterior parameter values after the three DA experiments, and Figure 2 

shows their relative change within the imposed minimum and maximum bounds. Most parameters 

show a coherent variation among the three DA experiments: seven parameters have a posterior value 

higher than the prior one (ALA, 𝑘𝐹, 𝑝1𝑁𝑃𝑄𝑟, 𝑝2𝑁𝑃𝑄𝑟, KMC25, 𝑎𝑆,𝐽, 𝑇𝑚𝑖𝑛) and three parameters have a 

lower one (𝑎𝑃𝑆𝐼𝐼, 𝑎𝑅,𝐽𝑉, SLA). Three parameters show opposite change depending on the DA 

experiment (𝑉𝑐𝑚𝑎𝑥,25, 𝐿𝑎𝑔𝑒𝑐𝑟𝑖𝑡, 𝑎𝑆,𝑉).  
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3.4 Regional scale impacts 

In this section, we compare regional simulations to observation-derived products TROPOSIF for SIF, 

and FLUXSAT and FLUXCOM for GPP, hereafter called reference products. In all figures and tables, we 

only consider grid cells with a BorENF fraction larger than 50%. The monthly negative values observed 

in grid cells of the TROPOSIF products (with a mean value of -0.032 W·m-2·μm-1·sr-1) have been set to 

zero for this evaluation. The study period is May 2018-December 2020 for SIF, and 2001-2015 for GPP. 

We first focus on maps of SIF and GPP temporal means, computed over each respective whole study 

period. We consider here only on one hand the simulation based on parameters estimated following 

the SIF-GPP DA experiment, – as those calibrated parameters yielded the best performance at site 

scale (Figure 1 and Table 4) and as the SIF and GPP spatial distributions are very similar between all 

posterior simulations (not shown; correlation coefficients varying between 0.91 and 0.99 ) – and on 

the other hand the FLUXSAT GPP product, to which our former posterior GPP was closer than to 

FLUXCOM (Bacour et al., 2019). Figure 3 shows the maps (Figure 3.a, 3.b, 3.c, 3.d), as well as the 

difference with TROPOSIF and FLUXSAT data (Figure 3.e and 3.f, respectively). For comparison, Figure 

S7 shows similar maps based on the prior simulations. The mean bias between the two maps of Figure 

3.a and Figure 3.c  is 0.006 W·m-2·μm-1·sr-1, with a standard deviation of the difference normalised by 

the mean TROPOSIF of 35%. The mean GPP bias between the two maps of Figure 3.b and Figure 3.d is 

0.16 gC·m-2·d-1 with a standard deviation of the difference normalised by the mean FLUXSAT GPP of 

21%. Both the simulated SIF and GPP show an overestimation over the Canadian Northwest Territories 

(Figure 3.e and 3.f). This region has lots of lakes (Pienitz et al., 1997), and the continental fraction of 

the ORCHIDEE model may not accurately take them into account, introducing some uncertainty in the 

simulated fluxes. This is likely to also impact the SIF and data-driven GPP reference products; Cheng et 

al. (2022) indeed reported that the high heterogeneity of the land cover in the Arctic-Boreal region, 

with mixed pixels of vegetation and surface waters, may represent a challenge for the GPP reference 

products such as FLUXCOM. There also appears to be much overestimation of both SIF and GPP 
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through much of British Columbia. The simulated SIF and GPP show opposite behaviours over 

Scandinavia, where ORCHIDEE rather tends to underestimate SIF, while overestimating GPP. The 

model also exhibits a strong underestimation of SIF over a region in Northwest USA, corresponding to 

forests of the Idaho and Montana states in the Rocky Mountains. Then, while the simulated GPP is able 

to reproduce the range of the spatial variability found in the FLUXSAT reference product over the 

selected grid cells (with a correlation coefficient between the two maps R=0.70), the simulated SIF 

shows a lower spatial variability compared to TROPOSIF (R=0.62). Note that the simulation using model 

parameters optimized using the SIF-GPP DA experiment gives a slightly better correlation with both 

SIF and GPP evaluation datasets, than the simulations using parameters optimised with the SIF-only 

and GPP-only DA experiments. 
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Figure 3: Maps of temporal means for SIF (left column) and GPP (right column), based on the parameters 

estimated with the joint SIF-GPP DA experiment (a and b), the associated reference product, TROPOSIF for SIF 

(c) and FLUXSAT for GPP (d); and differences between simulated variables and the corresponding reference 

product (e and f). All means are computed over grid cells with a BorENF fraction larger than 50%, over the period 

May 2018-December 2020 for SIF, and over the period 2001-2015 for GPP. 

Regarding latitudinal profiles, they are correctly simulated for GPP after assimilation in all DA 

experiments as seen in Figure 4a (top plot). The weighted differences (RMDs taking into account the 

number of valid grid cells, represented in the bottom plots) normalised by the weighted mean of 

FLUXSAT GPP are 11% for the simulations based on the SIF-only and GPP-only DA experiments, and 

12% for the simulation based on the SIF-GPP DA experiment. On another hand, all SIF simulations fail 

to correctly reproduce the latitudinal profile of the TROPOSIF product as seen in Figure 4b (top plot), 

with notably a poor agreement of the posterior versions around the TROPOSIF peak region, between 

46°N and 49°N, corresponding to the above identified region in the Rocky Mountains. This could partly 

be explained by the absence of assimilation sites between 41°N (above US-NR1) and 49°N (below CA-

Qfo), where another one or two sites would have been helpful. Note however that there is also a 

limited number of valid grid cells in this region. Above 50°N, where the bulk of valid grid cells is located, 

the agreement between the posterior versions and the TROPOSIF product is better. Still, the latitudinal 

variability of the simulated SIF is lower than that of TROPOSIF. The weighted RMSDs normalised by the 

weighted mean of TROPOSIF are 19% for the SIF-GPP DA experiment, and 22% for the SIF-only and 

GPP-only DA experiments. 
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Figure 4: Latitudinal profiles of SIF (a top) and GPP (b top) computed over 0.5° grid cells with a BorENF fraction 

larger than 50%, and latitudinal profile of the number of valid grid cells (i.e., with a BorENF fraction larger than 

50%, bottom plots). In the top plots, the curve for the prior simulation is in orange, the curve for the posterior 

simulation related to the SIF-only DA experiment is in green, the curve for the posterior simulation related to the 

GPP-only DA experiment is in blue, and the curve for the posterior simulation related to the SIF-GPP DA 

experiment is in pink. For SIF, the TROPOSIF curve is in black, the shaded grey area represents the interquartile 

range (IQR) of the TROPOSIF estimates over all selected grid cells, all means are computed over the period May 

2018-December 2020. For GPP, the FLUXSAT curve is the solid black line, while the FLUXCOM curve is the dotted 

black line, FLUXSAT IQR is figured by the hatched grey shaded area, and FLUXCOM IQR by the dotted grey shaded 

area, all means are computed over the period 2001-2015. Vertical dashed lines represent the latitudes of the 

nine sites where data have been assimilated, with the short name of each site (Table 1) written near the bottom 

of the corresponding line.  

Figure 5 compares the mean seasonal cycles of monthly SIF and GPP for the prior and optimised 

simulations following the three DA experiments, with the respective reference products. Related 

statistics (amplitude, bias, RMSD) are reported in Table 5. For SIF, the mean seasonal cycle of the prior 

simulation overestimates TROPOSIF estimates, by 0.06 W·m-2·m-1·sr-1 at the peak of the growing 

season in July and yields a large RMSD of 0.042 W·m-2·μm-1·sr-1. All posterior simulations show a 

reduced amplitude, and a shorter growing season, closer to the TROPOSIF mean seasonal cycle. The 
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SIF-only and GPP-only simulations lead to similar RMSDs of 0.017 and 0.016 W·m-2·m-1·sr-1, more than 

twice lower than for the prior simulation, respectively, with an underestimation in the SIF-only case 

(falling at -0.05 W·m-2·μm-1·sr-1 in July), and an overestimation in the GPP-only case (peaking at 0.04 

W·m-2·μm-1·sr-1 in June). The simulation based on the SIF-GPP DA experiment yields the lowest RMSD, 

and the lowest bias (Table 5). Regarding GPP, the two reference products show similar mean seasonal 

cycles, however the FLUXSAT cycle has a larger amplitude (6.2 gC·m-2·d-1) than that of FLUXCOM (5.5 

gC·m-2·d-1), with a RMSD between the two products of 0.41 gC·m-2·d-1. As is the case for SIF, the prior 

simulation correctly identifies the production peak in July, but the amplitude (8.8 gC·m-2·d-1) is too large 

compared to that of the reference products, and the growing season length is too long (earlier onset 

combined to a later ending). The simulation based on the SIF-only DA experiment, with an amplitude 

of 5.8 gC·m-2·d-1, leads to the lowest bias with both FLUXSAT and FLUXCOM, whereas the simulations 

based on the GPP-only and SIF-GPP DA experiments evidence larger positive biases. However, the 

simulation based on the GPP-only DA experiment leads to the highest improvement when compared 

to FLUXSAT (RMSD=0.26 gC·m-2·d-1, a RMSD reduction of 84%), while the simulation based on the SIF-

only DA experiment shows the best agreement with FLUXCOM (RMSD=0.38 gC·m-2·d-1, a RMSD 

reduction of 80%).  
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Figure 5: Mean monthly seasonal variations of SIF (a) and GPP (b) for the reference products, and for the prior 

and posterior simulations, computed over all 0.5° grid cells with a BorENF fraction larger than 50%, between 

latitudes of 35°N to 85°N. The same legends and colours as in Figure 4 are used. 

Table 5: Statistics related to the mean seasonal cycles of SIF and GPP represented in Figure 5: amplitude 

(computed as the difference between maximum and minimum monthly averages of the seasonal cycle), bias and 

RMSD (computed versus the reference product named in the corresponding column). 

 Amplitude Bias RMSD 

SIF (W·m-2·m-1·sr-1) 

 with TROPOSIF with TROPOSIF 

TROPOSIF 0.26 - - 

Prior 0.32 0.029 0.042 

Posterior SIF-only 0.21 -0.008 0.017 

Posterior GPP-only 0.26 0.009 0.016 

Posterior GPP and SIF 0.24 0.003 0.012 

GPP (gC·m-2·d-1) 

  with FLUXSAT with FLUXCOM with FLUXSAT with FLUXCOM 

FLUXSAT 6.2 - 0.32 - 0.41 

FLUXCOM 5.5 -0.32 - 0.41 - 

Prior 8.8 1.11 1.43 1.61 1.94 

Posterior SIF-only 5.8 -0.03 0.29 0.32 0.38 

Posterior GPP-only 6.5 0.08 0.40 0.26 0.57 

Posterior GPP and SIF 6.6 0.16 0.49 0.31 0.65 

 

Table 6 compares the mean annual GPP of the prior and optimised simulations based on the three DA 

experiments with the ones of the FLUXSAT and FLUXCOM GPP reference products. Similar to what was 

already observed for the mean GPP seasonal cycles in Figure 5.b, the mean annual GPP for the prior 
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simulation is quite larger than the ones of both evaluation products, by 45% for FLUXSAT and 71% for 

FLUXCOM. The simulations based on parameters optimised during the three DA experiments result in 

a decreased GPP, in closer agreement to that of FLUXSAT (2.41 GtC y-1) and FLUXCOM (2.04 GtC y-1). 

Note that the mean annual GPP of the three posterior simulations do not differ from that of FLUXSAT 

by more than 8%, while they overestimate the one of FLUXCOM by 16% (SIF-only DA experiment) to 

27% (GPP-only DA experiment), as the FLUXCOM mean annual GPP is also 15% lower than the one of 

FLUXSAT. 

Table 6: Mean annual total GPP (GtC·y-1) computed between 2001-2015 over grid cells with a BorENF fraction of 

at least 50% (representing a surface of 1.9 million km2), for the simulations (Prior, Posterior SIF-only, Posterior 

GPP-only, Posterior SIF-GPP) and the two GPP reference products (FLUXSAT, FLUXCOM). 

 Prior Posterior 

SIF-only 

Posterior 

GPP-only 

Posterior 

SIF-GPP 

FLUXSAT FLUXCOM 

GPP  

(GtC·y-1) 

3.71 2.37 2.59 2.48 2.41 2.04 

 

Figure 6 presents the interannual variations of the total GPP for the simulations and the two reference 

products. As expected from the mean annual total GPP values (Table 6), the SIF-only GPP estimates 

are closer to that of FLUXSAT (RMSD=0.07 GtC·y-1), with larger estimates for the SIF-GPP posterior 

simulation, and even larger ones for the GPP-only posterior simulation. The GPP trends for these four 

products are increasing from 0.012 GtC·y-2 (FLUXSAT) to 0.031 GtC·y-2 (GPP-only posterior simulation). 

On the contrary, the FLUXCOM reference product does not show any trend in GPP, with a regression 

slope of -0.002 GtC·y-2, as it does not represent the fertilisation effect of the increasing CO2 

atmospheric concentrations. Compared to the FLUXSAT reference product, including SIF data in the 

assimilation reduces the slope overestimation found in the GPP-only assimilation. 
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Figure 6: Interannual variations of the total GPP between 2001 and 2015 for the simulations and the two GPP 

reference products (FLUXSAT, FLUXCOM), computed over grid cells with a BorENF fraction larger than 50%. The 

same colours and line styles as in Figure 4 are used. The thin straight lines represent the linear regression of each 

curve in the corresponding colour and line style, and the trend (in GtC·y-2) is marked on the right side. 

4 Discussion 

4.1 Advantages of a process-based SIF model 

The main advantage of using a process-based SIF model as done in this study, compared to relying on 

a simple SIF-GPP linear relationship (Parazoo et al., 2014; MacBean et al., 2018) is that a process-based 

model enables differences in SIF and GPP temporal dynamics to be accounted for (Bacour et al., 2019). 

This is related to different sensitivities of GPP and SIF to their environmental drivers, and thus to model 

parameters as illustrated by the sensitivity analyses (Figure S4). For example, Pierrat et al. (2022) 

explored GPP and SIF drivers in a Canadian boreal forest using random forest models. They found that 

when considering only two predictors in their random forest, daily-SIF was found to be best predicted 

using air temperature and PAR while soil and air temperature were the best predictors of daily-GPP. 

Pierrat et al. (2022) also showed that while the SIF-GPP relationship is almost linear close to the winter 
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months, it becomes less linear during summer. This nonlinearity between SIF and GPP over summer 

was attributed to light saturation of GPP, also stressing the interest of correctly representing NPQ 

processes.  

Moreover, relying on process-based models is critical as divergences in SIF and GPP variations at small 

spatiotemporal scales or during stress conditions can lead to a decoupling between the two variables 

(Magney et al., 2020). Indeed, Wohlfahrt et al. (2018) observed a decoupling between SIF and GPP 

variations during an intense heat wave in a Mediterranean Pine forest, with SIF explaining less than 

35% of GPP variability. However, the relationship between SIF and GPP during drought events requires 

further research (Song et al., 2021) with studies highlighting SIF potential to monitor drought (Sun et 

al., 2015) and others reporting nonlinearities between SIF and GPP under stress conditions (Wohlfahrt 

et al., 2018).  

Finally, it should be noted that opposite changes in SIF and GPP have been found for some biomes 

after parameter optimisation using a process-based SIF model (Bacour et al., 2019; Norton et al., 2019), 

which would not be possible using a positive linear relationship to link GPP and SIF. In this study, both 

the seasonal amplitudes of GPP and SIF for BorENF decrease after optimisation (Figure 5). This is in line 

with Bacour et al. (2019) where a reduction in the simulated SIF and GPP was also found for this PFT 

after assimilating OCO-2 SIF data using a previous version of the SIF model implemented in ORCHIDEE. 

In contrast, opposite changes for SIF and GPP were observed in Norton et al. (2019) for evergreen 

coniferous trees after assimilating OCO-2 SIF data to optimise biophysical parameters in the BETHY-

SCOPE model using a process-based representation of SIF. 

4.2 Additional constraint of assimilating SIF  

Assimilating GPP and SIF simultaneously enables to improve both variables even slightly better than 

the corresponding variable-only DA experiments at the site level (Figure 1), possibly reducing some 

overfitting by finding a compromise between the two data streams during the optimization (Bacour et 

al., 2023). In our DA experiments, some parameters, such as  𝑎𝑃𝑆𝐼𝐼 and ALA, play a role in the 
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representation of both the simulated SIF and GPP. These parameters could thus be used as adjustment 

parameters to fit the measurements during the DA phase, and hence move away from their physical 

significance if the authorised range of variation is too large. Therefore, we can have a greater 

confidence in the joint assimilation posterior values for these parameters.  

Moreover, because of common drivers between GPP and SIF, such as the absorbed PAR that controls 

the light-dependent part of photosynthesis, SIF can provide an additional constraint on the parameters 

involved in this process.  In particular, the 𝑎𝑃𝑆𝐼𝐼 parameter, which determines the electron transport 

rate and photosynthetic yield, impacts both GPP and SIF (Table 3). The strongest reductions in  𝑎𝑃𝑆𝐼𝐼 

after optimisation are obtained for the two DA experiments assimilating SIF data, with lower values 

than the prior value of 0.5, equilibrating the absorption cross-section between the two photosystems. 

This decrease involves having a sustained NPQ where more energy is diverted to photosystem I; Bag 

et al. (2020) show that this is possible thanks to a reorganisation of the thylakoid membrane that brings 

PSII and PSI complexes closer. Note that the joint assimilation of SIF and GPP also provides a greater 

number of data to constrain this parameter to which both SIF and GPP are sensitive, leading to a 

stronger reduction in parameter uncertainty (74% for the joint assimilation against 56% and 19% for 

the GPP-only and SIF-only DA experiment, respectively, see Figure S8). Nevertheless, the model is 

presently hampered by having a static 𝑎𝑃𝑆𝐼𝐼 value. It should eventually be made variable over time, 

the transfer of light-harvesting complexes from PSII to PSI being one of the NPQ mechanisms allowing 

the energy absorbed between the two photosystems to be balanced (Ruban and Johnson, 2009). 

In addition, SIF sensitivity to canopy structure can provide information on the related parameters that 

are not well constrained by the GPP-only DA experiment. Canopy structure is critical as it determines 

the radiative transfer of incoming radiation impacting SIF and GPP, but also the emission, scattering, 

and reabsorption of SIF (van der Tol et al., 2009). Structural factors such as leaf angle distribution, leaf 

clumping, or leaf age and area, play a key role in modelling the diversity and complexity of canopy 

structure for different biomes (Sun et al., 2023). In this study, the most important parameter for 
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simulating SIF in ORCHIDEE was found to be ALA following the sensitivity analysis, whereas it does not 

appear in the top ten parameters to which GPP is sensitive (Figure S4); Migliavacca et al. (2017) also 

noted this different sensitivity to the leaf angle distribution, which explains that the SIF-GPP 

relationship is mainly controlled by changes in canopy structure in a Mediterranean grassland. The 

optimised values of the average leaf angle ALA are 80° for the SIF-only DA experiment and 79° for the 

SIF-GPP one, and tend toward erectophile leaves. These values are at the upper bound of the ALA 

estimates from Zhu et al. (2018) for coniferous trees (between 50° and 80°). The large reduction in ALA 

posterior uncertainty after assimilating SIF (56% for the SIF-only DA experiment and 62% for the SIF-

GPP DA experiment, see Figure S8) stresses its value to better constrain parameters determining 

canopy structure. Bacour et al. (2019) considered a lower prior value for ALA in the former ORCHIDEE 

version using a parametric simplification of the radiative transfer of the SCOPE model (57.4° for a 

spherical distribution), but also increased its value after assimilation of OCO-2 SIF data (65°). Note that 

ALA varies between plant species within the same biome (Barclay et al., 2001; Pisek et al., 2013, 2020), 

which cannot be accounted for in ORCHIDEE where vegetation types are grouped into PFTs. Moreover, 

several studies have also observed, for different species including conifers, that the leaf angle 

distribution varies vertically within the canopy, which enables optimising light interception and carbon 

assimilation at the canopy level (Utsugi et al., 2006; Niinemets, 2010).  

All DA experiments also consistently decrease SLA by around 25% (Table 3), evolving in the same 

direction as in Bacour et al. (2019) where a 10% reduction was found. A lower SLA value decreases the 

simulated leaf biomass in ORCHIDEE and changes leaf absorption. As for ALA, the description of SLA 

could be refined to account for its vertical distribution within the canopy. Indeed, Rajewicz et al. (2023) 

collected SLA estimates from needle samples of Pine and Spruce and found lower SLA values in the 

upper canopy compared to needles in the lower canopy, with stronger differences for Spruce 

compared to Pine. The optimised SLA values in ORCHIDEE (between 0.007039 and 0.007611 m2·gC-1) 

are in the middle of their SLA estimates, which range from 0.004 to 0.011 m2·gC-1 for the two species. 
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In addition, they highlighted a decreasing trend in SLA over the season for both species; considering 

temporal variations of a parameter value is not yet possible in the ORCHIDEE model. 

It is interesting to note that the main parameters related only to SIF variations according to the 

sensitivity analysis (ALA, 𝑘𝐹, 𝑝1𝑁𝑃𝑄𝑟, 𝑝2𝑁𝑃𝑄𝑟) have similar optimised values between the SIF-only and 

the SIF and GPP DA experiments, confirming that assimilating GPP data did not alter these parameters 

in the joint assimilation. Also note that the consistent optimised values of 𝑘𝐹 and ALA between these 

two DA experiments are found despite the strong positive error correlation between these parameters 

(Figure S9). Concerning 𝑘𝐹, the two DA experiments in which SIF data are assimilated increase its value 

from 0.05 to 0.07 (Table 3). This prior value of 0.05 has been commonly used in the literature following 

van der Tol et al. (2014) (Bacour et al., 2019; Raczka et al., 2019). However, Porcar-Castell et al. (2014) 

used a higher value of 0.1, and Liu et al. (2022) recently estimated the same value for 𝑘𝐹from leaf 

chamber measurements of fluorescence flux performed on winter wheat under different air 

temperature and CO2 concentration treatments.  

 

4.3 Limited constraint on carboxylation related parameters and associated foreseen model 

improvements 

One limitation that can be highlighted when performing data assimilation is model equifinality, 

corresponding to several combinations of parameters that lead to similar reductions of the cost 

function, with respect to the prescribed errors on observations and parameters (Medlyn et al., 2005; 

Williams et al., 2009). In this study, the DA experiments disagree on the optimised values of three 

common parameters (𝑉𝑐𝑚𝑎𝑥,25, 𝐿𝑎𝑔𝑒𝑐𝑟𝑖𝑡, and 𝑎𝑆,𝑉), all of them having an impact on the simulated 

temporal dynamics of the 𝑉𝑐𝑚𝑎𝑥 variable. The fact that the parameters evolve from their prior value in 

divergent directions between the DA experiments can be related to equifinality of the solution and 

error correlation between parameters, which can lead to different GPP estimates when upscaled to 

the boreal region. Indeed, the highest model-data agreement with respect to in situ GPP data is 
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obtained for the two DA experiments that use those data as observational constraint (Figure 1 and 

Table 4). However, at the regional scale, while the GPP-only DA experiment also yields the lowest 

RMSD compared to FLUXSAT, the joint assimilation leads to a higher RMSD, similar to the one obtained 

with the SIF-only DA experiment, and to the strongest bias against this evaluation product (Figure 5 

and Table 5). 

Regarding 𝑉𝑐𝑚𝑎𝑥,25, the SIF-only and GPP-only DA experiments both agree on decreasing it by about 

20%, but the SIF-GPP DA experiment slightly increases it, as compared to its prior value (Table 3 and 

Figure 2). This reduction in 𝑉𝑐𝑚𝑎𝑥,25 is in line with Bacour et al. (2019) who also found a decrease in 

this parameter value after assimilating SIF data only (from 45 μmol·m-2·s-1 to 42 μmol·m-2·s-1), but to a 

smaller extent compared to the SIF-only DA experiment in this study. 

In the two DA experiments that assimilate SIF data, the decrease in 𝐿𝑎𝑔𝑒𝑐𝑟𝑖𝑡 agrees with the one in 

Bacour et al. (2019) for BorENF, who found a reduction from 910 to 855 days. However, the diverging 

change in the value of 𝐿𝑎𝑔𝑒𝑐𝑟𝑖𝑡 compared to the optimization assimilating only GPP data could highlight 

an incorrect representation of leaf life span in ORCHIDEE, that fails to reproduce several observational 

constraints, and therefore indicates a need for improvement. Indeed, it has been reported that the 

leaf life span of boreal forest needles varies in fact with latitude, being longer in the north due to colder 

temperatures. Thus, a temperature-dependent leaf life span should be implemented in LSMs (Reich et 

al., 2014). The longer leaf life span is also associated with a lower nitrogen content, and this 

relationship could also be implemented in the ORCHIDEE version integrating an explicit nitrogen cycle 

(Vuichard et al., 2019).   

Finally, assimilating only SIF data brings no constraint on the temperature acclimation parameters in 

ORCHIDEE. Indeed, 𝑎𝑆,𝑉  increases in the SIF-only DA experiment (from 668 J·K-1·mol-1 for the prior to 

740 J·K-1·mol-1), while it decreases in both DA experiments using GPP (517 J·K-1·mol-1 for the GPP-only 

DA experiment and 564 J·K-1·mol-1 for the joint DA experiment) (Table 3 and Figure 2). In the SIF-only 

DA experiment, 𝑎𝑆,𝑉  is also the less constrained parameter with a reduction in parameter uncertainty 
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of less than 1% (Figure S8). Two other parameters related to the temperature acclimation functions, 

𝑎𝑆,𝐽 and 𝑎𝑅,𝐽𝑉, have consistent changes of their optimised values after the two DA experiments that 

assimilate GPP data (they are not considered in the SIF-only one). However, note that in the GPP-only 

DA experiment, their posterior errors are strongly positively correlated, and the posterior error of 𝑎𝑅,𝐽𝑉 

is negatively correlated with that of 𝑎𝑆,𝑉  (Figure S9). These error correlations highlight limits in the 

confidence we can have in these optimised parameter values. Kumarathunge et al. (2019) recently 

updated the values of these acclimation parameters for growth temperature between 3°C and 30°C, 

which agree with the ones derived by Kattge and Knorr (2007) between 11°C and 35°C and used in 

ORCHIDEE. Although the temperature acclimation function in ORCHIDEE is derived from growth 

temperature measurements between 11°C and 35°C (Kattge and Knorr, 2007), hence likely 

not  adapted to boreal vegetation, a recent update of the parameter values based on an enlarged 

database with growth temperatures ranging from 3°C and 30°C (Kumarathunge et al., 2019) did not 

change much the derived values for 𝑎𝑆,𝐽,  𝑎𝑆,𝑉, and 𝑎𝑅,𝐽𝑉. However, for the ratio  
𝐽𝑐𝑚𝑎𝑥

𝑉𝑐𝑚𝑎𝑥
, they mentioned 

that they had a much lower value for the Finland Scots pine dataset, this is in line with the lower 𝑎𝑅,𝐽𝑉 

found in this study (2.08  μmol e-·m-2·s-1 / μmol CO2·m-2·s-1 for the GPP-only DA experiment, and 1.74 

for the joint DA experiment). At last, note that the SIF-only DA experiment cannot help to better 

constrain the last temperature-related parameter 𝑇𝑚𝑖𝑛 as SIF was not found to be sensitive to this 

parameter (Figure S4), while assimilating GPP data enables to reduce the posterior uncertainty of 

𝑇𝑚𝑖𝑛 by 98% (Figure S8). 

4.4 Challenges of modelling NPQ 

Specifically accounting for the sustained component of NPQ in addition to the reversible part is 

required for needleleaf evergreen biomes to represent the excess energy dissipation during 

wintertime in the absence of photosynthetic activity. Raczka et al. (2019) found that distinguishing 

between sustained and reversible NPQ in CLM Version 4.5 improved the seasonality of the simulated 
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SIF compared to the GOME-2 satellite SIF product at the Niwot Ridge site (see Table 1). Similarly, in 

this study, accounting for the sustained and reversible NPQ components impacts the dynamics of the 

simulated SIF compared to the total NPQ model of Bacour et al. (2019) after calibration against both 

SIF and GPP data (Figure S5). Indeed, notwithstanding similar overall performances at site level once 

optimised (RMSDs in Table 4), the two component NPQ modelling scheme results in lower SIF flux 

during wintertime (typically from January to May) together with higher SIF levels during the growing 

season and senescence (Figure S5).  

Despite the key roles of NPQ to in preventing damage of the photosynthetic machinery, theoretical 

gaps remain for improving NPQ understanding and modelling. Representing NPQ temporal dynamics 

is associated with a high level of complexity due to its multiple mechanisms and response timescales 

from seconds to seasonal variations. This complexity is illustrated by the different representations that 

have been developed to quantify the NPQ reversible and sustained components. Zaks et al. (2012) 

proposed a mathematical model capable of simulating reversible NPQ kinetics under different light 

intensities. However, this model consists of 26 nonlinear differential equations and 78 parameters in 

total. Due to its complexity and the uncertainty of an increasing number of parameters, such a model 

could not be implemented in LSMs. For greater simplicity, empirical models have also been developed. 

Serôdio and Lavaud (2011) represented the NPQ dynamics as a sigmoidal response to the irradiance 

level that is able to account for photoacclimation, based on an adaptation of the Hill equation. Then, 

Raczka et al. (2019) defined 𝑘𝑟 as a function of light saturation in CLM 4.5. The 𝑘𝑟 formulations in 

Serôdio and Lavaud (2011) and Raczka et al. (2019) rely on 3 parameters that can be calibrated with 

PAM measurements; we recall that the 𝑘𝑅 model developed in this study (Eq. (8)) uses 2 parameters 

(𝑝1𝑁𝑃𝑄𝑟 and 𝑝2𝑁𝑃𝑄𝑟).  

Therefore, the implementation of empirical models of reversible and sustained NPQ in LSMs depends 

on the availability of PAM data to validate the models and calibrate their parameters. However, few 

PAM data are available and do not cover the diversity of biomes or environmental conditions 
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represented in LSMs, with only one full-year PAM measurement campaign conducted at Hyytiälä on 

Scots pines for BorENF. Also note that the Hyytiälä PAM measurements were performed on needles 

from the top canopy, which does not allow to consider potential NPQ vertical variations inside the 

canopy in the 𝑘𝑅 and 𝑘𝑆  formulations. The new model for 𝑘𝑟 developed in this study and the 

formulation of 𝑘𝑆 from Raczka et al. (2019) would need to be tested against PAM data from other 

vegetation species, climatic conditions, and light conditions within the canopy. For example, PAM data 

from other cold climate biomes might not support a 𝑘𝑆 model that only depends on air temperature. 

However, for cold climate evergreen species, similar heat dissipation occurring through sustained NPQ 

have been found in winter (Öquist and Huner, 2003), which has been related in Scots pines to structural 

rearrangements of the thylakoid membrane with a disorganisation of photosystems chlorophyll 

antenna leading to heat dissipation (Bag et al., 2020). 

Optical remote sensing data could also provide new constraints on NPQ at larger scales than what is 

obtained from PAM measurements. Gamon et al. (1992) proposed the photochemical reflectance 

index (PRI) as an indicator of reversible NPQ. PRI is defined based on two reflectance bands, one at 

531 nm that is associated with the de-epoxidation of the xanthophyll pigments indicating short term 

decrease in photosynthetic efficiency, and a reference band at 570 nm (Gamon et al., 1992). This 

indexwas found to correlate with an increase in heat dissipation, such as under excess light or water 

stress conditions. Recently, Wang et al. (2020) estimated PRI using MODIS reflectance bands 11 and 

12 and showed that it could be used as a proxy of NPQ to better characterise the relationship between 

SIF and GPP for several biomes, including evergreen needleleaf forests. A complementary optical 

remote sensing index that has been related to sustained NPQ is the chlorophyll/carotenoid index (CCI) 

(Gamon et al., 2016; Pierrat et al., 2022). CCI tracks the seasonal variations in GPP through changes in 

carotenoid pigments, informing on sustained photoprotection mechanisms in winter for cold 

evergreen species. Then, remote sensing-based PRI and CCI could be used to evaluate and better 

constrain the reversible and sustained NPQ simulated in LSMs. However, the potential of these indices 
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has been primarily established at the leaf and canopy scales (Gamon et al., 1992; Springer et al., 2017; 

Wong and Gamon, 2015), and their application at larger scales is also limited by errors associated with 

satellite measurements. Finally, colour-based vegetation indices obtained from digital camera 

imagery, such as PhenoCam, also have the potential to provide new insights on chlorophyll 

fluorescence and PRI seasonal variations by tracking changes in canopy colours (Seyednasrollah et al., 

2021). 

 

4.5 Limitations to improving GPP constraint using data assimilation 

The ability of DA (here with in situ GPP estimates combined with space-borne SIF retrievals) to improve 

simulated GPP is affected by the representativity of the data used for parameter calibration. In this 

study focusing on BorENF, it is essential to consider a diverse and sufficiently large number of sites 

representative of this biome to prevent overfitting to the individual specificities of different sites when 

optimising the model parameters. Although we selected several sites having a large gradient of climate 

conditions and locations, with latitudes ranging from 40° to 67°N (Table 1), the use of in situ GPP data 

as observational constraint is intrinsically limited by the number of FLUXNET sites (all the more since 

we imposed selection criteria relative to the length of the available GPP time series, as well as the 

coverage of the BorENF PFT over the footprint of TROPOMI observations). This limited availability of 

in situ data could lead to a representativeness issue for BorENF when scaling the optimised parameters 

from the site scale to the regional scale. Indeed, in addition to the potential equifinality issue previously 

mentioned (see section 4.3), this could also explain why the two DA experiments assimilating GPP data 

give the best improvement in simulated GPP when evaluated against in situ GPP (Figure 1 and Table 

4), but not necessarily at the regional scale (Figure 5 and Table 5). 

Although satellite SIF products offer a global spatial coverage and therefore a large number of pixels 

available for data assimilation, we have limited our analysis to grid cells around the FLUXNET sites as 
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we aimed at comparing the assimilation of GPP and SIF data with similar constraints in terms of spatial 

sampling. However, an increased constraint could be reached by using a greater number of SIF grid 

cells; not limiting the selection to the vicinity of the FLUXNET sites would also allow considering more 

homogeneous grid cellswith respect to the considered PFT.  

In addition to the issue of spatial sampling, there is also a limitation due to the temporal sampling 

considered here for data assimilation. The observations of GPP and SIF are available during two distinct 

periods: the assimilated FLUXNET GPP estimates span three consecutive years between 1998 and 2006 

depending on site (Table 1), while the assimilated TROPOSIF estimates cover the period 2019-2020 

(section 2.2.2). The GPP interannual variations presented in Figure 6 shows that the simulation related 

to the GPP-only DA experiment better matches FLUXSAT GPP at the beginning of the evaluation period, 

while the agreement obtained for the simulation relying on the SIF-only DA experiment is higher 

towards the end of the evaluation period. Here, co-assimilating SIF and GPP data enabled the 

simulation of a mean annual GPP that is closer to the FLUXSAT reference product over the whole 

period, with an RMSD of 0.09 GtC·y-1 compared to 0.21 and 0.14 GtC·y-1 for the GPP-only and SIF-only 

DA, respectively. However, it is difficult to identify which parameters are responsible for this 

improvement as they could be related to temperature acclimation or the representation of the CO2 

fertilisation effect for example. The joint assimilation of SIF with GPP over a longer and more recent 

period should allow for an in-depth study of the impact of the temporal sampling on the estimation of 

the long--term trend of GPP; this could be achieved for instance with the in situ GPP dataset from 

Warm Winter 2020 Team, & ICOS Ecosystem Thematic Centre (2022).  

The estimation error associated with the GPP and SIF data used for assimilation and evaluation is 

another major limitation. The GPP data considered here for parameter optimisation are FLUXNET 

estimates derived from eddy-covariance measurements of NEE, which are affected by the chosen 

partitioning method, with its underlying assumptions and uncertainties (Tramontana et al., 2020). This 

is illustrated by the recent paper of Kohonen et al. (2022) who compared the standard GPP estimates 
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based on NEE measurements to GPP estimates based on the 5-year (2013-2017) time-series of 

carbonyl sulfide (COS) ecosystem fluxes they acquired at the Hyytiälä site. At the daily scale, their two 

COS-based GPP estimates were 23% and 7% higher, respectively, than the CO2-based estimates. On 

the other hand, Lee et al. (2020) found that the CO2-based GPP estimates from the night-time 

partitioning method were 19% higher than GPP estimates using a stable-C-isotope-based partitioning 

approach in a Douglas fir stand in Canada. Then, the uncertainty on the global GPP evaluation products 

is illustrated by the 15% difference between FLUXCOM and FLUXSAT mean annual GPP over the grid 

cells covered with at least 50% of BorENF. While these two evaluation products highlight a strong 

overestimation of the prior GPP in ORCHIDEE, the discrepancy between FLUXCOM and FLUXSAT 

hinders the evaluation of the optimised mean annual GPP for the different DA experiments. The 

TROPOSIF retrievals also have their own error, estimated at 0.5 W·m‑2·sr‑1·m‑2·μm‑1 for the considered 

spectral window (743-758 nm), with a low mean bias of -0.008 W·m‑2·sr‑1·m‑2·μm‑1 (Guanter et al., 

2021). The quality of these retrievals also depends on cloud fraction filtering and viewing angle. 

Although the 743-758 nm spectral window has been found to be less impacted by atmospheric effects 

than the 735-758 nm retrievals that are also available from the ESA product, the choice of a cloud 

fraction threshold still affects SIF estimates (Guanter et al., 2021). Here, filtering for cloud fractions 

above 40% enables a constraint on the simulated SIF and GPP for more illumination conditions than 

considering only cloud fractions lower than 20%. Then, considering TROPOSIF retrievals with VZA lower 

than 50° in this study agrees with the recommendations of Guanter et al. (2021) as a VZA higher than 

60° leads to lower quality SIF estimates. Note however that in this data assimilation framework, the 

observation error covariance matrix R is defined based on the RMSD between the observations and 

the prior model (Section 2.3.1); in doing so, the error in the model likely dominates the error budget 

related to the GPP and SIF data (Kuppel et al., 2013; Bacour et al., 2015). 

Finally, the accuracy of data assimilation is limited by the existence of model structural errors related 

to the implementation of the processes in ORCHIDEE as these errors will be aliased onto parameter 
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optimised values (MacBean et al., 2016; Bacour et al., 2023). For example, the inability of the simulated 

SIF to reproduce the latitudinal variations of the TROPOSIF product after data assimilation can point 

to structural errors in the current SIF model (Figure 4). More generally, systematic structural errors can 

be due to incorrect representations or missing processes in the ORCHIDEE version used in this study, 

such as accounting for carbon and nitrogen interactions or disturbances like clearcutting or fires 

(Vuichard et al., 2019; Zheng et al., 2023). Curasi et al. (2023) also recommend to implement a 

representation of boreal disturbances, but also of peatlands and permafrost soils in the Canadian Land 

Surface Scheme Including Biogeochemical Cycles (CLASSIC) model to improve the model 

performances. In addition, they found that refining the vegetation cover map by increasing the number 

of PFTs to represent Canada’s ecosystems improves CLASSIC ability to simulate the carbon cycle. On 

the other hand, Peaucelle et al. (2019) highlighted the need to use more plant functional trait based-

approaches in LSMs to better represent the relationship between traits and climate, instead of relying 

on optimising constant parameter values defined per PFT and specific to the LSM.  

5 Conclusion and outlook 

By using a physiologically-based NPQ model and assimilating in situ GPP FLUXNET estimates as well as 

ESA TROPOSIF retrievals within the ORCHIDEE LSM, we improved the co-variations of SIF and GPP 

simulated over boreal evergreen needleleaf forests. The structural code modifications, as well as the 

observation-based information now embedded in the optimised parameter values, have reduced the 

uncertainty of the simulated SIF and GPP. In spite of the limitations discussed above, this study 

advocates using TROPOMI SIF estimates in conjunction with in situ GPP estimates, to improve the SIF 

and GPP simulated by LSMs. Co-assimilating SIF and GPP helps to mitigate overfitting to each individual 

flux, and SIF provides useful additional information to reduce the uncertainty on model parameters 

that are not well constrained by GPP alone, especially parameters related to canopy structure. 

Regarding the future of NPQ modelling, Johnson and Berry (2021) and Johnson et al. (2021) proposed 

a new promising approach, with a process-based model of the linear electron transport, and a direct 
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activation of NPQ under photosynthetic control. This model can easily be implemented in LSMs. 

Another next step would be to improve the NPQ model in stress conditions, especially droughts as 

boreal forests are predicted to experience more frequent and intense droughts in the future (Seidl et 

al., 2017), so that models are able to simulate the decoupling observed between SIF and GPP in such 

conditions. 
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Supplementary Material 

 

Figure S1: Mean distribution of the BorENF PFT over the period 2001-2015 (data source: https://orchidas.lsce.ipsl.fr/dev/lccci/orchidee_pfts.php, last access: 12 July 2023). 

Grid cells (0.5°) with a null fraction are shown in grey. The location of the selected FLUXNET sites is represented with magenta circles.  

https://orchidas.lsce.ipsl.fr/dev/lccci/orchidee_pfts.php
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Figure S2: Seasonal cycles of the sustained NPQ relative rate constant 𝑘𝑆 of an upper canopy layer at the Hyytiälä 

site. The PAM daily data for the period from August 15, 2008 to August 14, 2009 are shown in black, the 2009 

data (January-August) preceding those of 2008 (August-December) to show a complete growing season from 

January to December. The fitted  𝑘𝑆 model is represented by the red line. 

 

Figure S3: Bidimensional histogram of the reversible NPQ relative rate constant 𝑘𝑅 against the relative light 

saturation of photosynthesis χ, for an upper canopy layer at the Hyytiälä site, using half-hourly data. The fitted 

𝑘𝑅  model is represented by the red line.  
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Figure S4: Ranking of the impact of the parameters on the simulated SIF (left) and GPP (right), identified by a 

sensitivity analysis according to Morris (1991). The nine most important parameters for each variable (detailed 

in Table 3) are represented according to the rank product over the nine selected sites (the lower the rank, the 

larger the influence). The error bars represent the standard-deviation of the ranking among the nine sites. 
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Figure S5: Seasonal cycle of SIF weekly averages over the evaluation year 2021. TROPOSIF estimates are in black, 

the prior simulation in orange, the posterior simulation related to the SIF-only DA experiment in green, the 

posterior simulation related to the GPP-only DA experiment in blue, the posterior simulation related to the SIF-

GPP DA experiment in pink, and the posterior simulation related to the Bacour SIF-GPP DA experiment in red. 

The values in each subplot give the RMSD between the simulated SIF and TROPOSIF estimates in W·m-2·m-1·sr-1, 

using the same colour code. 
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Figure S6: Seasonal cycle of GPP weekly averages for each site’s dedicated evaluation year (see Table 1). FLUXNET 

GPP estimates are in black, the prior simulation in orange, the posterior simulation related to the SIF-only DA 

experiment in green, the posterior simulation related to the GPP-only DA experiment in blue, the posterior 

simulated related to the SIF-GPP DA experiment in pink, and the posterior simulation related to the Bacour SIF-

GPP DA experiment in red. The values in each subplot give the RMSD between the simulated GPP and FLUXSAT 

estimates in gC·m-2·d-1, using the same colour code. Due to the absence of an evaluation year for RU-Zot, we 

have used the average seasonal cycles over the assimilation years in the corresponding subplot. 
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Figure S7: Maps of temporal means for SIF (left column) and GPP (right column), based on the prior simulations 

(a and b), the associated reference product, TROPOSIF for SIF (c) and FLUXSAT for GPP (d); and differences 

between simulated variables and the corresponding reference product (e and f). All means are computed over 

grid cells with a BorENF fraction larger than 50%, over the period May 2018-December 2020 for SIF, and over the 

period 2001-2015 for GPP. 

 

 

Figure S8: Reduction in parameter uncertainty (%) for the posterior SIF-only DA experiment in green, the 

posterior GPP-only DA experiment in blue, and the posterior SIF-GPP DA experiment in pink. SIF-only parameters 

are underlined with a dashed style, GPP-only parameters are underlined with a dotted style, all other parameters 

are common to both variables. 
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Figure S9: Posterior parameter error correlation matrices for the SIF-only (left), the GPP-only (middle), and the 

SIF-GPP (right) DA experiments. 

 

Table S1: Akaike Information Criterion (AIC) for various 𝑘𝑅  parametric models fitted with active fluorescence 

measurements at the Hyytiälä site. All RMSDs equal 0.28. 

References 𝒌𝑹 model AIC 

van der Tol et al. (2014); Raczka et 

al. (2019) 

𝑝1(1 + 𝑝3)
𝑒𝑝2 ln 𝑥

𝑝3+𝑒𝑝2 ln 𝑥
 

-33472 

Lee et al. (2015)  

(𝑝1𝑥 − 𝑝2)𝑥 

-33405 

Other tested parametric models 

This study 𝑝1𝑥𝑝2  -33474 

This study 𝑒𝑝1𝑥𝑝2 − 1 -33680 

This study 𝑝1𝑥 + 𝑝2𝑥3 -34012 
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